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ABSTRACT 
 

Mechanisms of environmental carcinogenesis and metal-induced cellular signaling. 
 
 

Jacquelyn Jo Bower 
 
 

Low dose chronic exposure to environmental carcinogens is a major cause of 

human cancers.  More than 375 known or suspected environmental carcinogens have 

been identified, many of which are transition metals or metal containing compounds 

(IARC, updated to 2004, http://www-cie.iarc.fr/monoeval/crthall.html).  Although much 

research has focused on the ability of these metals to induce reactive oxygen species 

formation (ROS), DNA damage, and apoptosis, less effort has been put forth to examine 

the cellular signaling mechanisms responsible for these effects.  Our experimental 

research has focused on the signaling pathways induced in response to arsenic exposure.  

Arsenic is a highly interesting transition metal due to its widespread exposure and 

paradoxic ability to induce carcinogenesis as well as apoptosis.  Here, we highlight the 

importance of the human genome project in advancing the knowledge of the molecular 

mechanisms of metal-induced toxicology/carcinogenesis.  In addition, we review the 

latest research in the field of metal-induced carcinogenesis.  Finally, we describe a 

mechanism for the induction of the growth-arrest and DNA damage inducible protein 45 

alpha (GADD45α) involving arsenic-induced ROS formation in the non-tumorigenic 

human lung airway epithelial cell line, BEAS-2B. 
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SECTION I:  OVERVIEW 
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Arsenic 

Arsenic is a ubiquitous environmental contaminant found in food, water, cigarette 

smoke, soil, pesticides, and wood preservatives; thus, exposure can occur through dermal 

contact, inhalation, ingestion, and occupational routes (1-8).    A multitude of adverse 

health effects, including hyperkeratosis, hyperpigmentation, diabetes mellitus, 

cardiovascular disease, reproductive defects, and cancers of the liver, bladder, skin, lung, 

kidney, and prostate, have been associated with arsenic exposure (9-17).  The most 

common route of exposure is the ingestion of arsenic contaminated drinking water, which 

has been documented in Latin America, South Asia, Taiwan, the United States, and Japan 

at concentrations as high as 1.5-3.4 mg/L (18-25).  These figures exceed the World 

Health Organization’s maximum contaminant level of 10 ug/L by ten-fold or more.  In 

the U.S. alone, an estimated 56 million Americans are exposed to concentrations of 

arsenic known to cause cancer (18,19,23-25).   

Arsenic was first suggested to act as a human carcinogen by Hutchinson in the 

year 1887 when he noticed an abnormal number of skin cancers occurring in patients who 

were being treated with arsenicals (19).  Since then, epidemiological studies have shown 

that arsenic exposure is associated with cancers of the skin, lung, liver, bladder, and 

prostate (9-12).  In 1980, Rossman et al showed that inorganic arsenic was poorly 

mutagenic and genotoxic in both E. coli and CHO cells (26).  Although arsenic induces 

DNA adduct formation, DNA-protein crosslinks, and ROS formation in vitro, attempts to 

examine the in vivo carcinogenic effects of arsenic in rodent models have largely failed in 

the absence of another carcinogenic agent (27-29).   

 2



 Because of arsenic’s poor mutagenicity, the current theory is that its carcinogenic 

effects are mediated by epigenetic mechanisms.  This hypothesis is supported by the 

studies of Chen et al, in which overexpression of the oncogene c-myc and DNA 

hypomethylation of the promoter region of the estrogen receptor alpha gene have been 

observed in liver tumors of adult rats exposed to arsenic in utero (30,31).  Additional 

supporting evidence includes the identification of the Erk MAPK as an essential 

component of the signal transduction pathways responsible for arsenic-induced 

transformation of JB6 murine fibroblast cells in vitro (32).  Other studies have suggested 

that arsenic may prevent signaling events leading to cellular differentiation. For example, 

inorganic arsenic has also been shown to suppress involucrin expression, a marker of 

keratinocyte differentiation (33). 

 Although the previously described studies strongly suggest that gene expression 

and protein signaling events activated and suppressed during arsenic exposure play a 

central role in arsenic-induced tumorigenesis in vitro, knowledge of the signaling 

mechanisms responsible for transformation in a human model system remain virtually 

non-existent.  Several colleagues have examined the transcriptional profiles of cell lines 

and tissues that have been exposed to arsenic.  Examples include Liu’s group (34), who 

showed that hepatocellular carcinoma induced by arsenic exposure in utero upregulated 

the expression of 56 genes and downregulated the expression of 26 genes when compared 

to non-tumor liver samples from CH3 mice.  Moreover, gene expression changes in a 

BEAS-2B cell line differed between low (5 μM) and high (50 μM) doses of arsenic.  In 

the high dose samples, general stress response genes were induced, whereas more subtle 

changes were observed at a lower dose of arsenic (35).   
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To date, only three groups have examined the effects of arsenic in mammalian 

models on a proteomic scale (36-38).    Yet, both Lau’s and He’s groups used a rat lung 

epithelial cell line in which arsenic-induced transformation was not observed (37).  In 

addition, He’s group used the known carcinogen benzo-a-pyrene in conjunction with 

arsenic treatment (36). Furthermore, Wang’s group chose to study only the nuclear matrix 

fraction of the K562 chronic myelogenous leukemic cell line in which arsenic is known 

to induce apoptosis, not transformation (38).  In spite of the valuable information 

provided by these studies, an understanding of the signaling pathways responsible for 

arsenic-induced carcinogenesis is still in its infancy. 

 

GADD45α 

One epigenetic mechanism by which arsenic may induce carcinogenesis is 

through the dysregulation of the cell cycle.  Previous research from our laboratory has 

suggested that arsenic can increase the number of BEAS-2B cells found in the G2/M 

phase fraction in a dose-dependent manner (39).  The GADD45α protein is a major 

player in the G2/M phase checkpoint, and a transcriptional profile analysis of the BEAS-

2B cells showed that the gadd45a gene is upregulated in response to both low and high 

dose exposure to arsenic (35).  We therefore hypothesized that GADD45α may be 

involved in arsenic’s ability to induce G2/M phase arrest.   

The involvement of GADD45α in the G2/M phase checkpoint is thought to occur 

through its interaction with the cyclin dependent kinase cdc2 (also known as cdk1).  

GADD45α is thought to bind to cdc2 and sequester it in the cytoplasm preventing cdc2 

from associating with its cyclin counterpart, cyclin B1 (40).   Recombinant GADD45α 
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(rGADD45α) protein expression has been shown to prevent cdc2 from 

immunoprecipitating with cyclin B1, thus specifically inhibiting cyclin B1/cdc2-

dependent phosphorylation of its target protein histone H1 in vitro (40).   

Additional functions of GADD45α have also been proposed.   For example, 

Smith et al have shown that GADD45α and the proliferating cell nuclear antigen (PCNA) 

coimmunoprecipitate in ML-1 human myeloid leukemia cells containing a functional p53 

gene upon exposure to ionizing radiation (IR) (41).  PCNA is a sliding clamp ring protein 

that functions in DNA synthesis and recruits DNA repair proteins to the site of DNA 

damage (42).  Furthermore, rGADD45α addition has also been shown to stimulate 

nucleotide excision repair (NER) in both ML-1 and RKO cells (41).  Taken together, 

these results suggest that PCNA may recruit GADD45α to the site of DNA damage 

during cellular proliferation, implying a role for GADD45α as a link between the DNA 

damage sensing machinery and DNA damage repair. 

GADD45α has also been shown to play a role in G1/S phase arrest.  Exposure of 

mouse embryo fibroblasts to IR can induce a p53-dependent G1/S phase arrest (43).   

GADD45α mRNA was increased after IR in the wild-type p53 ML-1, RKO, WI38, 344, 

U2-OS cell lines, but not in p53-deficient cell lines (43).  Furthermore, p53 deficiency 

prevented GADD45α mRNA induction and led to a loss of G1 arrest after IR (43). An 

alternative mechanism of GADD45α action at the G1/S phase checkpoint suggests that it 

can prevent DNA synthesis from occurring, since a Balb/c-3T3 fibroblast GADD45α-

IPTG-inducible cell line can inhibit entry into S phase when IPTG is present (44). 

Another function of the GADD45α protein is to allow for topoisomerase I 

relaxing and cleavage activity (45). Addition of GADD45α and core histones can relax 
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supercoiled DNA (45). GADD45α can directly bind histones H1, H2A, H2B, H3, and 

H4, and subsequently interfere with their ability to interact with DNA (45).  Furthermore, 

DNAse I sensitivity increased when GADD45α was added in the presence of 

hyperacetylated nucleosomes (45). GADD45α can bind only hyperacetylated 

nucleosomes (not underacetylated) and can also bind UV-damaged DNA 

mononucleosomes and free DNA damaged by UV (45).   The region of the protein 

responsible for these interactions is contained in amino acids 71-124 (45).  Interestingly, 

this is the same region of the GADD45α protein responsible for preventing cdc2/cyclin 

B1 kinase activity and phosphorylation of histone H1. 

 

Regulation of GADD45α 

gadd45a is an inducible gene that was isolated as a novel mRNA increased after 

DNA damage (46).  It is induced by many different types of cellular stress including 

methylmethane sulfonate (MMS) treatment, medium starvation, ionizing radiation (IR), 

ultraviolet radiation (UV), and sodium arsenite (47).  Depending on which type of 

stressor is present in the system, the mechanisms of gadd45a induction differ. The most 

studied mechanism is the p53-dependent mechanism; however, a p53-independent 

mechanism also exists.    

  In some cases, the first step required for the transcription of inducible genes is the 

remodeling of nucleosomes.  This allows the transcription factor to bind to the inducible 

gene and increase gene expression.  In other cases, the nucleosomes have already been 

arranged around the transcription factor binding sites, allowing for quick binding of the 

selected transcription factor at any time.  The gadd45a gene is thought to be one of these 

 6



so-called preset genes, in which the nucleosomes are arranged such that the promoter 

region and the 3rd intron are poised for easy access to transcription factors, since these 

regions are hypersensitive to DNase cleavage (48).  Therefore, most studies of gadd45a 

transcriptional regulation have focused on the promoter and 3rd intron regions. 

 

p53 

  The p53-dependent mechanism of gadd45a induction is usually seen in response 

to IR exposure.  Graunke et al, have shown that IR treatment causes a 15-fold induction 

of gadd45a mRNA as measured by northern blotting in the absence of de novo protein 

synthesis (48).  In addition, Zhan et al have shown that the p53-dependent induction of 

gadd45a occurs via p53 binding to its consensus sequence in the 3rd intron of the 

gadd45a gene and subsequently interacting with the WT1 transcription factor (49).  

However, this response seems to be strictly employed only with exposure to IR. 

 

Oct-1 

Oct-1 is a ubiquitously expressed cis-regulatory transcription factor of the POU 

(pit-oct-unc) family.  It has been shown to regulate the transcription of many genes, 

including histone H2B, the small nuclear RNA gene, immunoglobulin genes in B cells, 

the von Willebrand factor, TIF2, GnRH, and the vascular cell adhesion molecule 

(VCAM) gene (50,51).  The Oct-1 transcription factor has also been shown to bind the 

promoter region of the gadd45a gene between -101 to -82 bp relative to the 

transcriptional start site (TSS) in a p53-independent manner following MMS treatment 

and UV irradiation (50-53).   
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Takahashi and colleagues have suggested that a cofactor is needed in order for 

Oct-1 to induce gadd45a transcription in response to UV treatment (50).  Jin et al have 

suggested that this cofactor may be the ubiquitous NF-YA transcription factor which 

binds to a CAAT-box motif located in the same region of the gadd45a promoter as the 

Oct-1 binding motif.  Both Jin and Zhao found that Oct-1 is induced in response to MMS 

treatment, which contradicts Takahashi’s results suggesting that Oct-1 abundance was not 

increased in response to UV stimulus (50-52).  Jin also suggests that Oct-1 protein 

induction is mediated through a post-transcriptional mechanism (PTM), whereas 

Takahashi claims that the Oct-1 protein is not modified (50,51).  These differences could 

be due to differences in the cell lines examined or the stimulus used for the induction of 

gadd45a.  Both Takahashi’s and Jin’s work is supported by that of Graunke et al, in 

which LMPCR was used to identify potential protein binding interactions, one of which 

was the Oct-1 transcription factor (48). 

 

ZBRK1 

  ZBRK1 is a zinc finger protein that is thought to repress gadd45a transcription 

by binding to the 3rd intron in a BRCA1-dependent manner (54).  BRCA1 itself cannot 

bind directly to a regulatory DNA sequence; it must associate with a transcription factor 

that is capable of binding to a specific DNA sequence.  There may be additional ZBRK1 

binding sites in the gadd45a promoter region (54).  Many other genes besides gadd45a 

contain putative ZBRK1 binding sequences, including GADD153, Ki-67, Bax, p21, 

EGR1, amphiregulin, prothymosin, TIMP-1, TIMP-2, and Topo IIa, suggesting that 

ZBRK1 may be involved in the cellular response to DNA damage (55).  Yun et al have 
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recently shown that upon UV and MMS exposure, ZBRK1 is rapidly degraded (within 30 

minutes) by the ubiquitin proteasome pathway, which subsequently results in an increase 

in GADD45α protein expression (54).  One possibility is that stress activation of BRCA1 

could promote the degradation of ZBRK1 through its E3 ubiquitin ligase activity, 

relieving gadd45a gene repression. 

 

c-Myc 

 c-Myc is a well-known oncogene that increases its expression in response to 

mitogens.  Its de-regulation prevents cells from exiting the cell cycle and from 

responding to growth-arrest signals.  c-Myc has been shown to regulate many cell cycle 

control genes including Cdc25a, eIF-4E, C/EBPα, cyclin D1, GADD153, and most 

recently GADD45α (56).  Marhin et al, report that c-Myc activation represses gadd45a 

transcription and that this process requires de novo protein synthesis (56).  Interestingly, 

amino acids 106-143 of c-Myc are required for suppression of gadd45a transcription, the 

same region required for cell cycle progression and c-Myc-induced cellular 

transformation (56).  Despite the absence of a canonical c-Myc binding site in the 

gadd45a gene, c-Myc represses its transcription possibly by inhibiting CAAT-binding 

transcription factors such as the CTF/NF1 or C/EBP family of transcription factors (52, 

56).  Graunke’s LMPCR results in ML-1 cells support Marhin’s results, suggesting that 

C/EBP binds to the gadd45a promoter region (48).   
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NF-κB

 UV treatment has also been shown to activate NF-κB, a known inhibitor of JNK 

expression.  NF-κB is thought to cause an inflammatory response and has been shown to 

be overexpressed in many cancer cell systems.  Zerbini et al have recently reported that 

NF-κB can repress gadd45a transcription in an indirect manner by activating c-Myc (57).  

After inhibiting NF-κB activation, an increase of approximately 3-fold in GADD45α and 

γ mRNA was observed (57).  The inhibition of NF-κB is thought to prevent cell 

proliferation and increase apoptosis, both of which have been suggested to be functional 

roles for the GADD45 family of proteins. 

 

FOXO3a

 FOXO3a is a member of the forkhead transcription factor family, and its sequence 

is similar to that of the DAF-16 gene in C. elegans, which is required for SOD and 

catalase transcriptional upregulation.  DAF-16 has been shown to be involved in stress 

resistance and an increased life span, whereas FOXO3a overexpression has been shown 

to result in G1 arrest (58).  FOXO3a is a downstream target of the PI3K and PKB/Akt 

pathway, which promotes cell survival.  PKB/Akt phosphorylates and inhibits FOXO 

transcription factors, sequestering the transcription factor in the cytoplasm.  Tran et al, 

have shown that inducible expression of an Estrogen Receptor-FOXO3a fusion protein 

with 4-hydroxytamoxifin can induce gadd45a promoter luciferase activity in a Rat-1 cell 

line (58).  Tran and colleagues identified the positions of the forkhead response elements 

(FHREs) in the gadd45a promoter region at -505, -377, and -803, relative to the TSS.   

 10



In cells passing through the G2 phase, FOXO3a was localized to the nucleus.  In 

addition, constitutive expression of FOXO3a led to a G2/M phase delay as did treatment 

with a PI3K inhibitor, LY294002.  Furthermore, overexpression of FOXO3a managed to 

repair a UV damaged CMV-luciferase construct in RKO and MEF cells.  Tran et al also 

showed that FOXO3a could bind directly to the FHRE2 and FHRE3 elements in the 

gadd45a promoter region (58).  All of the FOXO3a effects on G2 arrest and the UV 

damaged CMV luciferase construct were diminished in a GADD45α -/- fibroblast cell 

line, suggesting that the effects of GADD45α are at least in part mediated through a 

transcriptional increase of GADD45α protein by FOXO3a (58). 

 

Post-Transcriptional Regulation 

In addition to transcriptional upregulation, GADD45α has also been shown to be 

post-transcriptionally regulated.  Rishi et al observed a four-fold increase in the amount 

of GADD45α mRNA stability in a human breast carcinoma cell line after treatment with 

the synthetic retinoid CD437 which has been shown to cause G0/G1 arrest and apoptosis 

(59). Rishi’s group further established that GADD45α mRNA stability is dependent upon 

45 base pairs of the 5’ untranslated region (UTR) of the GADD45α mRNA (59).  Rishi’s 

report is the only published report of post-transcriptional regulation of the GADD45α 

protein. 

 

Working Hypothesis 

Because GADD45α is a stress-inducible protein that is responsive to a multitude 

of DNA damaging agents each with their own mechanism of action, it is reasonable to 
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suggest that its induction may be related to the production of ROS.  UV-irradiation, IR, 

and sodium arsenite have all been shown to produce ROS in cellular systems and also 

induce GADD45α expression (60).  We have therefore hypothesized that ROS can act as 

second messengers to induce the GADD45α protein and possibly mediate the effects of 

ROS on the cell cycle, apoptosis, and DNA damage repair.  The experimental research 

presented in this manuscript suggests that arsenite can transcriptionally induce 

GADD45α expression via the formation of H2O2 through a Fenton-like reaction 

mechanism.   
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ABSTRACT

 

The human genome sequence provides researchers with a genetic framework to 

eventually understand the relationship between gene-environment interactions.  This 

wealth of information has led to the birth of several related areas of research including 

proteomics, functional genomics, pharmacogenomics, and toxicogenomics. Developing 

techniques such as DNA/protein microarrays, siRNA applications, 2-D gel 

electorphoresis and mass spectrometry in conjunction with advanced analytical software 

and the availability of internet databases offers a powerful set of tools to investigate an 

individual’s response to specific stimuli.  Here, we summarize these emerging scientific 

fields and techniques focusing specifically on their applications to the complexities of 

gene-environment interactions and their potential role in environmental biosecurity. 
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Introduction 

Environmental exposure, genetic susceptibility, and age undergo a set of complex 

interactions to induce human disease (Rall and Groopman, 1994; National Institute for 

Envrionmental Health Sciences (NIEHS): Intro to NIEHS, 2002).  The prevention and 

treatment of human disease relies on the ability to understand the exact cause and effect 

relationship among these factors and to identify which events are involved in the onset 

and progression of disease.  The recently completed draft sequence of the human genome 

could create seemingly endless opportunities for the delineation of gene-environment 

interactions.  By determining the relationship between environmental exposure and 

genetic susceptibility, the environmental health research community has the ability to 

unlock these mysteries.   

Since the inception of the Human Genome Project in 1990 (Fink, 1990), new 

avenues of research such as proteomics, functional genomics, and toxicogenomics have 

rapidly emerged. In February 2001, two separate drafts of the human genome sequence 

were published (Venter et al, 2001; International Human Genome Sequencing 

Consortium (IHGSC), 2001).   In April of 2003, the IHGSC finally announced the 

completion of the human genome sequence (Pennisi, 2003; National Human Genome 

Research Institute, 2003).  New techniques including DNA microarrays, small-interfering 

RNA (siRNA), and protein microarrays have already yielded promising results towards 

improving health and treating human disease (Heller et al, 1997; Novina et al, 2002; 

Belov et al, 2001).  By integrating information gathered from the human genome 

sequence, epidemiological surveys, and gene-association/susceptibility studies, it may be 

possible to determine how genes and environmental stressors are interrelated.  These 
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studies could lead to the generation of novel strategies for treating diseases with 

underlying genetic components.  Here, we discuss advances in the new fields and 

techniques that have emerged with the promise of a complete human genome sequence 

and their applications to gene-environment interaction studies. 

 

Environmental Exposure and Genetic Susceptibility 

Humans are continually exposed to hazardous agents in the environment through 

air, water, soil, diet, and the workplace (Churg et al, 2003; Tsai et al, 1999; Malaka et al, 

1990; Gambelunghe et al, 2003).  Previously, there have been many studies focusing on 

the acute effects of high-dose exposure to environmental agents.  However, much less 

data is available concerning the effects of low-dose chronic exposure to many 

environmental agents.  Chronic exposure to an environmental toxin, even at a low dose, 

can be just as harmful to an organism as an acute exposure.  For example, toxic agents 

such as cadmium have been shown to accumulate in tissues over time and lead to 

multiple adverse effects in exposed individuals (Hunder et al, 2001; Staessen et al, 1999).  

However, not all individuals who are exposed to an environmental agent will manifest 

disease, suggesting that many of the effects resulting from a low-dose chronic exposure 

to an agent may have a complex genetic and/or non-genetic basis.  Further complications 

of exposure assessment include variations in the route of exposure, concentrations of the 

toxic substance, and the number and length of exposures, rendering each individual’s 

exposure pattern unique.  

It has long been thought that the genetic makeup of each individual plays a key 

role in the cellular response to a toxic agent (International SNP Map Working Group, 
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2001).  There are several types of genetic variations that have been observed in humans, 

including the loss of one or both alleles for a specific gene, alternative splicing variants, 

and the presence of single nucleotide polymorphisms (SNPs), which are the most 

common type of genetic variation.  An example of the effect of genetic variation on a 

cellular process is illustrated by the different expression levels of several cellular 

antioxidant enzymes in Type 1 Diabetes patients (Hodgkinson et al, 2003).    When cells 

and tissues are exposed to a toxic agent such as Cr(VI), the antioxidant enzymes are 

triggered as a defense system to repair the cellular damage.  If, however, a large amount 

of cellular damage is induced by the Cr(VI) exposure, then the balance between the 

antioxidant defense mechanisms and the oxidants may be upset.  The oxidant-induced 

damage may be permanent and lead to apoptotic or necrotic cell death (Ye et al, 1999).   

Environmental exposure to agents such as chromium, arsenic, and nickel has been shown 

to affect several cellular signaling pathways, suggesting that an individual’s genetic 

variation in any gene involved in these pathways could potentially affect susceptibility 

(Barchowsky and O’Hara, 2003; O’Hara et al, 2003; reviewed in Chen and Shi, 2001).  

As a result, a Type I Diabetes patient that is subsequently exposed to an environmental 

insult may have a less effective antioxidant defense system than that of a non-diabetic.   

There are several ways a toxic agent can elicit a cellular response.  For example, 

an inappropriate activation or modification of proteins involved in the cell survival/DNA 

repair/apoptotic signaling pathways can lead to increased non-specific tyrosine 

phosphorylation (Qian et al, 2001).  Toxic agents, such as nickel, arsenic, and cadmium 

may also inhibit enzymes responsible for protection from carcinogenic agents (Poirier 

and Vlasova, 2002).  In addition, toxic agents have also been shown to induce mutations, 
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such as the mutation of two domains of the insulin-like growth factor 1 receptor (IGF-1R) 

involved in a radio-resistant signaling pathway in mouse embryo fibroblasts (Yu et al, 

2003). The previous examples suggest that exposure to toxic agents occurs through many 

different mechanisms, each of which must be fully investigated in order to prevent and/or 

treat the diseases that result.  In addition to the myriad of disease mechanisms that may 

exist, genetic influences may also play an important role in these mechanisms.  Until 

recently, however, the tools and technology necessary to investigate the genetic influence 

on diseases of environmental exposure were inadequate.  The sequencing of the human 

genome has provided us with a blueprint to begin studying the gene-environment 

interactions and the cellular signaling processes that lead to complex, genetically-

associated diseases such as Parkinson’s, Alzheimer’s, and cancer. 

 

Single Nucleotide Polymorphisms (SNPs) 

 One of the most promising immediate benefits of sequencing the human genome 

is the current effort to catalog all of the human SNPs.  Persons displaying a SNP - a 

single nucleotide substitution, deletion, or addition in any given gene or regulatory region 

- are potentially at risk for responding to their environment in a different manner from 

those who contain the consensus “normal” allele of the given gene.  Techniques to 

determine the effects of these polymorphisms are playing an important role in 

pharmaceutical research and in the investigation of disease onset.  An example is the 

cytochrome P450 2D6 (CYP2D6) gene encoding debrisoquine 4-hydroxylase, which is 

involved in the metabolism of many drugs and some neurotoxins.  The poor metabolizer 
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polymorphisms of this gene have been implicated in the pathogenesis of neurotoxin-

induced Parkinson’s disease (Payami et al, 2001).   

 SNPs are the most common type of genetic variation – purportedly occurring at a 

rate of 1 per 1300 bases with a grand total of 1.42 million located in the human genome - 

and are thought to be the most likely candidates for complex polygenic susceptibility to 

disease (Venter et al, 2001; IHGSC, 2001; International SNP Map Working Group, 2001; 

Wolfsburg et al, 2001; Altshuler et al, 2000).  Several disease genes have already been 

discovered; the IT15 gene responsible for Huntington’s disease, the ADAMTS13 gene 

involved in thrombotic thrombocytopenic purpura, the lamin A gene (LMNA) which is 

thought to be the underlying cause of Hutchinson-Gilford progeria syndrome, and the 

CLN2 gene product associated with late-infantile neuronal ceroid lipofuscinosis (LINCL) 

(Huntington’s Disease Collaborative Research Group, 1993; Levy et al, 2001; Eriksson et 

al, 2003; Sleat et al, 1997).  However, most of these genes are linked to rare conditions in 

which the mutation of only one gene seems to cause the disease (International SNP Map 

Working Group, 2001). More complex genetic diseases in which mutations must be 

present in multiple genes are much more difficult to identify.  The identification of such 

genes will require the characterization of all of the existing SNPs in combination with 

association studies of individuals at risk (Lander, 1996; Collins et al, 1997).  

It has already been established that certain SNPs play a pivotal role in the 

manifestation of disease, either by increasing the risk for disease, by preventing disease 

progression, or by affecting transcriptional regulation.  For example, an ApoE4 SNP has 

been shown to increase senile plaque density, rendering this SNP a risk factor for 

Alzheimer’s disease (Hofmann, 2001).  On the other hand, the deletion of base pair 32 of 
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the CCR5 co-receptor gene prevents HIV uptake by T4 lymphocytes, rendering any 

individual possessing this SNP resistant to HIV infection (Lander, 1996; Hofmann, 

2001).  Finally, cases in which a SNP removes, adds, or alters a transcription factor 

binding site which lead to a disease phenotype have been documented (Ponomarenko et 

al, 2002; Ponomarenko et al, 2003). To date, most of the research of genetic disease has 

focused on mutations in single genes, mainly because complex genetic interactions are 

difficult to study (Collins et al, 1997).  However, by performing gene-association studies 

utilizing an SNP catalog, researchers can study the complex interactions between 

multiple genes when exposed to an environmental toxicant (International SNP Map 

Working Group, 2001; Collins et al, 1997).   

 Many SNP databases are available for public use, including the dbSNP and the 

SNP Consortium database, both of which currently contain only human SNP data 

(International SNP Map Working Group, 2001; Smigelski et al, 2000; Wheeler et al, 

2003).  Other more specialized types of SNP databases have also been created, including 

the rSNP_Guide, which allows users to search for novel human transcription factor 

binding sites created, deleted, or altered by SNPs (Ponomarenko et al, 2002; 

Ponomarenko et al, 2003).  By utilizing the vast array of information found in such 

databases, one can begin to explore the probable cause and effect relationship between 

SNPs and specific gene-environment interactions leading to disease susceptibility. 

However, many questions remain to be answered concerning the role of genetic 

polymorphisms in disease progression, including the following:  How do these SNPs 

facilitate disease? Is it a result of the polymorphic gene’s inability to produce its 

functional protein product?  Does the polymorphism destroy some binding sequence 
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required for a particular signaling pathway?  Or does the polymorphism interfere with or 

negate the immune response to that agent? Can prior exposure create a sensitization 

effect, i.e. does it influence genetic susceptibility to a second exposure by worsening the 

effects of subsequent exposure over time? Can genetic susceptibility change or 

breakdown over time as a person ages?  These questions will have to be answered for all 

of the SNPs involved in a disease in order to fully understand the gene-environment 

relationship between exposure and disease.   

 

Environmental Genome Project (EGP) 

In light of all the questions surrounding genetic susceptibility and environmental 

exposure, the NIEHS founded the Environmental Genome Project (EGP) in 1997 (EGP – 

History, 2003).  The purpose of the EGP is to increase the available knowledge and 

information about the effects of environmental exposure and the role genetic variation 

plays in human susceptibility to disease.  Specifically, the EGP focuses on re-sequencing 

parts of the human genome, looking for polymorphisms that may be involved in genetic 

susceptibility to a range of diseases (EGP – Overview, 2003). The EGP has identified a 

group of environmentally responsive genes and categorized them into the following eight 

groups: cell cycle, DNA repair, cell division, cell signaling, cell structure, gene 

expression, apoptosis, and metabolism (EGP – Environmentally Responsive Genes, 

2003).  The goal is to compare and cross-screen the re-sequenced regions of the human 

genome, analyzing each identified polymorphism and determining whether or not it is 

functionally significant. Discovering the identity of the functionally significant 

polymorphisms is crucial to linking genetic susceptibility to specific diseases.  Together 
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with thorough epidemiological surveys, genetic polymorphisms can help determine 

which environmental and genetic factors may interact to produce disease. 

 Although studying gene-environment interactions via SNP comparisons is a 

promising avenue of exploration, some problems may complicate these studies.  For 

instance, disease is not always caused by a single trait; it sometimes involves several 

traits, and the algorithms available may not be able to deduce a correlation between broad 

sets of SNPs and environmental factors.  Therefore, establishing clear-cut relationships 

between particular genes and their environmental inducers may not always be possible.  

These issues will have to be addressed in order to fully understand the mechanisms by 

which genes and their corresponding SNPs are influenced by their environment. 

 

Bioinformatics and the –omics explosion 

 As the human genome project neared its completion, the new field of functional 

genomics began to surface.  Functional genomics encompasses the identification and 

analysis of the entire gene and protein content of an organism (Fields et al, 1999; 

Strausberg and Austin, 1999).  Since then, all of the questions originally proposed under 

the term functional genomics seem to have taken on their own personalities, and have 

each become their own –omics field. The fields of bioinformatics, proteomics, and 

structural genomics, are a few of the fields that have evolved in this manner.  

Developments in these fields will likely facilitate the understanding of the underlying 

mechanisms of gene-environment interactions and their relationship to human disease.   
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• Bioinformatics 

The field of bioinformatics collects, analyzes, and disseminates the raw sequence 

data of a genome (D Trends, 2003).  Researchers are currently trying to create better 

analytical software and more powerful algorithms to determine which specific sequences 

correspond to genes or their regulatory regions, and which sections do not play a role in 

the production of proteins or their regulation.  These powerful computer programs will 

allow bioinformaticians to complete an annotated version of the human genome revealing 

the number of genes it contains.  They will also help to predict the regulatory regions, 

functionally significant regions, and transcription factor binding sites in unknown genes.   

 

• Proteomics 

The term “proteome”, coined by Marc Wilkins, refers to the total set of proteins 

encoded by a particular genome (Wilkins et al, 1996).   Even before the determination of 

the complete sequence of the genome, proteomics scientists had already begun to tackle 

the proteome via techniques involving the coupling of 2D polyacrylamide gel 

electrophoresis and chemical composition analysis by mass spectrometry (Wilkins et al, 

1996).  By determining the complete contents of the proteome, proteomics scientists hope 

to discover new protein biomarkers for diseases by examining differences in protein 

expression levels, post-translational modifications, and the differential expression of 

proteins between disease and non-disease states.  With the development of high-

throughput protein analysis methods, such as protein arrays, the identification and 

cataloging processes can be streamlined.  A list of several databases containing 
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information about protein sequences, 2D gel information, and 3D protein structures is 

available at the Expert Protein Analysis System (ExPASy) website (Fig. 1) (James, 

1997). 

 

• Structural Genomics   

With the increasing amount of genomic and proteomic data available, structural 

genomics has found its own niche.  The aim of structural genomics is to characterize the 

structures of representative proteins for each protein family.  Several methods, 

particularly x-ray crystallography and nuclear magnetic resonance (NMR), are used to 

provide a set of reference structures that will serve to help determine the structures of 

similar families of proteins.  The Protein Structure Initiative (PSI) sponsored by the 

National Institute of General Medical Sciences has attempted to create a database of the 

structures of all proteins determined to date (See Fig. 1 - PSI website).  Structural 

genomics scientists can then use the information gained through DNA coding sequences 

to predict primary protein sequence, which can be further analyzed and compared to 

known three dimensional structures by computer homology modeling techniques (Yao, 

2002).   

Computer homology modeling methods play a major role in predicting the tertiary 

structure of proteins by comparing the sequence of a protein of unknown structure to the 

sequences of structures that have already been determined via the use of computer 

databases.  Examples of such databases include Entrez’s Molecular Modeling Database 

and the ModBase database (Wheeler et al, 2003; Yao 2002; Chen et al, 2003).  These 

databases have been employed to determine the physical structure of many proteins and 
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allow public access to the structure and functional domain data generated for known 

proteins.  The identification of a protein’s tertiary structure leading to the recognition of 

common interaction domains, can offer critical information concerning that protein’s 

function.  Recognition of these common binding domains may help to predict novel 

interactions with other proteins or cellular constituents.  Thus, these results could be 

extrapolated from database resources and used to increase the rate at which candidate 

proteins can be examined in biological systems - all based solely on their sequence 

identity and homology to similar proteins.   

In addition to comparing the primary sequence of two proteins, the structural 

databases can be used to compare the tertiary structures of two proteins.  Comparing the 

tertiary structure of proteins may be helpful when comparing two proteins that are 

functionally equivalent, but evolutionarily diverse (Holm and Sander, 1996).  With new 

technologies developing in the field of structural genomics, the goal of structurally 

characterizing the entire proteome may soon be attained, allowing researchers to 

investigate gene-environment interactions at the proteomic level. 

 

Using Bioinformatics to Fuel New Directions in  Environmental Health Research 

Bioinformatics, proteomics, and structural genomics have produced a large 

amount of sequence and structural data very quickly.  The need for interpretation of this 

massive quantity of information has led to the development of many new specific 

disciplines including, but by no means limited to, metabolomics, pharmacogenomics, and 

toxicogenomics.  In addition to these specialized fields, more comprehensive fields such 

as comparative genomics and systems biology have evolved, both of which attempt to 
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make more global inferences from a large scale interpretation of all genomes sequenced 

to date (Yao, 2002). 

 

• Metabolomics 

The field of metabolomics attempts to decipher the different interactions between 

signaling pathways by characterizing differences in the metabolome – all of the 

metabolites present at any given time in a biological sample (Muller and Kersten, 2003).   

Metabolomic profiles have been used to determine genotypic differences between 

Arabidopsis thaliana plants through the use of neural networks and to study metabolic 

fluxes in tumor tissue (Taylor et al, 2002; Griffiths and Stubbs, 2003).  Raamsdonk et al, 

has recently shown that genes exhibiting no overt phenotype can be studied using a 

method called functional analysis by co-responses in yeast (FANCY) that detects changes 

in metabolite concentration of a cell rather than an overall growth effect (Raamsdonk et 

al, 2001).  Metabolomics studies have also been shown to be useful in the discovery of 

new toxicity biomarkers, such as the study by Lindon et al, in which 1H-NMR 

spectroscopy was used to identify novel biomarkers in rat bodily fluids (Lindon et al, 

2002).  EcoCyc, a database that describes the metabolic and signal transduction pathways 

of Escherichia coli, and MetaCyc, which contains metabolic and signal transduction data 

for many other organisms have recently been developed (Karp et al, 2000). Since heart 

disease has been linked to aberrant cholesterol metabolism, advances in the field of 

metabolomics could provide major contributions to environmental health researchers 

investigating the mechanisms responsible for heart disease. 
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• Pharmacogenomics  

Pharmacogenomics is a field which aims to identify and characterize the various 

polymorphisms, including SNPs, present in different individuals that may affect a 

patient’s response to a drug (Altman and Klein, 2002).  Examples of an important class of 

highly polymorphic genes include the cytochrome P450 (CYP450) enzymes, many of 

which are responsible for the metabolism of an array of currently available 

pharmaceuticals.  Currently, new technical avenues are being explored to determine a 

patient’s genetic compatibility with a drug before a treatment is prescribed.  This type of 

precautionary testing would protect a patient in the event that he or she possessed a 

polymorphism affecting the metabolism of that drug.  Although it has been suggested that 

less than 1% of SNPs affect the predicted protein coding regions in the human genome 

(Venter et al, 2001), the SNPs that do affect the coding regions can nonetheless have a 

crucial effect on the treatment of patients.  For example, potentially toxic thiopurine 

drugs, such as 6-mercaptopurine which is metabolized by thiopurine methyltransferase 

(TPMT), are administered to children with acute lymphoblastic leukemia (Weinshilboum, 

2001).  Since thiopurines have a very narrow therapeutic index and the levels of TPMT 

are controlled by a common polymorphism, it is necessary to individualize thiopurine 

therapy to prevent fatal thiopurine toxicity (Weinshilboum, 2001).  Other examples have 

also begun to pave the way for the individualization of medical treatment.  The new 

Genentech drug Herceptin is being used to treat only the 20-30% of breast cancer patients 

that overexpress the her-2/neu receptor (Service, 2003).   Advances in the field of 
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pharmacogenomics could revolutionize the way a doctor prescribes drugs for his or her 

patients. 

 

• Toxicogenomics 

 Toxicogenomics is dedicated to the elucidation of the role genes play in response to 

environmental toxicants and stressors (Hamadeh et al, 2002).  NIEHS has recently 

developed the Toxicogenomics Research Consortium (TRC) in conjunction with the 

National Center for Toxicogenomics Microarray Group (NMG) and has charged them 

with the specific tasks of:  identifying sites of genetic variability throughout the human 

genome, developing standards for the current microarray technology being used to assess 

biological responses to environmental stressors/toxicants, and applying this expression 

technology in a manner that helps to elucidate the mechanisms of toxicity produced in 

response to environmental exposure (Medlin, 2002; National Center for Toxicogenomics 

– TRC, 2003).  The TRC’s overall goal is to study the relationship between 

environmental exposure and disease, and to show how these gene-environment 

interactions affect human health.  It may be useful to try to develop genome and 

proteome “fingerprints” of the different toxicants using array technology, in order to 

thoroughly investigate the mechanism of action of these toxins.  The Comparative 

Toxicogenomics Database (CTD) has been launched in order to provide an annotated 

guide to toxicologically significant genes (Mattingly et al, 2003). 
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• Comparative genomics 

Comparative genomics encompasses the effort to compare all known complete 

genomic sequences to that of the human genome.  Complete genomes have now been 

sequenced for many of the most popular model organisms currently used in research, 

including the A. thaliana plant (Arabidopsis Genome Initiative, 2000), the worm 

Caenorhabditis elegans (C. elegans Sequencing Consortium, 1998), the fruit fly 

Drosophila melanogaster (Adams et al, 2000), the yeasts Saccharomyces cerevisiae 

(Goffeau et al, 1996) and Schizosaccharomyces pombe (Maier et al, 1992), and the 

laboratory mouse Mus musculus (Mouse Genome Sequencing Consortium (MGSC), 

2002).  The comparative analysis of all of the sequenced genomes allows the 

determination of which human genes have homologous genes in different model 

organisms.  This allows researchers to make more informed decisions about which model 

organism to use for specific studies.  If a particular drug is known to exert toxic effects in 

a mouse due to a murine-specific gene, then another model organism could be chosen 

based on a comparative genomic analysis of several suitable organisms.  Thus, some 

pharmaceutical studies use non-rodent models, such as dogs and primates, in order to 

assess the toxicological effects of certain pharmaceuticals that are not suitable for the 

mouse model (reviewed in Smith et al, 2001). Comparative genomics can contribute to 

environmental health research in much the same way, by offering alternative model 

systems and allowing the elucidation of evolutionarily conserved mechanisms in response 

to disease.  Perhaps similar genetic association patterns may surface between humans and 

non-rodent organisms that are affected by similar diseases. 
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• Comparative Genomics: Sequencing of the Mouse Genome 

In December 2002, the long-awaited draft sequence of the laboratory mouse genome, 

Mus musculus, was finally published (MGSC, 2002).  The comparative genomic analyses 

of the human and mouse genomes may prove to be a major factor in decoding the 

language of the human genome.  Already 342 syntenic segments have been found 

between both genomes, marked differences in G/C distribution between the two 

sequences have been discovered, and upon examination of CpG island content, the 

human genome exhibits about twice as many CpG islands as the mouse genome (MGSC, 

2002).  Differences in the amount of sequence repeats in the mouse and human genomes 

is thought to arise from the activity of transposable elements, which appear to be more 

active in the mouse than in the human (Venter et al, 2001; IHGSC, 2001; MGSC, 2002).  

Since the mouse is the most studied model for human disease, with 99% of its genes 

corresponding to a human homolog, the comparison of the mouse and human genome 

sequences will have a significant impact on the future directions of model-driven research 

(MGSC, 2002).  In addition to the identification of homologous gene pairs, the sequence 

identities of many orthologous disease-associated genes have been compared with an 

overall amino acid identity approximating 90.3% (MGSC, 2002).  These data allow for a 

more refined extrapolation of mouse experimental data to human disease states.   

Currently, there is a Human-Mouse Homology Map sponsored by NCBI that 

allows the comparison of mouse and human homologous segments of DNA.  Several 

websites also offer access to the entire sequence of the mouse genome, including NCBI’s 

Genome Resources website, the Ensembl Mouse Genome Server, and the USC Genome 

Bioinformatics website (MGSC, 2002; Wheeler et al, 2003).  Additional mouse 
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informatics databases can be found at the Jackson, Harwell, and RIKEN websites (See 

Fig. 1) (MGSC, 2002).   

 Aside from comparison applications, the mouse genome sequence will contribute 

to the generation of new knockout mice.  A new transgenic approach by Lois et al. shows 

that an entire mouse can be made to express exogenous genes introduced to the organism 

via a lentiviral vector system (Lois et al, 2002).  This lentiviral vector system could be 

combined with the new siRNA technology (discussed later) to produce knockout mice in 

a much more efficient and cost effective manner than traditional methods.  It may even be 

possible to expand the lentiviral technique for use in fully grown mice to knockout 

embryonic lethal genes in a tissue-specific manner.  Techniques of this caliber would 

provide extremely valuable in vivo data on signaling pathways in the mouse that would 

otherwise be impossible to study.   

 

• Systems Biology 

In addition to the birth of comparative genomics, the availability of the complete 

human and mouse genome sequences has also catalyzed the emergence of systems 

biology, which is the attempt to systematically study all of the physiological processes in 

a cell or tissue by global measurement of differentially perturbed states.  The ultimate 

goal of systems biology is the integration of data from these observations into models that 

will eventually represent and simulate all processes of life, including the induction of a 

diseased state (Ideker et al, 2001; Kitano, 2002).  Advances in proteomics could soon 

make the systems biology approach possible.  Examples of systems biology approaches 

include the galactose metabolism system developed by Ideker et al., the PhysioLab® 
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technology created by ENTELOS, and the Cardiome Project reviewed by 

Bassingthwaighte  (Ideker et al, 2001; Bassingthwaighte, 2000; ENTELOS, 2003). 

 

Current Technology – Global Transcriptional Analysis 

 The increase in new areas of science prompted by the sequencing of the human 

genome coincides with a sudden increase in new technology that can help discover links 

between genes and causation of disease in response to environmental agents.  By looking 

at the expression of a large number of genes at the same time, it is possible to check for 

global trends of expression specific to disease states.  These trends may not be apparent 

to a researcher using traditional time-consuming methods of gene expression 

measurement, such as a Northern blot, which relies on a priori knowledge of regulation 

events.  Several methods have been developed to assess transcription on a global level, 

including DNA microarrays, serial analysis of gene expression (SAGE), and massively 

parallel signature sequencing (MPSS). 

 

• Global Transcriptional Analysis – DNA microarrays 

 One of the most powerful techniques is the DNA microarray, a high throughput 

screening method that measures the effects of a stimulus on the mRNA expression of the 

entire transcriptome in one comprehensive assay (Schena et al, 1995; Fodor et al, 1993).  

Microarray technology utilizes a defined set of probes, each of which represents a 

specific transcript.  Each probe is arrayed on glass slides to form a microscopic high-

density spot.   Total RNA is then isolated from treated and/or control samples and 

differentially labeled with fluorescent dyes.  Next, a mixed population of labeled RNA 
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targets is hybridized to the set of probes.   Finally, the amount of fluorescence is 

measured by image analysis software and the increase/decrease in gene expression is 

determined via statistical analysis of fluorescence intensity.  Several databases have been 

created to store microarray data, making it available to the public.  These include but are 

not limited to the Stanford Microarray Database and the NCBI Gene Expression Omnibus 

database (See Fig. 1).   

An attractive advantage to the microarray assay is that the large amounts of 

expression information obtained through one assay can save a tremendous amount of 

time by eliminating the need for blind usage of Northern blotting, RT-PCR, western 

blotting, and enzymatic assays to analyze gene expression.  These time-consuming 

techniques can now be utilized on a smaller scale, as a subsequent validation method, to 

provide connections for the underlying mechanisms of the signaling pathways (Chin and 

Kong, 2002).  In addition to the standard use of the assay for gene expression, genomic 

microarrays could potentially be employed to detect single nucleotide polymorphisms 

(SNPs), since the hybridization between mismatches, even of a 1 base pair magnitude, 

can be detected upon quantification of the hybridized probe or by enzymatic treatment in 

certain systems (Kolchinsky and Mirzabekov, 2002; Hacia and Collins, 1999). 

As more human genes are identified and characterized, the development of 

microarrays can be tailored to include specific subsets of related genes that might be of 

interest to a researcher.  One example would be the development of carcinogenesis chips 

that contain oligo probes specific for all known genes involved in cancer pathology.  

Toxicology laboratories in the United Kingdom have recently developed a set of 

toxicology tailored microarrays known as ToxBlot and ToxBlot II, which are specifically 
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for use in toxicogenomic assays (Pennie, 2000; Pennie, 2002).  Subset specific 

microarray databases, such as the Comparative Toxicogenomics Database (CTD) which 

contains toxicogenomic microarray data, are also under development (Mattingly et al, 

2003; Medlin, 2002).  These types of specialty-tailored microarrays could become more 

and more important for the initiation of hypothesis-driven research as we extrapolate 

information about the individual genes comprising the human genome. 

One of the most useful applications of microarrays is the elucidation of uniquely 

affected transcripts in response to a stimulus, producing a so-called fingerprint pattern.  It 

has recently been shown that microarray data can be useful in diagnosing diseased states 

in rats by examining the gene expression pattern of white blood cells, producing a 

fingerprint expression pattern unique to a specific disease state (Tang et al, 2001).  

Previous studies have also shown that different inflammatory diseases such as 

rheumatoid arthritis and inflammatory bowel disease exhibit a differential display of gene 

expression upon microarray analysis (Heller et al, 1997).  Moreover, lesions of multiple 

sclerosis subjected to microarray analysis also produced expression profiles different 

from that of normal tissue from the same individual (Whitney et al;. 1999).  Most 

recently, several laboratories have been able to identify a disease state and even predict 

the prognosis of an individual based on the patient’s gene expression profile (Perou et al, 

2000; Sorlie et al, 2001; Brenton et al, 2001; Gruvberger et al, 2001).  These molecular 

fingerprints of disease produced by microarrays may be able to revolutionize the way we 

diagnose disease states. Diagnostic microarrays could also be used to identify and assess 

the severity of environmental exposure even if symptoms have not yet surfaced.  With 
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more research pending, this type of disease diagnosis may become an increasingly 

powerful tool in the individualization of health care treatment.   

In addition to the fingerprint approach to microarray diagnostics, microarrays 

could also be instrumental for facilitating the identification of biomarkers specific for 

many different types of disease processes (Gerhold et al, 2002; Chin and Kong, 2002).  It 

has been demonstrated that microarrays can detect alterations in gene expression in 

pathological states, such as microbial colonization of the gut and the onset of 

inflammation (Heller et al, 1997; Hooper and Gordon, 2001).  Gel pad microarrays have 

even been used for identification of all types of pathogens - viruses, bacteria, prokaryotes 

– and the determination of tuberculosis antibiotic resistance, genetic mutations, SNP 

markers, and chromosomal rearrangements (Kolchinsky and Mirzabekov, 2002).  The 

identification of new biomarkers will allow for the expansion of the available cache of 

simple diagnostic tests that can be performed in the laboratories at hospitals, instead of 

relying on more technically complicated diagnostic methods, rendering faster and more 

definitive results. 

Microarray technology also has practical uses and applications in the 

environmental health research laboratory.  Screening patients for a genetic risk factor is 

currently feasible only for a small subset of rare diseases that depend on the mutation of a 

single gene.  With the newly emerging genetic technology, it is possible that the list can 

be expanded to include more diseases, particularly those that are influenced by more than 

one gene, such as diseases resulting from low-dose, chronic exposure to a hazardous 

agent.  This could potentially save many lives by identifying the diseases much earlier, 
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allowing doctors to prevent and/or pre-treat diseases before symptoms appear and the 

disease’s course has already damaged the patient’s body beyond repair (Grody, 2003).   

As there is always a down side to every promising technique, there are also plenty 

of disadvantages plaguing the microarray.  The microarrays currently used in most 

laboratories are not extremely sensitive and may exhibit probe hybridization technical 

problems (Kolchinsky and Mirzabekov, 2002).  The reliability of the assay is 

compromised for genes with repetitive sequence elements or nucleic acids that strongly 

favor a secondary structure (Hacia and Collins, 1999).  Additionally, since mRNA is 

transiently expressed, the expression information obtained through microarray analysis is 

limited to a “snapshot” of a biological process.  Furthermore,  early microarray data has 

not been continuously subjected to a set of globally accepted standards, and therefore 

much of the microarray data already generated and available in the public databases may 

be non-comparable or misleading if not examined carefully and analyzed using the 

appropriate statistical methods (Nadon and Shoemaker, 2002). 

Microarray technology has also been criticized for creating a large number of 

false positives and negatives, for difficulty in reproduction of results between assays and 

laboratories, and for providing too much information for realistic interpretation.  The 

Microarray Gene Expression Data (MGED) Society has begun to address some of these 

issues, and is currently trying several approaches such as:  developing standards that will 

help to reduce variability between assays and laboratories which would increase 

reproducibility, requiring annotation of microarray data provided in databases – the 

minimal information about a microarray experiment (MIAME) standards, and developing 

computer software allowing microarray data to be exchanged between laboratories 
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(Brazma et al, 2001 ).  With these improvements looming in the not-so-distant future, 

microarrays should prove to be an extremely useful tool in the quest for understanding 

gene-environment interactions.  

 

• Global Transcriptional Analysis – MPSS and SAGE 

 Although DNA microarrays are the most common way to examine transcription 

on a global scale, MPSS and SAGE offer certain advantages over the DNA microarray.   

The SAGE technique relies on a set of gene-specific probes complexed with streptavidin 

beads, each containing a specific tag sequence.  The probes and tag sequences are cleaved 

from the beads by restriction enzymes and combined to form a unique set of markers for 

each transcript.  The transcripts are subjected to PCR and sequenced to determine their 

identity (Velculescu et al, 1995).  A SAGEmap database has been developed for the 

dissemination of SAGE data (See Fig. 1) (Lash et al, 2000).  Another technique, MPSS, 

is very similar to SAGE.  The designers of MPSS have generated a large set of 

microbeads, each containing a unique tag attached to a gene-specific probe.  The beads 

containing the tag-probe complex are then mixed with RNA, allowing for hybridization 

between the RNA and its specific tag-probe complex, and placed into a flow cell where 

up to a million transcripts can be sequenced simultaneously (Brenner et al, 2000).   

There are a few advantages to using the SAGE or MPSS approaches over 

microarrays.  One advantage is that SAGE and MPSS are thought to be more sensitive 

than microarrays.  They can detect very low levels of transcripts in a system, whereas 

microarray experiments may tend to omit some of these low level transcripts.  Since the 

quantitation of MPSS relies on counting the number of beads with a specific tag instead 
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of hybridizations between a probe and target DNA that may or may not be absolute, the 

statistical analysis of MPSS is far more robust than that of DNA microarrays (Brenner et 

al, 2000).  MPSS is also a much faster technique for global transcriptional analysis than 

SAGE, since a million transcripts can be sequenced at a time.  MPSS also simplifies 

many of the steps required for preparing a DNA microarray experiment, thus reducing the 

margin of error in an MPSS experiment. 

 

Current Technology - siRNA 

 siRNA can also be very useful for the elucidation of signaling pathways induced 

by different environmental agents, particularly now that the complete human genome 

sequence is available.  RNA interference (RNAi) is a naturally occurring mechanism in 

which the presence of dsRNA can lead to gene silencing through siRNA intermediates.  

siRNAs are 21-23 base pair sequences that are created from larger dsRNA molecules by 

an enzyme of the RNase III family called Dicer.  The siRNA fragments then associate 

with a nuclease complex termed the RNA-induced silencing complex (RISC).  RISC 

unwinds the siRNA fragments and allows the single-stranded fragment to target 

complementary RNA inside a cell, which somehow activates the nuclease activity of the 

RISC complex (reviewed in Ambion, 2003).   

RNAi was first discovered in the worm, and has been a commonly utilized 

technique in the invertebrate world (Fire et al, 1998; Zamore, 2001).  Until recently, 

RNAi was thought to be an application that could only be used in invertebrate studies, 

since a double stranded RNA greater than 30 base pairs in length seemed to activate the 

PKR kinase anti-viral mechanism and induce apoptosis in mammalian cells (Ambion, 
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2003; Zamore, 2001).  However, it was recently discovered that the 21-23 nucleotide 

siRNA fragments could bypass the apoptotic mechanism and produce a gene-silencing 

effect in mammalian cells (Elbashir et al, 2001).  Although the precise details of the 

mechanism of siRNA-silencing are not entirely known, it is still an extremely useful 

laboratory technique.  The short siRNA fragments can be synthetically produced by 

silencing vectors, and transfected into mammalian cells, resulting in a decrease of a 

specific protein from the system (Elbashir et al, 2001).  An advantage of siRNA over the 

conventional practice of over-expressing dominant-negative mutants in cellular systems, 

is that the siRNA removes endogenously expressed mRNA.  This method is also much 

easier than creating knockout mutations in cell lines, since it requires only the synthesis 

of siRNA fragments and a transfection.   

 Several labs have recently suggested that siRNA technology could have clinical 

applications, such as the inhibition of HIV-1 replication, in addition to its research 

applications (Jacque et al, 2002; Novina et al, 2002).  Capodici et al. have shown that 

they can inhibit HIV-1 infection and replication by transfecting primary CD4+ T cells 

with HIV-1 specific siRNA (Capodici et al, 2002).  In addition, Qin et al. have developed 

a lentiviral-mediated delivery system for siRNA complementary to CCR5 mRNA, the 

main HIV-1 co-receptor in primary CD4+ T cells (Qin et al, 2003). This application 

seems to lead to the prevention of HIV-1 infection, mimicking the natural immunity to 

HIV-1 seen in individuals who lack both CCR5 co-receptor genes (Qin et al, 2003; Dean 

et al, 1996).  Future siRNA research utilizing approaches such as these, could lead to the 

use of siRNA and retroviral gene therapy applicable not only to HIV-1 infection, but to 

environmentally-induced disease states as well. 
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siRNA could become a very powerful tool for the environmental health research 

community.  Once the sequence of a particular gene that responds to an environmental 

toxin is known, siRNA can be easily exploited to reveal the consequences of removing 

that protein from a cellular system.  Other suggested uses for the siRNA technology that 

could benefit environmental health research include the development of siRNA chips.  

These chips would consist of an array of unique siRNA probes fixed to a tissue culture 

slide.  Cells could then be grown on these chips to show a range of siRNA suppression 

based on the siRNA vector the cell takes up, allowing for a high-throughput format for 

siRNA studies (Zamore, 2001).  In addition, a new type of ssRNA, termed microRNA 

(miRNA) or small temporal RNA (stRNA), is thought to function in translation 

suppression. These ssRNA molecules may be useful for genetic-silencing experiments as 

well (Zamore, 2001; Dennis, 2002). 

 

Emerging Technology – Peptide/Protein Microarrays 

 With the recent push towards high throughput technology, it only seems natural 

that peptide arrays would follow the advent of DNA microarrays.  The set up of a peptide 

microarray is very similar to that of a DNA microarray.  In both cases, a set of unique 

probes, or capture agents, are attached to a glass slide, or some other form of solid 

support system.  The main difference between the two assays is the type of capture agent 

that is attached to the slide.  In the protein microarray, the capture agent can range from 

antibodies, epitopes, and small molecules to sets of recombinant proteins (Tyers and 

Mann, 2003).  On the contrary, cDNA or oligonucleotide probes are used in DNA 

microarrays.  The different probes in a protein microarray are chosen depending on what 
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type of assay the researcher wants to run.  Examples of peptide microarray assays include 

binding assays, enzymatic activity assays, protein identification assays, and cell adhesion 

assays (Reimer et al, 2002; MacBeath, 2002).  

One potential application of a protein microarray is the enzymatic kinase assay.  

In this assay, a purified 32P-labeled kinase can be applied to an array utilizing peptides as 

capture agents. Each protein probe that is phosphorylated by that specific kinase would 

then bear the radio-label (MacBeath and Schreiber, 2000).  Alternative uses of the protein 

microarray include the use of antibody probes, which could detect specific proteins from 

a mixed solution of total protein isolated from a test subject (Belov et al, 2001).  The 

development of yet another peptide microarray assay includes the placement of different 

proteins onto the glass slide and washing the slide with a mixture of differentially 

fluorescent labeled proteins in order to determine protein binding interactions (MacBeath 

and Schreiber, 2000).  Assays such as these could advance the discovery of biomarkers 

important for the identification of diseased-state phenotypes. These assays may also help 

elucidate exciting new protein-protein interactions. 

Although peptide microarray technology is still in its infancy, the advantages are 

apparent.  In particular, the arrays offer a high-throughput advantage over traditional 

methods such as yeast-two hybrid screens, fluorescence resonance energy transfer 

(FRET), and the traditional biochemical assays coupled to mass spectrometric analysis 

(reviewed in Phizicky et al, 2003).  Protein microarrays can also help fill in the gaps left 

by DNA microarrays, since DNA arrays are indifferent to some forms of genetic 

regulation, such as post-translational regulation and protein degradation.  The 

development of solid protein profiling techniques and applications would allow 
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researchers to supplement the information gained through DNA microarray studies.  In 

addition, a global analysis of the entire proteome could lead to the quick discovery of 

protein-protein interactions that may have taken years to notice with a small scale 

approach. 

Currently, however, it is not yet technically possible to determine the entire 

content of a proteome with a protein microarray.  Several complicating factors, such as 

the existence of unknown differential splice variants and post-translational regulation 

events undergone by many proteins, make it difficult to develop capture agents for these 

currently unknown proteins.  Difficulties also arise during the production of the capture 

agents that are needed to specifically interact with only a single protein.  Another 

disadvantage of protein arrays that measure specific binding to a set of capture agents is 

that attachment to the slide must not alter the structure or function of the capture agents 

(MacBeath, 2002).   Yet another issue relates to the difficulty of synthesizing the proteins 

on the glass slide, possibly creating a bias as to which proteins get studied, e.g. the easiest 

ones to synthesize on the slide.  Other concerns have been voiced about the difficulties of 

miniaturizing the protein microarrays while maintaining sensitivity and the need for 

algorithms that are advanced enough to handle a protein array format.   

One of the most important issues of implementing protein microarrays is the 

difficulty in producing large numbers of highly pure recombinant proteins.  However, 

recent advances in protein complex purification involving the tandem affinity purification 

method combined with RNAi (known as iTAP) by Forler et al. are a step in the right 

direction (Forler et al, 2003).  The sequence of the human genome may also help to 

remediate this shortcoming by allowing the development of a perfectly normalized 
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human cDNA clone library spanning the entire proteome.  In fact, the FlexGene 

Consortium has recently announced their mission to develop a complete cDNA collection 

specifically for this purpose (Tyers and Mann, 2003). 

 New advances in nanotechnology may also help to overcome many of the 

technical issues with the newly developing protein arrays.  Some of these new advances 

include the research of Ouyang and colleagues, who have demonstrated a soft-landing 

mass-spec technique to separate protein mixtures and spot proteins in a microarray 

format.  An array of proteins was created by their soft-landing technique that allowed 

proteins to retain their biological activity (Oyuang et al, 2003).  Other advances in 

nanotechnology that may assist protein array implementation include the development of 

new protein capture agents, such as the mixed-element capture agents (MECAs) 

developed by Bachhawat-Sikder and Kodadek.  MECAs comprised of two small proteins 

attached together with a variable linker region and were shown to bind their target 

molecules with high affinity and sensitivity, making them good candidates for protein 

array capture agents (Bachhawat-Sikder and Kodadek, 2003). 

 Despite the immaturity of peptide microarray technology, results from primitive 

protein array assays have already indicated the usefulness and incredible versatility of the 

assay.  Analogous applications to those of DNA microarrays, such as using protein 

profiling to obtain a characteristic fingerprint of a single disease, have already been 

developed. In fact, protein microarray profiling has recently been used to fingerprint 

different leukemia types, which may someday become a widely used diagnostic tool 

(Service, 2003; Belov et al, 2001).  In addition to fueling new research applications, 

protein profiling could soon take its place next to the DNA microarray as a new 
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diagnostic tool. Together with DNA microarray technology, peptide microarrays may 

also help to revolutionize many aspects of the health care field, including applications to 

diagnostics and assistance with the personalization of disease treatment. 

 

Biosecurity and Bioterrorism

We have all probably noticed the increased attention focused on bioterrorism in 

the United States since the attacks of September 11, 2001 and the subsequent reports of 

inhalation anthrax in October, 2001 (Jernigan et al, 2001).   Traditionally, biowarfare 

research has mainly been conducted by military scientists in government facilities.  

However, in 2003 alone, approximately $1.75 billion has been poured into biological 

weapons research, much of which is being allocated to the private and academic sectors 

to develop biowarfare research programs and facilities (Fauci, 2002).  Biosecurity and 

bioterrorism are a definite concern for the environmental health research community.  In 

response to the increasing threat of the use of biological and chemical weapons in a 

terrorist attack, the Centers for Disease Control and Prevention (CDC) has compiled a list 

of biological agents that would most likely be used in a terrorist attack (Rotz et al, 2002) 

(See Table 1).  The dissemination of aerosolized particles of many of these agents into 

the environment is considered to be extremely dangerous.  Therefore, it is the 

responsibility of environmental health researchers to help develop new methods of 

detecting chemical-biological (CB) agents and aide in the advancement of toxicology and 

genetic interaction studies pertaining to novel vaccines and treatments.  
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Preparedness in the Case of a CB Attack 

In the past, emphasis has been placed on the ability of health care facilities to 

communicate with each other and coordinate treatments in the event of a CB attack.  

Such emphasis has prompted the development of many new training and preparedness 

programs, including preparedness programs at the state and federal levels and non-

governmental professional programs, such as the Clinicians’ Biodefense Network (CBN). 

The CBN aims to link clinicians to health experts and biomedical researchers, allowing 

for rapid communication and the distribution of updated information concerning 

biodefense during times of crisis (Radonovich, 2002).  However, education and 

preparedness of healthcare workers is not enough to protect the mass population.  

Today, more emphasis has been placed on developing countermeasures in the 

event of a biological attack, and there has been an overwhelming push by the government 

and the public for further research into biosecurity efforts.  It thus follows, that the 

determination of the gene-environment interactions that can occur in response to 

biological or chemical weapon attacks should be a major priority in the environmental 

health research community. The development of rapid and standard laboratory tests 

detecting exposure to a specific kind of CB agent that could be widely and economically 

distributed to health care facilities would greatly enhance our ability for the early 

detection and response to certain types of potential attacks.  Candidate assays for these 

tests include the identification of specific biomarkers for exposure to CB weapons.  

Biomarkers could easily be assayed for changes in exposed victims and would greatly aid 

in the early clinical recognition of such an attack. With the recent anthrax attacks, an 

early screening method for potential biomarkers specific to anthrax infection applied to 

 54



all who were suspected of anthrax exposure would have improved the ability of the 

nation’s public health system to respond, and in turn could have possibly saved lives and 

prevented the needless distribution of large amounts of Cipro (ciprofloxacin, the 

antibiotic used to treat anthrax infections) (Jernigan et al, 2001; Rosenberg, 2003).  With 

the information gained from the completion of the human genome sequence, and the 

multitude of emerging technologies available, there are many opportunities for the 

exploration of bioterrorism countermeasures. 

 

Preparedness in Case of a CB Terrorist Attack-Mass Vaccination 

Many of the vaccines and treatments used to prevent the spread and disease 

manifestations of potential bioterrorism agents were manufactured over 20 years ago; in 

the case of the smallpox virus, the vaccine used to eradicate the disease in 1980 is the 

only currently available vaccination (Lofquist et al, 2003; Fauci, 2002; WHO, 1980).  

Previous data has suggested that a smallpox outbreak would spread slowly (Eichner and 

Dietz, 2003).  The current recommended public health response to a smallpox outbreak is 

a ring vaccination strategy in which individual cases are isolated, quarantined, and their 

contacts vaccinated (Whitley, 2003).  However, some scientists have shown that this 

approach may not be as effective as an immediate mass vaccination in the event of a 

biological attack on an urban center (Kaplan et al, 2002), suggesting that new strategies 

should be considered.   

 Several setbacks have surfaced during discussions concerning vaccination to 

protect the mass population in the event of a biological attack.  One of the most important 

is the lack of interest from pharmaceutical companies to develop and produce vaccines 
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for biological warfare agents.  Most of the larger companies are unwilling to develop 

these vaccines because of financial concerns, liability issues, efficacy questions, and 

regulatory limitations (Rosenthal and Clifford, 2002; Langford and Myers, 2002).   

Another concern is the high rate of complications in the vaccines that have been licensed 

and are used exclusively in the military, but not in the general public. The high 

occurrence of adverse effects in such a small population (reported to be >30% in some 

instances) suggests that the benefits of vaccination in the case of a potential threat may 

not outweigh the risks of vaccine complications (Frey et al, 2002).  However, 

identification of SNPs in certain populations via microarray analysis may help to 

determine which subset of the population should not be vaccinated in preparation for a 

biological attack.  The identification of these individuals would result in a decrease in the 

number of unnecessary complications/deaths that could occur in the event of a mass 

vaccination, should a bioterrorism situation arise.  Other measures would need to be 

taken to protect these individuals.  Although the United States currently has licensed 

vaccines for smallpox and anthrax, it does not have these for many of the other agents 

listed as potential biological warfare agents by the CDC and researchers are working 

fervently to develop them (See Table 1).  Newly developed Ebola vaccines have recently 

been shown to protect mice, guinea pigs, and non-human primates from lethal doses of 

the virus (Vanderzanden et al, 1998; Xu et al, 1998; Sullivan et al, 2000). 

In addition to vaccination, other methods of preparedness have been discussed.  

Recently, a set of guidelines has been published by the CDC’s National Institute for 

Occupational Safety and Health (NIOSH), outlinining the procedures building officials 

should follow to protect private, public, and government buildings from chemical, 
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radiological, and biological terrorism (NIOSH, 2002).  A second set of guidelines has 

been published by the Office of Health and Safety to ensure laboratory security and 

emergency response preparedness for laboratories that work with CB agents deemed fit 

for terrorist attacks (Richmond and Nesby-O’Dell, 2002).  In order to further protect 

building environments from a CB attack, engineers have also been trying to develop a set 

of biomaterials that can metabolize CB agents.  The approach is designed to allow the 

incorporation of these materials into equipment, such as the countertops of an office 

building or the sorting machines used in post offices (reviewed in Russell et al, 2003).  

The development of such materials combined with the protective measures outlined by 

NIOSH and OHS could allow for widespread protection from attacks in almost any 

building or environment, while diminishing public fear of an attack. 

 

Early Detection of CB Agents in the Environment 

Although much has been discussed concerning early disease recognition, 

improved surveillance/communication methods, and the limitation of potentially sensitive 

scientific information (Zilinskas and Tucker, 2002; Atlas et al, 2003; Chyba, 2001; Kwik 

et al, 2003), less has been suggested concerning our ability to detect a CB attack before 

clinical disease is recognized in victims.  The early detection of the agent itself in the 

environment, which could help prevent the spread of the infection in the case of a 

biological attack and limit the number of victims affected by the agent, would be more 

advantageous than the early detection of diseases caused by these agents.  

One of the most effective ways to deliver a biological weapon is the release of 

aerosolized particles into the environment. Implementing a biological agent monitoring 
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system that can detect a CB agent by sampling the air would greatly enhance our ability 

to evacuate enclosed areas deemed ideal for CB attack (Wyatt, 2002).  Testing has 

recently begun at San Francisco International Airport for one of the first CB agent 

defense systems (Larkin, 2003).  The system, known as PROACT (Protective and 

Response Options for Airport Counter-Terrorism) and produced by Sandia National 

Laboratories in Livermore, CA, is designed to monitor the air at large indoor public 

meeting areas for CB agents as a measure to deter chemical attacks such as the 1995 sarin 

attack in the Tokyo subway system (Frischknecht, 2003; Larkin, 2003).  Details of the 

mechanism of action of the device have not yet been disclosed. However, if it proves to 

be reliable, the device may spread to other airports across the nation. 

Immunological methods to detect biological warfare agents are also being 

investigated for use in an early warning detection system.  A miniature biochip system 

based on an ELISA assay has recently been developed by Stratis-Cullum et al. In this 

system, air samples containing aerosolized spores of Bacillus globigii were applied to a 

minature ELISA biochip, where a novel alkaline phosphatase substrate, 

dimethylacridinone phosphate (DDAO-P) was cleaved by an alkaline phosphatase (AP) 

enzyme (Stratis-Cullum et al, 2003).  The DDAO formed as a result of AP cleavage can 

be excited by a miniature diode laser and the voltage output read on a laptop computer. 

Although this highly sensitive, portable device was used for the detection of B. globigii 

spores, it could be used to detect other aerosolized forms of biological weapons.   

Another immunoassay, the multiplexed liquid array, has been shown to be useful 

in the simultaneous detection of many different biological agents (McBride et al, 2003).  

McBride and colleagues used a set of polystyrene microbeads conjugated to biowarfare 
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agent-specific antibodies, each of which displays a unique spectral pattern.  Once the 

microbeads are exposed to antigen, a secondary antibody conjugated to the fluorescent 

reporter phycoerythrin (PE) is applied, and the beads are assayed in a flow cytometer.  

The presence of the unique spectral pattern detects the type of antibody that reacted with 

a biowarfare agent, while the PE is detected simultaneously to quantify the amount of 

agent present in the air.  These types of assays are candidates for use in early warning 

detection systems because they are rapid, easily detected, and are part of a portable unit.   

 

Environmental Health Research, the Human Genome Project, and Biosecurity 

The DNA microarray and protein microarray applications discussed previously 

can also be applied to bioterrorism.  These techniques can be useful in leading us towards 

unique physiological responses that may occur when an individual has been exposed to 

these agents, providing scientists with a much narrower spectrum of therapeutic targets to 

focus on during their research. The genomes of several potential biowarfare agents have 

already been sequenced, including that of Bacillus anthracis (Read et al, 2003).  

Microarrays have already been used to study the effects of the B. anthracis virulence 

factors atxA and acpA.  These studies suggest that atxA is a global regulator of many new 

genes that could potentially exhibit virulence effects (Bourgogne et al, 2003). By treating 

human protein arrays with a mixture of proteins from a biowarfare agent, one could infer 

interactions between the proteins of the agent and human proteins, leading to new drug 

targets, new signaling pathways, and new routes of infection.  Implementing the use of 

databases containing collections of array data would allow the expression effects of these 

agents to be cross-referenced, possibly leading to the identification of a few candidate 
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therapeutic targets that could be used for the treatment of diseases induced by CB agents.  

As suggested earlier, microarrays may also prove to be important in the identification of 

novel or weaponized infectious agents.  Microarrays played a large role in the 

identification and characterization of the Severe Acute Respiratory Syndrome (SARS) 

coronavirus that plagued China, Canada, and Vietnam, among others (Ksiazek et al, 

2003).  Additional applications include the use of microarrays to differentiate between a 

large spectrum of possible viral infections and to determine the genotype of these 

pathogens (Wang et al, 2002). 

 

Novel Treatments in a CB attack 

In addition to being concerned about preparedness in the case of an attack, novel 

treatments of diseases caused by such CB agents should be thoroughly investigated.   One 

of the easiest ways to weaponize a bacterial strain for use in a biological warfare attack is 

to engineer antibiotic resistance genes into the strain.  Since this is not an extremely 

difficult task, the need for non-antibiotic treatment of weaponized strains of biological 

agents is an important matter.  A novel approach to treating victims of a CB attack, 

developed by Fischetti, is the use of purified bacteriophage lysins to specifically lyse 

targeted bacteria, including those exhibiting antibiotic resistance.  Fischetti’s group 

demonstrated that PlyG, a gamma phage lysin specifically targeting B. anthracis, 

effectively killed spores in vivo.  PlyG treated mice had a 72% survival rate versus a 10% 

survival rate for untreated mice (Fischetti, 2003). In addition to the bacterial lysin 

approach, it may also be possible to deliver siRNA through a viral gene therapy 
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mechanism as a therapeutic countermeasure to interfere with an agent’s ability to 

replicate.   

 

Future Directions 

 In order for scientists to get the maximum benefit from the current technology 

available, significant technological and organizational improvements must be made.  

Advanced software is required for bioinformaticians to accurately recognize common 

binding domains, promoter regions, and transcriptional regulatory elements.  The 

development of user-friendly, organized databases providing DNA and RNA sequences, 

protein interactions, protein structures with correct annotations, microarray data, and a 

variety of animal genome sequences appear necessary to solve the puzzle of signaling 

pathways, which can have profound effects on human disease states.   

There are also many different forms of data that need to be explored on a multi-

level scale.  Genomes, transcriptomes, proteomes, and metabolomes are not separate 

entities and each –omic level must be taken into consideration when integrating the 

different types of information available.  For example, many proteins are multi-functional 

and may act at the level of transcription as well as participating in a cellular signaling 

cascade. We must be able to view each piece of information from a global standpoint. 

 With the surge in the development of new techniques and fields of expertise, the 

environmental health research community can use the information provided by the 

genetic code to its advantage.  The improved identification of environmentally hazardous 

agents via gene and protein expression analysis as a diagnostic tool in health care 

facilities could soon become a reality, allowing for better assessment of environmentally 
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induced health risks and ultimately more accurate treatments.  The elucidation of 

biological responses to toxic environmental agents and the mechanisms by which these 

agents cause cellular damage may aid in developing new drug targets and/or novel 

therapeutic options.  Transcriptome expression patterns could soon be identified for 

individual toxicants and stressors, which may improve exposure assessment methods.  

Additionally, the discovery of new biomarkers activated in response to environmentally 

hazardous agents and the use of array expression analysis may soon be indispensable 

tools for diagnosing a disease, determining its stage, predicting its course, and thus 

dictating its treatment on an individual basis.  The identification of susceptibility factors 

through SNP screening could lead to a better assessment of risk factors for potentially 

susceptible individuals and possibly even lead to prevention of adverse effects or even 

some diseases altogether. 

 

Concluding Remarks 

In conclusion, the elucidation of a first draft of the human genome sequence has 

provided the environmental health research community with a wealth of information and 

a genetic framework that can greatly contribute to our understanding of gene-

environment interactions.  Determining the actual extent of polymorphisms and assigning 

function to the remaining 40% of predicted proteins with unknown molecular function 

(Venter et al, 2001), are only a few examples of the challenges still ahead.  However, 

with the current information available and by using these new techniques and the 

expertise of those involved in the emerging fields of environmental health research, we 

can close in on our common goal of providing the world with better treatments and 

 62



 63

knowledge to prevent the atrocious diseases that can result from exposure to harmful 

environmental factors.   
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Table 1:  CDC’s List of Potential Biological Warfare Agents1

 
 
Category A     Category B   
Bacillus anthracis    Brucella species    
Clostridium botulinum toxin   Clostridium perfringens ε-toxin 
Yersinia pestis     Food Safety Threats (i.e. Salmonella  
Variola major (Smallpox)      species, E. coli O157:H7, and Shigella) 
Francisella tularensis    Burkholderia mallei 
Viral Hemorrhagic fevers (i.e. Ebola,  Burkholderia pseudomallei 
   Marburg, Lassa, and Machupo)  Chlamydia psittaci 
        Coxiella burnetii 
        Ricin toxin 
        Staphylococcal enterotoxin B 
        Rickettsia prowazekii 
        Viral encephalitis (i.e. alphaviruses) 
        Water Safety Threats (i.e. Vibrio cholerae, 
           and Cryptosporidium parvum) 

 
* Category C agents include any emerging infectious disease including  
   Nipah virus and hantavirus. 

 
1Adapted from the CDC website at www.bt.cdc.gov/agent/agentlist-category.asp
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Abstract 

Chronic exposure to many heavy metals and metal-derivatives is associated with an 

increased risk of cancer, although the mechanisms of tumorigenesis are largely unknown. 

Approximately 125 scientists attended the 3rd Conference on Molecular Mechanisms of 

Metal Toxicity and Carcinogenesis and presented the latest research concerning these 

mechanisms. Major areas of focus included exposure assessment and biomarker 

identification, roles of ROS and antioxidants in carcinogenesis, mechanisms of metal-

induced DNA damage, metal signaling, and the development of animal models for use in 

metal toxicology studies. Here we highlight some of the research presented, and 

summarize the conference proceedings.  
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Introduction 

The 3rd Conference on Molecular Mechanisms of Metal Toxicity and 

Carcinogenesis was held at the National Institute for Occupational Safety and Health 

(NIOSH) in Morgantown, West Virginia. Over 125 participants from 13 different 

countries gathered at NIOSH to present their research on September 12–15, 2004. This 

conference was the third meeting of metal researchers in the past 5 years, with previous 

conferences convening in 2000 and 2002. Major areas of research emphasized at the 

conference included metal epidemiology, identification of biomarkers, reactive oxygen 

species (ROS) production, antioxidant effects, induction of DNA damage/lesions, metal-

induced signaling pathways, and animal exposure studies. Here, we summarize the 

conference proceedings and examine the future directions of research concerning the 

molecular mechanisms that facilitate metal-induced carcinogenesis. 

 

Epidemiological implications of metal exposure and the search for reliable biomarkers  

Many metals are considered essential trace elements and must be present in low 

concentrations in the human body in order for normal cellular function. However, altered 

concentrations or transition states of metals in the body are thought to lead to a wide 

range of deleterious conditions, especially an increase in cancer incidence. Increased 

metal exposure in humans can occur via ingestion, inhalation, dermal contact, and 

occupational exposure [1–4]. Although correlations between metal exposure and cancer 

are well documented, more research is still needed in order to determine the exact 

mechanisms of metal-induced carcinogenesis. Much of the metal toxicology and 

carcinogenicity data available are acquired in animal model systems, with few studies 
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representing the effects of metals in humans. Therefore, several groups at the conference 

focused their research on the link between the level of metals in the human body and 

carcinogenesis.  Puneet and colleagues presented work examining the role of metals in 

gallbladder carcinoma. Using atomic absorption spectrometry, they showed that the bile 

of gallbladder carcinoma patients contained higher concentrations of cadmium (Cd), 

chromium (Cr), and lead (Pb) than patients with other non-cancerous gallbladder 

diseases, such as gallstones. 

Additionally, Puneet’s group observed an increase in the expression of the metal-

exposure protection protein metallothionein (MT) in 70% of the gallbladder carcinoma 

patients.  These results suggest that the body may concentrate these metals in the 

hepatobiliary system and lead to gallbladder carcinoma. This group also examined the 

lipid peroxidation profiles of gallbladder carcinoma patients in order to determine if a 

free radical-induced mechanism might be involved.  They found a significant increase in 

the amount of a major lipid peroxidation product, 4-hydroxynonenal (4-HNE), in 

gallbladder carcinoma patients compared to patients with other non-cancerous 

gallbladder diseases. These results suggest that the formation of lipid peroxidation 

products in the gallbladder, induced by metal exposure and free radical generation, may 

be an underlying cause of tumorigenesis. 

Many metals must be controlled by a tightly regulated homeostasis. Two such 

examples are copper (Cu) and iron (Fe), the accumulation of which results in oxidative 

stress-induced cellular damage [5, 6]. Wilson’s disease (WD) and primary 

hemochromatosis (PH) are metal storage diseases which are associated with DNA 

damage in the liver. In WD, a defect in a Cu-transporting ATPase results in the 
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intracellular accumulation of Cu [7]. In PH, Fe accumulates in the liver because of a 

mutation in the hfe gene, which is responsible for mediating the effects of the transferrin 

receptor [8]. Patients with both WD and PH are shown to exhibit increased oxidative 

stress-induced etheno-DNA adducts [9]. Vinyl chloride, urethane, and 4-HNE produce 

etheno-DNA adducts as well [10–12]. These adducts can subsequently lead to the 

formation of strong miscoding lesions and cause mutations and/or genomic instability in 

patients suffering from WD and PH.  Nair and Bartsch further examined the correlation 

between the formation of 4-HNE-induced DNA adducts and susceptibility to the 

development of liver cancer. They found that both WD and PH patients exhibiting high 

4-HNE-induced DNA adducts were the most susceptible to the development of liver 

cancer, particularly those patients suffering from PH.  

Conversely, the dietary deficiency of many micronutrients, such as certain trace 

metals, has also been associated with an increased risk of cancer [13–16]. Ansari et al. 

presented data suggesting that significantly lower levels of selenium (Se) and zinc (Zn) 

were found in the serum, biliary fluid, and gallbladder tissue of gallbladder carcinoma 

patients when compared to healthy individuals. Serum manganese (Mn) was also reduced 

in gallbladder carcinoma patients, leading Ansari’s group to conclude that a deficiency in 

these trace elements is also associated with gallbladder carcinoma. 

Since animal studies assessing the effects of metal exposure can often be difficult 

to interpret and inconclusive due to the role of some metals as co-carcinogens, reliable 

biomarkers are needed in order to assess metal exposure in humans. A good candidate for 

a human biomarker must be specific to the effects of the causal agent and easily 

quantitated and/or assayed for its presence in a noninvasive manner. Several studies 
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presented at the conference examined the reliability of biomarkers for metal exposure. 

Using atomic absorption spectrometry, Rahnama et al. analysed the Zn, Cu, Mn, and Fe 

content of saliva and serum from patients with squamous cell carcinoma (SCC) of the 

oral cavity. SCC patients exhibited increased concentrations of Cu, Mn, and Fe in their 

blood and increased concentrations of all four metals examined in saliva when compared 

to healthy individuals. These results suggest that analysis of saliva may be an easy and 

effective way to detect SCC of the oral cavity. 

In order to identify specific biomarkers of mercury (Hg) poisoning Song et al. 

examined cases of peripheral neuropathy in Hg-exposed patients. Levels of selected 

urinary proteins were measured in patients with acute or chronic Hg poisoning and 

healthy control individuals. Elevated levels of the α1-m, β2-m, TRF, IgG, and NAG 

proteins were observed in both acute and chronic Hg-exposed patients, suggesting that 

urine samples may be a simple and inexpensive way to test for Hg exposure. 

In addition to studying the adverse effects of metal exposure, it is important to try 

to develop methods of exposure prevention. For example, Huang’s group attempted to 

develop a correlation model between Fe exposure in coal mines and Coal Workers’ 

Pneumoconiosis (CWP). Fe is an essential trace metal that is stored in Fe-containing 

proteins, such as ferritin and transferrin, where it is tightly bound and unavailable to 

cause oxidative damage [17–19]. Bio-available iron (BAI), such as Fe associated with 

citrate and ATP, has been shown to produce oxidants in a pH-dependent manner [20]. 

Some coal dusts contain BAI, and have been shown to activate the stress-inducible AP-1 

and NFAT transcription factors, while coal dust lacking BAI had no effect on either 
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transcription factor [21]. Previously, BAI content in Pennsylvanian coal was shown to be 

much higher than the BAI content in coal dust originating from Utah [22]. Huang posited 

that BAI content could be used as a predictor of coal toxicity. The BAI content of coal 

from Utah and Pennsylvania was calculated and compared to epidemiological studies 

reporting the incidence of CWP. A significant correlation was found between BAI levels 

and CWP incidence, suggesting that BAI levels may be used to predict the toxicity of 

coal before mining begins. 

A second example of an in vitro predictive model for metal-induced disease was 

introduced by Hockertz et al.  Primary mast cells from human lung tissue and foreskin 

specimens were exposed to wear particle antigens including chromium–cobalt–

molybdenum alloy (CrCoMo), a titanium alloy (TiAL6V4), or ultra-high molecular 

weight polyethylene (UMHWPE), all of which can be released into the human body by 

the degradation of implanted osseoprostheses [23].  Histamine release, indicative of an 

allergic reaction, was observed when the antigens were added to serum-containing media 

and applied to primary mast cells. If a patient’s IgE was present, histamine release 

increased, particularly for the CrCoMo antigen. This in vitro model could be useful in 

preventing potentially dangerous allergic reactions in patients with osseoprostheses and 

reduce the need for the administration of immunosuppressants. 

In some cases, a single biomarker candidate may be difficult to obtain and a 

profiling-based approach may be useful in identifying a molecular fingerprint for toxicant 

exposure. Boyd et al. presented an example of a high throughput strategy utilizing an 

automated robotic workstation (COPAS BIOSORT) to dispense and measure the length 

of Caenorhabditis elegans worms. Toxicological endpoints were examined using a 
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fluorescent dye that only penetrates deceased worms. An imaging workstation was used 

to track the motion of the live worms and acquire multidimensional image analysis data. 

This type of high throughput method can be used to examine the properties of potential 

neurological and developmental toxicants and detect subtle changes in gene or protein 

expression that may be undetectable by conventional methods. 

 

Balancing act: The role of reactive oxygen species (ROS) and antioxidants 

Many transition metals have been shown to produce elevated amounts of 

damaging ROS [24–28]. Disturbing the redox balance of a system leads to an increase in 

DNA damage, DNA-protein crosslink formation, lipid peroxidation, apoptosis, cellular 

toxicity, and/or the inappropriate activation of cellular signaling pathways [29–35]. Since 

the mechanisms of ROS action are not well understood, many conference participants 

focused their studies on the elucidation of these mechanisms. For example, Cr(VI) is a 

transition metal that is known for its ability to produce increased quantities of ROS in 

cellular systems, particularly •OH [36, 37]. Previous studies have focused on the effects 

of soluble Cr(VI), since solubility is thought to be an important factor in its ability to 

contribute to carcinogenesis [38]. However, water insoluble (or particulate) Cr(VI) has 

also been shown to be genotoxic and cytotoxic [24, 39–41].  Leonard et al. examined the 

capability of insoluble Cr(VI) in the form of PbCrO4 to produce ROS using electron spin 

resonance (ESR) spectroscopy and the comet assay. Their results showed that insoluble 

Cr(VI) was capable of producing oxidative stress in a similar pattern to that of soluble 

Cr(VI). 
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Additional studies examining the effects of PbCrO4 in the human lung cell line 

WHTBF-6, were presented by Wise et al. PbCrO4 was shown to enter the lung cells and 

exert clastogenic effects in a dose-dependent manner, although dicentric chromosome 

formation was not observed. In order to exclude Pb ions as the culprits of clastogenicity,  

HTBF-6 cells were also exposed to Pb-glutamate, which yielded no clastogenesis. 

However, Na2CrO4 treatment also proved to be clastogenic in the lung cells, suggesting 

that the CrO4
2- ions were the cause of clastogenicity. In addition, the antioxidant vitamin 

C prevented the uptake of CrO4
2- ions and exhibited only a slight effect on Pb levels. The 

cytotoxicity profiles of WHTBF-6 cells exposed to CrO4
2- ions and PbCrO4 were 

comparable. Both PbCrO4 and Na2CrO4 induced cell cycle arrest and inhibited growth, 

whereas Pb ions alone induced only mitotic arrest. 

ROS production often leads to cell death through cytotoxicity and/or apoptosis, 

prompting several groups to examine the benefits of inducing ROS in a cellular system 

through metal treatment. Farmer et al. used synthetic melanins derived from dihydroxy 

indole (DHI) to study the speciation, metal-binding affinity, and redox reactivity of those 

synthetic melanins. Several metals bound the DHI-melanin, increasing redox cycling and 

the production of •OH and O2
•− surprisingly.  Indium(III) ions alone and lipophillic 

metallodithiocarbamate exhibited an unusual amount of toxicity towards melanoma cells 

in culture.  The dithiocarbamate disulfide disulfiram (DSF), which is traditionally 

prescribed as an alcohol-abuse deterrent, also showed strong Cu-dependent activity 

towards melanoma cells. Cen’s group confirmed that DSF exhibited a Cu-dependent 

toxicity towards melanoma cells, whereas nontransformed melanocytes were only 

slightly affected. Upon DSF treatment, melanoma cell survival decreased to less than 
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10% as the intracellular Cu concentrations increased.  The addition of Cu chelators 

blocked the DSF-induced cell toxicity and Cu uptake by melanoma cells. Formation of a 

Cu(deDTC)2 complex was proposed to be the likely active agent. This response is unique 

to Cu(II) and was not observed with Fe(II), Mn(III), or Zn(II), suggesting that local 

administration of Cu and DSF or DHI may be useful in the treatment of melanoma. 

Exposure to metal-containing particulates can also increase ROS production in 

cellular systems. For example, diesel exhaust particles (DEP) have been shown to induce 

DNA adducts and increase inflammation in the respiratory tract [42–46]. DEP contents 

include polycyclic-aromatic hydrocarbons (PAHs), redox active semi-quinones, and trace 

heavy metals [47, 48]. Park et al. compared ROS production of the DEP standard 

reference material 2975 (SRM 2975) and DEP collected from the air in Korea as 

measured by thiobarbituric acid – reactive substances of deoxyribose (TBARS).  

Differences in transition metal composition were observed between samples; DEP from 

Korea contained more Fe, less Cu, and less Zn than SRM 2975. TBARS measurements of 

the water soluble fraction of SRM 2975 showed a broad absorption in the visible range, 

which was absent in the DEP from Korea.  Although SRM 2975 increased the amount of 

TBARS fluorescence, H2O2 generated more TBARS in the DEP from Korea, probably 

due to the increase in Fe composition. These results support a role for Fe in DEP-induced 

H2O2 toxicity, which may be the underlying cause of the adverse health effects of DEP. 

Some substances seem to exert both pro-oxidant and antioxidant effects. Recently, 

many epidemiological and experimental studies have suggested that drinking green or 

black tea may protect against cancer [49, 50]. Sinha et al. presented evidence suggesting 

that tea extracts, in particular the polyphenolic components, exert their 
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chemopreventative effects by acting as antioxidants. They proposed that tea extracts can 

prevent DNA damage caused by sodium arsenite in V-79 Chinese hamster lung 

fibroblasts. However, Azmi et al. presented evidence that the presence of at least one of 

those polyphenolic components, (−) epigallocatechin-3-gallate (EGCG), can induce 

•OH/O2
•− formation and increase the rate of DNA oxidation in the presence of Cu ions. 

The results of Azmi’s group suggest that EGCG’s apoptosis-inducing pro-oxidant 

properties may be more important than its preventative antioxidant properties. These 

studies are also supported by the findings of Qanungo et al. and Zykova et al. which 

suggest that tea polyphenols may serve as either an antioxidant or an oxidant, depending 

on the physiological environment [51–53]. 

Ascorbate/ascorbic acid/vitamin C is another compound that has been shown to 

exhibit both pro-oxidant and antioxidant effects [54–58]. Huq and Hussain presented 

evidence suggesting that exposure to Cd acetates increases DNA damage in the presence 

of ascorbate. The mechanism occurs via the formation of a 1:1 covalent Cd(II)/ascorbate 

adduct, causing a molecular activation of the transition metal. This group proposed that 

the deprotonated ascorbate ions bind to 3O2 producing the volatile ROS species, singlet 

molecular oxygen (1O2).  

Ironically, some transition metals may serve as antioxidants and prevent oxidative 

cellular damage. Aravind and Prasad presented evidence that Zn may be able to prevent 

Cd toxicity. Ceratophyllum demersum L. plants were treated with different 

concentrations of CdCl2 and/or ZnCl2. The production of •OH, an oxidative shift in GSH 

levels, loss of carbonic anhydrase conformation, and DNA fragmentation were observed 

with CdCl2 treatment. Upon treatment with both CdCl2 and ZnCl2, the presence of Zn 
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inhibited all of the aforementioned markers of oxidative damage, suggesting that Zn may 

be able to prevent the cytotoxic effects induced by Cd. 

Rhenium is a second transition metal that exhibits low ROS-induced toxicity. 

Thus, cluster rhenium compounds (CRCs) are thought to be a potential drug delivery 

agent. CRCs possess lower toxic effects than other metals currently used as anti-tumour 

agents, including palladium, platinum, and cisplatin [59]. Shtemenko and Shtemenko 

examined the mechanisms of lipid-CRC interactions in solution and during the formation 

of liposomes. They had previously shown that CRCs bind to carboxylic acids, amino 

acids, or adamantanic acids, and subsequently interact with the surface of red blood cells 

to stabilize the membrane in response to free radicals [60]. Administration of CRC1-

dichlorotetra-μ-(i-butirato) dirhenium(III) or CRC2-tetrachlorodi-μ-(γ -aminobutirato) 

dirhenium(III) chloride in models of hemolytic anemia led to an increase in hemoglobin 

and resistance of erythrocytes to oxidative stress, extending the life of hemolytic animals. 

In addition, CRC1 or CRC2 administration increased reduced glutathione pools, 

glutathione reductase expression, and glutathione peroxidase (GPx) expression in the 

tissues of animals with hemolytic anaemia. Thus, CRCs demonstrate antioxidant and 

antiradical properties in vivo and may be useful in the treatment of hemolytic anaemia. 

Cellular systems have developed a wide range of antioxidant mechanimsms to 

combat the dangerous accumulation of ROS. Examples include the increased expression 

of ROS detoxification enzymes, such as catalase and superoxide dismutase (SOD), and 

the maintenance of pools of small molecular ROS scavengers, such as N-acetyl-cysteine 

(NAC) and reduced glutathione (GSH). These ROS scavenging molecules react with 

excess ROS, thus minimizing cellular damage. Glutathione (GSH), although widely 
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known for its antioxidant activity, is also involved in Se metabolism and bioactivity [61]. 

Shen et al. presented evidence that Se caused a dose-dependent onset of mitochondrial 

permeability transition (MPT) in the presence of GSH, which could be inhibited by the 

MPT inhibitor cyclosporin A. An SOD mimic, Mn[III]tetrakis [4-benzoic acid] 

porphyrin, has been previously shown to prevent MPT caused by xanthine (X)–xanthine 

oxidase (XO) [62]. Surprisingly, SOD had no effect on MPT and was unable to prevent 

the reduction of cytochrome c induced by selenite-GSH (Se-GSH) formation. Although 

others have observed an increase in O2
•− formation during Se-GSH generation, Shen’s 

group measured O2
•− via the lucigenin assay and found no significant increase in O2

•−

when compared to O2
•− production by the X–XO pathway [63]. These results suggest that 

O2
•− is not responsible for Se-GSH-induced MPT in this system. 

Resveratrol is a polyphenolic antioxidant that is synthesized by many plant 

species and has been shown to inhibit the growth of cultured cancer cells [64]. Xia et al. 

presented evidence that ROS-induced activation of the PI3K/Akt survival pathway can be 

inhibited by the presence of resveratrol in prostate cancer cells. Resveratrol also inhibited 

the expression of proteins involved in angiogenesis, such as HIF-1α and VEGF, in a 

dose-dependent manner. Xia’s results suggest that resveratrol may be able to inhibit 

prostate cancer progression and angiogenesis through the inhibition of these pathways. 

 

DNA damage/lesions and mitotic effects 

In addition to producing ROS, many metals have been shown to directly modify 

and/or damage DNA by forming DNA adducts, facilitating DNA protein crosslink 

formation, or inducing chromosomal breaks [33, 44, 65, 66]. Many researchers at the 
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conference presented work reflecting efforts to identify the mechanisms of metal-induced 

DNA damage.  For example, O’Brien et al. examined the role of O2 in Cr(VI)-induced 

DNA lesions and found that hypoxic conditions did not alter Cr(VI) reduction by 

ascorbic acid. However, both Cr(VI)-DNA binding and the occurrence of polymerase 

arresting lesions (PALs) decreased under hypoxic conditions by 70% and 50–90%, 

respectively. These results suggest that O2 can help facilitate the formation of Cr(VI)-

DNA complexes. 

A common oxidative DNA modification, the 7,8-dihydro-8-oxo-2_-

deoxyguanosine (8-oxo-dG) lesion, can lead to the misincorporation of extraneous 

nucleotides during DNA replication [67, 68]. The 8-oxo-dG lesions are prone to further 

oxidation by many transition metals, including Cr(V) and Iridium (IV).  Further oxidation 

of 8-oxo-dG leads to the formation of guanidinohydantoin (Gh) and 

spiroiminodihydantoin (Sp) lesions, subsequently causing G→T and G→ C transversions 

[69, 70]. Gh and Sp lesions are thought to enhance base misincorporation and the 

polymerase blocking effects of the 8-oxo-dG lesion [71, 72]. Certain base excision repair 

(BER) enzymes recognize 8-oxo-dG lesions, but not Gh or Sp lesions [73, 74]. Hailer et 

al. showed that the mammalian BER glycosylases NEIL1 and NEIL2 both recognize and 

cleave Gh and Sp lesions in single-stranded DNA [75].  These results demonstrate that an 

alternative pathway is activated in response to the formation of Gh and Sp DNA lesions. 

The 8-oxo-dG lesion also affects transcription factor binding [76, 77]. Previous studies by 

Sugden’s group reported that binding activity of the NF-κB p50 subunit increases if 

the G1 nucleotide of the NF-κB consensus binding sequence (5’-dAGTTGA 

G1G2G3G4ACTTTCCCAGCC-3’) is replaced with an 8-oxo-dG modified base [77]. In 

 102



contrast, replacing the G3 nucleotide with an 8-oxo-dG decreases p50 binding activity. 

Sugden et al. found that p50 binding activity to the modified NF-κB consensus sequences 

correlated with p50 in vitro transcription activity, providing a direct link between the 

regulation of gene transcription and ROS formation.  

In addition to inducing DNA lesions, metals can interfere with cellular processes 

such as mitosis. Kligerman et al. presented evidence that arsenicals induced c-type 

anaphases consisting of small, condensed chromosomes – an effect usually seen with 

spindle poisons [78]. They proceeded to investigate the effects of several different 

modified arsenicals on mitosis and found that monomethylarsenous acid (MMAIII) 

exhibited the most potent mitotic interference. When tubulin was directly exposed to 

MMAIII, an increase in the number of mitotic indices (MIs) was observed. None of the 

arsenicals with a valence state of V showed an obvious effect on tubulin polymerization, 

whereas all arsenicals with a valance state of III inhibited tubulin polymerization. Taken 

together, these results indicate that As(III) and its metabolites can interfere with cell 

division. 

Activation of DNA repair enzymes is often observed in response to metal-induced 

DNA damage [79–81]. Lee et al. examined the effects of DNA repair gene 

polymorphisms on the number of Cr(VI)-induced strand breaks in human white blood 

cells. Several DNA repair genes with known genetic polymorphisms were examined, 

including glutathione S transferase M1 (GSTM1), glutathione S transferase T1 (GSTT1), 

NADPH quinine oxidoreductase 1 (NQO1), X-ray repair cross complementation factor 

1 (XRCC1), and the 8-oxo-7,8-dihydroguanine (8-oxo-G) DNA glycosylase (OGG1). 

White blood cells homozygous for the OGG1 Cys326 polymorphism exhibited an 
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increased number of DNA strand breaks when compared to the OGG1 Ser326/Ser326 and 

OGG1 Ser326/Cys326 polymorphisms.  White blood cells homozygous for the OGG1 

Cys326 variation also exhibited an increase in the ratio of oxidative DNA damage to 

plasma antioxidant capacity. These results suggest that OGG1 Cys326 homozygous 

individuals may be defective in the repair of DNA adducts during oxidative stress 

conditions, possibly due to the oxidation of these residues. 

 

Metal-induced cellular signaling 

Although each metal activates its own unique set of signaling events, many metals 

also activate general ROS-mediated stress response pathways. DNA microarray 

technology has recently been used to examine the global effects of metals in several 

model systems. For example, Jin et al. examined the global transcriptional response of 

the yeast Sacchromyces cerevisiae to Zn, Cd, Hg, Cu, silver (Ag), Cr, or arsenic (As) 

exposure. Approximately 25% of the yeast genes were affected by at least one metal (798 

upregulated genes and 774 downregulated genes). Most of the metals upregulated genes 

involved in the oxidative damage process, sulfur assimilation, sulfur metabolism, and 

GSH biosynthesis. Genes encoding biomolecular transporters of sugar and lipid 

metabolism were downregulated. Approximately 10% of the total number of S. cerevisiae 

genes were affected by As treatment – a 2–5-fold increase in the number of genes 

affected by any other metal examined. Additional classes of genes induced by As 

treatment included double-stranded break (DSB) repair and DNA replication genes. 

Other examples of the use of microarray analysis in toxicology studies included 

Song and Freedman’s examination of the global transcriptional effects of Cu treatment on 
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a human hepatoma cell line, Hep2G. After 4 h of Cu exposure, 42 genes were 

upregulated and 24 were downregulated. The upregulated genes included metallothionein 

IIA (MT2A), myosin heavy polypeptide (MYH8), CYP1A1, IL-1 receptor alpha 

(IL11RA), heat shock protein A1A (HSPA1A), and heme oxygenase 1 (HO-1). 

Downregulated genes included the HT017 protein, dynamin 1-like (DNM1L), DEAD box 

polypeptide 18 (DDX18), and GST theta 2 (GSTT2).  RT-PCR confirmed the 

upregulation of HSPA1A, CYP1A1, and HO-1 with peak induction levels at 12, 24, and 8 

hours respectively. 

Many of the global effects of metals on transcription are thought to be controlled 

by the interactions between metal response elements (MREs) and MRE binding 

transcription factors such as MTF-1 [82]. Since PKC inhibitors can abrogate MT 

induction, it is thought that some metals induce signaling cascades through PKC 

activation, subsequent alteration of MTF-1 phosphorylation, and activation of MT 

transcription [83]. Craft and Freedman examined the role of p53 activation in MT 

induction by Hg and Cd and found MT transcription was reduced in p53 −/− cells when 

compared to wild-type p53 cells. These results suggest that p53 may be part of a general 

mechanism in the cellular response to both Hg and Cd exposure. 

 

Arsenic signaling 

After a metal ion is transported across the cytoplasmic membrane, its transition 

state is often altered by cellular reducing agents. Reduction of some metals to a lower 

transition state, such as As(V)→As(III), often results in an increase in toxicity; thus it is 
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beneficial to examine the metal’s cellular point of entry. The ArsATPase is a catalytic 

subunit of the Escherichia coli ArsAB pump that translocates As(III) across the cellular 

membrane, conferring resistance to arsenicals and antimonials [84, 85]. There are two 

halves of the Ars ATPase, A1 and A2, each consisting of a nucleotide binding domain 

(NBD) and a metal binding domain (MBD). The NBD and MBD are connected by two 

amino acid linkers which serve as a signal transduction domain [85, 86]. Using site-

directed mutagenesis, Bhattacharjee and Rosen altered residues of the signal transduction 

domain and found that the D142A and P145A mutations caused a loss of As(III) 

resistance. These results indicate that this domain is important in the signaling events 

between the catalytic and allosteric sites of the Ars ATPase. The aquaglyceroporin (AQP) 

family is responsible for the uptake of As(III) and Sb(III) in humans [87, 88]. 

Mukhopadhyay et al. reported that overexpression of human AQP9 in the chronic 

myelogenous leukemia cell line K562 increased uptake of the As(III)-based drug 

Trisenox [89]. Since AQP9 overexpression in K562 cells exhibited hypersensitivity to 

Trisenox, it is possible that pharmacological alteration of AQP9 expression could boost 

Trisenox effectiveness in cancer patients. 

As(III) induces oxidative stress and delays cell cycle reentry into the G1 phase by 

an unknown signaling mechanism [90, 91]. Chen et al. presented evidence that As(III) 

induces ubiquitination and subsequent degradation of the Cdc25C protein, a protein 

which is thought to cause the exit of cells from the G2/M phase [92]. These effects were 

not abrogated by treatment with antioxidants. Furthermore, immunoprecipitation showed 

that Cdc25C associates with the Fzr/Cdh1 recognition subunit of the mitotic APC 

ubiquitin ligase complex. siRNA silencing of Fzr/Cdh1 expression protected Cdc25C 
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from degradation and decreased ubiquitin conjugating activity. Chen’s group concluded 

that As(III) induces the redox-independent ubiquitination and degradation of Cdc25C 

through its association with Fzr/Cdh1.  

As(III) exposure also induces remodelling of the cytoskeleton [93]. Qian et al. 

demonstrated that As(III) activated Cdc42 and NADPH oxidase. Activated NADPH 

oxidase produced O2
•− and induced actin filament reorganization in SVEC4-10 cells [94]. 

Overexpression of a dominant negative Cdc42 or treatment with the actin filament 

stabilization agent jasplakinolide inhibited actin filament reorganization and prevented 

NADPH oxidase activation. Qian’s group concluded that As(III) activates NADPH 

oxidase through Cdc42 and leads to actin filament reorganization and the formation of 

lamellipodia and filopodia. These effects could possibly lead to increased cell migration 

and/or metastasis of As(III)-induced tumors. 

Paradoxically, As also exhibits apoptotic-inducing effects. Ivanov and Hei 

presented evidence that human melanoma cells exposed to combinations of low 

concentrations of As (2–10μM) and EGFR, PI3K/Akt, or MEK/Erk inhibitors effectively 

induced apoptosis via the TRAIL and TNFα pathways in spite of low Fas levels [95]. The 

combination of As and synthetic small molecule inhibitors could potentially be used to 

sensitize melanoma cells to cytotoxic drugs, enabling the development of more effective 

chemotherapy regimens. 

Lemarie et al. further examined the apoptotic pathway induced by As and found 

that As2O3 prevented monocyte adhesion and expression of the macrophage phenotypical 

markers transferrin receptor CD71 and integrin CDIIc. As2O3 induced monocyte 

apoptosis, increased caspase 8 and caspase 3 expression, decreased cFLIP and XIAP 
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expression, decreased NFκB binding activity, and exhibited a loss of mitochondrial 

membrane potential. Lemarie’s group suggested that As2O3 may induce apoptosis by 

inhibiting NFκB activity and subsequently decreasing the expression of the cFLIP and 

XIAP pro-survival proteins, both of which are transcriptionally controlled by NFκB. 

Taken together, these studies may provide insight into the signaling pathways responsible 

for As’s ability to induce apoptotic effects as well as carcinogenic effects. 

 

Chromium signaling 

Cr(VI) has been known to produce ROS, induce DNA damage, and subsequently 

activate the ATM, p53, and Chk2 proteins [96, 97]. It is known that ATM is activated 

specifically in response to DSBs, however no Cr-induced DSBs have been reported [98–

101]. Ceryak et al. exposed normal human dermal fibroblasts to Cr(VI) or the 

radiomimetic agent neocarzinostatin (NCS) and analysed the occurrence of DSBs, the 

phosphorylation status of histone H2A.X (γ -H2AX), and the formation of γ -H2AX 

nuclear foci. Their evidence suggested that DSBs were formed in response to Cr(VI) 

exposure in an S phase-dependent manner, while NCS exposure exhibited an equal 

distribution of DSB formation throughout all phases of the cell cycle. Additionally, 

Cr(VI) exposure showed γ -H2AX foci formation in PCNA positive cells; an effect that 

was absent in the NCS-exposed control cells and decreased in ATM−/− cells. 

Xie et al. independently showed that PbCrO4 induced DSBs in a dose-dependent 

manner, resulting in the activation of ATM in human lung cells. γ -H2AX is rapidly 

phosphorylated on Ser139 when DSBs are induced by ionizing radiation [102]. Xie’s 

group also showed that PbCrO4 induced a concentration-dependent phosphorylation of γ -
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H2AX and subsequent foci formation. Taken together, these results demonstrate a 

general mechanism for Cr(VI)-induced carcinogenesis involving the induction of S 

phase-dependent DSBs and marked by γ -H2AX foci formation. 

Xu presented additional evidence that Cr(VI) exposure activates ATM/ATR, 

phosphorylates the structural maintenance chromosome 1 (SMC1) protein, and activates 

caffeine sensitive S phase cell cycle arrest in a dose-dependent manner.  Surprisingly, 

Cr(VI)-induced S phase cell cycle arrest was shown to be independent of ATM at high 

concentrations. Xu proceeded to examine alternate pathways responsible for Cr(VI)-

induced S phase cell cycle arrest and found that Rad17, which is required for the release 

of active ATR, bound the site of Cr(VI)-induced DNA damage. A non-functional Rad17 

showed impaired S phase arrest in response to Cr(VI) exposure, suggesting that a low 

dose of Cr(VI) activates an ATM-dependent pathway, whereas a high dose of Cr(VI) 

activates an ATR-dependent pathway. 

 

Cadmium signaling 

The activation of transcription factors by metals is one of the most commonly 

studied effects of metal-induced cellular signaling. However, recent interest has been 

expressed in alternative targets of metal signaling, such as the translational machinery 

pathways. Aberrant regulation of the expression of the translational control proteins eIF3 

and eEF1δ has been shown to be responsible for Cd(II)-induced transformation and 

tumorigenesis [103, 104]. Orthumpangat et al. presented evidence that a third 

translational control protein may also affect the cellular response to metals. Cell lines 

exposed to Cd(II) exhibited a decrease in eIF4E protein expression. siRNA silencing of 

 109



eIF4E induced cell death, whereas eIF4E overexpression resulted in cell survival after 

exposure to an otherwise lethal dose of Cd(II). Cd(II) exposure also activated the 

ubiquitin pathway, resulting in the degradation of eIF4E and a subsequent decrease in 

cyclin D1 expression.  

The expression of other members of the translational machinery family were 

altered upon exposure to Cd(II). One such protein, eEF1A2 is a cellular proto-oncogene 

which is overexpressed in many cancer cell lines and tumors. Orthumpangat’s group 

reported that eEF1A2 expression was increased in response to Cd(II), while 

overexpression of eEF1A2 conferred resistance to Cd(II)-induced apoptosis. These 

results confirm that the translational machinery is a potential mechanism for Cd(II)-

induced carcinogenesis.  

Hep3B human hepatocarcinoma cells have been shown to undergo Cd-induced 

apoptosis in a caspase-independent manner [105]. The mechanism is thought to involve 

the nuclear translocation of endonuclease G (endoG) and the apoptosis-inducing factor 

(AIF), both of which are mitochondrial apoptogenic proteins. Lemarie et al. showed that 

the release of endoG and AIF in response to Cd exposure was preceded by an increase in 

cytoplasmic Ca2+ and a loss of mitochondrial membrane potential. Bapta-AM, a Ca2+ 

chelator, blocked these events and prevented apoptosis. Inhibition of ROS production by 

the mitochondrial inhibitors ruthenium red, rotenone, and diphenyleneiodonium 

prevented the loss of mitochondrial membrane potential. Bapta-AM and 

diphenyleneiodonium also blocked expression of the NFκB-regulated anti-apoptotic 

protein bcl-x(L) in Cd exposed cells. Lemarie’s group concluded that Cd induces 

apoptosis in Hep3B cells through Ca2+ release and ROS-induced impairment of the 
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mitochondria. These results are in agreement with the hypothesis that Cd-induced 

apoptosis occurs through the release of endoG and AIF. 

 

Cobalt and copper signaling 

Exposure to the hard metal dust tungsten carbide–cobalt mixture (WC–Co) 

directly correlates with an increased risk of  cancer in exposed workers [106]. Lombaert 

et al. demonstrated that both cobalt (Co) and WC–Co induced apoptosis of peripheral 

blood mononucleated cells (PBMCs). WC–Co apoptosis occurred at a higher rate than 

Co-induced apoptosis and was dependent on caspase 9 activation, whereas Co-induced 

apoptosis depended on the activation of both caspases 8 and 9. These results demonstrate 

that although WC–Co and Co can produce similar cellular effects, the signaling 

mechanisms may be different.  

Although Cu is a trace element necessary for the function of enzymes such as 

SOD, it can also produce ROS, DNA damage, and other carcinogenic effects when 

present in excess. Cherian and Ostrakhovitch examined the effects of Cu exposure on the 

p53 tumour suppressor signaling pathways in the breast cancer epithelial cell lines MDA-

MB-231 and MCF7. p53 mutant MDA-MB-231 cells are resistant to metal toxicity, while 

p53 wild-type MCF7 cells are sensitive to metal-induced apoptosis [107, 108]. ROS 

production was not observed in MDA-MB-231 cells exposed to Cu; however, an increase 

in Akt phosphorylation, Akt nuclear translocation, Cyclin D1 expression, and cell cycle 

progression were still apparent. In contrast, ROS production in MCF7 cells increased in 

response to Cu exposure. Increases in p53 expression, p21 expression, G1 phase arrest, 

and apoptosis in MCF7 cells were also observed. Additionally, Cu-exposed MCF7 cells 
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exhibited a loss of mitochondrial membrane potential and lacked Akt activation and 

translocation. Suppression of p53 in MCF7 cells with pifithrin or E6 protein decreased 

p53 phosphorylation and increased Akt phosphorylation, suggesting that p53 is involved 

in the response to Cu-induced ROS formation [109]. 

 

Nickel signaling 

Insoluble nickel (Ni) compounds, such as Ni3S2, green NiO, black NiO, and Ni 

refinery dust, have been shown to exert carcinogenic effects in a variety of animal 

experiments [110]. Landolph et al. showed that Ni3S2, green NiO, and black NiO are 

phagocytosed by C3H/10T1/2 mouse embryo cells. Cytotoxicity, chromosomal 

aberrations, and morphological transformation were observed upon Ni exposure. The 

extent of phagocytosis was shown to correlate with each Ni compound’s ability to induce 

transformation. RAP-PCR differential display experiments showed 130 genes that were 

differentially expressed between the Ni-transformed and nontransformed cell lines. 

Increased expression of the ect-2, calnexin, and wdr1 genes in transformed cells were 

confirmed by Western blot. Respectively, these genes encode a Rho GDP/GTP exchange 

factor that modulates microtubule assembly, a molecular chaperone, and a stress-

inducible protein. Decreased expression of the vitamin D receptor interacting 

protein/thyroid hormone activating protein 80 (DRIP/TRAP-80) and two other novel 

genes was also observed in transformed cells. Landolph’s group concluded that Ni ions 

generate ROS, mutate and activate proto-oncogenes and/or tumour suppressor genes, and 

also induce chromosomal aberrations. 
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Paradoxically, Ni can upregulate the expression of some genes while 

downregulating others, possibly through the post-translational modification of histones. 

Ni suppresses the acetylation of core histones H3 and H4 and induces de novo DNA 

methylation, leading to gene silencing [34,111]. Costa’s group found that water-soluble 

Ni salts could inhibit the acetylation of the core histones H2A, H2B, H3, and H4. Ni 

exposure also induced methylation of Lys 9 in histone H3 and increased the 

ubiquitination of histones H2A and H2B. Golebiowski and Kasprzak also examined the 

acetylation status of the N-terminal tails of the core histones in Ni-exposed human and 

rodent cells exposed to Ni(II). Histone H2B exhibited the least acetylation, followed by 

histones H4, H3, and H2A in human airway epithelial cells and normal rat kidney cells. 

However, these effects were not seen in Chinese hamster ovary (CHO) cells, suggesting 

that the decrease in acetylation may be cell-type dependent.  Ni(II) has been shown to 

cleave the –SHHKAKGK motif of the C-terminal tail of histone H2A in vitro and in cell 

culture [112, 113]. Karaczyn et al. examined the effects of Ni(II) on other histones and 

showed that histone H2B abundance increases with Ni(II) treatment over time. Mass 

spectrometry and amino acid sequencing analysis confirmed that the H2B 

immunoreactive bands were variants of histone H2B. The larger band represented a 

truncated histone H2B lacking 16 amino acids from the N-terminal tail. The smaller band 

represented a histone H2B variant lacking both the 16 N-terminal amino acids and an 

additional nine amino acids from the C-terminal tail. Post-translational modifications of 

the smaller band included two acetylated Lys residues. Similar, but weaker effects on 

histone H2B were seen with Co(II), but no effects were seen with Cu(II), Cd(II), or 

Zn(II). Since the terminal tails of histones are thought to play key roles in structuring 
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chromatin and regulating gene expression, the loss of these regions may be involved in 

the mechanisms relating to Ni(II)-induced carcinogenesis. Taken together, these results 

suggest that histone modification may play a major role in the mechanism of Ni-induced 

gene activation and/or silencing. 

In addition to modifying core histones, Ni-exposure also activates the HIF-1α 

transcription factor via the depletion of intracellular Fe and the subsequent inhibition of 

the Fe-dependent enzyme proline hydroxylase, which leads to the stabilization of HIF-1α 

[114]. Huang et al. examined the effects of Ni3S2 or NiCl2 exposure on other transcription 

factors and found that Ni ions increased ROS production and activated NFAT. NFAT 

activation was inhibited by catalase, NAC, and desferoxamine (DFO), but not by SOD or 

sodium formate. Ni activation of the HIF-1α, PI3K, Akt, and p70S6K 

was abrogated by PI3K inhibitors. Overexpression of Akt and PI3K dominant negative 

(DN) mutants also inhibited HIF-1α activation and Cap43 expression, while exposure to 

rapamycin, a p70S6K inhibitor, had no effect. In conclusion, Huang’s group suggested 

that Ni generates H2O2 which in turn activates NFAT. HIF-1α and Cap43 are also 

activated by Ni via a PI3K/Akt-dependent pathway, independently of p70S6K activity. 

 

Animal studies 

Although animal studies provide valuable information concerning the toxic 

effects and signaling pathways of environmental contaminants, adequate animal models 

do not exist for some metals due in part to their roles as co-carcinogens. Thus, it is 

difficult to assess the effects of the metal itself because a known carcinogenic compound 

must be administered simultaneously in order for a tumour to develop. For example, 
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Burns et al. presented evidence that hairless mice (Skh1strain) exposed to ultra-violet 

radiation (UVR) and Cr- or As-contaminated drinking water elevated the number of 

tumors produced by UVR to 8.3- and 4.6-fold, respectively. These data confirm that 

metals can act as hazardous co-carcinogens even at low levels of exposure. 

Most metal toxicity studies have been conducted on adult animals, yet few have 

focused on the effects of metal exposure during the pubescent period. Chatterjee et al. 

examined Sprague–Dawley rats exposed to intravenous-infused CdCl2 40–100 days after 

birth. Histopathological examination of the mammary tissue showed that Cd(II) exposure 

slightly suppressed apoptosis while DNA strand breaks increased by 61%. At low doses, 

no change in histopathology of the mammary tissue was observed. However, at high 

doses, exposed rats exhibited intraductal proliferations. In addition, MT expression was 

elevated 60–86% in Cd(II)-treated animals in a dose-dependent manner. These results 

indicate that Cd(II) exposure may lead to an increased incidence of cancer in pubescent 

animals. 

Additionally, Chatterjee et al. examined the chemopreventive effects of vanadium 

(V) supplementation. Rats were exposed to diethlnitrosamine (DEN) and phenobarbitol 

to induce hepatocarcinogenesis, and subsequently fed V-supplemented chow for 20 

weeks. V supplementation reduced the nodular incidence, total number of tumors, and 

multiplicity of tumors, and decreased metallothionein expression, BrdU labelling index (a 

marker of cell proliferation), and iNOS expression. In addition, V supplementation 

increased p53 immunoreactivity and the apoptotic labeling index. These results suggest 

that V may play a significant role in controlling cellular activities during chemical-

induced hepatocarcinogenesis.  
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Depleted uranium (DU) is a radioactive heavy metal used to manufacture military 

munitions. United States military personnel wounded by DU shrapnel may have a higher 

risk of cancer incidence, due to DU’s genotoxic and mutagenic effects [115, 116].  DU 

can also cause radiation-specific cellular damage and transformation of human osteoblast 

cells [117, 118]. In order to simulate the effects of a DU-containing shrapnel wound, 

Miller et al. implanted non-tumourigenic immortalized cells into syngenic DBA/2 mice 

with or without DU implantation pellets. Mice implanted with DU pellets showed an 80% 

incidence of tumorigenesis, whereas control mice exhibited a 10% incidence of leukemia, 

suggesting that DU can significantly enhance tumour incidence. 

Chromium(III) Picolinate (Cr(Pic)3) is a dietary supplement associated with 

oxidative damage, DNA damage, antioxidant enzyme depletion, and renal/liver 

dysfunction in rats [119, 120]. In cell culture, Cr(Pic)3 has been shown to cause mutations 

and DNA fragmentation [121]. Rasco et al. examined the prenatal effects of dietary 

supplementation of Cr(Pic)3, CrCl3, or picolinic acid in pregnant female mice. The 

fetuses birthed from the Cr(Pic)3-fed females showed an increase in bifurcated cervical 

arches, delays in righting reflex, delays in hind limb grasp, and deficiencies in motor 

skills. These results demonstrate that dietary supplementation of Cr(Pic)3 exerts negative 

effects on the developing nervous system of mammalian fetuses.  

Barchowsky et al. developed an animal model to examine the effects of As(III) on 

angiogenesis and the expression of tissue remodelling genes in cardiac tissue. Male mice 

were exposed to As(III)-contaminated drinking water at low to moderately high 

concentrations for up to 20 weeks. Enhanced vascularization of Matrigel implants was 

observed after 5 weeks of As(III) exposure. RT-PCR showed a dose and time-dependent 
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induction of VEGF, VEGF receptors, plasminogen activator inhibitor-1, endothelin-1, 

and matrix metalloproteinase-9 in cardiac tissue. Barchowsky’s group concluded that the 

effects of chronic As(III) exposure on the cardiovascular tissue varies with dose and 

length of exposure. 

 

Summary 

The research presented at the 3rd Conference on Molecular Mechanisms of Metal 

Toxicity and Carcinogenesis provided new insights into the mechanisms of ROS 

production, the mechanisms of metal signaling, and the development of animal exposure 

models. However, the following areas of metal research still need further exploration. 

First, there is a need for the development of new human biomarkers for metal exposure. 

Without definitive and specific biomarkers, it is very difficult to assess the extent of 

metal exposure in humans, and thus, difficult to treat the resulting ailments. Second, since 

most metals cause some form of ROS-induced cellular stress, the elucidation of the 

mechanisms of ROS production may provide information concerning the general 

mechanisms of metal-induced carcinogenesis. Third, defining the mechanisms of metal-

induced DNA damage may provide new insights into the signaling events involved in 

DNA damage repair pathways. Fourth, a better understanding of the complex signaling 

networks that lead to the adverse effects of metals could lead to the identification of 

superior and more specific novel therapeutic agents. Finally, better animal models for 

metal exposure are necessary in order to thoroughly evaluate the toxic and carcinogenic 

effects of metals in a model system. Through the use of current technology and the 
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implementation of new experimental strategies, metal researchers can address these 

concerns.

 118



 

 

References 

1. Churg A, Brauer M, Carmen Avila-Casado M, Fortoul TI, Wright JL: Chronic 

exposure to high levels of particulate air pollution and small airway remodeling. Environ 

Health Perspect 111: 714–718, 2003 

2. Gambelunghe A, Piccinini R, Ambrogi M, Villarini M, Moretti M, Marchetti C, 

Abbritti G, Muzi G: Primary DNA damage in chromeplating workers. Toxicology 188: 

187–195, 2003 

3. Hunder G, Javdani J, Elsenhans B, Schumann K: 109Cd accumulation in the calcified 

parts of rat bones. Toxicology 159: 1–10, 2001 

4. Tsai SM, Wang TN, Ko YC: Mortality for certain diseases in areas with high levels of 

arsenic in drinking water. Arch Environ Health 54:186–193, 1999 

5. Gaetke LM, Chow CK: Copper toxicity, oxidative stress, and antioxidant nutrients. 

Toxicology 189: 147–163, 2003 

6. Papanikolaou G, Pantopoulos K: Iron metabolism and toxicity. Toxicol Appl 

Pharmacol 202: 199–211, 2005 

7. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, 

Parano E, Pavone L, Brzustowicz LM: The Wilson disease gene is a copper transporting 

ATPase with homology to the Menkes disease gene. Nat Genet 5: 344–350, 1993 

8. Parkkila S, Waheed A, Britton RS, Bacon BR, Zhou XY, Tomatsu S, Fleming RE, Sly 

WS: Association of the transferrin receptor in human placenta with HFE, the protein 

 119



defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 94: 13198–13202, 

1997 

9. Nair J, Carmichael PL, Fernando RC, Phillips DH, Strain AJ, Bartsch H: Lipid 

peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal 

storage disorders Wilson’s disease and primary hemochromatosis. Cancer Epidemiol 

Biomarkers Prev 7: 435– 440, 1998 

10. Feng Z, Hu W, Amin S, Tang MS: Mutational spectrum and genotoxicity of the 

major lipid peroxidation product, trans-4-hydroxy-2-nonenal, inducedDNAadducts in 

nucleotide excision repair-proficient and -deficient human cells. Biochemistry 42: 7848–

7854, 2003 

11. Benedetti A, Pompella A, Fulceri R, Romani A, Comporti M: 4- Hydroxynonenal and 

other aldehydes produced in the liver in vivo after bromobenzene intoxication. Toxicol 

Pathol 14: 457–461, 1986 

12. Bartsch H, Nair J, Velic I: Etheno-DNA base adducts as tools in human cancer 

aetiology and chemoprevention. Eur J Cancer Prev 6: 529–534, 1997 

13. McCullough ML, Giovannucci EL: Diet and cancer prevention. Oncogene 23: 6349–

6364, 2004 

14. Rohrmann S, Smit E, Giovannucci E, Platz EA: Association between serum 

concentrations of micronutrients and lower urinary tract symptoms in older men in the 

Third National Health and Nutrition Examination Survey. Urology 64: 504–509, 2004 

15. Karunasinghe N, Ryan J, Tuckey J, Masters J, Jamieson M, Clarke LC, Marshall JR, 

Ferguson LR: DNA stability and serum selenium levels in a high-risk group for prostate 

cancer. Cancer Epidemiol Biomarkers Prev 13: 391–397, 2004 

 120



16. Ames BN: DNA damage from micronutrient deficiencies is likely to be a major cause 

of cancer. Mutat Res 475: 7–20, 2001 

17. Goddard JG, Gower JD, Green CJ: A chelator is required for microsomal lipid 

peroxidation following reductive ferritin-iron mobilisation. Free Radic Res Commun 17: 

177–185, 1992 

18. Reif DW, Simmons RD: Nitric oxide mediates iron release from ferritin. Arch 

Biochem Biophys 283: 537–541, 1990 

19. Winston GW, Feierman DE, Cederbaum AI: The role of iron chelates in hydroxyl 

radical production by rat liver microsomes, NADPHcytochrome P-450 reductase and 

xanthine oxidase. Arch Biochem Biophys 232: 378–390, 1984 

20. Morgan EH: Studies on the mechanism of iron release from transferrin. Biochim 

Biophys Acta 580: 312–326, 1979 

21. Huang C, Li J, Zhang Q, Huang X: Role of bioavailable iron in coal dust-induced 

activation of activator protein-1 and nuclear factor of activated T cells: difference 

between Pennsylvania and Utah coal dusts. Am J Respir Cell Mol Biol 27: 568–574, 

2002 

22. Zhang Q, Dai J, Ali A, Chen L, Huang X: Roles of bioavailable iron and calcium in 

coal dust-induced oxidative stress: Possible implications in coal workers’ lung disease. 

Free Radic Res 36: 285–294, 2002 

23. Katzer A, Hockertz S, Buchhorn GH, Loehr JF: In vitro toxicity and mutagenicity of 

CoCrMo and Ti6Al wear particles. Toxicology 190: 145–154, 2003 

24. Leonard SS, Roberts JR, Antonini JM, Castranova V, Shi X: PbCrO4 mediates 

cellular responses via reactive oxygen species. Mol Cell Biochem 255: 171–179, 2004 

 121



25. Shi X, Flynn DC, Porter DW, Leonard SS, Vallyathan V, Castranova V: Efficacy of 

taurine based compounds as hydroxyl radical scavengers in silica induced peroxidation. 

Ann Clin Lab Sci 27: 365–374, 1997 

26. Wang Y, Fang J, Leonard SS, Rao KM: Cadmium inhibits the electron transfer chain 

and induces reactive oxygen species. Free Radic Biol Med 36: 1434–1443, 2004 

27. Leonard S, Gannett PM, Rojanasakul Y, Schwegler-Berry D, Castranova V, 

Vallyathan V, Shi X: Cobalt-mediated generation of reactive oxygen species and its 

possible mechanism. J Inorg Biochem 70: 239–244, 1998 

28. Hei TK, Filipic M: Role of oxidative damage in the genotoxicity of arsenic. Free 

Radic Biol Med 37: 574–581, 2004 

29. Lefebvre Y, Pezerat H: Reactive oxygen species produced from chromate pigments 

and ascorbate. Environ Health Perspect 102(Suppl 3): 243–245, 1994 

30. Wang S, Leonard SS,Ye J, Ding M, Shi X: The role of hydroxyl radical as a 

messenger in Cr(VI)-induced p53 activation. Am J Physiol Cell Physiol 279: C868–

C875, 2000 

31. Balamurugan K, Rajaram R, Ramasami T, Narayanan S: Chromium(III)-induced 

apoptosis of lymphocytes: Death decision by ROS and Src-family tyrosine kinases. Free 

Radic Biol Med 33: 1622–1640, 2002 

32. Petit A,Mwale F, Tkaczyk C, Antoniou J, Zukor DJ,HukOL: Induction of protein 

oxidation by cobalt and chromium ions in human U937 macrophages. Biomaterials 26: 

4416–4422, 2005 

 122



33. Chakrabarti SK, Bai C, Subramanian KS: DNA-protein crosslinks induced by nickel 

compounds in isolated rat lymphocytes: role of reactive oxygen species and specific 

amino acids. Toxicol Appl Pharmacol 170: 153–165, 2001 

34. Kang J, Zhang Y, Chen J, Chen H, Lin C, Wang Q, Ou Y: Nickelinduced histone 

hypoacetylation: the role of reactive oxygen species. Toxicol Sci 74: 279–286, 2003 

35. Lin C, Kang J, Zheng R: Oxidative stress is involved in inhibition of copper on 

histone acetylation in cells. Chem Biol Interact 151: 167–176, 2005 

36. Bagchi D, Bagchi M, Stohs SJ: Chromium (VI)-induced oxidative stress, apoptotic 

cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem 222: 149–

158, 2001 

37. Wang S, Leonard SS, Ye J, Gao N, Wang L, Shi X: Role of reactive oxygen species 

and Cr(VI) in Ras-mediated signal transduction. Mol Cell Biochem 255: 119–127, 2004 

38. Newbold RF, Amos J, Connell JR: The cytotoxic, mutagenic and clastogenic effects 

of chromium-containing compounds on mammalian cells in culture. Mutat Res 67: 55–

63, 1979 

39. Wise JP, Leonard JC, Patierno SR: Clastogenicity of lead chromate particles in 

hamster and human cells. Mutat Res 278: 69–79, 1992 

40. Wise JP, Sr., Wise SS, Little JE: The cytotoxicity and genotoxicity of particulate and 

soluble hexavalent chromium in human lung cells. Mutat Res 517: 221–229, 2002 

41. Leonard SS, Vallyathan V, Castranova V, Shi X: Generation of reactive oxygen 

species in the enzymatic reduction of PbCrO4 and relatedDNA damage. Mol Cell 

Biochem 234–235: 309–315, 2002 

 123



42. Han JY, Takeshita K, Utsumi H: Noninvasive detection of hydroxyl radical 

generation in lung by diesel exhaust particles. Free Radic Biol Med 30: 516–525, 2001 

43. Casillas AM, Hiura T, Li N, Nel AE: Enhancement of allergic inflammation by diesel 

exhaust particles: Permissive role of reactive oxygen species. Ann Allergy Asthma 

Immunol 83: 624–629, 1999 

44. Tsurudome Y, Hirano T, Yamato H, Tanaka I, Sagai M, Hirano H, Nagata N, Itoh H, 

Kasai H: Changes in levels of 8-hydroxyguanine in DNA, its repair and OGG1 mRNA in 

rat lungs after intratracheal administration of diesel exhaust particles. Carcinogenesis 20: 

1573–1576, 1999 

45. Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F, Baeza-

Squiban A: Involvement of reactive oxygen species in the metabolic pathways triggered 

by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol 

Physiol 285:L671–L679, 2003 

46. Siegel PD, Saxena RK, Saxena QB, Ma JK, Ma JY, Yin XJ, Castranova V, Al 

Humadi N, Lewis DM: Effect of diesel exhaust particulate (DEP) on immune responses: 

Contributions of particulate versus organic soluble components. J Toxicol Environ Health 

A 67: 221–231, 2004 

47. Schuetzle D: Sampling of vehicle emissions for chemical analysis and biological 

testing. Environ Health Perspect 47: 65–80, 1983 

48. Ichinose T, Furuyama A, Sagai M: Biological effects of diesel exhaust particles 

(DEP). II. Acute toxicity of DEP introduced into lung by intratracheal instillation. 

Toxicology 99: 153–167, 1995 

 124



49. Rah DK, Han DW, Baek HS, Hyon SH, Park JC: Prevention of reactive oxygen 

species-induced oxidative stress in human microvascular endothelial cells by green tea 

polyphenol. Toxicol Lett 155: 269–275, 2005 

50. Erba D, Riso P, Bordoni A, Foti P, Biagi PL, Testolin G: Effectiveness of moderate 

green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr 

Biochem 16: 144–149, 2005 

51. Qanungo S, Das M, Haldar S, Basu A: Epigallocatechin-3-gallate induces 

mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic 

cancer cells. Carcinogenesis, 2005 

52. Zykova TA, Zhang Y, Zhu F, Bode AM, Dong Z: The signal transduction networks 

required for phosphorylation of STAT1 at Ser727 in mouse epidermal JB6 cells in the 

UVB response and inhibitory mechanisms of tea polyphenols. Carcinogenesis 26: 331–

342, 2005 

53. Elbling L,Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, 

Berger W, Micksche M: Green tea extract and (−)-epigallocatechin-3-gallate, the major 

tea catechin, exert oxidant but lack antioxidant activities. FASEB J 2005 

54. McCord JM: The evolution of free radicals and oxidative stress. Am J Med 108: 652–

659, 2000 

55. Stahl W, Sies H: Antioxidant defense: Vitamins E and C and carotenoids. Diabetes 

46(Suppl 2): S14–S18, 1997 

56. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J: Vitamin C 

exhibits pro-oxidant properties. Nature 392: 559, 1998 

 125



57. Herbert V, Shaw S, Jayatilleke E: Vitamin C-driven free radical generation from iron. 

J Nutr 126: 1213S–1220S, 1996 

58. Leonard SS, Cutler D, Ding M, Vallyathan V, Castranova V, Shi X: Antioxidant 

properties of fruit and vegetable juices: More to the story than ascorbic acid. Ann Clin 

Lab Sci 32: 193–200, 2002 

59. Pirozhkova-Patalah IV, Shtemenko NI: Influence of cis-[Re2GABA2Cl4]Cl2 on the 

antioxidant defense system parameters of normal human blood. Biochemistry (Mosc) 66: 

721–724, 2001 

60. Hrynevych I, Oliinyk SA, Shtemenko NI, Shtemenko OV: Antioxidant properties of 

rhenium cluster complexes with butyric acid derivatives in blood plasma and 

erythrocytes. Ukr Biokhim Zh 75: 65–71, 2003 

61. Turner RJ,Weiner JH, Taylor DE: Selenium metabolism in Escherichia coli. 

Biometals 11: 223–227, 1998 

62. Madesh M, Hajnoczky G: VDAC-dependent permeabilization of the outer 

mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. 

J Cell Biol 155: 1003–1015, 2001 

63. Yan L, Spallholz JE: Generation of reactive oxygen species from the reaction of 

selenium compounds with thiols and mammary tumor cells. Biochem Pharmacol 45: 

429–437, 1993 

64. ElAttar TM, Virji AS: Modulating effect of resveratrol and quercetin on oral cancer 

cell growth and proliferation. Anticancer Drugs 10:187–193, 1999 

 126



65. Bau DT,Wang TS, Chung CH,Wang AS,Wang AS, JanKY: Oxidative DNA adducts 

and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ 

Health Perspect 110(Suppl 5): 753–756, 2002 

66. Matsui M, Nishigori C, Toyokuni S, Takada J, Akaboshi M, Ishikawa M, Imamura S, 

Miyachi Y: The role of oxidative DNA damage in human arsenic carcinogenesis: 

detection of 8-hydroxy-2_-deoxyguanosine in arsenic-related Bowen’s disease. J Invest 

Dermatol 113: 26–31, 1999 

67. Shibutani S, Takeshita M, Grollman AP: Insertion of specific bases during DNA 

synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431–434, 1991 

68. Grollman AP, Moriya M: Mutagenesis by 8-oxoguanine: An enemy within. Trends 

Genet 9: 246–249, 1993 

69. Henderson PT, Delaney JC, Muller JG, Neeley WL, Tannenbaum SR, Burrows CJ, 

Essigmann JM: The hydantoin lesions formed from oxidation of 7,8-dihydro-8-

oxoguanine are potent sources of replication errors in vivo. Biochemistry 42: 9257–9262, 

2003 

70. Leipold MD, Muller JG, Burrows CJ, David SS: Removal of hydantoin products of 8-

oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Biochemistry 9: 

14984–14992, 2000 

71. Henderson PT, Delaney JC, Gu F, Tannenbaum SR, Essigmann JM: Oxidation of 7,8-

dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. 

Biochemistry 41: 914–921, 2002 

 127



72. Muller JG, Duarte V, Hickerson RP, Burrows CJ: Gel electrophoretic detection of 

7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine via oxidation by Ir (IV). 

Nucleic Acids Res 26: 2247–2249, 1998 

73. Michaels ML, Tchou J, Grollman AP, Miller JH: A repair system for 8-oxo-7,8-

dihydrodeoxyguanine. Biochemistry 31: 10964–10968, 1992 

74. Michaels ML, Cruz C, Grollman AP, Miller JH: Evidence that MutY and MutM 

combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc 

Natl Acad Sci USA 89: 7022–7025, 1992 

75. Hailer MK, Slade PG, Martin BD, Rosenquist TA, Sugden KD: Recognition of the 

oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the 

mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst) 4: 

41–50, 2005 

76. Ramon O, Sauvaigo S, Gasparutto D, Faure P, Favier A, Cadet J: Effects of 8-oxo-

7,8-dihydro-2_-deoxyguanosine on the binding of the transcription factor Sp1 to its 

cognate target DNA sequence (GC box). Free Radic Res 31: 217–229, 1999 

77. Hailer-Morrison MK, Kotler JM, Martin BD, Sugden KD: Oxidized guanine lesions 

as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 

7,8-dihydro-8-oxo-2_-deoxyguanosine lesions in the NF-kappaB promoter element. 

Biochemistry 42: 9761–9770, 2003 

78. Miller BM, Adler ID: Suspect spindle poisons: Analysis of cmitotic effects in mouse 

bone marrow cells. Mutagenesis 4: 208–215, 1989 

 128



79. Mateuca R, Aka PV, De Boeck M, Hauspie R, Kirsch-Volders M, Lison D: Influence 

of hOGG1, XRCC1 and XRCC3 genotypes on biomarkers of genotoxicity in workers 

exposed to cobalt or hard metal dusts. Toxicol Lett 156: 277–288, 2005 

80. Kim YD, An SC, Oyama T, Kawamoto T, Kim H: Oxidative stress, hogg1 expression 

and NF-kappaB activity in cells exposed to low level chromium. J Occup Health 45: 

271–277, 2003 

81. Zharkov DO, Rosenquist TA: Inactivation of mammalian 8-oxoguanine-DNA 

glycosylase by cadmium(II): Implications for cadmium genotoxicity. DNA Repair 

(Amst) 1: 661–670, 2002 

82. Palmiter RD: Regulation of metallothionein genes by heavy metals appears to be 

mediated by a zinc-sensitive inhibitor that interacts with a constitutively active 

transcription factor, MTF-1. Proc Natl Acad Sci USA 91: 1219–1223, 1994 

83. Saydam N, Adams TK, Steiner F, SchaffnerW, Freedman JH: Regulation of 

metallothionein transcription by the metal-responsive transcription factor MTF-1: 

Identification of signal transduction cascades that control metal-inducible transcription. J 

Biol Chem 277: 20438–20445, 2002 

84. Rosen BP: Transport and detoxification systems for transition metals, heavy metals 

and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol 

Integr Physiol 133: 689–693, 2002 

85. Rosen BP: Biochemistry of arsenic detoxification. FEBS Lett 529: 86–92, 2002 

86. Rosen BP, Hsu CM, Karkaria CE, Owolabi JB, Tisa LS: Molecular analysis of an 

ATP-dependent anion pump. Philos Trans R Soc Lond B Biol Sci 326: 455–463, 1990 

 129



87. Liu Z, Boles E, Rosen BP: Arsenic trioxide uptake by hexose permeases in 

Saccharomyces cerevisiae. J Biol Chem 279: 17312–17318, 2004 

88. Liu Z, Carbrey JM, Agre P, Rosen BP: Arsenic trioxide uptake by human and rat 

aquaglyceroporins. Biochem Biophys Res Commun 316: 1178–1185, 2004 

89. Bhattacharjee H, Carbrey J, Rosen BP, Mukhopadhyay R: Drug uptake and 

pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys 

Res Commun 322: 836–841, 2004 

90. Lee TC, Ho IC: Modulation of cellular antioxidant defense activities by sodium 

arsenite in human fibroblasts. Arch Toxicol 69: 498–504, 1995 

91. Seol JG, Park WH, Kim ES, Jung CW, Hyun JM, Kim BK, Lee YY: Effect of arsenic 

trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem Biophys 

Res Commun 265: 400–404, 1999 

92. Millar JB, Russell P: The cdc25 M-phase inducer: An unconventional protein 

phosphatase. Cell 68: 407–410, 1992 

93. Chou IN: Distinct cytoskeletal injuries induced by As, Cd, Co, Cr, and Ni 

compounds. Biomed Environ Sci 2: 358–365, 1989 

94. Qian Y, Liu KJ, Chen Y, Flynn DC, Castranova V, Shi X: Cdc42 regulates arsenic-

induced NADPH oxidase activation and cell migration through actin filament 

reorganization. J Biol Chem 280: 3875–3884, 2005 

95. Ivanov VN, Hei TK: Arsenite sensitizes human melanomas to apoptosis via tumor 

necrosis factor alpha-mediated pathway. J Biol Chem 279: 22747–22758, 2004 

96. Wang S, Shi X: Mechanisms of Cr(VI)-induced p53 activation: The role of 

phosphorylation,mdm2and ERK. Carcinogenesis 22: 757–762, 2001 

 130



97. Ha L, Ceryak S, Patierno SR: Chromium (VI) activates ataxia telangiectasia mutated 

(ATM) protein. Requirement ofATMfor both apoptosis and recovery from terminal 

growth arrest. J Biol Chem 278: 17885–17894, 2003 

98. Buscemi G, Perego P, Carenini N, Nakanishi M, Chessa L, Chen J, Khanna K, Delia 

D: Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. 

Oncogene 23: 7691–7700, 2004 

99. McKinnon PJ:ATMand ataxia telangiectasia.EMBORep 5: 772–776, 2004 

100. Falck J, Coates J, Jackson SP: Conserved modes of recruitment of ATM, ATR and 

DNA-PKcs to sites of DNA damage. Nature 434: 605–611, 2005 

101. Lee JH, Paull TT: ATM activation by DNA double-strand breaks through the 

Mre11-Rad50-Nbs1 complex. Science 308: 551–554, 2005 

102. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM: DNA double-stranded 

breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–

5868, 1998 

103. Joseph P, Lei YX, Whong WZ, Ong TM: Molecular cloning and functional analysis 

of a novel cadmium-responsive proto-oncogene. Cancer Res 62: 703–707, 2002 

104. Joseph P, Lei YX, Whong WZ, Ong TM: Oncogenic potential of mouse translation 

elongation factor-1 delta, a novel cadmium-responsive proto-oncogene. J Biol Chem 277: 

6131–6136, 2002 

105. Lemarie A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L: 

Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium 

in signaling oxidative stress-related impairment of mitochondria and relocation of 

 131



endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36: 1517–1531, 

2004 

106. Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, Deguerry P, 

Pellet F, Perdrix A: Lung cancer risk in hard-metalworkers. Am J Epidemiol 148: 241–

248, 1998 

107. Fan LZ, Cherian MG: Potential role of p53 on metallothionein induction in human 

epithelial breast cancer cells. Br J Cancer 87: 1019–1026, 2002 

108. Ostrakhovitch EA, Cherian MG: Differential regulation of signal transduction 

pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc. 

Arch Biochem Biophys 423: 351–361, 2004 

109. Ostrakhovitch EA, Cherian MG: Role of p53 and reactive oxygen species in 

apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 10: 111–

121, 2005 

110. Nickel and Nickel Compounds. IARC Monographs 49: 257–445, 1990 

111. Zhao J, Yan Y, Salnikow K, Kluz T, Costa M: Nickel-induced downregulation of 

serpin by hypoxic signaling. Toxicol Appl Pharmacol 194: 60–68, 2004 

112. Bal W, Karantza V, Moudrianakis EN, Kasprzak KS: Interaction of Nickel(II) with 

histones: In vitro binding of nickel(II) to the core histone tetramer. Arch Biochem 

Biophys 364: 161–166, 1999 

113. Bal W, Liang R, Lukszo J, Lee SH, Dizdaroglu M, Kasprzak KS: Ni(II) specifically 

cleaves the C-terminal tail of the major variant of histone H2A and forms an oxidative 

damage-mediating complex with the cleaved-off octapeptide. Chem Res Toxicol 13: 

616–624, 2000 

 132



114. Davidson T, Salnikow K, Costa M: Hypoxia inducible factor-1 alphaindependent 

suppression of aryl hydrocarbon receptor-regulated genes by nickel. Mol Pharmacol 64: 

1485–1493, 2003 

115. Miller AC, Blakely WF, Livengood D, Whittaker T, Xu J, Ejnik JW, Hamilton MM, 

Parlette E, John TS, Gerstenberg HM, Hsu H: Transformation of human osteoblast cells 

to the tumorigenic phenotype by depleted uranium-uranyl chloride. Environ Health 

Perspect 106: 465–471, 1998 

116. Miller AC, Fuciarelli AF, Jackson WE, Ejnik EJ, Emond C, Strocko S, Hogan J, 

Page N, Pellmar T: Urinary and serum mutagenicity studies with rats implanted with 

depleted uranium or tantalum pellets. Mutagenesis 13: 643–648, 1998 

117. Yazzie M, Gamble SL, Civitello ER, Stearns DM: Uranyl acetate causes DNA 

single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem Res Toxicol 

16: 524–530, 2003 

118. Miller AC, Brooks K, Stewart M, Anderson B, Shi L, McClain D, Page N: Genomic 

instability in human osteoblast cells after exposure to depleted uranium: Delayed lethality 

and micronuclei formation. J Environ Radioact 64: 247–259, 2003 

119. Stearns DM,Wise JP, Sr., Patierno SR,Wetterhahn KE: Chromium(III) picolinate 

produces chromosome damage in Chinese hamster ovary cells. FASEB J 9: 1643–1648, 

1995 

120. Bagchi D, Bagchi M, Balmoori J, Ye X, Stohs SJ: Comparative induction of 

oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and 

chromium nicotinate. Res Commun Mol Pathol Pharmacol 97: 335–346, 1997 

 133



121. Stearns DM, Silveira SM, Wolf KK, Luke AM: Chromium(III) tris(picolinate) is 

mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese 

hamster ovary cells. Mutat Res 513: 135–142, 2002 

 134



 

 

 

 

 

 

 

 

SECTION IV 

As(III) transcriptionally activates the gadd45a gene via the 

formation of H2O2 
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ABSTRACT:   

Arsenic is a ubiquitous environmental contaminant associated with an increased risk of 

human cancers of the skin, lung, bladder, and prostate.  Intriguingly, it is also used to 

treat certain types of leukemia.  It has recently been suggested that these paradoxic 

effects may be mediated by arsenic’s ability to simultaneously activate DNA damage, 

apoptotic, and transformation pathways.  Here, we investigate the effects of arsenic 

exposure on the induction of the growth arrest and DNA damage protein 45α 

(GADD45α), which is thought to play roles in apoptosis, DNA damage response, and cell 

cycle arrest.  We found that arsenic transcriptionally activates the gadd45α promoter 

located in a 153 base pair region between -234 and -81, relative to the transcriptional start 

site.  In addition, this transcriptional induction was abrogated in the presence of H2O2 

scavengers, suggesting a role for H2O2 in the transcriptional control of the gadd45a gene 

through a Fenton-like free radical mechanism. 
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Introduction 

Inorganic arsenic is a ubiquitous environmental contaminant associated with a 

multitude of adverse health effects, including hyperkeratosis, hyperpigementation, 

diabetes mellitus, cardiovascular disease, reproductive defects, and cancers of several 

tissues including liver, bladder, skin, lung, kidney, and prostate [1-17].  The most 

common route of arsenic exposure is the ingestion of contaminated drinking water, which 

has been documented in many countries at concentrations as high as 3.4 mg/L; more than 

3000 times the World Health Organization recommended limits of 10 μg/L [18-23].  In 

the United States, more than 56 million Americans are estimated to have been exposed to 

drinking water containing arsenic concentrations that elevate the fatal cancer risk [24]. 

 Although arsenic is poorly mutagenic in rodent and bacterial models, it has been 

shown to cause DNA adduct formation, DNA-protein crosslinking, and the formation of 

reactive oxygen species (ROS) in vitro [25-27].  In addition, arsenic has been shown to 

induce an assortment of signaling events including NF-κB activation, AP-1 activation, c-

myc overexpression, involucrin repression, and extracellular signal-regulated kinase 

(ERK) activation, which are involved in such diverse processes as DNA repair, cellular 

differentiation, cell cycle arrest, and malignant transformation [28-32].  Together, these 

findings suggest that arsenic may be exerting its carcinogenic effects through an 

epigenetic mechanism. 

 Cell cycle dysregulation and/or perturbation is a major mechanism of 

carcinogenesis.  While the signaling pathways involved in the G1/S phase checkpoint 

have been well examined, much less is known about the signaling events that occur at the 

G2/M phase checkpoint.  Previous data from our lab and others have suggested that 
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arsenic treatment can induce G2/M phase growth arrest in several different cell lines [33-

36].  A major player in G2/M arrest is the growth arrest and DNA damage-inducible 

protein 45α (GADD45α), which is induced by  a variety of stress-induced signals 

including methyl methanesulfonate (MMS), ultraviolet (UV) irradiation, ionizing 

radiation (IR), sodium arsenite exposure, and serum starvation [37-42].  In addition, 

GADD45α is proposed to play roles in chromatin remodeling and apoptosis [43,44].  

Transcription of the gadd45a gene is thought to be controlled by both the 

promoter region and the third intron region and seems to be differentially activated 

depending on the stimulus [45].  For example, in response to IR, the p53 transcription 

factor binds to its consensus sequence site in the third intron of the gadd45a gene and 

subsequently interacts with the WT1 transcription factor to enhance gene expression [46].  

However, several groups have also suggested that after MMS and UV exposure, the 

ubiquitous Oct-1 transcription factor binds the promoter region between -101 and -82 

base pairs (bp) relative to the transcriptional start site (tss) of the gadd45a gene with the 

help of an unidentified cofactor to activate gadd45a transcription in a p53-independent 

manner [47-50].  Recently, the forkhead transcription factor family member FOXO3a, 

has also been shown to bind to the forkhead response elements (FHREs) located in the 

gadd45a gene promoter region at -505, -377, and -803 in response to UV, resulting in 

transcriptional activation [51].  Thus, gadd45a gene regulation is complex and may 

involve many different signaling pathways. 

 Since GADD45α is a general stress response protein, we examined the effects of 

ROS produced in response to As(III) exposure on gadd45a gene regulation.  We used a 

human bronchial epithelial airway cell line, BEAS-2B, to examine these effects because 
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the lung is a target of arsenic induced carcinogenesis, particularly in occupational settings 

[7].  Our results show that As(III) transcriptionally induces gadd45a gene expression 

from its promoter region via a free radical mechanism involving the formation of H2O2. 

 

Materials and Methods 

Cell Culture and Media.   

The BEAS-2B human lung epithelial cell line was obtained from the American Type 

Culture Collection (Manasses, VA) and maintained in Dulbecco’s Modified Eagle 

Medium (Sigma, St. Louis, MO) containing 5% fetal bovine serum (Invitrogen/Gibco 

BRL, Carlsbad, CA), 1 unit/mL penicillin, 1 μg/mL streptomycin, and 300 μg/mL L-

glutamine (Sigma, St. Louis, MO).  BEAS-2B cells were passaged when confluency was 

reached, usually every 4-5 days. 

 

Western Blotting.  

Six well tissue culture plates were grown to a density of approximately 1 x 106 cells per 

well and treated with concentrations of AsCl3 (Sigma, St. Louis, MO) ranging from 0-50 

μM over a time period of 0-24 hours.  Phosphate buffered saline (PBS) washed cells were 

incubated five minutes with 100 μL of MPER mammalian lysis reagent (Pierce 

Biotechnology, Inc., Rockford, IL) with shaking at room temperature.  A portion of each 

sample’s cell lysate (25 μL) was subsequently analyzed for total protein concentration 

using a BCA Protein Assay kit (Pierce Biotechnology, Inc., Rockford, IL).  Pre-cast 4-

20% gradient polyacrylamide gels (Invitrogen, Carlsbad, CA) were loaded with 20 μg of 

total protein for each sample and electrophoresis was perfomed for approximately 105 
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minutes at 125 volts using a 1X dilution of  10X Tris-Glycine Running Buffer 

(Invitrogen, Carlsbad, CA), the XCell SureLock Mini-Cell system (Invitrogen, Carlsbad, 

CA), and a PowerPac 300 power supply (Bio-Rad Laboratories, Hercules, CA).  Gels 

were rinsed with a 1X dilution of 25X Tris-Glycine Transfer Buffer (Invitrogen, 

Carlsbad, CA) and transferred to a PVDF membrane (Invitrogen, Carlsbad, CA) at 35 

volts for two hours using the XCell II Blot Module (Invitrogen, Carlsbad, CA).  PVDF 

membranes were blocked for 1 hour at room temperature with 5% milk buffer in TBS-

Tween (Sigma, St. Louis, MO).  Membranes were incubated with a 1:200 dilution of 

GADD45α (H-165) primary antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) 

in 5% milk buffer overnight at 4º C on a rocking platform. For β-actin primary antibody 

(Sigma, St. Louis, MO) and GAPDH primary antibody (Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA), dilutions of 1:2000 and 1:200 were used, respectively.  Membranes 

were subjected to three ten minute washes with TBS-Tween (Sigma, St. Louis, MO) and 

immediately placed in a 1:1000 dilution of an anti-rabbit or anti-mouse IgG AP-linked 

secondary antibody (Cell Signaling Technology, Beverly, MA) in 5% milk buffer for 2-4 

hours at room temperature with shaking.  After three ten minute washes with TBS-Tween 

(Sigma, St. Louis, MO), membranes were immediately incubated with CDP-Star Reagent 

(New England BioLabs, Inc., Beverly, MA) for five minutes with shaking in the dark at 

room temperature. Membranes were rinsed with TBS-Tween and exposed to X-ray film 

(Daigger, Vernon Hills, IL).  

 

Oxygen Consumption.   
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A Gilson 5/6 Oxygraph (Gilson Medical Electronics, Inc.,  Middleton, WI) was used to 

perform oxygen consumption studies.  BEAS-2B cells were trypsinized and washed with 

1X PBS (Invivtrogen/Gibco BRL, Carlsbad, CA) and 4 x 106 cells were re-suspended in a 

final volume of 1 mL of PBS.   1mM AsCl3 (Sigma, St. Louis, MO) was added to each 

aliquot and allowed to incubate for 20 minutes at room temperature.  Oxygen 

consumption rates were calculated using the following equation: 

 

nmoles O2 consumed/minute/106 cells = (BP – 47) ΔB (1.835) , 

      (m)(t)(n) 

 

where BP = atmospheric pressure in mmHg,  ΔB = number of vertical blocks traversed 

on the oxygraph chart paper (rise of experimental slope), m = slope of O2 standards (409 

in this case), t = time in minutes used to determine ΔB (run of experimental slope), and n 

= n x 106 cells used in the assay.  Three replicates of three different samples were 

averaged together to determine mean O2 consumption and error bars equal ± standard 

error of the mean (SEM). 

 

Electron Spin Resonance (ESR).   

1 x 106 BEAS-2B cells were suspended in 500 μL of 1X PBS (Invitrogen/Gibco BRL, 

Carlsbad, CA) and treated with 1 mM AsCl3 (Sigma, St. Louis, MO) and/or 2000 U/mL 

catalase isolated from bovine liver (Sigma, St. Louis, MO).  All ESR measurements were 

conducted using a Bruker EMX spectrometer (Bruker Instruments Inc. Billerica, MA) 

and a flat cell assembly.  Hyperfine couplings were measured (to 0.1 G) directly from 
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magnetic field separation using potassium tetraperoxochromate (K3CrO8) and 1,1-

diphenyl-2-picrylhydrazyl (DPPH) as reference standards.  The relative radical 

concentration was estimated by multiplying half of the peak height by (ΔHpp)2, where 

ΔHpp represents peak-to peak width. The Acquisit program was used for data acquisitions 

and analyses.  Reactants were mixed in test tubes in a final volume of 1.0 mL.   The 

reaction mixture was then transferred to a flat cell for ESR measurement.  The 

concentrations given in the figure legends are final concentrations.  Experiments were 

performed at room temperature and under ambient air.  Statistical analysis was performed 

using Student’s t-test and error bars equal ± SEM. 

 

Construction of GPx1-EGFP and SOD1-EGFP fusion constructs.   

pcDNA3.1(+)/GPx1 and pcDNA3/SOD1 constructs were graciously provided to our 

laboratory by Dr. Larry Oberley’s lab at the University of Iowa [52,53].  The GPx1 

cDNA was removed from the pcDNA3.1 construct using a BamHI (Promega Life 

Sciences, Madison, WI) and HindIII (Promega Life Sciences, Madison, WI) double 

enzymatic digest.  The SOD1 cDNA was removed from the pcDNA3 constuct using a 

KpnI (Promega Life Sciences, Madison, WI) and ApaI (Promega Life Sciences, Madison, 

WI) double enzymatic digest.  Both GPx1 and SOD1 cDNA fragments were isolated 

from an agarose gel and ligated into a pEGFP-C3 (BD Biosciences – Clontech, Palo Alto, 

CA) vector in frame with the EGFP protein.  Contents of both vectors were verified by 

DNA sequencing (Biotech Core, Inc., Mountain View, CA).  

 

Transient transfections.  

 142



Transient transfections were performed using SuperFect Transfection Reagent (Qiagen, 

Inc., Valencia, CA) according to the manufacturer’s instructions.  Briefly, cells were 

plated at 50% confluency, and DNA/SuperFect complexes were allowed to enter BEAS-

2B cells for three hours.  DNA complexes were removed and fresh growth medium was 

added.  Transfection efficiencies of the pEGFP-C3, pEGFP-C3/GPx1, and pEGFP-

C3/SOD1 were calculated by counting EGFP (+) cells with a confocal microscope and 

determined to be roughly 8-10% for all three plasmids. 

 

Quantitative real- time polymerase chain reaction (qRT-PCR).   

Total RNA was isolated from approximately 1 x 106 BEAS-2B cells using an RNeasy 

Mini Kit (Qiagen, Inc., Valencia, CA).  Total RNA was quantified using a NanoDrop 

ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE).  

Quantitect SYBR Green one-step qRT-PCR kits (Qiagen, Inc., Valencia, CA) were used 

to set up qRT-PCR reactions using 10 ng of total RNA as a template.  qRT-PCR 

experiments were performed on an ABI 7700 qRT-PCR machine (Applied Biosystems, 

Foster City, CA).  Validated GADD45α primer sets were obtained from Qiagen, Inc.  

(Valencia, CA) and 18S rRNA primer set controls were obtained from Ambion, Inc. 

(Austin, TX).  Each sample was replicated three times per plate and an average ΔCt value 

was calculated.  Relative quantitation of GADD45α mRNA was calculated using the 

ΔΔCt method.  Error bars represent ± SEM. 

 

Dual-Luciferase Reporter Assay.   
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BEAS-2B cells were applied to 12-well tissue culture plates at approximately 50% 

confluency and transiently transfected with either a full length or deleted GADD45α 

promoter-firefly luciferase construct (kind gifts from Dr. Dennis Bruemmer at the 

University of California – Los Angeles, CA) or a GADD45α intron 3- firefly luciferase 

construct (a kind gift from Dr. Albert J. Fornace, Jr. at Harvard University, Cambridge, 

MA) [54,55].  In addition, each sample was co-transfected with a pRL-TK Renilla 

luciferase vector (Promega Life Sciences, Madison, WI) underneath the constitutive 

control of the herpes simplex virus thymidine kinase promoter to provide a measure of 

transfection efficiency for normalization.  Constructs were allowed to express for at least 

60 hours followed by a 12 hour treatment with 25 μM AsCl3 (Sigma, St. Louis, MO).  

100 μL of firefly luciferase substrate was injected into each well of a Lumitrac 200 96-

well plate (USA Scientific, Inc., Ocala, FL) containing 20 μL of cell lysate.  Firefly 

luciferase units were measured by an EG&G Berthold Microplate Luminometer 

MicroLumat Plus with an automatic injector (EG&G Berthold, Germany).  WinGlow 

software (EG&G Berthold, Germany) was used to obtain readings with a 2.0 second 

delay and a 10.0 second measurement of luciferase activity and expressed in luciferase 

units.  Luciferase substrates were obtained from the Dual-Luciferase Reporter Assay kit 

(Promega Life Sciences, Madison, WI).  Three replicates were assayed per experiment 

and the ratio of inducible firefly luciferase activity to basal Renilla luciferase activity was 

averaged for each group.  Fold induction was calculated by dividing the average ratios of 

As(III)-treated samples by the average ratios of samples left untreated.  Error bars 

represent ± SEM and statistical significance was calculated using Student’s t-test.  Data 

shown is representative of three independent experiments. 
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Results 

As(III) exposure induces expression of the GADD45α  protein in a time- and  dose-

dependent manner.  Because GADD45α expression has been observed in response to 

many stress conditions including UV irradiation, serum starvation, and alkylating agents, 

we investigated the effects of As(III) exposure on its induction [32,37,38]. In order to 

simulate airway exposure to arsenic, an immortalized non-tumorigenic BEAS-2B human 

lung airway epithelial cell line was used for these experiments.  Western blot analysis of 

GADD45α in response to increasing concentrations of AsCl3 revealed a time- and dose-

dependent increase in protein abundance (Fig. 1), whereas equal concentrations of NaCl 

had no effect (data not shown).  β-actin abundance remained unaffected throughout the 

dose and time course of As(III) exposure.  Densitometry readings, normalized to β-actin 

expression, confirmed that GADD45α protein abundance increased more than 100-fold 

over untreated BEAS-2B cells 12 hours after 25 μM As(III ) treatment (data not shown).  

This result demonstrates that GADD45α protein is induced in BEAS-2B cells in response 

to As(III) exposure in a dose-dependent manner. 

 

As(III) exposure increases oxygen consumption and ˙OH production  in BEAS-2B 

cells.  Since As(III) has been shown to exert mutagenic effects via reactive oxygen 

species (ROS) production in several cellular systems, it is possible that the signaling 

events induced by As(III), specifically GADD45α induction, are also mediated by a ROS 

mechanism [56].  In order to address this possibility, BEAS-2B cells were exposed to 1 

mM As(III) for 20 minutes and the rate of oxygen consumption was measured by a 
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Gilson 5/6 Oxygraph.  As(III)-exposed BEAS-2B cells showed approximately a three-

fold increase in the amount of oxygen consumed in vitro (Fig. 2A), suggesting that a free 

radical mechanism may be occurring in BEAS-2B cells upon As(III) stimulation.   

 To determine the identity of the radicals produced, we employed electron spin 

resonance (ESR) spectroscopy.  Representative ESR spectra are displayed in Figure 2B.  

A basal level of ˙OH, signified by its 1-2-2-1 relative peak height fingerprint, is produced 

by normal BEAS-2B cells, and was expected as a consequence of normal respiration;  

however, after a 20 minute exposure to 1mM As(III), the ˙OH signal significantly 

increased (Fig. 2B).  Spectral results were quantified by peak height measurements in 

Figure 2C, where a 2.5- fold increase in ˙OH production was observed after As(III) 

exposure when compared to normal respiring cells.  The ˙OH signal was attenuated by 

the addition of 2000 units/mL of catalase, showing that H2O2 is a precursor of ˙OH.  

These data indicate that ˙OH is a major free radical formed in the BEAS-2B cell line in 

response to As(III) exposure. 

 

GADD45α  protein abundance decreases  in response to As(III) in the presence of the 

H2O2  scavenger, GPx1.  Because As(III) produced ˙OH in the BEAS-2B cell line and 

GADD45α is induced in response to many stressors,  we hypothesized that its induction 

may occur through an oxidative stress mechanism.  To assess the role of ROS in 

GADD45α induction, we constructed glutathione peroxidase 1 (GPx1)-EGFP and 

superoxide dismutase 1 (SOD1)-EGFP overexpression/fusion vectors and examined their 

effects on GADD45α protein abundance.  The GPx1 enzyme is a H2O2 scavenger, 

whereas the SOD1 enzyme is a O2˙- scavenger.  GPx1-EGFP, SOD1-EGFP, and empty 
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vector pEGFP-C3 constructs were transiently transfected into BEAS-2B cells.  48 hours 

after transfection, cells were treated with 25 μM As(III) for 12 hours, and subjected to 

Western blot analysis.  Overexpression of the GPx1-EGFP fusion construct reduced 

GADD45α protein abundance by at least 50% (Fig. 3) as measured by densitometry and 

normalized to GAPDH expression (data not shown).  Empty vector and SOD1 construct 

overexpression did not affect GADD45α expression (Fig. 3), implying that the formation 

of H2O2 is partially responsible for the induction of the GADD45α protein in response to 

As(III). 

 

As(III) exposure increases GADD45α  mRNA abundance.  To determine how As(III) 

exposure induces the GADD45α protein, we examined GADD45α transcript abundance 

at several time points using qRT-PCR.  A concentration of 25 μM As(III) was chosen to 

obtain a maximal effect.  Relative quantification of GADD45α mRNA was performed 

using the 0 hour time point as a calibration value.  As shown in Figure 4, GADD45α 

mRNA increases almost 30-fold after three hours of treatment.  Although GADD45α 

mRNA slightly decreased during the following three time points, it began to increase 

again at the 24 hour time point, mimicking the GADD45α protein expression pattern (see 

Fig.1).  Therefore, we reasoned that the gadd45α gene could be transcriptionally induced 

by As(III) exposure.   

 

As(III) activates transcription of gadd45α  through both the promoter region and the 

third intron region.  To establish whether the increase in mRNA abundance resulted 

from transcriptional activation or as a consequence of increased mRNA stability, we 
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examined the effects of As(III) on induction of the gadd45α promoter and intron 3 

regions. GADD45α promoter-luciferase and intron 3-luciferase transcriptional fusion 

constructs were transiently transfected into BEAS-2B cells, subjected to As(III) treatment 

for 12 hours, and assayed for luciferase activity.  The GADD45α promoter construct 

showed a five-fold increase in luciferase activity in response to 25 μM As(III) (Fig. 5).  

Similarly, the GADD45α intron 3 construct exhibited a four-fold increase in activity (Fig. 

5).  Neither of the control constructs containing the luciferase gene alone (GVB2 or GL3) 

showed any discernible difference between the untreated samples and the As(III)-exposed 

samples, illustrating that both the promoter and intron 3 regions of the gadd45a gene are 

activated by As(III) exposure. 

 Since H2O2 was involved in As(III)-induced GADD45a protein levels, we 

examined the effects of H2O2 on the transcriptional activation of gadd45a.  GPx1 or a 

control vector was co-transfected with the aforementioned GADD45α promoter and 

intron 3 constructs.  GPx1 overexpression decreased promoter-luciferase activity by 50% 

when compared to transfection with the empty vector (Fig. 6).  Surprisingly, the control 

vector itself slightly increased luciferase activity in the gadd45a promoter construct.  The 

reason for this phenomenon is unclear.  In contrast, the activity of the intron 3 construct 

after As(III) exposure remained largely unaffected (Fig. 6).  These results suggest a role 

for H2O2 in the transcriptional activation of the gadd45a promoter region. 

 

As(III) activation of  the GADD45α  promoter region occurs between -81 and -234 

relative to the tss.  Given that the GADD45α promoter-luciferase transcriptional fusion 

construct was activated by the presence of H2O2, we wanted to pinpoint which portion of 
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the promoter region was responsible for the activation.  Six GADD45α promoter-

luciferase deletion constructs, named for the length of the promoter region with regards to 

the transcriptional start site (+1), were transfected into BEAS-2B cells and exposed to 25 

μM As(III) for 12 hours (Fig. 7A).  A five- to six- fold increase in luciferase activity was 

observed in all constructs containing at least 234 base pairs upstream of the +1 site (Fig. 

7B).  A further deletion of approximately 150 bp (to -81) eliminated most of the 

luciferase activity.  Putative transcription factor binding sites located in this region 

include consensus sequences for AP-1, MBF-1, Egr-1, Egr-2, Egr-3, and WT1 (-KTS) 

[57]. 

We subsequently examined the effects of As(III)-induced H2O2 formation on the 

induction of the promoter deletion constructs.   Again, GPx1 overexpression and the 

removal of H2O2 decreased luciferase induction by approximately 50% in all constructs 

showing more than five-fold induction (Fig. 7C).  No change was seen in the smaller 

constructs.  These results suggest that the 153 bp region located between -234 and -81 

contains an As(III)-responsive region that is sensitive to the production of H2O2.  

 

Discussion 

The findings presented here suggest that As(III) exposure induces the 

transcriptional activation of the gadd45a gene through a Fenton-like free radical 

mechanism (Fig. 8).  The Fenton reaction, which is usually associated with an excess of 

Fe(II), occurs when a transition metal is oxidized during its interaction with H2O2, 

producing an oxidized metal and two molecules of ˙OH.  Our data show that As(III) 

treatment increases the amount of molecular oxygen consumed by BEAS-2B cells, 
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indicating that more oxygen is available for conversion to O2˙- and subsequent formation 

of H2O2.  In addition, ESR data shows that the relative amount of ˙OH increases in 

response to As(III) exposure, which is alleviated by treatment with the H2O2 scavenger 

enzyme catalase. The removal of H2O2 from the intracellular environment by GPx1 

overexpression decreases gadd45a promoter-luciferase activity and GADD45α protein 

expression, further supporting a role for H2O2 in GADD45α induction. Surprisingly, 

treatment with H2O2 alone only weakly induced GADD45α protein expression when 

compared to equal concentrations of As(III) treatment, whereas co-treatment with H2O2 

and As(III) enhanced GADD45α protein induction (data not shown).  Collectively, these 

results suggest that the formation of ˙OH through a Fenton-like reaction is at least 

partially responsible for the induction of gadd45a transcription and protein expression in 

response to As(III) exposure.   

The induction of gadd45a transcription by the production of H2O2 and/or ˙OH and 

each molecule’s subsequent intracellular activities may partially account for the wide 

variety of chemical and physical inducers of GADD45α protein expression.  IR and UV 

irradiation, both potent inducers of GADD45α expression, also induce ˙OH formation 

[37,58].  Additionally, generation of H2O2 and ˙OH via the Fenton reaction can induce 

the formation of apurinic sites, the same type of DNA lesion induced by another potent 

GADD45α inducer, methyl methanesulfonate (MMS) [37,59].  These data suggest that 

H2O2 and/or ˙OH production may be a key regulator of GADD45α transcriptional 

induction. 

Because, BEAS-2B cells contain a p53 protein that has been inactivated by 

expression of the E6 viral protein, gadd45a transcriptional activation by As(III) occurs 
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through a p53-independent mechanism in these cells [60].  Based on the experimental 

data presented in this manuscript, we have identified several other candidate transcription 

factors that may be involved in gadd45a transcription.  One major candidate is the AP-1 

transcription factor, since it has previously been identified as an As(III)-activated protein 

[61,62].  In addition, the yeast homolog of the human AP-1 protein, Yap1, contains a 

redox regulated domain consisting of  disulfide bonds that can mask or expose its nuclear 

localization sequence, depending on the redox status of the cell [63].  These findings 

make AP-1 an ideal candidate for ROS-mediated transcriptional activation.  Moreover, 

the 153 bp region of the gadd45a promoter-luciferase deletion constructs affected by 

antioxidant overexpression boasts four possible AP-1 consensus binding sequences [57].  

Finally, AP-1 has also been identified as the transcription factor responsible for 

increasing expression of the DNA damage response gene gadd153 after As(III) exposure, 

suggesting that H2O2 production and redox status may be a general mechanism for the 

transcriptional activation of DNA damage response genes [64]. 

Alternatively, the early growth response 1 (Egr-1) transcription factor may also be 

involved in H2O2-mediated transcriptional activation of gadd45a.  Egr-1 has recently 

been shown to induce gadd45a transcription in response to UV irradiation [65].  

Furthermore, Egr-1 induction occurs three hours after 25 μM As(III) treatment 

coincidental with the increase in gadd45a mRNA abundance shown in Fig. 4 (D. Bhatia 

and F. Chen, unpublished data).  Testing is underway in our laboratory to determine the 

effects of Egr-1 on gadd45a transcriptional activation in response to As(III) exposure.   

In conclusion, we have shown that the gadd45a gene is transcriptionally induced 

by As(III) exposure through the formation of H2O2.  This induction occurs in the 
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promoter region of the gadd45a gene and the redox responsive element is located in the -

234 to -81 base pair region.  Future work will focus on the identification of the 

transcription factor(s) responsible for the oxidative stress-dependent transcriptional 

induction of gadd45a.   
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List of Abbreviations: 

GADD45α   growth arrest and DNA damage-inducible protein 45 alpha 

H2O2    hydrogen peroxide 

As(III)    arsenite 

bp    base pairs 

tss    transcriptional start site 

mg    milligram 

μg    microgram 

L    liter 

DNA    deoxyribonucleic acid 

ROS    reactive oxygen species 

NF-κB    nuclear factor κB 

AP-1    activator protein 1  

ERK    extracellular signal-regulated kinase 

G1/S    gap 1/synthesis phase checkpoint 

G2/M    gap2/mitosis phase checkpoint 

MMS    methylmethane sulfonate 

UV    ultraviolet irradiation 

IR    ionizing radiation 

FHRE    forkhead response elements 

mL    milliliter 

AsCl3    arsenic trichloride 

μM    micromolar 
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μL    microliter 

PBS    phosphate buffered saline 

μg    microgram 

PVDF    Polyvinylidene fluoride  

TBS-Tween   Tris-buffered saline 

O2    oxygen 

SEM    standard error of the mean 

mM    millimolar 

ESR    electron spin resonance 

G    Gauss 

DPPH    diphenyl-2-picrylhydrazyl 

K3CrO8    potassium tetraperoxochromate 

GPx1    glutathione peroxidase 1 

SOD1    superoxide dismutase 1 

cDNA    complementary DNA 

EGFP    enhanced green fluorescence protein 

qRT-PCR   quantitative real-time polymerase chain reaction 

RNA    ribonucleic acid 

rRNA    ribosomal ribonucleic acid 

Ct    threshold cycle 

˙OH    hydroxyl radical 

O2˙-     superoxide radical 

GAPDH   Glyceraldehyde-3-phosphate dehydrogenase 
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mRNA    messenger ribonucleic acid 

MBF-1    metal binding factor 1 

Egr-1    early growth response gene 1 

Egr-2    early growth response gene 2 

Egr-3    early growth response gene 3 

Yap1    yeast activator protein 1 

gadd153   growth arrest and DNA damage-inducible protein 153 
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Figure Legends: 

Fig. 1.  25 μM As(III) induces maximal GADD45α  expression at 12 hours. 

A dose/time course Western blot of As(III)-exposed BEAS-2B cells show 

maximal GADD45α induction after 12 hours of treatment. BEAS-2B cells were 

exposed to As(III) concentrations of 0, 3.25, 6.25, 12.5, 25, and 50 μM.  20 μg 

of total protein were loaded into each lane and GADD45α expression was 

detected with a polyclonal antibody. 
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Fig. 2.  A. As(III) exposure increases O2 consumption in BEAS-2B cells. 

 Aliquots of 4 x 106 BEAS-2B cells were injected into a Gilson 5/6 Oxygraph 

and the rate of oxygen consumption was measured with or without a 20 minute exposure 

to 1mM As(III).  O2 consumption in the presence of As(III) was increased approximately 

three fold.   
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Figure 2B. As(III) induces the formation of •OH in BEAS-2B cells.  Formation of  •OH 

was measured by ESR spectroscopy in aliquots of 1 x 106 BEAS-2B cells with or without 

exposure to 1mM As(III).  Figures shown are examples of spectra of control BEAS-2B 

cells (left) and As(III)-exposed BEAS-2B cells (right) exhibiting the characteristic ˙OH 

ESR fingerprint.   
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Figure 2C.  Graphical representation of ESR peak height.  ESR peak heights were 

measured and quantified as described in Materials and Methods.  As(III)-exposed BEAS-

2B cells showed a 2.5 fold increase in the amount of •OH formation which was abrogated 

by the addition of 2000 units/mL of catalase, confirming the identity of •OH. 
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Fig. 3.  Overexpression of the H2O2 scavenging enzyme GPx1 reduces GADD45α 

protein expression. BEAS-2B cells were transiently transfected with a GPx1, SOD1, or 

C3 empty vector and assayed for changes in GADD45α expression via western blot.  

Removal of H2O2 by GPx1 overexpression decreased GADD45α expression by 

approximately 50%. 
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Fig. 4. As(III) exposure increases GADD45α  transcript abundance.  Relative  

qRT-PCR was employed to measure the abundance of the GADD45α transcript using the 

0 hr time point as a calibrator.  Transcript abundance increased approximately 30 fold 

after a three hour As(III) treatment. 
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Fig. 5.  As(III) activates both the GADD45α promoter region and the intron 3 region.  

A dual luciferase reporter system was used to determine the activation of the GADD45α 

promoter-luciferase (G45) and the intron 3-luciferase (Int3) constructs.  Constructs were 

transiently transfected into BEAS-2B cells and luciferase activity was normalized to an 

internal transfection control.  5.2 and 4 fold increases in the G45 and Int3 luciferase 

activity, respectively, were observed in As(III)-exposed samples when compared to the 

untreated control samples. 
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Fig. 6.  Overexpression of GPx1 reduces GADD45α  promoter activation, 

but not intron 3 activation.  G45 and Int3 luciferase constructs were transiently 

co-transfected with either an empty vector or the vector overexpressing the GPx1 protein 

and exposed to 25 μM As(III) or left untreated.  GPx1 overexpression decreased the G45 

promoter luciferase activity by 50%, but seemed to have no effect on Int3 activity. 
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Fig. 7A. Schematic diagram of GADD45α promoter-luciferase deletion constructs.  
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Fig. 7B.  GADD45α  promoter activation occurs between the -234 and -81 region. The 

effects of As(III) on the activation of GADD45α promoter luciferase deletion constructs 

were examined after a 12 hour treatment period with 25 μM As(III).  The full length  (-

2552), -1326, -817, and -234 constructs all retained an induction of approximately 5-6 

fold when exposed to arsenic, whereas the -81 construct showed a loss of activation by 

As(III).   
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Fig. 7C.  Activation of the full length, -1326, -817, and -234 constructs was reduced by 

50% in GPx1-overexpressing cell lysates.   
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Fig. 8. Proposed ROS pathway involving arsenic.  The proposed ROS pathway 

responsible for the activation of the gadd45a promoter region is a Fenton-like reaction in 

which molecular oxygen accepts an electron, forming O2˙-, and is then converted to H2O2 

by superoxide dismutase.  H2O2 is then further broken down into water and  molecular 

oxygen, unless the presence of a transition metal, such as As(III), is present.  Excess 

As(III) can then react with H2O2 and produce ˙OH, which leads to DNA damage, lipid 

peroxidation, and the activation of cellular signaling pathways, including the induction of 

gadd45a transcription. 
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OVERALL CONCLUSIONS 
 

1. Gene-environment interactions are an integral part of environmental-induced 
carcinogenesis.  The elucidation of the human genome sequence and new 
techniques that have emerged will play a major role in understanding the 
molecular mechanisms underlying the carcinogenic action of environmental 
contaminants. 

 
 

2. Metal exposure is a major contributor to environmental induced carcinogenesis.  
Each metal produces its own effects, and these effects are different for each cell 
type.  Identification of each individual mechanism of metal-induced 
carcinogenesis is necessary in order to obtain effective treatments. 

 
 

3. Arsenite produces hydroxyl radical in the BEAS-2B cell line. 
 
 

4. Arsenite induces GADD45α in a dose- and time-dependent manner. 
 
 
5. Arsenite can eleveate hydrogen peroxide and/or hydroxyl radical production and 

subsequently GADD45α protein levels in the BEAS-2B cell line. 
 
 
6. Arsenite induces hydrogen peroxide-mediated GADD45α transcription. 
 
 
7. A 153 base pair region of the GADD45 promoter is regulated by As(III)-

induced hydrogen peroxide formation. 
 
 
8. Arsenite induces GADD45α expression in a p53-independent manner in the 

BEAS-2B cell line. 
 
 
9. The transcriptional induction of the gadd45a gene by arsenite seems to occur 

through a Fenton-like reaction mechanism. 
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