
Graduate Theses, Dissertations, and Problem Reports

2004

Software for efficient file elimination in computer forensics Software for efficient file elimination in computer forensics

investigations investigations

Chad Werner Davis
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Davis, Chad Werner, "Software for efficient file elimination in computer forensics investigations" (2004).
Graduate Theses, Dissertations, and Problem Reports. 1423.
https://researchrepository.wvu.edu/etd/1423

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1423?utm_source=researchrepository.wvu.edu%2Fetd%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

SOFTWARE FOR EFFICIENT FILE ELIMINATION
IN COMPUTER FORENSICS INVESTIGATIONS

by

Chad Werner Davis

Thesis submitted to the College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Approved by

Dr. Roy S. Nutter, Jr., Committee Chairperson
Dr. Kurishinkal J. Cleetus
Dr. Powsiri Klinkachorn

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2004

Keywords: Computer Forensics, Open Source Software, Hash Filtering,
NSRL, Hard Disk Analysis, MD5, Known File Elimination

Copyright 2004 Chad Werner Davis

Abstract

SOFTWARE FOR EFFICIENT FILE ELIMINATION
IN COMPUTER FORENSICS INVESTIGATIONS

by Chad Werner Davis

Computer forensics investigators, much more than with any other forensic
discipline, must process an ever continuing increase of data. Fortunately, computer
processing speed has kept pace and new processes are continuously being automated to
sort through the voluminous amount of data. There exists an unfulfilled need for a
simple, streamlined, standalone public tool for automating the computer forensics
analysis process for files on a hard disk drive under investigation. A software tool has
been developed to dramatically reduce the number of files that an investigator must
individually examine. This tool utilizes the National Institute of Standards and
Technology (NIST) National Software Reference Library (NSRL) database to
automatically identify files by comparing hash values of files on the hard drive under
investigation to "known good" files (e.g., unaltered application files) and "known bad"
files (e.g., exploits). This tool then provides a much smaller list of “unknown” files to be
closely examined.

Dedication

 This thesis is written in loving memory of Jack Reon Davis, my father who fully
supported my education and personal growth, but was taken by cancer too soon. He
encouraged me to do my best, as he did for me. Dad, I know you are with me, always. I
hope I have made you proud.

 - iii -

Acknowledgements

I would like to begin by first thanking my family, especially my mother, Jeanie,
and sister, Debbie, for guiding me and cheering me on throughout my education at West
Virginia University. They have always been there for me, making sacrifices along the
way to help me achieve my goals. I would also like to thank my girlfriend, Alisa
Greathouse, for the support, inspiration, and understanding she has given to me while I
finished my research and wrote this thesis.

I must also thank my committee members, Dr. Roy Nutter, Dr. Kurishinkal “Joe”

Cleetus, and Dr. Powsiri Klinkachorn for their guidance and support throughout this
research endeavor. In addition, special thanks are given to Mr. Douglas White for his
insight into the National Institute of Standards and Technology’s National Software
Reference Library project.

Above all, I would like to give thanks and praise to God. Through His almighty

power and wisdom, He has given to me the direction and strength to overcome all
obstacles in life. In His mysterious ways, He has set forth a path for each and every one
of us.

 - iv -

Table of Contents

Abstract ii

Dedication iii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Tables ix

List of Symbols / Nomenclature x

Chapter 1

1.1 Introduction to Forensic Science 1
1.2 Introduction to Computer Forensics 2
1.3 Justification for Research 5
1.4 Background: Other Published Work 7
1.5 Other Software Available 8
1.5.1 Known Goods 8
1.5.2 HashKeeper 8
1.5.3 EnCase 9
1.5.4 ILook Investigator 10
1.5.5 Unix-based Tools 10
1.6 Problem Statement 11
1.7 Organization of This Work 12

Chapter 2
 2.1 Foundations of Computer Forensics Investigations 14

2.2 Step 1: Acquire the Evidence 17
2.2.1 Handling the Evidence 19
2.2.1.1 Chain of Custody 19
2.2.1.2 Identifying the Evidence 20
2.2.1.3 Collecting the Evidence 22
2.2.1.4 Transporting the Evidence 22
2.2.1.5 Storing the Evidence 23
2.2.2 Creating a Forensic Backup 24
2.2.3 Documenting the Investigation 25
2.3 Step 2: Authenticate the Evidence 25
2.4 Step 3: Analysis 27
2.5 Preservation and Presentation in Court 30

 - v -

Chapter 3
3.1 Introduction to Cryptographic Hash Functions 32
3.2 Properties, Goals and Classifications of Hash Functions 35
3.3 Hash Function Structure 37
3.4 Overview of Popular Hash Functions 39
3.5 The MD5 Hash Function 40
3.5.1 Terminology and Notation 42
3.5.2 MD5 Algorithm Description 43
3.5.3 How Secure is the MD5 Algorithm? 47
3.5.4 Why Choose MD5 Over Other Standard Hashing Algorithms? 50

Chapter 4
4.1 The Need for a National Software Reference Library 52
4.2 Established Criteria by Law Enforcement 53
4.3 Construction of the National Software Reference Library 54
4.4 The NSRL Reference Data Set (RDS) 56
4.5 Uses of the RDS 58
4.6 Specifications and File Formats of the RDS 61
4.6.1 RDS Data Elements 61
4.6.2 Logical Record Structure of the RDS 64
4.6.3 Physical Record Structure of the RDS 67
4.7 Current Version of the RDS 68
4.8 Effectiveness of the RDS Hash Sets 70

Chapter 5
5.1 Software Design Methodology 71
5.2 Preparing the NSRL RDS Data 73
5.3 Logging the Investigation 77
5.4 Searching for Files 79
5.5 Hashing Files 80
5.5.1 A Note Regarding Zero-Byte Files 80
5.6 Comparing Hashes with the RDS 81
5.7 Investigative Analysis Views 82
5.7.1 Hex Editor View 83
5.7.2 File Information View 84

 5.7.3 File Preview View 85

Chapter 6
 6.1 Success of Research Work 87

6.2 Implications for Computer Forensics Investigators 88
6.3 Software Application Testing 89
6.3.1 Efficiency Tests 90
6.3.2 Effectiveness Tests 90
6.4 Recommendations for Future Work 95
6.5 Final Conclusions 96

 - vi -

Bibliography 97

Appendices
 Appendix A: MD5 Hashing Algorithm Reference Implementation 100
 global.h 101
 md5.h 102
 md5.c 103
 mddriver.c 109
 Appendix B: Project Source Code 114
 mainform.frm 114
 hexedit.bas 119
 md5file.bas 121
 filesearch.bas 122
 dbconnect.bas 124

 - vii -

List of Figures

Figure 1: Number of Incidents Reported to the CERT Coordination Center, 1988-2003 4
Figure 2: Damgard/Merkle Iterative Structure for Hash Functions 38
Figure 3: MD5 as a Block-chained Digest Algorithm 41
Figure 4: NSRL RDS Logical Record Relationships 64
Figure 5: Software Design Methodology 71
Figure 6: Sample Execution of the Software Application 72
Figure 7: Sample NSRLFile Table 75
Figure 8: Sample NSRLMfg Table 75
Figure 9: Sample NSRLOS Table 76
Figure 10: Sample NSRLProd Table 76
Figure 11: Relationships Created Between Data Tables 77
Figure 12: Hex Editor View 83
Figure 13: File Information View 85
Figure 14: File Preview Capability 86
Figure 15: Disguised Image File as an Executable File 91
Figure 16: Disguised Executable File as an Image File 92
Figure 17: Legitimate Version of Symantec’s Norton Ghost 2002 Utility 93
Figure 18: Cracked Version of Symantec’s Norton Ghost 2002 Utility 93
Figure 19: Steganography Within Known Image Files 94

 - viii -

List of Tables

Table 1: Number of Incidents Reported to the CERT Coordination Center, 1988-2003 4
Table 2: Amount of Files Typically Installed by Operating Systems and Applications 6
Table 3: Summary of Selected Hash Functions Based on MD4 51
Table 4: Use of the RDS in Examining Graphics Files 60
Table 5: Data Elements of the NIST NSRL Reference Data Set 63
Table 6: File Record 65
Table 7: Manufacturer Record 65
Table 8: Operating System Record 66
Table 9: Product Record 66
Table 10: RDS Version Record 67
Table 11: Example FILE Data 67
Table 12: Example MANUFACTURER Data 68
Table 13: Example OPERATING SYSTEM Data 68
Table 14: Example PRODUCT Data 68
Table 15: Example RDS VERSION Data 68
Table 16: Current Version of the NSRL RDS 69
Table 17: Effectiveness of the NSRL RDS 70
Table 18: File Attribute Values, Descriptions, and Associated Source Code 85

 - ix -

List of Symbols / Nomenclature

NIST National Institute of Standards and Technology
NSRL National Software Reference Library
RDS Reference Data Set
CRC-32 Cyclic Redundancy Check
MD4 Message Digest version 4
MD5 Message Digest version 5
SHA Secure Hash Algorithm
SHA-1 Secure Hash Algorithm revision 1
MDC Modification Detection Codes
MAC Message Authentication Codes
OWHF One-Way Hash Function
CRHF Collision Resistant Hash Function

 - x -

Chapter 1

1.1 Introduction to Forensic Science

When most people hear the term forensics, they immediately relate to one of the

many dramas currently on television that explicitly deal with the adventures of police

forensic technicians such as CSI: Crime Scene Investigation. For example, an episode

may depict police investigators taking numerous photographs while gathering

fingerprints and blood and hair samples at the scene of a murder on Fremont Street in Las

Vegas. A crime has transpired and the duty of the law enforcement agency is to collect

evidence, identify a suspect, and assemble a solid case against the alleged perpetrator.

These television dramas have become popular due to America’s growing fascination in

the field of forensics.

Forensics is the application of science and technology in a civil or criminal

investigation to preserve, extract, analyze, and document various items with the aim of

producing potentially evidentiary material. “Some crime-history experts place the origins

of forensic science in early writings on forensic medicine; a Chinese work titled The

Washing Away of Sins, published in about 1250, described ways to distinguish between

accidental death and murder” [1]. For many common crimes, the methodologies and

challenges to solving mysteries are familiar—a time-tested process as old as the legal

system itself. The criminal investigator must first ascertain a motive, means, and

opportunity for an alleged perpetrator of a crime before the case can be tried in court to

obtain a conviction. Throughout the last two centuries, the field of forensics has

developed upon its solid scientific foundation and expanded significantly to encompass

 - 1 -

many diverse areas including pathology, fingerprint identification, document analysis,

ballistics, and even analysis of computer evidence.

1.2 Introduction to Computer Forensics

 Rapidly changing technology and expansion in communications and information

exchange within corporations and even our own homes has made our world smaller.

“America is substantially more invested in information processing and management than

manufacturing goods, and this has affected our professional and personal lives” [2]. The

market for computer technology is driven by the demand for new and enhanced features.

Consequently, functionality and cost, not security, are chief considerations in its design.

Computer usage has become ubiquitous and commonplace, and misuse of instant

messaging and email communications, file downloading, online banking, and other

mundane Internet technologies now pose potential criminal threats to a computer system.

As America has shifted from the production of manufacturing goods to reliance

upon the accurate function of information processing systems, modern criminals have

also to a large extent made the transition into the cyber world. More and more, these

criminals are both utilizing and targeting computer systems. Electronic trails, such as

evidence left by criminals who manipulate data, have replaced paper trails. A suspect’s

notebook or diary of yesterday may today take the form of a file existing on a floppy disk

or hard drive. Crimes involving violence and theft are not impervious to the effects of

the information age. The world is gravely cognizant of terrorist attacks in a physical

sense such as the plane hijackings which occurred on 9/11. However, we must also

 - 2 -

recognize that an equally serious and costly terrorist attack could come from the Internet

in the form of a denial of service attack, email bomb, or computer virus.

Computer forensics, one of the newest subsets under forensic investigation,

“involves the preservation, identification, extraction, documentation, and interpretation of

computer data” [3]. Crimes related to technology may seem novel, but their character

remains analogous to other crimes. The motivations of criminals remain consistent;

however, their methods do change in relation to advancing technology. New tools are

constantly emerging to aid criminals in the commission of their crimes on the Internet.

Such utilities steal credit card numbers and other personal information, crack passwords,

and deny access to web servers.

In response, the requirements of law enforcement agencies and the regulatory

environment are continually evolving. The techniques used by investigators to examine

these crimes also change. New security tools are continually being developed to counter

the threats posed by modern criminals.

Figure 1 and Table 1 below depict the dramatic rise in the number of incidents

reported to the CERT Coordination Center, a major reporting center for Internet security

problems, within the past fifteen years [4].

 - 3 -

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000
110,000
120,000
130,000
140,000

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

Figure 1: Number of Incidents Reported to the CERT Coordination Center, 1988-2003

(Source: CERT Coordination Center)

Year 1988 1989 1990 1991 1992 1993 1994 1995
Incidents 6 132 252 406 773 1,334 2,340 2,412

Year 1996 1997 1998 1999 2000 2001 2002 2003
Incidents 2,573 2,134 3,734 9,859 21,756 52,658 82,094 137,529

Table 1: Number of Incidents Reported to the CERT Coordination Center, 1988-2003
(Source: CERT Coordination Center)

The field of computer forensics is very demanding. Digital evidence is extremely

volatile and special precautions must be taken to preserve its integrity. Explaining the

technical aspects of an investigation may prove challenging in a court of law, since many

potential jurors are unfamiliar not only with computer forensics, but also with computers

themselves.

 - 4 -

Computer forensics specialists must couple their own flexibility and creativity

when encountering the uncommon with attention to detail in following precise,

established methodologies and procedures. Legal precedent offers considerable direction

in court cases within common-law countries such as the United States. However, the

dynamic nature of computer crime frequently involves untested issues and cyber lawyers

must deal with relatively more ambiguity than do many of their fellow legal counterparts.

In the example of the murder on Fremont Street in Las Vegas, the crime scene

would be photographed, investigators would search for evidence, and they would acquire

various samples such as blood and hair. In computer forensics investigations, evidence is

gathered in a similar fashion; however, it is frequently desired that the entire system be

recreated in the courtroom. Of course, no one would demand that the prosecution

recreate all of Fremont Street at a trial proceeding, but in a computer crime case, that is

often the expectation.

Computer forensics investigation is not a suitable field for the complacent.

However, it is an exciting career for those highly motivated individuals who desire steady

challenge and self-development through their own flexibility and continuous learning.

1.3 Justification for Research

Computer forensics investigators, much more than with any other forensic

discipline, must process an ever continuing increase of data. The personal computer

revolution in the early 1980s ushered in the introduction of the first hard disk drives.

 - 5 -

These 5.25-inch hard disk drives held approximately five to ten Megabytes of data—or

roughly 2,500 to 5,000 double-spaced pages of information. At the time, any size over

ten Megabytes of storage was viewed as too large for a "personal" computer. By

contrast, it is commonplace for today’s ordinary home computer systems to feature hard

disk drives ranging anywhere between twenty and two hundred Gigabytes of data

space—the equivalent of 10,240,000 to 102,400,000 double-spaced pages of information.

“Applied to forensic pathology, this is the equivalent of on average having two

bodies to process twenty years ago, and today on average having about eighty thousand

corpses to examine in each and every crime scene” [5]. While such an undertaking

would be infeasible in forensic pathology, it is the stark reality in computer forensics.

Fortunately, computer processing speed has kept pace and new processes are

continuously being automated to sort through the voluminous amount of data. Table 2

below shows the number of files typically installed by todays widely used operating

systems and applications:

Operating System / Applications Files Installed
Virgin Windows 98 4,266

Virgin Windows NT 4 Workstation 1,659
Virgin Windows 2000 Professional Edition 5,963

Virgin Windows ME 5,169
Windows 98 + Office 2000 23,464
Windows ME + Office 2000 24,124

Table 2: Amount of Files Typically Installed by Operating Systems and Applications
(Source: National Institute of Standards and Technology)

 - 6 -

1.4 Background: Other Published Work

Computer forensics is a relatively new field, and the use of automated processes

in the examination of files on a suspect hard drive is even newer. In fact, the National

Institute of Standards and Technology (NIST) National Software Reference Library

(NSRL) Reference Data Set (RDS), an extensive database of known file information that

can be utilized by these automated processes, was first distributed in 2001.

An exhaustive literature review only produced two relevant research papers. The

first is a thesis, written in 2002 by Tye Brown Stallard at the University of California,

Davis, which deals with automated text analysis within files to assist in computer

forensics investigations [6]. In this paper, Stallard points out that “computer forensics

analysts are swamped in evidence because of the large volume of data encountered, the

dearth of trained investigators, and the lack of automated techniques to analyze computer

crime data.” Stallard makes a short reference to the NIST NSRL, but does not go into

depth on the topic, nor implement it within his project.

The second article is a final paper written by Simson L. Garfinkel at the

Massachusetts Institute of Technology in 2003 [7]. This short paper proposes the notion

for developing a framework by which a database of cryptographic hash values for files

could be collected, searched, and replicated via a web interface. These files and

corresponding hash values would be considered for evaluation under three categories:

known good, known bad, and unknown. The known good files would exist as

unmodified system files, applications, etc. The known bad files would exist as Trojan

 - 7 -

horses, widely distributed pornography, or other malicious or illicit files. The known

good and known bad files would not need examination by the forensic investigator, since

they would be automatically disregarded and categorized as evidence. The unknown files

would need close investigation by the computer forensics analyst.

1.5 Other Software Available

1.5.1 Known Goods

There are currently a few web services on the Internet that deal with databases of

known files and their corresponding hash values. The first example of such a service is

Known Goods, located online at http://www.knowngoods.org [8]. Brian Wotring of the

Shmoo Group created known Goods in 2002 as a way for developers and end users to

quickly determine whether or not a file has been modified since it was first installed from

its distribution. The hash sets are available either for download or directly from the web

service to anyone who wishes to use it free of charge. Unfortunately, the database

currently only contains information for executables written for the Linux (i386),

FreeBSD (i386), Mac OS X, Mac OS X Server, and Solaris operating systems. The

service’s website states that it is “not the authoritative source for checksums on files,” but

simply a tool that can be used to verify a questionable file by comparing its hash value

with the one on record in the database of known good files.

1.5.2 HashKeeper

Another online service is HashKeeper, located on the Internet at

http://www.hashkeeper.org [9]. This service was created in 1997 by the United States

 - 8 -

Department of Justice National Drug Intelligence Center for use by any state, local or

federal law enforcement entity. HashKeeper is distributed as a run-time Microsoft

Access database application that implements the Message Digest 5 (MD5) file signature

algorithm to establish hash sets for known files. The application compares those known

hash values against the hash values of unknown files on a seized computer system.

HashKeeper then categorizes hash values as authenticated (known good), authenticated

and notable (known bad), or unauthenticated (unknown) and subsequently groups

individual related hash values into hash sets. A forensics investigator can then determine

with a degree of statistical certainty that files on a seized hard disk drive matching the

database of known hash values do not need to be closely examined. Unfortunately, this

online service has been down since May 2002 but their website promises a new and

improved service in the near future.

1.5.3 EnCase

There are also integrated suites of computer forensics utilities available to

investigators. An example of one of these suites is EnCase, written and distributed by

Guidance Software [10]. This utility incorporates over fifteen tools such as disk imaging,

deleted file recovery, and analysis of slack space on a disk drive. In addition, EnCase

compares known file signatures, or hash values, with suspect files so that investigators

can determine whether the alleged perpetrator has modified the data within files in order

to hide evidence from detection. EnCase, used by thousands of law-enforcement

agencies around the world, can also be purchased for use by educational institutions and

 - 9 -

corporations. The drawback for using EnCase is its hefty price tag: $1,995.00 for

education and government institutions, and $2,495.00 for corporations.

1.5.4 ILook Investigator

Another computer forensics suite is ILook Investigator, which was originally

written by Elliot Spencer [11]. Spencer later partnered with the U.S. Internal Revenue

Service, Criminal Investigation Division, Electronic Crimes Program and today this

comprehensive disk analysis tool is made available at no charge, but only to “qualifying

law enforcement agencies throughout the world.” Although this comprehensive forensics

suite could prove useful to private industry applications, it is not available to them.

ILook Investigator utilizes hash values from both the HashKeeper and NIST NSRL

databases. ILook Investigator supports numerous FAT, NTFS, Mac, Linux, SCO, Novell

Netware, and CD file systems and their variants.

1.5.5 Unix-based Tools

Individual utilities used for hashing files and verifying their validity to a database

of known hash values exist primarily as Unix-based solutions. Two examples of these

utilities are The Sleuth Kit [12] and HashDig [13]. The Sleuth Kit is an open source set

of separate utilities that may be used together in the forensic investigation of FAT, NTFS,

EXTxFS, and FFS file systems. Hfind is a utility within The Sleuth Kit that implements

a binary sort algorithm to look up hashes within the NIST NSRL, HashKeeper, and

custom hash databases created by the MD5 hashing algorithm. HashDig is an open

source utility designed to automate the process of creating MD5 hash values for files on a

 - 10 -

suspect computer system, comparing these values with the known values in the NIST

NSRL, HashKeeper, KnownGoods, Sun’s Solaris Fingerprint Database, or any custom

built database, and placing each file in either a category of known files and unknown

files. Unfortunately, most of these Unix-based programs require the investigator to write

complex scripts and work purely within a command line interface. The generated output

is usually created within comma separated text files that require the use of another

program such as a spreadsheet application to view the output in an easy to read format.

1.6 Problem Statement

A review of previously published work indicates that although the notion of hash

filtering has exploded, there are several concerns with existing software used to compare

hash values on a suspect machine with a database of known hash values. These concerns

include that the software is either packaged within a forensics suite, too expensive, too

hard to use, or otherwise unavailable for use by the general public or most small law

enforcement agencies. There exists an unfulfilled need for a simple, streamlined,

standalone public tool for automating the computer forensic investigative process for files

on a disk.

It is proposed that a software tool be designed to automate the analysis of a hard

drive under investigation and thus dramatically reduce the number of files that an

investigator must individually examine. This tool will utilize the National Institute of

Standards and Technology (NIST) National Software Reference Library (NSRL)

database to automatically identify files by comparing hash values of files to “known

 - 11 -

good” files (e.g., unaltered application files) and “known bad” files (e.g., exploits). This

tool will provide a much smaller list of files to be closely examined.

1.7 Organization of This Work

This research is organized into six chapters. Chapter 1 introduces the subject

matter and context into which this thesis fits. Forensic science, specifically the field of

computer forensics is presented along with justifications for the research. Previous work

in the form of published articles and other available software provides background

information on the subject matter. Chapter 2 presents a general overview of the computer

forensics methodologies and the investigative process: acquiring, authenticating, and

analyzing evidence. Special emphasis is also placed on proper identification, collection,

handling, transportation, storage, and backing up of the evidence, as well as chain of

custody, documenting the investigation, and preservation and presentation of evidence in

a court of law. Chapter 3 provides an introduction to cryptographic hash functions,

including their goals and classifications, and overall design structure. An overview of

popular hash functions such as MD4, MD5, and SHA-1 is given. A technical description

of the MD5 hash algorithm is presented, with analysis of its security from attack and

advantages over other algorithms. Chapter 4 provides information about the need for,

and construction of, the NIST NSRL and its RDS. This chapter provides examples of

how the RDS can be used in computer forensics investigations. Detailed technical

information is given about data elements and record structures of the RDS. Also, the

effectiveness of the RDS hash sets is examined. Chapter 5, the core of this research,

presents the methodology and design for building a prototype software application

 - 12 -

written to substantiate this research. This technical walkthrough details how the software

application prepares data from the RDS distribution, searches for files and calculates their

corresponding hash values, and then compares those hashes with the RDS. Also, the

ability to save logs and view files in a hex editor and other views are demonstrated.

Chapter 6 provides analysis and implications of this research, including several tests to

ensure the software application is both efficient and effective. Recommendations for

future work and final conclusions are also presented.

 - 13 -

Chapter 2

2.1 Foundations of Computer Forensics Investigations

 Computer systems have proliferated society and our business world. It is not

surprising that they are both a tool for committing, and the object of, crime. These

crimes are varied and include unauthorized use such as stealing a username and

password, creating or releasing a malicious computer program such as a worm or virus,

harassment and stalking, identity theft, email abuse, pornography, fraud, and theft of

proprietary information and intellectual property. All of these computer-related crimes

leave digital tracks. These tracks can provide evidence that an alleged perpetrator did or

did not commit the suspected crime.

When computers are suspected of being used to commit a crime, investigations

usually include examining log files to see what occurred and searching through gigabytes

of data to look for specific keywords related to the crime being investigated. When

computers are the object of a crime, the systems that were remotely attacked are

examined. This procedure is known as incident response. Remote attacks originated

over the Internet are rapidly increasing in both frequency and sophistication as network

services become more complex, and more vulnerable. As the sophistication of computer

technology increases so does the need to anticipate and guard against a corresponding

rise in computer related criminal activity.

 - 14 -

Computer forensics investigators must exercise due diligence and care while

following strict guidelines and procedures, approaching the computer as evidence from

the very start. Each investigation must be treated as if it will eventually end up in a court

of law. For example, the CERT Coordination Center has produced a report explaining

how the Federal Bureau of Investigation gathers evidence within their investigations [14]:

“Preserve the state of the computer at the time of the incident by making a

backup copy of logs, damaged or altered files, and files left by the intruder. If the

incident is in progress, activate auditing software and consider implementing a

keystroke monitoring program if the system log on the warning banner permits.”

Even if the investigator reasonably believes that the situation does not call for a

forensic analysis initially, it is imperative that he or she completely document what steps

were taken. It is possible that the investigator will later discover a criminal act was

indeed committed, and this evidence may still be defensible if the documentation can

demonstrate in court that the investigator initially had no reason to suspect the computer

was involved in a crime and it was later discovered during routine troubleshooting.

Timely and thorough documentation, as well as proper evidence handling, are keys to an

investigation and possible litigation. The evidence must meet the legal standard for

admission at trial, but even then the defense will attempt to weaken the incriminating

evidence or have it thrown out altogether. “Possible challenges include questions about

reliability and irregularities, inconsistencies and vulnerability to manipulation” [15].

 - 15 -

Evidence can be discovered on a wide variety of devices and drives. Floppy, zip,

and jazz disks, CDs, DVDs, magnetic tapes, hard disk drives, and thumb drives are just a

few examples. Incriminating data may exist inside emails, text documents, images,

temporary, system, and swap files, and the system’s cache. Evidence may even reside

within hidden, deleted, formatted, or partially overwritten areas on the storage medium.

Recovering and analyzing such data (i.e., what was done to a file and when it was done)

can help the investigator understand what the suspect was attempting to do and whether

or not he or she is innocent or guilty.

 Goals of a computer forensics investigation are not limited to determining

whether a breach occurred, and if so, establishing who the offender was, and then

successfully prosecuting the offender if the breach involved criminal activity. Forensics

may also be used to determine the main cause of an event to ensure it will not happen

again. To be successful, the investigator must fully understand the extent of the problem

and how to respond to it. If the analysis is not complete and the extent of the intrusion or

compromise is not found then the problem will only be compounded.

 - 16 -

Although there are newer computer forensic techniques suitable for rapidly changing

technology, the basic methodology remains the same. The details will vary depending on

the circumstances and the investigator’s goals, but the basic methodology can be broken

down into three key elements [3]:

1. Acquire the evidence without altering or damaging the original.

2. Authenticate that your recovered evidence is the same as the original.

3. Analyze the evidence without modifying it.

The scope of this research lies within the third stage of a forensics investigation. As a

foundation to the reader, each of these three basic elements will now be examined in

greater detail.

2.2 Step 1: Acquire the Evidence

 Evidence must be obtained without altering or damaging the original data.

However, computer forensics involves many unknowns and much uncertainty, and no

two investigations are exactly the same. For example, there is no guarantee that the

suspect computer can be powered off without the loss or corruption of data, booted off a

floppy disk or bootable CD, or successfully mirrored for analysis. The investigator must

encounter the unknowns, and carefully think and adapt strict investigative procedures to

the particular situation at hand. He or she must make sure to act in ways that can be

easily explained later, and diligently document all of his or her actions without fail.

 - 17 -

There are disagreements among computer forensic investigators about whether to

let a computer continue to run, to pull the power plug from the computer, or to perform

the normal shutdown process during an investigation. Some argue that the only way to

freeze the computer at its current state, examine a copy of the original data, and maintain

the most defensible evidence, is to pull the plug. However, this is not always practical or

politically acceptable, especially if the system will be shut down for a long or indefinite

period of time.

Others argue that pulling the plug will result in the loss of any data associated

with an attack in process, and it may corrupt data on the hard drive. “In some situations,

especially Internet intrusions, the evidence may be found only in RAM and disconnecting

or turning off the computer before capturing an image of the computer will destroy what

little evidence exists” [3]. If the system has hostile code, or malware, running on it, then

data may become lost or corrupted if the system is powered down. Unfortunately, the

investigator may not immediately be able to tell whether or not such code is running.

However, if an investigator makes a mistake on a live system during an

investigation, he or she cannot simply click the undo button; pulling the plug may be

valid because it will allow time to prepare an action plan and perform a forensic backup

of the suspect media.

Using forensic utilities that reside on a compromised system to examine that

system may not yield reliable or accurate results about its true state. A perpetrator may

 - 18 -

anticipate a live system investigation and alter some of the files within the computer’s

operating system. Again, every case is different, and a contingency approach must be

applied. Keep in mind that if the investigator is not rigorous right from the beginning,

and the case is prosecuted, what’s done is done, and there is no way to go back and

recover what has been lost or compromised.

2.2.1 Handling the Evidence

 As previously stated, the investigator must exercise great care in handling the

evidence right from the start. Proper storage and transportation are particularly critical.

Otherwise, the evidence could be compromised and the chance for successful prosecution

of any resulting case could be lost. This paper will discuss the initial collection of

evidence as well as its later surrender to law enforcement or the victim.

2.2.1.1 Chain of Custody

 “The chain of custody is a process used to maintain and document the

chronological history of the evidence” [16]. This process must track all persons who had

custody of and responsibility for the evidence from its initial acquisition until its final

disposition. Documentation should also include:

 Agency and case number

 Victim’s and/or suspect’s name

 Brief description of the item

 Who collected it

 How and where it was collected

 - 19 -

 How it was stored and protected in storage

 Each person or entity who subsequently took possession of it

 Why each person or entity was in possession of it

 Dates and times the items were collected, transferred, and returned

It is imperative to maintain the integrity of the evidence and limit access to it.

Defense attorneys will look for discrepancies and gaps in the records, seek to show a

break in the chain of custody, create reasonable doubt that the evidence was not properly

safeguarded, and try to argue the evidence was tampered with. Without the chain of

custody, the evidence may not be admissible in court.

 Record keeping can consist of either receipt and voucher type forms, or a simpler

spreadsheet application. The key is to be thorough and consistent and ensure that no

information is missing. It is also beneficial to select an evidence custodian who is

available to receive and release evidence and attend to all record keeping.

2.2.1.2 Identifying the Evidence

 Every item of evidence must be identified, labeled, counted, and cataloged.

Evidence should be collected under dual control, and in large scale investigations a

custodian should be assigned to help coordinate and control the effort and ensure that

evidence is properly accounted for at all times. Useful tools in this stage include a laptop

computer, a portable printer, and a label maker or even handwritten tags. The evidence

custodian should complete the evidence log and print labels for identification of the

 - 20 -

evidence. Electronic logs, forms, and reports can be programmed using software to cross

reference and automatically fill in identical information, reducing errors and saving time.

This software often includes header information that will automatically appear on each

form associated with a particular case. Each label should include [3]:

 The case number

 A brief description

 The investigator’s and/or custodian’s signature

 The date and time the evidence was collected

 The investigator should also photograph the entire crime scene to document the

environment. Pictures should also be taken of both the front and the back of the suspect

computer, including a picture of the screen, while it is still connected to its cables, if

possible. Serial numbers should also be photographed and logged. The condition and

state (on, off, screen locked, etc,) of the computer system upon arrival should also be

documented.

 All evidence and information pertaining to a particular incident, including

photographs, storage media, papers, reports, etc., should be stored together in a closeable

file folder. The folder should be clearly labeled with the header information (e.g., case or

incident number, location, brief description, etc.).

 - 21 -

2.2.1.3 Collecting the Evidence

 Successful conviction depends upon collecting complete, clear, accurate,

convincing, and admissible proof that the accused person is guilty. It is important to be

thorough in collecting data. Evidence, such as media files or scraps of paper, that is left

behind at the scene may not be available later. This is especially true for log files, which

may be routinely overwritten in short periods of time (even minutes), depending on the

system producing the logs. Similarly, Internet Service Providers usually keep logs for

thirty days or less as a manner of standard practice due to the high storage costs and low

benefits involved, and the investigator must act quickly to preserve the evidence.

There are many sources of evidence. Swap files, which are spaces in the hard

disk set aside by the operating system to be temporarily accessed when more memory is

needed, may include recently copied files and passwords. Temporary files, which are

created by Windows in case the operating system crashes, include information about

open files. The system registry may contain information about what hardware is

attached, user information such as recently browsed web pages, and software installation

information such as serial numbers and passwords. Even deleted files, which actually

remain on the hard drive for a period of time until they are overwritten, can produce

potentially incriminating evidence. Other sources include network backups and emails.

2.2.1.4 Transporting the Evidence

 Care must also be taken in the transportation of electronic evidence. For example,

hard drives can be damaged if they come into contact with magnetic fields or if the read-

 - 22 -

write heads come in contact with the platter; in both cases, evidence can be lost because

data can no longer be read off the disk. Laptops and personal digital assistants can also

be easily damaged if not handled properly. Packaging used to protect the evidence

should be static-free to prevent damage.

When the packaging is closed, it should be closed with a tamper-evident seal, and

a signature of someone authorized to open it should be written across the seal. Doing so

will indicate if someone other than the authorized person opens it later. If, at some point

during the investigation it becomes necessary to open the sealed container, document the

following information [3]:

 Whether the initial seal was intact

 Why it was necessary to unseal the container

 Dates and times the evidence was both removed from and returned to storage

 Who had custody of the evidence

 What was done to the evidence

Reseal the evidence inside a second container with a new label with signature, so that the

original broken seal is preserved, and return it to storage.

2.2.1.5 Storing the Evidence

Both the physical aspect and integrity of electronic evidence must continue to be

protected in the storage phase. Evidence must be stored in an environment that is cool,

 - 23 -

clean, and dry. It must be in sealed containers, and in a secure area with limited access

which is controlled and logged by a designated custodian.

2.2.2 Creating a Forensic Backup

 The forensic analysis should always be performed on an exact bit-for-bit (or bit

stream) replica of the original media, if possible, and not the original storage medium. A

bit stream image is different than a standard backup because it copies deleted files and

the other parts of a hard drive that a computer forensics investigator would want to

examine for evidence. Examining a copy will help protect the original data or evidence.

If a mistake is made and the data being analyzed is damaged, the copy can be erased and

the original image can be restored.

Many forensic investigators recommend making two backups of the original

drive—backing up the original drive to a hard drive, and using a tape drive to create a

second copy, using the second hard drive as the original this time (preferring to use the

original drive as little as possible). For example, a forensic drive cloning utility such as

SafeBack, available online at http://www.forensics-intl.com/safeback.html, can be used

to make the first original to second hard drive copy; this is generally the fastest and most

reliable way to collect and back up the original evidence [17]. The second drive-to-tape

copy is useful during the analysis for archiving and restoring the image as needed. The

investigator should make a file signature (MD5 or SHA-1 hash value) of the newly

created drive images before beginning the analysis and document it in his or her notes.

 - 24 -

2.2.3 Documenting the Investigation

Without proper and extensive documentation of the forensic investigation

methodologies used and findings of the investigation it is nearly impossible to

successfully present and defend the findings in court. This is true, even in cases where

the investigator is very skilled technically. If the investigator lacks the necessary

documentation skills, it is imperative that he or she partner with someone who has them.

This person must be diligent to accurately and thoroughly document the investigation

process in its entirety, at each step along the way.

Documentation must include what actions were taken and why, and be detailed

with the software and version numbers of the software evidence, collection tools, and

methods used to collect and analyze the evidence. The investigator’s actions will be

challenged by the defense, and must be upheld as “reasonable.” Thorough and detailed

notes will serve as a written record and are invaluable. The investigator must never leave

these details to memory, especially since the case may not go to trial for some time,

perhaps several years.

2.3 Step 2: Authenticate the Evidence

The investigator must be able to authenticate that the evidence collected in the

investigation is the same as the data left behind by the criminal. This is a challenge for

many reasons. For example, evidence can be damaged over time by unfavorable

environmental conditions such as adverse temperatures, moisture, mold, and dust. The

investigator must be able to prove that the chain of custody and other rules for handling

 - 25 -

evidence where properly adhered to and that no unanticipated or introduced changes

occurred to assure the jury of its integrity.

If possible, create a hash of the entire drive and the individual files before

performing any analysis. Computer forensic specialists have proven the effectiveness of

cryptographic hashing algorithms as a way to verify the integrity of a sequence of data

bits. These algorithms verify the contents of the sequence have not been changed since

its collection.

“Hashing can authenticate electronic data and the software used to store and

maintain it. Two files with exactly the same bit patterns should hash to the same code

using the same hashing algorithm. If a hash for a file stays the same, there is only an

extremely minute probability that the file has been changed. On the other hand, if the

hashes for the files do not match, then the files are not the same.” [18]

Two algorithms commonly accepted for this purpose are MD5 (Message Digest

version 5) which creates a 128-bit signature, and SHA-1 (Secure Hash Algorithm) which

creates a 160-bit signature. MD5 is discussed in greater detail within the next chapter.

Increasingly, applications such as Tripwire, available online at www.tripwire.com [19],

are using multiple hash algorithms, so that if an attack is discovered against one

algorithm in the future, the data from the other algorithm will remain valid.

 - 26 -

Timestamping the evidence can show that it did, in fact, exist at a particular point

in time. This is done by using cryptographic software, such as MD5 or SHA-1, to

calculate a hash value that serves as a digital fingerprint or signature. Creating and

recording a hash value at the time the data is initially collected will allow the investigator

to prove that the copies of the data used in the examination are identical to the original.

2.4 Step 3: Analysis

The investigator must analyze all data that might possibly be relevant without

modifying or damaging it, and continue to carefully preserve the evidence during this

phase. Once a forensic backup or bit stream copy of the original media has been made, it

should be used for all analysis. “The investigator should provide an opinion of the

system layout, the file structures discovered, any discovered data and authorship

information, any attempts to hide, delete, protect, or encrypt information, and anything

else that has been discovered and appears to be relevant to the case” [20].

Similarly, the chain of custody must continue to be preserved via detailed

documentation whenever evidence is removed or returned to the secure storage cabinet or

custodian as previously discussed. The basic and overriding principle is to not comprise

the original evidence by altering or damaging it. The investigator must also be careful to

operate within legal boundaries and not go beyond his or her own knowledge without

seeking qualified expert assistance as needed.

 - 27 -

 Forensic investigators also disagree about whether to conduct the analysis within

a command-line operating system like DOS, or a graphical system like Windows,

although the trend is toward Windows. In either case, the investigator will need to be

proficient with a variety of program tools, since no one tool will do everything required

during the analysis.

The analysis should begin by first examining the partition table on the suspect

drive. It is important to document this information too, and it will also help determine

what software tools are supported and therefore can be utilized. Next, the investigator

should print a directory listing, including subdirectories, or save it to a file. The file can

then be opened into a spreadsheet or with a viewer and analyzed to look for specific data.

What is, or is not, found on the computer may give the investigator some clue as

to the suspect’s prowess. If the investigator discovers complex programs such as a

steganography utility (a tool used for secretly hiding data within other files), he or she

should be on the lookout for advanced attempts to conceal data. On the other hand,

finding only standard software does not mean the investigator can afford to relax his or

her guard.

The investigator can use a hex editor or a forensic program to view the master

boot record and the boot sector, look for bad clusters, and view them in hexadecimal

format. These utilities allow the investigator to read the raw information off of the

storage medium in both hexadecimal and ASCII format. The investigator should record

 - 28 -

the cluster size and view the File Allocation Table (in the case of DOS/Windows 9x), or

Master File Table (in the case of Windows NT/2000/XP). The investigator should also

determine if any data is hidden in the bad blocks, especially if there is reason to believe

the suspect is a more skilled computer user, and hunt for keywords related to the case if

the hex editor or forensic program has a search capability.

Deleted files can be recovered manually using a hex editor, but this is slow and

tedious. Kruse and Heiser explain what happens to deleted files within the Windows

environment [3]:

“When a file is deleted in Windows, the first character of the directory

entry is changed to a sigma character, the hex value of E5. This indicates to the

operating system that this directory should not be displayed because the file has

been deleted. The entries in the File Allocation Table assigned to the deleted files

are changed to zero, indicating that the sectors they point to are unused and

available to the operating system for data storage. The operating system does not

do anything to the actual data until another file happens to be saved at the same

location, which is why the investigator may be able to find incriminating data that

the suspect thought he or she had deleted.”

Automated file retrieval software includes Norton UnErase, and Runtime’s

Software GetDataBack. If the file is fragmented, which is commonly the case; the

investigator must manually chain clusters together to make a complete file. Unallocated

and slack space, the area on a disk between the end of a file and the end of the cluster that

 - 29 -

the file occupies, should also be checked for residual data. This can be done using

software tools specifically designed for this purpose.

Save copies of the evidence on the hard disk of the analysis workstation and

adjust the formatting as needed for legibility, presentation, and reporting purposes. This

will change the saved file’s properties, but remember: this is an electric transcript and not

the actual evidence. Copy only the relevant, incriminating portions of a file. Document

the logical position (page, row, and paragraph) where the data was found and where on

the drive the data was recovered (cylinder, head, and sector of the physical drive). The

investigator may also be called upon to unzip the retrieved files, searching for and

attempting to crack passwords. All removable media collected must all be analyzed as

well.

2.5 Preservation and Presentation in Court

 Computer evidence is very fragile and it is susceptible to alteration or erasure. As

stated before, the investigator must accurately and thoroughly document the chain of

custody that accounts for the evidence at all times. He or she must all also store the

evidence in a way that it will not be damaged or tampered with in any way. Otherwise,

the evidence may not be admissible in court, and the case will be compromised.

 Presentation in a court of law is one of the most critical steps in the investigator’s

case. The investigator must be able to explain to a judge and jury what steps were

performed and why the actions he or she took were reasonable. Carefully, completely,

 - 30 -

and consistently following the guidelines discussed in this chapter during each phase of

the investigation will go a very long way toward a successful presentation in court.

The fundamental process of computer forensics is to acquire, authenticate, and

analyze the evidence of an investigation. A balance of strict and disciplined adherence to

the rigorous standard procedures of evidence collection and custody, combined with

flexibility and out-of-the-box thinking in locating and analyzing the evidence are required

for a successful investigation.

 - 31 -

Chapter 3

3.1 Introduction to Cryptographic Hash Functions

The word hash means to “chop into small pieces” [21]. Cryptographic hash

functions are algorithms used in computer programming to create identifying values of

fixed length for data of arbitrary length either for accessing the data or for security

purposes such as data integrity and message authentication. These functions impose a

mathematical function (or a series of functions) on an input sequence of bits, such as a

text string, file, etc., and generating as output a value produced from the algorithm’s

influence on those data bits.

“Hashing algorithms fall within the realm of error detection techniques” [22].

Broadly speaking, the algorithm enables a receiver to determine if a message that has

been transmitted through a noisy, error-producing channel has been corrupted en route.

The receiver computes a hash value that is a function of the received message, and

compares it to the hash value of the original message. If the two hash values match, then

the message was received as intended; otherwise, the message has been changed.

From a computer forensics standpoint, hashing is an excellent method used to

authenticate a sequence of data bits and ensure the immutability of a file’s original

content. In this case “the hash value serves as a compact representative image (also

referred to as a digital fingerprint, digital signature, or message digest) of an input string,

and can be used as if it were uniquely identifiable with that string” [4].

 - 32 -

The cryptographic hash function is used to detect any change in the contents of a

file, either an accidental change or a change that was made on purpose. By generating a

value which serves as a “benchmark” or “fingerprint” for a file, the investigator can be

sure that the file has not changed if it is the same as the “known” hash value of the

original content.

Message digests are identical as long as they are generated for the same identical

file. However, if even one single bit is added (or otherwise changed) in the file, the

message digest is not only different, it is entirely different. The hash function ensures

that if a single bit of the input is altered in any way a bitwise inversion of roughly half of

the bits in the resulting cryptographic result. This is also known as the “avalanche effect”

[24]. The smallest amount of change will force the digital signature verification process

to fail, since each bit of the hash value depends upon each and every bit of the input. A

changed hash value does not tell you how different the changed file is, or what the

differences are; it just tells you that there is or is not a difference.

An example of how hash values can be applied to data integrity is given by

Menezes and Oorschot, and Vanstone [23]:

“The hash-value corresponding to a particular message x is computed at

time T1. The integrity of this hash-value (but not the message itself) is protected

in some manner. At a subsequent time T2, the following test is carried out to

determine whether the message has been altered, i.e., whether a message x’ is the

same as the original message. The hash-value of x’ is computed and compared to

 - 33 -

the protected hash-value; if they are equal, one accepts that the inputs are also

equal, and thus that the message has not been altered. The problem of preserving

the integrity of a potentially large message is thus reduced to that of a small fixed-

size hash-value.”

Hash functions offer several advantages over encryption. Encryption is slower,

and encryption hardware is expensive and optimized to large data. “A digital signature or

integrity check can be computed by applying cryptographic processing to the document’s

hash value, which is small compared to the document itself. Also, a message digest can

be made public without revealing the contents of the document from which it is derived.

This is important in digital timestamping where, using hash functions, one can get a

document timestamped to establish that it existed on a certain date without revealing its

contents to the timestamping service” [25]. This is useful, for example, in the case of

copyright disputes.

Cryptographic hash codes can be extended for the use of determining the identity

of a file. “By computing the hash of a suspect file and then looking up that hash in a

database, it is possible to determine if that suspect file is a copy of a file that has

previously been evaluated, characterized, and registered” [7]. CDROMs of hash codes

from a wide variety of commercially distributed software packages are now available

typically for use by law enforcement agencies in computer forensic investigations.

 - 34 -

3.2 Properties, Goals and Classifications of Hash Functions

“At the highest level, hash functions may be split into two classes: unkeyed hash

functions whose specification dictates a single input parameter (a message); and keyed

hash functions, whose specification dictates two distinct inputs, a message and a secret

key” [23]. A more functional classification includes two sub-classifications:

Modification Detection Codes (MDCs), which are unkeyed, and Message Authentication

Codes (MACs), which are keyed. The algorithmic specifications of cryptographic hash

functions are generally said to be public knowledge or unkeyed. Therefore, only MDCs

will be elaborated here.

A hash function (in the unrestricted sense) is a function h which has, as a

minimum, the following two properties [23]:

1. Compression – h maps an input x of arbitrary finite bitlength, to an output

h(x) of fixed bitlength n.

2. Ease of computation – given h and an input x, h(x) is easy to compute.

When employed in cryptography, the hash functions are usually chosen to have

some additional properties. These requirements for a cryptographic hash function h

include [25]:

1. h(x) is one-way.

2. h(x) is collision-free.

 - 35 -

MDCs are mathematical values, created by a cryptographic hashing algorithm that

is used to test a given file to verify that the data contained in the file has not been

inadvertently or maliciously altered. MDCs may be further classified, to include one-way

hash functions (OWHFs) and collision resistant hash functions (CRHFs).

Hash functions are used to condense a string of characters into a shorter fixed-

length value that represents the original string. Hashing is a one-way operation if it is

hard to invert; the ideal hash function or output can not feasibly be determined by

analyzing the hashed values or inputs (preimage resistance), and it is computationally

infeasible to find any second input which has the same output as any specified input (2nd-

preimage resistance).

“A hash function h maps bit-strings of arbitrary finite length to strings of fixed

length, say n bits. For a domain D and range R with h: D R and |D| > |R|, the function

is many-to-one, implying that the existence of collisions (pairs of inputs with identical

output) is unavoidable. Indeed, restricting h to a domain of t-bit inputs (t > n), if h were

“random” in the sense that all outputs were essentially equiprobable, then about 2(t-n)

inputs would map to each output, and two randomly chosen inputs would yield the same

output with probability 2(-n) (independent of t)” [23].

Therefore, a good hash function should not produce the same has value from two

different inputs; it should be collision-free or at least collision resistant. Since the

existence of collisions is guaranteed in many-to-one mappings, the unique hash value

 - 36 -

should be uniquely identifiable with a single input in practice, and collisions should be

computationally difficult to find (essentially never occurring in practice). “The term

collision-resistant hash function is sometimes used to describe a hash function that

possesses all three of the properties described here and it is what most people have in

mind when talking about hash functions in general” [26].

 “A cryptographic hash function or checksum should, in practice, guarantee that

any tampering with a file will result in a different checksum, and that in practice no on

will be able to come up with any different file which also produces the same original

checksum. They simply prevent anyone from changing a file in any way without leaving

evidence that they have done so (in the form of a changed checksum)” [27].

3.3 Hash Function Structure

 Ralph Merkle and Ivan Damgard made a significant contribution to cryptographic

hash function design by proving that a collision resistant hash function can be constructed

using a collision resistant compression function. A compression function takes a fixed-

length input and returns a shorter, fixed length output. Given a compression function, a

hash function can be defined by an iterative application of the compression function until

the entire message has been processed. The computation of the hash value for some

message depends on what is called a chaining variable.

“At the start of hashing, this chaining variable has a fixed initial value which is

specified as part of the algorithm. In the process, a message of arbitrary length is broken

 - 37 -

into blocks whose length depends on the compression function, and “padded” (for

security reasons) so the size of the message is a multiple of the block size. The blocks

are then processed sequentially by the compression function, taking as input the result of

the chaining variable so far and the current message block. This compression function

continues recursively until the entire message (and any additional padding specified by

the algorithm) has been used. The chaining variable is updated in a suitably complex

way under the action and influence of the current message block being hashed. The final

output value of the chaining variable is the hash value corresponding to the entire

message” [26].

The Merkle-Damgard construction is used by many of the popular hash functions,

including MD5 and SHA-1, which will be discussed later in this paper. However, a

concern with this construction is that finding a collision resistant function can be difficult.

A schematic model of the Merkle-Damgard iterative structure for hash functions is shown

below in Figure 2.

Message
Block 1

Compression

Function

Hash

Message
Block 2

Padding

Last
Message

Part

Compression

Function

Initial Value

Compression

Function

Figure 2: Damgard/Merkle Iterative Structure for Hash Functions

(Source: RSA Laboratories)

 - 38 -

3.4 Overview of Popular Hash Functions

Well known hash functions include CRC-32, MD4, MD5, and SHA-1. These

widely used hash functions will be briefly overviewed in this section.

The cyclic redundancy check has been an integral part of the computer industry

for quite some time. The CRC-32 algorithm, described in ISO 3309, calculates a

resulting checksum based that is four octets, or 32 bits, in length [28]. CRC-32 is neither

keyed nor collision-proof. Thus, the use of this checksum for message integrity and

validation is not recommended.

MD stands for message digest. MD4 and MD5 are algorithms used to verify data

integrity through the creation of a 128-bit message digest or fingerprint from data input of

any length that is claimed to be unique to that specific data. Both were developed by

Professor Ronald L. Rivest of MIT and are optimized for 32-bit machines.

MD4 was developed in 1990. MD5 is an improved version of MD4; it was

developed in 1992 in conjunction with RSA Data Security, Inc. after a successful attack

was made on MD4. It uses four, more complex, rounds of 16 steps compared to three

rounds in MD4. MD5 is slower, but offers more assurance of data security than MD4.

MD5 will be discussed in greater detail within the next section. The widespread

popularity of the MD family of hash functions is a testament to their innovative and

successful design.

 - 39 -

SHA stands for secure hash algorithm. SHA-1 was designed by the National

Institute of Standards and Technology (NIST) and National Security Agency (NSA). It

produces 160-bit hash values and is generally considered to be the preferred hash

algorithm. It is more resistant to cryptanalysis than MD5 and uses 20 steps in each of the

four rounds. However, it is somewhat slower in execution than MD5.

3.5 The MD5 Hash Function

The MD5 Message-Digest Algorithm was developed in April 1992 by Professor

Ronald L. Rivest at the MIT Laboratory for Computer Science in conjunction with RSA

Data Security, Inc. This algorithm has become widely adopted by computer security

investigators and law enforcement and remains one of the most used hash functions in the

world today. In fact, MD5 has enjoyed widespread use within peer-to-peer file-sharing

networks, where the ability to download a single file from several sources at once is

essentially dependent upon hashing to identify that the files on different machines are

identical, regardless of what they have been named. Furthermore, MD5 hash values for

downloadable files on many public websites are often posted so that the integrity of a file

can be verified once it has been downloaded.

As previously stated, MD5 is basically a way to verify data integrity. The

algorithm computes a digest of the entire data of the message, which is used for

authentication [29]:

“MD5 takes as input a message of arbitrary length and produces as output

a 128-bit message digest, or fingerprint, of the input represented by a 16-digit

 - 40 -

hexadecimal number. It is conjectured that it is computationally infeasible to

produce two messages having the same message digest [on the order of 2^64

operations], or to produce any message having a given pre-specified target

message digest [on the order of 2^128 operations].”

“MD5 is a block-chained digest algorithm, computed over data in phases of 512-

byte blocks organized as little-endian 32-bit words. Each 512-byte block is digested in 4

phases. Each phase consists of 16 basic steps based on each of 4 logical functions, for a

total of 64 basic steps. The first block is processed with an initial seed, resulting in a

digest that becomes the seed for the next block. In general, each basic step depends on

the output of the prior step. When the last block is computed, its digest is the digest for

the entire stream. This chained seeding prohibits parallel processing of the blocks” [30].

This is shown below in Figure 3:

Data Block
(512 bytes)

Seed
(4 32-bit words)

Digest
(4 32-bit words)

Block
Digest

Algorithm

Digest
(4 32-bit words)

Block
Digest

Algorithm

Data Block
(512 bytes)

Figure 3: MD5 as a Block-chained Digest Algorithm

(Source: Joseph D. Touch / USC Information Sciences Institute)

 - 41 -

The definitive paper on the MD5 hashing algorithm is RFC-1321, written by

Rivest. The contents of that request for comments paper relating to the technical

workings of the MD5 hashing algorithm have been reproduced within the next two

subsections to provide the reader with an understanding of the algorithm. RFC-1321

includes a reference implementation in the C programming language, which can be found

in Appendix A of this text.

3.5.1 Terminology and Notation

 In this document a ‘word’ is a 32-bit quantity and a ‘byte’ is an eight-bit quantity.

A sequence of bits can be interpreted in a natural manner as a sequence of bytes, where

each consecutive group of eight bits is interpreted as a byte with the high-order (most

significant) bit of each byte listed first. Similarly, a sequence of bytes can be interpreted

as a sequence of 32-bit words, where each consecutive group of four bytes is interpreted

as a word with the low-order (least significant) byte given first.

Let the symbol "+" denote addition of words (i.e., modulo-2^32 addition). Let X

<<< s denote the 32-bit value obtained by circularly shifting (rotating) X left by s bit

positions. Let not(X) denote the bit-wise complement of X, and let X | Y denote the bit-

wise OR of X and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY

denote the bit-wise AND of X and Y.

 - 42 -

3.5.2 MD5 Algorithm Description

 We begin by supposing that we have a b-bit message as input, and that we wish

to find its message digest. Here b is an arbitrary nonnegative integer; b may be zero, it

need not be a multiple of eight, and it may be arbitrarily large. We imagine the bits of the

message written down as follows:

m0 m1 ... mb-1

The following five steps are performed to compute the message digest of the

message.

Step 1. Append Padding Bits

The message is "padded" (extended) so that its length (in bits) is congruent

to 448, modulo 512. That is, the message is extended so that it is just 64 bits shy

of being a multiple of 512 bits long. Padding is always performed, even if the

length of the message is already congruent to 448, modulo 512. Padding is

performed as follows: a single "1" bit is appended to the message, and then "0"

bits are appended so that the length in bits of the padded message becomes

congruent to 448, modulo 512. In all, at least one bit and at most 512 bits are

appended.

Step 2. Append Length

A 64-bit representation of b (the length of the message before the padding

bits were added) is appended to the result of the previous step. In the unlikely

event that b is greater than 264, then only the low-order 64 bits of b are used.

 - 43 -

(These bits are appended as two 32-bit words and appended low-order word first

in accordance with the previous conventions.) At this point the resulting message

(after padding with bits and with b) has a length that is an exact multiple of 512

bits. Equivalently, this message has a length that is an exact multiple of 16 (32-

bit) words. Let M[0 ... N-1] denote the words of the resulting message, where N

is a multiple of 16.

Step 3. Initialize MD Buffer

 A four-word buffer (A,B,C,D) is used to compute the message digest.

Here each of A, B, C, D is a 32-bit register. These registers are initialized to the

following values in hexadecimal, low-order bytes first):

 word A: 01 23 45 67

 word B: 89 ab cd ef

 word C: fe dc ba 98

 word D: 76 54 32 10

Step 4. Process Message in 16-Word Blocks

We first define four auxiliary functions that each take as input three 32-bit

words and produce as output one 32-bit word.

 F(X,Y,Z) = XY | not(X) Z

 G(X,Y,Z) = XZ | Y not(Z)

 H(X,Y,Z) = X xor Y xor Z

 I(X,Y,Z) = Y xor (X v not(Z))

 - 44 -

In each bit position F acts as a conditional: if X then Y else Z. The

function F could have been defined using + instead of v since XY and not (X)Z

will never have 1's in the same bit position.) It is interesting to note that if the bits

of X, Y, and Z are independent and unbiased, the each bit of F(X,Y,Z) will be

independent and unbiased.

The functions G, H, and I are similar to the function F, in that they act in

"bitwise parallel" to produce their output from the bits of X, Y, and Z, in such a

manner that if the corresponding bits of X, Y, and Z are independent and

unbiased, then each bit of G(X,Y,Z), H(X,Y,Z), and I(X,Y,Z) will be independent

and unbiased. Note that the function H is the bit-wise "xor" or "parity" function

of its inputs.

This step uses a 64-element table T[1 ... 64] constructed from the sine

function. Let T[i] denote the i-th element of the table, which is equal to the

integer part of 4294967296 times abs(sin(i)), where I is in radians. The elements

of the table are given in the appendix.

 Do the following:

/* Process each 16-word block. */
For i = 0 to N/16-1 do

/* Copy block i into X. */
For j = 0 to 15 do
 Set X[j] to M[i*16+j].
end /* of loop on j */

 - 45 -

/* Save A as AA, B as BB, C as CC, and D as DD. */
AA = A
BB = B
CC = C
DD = D

/* Round 1. */
/* Let [abcd k s i] denote the operation
 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

/* Round 2. */
/* Let [abcd k s i] denote the operation
 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */

[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

/* Round 3. */
/* Let [abcd k s t] denote the operation
 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */

[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

/* Round 4. */
/* Let [abcd k s t] denote the operation
 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */

[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

 - 46 -

/* Then perform the following additions. (That is increment each
 of the four registers by the value it had before this block
 was started.) */

A = A + AA
B = B + BB
C = C + CC
D = D + DD

end /* of loop on i */

Step 5. Output

The message digest produced as output is A, B, C, D. That is, we begin

with the low-order byte of A, and end with the high-order byte of D.”

3.5.3 How Secure is the MD5 Algorithm?

 The MD5 hashing algorithm takes as input a message of arbitrary length and

produces as output a 128-bit “fingerprint” or “message digest” of the input. In RFC

1321, Rivest stated, “it is conjectured that it is computationally infeasible to produce two

messages having the same message digest [on the order of 264 operations], or to produce

any message having a given pre-specified target message digest [on the order of 2128

operations” [29]. A 128-bit hash value is so unique that there are 2128 or 3.4028e+38

different possible MD5 hash values, a value so vast when compared to the total number

of electronic files that have been created during the course of human history. Thus, hash

representations can be treated as “fingerprints” or “signatures” for files: so far no two

files have ever been found that have the same MD5 code.

 - 47 -

 According to Simson Garfinkel’s writings on the MD5 hashing algorithm [27]:

“Mathematically, its easy to see that billions and billions of messages have

the same MD5 result, because the MD5 function produces only 128 bits of

output—just sixteen 8-bit digits. So theoretically, if a message is only 17

characters in length, there would probably be 256 different messages that have the

same MD5 code [checksum] (because there would be 256 more possible

messages than possible MD5 codes, which means that some codes would have to

be reused).

So why does MD5 seem so secure? Because 128-bits allows you to have

2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456 different possible

MD5 codes. That is a number that is billions and billions of times larger than the

total number of documents that will ever be created by the human race for the

next thousand years. So even though many different documents have the same

MD5 code, human beings aren’t likely to find many of them in their lifetimes.”

Den Boer and Bosselaers have made the first important advance in the

cryptanalysis of the MD5 hashing algorithm by discovering what are termed as pseudo-

collisions for the compression function of MD5 [25] [26]:

“A pseudo-collision for the compression function is exemplified by fixing

the value of some message block and finding two distinct values for the chaining

variable that provide the same output. While the existence of pseudo-collisions is

significant on an analytical level, it is of less practical importance. Recall that

 - 48 -

only a single chaining variable is used during hashing and so the behavior of two

related chaining variables is not directly relevant. Instead, it would be more

significant if we could identify the value of a single chaining variable for which

two different message blocks produce the same output from the compression

function. Such an occurrence would have obvious implications for the collision-

resistant property we often desire of a hash function. If the value of the chining

variable involved were not the same as the initial value (as provided in the

algorithm specifications) then such an occurrence would be termed a collision for

the compression function. If, however, we could identify two message blocks

which provide a collision when the pre-specified initial value is used, then we

would have full collisions for the hash function.”

In 1996 it was announced that Hans Dobbertin’s research showed MD5 to be

vulnerable to collision search attacks. “While no collisions for MD5 have yet been

found, Dobbertin demonstrated collisions for the MD5 compression function in around

10 hours on a PC” [23]. Since the MD5 hash algorithm was specified in 1992,

computational power has increased exponentially, and some would argue it is no longer

computationally infeasible to intentionally duplicate an MD5 hash. “Van Oorschot and

Wiener have considered a brute-force search for collisions in hash functions, and they

estimate a collision search machine designed specifically for MD5 (costing $10 million in

1994) could find a collision for MD5 in 24 days on average. The general techniques can

be applied to other hash functions” [25].

 - 49 -

 “Existing signatures that were generated using MD5 are likely to remain safe

from compromise since it seems that current techniques used to cryptanalyze MD5 do not

offer any advantage in finding a second preimage. Existing signatures should not be

considered as being at risk of compromise at this point. Likewise the random-looking

appearance of the output from MD5 and the property of being one-way are not

considered to be seriously in question” [26].

 So, how safe is MD5? No one knows for certain. However, there are sound

reasons to think that MD5 is still quite safe for most purposes, and currently impossible

to defeat in practice. While we do not know that some mathematician will come up with

a systematic method of modifying files without changing their MD5 hash values, we do

know that so far no one has published such a technique. MD5 has resisted a considerable

amount of professional analysis by cryptographers attempting to see if it can be defeated.

3.5.4 Why Choose MD5 Over Other Standard Hashing Algorithms?

Rivest states that “although MD5 is slightly slower than MD4, it is a strengthened

algorithm and more conservative in design. MD5 was designed because it was felt that

MD4 was ‘“at the edge’” in terms of risking successful cryptanalytic attack. MD5 backs

off a bit, giving up a little in speed for a much greater likelihood of ultimate security”

[29].

While MD4 is considered obsolete due to its ease of cryptanalytic attack, MD5 is

still considered to be safe. SHA-1 is a revision of the Secure Hash Algorithm (SHA),

 - 50 -

which was revised due to an unreported fault in the original implementation. Even

though SHA-1 now appears to be stronger cryptographically, MD5 can still be considered

for use in hashed Modification Detection Codes (MDCs) for applications where the

superior performance of MD5 is critical. Again, users must remain aware of possible

cryptanalytic developments regarding any particular cryptographic hash function, as new

discoveries regarding existing algorithms are made and as new algorithms are developed.

The MD5 hashing algorithm is designed to be simple to implement and very efficient on

32-bit computer systems. It does not require any large substitution tables and can be

coded very compactly. Table 3 below depicts a summary of popular hash functions and

their relative speeds and upper bounds on strength. The number of cipher or compression

function operations currently believed necessary to find preimages and collisions are also

specified.

Name Bitlength Operations to
Find Collision

Operations to
Find Preimage

Rounds x Steps
per round

Relative
Speed

MD4 128 2^20 2^128 3 x 16 1.00
MD5 128 2^64 2^128 4 x 16 0.68
SHA-1 160 2^80 2^160 4 x 20 0.28

Table 3: Summary of selected hash functions based on MD4

 - 51 -

Chapter 4

4.1 The Need for a National Software Reference Library

A typical desktop computer contains gigabytes of information—perhaps as many

as 100,000 individual files or even more. In some investigations, multiple computers and

various storage devices such as magnetic tapes, thumb drives, and other types of media

are involved. To manually investigate each and every one of the files stored within a

typical computer system would take a monumental effort and be very expensive. Such an

undertaking could take literally thousands of staff hours and months to complete.

Compounding the problem is the large increase in criminal cases involving electronic

evidence over the past decade. “The FBI alone investigated well over 5,000 cases [in

2002], compared with a few hundred just 10 years ago” [31]. These cases include child

pornography, racketeering, hacking, cyber-attacks, illegal gambling, Internet fraud,

identity theft, and software piracy.

Many of the files residing on a typical computer are executable files, operating

system files, library files, installation files, etc., and many do not produce evidentiary

value toward an investigation. Computer forensics investigators must develop methods

and automated tools to efficiently and effectively identify and filter out these unaltered,

common system files. Law enforcement officials often utilize databases to identify

evidence such as fibers, inks, firearms, and fingerprints in their investigations. With this

in mind, the National Institute of Standards and Technology (NIST) developed the

National Software Reference Library (NSRL) as a database of cryptographic hashes of

 - 52 -

files from legitimate software packages. These cryptographic hashes can be compared to

the hashes of files from the body of evidence, and an investigator can dramatically

eliminate as many known files as possible that are not relevant to the investigation.

4.2 Established Criteria by Law Enforcement

The NSRL is designed to meet four criteria established to counter law

enforcement’s objections to other computer forensics tools available in the marketplace.

The objections and criteria for a software library and signature database were [32]:

1) Objection: “There are no unbiased and neutral organizations involved in the

implementation of investigative tools.”

Criteria: NIST is a neutral organization (not law enforcement or a software

vendor) chosen for its international reputation in providing clean, unbiased, and

objective reference data.

2) Objection: “Law enforcement has no control over the quality of data provided by

the available tools since they come from independent market-driven sources.”

Criteria: NIST provides an open rigorous process for assuring the quality of the

data.

 - 53 -

3) Objection: “There are no repositories of original software available from which

data can be reproduced.”

Criteria: The NSRL will become an international resource software repository for

the constituent file information included in the data. NIST data is traceable and

court-admissible.

4) Objection: “Each tool provides only a limited set of capabilities with respect to

the information that can be obtained from file systems under investigation.”

Criteria: The reference data will include full information on each file including

cross-reference of data for use by other tools.

4.3 Construction of the National Software Reference Library

The NSRL project is supported by the U.S. Department of Justice’s National

Institute of Justice, NIST’s Office of Law Enforcement Standards, the Federal Bureau of

Investigation, the Department of Defense Computer Forensics Laboratory, the

Department of Justice’s Technical Support Working Group, the U.S. Customs Service,

and numerous other federal, state and local law enforcement, government, software

vendors, and industry organizations. The NSRL project is designed to provide research,

development, and evaluation of new and existing forensic technologies and methods to

further the effective and efficient use of technology used in the investigation of computer

related crimes.

 - 54 -

The NSRL is a physical repository of nearly 4,000 software titles including

operating systems, utilities and applications, database management systems, graphics

packages, component libraries, games, etc. The library contains a balance of the most

popular (most encountered by investigators) and most desired (most pirated by criminals)

software products. The NSRL currently contains software in 32 languages. Information

about the software such as application name, version, manufacturer, etc. is entered into a

database, and a unique identifier is allocated to the software package, as well as

identifiers for each piece of media in the package. The NSRL also contains file profiles

and file signatures (or “fingerprints”) that can be used to identify known and unknown

files on computer systems that are being analyzed as part of an investigation. Each

software title is catalogued and stored on shelves at NIST for archival and reference

purposes.

 The NSRL gathers its software from numerous sources. Original commercial

off-the-shelf software is both purchased by, and donated to, the NSRL. Individual

software manufacturers and other organizations make donations are made either via the

original commercial media or a download from a corporate or other website. This

software is documented as an original source for known files and stored on CD, DVD,

diskette, or magnetic tape as a permanent part of the NSRL. “The concept is to collect as

many different examples, versions, and updates of software as possible in order to

generate file signatures for as many known files as possible” [33].

 - 55 -

“The NSRL is also investigating downloaded files from websites, by burning the

downloads onto CDs that can be stored on [its] shelves. The digital signatures from these

files are not traceable to [NIST’s] level of satisfaction and are not included in the RDS,

but are available as they may be of interest to the community.” [34]

4.4 The NSRL Reference Data Set (RDS)

The NSRL gathers its software from many sources as stated above and then

integrates file profiles computed from this software containing file signatures and other

identifying information into a Reference Data Set (RDS). As of December 2003, the

RDS contains nearly 18 million files (consisting of nearly 8 million hash codes). Law

enforcement, government, and industry can utilize the RDS to review computer files by

matching file profiles with those in the database to make their investigations more

efficient.

This is achieved by calculating a unique identifier or hash code which is a

hexadecimal character string for each file based on its contents. The hash code is

computed in such a way that if one bit in the file is changed, a completely different hash

code is produced. “To minimize the possibility that two different files may generate the

same hash code, a sufficiently large hash value is computed” [3].

 - 56 -

Each fingerprint is unique to a specific file and can be used to determine if [35]:

 A file has been altered.

 A file has been renamed or other means to hide it have been attempted.

 A file is what it purports to be.

 A file is missing when it should be found.

 A file is actually present on a disk.

Four file signatures are created for each file within the RDS. The hash values

used in NSRL’s Reference Data Set are the Secure Hash Algorithm (SHA-1), Message

Digest 4 (MD4), Message Digest 5 (MD5), and a 32-bit Cyclical Redundancy Checksum

(CRC32). The use of multiple algorithms allows any one particular hash value to be

cross-referenced. “Additionally, this further ensures that no two files will have the same

set of hash values” [3].

The hash values, directory name, file name, file size, version, and other source

information for each file are stored within the RDS. The computed hash values are

validated by a separate, parallel, and independent process to ensure they can be verified

to identify specific files in the RDS. Upon successful verification and validation, the

RDS is written to a master CD, duplicated, and distributed through NIST’s Standard

Reference Data Office as Special Database #28, available online at

http://www.nist.gov/srd/nistd28.htm [35].

 - 57 -

RDS subscriptions are available from NIST at a current cost of $90 per year,

which entitles the purchaser to receive up to four quarterly releases. Those who

contribute to the NSRL receive one release at no cost. NIST encourages, and does not

charge for, redistribution of the RDS.

Special Database #28 was first released in October 2001. The RDS is distributed

when sufficient changes to the database have been made, which to date has been

quarterly. Each release is a cumulative, full version. The NSRL is used by many law

enforcement and computer forensics organizations by importing data from the RDS into

various computer forensic tools.

 A permuted index accessible via the Internet lists software made available with

the latest RDS release. It can be sorted by product name (i.e., “Age of Empires” or

"Nero”), manufacturer name (i.e., “Microsoft” or “Ahead Softwrae”), application type

(i.e., “Game” or “CD Burning”), language, operating system, or product code (not

intuitive but included for cross references).

4.5 Uses of the RDS

Law enforcement and computer forensics investigators are using cryptographic

hash databases like the NSRL more and more frequently. “By computing the hash of a

suspect file and then looking up that hash in the RDS database, for example, it is possible

to determine if that suspect file is a copy of a file that has previously been evaluated,

characterized, and registered” [7]. If a specific file’s profile and cryptographic hash

 - 58 -

value match the database of known files, then the file can be eliminated from close

scrutiny. If they do match, the file is unknown and should be examined in greater detail.

An example of this file-reduction technique would be a forensic investigation

regarding child pornography on a Windows XP machine. The Windows XP operating

system itself contains nearly 6,000 images, which are known gifs, jpegs, icons, etc. By

applying the hash sets within the NSRL, the investigator will not have to look at any of

those files that match the known file signatures right off the bat. Table 4 below

demonstrates three typical graphics files and one rogue graphic file from an investigation.

(© Microsoft Corporation)

bliss.bmp
MD5: AE3FAD12977E9950D0D59E9ABB896616

Matches RDS:
FileSize: 51127
ProductCode: 1746 (Microsoft Windows XP)
OpSystemCode: WIN (Microsoft Windows XP)

The file is flagged as known, and the investigator can
disregard it for evidentiary value.

(© Microsoft Corporation)

win2000l.gif
MD5: 0D3B774F122D2CBF22671EA52085D0E6

Matches RDS:
FileSize: 9644
ProductCode: 1746 (Microsoft Windows XP)
OpSystemCode: WIN (Microsoft Windows XP)

The file is flagged as known, and the investigator can
disregard it for evidentiary value.

 - 59 -

(© Microsoft Corporation)

Blue Lace 16.bmp
MD5: 58EB2320D062E6560872ED8B5809F589

Matches RDS:
FileSize: 5868
ProductCode: 1746 (Microsoft Windows XP)
OpSystemCode: WIN (Microsoft Windows XP)

The file is flagged as known, and the investigator can
disregard it for evidentiary value.

enterxxx.jpg
MD5: F4ACDCA7290E07132FD1AC9E4FD88D2B

Does Not Match RDS

The file is flagged as unknown, and an investigator
can closely examine it for evidentiary value.

Table 4: Use of the RDS in Examining Graphics Files

Investigators can also search for files that are something other than what they

purport to be. “It is not uncommon for a suspect to hide evidence (i.e., a pornographic

.BMP image) by renaming the file to the same name found in standard operating systems

(i.e., a .BAT file) or software applications” [6]. The contents and corresponding hash

value derived from the camouflaged image will not match the file it claims to be, and it

will not match the entry for the system file within the RDS.

Conversely, the suspect could disguise a known malicious executable file as a

harmless .JPG image, hoping it will go unnoticed. Even if the filename and extension are

changed, the contents and corresponding hash values derived from the file will not

 - 60 -

change. If the computed hash value exists as a known malicious file within the RDS, the

suspect’s attempts to thwart detection will fail.

“The NSRL contains both benign and malicious software and is intended to be

used as a filter of ‘known’ file signatures, not ‘known good’" [36]. Investigators can also

search for files that match a certain profile in the RDS, such as pirated software in the

case of a suspected intellectual property case. Another example would be to search for a

malicious hacking tool or cracked software.

Another use of the RDS is to determine if expected files are missing from a

computer system. This would be a red flag to the investigator, causing him or her to

probe further. For example, the investigator may determine that the suspect has

attempted to hide illegal activity by deleting the missing files.

4.6 Specifications and File Formats of the RDS

NIST has produced a detailed report outlining the formats of data included in the

NSRL RDS distribution [37]. The contents of that document relating to individual data

elements and logical and physical record structures have been reproduced within this

section to provide the reader with an understanding of the database.

4.6.1 RDS Data Elements

 Table 5 below represents data elements used in the NSRL RDS distribution

package. Char represents data of type character using UTF-8 encoding of 8-bit bytes.

 - 61 -

Integer represents data of type integer including variations of the integer type (short,

long, etc.)

All of the data is stored in the distribution files in human-readable form. No

binary data or nonstandard characters are used. Char fields are represented by alphabetic,

numeric, and punctuation character strings surrounded by double quotes (“). Integers are

represented by unquoted strings of decimal digits.

DATA ELEMENT TYPE MAXIMUM LENGTH
(IN CHARACTERS)

DESCRIPTION

ApplicationType Char 50 Character string that
identifies a general use of the
software product

CRC32 Char 8 32-bit Cyclic Redundancy
Checksum (file signature) of
a specific file as defined in
CCITT X.25 link-level
protocol and FIPS PUB 71

FileName Char 255 Name of a specific file within
a software product

FileSize Integer 15 Size in bytes of a specific file
Language Char 150 Character string that

identifies the language(s)
used in the software product

MD5 Char 32 128-bit Message Digest 5
(file signature) of a specific
file as defined in IETF RFC
1321

MfgCode Char 15 Character identifier of a
specific vendor or
manufacturer

MfgName Char 150 Identifying name of the
vendor or manufacturer of
the software product, e.g.,
“Microsoft”

 - 62 -

DATA ELEMENT TYPE MAXIMUM LENGTH
(IN CHARACTERS)

DESCRIPTION

OpSystemName Char 150 Identifying name of the
operating system on which
the software product
executes, e.g., “Windows
NT”

OpSystemCode Char 15 Code identifier of a specific
operating system version

OpSystemVersion Char 15 Characters that identify
individual versions of an
operating system on which
the software product
executes, e.g., “4.0”

ProductCode Integer 15 Identifier of a specific
software product, e.g., “103”;
maps to the NSRL database

Product Name Char 150 Identifying name of the
software product, e.g.
“Netscape Communicator”

ProductVersion Char 15 Characters that identify
individual versions of a
software product, e.g., “3.0”

RDSVersion Char 20 Character string that
identifies the date and
version of the RDS
distribution

SHA-1 Char 40 160-bit Secure Hash
Algorithm message digest
(file signature) of a specific
file as defined in FIPS PUB
180-2

SpecialCode Char 1 A single character field that
identifies special file
signature entries, such as
malicious code signatures or
other types of special entries

Table 5: Data Elements of the NIST NSRL Reference Data Set
(Source: National Institute of Standards and Technology)

 - 63 -

4.6.2 Logical Record Structure of the RDS

A logical record forms one item or grouping of information from the data

elements defined in the above table within the NSRL RDS. There are five such logical

record types:

1. File record

2. Manufacturer record

3. Product record

4. Operating system record

5. Version record

Each is described in Tables 6 through 10 below. Examples of each type of record are

also provided. Figure 4, also shown below, illustrates how these files relate to each other.

Figure 4: NSRL RDS Logical Record Relationships

(Source: National Institute for Standards and Technology)

 - 64 -

RECORD
FORMAT

EXAMPLE COMMENTS

SHA-1 “AC91EF00F33F12DD491CC91EF00F33F1
2DD491CA”

MD5 “DC2311FFDC0015FCCC12130FF145DE78
”

CRC32 “14CCE9061FFDC001”
FileName “WORD.EXE”
FileSize 1217654 In bytes
ProductCode 103 The Product

record will
contain more
information about
this product code.

OpSystemCode “NT4WKS” The Operating
System record
will contain more
information about
this operating
system code.

SpecialCode “” Blank (no value)
– normal file
“M” – malicious
file
“S” – special file

Table 6: File Record
(Source: National Institute of Standards and Technology)

RECORD
FORMAT

EXAMPLE COMMENTS

MfgCode “Microsoft” MfgCode is
referenced in the
Operating System
and Product
records. MfgCode
is unique within
this record set.

MfgName “Microsoft Corporation”
Table 7: Manufacturer Record

(Source: National Institute of Standards and Technology)

 - 65 -

RECORD
FORMAT

EXAMPLE COMMENTS

OpSystemCode “NT4WKS” OpSystemCode is
referenced in the
File record and is
unique within the
Operating System
record set.

OpSystemName “Windows NT”
OpSystemVersion “4.0”
MfgCode “Microsoft” MfgCode references

an entry in the
Manufacturer
record.

Table 8: Operating System Record
(Source: National Institute of Standards and Technology)

RECORD
FORMAT

EXAMPLE COMMENTS

ProductCode 103 ProductCode is
referenced in the
File record and is
unique within the
Product record set.

ProductName “Microsoft Word”
ProductVersion “2000”
OpSystemCode “Win98” OpSystemCode is

referenced in the
Operating System
record.

MfgCode “Microsoft” MfgCode references
an entry in the
Manufacturer
record.

Language “English” If multiple
languages are
present, they will be
comma separated
within this field.

ApplicationType “Operating System”
Table 9: Product Record

(Source: National Institute of Standards and Technology)

 - 66 -

RECORD
FORMAT

EXAMPLE COMMENTS

SHA-1 “AC91EF00F33F12DD491CC91EF00F33F1
2DD491CA”

This value of SHA-
1 is computed from
the SHA-1 values of
the four other files.

RDSVersion “2001/03/08 0.2” Assigned to each
quarterly release of
the RDS.

Table 10: RDS Version Record
(Source: National Institute of Standards and Technology)

4.6.3 Physical Record Structure of the RDS

 The RDS consists of five physical data files that correspond to the five logical

record types, one file per logical record type. The character format is UTF-8 (8-bit

ASCII), one logical record per physical line terminated with ASCII characters 13 and 10

(hexadecimal 0D0A). Individual fields are separated by comma (,) within each line.

Character field values are surrounded by double quotation marks (“”). The first record of

each file contains the field names instead of data values. Examples of the contents of

each file are presented in Tables 1 through 15 below. The first record in each figure

represents the first or header record found in each file. The second record in each figure

represents all subsequent or detail records in each file.

”SHA-1”,”MD5”,”CRC32”,“FileName”,”FileSize”,”ProductCode”,”OpSystemCode”,
”SpecialCode” <13><10>
“AC91EF00F33F12DD491CC91EF00F33F12DD491CA”,“DC2311FFDC0015FCCC1
2130FF145DE78”,“14CCE9061FFDC001”, “WORD.EXE”,1217654,103, ”T4WKS”,””
<13><10>

Table 11: Example FILE Data
(Source: National Institute of Standards and Technology)

 - 67 -

“MfgCode”,”MfgName” <13><10>
“Microsoft”,“Microsoft Corporation” <13><10>

Table 12: Example MANUFACTURER Data
(Source: National Institute of Standards and Technology)

“OpSystemCode”,“OpSystemName”,“OpSystemVersion”,“MfgCode” <13><10>
“NT4WKS”,“Windows NT”,“4.0”,“Microsoft” <13><10>

Table 13: Example OPERATING SYSTEM Data
(Source: National Institute of Standards and Technology)

“ProductCode”,“ProductName”,“ProductVersion”,“MfgCode”,”OpSystemCode”
<13><10>
“103”,“Microsoft Office”,“2000”,“Microsoft”,”Win98”,”English”,”Word Processor”
<13><10>

Table 14: Example PRODUCT Data
(Source: National Institute of Standards and Technology)

“SHA-1”,”RDSVersion” <13><10>
“DD161AEFCC271124533FFFA1445764BDE12515AE”,“2001/03/08 0.2” <13><10>

Table 15: Example RDS VERSION Data
(Source: National Institute of Standards and Technology)

4.7 Current Version of the RDS

The latest version of RDS is Version 2.3, which was released in December 2003

on four CDs. Each CD can be used separately as a targeted hash set for any of four

categories: non-English files, operating systems, applications, and images. Each hash set

is variable in size with a full complement of files from one or more packages. “The files

contained within the RDS are named NSRLFILE.TXT, NSRLOS.TXT,

NSRLMFG.TXT, NSRLPROD.TXT, and VERSION.TXT” [38]. The investigator can

determine whether to use these files separately, or to concatenate and arrange them into a

 - 68 -

combined database of information, as needed. The contents of the latest RDS version are

shown below in Table 16.

CD # Contents Files Unique SHA-1 Values
CD "A" Non-English Files 4,644,674 1,465,141
CD "B" Operating Systems 2,513,772 1,078,149
CD "C" Applications 7,545,675 3,209,385
CD "D" Images 3,205,843 2,568,575

TOTAL 17,909,964 7,198,856

Filename Corresponding MD5 and SHA-1 Values
NSRLMfg.txt MD5:

0AD310394129BB2F031ECE85DA019CD5
 SHA-1:

A7F79564A95CC4AC023012191539BA536AE4C606
NSRLOS.txt MD5:

0E36C2617221AB6962CCB3D70F835D9A
 SHA-1:

E316A8F86CCE25AAC996BC4FBF217DD5393DA040
NSRLProd.txt MD5:

4CEB71FFBFF905EDE38F3D6A6317F514
 SHA-1:

E5B3C6815C4AA0966F86D524DB356414063F93E4
NSRLFile.txt (CD “A”) MD5:

C0214C9E873742175F37728277C1081E
 SHA-1:

B7DAFF4A43D39AF918947254E2634559829E754A
NSRLFile.txt (CD “B”) MD5:

EC72F9E0509E9B6FF1F7B0E938E2EB3C
 SHA-1:

7FE9F1986A6DD7589ED9DAD7E9CD3C9FACF8D954
NSRLFile.txt (CD “C”) MD5:

DC48A4A42BE49D86563C104DF534E289
 SHA-1:

C684A18C2A6297F6ACFC875766A767C28FE73CD6
NSRLFile.txt (CD “D”) MD5:

B15B2DAFEA1A0C821CC3117251B43B1D
 SHA-1:

211CA86816C235BE02A9D89C3E3801D22298AB91
Table 16: Current Version of the NSRL RDS

(Source: National Institute of Standards and Technology)

 - 69 -

4.8 Effectiveness of the RDS Hash Sets

The NSRL allows the investigator to focus on unknown files which do not have

profiles and fingerprints in the NSRL database. “The reference library is a tool that can

cut an investigator’s time by 25 to 95 percent, depending on the number of files on the

hard drive,” according to Gary Fisher of the NIST’s Information Technology Laboratory

and project manager for NSRL [31]. Table 17, a reprint of Table 1 from Chapter 1, is

shown below with the number and percentages of files successfully identified by the

NSRL RDS.

OS/APPS FILES
INSTALLED

PERCENT
IDENTIFIED

FILES
UNKNOWN

FILES ON
DISTRIBUTION
CD(S)

Virgin Win98 4,266 93% 297 18,662
Virgin NT4 WS 1,659 86% 239 17,904
Virgin Win2K
Pro

5,963 86% 839 16,539

Virgin Win ME 5,169 93% 383 11,512
Win98+Office
2K

23,464 98% 596 43,327

Win ME+Office
2K

24,112 98% 526 32,758

Table 17: Effectiveness of the NSRL RDS
(Source: National Institute of Standards and Technology)

 - 70 -

 Chapter 5

5.1 Software Design Methodology

In the analysis stage of a computer forensics investigation, it is not typically

possible or practical to examine all suspect files. Therefore, investigators rely upon

effective yet efficient methods that can quickly reduce the number of files requiring close

examination. One such method, to group files into two general categories: known and

unknown, is implemented by this research. The resulting software application is detailed

within this chapter. The underlying design methodology is to calculate the hash values

for suspect files and compare them with a database of known file hash values and file

profiles, i.e., the NSRL RDS database. An overview of this process is given below in

Figure 5.

Unknown Files
Image of Seized Disk

Forensic Investigation
Analysis Application

Known FilesNSRL Hash Values

Figure 5: Software Design Methodology

 - 71 -

This software application assumes that the drive being analyzed is a forensic bit

stream backup of the original storage media. This ensures that none of the original

evidence can possibly be damaged or corrupted during the analysis process. The

application also assumes that any and all previously deleted files have been restored

using a separate forensic file recovery application.

This software application was created using Visual Basic 6.0, Service Pack 5.

This programming environment allows for rapid application development and the

creation of a graphical user interface, which is quickly becoming the preferred operating

environment by forensics analysts. The full source code listings for this software

application can be found in Appendix B of this text. Figure 6, shown below, shows a

sample execution of the software application.

Figure 6: Sample Execution of the Software Application

 - 72 -

5.2 Preparing Data from the RDS

As stated in Chapter 4, the RDS contains signatures and file profiles within a

four-CD distribution, each of which targets one of the following areas: non-English files,

operating systems, applications, and images. Information defining each file’s profile is

contained in a relational format between several comma separated text files on the RDS

distribution:

 NSRLMfg.txt contains information relating individual files to any of 514

software manufacturers.

 NSRLOS.txt relates individual files to any of 28 operating system

configurations. These entries include details of the operating system such as

name, version, and manufacturer.

 NSRLProd.txt contains information relating individual files to any of 4,726

specific software products. These entries include details of the software

product, including name, version, operating system, manufacturer, language,

and application type.

 NSRLFile.txt contains the central file profile information. This file contains

the SHA-1, MD5, and CRC32 hash values for each file within the RDS, file

name, file size, product information, operating system, and a special code.

This special code serves as a red flag for the investigator, denoting whether

the file is “known good” or “known bad.” The entire RDS contains

17,909,964 unique file profiles and 7,198,856 unique hash values.

 - 73 -

This data must be organized in such a format that the software program will

efficiently access it. A simple lookup from a sequential file will not serve this purpose,

and typical spreadsheet applications cannot handle nearly eighteen million unique

records. Therefore, a database application such as Microsoft Access is required to

facilitate the RDS database and its interaction with the software application.

Each of the files contained within the RDS is imported as tables into Microsoft

Access databases. Although this research is only relevant to the NSRLFile file, all other

files are imported so that they may be implemented for cross-referencing purposes in the

future. To ensure manageability of data, four databases were created (one for each of the

four CDs within the RDS). This is done using the Import Wizard to import the files as a

comma delimited format. The first row contains field names and text is qualified within

quotation marks. Each of the four files on the CD are imported into four tables, each

with its respective name. Data types (i.e., text, long integer, etc.) are assigned for each of

the fields. The NSRLFile table is then sorted and indexed by the MD5 hash code. This is

essential for comparing the calculated hash values from the seized hard drive with the

database in an expedient manner. No primary key is needed, since each table has

uniquely identifiable codes.

Figures 7 – 10, shown below, show each of the four database tables created from

the comma delimited information contained within the RDS database: NSRLMfg,

NSRLOS, NSRLProd, and NSRLFile. Each of these particular tables is derived from

CD_A, the database containing non-English software.

 - 74 -

Figure 7: Sample NSRLFile Table

Figure 8: Sample NSRLMfg Table

 - 75 -

Figure 9: Sample NSRLOS Table

Figure 10: Sample NSRLProd Table

 - 76 -

In order to facilitate data between the four database tables, relationships are

required between common fields (i.e., ProductCode, OpSystemCode, MfgCode). Figure

11, shown below, demonstrates the relationships that are created between data tables.

Figure 11: Relationships Created Between Data Tables

5.3 Logging the Investigation

 Two types of logs are kept by the software application. These logs can be used to

further assist the investigator, i.e., he or she may take the information produced in comma

 - 77 -

separated format by these log files and manipulate the data using a spreadsheet

application. The first is a general application log that contains the date and time of every

command performed by the investigator. This log file is created within a directory

named “Logs” at the beginning of the software application’s execution and the filename

corresponds with the current date and time at execution. For example, if an investigation

were performed on February 27, 2004 at 10:40:39 (24-hour clock), the resulting filename

would be 02272004104039.txt. This naming convention ensures that no two log files

will have the same name. An example of the contents of a typical log file is shown

below:

02/27/2004 10:40:39 Log File Created
02/27/2004 10:40:47 Disk Analysis of C:\Inetpub created.

 Filename: 02272004104047.txt
02/27/2004 10:42:21 File preview of filename: printer.gif
02/27/2004 10:43:02 Disk Analysis of C:\Windows created.

 Filename: 02272004104302.txt
02/27/2004 11:24:36 Log File Closed

 The other log file created by the software application maintains information about

each of the files investigated by the analysis process. This log file is created within a

directory named “Diskanalysis” at the beginning of each execution of the “Choose

Folder” command. The filename is created using the same naming convention as the

general application log. This log contains the path of each file investigated by the

software application, its MD5 hash result, and a flag alerting the investigator whether or

not the file matches the RDS database. An example of the contents of a typical log file is

shown below:

 - 78 -

"Path","MD5 Hash",”Match”
"C:\WINDOWS\Web\TSWeb\bluebarh.gif","409f500aca53f8102d9a8c2dbd1f1a61",”X”
"C:\WINDOWS\Web\TSWeb\bluebarv.gif","f915c1b57047a31fe0e257e8e853e5f9",”X”
"C:\WINDOWS\Web\TSWeb\default.htm","06c36aa1b2c265accc7d4b49745eda57",”X”
"C:\WINDOWS\Web\TSWeb\msrdp.cab","7da462cd62642f2a61e8fec78cdf52a1",”X”
"C:\WINDOWS\Web\TSWeb\Thumbs.db","718f03a2785433c26c8d960f64879b25",””
"C:\WINDOWS\Web\TSWeb\win2000l.gif","0d3b774f122d2cbf22671ea52085d0e6",”X”
"C:\WINDOWS\Web\TSWeb\win2000r.gif","3540a7d2df234eafcbb475d795284f29",”X”

5.4 Searching for Files

 The first step in analyzing files contained on the forensic backup of the original

media begins with the computer forensics investigator pressing the “Choose Folder”

command from the toolbar. The software application utilizes the BrowseForFolder

functionality of Visual Basic as shown below:

getdir = BrowseForFolder(Me, "Select A Directory", "c:\")

A function then executes to recursively list each of the files within the specified

folder, including all of the folder’s subdirectories. Using the FileSystemObject Object

Model, the software application can easily access folders and files. The function, shown

below, extracts information from each file, including name, size, type, creation date and

time, accessed date and time, modification date and time, path, and attributes. During

this process, the status bar at the bottom of the application window informs the

investigator which file is currently being processed. The information gathered by this

function is then stored in hidden fields of a ListView control corresponding to the file

under investigation for future use.

 - 79 -

Set fol = fso.GetFolder(sPath)

For Each fil In fol.Files

Set listobj = ListView1.ListItems.add(, , fil.Name)
 listobj.SubItems(1) = fil.Size
 listobj.SubItems(2) = fil.Type
 listobj.SubItems(3) = fil.DateCreated
 listobj.SubItems(4) = fil.DateLastAccessed
 listobj.SubItems(5) = fil.DateLastModified
 listobj.SubItems(6) = fil.Path
 listobj.SubItems(7) = fil.Attributes

For Each sub1 In fol.SubFolders
 ShowAllFiles sub1.Path
Next

5.5 Hashing Files

 Visual Basic does not natively contain any file hashing functionality. The MD5

reference implementation is written in the C programming language, so a dynamic linked

library (DLL) is programmed using the source code from the MD5 reference

implementation. This DLL, also written in C, allows the software application to compute

MD5 digest strings for files. To do so, a Visual Basic module is implemented to contain

a wrapper function that takes a filename as input, calls the DLL which generates the MD5

digest of the file’s content, and passes the resulting hash value back to the software

application. These hash results are stored within hidden fields for each file under

examination in the ListView control for later use in comparing hash values with the RDS

database.

5.5.1 A Note Regarding Zero-Byte Files

As previously stated, the MD5 file hashing algorithm is performed over an entire

message and the resulting hash value depends upon each and every bit of the input. Zero-

 - 80 -

byte files contain zero bits; therefore they will always result in the exact hash value. The

message digest for zero-byte files is D41D8CD98F00B204E9800998ECF8427E. The

NSRL RSD contains numerous zero-byte hash values and file profiles, so an alternative

method of filtering these files is required. If a particular file under investigation results in

a match with the RDS database, and the resulting hash value is equal to that of a zero-

byte file, then other characteristics of that file must be compared to the file profile within

the RDS. If the file name matches the one found in the profile, then the file is classified

as known. Otherwise, it is classified as unknown, and the investigator can conduct

further analysis on the file.

It is also worth noting that zero byte files, if contained on a Windows NT, 2000,

or XP NTFS partition, may contain data streams. These data streams are cleverly

concealed from the investigator, and do not show as data within the zero-byte file. Thus,

each and every zero-byte file on the suspect hard drive should be analyzed for data

streams.

5.6 Comparing File Hashes with the RDS

 Once a directory and its corresponding subdirectory tree is successfully hashed by

the software application, the hash values must be compared with the RDS database and

classified as either known or unknown. This procedure is conducted using ADODB

connections to each of the four RDS database files created in the file importation process.

The software application takes the hash value of the file currently being examined from

the ListView control and queries the four databases, in sequential order, using a function

 - 81 -

provided by the Microsoft.Jet.OLEDB.4.0 provider named Seek. This function is very

efficient in finding the hash values from the millions of records inside the indexed table

of files and their corresponding hash values and profiles within the database. If a match

is determined, the matching hash value and file name are sent back to the software

application where they are stored in hidden fields inside the ListView corresponding to

the file currently under examination. Additionally, the file is red-flagged with an “X” in

a visible field labeled as “Match” to alert the investigator whether or not the file matches

the RDS database. An example of a query performed by the software application on the

first database file is shown below:

Rset1.Seek hashval
 If Not Rset1.EOF Then
 fname = Rset!FileName
 outhash = Rset1!MD5
 matcha = outhash & " " & fname
 matchfound = "X"
 Else
 matcha = ""
 End If

5.7 Investigative Analysis Views

 Computer forensics analysis requires investigators to work in a hands-on

environment and utilize adept visual sensory skills. To aid the investigator in his or her

examination of those files that are unknown (i.e., those files not matching the RDS

database of known hash values and file profiles), the software application developed in

association with this research features a wealth of visual information. This visual

information includes a hex editor view, file information view, and file preview view.

These features are explained in detail within the following three subsections.

 - 82 -

5.7.1 Hex Editor View

The Hex Editor view allows a computer forensics investigator to determine the

hexadecimal and ASCII contents of a file under analysis. By viewing a file’s header

information, an investigator can quickly determine if a file is camouflaged (e.g., a

renamed image, sound, or video file) or if other metadata contained within a file is of

evidentiary value.

 This procedure loads the file selected from the ListView control and opens it for

binary access read access. The contents of the file are read into a string variable named

HexText. The file is then closed, and the HexText string is translated by a function

named FileToHex which translates the data into its corresponding hexadecimal and

ASCII format. The results are displayed in a specially formatted ListView, as shown in

the example in Figure 12 below.

Figure 12: Hex Editor View

 - 83 -

5.7.2 File Information View

A file information view is also provided to the computer forensics investigator.

The information provided in this window includes the complete path name of the file

being examined, file attributes, file size, file type, file creation date and time, file

accessed date and time, file modified date and time, MD5 hash value, and matching hash

values and file profiles that correspond with each of the four RDS databases (if

applicable).

This feature provides the investigator with a quick and easy to read overview of

the file being examined and its properties. Each of the values listed in the file

information view are extracted from hidden fields in the ListView control for the file

under examination. The values for the file’s attributes are stored as integer values and bit

manipulations must be performed in order to create a readable text output value to the

investigator. Table 18 below shows the values for possible file attributes. Files can have

any of the following values or any logical combination of these values. Descriptions for

each attribute and the source code written to determine a file’s attributes are also shown.

 - 84 -

Constant Value Description Source Code

Normal 0 Normal file. No attributes are set. If attributeval And &H80

ReadOnly 1 Read-only file. Attribute is
read/write.

If attributeval And &H1

Hidden 2 Hidden file. Attribute is read/write. If attributeval And &H2

System 4 System file. Attribute is read/write. If attributeval And &H4

Archive 32 File has changed since last backup.
Attribute is read/write.

If attributeval And &H20

Compressed 128 Compressed file. Attribute is read-
only.

If attributeval And &H800

Table 18: File Attribute Values, Descriptions, and Associated Source Code
(Source: Microsoft Corporation)

An example of the file information view is given below in Figure 13.

Figure 13: File Information View

5.7.3 File Preview View

A file preview capability is provided to the computer forensics investigator. This

feature allows the investigator to open any file residing on the forensic backup of the

suspect media (e.g., images, sounds, videos, text files, spreadsheets, web pages,

executables, etc.) within the native operating system environment. This can be done only

 - 85 -

if an application exists to handle the particular file format. The file preview function can

be used in conjunction with the hex editor and can be especially useful in investigations

regarding specialized analysis such as pornography, intellectual property, or identity theft

cases.

This capability is made possible by calling the Shell "explorer.exe" function

within Visual Basic:

Shell "explorer.exe" & ListView1.SelectedItem.SubItems(6)

The Windows Explorer kernel executes the file specified by the path name in the

selected item of the ListView control containing the files being examined. An example

of the file preview capability is given below in Figure 14.

Figure 14: File Preview Capability

 - 86 -

Chapter 6

6.1 Success of Research Work

The notion of hash filtering has exploded; however, there are several concerns

with existing software used to compare hash values on a suspect machine with a database

of known hash values. These concerns include that the software is either packaged

within a forensics suite, too expensive, too hard to use, or otherwise unavailable for use

by the general public or most small law enforcement agencies.

The aim of this research is to create a software tool to automate the analysis of a

hard drive under investigation and thus dramatically reduce the number of files that an

investigator must individually examine. This tool utilizes the National Institute of

Standards and Technology (NIST) National Software Reference Library (NSRL)

database to automatically identify files by comparing hash values of files to “known

good” files (e.g., unaltered application files) and “known bad” files (e.g., exploits). This

tool provides a much smaller list of files to be closely examined.

The goal of creating a simple, streamlined, standalone public tool for automating

the computer forensic investigative process for files on a disk is successfully

implemented in this research.

 - 87 -

6.2 Implications for Computer Forensics Investigators

The scope of this research lies within the analysis phase of a computer forensics

investigation. This presents many implications for the computer forensics investigator.

Computer forensics analysis has been customarily performed within a command-line

operating system like DOS, or a graphical system like Windows, although analysis within

a graphical user interface is being performed more and more frequently. The software

application written as part of this research promotes the trend towards analysis within a

graphical user interface.

Two of the most important goals of the analysis phase are preserving the integrity

of evidence and thorough documentation of the examination. This software application

utilizes a forensic bit stream backup of the original storage medium. The investigator can

analyze all data on the backup copy that might possibly be relevant to the investigation

without modifying or damaging it. This software application also provides the

investigator with complete documentation of what evidence is found during the forensic

analysis. Log files are created and maintained by the software application with all files

discovered and whether or not the files match the RDS database of known hash values

and file profiles.

Hex editors are tools that have been invaluable to investigators since the

beginning of computer forensics analysis. This software application couples the RDS

database with a hex editor. When a particular file is determined to be unknown (by virtue

of not matching any of the hash values and file profiles within the RDS) the investigator

 - 88 -

can easily use the hex editor view to determine the hexadecimal and ASCII contents of

the file. By viewing the file’s header information, an investigator can quickly determine

if a file is camouflaged (e.g., a renamed image, sound, or video file) or if other metadata

contained within a file is of evidentiary value. Furthermore, files can be previewed by

the operating system via a “preview file” command inside the software application.

Forensic utilities must be widely adopted by forensic professionals before they

can become admissible as evidence examination tools in a court of law. Because NIST is

a neutral organization (not law enforcement or a software vendor) with an international

reputation in providing clean, unbiased, and objective reference data that has been

rigorously validated and verified for quality, the NSRL data contained within the RDS is

traceable and court admissible. It has previously been stated that this software

application does not modify or damage the original evidence, a prerequisite for

admissibility in court.

6.3 Software Application Testing

 A battery of tests has been created to examine the effectiveness and efficiency of

the software created by this research. These tests were performed on an Intel 2.0 GHz

Pentium 4 system with 1 GB of 800MHz Kingston RDRAM and 100GB 7500 RPM

8MB cache Western Digital hard disk drive running Microsoft Windows XP Professional

Edition.

 - 89 -

6.3.1 Efficiency Tests

 The first test is to examine the speed at which the software program can identify

files, calculate their MD5 hash values, and compare those hash values with the

information contained within the RDS.

This was performed on a variety of data:

 The first test was performed on 1 GB of random-sized data files. The entire

process executed in approximately 35 seconds.

 Another test was performed on 1 GB of data consisting only of 1 MB text files.

The program executed the process in approximately 50 seconds.

 The final test was performed on 1 GB of data consisting only of 100 MB video

files. The program executed the process in approximately 30 seconds.

In summary, a computer forensics investigator can expect this program to execute

within roughly 50 – 80 minutes on a 100 GB hard disk drive that is filled to capacity with

data. This expected wait time is comparable to other forensic utilities.

6.3.2 Effectiveness Tests

Using the examples for usage of the RDS presented in Chapter 4, another series of

tests was created to determine the effectiveness of the software created by this research.

The first of these tests examined the scenario in which a suspect may attempt to hide

evidence by renaming files to the same names found in standard operating systems or

software applications. Four image files were disguised as nondescript operating system

files of approximate size. In each case, the files were not recognized by the software

 - 90 -

application and were classified as unknown. An example of this test is shown below in

Figure 15. Note that the file named “netstat.exe” is actually a camouflaged image file.

Examination of the HEX editor view and by executing the “Preview File” feature alerts

the investigator that the file is indeed a JPEG image file disguised as an executable file.

Figure 15: Disguised Image File as an Executable File

A similar test was produced for detecting known files that were renamed to other

filename extensions. The software application successfully recognized the files as

known, and those files were eliminated from close examination. An example of this test

is shown below in Figure 16. Note that the file named “computer.jpg” is actually a

camouflaged executable file, “netstat.exe.” Examination of the HEX editor view and by

 - 91 -

executing the “Preview File” feature alerts the investigator that the file is indeed an

executable file disguised as an image file.

Figure 16: Disguised Executable File as an Image File

A simple test was developed to compare the results of analysis between a

legitimate and cracked version of Symantec’s Norton Ghost 2002 utility. The results of

the examination of the legitimate version are shown below in Figure 17, and the

legitimate version in Figure 18. Notice that three of the files have changed hash values,

and no longer match the RDS database of known hash values. The software application

properly identified the legitimate and cracked versions as known and unknown,

respectively.

 - 92 -

Figure 17: Legitimate Version of Symantec’s Norton Ghost 2002 Utility

Figure 18: Cracked Version of Symantec’s Norton Ghost 2002 Utility

 - 93 -

A final test was created to determine the software application’s effectiveness at

identifying files containing steganography. The default Windows XP desktop image,

“Bliss.bmp,” was injected with the secret message “Computer Forensics” using the

wbStego steganography utility and named “Bliss Stego.bmp.” The two files were

compared to the RDS using the software application. The program accurately calculated

a changed hash value for the “Bliss Stego.bmp” file, and characterized it as unknown.

This is depicted below in Figure 19. A computer forensics investigator may determine

that steganalysis of the rogue file is appropriate for his or her investigation.

Figure 19: Steganography Within Known Image Files

 - 94 -

6.4 Recommendations for Future Work

 While the software implemented through this research has made improvements to

the analysis phase of a computer forensics investigation, there is still work to be done.

Additional research should be performed to improve the software application’s efficiency

and ease of use. The application should be able to import the data from the RDS

distribution in a more intuitive and automated fashion, rather than importing each of the

individual hash sets and supporting data files into a relational database. Additionally,

researching various database implementations (e.g., SQL, Access, etc.) and their

efficiency in looking up data could improve the overhead wait time created within the

application when comparing hash values with the RDS.

 Additional functionality should be researched and implemented in future versions

of this software application. The ability to perform text analysis and queries would be

valuable features to a computer forensic investigator. Zero-byte files should also be

closely scrutinized for data streams and other concealed information. Additionally, files

characterized as unknown by the software application could be red flagged or classified

further by the investigator based upon whether the file is of evidentiary value.

 This software application currently only identifies those files visible and hidden

by the operating system. It relies upon other forensic utilities that recover deleted files.

Future research could be performed so that a file recovery feature could be integrated into

the analysis provided by this application, thus doing away with the need for a separate

computer forensics application.

 - 95 -

The most interesting research that would elevate the usefulness of this software

application would be to implement a web-based service for accessing the most up-to-date

hash values and file profiles from the RDS. Such a web service would allow the software

application to search the RDS for matches, for example via an XML query consisting of

the MD5 hashes of files on the media being examined. The web service would return an

XML document consisting of file profiles matching the query. To maintain the

traceability and validity of hash values, such a web service must only be implemented in

cooperation with NIST.

6.5 Final Conclusions

This research explores the use of the National Institute of Standards and

Technology (NIST) National Software Reference Library (NSRL) database in a hash

filtering software application that is simple, streamlined, standalone and for use by the

general public. It is the author’s hope that the ideas contained within this research will be

furthered by the students of computer forensics in the future.

 - 96 -

Bibliography

[1]. Thornton, John I. Special Report: The Beginnings of Forensic Science. World Book

Online Reference Center. 2004. World Book, Inc. 20 Jan. 2004.

<http://www.aolsvc.worldbook.aol.com/wb/Media?id=sr399014&st=Forensics>.

[2]. Noblett, Michael G., Pollitt, Mark M., and Presley, Lawrence A. Recovering and

Examining Computer Forensic Evidence. Forensic Science Communications, October

2000, Volume 2, Number 4.

[3]. Kruse, Warren G. and Heiser, Jay G. Computer Forensics: Incident Response

Essentials, 2002.

[4]. CERT Coordination Center Website. <http://www.cert.org>, 2004.

[5]. Johansson, Christian. Computer Forensic Text Analysis with Open Source Software.

Master Thesis, Blekinge Institute of Technology, 2003.

[6]. Stallard, Tye Brown. Automated Analysis for Digital Forensic Science. Master

Thesis, University of California, Davis, 2002.

[7]. Garfinkel, Simson L. A Web Service for File Fingerprints: The Goods, the Bads, and

the Unknowns, 2003.

[8]. KnownGoods Website. <http://www.knowngoods.org>, 2004.

[9]. HashKeeper Website. <http://www.hashkeeper.org>, 2004.

[10]. EnCase Website. <http://www.guidancesoftware.com/products/

EnCaseForensic/index.shtm>, 2004.

[11]. ILook Investigator Website. <http://www.ilook-forensics.org>, 2004.

[12]. The Sleuth Kit Website. <http://www.sleuthkit.org/sleuthkit/index.php>, 2004.

[13]. HashDig Website. <http://ftimes.sourceforge.net/FTimes/HashDig.shtml>, 2004.

 - 97 -

[14]. CERT Coordination Center, How the FBI Investigates Computer Crime,

<www.cert.org/tech_tips/FBI_investigates_crime.html>

[15]. Coleman, Ronald D. Computer Forensics Roundup, January 2002.

[16]. Chain of Custody., <www.peace-officers.com/content/glossary/def-chain.shtml>,

2004

[17]. SafeBack Website. <http://www.forensics-intl.com/safeback.html>, 2004

[18]. Mares and Company, LLC. Data Integrity: How To Authenticate Your Electronic

Records, May 2003.

[19]. Tripwire Website. <www.tripwire.com>, 2004.

[20]. Robbins, Judd. An Explanation of Computer Forensics, 2004.

[21]. Webster's Revised Unabridged Dictionary, 1996.

[22]. Boland, Tim and Fisher, Gary. Selection of Hashing Algorithms, June 30, 2000.

[23]. Menzies, A. et.al. Handbook of Applied Cryptography, CRC Press, Inc., 1997.

[24]. Schneier, Bruce. Applied Cryptography, 2nd, New York: John Wiley & Sons, 1996.

[25]. RSA Security, Inc. Frequently Asked Questions About Today's Cryptography, 2002.

[26]. Robshaw. RSA Laboratories Bulletin No. 4, Nov 12, 1996.

[27]. Harrison, John S. MD5, md5sum and Related Topics, Dec. 2000,

<http://hills.ccsf.org/~jharri01/project.html>.

[28]. International Organization for Standardization, Information Processing Systems--

Data Communication High-Level Data Link Control Procedure--Frame Structure, IS

3309, October 1984, 3rd Edition.

[29]. Rivest, Ronald L. The MD5 Message-Digest Algorithm,

<http://www.ietf.org/rfc/rfc1321.txt>, 1992.

 - 98 -

[30]. Touch, Joseph E. Performance Analysis of MD5, 2004.

[31]. TechBeat. Taking the Byte Out, Winter 2002

[32]. NIST. National Software Reference Library (NSRL) Technical Report, 2004.

[33]. NIST. ITL Bulletin, November 2001.

[34]. NIST. NSRL Website - Library Contents

<http://www.nsrl.nist.gov/Library_Contents.htm>, 2004.

[35]. NIST. Special Database 28: National Software Reference Library (NSRL),

<http://www.nist.gov/srd/nistsd28.htm>

[36]. NIST. NSRL Website – Project Overview

<http://www.nsrl.nist.gov/Project_Overview.htm>, 2004.

[37]. NIST. Data Formats of the NSRL Reference Data Set (RDS) Distribution, 2004.

[38]. NIST. NSRL Website – RDS Notes, <http://www.nsrl.nist.gov/RDS_Notes.htm>,

2004.

[39]. NIST. NSRL Website, <http://www.nsrl.nist.gov>, 2004.

 - 99 -

Appendices

Appendix A: MD5 Hashing Algorithm Reference Implementation

This appendix contains the following files taken from RSAREF: A Cryptographic Toolkit

for Privacy-Enhanced Mail:

 global.h -- global header file

 md5.h -- header file for MD5

 md5c.c -- source code for MD5

The appendix also includes the following file:

 mddriver.c -- test driver for MD2, MD4 and MD5

The implementation is portable and should work on many different platforms. However,

it is not difficult to optimize the implementation on particular platforms, an exercise left

to the reader. For example, on "little-endian" platforms where the lowest-addressed byte

in a 32-bit word is the least significant and there are no alignment restrictions, the call to

Decode in MD5Transform can be replaced with a typecast.

 - 100 -

global.h

/* GLOBAL.H - RSAREF types and constants
 */

/* PROTOTYPES should be set to one if and only if the compiler supports
 function argument prototyping.
The following makes PROTOTYPES default to 0 if it has not already

 been defined with C compiler flags.
 */

#ifndef PROTOTYPES
#define PROTOTYPES 0
#endif

/* POINTER defines a generic pointer type */
typedef unsigned char *POINTER;

/* UINT2 defines a two byte word */
typedef unsigned short int UINT2;

/* UINT4 defines a four byte word */
typedef unsigned long int UINT4;

/* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it
 returns an empty list.
 */
#if PROTOTYPES
#define PROTO_LIST(list) list
#else
#define PROTO_LIST(list) ()
#endif

 - 101 -

md5.h

/* MD5.H - header file for MD5C.C
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

/* MD5 context. */
typedef struct {
 UINT4 state[4]; /* state (ABCD) */
 UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */
 unsigned char buffer[64]; /* input buffer */
} MD5_CTX;

void MD5Init PROTO_LIST ((MD5_CTX *));
void MD5Update PROTO_LIST
 ((MD5_CTX *, unsigned char *, unsigned int));
void MD5Final PROTO_LIST ((unsigned char [16], MD5_CTX *));

 - 102 -

md5c.c

/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

#include "global.h"
#include "md5.h"

/* Constants for MD5Transform routine.
 */

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64]));
static void Encode PROTO_LIST
 ((unsigned char *, UINT4 *, unsigned int));
static void Decode PROTO_LIST
 ((UINT4 *, unsigned char *, unsigned int));
static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int));
static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int));

 - 103 -

static unsigned char PADDING[64] = {
 0x80,
 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* F, G, H and I are basic MD5 functions.
 */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits.
 */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
 */
#define FF(a, b, c, d, x, s, ac) { \
 (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \

 (a) += (b); \
 }
#define GG(a, b, c, d, x, s, ac) { \
 (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define HH(a, b, c, d, x, s, ac) { \
 (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define II(a, b, c, d, x, s, ac) { \
 (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }

/* MD5 initialization. Begins an MD5 operation, writing a new context.
 */
void MD5Init (context)
MD5_CTX *context; /* context */
{
 context->count[0] = context->count[1] = 0;
 /* Load magic initialization constants.
*/
 context->state[0] = 0x67452301;
 context->state[1] = 0xefcdab89;
 context->state[2] = 0x98badcfe;
 context->state[3] = 0x10325476;
}

/* MD5 block update operation. Continues an MD5 message-digest

 - 104 -

 operation, processing another message block, and updating the
 context.
 */
void MD5Update (context, input, inputLen)
MD5_CTX *context; /* context */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
{
 unsigned int i, index, partLen;

 /* Compute number of bytes mod 64 */
 index = (unsigned int)((context->count[0] >> 3) & 0x3F);

 /* Update number of bits */
 if ((context->count[0] += ((UINT4)inputLen << 3))

 < ((UINT4)inputLen << 3))
 context->count[1]++;
 context->count[1] += ((UINT4)inputLen >> 29);

 partLen = 64 - index;

 /* Transform as many times as possible.
*/
 if (inputLen >= partLen) {
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)input, partLen);
 MD5Transform (context->state, context->buffer);

 for (i = partLen; i + 63 < inputLen; i += 64)
 MD5Transform (context->state, &input[i]);

 index = 0;
 }
 else
 i = 0;

 /* Buffer remaining input */
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)&input[i],
 inputLen-i);
}

/* MD5 finalization. Ends an MD5 message-digest operation, writing the
 the message digest and zeroizing the context.
 */
void MD5Final (digest, context)
unsigned char digest[16]; /* message digest */
MD5_CTX *context; /* context */
{
 unsigned char bits[8];
 unsigned int index, padLen;

 /* Save number of bits */
 Encode (bits, context->count, 8);

 /* Pad out to 56 mod 64.

 - 105 -

*/
 index = (unsigned int)((context->count[0] >> 3) & 0x3f);
 padLen = (index < 56) ? (56 - index) : (120 - index);
 MD5Update (context, PADDING, padLen);

 /* Append length (before padding) */
 MD5Update (context, bits, 8);

 /* Store state in digest */
 Encode (digest, context->state, 16);

 /* Zeroize sensitive information.
*/
 MD5_memset ((POINTER)context, 0, sizeof (*context));
}

/* MD5 basic transformation. Transforms state based on block.
 */
static void MD5Transform (state, block)
UINT4 state[4];
unsigned char block[64];
{
 UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

 Decode (x, block, 64);

 /* Round 1 */
 FF (a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
 FF (d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
 FF (c, d, a, b, x[2], S13, 0x242070db); /* 3 */
 FF (b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
 FF (a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
 FF (d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
 FF (c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
 FF (b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
 FF (a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
 FF (d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
 FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
 FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
 FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
 FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
 FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
 FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

 /* Round 2 */
 GG (a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
 GG (d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
 GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
 GG (b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
 GG (a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
 GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
 GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
 GG (b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
 GG (a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
 GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
 GG (c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */

 - 106 -

 GG (b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
 GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
 GG (d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
 GG (c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
 GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

 /* Round 3 */
 HH (a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
 HH (d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
 HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
 HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
 HH (a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
 HH (d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
 HH (c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
 HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
 HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
 HH (d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
 HH (c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
 HH (b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
 HH (a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
 HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
 HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
 HH (b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */

 /* Round 4 */
 II (a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
 II (d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
 II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
 II (b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
 II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
 II (d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
 II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
 II (b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
 II (a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
 II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
 II (c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
 II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
 II (a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
 II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
 II (c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
 II (b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */

 state[0] += a;
 state[1] += b;
 state[2] += c;
 state[3] += d;

 /* Zeroize sensitive information.

*/
 MD5_memset ((POINTER)x, 0, sizeof (x));
}

/* Encodes input (UINT4) into output (unsigned char). Assumes len is
 a multiple of 4.
 */
static void Encode (output, input, len)

 - 107 -

unsigned char *output;
UINT4 *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4) {
 output[j] = (unsigned char)(input[i] & 0xff);
 output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
 output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
 output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
 }
}

/* Decodes input (unsigned char) into output (UINT4). Assumes len is
 a multiple of 4.
 */
static void Decode (output, input, len)
UINT4 *output;
unsigned char *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4)
 output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
 (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
}

/* Note: Replace "for loop" with standard memcpy if possible.
 */

static void MD5_memcpy (output, input, len)
POINTER output;
POINTER input;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)

 output[i] = input[i];
}

/* Note: Replace "for loop" with standard memset if possible.
 */
static void MD5_memset (output, value, len)
POINTER output;
int value;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)
 ((char *)output)[i] = (char)value;
}
mddriver.c

 - 108 -

/* MDDRIVER.C - test driver for MD2, MD4 and MD5
 */

/* Copyright (C) 1990-2, RSA Data Security, Inc. Created 1990. All
rights reserved.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

/* The following makes MD default to MD5 if it has not already been
 defined with C compiler flags.
 */
#ifndef MD
#define MD MD5
#endif

#include <stdio.h>
#include <time.h>
#include <string.h>
#include "global.h"
#if MD == 2
#include "md2.h"
#endif
#if MD == 4

#include "md4.h"
#endif
#if MD == 5
#include "md5.h"
#endif

/* Length of test block, number of test blocks.
 */
#define TEST_BLOCK_LEN 1000
#define TEST_BLOCK_COUNT 1000

static void MDString PROTO_LIST ((char *));
static void MDTimeTrial PROTO_LIST ((void));
static void MDTestSuite PROTO_LIST ((void));
static void MDFile PROTO_LIST ((char *));
static void MDFilter PROTO_LIST ((void));
static void MDPrint PROTO_LIST ((unsigned char [16]));

#if MD == 2
#define MD_CTX MD2_CTX
#define MDInit MD2Init
#define MDUpdate MD2Update
#define MDFinal MD2Final
#endif
#if MD == 4
#define MD_CTX MD4_CTX

 - 109 -

#define MDInit MD4Init
#define MDUpdate MD4Update
#define MDFinal MD4Final
#endif
#if MD == 5
#define MD_CTX MD5_CTX
#define MDInit MD5Init
#define MDUpdate MD5Update
#define MDFinal MD5Final
#endif

/* Main driver.

Arguments (may be any combination):
 -sstring - digests string
 -t - runs time trial
 -x - runs test script
 filename - digests file
 (none) - digests standard input
 */
int main (argc, argv)
int argc;

char *argv[];
{
 int i;

 if (argc > 1)
 for (i = 1; i < argc; i++)
 if (argv[i][0] == '-' && argv[i][1] == 's')
 MDString (argv[i] + 2);
 else if (strcmp (argv[i], "-t") == 0)
 MDTimeTrial ();
 else if (strcmp (argv[i], "-x") == 0)
 MDTestSuite ();
 else
 MDFile (argv[i]);
 else
 MDFilter ();

 return (0);
}

/* Digests a string and prints the result.
 */
static void MDString (string)
char *string;
{
 MD_CTX context;
 unsigned char digest[16];
 unsigned int len = strlen (string);

 MDInit (&context);
 MDUpdate (&context, string, len);
 MDFinal (digest, &context);

 printf ("MD%d (\"%s\") = ", MD, string);

 - 110 -

 MDPrint (digest);
 printf ("\n");
}

/* Measures the time to digest TEST_BLOCK_COUNT TEST_BLOCK_LEN-byte
 blocks.
 */
static void MDTimeTrial ()
{
 MD_CTX context;
 time_t endTime, startTime;
 unsigned char block[TEST_BLOCK_LEN], digest[16];
 unsigned int i;

 printf
 ("MD%d time trial. Digesting %d %d-byte blocks ...", MD,
 TEST_BLOCK_LEN, TEST_BLOCK_COUNT);

 /* Initialize block */
 for (i = 0; i < TEST_BLOCK_LEN; i++)
 block[i] = (unsigned char)(i & 0xff);

 /* Start timer */
 time (&startTime);

 /* Digest blocks */
 MDInit (&context);
 for (i = 0; i < TEST_BLOCK_COUNT; i++)
 MDUpdate (&context, block, TEST_BLOCK_LEN);
 MDFinal (digest, &context);

 /* Stop timer */
 time (&endTime);

 printf (" done\n");
 printf ("Digest = ");
 MDPrint (digest);
 printf ("\nTime = %ld seconds\n", (long)(endTime-startTime));
 printf
 ("Speed = %ld bytes/second\n",
 (long)TEST_BLOCK_LEN * (long)TEST_BLOCK_COUNT/(endTime-startTime));
}

/* Digests a reference suite of strings and prints the results.
 */
static void MDTestSuite ()
{
 printf ("MD%d test suite:\n", MD);

 MDString ("");
 MDString ("a");
 MDString ("abc");
 MDString ("message digest");
 MDString ("abcdefghijklmnopqrstuvwxyz");
 MDString
 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
 MDString

 - 111 -

 ("1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890");
}

/* Digests a file and prints the result.

 */
static void MDFile (filename)
char *filename;
{
 FILE *file;
 MD_CTX context;
 int len;
 unsigned char buffer[1024], digest[16];

 if ((file = fopen (filename, "rb")) == NULL)
 printf ("%s can't be opened\n", filename);

 else {
 MDInit (&context);
 while (len = fread (buffer, 1, 1024, file))
 MDUpdate (&context, buffer, len);
 MDFinal (digest, &context);

 fclose (file);

 printf ("MD%d (%s) = ", MD, filename);
 MDPrint (digest);
 printf ("\n");
 }
}

/* Digests the standard input and prints the result.
 */
static void MDFilter ()
{
 MD_CTX context;
 int len;
 unsigned char buffer[16], digest[16];

 MDInit (&context);
 while (len = fread (buffer, 1, 16, stdin))
 MDUpdate (&context, buffer, len);
 MDFinal (digest, &context);

 MDPrint (digest);
 printf ("\n");
}

/* Prints a message digest in hexadecimal.
 */
static void MDPrint (digest)
unsigned char digest[16];
{

 unsigned int i;

 - 112 -

 for (i = 0; i < 16; i++)
 printf ("%02x", digest[i]);
}

A.5 Test suite

 The MD5 test suite (driver option "-x") should print the following
 results:

MD5 test suite:
MD5 ("") = d41d8cd98f00b204e9800998ecf8427e
MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661
MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")
=
d174ab98d277d9f5a5611c2c9f419d9f
MD5
("123456789012345678901234567890123456789012345678901234567890123456
78901234567890") = 57edf4a22be3c955ac49da2e2107b67a

Security Considerations

The level of security discussed in this memo is considered to be
sufficient for implementing very high security hybrid digital-
signature schemes based on MD5 and a public-key cryptosystem.

 - 113 -

Appendix B: Project Source Code

mainform.frm

Option Explicit

Private getdir As String

Private Declare Function SendMessageArray Lib "user32" Alias
"SendMessageA" _
 (ByVal hWnd As Long, ByVal wMsg As Long, _
 ByVal wParam As Long, lParam As Any) As Long
Const LB_SETTABSTOPS = &H192

Dim filenum As Integer
 Dim matcha As String
 Dim matchb As String
 Dim matchc As String
 Dim matchd As String
 Dim matchfound As String

Private Sub Command1_Click()
 getdir = BrowseForFolder(Me, "Select A Directory", "c:\")
 If Len(getdir) = 0 Then Exit Sub
 Screen.MousePointer = vbHourglass
 filenum = FreeFile
 Print #1, Format$(Date, "mm/dd/yyyy") & " " & Format$(Hour(Now),
"00") & ":" & Format$(Minute(Now), "00") & ":" & Format$(Second(Now),
"00") & " " & "Disk Analysis of " & getdir & " created. Filename: " &
Format$(Date, "mmddyyyy") & Format$(Hour(Now), "00") &
Format$(Minute(Now), "00") & Format$(Second(Now), "00") & ".txt"
 Open ("diskanalysis\" & Format$(Date, "mmddyyyy") &
Format$(Hour(Now), "00") & Format$(Minute(Now), "00") &
Format$(Second(Now), "00") & ".txt") For Output As filenum
 Write #filenum, "Path", "MD5 Hash"
 ShowAllFiles getdir
 Screen.MousePointer = vbNormal
 StatusBar1.Panels(1).Text = "Ready"
End Sub

Private Sub ShowAllFiles(ByVal sPath As String)
 Dim fso As New FileSystemObject
 Dim fil As File
 Dim fol As Folder
 Dim sub1 As Folder
 Dim md5hash As String
 Dim listobj As ListItem
 Set fol = fso.GetFolder(sPath)
 For Each fil In fol.Files
 StatusBar1.Panels(1).Text = "Processing: " & fol & "\" & fil.Name
 On Error Resume Next
 md5hash = Hashmyfile(sPath & "\" & fil.Name)
 Set listobj = ListView1.ListItems.add(, , fil.Name)
 listobj.SubItems(1) = fil.Size
 listobj.SubItems(2) = fil.Type

 - 114 -

 listobj.SubItems(3) = fil.DateCreated
 listobj.SubItems(4) = fil.DateLastAccessed
 listobj.SubItems(5) = fil.DateLastModified
 listobj.SubItems(6) = fil.Path
 listobj.SubItems(7) = fil.Attributes
 listobj.SubItems(8) = md5hash
 comparehash (md5hash)
 listobj.SubItems(9) = matcha
 listobj.SubItems(10) = matchb
 listobj.SubItems(11) = matchc
 listobj.SubItems(12) = matchd
 listobj.SubItems(13) = matchfound
 Write #filenum, (fol & "\" & fil.Name), md5hash
 Next
 For Each sub1 In fol.SubFolders
 ShowAllFiles sub1.Path
 Next
 Set fil = Nothing
 Set sub1 = Nothing
 Set fol = Nothing
 Set fso = Nothing
End Sub

Private Sub Command2_Click()
 Shell "explorer.exe " & ListView1.SelectedItem.SubItems(6)
End Sub

Private Sub Command3_Click()
 If Command3.Caption = "Hide Matches" Then
 Command3.Caption = "Show Matches"
 Else
 If Command3.Caption = "Show Matches" Then
 Command3.Caption = "Hide Matches"
 End If
 End If
End Sub

Private Sub Form_Load()
 Open ("logs\" & Format$(Date, "mmddyyyy") & Format$(Hour(Now), "00")
& Format$(Minute(Now), "00") & Format$(Second(Now), "00") & ".txt") For
Output As #1
 Print #1, Format$(Date, "mm/dd/yyyy") & " " & Format$(Hour(Now),
"00") & ":" & Format$(Minute(Now), "00") & ":" & Format$(Second(Now),
"00") & " " & "Log File Created"
 StatusBar1.Panels(1).Text = "Ready"
 With Me.ListView1
 .View = lvwReport
 .HideSelection = False
 .GridLines = True
 .LabelEdit = lvwManual
 .ColumnHeaders.add , "name", "Name", 4200
 .ColumnHeaders.add , "size", "Size", 0
 .ColumnHeaders.add , "type", "Type", 0
 .ColumnHeaders.add , "datecreated", "Date Created", 0
 .ColumnHeaders.add , "datelastaccessed", "Date Last Accessed", 0
 .ColumnHeaders.add , "datelastmodified", "Date Last Modified", 0
 .ColumnHeaders.add , "path", "Path", 0

 - 115 -

 .ColumnHeaders.add , "attributes", "Attributes", 0
 .ColumnHeaders.add , "md5hash", "MD5 Hash", 0
 .ColumnHeaders.add , "matcha", "RDS_A", 0
 .ColumnHeaders.add , "matchb", "RDS_B", 0
 .ColumnHeaders.add , "matchc", "RDS_C", 0
 .ColumnHeaders.add , "matchd", "RDS_D", 0
 .ColumnHeaders.add , "matchfound", "Match", 800
 End With
 Set Conn1 = New ADODB.Connection
 Set Rset1 = New ADODB.Recordset
 Set Conn2 = New ADODB.Connection
 Set Rset2 = New ADODB.Recordset
 Set Conn3 = New ADODB.Connection
 Set Rset3 = New ADODB.Recordset
 Set Conn4 = New ADODB.Connection
 Set Rset4 = New ADODB.Recordset
 With Conn1
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .ConnectionString = App.Path & "\RDS_A.mdb"
 .Open
 End With
 With Conn2
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .ConnectionString = App.Path & "\RDS_B.mdb"
 .Open
 End With
 With Conn3
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .ConnectionString = App.Path & "\RDS_C.mdb"
 .Open
 End With
 With Conn4
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .ConnectionString = App.Path & "\RDS_D.mdb"
 .Open
 End With
 Rset1.CursorLocation = adUseServer
 Rset2.CursorLocation = adUseServer
 Rset3.CursorLocation = adUseServer
 Rset4.CursorLocation = adUseServer
 Rset1.Open "NSRLFile", Conn1, adOpenKeyset, adLockReadOnly,
adCmdTableDirect
 Rset2.Open "NSRLFile", Conn2, adOpenKeyset, adLockReadOnly,
adCmdTableDirect
 Rset3.Open "NSRLFile", Conn3, adOpenKeyset, adLockReadOnly,
adCmdTableDirect
 Rset4.Open "NSRLFile", Conn4, adOpenKeyset, adLockReadOnly,
adCmdTableDirect
 Rset1.Index = "MD5"
 Rset2.Index = "MD5"
 Rset3.Index = "MD5"
 Rset4.Index = "MD5"
 Dim LBTab(1) As Long
 LBTab(0) = 30
 LBTab(1) = 60
End Sub

 - 116 -

Private Sub ListView1_Click()
 Dim lsFileName As String
 Dim liX As Integer
 Dim HexText As String
 Dim attributeval As Integer
 Dim attributetext As String
 attributetext = ""
 outpath = ListView1.SelectedItem.SubItems(6)
 attributeval = ListView1.SelectedItem.SubItems(7)
 If attributeval And &H20 Then
 attributetext = attributetext & "Archive "
 End If
 If attributeval And &H800 Then
 attributetext = attributetext & "Compressed "
 End If
 If attributeval And &H10 Then
 attributetext = attributetext & "Directory "
 End If
 If attributeval And &H2 Then
 attributetext = attributetext & "Hidden "
 End If
 If attributeval And &H80 Then
 attributetext = attributetext & "Normal "
 End If
 If attributeval And &H1 Then
 attributetext = attributetext & "ReadOnly "
 End If
 If attributeval And &H4 Then
 attributetext = attributetext & "System "
 End If
 If attributeval And &H100 Then
 attributetext = attributetext & "Temporary "
 End If
 outattributes = attributetext
 outsize = ListView1.SelectedItem.SubItems(1)
 outtype = ListView1.SelectedItem.SubItems(2)
 outcreated = ListView1.SelectedItem.SubItems(3)
 outaccessed = ListView1.SelectedItem.SubItems(4)
 outmodified = ListView1.SelectedItem.SubItems(5)
 outhash = ListView1.SelectedItem.SubItems(8)
 outa = ListView1.SelectedItem.SubItems(9)
 outb = ListView1.SelectedItem.SubItems(10)
 outc = ListView1.SelectedItem.SubItems(11)
 outd = ListView1.SelectedItem.SubItems(12)
 On Error GoTo ErrAboardLoad
 lsFileName = ListView1.SelectedItem.SubItems(6)
 On Error GoTo 0
 LstHexView.Visible = False
 On Error GoTo ErrLoadFile
 liX = FreeFile
 Open lsFileName For Binary Access Read As #liX
 HexText = Space$(LOF(liX) + 16)
 Get #liX, , HexText
 Close #liX
 On Error GoTo 0
 LstHexView.ListItems.Clear
 FileToHex (HexText)

 - 117 -

 LstHexView.Visible = True
 GoTo ErrCont
ErrAboardLoad:
 GoTo ErrCont
ErrLoadFile:
 MsgBox "File is too large..."
 GoTo ErrCont
ErrCont:
 On Error GoTo 0
End Sub

Private Sub comparehash(hashval As String)
 Dim fname As String
 Dim outhash As String
 matcha = ""
 matchb = ""
 matchc = ""
 matchd = ""
 matchfound = ""
 Rset1.Seek hashval
 If Not Rset1.EOF Then
 fname = Rset1!FileName
 outhash = Rset1!MD5
 matcha = outhash & " " & fname
 matchfound = "X"
 Else
 matcha = ""
 End If
 Rset2.Seek hashval
 If Not Rset2.EOF Then
 fname = Rset2!FileName
 outhash = Rset2!MD5
 matchb = outhash & " " & fname
 matchfound = "X"
 Else
 matchb = ""
 End If
 Rset3.Seek hashval
 If Not Rset3.EOF Then
 fname = Rset3!FileName
 outhash = Rset3!MD5
 matchc = outhash & " " & fname
 matchfound = "X"
 Else
 matchc = ""
 End If
 Rset4.Seek hashval
 If Not Rset4.EOF Then
 fname = Rset4!FileName
 outhash = Rset4!MD5
 matchd = outhash & " " & fname
 matchfound = "X"
 Else
 matchd = ""
 End If
End Sub

 - 118 -

hexedit.bas

‘ Open source code adapted within this module made freely available by
‘ Michael Werren at http://www.planetsourcecode.com/vb/scripts/
‘ ShowCode.asp?txtCodeId=13898&lngWId=1

Option Explicit

Function WriteHex(Cnt As Integer, Val As String) As String
 WriteHex = String(Cnt, Val)
End Function

Sub AddHexLine(HexIndex As String, HexText As String, AsciiText As
String)
 Dim itmx As ListItem
 Set itmx = Form1.LstHexView.ListItems.add
 itmx.Text = HexIndex
 itmx.SubItems(1) = HexText
 itmx.SubItems(2) = AsciiText
End Sub

Sub FileToHex(TransText As String)
 Dim HexText As String
 Dim lsVal As String
 Dim lsOrgText As String
 Dim lsHexCode As String
 Dim lsHexLine As String
 Dim lsHexIndex As String
 Dim liHexIndex As Long
 Dim liVal As Integer
 Dim liPointer As Integer
 Dim liX As Long
 Dim liProcent As Integer
 Dim liProcentOld As Integer
 HexText = TransText
 Screen.MousePointer = vbHourglass
 liPointer = 1
 liHexIndex = 0
 For liX = 1 To Len(HexText)
 If liPointer <= 16 Then
 liPointer = liPointer + 1
 lsVal = Mid(HexText, liX, 1)
 liVal = Asc(lsVal)
 lsHexCode = Hex(liVal)
 If Len(lsHexCode) < 2 Then
 lsHexCode = "0" + lsHexCode
 End If
 If liPointer <= 16 Then
 If liPointer <> 9 Then
 lsHexLine = lsHexLine + lsHexCode + "."
 Else
 lsHexLine = lsHexLine + lsHexCode + " "
 End If
 Else
 lsHexLine = lsHexLine + lsHexCode
 ' Enum the translation in procent

 - 119 -

 liProcentOld = liProcent
 liProcent = liX * 100 \ Len(HexText)
 If liProcent <> liProcentOld Then
 DispInfo "Translate the file " + Str(liProcent) + "%"
 End If
 End If
 If Asc(lsVal) = 0 Then
 lsOrgText = lsOrgText + "."
 Else
 lsOrgText = lsOrgText + lsVal
 End If
 Else
 lsHexIndex = WriteHex(8 - Len(Hex(liHexIndex)), "0") +
Hex(liHexIndex)
 AddHexLine lsHexIndex, lsHexLine, lsOrgText
 liPointer = 1
 liHexIndex = liHexIndex + 16
 lsHexLine = ""
 lsOrgText = ""
 liX = liX - 1
 End If
 Next liX
 If lsHexLine <> "" Then
 If Mid(lsHexLine, Len(lsHexLine), 1) = "." Then
 lsHexLine = Mid(lsHexLine, 1, Len(lsHexLine) - 1)
 End If
 lsHexIndex = WriteHex(8 - Len(Hex(liHexIndex)), "0") +
Hex(liHexIndex)
 AddHexLine lsHexIndex, lsHexLine, lsOrgText
 End If
 DispInfo ""
 Screen.MousePointer = vbDefault
End Sub

Sub DispInfo(Text As String)
 DoEvents
End Sub

 - 120 -

md5file.bas

' The MD5 algorithm is defined in RFC1321.
'
' The basic C code implementing the algorithm is derived
' from that in the RFC and is covered by the following
' copyright: Copyright (C) 1991-2, RSA Data Security, Inc.
' Created 1991. All rights reserved.
'
' License to copy and use this software is granted provided
' that it is identified as the "RSA Data Security, Inc. MD5
' Message-Digest Algorithm" in all material mentioning or
' referencing this software or this function.
'
' License is also granted to make and use derivative works
' provided that such works are identified as "derived from
' the RSA Data Security, Inc. MD5 Message-Digest Algorithm"
' in all material mentioning or referencing the derived
' work.
'
' RSA Data Security, Inc. makes no representations
' concerning either the merchantability of this software or
' the suitability of this software for any particular
' purpose. It is provided "as is" without express or implied
' warranty of any kind.
'
' These notices must be retained in any copies of any part
' of this documentation and/or software.

Private Declare Sub MDFile Lib "md5file.dll" (ByVal outmd As String,
ByVal outstring As String)

Public Function Hashmyfile(outmd As String) As String
 Dim outstring As String * 32
 outstring = Space(32)
 MDFile outmd, outstring
 Hashmyfile = r
End Function

 - 121 -

filesearch.bas

‘ Open source code adapted within this module made freely available by
‘ Serge Lachapelle at http://www.planetsourcecode.com/vb/scripts/
‘ ShowCode.asp?txtCodeId=49326&lngWid=-10

Option Explicit

Private Const BIF_STATUSTEXT = &H4&
Private Const BIF_RETURNONLYFSDIRS = 1
Private Const BIF_DONTGOBELOWDOMAIN = 2
Private Const MAX_PATH = 260

Private Const WM_USER = &H400
Private Const BFFM_INITIALIZED = 1
Private Const BFFM_SELCHANGED = 2
Private Const BFFM_SETSTATUSTEXT = (WM_USER + 100)
Private Const BFFM_SETSELECTION = (WM_USER + 102)

Private Declare Function SendMessage Lib "user32" Alias "SendMessageA"
(ByVal hWnd As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal
lParam As String) As Long
Private Declare Function SHBrowseForFolder Lib "shell32" (lpbi As
BrowseInfo) As Long
Private Declare Function SHGetPathFromIDList Lib "shell32" (ByVal
pidList As Long, ByVal lpBuffer As String) As Long
Private Declare Function lstrcat Lib "kernel32" Alias "lstrcatA" (ByVal
lpString1 As String, ByVal lpString2 As String) As Long

Private Type BrowseInfo
 hWndOwner As Long
 pIDLRoot As Long
 pszDisplayName As Long
 lpszTitle As Long
 ulFlags As Long
 lpfnCallback As Long
 lParam As Long
 iImage As Long
End Type

Private m_CurrentDirectory As String 'The current directory
'

Public Function BrowseForFolder(owner As Form, Title As String,
StartDir As String) As String
 'Opens a Treeview control that displays the directories in a computer

 Dim lpIDList As Long
 Dim szTitle As String
 Dim sBuffer As String
 Dim tBrowseInfo As BrowseInfo
 m_CurrentDirectory = StartDir & vbNullChar

 szTitle = Title
 With tBrowseInfo
 .hWndOwner = owner.hWnd

 - 122 -

 .lpszTitle = lstrcat(szTitle, "")
 .ulFlags = BIF_RETURNONLYFSDIRS + BIF_DONTGOBELOWDOMAIN +
BIF_STATUSTEXT
 .lpfnCallback = GetAddressofFunction(AddressOf BrowseCallbackProc)
'get address of function.
 End With

 lpIDList = SHBrowseForFolder(tBrowseInfo)
 If (lpIDList) Then
 sBuffer = Space(MAX_PATH)
 SHGetPathFromIDList lpIDList, sBuffer
 sBuffer = Left(sBuffer, InStr(sBuffer, vbNullChar) - 1)
 BrowseForFolder = sBuffer
 Else
 BrowseForFolder = ""
 End If

End Function

Private Function BrowseCallbackProc(ByVal hWnd As Long, ByVal uMsg As
Long, ByVal lp As Long, ByVal pData As Long) As Long

 Dim lpIDList As Long
 Dim ret As Long
 Dim sBuffer As String

 On Error Resume Next 'Sugested by MS to prevent an error from
 'propagating back into the calling process.

 Select Case uMsg

 Case BFFM_INITIALIZED
 Call SendMessage(hWnd, BFFM_SETSELECTION, 1, m_CurrentDirectory)

 Case BFFM_SELCHANGED
 sBuffer = Space(MAX_PATH)

 ret = SHGetPathFromIDList(lp, sBuffer)
 If ret = 1 Then
 Call SendMessage(hWnd, BFFM_SETSTATUSTEXT, 0, sBuffer)
 End If

 End Select

 BrowseCallbackProc = 0

End Function

' This function allows you to assign a function pointer to a variable.
Private Function GetAddressofFunction(add As Long) As Long
 GetAddressofFunction = add
End Function

 - 123 -

dbconnect.bas

Public Conn1 As ADODB.Connection
Public Rset1 As ADODB.Recordset

Public Conn2 As ADODB.Connection
Public Rset2 As ADODB.Recordset

Public Conn3 As ADODB.Connection
Public Rset3 As ADODB.Recordset

Public Conn4 As ADODB.Connection
Public Rset4 As ADODB.Recordset

 - 124 -

	Software for efficient file elimination in computer forensics investigations
	Recommended Citation

	3.5 The MD5 Hash Function

		2004-05-07T16:40:39-0400
	John H. Hagen
	I am approving this document

