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ABSTRACT 

 
 
      A model was developed to compare the life cycle cost (LCC) of fiber reinforced 

polymer (FRP) bridge decks with steel reinforced concrete (SRC) bridge decks.  The 

objective was to analyze the viability of FRP for certain bridge deck projects. 

      Current LCC models of FRP bridge decks versus SRC bridge decks consider only 

manufacturing and erection costs in the cost calculations.  They do not consider one of 

the most important advantages of FRP for construction, which is its light weight.  The 

proposed model includes the cost savings in support structures when FRP is chosen as 

opposed to SRC, as well as the user costs occurring during bridge installation, 

maintenance, repair, and disposal processes.  A computer program, FRP Bridge Deck 

LCC Analyzer, was developed for conducting the comparison analysis.  The program 

incorporates the service life estimation of the FRP deck based on the Factor Method.   An 

LCC comparison between FRP bridge deck and SRC bridge deck was developed for a 

Base Case.  

     Three case studies of bridges in West Virginia were performed using the program.  

Sensitivity of certain parameters including FRP manufacturing cost and average daily 

traffic (ADT) were studied.  The results suggest that FRP bridge deck was economically 

viable to replace concrete bridge decks for Goat Farm, Katy Truss, and La Chein bridge 

deck projects.   
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Chapter 1 
 

Introduction and Research Objectives 
  

     
1.1 Introduction 
 

The American Road and Transportation Builders Association (ARTBA) released 

a report in 1996 that there are 594,709 bridges throughout the United States (U.S.). Of 

those 152,945 (26%) are described as being “structurally deficient or functionally 

obsolete,” according to data from the Federal Highway Administration (FHWA) in 2006 

[102].   Structurally deficient bridges are bridges that are closed or restricted to light 

vehicles because of deteriorated structural components. Functionally obsolete bridges are 

those that cannot safely service the volume and/or type of traffic using them.  Advance 

composites, such as fiber reinforced polymer (FRP), have the potential to provide better 

solutions to structurally deficient bridges [64].   

An FRP composite is defined as a combination of a polymer matrix (either a 

thermoplastic or thermoset resin, such as polyester, isopolyester, vinyl ester, epoxy, or 

phenolic) and a reinforcing agent, such as glass, carbon, aramid, or other reinforcing 

material so that there is a sufficient aspect ratio (length to thickness) to provide a 

discernable reinforcing function in one or more directions.  The fiber is the critical 

constituent in composites and occupies 30-70% of the composite matrix volume. 

FRP composites have a low weight, a high strength-to-weight ratio, high tensile 

strength, and a high fatigue resistance.  They do not exhibit chloride corrosion problems, 

which have been a challenge for bridge engineers. It is believed that these properties will 

result in lower maintenance costs and a longer life for bridge decks.   It has also been 

observed that FRP composites maintain their superior qualities under a wide range of 
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temperatures.  Other highly desirable qualities of composites are high resistance to 

elevated temperature, abrasion, corrosion, and chemical attack.  Some of the advantages 

in the use of composite structures include the ease of manufacturing, fabrication, 

handling, and erection, which may result in shorter delivery time.   

As a new technology application, FRP bridge decks are hampered by a lack of 

performance standards and design and construction experience, as well as by high initial 

costs.  Standards have been established recently, but widespread deployment will not 

occur until there is more experience in their use, and FRP costs decrease sufficiently to 

support their selection.   There is no sound conclusion about the competitiveness of FRP 

for bridge decks at this time.  More research is needed to determine if the technology can 

become cost competitive for new bridge decks. FRP decks are highly competitive as 

replacements for concrete decks where load requirements increase on existing structures.  

Ehlen and Marshall [29] suggested that despite the FRP weight advantage over 

traditional materials, economic and technical barriers hinder the introduction of these new 

technologies, whereas Tang and Podolny [91] had a more optimistic view. Tang and 

Podolny suggested that FRP composite technology could be part of the solution to the 

national bridge problem. Composites can be used for the construction of an entire bridge 

structure or as a decking material to be supported by concrete or steel girders, or to 

rehabilitate current bridges.  However, up to year 2007, there had only been 

approximately 80 completed bridge deck projects using FRP composite materials 

nationwide, and most of these were built within the last ten years [34].  Federal funding 

for FRP bridge deck construction has decreased since then. 

The use of FRP composites as a replacement for steel reinforced concrete (SRC) 
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bridge decks have significant potential advantages with increased service life and lower 

maintenance costs, but the increased initial costs may make them unfeasible on a cost 

basis.  Since FRP is a new technology material, this technology must be compared with 

conventional technology.  In comparing some choices, minimum criteria must first be 

satisfied.  When comparing the composite bridge decks with conventional bridge decks, 

FRP must meet the conventional technical requirements.  Since it has been known that 

FRP bridge decks can meet the required technological criteria, then the major criterion is 

total cost as to which material can provide the lowest cost over the bridge deck life. 

Assuming the claim of a lower maintenance cost is true, the initial costs of FRP 

decks must further be reduced to become cost competitive with SRC decks.  For that 

reason, an analysis of initial costs of FRP decks is required.  However, the comparison of 

infrastructural projects that have high investment costs and a long life expectancy 

requires using a life-cycle costing (LCC) methodology, because there are costs beyond 

the initial construction costs that should be considered.  The Federal Highway 

Administration (FHWA) encourages states to use LCC when determining which roadway 

projects to fund.     

Life-cycle Cost consists of initial costs, maintenance costs, and disposal costs.  

Each consists of direct costs (agency costs) as well as indirect costs (user costs and third 

party costs).  To be able to predict maintenance costs, one should first determine the 

service life of the infrastructure and its deterioration rate, but those pieces of information 

are not available for FRP bridge decks.  Most designs of bridge structures are for SRC 

decks and then modifications are made for the use of FRP decks.  Since FRP decks are 

approximately 80 percent lighter than SRC decks, the dead load is lower and the 
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supporting structures can be reduced. The estimated savings for reduced support 

structures for FRP decks must be considered in the life-cycle cost analysis. Also, the 

faster erection of FRP decks must be considered. 

 

1.2      Need for Research 

1.2.1   Initial Cost Analysis 

 FRP bridge deck initial costs include manufacturing costs, installation costs, and 

user costs that take place during deck installation.  Available initial cost analyses of FRP 

bridge decks versus SRC bridge decks only considered manufacturing and erection costs.  

They did not consider one of the most important advantages of FRP for construction, its 

light weight.   

The initial cost analysis should not only include the manufacturing cost of the 

bridge deck, but also the cost savings in support structures when FRP is chosen as 

opposed to SRC, as well as the user costs incurred during  the bridge installation process.  

It is believed that the proposed initial cost analysis provides a better comparison between 

the two choices. 

 

1.2.2   Life-Cycle Cost Analysis 

Life-cycle Cost analysis (LCC) is the comprehensive way to compare-long term 

projects, such as bridge projects.  Regardless of the importance of this analysis, there has 

been little research conducted for FRP bridge decks.  Five important studies performed 

are those by Lopez-Anido [53], Ehlen [28], Nathan and Onyekmeluwe [61], 

Roychoudury and Creese [76], and Nishizaki et al. [63].  The fundamental differences 
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between the proposed LCC models and the previous research are as follows:   

1. In the available models, the service life of an FRP bridge deck is either fixed or is 

estimated by the user.  It is understandable that one makes assumptions about values 

according to what one believes, because the FRP bridge deck service life is currently 

unknown.  However, since service life plays an important role in LCC estimation, it is 

important to get the best possible estimate for FRP bridge deck service life.  For that 

reason, a separate module to estimate the service life for the bridge under consideration is 

included in the model.  Lack of data, however, makes it difficult to use a sophisticated 

service life prediction method.  Hence, the estimation model is based on the factor 

method.  Experts’ opinions were applied to determine the importance of each related 

factor.  For this purpose, the first questionnaire was prepared and distributed.  Based on 

these results, a second questionnaire was prepared.  Samples of the two questionnaires 

are given in Appendix 1 and Appendix 2. 

2. An initial cost module emphasizes the substructure cost reductions from using FRP as 

bridge deck material. This provides a better comparison between the two bridge deck 

systems. 

3. Sensitivity of maintenance/anticipated repair schedules is included.  Ehlen [28] used a 

preset maintenance/repair schedule based on a concrete deck maintenance/repair schedule 

to obtain maintenance/repair costs.  In this research, FRP deck maintenance/anticipated 

repair schedules based on expert judgment were analyzed, and the sensitivity of the 

different maintenance schedules are discussed. 
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1.3 Research Objectives and Organization 

1.3.1 Research Objectives 

The main objective of the dissertation is to study the economic viability of FRP 

bridge decks compared to traditional material, i.e., steel reinforced concrete (SRC).   By 

utilizing initial cost and life-cycle costing analysis, this study seeks to quantify the costs 

associated with FRP systems as well as ones for SRC systems.   Excel-based software 

was programmed to facilitate the study.  The primary objectives of this dissertation were 

to: 

(1) Evaluate the economic feasibility of fiber-reinforced polymer (FRP) bridge decks 

based on initial cost analysis, including cost savings from reduced substructure 

costs and reduced construction time. 

(2) Estimate FRP bridge deck service life using the factor method. 

(3) Construct a life-cycle cost model for FRP bridge decks.  Study the life-cycle cost 

(LCC) of FRP bridge decks to determine the effect of reduced structural costs on 

total LCC and to determine the economic life required for FRP to be equivalent to 

SRC.  Three West Virginia bridges were used as case studies.   

 

1.3.2 Organization 

The scope of this research is to analyze FRP bridge deck project life-cycle costs in 

which the individual costs are accrued from an LCC model.  The main focus was to study 

the viability of an FRP bridge deck compared to SRC bridge deck project. 

The dissertation is organized into six chapters.  Chapter 1 discusses the 

background of the study and research objective.  Chapter 2 provides a systematic 
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literature review of the topics related to the research, which includes information about 

FRP manufacturing and its use in construction industries, and the life-cycle management 

process for bridges.  Chapter 3 provides an overview of the life-cycle costing approach 

used in this study and describes how both agency and social costs were incorporated into 

the analysis. Furthermore, a discussion of service life estimation, estimation of FRP 

manufacturing costs, as well as the concept of substructure cost reductions implemented 

in this research are included.  Chapter 4 presents the research methodology used in this 

study along with explanation of how detailed calculations were performed. Since the life-

cycle cost model used for this study is comprised of several smaller modules, this chapter 

demonstrates how each module in the model functions.  Chapter 5 reports the results of 

the life-cycle cost model as well as a sensitivity analysis report for the case studies.  The 

sensitivity analysis indicates which variables have the greatest impact on the final results 

of the model.  Chapter 6 offers conclusions, recommendations, and suggestions for future 

research. 
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Chapter 2 
 

Background and Research Survey 
 

 
2.1      FRP and Its Applications for Construction 

2.1.1 Basic Properties and Advantages/Disadvantages of FRP 

Fiber-reinforced polymer (FRP) composites are defined as a polymer matrix, 

either thermoset or thermoplastic, that is reinforced with fibers or other reinforcing 

material with a sufficient aspect ratio (length to thickness) to provide a discernible 

reinforcing function in one or more directions.  FRP composites are anisotropic, i.e., the 

properties differ depending on the direction of the fibers [64]. Mechanical properties of 

composites depend on many variables, such as fiber types, orientations, and architecture.  

The fiber is the important constituent in composites, which occupies 30-70 percent of the 

matrix volume in the composites and is the primary contribution to the mechanical 

properties of the composite [90]. 

FRP decks have a very low self-weight but a high strength-to-weight ratio, high 

tensile strength, and high fatigue resistance.  They do not exhibit the traditional corrosion 

problems of SRC structures that have been a continuing challenge for bridge engineers. 

This results in lower maintenance costs for FRP bridges. It has also been observed that 

FRP structures maintain their superior qualities under a wide range of temperatures [80].   

Other desirable qualities of composites are a higher resistance to elevated temperature, 

abrasion, corrosion, and chemical attack.  Some of the advantages in the use of composite 

structures include the ease of manufacturing, fabrication, handling, and erection, which 

result in short project delivery time [90].  A list of the typical advantages of FRP are: (1) 

strength; (2) directional strength; (3) high resistance to corrosion and chemicals; (4) high 
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resistance to elevated temperature; (5) low thermal conductivity; (6) high dielectric 

strength (insulator); (7) high resistance to abrasion; (8) dimensional stability; (9) non-

magnetic; (10) toughness; (11) fatigue; (12) light weight; (13) ease in fabrication, 

manufacturing, handling, and erection; (14) year-round construction (weather resistance); 

(15) short project delivery time; (16) high performance; (17) long-term durability; and 

(18) an excellent strength-to-weight ratio [90]. 

One concern with FRP composites is their long-term durability because there is 

not sufficient historical performance data in bridge applications of FRP materials.  There 

are concerns for the long-term integrity of bonded joints, components under cyclic 

fatigue loading, improper curing of the resins and moisture absorption, and ultraviolet 

light exposure of composites that may affect the strength and stiffness of the structural 

system.  Certain resin systems have been found ineffective in the presence of moisture.    

In the case of a glass fiber composite, moisture absorption may affect the resin and allow 

the alkali to degrade the fibers [91]. 

The disadvantages of FRP include the following: (1) high initial cost, (2) creep 

and shrinkage, (3) potential for environmental degradation (alkali attack, UV radiation 

exposure, moisture absorption, etc.), (4) inconsistency of material properties, (5) global 

and local buckling, (6) increased aerodynamic instability with light weight, (7) need for 

highly trained specialists, (8) lack of standards and design guidelines, and (9) limited 

joining and connection technology (adhesive joints, fasteners) [90].   For the construction 

industry, FRP products can provide the following benefits: (1) increased service life of 

the structure, (2) reduced maintenance costs due to resistance to deicing salts and other 

corrosive agents, (3) reduced field installation time due to engineered system packaging 
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and the light weight of the materials, (4) reduced traffic delays due to faster construction, 

(5) increased reliability due to pre-engineered systems and resistance to corrosion, and 

(6) allows a greater vehicular load on the same understructure due to weight reduction of 

the FRP deck structure [64].  

The advantages of FRP for bridge deck applications based on Reeve [70] are: 

(1) Light Weight.  FRP bridge decks weigh about 10 to 20 percent of a structurally 

equivalent SRC deck, and they significantly reduce the dead load.  In new 

construction, this can translate into savings throughout the structure as the size of 

structural members and the foundation are reduced accordingly. 

(2) Corrosion Resistance.  FRP’s are not susceptible to chloride corrosion, offering a 

promising alternative to SRC bridge decks. 

(3)  Quick Installation Time.  Prefabricated FRP deck panels can be installed quickly 

compared to the labor-intensive process of constructing a cast-in-place deck. 

(4)  High Strength.  Static tests of FRP decks greatly exceed the strengths of traditional 

SRC decks.   

(5) Lower Life-Cycle Costs.  Reeve believed that total savings in deck replacement and 

maintenance costs over the service life of an FRP bridge deck are much greater than the 

initial cost of the entire structure.  Unfortunately, long-range durability claims are often 

viewed with skepticism by the construction industry.  Furthermore, few public agencies 

select materials based on projected life-cycle costs.  He suggested that FRP deck prices 

must become more competitive, since price is one of the major barriers to FRP deck 

market development.  Earlier, Ehlen and Marshall [29] have suggested that economic and 

technical barriers have hindered the introduction of new FRP technologies. 
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Reeve [70] concluded that FRP decks must be reduced to, at most, 1.25 times the 

installed cost of the reinforced concrete decks (typically in the range of $25 to $35 per 

square foot) to be a viable alternative. Hence, the installed cost of an FRP deck should be 

less than $45 per square foot, which was not obtained to date. Furthermore, he also 

recommended concentration on a single segment of the bridge market, i.e., low profile 

decks, which have fewer design issues, to be able to provide a more cost competitive FRP 

bridge deck. 

Currently, the lowest estimated price for FRP decks is approximately $65 per 

square foot [52], and it is estimated to be $60 per square foot [11].   A typical Hardcore 8 

inch composite bridge deck costs $75 per square foot for manufacturing and 

transportation, a typical Martin Marietta 8 inch deck costs $88 per square foot.  The 

actual installed costs range from $75 to $93 per square foot [45]. 

 However, Lopez-Anido [54] believed that other cost advantages of FRP bridge 

decks may partially, or completely, compensate for this high initial cost, especially when 

there is a need for light weight, strong corrosion resistance, and/or rapid installation.  

Additionally, O’Connor and Hooks suggested that the weight savings of FRP over SRC 

can allow the conversion of dead load to live load carrying capacity.  On new 

construction, the weight savings should lower foundation requirements (i.e., fewer or 

smaller piles). 

 
2.1.2 Applications of FRP for Construction 

FRP composite technology has been incorporated into the industrial world for 

about 70 years.  Only recently has it been gaining popularity and getting accepted as a 

bridge material.  Nevertheless, most bridge contractors throughout the world continue to 
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use traditional materials such as steel and concrete, thereby taking advantage of well-

proven materials with appropriate design codes. Those authorities who have decided to 

employ FRP materials in their bridge construction projects have primarily used them to 

reduce the dead weight of existing concrete bridges and thus increase or maintain the 

current live-load capability.    More recently FRP reinforcing bars are also applied in 

SRC structures.  Fiber Reinforced Polymers (FRPs) are increasingly being used as 

reinforcement in new concrete structures and as strengthening materials for the 

rehabilitation of existing concrete structures [100].   

The next step in FRP applications for construction was the development of bridge 

decks composed entirely of FRP materials.  The first FRP highway bridge was built in 

1982 in Miyun, China [35].  In 1986, the world’s first highway bridge using composite 

reinforcing tendons was built in Germany.  The first all-composites pedestrian bridge was 

installed in 1992 in Aberfeldy, Scotland. 

 The mechanical properties of FRP materials explain why they appear to be very 

convenient for use in bridge decks.   The most obvious characteristics are the low dead 

load combined with high strength and resistance to de-icing salts and water.  As a result 

of these advantages, different FRP bridge deck systems have already been developed 

[42].  Additionally, Gurtler [42] stated that while several pedestrian bridges have already 

been constructed entirely of composite materials, most road bridges still need main steel 

girders or concrete beams to be cost-effective. The deck elements are usually bonded 

together and then fastened to primary steel girders or concrete beams with either of two 

types of connections: mechanical fasteners, such as shear studs or bolts, or adhesive 

bonding.   
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 The Federal Highway Administration (FHWA) has used FRP to build pedestrian 

bridges and highway bridges, as well as for bridge strengthening and bridge repairs.   For 

more than 20 years FHWA has funded innovative bridge research.  As a result, there are 

more vehicular bridge projects using FRP composite materials in the U.S. than in any 

other country.   The first FRP reinforced concrete bridge deck was built in 1996 at 

McKinleyville, West Virginia, followed by the first all-composite vehicular bridge deck 

in Russell, Kansas, [91] on December 4, 1996.  The all-complete decks used a wet lay-up 

manufacturing method (manufacturer: KSCI), a technology transfer from the defense 

industry.  The FRP deck panels were shop-fabricated with composite honeycomb cells 

sandwiched between two face sheets.  It took the Russell County work crew one day to 

install the bridge superstructure. 

As of 2009, FHWA listed 13 completed FRP deck projects in West Virginia. 

Those are: (1) Market St. Bridge, Ohio County, (2) Laurel Lick Bridge, Lewis County, 

(3) Wickwire Run Bridge, Taylor County, (4) Hanover Bridge, Pendleton County, (5) 

Boy Scout Camp Bridge, Raleigh County, (6) Katy Truss Bridge, Marion County, (7) La 

Chein Bridge, Monroe County, (8) Montrose Bridge, Randolph County, (9) West 

Buckeye Bridge, Monongalia County, (10) Howell's Mill Bridge, Cabel County, (11) 

Goat Farm Bridge, Jackson County, (12) CR1 over Mud River (Howell’s Mill Bridge), 

Cabel County, and (13) Kite Creek Bridge, Monroe County. 

 
2.1.3 FRP Bridge Deck Manufacturing  

By 2005, there were 83 FRP bridge decks installed in the U.S. [62]. Among them, 

79 were manufactured by six companies: (1) Creative Pultrusions, Inc., (2) Hardcore 

Composites, Inc., (3) Infrastructure Composites, Inc. (4) Kansas Composite Industries, 



 

 14 

Inc., (5) Martin Marietta Composites, Inc., and (6) Strongwell, Inc.  Bedford Reinforced 

Plastics partnered with West Virginia University to produce FRP decks in 2004. It 

supplied FRP decks for one project in West Virginia.  There are two major types of FRP 

decks currently in use: sandwich structures and adhesively bonded pultruded shapes [52].  

FRP sandwich structures cost about $570-$1,184 per square meter ($53-$111 per square 

ft) and weight 0.75-1.1 kN per square meter; FRP adhesively bonded pultrusions cost 

$700-$1,076 per square meter ($65-$100 per square ft) and weight 0.88 – 1.1 kN per 

square meter [101].   Zhou and Lesko added that pultruded FRP deck systems are the 

most promising.  Table 2.1 provides a summary of the number of decks installed by the 

six major manufacturers from 1996 through 2004 [62].    

 

Table 2.1 FRP Bridge Decks Installed by the Six Major Manufacturers [62]. 

 
 

There are three different manufacturing processes used by the above 

manufacturers: (1) pultrusion processes, (2) vacuum assisted resin transfer molding 

(VARTM), and (3) hand laminating.   Strongwell, Bedford Reinforced Plastics, Creative 

Number of Decks Installed in Each Year
Manufacturer 1996& Prior 1997 1998 1999 2000 2001 2002 2003 2004 TOTAL
Kansas Composite Industries, Inc. 1 2 5 3 1 12
Infrastructure Composites, Inc. 1 1
Martin Marietta Composites, Inc. 1 2 1 2 8 4 6 3 27
Hardcore Composites, Inc. 2 3 4 7 9 1 26
Creative Pultrusions, Inc. 3 2 2 1 1 9
Strongwell, Inc. 1 2 1 4
Others 2 2 4
TOTAL 3 9 5 10 15 20 8 10 3 83
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Pultrusions, and Martin Marietta employ the pultrusion process; hand lamination is used 

by Kansas Composite Industries as well as by Infrastructure Composites bridge deck 

systems; VARTM is used by Hardcore Composites.   Each manufacturer has a unique 

design for FRP bridge decks.  The following figures (Figures 2.1 a through f) depict the 

detail of FRP bridge decks designed by the above manufacturers.         

 
 
 

Figure 2.1a Detail of Kansas Composite Bridge Deck [62] 

 
              

Figure 2.1b Detail of Infrastructure Composites Sandwich Deck [62] 
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Figure 2.1c Detail of Martin Marietta Composite Sandwich Bridge Deck [62] 
 
 
                 

 

Figure 2.1d Detail of Hardcore Composite Filled-core Sandwich Deck [62]                   
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Figure 2.1e Detail of Creative Pultrusions Hollow-core Sandwich Deck [62] 

 
 

 
 

Figure 2.1f Detail of Strongwell’s double-wall beam (DWB) [62] 
 

 

 

Figure 2.1g Detail of Bedford Reinforced Plastics Inc. Prodeck8 [11]. 
 
 
2.2      Cost Analysis 

The two approaches commonly used for cost analysis are initial costs analysis and 

life-cycle cost (LCC) analysis. Life-cycle cost includes the initial costs; maintenance, 

inspection, and repair costs; and the disposal costs.  Therefore, initial costs are a subset of 

the total life-cycle cost.  When initial costs are the major cost component, life-cycle 
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costing results will be similar to considering only initial costs. However, when 

inspection, maintenance, and disposal costs become dominant, life-cycle costing must be 

utilized.   Maintenance costs depend on the frequency and amount of maintenance 

performed during the life-cycle.  Inspection includes the cost of the quality assurance 

procedures, testing, and record maintenance.  Repair is similar to maintenance costs, but 

is done for major items such as deck and/or overlay replacement and typically is not 

performed on a regular basis.   While life-cycle costing is probably the best process to 

study the competitiveness of FRP for large structure projects, sometimes it is not possible 

to obtain all the necessary data.   

 

2.2.1 Initial Cost Analysis 

For FRP bridge decks, the initial costs include material costs, component 

manufacturing, fabrication, assembly, shipment, installation and testing costs.   Knowing 

the initial costs from the recent past, future initial costs can be estimated by utilizing 

improvement (learning) curve theory.    

Three types of improvement curve models were developed based on their 

definition of the dependent variable: the average time basis, the marginal time basis, and 

the individual unit-time basis.  The model with the highest coefficient of determination 

(R2) for its logarithmic linear regression was utilized.  The two most important models 

are the Wright model and the Crawford model [55].   
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2.2.2   Life-Cycle Cost Analysis 
  
Life-cycle costing (LCC) is defined as "the total cost of the system or product 

under study over its complete life cycle or the duration of the period of study, whichever 

is the shorter" [64].   LCC is a form of value engineering in which the costs of 

alternatives can be determined and compared.  The study period of LCC is defined as the 

length of time over which an investment is evaluated.  It depends on the time horizon of 

the investor or the expected life of the system.  Three key times of the study period are 

(1) the base date (beginning of study period), (2) the service date (beginning of 

operational period), and (3) the end date (end of study period) [39]. 

The six main steps in an LCC analysis are to: (1) identify feasible project 

alternatives, (2) establish common assumptions, (3) identify relevant project costs, (4) 

convert all dollar amounts to present value, (5) compute and compare LCCs of 

alternatives, and (6) interpret results [39].  Assumptions should be clearly defined. The 

most common assumptions are the definitions of life, costs, initial costs, discounting and 

inflation, taxation, and benefits.  

LCC is commonly promoted on a cost-only basis, but it is suggested that all 

expenditures that generate a value must be measured for a meaningful study.   The choice 

of discount rate may be determined by either sensitivity analysis or by the calculation of a 

"break-even" discount rate [73].  It is argued that the application of LCC at an early 

design stage will greatly enhance system design and operation [64].  

One of the disadvantages of LCC is inherent uncertainty.  Thus, handling of 

uncertainty must be emphasized [31].    Infrastructural projects, such as bridges, which 

have high investment costs and long life expectancies, should use life-cycle costing.  
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LCC is necessary when a project has high investment costs and high cumulative 

maintenance and removal costs over the life of the project [21]. 

Ehlen and Marshall [29] provide a general method for evaluating the life-cycle 

cost effectiveness of new-technology materials, such as FRP, in relation to conventional 

materials.  They recommended nine steps for calculating the life-cycle cost of a new-

technology material vis-à-vis a conventional material.  Those steps are to: (1) define the 

project objective and minimum performance requirements; (2) identify the alternatives 

for achieving the objectives; (3) establish the basic assumptions for the analysis; (4) 

identify, estimate, and determine the timing of all relevant costs; (5) compute the LCC for 

each alternative; (6) perform sensitivity analysis by recomputing the LCC for each 

alternative using different assumptions; (7) compare the alternative’s LCCs for each set 

of assumptions; (8) consider the other project effects; and (9) select the best alternative.  

In each alternative the user should use the same fixed discount rate and the same study 

period.  Implicit in any LCC analysis is the assumption that every proposed alternative 

will satisfy the minimum performance requirements of the project.  These requirements 

include structural, safety, reliability, environmental and specific building code 

requirements.  If an alternative satisfies performance requirements and has additional 

positive features that are not explicitly accounted for in the LCC analysis, then consider 

an alternative economic measure such as net benefits.  Step 6 of Ehlen and Marshall’s 

method is a fundamental part of assessing new construction materials.  The costs and 

technical performance of new materials are intrinsically uncertain; the method must 

address this uncertainty.   

Further, it is suggested to use the LCC classification scheme when evaluating 
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new-technology materials, mainly to make sure that all costs associated with the project 

are taken into account for each alternative [29].  The three levels of costs proposed 

include: level 1 cost by LCC category (typically used are construction, 

operation/maintenance/repair, and disposal); level 2 costs by the entity that bears the cost 

(agency costs, user costs, and third-party costs); and level 3 costs by elemental 

breakdown (elemental costs, non-elemental costs, new-technology introduction costs). 

Nystrom et al. [64], based on their LCC analysis of short-span FRP bridges (small 

bridges with a span less than 10 meters, which represent more than half of the bridge 

applications nationally and are critical to rural highways and city streets), suggested that 

total FRP designs for short-span bridges are not financially viable.   Unless there are 

particular intangible benefits to justify the premium, or new low-cost materials are 

developed that will significantly lower the material costs, this technology will not be 

cost-competitive for the standard small bridge [64].  The expectation that FRP bridges 

will have lower maintenance and repair costs was not factored into the analysis, assuming 

the impact would be small.  For example, even though FRP may be durable and easy to 

repair, it might also be more difficult to inspect.  Sophisticated, nondestructive 

evaluation/testing devices and fiber optic sensors, which are costly, may be needed to 

monitor the in-service condition of and the presence of moisture in the bridge deck [91].  

Nystrom et al. [64] concluded that the application of FRP technology will be limited to 

other niche markets, such as decks and bridge repair.  A life-cycle cost analysis by Ehlen 

[28]  of three fiber-reinforced-polymer bridge decks (SCRIMP FRP deck, wood-core 

FRP deck, and pultruded-plank FRP deck) indicated that the wood-core FRP deck was 

cost effective for a particular class of bridges and traffic levels if new technology 
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introduction (NTI) costs are divided among three similar projects.  

Balendran et al. [10], based on some case studies of FRP strengthening 

applications, concluded that the use of FRP material for strengthening concrete structures 

was rapidly gaining acceptance due to its enhanced properties and cost effectiveness.    

Nathan and Onyemelukwe [61] studied bridge deck replacement alternatives for the 

Sunrise Boulevard movable bridge in Ft. Lauderdale, Florida.    LCC analysis was done 

on an existing steel grid deck and a proposed FRP deck.  Cost data for the steel deck as 

well as the FRP deck were obtained from the Florida Department of Transportation and 

Strongwell Inc., respectively.  As the basis for their calculations, they used 40 years for 

the life of the steel deck and 50 years for the life of the FRP deck, along with a discount 

rate of 2 percent.  Considering the uncertainty of FRP costs and service life, sensitivity 

analysis was done for both factors.  The results showed that rehabilitation or replacement 

for steel costs more than the FRP deck alternative.  While the benefit to cost ratio for the 

steel deck was slightly higher, the difference between both decks (steel 1.8 and FRP 1.7) 

was only 5percent.  The analysis suggested that, in the long term, the FRP deck is cost 

effective.  

LCC analyses have shown that FRP bridge decks used on conventional multi-

beam overpass bridges can reduce the life-cycle cost of a bridge anywhere from 10 to 30 

percent over a 75-year design life.  The major component of the cost savings is a 

reduction in user costs associated with the increased speed of construction and fewer 

traffic impacts due to a reduction in maintenance and rehabilitation requirements.   
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 2.3      The Economic Evaluation of Composites for Construction   

An interesting framework for life-cycle cost assessment of composites in 

construction was suggested by Hastak et al. [43].  They proposed a model that utilized the 

historical life-cycle performance data for conventional materials, knowledge about 

material properties, and deterioration characteristics for new and conventional materials 

to effectively assess the life-cycle cost and behavior of composite materials in 

construction.  There are two basic assumptions stated for this proposed model.  First, the 

life-cycle performance is based on the severity of damage modes (DM).  Damage modes 

may include corrosion, fatigue, and spalling due to freeze-thaw.   Factors affecting 

damage modes include maintenance practices, average daily traffic (ADT), temperature, 

moisture, weathering, salt, and humidity.  The second assumption is that while the factors 

may or may not be independent, their individual influence on a damage mode is 

independent.  The model integrates deterioration characteristics of structural components 

under different environmental and loading conditions to establish performance envelopes. 

Monte Carlo simulation models were generated to evaluate various maintenance, repair, 

and rehabilitation strategies possible over the life-cycle. The life-cycle cost associated 

with each scenario was computed at different discount rates to obtain the optimal life-

cycle cost for various material options.  The framework proposed provided a 

methodology at the macro level that would require micro-level development at various 

steps within the methodology to arrive at the final results. 

Hastak et al. [44] developed a life-cycle benefit-cost model for composite 

materials used in construction. Their model has three main components: (1) life-cycle 

benefit assessment, (2) life-cycle cost assessment, and (3) benefit-cost assessment. Their 
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model provides a method for comparing various alternative materials using value-based 

preferences of the decision makers and non-monetary evaluation of benefits.  It was 

assumed that life-cycle cost data for each material option are available from another 

model.  

 

2.4   Deterioration of FRP 

Among the FRP types available, Glass Fiber Reinforced Polymer (GFRP) is the 

lowest cost and consequently has the highest potential of being cost effective.  Therefore, 

many researchers decided to focus on studying the deterioration mechanism of this type 

of FRP.  Consequently, information on the mechanism of GFRP deterioration is more 

complete compared to other types of FRP. 

Different researchers have suggested several different mechanisms for 

degradation of GFRP in concrete.  One important degradation mechanism suggested is 

the cutting of the Si-O bonds by reaction with H2O molecules and OH ions in water and 

alkaline solution, respectively.  Regarding the polymer matrix, base hydrolysis of ester 

bonds has been emphasized as the main degradation mechanism.    

Several research projects with the aim of evaluating the durability of GFRP in 

alkaline environments have been presented in recent years.  However, the approaches 

adopted in these projects are generally qualitative, and no serious attempt was made to 

predict service life in a real application.  A few researchers suggested methods to make 

quantitative assessments of the service life of GFRP in alkaline environments.   

Saadatmanesh and Tannous [79] used Fick’s law to predict the reduction in 

strength of various FRP tendons.  In general, this law was considered to adequately 
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predict the loss in strength of the tendons studied.  This approach assumed that the 

ingress of alkali ions in the GRFP material could be measured.   A bar that lost tensile 

strength in a layer penetrated by alkali ions may also lose its bond strength.  Therefore, 

bond strength may well control the service life rather than the tensile strength.   

Another suggested approach was to utilize the time-temperature relationship 

established for glass fiber-reinforced concrete by Vijay and GangaRao [94].  This 

relationship was used to transform time under accelerated exposure of GFRP bars (in 

alkali solution or embedded in concrete) into time in real applications. Based on the 

series of experiments and the time transformation suggested, they concluded that the 

service life of the FRP bars with durable resin is at least 60 years with 20 percent 

sustained stress on the bar.   The benefit of using this approach is that reliable time-

temperature relationships for glass fiber reinforced concrete (GFRC) are available for 

relatively long exposure times.  However, it is not obvious that time-temperature 

relationships that apply to degradation of GFRC are also valid for GFRP.   

Based on this drawback, Dejke [24] suggested a new model for time-shift factors 

based on the Arrhenius equation in his study of degradation mechanisms of GFRP in 

concrete and possible degradation modes.  He studied the degradation mechanism in the 

material after environmental exposure (water, alkali, concrete), which included different 

failure modes, matrix and interface degradation, fiber degradation, and transport 

mechanisms (alkali and water) in either an accelerated or non-accelerated test.  It should 

be noted that in this test, the bars were not subjected to any mechanical stress nor 

involved any cycling.   Hence, any effects caused by such cycling in exposure conditions 

were not covered in that investigation. 
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Regardless of the different approaches that the last two researchers used, their 

conclusions were similar with regard to tensile strength value of FRP under 

consideration.  Vijay and GangaRao [94] noted a tensile strength reduction of 55 percent 

in 30 months due to accelerated aging under alkaline conditioning and freeze-thaw 

variations (approximately equivalent to a lower bound service life of 59 years in real life 

weathering with 20 percent sustained stress).  Concrete covered bars would have a 

service life of 90-120 years. Dejke [24] predicted that the tensile strength drops to 50 

percent of the original strength after 55 years in concrete (humidity 100 percent) at 10 o 

C.  The strength, however, would not drop dramatically in years 55-100.  Furthermore, it 

was reported that there was no significant deterioration in the modulus of elasticity. 

Apparently the environment has a much lower influence on the stiffness of the 

reinforcement than on the tensile strength. 

Unfortunately, these research studies were limited in their scope, and did not 

provide in-depth insights into the post-damage strength and behavior of FRP decks, or 

into the effect of damage on the useful life of these components.  Clearly, in the civil 

infrastructure and for FRP decks in particular, research is lacking in the areas of damage 

estimation, damage accumulation, and remaining service life prediction [62]. 

 

2.4.1    Deterioration Phase 

The deterioration phase of FRP is not fully understood as the different mechanical 

properties of FRP deteriorate at different rates and to a different extent.  Therefore, it is 

vital to study the environmental effect on all mechanical properties important for the 

performance of FRP reinforcement in concrete to determine the overall durability and the 
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deterioration phase of certain FRP applications.  Testing only one property, i.e., tensile 

strength, may give misleading information about overall environmental resistance.    

The four basic indices that define the physical characteristics of FRP composites 

are (1) axial (longitudinal tensile strength), (2) bending strength (flexural strength), (3) 

shear strength (inter-laminar shear strength) and (4) modulus [41] must be examined in a 

timely manner.  Environmental factors that control the rate of degradation should be 

noted to be able to determine the time of each phase under different conditions.    

Besides environmental conditions, FRP material components deteriorate due to 

service loads and type of FRP itself.  Short-term behavior of FRP composites was found 

to vary significantly depending on the types of fibers and resins, fiber volume fraction, 

fiber orientation, manufacturing process, and production quality control process.  

Sensitivity to deteriorating mechanisms can be substantially different for FRP structures 

manufactured with different processes.   

Additionally, Hong et al. [46] suggested seven external factors (EFs) and seven 

damage modes (DMs) for FRP bridge deck panels.  The seven EFs include (1) 

temperature, (2) moisture, (3) chemicals, (4) loading cycle, (5) freeze and thaw, (6) 

ultraviolet light, and (7) fire attack. The seven DMs consist of (1) moisture (water) effect, 

(2) alkali environment, (3) thermal effect, (4) creep/relaxation effect, (5) fatigue effects, 

(6) ultraviolet exposure, and (7) fire effects.  Furthermore, they considered that resin and 

fiber were the main constituent materials of the bridge deck, which would be effected by 

the EFs and DMs resulting in material damages (MDs).      
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2.4.2    Factors Affecting FRP Service Life  

2.4.2.1 Factors Associated with the Environment   

There are basically three environmental factors that control the rate of degradation: 

temperature, moisture content, and stress level [24].  A more complete list of factors 

included: moisture (water, humid air, liquid), temperature (freeze-thaw cycling, elevated 

temperature, fire), weather conditions (physical, chemical, UV rays), physical weathering 

conditions (static load, fatigue, creep), and chemical weathering conditions (exposure to 

alkaline, acid, aqueous).  Among those, moisture content and its absorption phenomena 

were of critical interest [41]. 

Dokun et al. [26] suggested that the unavailability of a nondestructive 

methodology that can quantitatively track changes in material properties (within a control 

volume) as a function of accumulated damage is one impediment to the development of a 

quantitative understanding of deterioration in thick FRP components.  One of the 

difficulties in defining reliable monitoring techniques for these components is caused by 

the significant variation in material properties [95].  Because of this variation, material 

property variations within the same specimen (or from specimen to specimen) can be 

greater than the changes caused by material degradation. 

  Preliminary tests on the durability of FRP samples conducted at the Institute for 

Research in Construction (IRC) in Canada indicated that glass-fiber FRPs may have a 

short life span in the alkaline environment of concrete.  A carbon-fiber FRP, known for 

its high resistance to chemical degradation, showed modest but noticeable degradation.  

A one-year duration study to provide more information about the causes and mechanisms 

of FRP deterioration was done by IRC in 2006.  The report indicated the problems found: 
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physical damage in the form of cracking and etching of the surface, the exposure of some 

fibers, and the onset of chemical degradation. 

The absorption of water into thermosetting polymers and their composites can 

greatly influence the mechanical properties of the resin and its composites.  Temperature 

affects the rate of moisture absorption as the diffusion coefficient increases with 

temperature.    As indicated by Vijay and GangaRao [94], there is a strong temperature 

dependence of moisture absorption in GFRP bars under different conditioning schemes.  

Moisture absorption was found to increase with temperature, and alkaline conditioning 

resulted in maximum moisture absorption. 

Bijen [13] suggested that the long history of FRP for marine equipment has 

shown that FRP structures can be successfully engineered to have long service lives in 

contact with moisture and aqueous solutions.  However, FRP structures, as well as all 

other organic polymers, are not waterproof; moisture diffuses into them causing changes 

in properties.  Properties of these composites change over time, and degradation 

accelerates under harsh conditions.  Environmental conditions that affect FRP 

deterioration include freeze-thaw conditions, temperature, humidity, and the presence of 

an alkali environment [50].  Sridharan [89] determined that a significant amount of 

material degradation occurs when FRP components are aged in water at a temperature 

below the glass transition temperature (117oC for this material). It was shown that the 

drop in longitudinal tensile modulus in a specimen was not due to changes in the matrix 

but was caused by a combination of the degradation of the glass fibers and failure of the 

fiber matrix interface. 
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2.4.2.2 Factors Associated with Designs 

An FRP bridge deck may fail in the top surface, bottom surface, or in the core.   It 

is believed that design plays an important role in these problems.  Some of the FRP 

bridge deck design factors to be considered and the related possible problems of an 

improper design are deflection, strain, connections, overlay, and thermal difference 

problems [42, 62]: 

 (1)       Deflection 

The main purpose for deflection limitations is to prevent local or global 

deformations under a wheel load that may cause delamination or cracking of the overlay. 

Deflection was not a problem in SRC decks.  For FRP, deflection criteria has recently 

settled into the L/300 to L/500 range, which is consistent with the provisions in the 

current AASHTO LRFD Code provisions for orthotropic steel and timber decks.  Regular 

load testing is necessary to study the actual deflections of the deck from time to time.  In 

many cases, deflection criteria control the design. 

(2)       Strain 

As a general rule of thumb for structural FRP applications, design strains are 

typically kept below 20 percent of ultimate capacity. However, bridge deck applications 

are typically stiffness-driven (deflection driven), resulting in strains well below that level. 

As a result of such low levels of strain, fatigue and creep are not an issue when properly 

designed and fabricated.  Field strains of the deck or stringers should be measured 

regularly to evaluate the performance of the bridge, particularly to study the fatigue 

behavior of deck-to-girder connections and deck deformations. 
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(3)       Deck-to-Girder Connections  

FRP bridge decks have been installed on steel, concrete, and FRP girders. 

Connection options include all-adhesive, mechanical fasteners, and conventional shear 

studs. Composite bending action between the deck and support girders is possible but the 

ability to provide this will depend on each specific deck type and manufacturer.  

Effectiveness and composite action of deck-to-girder connection can be measured by 

studying the strain in the middle of the floor-beam.  If there is no composite action, 

neutral axis of the floor-beam should be unchanged from the previous position.  Gurtler 

(2004) [42] concluded that mechanical fasteners are adequate for traditional materials but 

not well-suited for FRP materials for various reasons. 

(4)       Deck-to-Deck Connections 

Connection options are either all-adhesive or mechanical fasteners.  Relative 

rotation of the adjacent FRP panels, as a result of improper connection, may cause 

reflective cracking at field joints.   Effectiveness of deck-to-deck connections can be 

measured by studying the strain on both sides of the longitudinal joint.  The test would 

indicate the quality of the joint, i.e., whether the load is completely carried across the 

joint or not.  Repeated testing every few years would be required to determine the 

degradation of the joint effectiveness due to in-service loads and environmental 

conditions. 

(5)        Overlay  

FRP bridge deck systems require an overlay to provide adequate skid resistance as 

well as abrasion protection. The overlay choices include the following: conventional 

asphalt, polymer-modified asphalt, polymer concrete, and micro-silica modified concrete 
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[7].  In general, reflective cracking occurs at field joints due to relative rotation of the 

adjacent FRP panels.   Thermal mismatch between the FRP deck and overlay will cause 

reflective cracking.  Hong and Hastak [45] reported that asphalt seemed to work best for 

hardcore (HC) bridge decks.  Polymer concrete and latex-modified concrete have also 

been successfully applied and are typically recommended for the HC deck system. 

These are only some of the factors that might affect the deterioration of FRP 

bridge decks. An indepth analysis of all factors, how those factors might be correlated, 

and which design criteria should be examined to minimize the effects of those factors 

needs to be done.   The analysis requires determining not only the required maintenance 

or repair time, but also the approximate area of the deck which needs to be repaired.  

Rather than using the maintenance cost as a function per square foot of bridge area, it is 

more suitable to use only the area of the deteriorating part of the bridge.   

 

2.4.3    Available Deterioration Models 

A validated deterioration rate model for FRP bridge decks does not exist.  Abed-

Al Rahim and Johnston [2] have proposed a method for calculating the average change in 

condition rating in one year for a group of concrete bridges using historical condition 

data.  They have developed deterioration curves for three major bridge elements (deck, 

superstructure, and substructure) based on material types.  Abu-Tair et al. [3] showed that 

the modeling of deterioration rates could be performed using the factor method based on 

historic inspection data. 

It is known that in the model-based approach for maintenance and repair decision-

making, policy evaluation and policy selection are performed based on a deterioration 
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model, a cost function, and a salvage value function to predict the effect of the actions 

prescribed by a policy on the sum of discounted costs incurred over a planning horizon. If 

it is not possible to build a deterioration model because of lack of data, another approach, 

temporal-difference, can be applied to determine maintenance and repair decisions.  The 

temporal-difference (TD) learning method does not require a model of deterioration to 

come up with decisions. TD methods only assume that facilities are managed under a 

periodic review policy.  To be able to use such a method for a bridge deck, the bridge 

deck condition is discretized into a number of states and a number of maintenance and 

repair actions along with the correspondent costs.  The costs of performing the actions 

required are needed.   

According to Ehlen and Marshall [29], the failure modes of the FRP material are 

understood to a degree.  This information can be used to develop repair procedures and 

associated costs.  Details of FRP failure modes or how one could estimate the associated 

costs were not provided.   In the most recent research, Alagunsundaramoorthy et al. [4] 

studied structural behavior of FRP composite bridge deck panels.  Among their findings, 

they stated that the mode of failure of pultruded FRP bridge decks is debonding-

punching.  They observed debonding of joints at the ends of sections of panels and 

punching at the loading points after failure.  Overall, the single and pultruded FRP deck 

panels satisfied the deflection, shear, and flexure criteria as specified by the Ohio 

Department of Transportation. 

Roychoudhury and Creese [21] suggested how to determine the year(s) in which 

an FRP bridge should get maintenance or repair.  They proposed using two condition 

indices: condition index maintenance (CIM) and condition index repair (CIR) to make 
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such decisions.  The kind of repair strategy to be used (overlay or replacing the deck) was 

based on the combined condition indices of maintenance and repair and the age of the 

bridge deck.   Since FRP bridge data was not available, SRC bridge data were used to 

develop the equations required for cost calculations.   FRP data would be required to 

calibrate the model. 

The Florida Department of Transportation modeled bridge deterioration using a 

Markovian model [87].  They use a system of 136 elements from their bridges.  During 

an inspection, each element, i.e., bridge deck, was characterized in terms of a distinct set 

of possible “states.”  Next, a Markovian deterioration model was expressed as a matrix of 

transition probabilities.  Because this deterioration model assumed no corrective action 

was taken, there was no probability of improvement in condition, i.e., probabilities of 

transition from higher states to lower states were zero.    When an action was taken, the 

effect upon the condition was expressed in a do-something matrix.   Repair, which may 

cause a transition to a better condition state, is an example of this situation. Each possible 

condition state may have zero or one or more feasible actions.  Each feasible action 

results in a distribution of condition states immediately following the action.  In both 

matrices, each row should sum up to 100 percent.  To be able to predict the service life of 

a bridge element, one must have a long-term prediction of this element expressed 

probabilistically, i.e., matrix probability of each condition state each year for a certain 

number of years.  This allows calculating an estimate of the condition for any future point 

in time using matrix multiplication. 

Other existing deterioration models include the following: 

1.  The deterioration model for concrete highway bridges [38].  The condition rate of a 
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bridge is estimated based on two variables: bridge age and average daily traffic 

(ADT). 

2.  The deterioration model for bridge elements.   The deterioration rates of bridge 

elements are predicted based on historical data from bridge inventories [2].  Two 

classes of environment (marine and non-marine), four types of materials (pre-stressed 

concrete, reinforced concrete, steel, and timber), and two classes of roadways 

(interstate and local roads) were considered.  

3.  For bridges in general.  Sanders and Zhang [84] proposed bridge deterioration models 

as a function of ADT, bridge age, time of rehabilitation, environmental factors, type 

of structure, and bridge components. 

 

2.5    Service Life Prediction Models  

The International Standard Organization provides the principles of the generic 

service life prediction method, as given in Figure 2.2.  In general, service life prediction 

can be based on two different principal approaches: a deterministic approach and a 

probabilistic approach.   Figure 2.2 gives the basis for development of service life 

prediction methods of various complexities and with different requirements for 

applicability and needs for input information. Three levels of service life prediction 

methods can be described as shown in Figure 2.3.      

  Similarly, Moser and Edvardsen [59] stated that there are two main methods for 

service life prediction: the probabilistic method and the factor method.  Between those 

lies engineering methods.   
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Figure 2.2 Systematic Methodology for Service Life Prediction of Building Components 

ISO 15686 Part 2 [93] 
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Figure 2.3 Relationships between Different Types of Service Life Prediction Methods 
                     [47] 

 

2.5.1    The Probabilistic Methods 

These methods are applied for large infrastructure projects in which teams of 

specialists are set up to investigate service life under the exact conditions.  The 

disadvantage is that the model is too elaborate to be used on standard applications such as 

ordinary road bridges. An example of such an application is in the paper: “Probabilistic, 

Performance-based Service Life Design of Concrete Structures” by Lindvall [51]. He 

modeled the service life of a concrete structure as a combination of time-dependent 

deterioration processes, which are mainly governed by environmental influence.  He 

discussed how the environment influences the degradation by changing material 

properties and the load-carrying capacity over time.  Two examples of service life 

predictions for concrete structures are also shown - structures exposed to chloride 

penetration and structures exposed to carbonation. These predictions were made using a 

probabilistic approach (both mean values and scatters). 
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2.5.2    The Factor Method 

The factor method was developed as a tool to support service life prediction when 

there is a lack of adequate or reliable data or when more detailed experimental prediction 

is not possible.  This method is based on a reference service life and modifying factors 

that relate to the specific condition of the element.  The factor method, according to 

ISO/CD 15686, identifies the main factors of influence with regard to service life, and 

from there calculates a plain figure for the service life of the building or building 

component.  Knowing the main factors of influence and the overall behavior of a 

component facilitates understanding of the relevant issues, even though they do not 

reflect reality very closely. 

This method allows an estimate of the service life to be made for a particular 

component or assembly under specific conditions. It is based on a reference service life 

(normally the expected service life in a well-defined set of in-use conditions that apply to 

that type of component or assembly) and a series of modifying factors that relate to the 

specific conditions of the case.  

Basically, the factor method applies seven factors, which include quality, 

exposure, and condition of the component considered, to the basic value of service life. 

Those factors have been designed to cover the main aspects affecting service life.    The 

modifying factors include: (A) quality of components, (B) design level, (C) work 

execution level, (D) indoor environment, (E) outdoor environment, (F) in-use conditions, 

and (G) maintenance level. Any one (or any combination) of these variables can affect 

the service life. The factor method can therefore be expressed as a formula:  
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L= Lref * A * B * C * D * E * F * G                                                                                2-1 

Where  

L = Estimated service life 

Lref = Reference service life 

A = Multiplication factor for quality of components 

B = Multiplication factor for design level 

C = Multiplication factor work execution level 

D = Multiplication factor for indoor environment  

E = Multiplication factor for outdoor environment  

F = Multiplication factor for in-use conditions                                                                         

G = Multiplication factor for maintenance level 

Generally, A, B, and C are agent factors related to inherent quality characteristics.  

The decision maker must define the relevant conditions and specify the factors.   It should 

be noted that there is no pre-defined set of factors.  The user of the method must consider 

the particular circumstances of the project and decide the most appropriate factors for 

those circumstances [14].  Hence, the seven factors are determined based on the user’s 

judgment.  There are neither predetermined factors nor an exact methodology to follow.  

The value of each factor ranges from 0 to 2, and values above 1 increase the service life, 

whereas values below 1 decrease the service life.  Lref (reference service life) is the 

expected service life under most common conditions and can be determined by 

producer’s data, testing laboratory data, previous experience with similar structures and 

materials under similar conditions, agreement among relevant bodies or commissions in 

cooperation with national institutions, or data in the existing standards and other technical 
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literature [92]. 

The advantages of the factor method lie in its simplicity and ability to be 

conducted with minimal data.  The main drawback is a single figure result for service life 

that does not take into account the variability of the processes involved.  It should be 

understood that this method only gives an estimate of service life based on available 

information. The shortcomings of this method include: (1) plain multiplication of factors, 

which in reality might have different weights; (2) the result is just a single figure which 

does not reflect the variance of reality; (3) the data still needs to be accumulated; and (4) 

the lack of a direct relationship with data gathered (e.g. on the environment, climate, 

installation quality, in use conditions, etc.) to service life ([3], [47]).  Despite these 

drawbacks, this method is still used in life-cycle costing simply because no other suitable 

approach is available. 

 The use of the ISO factor method for prediction of service life of building 

materials and components has been very limited. Most of the published cases are 

described in research papers or reports where examples of the use of the applications are 

provided. Widespread practical application of the method has been limited due to the lack 

of knowledge of the method among practitioners (architects, consultants, or building 

owners and managers) or due to the need for useful values of the various factors used in 

the method [47]. 

 

2.5.3 Modified Factor Methods 

Modified factor methods include proposed methods to modify or improve the 

factor method approach, such as taking a stochastic approach to the factor method [1]. 
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The engineering design method (EDM) is defined as any simple mathematical function 

using distributions for the individual factors in the function [59].  Moser and Edvardsen 

[59] provided three examples showing three variations of the EDM.  The three examples 

are as follows.  Example 1 (estimating service life for four windows facing different 

direction) was used to demonstrate the basic procedure of expansion of the factorial 

method.  It used all seven factors of the factor method under the assumption that the 

information for defining the respective distribution was readily available.   In this 

example each factor had a certain type of distribution (normal or lognormal).  The results 

were distributions of predicted service lives.   Example 2 (estimating service life of fiber 

cement slates used as wall cladding) demonstrated a modification of the factorial method.  

In this example, the input data was fairly scarce, far from complete, and not directly 

suited for application in a service life calculation.  The authors showed how the 

interpretation of available limited data could lead to a service life prediction.    Example 3 

dealt with simplification of the probabilistic method.  The example (estimating service 

life of reinforced concrete structures in two different climate conditions) demonstrated 

how a service life prediction can be obtained using a plain formula by introducing 

densities for the factors involved.  It is clear that the key to this method is that the 

distributions of any factors in the relation are known. The general principles of the 

engineering design methods outlined by Moser [57] were: 

1.  Establish an equation describing the service life of the building or component, taking 

into account all identified relevant parameters.  For standard cases, the equation of the 

factorial method as set up in ISO 15686-1 can be used.  In other cases, modified or 

tailor-made equations must be set up. 
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2.  Gather data on the parameters of the above equation from experience, expert opinion, 

etc.   Then, set up a probability density distribution for the individual parameters 

identified. 

3.  Perform the service life calculation. 

4. Review the plausibility of the results using expert opinion, and when deemed 

necessary, modify the input data accordingly, i.e., go into greater detail in setting up 

the parameters for the variables dominating the service life.   

    An improvement of the factor method by introduction of statistical evaluation 

of the individual factors has been studied by Aarseth and Hovde [1].   A “step-by-step” 

principle has been applied, and this was developed within the project planning area. It 

was developed in Denmark in the 1970’s but has since been further developed in 

Norway. It is a tool for improving the quality of the basis for decisions in project 

planning under uncertainty. As with estimating service life, a basic problem in project 

planning at an early stage is the lack of relevant information. The stochastic approach to 

the factor method is proposed to overcome the lack of information about uncertainty in 

the factor method.  In this approach, the factors, which are handled as stochastic 

variables, are treated as elements, which finally are summed.  All conditions that are 

assumed to influence the service life are identified and quantified in a systematic way.  

Every assumed interaction between factors is removed and the effect of the interactions is 

evaluated by introducing a new factor, a general conditions factor.  The estimates are 

expressed in years, instead of in numbers close to 1.  A value for each of the individual 

factors of the factor method is given by use of a triple estimate, a minimum value, a 

maximum value, and the expected value. In order to give a reasonably good statistical 
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representation of the triple estimates, an Erlang density function is used. In the following 

example, the Erlang density function with k=10 was applied to give reasonably good 

statistical representation of the triple estimates.  The expected value f and the standard 

deviation s are calculated from the following equations:  f=(l+2.95*m+h)/4.95 and s=(h-

l)/4.6, where l is the minimum estimate, m is the expected estimate, and h is the 

maximum estimate.   The authors have applied this modified factor method for estimation 

of the service life of a wooden window, which was used as an example in ISO 15686 Part 

1.   By using the simple factor method as shown in the ISO Standard, the estimated 

service life of the window was 62.2 years, i.e., 60 years. By using the step-by-step 

principle and a statistically modified factor method, the estimated service life is 

calculated to 50 ± 6 years. 

Table 2.2 provides the example of estimated service life of the component 

(ESLC) calculation.  RSLC is the reference service life of the component (the value is 50 

years for this example).  Using this method the value of l, m, or h could be negative, 

because they represent the difference (in number of years) of each factor relative to the 

RSLC. 

Moser (1999) [58] also carried out an evaluation and improvement of the factor 

method by using statistical methods. Instead of a joint statistical treatment of all the 

factors as shown by Aarseth and Hovde [1] in the “step-by-step” principle, Moser applied 

an individual statistical treatment of each factor. This was done by using different 

statistical distributions for each factor (deterministic, normal, lognormal) and by giving 

individual figures for the minimum, most probable, and maximum value of each factor. 

Moser gave an example of estimating the service life of windows on all four sides of a  
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Table 2.2 ESLC Calculation Example of a Window [1] 
 

 

 
  

building.  Rudbeck [78] presents a discussion of the factor method for service life 

prediction and concludes that before the most correct method can be determined, assisted 

by field data, one can only look at the possible advantages and disadvantages that the 

methods present. 

From this viewpoint, the methods based on the ISO proposal with a probabilistic 

approach, described by Aarseth and Hovde [1] and Moser [58], seem to be the most 

usable. The requirement for input to develop the needed functions in the two methods is 

the same, but they report the input (i.e., the functions) in different ways. The method 

suggested by Aarseth and Hovde [1] reports the data in a very aggregated form (a low, a 

medium, and a high estimate for each parameter); whereas the method described by 

Moser [58] enables the use of all available data. From a statistical point of view, the latter 

method seems to be the most reliable.   

 

 

Elements l m h(in yrs) f s part of s
A 0 5 10 5 2.17 14.3%
B 0 5 10 5 2.17 14.3%
C 0 5 10 5 2.17 14.3%
D1 -5 0 5 0 2.17 14.3%
D2 0 5 10 5 2.17 14.3%
E -5 0 5 0 2.17 14.3%
F 0 5 10 5 2.17 14.3%
G 0 0 0 0 0.00 0.0%
Sum -10 25 60 25 15.22 100%
RSLC + sum 15 50 85 RSLC + sum f = 50
ESLC 50 ESLC = 50 + 6 
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2.6      Performance of FRP Bridge Deck in Service  

There are many benefits to using FRP composites to construct either pedestrian or 

highway bridges.   FRP bridge decks are anisotropic, meaning the mechanical properties 

of the laminates vary with the volume and orientation of the fiber reinforcement (similar 

to the reinforcing steel in concrete).  FRP has the following advantages for bridge decks: 

light weight, high strength and stiffness to weight ratios, and chloride corrosion 

resistance.  However, the testing and in-service performance will largely determine the 

long-range viability of those bridges.  Other barriers must be overcome, such as the high 

initial cost of materials, lack of design codes and inspection methods and lack of proven 

in-service durability data.   

In-service performance of FRP bridge decks should be based on critical 

components of FRP decks and critical accumulated damage thresholds in those 

components must be determined. In order to provide standardized in-service performance 

reports, the National Cooperative Highway Research Program (NCHRP) is conducting 

research to develop recommended field procedures, evaluation guidelines, and reporting 

standards for periodic inspection of in-service FRP bridge decks.  The first task of the 

project is the assessment of performance data, research findings, and other information to 

determine the failure modes and serviceability problems of FRP bridge decks.    

Critical details, damage types, and the accumulated damage thresholds for each 

type of FRP bridge deck will be catalogued from technical literature and from 

unpublished experience of engineers, owners, fabricators, and others.  Once complete 

historical data of in-service FRP bridge decks are available, one could create simulations 
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that specify an economically efficient set of actions and their timing during the bridge’s 

life-cycle to achieve longer service life with the lowest life-cycle cost.    

Complete historical data of in-service FRP bridge decks are not available.  

Among the most important data found are the commonly observed problems or areas of 

concern noted by bridge owners or practitioners, which include: 

1.  Joints between FRP deck panels: Heavy leakage was generally observed, which 

typically resulted in corrosion of the steel stringers underneath the FRP deck joints. 

2. Wearing surface: Delamination and debonding of wearing surfaces was noted on 

several bridges, typically when thin epoxy overlays were used as the wearing surface. 

3.  Haunch supports: There was a concern that FRP decks may not sit solidly, creating a 

gap between the bottom surface of the deck and the top surface of the haunch, causing 

impacts between them due to the passage of vehicles. 

4.  Curbs and parapets: The effect on the deck of impact-related damage to the curbs is an 

issue of concern, when curbs or parapets are connected to the deck. 

5. Approach joints: critical areas, often requiring innovative details to bridge the 

transition from the approach to the deck. 

6.  Deck to stringer/beam connectors: Current design practice neglects any composite 

action between FRP deck and stringers. The problem arises when steel clips are used 

to connect the FRP deck to steel stringers. 

7.  Delamination of deck components: may result in an exponential reduction in the 

stiffness of the deck sections. 

8.  Moisture ingress: Consequent freeze-thaw could result in mechanical damage to the 

FRP deck, leading to delamination or cracking of FRP deck components, which allow 
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moisture and water to seep into the porous core of the deck cross section. 

    Requests for inspection/maintenance records for FRP bridge decks in West 

Virginia were submitted to WVDOT in August 2007 and to each of the responsible 

bridge engineers in October 2007.  Interviews with some of the bridge engineers were 

conducted in their offices or through emails in April 2008.  As a result, the 

inspection/maintenance records have been obtained for the following bridges:   

1. Boy Scout Camp Bridge, Raleigh County (HC deck on steel)  

 2. CR 1 over Mud River (Howell's Mill Bridge), Cabell Co.. (MMC deck on steel)  

 3. Goat Farm Bridge, Jackson Co. (BRP deck on steel) 

 4. Hanover Bridge, Pendleton Co. (KSCI deck on steel)  

 5. Howell's Mill Bridge, Cabel Co. (MMC deck on steel)  

 6. Katy Truss Bridge, Marion Co. (CP deck on steel)  

 7. Kite Creek Bridge, Monroe Co. (BRP deck on steel)  

 8. La Chein Bridge, Monroe Co. (BRP deck on steel)  

 9. Laurel Lick Bridge, Lewis Co. (CP superstructure and deck)  

10. Market St. Bridge, Wheeling, Ohio Co. (CP deck on steel)  

11. Montrose Bridge, Randolph Co. (HC deck on steel)  

12. West Buckeye Bridge, Monongalia Co. (KSCI superstructure)  

13. Wickwire Run Bridge, Taylor Co. (CP deck on steel) 

 Based on the above inspection reports, which are summarized in Appendix 4, it is 

suggested the most common problem is wearing surface.  The common problems 

encountered for FRP bridge deck projects in WV are similar to the ones observed 

nationwide.  Hong and Hastak [45] stated that since FRP bridge deck panels have been 
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used on highway bridge structures for just the last few years, only a small number of state 

DOT’s currently using them have experienced any maintenance issues.  Maintenance and 

operability issues for four out of five state DOTs (Kansas, New York, Ohio, Oregon, and 

Pennsylvania) are related to durability of wearing surface.  Furthermore, they suggested 

that the best-wearing surface is a function of the FRP deck manufacturing method used.  

Asphalt seemed to work best for HC bridge decks; however, polymer concrete and latex-

modified concrete have also been successfully applied and are typically recommended for 

the HC deck system [45].   

 For West Virginia FRP bridges, it is observed that the performance of bridge 

decks produced using different production methods vary.  While all other bridge decks 

are in good or fair condition, a hand lay-up bridge deck installed in Pendleton County in 

2001 is in poor condition. Currently, the inspection/maintenance schedules applied for 

FRP bridge decks are following the same guidelines as for SRC decks.   

 

2.7     FRP Bridge Deck Fabrication Costs and Related Variables 

FRP bridge decks used for bridge applications are produced by the various 

manufacturers, including Bedford Reinforced Plastics.  Gurtler [42] suggested that the 

most common FRP bridge deck systems in use are (1) SuperDeck® (Creative Pultrusions 

Inc.), (2) ASSET (Advanced Structural Systems for Tomorrow’s Infrastructure), (3) 

Kansas, (4) Hardcore, (5) DuraSpan (Martin Marietta Composites), and (6) ACCS 

(Advanced Composite Construction System).  ASSET and ACCS are produced and 

applied outside the U.S. ACCS was demonstrated in England by Maunsell, while the 

ASSET bridge concept was developed by a European Consortium of seven partners 
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partly funded by the European Commission. These bridge decks can be subdivided into 

two groups: pultruded profiles and sandwich panels.  The most common pultruded bridge 

deck in the U.S.A is the DuraSpan system from Martin Marietta Composites.  More than 

25 of DuraSpan systems are already in service.  All completed projects have steel or 

concrete main girders.   The Kansas deck and the Hardcore deck are by far the most 

frequently used sandwich panels in bridge construction. 

Bridge decks currently used are the ones produced by pultrusion processor, hand-

lamination, or vacuum assisted resin transfer molding (VARTM).  It is believed that the 

process differences influence the fabrication costs.   The major variables that determine 

the fabrication cost of an FRP bridge deck include the following: 

1. Technology used: Pultrusion, VARTM, and hand-lamination are the primary 

technologies used. The production process parameters that influence the fabrication 

cost are specified.  

2. Material (type of fiber) 

3. Resin (main enforcement) 

4. Weight (lb/ft) 

5. Number of Panels 

6. Size of Panels 

 

2.8     Summary 

This chapter examined the background for this dissertation. It began with 

introducing FRP advantages and its applications for construction and continued with 

emphasizing the importance of life cycle cost (LCC) analysis as a cost analysis for a long 
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term project.  It then followed with explaining different ways to predict service life, an 

important input for LCC analysis.  It was concluded with a survey of other research 

related to life-cycle costing for FRP bridge decks. 
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Chapter 3 
   

 Overview of Methodology 
 

3.1      Framework of the Research 

A graphical depiction of the research methodology used for this study is given in 

Figure 3.1.   

 

 

 

 

 

 

 

 

Figure 3.1   Flow Chart of Research Methodology 

 

3.2       Initial Cost Analysis 

Initial cost factors consist of agency initial costs and user costs during initial 

construction.    

3.2.1    Agency Initial Costs 

 The agency initial cost for an FRP bridge deck consists of the manufacturing cost 

of the bridge deck, the transportation cost, the installation costs, as well as cost savings 

resulting from the weight reduction of the FRP bridge deck as opposed to an SRC bridge 

deck.  The formula for bridge deck manufacturing costs as a function of the year the 

Initial Cost Analysis

Service Life Prediction

Sensitivity Analysis

Life Cycle Cost Modeling

Conclusions
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bridge deck was installed and total area footage of the bridge deck was determined using 

learning curve analysis.   The Wright model was selected for implementation.  The Mid-

Lot approach was not considered because the possible improvement doesn’t 

commensurate the complexity of the process [80].   

 The concept of the learning curve was introduced to the aircraft industry in 1936 

when T. P. Wright published an article in the February 1936 Journal of the Aeronautical 

Science. Wright described a basic theory for obtaining cost estimates based on repetitive 

production of airplane assemblies. Since then, learning curves (also known as progress 

functions) have been applied to all types of work from simple tasks to complex jobs like 

manufacturing a Space Shuttle. 

Improvement (or learning) curve analysis is traditionally applied to discrete 

points.   However, for this study it was applied on a cumulative basis to bridge decks.   

The model developed here studied the relationship between cumulative square feet of 

FRP bridge decks and average cost per sq ft.  The approach was applied to data collected 

for WV pultruded FRP bridges.  Hence, the equation is only valid for pultruded FRP 

bridges only.   

 Equation 3.1 describes the basis for the average cumulative curve. In this 

equation, C represents the average cost of different quantities (N) of units.  

C = a * Nb                  3.1 

Where: 

a =cost for 1st unit 

b = exponent of learning curve 

C = average cumulative cost of X  ($/ft2) and  
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N = cumulative square feet produced.   

The equation was obtained by applying the Wright Improvement Model [21] for 

the WV bridge data (as given in Table 3.1) using an ordinary least squares model.   

log (C) = log(a) + b*log(N)                                                                       

3.2 

 

Table 3.1 WV FRP Bridge Deck Costs Data  
 

 
                                              
The ANOVA for the linear regression was as follow: 

 

 

The ANOVA suggested that a=102.86 = 732 and b = -0.26.  Hence, the average cumulative 

cost equation obtained for the WV bridge data set was 

C($/ft2)= 732 * N -0.26                                                                                                         3.3 

 

Bridge # Year Cost/ft sq Ft Sq Cum ft sq Total cost Cum tot 
cost

Average unit 
cost

log cum 
ft sq

log avg 
unit (C) 

(1) (2) (3) (4) (5) (6)=(3)x(4) (7) (8)=(7)/(5) (9)=log(5) (10)=log(8)

1 1997 $147.00 320 320 $47,040 $47,040 $147.00 2.51 2.17
2 1997 $140.00 651 971 $91,140 $138,180 $142.31 2.99 2.15
3 2000 $69.90 1245 2,216 $87,026 $225,206 $101.63 3.35 2.01
4 2002 $55.70 1100 3,316 $61,270 $286,476 $86.39 3.52 1.94
5 2002 $57.47 780 4,096 $44,827 $331,302 $80.88 3.61 1.91
6 2003 $54.00 1000 5,096 $54,000 $385,302 $75.61 3.71 1.88

ANOVA
df SS MS F

Regression 1 0.07 0.07 38.29
Residual 4 0.01 0.00
Total 5 0.08

Coefficients Standard Error t Stat P-value
Intercept 2.86 0.14 20.54 0.0000332
X Variable 1 -0.26 0.04 -6.19 0.0034670
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The equation to calculate total cumulative cost to produce N units was given as Equation 

3.4.  

Ct = N* (a * Nb) = a * Nb+1                                   3.4 

Where 

Ct = total cumulative cost to produce N units 

The equation for unit cost basis, Cu, was: 

Cu ($/ft2) = dCt/dN = d(a * Nb+1)/dN = (b+1)*a* Nb 

Cu($/ft2)=a*(b+1)*Nb.                                                                                                      3.5 

Since a=732 and b=-0.26, the final equation was: 

Cu($/ft2)=  540.95*N-0.26                                                                                                                3.6 

Where:  

C   = average cost ($/ft2)  

Cu = unit cost ( $/ft2 ) 

N = the cumulative square feet of FRP bridge deck.   
 

Overall, the model indicates that FRP bridge decks in WV will reach $45/sq ft by 

2013.  This assumption is based on a continuing improvement rate of 16.5 percent over 

the 15 year period.   Figure 3.2 shows the estimates of unit costs year to year based on 

this model.  Furthermore, based on Equation 3-6 and the assumption that each year one 

FRP bridge deck with an average area of 1000 sq ft was produced, it was calculated that 

the unit cost of an FRP bridge deck built in 2005 would be =     

540.95* ((2005-1997)*1000) -0.26 = 52.28                                                                       3.7 
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Figure 3.2 FRP Bridge Deck Manufacturing Cost Estimates 

 

The most recent data of pultruded 8-inch FRP bridge decks with a total weight of 

15.70 lb/ft 2 obtained from Bedford Plastics for 2005 are as follows:  

Size of Bridge Deck (ft 2)             28’ x 24’                  28’ x 48’                  28’ x 96’ 

Total Cost                ($/ft 2)            67.48                       61.67                        60.04 

 Comparison of the two values suggested that the learning curve has terminated in 

2005.  Equation 3.6 shouldn’t be used to estimate manufacturing cost beyond year 2005.   

For that reason, the default value, i.e. the 2005 Bedford cost data, was applied for FRP 

deck projects from year 2005 forward.  The above values are close to the lower limit of 

other FRP bridge deck manufacturing costs.  As reported by Liu [52], the lower cost for 

current FRP decks is approximately $65/sq ft.  O’Connor [68] suggested that the cost of 

typical FRP decks is about $65 - $80/sq ft. 

 The transportation cost considered in this research was the total cost required to 

transport an FRP bridge deck from manufacturing site to project site.  It was formulated 

as follow: 
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Transportation costs = 2*MD*FE*FC + TO*(2*MD/40 + 6)                                          3.8 

MD = Distance between bridge deck manufacturer and project site (miles) 

FE = Fuel efficiency of the truck (gallon/mile) 

FC = Fuel cost ($/gallon) 

TO = hourly truck operating cost ($/hr) 

 Construction costs include labor costs for construction activity, which is estimated 

based on historical FRP bridge deck installation costs.  It is basically a function of the 

total square foot of deck, which correlates to the number of man-days required to erect 

the bridge deck.   

Installation costs = Installation cost/sq ft * total square feet of bridge deck                   3.9   

  

3.2.2   User Costs during Initial Construction 

 Bridge deck installation leads to lost time for the drivers of the vehicles, higher 

vehicle operation costs, and increased accident rates.  These costs, referred to as user 

costs, can be sizable depending on the total installation time as well as expected delay 

time.  The expected delay time is a function of average daily traffic and length of the 

affected road work.  These time figures are multiplied by the value of a user’s time to 

obtain time costs for drivers and multiplied by vehicle operation cost per unit time to 

obtain increased vehicle operation cost.  User costs, which take place during initial 

construction, include the following: (1) driver delay costs, (2) vehicle operating costs, 

and (3) accident costs.  Third party costs are costs incurred by entities that neither are the 

agency nor the user.  Examples of these costs are: (1) lost sales for a business 

establishment whose customer access is hindered by the construction project and (2) 
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pollution cost due to the construction process.  Third party costs are only significant for 

urban areas.  Third party cost is not covered in this research. 

 The formulas used to calculate those costs are as follows [28]: 

Driver delay costs         = (RL/CS – RL/NS) * ADT * N * HC                                     3.10 

Vehicle operating costs = (RL/CS – RL/NS) * ADT * N * VC                                     3.11 

Accident costs               = RL * ADT * N * (CA – NA) * AC                                       3.12 

Where: 

RL       = length of affected roadway over which cars drive (miles) 

CS       = traffic speed during bridge work activity (mph) 

NS      = normal traffic speed (mph) 

ADT   = average daily traffic  

N        = number of days of road work   

HC     = hourly time value of drivers ($/hr) 

VC     = hourly vehicle operating cost ($/hr) 

CA     = during construction, accident rate per million-vehicle-miles  

NA     = normal accident rates per million-vehicle-miles  

AC     = cost per accident ($) 

 

3.2.3   Cost Savings in Substructure Costs  

There are two different ways to calculate the cost savings in substructure when 

FRP is used for bridge decks.  The difference is based on the nature of the two possible 

applications of FRP bridge decks: (1) building a totally new bridge or (2) bridge 

rehabilitation. 
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For building a new bridge, one should include the cost savings in substructure 

costs since an FRP bridge deck is much lighter than an SRC bridge deck.   The dead load 

resulting from an FRP bridge deck is also lower.  Hence, to get the same total load 

capacity of the bridge, FRP bridge decks require less material or less expensive material 

for bridge supports. 

For bridge rehabilitation projects, as demonstrated by Robert [72], who utilized an 

FRP bridge deck for rehabilitation of an historic bridge in Maryland, an FRP bridge deck 

enables an increase in the live load capacity without requiring major rehabilitation.  

Additionally, it is important to mention that the fast installation of the lightweight deck 

not only reduces the cost of direct labor associated with the installation itself, but also 

enables the installation to be finished faster.  Fast installation was a very important factor 

in this case, since the bridge was on a school bus route, which could not be closed when 

school was in session.  Hence, cost savings apart from the installation costs that should be 

included are: (1) the difference in rehabilitation of main structures if one is utilizing an 

FRP bridge deck versus an SRC bridge deck, and (2) the difference in third party costs 

due to differences in installation time. 

The research focuses on the first possible scenario, building a new bridge. The 

cost savings in a new bridge should include savings due to reduced installation time and 

due to savings in reduced substructure costs.  There are two sources of substructure cost 

savings when an FRP bridge deck is used: 

1. Reduction of steel for bridge girders/beams/rollers required to support the bridge 

deck.   Each pound saved in steel reduces the cost by $1.50 for plate girders, $1.70 for 

box girders, and $1.45 for rollers [36]. 
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2. Reduction of concrete required for abutments.  Each cubic yard saved in substructure 

concrete reduces the cost by $900 to $1,100 [36].  The reduction in concrete for 

substructure was not determined in this study. 

An equation is proposed that relates the size of the bridge, design, and other 

inputs to the amount of savings in steel and concrete when FRP bridge deck is used.   The 

cost savings considered in this research was for the reduction of steel only in the 

stringers.  For exterior stringers, it was assumed that the deck was simply supported on 

the exterior and on the adjacent interior stringer.  The procedures are as follows: 

1. Calculate maximum dead load moment, maximum live load moment, and total 

moment for exterior stringers. 

2. Calculate shear due to dead load, shear due to live load, and total shear for exterior 

stringers. 

3. Calculate bending moment due to dead load, bending moment due to live load, total 

moment for interior stringers. 

4. Calculate shear due to dead load, shear due to live load, and total shear for interior 

stringers. 

5. Check proposed stringer properties against the required stringer section, especially 

two conditions: stringer depth should be greater than the minimum depth to span ratio 

and section modulus should be greater than the required stringer section. 

6. Check the deflection due to static load and check for stresses at various points in the 

cross section to determine if the stringer stresses fall under the specified allowable 

stresses.  If not, the stringer designs may need to be modified. 

7. The cost savings was obtained assuming only steel girder dimensions are changed and 
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the abutment used is the same as the one for a reinforced concrete bridge. .   

 

3.2.4     Initial Cost Ratio Comparisons 

Beside the direct comparison between the two initial costs, these values are also 

used to learn the possible correlation between initial cost ratio and viability of FRP as a 

bridge deck alternative.  For that, initial cost ratio is calculated for each bridge deck 

project.  The initial cost ratio is defined as the ratio between (FRP initial costs – 

substructure cost savings) and SRC initial costs. 

 

3.3      Service Life Prediction 

The actual service life of an FRP bridge deck is unknown and must be estimated.  

The ideal service life model might be obtained if actual FRP applications were monitored 

over a long period of time, but such data is not available.  Under these circumstances, 

FRP bridge deck service life in this research was estimated using the factor method by 

employing the Delphi method.  FRP experts served as the panel for this study. 

The factor method was developed as a tool to support service life predictions 

when there is a lack of adequate or reliable data or when more detailed experimental 

predictions are not possible.  The factor method is a way of bringing together 

consideration of each of the variables that are likely to affect service life.  The factor 

method does not provide assurance of a service life; it merely gives an empirical estimate 

based on what information is available. It is different from a fully developed prediction of 

service life, which would ideally provide the reference service life for a factored estimate.  

That method allows an estimate of a reference service life (normally the expected service 
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life in a well-defined set of in-use conditions that apply to that type of component or 

assembly) and a series of modifying factors that relate to the specific conditions of the 

case. That method is not a degradation model, but a method to transfer knowledge about 

service life from a known reference condition to a project specific condition. 

The reference life is the time lapsed until a deteriorated stage is reached when the 

whole component has degraded under any one specified condition; under the 

circumstances of “normal” design, construction, use, maintenance, and climate exposure. 

The standard service life must be predicted on the basis of experience.  The reference life 

was used to calculate the estimated service life of a component (ESLC) on the basis of 

adjusting the reference service life (RSLC) through the use of various in-use conditions 

or factors that relate to differences in the quality of the materials, workmanship, 

environment, and other factors that are known to alter these conditions. 

To be able to implement factor methods, one estimate the reference service life 

(RSL) and determines (1) the important factors, (2) the reasonable span of the values of 

the different factors, and (3) the relative importance of the factors. 

In this research, the Delphi method was utilized to carry out the three 

requirements mentioned above.  The Delphi method allows experts to deal systematically 

with a complex problem or task.  It comprises a series of questionnaires sent to a pre-

selected group of experts.  The outcome of a Delphi sequence is the experts’ opinion. The 

panel viewpoint is summarized statistically rather than in terms of a majority vote.   The 

minimum number of participants to ensure a good group performance is somewhat 

dependent on the study design.  Experiments by Brockhoff [15] suggest that under ideal 

circumstances, groups as small as four can perform well.  The results are as valid as the 
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opinions of the experts who made up the panel.  Fowles [37] describes the following ten 

steps for the Delphi method: 

1. Formation of a team to undertake and monitor a Delphi on a given subject. 

2. Selection of one or more panels to participate in the exercise.  Customarily, the 

panelists are experts in the area to be investigated. 

3. Development of the first round Delphi questionnaire.  

4. Testing the questionnaire for proper wording. 

5. Transmission of the first questionnaires to the panelists. 

6. Analysis of the first round responses to determine the important factors. 

7. Preparation of the second round questionnaire (service life predictions based on 

certain combinations of important factors to identify the proper multiplier for each 

factor). 

8. Transmission of the second round questionnaire to the panelists. 

9. Analysis of the second round responses (Steps 7-9 are reiterated as long as desired or 

necessary to achieve stability in the results). 

10.  Present the conclusions of the exercise. 

For this research, the above steps were implemented.   The objective of the first 

questionnaire is to determine all important factors related to FRP bridge deck service life 

that should be included in the estimations.   

Factors that could potentially influence the performance of FRP bridge decks, the 

various maintenance and repair actions required, and the costs associated with these 

actions have been studied from historical data.  Factors can be grouped under three major 

categories: factors associated with the inherent quality of the bridge deck, load 
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conditions, and environmental conditions.  The important factors, especially the ones 

associated with environmental conditions, may be different for each region.  Hence, for 

this case study, only those factors corresponding to possible conditions that can be found 

in West Virginia are included in the analysis. 

Knowing that service performance and long term durability of FRP decks is 

sensitive to factors such as manufacturing and fabrication standards, light and UV 

radiation, heat, moisture, and impact, these factors are considered for FRP bridge deck 

service life estimation.  Three of the most current in-service performance evaluations of 

FRP have concluded that the long-term health of a deck is a factor of both the constituent 

material and the physical and environmental conditions [62].  The possible factors are 

summarized as follows. 

A.  Factors Associated with the Inherent Quality of a Bridge Deck:  

1. Type of fibers used 

2. Manufacturing process  

3. Bridge deck design 

4. Type and thickness of wearing surface applied  

B.  Factors Associated with Environmental Conditions: 

5. Alkali content 

6. Average humidity of the region 

7. Light and UV exposure 

8. Number of freeze-thaw cycles  

C.  Factors Associated with Operation/Maintenance: 

9. Average daily traffic 
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10. Frequency of scheduled maintenance 

The first questionnaire is in Appendix 1.  The experts who participated in this 

research are:  

1.  Dr. Hota GangaRao   (Academia/WVU)  

2.  Ms. Vimala Shekar   (Academia/WVU) 

3.  Dr. Sreenivas Alampalli   (Practitioner/NYDOT)  

4.  Dr. Roberto Lopez-Anido    (Academia/University of Maine) 

5.   Dr. Jerome O ‘Connor   (Practitioner/FHWA) 

6.   Dr. Arthur P. Yannoti   (Practitioner/NYDOT) 

7.   Dr. T. Hong    (Academia/Seoul University, Korea) 

8.   Dr. Aboutaha   (Academia/Syracuse University) 

9.   Dr. A. Zureick    (Academia/Georgia Tech Institute) 

10   Mr. Mansour Mohseni   (Practitioner/CODOT) 

11.   Mr. Jack Justice    (Practitioner/FHWA) 

12.   Mr. Benjamin Tang  (Practitioner/FHWA) 

13.   Mr. Scott Reeve    (Manufacturer) 

14.   Mr. Doug Glemel   (Manufacturer) 

The results of the first questionnaire are presented in Table 3.2.   The experts, who 

comprised academia, practitioners, and manufacturer representatives, suggested that type 

of fiber and resin, as well as manufacturing process used, have significant influence on 

the quality of a bridge deck and ultimately influence the service life.  Their suggestions 

are supported by WV FRP bridge deck inspection reports: Pultruded bridge deck seems 

to perform better than other types.   From the five environmental factors that may affect 



 

 65 

an FRP bridge deck’s service life; they agreed that the two most important factors were 

wearing surface application and freeze-thaw cycles.  Freeze-thaw severity has direct 

correlation with climate regions.  Aside from those factors, they suggested that average 

daily traffic is an important factor in estimating FRP deck service life, which is also 

included in the original list of possible influence factors.   

Based on these findings, the service life prediction was modified, and the second 

questionnaire was revised accordingly and distributed to gather expert opinions about (1) 

their estimates of FRP bridge deck service life under a certain set of conditions involving 

the above factors (RLSC), (2) estimates of service life, given certain conditions, to 

determine a span of the values for the different factors and the relative importance of the 

factors.  The second questionnaire is given in Appendix 2.   

 

Table 3.2   Factors affecting FRP deck service life and their importance based on survey  

 

 

FRP reference service life is 70 years, based on the second questionnaire.  The 

value is somewhat similar to the average of expectation values among FRP experts.   The 

estimates of service life of FRP bridge decks are 75 years (O’Connor, 2005 [68]; MMC 

Inc.), 60 years [64], and 75 years [48] based on an INDOT survey (which was sent to 

FACTOR/ EXPERT # MIN MAX AVG MIN MAX AVG MIN MAX AVG
Type of fiber and resin 4 5 4.83 4 5 4.40 4 4 4
Manufacturing process 4 5 4.33 4 5 4.60 5 5 5
Design 3 5 4.33 4 5 4.20 3 4 3.5
Wearing Surface 2 5 3.67 3 5 4.40 5 5 5
Humidity 2 5 3.17 2 4 2.60 2 2 2
Light and UV exposure 2 4 3.17 2 4 2.60 2 4 3
Alkali content 1 4 2.67 1 4 2.20 1 1 1
Freeze-thaw cycles 2 5 3.17 3 5 3.60 2 4 3
EXPERT TYPE      Academian      Practitioner      Manufacturer
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bridge engineers of each state DOT).   The average service life of an SRC bridge deck is 

25 to 50 years.  

1. Among the three factors, i.e., freeze thaw cycles, wearing surface, and average 

daily traffic (ADT), the two experts that responded to the second questionnaire 

suggested that wearing surface is the most important factor to FRP service life, 

followed by freeze-thaw cycles and ADT.  Some other experts responded to the 

survey with comments only, mainly because they felt that they did not have 

enough experience with FRP bridge deck projects to be able to answer the 

questions.  The two experts did share similar estimations of FRP service life under 

different conditions as depicted in Table 3.3.   Based on the answers, the 

multipliers for each factor were determined.  The values are given in Table 3.4. 

 

Table 3.3 Results of the Second Questionnaire 

 

 

Table 3.4 Multipliers for Each Factor 

 

Freeze Thaw 
Cycle MILD MODERATE MILD MILD
ADT 5,000-10,000 5,000-10,000 5,000-10,000 20,000-30,000
Wearing Surface POLYMER CONCRETE POLYMER CONCRETE CONVENTIONAL ASPHALT CONVENTIONAL ASPHALT

1 2 1 2 1 2 1 2
MIN 60 62 50 54 50 50 50 45
EXP 70 70 60 60 50 52 50 50
MAX 80 74 70 64 60 60 60 56

Low Medium High
ADT 1 0.99 0.98

Polymer 
Concrete Asphalt Other

Wearing surface 1 0.73 0.8

Mild Medium Severe
Freeze thaw cycle 1 0.86 0.82
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3.4      Life-cycle Cost Modeling 

Life cycle cost involves looking at the cost of a system in each phase of its life 

cycle.  Figure 3.3 depicts the life cycle phases of the bridge deck for this study.   

 

 

 
Figure 3.3 Bridge Deck Life Cycle Phases 

  

 The four main bridge deck construction activities used in this study are as 

follows:   

1.  Deck installation 

2.  Deck inspection and repair  

3.  Deck overlay replacement   

4.   Deck replacement 

The key difference between the two systems is that the FRP deck is expected to extend 

the life of the bridge deck from 30 years to x years, the estimated FRP service life.   For 

the following explanation, x is assumed to be 60 years.  

            Once the main phases of life-cycle cost are identified, further cost breakdown 

needs to be determined to enable model implementation.  In this study, costs are tallied 

for each of the life-cycle stages, converted into present-day dollars, and compared 

between the two systems. Life-cycle costs were separated into agency and user costs.  

Agency costs focus on those expenses directly incurred by government agencies.  These 
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include direct costs related to material production, construction, and end of life.  

Information about the bridge deck and construction process that served as the model 

parameters are collected from WVDOT and its bridge engineers, as well as from FRP 

bridge deck manufacturers, and from DMJM Harris, Inc. for the SRC bridge deck.  This 

includes data on the composition of SRC and FRP bridge decks, quantity of material 

needed, labor, material and equipment cost data, and construction activity schedules.  

User costs include construction-related traffic crashes, extra vehicle operating costs, and 

user delay costs.   

Once these figures are determined, an appropriate discount rate is applied to 

compute the present-day dollar equivalents of all costs incurred.   

PV of LCC = Σ (Ct / (1+i) t)                                                                                  3.13 

where i= the real discount rate for converting time t costs 

Present values are determined for each stage of the life cycle and for each 

construction activity within each system.  The U.S. federal government recommends 

using a three to five percent discount rate for long-term construction projects.   The 

projects in this study assumed a three percent discount rate. 

The following assumptions were used for the analysis: 

(1) Expected service life of an SRC bridge deck is 30 years (WVDOT standard). 

(2) Expected service life of an FRP bridge deck is 60 years (based on service life 

prediction), so the LCC study period is set at 60 years. 

(3) Standard inspection for an SRC bridge deck: every two years (WVDOT standards). 

(4) Supplemental inspection for SRC bridge decks: every 6 years (WVDOT standards). 

(5) Anticipated Repairs: every three years starting on the 20th year (WVDOT).  
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3.5       Sensitivity Analysis  

A sensitivity analysis is conducted based on one or more other important 

parameter values that may change over time.  Chandler (2004) [19] suggested that ADT 

assumptions had a major effect on life-cycle costs.  Examining ADT is important because 

the most important failure mode is delamination, which is affected significantly by ADT.  

Expected service life and repair schedules were analyzed since they involve so much 

uncertainty.  Hence, these three parameters were investigated for sensitivity analysis. 

 

3.6   Base Case and Case Studies 

Typically, a bridge deck is made using steel-reinforced concrete.  Large slabs of 

concrete meet at the joint just above the support piers, where a steel expansion joint is 

placed.  In the case of an FRP bridge deck, it was assumed that the deck was 

manufactured using the pultrusion process.  Hence, the specifications, as well as the cost 

information, are based on the most recent data obtained from a pultrusion company. 

Reader Run Bridge on WV Route 20 over Reader Run was used as the base case 

scenario.  The bridge is 55 feet in length and 43 feet in width.  Abutments are made of 

full, high-reinforced concrete.  The designs, along with the cost information for this 

bridge, were obtained from DMJM Harris Inc., Morgantown, WV.  The bridge deck was 

replaced in 2005.   For that reason, all cost information is translated to reflect 2005 

values.  Reader Run Bridge maintained a traffic flow of 2,900 cars per day in each 

direction in 2002 and was predicted to have a traffic flow of 3,800 cars per day in each 

direction in 2023.  In this analysis, it was assumed that the rate remains constant 

throughout the useful life of the bridge deck, i.e., 3,800 cars per day.  ADT changes year 
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after year are beyond the scope of this research. However, the effect of ADT on the life-

cycle cost is examined in the sensitivity analysis. The proportion of cars, trucks, and 

other vehicles comprising the traffic flow is based on national average data.    

The three case study bridges were Goat Farm Bridge, La Chein Bridge, and Katy 

Truss Bridge. Goat Farm Bridge is on County Route 21, in Jackson County, WV.  It is 39 

feet in length and 15 feet in width and had an ADT of 20.  The FRP bridge deck was 

constructed in 2003.  La Chein Bridge is on County Road 12 in Monroe County, WV.  

The 32.5 foot long and 24.3 foot wide La Chein Bridge was constructed in 2001 with 

ADT of 100 vehicles per day.  The Katy Truss Bridge is located in Marion County, WV.  

This bridge had an ADT of 700, was 91.3 feet in length and 14.3 feet in width, and was 

constructed in 2000.   

The analysis includes initial construction costs for the steel-reinforced concrete 

bridge, initial cost analysis for FRP bridge decks, and the weight reduction of the 

substructure. The bridge decks for both systems were replaced at the start of the analysis 

and will degrade over the study period. 

 

3.7    Summary  

This chapter examined the scope of the dissertation by explaining the flow chart 

of research methodology and describing how each step was performed.   It described how 

service life estimation and FRP manufacturing estimation formulas were derived.  It also 

defined the case studies, as well as the base case scenarios, that were used throughout the 

rest of the dissertation for the comparison and evaluation of FRP deck life-cycle cost 

versus SRC deck life-cycle cost.  
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Chapter 4 
 

FRP Bridge Deck Life-cycle Cost Model 
 

4.1       Life-cycle Cost Breakdown 

After an extensive literature review of life-cycle cost analysis, it was concluded 

that the life-cycle cost of FRP bridge decks should include initial costs, maintenance, 

inspection and repair costs, and disposal costs. 

 

4.1.1 Initial Costs 

Initial costs include manufacturing cost (as a function of raw material 

specifications, design, and manufacturing process parameters, labor cost, and overhead 

costs), transportation cost, installation cost (includes surface preparation, installation, 

curing, and finishing costs), safety costs (costs to assure safety during the installment 

process) and user costs.  The user costs to drivers during construction are the sum of 

driver delay costs, vehicle operating costs, and costs due to the increased incidence of car 

accidents.   

 

4.1.2 Maintenance, Inspection, and Repair Costs 

 Maintenance costs include material, equipment, labor, and safety costs during the 

maintenance process (traffic control), along with bridge user costs.  These costs depend 

on the frequency and amount of maintenance performed during the life-cycle.  The 

maintenance costs included in the model are basic inspection costs, supplemental 

inspection costs, anticipated repair costs, and deck overlay or deck replacement costs.  

Inspection costs include the cost of the quality assurance procedures, testing, and 
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record maintenance.  Repair costs are similar to maintenance costs, but are done for 

major items (such as deck replacement) and not on a regular basis.   

 

4.1.3 Disposal Costs  

The costs include deconstruction costs, safety costs, transportation costs, landfill 

fee costs, and user costs.  The framework of life-cycle cost is depicted in Figures 4.1 and 

4.2. 

 

 
                                                      Life-cycle Cost 
 
 

             Initial Cost                     Maintenance/Inspection/                 Disposal Cost 
             Repair Cost 

 
 

Figure 4.1 Components of Life-Cycle Cost for FRP Bridge Deck 

 

4.2 Life Cycle Model Analyzer 

A computer program, Life-Cycle Cost Analyzer, was developed for FRP bridge 

deck cost analysis using Excel® and Visual Basic language.  A comparison between FRP 

bridge decks and steel reinforced concrete (SRC) bridge decks was done based on net 

present values of costs over the structure life.  Future costs in this study are expressed in 

real dollars and converted to present values using discount rate of three percent. 
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Figure 4.2 Life-cycle Cost Breakdown for FRP Bridge Deck Cost Components  
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The Life-cycle Cost Analyzer determines the net present values of costs of the 

bridge deck alternatives during the study period as well as the equivalent annual cost.    

The equivalent annual cost or annuity method was chosen as it can be applied for any 

combination of service life, A and B.  This approach was performed by determining a 

fixed study period based on the life of the girders and abutments. For medium bridges, 

the study period can range from 50 to 70 years, while for large bridges the study period is 

100 years.  Based on the given study period, the life-cycle cost of the two bridge decks 

are calculated and compared.  In the program, the study period sets equal to FRP service 

life.  The model is depicted in Figure 4.3.   

There are 25 input values for Life-cycle Cost Analyzer (as given in Table 4.3) and 

the outputs of this program include: (1) total initial cost, (2) total maintenance cost, and 

(3) total disposal costs, as well as the cost breakdowns.  The screen shot of the input is 

given in Figure 4.4. 

 

 

Figure 4.3 Life-cycle Cost Model 
 

 

Model Parameters System Definition

LIFE CYCLE COST MODEL (LCC)

Service Life Prediction 

Agency Cost Data Inputs User Cost Data Inputs

Initial Costs
(Include Cost Savings) Disposal Costs

Inspection, 
Maintenance and 

Repair Costs

FRP Bridge Deck 
Cost Estimate
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Table 4.1 Life-cycle Cost Model Data Input Items 

(1)   Length of bridge deck       DL   ft 
Item Description     Symbol   Units 

(2)    Width of bridge deck     DW   ft 
(3)   Project site      
(4)   FRP manufacturer     
(5)  Thickness of FRP bridge deck    DT   inch 
(6)   Self weight of FRP bridge deck    DS   lb/ft 2 

(7)   Thickness of SRC bridge deck    DTC   inch 
(8)   Self weight of SRC bridge deck   DSC   lb/ft 2 

(9)  SRC bridge deck cost     CC   $/ft 2  
(10)   Year of installation     YR   years 
(11)  Normal traffic speed          NS                      miles/hour 
(12)  Traffic speed during bridge deck construction     CS                              miles/hour 
(13)  Hourly time of driver    HC   $/hr 
(14)  Hourly vehicle operating cost   VC   $/hr 
(15)  Normal accident rate    NA    #/vehicle-mile 
(16)  Accident rate during bridge work  CA    #/vehicle-mile 
(17)  Average cost per accident   AC           $/accident 
(18)  Self weight of wearing surface   WS   lb/ft 2 

(19)  Type of wearing surface    WST 
(20)  Labor cost     LC   $ /hr  
(21)  Average Daily Traffic     ADT        vehicles/day 
(22) Freeze-thaw cycles    FTC 
(23) Discount rate     DR   % 
(24) Study Period     SP   years 
(25)  Reference service life    RSL   years 

 
 

4.2.1   Service Life Module 

Service life prediction based on the factor method is used to estimate service life 

of FRP decks.  Expert opinion is applied to determine the multipliers for each factor, i.e., 

A, B, C in the following equation: 

Expected service life = RSL * A * B * C                                                                       4.1 

The multiplier for the three factors, i.e., ADT, wearing surface and freeze/thaw cycle are 

depicted in Table 3.4.   The expected service life of an FRP deck with low ADT, polymer 

concrete overlay, and medium freeze-thaw cycle, for example, is 70 years * 1 * 1 * 0.86 

= 60 years.  
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Figure 4.4 Screen Shot of the Input Screen 

Morgan
page76
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4.2.2   Initial Cost Module 

The outputs of this module include total initial cost as well as the cost breakdown.  

The itemized costs include the following:  

(1)   Agency costs 

For an FRP bridge deck, agency initial costs include manufacturing, transportation, 

installation, and safety costs as follows: 

(a)  Manufacturing cost 

Manufacturing cost per sq ft is determined based on the learning curve equation as given 

in the previous studies [80].  However, since it’s suggested that the wearing surface was 

also installed by the same manufacturer, the equation was revisited and revised.  Instead 

of estimating for bridge deck cost only, it includes the bridge deck and initial wearing 

surface costs.   The detailed study was presented in the previous chapter.   The formula 

for manufacturing cost of FRP bridge deck per square foot used for the program is a 

function of the year the bridge deck is manufactured and total square footage of bridge 

deck area, i.e.,  

540.95* ((year of mfg-1997)*1000)-0.26                                                                            4.2 

The default value for a pultruded FRP bridge deck manufactured on or after 2005 was set 

based on Bedford data.  It decreases as the area increases as indicated by the data, i.e., 

FDC = 115.57 * DA-0.0843                                                                                                                              4.3 

(b)  Transportation Cost 

Transportation cost is a function of distance (between project location and FRP 

manufacturer). 

Transportation costs = 2*MD*FE*FC + TO*(2*MD/40 + 6)                                          4.4 
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MD = Distance between FRP manufacturer and project site (miles) 

FE = Fuel efficiency of truck (gallon/mile) 

FC = Fuel cost ($/gallon) 

TO = Hourly truck operating cost ($/hr) 

(c)   Installation cost 

In-service WV FRP bridge decks took between four and ten man-days to install.  Hard 

Core composite decks need two- to four-man crews to install the deck, while installing a 

MMC deck needs at least a six-person crew.  Installation cost per sq ft is a function of 

total footage square of the bridge deck, which historically is about $1.25-$1.50/sq ft for 

FRP deck.  Based on WV FRP bridge deck installation data, it is estimated that the 

number of man-days required for installation equals the total square feet/100 for a bridge 

with total square footage less than 1,000.  For bigger bridges, the number of man-days 

required equals to total square feet/125.   

(d) Safety cost 

The safety costs considered in the study are only those related to warning signage costs.  

The total value is a function of number of workers, hourly worker cost and length of the 

installation process. 

(e) Substructure cost reductions when FRP is used 

The savings considered in this module were from the reduced weight of the steel girders 

used in FRP bridge deck construction as compared to the girders used for SRC bridge 

deck construction.   The average stringer cost is $1.46/lb (2005 value) and estimated 

installation cost reduction is $1/lb.  

Substructure cost reduction = (total weight of SRC deck steel stringers – total weight of 
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FRP deck steel stringers) * (stringer cost/lb + installation cost reduction due to reduced 

weight)                                                                                                                     4.5 

 

For SRC bridge deck, agency initial costs include material, transportation, installation, 

and safety costs as follows: 

(a)  Material costs 

Material costs of an SRC bridge deck are typically quoted in terms of square feet to be 

built.   Hence, data inputs were collected and translated into square feet.  Total square 

footage of bridge = (length of bridge) * (width of bridge).  Material costs were calculated 

by multiplying this square footage figure by the cost per square foot, i.e., (total sq. ft. of 

bridge) * (material cost per sq. ft.).   The default value of SRC material per sq ft used in 

the model is $30 (a 2005 value). 

(b)  Transportation costs 

Transportation cost is a function of distance (between project location and concrete 

manufacturer) as given in Equation 4.4. 

 (c)   Installation costs 

Multiplication of the square footage of the bridge and the labor cost per square foot 

results in the total labor cost of the SRC deck replacement.  Labor cost of deck 

replacement = (total sq. ft. of bridge) * (labor cost per sq. ft.).  Total installation cost of 

SRC deck is about six to seven percent of deck cost [53].  Hong [45] suggested the 

average deck and installation cost is $35 per sq ft. The default value of SRC installation 

cost per sq ft used in the model is seven percent of deck cost. 
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(2)  User Costs  

User costs occur during the installation process for either SRC or FRP bridge decks and 

include three components: driver delay costs, vehicle operating costs, and costs due to the 

increased incidence of car accidents.  The cost equations used to estimate the personal 

cost to drivers who are delayed by roadwork (user delay costs) and the vehicle operating 

costs are given in Equation 3.10 and 3.11.  The values of each parameter used in the 

model are as follows:  

RL  = 1 mile for construction, repair, and disposal and 0.5 mile for inspections 

CS  = 45 mph for county, US, and WV roads 

NS  = 55 mph for county, US and WV roads 

ADT   = 26,000 for Interstate routes, 7,000 for US routes, 3,800 for WV routes and 300   

               for County routes 

HC     = 15.85 ($/hr) 

VC    = 9.52 ($/hr) 

CA = 0.463 (per million-vehicle-miles) 

NA = 0.268 (per million-vehicle-miles)  [29] 

AC = $ 32,911  

N   = 20 for SRC deck < 50 ft span, 25 for deck span between 50 ft and 150 ft, and 35 

for deck spans > 150 ft  [53].  For FRP bridge decks, this value is determined 

based on empirical formula as a function of deck total square feet  

The derivation of hourly time value of drivers, work zone accident rate, and average 

accident cost used in the model are explained based on FHWA (1998 values) as follows: 

A passenger car’s driver = $11.58/hr 
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A single unit truck’s driver = $18.54/hr 

A combination unit truck’s driver = $22.31/hr. 

The above 1996 data were updated to reflect 2005 dollar values, the base year for the 

analysis, using the consumer price index (CPI).  For updating the values to future dollar 

values, the inflation is defined as the ratio between CPI for the current year and the CPI 

for the year when data was obtained.  The CPI is the best measure to use for translating 

hourly or weekly earnings into real or inflation-free dollars [16].  CPI values for 2003–

2006 are 184.0, 188.9, 195.3, and 200.6 respectively [16].  The updated values are as 

follows: 

A passenger car’s driver                = $11.58/hr * CPI 2005/CPI 1996   

                                                       = $11.58/hr * 195.3/156.9 = $14.41/hr 

A single unit truck’s driver            = $23.08/hr 

A combination unit truck’s driver = $27.77/hr  

Based on the mix of different cars in the U.S., the value of the driver averages $15.85/hr. 

 Roadway construction data across the state of West Virginia showed an average 

of about 1,000 construction-related traffic crashes each year.  There were 51,376 crashes, 

and 888 of them were construction-related crashes.  Given that an average work zone is 

one mile in length and that bridge deck projects statewide represent one percent of 

roadways under construction annually, translates into 1,917,397,400 annual vehicle miles 

traveled in a work zone.  Since the number of work zone crashes in WV was 888, the 

accident rate equals 0.463 crashes per million vehicle miles traveled.  Normal accident 

rates per million vehicle miles averaged approximately 0.268 [29].   For work zone 

crashes, 0.45 percent were fatal injury crashes, 4.17 percent were type A injury crashes, 
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2.59 percent were type B injury crashes, 11.04 percent were type C injury crashes, and 

the remaining 81.76 percent were property damage only crashes.  Cost per accident on 

average was $31,000 [97].  In the model, this 2003 data was updated to reflect 2005 

dollar values using the consumer price index (CPI) to $32,911.   Unlike the 21 

construction days needed for a typical SRC deck system, the FRP bridge deck requires 

less than 10 construction days.  Thus, the FRP bridge deck system can expect 50 percent 

or lower of the number of crashes of an SRC bridge deck.  

 

4.2.3    Maintenance/Inspection/Repair Module 

For FRP bridge decks, Ehlen [27] limits these costs to include those cost 

necessary to prevent ultraviolet radiation and moisture from shortening the deck’s life 

span to less than 40 years, to repair the spalling of the polymer-concrete road surface, and 

for two yearly inspections (it is defined as visual inspection for flaked paint and excessive 

moisture and mechanical wearing, which takes 28 labor-hours per inspection).  A detailed 

supplementary inspection takes place after 25 years based on NCDOT and six years 

based on WVDOT.  

The SRC deck inspection schedule was based on the WVDOT bridge deck 

inspection manual, in which it states: (1) Basic inspections are conducted every two 

years; (2) Supplemental inspections are performed every six years.  Estimated repairs are 

based on current practice, which is expected every three years beginning at the 20th year.    

An FRP bridge deck goes through a number of maintenance, repair, and 

rehabilitation actions throughout its lifetime.  The actions enhance the deck performance. 

The level of enhancement depends on the type and extent of the maintenance, repair, and 
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rehabilitation (MRR) actions, as well as the point on the life cycle performance curve at 

which the structure receives the MRR action [43].  Currently, there is no existing model 

that can predict the deterioration of the FRP bridge deck to ascertain the point in time 

during the life cycle of the bridge when it would require maintenance or repair.  Several 

articles that consider FRP bridge deck life-cycle costs assume a set of maintenance and 

repair schedules that are generally adapted from those for SRC decks.    

 Currently, FRP bridge decks have approximately 10 years worth of maintenance 

history.  Bridge engineers have no experience to predict what might happen in the near 

future, except with respect to the possibility of wearing surface cracks.  Applications of a 

deterioration model are not possible due to short historical usage of FRP for bridge deck 

applications as well as the scarcity of the historical maintenance data. For that reason, the 

inspection and anticipated repair schedules applied in this program are similar to those 

applied by Lopez-Anido [53].    

 The current WV FRP bridge deck inspection schedule follows the same schedule 

as the one for SRC bridge decks, which also serves as the default in this study.  To 

minimize the subjectivity of the results, the sensitivity of the schedules was examined.  A 

modified schedule based on expert opinions was applied.  It basically followed the expert 

estimations that FRP bridge decks need fewer inspections and repair activities as 

compared to SRC bridge decks. For each strategy, a life-cycle cost model and the 

associated constraints are identified.  The inspection, maintenance, and repair default 

schedule for FRP bridge decks and SRC bridge decks are presented in Figure 4.5 and 4.6.    

Different manufacturing technologies and designs of FRP bridge decks may result 

in different performances.  The strategies applied in this model were determined based on 
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experimental data for pultruded FRP bridge decks, as that was the only data available.  

The governing mode of failure considered for the FRP bridge deck was the delamination 

of face sheets. 

 

Figure 4.5 Default Inspection/Maintenance Schedule for SRC Bridge Decks 
 

 
 
 

Figure 4.6 Default Inspection/Maintenance Schedule for FRP Bridge Decks 
 

The following steps were applied for the inspection/maintenance/repair costs in the 

model. 

(1) Calculate NPV of the maintenance/repair/cost for the life of the SRC bridge deck 

referred to as MR.  In the module, utilizing the logical function in Excel®, costs 
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that occurred every year for each type of activity were automated on the 

spreadsheet for the life of the bridge deck based on a given schedule 

(2)  For each year, the agency costs and the user costs were summed, resulting in only 

two values for each row.  These two values for each year were then converted into 

present values.  The sum of (PV total agency cost column) is the NPV of total 

maintenance agency cost.  The sum of (PV total user cost column) is the NPV of 

total maintenance user cost.  The sum of those two values is MR.   

(3) If  the study period is N years and the SRC bridge deck service life is m, where 

2m < N then 

PVIR = MR + MR(A/P,i%,m)(P/A,i%, N-m)*(P/F,i%,m)                                   4.6          

(4) An approximate value for the annual costs of the inspection/maintenance/repair 

costs = MR (A/P, i%, m).  This assumes the costs remain constant over the study 

period of N years, even though m is not a multiple of N.   

 

4.2.4   Deck Disposal Cost 

Disposal time and cost of an FRP bridge deck is much less than that of an SRC 

bridge deck.  Ehlen and Marshall [29] reported that it requires two days, 150 labor hours 

each, and $4/sq ft to dispose an FRP SCRIMP bridge deck with a span of 71.6 m.  The 

de-construction costs are somewhat different for different types of FRP decks.  Wood-

core and pultruded-plank decks only require 200 labor hours for the same bridge deck 

size.  The cost is about 12 percent of an SRC deck disposal cost [27].  An SRC deck with 

the same size requires 10 days disposal time and $20/sq ft to dispose.  An average cost is  

$9.19 per square foot and takes nine days to complete.  Based on the survey, Lopez-
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Anido [53] suggested that on average it costs $9.19/sq ft (US) and $5.00/ sq ft (NC) to 

dispose of an SRC deck. 

In this study, deck disposal costs are defined as material removal costs and 

disposal costs.  Material removal costs include cost of workers for deck de-construction, 

cost of demolition equipment rental, and safety costs during de-construction activities.  

Disposal costs include transportation cost and landfill tipping fees.   In general, costs for 

transporting the de-constructed deck from the site depend on the volume and weight of 

the material and distance to the dumping site.  The distance between the project site and 

the closest dumping site is used for calculating the removal cost.  The distance matrix for 

West Virginia is given in Table 4.2.   Transportation costs and landfill costs for disposal 

were formulated as: 

Transportation cost  = TT * (2 * DD /40 + 2) * TO + TT * DD * FE * FC         4.7 

Landfill cost   = TT * 22 * LF                                                                              4.8 

TT = Number of truck trips 

DD  = Distance between disposal site and project site (miles) 

FE   = Fuel efficiency of truck (gallon/mile) 

FC   = Fuel cost ($/gallon) 

TO  = hourly truck operating cost ($/hr) 

LF = Landfill tipping fee ($/ton) 

WV landfill tipping fees averaged $10.67/ton in 1988, $35.17/ton in 2001, $39.84 

in 2006, and $45.18/ton in 2008 [88]. The tipping fees for other years are depicted in 

Table 4.3.   
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Table 4.2   WV Landfill Locations and the Distances from Project Sites 

 

 

 

 

 

Landfill Place
Meadowfill 
Landfill

Mercer County 
Landfill

Northwestern 
Company 
Disposal Landfill

Raleigh County 
SWA

Short Creek 
Sanitary 
Landfill

Tucker County 
Solid Waste 
Authority LF

Wetzel County 
Landfill

Brooke County 
LF (subtitle D)

City of 
Charleston 
Landfill Elkins Landfill

Greenbrier 
County Landfill

Ham Sanitary 
Landfill Inc.

LCS Services 
Landfill

Midwest 
Disposal 
Landfill

North Fork 
Landfill

Pocahontas 
County Landfill

Raleigh County 
Landfill & 
Recycling Center

S & S Grading 
Inc. Landfill

Sycamore 
Landfill

City Bridgeport Princeton Parkersburg Beckley Short Creek Thomas
New 
Martinsville Colliers Charleston Elkins Lewisburg Peterstown Hedgesville Hinton West Liberty Dunmore Beckley Clarksburg Hurricane

County Harrison Mercer Wood Raleigh Ohio Tucker Wetzel Brooke Kanawha Randolph Greenbrier Monroe Berkeley Summers Ohio Pocahontas Raleigh Harrison Putnam

Cabel Co 164 137 119 103 230 211 173 250 46 178 156 153 324 132 231 213 103 165 18
Jackson Co 114 134 42 99.3 153 204 96.1 175 42.7 171 153 150 274 129 154 210 99.3 109 64.1
Lewis Co 32 146 101 107 138 79 88.5 135 98.2 46.1 120 162 191 141 134 102 107 33.1 120
Marion Co 22 195 88 156 98 74.9 51.1 96 147 79 169 210 152 190 94.1 135 156 26 168
Monongalia 25 198 97 160 82.9 74.3 65.4 79.8 150 82.4 172 214 144 193 79 138 160 29.4 172
Monroe Co 173 43 212 73.8 276 164 267 273 132 128 25.6 216 241 39.1 272 85.7 73.8 171 161
Ohio Co 104 279 109 244 9.5 138 46 27.3 187 162 252 294 208 274 6.6 218 244 109 209
Pendleton Co 118 195 187 161 224 58.1 175 221 200 59.3 116 149 144 153 221 58.6 161 120 221
Raleigh Co 139 38.4 138 3.3 249 187 192 243 57.6 154 57.2 54.2 278 33.3 242 115 3.3 141 86.2
Randolph Co 76 184 144 166 182 52.4 132 179 157 16.6 103 145 178 142 178 41.9 166 76.9 178
Taylor Co 13 189 85 151 109 51.5 70.7 106 142 42.6 163 205 155 184 105 98.6 151 18 163
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Table 4.3 Landfill Tipping Fees 

 

 

User costs are indirect costs, which include vehicle operating costs (both running 

and standing costs), time costs for delays due to congestion and road work, and road 

accident costs [33].  They were given in Equation 3.10 to 3.12. 

Total disposal cost is a summation of material removal costs, disposal costs, and user 

costs that occurred during disposal activities.   The total disposal costs for FRP decks and 

SRC decks are converted to the present values.  Since the study period sets to be equal to 

FRP deck service life (N years), then for FRP deck the present value of total disposal cost 

(PVDC): 

PVDC = TDC*(P/F, i%, N)                                                                                              4.9  

Assuming SRC bridge deck service life is m, where 2m < N then the present 

value of total disposal cost for SRC deck: 

PVDC =TDC + TDC (A/P, i%, m)(P/A,i%, N-m)*(P/F,i%,m)                                     4.10       

An approximate value for the average annual disposal costs is PVDC (A/P,i%,N).  

This assumes the costs remain constant over the study period of N years even though m is 

not a multiple of N.  The reason for the average annual cost value is to determine the 

annual cost of the deck over its life and the annual cost of the structure over its life and 

the sum of the annual costs.  The life of the two items are only approximate values, and if 

the support structure has a life of 70 years and the deck has a life of 30 years, for 

YEAR 2000 2001 2002 2003 2004
LF ($/ton) 33.3 35.2 36.1 37.0 38.0

YEAR 2005 2006 2007 2008
LF ($/ton) 38.9 39.8 42.5 45.2
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example, when the second deck needs to be replaced, the designers need to decide at that 

time whether to replace only the deck, do major repair on the deck for the remaining 

structure life of 10 years, or to build a new bridge, replacing the support structure as well 

as the deck.   It is extremely difficult to evaluate that decision some 70 years before it 

must occur with any degree of accuracy.    

 

4.2.5     Life-cycle cost 

This module combined the calculations performed by three modules, i.e., initial 

cost module, maintenance/inspection/repair module, and disposal cost module.  Each of 

the three categories is measured in present value terms, i.e., converted to a common point 

in time (bridge deck project year as the present).   

PV LCC = IC + PVIR + PVDC                                                                          4.11 

Where 

 PVLCC = Present value of total life-cycle cost, 

 IC           = Initial costs, 

 PVIR      = Present value of inspection, maintenance and repair costs, 

            PVDC    = Present value of disposal costs 

The life-cycle costs for both FRP and SRC alternative bridges are given as the 

final outputs.  The average annual cost for both alternative bridge decks for the study 

period and pie charts of the first level costs are also given. 
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4.3       Summary  

This chapter explained the key differences between present research and previous 

studies.  It began by explaining life-cycle cost (LCC) breakdown and default values on 

each life-cycle components.   It concluded with explanation of the Excel program and 

formulas used to conduct LCC comparisons for the case studies.   

 

 



 

 91 

Chapter 5 
 

Model Results 
  

     
5.1      Background 

Life-cycle costing was used to compare pultruded fiber reinforced polymer (FRP) 

bridge decks to conventional steel reinforced concrete (SRC) bridge decks.  The FRP 

decks were assumed to have the same self weight as Bedford Reinforced Plastics (BRP) 

bridge decks, unless otherwise noted. 

 

5.1.1 The Bridge Example 

Reader Run Bridge is on WV route 20 over Reader Run.  It is 55 feet in length 

and 43 feet in width and had an average daily traffic (ADT) of 3,800.  The bridge deck 

was constructed in 2005.  The bridge is a single span bridge with steel superstructure.   

 

5.1.2 Basic Scenario 

The default parameters used as a basic scenario for the example bridge are given 

in Table 5.1.  Cost information collected from different sources was converted to reflect 

2005 values.  The FRP bridge deck cost was estimated to be $60.04/sq ft, and SRC bridge 

deck was based on a deck cost of $30/sq ft, the average reported SRC deck cost in the 

U.S. for 1998 after being converted to a 2005 value.  The transportation cost was 

calculated based on the distance between the manufacturer and project site. 
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Table 5.1 Default Parameters for Model (2005 values)   

 

             Inspection, maintenance and repair costs for SRC bridge decks were based on 

biannual inspection of the bridge deck, in-depth inspection every six years, and 

anticipated repatching of spawled portions of the road surface.  Anticipated repair of the 

deck should occur after 20 years when portions of the deck may have spalled or cracked.  

Every three years, two percent of the surface deck is repatched; the damaged areas are 

chipped away and new wearing surface is patched in.   

YEAR 2005 Source of data

TRAFFIC AND ACCIDENT INFORMATION

Average Daily Traffic                                        ADT= 3,800 vehicles per day

Travel Statistics, 2001 
(http://www.wvdot.com. Viewed 
December 7, 2003)

Normal Traffic Speed                                         NS = 55 mph
Normal  Accident Rate                                      NA = 0.268 per million-vehicle-miles
Traffic Speed during Construction                       CS = 45 mph
Accident Rate during Construction                     CA = 0.463 per million-vehicle-miles
Average Cost per Accident                               AC = 32,904 $ WVDOT, 2003
Hourly Vehicle Operating Cost                           VC = 9.52 $/hr Minnesota DOT, 2003
Hourly Time Value of Driver                                HC = 15.85 $/hr Ehlen and Marshall, 1996
DETAIL OF STEEL STRINGER 
Stringer Cost                                                  SSC= 1.46 $/lb BDR Bridge Cost Estimating, 2006
Installation cost reduction due to steel weight reduction ICR= 1 $/lb Hota, 2007
DETAIL OF WEARING SURFACE 
Material                                                         WST= polymer concrete overlay
Weight                                                            WS = 3 lb/sq ft
Wearing Surface Cost                                   WSC= 3.68 $/sq ft Tom Wright, 2005
DISCOUNT AND INFLATION RATES
Discount Rate                                                   DR = 3% Ehlen and Marshall, 1996
DETAIL OF FRP  DECK
Reference Service Life                                     RSL= 70 years
Thickness of Deck                                             DT = 8 in
Self weight of Deck                                          DS = 16 lb/sq ft
Cost of Deck                                                  FDC= 60.04 $/sq ft BRP, 2005
Labor cost per hour                                           LC = 12.44 $ payscale.com
Distance between Manufacturer and Project Site MD  = 300 miles
DETAIL OF CONCRETE  DECK
Thickness of Deck                                         SDT= 8 inches
Self weight of Deck                                         SDS= 100 lb/sq ft
Cost of Deck                                                 SDC= 30 $ /sq ft Lopez Anido, 1998
Distance between Manufacturer and Project Site MD  = 109 miles
Reader Run DECK
Deck Length DL   = 55 ft
Deck Width DW  = 43 ft
Project Duration N     = 6(FRP), 25(SRC) days
Distance between Project Site and Landfill DD  = 25.6 miles
OTHER COSTs
Fuel Cost                                                        FC = 2.3 $/gallon

Fuel Efficiency of Truck FE = 0.34 gallon/mile

Truck Operating Cost                                       TO = 50.75 $/hr
Landfill Cost                                                     LF = 38.91 $/ton Lopez Anido, 1998
Federal Minimum Wage FMW= 5.15 $/hr
Repair Cost DRC= 36.72 $/sq ft Ehlen and Marshall, 1996
Periodic Inspection PIC = $450 per occasion Adrian Lusk, 2008
In Depth Periodic Inspection SIC = $800 per occasion Jeff Ball, 2008
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FRP researchers believe that FRP needs less maintenance compared to traditional 

material like concrete.  Reduced maintenance is one of the advantages of FRP for civil 

constructions.  Nevertheless, in the default used for comparison, the frequency of 

maintenance and repairs are the same as that for SRC.  A modified schedule based on 

expert opinions is used for comparison purposes. The modified version is given in Table 

5.2b using different values for periodic inspection and repair of the FRP bridge decks. 

 

Table 5.2a Inspection /Anticipated Repair Schedules 

 

Table 5.2b Modified Inspection/Anticipated Repair Schedules 

 

 

 

INSPECTION/MAINTENANCE SCHEDULE

Concrete Bridge Deck Start Year End Year Time 
Between

Periodic Inspection 2nd 28th 2 yrs
In Depth Period Inspection 6th 24th 6 yrs

Anticipated Repairs 20th 29th 3 yrs
Deck Replacement 30th 30th

FRP Bridge Deck
Periodic Inspection 2nd 58th 2 yrs
In Depth Period Inspection 6th 54th 6 yrs
Repair 20th 59th 3 yrs
Overlay Replacement 30th 30th

MODIFIED INSPECTION/MAINTENANCE SCHEDULE

Concrete Bridge Deck Start Year End Year Time 
Between

Periodic Inspection 2nd 28th 2 yrs
In Depth Period Inspection 6th 24th 6 yrs

Anticipated Repairs 20th 29th 3 yrs
Deck Replacement 30th 30th

FRP Bridge Deck
Periodic Inspection 3th 57th 3 yrs
In Depth Period Inspection 6th 54th 6 yrs
Repair 25th 55th 5 yrs
Overlay Replacement 30th 30th
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5.1.3 Life-cycle Cost Analysis 

5.1.3.1 Bridge Deck Service Life and Study Period 

An SRC bridge deck with a service life of 30 years was considered.  The FRP 

bridge reference service life was 70 years.  However, moderate freeze-thaw cycles 

resulted in an expected service life of 60 years based on a service life prediction model 

for the FRP Bridge in Section 4.2.1.  The study period was set at 60 years for the two 

structures. 

 

5.1.3.2  Initial Costs 

Following the LCC cost classification in Figure 4.2, the initial costs are the sum 

of the agency and user costs.  Agency construction costs include manufacturing cost, 

transportation cost, installation cost, safety cost, and cost saving.  For FRP decks, the 

agency costs are as follow:   

Manufacturing cost = DL * DW * (manufacturing cost per sq ft)  

The manufacturing cost per sq ft was 540.95* ((year of mfg-1997)*1000)-0.26   for an FRP 

bridge deck between 1997 and 2004.  For those bridge decks manufactured in 2005 and 

afterwards, the value was based on the Bedford data.  Since the example bridge deck was 

built in 2005 and the deck area was 2,365, the manufacturing cost was $60.04/sq ft.  

Hence, manufacturing cost was 55 * 43 * 60.04 = $141,995. 

The transportation costs were:  2 * MD * FE * FC + TO * (2 * MD/40 + 6) = 2 * 300 * 

0.34 * 2.3 + 50.75 * (300 * 2/40 + 6) = $1,535 .             

The installation costs were: DL * DW * (Installation cost per sq ft) = 55 * 43 * 1.21 = 

$2,850. 
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The safety costs were: 2 * N * 8 * FMW = 2 * 6 * 8 * 5.15 = $494.   

For  SRC deck, the costs are as follow: 

Manufacturing cost: DL * DW * (Material cost per sq ft) = 55 * 43 * 30 = $70,965 

Transportation costs: 2 * MD * FE * FC + TO * (2 * MD/40 + 6)  

                       = 2 * 109 * 0.34 * 2.3 + 50.75 * (2 * 109/40 + 6) = $752              

Installation cost: DL * DW * (Labor cost per sq ft) = DL * DW * 7% * (material cost per 

sq t) = 55 * 43 * 7% * 30 = $4,968 

Overlay cost: DL * DW * WSF = 55 * 43 * 3.68 = $8,705 

The total installation cost was: $4,968 + $8,705 =$13,673. 

Safety cost = 2 * N * 8 * FMW = 2 * 25 * 8 * 5.15 = $ 2,060                           

User costs are calculated as the sum of Equation 3.10 to Equation 3.12 to compute 

user delay cost, vehicle operating cost, and accident cost.  RL = 1 for both bridge decks, 

N is 6 for FRP bridge deck, and 25 for SRC bridge deck. 

Driver delay costs         = (RL/CS – RL/NS) * ADT * N * HC                                      

Vehicle operating costs = (RL/CS – RL/NS) * ADT * N * VC                                      

Accident costs               = RL * ADT * N * (CA – NA) * AC       

User costs for FRP bridge deck = Driver delay costs + Vehicle operating costs + Accident 

costs = (1/45 – 1/55) * 3,800 * 6 * (15.85 + 9.52) + 1 * 3,800 * 6 * (0.463 - 

0.268)/1,000,000 * 32,911 = $1,460 + $877 + $147 = $2,484         

User costs for SRC bridge deck = Driver delay costs + Vehicle operating costs + 

Accident costs = (1/45 – 1/55) * 3,800 * 25 * (15.85 + 9.52) + 1 * 3,800 * 25 * (0.463 - 

0.268)/1,000,000 * 32,911 = $6,084 + $3,655 + $610 = $10,349         

The structural cost savings were: (total weight of SRC deck steel stringers – total 
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weight of FRP deck steel stringers) * (SSC + ICR) = 6,451.8 lb * $2.46/lb = $15,874.   

So, Level 1 Initial Costs are ($146,874 + $2,483 – $15,874 = $133,483) and   ($87,450 + 

$10,349 = $97,799) for FRP bridge decks and SRC bridge decks, respectively. 

 

5.1.3.3 Maintenance, Inspection, and Repair Costs 

Agency maintenance, inspection, and repair costs are based on a biannual basic 

inspection for damage, decay, and other signs of deficiency with a supplemental (in-

depth) inspection every six years.  WVDOT bridge engineers estimate that a standard 

inspection costs $ 450 per occasion, while a detailed inspection costs $ 800 per occasion.  

Anticipated repair of the deck occurs after 20 years and is repeated every three years for 

two percent of the deck following deck replacement or overlay.  Repair cost is $36.72/sq 

ft. Overlay for an FRP deck is renewed every 30 years, at a cost of $3.68/sq ft. 

The agency maintenance/repair costs of FRP decks are as follows: 

 

 

 

 

Total agency maintenance/repair costs for FRP deck = $4,210 + $3,287 +$4,779 + $3,587 

= $15,863. 

User costs during inspection and repair are also computed using Equations 3.10 to 

3.12.    The parameters are the same as for initial construction, except that RL = 0.5 for 

Basic Inspection = ∑ PIC * (1+ DR)-n                                       = $4,210
n=2,4,8,10,14,16,20,22,26,28,32,34,38,40,44,46,50,52,56,58

Supplemental  Inspection = ∑ SIC * (1+ DR)-n         = $3,287
n=6,12,18,24,30,36,42,48,54

Anticipated Repair = ∑ DRC *2% * DA* (1+ DR)-n         =  $4,779
n=20,23,26,29,50,53,56,59

Overlay Replacement = ∑ WSC * DA * (1+ DR)-n = $3,587
n=30



 

 97 

the inspections, and N =1 for the biannual inspection, and 1.5 for the detailed inspection.  

User costs for repair activities are calculated based on RL = 1 and N= 3 and 4 for FRP 

decks and SRC decks, respectively. 

The user cost for each inspection = (0.5/45 – 0.5/55) * 3,800 * 1 * (15.85 + 9.52) + 0.5 * 

3,800 * 1 * (0.463 - 0.268)/1,000,000 * 32,911 = $207. 

The user cost for each in-depth (supplemental) inspection = (0.5/45 – 0.5/55) * 3,800 * 

1.5 * (15.85 + 9.52) + 0.5 * 3,800 * 1.5 * (0.463 - 0.268)/1,000,000 * 32,911 = $310. 

The user cost for each FRP repair occurrence is (1/45 – 1/55) * 3,800 * 3 * (15.85 + 9.52) 

+ 1 * 3,800 * 3 * (0.463 - 0.268)/1,000,000 * 32,911 = $1,242. 

The user cost for each SRC repair occurrence is (1/45 – 1/55) * 3,800 * 4 * (15.85 + 

9.52) + 1 * 3,800 * 4 * (0.463 - 0.268)/1,000,000 * 32,911 = $1,656. 

The user cost for wearing surface overlay is (1/45 – 1/55) * 3,800 * 5 * (15.85 + 9.52) + 

1 * 3,800 * 5 * (0.463 - 0.268) /1,000,000 * 32,911 = $2,070. 

The user costs for maintenance/repair of FRP decks are as follows: 

 

 

 

  

Total user costs for maintenance/repair of FRP deck = $7,481. Total maintenance/repair 

costs for FRP deck during study period of 60 years = $15,863 + $7,481 = $23,344. 

The agency maintenance/repair costs of SRC deck are as follows: 

Basic Inspection = ∑$207 * (1+ DR)-n                                       = $1,937
n=2,4,8,10,14,16,20,22,26,28,32,34,38,40,44,46,50,52,56,58

Supplemental  Inspection = ∑ $310 * (1+ DR)-n         = $1,274
n=6,12,18,24,30,36,42,48,54

Anticipated Repair = ∑ $1,242 * (1+ DR)-n     = $3,417
n=20,23,26,29,50,53,56,59

Overlay Replacement = ∑ $2,070 * DA * (1+ DR)-n = $853
n=30
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Total agency maintenance/repair costs of SRC deck = $4,210 + $2,958 + $4,779 + 

$36,028 = $47,975. 

The user costs for maintenance/repair of SRC deck are as follows: 

 

 

 

 

Total user costs for maintenance/repair of SRC deck = $11,902. Total 

maintenance/inspection/repair costs for SRC deck during study period of 60 years = 

$47,975 + $11,902 = $59,878. 

 

5.1.3.4  Disposal Cost 

 FRP deck is assumed to have no salvage value at the end of the service life.  

Disposal costs are simply the cost for hand labor to disassemble the deck, warning 

Basic Inspection = ∑ SIC * (1+ DR)-n                                       = $4,210
n=2,4,8,10,14,16,20,22,26,28,32,34,38,40,44,46,50,52,56,58

Supplemental  Inspection = ∑ PIC * (1+ DR)-n      = $2,958
n=6,12,18,24,36,42,48,54

Anticipated Repair = ∑ DRC * (1+ DR)-n         = $4,779
n=20,23,26,29,50,53,56,59

Deck Replacement = ∑ $87,450 * (1+ DR)-n = $36,028
n=30

Basic Inspection = ∑ $207 * (1+ DR)-n                                       = $1,936
n=2,4,8,10,14,16,20,22,26,28,32,34,38,40,44,46,50,52,56,58

Supplemental  Inspection = ∑ $310 * (1+ DR)-n         = $1,147
n=6,12,18,24,36,42,48,54

Anticipated Repair = ∑ $1,656 * (1+ DR)-n     = $4,556
n=20,23,26,29,50,53,56,59

Deck Replacement = ∑ $10,349 * (1+ DR)-n = $4,264
n=30
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signage cost, transportation, and deposit at a landfill facility.  Since all costs occur in year 

60, then the multiplier of (1 + DR)-60 ≈ 0.17 is applied.   

Deconstruction Cost  = 0.17 * (1 * 80 man hours * 12.44) = 0.17 * $995 = $169 

Safety cost   = 0.17 * (1 * 2 * 8 * 5.15) = 0.17 * $82 = $14 

Transportation Cost  = 0.17 * (TT * (2 * DD /40 + 2) * TO + TT * DD * FE * FC)   

   = 0.17 * (4 * (2 * 25.6 / 40 + 2) * 25.37 + 4 * 25.6 * 0.34 * 2.3)  

                                 = 0.17 * $413 = $70 

Landfill Cost   = 0.17 * (TT * 22 * LF = 4 * 22 * 38.91)  

                                 = 0.17* $3,424 = $581                                                   

Total agency costs is $ 169 + $14 + $70 + $ 581 = $834. 

User disposal costs are calculated using Equation 3.10 to 3.12 with N=1, i.e. 0.17 * ($243 

+ $146 + $24) = $41 + $25 + $4 = $70. 

Total disposal costs is $834 + $70 = $904. 

SRC deck is assumed to have no salvage value at the end of the service life.  

Disposal costs are simply the cost for deconstruction, warning signage cost, 

transportation and deposit at a landfill facility.   The disposal costs of SRC deck take 

place in year 30th and year 60th.  For that reason, multiplier of ((1+DR)-30 + (1+DR)-60) ≈ 

0.58 is applied. 

Deconstruction Worker Cost = 5 days * 120 man hours/day * 12.44 = $7,466 

Equipment Cost = 2,365 * 0.9 = $2,131 

Deconstruction Cost    = 0.58 * ($7,466 + $2,131) = $5,583 

Safety Cost  = 0.58 * (5 * 2 * 8 * 5.15) = 0.58 * $412 = $240 

Transportation Cost  = 0.58 * (TT * N * 8 * TO + TT * DD * FE * FC)   
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   = 0.58 * (4 * 5 * 8 * 25.37 + 4 * 25.6 * 0.34 * 2.3) = $2,408 

Landfill Cost   = 0.58 * (TT * 22 * LF = 4 * 22 * 38.91) = 0.58 * $3,424 = $1,992                                                   

Total agency costs is $5,583 + $240 + $2,408 + $1,992 = $10,222. 

User disposal costs are based on five days of disrupted traffic and also on a calculation 

using Equation 3.10 to 3.12, i.e. 0.58 * ($1,217 + $731 + $122) = $708 + $425 + $71= 

$1,204.  Total disposal costs is $10,222 + $1,204 = $11,426. 

 Table 5.3 lists the total LCC as well as its breakdown by initial, 

maintenance/repair, and disposal categories in terms of total life-cycle costs and unit 

costs of dollars per square foot.  Table 5.4 tabulates all life-cycle cost for the FRP deck 

and the years in which they occur.  

 

5.1.3.5  Agency Costs 

The total agency cost for FRP bridge deck, considering substructure cost savings 

for the entire 60 years, is higher than the one for SRC.  For both bridges, the largest 

component is the initial cost, which is $62.1/sq ft for the FRP deck and $37.0/sq ft for the 

SRC deck.  It is clear that the agency initial costs for the FRP deck are much higher than 

the corresponding costs for the SRC deck.    The agency initial cost of FRP bridge deck, 

including savings of $6.7/sq ft, is $57.4/sq ft.   

Distributions of agency costs for both bridges are depicted in Figure 5.1 and 

Figure 5.2.  Figure 5.1 is based on the case where cost savings are considered.  The 

results indicate that initial cost still dominates agency life-cycle cost.  Initial cost for the 

example bridge is about 89 percent of the FRP total agency cost.  For this bridge deck, an 

improved FRP deck life over that of SRC bridges by itself significantly reduces the effect 
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of higher initial costs.  Furthermore, the combination of two FRP advantages over SRC 

(i.e., higher service life and initial cost savings) results in lower agency costs for an FRP 

deck.  

The inspection/repair costs are not significantly different for the basic model due 

to the assumption that both types of bridge decks share the same anticipated schedules.  

For a basic scenario, inspection/repair cost is accounted for eight percent of both FRP and 

SRC agency costs, i.e., $5.2/sq ft and $5.1/sq ft, respectively, as shown in Figure 5.1 and 

Figure 5.2. 

The disposal costs of FRP decks are significantly lower than those of SRC decks.  

The main reasons are the faster removal of an FRP deck compared to an SRC deck and 

the reduced weight.  The SRC is removed by crushing the deck and hauling off the 

debris.  For both types of bridge decks, it is assumed that they do not have salvage value, 

so disposal costs are simply the cost to destroy and to transport the debris to a landfill 

facility.  The transportation cost itself is a function of the distance between the project 

site and landfill facility.  For this basic scenario, disposal cost is 0.6 percent of FRP deck 

LCC cost and 6.8 percent of SRC deck LCC cost.   

 

5.1.3.6  User Costs 

The user costs for FRP for the initial and disposal processes were 24 percent and 

5.8 percent of the corresponding costs for SRC, mainly because of the significant 

difference in time required to perform those activities.  The user costs were highest in the 

initial costs of SRC decks where costs were highest in inspection/repair for the FRP 

decks.  However, the SRC decks had higher user costs per square foot for all categories 
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than the FRP decks.  These values were obtained based on the conservative assumption 

that FRP bridge decks need the same frequent inspection and anticipated repair activities 

as SRC decks.    

Table 5.3 Life-cycle Cost Breakdown for Reader Run  

 

Bridge Deck Alternative FRP SRC
ADT (vehicles/day) 3800 3800
Total Area 2365 2365
Study Period (yrs) 60 60
Service Life (yrs) 60 30
Deck Cost ($/sq ft) $60.0 $30.0

Item Total $/sq ft Item Total $/sq ft
Initial Costs
      Agency Costs
               Manufacturing Costs $141,995 $70,965
               Transportation Costs $1,535 $752
               Installation (incl. overlay) Costs $2,850 $13,673
               Safety Costs $494 $2,060
     Total Agency Costs $146,874 $62.1 $87,450 $37.0
     User Costs
               Driver Delay Costs $1,460 59% $6,084 59%
               Vehicle Operating Costs $877 35% $3,655 35%
               Increased Accident Costs $147 6% $610 6%
     Total User Costs $2,484 $1.1 $10,349 $4.4
     Structural Savings
               Steel $15,874 -
               Concrete (not incl.) -
     Total Structural Savings $15,874 $6.7
Total Initial Costs $133,484 $56.4 $97,799 $41.4

Maintenance/Repair Costs
      Agency Costs
               Basic Inspection $4,210 $4,210
               Supplemental Inspection $3,287 $2,958
               Anticipated Repairs $4,779 $4,779
              Inspection /Repair $12,276 $5.2 $11,947 $5.1
              Deck Overlay Replacement $3,587
              Deck Replacement $36,028
             Deck Overlay or Replacement $3,587 $1.5 $36,028 $15.2
     Total Agency Costs $15,863 $6.7 $47,975 $20.3
     User Costs
               Basic Inspection $1,937 $1,936
               Supplemental Inspection $1,274 $1,147
               Anticipated Repairs $3,417 $4,556
              Inspection /Repair $6,628 $2.8 $7,639 $3.2
              Deck Overlay Replacement $853
              Deck Replacement $4,264
             Deck Overlay or Replacement $853 $0.4 $4,264 $1.8
     Total User Costs $7,481 $3.2 $11,902 $5.0
Total Maintenance/Repair Costs $23,344 $9.9 $59,878 $25.3

Disposal Costs
      Agency Costs
               Deconstruction Costs $169 $5,583
              Safety Costs $14 $240
               Transportation Costs $70 $2,408
               Landfill Fees $581 $1,992
     Total Agency Costs $834 $0.4 $10,222 $4.3
     User Costs
               Driver Delay Costs $41 59% $708
               Vehicle Operating Costs $25 35% $425
               Increased Accident Costs $4 6% $71 6%
     Total User Costs $70 $0.0 $1,204 $0.5
Total Disposal Costs $904 $0.4 $11,426 $4.8

LIFE CYCLE COST
   Total Agency Costs $147,697 $62.5 $145,647 $61.6
   Total User Costs $10,035 $4.2 $23,456 $9.9
Total Life Cycle Costs $157,733 $66.7 $169,104 $71.5
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Table 5.4 FRP Deck Life-cycle Cost Tabulation  

 

 

 

Figure 5.1 Agency Cost Distribution of Reader Run FRP Bridge Deck   
 
 

Reader Run
Cost Tabulation of FRP Deck Quantity Unit UC Start End Freq

L1: Initial Costs
      L2: Agency Costs
               Construct a new deck 2,365 sq ft $62.1 0 0 1
     L2: User Costs
               Driver delay, vehicle, and accidents 6 days $414 0 0 1
     L2: Structural Savings
               Steel 2,365 sq ft $6.7 0 0 1

L1: Maintenance/Repair Costs
      L2: Agency Costs
               Basic Inspection 1 ls $450 2 58 20*)

               Supplemental Inspection 1 ls $800 6 54 9
               Anticipated Repairs 47 sq ft $36.7 20 59 8
              Deck Overlay Replacement 2,365 sq ft $3.7 30 30 1

     L2: User Costs
               Basic Inspection:  Driver delay, vehicle, and accidents 1 ls $207 2 58 20*)

               Supplemental Inspection:  Driver delay, vehicle, and accidents 1 ls $310 6 54 9
               Anticipated Repairs:  Driver delay, vehicle, and accidents 1 ls $1,242 20 59 8
              Deck Overlay Replacement:  Driver delay, vehicle, and accidents 1 ls $2,070 30 30 1

L1: Disposal Costs
      L2: Agency Costs
               Disposal of deck 2,365 sq ft $2.1 60 60 1
    L2: User Costs
               Driver delay, vehicle, and accidents 1 days $414 60 60 1

*) include the following years: 2,4,8,10,14,16,20,22,26,28,32,34,38,40,44,46,50,52,56,58

$55.4, 89%

$5.2, 8%

$1.5, 2% $0.4, 1%

FRP Deck Agency Costs

Initial Costs Inspection/ Repair Costs
Deck Overlay or Replacement Disposal Costs
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Figure 5.2 Agency Cost Distribution of Reader Run SRC Bridge Deck  

 

Figure 5.3 User Cost Distribution of Reader Run FRP Bridge Deck  
 

 
 

Figure 5.4 User Cost Distribution of Reader Run SRC Bridge Deck  

$37.0, 60%$5.1, 8%

$15.2, 25%

$4.3, 7%

SRC Deck Agency Costs

Initial Costs Inspection/ Repair Costs
Deck Overlay or Replacement Disposal Costs

$1.1, 25%

$2.8, 66%

$0.4, 8%

$0.0, 1%

FRP Deck User Costs

Initial Costs Inspection/Repair Costs
Deck Overlay or Replacement Disposal Costs

$4.4, 44%$3.2, 33%

$1.8, 18%

$0.5, 5%

SRC Deck User Costs
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5.1.3.7 Total Costs 

The basic scenarios suggested that if SRC deck cost is $30/sq ft, FRP deck cost is 

$60.04/sq ft, the site has normal ADT, and if both type of bridge decks share the same 

maintenance/inspection and anticipated repair frequencies, the LCC of an FRP bridge 

deck is lower than that for an SRC bridge deck when cost saving is considered, i.e., 

$66.7/sq ft as opposed to $71.5.  Additionally, the study suggests that FRP deck is not 

financially viable if one makes a conclusion based on initial cost consideration only.  

Initial cost analysis is not suitable for showing the entire situation. Level 1 life-cycle cost 

breakdown for the alternate decks are given in Figure 5.5.   The following section 

discusses the effect of various scenarios.  Both cases (with and without cost saving) are 

considered. 

 

Figure 5.5 Life-cycle Cost of Alternate Decks 
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$9.9, 15% $0.4, 0%
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Initial Costs Maintenance/Inspection/Repair Costs Disposal Costs
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5.1.3.8 Savings Comparison of Decks and Sensitivity Analysis 

Break-even analysis indicates the maximum or minimum values of key 

parameters necessary for an alternative material to be cost effective. The break-even 

analysis was done by re-computing the costs for FRP bridge deck by changing one 

parameter at a time to determine the level at which the total life-cycle cost of the FRP 

bridge becomes competitive or not. 

The basic scenario of this case study is as follows: SRC deck costs $30/sq ft, FRP 

deck costs $60.04/sq ft, and ADT = 3800 vehicles/day.  Under these conditions, it was 

estimated that the LCC costs are $73.4/sq ft and $71.5/sq ft for FRP and SRC decks, 

respectively.  When cost saving is considered, the LCC cost for FRP is $66.7/sq ft.   

Hence, FRP is financially viable when substructure savings are considered.   

The initial and disposal activities of the SRC deck consume more time and result 

in higher sensitivity to ADT as depicted in Figure 5.4.  Therefore, higher ADT is more 

beneficial for an FRP deck.  The effects of increased ADT for FRP bridge deck cost as 

well as SRC bridge deck cost are depicted in Figure 5.6.  With the same anticipated 

inspection and maintenance schedules for the two bridge decks, the maximum cost for an  

FRP bridge deck to be cost competitive with SRC deck is $ 64.8/sq ft, if SRC deck costs 

$ 30 /sq ft.  When the SRC deck cost is lower than expected, i.e., $ 25/sq ft, FRP bridge 

deck is still financially viable if the maximum manufacturing cost is about $57.2/sq ft. 
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Figure 5.6 Effects of ADT 

 

Figure 5.7 Effects of Manufacturing Costs 

 

5.2      The Case Study Bridges 

Using similar steps as explained above, the life-cycle cost analysis for three case 

study bridges were performed.  The bridges studied were the Goat Farm Bridge, the La 

Chein Bridge, and the Katy Truss Bridge.  The estimates were based on estimated costs 

of when the bridge was repaired, and the structural steel savings were included as if the 

bridge was a new project.  The Goat Farm Bridge is on County Route 21 in Jackson 

County, WV.  It is 39 feet in length and 15 feet in width and had an average daily traffic 
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(ADT) of 20 and was constructed in 2003.  The La Chein Bridge is on County Road 12, 

in Monroe County, WV.  The 32.5 foot long and 24.3 foot wide bridge was constructed in 

2001 with ADT of 100 vehicles per day.  The Katy Truss Bridge is located in Marion 

County, WV.  The bridge had an ADT of 700 and is 91.3 feet in length and 14.3 feet in 

width, and it was constructed in 2000.  Those three bridges are single-span, FRP bridge 

decks with steel superstructures.   

 

5.3     Life-cycle Cost Analysis 

The initial costs for FRP bridge decks were based on the learning curve formula, 

and $56.3 /sq ft, $62.6 /sq ft and $67.5/sq ft were obtained respectively for Goat Farm, La 

Chein, and Katy Truss bridge decks.    As with the example bridge, the FRP deck and 

SRC bridge deck used  a service life of 60 and 30 years.  The study period is set at 60 

years. 

 

5.3.1 Agency Costs 

For the three case studies, the agency life-cycle costs for the FRP deck were 

higher than the corresponding costs for the SRC deck if the structural cost savings were 

not considered.  The largest component of the FRP agency cost is the initial cost, which 

was 79-89 percent of the total agency costs, as depicted in Figures 5.8 to 5.10.   

Figures 5.11 to 5.13 are based on cases where substructure cost reductions are 

considered.  The initial costs still dominate the life-cycle cost and are 77-87 percent of 

the FRP total agency cost.  The results implied that the improved FRP deck life over that 

of the SRC bridges does not offset the effect of higher initial costs.  Furthermore, the 
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combination of two FRP advantages over SRC (i.e., higher service life and substructure 

cost reductions) does not always offset the effect of the higher initial costs either.  

In general, the results showed that the higher the FRP manufacturing cost, the 

higher the initial cost will be.  This phenomenon emphasizes the important role of the 

FRP bridge deck manufacturing cost in determining the economic viability of a FRP 

bridge deck.  The importance of this particular input, its effects to total initial costs, as 

well as the life-cycle cost are discussed in the sensitivity analysis section. 

 

Figure 5.8 Agency Cost Distribution of Goat Farm FRP Bridge Deck (Basic Scenario) 

 

Figure 5.9 Agency Cost Distribution of La Chein FRP Bridge Deck (Basic Scenario) 
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Figure 5.10 Agency Cost Distribution of Katy Truss FRP Bridge Deck (Basic Scenario) 

 

Figure 5.11 Agency Cost Distribution of Goat Farm FRP Bridge Deck  
(Basic Scenario; Cost Saving Considered) 

 

 

Figure 5.12 Agency Cost Distribution of La Chein FRP Bridge Deck  
(Basic Scenario; Cost Saving Considered) 
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Figure 5.13 Agency Cost Distribution of Katy Truss FRP Bridge Deck  
(Basic Scenario; Cost Saving Considered) 

 
The inspection/repair costs are not significantly different for the basic models due 

to the assumption that both types of bridge decks share the same anticipated schedules.  

Overall, inspection/repair costs accounted for 10 percent to 19 percent of FRP life-cycle 

cost and 11 percent to 18 percent of SRC cost.  The values are translated to $ 6.9 /sq ft to 

$13.5/sq ft for FRP deck and $6.6/sq ft to $13.4/sq ft for SRC deck.   

The disposal costs for FRP decks are significantly lower than those of SRC decks.  

The main reason is that it is easier and faster to remove an FRP deck compared to an SRC 

deck.  For SRC, the deck is removed by crushing the deck and hauling off the debris.  For 

both type of bridge decks, it is assumed that they do not have salvage value, so disposal 

costs are simply the cost to destroy and to transport them to a landfill facility.  The 

transportation cost itself is a function of distance between the project site and landfill 

facility.  For basic scenarios, disposal cost ranges from $0.3/sq ft to $0.6/sq ft for FRP 

deck, and it ranges from $5.3/sq ft to $7.4/sq ft for SRC deck.  Overall, disposal cost is 

accounted for 0.5 percent to 0.8 percent of FRP deck LCC cost and 8.2 percent to 10 

percent of SRC deck LCC cost. 
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5.3.2 User Costs   

The user costs for both FRP and SRC bridge decks under the basic scenarios are 

small, i.e., at most $1.15/sq ft for FRP deck and $2.92/sq ft for SRC deck. The main 

reason is the extremely low ADT for these bridge decks, i.e., 20 to 700 vehicles per day.  

Hence, the construction, maintenance, or disposal activities only affect a small number of 

road users, and the associated cost is minimal.  

In general, the percentage of user cost to the total cost increases when ADT 

increases.  As an example, user costs of SRC decks are 0.2 percent, 0.9 percent and 4.7 

percent of the total costs for bridge deck when ADT are 20, 100, and 700, respectively.   

 

5.3.3  Total Costs 

The basic scenarios suggested that if the default SRC deck cost and FRP deck cost 

applied, the site has very low ADT, the structural steel savings are included, and if both 

type of bridge decks share the same maintenance/inspection and anticipated repair 

frequencies, the LCC of FRP bridge deck is lower than the SRC bridge deck for the Goat 

Farm.   For La Chein and Katy Truss bridges, increases in the ADT can cause the FRP 

bridge deck to be more economical than the SRC bridge deck.   Life-cycle Cost per 

square foot for the three bridges under basic scenarios are given in Table 5.5.   

 

5.4 Savings Comparison of Decks and Sensitivity Analysis 

Sensitivity analysis was performed to learn the effects of important parameters to 

the total life-cycle cost of both FRP and SRC decks.  The higher the effect of the 

parameter, the more sensitive the parameter is.  The analysis was performed by 
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examining life-cycle cost using different parameter values. 

 

5.4.1 Goat Farm Bridge 

The basic scenario of this case study is as follows: FRP deck costs $56.3/sq ft, 

and ADT = 20 vehicles/day.  Under these conditions, it was estimated that the LCC costs 

are $75.5/sq ft and $73.8/sq ft for FRP and SRC decks respectively.  When the steel 

substructure cost reductions are considered, the FRP deck becomes competitive to SRC.  

The LCC cost for FRP is lowered to $71.4/sq ft.  Figure 5.14 shows that, for this study, 

FRP is more economical than SRC if FRP deck costs less than $58.6/sq ft. 

The higher the ADT, the higher the user cost will be, and since the SRC deck 

initial and disposal activities consume more time than the FRP initial and disposal 

activities do, SRC decks have a higher sensitivity to ADT as depicted in Figure 5.15.   
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Table 5.5 Life-cycle Cost Breakdown under Basic Scenario  

 

Bridge Deck Project Goat Farm Goat Farm La Chein La Chein Katy Truss Katy Truss
Yr 2003 2003 2001 2001 2000 2000
Bridge Deck Alternative FRP SRC FRP SRC FRP SRC
ADT (vehicles/day) 20 20 100 100 700 700
Study Period (yrs) 60 60 60 60 60 60
Service Life (yrs) 60 30 60 30 60 30
Deck Cost ($/sq ft) $56.3 $28.3 $62.6 $27.2 $67.5 $26.5

Initial Costs
      Agency Costs
               Manufacturing Costs $56.34 $28.30 $62.61 $27.24 $67.65 $26.56
               Transportation Costs $1.14 $0.79 $0.95 $0.81 $0.28 $0.43
               Installation (incl. overlay) Costs $1.54 $5.45 $1.52 $5.24 $1.26 $5.11
               Safety Costs $0.42 $2.82 $0.42 $2.09 $0.25 $1.58
     Total Agency Costs $59.45 $37.36 $65.48 $35.37 $69.26 $33.60
     User Costs
               Driver Delay Costs $0.01 $0.04 $0.03 $0.15 $0.14 $0.76
               Vehicle Operating Costs $0.00 $0.02 $0.02 $0.09 $0.08 $0.45
               Increased Accident Costs $0.00 $0.00 $0.00 $0.01 $0.01 $0.08
     Total User Costs $0.01 $0.07 $0.05 $0.25 $0.23 $1.28
     Structural Savings
               Steel $4.06 $0.00 $6.28 $0.00 $11.38 $0.00
               Concrete $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
     Total Structural Savings $4.06 $0.00 $6.28 $0.00 $11.35 $0.00
Total Initial Costs $55.40 $37.43 $59.25 $35.62 $58.14 $34.88

Maintenance/Repair Costs
      Agency Costs
               Basic Inspection $6.78 $6.78 $4.83 $4.83 $2.84 $2.84
               Supplemental Inspection $5.29 $4.76 $3.77 $3.40 $2.22 $2.00
               Anticipated Repairs $1.90 $1.90 $1.83 $1.83 $1.79 $1.79
              Inspection/Maintenance $13.98 $13.45 $10.44 $10.06 $6.85 $6.63
              Deck Overlay Replacement $1.43 $0.00 $1.37 $0.00 $1.34 $0.00
              Deck Replacement $0.00 $15.39 $0.00 $14.58 $0.00 $13.88
             Deck Overlay or Replacement $1.43 $15.39 $1.37 $14.58 $1.34 $13.88
     Total Agency Costs $15.40 $28.84 $11.81 $24.63 $8.17 $20.45
     User Costs
               Basic Inspection $0.02 $0.02 $0.06 $0.06 $0.24 $0.24
               Supplemental Inspection $0.01 $0.01 $0.04 $0.03 $0.16 $0.14
               Anticipated Repairs $0.03 $0.04 $0.10 $0.14 $0.43 $0.57
              Deck Overlay Replacement $0.01 $0.00 $0.03 $0.00 $0.11 $0.00
              Deck Replacement $0.00 $0.03 $0.00 $0.10 $0.00 $0.53
     Total User Costs $0.06 $0.09 $0.23 $0.33 $0.93 $1.48
Total Maintenance/Repair Costs $15.47 $28.93 $12.04 $24.96 $9.10 $21.93

Disposal Costs
      Agency Costs
               Deconstruction Costs $0.27 $5.19 $0.19 $3.85 $0.11 $3.46
              Safety Costs $0.02 $0.41 $0.02 $0.30 $0.01 $0.18
               Transportation Costs $0.04 $0.97 $0.02 $0.69 $0.02 $0.81
               Landfill Fees $0.24 $0.81 $0.17 $0.57 $0.19 $0.65
     Total Agency Costs $0.57 $7.38 $0.40 $5.41 $0.34 $5.09
     User Costs
               Driver Delay Costs $0.00 $0.01 $0.00 $0.02 $0.01 $0.09
               Vehicle Operating Costs $0.00 $0.00 $0.00 $0.01 $0.00 $0.05
               Increased Accident Costs $0.00 $0.00 $0.00 $0.00 $0.00 $0.01
     Total User Costs $0.00 $0.01 $0.00 $0.04 $0.01 $0.15
Total Disposal Costs $0.57 $7.39 $0.40 $5.44 $0.34 $5.24

LIFE CYCLE COST
   Total Agency Costs $71.36 $73.58 $71.41 $65.40 $66.41 $59.13
   Total User Costs $0.08 $0.18 $0.28 $0.62 $1.17 $2.91
Total Life Cycle Costs $71.43 $73.75 $71.69 $66.03 $67.58 $62.05
Total Life Cycle Costs Savings Not 
Considered $75.50 $73.75 $77.97 $66.03 $78.94 $62.05
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Figure 5.14   LCC Cost of Goat Farm Bridge as a Function of Deck Cost 

 

Figure 5.15 Effects of ADT on LCC Costs of Goat Farm Bridge 

 

5.4.2 La Chein Bridge  

The basic scenario of this case study is as follows: FRP deck costs $62.6/sq ft, 

and ADT =100 vehicles/day.  Under these conditions, it was estimated that the LCC costs 

are $77.9/sq ft and $66.0/sq ft for FRP and SRC decks respectively.  When structural cost 
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savings are considered, the LCC cost for FRP is $71.7/sq ft.  Figure 5.16 shows that, for 

this study, FRP is more economical than SRC if FRP deck costs less than $ 56.9/sq ft. 

Similar to the finding for Goat Farm Bridge, the higher the ADT, the higher the 

user cost for La Chein Bridge. SRC deck initial and disposal activities consume more 

time; therefore it results in higher sensitivity to ADT, as depicted in Figure 5.17.  

Therefore, higher ADT is more beneficial for FRP decks.  If the ADT is set to 1,800 for 

example, FRP is financially viable under the basic scenario.   

 

Figure 5.16   LCC Costs of La Chein Bridge 

 

Figure 5.17 Effects of ADT on LCC Costs of La Chein Bridge 
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5.4.3 Katy Truss Bridge 

The basic scenario of this case study is as follows: FRP deck costs $67.5/sq ft, 

when ADT = 700 vehicles/day.  When substructure cost saving is considered, the LCC 

cost for FRP and SRC are $67.6/sq ft and $62.1/sq ft, respectively.  Hence, FRP is not 

financially viable under the basic scenario.  For Katy Truss Bridge, FRP is more 

economical than SRC if FRP deck costs less than $61.8/sq ft. 

The higher the ADT, the higher the user cost.  Since SRC deck initial and disposal 

activities consume more time, it results in higher sensitivity to ADT, as shown by a 

steeper slope in Figure 5.18.  Therefore, higher ADT is more beneficial for FRP deck.  

For this bridge, FRP bridge deck is more competitive than SRC bridge deck under basic 

scenario if  ADT equals to 3,000. 

 

Figure 5.18 Effects of ADT on LCC Costs of Katy Truss Bridge 
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determining the viability of this type of deck.    If steel support cost savings are 

considered, and the service life of FRP deck is constant, the relationship between FRP 

manufacturing cost and its life-cycle cost/sq ft for the Goat Farm Bridge deck is 

illustrated in Figure 5.14.  If the same anticipated inspection and maintenance schedules 

for the two bridge decks are assumed, an FRP bridge deck with maximum cost of 

$61.2/sq ft is competitive with an SRC deck at $ 30/sq ft, as shown in Figure 5.14.  The 

initial cost ratio seems high, 1.54, because of the difference in their service lives.  Taking 

the cost of the second bridge deck into account, the maximum allowable cost ratio for the 

Goat Farm FRP deck is 1.09.  The actual initial cost ratio for Goat Farm under the basic 

scenario is 1.05, which is lower than 1.09.  Hence, it’s financially viable. 

 The same analysis was performed for La Chein Bridge deck, and the results are 

depicted in Figure 5.16.  Similar to the finding for Goat Farm Bridge deck, with the 

assumed same anticipated inspection and maintenance schedules for the two bridge 

decks, maximum FRP bridge deck to be cost competitive with $30/sq ft SRC deck is $ 

61.1 /sq ft, i.e., maximum allowable initial cost ratio of 1.06.  The actual price ratio is 

1.18, which explains why Goat Farm FRP bridge deck is not financially viable this under 

basic scenario. 

 

5.5.2    Effects of Inspection/Anticipated Maintenance Schedules 

Given the basic scenarios, in which FRP deck has a service life of 60 years, while 

SRC deck has a service life of 30 years, the maximum FRP bridge deck to be cost 

competitive with SRC deck is $58.6/sq ft and $56.9/sq ft for Goat Farm Bridge and La 

Chein bridge, respectively, as shown in Figure 5.14 and Figure 5.16. The ADT for those 
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bridges are 20 and 100, respectively.  The basic assumption for the results was the 

assumed same schedules for the two bridge decks.  If the FRP maintenance frequency is 

less than SRC as expected by FRP experts, the conclusions would change.   

To illustrate the effect of maintenance cost, the same analysis was done using 

different assumption.  If we assumed that FRP maintenance is less frequent than SRC, as 

given in Section 5.2.1, the maximum FRP bridge deck to be cost competitive with SRC 

deck can be slightly higher, i.e., $ 63.5/sq ft and $ 60.8/sq ft, respectively, for Goat Farm 

and La Chein bridges.  The maximum allowable initial cost ratio between FRP and SRC 

decks are 1.67 and 1.61 for those bridges (1.21 and 1.17 if SRC deck replacement costs 

are included).   This condition allows FRP deck to become better in competitiveness for 

La Chein.  A combination of less maintenance and higher ADT allows FRP to become a 

viable alternative deck. LCC breakdowns for different scenarios are given in Table 5.6. 
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Table 5.6 LCC Breakdown for Goat Farm and La Chein Bridge Decks 

 

Bridge Deck Project Goat Farm Goat Farm Goat Farm La Chein La Chein La Chein
Yr 2003 2003 2003 2001 2001 2001
Bridge Deck Alternative FRP SRC FRP FRP SRC FRP
ADT (vehicles/day) 20 20 20 100 100 100

Inspections/Ancitipated Repairs Same Same Less 
Frequency Same Same Less 

Frequency
Study Period (yrs) 60 60 60 60 60 60
Service Life (yrs) 60 30 60 60 30 60

Initial Costs
      Agency Costs
               Manufacturing Costs $56.34 $28.30 $56.34 $62.61 $27.24 $62.61
               Transportation Costs $1.14 $0.79 $1.14 $0.95 $0.81 $0.95
               Installation (incl. overlay) Costs $1.54 $5.45 $1.54 $1.52 $5.24 $1.52
               Safety Costs $0.42 $2.82 $0.42 $0.42 $2.09 $0.42
     Total Agency Costs $59.45 $37.36 $59.45 $65.48 $35.37 $65.48
     User Costs
               Driver Delay Costs $0.01 $0.04 $0.01 $0.03 $0.15 $0.03
               Vehicle Operating Costs $0.00 $0.02 $0.00 $0.02 $0.09 $0.02
               Increased Accident Costs $0.00 $0.00 $0.00 $0.00 $0.01 $0.00
     Total User Costs $0.01 $0.07 $0.01 $0.05 $0.25 $0.05
     Structural Savings
               Steel $4.06 $0.00 $4.06 $6.28 $0.00 $6.28
               Concrete $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
     Total Structural Savings $4.06 $0.00 $4.06 $6.28 $0.00 $0.00
Total Initial Costs $55.40 $37.43 $55.40 $59.25 $35.62 $59.25

Maintenance/Repair Costs
      Agency Costs
               Basic Inspection $6.78 $6.78 $3.39 $4.83 $4.83 $2.42
               Supplemental Inspection $5.29 $4.76 $5.29 $3.77 $3.40 $3.77
               Anticipated Repairs $1.90 $1.90 $0.47 $1.83 $1.83 $0.45
              Deck Overlay Replacement $1.43 $0.00 $1.43 $1.37 $0.00 $1.37
              Deck Replacement $0.00 $15.39 $0.00 $0.00 $14.58 $0.00
     Total Agency Costs $15.40 $28.84 $10.58 $11.81 $24.63 $8.01
     User Costs
               Basic Inspection $0.02 $0.02 $0.01 $0.06 $0.06 $0.03
               Supplemental Inspection $0.01 $0.01 $0.01 $0.04 $0.03 $0.04
               Anticipated Repairs $0.03 $0.04 $0.01 $0.10 $0.14 $0.03
              Deck Overlay Replacement $0.01 $0.00 $0.01 $0.03 $0.00 $0.03
              Deck Replacement $0.00 $0.03 $0.00 $0.00 $0.10 $0.00
     Total User Costs $0.06 $0.09 $0.03 $0.23 $0.33 $0.12
Total Maintenance/Repair Costs $15.47 $28.93 $10.61 $12.04 $24.96 $8.13

Disposal Costs
      Agency Costs
               Deconstruction Costs $0.27 $5.19 $0.27 $0.19 $3.85 $0.19
              Safety Costs $0.02 $0.41 $0.02 $0.02 $0.30 $0.02
               Transportation Costs $0.04 $0.97 $0.04 $0.02 $0.69 $0.02
               Landfill Fees $0.24 $0.81 $0.24 $0.17 $0.57 $0.17
     Total Agency Costs $0.57 $7.38 $0.57 $0.40 $5.41 $0.40
     User Costs
               Driver Delay Costs $0.00 $0.01 $0.00 $0.00 $0.02 $0.00
               Vehicle Operating Costs $0.00 $0.00 $0.00 $0.00 $0.01 $0.00
               Increased Accident Costs $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
     Total User Costs $0.00 $0.01 $0.00 $0.00 $0.04 $0.00
Total Disposal Costs $0.57 $7.39 $0.57 $0.40 $5.44 $0.40

LIFE CYCLE COST
   Total Agency Costs $71.36 $73.58 $66.53 $71.41 $65.40 $67.61
   Total User Costs $0.08 $0.18 $0.05 $0.28 $0.62 $0.18
Total Life Cycle Costs $71.43 $73.75 $66.58 $71.69 $66.03 $67.78
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5.5.3     Effects of Average Daily Traffic (ADT) 

 There is a relationship between ADT and LCC cost, and the higher the ADT the 

more favorable the FRP deck becomes.   As discussed in the previous section, the main 

reason for the phenomenon is the higher the ADT, the larger the difference between an 

FRP deck relative to an SRC deck.  Table 5.7 shows total agency and user costs for the 

La Chein bridge deck under different ADT.  For this case study bridge, increasing ADT 

to 1,800 enables the FRP deck to be competitive to SRC deck under the same 

maintenance assumption. 

 

5.5.4     Effects of Discount Rate (DR) 

  Effects of discount rate (DR) are studied by varying DR values for Goat Farm 

Bridge (basic scenario) between two to five percent.  Figure 5.19 suggests the higher the 

DR, the less likely the FRP deck is what?.   For the basic case of Goat Farm Bridge, FRP 

deck is a viable alternate if DR is not higher than 3.3percent. 

 

  Figure 5.19 Effects of Discount Rate on Life-cycle Cost of Goat Farm Bridge 
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Table 5.7   LCC Breakdown for La Chein Bridge Deck under Different ADTs 

 

Bridge Deck Project La Chein La Chein La Chein La Chein La Chein La Chein La Chein La Chein La Chein La Chein
Yr 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
Bridge Deck Alternative FRP FRP FRP FRP FRP SRC SRC SRC SRC SRC
ADT (vehicles/day) 100 300 500 750 1800 100 300 500 750 1800
Study Period (yrs) 60 60 60 60 60 60 60 60 60 60
Service Life (yrs) 60 60 60 60 60 30 30 30 30 30
Deck Cost ($/sq ft) $62.6 $62.6 $62.6 $62.6 $62.6 $27.2 $27.2 $27.2 $27.2 $27.2

Initial Costs
      Agency Costs
               Manufacturing Costs $62.61 $62.61 $62.61 $62.61 $62.61 $27.24 $27.24 $27.24 $27.24 $27.24
               Transportation Costs $0.95 $0.95 $0.95 $0.95 $0.95 $0.81 $0.81 $0.81 $0.81 $0.81
               Installation (incl. overlay) Costs $1.52 $1.52 $1.52 $1.52 $1.52 $5.24 $5.24 $5.24 $5.24 $5.24
               Safety Costs $0.42 $0.42 $0.42 $0.42 $0.42 $2.09 $2.09 $2.09 $2.09 $2.09
     Total Agency Costs $65.48 $65.48 $65.48 $65.48 $65.48 $35.37 $35.37 $35.37 $35.37 $35.37
     User Costs
               Driver Delay Costs $0.03 $0.10 $0.16 $0.24 $0.58 $0.15 $0.44 $0.74 $1.10 $2.65
               Vehicle Operating Costs $0.02 $0.06 $0.10 $0.15 $0.35 $0.09 $0.27 $0.44 $0.66 $1.59
               Increased Accident Costs $0.00 $0.01 $0.01 $0.02 $0.05 $0.01 $0.04 $0.07 $0.11 $0.27
     Total User Costs $0.05 $0.16 $0.27 $0.41 $0.99 $0.25 $0.75 $1.25 $1.88 $4.50
     Structural Savings
               Steel $6.28 $6.28 $6.28 $6.28 $6.28 $0.00 $0.00 $0.00 $0.00 $0.00
               Concrete $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
     Total Structural Savings $6.28 $6.28 $6.28 $6.28 $6.28 $0.00 $0.00 $0.00 $0.00 $0.00
Total Initial Costs $59.25 $59.36 $59.47 $59.61 $60.19 $35.62 $36.12 $36.62 $37.24 $39.87

Maintenance/Repair Costs
      Agency Costs
               Basic Inspection $4.83 $4.83 $4.83 $4.83 $4.83 $4.83 $4.83 $4.83 $4.83 $4.83
               Supplemental Inspection $3.77 $3.77 $3.77 $3.77 $3.77 $3.40 $3.40 $3.40 $3.40 $3.40
               Anticipated Repairs $1.83 $1.83 $1.83 $1.83 $1.83 $1.83 $1.83 $1.83 $1.83 $1.83
              Deck Overlay Replacement $1.37 $1.37 $1.37 $1.37 $1.37 $0.00 $0.00 $0.00 $0.00 $0.00
              Deck Replacement $0.00 $0.00 $0.00 $0.00 $0.00 $14.58 $14.58 $14.58 $14.58 $14.58
     Total Agency Costs $11.81 $11.81 $11.81 $11.81 $11.81 $24.63 $24.63 $24.63 $24.63 $24.63
     User Costs
               Basic Inspection $0.06 $0.18 $0.29 $0.44 $1.05 $0.06 $0.18 $0.29 $0.44 $1.05
               Supplemental Inspection $0.04 $0.12 $0.19 $0.29 $0.69 $0.03 $0.10 $0.17 $0.26 $0.62
               Anticipated Repairs $0.10 $0.31 $0.52 $0.77 $1.86 $0.14 $0.41 $0.69 $1.03 $2.48
              Deck Overlay Replacement $0.03 $0.08 $0.13 $0.19 $0.46 $0.00 $0.00 $0.00 $0.00 $0.00
              Deck Replacement $0.00 $0.00 $0.00 $0.00 $0.00 $0.10 $0.31 $0.52 $0.77 $1.85
     Total User Costs $0.23 $0.68 $1.13 $1.69 $4.07 $0.33 $1.00 $1.67 $2.50 $6.01
Total Maintenance/Repair Costs $12.04 $12.49 $12.94 $13.51 $15.88 $24.96 $25.63 $26.30 $27.13 $30.64

Disposal Costs
      Agency Costs
               Deconstruction Costs $0.19 $0.19 $0.19 $0.19 $0.19 $3.85 $3.85 $3.85 $3.85 $3.85
              Safety Costs $0.02 $0.02 $0.02 $0.02 $0.02 $0.30 $0.30 $0.30 $0.30 $0.30
               Transportation Costs $0.02 $0.02 $0.02 $0.02 $0.02 $0.69 $0.69 $0.69 $0.69 $0.69
               Landfill Fees $0.17 $0.17 $0.17 $0.17 $0.17 $0.57 $0.57 $0.57 $0.57 $0.57
     Total Agency Costs $0.40 $0.40 $0.40 $0.40 $0.40 $5.41 $5.41 $5.41 $5.41 $5.41
     User Costs
               Driver Delay Costs $0.00 $0.00 $0.01 $0.01 $0.02 $0.02 $0.06 $0.11 $0.16 $0.38
               Vehicle Operating Costs $0.00 $0.00 $0.00 $0.01 $0.01 $0.01 $0.04 $0.06 $0.10 $0.23
               Increased Accident Costs $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.01 $0.01 $0.02 $0.04
     Total User Costs $0.00 $0.01 $0.01 $0.02 $0.04 $0.04 $0.11 $0.18 $0.27 $0.65
Total Disposal Costs $0.40 $0.40 $0.41 $0.41 $0.44 $5.44 $5.52 $5.59 $5.68 $6.06

LIFE CYCLE COST
   Total Agency Costs $71.41 $71.41 $71.41 $71.41 $71.41 $65.40 $65.40 $65.40 $65.40 $65.40
   Total User Costs $0.28 $0.85 $1.41 $2.12 $5.09 $0.62 $1.86 $3.10 $4.65 $11.16
Total Life Cycle Costs $71.69 $72.26 $72.82 $73.53 $76.50 $66.03 $67.27 $68.51 $70.06 $76.57



 

 123 

5.5.5 Effects of Other Parameters 

The above life-cycle cost model under the basic scenario assumed that FRP 

manufacturing cost is a function of time.  Hence, FRP bridge deck costs decrease with 

time as the learning curve reaches the steady state.  This model implicitly assumed that 

resin and fiber costs will be steady.  An analysis on effect of resin and fiber costs to 

manufacturing costs using the Production Cost Model was conducted [22].  This model 

required twelve basic inputs as well as other inputs, including raw material costs, and 

provides the manufacturing cost and its components.  The parameters used for this 

simulation analysis are raw material cost input, which include mat, roving, resin costs, 

and the output studied is FRP manufacturing cost/ft.  The values are expressed as a 

percentage of the default values, i.e., ratio of material cost = material cost 

inputted/default cost and price ratio = FRP manufacturing output/default output. 

FRP manufacturing cost simulation performed, based on Creese and Patrawala’s 

model, showed that FRP bridge deck cost for a given year is a function of material costs.  

A 10 percent increase of material costs results in about a six percent increase of bridge 

deck price.    Based on the above relationship, one must be careful when performing life-

cycle cost analysis of FRP bridge deck.  Since the FRP bridge deck cost is not a fixed 

value, this parameter is an important factor that must be considered in the decision 

making. 
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 Utilizing the model, an estimation of FRP bridge deck costs was performed for 

different deck specifications.  For FRP bridge deck with specifications similar to 

Prodeck8 (Bedford Plastic Inc, weight 15.7 lbs per sq ft and 27 in sq of section area) was 

$53.72/sq ft, compared to a Superdeck (Creative Pultrusion, weight 20 lbs per sq ft and 

20 in sq of section area) was $60.04/sq ft.   The results, which were based on labor rate 

$20/hr, show that cost of $50/sq ft is a reasonable estimate for 8-inch FRP bridge deck 

similar to Bedford specifications for the current year. 

 

5.6       Summary  

The results of life-cycle cost comparison between FRP deck and SRC deck for the 

base case and for the three case study bridges were presented.   Detail results for Reader 

Run, the example bridge, along with the sensitivity analysis for important parameters for 

the three case study bridges suggested general findings for FRP versus SRC bridges. 
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Chapter 6 
Conclusions and Recommendations  

  
     

6.1      Conclusions 

Fiber reinforced polymer (FRP) bridge decks have higher initial costs than 

traditional steel reinforced concrete (SRC) bridge decks.   The improved corrosion 

resistance of FRP decks increases the deck life over that of SRC bridges, but this by itself 

does not offset the effect of the higher initial costs.   The weight reduction would have an 

effect on the initial costs, as the structure to support the deck would be reduced because 

the weight of an FRP deck is approximately 20 to 25 percent that of a SRC deck.  This 

weight reduction results in a structural cost reduction.  The major reductions would be for 

the steel bridge girders/beams/rollers required to support the bridge deck and the concrete 

foundation.  The case studies have shown that the combination of both effects (higher 

service life and structural cost savings) does not always offset the effect of the higher 

initial costs.   La Chein FRP bridge deck with actual initial cost ratio of 1.18 and 

maximum allowable price ratio of 1.17 has a higher life-cycle cost than its SRC bridge 

deck alternative.     

Another key parameter for FRP competitiveness is the maintenance cost.  The 

basic scenarios suggested that if the site has low ADT (between 20 and 700) and if both 

types of bridge decks have the same inspection and anticipated repair frequencies, the 

LCC of the FRP bridge deck was lower than that for the SRC bridge deck for one out of 

the three case study bridges.   If the scheduled maintenance and anticipated repair costs of 

FRP bridge decks are lower than the SRC decks as predicted by experts, the FRP bridge 

deck was lower than SRC bridge deck for one out of three study bridges.  However all 
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FRP bridge scenarios become competitive to SRC decks when ADT equals 750 for La 

Chein and 3,000 for Katy Truss.  Having those ADT values, all FRP decks are viable 

even when the same maintenance assumption is applied.   

The higher the ADT, the more competitive the FRP deck becomes.  The La Chein 

case showed that FRP was competitive to SRC if ADT increased from 100 to 750.  It can 

be concluded that FRP deck viability is a function of its service life, 

maintenance/anticipated repair schedule, and initial price ratio (substructure saving 

included). 

Overall, the results suggest that a $61/sq ft FRP deck is a viable alternative to 

$30/sq ft SRC deck.  Reeve [70] suggested maximum cost of FRP to be 1.25 times the 

cost of SRC.  Taking into account the second bridge deck cost, which is equal to 

1.25*(1.412*cost of SRC) or 1.77 times the cost of SRC would be $53/sq ft.   The 

multiplier 1.412 accounts for both SRC decks installed in year zero and year 30 with a 

three percent discount rate, i.e., 1 + (1+ DR)-30 = 1 + 1.03-30 .  The difference is 

reasonable as it was not take into account the effects of additional substructure cost 

savings between the two bridge decks.   

     
6.2     Recommendations for Future Research        

The focus of this dissertation was to study financial viability of FRP bridge deck 

compared to SRC bridge deck.  The study offers significant improvements that 

distinguish it from previous research and provides a better comparison by taking into 

account the weight and maintenance advantages of FRP deck in financial terms.  A 

procedure for including the structural weight savings resulting from the lighter FRP 

decks, as well as a life cycle model for FRP bridge deck, have been developed for this 
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purpose.  Aside from that, an expression to estimate the service life of FRP decks has 

been developed.  This approach had not been done previously, although there is extensive 

literature available that explains these advantages of FRP bridge decks.   

A more accurate overall view of the life-cycle cost process should include a 

greater variety of bridge deck projects.  The possible improvements include modifying 

the cost saving module to enable analysis for bridges with multiple spans, modeling the 

FRP deterioration rate to better estimate maintenance/anticipated repair costs, and 

estimate the structural concrete savings due to the lower dead weight of FRP decks.  The 

improvement rate is decreasing, and the learning curve should be updated accordingly.  

Application of exponential smoothing method as an alternate method to predict the future 

cost of FRP deck should be examined.  These would permit analysis of a wider range of 

bridge deck projects and give a better understanding of FRP deck financial viability.   

The deterioration rate model is one of the key elements in determining the life-

cycle cost of FRP bridge deck.  The FRP bridge deck may fail in the top surface, bottom 

surface, or in the core.   It is believed that design plays an important role in these 

problems.  Some of FRP bridge deck design factors to be considered would be deflection, 

strain, connections, overlay, and thermal difference problems. 

 Data must be collected and analyzed on the maintenance and repair of FRP decks 

to more reliably predict the maintenance repair schedule and costs.  The maintenance and 

repair costs for FRP should be lower than those of the SRC structures, especially in areas 

where salt is applied to deck surfaces in winter weather. These values should be 

converted to a function of per square foot of the bridge area. 
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The following framework is suggested to come up with improved FRP bridge 

decks deterioration and its associated costs: 

(1) Determine the major factors that contribute to the damage of an FRP bridge deck 

and the corresponding damage.  A laboratory study should be performed to study 

the following possible factors associated with FRP bridge deck damages: thermal 

effects, wearing surface type, shrinkage, alkali attack, chemical attack, and UV 

radiation exposure. 

(2) Determine the correlation between the inputs of the deterioration process and the 

outputs measured to predict the type of repair/maintenance and the amount of the 

area affected.  The deterioration model would be used to estimate the damage area 

for repair for a certain year.   
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Appendix 1.  Questionnaire #1 

 

Dear ………, 

My name is Sidharta Sahirman, a Ph.D. student researcher for Center of Excellence, West Virginia 
University, Morgantown, WV.  Currently, we are conducting a research project with one of the objectives to 
develop a service life prediction of FRP bridge decks.    

In order to achieve the above objective, we would like to draw upon the expertise and experiences of bridge 
professionals / researchers. We would therefore like to request you to please take a few minutes with this 
survey.  In this short questionnaire, we would like your opinion about the importance of each factor that may 
have effect on FRP bridge deck service life.    
 
Attached, please find the short questionnaire.  Kindly email your opinion to: 
Sidharta Sahirman (ssahirma@mix.wvu.edu) 
 
Your help is greatly appreciated. 
 
 
 
Best regards, 
 
 
 
Sidharta Sahirman 
Center of Excellence 
School of Engineering and Mineral Resources 
West Virginia University 
Morgantown, WV 26507 
 

mailto:ssahirma@mix.wvu.edu�
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On scale of 1 to 5 where 1 represents “not significant” and 5 represents “very significant”,  

 

1.  How would you rate the effects of the following factor on FRP deck’s quality? 

a. Fiber and Resin type  

      1           2            3            4           5                               

b. Manufacturing processes 

      1           2            3            4           5                               

c. Bridge deck designs 

      1           2            3            4           5                               

 

2.  How would you rate the effect of the following factor on FRP deck’s service life? 

a. Wearing surface type and thickness  

      1           2            3            4           5                                   

b. Humidity of the surrounding area  

      1           2            3            4           5                               

c. Light and UV exposure of the surrounding area  

      1           2            3            4           5                               

d. Alkali content of the soil   

      1           2            3            4           5                               

e. Number of freeze-thaw cycles  

      1           2            3            4           5                               

 

3.  Please list other factor(s) that may contribute significant effects on the FRP deck‘s service life: 
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Appendix 2. Questionnaire #2 

 
 
Dear  …………………………. 
 
 
My name is Sidharta Sahirman, a Ph.D. student researcher for Center of  Excellence, West Virginia 
University, Morgantown, WV.  As you may have known, we are conducting a research project with one of 
the objectives to develop a service life prediction of FRP bridge decks.  
   
We would like to extend our thank you for taking the time to fill out the first questionnaire for this project.  
Your help to achieve the objective of this project is greatly appreciated.  Based on the responses, the 
importance of each factor that may have effect on FRP bridge deck service life has been determined.  For 
the second round of the questionnaire, we would like your opinion about your estimates of FRP bridge deck 
service life given a certain set of conditions.   Please fill in the short survey presented on the attachment.   
 
Kindly email your opinion to:  Sidharta Sahirman (ssahirma@mix.wvu.edu).  Thank you so much for your 
support to this project. 
 
 
 
 
Best regards, 
 
 
Sidharta Sahirman 
Center of Excellence 
School of Engineering and Mineral Resources 
West Virginia University 
Morgantown, WV 26507 
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            Respondent:       
 
1. In general, what is your estimate of FRP bridge deck service life?  
  <30           Years  
 
2. Based on your opinion, please estimate the most likely age at which FRP bridge deck starts showing degradation or 

delamination of the top surface//skin 
<5               Years 
 

 
3. What is your estimates (minimum, most probably, maximum) of pultruded FRP bridge deck service life for each set of 

conditions below ?   
       
 Freeze Thaw Cycles                  Mild       Moderate            Mild            Mild  
 Average Daily Traffic        5,000-10,000             5,000-10,000               5,000-10,000             20,000-30,000 
            Wearing Surface    Polymer Concrete      Polymer Concrete    Conventional Asphalt     Conventional Asphalt 
 Service Life Expectation (yrs) <30        <30         <30   <30 
 Minimum Service Life (yrs)  <30         <30         <30   <30 
 Maximum Service Life (yrs)  <30         <30         <30   <30          
       
      Comments/Notes 
 
             
 
            
 
            
   
 
 

Thank you for your time.  Your help is greatly appreciated.   
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Appendix 3. Example Calculation for La Chein Bridge   
 
 
1.  Bridge Geometry 

Span of bridge   = 32.5’ (c/c bearings) 
Out to out bridge width  = 24.3’  
Number of span   = 1 
Number of lanes   = 1 
Skew    = 0o 

Deck overhang   = 10” 
 
2.   Detail of Stringer 
      Assuming: 
     Number of stringers  = 6 
     Spacing of stringers = 4’ 6” 
 
3.  Detail of FRP Deck 
     Thickness of deck  = 8” 
     Self weight of deck =16  psf 
 
4.  Detail of Wearing Surface 
     Wearing surface material = Polymer Concrete Overlay 
      Weight of wearing surface = 3 psf 
 
5.  Design of Stringer (Based on Service-Load Method) 
5.1. Exterior Stringer 
      Assume: 
      The deck is simply supported on the exterior and on the adjacent interior stringer 
 
                                Deck and wearing surface: 19 psf 
       
          ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓    
     ------------------------------------------------------------------------------- 
        10”                ↑                               4’6”                                  ↑  
 
 
    Dead Load = DL = 0.019 (10” + 4’6”/2) = 0.059 k/ft 
    Dead Load of guard rails, posts, etc. ≈ 0.06 k/ft 
    Self weight of stringer = 0.086 k/ft (proposed section W18x86) 

Total dead load on exterior stringer = WDL =0.205 k/ft 
Maximum dead load moment  = MDL = (WDL . L2 )/8 
                                                     MDL = 27.01 k ft  
 
 
 
 



 

 143 

 
 
Distribution Factor  
 
 
 
              ←                4’ 6”                         → 
 
|   2 ‘      ↓                                   6 ’                           ↓ 
------------------------------------------------------------------------------------ 
|    2’      ↑                    4’ 6”                              ↑                 
 
To compute the live load on the exterior stringer, the wheel load is positioned 2 ft 
inside the edge (AASHTO) 
Wheel load on exterior stringer = 0.741P (Level Method, AASHTO) 
Wheel load factor, DFext =  S/ (4+0.25 S) = 4’6” /(4+0.25*4’6”) = 0.818   
Use DFext =  0.818 
 
 

Live Load Moment 
Maximum live load moment in exterior stringer for HS-25 from AASHTO (for L = 32.5’) 
= 394.6 k ft 
Impact Factor = 50/(L+125) = 0.30 
MLL * Impact * DFext = 210 
 
Total moment for exterior stringer,    Mext = MDL + ( MLL * Impact * DFext ) = 237 
 
Shear Due to Dead Load (Exterior Stringer) 
Dead load on exterior stringer WDL =0.205 k/ft 
Shear Load = VDL = (WDL . L)/2  = 3.32 kips 

 
Shear Due to Live Load (Exterior Stringer) 
Maximum shear due to live load is computed as a reaction in the exterior stringer when 
the wheel loads are positioned as per AASHTO 3.23.3.  Fractions of wheel load are 
placed on the stringer with the rear load on the support. 
 
Distribution Factor 
For the wheel load near the support, the fraction of wheel load distributed to the exterior 
stringer is   0.818  (by the level method) 
 
Shear Due to Live Load 
End shear reaction for HS 25 = 68.5 kips (AASHTO) 
VLL =  68.5/2 * (0.818) = 28 
VLL * impact = 36 
Total shear for exterior stringer = Vext = VDL + VLL * impact  = 40 
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5.2.  Interior Stringer 
 
Bending Moment Due to Dead Load  
Dead load due to FRP deck and wearing surface =   0.086 k/ft 
Dead load due to guard rails, posts, etc per stringer = 0.03 k/ft 
Self weight of stringer = 0.086 k/ft 
Total dead load on interior stringer = WDL   =   0.202 
Maximum dead load moment = MDL   =WDL  . L2/8 = 26.604  k/ft 
 
Bending Moment Due to Live Load 
Distribution Factor = 0.643 
The bending moment in the interior stringer is computed according to AASHTO 3.23.2.2 
For a single lane bridge DFINT = s/7 = 4’6”/7 =  0.643 
Impact Factor = 0.317 
Maximum live load moment = MLL   = 394.55 k ft 
MLL   * I * DF = 0.643/2 * 394.55 * 1.317 = 167 
 
Total Moment for Interior = MINT   = MDL   + MLL   *  I *  DF = 193.68 
 
MINT   < MEXT  (Exterior stringer moment control )  
 
Shear Due to Dead Load 
VDL   = 0.5 . WDL L =  3.27 
 
Shear Due to Live Load 
End shear reaction for HS-25 = 68.5 kips (AASHTO) 
VLL   =  0.5 * 68.5 * DFINT = 22.02 
 
Total shear for interior stringer = VINT   = VDL   + VLL   =  25.29 
VINT   <  VEXT   
 
Design Moment (Exterior Stringer Moment Control) = 237 
Design Shear (Exterior Stringer Shear Control) = 40 
 
6.  Required Stringer Section 
 
S = M/Fb 
Fb = 0.55 FY     (AASHTO table 10.32.1.17) 
Minimum depth to span ration L/25  
 
7.  Proposed Stringer Properties (W18 x 86) 
Stringer depth should be greater than Minimum depth to span ratio  
Section modulus should be greater than S (required stringer section)  
Young’s modulus of elasticity 29 x 106 psi  
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8.  Check for Deflection Due to Static Load 
Assuming all stringers deflect the same amount, deflection factor for each stringer = DF 

= MLL x I x DF  
 
Moment Due to Live Load x Impact x DF 
MMAX =( PEQ . L)/             ;  PEQ = Equivalent Single Point Load 
PEFF =  4 x MMAX / L  
 
Deflection due to Live Load x Impact x DF 
A = (PEFF L3 )/ (48  E I)  
 
Maximum Allowable Deflection = L/800  should be greater than  A  
OK 
 
9.  Check for Stresses 
Induced bending stress should be less than allowable bending stress (27 ksi) 
OK 
 
10.  Check for Shear in the Stringer 
Maximum shear stress = v/(dtw) should be less than allowable shear stress = 0.33 x Fy  
OK 
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Appendix 4.  Summary of Inspection Reports  
 
 
Boy Scout Camp Bridge 

Year     :   2001 
Location     :   Raleigh County 
Deck Manufacturer    :   Hardcore Composites 
Length      :   31’ 
Width      :   26’ 
Girder Type    :   Steel 
 
No inspection information obtained. 

 
Goat Farm Bridge 

Year     :    2003 (Finish built in 2004) 
ADT     :    20(2001), 10(2004) 
Design Load               :    HS-25 
Deflection Limit    :    L/800   
Bridge Span(s)            :   Single span 
Location     :    Jackson County, County Route 21 
Deck Manufacturer    :     Kansas Structural Composites 
Thickness of Deck      :    4 inches 
Length      :    12.2 m 
Width      :    4.6 m 
Girder Type    :    Steel 
Type of Fastener         :    Mechanical fasteners (Z clips) 
Type of Wearing Surface : Polymer concrete  
 
Periodic Inspection is every 2 years, starting 2006      (2006 report is on file) 
In Depth Periodic Inspection is every 6 Yrs 
 
Problem Reported So Far? 
Year       Problem            Repair Suggested? 
06          Deck and Wearing surface is in good condition.   
          No deficiencies found.                                                                   No 
      

Hanover Bridge 
Year    : 2001 
ADT    : 700, 670(2006), 800(2003), 500(2000), 500 (1988) 
Design Load   : HS-25 
Deflection Limit   : L/800  
Bridge Span(s)           : Two Spans 
Location    : Pendelton County 
Deck Manufacturer    : Kansas Structural Composites (Hand Lay up) 
Thickness                   : 8 “ 
Length      : 36.6 m 
Width      : 8.5 m 
Girder Type    : Steel Wide Flange Beam 
Type of Wearing Surface : Polymer Concrete with Asphalt Overlay 
 
Periodic Inspection is every 2 years, starting at 2005 (2005 and 2007 reports are on file) 
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In Depth Periodic Inspection is every 6 Yrs starting at 2003 (2003 report is on file) 
Interim Inspection (when necessary)  (2006 report is on file) 
 
Problem Reported So Far? 
Year       Problem            Repair Suggested? 
03          Deck and Wearing surface is in fair condition.        
          Both transverse and longitudinal cracking of the deck surface.     No       
05            Deck: Poor condition.              -   
06          Deck: Poor condition.              -   
07            Deck: Poor condition             Yes  
                                 

Howell’s Mill Bridge 
Year    : 2003 (Finish construction Fall 2002) 
ADT    : 3,100 (2001), 3,400 (2004) 
Design Load   : HS-25 
Deflection Limit   : L/800  
Bridge Span(s)           : Two spans 
Location     : Cabel County 
Deck Manufacturer     : Martin Marietta Composites  (Duraspan) 
Length      : 74.7 m 
Width      : 10.1 m 
Girder Type    : Steel 
Type of Wearing Surface : Asphalt Overlay 
 
Periodic Inspection  is every 2 yrs  starting at  2005  (2005 and 2007 reports are on file) 
In Depth Periodic Inspection is every 6 yrs starting at Year 2003 (2003 report is on file) 
 
Problem Reported So Far? 
Year       Problem            Repair Suggested? 
05         FRP deck is in good condition.          
         The 1” asphalt is cracking and breaking up over the deck joints         No 
07           FRP deck is in good condition.          
         The 1” asphalt is cracking and breaking up over the deck joints         No 
      

    Note: 
    Repair cost for replacing the 1” specialized asphalt deck with  a regular 1.5” asphalt    
    wearing mix would be around $7,500 and it would take 1 long day (Jeff Ball) 
 
Katy Truss Bridge 

Year                 :  2002  (Start of construction Fall 2000, Completed Fall 2001) 
ADT     : 700 (2005), 700(1999), 650(1993) 
Design Load    : HS-20 
Deflection Limit    : L/800 
Bridge Span(s)           : Single Span 
Location     : Marion County 
Deck Manufacturer    : Creative Pultrusion (Superdeck) 
Thickness of Deck      :  8” 
Length      : 27.4 m 
Width      : 4.3 m 
Girder Type    : Steel  
Type of Wearing Surface: Polymer Concrete Overlay (Installed by manufacturer) 
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Periodic Inspection is every 2 yrs, starting at 2003 (2003 and 2005 reports are on file) 
In Depth Periodic Inspection is every 6 yrs starting at 2001(2001 and 2007 reports are on file) 
 
Problem Reported So Far? 
Year       Problem            Repair Suggested? 
  07          Deck: Good condition 
               Wearing Surface:   The polymer is loose and missing  
                throughout the bridge.  It is recommended that the wearing              Yes 
                surface is replaced in its entirety. 

 
Kite Creek Bridge 

Year    : Spring 2002 
ADT    : 500 (Yr 2000, 2003) 
Design Load   : HS – 25 
Deflection Limit   : L/800  
Bridge Span(s)           : Single Span 
Location    : Monroe County 
Thickness of Deck      :  8’ 
Length      :  35’ 
Width      :   24’ 
Girder Type    : Steel 
Type of Wearing Surface : HLBC   
 
Periodic Inspection is every 2 yrs starting at 2003 (2005 report is on file)  
In Depth Periodic Inspection is every 6 yrs 
 
Problem Reported So Far? 
Year       Problem            Repair Suggested? 
05 The HLBC wearing surface has open transverse cracks           Yes 
               approx. 18” apart across the entire deck. 
      
 

La Chein Bridge 
Year    : 2003 (completed spring 2001) 
ADT    : 100 (yr 2003 and 2006) 
Design Load    : HS-25 
Deflection Limit    : L/800  
Bridge Span(s)           : Single span 
Location    : Monroe County 
Deck Manufacturer   : Bedford Reinforced Plastics 
Thickness of Deck     :   8” 
Length      : 9.75 m 
Width      : 7.3 m 
Girder Type    : Steel 
Type of Wearing Surface : HLBC  (designed as polymer concrete overlay 3/8 “) 
 
Note: Average cost of inspection: $ 500 
Average time of inspection: 10 hours (including travel time) 
 (Note: Cost includes inspector hours and equipments; may want to note # inspectors) 
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Problem Reported So Far? 
Year       Problem            Repair Suggested? 
06 has numerous transverse open cracks and unevenness  

in each crack location                                                              Yes 
07          some transverse open cracks and unevenness      Yes 
      
Any Repair Performed So far? 
Not sure repair is possible.  The only thing could be done is sealing the existing wearing 
surface and adding more asphalt to it (WS was roto milled off by the deck manufacturer! 
They were not able to take it all off without damaging the deck modules) 

 
Laurel Lick Bridge 

Year     : May, 1997 
Bridge Span(s)           : Single Span 
Location     : Lewis County (County Road 26/6) 
Deck Manufacturer    : Creative Pultrusion (Superdeck) 
Length      : 6.1 m /20 ft 
Width      : 4.88 m /16 ft 
Girder Type    : GFRP-I-Beam 
Type of Wearing Surface : Polyester Polymer Concrete 
ADT    : 300(2003), 50(2006)  
Thickness of Deck   :  8” 
Type of Fastener      : Mechanical (1/2 “ diameter HUCK BOM-R16-20 blind 
fasteners mechanically locked). 
 
For less than 20 ft bridges, inspection frequency is 5 years with average time of 
inspection 1-2 hours (based on interview with Doug Gould, bridge engineers for less 
than 20 ft bridges in this DOT district).  Inspection report 2004 was read.  Deck and 
wearing surface are in good condition. 
 

Market Street Bridge 
Year     : 2000 (Completed July 2001) 
ADT     : 6,900 – 10,000; 8,200 (2002) 
Design Load    : HS-25 
Deflection Limit : L/800  
Bridge Span(s)         : Single Span 
Location              : Ohio County, County Route 24 
Deck Manufacturer : Creative Pultrusion (Superdeck) 
Length   : 54.9 m 
Width    : 17.1m 
Girder Type     : Steel 
Type of Wearing Surface : Polymer concrete overlay 
Thickness of Deck    :  8” 

 
Periodic Inspection  is every 2yrs starting at Year 2003   (2003 and 2005 reports are on file) 
In Depth Periodic Inspection is every 6 yrs  starting at  2001 (2001 report is on file) 
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Problem Reported So Far? 
Year       Problem            Repair Suggested? 

      05        Deck: good condition. 
                  Wearing surface: the ½ “ wearing surface which  
                  consists of polyurethane concrete and granite chips  
                  is in good condition.  A few minor cracks were observed  
                  in the overlay.  Sealing is recommended.   Yes 
 
 Montrose Bridge 

Year    : October 29, 2001 
ADT    : 600 (2000, 2003, 2006) 
Design Load   : HS – 25 
Deflection Limit        : L/800   
Bridge Span(s)          : Single Span Steel Wide Flange Beam 
Location    : Randolph County 
Deck Manufacturer    : Hardcore Composites (VARTM) 
Thickness of Deck      :  8” 
Length      : 11.9 m 
Width      : 8.5 m 
Girder Type    : Steel 
Type of Wearing Surface :  
Originally Transpo Epoxy Overlay 3/8”, soon begin to separate and disintegrate.  In 2002  
2 ¼ ”HLBC was applied 
 

Periodic Inspection is every 2 yrs, starting at 2005 (2005 and 2007 reports are on file) 
In Depth Periodic Inspection is every 6 yrs, starting at 2003 (2003 report is on file) 

 
Problem Reported So Far? 
Year       Problem            Repair Suggested? 

07       Deck: Generally in good condition 
          Wearing surface: Fair condition 
05      Deck: Good condition 
     Wearing surface: Good condition 
03      Deck: Good condition 
     Wearing surface: Good condition 

 
West Buckeye Bridge 

Year    : 2001 
Deck Manufacturer: Kansas Structural Composites (Hand Layup) 
Length      : 45.1 m 
Width      : 11 m 
Girder Type    : Steel 
 
No inspection information obtained. 
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Wickwire Run Bridge 
Year    : 1997 
ADT    : 100(1996), 100(1999), 300(2002), 300 (2005) 
Design Load   : HS-25 
Deflection Limit        : L/800  
Bridge Span(s)           : Single Span 
Deck Manufacturer    : Creative Pultrusion (Superdeck) 
Length      : 9.14 m 
Width      : 6.6 m 
Girder Type    : Steel 
Type of Wearing Surface : Polyester Polymer Concrete  
Thickness of W. Surface  : 1.27 cm (0.5 inch) 
Thickness of Deck   :  8” 
Type of Fastener      : ½ “ diameter blind fasteners and epoxy. 

 
  Periodic Inspection is every 2 yrs starting at 1999 (1999, 2001, 2005, 2007 reports are on file) 
  In Depth Periodic Inspection is every 6 Yrs starting at 1997(1997 and 2003 reports are on file) 

 
 Problem Reported So Far? 
Year       Problem            Repair Suggested? 
01  Deck is in good condition. 
          Concrete Polymer wearing surface is in fair condition.   
         Transverse cracks have developed in the wearing surface 
                above the deck panel joints.   
03           Transverse cracks have developed in the wearing surface 
                above the deck panel joints.   
05          Transverse cracks have developed in the wearing surface 
                above the deck panel joints.   

        07          Transverse cracks have developed in the wearing surface 
                above the deck panel joints.                                                               Yes 
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Appendix 5.  Mid Point Approach for FRP Bridge Deck Learning Curve 
 
 

An investigation of a unit cost model using lot midpoint as an alternate model to 

predict the economic feasibility of bridge decks was developed.  The Crawford Model 

was applied using the lot midpoint of the given data to obtain the unit cost directly from 

the model built.  This approach was also applied to data collected for WV Bridges.  The 

results were then compared to the previous results to study the appropriateness of the new 

approach.   The examined performance is the average absolute percentage error of the 

estimated unit values compared to the actual unit values.  It was expected that the 

performance of the lot midpoint approach with the Crawford Model would be better than 

the Wright Model explained above. 

The lot mid-point (LMP) is the unit number that corresponds with the average 

unit cost for the lot.  It represents the entire lot, which is the deck area for the particular 

bridge.  The y-coordinate of this point, which represents cost, should be the average unit 

cost (AUC) for that lot.  In order to provide the true LMP, a good estimate is necessary to 

reduce cycles to determine the midpoint.  There are numerous lot midpoint estimation 

formulas, and the best lot midpoint heuristic found was: 

4
2 FLLFx ++

=
                                                                                                       3-8 

Where   

F = First Lot Unit and  

L = Last Lot Unit. 

Using the LMP heuristics, the regression analysis was conducted and the value of 

b (the slope of the equation) was determined.  The “true” LMP is determined using the 

equation 



 

 153 

LMP   =     

)/1(

11

)1(
)5.()5.(

b

bb

bN
FL

















+
−−+ ++

                                                                       3-9 
 
Where   

N = Total Units  

b = Slope of the Equation 

Based on the new values of LMP, the regression analysis was reexamined.  If the 

value of b obtained is similar to the one previously obtained, the above LMP is the “true” 

LMP.    The same steps as in the unit cost learning curve estimate are followed.  If the 

values of the two b’s are very different, additional iteration should be investigated.    

Based on preliminary research, the lot mid-point approach was slightly better than the 

Wright Model [80].   Also, the result emphasized the previous conclusion:  FRP bridge 

decks should be competitive with Steel Reinforced SRC by 2013, if the rates of 

improvement remain constant during future production and the yearly installation of FRP 

decks area continues at the same annual amount. 

Considering the insignificant difference in the accuracy between the two models and 

simplicity of the first model, the final formula used is based on Wright Model.   
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