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ABSTRACT 

 

Robust Cross-dock Location Model Accounting for Demand 

Uncertainty 

 
Stephanie Spangler 

 
 The objective of this thesis was to develop optimization models to locate cross-docks in 

supply chain networks. Cross-docks are a type of intermediate facility which aid in the 

consolidation of shipments, in which the goods spend little or no time in storage. Instead, the 

goods are quickly and efficiently moved from the inbound trucks to the outbound docks. Two 

deterministic facility location models were developed. One followed the p-median facility 

problem type, where only p facilities were opened in order to minimize total network costs. In 

the second model, as many cross-docks as necessary were opened and facility location costs 

were considered while minimizing total network costs. In order to account for uncertainty in 

demands, a robust optimization model was created based on the initial deterministic one. Robust 

counterparts were developed for each equation that contained the demand term. The robust 

model allowed for the creation of a network with the ability to handle variations in demand due 

to factors such as inclement weather, seasonal variations, and fuel prices. Numerical analysis was 

performed extensively on both the deterministic and robust models, following the p-median 

facility problem type, using three networks and parameters coherent with industry standards. The 

results showed that accounting for uncertainty in demands had a real effect on the facilities 

which were opened and total network costs. While the deterministic network was less expensive, 

it was unable to handle increases in demand due to uncertainty, whereas the robust network had 

no capacity shortages in any scenario. Simple demand inflation, along with the use of a robust 

model for baseline comparison, also proved to be a legitimate strategy to account for 

uncertainties in demand among small freight carriers.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

 The trucking industry plays a vital role in the United States economy and society. 

Trucking allows for the transport of goods across the country from inter-city to coastline-to-

coastline trips; thus allowing for product specialization in the United States. With the 

construction of the Eisenhower Interstate System in the 1950’s, the trucking industry flourished 

and became a very popular form of freight transport (USDOT- FHWA 2013). Since a vast 

number of companies rely on trucking today as their main source of shipping, it is important to 

make this aspect of business as cost-effective as possible.  

 From the trucking industry perspective, freight agents have to make both long term 

strategic decisions as well as short term operational decisions. Freight agent could correspond to 

the owner of a small trucking company, the supply chain manager of a large business enterprise 

like FedEx, Caterpillar, or Walmart, or a Third Party Logistics (3PL) company. 3PL companies 

provide different types of freight services – actual transportation through trucks, 

recommendations on supply chain management, etc. – depending on their size and scope. One of 

the main long-term strategic decisions made by freight agents is locating warehouses or facilities 

for storage and transshipment. Short term operational decisions involve routing decisions 

associated with trucks – when to pick up, when to deliver, what route to follow, how often 

deliveries occur, etc.  Operational decisions normally change on a daily, weekly, or monthly 

basis depending on the scope of operations. While the specific details and the costs of 

operational decisions are not considered while making strategic location decisions, freight agents 

often use estimates of routing costs. Costs are approximated because it is usually difficult to 

determine accurate details of routing and the associated costs when making facility location 
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decisions for ten to thirty years in the future. The importance of strategic long term and short 

term operational decision making has increased in recent times. With the rise of fuel prices and 

all of the regulations placed on trucking companies, including noise and exhaust emissions 

standards, inspection, repair and maintenance regulations as well as driver regulations, it 

becomes vital for these companies to work and run efficiently to reduce their environmental 

impact. This thesis was primarily concerned with developing mathematical models which aid 

strategic long term facility decision making while accounting for uncertainty in demand. In 

particular, this research focused on a particular type of facility called cross-docks. 

 Cross-docking (CD) refers to the method of transporting freight or goods from the 

manufacturer to a cross-dock facility and then to the customer. At the cross-dock, the goods are 

unloaded, sorted and then loaded onto another truck to be delivered to the customer. The idea of 

a cross-dock is different than that of a typical warehouse in that goods spend little or no idle time 

at the cross-dock facility, while warehouses store goods. Once the goods are delivered at the 

facility, in most cases, they are immediately taken to their destination truck. Intensive planning 

and expert logistics must be in place to manage the incoming goods and efficiently allocate them 

to their destination trucks with little or no wait time. Companies looking to implement cross-

docking in their shipping system must first choose the optimal location for their cross-dock 

facility. Cross-dock facility location is very important because it improves shipping procedures, 

reduces costs, and also makes freight transport more efficient which reduces the environmental 

impact (Murray 2013). 

 The use of cross-docking has many advantages in the shipping field. Unlike traditional 

warehouses, goods flow through the facility in a timely manner and the goods or products are 

never stored. Since the products are never stored, there is no wasted time and labor in locating 
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the items when they are needed for delivery. Cross-docking saves companies from the costly 

warehouse procedures of storing and picking. With the removal of storing, delivery to the 

customer can be expedited since there is no wait time on locating and picking goods. Cross-

docking also leads to the benefits of a smaller facility, less equipment, smaller labor force, and a 

decreased risk of items being damaged or becoming outdated. The use of cross-docking is 

important in the transportation industry because it reduces the burden of transportation costs on 

companies (Galbreth et al. 2008). Cross-docking reduces labor costs to stock and move goods in 

the warehouse, reduces delivery times to customers, and reduces the amount of space needed in 

the intermediate facilities.  

Cross-docking also provides opportunities for consolidation. Shipments arriving at a cross-

dock may be consolidated into a single truck if they are to be delivered to a single destination. 

Consolidation creates many benefits for companies including the following: discounts on less 

than truck load (LTL) shipments, fuel savings, driver wage savings, less empty waste space on 

trucks, and reduction of environmental impacts. Through consolidation of LTL into truck load 

(TL) shipments, companies can see a reduction in freight transportation costs by 20-35%, 

according to Chris Kane, vice president of sales and marketing for a third-party logistics provider 

based in Scranton, PA (O’Reilly 2009).  While consolidation can lead to major cost savings for 

companies, it also serves as a mechanism to help “green” the freight industry. Ülkü (2012) talks 

about Green Supply Chain Management (GSCM) which can be used to help reduce freight 

related pollution, such as emissions and noise pollution.  Srivastava (2007) defines GSCM as 

“integrating environmental thinking into supply chain management, including product design, 

material sourcing and selection, manufacturing processes, delivery of the final product to the 

consumers as well as end-of-life management of the product after its useful life.” Shipment 
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consolidation, cross-docking, and vehicle routing optimize delivery of the final product to 

consumers and reduce wasted trips and truck space; therefore, these strategies can be seen as 

excellent ways to help “green” the supply chain.  

As stated above, shipment consolidation has the ability to generate cost savings for freight 

companies. However, determining discounts for companies taking part in LTL consolidation can 

be quite complicated and time-consuming. Carriers can implement a few different types of cost 

structures and discounting strategies in order to reward shipment consolidation. The modified 

all-unit discount (MAUD) cost structure is just one of these methods. Chan et al. (2002) define 

the MAUD cost structure as a piecewise function in which a small shipment incurs a fixed cost 

and as the number of units being shipped increases, the transportation cost per unit decreases. 

These costs per unit are based on predefined ranges of shipment size (in units). This type of cost 

function allows companies to transport LTL shipments at a lower cost than if they were to use a 

full truckload, because of the consolidation opportunities. When companies have opportunities 

for consolidation, they are able to send small shipments via an LTL carrier and only use TL 

carriers for near truck-load size shipments. With many small shipments consolidated to one truck 

rather than many large trucks with wasted space, transportation cost reductions are incurred 

through truck maintenance, fuel, and driver wage savings. Note that the MAUD cost structure is 

very detailed and is suitable when making optimal operational plans. This thesis focused on long 

term strategic location decisions. Therefore, a simple discounted cost structure was used rather 

than the MAUD cost structure.  

One major issue in making long term strategic location decisions is accounting for 

uncertainty in parameters. When freight companies are looking at a time frame of five to ten 

years, there will be significant sources of uncertainty in terms of the demand for commodities, 
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transportation costs, etc. The future is going to become more and more unpredictable from the 

perspective of freight managers due to changes occurring in the freight industry such as 

globalization, new industry practices like electronic commerce, and volatility in fuel prices. 

Lessard (2013) provides a detailed review of the various uncertainties and risks in global supply 

chain management. Past research has shown that freight decisions which do not account for 

uncertainty in parameters can lead to poor decisions (Unnikrishnan et al. 2009). In this thesis, the  

focus was on the impact of demand uncertainty on location decisions. The goal of this thesis was 

to develop a mathematical model which helps immunize the location decisions against the 

impact of demand uncertainty. 

1.2 Contribution 

 There have been many research papers written concerning the usage of vehicle routing 

and cross-docking in freight networks. These papers typically involve linear programming 

formulations used to model particular aspects of the cross-docking or vehicle routing system 

which serve to minimize total transportation costs. For example, Wen et al. (2009) developed a 

mathematical formulation to model vehicle routing with cross-docking which placed time 

constraints on shipment pick-up. Lee et al. (2006) also developed a vehicle routing schedule for 

cross-docking which placed constraints on vehicle departure time and arrival time. Some just 

studied cross-docking without vehicle routing such as Chen et al. (2006) who developed a 

multiple cross-docks model with inventory and time windows. Gümüş and Bookbinder (2004) 

looked at cross-docking and its impact on location-distribution systems in which their decision 

variables decide which of a group of potential cross-docks should be opened under certain 

network circumstances. Sung and Song (2003) also developed a model to determine cross-dock 

location while adding vehicle allocation, truck load capacities, and service time limits. Galbreth 
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et al. (2008) investigated the usage of cross-docking and its potential value for supply chain 

management in which a modified all unit discount (MAUD) function was used to model LTL 

costs.  

 While these formulations were all beneficial to the industry in some way, they only 

modeled certain aspects of the vehicle routing and cross-docking systems. Most of them ignored 

the impact of uncertainty in cross-docking networks; whether it was in the form of demand 

uncertainty, transportation cost uncertainty, or capacity uncertainty. The contributions of this 

thesis are given below: 

(i) Present a cross-docking optimization model which includes a location decision 

variable following the p-median problem, handling cost at the cross-docks, vehicle 

and cross-dock capacity constraints, multiple commodities, and a discount parameter 

for consolidated freight transport. 

(ii) Develop a cross-docking optimization model which accounts for the impact of 

demand uncertainty through the utilization of robust optimization techniques. 

(iii) Use real world freight networks, demands, and commodities from a Third Party 

Logistics Company in these models. 

(iv) Study the value of accounting for demand uncertainty by comparing deterministic and 

robust total costs and capacity shortages to each other.  

(v) Evaluate the potential of demand inflation strategies to combat demand uncertainty 

when compared to robust optimization strategies. 
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CHAPTER 2. LITERATURE REVIEW 

The literature review of this thesis provides an overview of four pertinent literature areas: 

freight operations and pricing, cross-dock operation modeling, facility location decision 

problems, and uncertainty in cross-dock location models. 

2.1 Freight Operations and Pricing 

 

Since the trucking industry plays such a vital role in the operation and survival of nearly all 

transportation and distribution networks, it is very important to be familiar with freight 

classification and pricing when working with cross-dock systems. In the trucking industry, 

shipments or freight are generally classified as truckload (TL) or as less than truckload (LTL). 

TL refers to a shipment which fills the entire truck, thus making a full truck load. LTL refers to 

relatively small freight which does not fill a standard truck, such that it is less than a truckload. 

LTL shippers often look for consolidation opportunities or use smaller trucks in order to reduce 

wasted space and cut costs, whereas TL shippers do not have the opportunity for consolidation 

due to their already full trucks (Carr 2009). 

 TL and LTL shippers have very different operating systems. TL service providers 

typically transport single large shipments to one customer or retailer. It is beneficial for them to 

use the largest truck allowed in order to move as much freight as possible with one trip. TL 

shippers also try to consult with customers in order to plan shipments for back hauls so that dead 

loads may be avoided (Carr 2009). An LTL carrier operates in an opposite manner compared to 

TL, such that the LTL carrier’s goal is to carry many small shipments to many different places 

(Carr 2009). An LTL network operates with intermediate facilities such as hubs or in this case, 

cross-docks. These intermediate facilities allow the carrier to consolidate small shipments from 

many different local customers onto one truckload. The individual shipments act as a TL when 
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they are transported over a long distance to another hub. At the hub close to the multiple 

destinations, shipments are usually separated onto smaller trucks and sent to their individual 

destinations. According to Carr (2009), “LTL networks like Yellow Freight or FedEx may 

consist of more than one hundred transshipment terminals” or hubs. LTL shipments fall in the 

weight range of 100 to 20,000 lbs., whereas TL shipments weigh more than 20,000 lbs., up to 

truck weight allowance (Carr 2009).  

 Because TL and LTL shipping are so different from each other, they have different 

pricing mechanisms. TL shipping is rather simple in that the rate is based on a dollar amount per 

mile. The rate may change due to factors such as “geography, accessory services, and delivery 

deadline” (Carr 2009). LTL is much more complicated to price than TL shipping. LTL pricing is 

determined by the National Motor Freight Association who establishes rates based on freight 

class and other very important parameters. The rates range in value from 50 to 500% in which 

100% is the base rate. The rates are based on a 100 lb. shipment, so that they are defined as cwt 

(hundred weight). For example, a 400 lb. shipment with a rate of 78 cwt would cost $312 to ship. 

When the size of shipments approaches TL capacity, they are often discounted by the trucking 

company (Carr 2009). In an effort to reduce shipping costs, companies consolidate small 

shipments with the hope of many benefits such as decreased fuel consumption, reduced 

pollution, and less wasted space. 

 Different pricing scenarios may be used in order to determine rates for consolidated 

shipping. One prominent method is the modified all-unit discount (MAUD) cost function. 

According to Chan et al. (2002), if a customer orders Q units of a commodity, the transportation 

cost is determined by the following piecewise function.  
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Where α1 > α2 >… ≥ 0 and α1M1 = c. 

In the function, Q is the shipment quantity or units, Mi is a cutoff quantity, c is a fixed cost for 

shipping a small quantity, and αi is the discounted cost greater than or equal to zero. If a 

shipment size (Q) falls into the range between M1 and M2, then the shipment cost is equal to the 

size of the shipment multiplied by the discounted cost, α1. Figure 1 below shows how the 

quantity ranges and discounts are defined.  

 

 
Figure 1: MAUD Cost Structure (Chan et al. 2002) 

 In some cases, customers may over declare in order to receive a greater discount (Chan et 

al. 2002). The horizontal lines on the figure above are the areas where customers benefit from 

over declaring (Galbreth et al. 2008). Because of consolidation, this type of pricing allows 

customers to ship at lower cost than if they were forced to ship TL.   

 A quite simpler solution to LTL pricing is the method of using a discount factor on any 

portions of transport where consolidation takes place. The discount factor pricing method was 
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used in this cross-docking model, such that shipments from the cross-dock nodes to the 

destination nodes had a discount factor ranging from 0 to 1 applied to them. The focus of this 

thesis was on long term strategic location decisions. For making such decisions, in general, an 

approximate estimate of the routing costs is needed. When planning for a time frame of five to 

ten years in the future, it is difficult to come up with accurate estimates of the quantity cutoff 

points and the prices for each load range. A discount factor of 0.8 was used in this study, which 

was based on industry standards, as discussed with Aerostream Logistics. This meant that 

consolidated shipments cost only 80% of the TL shipping costs, which were charged on a cost 

per mile basis.  

2.2 Cross-dock Operation Modeling  

 

 Cross-docking is a warehousing strategy in which goods are sent from an origin or 

supplier to a cross-dock and then to the destination or customer with little or no wait time at the 

intermediate facility. Many different models have been developed in transportation research in 

an attempt to capture the system of cross-docking and all of its many facets. These models aim to 

realistically generate a formulation or algorithm which represents real world transportation and 

warehousing networks in order to optimize the flow of goods and cut costs. The simplest models 

of networks using cross-docks are generally the easiest to solve, but models with more realistic 

constraints usually give a better representation of the actual network. Therefore, researchers must 

determine which constraints, such as vehicle capacity, warehouse capacity, arrival time window, 

departure time window, etc., should be integrated into models in order to make them more 

realistic and what constraints should not be included in order for the models to be able to be 

solved by computer programs or heuristics. This section synthesizes the various mathematical 

models used to optimize the different aspects of cross-dock operations.  
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According to Apte and Viswanathan (2000) a cross-docking warehouse functions in 

much the same way as a traditional mixed warehouse, in which truckload shipments enter the 

facility, are broken up and then consolidated to other trucks to create a variety of product 

shipments which are then sent direct to the customer. In a traditional warehouse, goods are sent 

to the warehouse from the supplier and then are stored until they are requested by customer. 

Once requested, the products are picked from the warehouse and shipped to the customer.  

According to Van Belle et al. (2012) product storage and order picking are usually the two most 

expensive activities. This makes cross-docking a realistic cost-saving approach as it eliminates 

the need to store and pick goods.  Cross-docking offers many benefits to the transportation 

industry including network cost savings and reduced shipping times. However, not all products 

are right for this type of transport; Richardson (1999) says that goods which have a large, 

foreseeable demand and rather short delivery times are some of the best contenders for cross-

docking. Walmart has realized the benefits of cross-docking in its supply chain network which is 

vital to the company’s logistics management (Sung and Song 2003). In fact, as stated by Stalk et 

al. (1992), Walmart was able to decrease its “costs of sales by 2% to 3% compared with the 

industry average” by moving a larger percentage of goods through its own warehouses than its 

competitors, who were moving more goods through a third party warehouse.  

 The use of cross-docks inherently allows for the removal of the costly warehouse 

operations of storing and picking. Cross-docks operate in three main steps: 1) products arrive at 

the facility where they are scanned into the system, 2) products are sorted based on their 

destination (destination information is generally included in the bar code of the package), 3) 

products are transferred to the correct shipping dock and sent to their destination (Liao et al. 
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2012). The three step process flows continuously unlike a traditional warehouse. The figure 

below shows a typical flow in a cross-dock facility as described above.  

 

Figure 2: Typical Flow in a Cross-Dock System (Liao et al. 2012) 
 

 Cross-docks enable consolidation at centralized or optimal locations between the 

suppliers and customers. This means that LTL shipments which create inefficiencies due to 

wasted space can be consolidated into TL shipments which make use of the entire truck. The 

figure below shows a schematic of a network before and after cross-docking is implemented. 

 
Figure 3: Value of Cross-Dock (Faint 2011) 

 Figure 3 shows that before cross-docking, an LTL shipment must be sent from each 

supplier to each destination, totaling 12 LTL shipments. After cross-docking, a single TL 

shipment is sent from each one of the suppliers to the cross-dock, and a single TL shipment is 
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sent to each customer from the cross-dock, totaling seven shipments. The use of the cross-dock 

in this sample network allows for fewer more cost-effective and efficient shipments.  

 Schaffer (1998) makes a very logical point in stating that certain activities, such as 

shipping, receiving, storing, and picking, can be made more efficient to cut down on costs, but 

the most significant cost reductions would come from removing the operation altogether. When 

implementing cross-docking, there are many needs that must be met in order to make the 

warehousing strategy successful. Schaffer (1998) outlines requirements for successful cross-

docking which fall into six key groupings including the following: “1) partnering with other 

members of the distribution chain, 2) absolute confidence in the quality and availability of 

product, 3) communications between supply chain members, 4) communications and control 

within the cross docking operation, 5) personnel, equipment and facilities, and 5) tactical 

management”. Most failures within companies attempting to introduce cross-docking occur 

when proper planning and intensive logistics are not in place to manage the flow of goods 

(Schaffer 1998).  

 Another vital aspect of cross-docking is the actual layout of the cross-dock facility. 

According to Bartholdi and Gue (2004), most of the cross-docks in the United States were 

operated by LTL carriers due the fact that cross-docking was still a rather new operation. They 

observed a total of six different shapes for cross-dock layouts. Most cross-docks fell into the I-

shape, while L-, U-, T-, H-, and E-shapes have also been found. The wide variety in facility 

shape can be attributed to many different causes including the following: companies leasing an 

existing warehouse, constraints on facility size, constraints on land availability, lot restrictions, 

cost constraints, and poor designs, among other reasons. Figure 4 shows some, but not all, typical 

cross-dock shapes found in practice (Bartholdi and Gue 2004). 
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Figure 4: Some Typical Cross-Dock Shapes (Bartholdi and Gue 2004) 

 Bartholdi and Gue (2004) measured the performance of different cross-dock facility 

shapes and found that the I-shaped cross-dock was the most efficient for small facilities (less 

than 150 doors), the T-shaped was best for medium sized cross-docks (between 150 -200 doors) 

and the X-shape was the most efficient for large warehouses (more than 200 doors). Vis and 

Roodbergen (2011) outlined three general facility design stages used to minimize handling and 

waiting times in cross-docks. The first step involved defining the general layout of the facility 

also called the “block layout”, most importantly the location of the loading docks and the 

temporary product storage space. The second stage was to determine exactly how the loading 

docks and doors and storage space would be designed. And finally, the last step was to determine 

procedures that would allow the cross-dock to run efficiently at each individual block and as a 

whole (Vis and Roodbergen 2011).  

 Sung and Song (2003) state that a transportation network which has cross-docking 

centers integrated into its system should cogitate certain constraints and parameters which arise 

from consolidation. Some of the issues they note involve schedules of vehicles taking part in 

consolidation, time restrictions on entry, exit and the transfer of goods, determining optimal 

facility location, and allocating vehicles. Therefore, Sung and Song (2003) develop a model to 

optimize cross-dock facility location and allocate vehicles to their service network while meeting 

certain time constraints and staying within vehicle capacity. Lee et al. (2006) model vehicle 

routing with cross-docking and constraints on vehicle departure and arrival times in order to 
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determine an optimal  route and schedule for each vehicle and arrival time at a cross-dock center 

to minimize total transportation costs for the network. Chen et al. (2006) considered a network of 

cross-docks, rather than just a single cross-dock, in order to better model larger service networks. 

In the study, they modeled delivery and pickup time windows, cross-dock capacity constraints 

and handling costs at the cross-dock facilities in order to minimize transportation cost based on 

known supplies and demands for the network. Gümüş and Bookbinder (2004) developed several 

cross-docking models in order to compare the effect of different numbers of manufacturers, 

cross-docks, and retailers. The purpose of their individual models was to determine the number 

of cross-docks which were opened from a set of potential cross-docks, the number of trucks used 

to transport goods through the cross-docks, and the consolidation details for each different 

scenario. Galbreth et al. (2008) created a cross-docking model in which LTL costs were 

determined using the MAUD cost function, in order to study three main research questions. The 

three questions Galbreth et al. (2008) were concerned with were the value of cross-docking when 

demand variability is low, when average demands are close to TL capacity, and when the 

holding cost at customer locations is high. A mathematical formulation for a cross-docking 

network with vehicle routing and time constraints for pick-up and delivery as well as 

consolidation decisions at the cross-dock was developed by Wen et al. (2009).  

 The extent to which models accurately replicate real world situations defines the 

complexity of solving them. In general, mathematical formulations developed for cross-docking 

are binary integer linear programs.  Traditional solvers like GAMS and CPLEX can solve binary 

integer linear programs for small to medium sized formulations, but are unable to handle very 

large problems. Because of this, other methods have been developed to solve or simplify large 

problems. Many heuristic search based algorithms can be found in research to help solve large, 
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complex programs. Heuristic methods provide near optimal solutions in a computationally 

efficient manner. According to Chen et al. (2006), using tabu search heuristics generated better 

solutions, more quickly to their model than CPLEX. Liao et al. (2010) developed a new tabu 

search algorithm to solve their vehicle routing problem with cross-docking that they said 

outperformed an existing tabu search algorithm with a shorter solver time. Vahdani and Zandieh 

(2010) used five meta-heuristic algorithms including a genetic algorithm, tabu search, simulated 

annealing, electromagnetism-like algorithm, and variable neighborhood search algorithm to 

solve a cross-docking schedule problem in order to minimize operation time.  

 The next section reviews relevant literature on strategic location decisions with respect to 

cross-docks and other general facilities.   

2.3 Facility Location Decision Problem 

Another very important aspect of optimizing a cross-docking network is the facility location 

decision problem. The facility location decision problem involves determining which of a group 

of potential cross-docks or other intermediate facilities should be opened and which customers 

should be served from those facilities in order to maximize efficiency and minimize total cost. 

Figure 5 shows a typical basic layout to help better explain the facility location decision problem.  
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Figure 5: Facility Location Decision Problem (Sung and Song 2003) 

 In Figure 5, the squares labeled one through ten represent origins or destinations, the 

circles represent cross-docking centers, the solid lines represent potential direct service, and the 

dotted lines represent the established direct service. In this problem, three potential cross-dock 

locations were considered which are represented by a, b, and c. Through optimization 

techniques, cross-dock location a was chosen to be opened since it generated the lowest 

transportation cost (Sung and Song 2003).  

 The location decision for intermediate facilities in a transportation network is a very 

important aspect in the modeling and optimization of cross-docking networks. In fact, according 

to Daskin et al. (2005), “location decisions may be the most critical and most difficult of the 

decisions needed to realize an efficient supply chain”. Deciding where to locate cross-docks is a 

very difficult task because once a facility is built it cannot be easily changed or moved due to 

changes in demand, transportation costs or availability, and element prices (Daskin et al. 2005). 

Unlike inventory and transportation plans which can be changed on relatively short notice, 

facility location is usually permanent and moving cross-docks is very costly. Ko (2005) states 

that “facilities location and the distribution process are two key components of a distribution 

system”. Because the facility location and the distribution process are interrelated, they should be 

used together when making decisions about either of these two elements (Ko 2005). Clearly, 

cross-dock location decision should be included in models developed to optimize transportation 

networks because of the important role it plays in the overall distribution system.  

  Sung and Song (2003) developed a model to locate cross-dock facilities and allocate 

vehicles for a supply chain network in order to minimize costs. The model was optimized using 

both a proposed tabu search heuristic algorithm and the valid-inequality separation algorithm. 

Gümüş and Bookbinder (2004) solved a cross-docking model using four varieties of distributor, 
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cross-dock, customer, and product combinations in order to determine which cross-docks should 

be opened from a set of feasible locations, how many trucks should be used for direct shipment 

and shipment through the cross-docks, and how consolidation should be executed.  

 Daskin et al. (2005) discuss a few facility location decision models including the fixed 

charge facility location problem, integrated location/routing models, integrated 

location/inventory models, planning under uncertainty, and location models with facility failures.  

The literature on facility location models can be primarily classified into p-median facility 

location models and transportation and facility location cost minimizing models. The model 

developed in this research is most similar to the p-median facility problem. According to Alp et 

al. (2003) “the goal of the model is to select the locations of p facilities to serve n demand points 

so as to minimize the total travel.” In the p-median problem, there is no cost incurred for opening 

a certain cross-dock facility. It is assumed that the cross-docks are already built and all that needs 

to be determined is which ones to open and use. The number of facilities to be opened is set to a 

certain number, p. The facility location decision problem is included in order to realistically 

model transportation network scenarios for companies wishing to begin cross-docking or 

optimize their current system.  The goal of the transportation and facility location cost 

minimizing models are to establish any number of facilities so that the total cost of transporting 

goods, establishing facilities, and operating facilities is minimized. The literature can be further 

classified into uncapacitated and capacitated facility location problems. In the uncapacitated 

variant, no hard capacities are established at the facilities. The facilities can handle any number 

of commodities. In the capacitated variant, the facilities have a hard capacity which depends on 

the type of facility, number of workers, quantity of machinery available to process the goods, etc. 

The amount of goods handled by the facility has to be less than the capacity. Owen and Daskin 
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(1998), Melo et al. (2009), and Klose and Drexl (2005) provide a detailed review of the various 

mathematical models used for network facility location.  

 This research focused on the cross-dock facility location which is marginally more 

complicated than a simple facility location. The simple facility location models are from the 

perspective of a warehouse supplying goods to consumers or collecting goods from suppliers. 

The cross-docks are established from the perspective of consolidation. In addition, this research 

considered the capacity of trucks and cross-docks. Another important contribution of this work 

was the consideration of demand uncertainty in a cross-dock facility location context. 

2.4 Uncertainty in Cross-dock Location Models 

Researchers have used two main mathematical paradigms to capture the impact of 

uncertainty in optimization models – stochastic programming and robust optimization based 

strategies.  Stochastic programming models assume that the uncertainty of a parameter or input is 

captured by a pre-specified probability distribution (Birge and Louveaux 1997; Kall and Wallace 

1994). In this thesis, a stochastic programming approach would have implied that the probability 

distribution of the demand was known. In many situations, it is difficult to predict the future 

probability distribution of demand. Several researchers have recognized this shortcoming of 

stochastic programming and are of the view that while stochastic programming is a theoretically 

rigorous way of capturing uncertainty, it is often difficult to obtain accurate estimates of the 

probability distribution. They assumed that the uncertain parameters can vary in a pre-specified 

interval or range. Ranges of the uncertain parameters are easier to obtain than the probability 

distribution. In fact, freight agents with significant experience in the field should be able to come 

up with reasonable estimates on the ranges in which the demand should lie. This stream of work 

is collectively known as robust optimization (Ben-Tal and Nemirovski 1998, 1999, 2000; 
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Bertsimas and Sim 2003, 2004). Accounting for uncertainty significantly increases the 

complexity of both the formulations and the solution algorithms as compared to deterministic 

models. However, past work in relevant areas such as transportation network analysis and supply 

chain management have shown that not accounting for uncertainty can lead to incorrect estimates 

of system performance, as well as poor strategic and operational decisions (Waller and 

Ziliaskopoulos 2001; Waller et al. 2001; Gardner et al. 2008, 2009; Unnikrishnan 2008; Duthie 

et al. 2009; Unnikrishnan and Waller 2009; Unnikrishnan et al. 2009; Unnikrishnan and Figliozzi 

2011). 

Snyder (2006) provides a detailed review of literature on the impact of various forms of 

uncertainty on facility location models.  However, the work on capturing the impact of 

uncertainty in the context of cross-dock facility location is limited.  Soanpet (2012) adopted a 

stochastic programming approach to model capacity uncertainty in cross-dock facility location 

models. In this thesis, a robust optimization approach was adopted to capture the impact of 

demand uncertainty in cross-dock facility location models. The robust optimization approach 

was chosen as it was believed that the inputs to the model could be more easily estimated by 

practitioners.  

2.5 Literature Summary 
 

 A review of the literature shows that various models have been developed to locate cross-

docks and route trucks to optimize freight networks through minimizing total transportation 

costs. In this study, a cross-dock facility location formulation was developed which followed the 

p-median facility problem, as explained above. The major contributions come from the use of 

real world data and the modeling of demand uncertainties. In most studies, demands and 

networks are randomly generated, but in this study a real freight network was used with real 

origin-destination demands for dry, refrigerated, and frozen goods. Also, in the other cross-
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docking models, demands were assumed to be known, or deterministic. But, in this study, the 

demands were assumed to be uncertain and were modeled through the utilization of robust 

optimization. In reality, exact demands are not generally known, but are subject to outside forces, 

such as seasons, fuel prices, weather, economic stability, etc. Robust optimization accounts for 

these variations in demand in order to better model real world situations. The performance and 

total cost of the deterministic and the robust models were also compared to each other. The next 

chapter provides the deterministic cross-dock facility location formulation.   
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CHAPTER 3. DETERMINISTIC LOCATING MODEL FOR CROSS-DOCK NETWORK 

DESIGN  

3.1 Introduction 

This section describes the basic deterministic cross-dock network design formulation. This 

deterministic formulation has been used by Soanpet (2012).  The deterministic formulation was 

used as a basis for generating the robust formulation accounting for demand uncertainty in the 

next chapter.  

3.2 Problem Definition and Formulation 

Let   denote the set of nodes and   the set of arcs. Let       represent the set of origin, 

destination, and potential cross-dock location nodes, respectively. Let   represent the set of 

commodities and    the set of positive integers. Let       represent indexes for nodes and     

represent indexes for the commodities.  

The inputs to the model are described next. Let    
  represent the demand in pallets of 

commodity      which needs to be transported from origin node     to destination node 

   . Let   and   represent the capacities of the truck and the cross-dock, respectively. Let    
  

represent the unit truckload cost, in dollars per mile, for transporting commodity    . Let   

represent the discount factor in transporting goods from cross-docks to destinations. Let     

denote the distance, in miles, between node     and node    . Let    denote the unit cost of 

handling a pallet in a cross-dock at location    . 

The mathematical formulation is provided from the perspective of a Third Party Logistics 

(3PL) company. The goal of the 3PL firm is to choose P facilities out of established cross-docks 

with the objective of minimizing the total transportation and facility handling costs subject to 

constraints on routing and capacity.  
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The decision variables for the model are described next. The decision variables can be 

categorized into those corresponding to flow and those corresponding to location. The decision 

variable     
  takes the value 1 if commodity     is transported from origin node     to 

destination node     through cross-dock location      and 0 otherwise. The decision 

variable    
  takes the value 1 if commodity     is transported from origin node     to 

destination node     directly without using cross-docks. The decision variable    
  denotes the 

number of trucks transporting commodity     from origin node node     to destination node 

   . The decision variable    takes the value 1 if a cross-dock facility is established at location 

    and 0 otherwise. The mathematical programming formulation which corresponds to the 

objective of the 3PL company and flow constraints is provided next.  
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Equation (1) corresponds to the objective function which has four terms. The first term of 

equation (1) corresponds to the total routing costs from origins to cross-docks; the second term 

denotes the total routing cost from cross-docks to destinations; the third term represents the total 

routing cost of all goods which are transported directly from origins to destinations without using 

cross-docks. The final and fourth term denotes handling costs of all goods at the cross-docks.  

Equations (2)-(12) denote the constraints of the optimization formulation. Equation (2) 

constrains the total number of cross-docks to be opened to be equal to P. Equation (3) ensures 

that all demands are transported to their destinations either through the cross-docks or directly 
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without using a cross-dock. Equation (4), (5), and (6) correspond to truck capacity constraints. 

Equation (4) ensures that the volume of goods being transported between origin node     and 

cross-dock     for a specific commodity      is less than the capacity of the trucks operating 

between those two nodes. Similarly equation (5) ensures the volume of goods being transported 

between cross-dock     and destination node     for specific commodity      is less than 

the truck capacity on that route. Equation (6) enforces the truck capacity constraint on the direct 

route between origin node     and destination node    . Constraint (7) ensures that goods 

are transported through a cross-dock only if it is opened. If a cross-dock at location     is not 

opened, then      which makes          Since ∑ ∑ ∑    
     

                 , this will 

ensure ∑ ∑ ∑    
     

               which implies if the cross-dock is not selected, it will not be 

used to handle goods. Equation (8) ensures that the total volume of goods being transported 

through a cross-dock is less than the capacity of the cross-dock. Equation (9) defines the location 

decision variable to be a binary variable. Equations (10) and (11) define the routing variables to 

be binary variables. Equation (12) enforces integrality constraints on the number of trucks on 

each route.  

The above formulation can be easily modified to consider the case where the objective of 

the 3PL company is to minimize both the transportation and the facility location costs. In this 

case let    denote the cost of establishing the facility at location    . The objective function 

can be modified as follows. 

              ∑∑∑   
       

    ∑∑∑   
       

  

                  

∑∑∑   
       

 

         

 ∑    ∑∑∑   
     

 

              

  ∑    
   

 

 

 

 

    (13) 



26 

 

The constraints of this formulation correspond to equations (3) to (12). The only modification in 

the constraint is the removal of equation (2). In this case the number of facilities to be opened is 

not constrained to be equal to P.   
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CHAPTER 4. ROBUST LOCATING MODEL FOR CROSS-DOCK NETWORK DESIGN 

WITH DEMAND UNCERTAINTY 

4.1 Robust Optimization 

 In general, there are two major streams of research for dealing with the uncertainty in 

data, namely: robust optimization and stochastic programming. While stochastic optimization 

relies on the distribution of the uncertain parameters, robust optimization does not make any 

assumptions regarding the distributions of the uncertain parameters. Instead, it seeks to minimize 

the worst case realization of the uncertain parameters with respect to a predefined uncertainty 

set. Therefore, considering the limited information on specifications of the distribution function 

for the uncertain parameter, robust optimization framework is a desired approach for dealing 

with the uncertainty in models. Specifically, Wagner et al. (2009), Baron et al. (2011), and 

Gülpinar et al. (2013) have adopted a robust optimization framework for solving facility location 

problems. 

4.2 Robust Optimization Problem Formulation  

In this section, the robust optimization framework was adopted to deal with the 

uncertainty in demand. More specifically, it is assumed that the demand is uncertain and limited 

information regarding its distribution function is available. Mathematically it is also assumed 

that the demand is described by mean  ̅  
   and an associated uncertainty term    

   The random 

uncertainty term     is a representation of variation in demand which mathematically can be 

expressed as the combination of M independent sources of uncertainty. Each source has an 

associated weight of     
    Therefore, uncertain demand  ̃  

  can be expressed as the following 

equation. Note that Chen et al. (2007) and Wagner et al. (2009) have adopted a similar approach 

for modeling input parameter uncertainty. Specifically, Wagner et al. (2009) discussed how the 
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following uncertainty form can capture the long term and short term demand uncertainties in 

facility location problems. 

 ̃  
   ̅  

  ∑    
   ̃ 

 

   

  (14) 

 

In the above equation  ̃  is a random variable which can be described based on three following 

assumptions: 

i) ( ̃ )     

ii)| ̃ |     

iii)  ̃  are all independent.  

Also, it is assumed that the uncertain random variables can be described by an ellipsoidal 

uncertainty set   { ̃  ‖ ‖   }  as described by Bertsimas and Sim (2004). The goal of the 

robust cross-dock network design problem is to determine the locations of cross-docks under 

worst-case outcomes of the uncertain variables belonging to the uncertainty set. In the above set, 

  corresponds to the budget of uncertainty, which adjusts the desired level of robustness. The 

size of the uncertainty set is a reflection of the uncertainty protection needed at cross-dock 

locations. Since the uncertain demand is affecting the constraints, the robust counterpart for the 

constraints which are affected by the uncertain demand must be provided. For example, 

considering demand based on equation (14), the robust counterpart for constraint (2) can be 

obtained according to the following procedure: 
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The goal of equation (15) is to maximize the worst case realization of demand based on 

ellipsoidal uncertainty set of ‖ ‖   . 
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Consider    as the following maximization problem: 
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In order to solve the above maximization problem, the Lagrangian relaxation method was 

adopted in which the constraint ‖ ‖    is relaxed assuming the Lagrangian multiplier  . The 

derivation below is based on Gülpinar et al. (2013). Therefore, the Lagrangian function can be 

written as below: 
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The solution of the Lagrangian function (18) can be achieved by first order optimality 

condition as below: 

 

  (   )

   
 ∑    

      
  

   

 
  
‖ ‖

   

 

 

 

(19) 

Therefore the optimal value for    is obtained by equation (20):  
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Considering the complementary condition  (‖ ‖   )    and assuming       ‖ ‖ can be set 

equal to Ω. Therefore  
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Given the expression for    , ‖ ‖can be derived as below: 

Similarly since ‖ ‖=   the optimal value for Lagrangian multiplier   can be achieved through 

the following equation: 

Substituting optimal value of   into equation (21) will provide us with the optimal expression for 

   as below: 
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Finally the optimal value for    is updated through the following expression  
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And the robust counterpart for constraint (2) can be written as below: 
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Following the same strategy the robust counterpart for constraint equations which are affected 

with demand uncertainty (equations: (3), (4) and (6)) can be presented as according to the 

following table:  

Table 1: Robust Counterpart for Constraint Equations Affected with Demand Uncertainty 

Base Equation Robust Counterpart 
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Also, the robust counterpart for the objective function can be formulated as the following 

equation: 
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Therefore the robust modeling for the p-median cross docks network design is presented as 

below:  

(27) 
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 The above formulation is the robust model for p-median cross-dock network design 

where demand is assumed to be uncertain. Compared with the deterministic formulation it is 

observed that the equations including the uncertain parameters have been replaced by their 

robust counterpart. Also, it is worth mentioning that the p-median assumption in the above 

formulation can simply be relaxed by dropping equation (28) which guarantees location of p 

facilities. However, in this study, the p-median variant of problem is just considered where it is 

assumed that all of the cross-docks are already located and built and all that must be decided is 

which ones to open and use.  

The above formulation is a nonlinear binary integer program. General nonlinear binary 

integer programs are difficult problems to solve. However, the above nonlinear binary integer 

programs belong to a category of models called Second Order Conic Integer Programs 

(Atamtürk et al. 2012). Recently solvers like CPLEX have developed efficient algorithms to 

solve Second Order Conic Integer Programs. In this thesis, the transformation using the 

Lagrangian enables  the exploitation of advances made by CPLEX to solve reasonably sized 

problems efficiently.  

   



34 

 

CHAPTER 5. NUMERICAL RESULTS 
 

The purpose of this chapter is to demonstrate the importance of cross-docking networks 

and the effects of accounting for demand uncertainties in real world freight situations through the 

utilization of robust optimization. The next section describes the real world freight networks, 

datasets, and parameters used in this study.  The experimental runs for the robust and 

deterministic networks are then defined along with the significant results. The formulation was 

programmed in GAMS software and solved using the CPLEX 12.0 solver.   

5.1 Description of the Network 

Three networks were used for the analysis of robust optimization and comparison with 

deterministic demand. Network 1 consisted of five origin nodes, five destination nodes, and five 

potential cross-dock nodes. Network 2 consisted of ten origin nodes, ten destination nodes, and 

ten potential cross-dock nodes. Network 3 consisted of 20 origin nodes, 20 destination nodes, 

and 20 potential cross-dock nodes, descriptions of the three networks are in Tables 2, 3, and 4, 

respectively. The distance, in miles, between each node,    , was found using an online mapping 

website. The internode mileage for Network 1 can be found in Tables 18, 19 and 20 in Appendix 

A. The internode mileage for Network 2 can be found in Tables 21, 22, and 23 in Appendix A. 

The internode mileage for Network 3 can be found in Tables 24-29 in Appendix A, as well. 

 Table 2: Description of Network 1 

Network 1 

Origins  Destinations Potential Cross-docks 

Montgomery, AL Westborough, MA Lexington, KY 

Atlanta, GA Kirkwood, NY Charlotte, NC 

Unadilla, GA Columbus, OH Knoxville, TN 

Haines City, FL Fairborn, OH Charlottesville, VA 

Hattiesburg, MS Eighty Four, PA Charleston, WV 
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Table 3: Description of Network 2 

Network 2 

Origins  Destinations Potential Cross-docks 

Everett, MA Alsip, IL Indianapolis, IN 

Franklin, MA Danville, IL Fort Wayne, IN 

Baltimore, MD Des Plaines, IL Cumberland, MD 

Elizabeth, NJ Hanover Park, IL Canton, OH 

Newark, NJ Monroe, MI Cincinnati, OH 

Sayreville, NJ Troy, MI Columbus, OH 

Delhi, NY Kansas City, MO Altoona, PA 

Waterford, NY Springfield, MO Pittsburgh, PA 

Hanover, PA St. Louis, MO Parkersburg, WV 

Hatfield, PA Milwaukee, WI Wheeling, WV 

 

Table 4: Description of Network 3 

Network 3 

Origins  Destinations Potential Cross-docks 

New Haven, CT Alsip, IL Fairfield, IL 

Everett, MA Chicago, IL Bloomington, IN 

Franklin, MA Danville, IL Fort Wayne, IN 

Baltimore, MD Des Plaines, IL Hebron, IN 

Belcamp, MD Hanover Park, IL Indianapolis, IN 

Elizabeth, NJ Taylorville, IL Lexington, KY 

Kearny, NJ Mason City, IA Summit, KY 

Newark, NJ Louisville, KY Cumberland, MD 

Sayreville, NJ Dearborn, MI Canton, OH 

Delhi, NY Monroe, MI Cincinnati, OH 

Rochester, NY Troy, MI Columbus, OH 

Waterford, NY Rogers, MN Lima, OH 

Williamson, NY St. Paul, MN Altoona, PA 

Blandon, PA Kansas City, MO Mansfield, PA 

Hanover, PA Springfield, MO Oil City, PA 

Hatfield, PA St. Louis, MO Pittsburgh, PA 

Alexandria, VA Arlington, TN Beckley, WV 

Lyndhurst, VA Elkhorn, WI Buckhannon, WV 

Newport News, VA Milwaukee, WI Parkersburg, WV 

Richmond, VA Oak Creek, WI Wheeling, WV 
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The system demands,    
 , were defined as the number of pallets which need to be 

transported from origin node i to destination node j. The demands consisted of three types of 

commodities, l: dry goods (D), refrigerated goods (R), and frozen goods (F). All of the networks 

along with their origin-destination demands and commodity type were extracted from real world 

data provided by a Third Party Logistics Company, Aerostream Logistics.  Average demands for 

Networks 1 and 2 are in Tables 30 and 31, respectively, in Appendix A. Average demands for 

Network 3 are in Tables 32 through 37 in Appendix A as well. The demands for Network 3 had 

to be split into six tables, because of the immense size of Network 3.  

Each of the commodities had a different shipping cost per mile,    
  , which were as 

follows: $1.40 for dry, $1.60 for refrigerated, and $1.80 for frozen. The truck capacity, U, was 

set to be equal to 28 pallets. The discount factor, γ, was set to be 0.8. The handling cost at each 

cross-dock,   , was set to be equal to $3.00 per pallet. The number of opened cross-docks, P, 

was chosen to be four for all of the networks. The values for the above parameters were based on 

industry standards as discussed with Aerostream Logistics.  

The cross-dock capacity, W,  in Network 1 was set to 175 pallets, Network 2 was set to 

150 pallets, and Network 3 was set to 250 pallets. The cross-dock capacities in each network 

were determined based on total average demands for that specific network. The number of 

uncertain parameters, m, was set to be equal to three to account for inclement weather, seasonal 

variations, and fuel prices. The weights associated with each random variable,    
  , were varied 

for low, medium, and high uncertainty. Such that for low uncertainty, the demand could be 

increased anywhere from zero to 30%; for medium uncertainty, the demand could be increased 

anywhere from zero to 60%; and for high uncertainty, the demand could be increased anywhere 

from zero to 90%. The bound on overall uncertainty, omega, ranged from zero to three. When 
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omega was set equal to zero, this was defined as the deterministic case, because no variance from 

the mean was allowed. Therefore, the demand was equal to the average demand.  

5.2 Demand Uncertainty 

 In this section, the impact of accounting for uncertainty in demand was studied by 

varying the bound on overall uncertainty. It is important to remember that omega = 0.0 

represents the deterministic case, or known demand.  

5.2.1 Effect on Opened Cross-docks 

 The goal of varying the bound on the overall uncertainty, or omega, was to see how the 

decision variables were affected when uncertainty in demand was accounted for and when it was 

not accounted for. All three networks were studied at three levels of uncertainty (low, medium, 

and high), while varying omega from zero to three at 0.1 increments. The resulting opened cross-

docks were as follows (Tables 5, 6, and 7). 
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Table 5: Cross-docks Opened for Network 1 with Low Uncertainty 
 

Omega CD's Opened Omega CD's Opened Omega CD's Opened Omega CD's Opened 

0.0 

Charlotte 

0.8 

Lexington 

1.6 

Lexington 

2.4 

Lexington 

Knoxville Charlotte Charlotte Charlotte 

Charlottesville Knoxville Knoxville Knoxville 

Charleston Charlottesville Charleston Charleston 

0.1 

Lexington 

0.9 

Lexington 

1.7 

Lexington 

2.5 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charleston Charleston Charleston Charlottesville 

0.2 

Lexington 

1.0 

Charlotte 

1.8 

Lexington 

2.6 

Lexington 

Charlotte Knoxville Charlotte Charlotte 

Knoxville Charlottesville Knoxville Knoxville 

Charleston Charleston Charlottesville Charlottesville 

0.3 

Lexington 

1.1 

Lexington 

1.9 

Lexington 

2.7 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charlottesville Charleston Charleston Charleston 

0.4 

Charlotte 

1.2 

Lexington 

2.0 

Lexington 

2.8 

Lexington 

Knoxville Charlotte Charlotte Charlotte 

Charlottesville Knoxville Knoxville Knoxville 

Charleston Charleston Charlottesville Charleston 

0.5 

Lexington 

1.3 

Lexington 

2.1 

Lexington 

2.9 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charlottesville Charlottesville Charlottesville Charleston 

0.6 

Lexington 

1.4 

Lexington 

2.2 

Lexington 

3.0 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charleston Charleston Charleston Charlottesville 

0.7 

Lexington 

1.5 

Charlotte 

2.3 

Lexington 

  Charlotte Knoxville Charlotte 

  Knoxville Charlottesville Knoxville 

  Charleston Charleston Charleston 
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Table 6: Cross-docks Opened for Network 2 with Medium Uncertainty 

Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened 

0.0 

Cumberland 

0.8 

Cumberland 

1.6 

Cumberland 

2.4 

Columbus 

Canton Canton Canton Altoona 

Altoona Altoona Altoona Pittsburgh 

Pittsburgh Pittsburgh Pittsburgh Wheeling 

0.1 

Fort_Wayne 

0.9 

Fort_Wayne 

1.7 

Canton 

2.5 

Fort_Wayne 

Altoona Columbus Columbus Cumberland 

Pittsburgh Altoona Altoona Altoona 

Wheeling Pittsburgh Wheeling Pittsburgh 

0.2 

Canton 

1.0 

Indianapolis 

1.8 

Fort_Wayne 

2.6 

Cumberland 

Altoona Cumberland Cumberland Columbus 

Pittsburgh Altoona Altoona Altoona 

Wheeling Pittsburgh Pittsburgh Pittsburgh 

0.3 

Columbus 

1.1 

Fort_Wayne 

1.9 

Fort_Wayne 

2.7 

Indianapolis 

Altoona Cumberland Cumberland Columbus 

Pittsburgh Canton Altoona Altoona 

Wheeling Pittsburgh Pittsburgh Wheeling 

0.4 

Fort_Wayne 

1.2 

Indianapolis 

2.0 

Cumberland 

2.8 

Cumberland 

Altoona Cumberland Columbus Columbus 

Pittsburgh Columbus Altoona Altoona 

Wheeling Pittsburgh Pittsburgh Pittsburgh 

0.5 

Cumberland 

1.3 

Canton 

2.1 

Fort_Wayne 

2.9 

Cumberland 

Columbus Altoona Cumberland Canton 

Altoona Pittsburgh Altoona Altoona 

Pittsburgh Wheeling Pittsburgh Pittsburgh 

0.6 

Cumberland 

1.4 

Cumberland 

2.2 

Cumberland 

3.0 

Fort_Wayne 

Canton Canton Columbus Cumberland 

Altoona Pittsburgh Altoona Pittsburgh 

Pittsburgh Wheeling Pittsburgh Wheeling 

0.7 

Cumberland 

1.5 

Fort_Wayne 

2.3 

Cumberland 

  Canton Columbus Canton 

  Altoona Altoona Altoona 

  Pittsburgh Pittsburgh Wheeling 
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Table 7: Cross-docks Opened for Network 3 with High Uncertainty 

Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened 

0.0 

Fort_Wayne 

0.8 

Cumberland 

1.6 

Fort_Wayne 

2.4 

Cumberland 

Cumberland Lima Cumberland Lima 

Altoona Oil_City Altoona Altoona 

Mansfield Pittsburgh Pittsburgh Pittsburgh 

0.1 

Hebron 

0.9 

Fort_Wayne 

1.7 

Fort_Wayne 

2.5 

Fort_Wayne 

Cumberland Cumberland Cumberland Columbus 

Altoona Altoona Columbus Altoona 

Oil_City Oil_City Altoona Pittsburgh 

0.2 

Cumberland 

1.0 

Fort_Wayne 

1.8 

Fort_Wayne 

2.6 

Fort_Wayne 

Canton Cumberland Cumberland Columbus 

Altoona Columbus Altoona Altoona 

Oil_City Wheeling Pittsburgh Oil_City 

0.3 

Cumberland 

1.1 

Cumberland 

1.9 

Hebron 

2.7 

Hebron 

Lima Columbus Cumberland Columbus 

Altoona Oil_City Columbus Altoona 

Mansfield Pittsburgh Altoona Pittsburgh 

0.4 

Canton 

1.2 

Cumberland 

2.0 

Cumberland 

2.8 

Hebron 

Altoona Canton Lima Cumberland 

Pittsburgh Mansfield Altoona Columbus 

Wheeling Pittsburgh Wheeling Altoona 

0.5 

Cumberland 

1.3 

Cumberland 

2.1 

Hebron 

2.9 

Fort_Wayne 

Lima Lima Cumberland Indianapolis 

Altoona Altoona Altoona Altoona 

Pittsburgh Pittsburgh Oil_City Oil_City 

0.6 

Fort_Wayne 

1.4 

Hebron 

2.2 

Cumberland 

3.0 

Fort_Wayne 

Hebron Altoona Lima Altoona 

Cumberland Oil_City Altoona Pittsburgh 

Altoona Pittsburgh Pittsburgh Wheeling 

0.7 

Fort_Wayne 

1.5 

Fort_Wayne 

2.3 

Fort_Wayne 

  Cumberland Cumberland Cumberland 

  Oil_City Altoona Pittsburgh 

  Pittsburgh Oil_City Wheeling 
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 As can be seen from Tables 5, 6, and 7, the cross-docks which were opened varied with 

omega for all three networks and uncertainty levels. This means that accounting for uncertainty 

in demand had a distinct effect on the outputs of a system. If a particular network had uncertain 

demand, but it was assumed to be deterministic, and the average value of demand was used, the 

wrong cross-docks would be opened. In some cases, this could mean that the cross-dock capacity 

may be exceeded or that the total transportation cost would be much greater than expected. 

While deterministic models may be easier to solve and lead to less costly solutions, they may not 

be practical in cases where demand or other inputs are uncertain. Ignoring such uncertainty can 

lead to serious design flaws, such as too little warehouse capacity, too few trucks and even 

unexpected transportation costs. Tables containing the results for medium and high uncertainty 

for Network 1, low and high uncertainty for Network 2, and low and medium uncertainty for 

Network 3 are included in Appendix C; the results for those scenarios were consistent with the 

ones shown in Tables 5, 6, and 7. 

5.2.2 Effect on Total Cost 

 In this section, the effects of demand uncertainty on total system costs are presented. 

Once again, all three networks were studied at three levels of uncertainty (low, medium, and 

high), while varying omega from zero to three at 0.1 increments. The resulting total system costs 

are shown on Figures 6, 7, and 8. 
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Figure 6: Total Cost for Network 1 with Low Uncertainty 

 
Figure 7: Total Cost for Network 2 with Medium Uncertainty 
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Figure 8: Total Cost for Network 3 with High Uncertainty 

  As expected, the total cost of the system tended to increase as omega increased. This 

occurred because the increase in omega allowed for higher demands, higher demands meant 

more trucks, and more trucks meant higher transportation prices. Network 3 had the highest total 

cost, because it had the largest overall demand and also had high uncertainty. High uncertainty 

meant that the factors that cause uncertainty, inclement weather, seasonal variations, and fuel 

prices, had a larger effect on the increases in demand than in the case of low and medium 

uncertainty. Networks 1 and 2 had very similar total demands and therefore, their cost at 

omega=0 was similar. However, because Network 2 had medium uncertainty its total cost 

increased much more rapidly than the total cost of Network 1 with low uncertainty.  Graphs 

containing the results for medium and high uncertainty for Network 1, low and high uncertainty 
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for Network 2, and low and medium uncertainty for Network 3 are included in Appendix C; the 

results for those scenarios were consistent with the ones shown in Figures 6, 7, and 8. 

5.2.3 Relative Cost  

 In order to better compare the deterministic and robust solutions for the cross-dock 

facility location problem, the relative costs were calculated. The relative cost was simply the 

total cost of a network for a certain scenario (evaluated at mean demands) divided by the base 

total cost of the network. In this case, the deterministic model solution was used, where omega is 

set equal to zero, as the base total cost. It was then expected that the relative cost for the 

deterministic case would be equal to one. Once again, all three networks were studied at three 

levels of uncertainty (low, medium, and high), while varying omega from zero to three at 0.1 

increments. The resulting relative costs are shown in the following graphs. 

 

Figure 9: Relative Cost for Network 1 with Low Uncertainty 
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Figure 10: Relative Cost for Network 2 with Medium Uncertainty 

 

Figure 11: Relative Cost for Network 3 with High Uncertainty 
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 As expected, the relative cost increased as omega increased. The relative cost was equal 

to one for the deterministic solution for all three networks, because omega equal to zero was 

used as the base scenario. In Figure 9, the relative cost when omega was equal to three was 1.41. 

This means that for network 1, under low uncertainty, accounting for total demand uncertainty 

with a budget of three, the total cost was 41% more than the deterministic case at mean demand 

levels. This shows that there was a significant difference in the deterministic and robust cases. 

While the deterministic solution may look more appealing, because it costs less, the robust 

solution is more resilient and can handle variations in demand. If assuming an average demand 

and modeling using a deterministic model, even slight increases in demand or slight uncertainties 

can cause the network to be overloaded or exceed capacity at the nodes or on the trucks. The 

above graphs show how much more a robust network, which is able to handle uncertainty, will 

cost as compared to the deterministic case. Graphs containing the results for medium and high 

uncertainty for Network 1, low and high uncertainty for Network 2, and low and medium 

uncertainty for Network 3 are included in Appendix C; the results for those scenarios were 

consistent with the ones shown in Figures 9, 10, and 11. 

5.3 Deterministic and Robust Performance Comparison  

 In order to further compare the performance of the deterministic and robust cross-docking 

models, their ability to handle demand uncertainties was studied. The first comparison used the 

average demands for the deterministic case and the second used inflated demands for the 

deterministic case. 

5.3.1 Comparison with Average Demands for Deterministic Case 

 This comparison was achieved by first solving each of the cross-dock location decision 

and routing problems for the deterministic case (omega = 0) and a robust case (omega = 3, high 
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uncertainty) for each of the three networks. The resulting opened cross-docks and total system 

costs are given below. 

Table 8: Opened Cross-docks for Each Network and Uncertainty Scenario 

Cross-dock's Opened 

Network 1 Network 2 Network 3 

Deterministic Robust Deterministic Robust Deterministic Robust 

Charlotte Lexington Columbus Fort_Wayne Fort_Wayne Hebron 

Knoxville Charlotte Altoona Cumberland Cumberland Cumberland 

Charlottesville Knoxville Pittsburgh Altoona Canton Oil_City 

Charleston Charlottesville Wheeling Pittsburgh Altoona Pittsburgh 

 

Table 9: Initial Total Cost for Each Network and Uncertainty Scenario 

Initial Total Cost ($) 

Network 1 Network 2 Network 3 

Deterministic Robust Deterministic Robust Deterministic Robust 

37,197 116,013 35,992 104,878 62,676 175,307 

 

 As can be seen in the above tables, the opened cross-docks were different in each 

network for the deterministic and robust cases; this was consistent with the results in the 

previous section. The total costs were also much higher for the robust cases due to the increases 

in demands.  

 After the four cross-docks were established for each uncertainty level and network, and 

the numbers of trucks that were scheduled to transport commodities for each node pair were 

determined, the ability of each network to handle uncertainty was tested. This was done by 

creating 30 scenarios in which the demands were subject to uncertainty. The random demand 

values were calculated as follows: 

                             ∑       (      )

 

(              ) 
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This means that the demand values were increased by a value equal to the average demand 

multiplied by a random value between 0 and 0.9 with a uniform distribution, summed over m 

uncertain parameters. In all cases, m was set equal to three as previously discussed and the 

random value between 0 and 0.9 meant high uncertainty, such that the demand could be 

increased by up to 90%.  

 The main premise behind this study was that a network was established with four opened 

cross-docks chosen from a set of potential locations, and a set number of trucks traveling 

between different origins and destinations and cross-dock locations was determined. For the 

deterministic case, these outputs were determined based on average demands. For the robust 

case, these outputs were determined based on uncertain demands, with high uncertainty and a 

budget of uncertainty, omega, equal to three.  The next set of experiments tested the resilience of 

the deterministic solution and the robust solution to demand uncertainty.  It was assumed that the 

robust network would be better able to handle the variations in demand as compared to the 

deterministic case. 

 The ability of a network to handle uncertainty was based on the total capacity shortage in 

the network. The total shortage was calculated as the sum of truck capacity shortage plus the sum 

of cross-dock capacity shortage. The truck capacity shortage was equal to the truck capacity 

minus the total demand needing shipped by the truck. The cross-dock capacity shortage was 

equal to the cross-dock capacity minus the total demand needing to be sorted and consolidated at 

the cross-dock. The following three tables show the capacity shortages and total costs for the 

deterministic and robust case in each network, with 30 demand scenarios. 
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Table 10: Capacity Shortage and Total Cost for Network 1  

(Ω=3 for Robust Case) 

Demand 

Scenario 

Total Capacity Shortage (In Pallets) Total Cost ($) 

Deterministic Robust Deterministic Robust 

1 1,327 0 38,851 115,796 

2 1,068 0 38,612 115,853 

3 1,400 0 38,869 115,815 

4 1,712 0 39,116 115,910 

5 1,161 0 38,812 115,779 

6 940 0 38,485 115,688 

7 982 0 38,497 115,673 

8 1,311 0 38,681 115,688 

9 1,133 0 38,804 115,685 

10 1,014 0 38,541 115,656 

11 1,159 0 38,603 115,687 

12 1,134 0 38,785 115,911 

13 889 0 38,417 115,718 

14 986 0 38,681 115,696 

15 886 0 38,633 115,722 

16 1,344 0 38,839 115,785 

17 1,371 0 38,874 115,729 

18 1,240 0 38,689 115,692 

19 1,232 0 38,964 115,824 

20 1,241 0 38,770 115,859 

21 952 0 38,547 115,687 

22 1,031 0 38,699 115,853 

23 1,300 0 38,747 115,728 

24 826 0 38,609 115,737 

25 1,022 0 38,559 115,680 

26 1,256 0 38,618 115,771 

27 1,283 0 39,000 115,843 

28 1,336 0 38,846 115,837 

29 1,006 0 38,614 115,699 

30 1,009 0 38,613 115,810 
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Table 11: Capacity Shortage and Total Cost for Network 2  

(Ω=3 for Robust Case) 

Demand 

Scenario 

Total Capacity Shortage (In Pallets) Total Cost ($) 

Deterministic Robust Deterministic Robust 

1 1,202 0 37,795 104,892 

2 1,498 0 38,080 104,987 

3 1,368 0 37,969 104,897 

4 1,472 0 38,057 104,911 

5 1,503 0 38,081 104,989 

6 1,450 0 38,033 105,000 

7 1,269 0 37,909 104,839 

8 1,263 0 37,888 104,847 

9 1,424 0 37,984 104,959 

10 1,408 0 38,002 104,919 

11 1,129 0 37,711 104,933 

12 1,094 0 37,681 104,956 

13 1,295 0 37,869 104,881 

14 1,380 0 37,958 104,879 

15 1,169 0 37,761 104,802 

16 1,068 0 37,651 104,879 

17 1,411 0 38,000 104,965 

18 1,130 0 37,705 104,921 

19 1,500 0 38,139 104,917 

20 1,166 0 37,780 104,971 

21 1,240 0 37,834 104,863 

22 1,239 0 37,844 104,856 

23 1,140 0 37,728 104,855 

24 1,520 0 38,124 105,009 

25 1,261 0 37,838 104,875 

26 1,064 0 37,632 104,701 

27 1,053 0 37,647 104,851 

28 1,242 0 37,805 104,899 

29 1,353 0 37,946 104,885 

30 1,271 0 37,888 104,841 
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Table 12: Capacity Shortage and Total Cost for Network 3 

(Ω=3 for Robust Case) 

Demand 

Scenario 

Total Capacity Shortage (In Pallets) Total Cost ($) 

Deterministic Robust Deterministic Robust 

1 2,231 0 66,101 175,670 

2 2,109 0 66,016 175,701 

3 2,433 0 66,314 175,663 

4 2,071 0 65,958 175,573 

5 2,195 0 66,070 175,604 

6 2,336 0 66,211 175,792 

7 2,308 0 66,205 175,613 

8 2,193 0 66,050 175,609 

9 2,276 0 66,151 175,573 

10 2,264 0 66,160 175,787 

11 2,140 0 66,038 175,594 

12 2,184 0 66,037 175,616 

13 2,427 0 66,281 175,924 

14 2,095 0 65,966 175,612 

15 2,349 0 66,245 175,792 

16 2,236 0 66,144 175,849 

17 2,469 0 66,372 175,550 

18 2,114 0 65,995 175,908 

19 2,435 0 66,354 175,768 

20 2,491 0 66,369 175,657 

21 2,274 0 66,175 175,789 

22 2,128 0 66,009 175,637 

23 2,024 0 65,955 175,723 

24 1,954 0 65,853 175,539 

25 1,850 0 65,755 175,619 

26 2,199 0 66,089 175,633 

27 1,953 0 65,845 175,552 

28 2,023 0 65,914 175,470 

29 2,434 0 66,331 175,762 

30 2,313 0 66,197 175,776 
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In all three networks, there were large capacity shortages for every scenario in the 

deterministic model, but in every scenario for each network, the robust model was able to 

transport all of the pallets with no capacity shortages. It is obvious that the robust models were 

better equipped to handle demand uncertainty, than the deterministic models. The total costs 

were still much lower for the deterministic cases than the robust cases. However, in most real 

world situations, trucking companies would be largely penalized for being unable to move 

demand; they would either lose clients, be forced to buy or lease more trucks to ship directly, 

open more cross-docks or find other carriers to ship their excess demands. All of these solutions 

would be extremely costly and detrimental to the trucking company.  

 In order to better compare the real world costs for the deterministic and robust models, a 

penalty charge was added for each pallet that could not be transported. The tables below show 

the total costs adjusted for penalized capacity shortages, based on a penalty cost of $100 per 

pallet. The penalty value was an estimate based on an assumed monthly leasing cost of about 

$2,000 per truck. If a truck can hold 28 pallets, the cost per pallet would be about $71.00 plus the 

price of fuel. The penalty value could be changed based on the trucking company or the 

alternative solution to ship excess capacity. If a trucking company loses a client because of its 

inability to ship the excess demand, the cost would likely be much greater than $100 per pallet. 

The total cost after penalty was calculated by: 

           ( )                          (                      ) 
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Table 13: Total Cost after Capacity Shortage Penalties for All Three Networks 

(Ω=3 for Robust Case) 

 
Total Cost ($) After Penalty 

Demand 

Scenario 

Network 1 Network 2 Network 3 

Deterministic Robust Deterministic Robust Deterministic Robust 

1 171,502 115,796 157,984 104,892 289,142 175,670 

2 145,395 115,853 187,877 104,987 276,842 175,701 

3 178,863 115,815 174,738 104,897 309,586 175,663 

4 210,306 115,910 185,189 104,911 273,031 175,573 

5 154,893 115,779 188,321 104,989 285,568 175,604 

6 132,480 115,688 182,967 105,000 299,753 175,792 

7 136,656 115,673 164,760 104,839 296,928 175,613 

8 169,755 115,688 164,171 104,847 285,303 175,609 

9 152,012 115,685 180,310 104,959 293,723 175,573 

10 139,881 115,656 178,785 104,919 292,514 175,787 

11 154,459 115,687 150,602 104,933 279,993 175,594 

12 152,147 115,911 147,043 104,956 284,375 175,616 

13 127,240 115,718 167,272 104,881 308,945 175,924 

14 137,273 115,696 175,941 104,879 275,380 175,612 

15 127,166 115,722 154,610 104,802 301,076 175,792 

16 173,185 115,785 144,420 104,879 289,729 175,849 

17 175,895 115,729 179,002 104,965 313,200 175,550 

18 162,602 115,692 150,613 104,921 277,322 175,908 

19 162,097 115,824 188,092 104,917 309,834 175,768 

20 162,817 115,859 154,354 104,971 315,428 175,657 

21 133,728 115,687 161,806 104,863 293,568 175,789 

22 141,719 115,853 161,665 104,856 278,727 175,637 

23 168,687 115,728 151,711 104,855 268,301 175,723 

24 121,164 115,737 190,079 105,009 261,241 175,539 

25 140,753 115,680 163,929 104,875 250,738 175,619 

26 164,149 115,771 143,990 104,701 285,975 175,633 

27 167,296 115,843 142,939 104,851 261,145 175,552 

28 172,405 115,837 162,002 104,899 268,150 175,470 

29 139,118 115,699 173,152 104,885 309,653 175,762 

30 139,487 115,810 164,930 104,841 297,413 175,776 

  

 In the above table, the total costs for the robust models are now less than the total costs 

for the deterministic models. Because, there were no capacity shortages for the robust models, 

their adjusted total costs did not change; they incurred no penalties. Penalizing for capacity 
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shortages made the robust models look much more appealing than the deterministic. As stated 

above, the penalty value was simply an estimate. It would be better determined on a case by case 

basis for trucking companies to estimate the penalties or loss in business they would incur for not 

accounting for uncertainties in demand.  

The analysis was repeated to test different values of omega, but instead of listing values 

for every demand scenario, the averages were computed. The average capacity shortages and 

total costs for the three networks across the thirty demand scenarios for the deterministic and 

three robust optimization strategies (omega = 1, 2, and 3) are shown below in Table 14.  The 

results confirm the fact that the deterministic solution suffered from capacity shortages in all the 

scenarios whereas this was not an issue in the robust framework.  

Table 14: Average Capacity Shortages (In Pallets) and Total Costs for All Three Networks 

 

Network 

  

N1 

  

  

N2 

  

  

N3 

  

Uncertainty 

Budget  

  

Omega Omega Omega 

1 2 3 1 2 3 1 2 3 

C
ap

ac
it

y
 S

h
o
rt

ag
e 

 D
et

er
m

in
is

ti
c 

1,045 1,045 1,045 1,338 1,338 1,338 2,102 2,102 2,102 

R
o

b
u

st
 

0 0 0 0 0 0 0 0 0 

T
o
ta

l 
C

o
st

 (
$
) 

 D
et

er
m

in
is

ti
c 

49,881 49,881 49,881 29,420 29,420 29,420 65,997 65,997 65,997 

R
o
b
u
st

 

62,252 99,856 110,081 57,855 73,539 95,347 103,544 141,826 179,350 
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The average total cost of 30 simulated demand scenarios for the three networks 

considered in this research is reported in Table 15, with the appropriate capacity shortage penalty 

added. The cost of the deterministic setting, assuming the penalty cost on capacity shortage, was 

higher than the robust approach. The total costs for all of the robust scenarios are now lower than 

the deterministic. These results were consistent with the results in Table 13.  

Table 15: Average Total Cost after Capacity Shortage Penalties for All Three Networks 

Network N1 N2 N3 

        

Uncertainty 

Budget  

Omega Omega Omega 

1 2 3 1 2 3 1 2 3 

T
o
ta

l 
C

o
st

 (
$
) 

  

D
et

er
m

in
is

ti
c 

154,381 154,381 154,381 163,220 163,220 163,220 276,197 276,197 276,197 

R
o
b
u
st

 

62,252 99,856 110,081 57,855 73,539 95,347 103,544 141,826 179,350 

 

5.3.2 Comparison with Inflated Demands for the Deterministic Case 
 

 One specific way to deal with uncertainty in demand is to plan for an inflated demand. 

For example, in a number of civil engineering applications the uncertainty in loads is accounted 

for by inflating the load using a safety factor. The goal of this set of experiments was to 

determine if a similar safety inflation factor could be applied to the demand. The advantage of 

this method is that freight companies need not do complicated robust optimization or stochastic 

optimization based planning. However, before embarking on such a method it was crucial to 

compare the performance of the deterministic model with an inflated demand to the robust 

model. First the deterministic demand was inflated according to five levels: 10%, 20%, 30%, 

40%, and 50%. The optimal strategy was obtained for the five inflated demand levels. Then the 
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robust optimization strategy was determined for high uncertainty for three uncertainty budget 

levels. Then the performances of the inflated demand deterministic strategy and the robust 

strategy were compared by simulating 30 random demand values. The capacity shortages as well 

as the average costs (considering capacity shortage penalties) are shown in Table 16 and Table 

17 on the next two pages. 
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Table 16: Capacity Shortages (In Pallets) for Demand Inflation of the Deterministic vs. the 

Robust Approach  

Network N1 N2 N3 

Uncertainty Budget 
Omega Omega Omega 

1 2 3 1 2 3 1 2 3 

D
em
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 I
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fl

at
io

n
 L

ev
el

 

1
0

%
 

D
et
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m

in
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ti
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M
o

d
el

 

504.3 504.3 504.3 821.5 821.5 821.5 1,401.3 1,401.3 1,401.3 

R
o

b
u

st
 

M
o

d
el

 

0 0 0 0 0 0 0 0 0 

2
0
%

 

D
et
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m
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c 

M
o
d
el

 

12.36 12.36 12.36 0 0 0 94.3 94.3 94.3 

R
o
b
u
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M
o
d
el

 

0 0 0 0 0 0 0 0 0 
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m
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0 0 0 0 0 0 0 0 0 

R
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M
o
d
el

 

0 0 0 0 0 0 0 0 0 

4
0

%
 

D
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m
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M
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0 0 0 0 0 0 0 0 0 
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M
o
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0 0 0 0 0 0 0 0 0 

5
0

%
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m
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M
o

d
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0 0 0 0 0 0 0 0 0 

R
o
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M
o
d
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0 0 0 0 0 0 0 0 0 
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Table 17: Demand Inflation Cost of the Deterministic vs. the Robust Approach  

(Accounting for Capacity Shortage Penalties) 

Network N1 N2 N3 

Uncertainty Budget 
Omega Omega Omega 

1 2 3 1 2 3 1 2 3 

D
em

an
d
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n
fl

at
io

n
 L

ev
el

 

1
0

%
 

D
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m

in
is

ti
c 

C
o

st
 

94,636 94,636 94,636 122,632 122,632 122,632 143,103 143,103 143,103 

R
o

b
u

st
 

 C
o

st
 

62,608 88,844 116,352 67,007 78,702 101,281 110,174 151,751 182,466 

2
0
%

 

D
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m
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c 

C
o
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58,524 58,524 58,524 78,619 78,619 78,619 94,680 94,680 94,680 

R
o
b
u
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C
o
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62,608 88,844 116,352 67,007 78,702 101,281 110,174 151,751 182,466 

3
0
%

 

D
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m
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C
o
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63,145 63,145 63,145 58,255 58,255 58,255 108,406 108,406 108,406 

R
o
b
u
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C
o
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62,608 88,844 116,352 67,007 78,702 101,281 110,174 151,751 182,466 

4
0

%
 

D
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C
o
st

 

73,640 73,640 73,640 67,847 67,847 67,847 129,597. 129,597 129,597 

R
o

b
u
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o
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62,608 88,844 116,352 67,007 78,702 101,281 110,174 151,751 182,466 

5
0
%
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m
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is

ti
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C
o
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87,839 87,839 87,839 71,262 71,841 72,126 142,191 142,191 142,191 

R
o
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u
st

 

 C
o
st

 

62,608 88,844 116,352 67,007 78,702 101,281 110,174 151,751 182,466 
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 It can be seen in Table 16 that the robust model had no capacity shortages for any of the 

networks or omega values. The robust model was able to handle all of the demands in this case 

just as it was in the comparison in Section 5.3.1. The deterministic models had shortages when 

the demands were only increased by 10% in all three networks, and shortages in Networks 1 and 

3 when the demands were increased by 20%. When the demands were increased by 30, 40, and 

50% there were no capacity shortages for the deterministic cases. This observation shows that 

inflating demands by a reasonable percentage can allow the model to handle uncertainty.  

 In order to better compare the demand inflation strategy to the robust strategy, the total 

costs were also considered. Table 17 shows the total costs for all scenarios. Penalties have 

already been applied to the costs in Table 17 in cases where capacity shortages occurred. The 

penalty was $100 per pallet, which was the same as in Section 5.3.1. When demands were 

inflated by 10% and 20% for the deterministic case, shortages still occurred and thus a penalty 

was added to the average total cost for every pallet not shipped. In this test of demand inflation, 

increasing the demands by 10% or 20% would be undesirable because not only were there 

capacity shortages in these cases, but the total costs were increased because of the inflation. In 

other words, the total costs were increasing even without the penalties and the networks were 

still unable to handle uncertainty in demand.  

After studying Tables 16 and 17, it was clear that inflating demands by 30% would be the 

“best strategy”. There were no capacity shortages in these cases and the average total costs were 

either less than the robust or comparable. Inflating demands by 40 and 50% began to increase the 

total costs by a rather large amount, which would be undesirable to freight carriers.  

The idea behind testing demand inflation against the robust strategy was not to negate the 

usefulness of robust optimization. Instead it was to test the effects of demand inflation and how 
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this method compared to the robust model. Based on the results, the demand inflation or “factor 

of safety” strategy could be a very useful tool for small freight carriers who do not have the 

means or knowledge to use robust optimization.  Telling a carrier to inflate demands by 30% is 

much simpler than giving them a robust model to use. This simple strategy could allow even 

small carriers to account for some demand uncertainty. However, the robust model is still vital 

such that it gives a basis to which the results of inflated demands can be compared. The robust 

optimization is also a powerful tool for larger freight companies who have the ability to 

understand and use this method. Unlike demand inflation, there is a sound analytical process 

behind the robust approach.  
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CHAPTER 6. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

6.1 Summary 

 Innovations in technology, population booms, fuels prices, traffic congestion, tighter 

trucking restrictions, and the demand for overnight and next-day delivery have led trucking 

companies to seek ways to reduce costs and increase efficiency. The desire to reduce wasted 

space on trucks led to the implementation of LTL consolidation and better planning for return 

shipments to eliminate empty backhauling. The idea of shipment consolidation created a need for 

intermediate facilities where trucks could consolidate their loads with other loads from different 

origins. Cross-dock warehouses filled that need. The use of cross-docks allowed for the efficient 

consolidation of shipments at intermediate points. Because goods spend little or no time in the 

actual facility, storage costs are eliminated as well as costs for picking. In order to utilize cross-

docks, companies must first decide where to locate and open these facilities.  

 Therefore, a formulation was presented in order to choose which cross-docks should be 

opened from a set of potential nodes with the goal of minimizing total transportation costs. The 

first formulation assumed deterministic, or known, demands and followed the p-median facility 

problem. Three separate networks were studied, each of a different size. All networks and 

demands were extracted from real world data from a Third Party Logistics Company.  The 

purpose of the deterministic formulation was to determine which cross-docks would be opened 

for each network and the total network costs. 

 The deterministic model then served as the baseline or control for the robust 

optimization. In the robust formulation, demand uncertainty was accounted for in each of the 

three networks at three levels of uncertainty – low, medium, and high. The robust formulation 
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was created as a variation of the deterministic formulation by adding uncertainty terms to the 

appropriate constraints and the objective function.  

6.2 Conclusions 

 The effects of demand uncertainty and the comparison between the performance of the 

deterministic and robust scenarios were tested on three realistic freight networks with parameters 

that followed industry standards. First, the deterministic and robust networks were compared to 

see simply how their results differed. In other words, the goal was to determine if accounting for 

uncertainty in demands changed which cross-docks would be opened and the overall total costs. 

In order to compare the costliness of the robust solutions, the relative costs were determined for 

various levels of omega. While the opened cross-docks, total costs, and relative costs provided 

important information regarding the differing results between deterministic and robust 

optimization, a better way to test the performance of each scenario was needed. This was 

accomplished in section 5.3, where the ability of each “optimized” network to handle uncertainty 

was studied.  

 Numerical analysis revealed that varying values of omega and the level of uncertainty for 

each network resulted in the opening of different cross-docks. This is an important result because 

it showed that accounting for uncertainty in demand did affect the results of the optimization. In 

other words, if demands are assumed to be known but in reality the demands actually vary, the 

system may have too little capacity or much greater total cost than anticipated. As expected, the 

total costs rose with the increase in omega and demand uncertainty. This occurred because larger 

omega values and higher uncertainty allowed the demands to increase by greater amounts. 

Larger demands resulted in higher transportation and handling costs. The relative cost showed 

the comparison between the total cost of the deterministic scenario (omega = 0) and all of the 
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robust scenarios. Because the total costs of the robust scenarios were greater than the 

deterministic case, all relative costs were greater than one, as expected. Of course, because 

omega set equal to zero was used as the baseline, that relative cost was one.  

 Simply looking at the total costs and relative costs could be misleading, because it makes 

the deterministic case look most appealing. In situations where demands are certain, the 

deterministic case is the best solution as it provides the lowest total cost. However, in networks 

where uncertainty exists, the robust optimization may be the best choice. Comparing the ability 

of the deterministic case (with average demands) and the robust case to handle uncertainty 

showed that the robust case was in fact more resilient when demands vary.  In all networks, 

demand scenarios, and budgets of uncertainty in Section 5.3.1, the deterministic case came up 

short, such that it did not have enough capacity on either the trucks or in the cross-docks to 

handle increases in demand due to uncertainty. The robust case had no capacity shortages in any 

of the networks, demand scenarios, or budgets of uncertainty; it was able to handle and transport 

all random demands. In real world situations if a trucking company were unable to transport all 

of their demands, they would face some type of penalty. In this study, a penalty of $100 per 

pallet was estimated. When the penalties were added to the total costs, the robust case ended up 

being less expensive than the deterministic case for every network, demand scenario, and budget 

of uncertainty.  

 In the analysis (Section 5.3.2) where demands were inflated by a percentage for the 

deterministic model and compared to the robust optimization, there were some valuable results. 

While small inflations still led to capacity shortages, and large inflations led to very high costs, a 

30% demand inflation had no capacity shortages and total costs less than or comparable to the 

robust case.    
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 This analysis demonstrated the importance of accounting for uncertainty in demands. 

While assuming deterministic demands may result in more attractive total costs, accounting for 

uncertainties with a robust formulation can save money and reputation in the long run. In some 

situations for small carriers, simple demand inflation can be an extremely effective planning 

method. However, the robust model is still needed as a baseline to determine what percent of 

inflation will yield the best results. When inputs, such as demand, are uncertain, robust 

optimization is a powerful tool to develop a network that is able to handle increases in demand 

without shortages or unexpected costs. 

6.3 Directions for Future Research 

 The work in this thesis could be expanded in a few ways. The first would be to model 

other parameters that may be uncertain, such as capacity or travel times, in order to see how they 

affect the cross-dock locations and total costs.  This formulation could also be tested on even 

larger networks with much higher demands to see how the robust solution is able to handle 

greater uncertainty.  

 The discounts created due to consolidation could be modeled in other ways, such as using 

the MAUD function or some type of discount sharing technique. Another way to expand upon 

this work would be to discuss the penalty cost with real freight companies to get a more accurate 

or realistic value. This would allow for better comparison of the deterministic and robust cases. 

Finally, adding more constraints, such as delivery and pick-up times, would make the model 

more realistic, but also greatly increase the complexity.  
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APPENDICES 

Appendix A 

 

 

Table 18: Internode Mileage for Network 1 from Origin (i) to Destination (j) 

 

  
Destination 

  
Westborough Kirkwood Columbus Fairborn Eighty Four 

Origin 

Montgomery 1233 1047 660 616 819 

Atlanta 1082 897 570 524 674 

Unadilla 1128 976 694 645 753 

Haines City 1310 1176 1025 982 982 

Hattiesburg 1379 1197 799 755 960 
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Table 19: Internode Mileage for Network 1 from Origin (i) to Cross-dock (k) 

 

  
Cross-dock 

  
Lexington Charlotte Knoxville Charlottesville Charleston 

Origin 

Montgomery 494 405 343 671 661 

Atlanta 380 245 214 511 502 

Unadilla 501 333 334 603 596 

Haines City 830 562 664 847 825 

Hattiesburg 635 622 489 855 798 
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Table 20: Internode Mileage for Network 1 from Cross-dock (k) to Destination (j) 

 

  
Destination 

  
Westborough Kirkwood Columbus Fairborn Eighty Four 

Cross-dock 

Lexington 891 696 191 148 351 

Charlotte 808 646 426 454 422 

Knoxville 892 709 357 314 467 

Charlottesville 527 413 410 437 293 

Charleston 717 533 162 189 202 
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Table 21: Internode Mileage for Network 2 from Origin (i) to Destination (j) 

 

  

Destination 

 

  Alsip Danville Des Plaines Hanover Park Monroe Troy Kansas City Springfield St. Louis Milwaukee 

Origin 

Everett 982 1036 1005 1018 776 713 1439 1411 1196 1079 

Franklin 965 1020 988 1002 759 696 1423 1394 1179 1062 

Baltimore 696 667 718 733 491 549 1060 1036 821 797 

Elizabeth 778 800 800 814 575 622 1203 1159 953 880 

Newark 775 788 798 811 572 627 1181 1167 941 871 

Sayreville 799 787 822 819 580 651 1180 1161 941 895 

Delhi 769 829 792 806 565 525 1222 1202 983 866 

Waterford 818 878 843 856 612 687 1271 1247 1064 930 

Hanover 676 651 699 694 455 528 1054 1015 808 773 

Hatfield 748 734 770 783 544 592 1127 1103 902 849 
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Table 22: Internode Mileage for Network 2 from Origin (i) to Cross-dock (k) 

 

  

Cross-dock 

 

  

Fort  

Wayne Indianapolis Cumberland Canton Cincinnati Columbus Altoona Pittsburgh Parkersburg Wheeling 

Origin 

Everett 847 940 525 663 858 755 483 576 706 628 

Franklin 830 912 508 646 841 737 466 559 689 611 

Baltimore 560 579 139 366 508 404 181 244 319 278 

Elizabeth 643 701 293 454 630 526 274 363 478 400 

Newark 636 699 291 447 628 524 267 360 476 398 

Sayreville 660 699 289 470 628 524 279 354 471 392 

Delhi 634 740 347 461 671 564 281 374 528 434 

Waterford 682 789 439 523 722 615 366 470 620 530 

Hanover 538 565 119 317 488 384 133 199 299 237 

Hatfield 610 646 237 420 575 471 233 307 418 345 
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Table 23: Internode Mileage for Network 2 from Cross-dock (k) to Destination (j) 

 

  

Destination 

 

  Alsip Danville 

Des  

Plaines 

Hanover  

Park Monroe Troy 

Kansas  

City Springfield St. Louis Milwaukee 

Cross-

dock 

Fort Wayne 155 180 179 191 127 185 608 584 368 253 

Indianapolis 174 89.3 206 210 251 309 482 458 242 280 

Cumberland  556 529 579 592 350 408 922 898 683 652 

Canton 372 389 396 420 177 231 782 758 543 469 

Cincinnati 287 202 319 323 227 285 589 565 350 392 

Columbus 318 264 342 384 163 227 657 633 418 416 

Altoona 548 547 567 584 342 400 940 915 700 645 

Pittsburgh 456 448 475 492 250 308 841 817 602 553 

Parkersburg 458 375 453 492 279 337 768 743 528 526 

Wheeling 445 391 505 510 272 330 784 759 544 543 
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Table 24: Internode Mileage for Network 3 from Origin (i) to Destination (j) 

(Destinations 1 through 10 are shown) 

 

  

Destination 

  

Alsip Chicago Danville 

Des  

Plaines 

Hanover  

Park Taylorville 

Mason  

City Louisville Dearborn Monroe 

Origin 

New Haven 858 864 906 882 895 989 1231 817 683 652 

Everett 982 987 1036 1005 1018 1141 1355 973 719 776 

Franklin 965 971 1020 988 1002 1124 1338 956 702 759 

Baltimore 696 704 667 718 733 779 1070 610 522 491 

Belcamp 724 729 694 748 760 806 1094 638 549 518 

Elizabeth 778 787 800 800 814 902 1154 730 603 575 

Kearny 776 785 805 798 813 902 1149 731 602 571 

Newark 775 780 788 798 811 899 1147 728 599 572 

Sayreville 799 789 787 822 819 900 1157 728 609 580 

Delhi 769 775 829 792 806 951 1142 773 532 565 

Rochester 597 602 657 620 633 777 970 601 333 391 

Waterford 818 825 878 843 856 1001 1192 823 552 612 

Williamson 624 629 684 648 660 806 997 628 361 418 

Blandon 719 724 697 743 755 809 1092 668 544 513 

Hanover 676 654 651 699 694 738 1022 590 474 455 

Hatfield 748 756 734 770 783 861 1118 674 573 544 

Alexandria 699 704 669 723 735 781 1072 613 524 493 

Lyndhurst 706 714 623 738 742 753 1057 470 566 535 

Newport News 855 860 784 879 892 915 1218 631 680 649 

Richmond 793 798 714 817 829 847 1150 563 618 587 
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Table 25: Internode Mileage for Network 3 from Origin (i) to Destination (j)  

(Destinations 11 through 20 are shown) 

 

  

Destination 

  

Troy Rogers St. Paul Kansas City Springfield St. Louis Arlington Elkhorn Milwaukee Oak Creek 

Origin 

New Haven 710 1294 1264 1270 1246 1031 1150 956 954 946 

Everett 713 1417 1388 1439 1411 1196 1288 1080 1079 1070 

Franklin 696 1401 1371 1423 1394 1179 1272 1063 1062 1053 

Baltimore 549 1132 1102 1060 1036 821 888 794 797 783 

Belcamp 576 1159 1130 1087 1063 848 916 821 820 812 

Elizabeth 622 1217 1194 1203 1159 953 1062 879 880 869 

Kearny 620 1212 1192 1208 1159 944 1064 874 878 864 

Newark 627 1210 1180 1181 1167 941 1061 872 871 862 

Sayreville 651 1219 1189 1180 1161 941 1049 881 895 872 

Delhi 525 1205 1175 1222 1202 983 1131 867 866 857 

Rochester 328 1032 1002 1050 1025 810 958 699 692 684 

Waterford 687 1255 1236 1271 1247 1064 1181 917 930 907 

Williamson 355 1064 1029 1077 1053 837 985 721 719 724 

Blandon 571 1207 1124 1090 1066 850 964 816 814 852 

Hanover 528 1084 1054 1054 1015 808 883 746 773 737 

Hatfield 592 1190 1164 1127 1103 902 1008 844 849 836 

Alexandria 551 1134 1104 1085 1038 823 855 796 794 787 

Lyndhurst 593 1144 1115 974 943 728 706 806 805 796 

Newport News 707 1290 1260 1135 1104 889 867 952 950 943 

Richmond 645 1228 1199 1067 1037 821 799 891 889 881 
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Table 26: Internode Mileage for Network 3 from Origin (i) to Cross-dock (k)  

(Cross-docks 1 through 10 are shown) 

 

  

Cross-dock 

  

Fairfield Bloomington 

Fort  

Wayne Hebron Indianapolis Lexington Summit Cumberland Canton Cincinnati 

Origin 

New Haven 972 838 720 842 788 784 680 385 530 718 

Everett 1128 990 847 966 940 923 818 525 663 858 

Franklin 1111 973 830 949 912 906 801 508 646 841 

Baltimore 765 628 560 680 579 538 434 139 366 508 

Belcamp 792 655 586 707 606 566 461 166 396 535 

Elizabeth 885 751 643 765 701 697 592 293 454 630 

Kearny 886 752 638 760 702 698 593 298 448 631 

Newark 883 749 636 758 699 695 590 291 447 628 

Sayreville 884 749 660 767 699 691 586 289 470 628 

Delhi 928 790 634 753 740 756 640 347 461 671 

Rochester 756 618 461 580 568 584 520 341 302 501 

Waterford 979 840 682 803 789 807 734 439 523 722 

Williamson 783 645 489 607 595 611 548 332 329 528 

Blandon 792 658 581 702 608 599 494 199 391 537 

Hanover 745 588 538 632 565 518 414 119 317 488 

Hatfield 830 695 610 732 646 637 532 237 420 575 

Alexandria 767 630 561 682 581 541 436 141 371 510 

Lyndhurst 624 570 543 667 534 398 293 165 415 427 

Newport News 786 732 704 828 695 559 454 297 527 588 

Richmond 718 664 636 760 628 491 387 235 466 521 

  



78 

 

Table 27: Internode Mileage for Network 3 from Origin (i) to Cross-dock (k)  

(Cross-docks 11 through 20 are shown) 

 

  

Cross-dock 

  

Columbus Lima Altoona Mansfield Oil City Pittsburgh Beckley Buckhannon Parkersburg Wheeling 

Origin 

New Haven 614 663 351 267 422 450 605 523 565 488 

Everett 755 796 483 395 555 576 743 661 706 628 

Franklin 737 779 466 378 538 559 727 644 689 611 

Baltimore 404 502 181 222 291 244 343 277 319 278 

Belcamp 431 529 207 222 292 275 371 304 347 305 

Elizabeth 526 586 274 235 346 363 517 435 478 400 

Kearny 527 581 269 230 341 363 519 436 479 401 

Newark 524 579 267 228 339 360 516 433 476 398 

Sayreville 524 589 279 238 348 354 504 429 471 392 

Delhi 564 596 281 157 342 374 568 483 528 434 

Rochester 394 424 277 131 205 284 519 417 422 336 

Waterford 615 646 366 232 428 470 659 577 620 530 

Williamson 421 451 268 122 232 312 547 444 449 363 

Blandon 433 524 189 151 261 270 420 337 380 307 

Hanover 384 454 133 183 252 199 339 257 299 237 

Hatfield 471 553 233 202 312 307 466 375 418 345 

Alexandria 406 504 182 270 315 250 310 224 322 280 

Lyndhurst 384 471 224 359 357 292 161 147 299 289 

Newport News 546 633 338 425 471 406 322 309 461 436 

Richmond 478 565 276 363 409 344 254 241 393 374 
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Table 28: Internode Mileage for Network 3 from Cross-dock (k) to Destination (j)  

(Destinations 1 through 10 are shown) 

 

  

Destination 

  

Alsip Chicago Danville 

Des  

Plaines 

Hanover  

Park Taylorville 

Mason  

City Louisville Dearborn Monroe 

Cross-

dock 

Fairfield 256 271 174 288 292 121 538 157 483 453 

Bloomington 223 232 136 256 259 184 571 105 331 301 

Fort Wayne 155 162 180 179 191 313 528 236 158 127 

Hebron 47.4 56 110 80.1 83.5 196 420 250 261 251 

Indianapolis 174 183 89.3 206 210 201 523 114 282 251 

Lexington 365 373 281 398 401 364 715 80.6 341 310 

Summit 424 432 340 457 460 470 774 187 322 291 

Cumberland 556 561 529 579 592 641 929 472 381 350 

Canton 372 389 389 396 420 501 756 333 208 177 

Cincinnati 287 295 202 319 323 314 637 99.4 258 227 

Columbus 318 356 264 342 384 376 699 206 199 163 

Lima 222 228 262 247 258 374 594 224 133 103 

Altoona 548 553 547 567 584 658 921 487 373 342 

Mansfield 651 656 693 674 687 805 1023 637 415 445 

Oil City 457 462 495 481 493 607 830 439 282 251 

Pittsburgh 456 461 448 475 492 560 829 388 281 250 

Beckley 542 550 459 574 578 589 893 306 416 386 

Buckhannon 566 593 483 612 602 595 917 359 413 382 

Parkersburg 458 464 375 453 492 485 807 286 326 279 

Wheeling 445 482 391 505 510 502 825 331 289 272 
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Table 29: Internode Mileage for Network 3 from Cross-dock (k) to Destination (j) 

 (Destinations 11 through 20 are shown) 

 

  
Destination 

  
Troy Rogers St. Paul Kansas City Springfield St. Louis Arlington Elkhorn Milwaukee Oak Creek 

Cross-

dock 

Fairfield 511 669 639 367 335 120 289 360 361 353 

Bloomington 359 662 632 464 440 225 391 324 322 314 

Fort Wayne 185 592 562 608 584 368 593 254 253 244 

Hebron 280 486 456 511 511 296 513 148 146 138 

Indianapolis 309 613 583 482 458 242 472 275 280 265 

Lexington 368 803 774 586 554 339 398 466 464 456 

Summit 349 863 833 691 660 445 511 525 523 515 

Cumberland 408 991 961 922 898 683 797 653 652 644 

Canton 231 819 789 782 758 543 691 481 469 471 

Cincinnati 285 725 695 589 565 350 457 387 392 378 

Columbus 227 786 756 657 633 418 563 448 416 438 

Lima 161 659 629 655 631 416 581 321 319 311 

Altoona 400 983 954 940 915 700 865 645 645 636 

Mansfield 410 1086 1056 1086 1062 846 994 748 746 738 

Oil City 309 892 863 888 864 649 796 555 553 545 

Pittsburgh 308 891 861 841 817 602 746 553 553 544 

Beckley 444 980 951 810 779 564 617 642 641 633 

Buckhannon 440 1023 994 863 833 617 684 685 684 676 

Parkersburg 337 894 865 768 743 528 620 557 526 547 

Wheeling 330 912 882 784 759 544 688 574 543 565 

  



81 

 

 

 

 
Table 30: Average Demands (in pallets) for Network 1 

 

   

Destination (j) 

  

Commodity Type Westborough Kirkwood Columbus Fairborn Eighty Four 

Origin (i) 

Montgomery 

Dry 

9.91 0 0 0 0 

Atlanta 1.95 22.56 15 24.97 6.23 

Unadilla 0 0 0 0 0 

Haines City 0 14.34 0 0 0 

Hattiesburg 0 30 0 30 0 

Montgomery 

Refrigerated 

0 0 237.73 0 0 

Atlanta 1.95 0 0 0 0 

Unadilla 0 0 0 0 0 

Haines City 12.03 0 0 0 0 

Hattiesburg 0 0 0 0 0 

Montgomery 

Frozen 

0 23.67 0 0 0 

Atlanta 1.95 22.56 15 24.97 0 

Unadilla 0 27.2 51.47 0 28.26 

Haines City 12.03 0 2 0 0 

Hattiesburg 0 0 0 0 0 
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Table 31: Average Demands (in pallets) for Network 2 

   

Destination (j) 

  

Commodity 

Type Alsip Danville 

Des 

Plaines 

Hanover 

Park Monroe Troy 

Kansas 

City Springfield 

St.  

Louis Milwaukee 

Origin 

(i) 

Everett 

Dry 

0 0.71 0 0 0 0 1 0 0 0 

Franklin 0 0 0 0 0 0 0 0 0 0 

Baltimore 9.68 0 9.62 0 0 0 0 0 0 9.62 

Elizabeth 2 7.02 2.72 0 0 7.01 4.77 0 2.87 3.03 

Newark 0 0 0 0 0 0 0 0 0 0 

Sayreville 0 0 0 25.36 23.72 0 0 27.36 0 0 

Delhi 0 0 0 0 0 0 0 0 0 0 

Waterford 0 0 28.4 0 0 21.43 0 0 27.74 27.83 

Hanover 0 5.8 0 14.41 37.42 0 15.92 1 0 0 

Hatfield 47.63 0 12.44 24.54 27.75 4.83 0 0 6.52 17.28 

Everett 

Refrigerated 

0 0 0 0 0 0 0 0 0 0 

Franklin 0 17.7 0 0 0 0 15.65 0 0 0 

Baltimore 0 0 0 0 0 0 0 0 0 0 

Elizabeth 0 7.02 0 0 0 0 4.77 0 0 0 

Newark 0 0 0 0 0 0 0 0 0 0 

Sayreville 0 0 0 0 0 0 0 0 0 0 

Delhi 0 0 0 0 3.13 0 0 3 0 0 

Waterford 0 0 0 0 0 0 0 0 0 0 

Hanover 0 0 0 0 0 0 0 0 0 0 

Hatfield 0 0 0 0 0 0 0 0 0 0 

Everett 

Frozen 

0 0 0 0 0 0 0 0 0 0 

Franklin 0 0 0 0 0 0 0 0 0 0 

Baltimore 0 0 0 0 0 0 0 0 0 0 

Elizabeth 0 0 0 2 8.67 0 0 0 0 0 

Newark 0 0 0 2 12 0 0 14.83 0 0 

Sayreville 0 0 0 0 0 0 0 0 0 0 

Delhi 0 0 0 0 0 0 0 0 0 0 

Waterford 0 0 0 0 0 0 0 0 0 0 

Hanover 0 0 0 0 0 0 0 0 0 0 

Hatfield 0 0 0 0 0 0 0 0 0 0 
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Table 32: Average Demands (in pallets) for Network 3 

(Dry Commodity, Destinations 1 through 10) 

 

 

   

Destination (j) 

  

Commodity 

Type Alsip Chicago Danville 

Des 

Plaines 

Hanover 

Park Taylorville 

Mason 

City Louisville Dearborn Monroe 

Origin 

(i) 

New Haven 

Dry 

0 0 0 0 0 0 0 0 0 0 

Everett 0 0 0.71 0 0 0 0 0 0 0 

Franklin 0 0 0 0 0 0 0 0 0 0 

Baltimore 9.68 26.98 0 9.62 0 0 0 0 0 0 

Belcamp 0 0 0 0 0 0 2.78 0 0 0 

Elizabeth 2 4.66 7.02 2.72 0 0 0 0 5.13 0 

Kearny 9.8 19.49 2 11.35 0 0 0 0 0.95 0 

Newark 0 0 0 0 0 0 0 0 0 0 

Sayreville 0 0 0 0 25.36 0 0 0 0 23.72 

Delhi 0 0 0 0 0 0 0 0 0 0 

Rochester 0 0 0 0 0 0.18 0 0 0 0 

Waterford 0 0 0 28.4 0 0 0 0 28.72 0 

Williamson 0 0 0 0 0 0 0 0 0 0 

Blandon 0 0 0 0 0 0 0 0 0 0 

Hanover 0 0 5.8 0 14.41 0 0 0 0 37.42 

Hatfield 47.63 16.11 0 12.44 24.54 6.71 6.44 0 5.78 27.75 

Alexandria 0 0 0 0 0 0 0 0 0 0 

Lyndhurst 0 0 0 0 0 0 0 0 0 0 

Newport News 0 0 0 0 0 0 0 0 0 0 

Richmond 0 0 21.98 0 0 0 0 0 0 0 
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Table 33: Average Demands (in pallets) for Network 3 

(Dry Commodity, Destinations 11 through 20) 

 
 

 

   

Destination (j) 

  

Commodity 

Type Troy Rogers St. Paul 

Kansas 

City Springfield St. Louis Arlington Elkhorn Milwaukee 

Oak 

Creek 

Origin 

(i) 

New Haven 

Dry 

0 0 0 0 0 0 0 0 0 0 

Everett 0 0 0 1 0 0 0 0 0 0 

Franklin 0 0 0 0 0 0 0 0 0 0 

Baltimore 0 0 0 0 0 0 0 0 9.62 3.75 

Belcamp 0 0 0 0 0 0 4.83 0 0 0 

Elizabeth 7.01 0 5.02 4.77 0 2.87 0 0 3.03 0 

Kearny 5.6 0 6.66 1 0 0 0 0 13.9 0 

Newark 0 0 0 0 0 0 0 0 0 0 

Sayreville 0 0 0 0 27.36 0 0 0 0 0 

Delhi 0 0 0 0 0 0 0 0 0 0 

Rochester 0 0 0 0 0 0 0 0.23 0 0 

Waterford 21.43 0 28.25 0 0 27.74 0 0 27.83 0 

Williamson 0 8 0 0 0 0 0 0 0 7.13 

Blandon 0 0 0 0 0 0 0 0 0 0 

Hanover 0 0 0 15.92 1 0 16 0 0 0 

Hatfield 4.83 18.8 3.98 0 0 6.52 28 10.62 17.28 0 

Alexandria 0 0 0 0 0 0 0 0 0 0 

Lyndhurst 0 0 0 0 0 0 0 0 0 0 

Newport News 0 0 0 0 0 0 0 0 0 0 

Richmond 0 0 0 0 0 0 0 0 0 0 
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Table 34: Average Demands (in pallets) for Network 3 

(Refrigerated Commodity, Destinations 1 through 10) 

 
 

   

Destination (j) 

  

Commodity 

Type Alsip Chicago Danville 

Des 

Plaines 

Hanover 

Park Taylorville 

Mason 

City Louisville Dearborn Monroe 

Origin 

(i) 

New Haven 

Refrigerated 

0 0 0 0 0 0 0 0 0 0 

Everett 0 0 0 0 0 0 0 0 0 0 

Franklin 0 0 17.7 0 0 0 0 0 0 0 

Baltimore 0 0 0 0 0 0 0 0 0 0 

Belcamp 0 0 0 0 0 0 0 0 0 0 

Elizabeth 0 0 7.02 0 0 0 0 0 0 0 

Kearny 0 0 0 0 0 0 0 0 0 0 

Newark 0 0 0 0 0 0 0 0 0 0 

Sayreville 0 0 0 0 0 0 0 0 0 0 

Delhi 0 0 0 0 0 0 0 0 0 3.13 

Rochester 0 0 0 0 0 0 0 0 0 0 

Waterford 0 0 0 0 0 0 0 0 0 0 

Williamson 0 0 0 0 0 0 0 0 0 0 

Blandon 0 0 0 0 0 0 0 0 0 0 

Hanover 0 0 0 0 0 0 0 0 0 0 

Hatfield 0 0 0 0 0 0 0 0 0 0 

Alexandria 0 0 0 0 0 0 0 0 0 0 

Lyndhurst 0 0 0 0 0 0 0 0 0 0 

Newport News 0 0 0 0 0 0 0 0 0 0 

Richmond 0 0 0 0 0 0 0 0 0 0 
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Table 35: Average Demands (in pallets) for Network 3  

(Refrigerated Commodity, Destinations 11 through 20) 

 

 

   

Destination (j) 

  

Commodity 

Type Troy Rogers St. Paul 

Kansas 

City Springfield St. Louis Arlington Elkhorn Milwaukee 

Oak 

Creek 

Origin 

(i) 

New Haven 

Refrigerated 

0 0 0 0 0 0 0 0 0 0 

Everett 0 0 0 0 0 0 0 0 0 0 

Franklin 0 0 0 15.65 0 0 0 0 0 0 

Baltimore 0 0 0 0 0 0 0 0 0 0 

Belcamp 0 0 0 0 0 0 0 0 0 0 

Elizabeth 0 0 0 4.77 0 0 0 0 0 0 

Kearny 0 0 0 0 0 0 0 0 0 0 

Newark 0 0 0 0 0 0 0 0 0 0 

Sayreville 0 0 0 0 0 0 0 0 0 0 

Delhi 0 0 0 0 3 0 0 0 0 0 

Rochester 0 0 0 0 0 0 0 0 0 0 

Waterford 0 0 0 0 0 0 0 0 0 0 

Williamson 0 0 0 0 0 0 0 0 0 0 

Blandon 0 0 0 0 0 0 0 0 0 0 

Hanover 0 0 0 0 0 0 0 0 0 0 

Hatfield 0 0 0 0 0 0 0 0 0 0 

Alexandria 0 0 0 0 0 0 0 0 0 0 

Lyndhurst 0 0 0 0 0 0 0 0 0 0 

Newport News 0 0 0 0 0 0 0 0 0 0 

Richmond 0 0 0 0 0 0 0 0 0 0 
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Table 36: Average Demands (in pallets) for Network 3 

(Frozen Commodity, Destinations 1 through 10) 
 

 

   

Destination (j) 

  

Commodity 

Type Alsip Chicago Danville 

Des 

Plaines 

Hanover 

Park Taylorville 

Mason 

City Louisville Dearborn Monroe 

Origin 

(i) 

New Haven  

Frozen 

0 0 1.3 0 0 0 0 0 0 0 

Everett 0 0 0 0 0 0 0 0 0 0 

Franklin 0 0 0 0 0 0 0 0 0 0 

Baltimore 0 0 0 0 0 0 0 0 0 0 

Belcamp 0 0 0 0 0 0 0 0 0 0 

Elizabeth 0 0 0 0 2 0 0 0 0 8.67 

Kearny 0 0 0 0 0 0 0 0 0 0 

Newark 0 0 0 0 2 0 0 0 0 12 

Sayreville 0 0 0 0 0 0 0 0 0 0 

Delhi 0 0 0 0 0 0 0 0 0 0 

Rochester 0 0 0 0 0 0 0 0 0 0 

Waterford 0 0 0 0 0 0 0 0 0 0 

Williamson 0 0 0 0 0 0 0 0 0 0 

Blandon 0 0 0 0 0 0 0 2.5 0 0 

Hanover 0 0 0 0 0 0 0 0 0 0 

Hatfield 0 0 0 0 0 0 0 0 0 0 

Alexandria 0 0 0 0 0 0 0 0 0 0 

Lyndhurst 0 0 0 0 0 0 0 0 0 0 

Newport News 0 0 0 0 3 0 0 0 0 0 

Richmond 0 0 0 0 0 0 0 0 0 0 
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Table 37: Average Demands for Network 3 

(Frozen Commodity, Destinations 11 through 20) 
 
 

   

Destination (j) 

  

Commodity 

Type Troy Rogers St. Paul 

Kansas 

City Springfield St. Louis Arlington Elkhorn Milwaukee 

Oak 

Creek 

Origin 

(i) 

New Haven  

Frozen 

0 0 0 0 0 0 0 0 0 0 

Everett 0 0 0 0 0 0 0 0 0 0 

Franklin 0 0 0 0 0 0 0 0 0 0 

Baltimore 0 0 0 0 0 0 0 0 0 0 

Belcamp 0 0 0 0 0 0 0 0 0 0 

Elizabeth 0 0 0 0 0 0 0 0 0 0 

Kearny 0 0 0 0 0 0 0 0 0 0 

Newark 0 0 0 0 14.83 0 0 0 0 0 

Sayreville 0 0 0 0 0 0 0 0 0 0 

Delhi 0 0 0 0 0 0 0 0 0 0 

Rochester 0 0 0 0 0 0 0 0 0 0 

Waterford 0 0 0 0 0 0 0 0 0 0 

Williamson 0 0 0 0 0 0 0 0 0 0 

Blandon 0 2 0 0 0 0 0 0 0 2.17 

Hanover 0 0 0 0 0 0 0 0 0 0 

Hatfield 0 0 0 0 0 0 0 0 0 0 

Alexandria 0 0 0 1.11 0 0 0 0 0 0 

Lyndhurst 0 0 0 0 0 0 0 0 0 26.24 

Newport News 0 0 0 0 0 0 0 0 0 0 

Richmond 0 0 0 0 0 0 0 0 0 0 
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Appendix B 

 

GAMS Code for Network 1 Varying Omega from 0 to 3  

(Corresponds to the results in Sections 5.2.1, 5.2.2, 5.2.3, and Appendix C for N1) 

 

$offlisting 

$offsymxref offsymlist 

 

file demandUncert1 / demandUncert1.csv / ; 

 

*Network 1 (5O, 5D, 5K) 

set i 'origin'/Montgomery, Atlanta, Unadilla, Haines_City, Hattiesburg/; 

set j 'destination' /Westborough, Kirkwood, Columbus, Fairborn, Eighty_Four/; 

set k 'cross-docks'/Lexington, Charlotte, Knoxville, Charlottesville, Charleston/; 

set l 'commodity'/D, R, F/; 

 

Table s(i,j) 'distance from origin node i to destination node j' 

              Westborough   Kirkwood   Columbus   Fairborn   Eighty_Four 

Montgomery        1233              1047            660            616            819 

Atlanta                 1082                 897           570            524          674 

Unadilla              1128                 976             694            645            753 

Haines_City         1310           1176        1025          982         982 

Hattiesburg          1379             1197         799           755          960; 

display i,j,s; 

 

Table s1(i,k) 'distance from origin node i to cross-dock node k' 

                  Lexington   Charlotte   Knoxville  Charlottesville   Charleston 

Montgomery       494        405         343                   671             661 

Atlanta               380        245         214                   511             502 

Unadilla              501        333         334                   603             596 

Haines_City        830        562         664                   847             825 

Hattiesburg         635        622         489                   855             798; 

display i,j,s1; 

 

Table s2(k,j) 'distance from cross-dock node k to destination node j' 

                 Westborough      Kirkwood   Columbus   Fairborn   Eighty_Four 

Lexington           891         696          191            148         351 

Charlotte            808          646          426          454      422 

Knoxville           892         709          357          314        467 

Charlottesville    527         413          410          437         293 

Charleston          717          533          162          189         202; 

display i,k,s2; 

 

parameter c(l)'unit truckload cost for transporting commodity l' /D=1.40, R=1.60, F=1.80/; 

display l,c; 
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Table q(l,i,j)'amount of pallets of commodity l which needs to go from node i to node j' 

                        Westborough    Kirkwood    Columbus       Fairborn    Eighty_Four 

D.Montgomery           9.91             0            0                 0              0 

R.Montgomery              0              0          237.73        0              0 

F.Montgomery              0            23.67          0                 0              0 

D.Atlanta              1.95          22.56         15              24.97       6.23 

R.Atlanta            1.95             0            0                 0              0 

F.Atlanta            1.95          22.56          15              24.97        0 

D.Unadilla               0              0            0                 0              0 

R.Unadilla                0              0            0                 0              0 

F.Unadilla                 0            27.2         51.47          0             28.26 

D.Haines_City             0            14.34          0                 0              0 

R.Haines_City         12.03             0           0                 0              0 

F.Haines_City        12.03             0            2                 0              0 

D.Hattiesburg             0             30            0                 30            0 

R.Hattiesburg             0              0            0                 0              0 

F.Hattiesburg             0              0            0                 0              0; 

 

parameter gamma 'discount factor'; 

gamma = 0.8; 

display l,i,j,q; 

parameter h(k)'unit cost of handling a pallet in a cross-dock at location k'  

/Lexington=3,Charlotte=3,Knoxville=3,Charlottesville=3,Charleston=3/; 

parameter u  'truck capacity'; 

u = 28; 

parameter p 'number of cross-docks'; 

p =4; 

parameter w 'cross-dock capacity'; 

w =175; 

 

parameter omega 'bound on overall uncertainty'; 

 

set m 'number of uncertain parameters' /1*3/; 

parameter b(i,j,l,m)'weights associated with m random variables'; 

 b(i,j,l,m)=uniform(0,0.3)*q(l,i,j); 

*Variation in code for medium uncertainty [b(i,j,l,m)=uniform(0,0.6)*q(l,i,j);] 

*Variation in code for high uncertainty [b(i,j,l,m)=uniform(0,0.9)*q(l,i,j);] 

variables 

O 'objective value' 

; 

positive variables 

t2(j,l,k) 

t1(i,l,k) 

t3(k) 

t4(i,j,l) 

t5(k); 

Binary variables 
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x(i,j,l,k) 'commodity l transported from node i to node j through cross-dock k' 

v(i,j,l) 'commodity l transported from node i to node j without using cross-dock k' 

z(k) 'cross-dock established at location k' 

; 

integer variables 

y(i,j,l) 'number of trucks transporting commodity l from node i to node j' 

y1(i,k,l) 'number of trucks transporting commodity l from node i to node k' 

y2(k,j,l) 'number of trucks transporting commodity l from node k to node j' 

; 

equations 

total_cost 'objective value' 

number_crossdocks 'total number of cross-docks opened is equal to P' 

routing(i,j,l) 'demand must be routed through a cross-dock or direct' 

truck_capacity1(i,k,l) 'capacity constraint on trucks from origin to cross-dock' 

truck_capacity2(j,k,l) 'capacity constraint on trucks from cross-dock to destination' 

truck_capacity3(i,j,l) 'capacity constraint on trucks from origin to destination' 

crossdock_opened(i,j,k,l) 'cross-dock k can only be used if the cross-dock at k is opened' 

crossdock_capacity(k) 'capacity constraint on cross-docks' 

inequality7(i,l,k) 'helps to solve truck_capacity1' 

inequality8(j,l,k) 'helps to solve truck_capacity2' 

inequality9(k) 'helps to solve crossdock_capacity' 

inequality10(i,j,l) 'helps to solve truck_capacity3' 

inequality11(k) 'helps to solve objective' 

; 

total_cost.. 

sum((i,k,l),c(l)*s1(i,k)*y1(i,k,l))+(gamma*sum((k,j,l),c(l)*s2(k,j)*y2(k,j,l)))+sum((i,j,l),c(l)*s(i,j

)*y(i,j,l))+sum(k, omega*h(k)*t5(k))+sum((k), h(k)*sum((i,j,l),x(i,j,l,k)*q(l,i,j)))=e=O; 

 

number_crossdocks.. sum((k), z(k))=e=p; 

 

routing(i,j,l).. sum((k), x(i,j,l,k))+ v(i,j,l)=e=1; 

 

truck_capacity1(i,k,l).. sum((j),q(l,i,j)*x(i,j,l,k))+omega*t1(i,l,k)=l=u*y1(i,k,l); 

 

truck_capacity2(j,k,l).. sum((i),q(l,i,j)*x(i,j,l,k))+omega*t2(j,l,k)=l=u*y2(k,j,l); 

 

truck_capacity3(i,j,l)..q(l,i,j)*v(i,j,l)+omega*t4(i,j,l)=l=u*y(i,j,l); 

 

crossdock_opened(i,j,k,l)..x(i,j,l,k)=l=z(k); 

 

crossdock_capacity(k)..sum((i,j,l),q(l,i,j)*x(i,j,l,k))+omega*t3(k)=l=w*z(k); 

 

inequality7(i,l,k).. (sum(m,sqr(sum(j,b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t1(i,l,k)) ; 

inequality8(j,l,k).. (sum(m,sqr(sum(i,b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t2(j,l,k)); 

inequality9(k)..(sum(m,sqr(sum((l,i,j),b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t3(k))  ; 

inequality10(i,j,l).. sum(m,sqr(b(i,j,l,m)*v(i,j,l)))=l= sqr(t4(i,j,l)) ; 

inequality11(k) .. sum(m,sum((i,j,l),sqr(x(i,j,l,k)*b(i,j,l,m))))=l=sqr(t5(k)); 



92 

 

 

model test/all/; 

option miqcp=cplex; 

set level 

level/1*31/; 

   demandUncert1.ap = 0; 

omega=0; 

solve test minimizing O using MIQCP; 

parameter base_cost; 

base_cost=o.l; 

parameter relative_cost; 

loop(level, 

 

         put demandUncert1 ; 

         Put "Omega,Date, Time, TotalCost, RunningTime, SolverStatus, ModelStatus, Relative 

Cost" / ; 

         demandUncert1.ap = 1; 

         put omega "," system.date "," system.time ","  ; 

solve test minimizing O using MIQCP; 

relative_cost=o.l/base_cost; 

          put o.l:0:3 "," test.Resusd:0:3 "," test.solvestat:0:0 "," test.modelstat:0:0 ","relative_cost / ; 

 put / "k, z" / ; 

         loop((k)$(z.l(k)>0), put  k.tl:0:0 "," z.l(k):0:0 /); 

display z.l, y1.l,y2.l, y.l,x.l,v.l,o.l,omega; 

omega=omega+0.1;); 
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GAMS Code for Network 1 Using Random Demands to Test Deterministic and Robust Model 

Performance with Uncertainty with Average Demands 

(Corresponds to the results in Section 5.3.1 for N1) 

 

$offlisting 

$offsymxref offsymlist 

execseed = 1e8*(frac(jnow)); 

file demandUncert1 / demandUncert1.csv / ; 

 

*Network 1 (5O, 5D, 5K) 

set i 'origin'/Montgomery, Atlanta, Unadilla, Haines_City, Hattiesburg/; 

set j 'destination' /Westborough, Kirkwood, Columbus, Fairborn, Eighty_Four/; 

set k 'cross-docks'/Lexington, Charlotte, Knoxville, Charlottesville, Charleston/; 

set l 'commodity'/D, R, F/; 

 

Table s(i,j) 'distance from origin node i to destination node j' 

                  Westborough   Kirkwood   Columbus   Fairborn   Eighty_Four 

Montgomery       1233         1047              660            616        819 

Atlanta                1082           897              570            524        674 

Unadilla              1128           976              694            645        753 

Haines_City        1310         1176            1025            982        982 

Hattiesburg         1379         1197              799            755        960; 

display i,j,s; 

 

Table s1(i,k) 'distance from origin node i to cross-dock node k' 

                   Lexington   Charlotte   Knoxville  Charlottesville   Charleston 

Montgomery      494         405             343              671                   661 

Atlanta               380         245             214              511                   502 

Unadilla             501         333             334              603                   596 

Haines_City       830         562             664              847                   825 

Hattiesburg        635         622             489              855                   798; 

display i,j,s1; 

 

Table s2(k,j) 'distance from cross-dock node k to destination node j' 

                  Westborough   Kirkwood   Columbus   Fairborn   Eighty_Four 

Lexington           891              696               191           148             351 

Charlotte            808              646               426           454             422 

Knoxville           892              709               357           314             467 

Charlottesville    527             413               410            437            293 

Charleston          717              533              162            189             202; 

display i,k,s2; 

 

parameter c(l)'unit truckload cost for transporting commodity l' /D=1.40, R=1.60, F=1.80/; 

display l,c; 
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Table q(l,i,j)'amount of pallets of commodity l which needs to go from node i to node j' 

                   Westborough    Kirkwood    Columbus    Fairborn    Eighty_Four 

D.Montgomery          9.91             0            0                 0              0 

R.Montgomery              0              0          237.73        0              0 

F.Montgomery              0            23.67          0                 0              0 

D.Atlanta              1.95          22.56         15              24.97       6.23 

R.Atlanta            1.95             0            0                 0              0 

F.Atlanta            1.95          22.56          15              24.97        0 

D.Unadilla               0              0            0                 0              0 

R.Unadilla                0              0            0                 0              0 

F.Unadilla                 0            27.2         51.47          0             28.26 

D.Haines_City             0            14.34          0                 0              0 

R.Haines_City         12.03             0           0                 0              0 

F.Haines_City        12.03             0            2                 0              0 

D.Hattiesburg             0             30            0                 30            0 

R.Hattiesburg             0              0            0                 0              0 

F.Hattiesburg             0              0            0                 0              0; 

 

parameter gamma 'discount factor'; 

gamma = 0.8; 

display l,i,j,q; 

parameter h(k)'unit cost of handling a pallet in a cross-dock at location k'  

/Lexington=3,Charlotte=3,Knoxville=3,Charlottesville=3,Charleston=3/; 

parameter u  'truck capacity'; 

u = 28; 

parameter p 'number of cross-docks'; 

p =4; 

parameter w 'cross-dock capacity'; 

w =175; 

 

parameter omega 'bound on overall uncertainty'; 

 

set m 'number of uncertain parameters' /1*3/; 

parameter b(i,j,l,m)'weights associated with m random variables'; 

 b(i,j,l,m)=uniform(0,0.9)*q(l,i,j); 

variables 

O 'objective value' 

; 

positive variables 

t2(j,l,k) 

t1(i,l,k) 

t3(k) 

t4(i,j,l) 

t5(k); 

Binary variables 

x(i,j,l,k) 'commodity l transported from node i to node j through cross-dock k' 

v(i,j,l) 'commodity l transported from node i to node j without using cross-dock k' 
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z(k) 'cross-dock established at location k' 

; 

integer variables 

y(i,j,l) 'number of trucks transporting commodity l from node i to node j' 

y1(i,k,l) 'number of trucks transporting commodity l from node i to node k' 

y2(k,j,l) 'number of trucks transporting commodity l from node k to node j' 

; 

equations 

total_cost 'objective value' 

number_crossdocks 'total number of cross-docks opened is equal to P' 

routing(i,j,l) 'demand must be routed through a cross-dock or direct' 

truck_capacity1(i,k,l) 'capacity constraint on trucks from origin to cross-dock' 

truck_capacity2(j,k,l) 'capacity constraint on trucks from cross-dock to destination' 

truck_capacity3(i,j,l) 'capacity constraint on trucks from origin to destination' 

crossdock_opened(i,j,k,l) 'cross-dock k can only be used if the cross-dock at k is opened' 

crossdock_capacity(k) 'capacity constraint on cross-docks' 

inequality7(i,l,k) 'helps to solve truck_capacity1' 

inequality8(j,l,k) 'helps to solve truck_capacity2' 

inequality9(k) 'helps to solve crossdock_capacity' 

inequality10(i,j,l) 'helps to solve truck_capacity3' 

inequality11(k) 'helps to solve objective' 

; 

total_cost.. 

sum((i,k,l),c(l)*s1(i,k)*y1(i,k,l))+(gamma*sum((k,j,l),c(l)*s2(k,j)*y2(k,j,l)))+sum((i,j,l),c(l)*s(i,j

)*y(i,j,l))+sum(k, omega*h(k)*t5(k))+sum((k), h(k)*sum((i,j,l),x(i,j,l,k)*q(l,i,j)))=e=O; 

 

number_crossdocks.. sum((k), z(k))=e=p; 

 

routing(i,j,l).. sum((k), x(i,j,l,k))+ v(i,j,l)=e=1; 

 

truck_capacity1(i,k,l).. sum((j),q(l,i,j)*x(i,j,l,k))+omega*t1(i,l,k)=l=u*y1(i,k,l); 

 

truck_capacity2(j,k,l).. sum((i),q(l,i,j)*x(i,j,l,k))+omega*t2(j,l,k)=l=u*y2(k,j,l); 

 

truck_capacity3(i,j,l)..q(l,i,j)*v(i,j,l)+omega*t4(i,j,l)=l=u*y(i,j,l); 

 

crossdock_opened(i,j,k,l)..x(i,j,l,k)=l=z(k); 

 

crossdock_capacity(k)..sum((i,j,l),q(l,i,j)*x(i,j,l,k))+omega*t3(k)=l=w*z(k); 

 

inequality7(i,l,k).. (sum(m,sqr(sum(j,b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t1(i,l,k)) ; 

inequality8(j,l,k).. (sum(m,sqr(sum(i,b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t2(j,l,k)); 

inequality9(k)..(sum(m,sqr(sum((l,i,j),b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t3(k))  ; 

inequality10(i,j,l).. sum(m,sqr(b(i,j,l,m)*v(i,j,l)))=l= sqr(t4(i,j,l)) ; 

inequality11(k) .. sum(m,sum((i,j,l),sqr(x(i,j,l,k)*b(i,j,l,m))))=l=sqr(t5(k)); 

 

model test/all/; 
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option miqcp=cplex; 

set level 

level/1*31/; 

   demandUncert1.ap = 0; 

 

omega=0; 

parameter rand_demand(l,i,j); 

parameter add_dir_truck(i,j,l); 

rand_demand(l,i,j)=0; 

parameter induce_demand; 

induce_demand=0; 

rand_demand(l,i,j)=0; 

parameter base_demand(l,i,j); 

base_demand(l,i,j)= q(l,i,j); 

         parameter simulated_cost; 

         simulated_cost=0; 

         put demandUncert1 ; 

         Put "Date, Time, TotalCost, RunningTime, SolverStatus, ModelStatus , Relative Cost" / ; 

         demandUncert1.ap = 1; 

         put  system.date "," system.time ","  ; 

         solve test minimizing O using MIQCP; 

 

         put o.l:0:3 "," test.Resusd:0:3 "," test.solvestat:0:0 "," test.modelstat:0:0  / ; 

         put / "k, z" / ; 

         loop((k)$(z.l(k)>0), put  k.tl:0:0 "," z.l(k):0:0 /); 

         display z.l, y1.l,y2.l, y.l,x.l,v.l,o.l,omega; 

         parameter base_location(k), base_assignment, 

base_inf(k),base_y1(i,k,l),base_y2(k,j,l),base_y(i,j,l),base_v(i,j,l), 

base_inf1(i,k,l),base_inf2(k,j,l),base_inf3(i,j,l),base_cost; 

         base_location(k)=z.l(k); 

         base_assignment(i,j,l,k)=x.l(i,j,l,k); 

         base_y1(i,k,l)=y1.l(i,k,l) ; 

         base_y2(k,j,l)= y2.l(k,j,l); 

         base_y(i,j,l)= y.l(i,j,l) ; 

         base_v(i,j,l)= v.l(i,j,l) ; 

 

omega=3; 

 

Put "Omega,Date, Time, TotalCost, RunningTime, SolverStatus, ModelStatus "/ ; 

         demandUncert1.ap = 1; 

         put omega "," system.date "," system.time ","  ; 

solve test minimizing O using MIQCP; 

 

         put o.l:0:3 "," test.Resusd:0:3 "," test.solvestat:0:0 "," test.modelstat:0:0  / ; 

 put / "k, z" / ; 

         loop((k)$(z.l(k)>0), put  k.tl:0:0 "," z.l(k):0:0 /); 
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    parameter robust_location, robust_assignment, robust_inf(k), sum_robust_inf, sum_base_inf, 

robust_y1(i,k,l),robust_y2(k,j,l),robust_y(i,j,l),robust_v(i,j,l),robust_inf1(i,k,l),robust_inf2(k,j,l),r

obust_inf3(i,j,l),robust_cost; 

         robust_location(k)=z.l(k); 

         robust_assignment(i,j,l,k)=x.l(i,j,l,k); 

         robust_y1(i,k,l)=y1.l(i,k,l) ; 

         robust_y2(k,j,l)= y2.l(k,j,l); 

         robust_y(i,j,l)= y.l(i,j,l) ; 

         robust_v(i,j,l)= v.l(i,j,l) ; 

 

loop(level, 

        rand_demand(l,i,j)=0; 

        rand_demand(l,i,j)=sum(m,uniform(0,0.9)*base_demand(l,i,j))+base_demand(l,i,j); 

        q(l,i,j)=rand_demand(l,i,j); 

 

        robust_inf(k)=w*robust_location(k)-sum((i,j,l),q(l,i,j)* robust_assignment(i,j,l,k)); 

        base_inf(k)=w*base_location(k)-sum((i,j,l),q(l,i,j)* base_assignment(i,j,l,k)); 

        robust_inf1(i,k,l)= u*robust_y1(i,k,l)- sum((j),q(l,i,j)*robust_assignment(i,j,l,k)); 

        base_inf1(i,k,l)=u*base_y1(i,k,l)- sum((j),q(l,i,j)*base_assignment(i,j,l,k)); 

        robust_inf2(k,j,l)=u*robust_y2(k,j,l)-sum((i),q(l,i,j)*robust_assignment(i,j,l,k)); 

        base_inf2(k,j,l)= u*base_y2(k,j,l)-sum((i),q(l,i,j)*base_assignment(i,j,l,k)); 

        robust_inf3(i,j,l)= u*robust_y(i,j,l)-q(l,i,j)*robust_v(i,j,l); 

         base_inf3(i,j,l)= u*base_y(i,j,l)-q(l,i,j)*base_v(i,j,l); 

       

robust_cost=sum((i,k,l),c(l)*s1(i,k)*robust_y1(i,k,l))+(gamma*sum((k,j,l),c(l)*s2(k,j)*robust_y2

(k,j,l)))+sum((i,j,l),c(l)*s(i,j)*robust_y(i,j,l))+sum((k), 

h(k)*sum((i,j,l),robust_assignment(i,j,l,k)*q(l,i,j))); 

         

base_cost=sum((i,k,l),c(l)*s1(i,k)*base_y1(i,k,l))+(gamma*sum((k,j,l),c(l)*s2(k,j)*base_y2(k,j,l

)))+sum((i,j,l),c(l)*s(i,j)*base_y(i,j,l))+sum((k), 

h(k)*sum((i,j,l),base_assignment(i,j,l,k)*q(l,i,j))); 

        sum_robust_inf=sum(k, robust_inf(k))+sum((i,k,l), 

robust_inf1(i,k,l))+sum((k,j,l),robust_inf2(k,j,l))+sum((i,j,l),robust_inf3(i,j,l)); 

        sum_base_inf=sum(k, base_inf(k))+sum((i,k,l), 

base_inf1(i,k,l))+sum((k,j,l),base_inf2(k,j,l))+sum((i,j,l),base_inf3(i,j,l)); 

        Put "Deterministic ,Base Cost, Robust,  Robust Cost"/; 

        put sum_base_inf ","  base_cost "," sum_robust_inf "," robust_cost /; 

); 
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GAMS Code for Network 1 Using Random Demands to Test Deterministic and Robust Model 

Performance with Uncertainty with Inflated Demands 

(Corresponds to the results in Section 5.3.2 for N1) 

 

$offlisting 

$offsymxref offsymlist 

execseed = 1e8*(frac(jnow)); 

file demandUncert1 / demandUncert1.csv / ; 

*Network 1 (5O, 5D, 5K) 

set i 'origin'/Montgomery, Atlanta, Unadilla, Haines_City, Hattiesburg/; 

set j 'destination' /Westborough, Kirkwood, Columbus, Fairborn, Eighty_Four/; 

set k 'cross-docks'/Lexington, Charlotte, Knoxville, Charlottesville, Charleston/; 

set l 'commodity'/D, R, F/; 

 

Table s(i,j) 'distance from origin node i to destination node j' 

             Westborough   Kirkwood   Columbus   Fairborn   Eighty_Four 

Montgomery       1233         1047              660            616        819 

Atlanta                1082           897              570            524        674 

Unadilla              1128           976              694            645        753 

Haines_City        1310         1176            1025            982        982 

Hattiesburg         1379         1197              799            755        960; 

display i,j,s; 

 

Table s1(i,k) 'distance from origin node i to cross-dock node k' 

              Lexington   Charlotte   Knoxville  Charlottesville   Charleston 

Montgomery      494         405             343              671                   661 

Atlanta               380         245             214              511                   502 

Unadilla             501         333             334              603                   596 

Haines_City       830         562             664              847                   825 

Hattiesburg        635         622             489              855                   798; 

display i,j,s1; 

 

Table s2(k,j) 'distance from cross-dock node k to destination node j' 

                 Westborough   Kirkwood   Columbus   Fairborn   Eighty_Four 

Lexington           891              696               191           148             351 

Charlotte            808              646               426           454             422 

Knoxville           892              709               357           314             467 

Charlottesville    527             413               410            437            293 

Charleston          717              533              162            189            202; 

display i,k,s2; 

 

parameter c(l)'unit truckload cost for transporting commodity l' /D=1.40, R=1.60, F=1.80/; 

display l,c; 

 

 

 

Table q(l,i,j)'amount of pallets of commodity l which needs to go from node i to node j' 
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                   Westborough    Kirkwood    Columbus    Fairborn    Eighty_Four 

D.Montgomery          9.91             0            0                 0              0 

R.Montgomery              0              0          237.73        0              0 

F.Montgomery              0            23.67          0                 0              0 

D.Atlanta              1.95          22.56         15              24.97       6.23 

R.Atlanta            1.95             0            0                 0              0 

F.Atlanta            1.95          22.56          15              24.97        0 

D.Unadilla               0              0            0                 0              0 

R.Unadilla                0              0            0                 0              0 

F.Unadilla                 0            27.2         51.47          0             28.26 

D.Haines_City             0            14.34          0                 0              0 

R.Haines_City         12.03             0           0                 0              0 

F.Haines_City        12.03             0            2                 0              0 

D.Hattiesburg             0             30            0                 30            0 

R.Hattiesburg             0              0            0                 0              0 

F.Hattiesburg             0              0            0                 0              0; 

 

parameter gamma 'discount factor'; 

gamma = 0.8; 

display l,i,j,q; 

*parameter f(k) 'fixed cost of establishing a cross-dock at location k' 

/1=500,2=300,3=450,4=350,5=600,6=650,7=450,8=300,9=400,10=550/; 

parameter h(k)'unit cost of handling a pallet in a cross-dock at location k'  /Fort_Wayne=3, 

Indianapolis=3, Cumberland=3, Canton=3, Cincinnati=3, Columbus=3, Altoona=3, 

Pittsburgh=3, Parkersburg=3, Wheeling=3/; 

parameter u  'truck capacity'; 

u = 28; 

parameter p 'number of cross-docks'; 

p =4; 

parameter w 'cross-dock capacity'; 

w =150; 

 

parameter omega 'bound on overall uncertainty'; 

 

set m 'number of uncertain parameters' /1*3/; 

parameter b(i,j,l,m)'weights associated with m random variables'; 

 b(i,j,l,m)=uniform(0,0.9)*q(l,i,j); 

variables 

O 'objective value' 

; 

positive variables 

t2(j,l,k) 

t1(i,l,k) 

t3(k) 

t4(i,j,l) 

t5(k) 

; 
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Binary variables 

x(i,j,l,k) 'commodity l transported from node i to node j through cross-dock k' 

v(i,j,l) 'commodity l transported from node i to node j without using cross-dock k' 

z(k) 'cross-dock established at location k' 

; 

integer variables 

y(i,j,l) 'number of trucks transporting commodity l from node i to node j' 

y1(i,k,l) 'number of trucks transporting commodity l from node i to node k' 

y2(k,j,l) 'number of trucks transporting commodity l from node k to node j' 

; 

equations 

total_cost 'objective value' 

number_crossdocks 'total number of cross-docks opened is equal to P' 

routing(i,j,l) 'demand must be routed through a cross-dock or direct' 

truck_capacity1(i,k,l) 'capacity constraint on trucks from origin to cross-dock' 

truck_capacity2(j,k,l) 'capacity constraint on trucks from cross-dock to destination' 

truck_capacity3(i,j,l) 'capacity constraint on trucks from origin to destination' 

crossdock_opened(i,j,k,l) 'cross-dock k can only be used if the cross-dock at k is opened' 

crossdock_capacity(k) 'capacity constraint on cross-docks' 

inequality7(i,l,k) 'helps to solve truck_capacity1' 

inequality8(j,l,k) 'helps to solve truck_capacity2' 

inequality9(k) 'helps to solve crossdock_capacity' 

inequality10(i,j,l) 'helps to solve truck_capacity3' 

inequality11(k) 'helps to solve objective' 

; 

total_cost.. 

sum((i,k,l),c(l)*s1(i,k)*y1(i,k,l))+(gamma*sum((k,j,l),c(l)*s2(k,j)*y2(k,j,l)))+sum((i,j,l),c(l)*s(i,j

)*y(i,j,l))+sum(k, omega*h(k)*t5(k))+sum((k), h(k)*sum((i,j,l),x(i,j,l,k)*q(l,i,j)))=e=O; 

 

number_crossdocks.. sum((k), z(k))=e=p; 

 

routing(i,j,l).. sum((k), x(i,j,l,k))+ v(i,j,l)=e=1; 

 

truck_capacity1(i,k,l).. sum((j),q(l,i,j)*x(i,j,l,k))+omega*t1(i,l,k)=l=u*y1(i,k,l); 

 

truck_capacity2(j,k,l).. sum((i),q(l,i,j)*x(i,j,l,k))+omega*t2(j,l,k)=l=u*y2(k,j,l); 

 

truck_capacity3(i,j,l)..q(l,i,j)*v(i,j,l)+omega*t4(i,j,l)=l=u*y(i,j,l); 

 

crossdock_opened(i,j,k,l)..x(i,j,l,k)=l=z(k); 

 

crossdock_capacity(k)..sum((i,j,l),q(l,i,j)*x(i,j,l,k))+omega*t3(k)=l=w*z(k); 

 

inequality7(i,l,k).. (sum(m,sqr(sum(j,b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t1(i,l,k)) ; 

inequality8(j,l,k).. (sum(m,sqr(sum(i,b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t2(j,l,k)); 

inequality9(k)..(sum(m,sqr(sum((l,i,j),b(i,j,l,m)*x(i,j,l,k)))))=l=sqr(t3(k))  ; 

inequality10(i,j,l).. sum(m,sqr(b(i,j,l,m)*v(i,j,l)))=l= sqr(t4(i,j,l)) ; 
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inequality11(k) .. sum(m,sum((i,j,l),sqr(x(i,j,l,k)*b(i,j,l,m))))=l=sqr(t5(k)); 

set iii/1*31/; 

 

model test/all/; 

option miqcp=cplex; 

 

alias(iii, level); 

   demandUncert3.ap = 0; 

 

parameter rand_demand(l,i,j,iii); 

parameter add_dir_truck(i,j,l); 

rand_demand(l,i,j,iii)=0; 

parameter induce_demand; 

induce_demand=0; 

rand_demand(l,i,j,iii)=0; 

parameter base_demand(l,i,j); 

base_demand(l,i,j)= q(l,i,j); 

parameter bbb; 

 parameter base_location(k), base_assignment, 

base_inf(k),base_y1(i,k,l),base_y2(k,j,l),base_y(i,j,l),base_v(i,j,l), 

base_inf1(i,k,l),base_inf2(k,j,l),base_inf3(i,j,l),base_cost; 

  parameter robust_location, robust_assignment, robust_inf(k), sum_robust_inf, sum_base_inf, 

robust_y1(i,k,l),robust_y2(k,j,l),robust_y(i,j,l),robust_v(i,j,l),robust_inf1(i,k,l),robust_inf2(k,j,l),r

obust_inf3(i,j,l),robust_cost; 

bbb=0 ; 

      parameter simulated_cost; 

set uncertain/1*5/; 

 

rand_demand(l,i,j,iii)=sum(m,uniform(0,0.9)*base_demand(l,i,j))+base_demand(l,i,j); 

 

loop(uncertain, 

     bbb=bbb+0.1; 

q(l,i,j)=sum(m,bbb*base_demand(l,i,j))+base_demand(l,i,j); 

  omega=0; 

         simulated_cost=0; 

         put demandUncert3 ; 

         Put "bbb,Date, Time, TotalCost, RunningTime, SolverStatus, ModelStatus , Relative Cost" 

/ ; 

         demandUncert3.ap = 1; 

         put  Omega","bbb","system.date "," system.time ","  ; 

         solve test minimizing O using MIQCP; 

 

         put o.l:0:3 "," test.Resusd:0:3 "," test.solvestat:0:0 "," test.modelstat:0:0  / ; 

         put / "k, z" / ; 

         loop((k)$(z.l(k)>0), put  k.tl:0:0 "," z.l(k):0:0 /); 

         display z.l, y1.l,y2.l, y.l,x.l,v.l,o.l,omega; 
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         base_location(k)=z.l(k); 

         base_assignment(i,j,l,k)=x.l(i,j,l,k); 

         base_y1(i,k,l)=y1.l(i,k,l) ; 

         base_y2(k,j,l)= y2.l(k,j,l); 

         base_y(i,j,l)= y.l(i,j,l) ; 

         base_v(i,j,l)= v.l(i,j,l) ; 

 

loop(level, 

*        rand_demand(l,i,j,iii)=0; 

 

        q(l,i,j)=rand_demand(l,i,j,level); 

 

 

        base_inf(k)=w*base_location(k)-sum((i,j,l),q(l,i,j)* base_assignment(i,j,l,k)); 

 

        base_inf1(i,k,l)=u*base_y1(i,k,l)- sum((j),q(l,i,j)*base_assignment(i,j,l,k)); 

 

        base_inf2(k,j,l)= u*base_y2(k,j,l)-sum((i),q(l,i,j)*base_assignment(i,j,l,k)); 

 

         base_inf3(i,j,l)= u*base_y(i,j,l)-q(l,i,j)*base_v(i,j,l); 

 

         

base_cost=sum((i,k,l),c(l)*s1(i,k)*base_y1(i,k,l))+(gamma*sum((k,j,l),c(l)*s2(k,j)*base_y2(k,j,l

)))+sum((i,j,l),c(l)*s(i,j)*base_y(i,j,l))+sum((k), 

h(k)*sum((i,j,l),base_assignment(i,j,l,k)*q(l,i,j))); 

 

        sum_base_inf=sum(k, base_inf(k))+sum((i,k,l), 

base_inf1(i,k,l))+sum((k,j,l),base_inf2(k,j,l))+sum((i,j,l),base_inf3(i,j,l)); 

        Put "Deterministic ,Base Cost"/; 

        put sum_base_inf ","  base_cost  /; 

); 

); 

set ppp/1*3/; 

omega=0; 

loop(ppp, 

omega=omega+1; 

q(l,i,j)= base_demand(l,i,j); 

Put "Omega,bbb,Date, Time, TotalCost, RunningTime, SolverStatus, ModelStatus "/ ; 

         demandUncert3.ap = 1; 

         put omega ","bbb"," system.date "," system.time ","  ; 

option optcr=0.15; 

solve test minimizing O using MIQCP; 

 

         put o.l:0:3 "," test.Resusd:0:3 "," test.solvestat:0:0 "," test.modelstat:0:0  / ; 

 put / "k, z" / ; 

         loop((k)$(z.l(k)>0), put  k.tl:0:0 "," z.l(k):0:0 /); 
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         robust_location(k)=z.l(k); 

         robust_assignment(i,j,l,k)=x.l(i,j,l,k); 

         robust_y1(i,k,l)=y1.l(i,k,l) ; 

         robust_y2(k,j,l)= y2.l(k,j,l); 

         robust_y(i,j,l)= y.l(i,j,l) ; 

         robust_v(i,j,l)= v.l(i,j,l) ; 

 

loop(level, 

 

        q(l,i,j)=rand_demand(l,i,j,level); 

 

        robust_inf(k)=w*robust_location(k)-sum((i,j,l),q(l,i,j)* robust_assignment(i,j,l,k)); 

 

        robust_inf1(i,k,l)= u*robust_y1(i,k,l)- sum((j),q(l,i,j)*robust_assignment(i,j,l,k)); 

 

        robust_inf2(k,j,l)=u*robust_y2(k,j,l)-sum((i),q(l,i,j)*robust_assignment(i,j,l,k)); 

 

        robust_inf3(i,j,l)= u*robust_y(i,j,l)-q(l,i,j)*robust_v(i,j,l); 

 

       

robust_cost=sum((i,k,l),c(l)*s1(i,k)*robust_y1(i,k,l))+(gamma*sum((k,j,l),c(l)*s2(k,j)*robust_y2

(k,j,l)))+sum((i,j,l),c(l)*s(i,j)*robust_y(i,j,l))+sum((k), 

h(k)*sum((i,j,l),robust_assignment(i,j,l,k)*q(l,i,j))); 

 

        sum_robust_inf=sum(k, robust_inf(k))+sum((i,k,l), 

robust_inf1(i,k,l))+sum((k,j,l),robust_inf2(k,j,l))+sum((i,j,l),robust_inf3(i,j,l)); 

 

        Put " Robust,  Robust Cost"/; 

        put sum_robust_inf "," robust_cost /; 

);); 

display  rand_demand; 
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Appendix C 
 

Table 38: Cross-docks Opened for Network 1 with Medium Uncertainty 

Omega CD's Opened Omega CD's Opened Omega CD's Opened Omega CD's Opened 

0.0 

Charlotte 

0.8 

Lexington 

1.6 

Lexington 

2.4 

Lexington 

Knoxville Charlotte Charlotte Charlotte 

Charlottesville Knoxville Knoxville Charlottesville 

Charleston Charleston Charleston Charleston 

0.1 

Lexington 

0.9 

Lexington 

1.7 

Lexington 

2.5 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charleston Charleston Charleston Charlottesville 

0.2 

Charlotte 

1.0 

Lexington 

1.8 

Charlotte 

2.6 

Lexington 

Knoxville Charlotte Knoxville Charlotte 

Charlottesville Knoxville Charlottesville Knoxville 

Charleston Charleston Charleston Charlottesville 

0.3 

Lexington 

1.1 

Lexington 

1.9 

Lexington 

2.7 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charleston Charleston Charleston Charleston 

0.4 

Lexington 

1.2 

Lexington 

2.0 

Lexington 

2.8 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charlottesville Charleston Charleston Charlottesville 

0.5 

Lexington 

1.3 

Lexington 

2.1 

Lexington 

2.9 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charleston Charlottesville Charleston Charleston 

0.6 

Lexington 

1.4 

Lexington 

2.2 

Lexington 

3.0 

Charlotte 

Charlotte Charlotte Charlotte Knoxville 

Knoxville Knoxville Knoxville Charlottesville 

Charleston Charleston Charleston Charleston 

0.7 

Lexington 

1.5 

Lexington 

2.3 

Lexington 

  Charlotte Charlotte Charlotte 

  Knoxville Knoxville Knoxville 

  Charleston Charleston Charlottesville 
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Table 39: Cross-docks Opened for Network 1 with High Uncertainty 

Omega CD's Opened Omega CD's Opened Omega CD's Opened Omega CD's Opened 

0.0 

Charlotte 

0.8 

Lexington 

1.6 

Charlotte 

2.4 

Lexington 

Knoxville Charlotte Knoxville Charlotte 

Charlottesville Knoxville Charlottesville Knoxville 

Charleston Charleston Charleston Charleston 

0.1 

Lexington 

0.9 

Lexington 

1.7 

Lexington 

2.5 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Charlottesville Knoxville 

Charlottesville Charleston Charleston Charlottesville 

0.2 

Lexington 

1.0 

Lexington 

1.8 

Lexington 

2.6 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charlottesville Charlottesville Charlottesville Charlottesville 

0.3 

Lexington 

1.1 

Charlotte 

1.9 

Lexington 

2.7 

Lexington 

Charlotte Knoxville Charlotte Charlotte 

Knoxville Charlottesville Knoxville Knoxville 

Charlottesville Charleston Charlottesville Charlottesville 

0.4 

Lexington 

1.2 

Lexington 

2.0 

Lexington 

2.8 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charleston Charleston Charlottesville Charleston 

0.5 

Lexington 

1.3 

Lexington 

2.1 

Lexington 

2.9 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charleston Charleston Charleston Charleston 

0.6 

Lexington 

1.4 

Lexington 

2.2 

Lexington 

3.0 

Lexington 

Charlotte Charlotte Charlotte Charlotte 

Knoxville Knoxville Knoxville Knoxville 

Charlottesville Charleston Charlottesville Charlottesville 

0.7 

Lexington 

1.5 

Lexington 

2.3 

Lexington 

  Charlotte Charlotte Charlotte 

  Knoxville Knoxville Knoxville 

  Charleston Charlottesville Charleston 
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Table 40: Cross-docks Opened for Network 2 with Low Uncertainty 

Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened 

0.0 

Fort_Wayne 

0.8 

Cumberland 

1.6 

Cumberland 

2.4 

Cumberland 

Cincinnati Canton Altoona Cincinnati 

Altoona Altoona Pittsburgh Altoona 

Pittsburgh Pittsburgh Wheeling Pittsburgh 

0.1 

Indianapolis 

0.9 

Cumberland 

1.7 

Canton 

2.5 

Indianapolis 

Altoona Columbus Columbus Columbus 

Pittsburgh Altoona Altoona Altoona 

Wheeling Pittsburgh Wheeling Pittsburgh 

0.2 

Fort_Wayne 

1.0 

Cumberland 

1.8 

Fort_Wayne 

2.6 

Fort_Wayne 

Cumberland Canton Cumberland Cumberland 

Altoona Altoona Altoona Canton 

Pittsburgh Pittsburgh Pittsburgh Altoona 

0.3 

Fort_Wayne 

1.1 

Fort_Wayne 

1.9 

Indianapolis 

2.7 

Cumberland 

Canton Cumberland Altoona Columbus 

Altoona Altoona Pittsburgh Altoona 

Pittsburgh Pittsburgh Wheeling Pittsburgh 

0.4 

Cumberland 

1.2 

Fort_Wayne 

2.0 

Fort_Wayne 

2.8 

Cumberland 

Canton Cumberland Indianapolis Altoona 

Altoona Altoona Canton Pittsburgh 

Pittsburgh Pittsburgh Altoona Wheeling 

0.5 

Cumberland 

1.3 

Fort_Wayne 

2.1 

Columbus 

2.9 

Cumberland 

Columbus Cumberland Altoona Canton 

Altoona Altoona Pittsburgh Columbus 

Wheeling Pittsburgh Wheeling Pittsburgh 

0.6 

Cumberland 

1.4 

Cumberland 

2.2 

Indianapolis 

3.0 

Canton 

Columbus Altoona Canton Columbus 

Altoona Pittsburgh Altoona Altoona 

Pittsburgh Wheeling Pittsburgh Pittsburgh 

0.7 

Fort_Wayne 

1.5 

Cumberland 

2.3 

Cumberland 

  Cumberland Canton Columbus 

  Altoona Altoona Altoona 

  Pittsburgh Pittsburgh Pittsburgh 
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Table 41: Cross-docks Opened for Network 2 with High Uncertainty 

Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened 

0.0 

Fort_Wayne 

0.8 

Cumberland 

1.6 

Cumberland 

2.4 

Cumberland 

Altoona Canton Altoona Columbus 

Pittsburgh Columbus Pittsburgh Altoona 

Wheeling Altoona Wheeling Pittsburgh 

0.1 

Cumberland 

0.9 

Cumberland 

1.7 

Cumberland 

2.5 

Cumberland 

Canton Columbus Columbus Columbus 

Altoona Altoona Altoona Altoona 

Pittsburgh Pittsburgh Pittsburgh Wheeling 

0.2 

Cumberland 

1.0 

Canton 

1.8 

Indianapolis 

2.6 

Fort_Wayne 

Altoona Altoona Cumberland Cumberland 

Pittsburgh Pittsburgh Altoona Altoona 

Wheeling Wheeling Pittsburgh Pittsburgh 

0.3 

Cumberland 

1.1 

Cumberland 

1.9 

Cumberland 

2.7 

Columbus 

Canton Canton Columbus Altoona 

Altoona Columbus Altoona Pittsburgh 

Pittsburgh Pittsburgh Pittsburgh Wheeling 

0.4 

Fort_Wayne 

1.2 

Fort_Wayne 

2.0 

Cumberland 

2.8 

Canton 

Cumberland Columbus Columbus Cincinnati 

Altoona Altoona Altoona Altoona 

Wheeling Wheeling Pittsburgh Wheeling 

0.5 

Cumberland 

1.3 

Indianapolis 

2.1 

Fort_Wayne 

2.9 

Cumberland 

Canton Cumberland Cumberland Columbus 

Altoona Altoona Altoona Altoona 

Pittsburgh Pittsburgh Pittsburgh Wheeling 

0.6 

Canton 

1.4 

Cumberland 

2.2 

Indianapolis 

3.0 

Fort_Wayne 

Altoona Columbus Cumberland Canton 

Pittsburgh Altoona Altoona Pittsburgh 

Wheeling Wheeling Pittsburgh Wheeling 

0.7 

Cumberland 

1.5 

Fort_Wayne 

2.3 

Cumberland 

  Altoona Altoona Altoona 

  Pittsburgh Pittsburgh Pittsburgh 

  Wheeling Wheeling Parkersburg 
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Table 42: Cross-docks Opened for Network 3 for Low Uncertainty 

Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened 

0.0 

Fort_Wayne 

0.8 

Cumberland 

1.6 

Fort_Wayne 

2.4 

Cumberland 

Cumberland Altoona Cumberland Lima 

Altoona Oil_City Altoona Altoona 

Wheeling Pittsburgh Oil_City Pittsburgh 

0.1 

Fort_Wayne 

0.9 

Cumberland 

1.7 

Cumberland 

2.5 

Fort_Wayne 

Cumberland Lima Columbus Altoona 

Mansfield Altoona Oil_City Oil_City 

Pittsburgh Mansfield Pittsburgh Pittsburgh 

0.2 

Hebron 

1.0 

Altoona 

1.8 

Fort_Wayne 

2.6 

Columbus 

Cumberland Mansfield Cumberland Altoona 

Altoona Oil_City Altoona Mansfield 

Oil_City Pittsburgh Oil_City Oil_City 

0.3 

Canton 

1.1 

Cumberland 

1.9 

Fort_Wayne 

2.7 

Cumberland 

Lima Columbus Cumberland Altoona 

Altoona Lima Altoona Oil_City 

Pittsburgh Oil_City Pittsburgh Wheeling 

0.4 

Hebron 

1.2 

Cumberland 

2.0 

Fort_Wayne 

2.8 

Indianapolis 

Canton Canton Cumberland Cumberland 

Altoona Altoona Canton Altoona 

Oil_City Mansfield Columbus Pittsburgh 

0.5 

Fort_Wayne 

1.3 

Fort_Wayne 

2.1 

Hebron 

2.9 

Fort_Wayne 

Altoona Altoona Cumberland Cumberland 

Oil_City Mansfield Columbus Oil_City 

Pittsburgh Pittsburgh Altoona Wheeling 

0.6 

Cumberland 

1.4 

Fort_Wayne 

2.2 

Fort_Wayne 

3.0 

Bloomington 

Canton Cumberland Cumberland Cumberland 

Altoona Altoona Altoona Altoona 

Oil_City Oil_City Oil_City Pittsburgh 

0.7 

Cumberland 

1.5 

Fort_Wayne 

2.3 

Fort_Wayne 

  Lima Cumberland Cumberland 

  Altoona Canton Altoona 

  Mansfield Altoona Oil_City 
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Table 43: Cross-docks Opened for Network 3 with Medium Uncertainty 

Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened Omega  CD's Opened 

0.0 

Cumberland 

0.8 

Fort_Wayne 

1.6 

Cumberland 

2.4 

Hebron 

Lima Cumberland Oil_City Cumberland 

Altoona Altoona Pittsburgh Columbus 

Mansfield Oil_City Wheeling Altoona 

0.1 

Cumberland 

0.9 

Fort_Wayne 

1.7 

Fort_Wayne 

2.5 

Fort_Wayne 

Lima Cumberland Mansfield Mansfield 

Altoona Oil_City Oil_City Pittsburgh 

Wheeling Wheeling Pittsburgh Wheeling 

0.2 

Hebron 

1.0 

Fort_Wayne 

1.8 

Cumberland 

2.6 

Hebron 

Cumberland Cumberland Lima Cumberland 

Altoona Mansfield Altoona Altoona 

Oil_City Pittsburgh Mansfield Oil_City 

0.3 

Cumberland 

1.1 

Fort_Wayne 

1.9 

Cumberland 

2.7 

Cumberland 

Altoona Cumberland Lima Lima 

Oil_City Altoona Oil_City Altoona 

Pittsburgh Pittsburgh Pittsburgh Pittsburgh 

0.4 

Cumberland 

1.2 

Cumberland 

2.0 

Fort_Wayne 

2.8 

Fort_Wayne 

Altoona Lima Cumberland Cumberland 

Oil_City Oil_City Altoona Altoona 

Pittsburgh Pittsburgh Oil_City Oil_City 

0.5 

Fort_Wayne 

1.3 

Fort_Wayne 

2.1 

Canton 

2.9 

Fort_Wayne 

Canton Columbus Altoona Cumberland 

Altoona Altoona Oil_City Altoona 

Pittsburgh Pittsburgh Pittsburgh Mansfield 

0.6 

Cumberland 

1.4 

Fort_Wayne 

2.2 

Cumberland 

3.0 

Cumberland 

Canton Cumberland Canton Canton 

Altoona Altoona Altoona Altoona 

Mansfield Oil_City Pittsburgh Pittsburgh 

0.7 

Fort_Wayne 

1.5 

Fort_Wayne 

2.3 

Fort_Wayne 

  Cumberland Cumberland Cumberland 

  Altoona Oil_City Altoona 

  Oil_City Pittsburgh Oil_City 
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Figure 12: Total Cost for Network 1 with Medium Uncertainty 
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Figure 13: Total Cost for Network 1 with High Uncertainty 
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Figure 14: Total Cost for Network 2 with Low Uncertainty 
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Figure 15: Total Cost for Network 2 with High Uncertainty 
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Figure 16: Total Cost for Network 3 with Low Uncertainty 
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Figure 17: Total Cost for Network 3 with Medium Uncertainty 
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Figure 18: Relative Cost for Network 1 with Medium Uncertainty 
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Figure 19: Relative Cost for Network 1 with High Uncertainty 
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Figure 20: Relative Cost for Network 2 with Low Uncertainty 
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Figure 21: Relative Cost for Network 2 with High Uncertainty 
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Figure 22: Relative Cost for Network 3 with Low Uncertainty 
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Figure 23: Relative Cost for Network 3 with Medium Uncertainty 


	Robust Cross-dock Location Model Accounting for Demand Uncertainty
	Recommended Citation

	tmp.1540787049.pdf.OD7AB

