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Abstract 
 

Implementation of a State-of-the-Art GNSS Receiver Autonomous Integrity 

Monitoring Technique 

Shannen Daly 

  

 This thesis implements a state-of-the-art solution separation advanced RAIM (ARAIM) 

algorithm as it is written as reported in the literature. Specifically, a GNSS fault detection and 

exclusion algorithm for a multi-constellation GNSS was implemented in software and tested against 

simulated data. RAIM algorithms have been created in many forms over the last couple of decades 

and are still in development today. The position solution results produced by this ARAIM algorithm 

were compared to that of a snapshot weighted least squares (WLS) solution in which failed satellites 

are removed before processing and an WLS solution with no corrections applied. In addition, the 

difference in position solution between ARAIM and the simulation truth was compared to the 

ARAIM reported horizontal and vertical protection limits, as well as, the position performance 

criteria. This thesis also investigates the performance of the exclusion method and how it affects the 

performance of the overall ARAIM algorithm. The algorithm implemented and tested in this thesis 

will be used as a basis of comparison for on-going research into robust GNSS processing 

techniques. 
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Important Terms 
 

Table 0.1: Technical variables and their significance used in the ARAIM algorithm as defined in [1] 
and [2]. 

bnom,i Maximum nominal bias for satellite i as given by the Integrity Service Message. 

Cacc Nominal error model for accuracy. 

Cint Nominal error model for integrity. 

eq A vector with the qth value being one and all others zero. 

G Geometry matrix. 

HPL Horizontal Protection Limit. 

KACC Number of standard deviations used in accuracy formula, coefficient multiplied 
to standard deviation of vertical position. 

Kfa,q Coefficient of probability of fault and number of fault modes based upon 
direction. Used to calculate threshold used in integrity testing.  

KFF Number of standard deviations used in fault-free vertical position error 
calculation, coefficient multiplied to standard deviation of vertical position. 

PConst,not monitored Probability that a constellation of satellites is not being monitored in that epoch. 

PFA_HOR The amount of the continuity budget allowed for the horizontal directions.  

PFA_VERT The amount of the continuity budget allowed for the vertical direction.  

PSat,not monitored Probability that a satellite is not being monitored in that epoch. 

PHMIHOR The amount of the integrity budget allowed for the horizontal directions. 

PHMIVERT The amount of the integrity budget allowed for the vertical direction. 

Tk,q Threshold value calculated for use in integrity test during each epoch, for each 
fault mode k, and direction q. 

W Weight matrix. 

y Pseudorange measurement. 

𝜎𝑈𝑅𝐴,𝑖 Standard deviation of the satellite clock and ephemeris error for integrity, used in 
building weight matrix for least squares solution in horizontal directions. 

𝜎𝑈𝑅𝐸,𝑖 Standard deviation of the satellite clock and ephemeris error for accuracy and 
continuity, used in building weight matrix for least squares solution in vertical 
direction. 

𝜎𝑣,𝑎𝑐𝑐 Standard deviation for the vertical position solution. 

accuracy(95%) The value under which the position error will be lower than ninety-five percent 
of the time. 

fault free (10-7) Value that if a result is beneath this, guarantees fault free accuracy of the 
position solution. 

EMT Effective Monitor Threshold; Maximum detection threshold that increases if the 
probability of fault increases above a set level for a certain epoch. 

VPL Vertical Protection Limit. 
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Chapter 1 Introduction 

1.1 Motivation 

The Global Positioning System (GPS) was developed in the 1960s when multiple United States 

organizations became interested in three-dimensional world-wide position determination [3]. This 

interest grew to include use in aviation and became officially used in civil aviation when the first 

GPS unit was approved for civil flight operation in 1994 [4]. The approval of this GPS receiver 

came with regulations and standards that must be maintained, of which included integrity or to what 

level the measurements made can be trusted to be correct [5]. Receiver Autonomous Integrity 

Monitoring (RAIM), the method used to determine the integrity of a position solution, was used in 

operation of aircraft in the mid-1990s [1]. Initially this technique was used in steady flight, however 

as time went on and technology advanced to higher capabilities, RAIM has been considered for use 

in more demanding flight instances. These flight instances, mainly consisting of precision 

approaches and landing, have tighter requirements for navigation error and subsequent horizontal 

and vertical protection limits [1]. Galileo and GLONASS, two satellite constellations created by 

European and Russian governments, are capable of being used with the GPS constellation in a larger 

Global Navigation Satellite System (GNSS) [6]. An Advanced RAIM (ARAIM) method that builds 

an Integrity Support Message (ISM) and broadcasts it to aircraft was developed by the Working 

Group C ARAIM Technical subgroup as written in [7]. Previous to the writing of [1], the ARAIM 

method has been shown to only cover single-fault cases and multiple simultaneous faults would have 

to be resolved by the airborne receiver [1]. The additions to the algorithm written in [1] add the 

capabilities of multi-constellation use, correction of multiple fault cases, and more accuracy in the 

vertical direction. The use of multiple constellations also adds the possibility of constellation-wide 
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faults in which an entire constellation of satellites would have to be excluded and thus must be 

considered as well.  

This thesis implements an ARAIM user algorithm as it is written in [1]. During this study, a 

software class written in Python with the baseline ARAIM algorithm was further developed to 

include methods that designate when a failure is present, identify the failed satellite, and exclude all 

data associated with said satellite for the epoch in which the failure was detected. The algorithm 

implemented in this thesis is directly from [1] as it is the current ARAIM user algorithm. The 

implementation of this algorithm is tested against simulated data with an assumed ISM, but will be 

tested further with more simulated data and flight data when it is used for on-going research into 

robust GNSS processing techniques as a basis for comparison [8] [9]. 

1.2 Thesis Outline 

Chapter 2 of this thesis contains a review of the technical literature about the development of 

RAIM including information about modern RAIM and multi-constellation RAIM. The third chapter 

provides a background on additional topics that pertain to RAIM such as an overview of GPS, flight 

characteristics with an emphasis on integrity, and a derivation of least squares with an extension to 

weighted least squares. Chapter 4 discusses the technical approach taken in this study and the details 

of the ARAIM algorithm implemented in this study as adopted from [1]. The fifth chapter contains 

a discussion on how the ARAIM algorithm was tested with simulation data. Results are discussed in 

chapter six, including a comparison of the positioning results to the truth and a simple weighted 

least squares approach as well as the performance of the solution separation ARAIM algorithm in 

detecting failures. The final chapter presents the conclusions drawn from this study as well as future 

work.  
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Chapter 2 Literature Review 

2.1 Receiver Autonomous Integrity Monitoring (RAIM) 

This section provides a brief review of weighted least squares, insight into the overall process 

of RAIM, a discussion on modern state-of-the-art RAIM methods, and the capability of RAIM over 

multiple constellations of satellites.  

Linear least squares is a technique in which a maximum likelihood estimation is made for a 

vector of values that may be fit to a model using a linear model [10]. This technique is often used to 

calculate a position solution using the coordinate location and pseudorange data for in-view 

satellites. A weight may be applied that is dependent upon factors unique to each satellite. This 

weight, factored into the solution through use of a weight matrix, brings into account various 

sources of potential error or noise. With the formation of the all-in-view solution, the solution in 

which all available satellites in view are used to form a position solution, a few different additional 

quantities may be created that can be used to check the health and integrity of the satellite data. 

RAIM is a technique utilized to ensure the quality of satellite data being used to form the 

position solution of aircraft. This technique was first known as a different name, multiple hypothesis 

solution separation. The term RAIM wasn’t formally used until 1987, it was seen in literature as early 

as 1986 at an ION meeting [11]. Moving forward from these initial studies, the basis of modern 

RAIM techniques can be observed in [12]. Of these ideas that have been carried into state-of-the-art 

techniques are the comparison of various combinations of satellites, similar to solution separation, 

and the use of the residual and covariance.  

In the early development years of RAIM, comparison of redundant measurements was the 

state-of-the-art approach to integrity monitoring as seen in [13] and [14]. The redundant 

measurements refer to having more satellites than minimum necessary. A full position solution 
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requires four satellites to be seen as a minimum and there are typically more available, allowing for 

multiple sets of in-view satellites to be compared. This comparison approach could detect errors in 

the pseudorange at the one-hundred-meter level [13]. Development of various schemes persisted 

over a few years until the release of the GPS Minimum Operational Performance Standards (MOPS) 

by the Radio Technical Commission for Aeronautics (RTCA) in the early 1990s, which brought with 

it integrity requirements for GPS receiver performance. The release of these standards brought forth 

a need for a standard base algorithm as proposed in [15]. This basic technique, the equation for 

which is shown below, centered the solutions formed by three RAIM techniques around the 

measurements described by an overdetermined system of linear equations in the form below where 

G is the geometry matrix of the satellite positions, x are the three components of the measured user 

position from nominal, y is the difference in measured and computed pseudorange, and ϵ is 

measurement error due to factors such as noise. The three techniques that were unified by this new 

base measurement system were the range comparison, least squares residual, and parity space 

methods [15].  

 𝑦 = 𝐺𝑥 + 𝜖 (1) 

2.1.1 Modern RAIM Techniques 

As years of research went on into RAIM and the related methods, the MOPS developed and 

changed as well. One of the major changes that affected what RAIM algorithms were used was the 

inclusion of a protection radius. The protection radius is a particular bound calculated in which the 

position solution may be guaranteed to be within. Since this performance index uses the sum-of-the-

squared errors (SSE), the least squares residual and parity space methods became the mainly used 

method at the time [16]. The SSE is a term that may be formed as a result of the least squares 

approach used to form the position solution. It is calculated through use of the error present in the 
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position solution formed, represented by the variable w, shown below in equations 2 and 3 [11], and 

provides a few advantages when considering failure detection. Those advantages include providing 

an easy determinate for failure as it is a nonnegative scalar quantity [11]. This change in preference is 

also due in part to all three of the aforementioned methods being equivalent as per their shared base 

measurement system as previously described in [15].  

 𝑤 = [𝐼 − 𝐺(𝐺𝑇𝐺)−1𝐺𝑇]𝑦 (2) 

  

𝑆𝑆𝐸 = 𝑤𝑇𝑤 

 

(3) 

 

2.1.1.1 Solution Separation RAIM Techniques 

For a majority of the 1990s and the early to mid-2000s least squares residual and parity space 

methods were considered the state-of-the-art RAIM methods. Kalman filtering and integrating GPS 

with other sensors, such as visual cameras [17] and inertial measurement units in strapdown inertial 

navigation systems were considered for developing and maintaining high integrity navigation 

systems [18] [19]. These techniques integrated the use of radar imagery [17] and presented a new 

approach to detecting failures through use of comparing the chi-square statistic of the state estimate 

of the Kalman filter and the formed values that are consequent of finding the position solution [19]. 

Desired performance grew to include multiple simultaneous faults, the emergence of new GNSS 

satellite constellations, and protection in both the horizontal and vertical directions. The 

development and further use of the Wide Area Augmentation System (WAAS) in which information 

from ground GPS receivers are used to augment GPS data and deliver corrections as well as 

necessary integrity messages and alerts [20], was intended to help cover these new requirements in 

performance. WAAS implementation is desired to be used in precision navigation scenarios, such as 
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precision approaches and landing [20], and thus have stricter requirements for navigation in the 

horizontal and vertical [1]. This new requirement of protection in the vertical spurred the 

development of multiple new RAIM techniques around the mid-2000s and included NIORAIM in 

[21], Optimally Weighted Average Solution (OWAS) in [22], and Multiple Hypothesis Solution 

Separation (MHSS) initially in [23] and more recently in [24]. Equipment designed to further support 

the improvement of RAIM performance, particularly in achieving successful high precision 

navigation scenarios, was developed in the form of integrity beacons. These beacons could act as 

pseudolites and when placed in the path leading to the landing zone for an aircraft, can support the 

auto-landing of said aircraft [25]. An algorithm to detect multiple simultaneous faults, the Range 

Consensus (RANCO) algorithm, was developed in a cooperative effort between Stanford University 

and the German Aerospace Center. This algorithm calculates a position solution based upon the 

data of four available satellites and compares it to the pseudoranges of all available satellites that 

were not used in the initial position solution [26]. Using an approach similar to that of the Random 

Sample Consensus Algorithm (RANSAC), all possible subsets of four satellites are taken into 

account and the difference in position solution between the four satellite solution and the extra 

satellites are calculated and compared to result in the solution set that does not exceed the testing 

threshold [26]. Although promising, this algorithm still needs to be further investigated for error 

correlation and generalization of techniques [27].  

The solution separation method was known in a different but not widely practiced form in 

previous years according to [11] due to the increased difficulty in mathematically analyzing its 

effectiveness in comparison to the residual based methods. It has been optimized for improvements 

in simplicity of protection level calculation and the use of multiple range sources to become known 

as multiple hypothesis solution separation RAIM in [24]. In the solution separation method of 

RAIM, ‘fault modes’ are formed by removing one or two satellites with rank-one updates and the 
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position solution that is created as a result is compared to that of the all-in-view solution. When a 

failure is detected through a fault mode not passing the threshold test, the satellite that corresponds 

to the fault mode furthest from the all-in-view solution would be considered the source of the error. 

This will be covered in further detail within the technical discussion of chapter 4.  This solution 

separation algorithm was settled upon as the state-of-the-art method over residual-based because of 

a lowered risk of an error being present due to the availability of tailored test statistics as stated in 

[28]. An advanced RAIM, or ARAIM, algorithm was discussed in [1] and is the basis of modern 

ARAIM studies as well as the basis for this thesis. One such study is shown in [29] in which the 

performance of said algorithm is discussed and the large computational load of ARAIM is discussed 

and possible improvements suggested.  

2.1.2 Multiple Constellation RAIM 

Another point of discussion regarding the performance and capability of RAIM is that of the 

use of multiple constellations when forming position solutions. This idea was first seen in 1992 and 

was proposed by [30] with GPS and GLONASS being the two constellations in mind for use. The 

choice in constellations changed to include two options in addition to GPS with the emergence of 

the new Galileo constellation in the early 2010s. The addition of this new GNSS constellation raised 

the need of investigating integrity monitoring techniques, such as RAIM, use of ground based 

integrity monitoring stations, and a new method of satellite autonomous integrity monitoring 

(SAIM), in a multi-constellation system [31]. This idea was extended to improve worldwide coverage 

that will improve the availability of RAIM to more airspace and further improve vertical coverage by 

RAIM in [7]. Multi-constellation satellite use is seen in [1] and is continued to be used in [29] and 

[32]. 
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Chapter 3 Background 

3.1 Performance Characteristics 

A higher capability for performance is required in flight and navigation in instances of low 

coverage or when there is a necessity for accurate real-time information and response [1]. There are 

four required navigation performance parameters that were developed by the International Civil 

Aviation Organization (ICAO). They are in some way connected to each other and are: accuracy, 

continuity, availability, and integrity [5]. Accuracy is the degree of conformance of the position 

solution to the true position at that point in time [5]. Availability is the measured percentage of time 

that the services of the system are usable by the user of the navigation system [5]. Integrity will be 

defined in the next section and continuity is a measure of the entire system to provide information 

on the position of a craft without interruption during the duration of operation [5]. These 

definitions are provided in further detail in Appendix B of [5]. The particular definitions and 

specifics about these parameters were set forth in RTCA/DO-208 ‘Minimum Operational 

Performance Standards for Airborne Supplement Navigational Equipment Using GPS’. 

3.1.1 Integrity 

An important parameter of performance that is connected directly to the faith one can put 

into position measurements is integrity. Integrity is the measure of trust that can be placed in the 

correctness of the information supplied by a navigation system [5]. The exact integrity requirements 

to be upheld depend upon the situation at hand, but are dictated by four separate integrity 

parameters. These parameters are: alert limit, time to alert, integrity risk, and protection level. Alert 

limit is defined as the error tolerance for a system, time to alert is the amount of time allowed for the 

error to be above the set limit, and integrity risk is the probability that there is an error present. The 

final parameter is the protection limit which is the bound computed to ensure that the craft was 
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within a certain allowed volume of space that coincides with the given integrity budget. These 

parameters are all taken into consideration and an integrity budget is written for particular crafts and 

navigation satellites. This budget is comprised of both probabilities and physical values and are 

applied depending upon their contribution to a particular navigation algorithm. The solution-

separation RAIM algorithm focuses upon the integrity risk and protection limit parameters but 

keeps all four in consideration. 

3.2 Global Positioning System and Galileo Global Navigation Satellite Systems 

 The U.S. owned radiometric tracking service utilized by many people worldwide is known as 

the Global Positioning System, GPS. GPS is comprised of three segments, which are space, control, 

and user, that have their own components and purposes. The space and control segments are two 

pieces of one part of the system that ultimately transmit the signals needed for use in the radiometric 

navigation process. The space segment is comprised of the satellites within the GPS constellation 

that transmit signals that are then used to make ranging measurements [33]. The control segment is 

supplemental to the space segment and maintains satellites in order to keep them in functioning 

condition [33]. A few of the control segment’s uses include updating satellites’ ephemeris data, clock, 

and almanac, monitoring their subsystem health and status, and activating spare satellites to maintain 

availability [33]. The user segment is comprised of the receiver which processes L-band signals from 

satellites in the space segment to determine position, velocity, and time [33].  

 The measurements made by this system come from two different sources, code and carrier 

phase. The measurements are used to form the pseudorange measurements; the measurements used 

in this and many other navigation algorithms. The geometric range or the distance from the satellite 

to the receiver and pseudorange may be calculated as shown below [6]. 
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 𝑟 =  √(𝑥𝑘 − 𝑥)2 + (𝑦𝑘 − 𝑦)2 − (𝑧𝑘 − 𝑧)2 (4) 

  

𝜌𝑘 = 𝑟𝑘 + 𝑐[𝛿𝑡 − 𝛿𝑡𝑘] + 𝐼𝜌
𝑘 + 𝑇𝜌

𝑘 + 𝜀𝜌
𝑘 

 

(5) 

  In the above equations, the superscript k designates the satellite is being considered and the 

subscript 𝝆 signifies that the pseudorange is being calculated. In equation 4, x, y, and z represent the 

position of the satellite and the user. In equation 5, the variable c represents the speed of light, δt is 

the clock bias, I and T represent the ionospheric and tropospheric delays affecting the signal, and ϵ 

represents unmodeled effects, modeling errors, and measurement errors. This calculation forms a 

biased and noisy measurement of r which then must be processed for a more accurate position 

estimation.  

 Galileo, created by the European Union, is a navigation satellite constellation that operates 

similarly to GPS [6]. The radio frequencies of both constellations, GPS and Galileo, are compatible 

as their signals will not interfere or degrade each other [6]. This in turn allows for them to be used 

together in the larger GNSS for a system that provides more coverage as more satellites will be in 

view and utilized for a more precise positioning solution.  

3.3 Weighted Least Squares 

 Least squares, the basis of finding the position solution, is derived from the equation that 

illustrates the linear relationship between a column vector x of estimated unknown parameters and 

y, a set of noisy pseudorange measurements [10].  

 𝑦 = 𝐺𝑥 + 𝜖 (6) 

 In equation 6 above, the noisy measurements are linearly related to the estimated parameters 

by first multiplying them to the geometry matrix G and then adding on the error added through 

noise ε. To solve for x, the maximum likelihood estimate would have to be made so that a proper 
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estimate may be made given the observations. If it is assumed that measurement errors are Gaussian 

distributed and errors in other measurements statistically independent, then the maximum likelihood 

estimate may be solved for as it is in the following equation [10].  

 𝑥̂ = min
𝑥

‖𝑦 − 𝐺𝑥‖2 (7) 

 This may be solved by differentiating with respect to 𝒙̂ and setting the derivation to zero 

resulting in the following least squares estimate [10]. 

 𝑥̂ = (𝐺𝑇𝐺)−1𝐺𝑇𝑦 (8) 

 If the errors present are not identically distributed or independent, as in the case of a 

multiple satellite constellation, then a weighting matrix will need to be included in the calculations 

and derivation that will result in an altered version of the least squares estimation or a weighted least 

-squares estimation [10].  

 𝑥̂ = (𝐺𝑇𝑊𝐺)−1𝐺𝑇𝑊𝑦 (9) 

 

Chapter 4 Technical Approach 

4.1 Algorithm Overview 

The solution separation RAIM technique involves the formation of a unique fault mode for 

each satellite and constellation present [1]. Each fault mode is formed by taking the difference of the 

particular satellite’s impact on the position solution with respect to the all-in-view solution. The 

satellite whose solution is furthest away from that of the all-in-view, if a fault is detected, is 

considered the failed satellite. The data of this failed satellite would then be excluded from the data 

for the current epoch and the all-in-view solution reformed and evaluated. Although the position 

solution results of the two methods, solution separation and residual based RAIM, are the same the 
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two methods have their fundamental differences. The solution separation method results provide a 

greater protection over a larger variety of failures as a test threshold, chi-squared statistic, and 

protection levels tailored to the data are formed [28]. 

RAIM algorithms are all built upon the same general idea. That idea is to detect faults within 

the pseudorange data received from GPS satellites. The particular algorithm used is written to follow 

that of the one presented in the paper Baseline Advanced RAIM User Algorithm and Possible Improvements 

by Blanch, et al [1]. The following block diagram shows how the algorithm runs and how the results 

from the previous step and values from the ISM and set budgets flow into the next step. 

 

Figure 4.1: Block diagram showing how the ARAIM algorithm runs through each step. 

 The solution, its residuals, and the corresponding covariance are formed through the use of 

least squares calculations. These calculations use the geometry matrix, pseudorange measurements, 

and a weighting matrix. The weighting matrix used is formed using the pseudorange error diagonal 

covariance matrix. It takes into account the covariance matrices of user error, the standard deviation 
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of the clock and ephemeris error, and the tropospheric delay as shown below [1]. The standard 

deviations of clock and ephemeris error are provided by the ISM and thus are unique to each flight.  

 𝐶𝑖𝑛𝑡(𝑖, 𝑖) =  𝜎𝑈𝑅𝐴,𝑖
2 + 𝜎𝑡𝑟𝑜𝑝𝑜,𝑖

2 + 𝜎𝑢𝑠𝑒𝑟,𝑖
2  

𝐶𝑎𝑐𝑐(𝑖, 𝑖) =  𝜎𝑈𝑅𝐸,𝑖
2 + 𝜎𝑡𝑟𝑜𝑝𝑜,𝑖

2 + 𝜎𝑢𝑠𝑒𝑟,𝑖
2  

 

(10) 

(11) 

The inverse of this covariance matrix is taken to calculate the weighting matrix. This, the 

geometry matrix, and the difference in pseudorange may then be used to form the residuals through 

a weighted least squares estimation [1].  

 ∆𝑥 = (𝐺𝑇𝑊𝐺)−1𝐺𝑇𝑊∆𝜌 (12) 

The residuals formed through this particular equation with the initial matrices provided is 

deemed the all-in-view solution. This is the solution in which all satellites seen are included and if 

deemed to not be faulted, satisfies the integrity budget and thus may be trusted. The all-in-view 

solution is also used as a basis for forming the solution for each considered fault mode. 

Now that the ‘main solution’ is formed in the all-in-view solution, the solutions may be 

formed that represent the possible fault modes. These solutions are formed systematically by 

removing one satellite at a time and re-performing the least-squares estimations. This is made easier 

by performing a convenient rank-one update that is the difference between two position solutions, 

the all-in-view and the solution for the removed satellite. These may be calculated as shown in 

Appendix I of [1] and the equations for both position update and covariance update shown below. 

 
𝑥 − 𝑥𝑖 =

(𝐺𝑇𝑊𝐺)−1𝑔𝑖𝑤𝑖

1 − 𝑔𝑖
𝑇𝑤𝑖(𝐺𝑇𝑊𝐺)−1𝑔𝑖

(𝑦𝑖 − 𝑔𝑖(𝐺𝑇𝑊𝐺)−1𝐺𝑇𝑊𝑦) 
(13) 
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(𝐺𝑖

𝑇𝑊𝑖𝐺𝑖)
−1 = (𝐺𝑇𝑊𝐺)−1 +

(𝐺𝑇𝑊𝐺)−1(𝑔𝑖𝑤𝑖𝑔𝑖
𝑇)(𝐺𝑇𝑊𝐺)−1

1 − 𝑔𝑖
𝑇𝑤𝑖(𝐺𝑇𝑊𝐺)−1𝑔𝑖

 
(14) 

In the above equation, the lower-case g and w represent the portions of data that are 

produced by the ith satellite. The covariance needed to be calculated as it is used in the calculation of 

S, which is the difference in satellite’s position from the previous time step and calculated solely in 

terms of satellite geometry and ultimately multiplied by the difference in pseudorange to form the 

residuals. In the following equation, k represents the fault mode being considered [1].  

 𝑆(𝑘) = (𝐺𝑇𝑊(𝑘)𝐺)−1𝐺𝑇𝑊(𝑘) (15) 

The result of this calculation is then used to calculate the variance of the difference in 

residuals between the all-in-view and fault mode solutions as shown. In the following equation, the 

superscript 0 represents the all-in-view solution, the subscript q represents the direction being 

considered, East, North, or Up, and eq represents a vector with the qth value being one and all 

others zero [1]. 

 𝜎𝑠𝑠,𝑞
(𝑘)2 = 𝑒𝑞

𝑇(𝑆(𝑘) − 𝑆(0))𝐶𝑎𝑐𝑐(𝑆(𝑘) − 𝑆(0))𝑇𝑒𝑞 (16) 

Once the variance for the respective distance between the all-in-view and each fault mode 

solution is calculated, the thresholds may be calculated and their corresponding test performed. The 

thresholds and tests are calculated for all three directions and each have different coefficients that 

must be calculated, however, East and North have the same coefficient. They are calculated below 

with Q representing the quantile of a zero-mean unit-variance Gaussian distribution, Nfault as the 

number of fault modes possible, and P as the integrity budget allowed for the horizontal and vertical 

directions [1]. The integrity budget values used in these equations are pre-set values and may be 

adjusted to test or potentially improve performance in failure detection, for this thesis work the 

values provided in [1] were used.  
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𝐾𝑓𝑎,1 = 𝐾𝑓𝑎,2 = 𝑄−1(

𝑃𝐹𝐴_𝐻𝑂𝑅

4𝑁𝑓𝑎𝑢𝑙𝑡
) 

(17) 

 
𝐾𝑓𝑎,3 = 𝑄−1(

𝑃𝐹𝐴_𝑉𝐸𝑅𝑇

2𝑁𝑓𝑎𝑢𝑙𝑡
) 

(18) 

The threshold may then be calculated, represented by T, and the test performed using the 

following [1]: 

 𝑇𝑘,𝑞 = 𝐾𝑓𝑎,𝑞𝜎𝑠𝑠,𝑞
(𝑘)

 

 

(19) 

 

𝜏𝑘,𝑞 =
|𝑥𝑞

(𝑘)
− 𝑥𝑞

(0)
|

𝑇𝑘,𝑞
≤ 1 

(20) 

If the above test shown in equation 20 is not passed, then exclusion will have to be 

performed on the data as a fault is present. A fault may be present in one of two forms: satellite in 

which a single satellite is faulted, or constellation in which a full constellation of satellites is deemed 

to be faulted. 

If the above test is passed, however, the horizontal protection limit, vertical protection limit, 

and other performance parameters for the position solution may be calculated. As with calculating 

the test thresholds, the protection limits are defined per each direction. The horizontal protection 

limit is calculated in the north/south and east/west directions while the vertical protection limit is 

calculated in the vertical directions, up/down. The horizontal and vertical protection limits may be 

calculated by solving the following equations for the variables HPL and VPL [1]. 
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2𝑄 (
𝑉𝑃𝐿 − 𝑏3

(0)

𝜎3
(0)

) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄 (
𝑉𝑃𝐿 − 𝑇𝑘,3 − 𝑏3

(𝑘)

𝜎3
(𝑘)

)

𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠

𝑘=1

= 𝑃𝐻𝑀𝐼𝑉𝐸𝑅𝑇 (1

−
𝑃𝑠𝑎𝑡,𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 + 𝑃𝑐𝑜𝑛𝑠𝑡,𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

𝑃𝐻𝑀𝐼𝑉𝐸𝑅𝑇 + 𝑃𝐻𝑀𝐼𝐻𝑂𝑅
) 

(21) 

  

2𝑄 (
𝐻𝑃𝐿𝑞 − 𝑏𝑞

(0)

𝜎𝑞
(0)

) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄 (
𝐻𝑃𝐿𝑞 − 𝑇𝑘,𝑞 − 𝑏𝑞

(𝑘)

𝜎𝑞
(𝑘)

)

𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠

𝑘=1

=
1

2
𝑃𝐻𝑀𝐼𝐻𝑂𝑅 (1

−
𝑃𝑠𝑎𝑡,𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 + 𝑃𝑐𝑜𝑛𝑠𝑡,𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

𝑃𝐻𝑀𝐼𝑉𝐸𝑅𝑇 + 𝑃𝐻𝑀𝐼𝐻𝑂𝑅
) 

 

(22) 

 

In the above equations, T is the test threshold, σ represents the variance calculated in the 

given direction, Psat, not monitored and Pconst, not monitored represents the probability that a satellite or 

constellation is not being monitored properly at that epoch, PHMIVERT and PHMIHOR are the 

integrity budgets in the vertical and horizontal as provided in the integrity budget, Q is once again 

the quantile of a zero-mean unit-variance Gaussian distribution, b is the bias represents the worst 

case impact on the position solution, and pfault is the probability of a fault occurring. The subscripts 

and superscripts, k, q, 0, used in the previous two equations represent current fault mode, current 

direction, and all-in-view solution respectfully. The bias and probability of fault variables shown may 

be calculated by the following equations [1]: 
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𝑏𝑞
(𝑘)

= ∑|𝑆𝑞,𝑖
(𝑘)

|

𝑁𝑠𝑎𝑡

𝑖=1

𝑏𝑛𝑜𝑚,𝑖 

(23) 

  

𝑝𝑓𝑎𝑢𝑙𝑡,𝑘 = ∏ 𝑃𝑒𝑣𝑒𝑛𝑡,𝑖𝑠

𝑠=1,…,𝑟

 

 

(24) 

 

In the above equations bnom,i represents the maximum bias that may be present on the 

nominal for a particular satellite i. The subscript s in equation 24 represents the fault mode being 

tested at that particular instance.  

The horizontal protection limit requires an additional calculation to be fully formed. Since it 

takes into account both the measurements from the north/south and east/west directions, it must 

be calculated as follows [1]: 

 
𝐻𝑃𝐿 = √𝐻𝑃𝐿1

2 + 𝐻𝑃𝐿2
2  

(25) 

 

In addition to these protection levels, other performance criteria may be found with the use 

of the solution produced. The additional values calculated within this algorithm are the ninety-five-

percentile accuracy bound, the fault-free position error bound, and the effective monitor threshold 

(EMT) as calculated below [1].  

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(95%) =  𝐾𝐴𝐶𝐶𝜎𝑣,𝑎𝑐𝑐 (26) 

  

𝑓𝑎𝑢𝑙𝑡 𝑓𝑟𝑒𝑒 (10−7) = 𝐾𝐹𝐹𝜎𝑣,𝑎𝑐𝑐 

 

(27) 
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𝐸𝑀𝑇 = 𝑚𝑎𝑥(𝑇𝑘,3) 

 

(28) 

 

In the previous two equations, the K variables are pre-set values that may be adjusted prior 

to running the algorithm. The term σv,acc is the standard of deviation of the vertical position solution 

and may be calculated in the following equation with previously defined terms [1]. 

 
𝜎𝑣,𝑎𝑐𝑐 = √𝑒3

𝑇𝑆(0)𝐶𝑎𝑐𝑐𝑆(0)𝑇𝑒3 
(29) 

 

 

4.2 Fault Detection 

4.2.1 Minimum Chi-Squared Statistic 

 Once a fault mode formed from the all-in-view solution does not pass the aforementioned 

threshold test, a fault is deemed to be present. In order to detect this fault, the minimum chi-squared 

test statistic must be determined from the available fault modes. The chi-squared test statistic is 

chosen because it coincides with the satellite that produces the position solution that is furthest 

from the all-in-view solution as stated in Appendix F of [1]. The relation between the maximum 

normalized solution separation and the minimum chi squared test statistic is shown below as 

reproduced from [1]. 

 

𝜒2 = 𝜒𝑖
2 + (

𝑥𝑞
𝑖 − 𝑥𝑞

(0)

𝜎𝑠𝑠,𝑞
𝑖

)

2

 

(30) 
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 In the above equation, the 𝜒𝑖 term represents the chi squared statistic as calculated with the 

particular satellite i left out or excluded. Since this is an effective strategy for single satellite faults, it 

then follows in this algorithm that multiple failed satellites may be detected by running the dataset 

through the testing and fault detection then exclusion steps multiple times until the test for the all-

in-view solution is passed.  

4.2.2 Rank-one Updates 

 The chi square statistic for each fault mode may be calculated in the same method as the 

position solution and covariance matrix updates, through a rank-one update. This may be calculated 

as shown in Appendix I of [1].  

𝜒𝑖
2 = 𝜒2 −  

𝑤𝑖

1 − 𝑔𝑖
𝑇𝑤𝑖(𝐺𝑇𝑊𝐺)−1𝑔𝑖

(𝑦𝑖 − 𝑔𝑖
𝑇(𝐺𝑇𝑊𝐺)−1𝐺𝑇𝑊𝑦) 2 

(31) 

 In the above equation, the lower-case g and w represent the portions of data that are 

produced by the ith satellite. The results of this calculation produce the chi square statistic for the all-

in-view data with the contribution of the suspected failed satellite subtracted out. 

4.3 Fault Exclusion 

 Once the failed satellite is identified all of its data must be excluded from the variables that 

are used to calculate the position solution, and the all-in-view solution calculated again. To exclude 

the selected satellite’s data, a very simple method was utilized. A method was written within the 

algorithm that used the stored index for the failed satellite to remove all of the satellite’s data from 

the necessary variables. It is very important in the building of this new data to ensure that the correct 

satellite’s data is deleted and that it is deleted from all of the data used in subsequent steps to rerun 

the integrity tests on the all-in-view solution. To ensure that this occurred, the index for the faulted 
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satellite and the sizes of the variables before and after exclusion were displayed within the printed 

statement during testing.  

Chapter 5 Testing 

 All data used in this testing was created through the Matlab SatNav Toolbox [34]. The 

simulation produced data for a flight along the trajectory shown within the plot below. Within the 

Python code that ran the algorithm, a method for injecting error to the data was added. This method 

worked by generating an uniformly distributed random number, and if that number fell beneath the 

set probability, for these tests ten percent, a ten meter error would be added to the smoothed range 

data of a random satellite for the current epoch. If error is added to one satellite, then the same 

process would be done for a second satellite in that same epoch in which there will once again be a 

ten percent chance of an error being injected. Further testing was done as well with errors of five, 

fifty, and one-hundred meters being injected in the same random chance method. This additional 

testing was done to explore the capability of the fault detection and exclusion methods with various 

sizes of error.   
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Figure 5.1: Trajectory of simulated flight. 

5.1 Sensitivity Analysis 

 Since it is an integrity algorithm that is based off of a weight least squares (WLS) estimate, it 

was logical to compare the positioning results computed from both ARAIM and WLS. There were, 

however, two forms of the WLS solution formed in order to further check the effectiveness of the 

ARAIM method. The first of these two created solutions was WLS in which the failed satellites were 

known and excluded automatically from the solution. The second was WLS with no excluded 

satellites at all. Five runs over the full duration of the test of the data set, each with unique random 

injected errors, were made and the position solutions of ARAIM, both WLS methods, and the 

known truth were compared. 
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5.1.1 Chi-Square Statistic 

 Since the method for detecting the faulted psuedorange observation is the minimum chi-

squared test statistic, the demonstration of this being proved to be true must be made. To 

accomplish this, a short run of the ARAIM algorithm in which error is added to the data of a 

satellite of a selected epoch was performed. The calculated chi-square statistic of each fault mode 

and the index of the removed satellite was calculated and compared. The performance of these 

methods was measured against two additional factors as well. In order to measure the validity of the 

ten-meter error applied to the pseudorange measurements as a standard, errors larger and smaller 

than ten meters were applied in separate tests. They were applied in the same manner as the ten-

meter errors and used for full test runs through the entirety of the simulated data. The data taken 

from these test runs were then measured to observe how the effectiveness of the fault detection and 

exclusion methods varied with the size of the error applied.  

5.1.2 Increasing Potential Fault Modes 

 Within each epoch each satellite must be removed for both constellations present and the 

algorithm worked out to obtain an integrity test result. This must be done not only for one satellite 

being removed in consideration of fault, but two as well. The amount of calculations increases 

exponentially due to these increasing values and thus should be taken into account when considering 

the processing time of this algorithm. This is derived based on the number of solution combinations 

when taking in account the number of satellites tracked, constellations used, and maximum 

simultaneous faults assumed. In the following equations, the variable Nevents represents the number 

of events considered in relation to the number of satellites and constellations available, Nsat 

represents the number of satellites, Nconst represents the number of constellations, Nfaultmax 

represents the number of simultaneous fault modes considered, and Nmodes represents the number 

of fault modes to be considered.  
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𝑁𝑚𝑜𝑑𝑒𝑠 =

𝑁𝑒𝑣𝑒𝑛𝑡𝑠!

(𝑁𝑒𝑣𝑒𝑛𝑡𝑠 − 𝑁𝑓𝑎𝑢𝑙𝑡𝑚𝑎𝑥)! 𝑁𝑓𝑎𝑢𝑙𝑡𝑚𝑎𝑥!
 

(32) 

 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 = 𝑁𝑠𝑎𝑡 + 𝑁𝑐𝑜𝑛𝑠𝑡 (33) 

 

Chapter 6 Results 

 In order to perform a full analysis of the performance and capabilities of this state-of-the-art 

ARAIM algorithm, a few different results were looked at and comparisons made to other 

algorithms. The final user position in each epoch was compared between ARAIM, WLS while 

excluding known failed satellites, WLS with no corrections applied, and the provided truth. The 

difference in position solution between ARAIM and the provided truth was also used to measure 

how well the performance of ARAIM was to remaining within the horizontal and vertical protection 

limits.  

 The performance of ARAIM overall was measured through three different ways. First, the 

ability of the added fault detection and exclusion to successfully detect failures and correct for them 

was observed. Next, the performance of the overall ARAIM algorithm will be observed through the 

comparison of measured position performance values to the requirements for them as set in the 

International Civil Aviation Organization’s (ICAO) standards and recommended practices (SARPs). 

The final measure of ARAIM’s performance will be in an analysis of the computational load due to 

the large amount of computations that must be made at each epoch.  

6.1 Position Error Comparison 

 As a way to measure the positioning capability of ARAIM as well as the ability to remain 

within calculated horizontal and vertical protection limits, the results of the user position calculated 

by ARAIM was differenced against the provided truth. The difference between the two position 
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solutions in all three directions, east, north, and vertical, are shown in Figures 6.1, 6.2, 6.3. It can be 

observed from the figures that the difference in the position solution between ARAIM and the 

simulation truth are well below the calculated protection levels at all times. This signifies that the 

position solution may be trusted due to its adherence to the protection levels set with the values 

from the ISM.  

 

Figure 6.1: Position error for ARAIM in the east direction with HPL and markers for injected error. 
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Figure 6.2: Position error for ARAIM in the north direction with HPL and markers for injected 
error. 

 

Figure 6.3: Position error for ARAIM in the vertical direction with VPL and markers for injected 
error. 

 Two observations may be made from the previous three figures. The first of which is that 

the position difference is well below the calculated protection levels. This was continually seen in all 

five tests through the entirety of the data set as seen in the following tables. The five tests were all 

through the entirety of the simulated data set with ten-meter error placed through the random 

chance method described previously.  

Table 6.1: Minimum and maximum HPL and VPL and maximum position difference between 
ARAIM and truth. 

 HPLmax 

(m) 
HPLmin 

(m) 
VPLmax 

(m) 
VPLmin 

(m) 
max∆xARAIM,Truth 

(m) 
max∆yARAIM,Truth 

(m) 
max∆zARAIM,Truth 

(m) 
TR1 4.91 4.19  7.29  6.39  2.72  2.97  1.55  
TR2 4.93  4.19  7.30  6.39  2.72  2.97  1.66  
TR3 4.75  4.19  7.05  6.39  2.58  2.92  1.53  
TR4 4.92  4.19  7.62   6.39  2.72  3.09  2.09  
TR5 4.66  4.19  8.22  6.39  2.72  2.97  1.55  

 

Table 6.2: Root mean square and mean of the difference in positioning data between ARAIM and 
the truth. 
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 ∆x RMS 
(m) 

∆y RMS 
(m) 

∆z RMS 
(m) 

∆x mean 
(m) 

∆y mean 
(m) 

∆z mean 
(m) 

TR1 1.02 1.17 0.59 0.83 0.97 0.48 
TR2 1.02 1.16 0.61 0.82 0.97 0.49 
TR3 0.999 1.16 0.58 0.80 0.97 0.48 
TR4 1.02 1.19 0.60 0.82 0.98 0.49 
TR5 1.01 1.17 0.59 0.82 0.98 0.49 

 

Throughout all five runs the maximum difference in position between ARAIM and truth are 

well below the minimum protection levels calculated in all directions. This is also true for the 

calculated root mean square error and mean of the position solution in all three directions. The 

larger maximum values are due to the presence of errors, some of which are added upon by the 

noise present in the data. It can be seen in Figures 6.1, 6.2, and 6.3, however, that a majority of the 

spikes in the protection levels occur at the presence of errors and then fall back down to a lower 

value due to the exclusion of said errored satellites.  

 The position solution produced through ARAIM was also compared to the position solution 

produced through the use of WLS with the errored satellites already known and excluded prior to 

processing. The failed satellites were guaranteed to be known for WLS as a list of satellites with 

errors injected into their carrier smoothed pseudorange data from the ARAIM test was provided. 

The satellites listed were excluded from the data used in the WLS solution at the indicated epochs 

were an error was injected within the ARAIM method. This provides a solution against which the 

ARAIM solution may be compared and when there is no additional sources of error, there will be no 

difference between the two solutions.  
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Figure 6.4: Overlay of the difference in positioning of ARAIM and WLS and difference in 
positioning of simulation truth and WLS in the X or east direction. 

 

Figure 6.5: Overlay of the difference in positioning of ARAIM and WLS and difference in 
positioning of simulation truth and WLS in the y or north direction. 
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Figure 6.6: Overlay of the difference in positioning of ARAIM and WLS and difference in 
positioning of simulation truth and WLS in the z or vertical direction. 

 When comparing the difference in positioning of ARAIM and WLS with that of the 

provided truth and WLS it can be seen that the present difference is small. Aside from the difference 

caused by the noise present as seen in the position difference between ARAIM and the truth, it can 

be observed that the same larger increases in error are present in this comparison. The large 

discrepancies in position solution between ARAIM and WLS are caused by forms of error, such as 

multipath, which is the presence of delayed reflected signals after the arrival of the true signal, that 

were not injected by the code running the positioning algorithms. An additional source of error will 

be discussed in the fault detection and exclusion results section.  ARAIM was able to detect these 

errors and correct the position solution because the provided satellite data produced values that did 

not pass threshold tests when processed in ARAIM.  

6.2 Fault Detection and Exclusion Capability 

 Measuring the effectiveness of ARAIM goes beyond the ability of the algorithm to correct 

for differences in the position solutions. The ability to correct the position solution comes as a result 

of the fault detection and exclusion methods working as intended. To test this, a ten-meter error was 
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placed on a known satellite in a known epoch. The chi-squared statistic was calculated for iterations 

of the data set that were formed by removing individual satellites, the formed fault modes, and 

compared.  

 

Figure 6.7: Chi-Squared Statistic Values calculated for each fault mode in one epoch before 
exclusion of the failed satellite. 

 In Figure 6.7 it can be seen that the failed satellite, satellite six, has a chi-squared statistic that 

is much lower than that of the others. This proves not only that the satellite whose position is 

furthest from the all-in-view is identified through having the lowest chi-squared statistic, but also 

that the ARAIM algorithm indeed works as it should. Proof of exclusion being performed on failed 

satellites may also be seen by looking at the difference in position solution between ARAIM and 

WLS with knowledge of failed satellites and WLS with knowledge of failed satellites and WLS with 

no corrections.  
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Figure 6.8: Graphs depicting an overlaying of the difference in position solution between ARAIM 
and WLS with corrections, ARAIM and WLS with no corrections, and WLS with corrections and 
without. The graphs are magnified to focus on the difference between the three position solutions 
and represent two spans of time within the same test period. The purple points on the graph show 
where there is an injected failure. 

 The effectiveness of the exclusion of failed satellites may be observed as the excluded 

satellite provides an improvement in the position solution as shown in the comparison between the 

difference of ARAIM and WLS with corrections and ARAIM and WLS without corrections. The 

improvement is equal to the difference in position solution between WLS with corrections and WLS 

without corrections. These improvements effect the position solution in all three different directions 

differently, however, as the error was originally placed upon the smoothed pseudorange.  
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Figure 6.9: Graph depicting an overlaying of the difference in position solution between ARAIM 
and WLS with corrections, ARAIM and WLS with no corrections, and WLS with corrections and 
without in the east. The graph is magnified to focus on the difference between the three position 
solutions and represent a span of time within the larger test period. The purple points on the graph 
show where there are errors injected. 

 

Figure 6.10: Graph depicting an overlaying of the difference in position solution between ARAIM 
and WLS with corrections, ARAIM and WLS with no corrections, and WLS with corrections and 
without in the north. The graph is magnified to focus on the difference between the three position 
solutions and represent a span of time within the larger test period. The purple points on the graph 
show where there are errors injected. 
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Figure 6.11: Graph depicting an overlaying of the difference in position solution between ARAIM 
and WLS with corrections, ARAIM and WLS with no corrections, and WLS with corrections and 
without in the vertical. The graph is magnified to focus on the difference between the three position 
solutions and represent a span of time within the larger test period. The purple points on the graph 
show where there are errors injected. 

 The added fault detection and exclusion methods were also to be measured for performance 

in regards to potential false exclusions and missed satellite failures. A potential false exclusion 

includes failures that are detected that are not attributed to the failures injected upon the data. The 

results for a varied range of errors, five, ten, fifty, and one-hundred meters, were tabulated. 

Table 6.3: Results of fault exclusion by varying injected fault size. 

Fault Size (m) Correctly Identified 
Faults 

False Exclusions Missed Faults 

5 16 136 8 
10 23 143 0 
50 34 141 0 
100 25 145 0 

 

 The missed faults are a direct cause of the size of the error injected upon the pseudorange 

data. When it is below the chosen size of ten meters the injected failures are oftentimes missed while 

when set at or above ten meters they are always detected. This occurs because the error caused by 

noise and causes of error outside of the injected faults are typically around ten meters. An additional 



33 
 

cause of these errors outside of the previously mentioned sources was observed to be poor geometry 

of particular satellites. This was seen when looking at the failures produced and the satellite that was 

found to have the lowest chi-squared statistic when the threshold testing was not passed. It was 

observed that when a false exclusion was made, it was often made on the same satellite over multiple 

epochs in a row. It was also seen to be repeatable as the same false exclusions were seen on the 

satellite at the same epochs over all tests regardless of the size of the injected error. Such a behavior 

in the quality of the geometry is seen when a satellite is moving towards the horizon and out of the 

sight of the GPS receiver. This behavior is also linked to the large spikes in error when looking at 

the position difference between the weighted least squares solution with corrections and the truth. 

Since it is only excluding the satellites that are known to have failures injected upon them, the 

weighted least-squares method cannot correct for this error source.  

6.3 Position Performance Measurements 

 Since this is an algorithm in which the integrity of a positioning solution is being observed, 

solutions formed by it should abide to the ICAO SARPs [2]. Performance results remaining below 

these standards signifies that the algorithm may be deemed acceptable for civil aviation. The 

maximum and minimum of these calculated values for each run of the entire data set were recorded 

and compared to the standards set in [2].  

Table 6.4: ICAO SARPs 

Performance Criteria Value (m) 
95% Accuracy 4 

99.99999% Fault-free Accuracy  10 
Effective Monitor Threshold 15 
Limit on the Position Error 35 

 

Table 6.5: Performance of ARAIM in each test run for ten-meter injected errors 

 Acc95%,max Acc95%,min PosErrFF,max PosErrFF,min EMTmax EMTmin 

TR1 1.44 1.23 3.92 3.34 3.39 2.65 
TR2 1.44 1.23 3.92 3.34 3.39 2.65 
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TR3 1.38 1.23 3.76 3.34 3.39 2.65 
TR4 1.45 1.23 3.95 3.34 3.64 2.65 
TR5 1.56 1.23 4.24 3.34 3.39 2.65 

 

 The performance of ARAIM remains well under the set performance criteria standards as 

seen in the previous two tables. This is also observed in the position results as they remain well 

under the limit on the position error of thirty-five meters.  

6.4 Increasing Potential Fault Modes 

 As this algorithm is being performed on every epoch of data and must be re-performed to a 

point, it is rather computationally dense. This becomes moreso as within each epoch a fault mode, in 

which each satellite from both the GPS and GALILEO constellations seen are to be removed from 

the solution both individually and in pairs, is formed and threshold testing performed upon it. This 

increases exponentially as more and more faults are considered to be occurring simultaneously. It 

can be seen from the graphs below that increasing the number of simultaneous faults that are 

considered to be present causes the number of fault modes that must be formed and tested to 

increase exponentially. These increases then in turn cause an increase in calculation time, adversely 

affecting the efficiency of the algorithm. 
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Figure 6.12: The amount of fault modes needed for consideration of increasing number of possible 
simultaneous faults from 2 to 3. The graph on the left shows the increase from 1 to 2 simultaneous 
faults and the graph on the right shows the increase from 1 to 3 simultaneous faults.  

 

Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

 A state-of-the-art solution separation ARAIM algorithm was implemented as it is written in 

[1]. The basis of this thesis work in particular was to add a fault detection and exclusion method into 

an existing RAIM script and fully implement the ARAIM algorithm. This was successfully 

accomplished and the performance of the algorithm compared to the position solution produced 

through a normal WLS algorithm. The results of this comparison showed that ARAIM produced a 

better position solution with less error when compared to the provided truth position. Specifically, 

ARAIM was able to mitigate multipath and geometry errors that were seen to adversely affect the 

WLS position solution. The performance of the ARAIM algorithm’s positioning was further 

measured against calculated protection levels and found to be well within them as well as the ICAO 

SARPs. The capability of the ARAIM algorithm’s fault detection and exclusion methods were also 

found to be effective as a direct testing of them proved that a satellite with a ten-meter fault injected 

upon the carrier smoothed pseudorange data can be successfully detected and excluded. The 

performance of these methods was measured further against faults that were larger and smaller than 

ten-meters. It was seen through these tests that faults greater than ten-meters were always detected 

and excluded, but faults less than ten-meters were at times missed. Although a multitude of false 

exclusions were made, these were caused by errors produced through changes in geometry and thus 

the capability of ARAIM was proven further. The effects of the exclusions made were examined 

through juxtaposition of the difference in position between ARAIM and the truth, ARAIM and 

WLS with corrections, and WLS with corrections and WLS with no corrections on the same graph. 
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In addition, the amount of solutions necessary to be formed was calculated and it was found that the 

value increased exponentially as constellations and satellites are added and more simultaneous fault 

modes are considered. This exponential increase in fault modes to be considered and calculated for 

slows down the algorithm and thus a method for reducing this calculation time is needed.  

7.2 Future Work 

 The study into this ARAIM algorithm is not complete, as a few additional things need to be 

investigated. Assumed to be correct when choosing to exclude a satellite, this algorithm will need to 

have the ability to consider the legitimacy of its decision to exclude a satellite’s data for each epoch. 

There are also improvements suggested within [1] that should be considered for this algorithm as 

well as improvements to the large computation time as suggested in [29].  

 This algorithm will be used in an investigation into the development of a robust GNSS 

processing techniques as a basis on which to be compared to [8] [9]. It will also serve as a source for 

any researcher at West Virginia University who wishes to know how solution separation ARAIM is 

to operate for aviation.
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