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Abstract 

Surface finish is considered a critical characteristic for manufacturing components when 

manufacturers strive to produce components with high-quality characteristics predefined 

by design engineers. The objective of this research is to provide a cost-effective range in 

surface finish for single pass turning that enables the design engineers to explore a wider 

spectrum of alternative solutions without significantly affecting the functionality of the 

part. Apart from the one optimal solution, the proposed methodology, which is based on 

Geometric Programming, would provide a range of cutting conditions solutions that satisfy 

the economic and functional needs for the designer. This can be achieved by switching cost 

reduction focus from tooling to labor cost, particularly by adjusting variables values such 

as spindle speed and feed. An algorithm has been developed to find the new variables 

values. In addition, a sensitivity analysis model, based on metaheuristic techniques, will 

also be developed to further give a set of possible solutions that are practically preferable 

to the practitioners. In addition, the developed methodology can be applied to other 

engineering applications. The proposed methodology will provide a tool that enhances the 

design for manufacturability for companies to become more competitive. 
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'
mc  = Coefficient in the power constraint for the model in standard form 
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'
sc  = Coefficient in the surface finish constraint for the model in standard form 

d = Depth of cut, inches 

D = Diameter of the workpiece, inches 

iD  = The dual variables each corresponding with the ith term in the primal model 

f = Cutting feed, inches per revolution (ipr) 

g, h, and i = Exponents in the surface finish constraint 

maxHP  = Maximum machine power available, hp 

l = Length of the workpiece, inches 

LC = Labor cost, $ 

Lr = Labor cost per minute, $/min 

N = Spindle speed, revolutions per minute (rpm) 

n, m, and p = Exponents in Taylor’s tool life equation 

Q = The dual objective function 

maxSF  = Surface finish required, micro-inches 

T = Tool life, minutes 

TC = Tool cost, $ 

cT  = Average time to change a tool, minutes 

costT  = Tool replacement cost, $ 

Ter = Number of terms in the primal model 

Tm = Time of machining in turning process, minutes 

v = Cutting Speed, surface feet per minute (sfpm) 

Var = Number of variables in the primal model 

i   = Percentage of cost reduction at iteration i 

i   = Percentage of surface finish increase at interation i 

i  = The ratio of percentage cost reduction to percentage surface finish increase at i 
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 Chapter 1: Introduction 

1.1  Machining and Metal Cutting 

Machining is a manufacturing process which plays an important role in the production 

of a variety of different products. Machining processes can be differentiated by means of 

cutting, how the workpiece and cutting tool move with respect to one another. They can be 

grouped into two main categories, traditional and non-traditional machining processes. 

Traditional machining processes include broaching, boring, drilling, facing, filing, 

grinding, honing, milling, planning, reaming, sawing, shaping, tapping, and turning. Non-

traditional manufacturing processes include chemical, electrochemical, electro-discharge, 

electron beam, laser beam, plasma beam, ultrasonic, and water/abrasive jet machining.  

In machining, one particularly important and widely used manufacturing process is 

metal cutting. The science and technology of metal cutting is of great interest for the 

aeronautics, aerospace, alternative energy, automotive, biomedical, molds and dies, and 

other industries. Metal cutting refers to a manufacturing process in which parts are shaped 

by the removal of unwanted material. Interest in this topic has increased over the last 

several decades, driven largely by rapid advances in automation and control, computer 

technology, and materials science [1]. Micro- and nano cutting also have grown in 

importance, as the manufacture of microscale components has become increasingly 

important to the development of new products in the modern industry [1]. 

Reducing the costs of direct manufacturing associated with machining operations is a 

primary objective of manufacturing plants. Increased use of special alloys with advanced 

properties, an increasing number of quality requirements for machined parts, cycle time 
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reduction, and an increased use of high-speed and near-dry machining add additional 

considerations to cost reduction measures. In response, leading tool and machine 

manufacturers have developed new tool materials and coating, cutting insert and tool 

designs, tool holders, powerful precision machines, part fixtures, and advanced controllers 

[1]. These provide a wide spectrum of information about cutting processes and other 

aspects of machining and increase the efficiency of machining operations in the industry 

by increasing feed rates, reliability, tool life, and working speeds [1]. Different operations 

have different ways to reduce costs. 

In turning operation, for example, one way to reduce cost is optimization of process 

parameters. Such optimization problems may be classified into two categories: single-pass 

and multi-pass. In single-pass operations, the total depth of the cut is removed in one pass. 

Many studies have considered these types of operations [2-4]. Most turning operations, 

however, require multiple passes; therefore, multipass operations have also been 

extensively investigated in the literature [5-9].  

The exact definition of the optimization criterion for a particular machining process is 

critical. Most studies employed one of the following criteria: minimum production cost, 

minimum production time, a combination of minimum production cost and minimum 

production time, or maximum profit rate. The first three approaches have received the most 

attention in the literature. The fourth approach is not widely used, due to the lack of 

information and several uncertainties, such as variation of source material cost and product 

unit price during manufacturing. 

Many different optimization methods have been applied to determine the optimal 

machining parameters in turning operations, including the Nelder–Mead simplex method 
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[2], genetic algorithms [5], simulated annealing [6], a combination of simulated annealing 

and Hooke–Jeeves pattern search [7], geometric programming [8], and particle swarm 

optimization [10]. 

Turning is one of the most widely used processes in manufacturing industries, and has 

been the preferred choice of most operations research groups for developing and analyzing 

machining economics models [11]. The following sections will outline the turning process 

and illustrate the importance of parameter optimization for machining economics. 

1.2 The Turning Process 

Turning is the removal of an unwanted section from the outer diameter of a rotating 

cylindrical workpiece, and is used to reduce the diameter to a specified size, and to produce 

a smooth finish on the part. The machining economics problems related to turning, milling 

etc. consist of determining the process parameters, usually the cutting speed, feed rate, and 

depth of cut, to optimize the objective functions subject to machining constraints. 

Turning is the most used metal cutting process across the manufacturing industry [12]. 

The machine tool on which turning is accomplished is a lathe, with which the workpiece 

is held in a chuck and rotated. The turning tool is held rigidly in the tool post and moved 

at a constant rate along the axis of a bar, cutting away a layer of metal to form a cylinder 

or a surface of a more complex profile. Figure 1.1 illustrates a turning operation in which 

the tool moves an axial distance f, the feed distance, in one revolution to reduce the bar 

radius by an amount d, called the depth of cut. Figure 1.1 also shows the original diameter 

D of the workpiece being cut, and the angular spindle speed N at which the bar rotates. 
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Figure 1.1: The turning process 

The basic objective of turning process is to generate the desired shapes at minimum 

cost along with the required quality and delivery time. Achieving this objective is a 

challenging task, because of the variations in production requirements, tolerances, and 

materials used either in tools or workpieces. Main factors affecting the turning process can 

be grouped into the following [13]: 

1. Geometries. 

2. Cutting conditions. 

Geometries are related to both the geometry of the part being produced and the 

geometry of the cutting tool. The geometry of the part is perhaps an essential factor that 

affects the design of the process as well as the economics of the machining. Many 

considerations are required as to the size of the component, complexity of the shape, 

dimensions, tolerances, interaction with other parts, surface finish requirements. The 

process engineer must decide whether minor changes in part geometry are appropriate to 

increase the ease of manufacturing. In the scope of this research, the part dimensions are 

to be incorporated in the sensitivity of the model. Also, tool geometry is an area of major 
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significance and has many aspects. The primary objective here is optimizing the geometry 

of the cutting tool for the tool material used in the turning process. Separate studies are 

dedicated to the optimization of the cutting tools [14-16] and will be excluded in this paper. 

   Cutting conditions consider the selection of speed, feed, and depth of cut. This 

selection determines, to a large extent, the economic success of the operation. It is one of 

the tasks in process planning. Firstly, depth of cut is regularly predetermined by workpiece 

geometry and operation sequence and is to be considered constant in our model, which will 

be described in Chapter 3. It is regulated, however, by the available horsepower, machine 

tool, strength of the cutting tool, and so on. Therefore, the remaining variables to be 

optimized are feed and speed. Secondly, feed rate selection mainly depends on many 

factors including tool type and hardness, metal removal rate, and surface finish 

requirements. For example, high-speed steel (HSS) can tolerate higher feed rates as 

opposed to cemented carbides or ceramics tools. It is known that, generally, feed rate has 

the highest influence on surface finish followed by speed and depth of cut [17]. This result 

can be validated for the turning process, through sensitivity analysis. Finally, cutting speed 

plays a major role in tool life. It is required to achieve high metal removal rate as to speed 

up the process but yet maintains longer tool life. Thus, the ability to predict tool life is 

vitally important in tool management. Mathematical models were built to achieve a balance 

between these two contradictory factors. Most of these models are based on the well-known 

Taylor tool life equation, who machined approximately 30,000 tons of work material to 

establish tool life data. Taylor’s tool life equation [18] was initially influenced by cutting 

speed: 

   (1.1) 
nvT C
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where v is the cutting speed, T is the tool life, C is a constant, and n is an exponent exhibits 

the sensitivity of the specific tool life to changes in speed. An expanded version of Taylor’s 

equation [18] evolved with the changes in work material and tools which incorporate, in 

addition to speed, feed, and depth of cut:  

 n m pvT f d C    (1.2) 

The exponents m and p are to be determined experimentally for each combination of the 

cutting conditions, although typical values for certain tools are readily available. In a 

general analysis provided by De Garmo et.al [19], the cutting speed has a higher influence 

on tool life compared to feed and depth of cut. It is found that 50% increase in speed, feed, 

and depth of cut results in a 90%, 60%, and 15% decrease in tool life correspondingly. A 

key player in this is the horsepower consumed. For example, if power is limited, depth of 

cut then feed should be maximized while holding the speed constant. 

Determining the optimal process parameters is an essential part of planning machining 

processes since the process parameters have a significant effect on the cost, productivity, 

and quality of machining operations. Previous studies involving machining parameter 

optimization of turning operations concentrated on single-tool operations, where the 

process is performed by means of one cutting edge. It was shown that there exists an 

optimum speed in single pass turning operations, where the required cutting is achieved in 

one pass as oppose to several roughing cuts and a finishing cut. It was found that increasing 

the cutting speed would reduce the actual (traverse) cutting time and cost in machining a 

component, but that the production interruption time and cost due to tool failure and 

replacement would increase. A compromise between the two produces an optimum speed 
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for which an overall minimum time or cost per component would need to be selected. 

Investigators have also realized that both speed and feed must be optimized according to 

the desired criterion while satisfying practical constraints, such as the machine tool 

available power, speeds, and feeds. Numerous mathematical optimization analyses and 

strategies for the selection of cutting speed and feed have been reported in the literature, 

with most depending on knowledge of predictive (empirical) equations for machining 

performance characteristics such as tool life, force, and power. In addition, optimization 

strategies incorporating practical constraints require significant knowledge of the machine 

tool specifications and capabilities. Thus, solving the more general problem of selecting 

optimal machining conditions requires more sophisticated techniques. The mathematical 

models are inherently nonlinear, constrained by the available speeds, feeds, horse-power, 

surface quality, tool life, and other factors. Complex relations occur between process 

parameters and the constraints in turning process, and in machining in general. Taking all 

such constraints into account, especially when they are non-linear, further complicates the 

matter. 

1.3 Need for Research 

Most of the recent attention in machining economics is focused on finding the optimal 

cutting parameters [20-32], as will be shown in section 2.1.2. Although operating with 

optimal cutting conditions plays an important role in reducing machining issues such as 

tool wear, other economic and managerial aspects are also important when selecting cutting 

conditions. Moreover, the manufacturing engineer is limited to the theoretical solution 

provided by optimization models. Sometimes a specific theoretical optimal solution is no 
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longer practically applicable and, hence, more alternative solutions must be obtained using 

post-optimal analysis. 

Depending on work and tool material and turning environment, cutting conditions 

affect surface finish significantly [33-35]. Also, One of the principles of design for 

manufacturability (DFM) is to specify “acceptable” surface finish for functionality [36]. 

Thus, assuming a range of surface finish requirement has been declared acceptable for the 

specification of the turned part, we are interested in determining what cutting conditions 

would provide the most reduction in cost within the defined surface finish range. It is also 

of interest that a set of possible solutions is provided according to a required reduction in 

unit cost by changing input data, such as operating costs, tools costs, and constraints 

boundaries. For example, what solutions are possible that would give a 1.5% required 

reduction in cost, in compromise to specific parameter changes. The user, in this case, pre-

specifies what input parameters to be changed. Finally, an interesting result would be to 

find out what small changes in process parameters would provide the most significant 

change in production unit cost. For instance, the model suggests that small changes in 

design with a slight variation in the surface finish would give the most significant changes 

in unit cost. These changes, again, are defined by the user depending on the specific 

application. The developments of such scenarios would help the manufacturing engineer 

to obtain practical solutions easily. 

1.4 Research Objectives 

In this research, a mathematical model will be developed for a single-pass turning 

process with surface finish and power constraints. The model will provide alternatives to 
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achieve certain economic goals. The variables to be optimized will include the speed and 

feed rate. The objectives can be stated as: 

(1) Design and develop a model that incorporates cost-effective surface finish 

range constraints,  

(2) Develop a solution procedure for model, and 

(3) Conduct sensitivity analysis for key variables and parameters used in the model. 

1.5  System Diagram 

 

Figure 1.2: System diagram 

Figure 1.2 provides a schematic view of the optimization process. The process begins 

with the selection of input parameters. These parameters can, of course, be changed after 
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the first full cycle of the process to obtain different solutions. These parameters are altered 

arbitrarily at first. After a significant improvement to the optimization process has been 

realized, one can negotiate or improve the real system to obtain the recommended value of 

that parameter. Second, the model should provide the optimal solution for the inputted 

parameters. This optimal solution provides a starting point for sensitivity analysis. Third, 

comes the post-optimal model, in which more suitable solutions are obtained analytically 

based on some user criteria. These new solutions may violate one or more constraints, yet 

still be preferable to the user for economic reasons. Finally, if the user is satisfied with the 

recommended solutions, they can be applied; for example, allowing the surface finish to 

go off target. These solutions provide economically better results, regardless of the quality 

characteristic being violated.  

1.6 Conclusion 

One of the major goals of industrial production is to reduce manufacturing costs 

without tolerating the quality of the components. Consequently, sophisticated modern 

machine tools require an optimization procedure to determine optimal operating 

parameters such as cutting speed, feed rate, and depth of cut. The problem of selecting 

these optimal parameters in turning is a substantial problem and thus has been analyzed 

with varying degrees of generality by many investigators. Moreover, further analysis 

beyond just obtaining a theoretically optimal solution must be considered, even though a 

certain quality characteristic being tolerated.   
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 Chapter 2: Literature Review 

2.1 Literature Survey 

The main objective in machining is to produce high-quality products while minimizing 

production costs. Cost consciousness with respect to the metal cutting process is an 

essential element in efficient manufacturing, and thus it is essential to analyze the metal 

cutting operations in the context of economic conditions. Due to the high capital cost and 

machining cost of CNC machines, there is a clear economic need to operate machines as 

efficiently as possible. The success or failure of a machining operation thus heavily 

depends on the selection of machining parameters such as cutting speed, feed, and depth 

of cut. A process planner selects the machining parameters based on experience and based 

on available handbooks, but these parameters do not necessarily yield optimal values or 

minimize production costs. Further, theoretically optimal solutions obtained by 

optimization tools are not always practically applicable. 

2.1.1 The Early Literature 

The single-pass turning operation has been thoroughly investigated, and several 

optimization techniques have been developed for it. The classical approach [37, 38], the 

probabilistic approach [4, 39], the adaptive approach [40], the Monte Carlo Simulation 

Technique [41] and others [42], [43] are some of the commonly used basic techniques. 

Mukherjee and Ray [44] classified the optimization of machining mainly into conventional 

and non-conventional techniques. Figure 2.1 shows the structure of this classification.  

Conventional methods of determining optimal machining parameters require the use of 

a large number of mathematical formulas that have been developed from experimental data. 
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However, these fail to account for the systematic and random errors associated with any 

set of experiments. Since optimization is a decision-making process, the results so obtained 

should serve to achieve the user’s objectives. Some notable examples from the literature 

are given below. 

 Gilbert [38] previously used an analytical procedure for determining cutting speed in 

a way that minimizes machine cost for a single-pass turning operation. Armarego and 

Russel [45] later used the calculus method to solve this optimization problem, whereas 

Bhattacharyya et al. [46] and Brewer [47] used the Lagrange method. Ermer [48] illustrated 

a geometric programming technique that can be used to determine the optimum machining 

condition by considering cutting velocity and feed as variables, reducing cost as the 

objective, and surface finish and feed as constraints. Gopalakrishnan et al. [49] then 

improved upon this work by developing an analytical approach based on geometric 

programming. Iwata et al. [4] presented a dynamic programming model for the 

simultaneous determination of the optimal value of cutting speed, feed and depth of cut for 

an individual pass, and also determined the optimum number of passes. Rao and Hati [50] 

used computerized methods in the selection of optimized machining parameters for a job 

requiring multiple operations. Wang et al. [51] used a deterministic approach to maximize 

production rate. 

Wang and Liu [52] used geometric programming principle to develop a solution 

method capable of deriving the interval unit production cost with interval parameters. A 

pair of two-level machining problems is formulated to calculate the upper and lower 

bounds of the unit production cost. The results indicated that the cost interval contains more 

information relevant to the decision-making process. Agapiou [2] has investigated the 
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optimization problem for a multi-stage machining system. This work proposed the Nelder-

Mead simplex (NMS) method for optimization. The author used the idle time to the full 

extent at all machining stations, with the intention of improving tool life and thereby 

achieving the desired cost reduction. Later, the author developed a combined objective of 

cost and time using the weighted coefficient method. Lambert and Walvekar [53] also 

developed a dynamic programming model for the multipass turning operation based on the 

constraints of force, cutting power, and surface finish. Geometric programming has been 

used to determine the values of machining variables with the objective of minimizing 

production costs in two-pass turning examples only. Subsequently, Yellowley and Gun 

[54] have shown that the optimal subdivision of depth of cut for both turning and milling 

operations may be determined without knowledge of the relevant tool life equation. A 

calculation of machining parameters in a turning operation using machining theory was 

carried out by Meng et al. [55], with an objective criterion of minimizing cost. Prased et 

al. [56] used a combination of geometric and linear programming techniques to solve the 

multipass turning optimization problem as part of a PC-based generative CAPP system. 

Multipass turning optimization with the optimal subdivision of depth of cut was developed 

by Gupta et al. [57]. Tan and Crease [58] implemented linear programming with branch 

and bound to explore the optimization of machining parameters in multipass operations. 

Also, the goal programming method has been used by many researchers [59] to solve 

similar problems. Similar problems have also been solved using several other methods, 

namely, dynamic programming [60], mathematical programming [61], and sequential 

quadratic programming [62] 
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Figure 2.1: Optimization tools/techniques used for machining economics problems [44] 

Non-conventional, meta-heuristic, search-based techniques, which are sufficiently 

general and extensively used by modern researchers are based on genetic algorithm (GA), 

tabu search (TS), and simulated annealing (SA). Some examples of these techniques are 

given below.  

Chen and Tsai [6] developed an optimization model for a continuous profile using the 

SA approach. This model simultaneously considers straight turning, taper turning and 

circular turning. Bhaskara, Reddy, et al. [63] used the GA to select the optimal depth of cut 

which minimizes production cost in multipass turning operations. Onwubolu and Kumalo 

[9] implemented GA to determine the optimal values of cutting variables in multipass 

machining operations, but they did not consider the depth of cut constraint. Wong and 

Hamouda [64] presented GA and a fuzzy expert system for use in developing a design for 
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metal cutting data selection. In addition to traditional parameters, they also used tool 

material, tool shape, cutting fluid, and characteristics of the machine tool as major 

independent variables. Saravanan et al. [65] used GA and SA separately and compared the 

values for turning cylindrical stock into a continuous finished profile. The machining 

variables were determined by minimizing the unit production cost, and subject to a number 

of practical constraints. Vijayakumar et al. [66] developed a model based on the ant colony 

algorithm for a multipass turning operation, which remains one of the non-traditional 

optimization techniques that researchers believe could give optimal global solutions. Cus 

and Balic [67] used GA to reduce the production cost and time by implementing a new 

methodology for continuous improvement of the cutting condition with GA. Ping et al. 

[68] used the particle swarm optimization  (PSO) technique to find the optimal choice for 

machining parameters. The constriction factor, velocity constraint, and population size 

were all found to impact the performance of PSO significantly. Increasing the population 

size can improve the solution quality, but may also increase the required computational 

time. Sardinas et al. [69] also used GA for a multi-objective optimization problem. The 

two conflicting objectives are to increase tool life and decrease operation time. Ruy 

Mesquita [70] used the Hook–Jeeves search method for finding the optimum operating 

parameters. Chen et al. [71] developed an optimization model for machining a continuous 

profile from bar stock using an SA approach. A direct search procedure was used by 

Arsecularatne et al. [72] to determine the optimum cutting parameters for right- and left-

hand turning, boring, facing, and threading. Most researchers in the area of machining have 

used various techniques to find the optimal machining parameters for single- and multi-

pass turning operations. Saravanan et al. [73] attempted to utilize various non-traditional 
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techniques to optimize the machining parameters in turning operations. Natarajan et al. [74, 

75] suggested using the PSO method and GA to predict tool life and optimize cutting 

parameters. The literature supports the fact that the optimal selection of cutting speed, feed 

rate, depth of cut, and the number of passes is important in machining operations because 

of their significant influence on machining quality and machining economics. 

Other techniques based on empirical input-output and in-process optimization have 

also been reported in the literature. One example of such a technique was reported by 

Zuperl and Cus [76], who used a neural network to optimize cutting conditions, with an 

objective function of increasing productivity and reducing cost.  

2.1.2 The Most Recent Literature  

In the next section, the most recent models and optimization solutions will be reviewed 

for single pass turning and multiple-pass turning operations. A summary table will be 

presented at the end showing what method has been used for the specific study. 

Devaki et al. have used RSM to optimize the process parameters for a straight turning 

[23]. Surface roughness was considered as a quality measure and material removal rate 

(MRR) as a productivity measure. The process parameters considered were spindle speed, 

feed, depth of cut, and type of coolant. Design of experiments (DOE) was used to set up 

and conduct the experiment and analysis of variance (ANOVA) was used to check the 

adequacy of the linear order model suggested. It was found that feed and depth of cut have 

less effect on MRR while speed has a more significant impact on MRR. Moreover, feed 

has more significant effect on surface roughness. Also, cutting speed has more significant 

effect on tool life. The optimal setting of machining parameters was also reported after 

using RSM. 
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Çolak employed a hybrid model based on genetic algorithm and used multi-regression 

to determine the optimum cutting parameters for multi-objective single-pass turning [22]. 

The performance measures considered were surface roughness, MRR, and cutting power. 

Taguchi designs were utilized to conduct the experiment. It was mainly concluded that tool 

life is remarkably different in each cooling condition specified, namely conventional and 

high-pressure cooling. Also, it was observed that cutting conditions did not change 

significantly under the cooling conditions specified.  

Raja et al. implemented a metaheuristic algorithm called firefly algorithm (FA) to 

select the optimum process parameters while minimizing production time and production 

cost [29]. The researchers implemented the method and compared its performance with 

well-known algorithms like particle swarm optimization (PSO), genetic algorithm, and 

Nelder-Mead Simplex (NMS), and three other methods. Out of the seven methods 

investigated, FA was ranked 5th among the other methods, whereas PSO was ranked 1st. 

Senthilkumaar et al. have coupled GA with ANN for the optimization of Single-pass 

finish turning [30]. Data were collected from experiments conducted based on design of 

experiments. Process parameters were cutting speed, feed, and depth of cut and the 

responses were flank wear and surface roughness. It was concluded that all main factors 

and their interactions are not statistically significant to predict the surface roughness 

whereas they are statistically significant to predict flank wear. Confirmation experiments 

were conducted for the optimal machining parameters, and the results agreed with the 

model prediction. 

Jain et al. have used the conventional Taguchi method to optimize the MRR for single 

pass turning [27]. Three levels were specified for each process parameter, namely speed, 
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feed, and depth of cut. It was found that spindle speed and feed rate are the only significant 

factors affecting MRR for the identified experiment. 

Carmita has utilized RSM and developed regression models to optimize a multi-

objective rough turning [21]. Energy consumption and surface roughness were minimized, 

while the material removal rate of the process was maximized. It was found that feed rate 

and depth of cut were the most significant factors for minimizing the total specific energy 

consumed, and for minimizing the surface roughness, feed rate was the most significant 

factor. It was also found that the optimal turning parameters suggested by the proposed 

optimization model can reduce the energy consumption by around 14%, and the surface 

roughness by around 360%. 

Durairaj and Gowri have applied GA to optimize the process parameter of micro-

turning Inconel 600 alloy with titanium carbide coated tool [24]. Full factorial experiments 

were conducted, and a non-linear regression model was developed. The objectives 

considered were conflicting; surface roughness and tool wear. The optimal settings were 

reported for the specified case. It was concluded that best surface finish could be obtained 

with low cutting speed, low feed rate and low depth of cut. 

Yildiz has applied a relatively new optimization algorithm called teaching–learning-

based optimization (TLBO) and coupled it with Taguchi’s method [31]. TLBO is a 

teaching–learning inspired process algorithm to solve nonlinear optimization problems 

proposed by Rao et al. [77], which is a population-based method. TLBO algorithm imitates 

the influence of a teacher on the output of learners in class. Yildiz has considered multiple 

passes with the objective of minimizing production cost. It was concluded that the proposed 
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model performed quite well and that it provided better solutions compared to other 

approaches. 

Aryanfar and Solimanpur have used GA to simultaneously optimize the multi-pass 

roughing and single-pass finishing parameters [20]. In addition to traditional process 

parameters, the number of roughing cuts is also considered in multi-pass turning 

optimization. It was concluded that the proposed GA model overcomes other conventional 

and non-conventional methods proposed in the literature. 

Jabri et al. have also considered GA model to minimize the cutting cost while 

maximizing tool life [26]. The model was built to consider multi-pass turning. It was 

mainly concluded that cutting cost could be minimized by selecting large values for cutting 

speed and feed, but small values should be selected for both speed and feed to maximize 

tool life. The results obtained from the GA model were plotted in a Pareto frontier graph 

to help in the decision-making process. Similar model and methodology were also followed 

by Ganesan and Mohankumar [25]. Pareto frontier graphs were plotted for unit production 

time and cost, tool wear and unit cost, and tool wear and unit production cost. The optimal 

values were reported for the case provided. 

Lu et al. have used a hybrid genetic algorithm and sequential quadratic programming 

technique to minimize the production cost [28]. They, however, added a second phase to 

the problem where the optimal cutting sequence is found using dynamic programming. The 

cutting sequence for multi-pass turning “has not gained much attention in many previous 

studies,” they stated. It was shown that the sequence of the cuts does affect the optimization 

process. 
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Yildiz has employed a hybrid optimization approach based on artificial bee colony 

algorithm and Taguchi method to optimize multi-pass turning [32]. As Yildiz mentioned, 

artificial bee colony algorithm is an optimization algorithm which is based on the 

intelligent foraging behavior of honey bee swarm. The proposed method was tested and 

compared to previous work. The results showed that the proposed method is highly 

competitive to previously published methods for multi-pass turning. 

Table 2.1: Summary table of recent academic models and solutions in turning. 

Researchers Year Passes Objective Method/Model Used 

Devaki et al.  2015 Single Multiple Response Surface Methodology 

Çolak  2014 Single Multiple Hybrid genetic algorithm 

Raja et al.  2012 Single Multiple Firefly algorithm 

Senth. et al.  2012 Single Multiple Genetic algorithm and artificial neural 

network 

Jain et al.  2015 Single Single Taguchi 

Carmita  2015 Single Multiple Response Surface Methodology 

Durairaj et al.  2013 Single Multiple Genetic algorithm 

Yildiz 2013 Multiple Single Teaching–learning–based optimization 

and Taguchi 

Aryanfar et al. 2012 Multiple Single Genetic algorithm 

Jabri et al. 2013 Multiple Multiple Genetic algorithm 

Ganesan et al. 2013 Multiple Multiple Genetic algorithm 

Lu et al. 2013 Single Multiple Genetic algorithm and sequential 

quadratic programming 

Yildiz 2013 Multiple Single Hybrid artificial bee colony algorithm 

and Taguchi 

 

We can see from Table 2.1 that recently non-conventional methods and hybrid models 

have relatively gained popularity over other optimization methods. This is because 

researchers have recently been considering more complex aspects of the optimization 

process for turning. For example, almost none of the reviewed most recent literature has 

considered the very basic problem, a single pass with one objective. Researchers have 

considered, multiple passes, cutting sequence, MRR, energy consumed, among other 
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variables and objectives. In such situations, non-conventional optimization methods 

surpass other methods [78]. Most of the early researchers, however, have used traditional 

optimization techniques for solving machining problems. These techniques, again, are not 

efficient when the practical search space is large [79]. Numerous constraints and the 

number of passes complicate the machining optimization problem. Traditional techniques 

such as geometric programming, dynamic programming, and branch and bound techniques 

have difficulty solving such problems and are inclined to obtain only locally optimal 

solutions. Despite these drawbacks, this research attempts to use traditional optimization 

techniques, specifically geometric programming, to further develop the post-optimality 

analysis. Major reasons include: 

(1) The core idea of the research was based on the dual of a geometric programming 

model. 

(2) The ability of traditional methods to give exact solutions. 

(3) The ease of obtaining analytical solutions for relatively small size problems. 

(4) The use of analytical solutions in post-optimality analysis instead of problem 

resolution. 

2.2 Geometric Programming 

It is now four decades since the initial development of geometric programming 

(GP) by Duffin, Peterson, and Zener [80]. It has proved to be valuable for a variety of 

disciplines, engineering design, transportation, management science, planning, and 

reliability, among other. The text of Beightler and Phillips [81] gives a broad selection of 

applications. 
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Geometric programming can be defined as a methodology for solving nonlinear 

algebraic optimization problems. It can be seen as a subset of nonlinear programming. It 

can also be seen as a broader method than nonlinear programming as it has been shown by 

Beightler and Phillips that nonlinear programs may be transformed to geometric programs 

using simple algebra. 

Geometric programming has many powerful properties that make it useful. The 

first, and possibly the most useful, the property that a program can be transformed into an 

equivalent program, called the dual, which has linear constraints. This transformation 

makes it much easier to solve the problem. The second property is that in a special case the 

solution to the dual program is independent of the coefficients used in the problem. This 

special case is when we have zero degrees of difficulty, which is the number of terms minus 

the number of variables minus one, as defined by Duffin et al. This will be further 

illustrated in this report. Finally, many engineering design problems, which has cost and 

constraints that are power functions of the variables, can be modeled using geometric 

programming. 

Many algorithms were developed for GP in the first two decades after its inception, 

surveys of which may be found in Dembo [82], Sarma et al. [83] and Rijckaert and Martens 

[84]. While modern development has slowed, recently several new techniques based on 

interior point methods have been presented by, to name only a few, Bricker and Yang [85]; 

Kortanek and No [86]; and Kortanek, Xu, and Ye [87]. These solution techniques may be 

categorized as either primal-based algorithms that directly solve the nonlinear primal 

problem, or dual-based algorithms that solve the equivalent linearly constrained dual. 

While the dual is intuitively more attractive due to its relative structural simplicity, it also 
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presents serious computational problems. These are particularly problematic when slack 

primal constraints are present at the optimum. Also, difficulties arise when the objective 

function becomes non-differentiable when some dual variables become zero at an optimal 

solution. Also, recovering the primal variables values in these cases requires a more 

complicated sub-problem, called the subsidiary problem. These issues have caused some 

researchers to abandon the linear structure and address the primal directly. However, in our 

research, we will follow the dual-based procedures for the benefits explained. 

2.3 Conclusion 

Several researchers have investigated the optimization of machining economics 

models. The machining economics models can be divided into conventional and non-

conventional models based on the nature of the solution procedure. Various structure 

parameters may be included in these models, including optimization criteria, unconstrained 

or constrained models, deterministic or probabilistic tool life models, and solution 

techniques.  

One must also note the importance of the number of cutting variables and the form of the 

tool life equation in model formulation. Various machining economics models have been 

developed based on the optimization criteria, tool life equations, cutting variables, and 

constraints. In general, the criteria of optimization can be categorized into: 

(1) maximizing the unit profit of machining, 

(2) minimizing the unit cost of machining, 

(3) minimizing the unit time of production or maximizing the production rate, or 

(4) maximizing the material removal rate of machining. 
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These four categories are interrelated, and the problem of selecting machining variables 

can be formulated in accordance with any of these objective criteria according to a user’s 

unique practical concerns.  
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 Chapter 3: The Model 

3.1 Model Assumptions 

Here are some assumptions for our model: 

1. Single pass turning is considered. 

2. The following input parameters are known: 

a. Labor cost 

b. Tool cost 

c. Exponent constants. 

3. Machining cost includes only actual cutting, while idle time cost and rapid traverse 

are excluded.  

4. The depth of cut is constant and set to 0.2 in. 

5. No constraints on cutting speed and feed rate. 

3.2 Primal and Dual Problems 

The formulation of the problem starts with the development of the objective 

function, which includes, in our case, labor cost and machining cost. These cost terms are 

dependent on machining time. Machining time, , can be calculated as, 

   (3.1)  

where, 

l: The length of the workpiece. 

f: The feed rate. 

N: The rotational speed (spindle speed). 

The value of rotational speed in terms of speed and workpiece diameter is expressed as, 

   (3.2) 
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where v is the speed in feet/minute and D is the diameter of the workpiece in inches. Now 

we can substitute equation (3.2) in equation (3.1) to obtain the cutting/machining time 

equation that can be used to derive other cost terms: 

   (3.3) 

The first term in our objective function is the labor cost (LC), which is the labor cost per 

unit, denoted as Lr, multiplied by machining time. Hence, LC can be expressed as: 

   (3.4) 

This equation (3.4) can be reduced to: 

   (3.5) 

where is a constant giving by, 

   (3.6) 

The second term is the tool cost (TC), which include labor cost to replace the tools and the 

actual tool cost. 

   (3.7) 

Where  is the average time in minutes to change a tool and  is the tool replacement 

cost. These costs are dependent on the number of times tools fail. The expanded Taylor’s 

tool life equation used early by Ermer [88] can be used to derive tool cost: 

   (3.8) 
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where T is the tool life in minutes, d is the depth of cut, and n, m, p, and C are constants 

related to the material being used. Hence, T can be expressed as: 

   (3.9) 

Thus, the average number of times the tools fail can be given by dividing machining time 

by tool life; that is equation (3.3) by (3.9): 

   (3.10) 

It can be shown that equation (3.7) can be reduced to: 

   (3.11) 

where  is a constant expressed by, 

   (3.12) 

Therefore, the objective function can be stated as: 

   (3.13) 

The constraints are as used in some literature [48, 49]. The first constraint is the power 

constraint: 

   (3.14) 

The second constraint is the surface finish required and can be expressed as, 

   (3.15) 
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Therefore, the primal problem can be put together in standard geometric programming 

form as: 

  

Power Constraint:    (3.16) 

Surface Finish Constraint:    (3.17) 

  

where, 

   (3.18) 

The dual geometric programming formulation is obtained as the following: 

   (3.19) 

Subject to the normality condition, 

   (3.20) 

and the orthogonality conditions, 

   (3.21) 

   (3.22) 
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Computationally, the dual problem is easier to solve than the primal problem, 

which maximizes  subject to a linear normality equation and the orthogonality 

conditions (one for each variable). The degree of difficulty of the dual problem can be 

calculated as defined by Duffin as, 

 1Ter Var     (3.23) 

where Ter is the number of terms in the primal problem or the number of dual variables, 

and Var is the number of variables in the primal problem, or the number of orthogonality 

constraints in the dual problem. It can be seen that if the degree of difficulty is zero, then 

the solution to the system is unique. Also, if it is equal to one, then the system can be 

rendered in terms of one dual variable and the optimal solution can easily be found. The 

larger the degree of difficulty the more complex the problem becomes. It turns out for our 

case that the degree of difficulty is equal to two. 

3.3 Computer Model 

3.3.1 Obtaining the Optimal Solution 

The initial mathematical models developed in Section 3.2 is modeled using Microsoft 

Excel. For simplicity, input parameters will be adapted and modified in our preliminary 

analysis from the example proposed early by Ermer and Kromodihardjo [88]. They are as 

follow, 

1 2 3 4, , , 0D D D D 
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the primal problem can be reinstated as, 

   (3.24) 

whereas the dual problem is: 

   (3.25) 

with the constants being: 

   (3.26) 

Note that  and  from dual problem correspond to the first and second term in the 

primal problem respectively while corresponds to the first and second constraint 

terms respectively. It can be shown that all the dual variables in system (3.25) can be 

expressed in terms of only one variable, say . The resulted substitutions give the 

following reduced system: 
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   (3.27) 

The objective function can now be plotted dependent only on (See Figure 3.1). The 

resulted curve is concave and differential calculus can be used to obtain the maximum 

value. 

 

Figure 3.1: The dual objective function in terms of only one dual variable 

This plot shows the behavior of the dual objective function over all possible values for

. Note that not all values are feasible. Any value of , however, in the given range 

gives values for the other dual variables which satisfy the normality and orthogonality 

conditions. The problem is to select the optimal weight of  among these infinite 

possibilities. It can be shown, however, from the set of inequalities in system (3.27) that 

the feasible region lies where  is in the interval [0.5632, 1]. Within this range, the 
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solutions obtained will satisfy the normality and orthogonality condition for the dual 

system. Differential calculus can be used to show that the optimal solution occurs at 

 with an optimal dual objective of $1.38. The generalized solution procedure 

will be specified later. 

3.3.2 Preliminary Analysis 

In this section, the principle idea of this research is illustrated. First, let us examine 

the traditional way to perform a post-optimal analysis or construct a cost analysis curve. In 

the traditional post-optimal analysis the number one on the right-hand side for the 

constraint of interest, in a standard geometric primal problem, is changed slightly to see 

the effect on the dual function [89]. A perturbed primal problem is formed by replacing the 

number one by a positive parameter, say . The perturbed problem becomes: 

   (3.28) 

Table 3.1 summarizes the different cases when varying this parameter: 

Table 3.1: Effect of right-hand-side change on cost 

Case Range Interpretation Effect 

A  The problem reduces 

back to the original 

primal problem 

None 

B  The surface finish 

constraint is 

loosened 

The surface finish constraint has been 

loosened by  or SFmax is 

increased by the same percent change. 

C  The surface finish 

constraint is 

tightened 

The surface finish constraint has been 

tightened by  or SFmax is 

decreased by the same percent change. 
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Recall that for our model  . If the surface finish constraint is loosened 

by , we can equivalently say that the maximum desired surface finish is 

increased by , keeping all other parameters constant. Also, note that the 

optimal solution for the perturbed problem is not necessarily a feasible solution for the 

original primal problem. An optimal cost/surface finish curve can now be obtained (Figure 

3.2). 

 

Figure 3.2: Cost versus surface finish curve 

In this plots, the optimal cost curve is plotted. At each iteration (gradual increments in 

surface finish) a new optimization is performed. Consequently, a new optimal  value is 

obtained with different cost value. Also, an optimal solution at iteration i is not necessarily 

a feasible solution for the base model. In fact, it would be most likely considered an 

infeasible solution for the original problem, because the surface finish constraint would be 

violated. This analysis is performed on the primal problem. One can perform traditional 
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post-optimal analysis on the dual problem by gradually varying surface finish, for example, 

and keeping the dual variable  at the optimal value, resulting in exactly similar results 

as if conducted on a primal problem.  

 Our approach for post-optimal analysis uses the dual problem. The basic principle 

is that we deviate  from the optimal value, resulting in a new spectrum of solutions. 

Therefore, it is unnecessary that the value of  at iteration i would correspond to an 

optimal value to that iteration. In other words, we are arbitrary assigning more weight to 

one term in the objective function over the other. This could practically mean that investing 

more in labor is economically preferred over investing in tools within certain limitations, 

although some specific quality characteristics being not met.  

 Let us define the following measure to help assess the relation between cost and the 

quality characteristic; the surface finish in our case. 

   (3.29) 
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is the measure of the optimization process, where it computes the ratio of the percent 

decrease in cost to the percent increase in surface finish at iteration i from the base solution. 

Thus, we need to find out the point at which this measure reaches the maximum value 

1D

1D

1D

 i
i

i

i





 

i
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during the analysis. is the percentage of cost reduction at iteration i. Similarly, i
 
is the 

percentage of surface finish increment at iteration i. Note that the dual variable  

gradually increases, at a constant rate, from iteration to the other. 

 Looking at Figure 3.3, we note that  is initially equal to zero for the base model. 

Then it gradually increases to a maximum point where the magnitude of reaches its 

maximum as we deviate from the dual optimal value . The more we deviate 

from optimality, the more the surface finish becomes over tight, more violated. We can see 

that, in this case, one can increase surface finish from 50 microinches to approximately 67 

microinches (a 35.14% increment), to obtain the most significant reduction in cost, 3.89% 

decrease. This occurs at approximately 1 0.79D  . Unlike the traditional relation charts 

like in Figure 3.2, obtained by the primal problem, this type of analysis provide 

information on the significance of each increment of the surface finish. 

 

Figure 3.3: The relation curve with the new measure ρ 

 

3.4 Future Analytical Model 

The computer model exposed an opportunity for cost reduction in the cutting process. 

Although this reduction seems small for a unit production, it can be vital in annual savings. 

i

1D





1 0.662D 
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Hence, it is worth exploring the opportunity and find new ways to save money. It is 

essential to building a mathematical base for this type of analysis in the future. One should 

investigate the following: 

(1) What other measures would be appropriate for post-optimal analysis for 

geometric programming? 

(2) How can one obtain an analytical solution to the problem? 

(3) How can the dual variable  be varied so that the specified measure be 

optimized? 

(4) What other constraints are appropriate and impose significant contribution 

to the cost? 

3.5 Conclusion 

The machining economics problem is a popular problem that still has the potential for 

improvements. Although obtaining the optimal solution is a relatively well-addressed 

problem, the post-optimal analysis is still an open space for research. The computer model 

and the preliminary analysis illustrated show potential for improvement. More 

investigation and future analytical solution shall be conducted. 

  

1D
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 Chapter 4: The Solution Approach 

4.1 Introduction 

In this chapter, an analytical procedure will be developed and presented to solve the 

problem. In addition, some of the relations that are necessary for the solution approach will 

be presented.  

4.2 Derivation of Solution Cases 

In this section, the problem will be decomposed into two smaller cases assuming the 

surface finish constraint is always tight at the optimal solution, meaning the constraint 

holds with equality at optimality. 

Consider the primal system consisting of equations (3.13), (3.16), and (3.17) along with 

the non-negativity conditions. Also consider the dual system of equations (3.19), (3.20), 

(3.21), and (3.22) with the non-negativity conditions. The dual system is easier to work 

with since the set of constraints are linear. Assuming the surface finish required, equation 

3.17, is always attained at the optimal solution, we should have two and only two cases. 

The first case is true when the power constraint, equation 3.16, is loose at optimality, while 

the second case holds when the power constraint is tight at an optimal solution. We shall 

derive the solutions to each case in the following lines: 

4.2.1 Case A: Loose Power Constraint 

The following derivation for Case A has been reported by professor Gopalakrishnan and 

Al-Khayyal [49] but will be reported again for the sake of completeness. According to 

geometric programming duality theory and complementary slackness, when a specific 
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primal constraint is loose at optimality, the corresponding dual variable will be equal to 

zero. This can be represented mathematically for our case as: 

 3( ) 0b c e
m maxD c v f d HP    (4.1) 

Having 3 0D   will leave us with the following system of dual constraints: 

1 2

1 2 4

1 2 4

1

1
( 1) 0

( 1) 0

D D

D D gD
n

m
D D hD

n

 

    

    

 

This system has a unique solution and can be easily found as: 

 1
( )

1
n g n

D
h gm


 


  (4.2) 

 2
( )n n g

D
h gm





  (4.3) 

 3 0D    (4.4) 

 4
1m

D
gm h





  (4.5) 

Hence, we can note that the values of optimal dual variables values are independent of the 

primal coefficients in case we have loose horsepower but tight surface finish.  
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4.2.2 Case B: Tight Power Constraint 

The case when we have tight power constraint in addition to the surface finish is a more 

difficult case, where we can render the dual constraint in terms of one dual variable, say 

1D , and then substitute in the dual objective function: 

 10 1D    (4.6) 

 2 11D D    (4.7) 

 31 32 1
3

d

c c D
D

c


   (4.8) 

 41 42 1
4

d

c c D
D

c


   (4.9) 

where, 

 31 ( 1) ( )c h n g m n      (4.10) 

 32c h gm    (4.11) 

 41 (1 ) ( )c c n b m n      (4.12) 

 42c bm c    (4.13) 

 ( )dc n bh cg    (4.14) 

Now we can substitute (4.7), (4.8), and (4.9) into (3.19) to get an unconstrained dual 

system: 
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    
1

( )1 1
31 32 1 41 42 11 2

/c ( )/
' '

( 1 1)1

Maximize  
1

D D
c c D c c D c

m s
D

d dc c
Q c c

D D


    

    
   

 

 (4.15) 

Differential calculus can be used to obtain the maximum of (4.15). Before we do so, let us 

take the natural logarithm of the function to make the differentiation process easier. Taking 

the natural logarithm to (4.15) yields: 

 

   

1 2
1 1

1 1

31 32 1 41 42 1' '

ln ln (1 ) ln
1

ln
d d

m s

c c
Z Q D D

D D

c c D c c D
c c

c c

   
      

   

    
    
   

  (4.16) 

Equation (4.16) can be expanded and rearranged as: 

    

   

1 1 1 1 1 1 1

31 41

32

2

42
1

'

' '
1

'

ln ln ln (1 ) ln (1 ) ln(1 )

ln ln

ln ln

d d

d d

m s

m s

Z Q D c D D D c D D

c c
c c

c c

c c
c D c D

c c

       

   
    
   

      
       
         

  (4.17) 

Equation (4.17) can be differentiated with respect to 1D  and get: 

 31 41
1 1 1 2

' '' ln(1 ) ln ln ln ln ln
d

m s
d

c c
Z D D c c c c

c c
         (4.18) 

For simplicity define the following new constants: 

 1 2ln lnxc c c    (4.19) 

 ' 4 '31 1ln lny m
d d

s
c c

c c c
c c

    (4.20) 
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Equation (4.18) becomes: 

 1 1' ln(1 ) ln x yZ D D c c       (4.21) 

Now we can equate equation (4.21) to zero and solve for 1D  to obtain a closed-form 

solution that gives the maximum value for the objective function. With simple algebra we 

get: 

 1 ( )

1

1
c cx y

D

e
 





  (4.22)  

4.3 Recovering Primal Solution 

We know from geometric programming theory that the solutions obtained for the dual 

variables present in the normality constraint, equation (3.20), represent a fraction. This 

fraction represents a proportion of total cost the corresponding term, in the primal objective 

function, holds. Mathematically, we can state the following: 

 
1

1 1
1c v f D Q     (4.23) 

 

1
1 1

2 2

m

n nc v f D Q
 

   (4.24) 

For simplicity, the exponents in (4.24) will be renamed as: 

 4
2 2

3a a
c v f D Q   (4.25) 

Thus, from (4.23) we can easily get: 

 
1

1
1c f

v
D Q



   (4.26) 
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Now we can substitute (4.26) into (4.25) and solve for f to get: 

 
3 3 4 32

3

1

1
1

1 2

a a a a

a

D D Q
f

c c

  
 
 
 

  (4.27) 

The expressions in (4.26) and (4.27) can be reduced to simplify calculations for the next 

section. Let 1 1 1/ ( )w c D Q  and 2 2 2( ) /w D Q c . Then we have: 

 1
1v w f    (4.28) 

 4 4 3

1

1

3

3
2

a

a a a a
f w w



 
   (4.29) 

Now we can substitute (4.29) into (4.28) to get: 

 

3 1
1

1
4 3 4 3

2

a

a a a a
v w w




 
   (4.30) 

If you let 4 31/ ( )a a a  and substitute into (4.29) and (4.30), we finally get: 

 1
3

2
a a af w w
 

   (4.31) 

 3 1
21

a a av w w
     (4.32) 

The expressions in (4.31) and (4.32) will also be used in the primal-dual representation of 

the problem next section. 

4.4 Primal-Dual Representation 

It is important in this research to develop equations that represent what we call tightness of 

the primal constraints at a specific solution, which will help particularly in the development 

of the solution. Basically, the expressions developed in equations (4.31) and (4.32) will be 
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substituted into the primal constraints and ultimately obtain a representation of each primal 

constraint in terms of only one dual variable. The procedure starts by considering the first 

primal constraint in (3.16). Assume we change that constraint to the following: 

 ' b c
mc v f    (4.33) 

Where   represent a nonnegative real number that signifies how much of the specific 

constraint is attained at a given solution. For example, if 0.65   then the horsepower 

constraint is loose and only 65% percent of the maximum power available has been used. 

Likewise, if, for instance, 1.30   then we say that the horsepower constraint is overtight, 

meaning the solution requires 30% extra power to perform the recommended cutting 

conditions. 

Let us now substitute (4.31) and (4.32) into (4.33). 
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3 3

3 3
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m

a a b c b a c
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b c
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c w w
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   

     
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 





   
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







 

Now for simplicity, let: 
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2

( ) ( 1)
( )

1

( )
( )

1

b m n c n
c aa b c b

m

n b c
c a c b

m





  
   




  



  (4.34) 

Hence, we have: 
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 ' 1 2
1 2( )
c c

mc w w
 

    (4.35) 

Similarly, we can develop an expression for the second primal constraint, the surface finish 

constraint in (3.17): 

 ' 1 2
1 2( )
c c

sc w w
 

    (4.36) 

Where, 

 

31

2

( ) ( 1)
( )

1

( )
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1

g m n h n
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n g h
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m





  
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


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

  (4.37) 

Now we would like to refine (4.35) and (4.36), and have both of them depend only on the 

dual variables. Starting with (4.35), 

   

 

1

1 2

1 2
3 41 1 2

1 2 1 2

1

1 2
' 2

2 1
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' ' '2
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2 1 1 2 1 2 1 ( )

'
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2

2

1

from (3.19)
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c D Q
c
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c D c c
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 

 
 
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 
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

   
 
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     
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        
         
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  
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Let 
2 1

c c c     , and we get: 
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3 41 2

2 1
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c D c
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c D

 
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  
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  (4.38) 

Similarly, we obtain similar expression to   as, 

    
1

3 41 2

2 1

1 1
' '

c D c
c D c D

m s
c D

c c
c D

 
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


 

  
 

  (4.39) 

Where 
2 1

c c c    . 

Note that, by observation, the roots of the natural logarithm of (4.39), when rendered in 

terms of only 1D , will represent the two cases developed earlier in Section 4.2. 

4.5 Solution Approach 

In this section, the solution cases developed in Section 4.2 as well as the primal-dual 

expressions developed in Section 4.4, will be utilized to help obtain the required solution. 

Recall that what is required is to find an analytical method to optimize the measure shown 

in Equation (3.29), which represent a ratio of the change in cost to change in surface finish 

in an interval starts from optimal dual values for the corresponding case. Note that Equation 

(3.31), by construction, is equivalent to the following: 

 1i i     (4.40) 

This is true because  , developed in Equation (4.39), is a factor of the attained surface 

finish for a specific solution. Hence, the percent change of this factor is equivalent to the 

percent change of surface finish attained. We can restate Equation (3.29) as: 
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 1 2 3 4
1 2 3 4

1 ( , , , )
Maximize ( , , , )

1

i

i

cQ D D D D
D D D D i




 


  (4.41) 

Where, 

     c  is the inverse of the cost function at the base model or iteration. 

     ( )jiQ D  is the cost at iteration i  at the specified dual values D1, D2, D3, and D4. 

     i  is the factor of the surface finish attained at iteration i . 

When running the optimization, the solution will provide dual values that give the 

maximum reduction in cost while keeping surface finish increase at lower values. Note 

that, by observation, this works only when we have an initial base model coming from 

Case 2, developed in Section 4.2.2, where the dual variable 1D value is greater than that of 

Case 1. This happens intuitively for the following reasons: 

1. Changing the dual variables change speed and feed in primal solution. In Case 1, 

the solution can be obtained with fairly enough power. Hence, no need to modify 

speed and feed. 

2. In Case 2, when we have tight power, speed and feed need to be adjusted 

accordingly, which help reduce cost, but increase surface finish. 

The optimization function (4.41) can be represented as: 

 

1 2
1 3 4

1 2
1 2 3 4

' '2

1'
1 1

3 4'1 2

2 1

( ) ( ) 1

Minimize ( , , , )

( ) ( ) 1

D D
D D

m s

c D c
c D c D

m s

c c
c c c

D D
D D D D

c D
c c

c D

 
 






   
   

   
 

 
 

  (4.42) 
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Now, the problem can be rendered in terms of one dual variable as: 
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 

 

  (4.43) 

Where *
1D  is the base model value for the dual variable 1D  obtained from one of the cases 

developed in Section 4.2. In fact, 1D  should be evaluated for both cases and the bigger 1D

is considered the optimal solution.  

Practically, the problem has been reduced initially from multidimensional constrained 

problem to multidimensional unconstrained problem. Then, from to multidimensional 

unconstrained problem to one-dimensional unconstrained. Thus, the search methods or 

approximation methods available to optimize one-dimensional problems can be utilized for 

the problem at hand, the mathematical optimization model in (4.43). However, a new 

method, called finite evaluations, was developed to improve the convergence rate and 

computational efficiency, since we know by observation that the function 1( )D is a 

convex function. The following section describes the finite evaluations algorithm. 

4.5.1 The Finite Evaluations Algorithm 

Usually, in practice, the function being minimized has multiple local extremum points. For 

convex functions, however, like 1( )D , if local extremum point does exist, then it is also 

a global extremum point. Hence, the finite evaluations algorithm was developed based on 

the behavior of the function 1( )D  to find the extremum point in an iterative manner. 
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Unlike search methods and approximation methods, the finite evaluations algorithm is only 

applicable to convex functions. Figure 4.1 shows the pseudocode for the algorithm. The 

algorithm starts by setting the initial value of the dual variable *
1D . The uncertainty region 

is the interval from *
1D  to 1. Then the user specifies a required tolerance which will be 

compared to the magnitude of the uncertainty region after each iteration, or alternatively, 

the user can provide a maximum number of iterations. Each iteration the uncertainty 

interval is cut in the middle as it is shown in Figure 4.2. The midpoint is set to be either 

the new upper bound or lower bound for the next iteration depending on the evolution of 

  function at this midpoint plus and minus some constant called the finite evolution 

constant. The algorithm will always exclude the region that does not contain the optimal 

point and obtain smaller uncertainty intervals.  

Pseudocode - Finite Evaluations Algorithm  

1: Use solution cases to get 
*
1D   

2: Set finite difference constant , tolerance   or maximum number of iterations max  

3: Set uncertainty region  
*
1[ ,1]o D  =[ , ]L U    

4: While 0i   to max  or | |U L     

5:             Set  1 / 2U L
iD      

6:             Calculate 1 )( iD   and 1 )( iD   

7:             If 1 )( iD  > 1 )( iD  then 

8:                 Set 1L
iD  , Otherwise Set 1U

iD   

9:             1i i   

10:           Set 
**
1 1

iD D   

11: End 

Figure 4.1: Pseudocode for finite evaluations algorithm. 
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Figure 4.2: Illustration of the finite evaluations algorithm. 

4.6 Conclusion 

It was shown in this chapter that the problem could be formulated and solved 

mathematically. The solution is an iterative procedure that was coded as an algorithm that 

showed better convergence rate especially for the problem at hand than some of the 

available tools available such as golden search algorithm and parabolic interpolation 

algorithm. Validation of the mathematical part will be presented next chapter. 
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 Chapter 5: Model Validation and Sensitivity Analysis  

5.1 Introduction 

In this chapter, the model formulation developed in the previous chapter will be validated 

mathematically. This is done to ensure the solutions provided by the model are at least 

theoretically applicable since conducting real experimentations is economically 

inapplicable at this time. Also, applying part of the model in a previously published case 

to validate the model is presented in this chapter although the rest of the model, or the 

theory behind the model, is novel. Later in the chapter, a sensitivity analysis model will be 

presented to illustrate further the model’s ability to provide alternative solutions.  

5.2 Model Validation 

Consider the relations developed in (4.38) and (4.39). Taking the natural logarithm for both 

equations yields: 
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From (5.1), we can get: 
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  (5.3) 

Similarly, from (5.2) we can get: 
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Now we can equate both quantities in (5.3) and (5.4), and rearrange terms to get: 
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  (5.5) 

The equation (5.5) is given the name the master relation. Whenever this master relation 

holds true, the solution provided is theoretically applicable, but not necessarily optimal. 

However, for the case when we have loose horsepower and tight surface finish constraints 

at optimally, equation (5.5) reduces to: 
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  (5.6) 

Since at this specific solution 3 0D   and 1  . 

Likewise, when we have both constraints tight at optimal solution equation (5.5) becomes: 
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Since 1   and 1   at this specific solution. 

The master relation represents a relation between the obtained proportion of the cost terms, 

the “tightness” of the constraints, and the other dual variables. These components interact 
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according to the master relation, and any invalid input would make the two sides of the 

equation not equal.  

In order to use the master relation, the dual variables values should be known. Also, one 

can obtain   and   if the dual values are known. A numerical example will be presented 

in section 5.5. 

Figure 5.1 summarizes the equations and constants used for the master relation equation. 

The preceding equations developed in this section are to verify that a given solution is 

mathematically valid. Next, the accuracy of the developed solution Case II is to be 

examined by comparing the results to certain examples present in the literature.  

5.2.1 Example 1  

The first example is taken from [90]. The following are the input values: 

4

2

1 0 2.2 10 4min

0.83 1.52 348 3

0 1 5.5 80

0.3 0 2 300

0.42 10.6 10 0.19 0.07$ $

s c

max

max

m cost r

b p C T

c g C d mm

e h HP KW D mm

n i SF m l mm

m C T L





    

    

   

   

    

 

The solution was obtained using Case II and the results were comparable with 2.03% less 

speed, 4.17% smaller feed rate, and 1.63% more cost. Results are shown in Table 5.1. 

5.2.2 Example 2 

The second example is also a case where we have both tight constraints at optimality, and 

it is found in [48]. Note that in this example, the handling cost considered in the reference 

paper were excluded.  Input parameters are as follow: 
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80.91 0 1.36 10 0.5min

0.78 1.52 140 0.2

1 1.004 2 6

0.25 0 100 8

0 $ $.29 3.58 0.5 0.07
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max
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b p C T

c g C d in

e h HP hp D in

n i SF in l in

m C T L



    

    

   

   

   

 

The results obtained from the developed closed-form equation (Case II) also matches 

what was reported in [48] and shown in Table 5.1. 

5.2.3 Example 3 

The last example is extracted from [88]. Handling cost is also excluded as in the previous 

example. Also, this example has an additional constraint on feed rate, which is redundant 

in this case as it was loose at optimality. Input parameters are as follow: 

60.91 0.35 204.62 10 0.5min

0.78 1.52 80 0.2

0.75 1.004 1.5 6

0.25 0.25 50 8

0.29 2.394 0.5 0.1

s c

max

max

m cost r

b p C T

c g C d in

e h HP hp D in

n i SF in l in

m C T L



    

    

   

   

   

 

The results show that the developed equation provides accurate results as can be seen in 

Table 5.1. 

Table 5.1: Comparing results from the two cases developed to literature examples 

 Solution from Reference Our Solution 

Example 

Reference 
v  f  

Cu 

($/unit) 
v  f  

Cu 

($/unit) 

[90] 178 

(m/min) 

0.24 

(mm/rev) 
11.64 

174.39 

(m/min) 

0.23 

(mm/rev) 
11.83 

[48] 311 

(sfpm) 

0.46x10-2 

(ipr) 
1.11 

310.71 

(sfpm) 

0.46x10-2 

(ipr) 
1.10 

[88] 350 

(sfpm) 

0.28x10-2 

 (ipr) 
1.60 

351.12 

(sfpm) 

27.68x10-4 

 (ipr) 
1.59 
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Hence, Table 5.1 shows that the developed closed-form solution in Case II in section 4.2.2 

provides valid solutions that are comparable to literature. 

5.3 Sensitivity Analysis 

A sensitivity analysis for the developed model should tell us something about the 

importance of the parameters in equation (4.43). A new model was built for sensitivity that 

allows the user to add uncertainty in the input parameters. The solution of the sensitivity 

model is based on evolutionary techniques, namely the genetic algorithm. Basic features 

of the sensitivity model include: 

1. Providing ranked parameters as results according to their impact on the objective 

function. 

2. Providing alternative solutions, based on the input from the user or a targeted 

cost, that can be sorted based on the preferences of the user too. 

3. Allowing the user to include or exclude the parameters to be changed. 

4. Allowing the user to input the number of alternative solutions required. 

5. Because the genetic algorithm may provide inaccurate solutions, the resulted 

solutions are compared to a tolerance provided by the user. 

The following constraints, which give bounds for uncertain variables, were added to the 

problem in (4.43):  

 mL m mUc c c    (5.8) 

 sL s sUc c c    (5.9) 

 cL c cUT T T    (5.10) 
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Figure 5.1: Summary of the mathematical validation equations 
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 cost cost costL UT T T    (5.11) 

 rL r rUL L L    (5.12) 

 L UC C C    (5.13) 

 L Ud d d    (5.14) 

 L Ul l l    (5.15) 

 L UD D D    (5.16) 

 max max maxL UHP HP HP    (5.17) 

 max max allowanceSF SF SF    (5.18) 

The addition of bounds for parameters increases the complexity of the problem to a limit 

where analytical solutions are no longer easy to obtain. Hence, evolutionary techniques, 

namely genetic algorithm, will be used to provide solutions for the sensitivity model.  

Microsoft Excel Solver ®, which is an add-in readily available with Microsoft Excel ® that 

is considered a general-purpose optimization modeling system, will be used to solve the 

sensitivity analysis model. Detailed solution procedure for the sensitivity analysis is out of 

the scope of this research. Figure 5.2 shows a summary of the equations involved in the 

sensitivity analysis model. 

In the sensitivity analysis model, the user starts by identifying what parameters will be 

involved as bounded parameters and provide those bounds. Setting up bounds is crucial for 

the sensitivity analysis procedure.  
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Figure 5.2: The sensitivity analysis model 
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The numerical example, in section 5.5, will show important issues that must be considered 

when defining parameters bounds. 

After input parameters bounds are defined, the user then would provide the number of 

required alternative solutions and the allowance for the surface finish, which is the allowed 

increment for the surface finish from the required value. There are two modes for the 

sensitivity analysis model: 

1. Ranges mode: In this mode, the solutions will be obtained with a maximum 

reduction in cost that could be achieved while considering the bound 

constraints (5.8) to (5.18). 

2. Target mode: Solutions will be provided according to the required cost and 

also constraints bounds (5.8) to (5.18) are considered. 

In the case of target mode, the user should provide cost tolerance such that the solutions 

provided by the algorithm can be identified as within target or out of the target, since the 

genetic algorithm sometimes provide inaccurate results because of the population 

initialized. 

The algorithm initializes a population that adhere to the specified constraints for the 

parameters and apply the steps in the genetic algorithm as well as the solution methodology 

developed in the previous chapter and come up with solutions. Figure 5.3 shows an 

illustration of the how the sensitivity analysis model finds four alternative solutions. Each 

solution gives different values for primal variables and parameters. The user after that can 

sort the provided solutions according to his or her preferences. For example, if the user has 
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asked for 200 alternative solutions, then these solutions can be sorted showing solutions 

that have faster speeds first. Multiple sorting preferences can also be utilized. 

 

Figure 5.3: Illustrative example of the sensitivity analysis for four required solutions 

5.4 Computer Model Development 

The computer model was built in Microsoft Excel® since it is widely available. It has the 

following key features: 

1. User-friendly interface to get input and show output, programmed with Visual 

Basic. 

2. Calculate optimal solutions based on analytical geometric programming. 

3. Calculate alternative solutions based the method and the solution approach 

developed in Section 4.5. 

4. Show the relation between the constraints “tightness” and cost in a two-

dimensional plot. 

5. Allow to include or exclude parameters to be bounded. 

6. Show the impact of the parameters on the objective function and present it as a 

tornado chart. 

7. Allow the user to specify the number of alternative solutions required. 

8. Perform sensitivity analysis with two modes, ranges and target solutions. 

9. Show the results tabulated and allow to sort alternative based on the preferences 

of the user. 

10. Compare alternative solutions graphically. 
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Figure 5.4 shows the main user interface for the computer model. 

 

Figure 5.4: The main user interface for the developed computer model. 

5.5 Numerical Example 

In this section, a numerical example will be presented to illustrate the developed method 

and perform sensitivity analysis. The example initiated in chapter 3 will be used again, 

which was extracted and altered from [88]. The process input is as follow: 

60.91 0.35 204.62 10 0.5min.

0.78 1.52 80 0.2 .

0.75 1.004 2 6 .

0.25 0.25 50 . 8 .

0.29 2.394 0.$ $5 / 0.1/ min.

s c

max

max

m cost r

b p C T

c g C d in

e h HP hp D in

n i SF in l in

m C T edge L



    

    

   

   

   

 

The optimal solution using geometric programming analytically is: 

D1 = 0.6620, D2 = 0.3380, D3 = 0.2718, D4 = 0.3943 and α = β = 1. 

This solution is mathematically valid since if we use equation (5.7) we get -1.45 for both 

sides in the equation. The dual variable values were obtained from Case 2 formulas 

developed in section 4.2.2, where the value of the dual variable D1 happens to bigger than 



61 

 

that of Case 1, a value of 0.5633. This suggests that our developed method can be applied. 

The horsepower used for this pass is exactly 2 hp, and the surface finish attained is 50 

microinches. Also, the solution indicates that 66.20% of the total cost is due to labor cost 

33.80% of the cost is due tooling cost. Primal solution can be recovered using equations 

from section 4.3 with v = 402.91 sfpm and f = 34.08x10-4 ipr. The primal-dual 

representation can be obtained using the relations in (4.38) and (4.39), and it is shown in 

Figure 5.5. 

 

Figure 5.5: Primal-Dual representation for the numerical example. 

Now, if we suppose that we can allow surface finish to go off the required 50 μin to reduce 

the cost, then we can apply the algorithm developed in section 4.5.1 to obtain the following 

dual values: 

D1 = 0.7947, D2 = 0.2053, D3 = 0.6371, D4 = 0.2638, α = 0.8756 β = 1.378. 

We may validate this solution using equation (5.5) and get -0.414 for both sides. With this 

new solution, the cutting speed v was reduced by 16.70% to 335.62 sfpm and feed was 
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increased by 4.38% to 35.58x10-4 ipr. Labor proportion of cost was increased to 79.47% 

while machining proportion was reduced to 20.53%. Only 1.75 hp was used for the power 

while surface finish produced was 68.91 micro-inches. Finally, the cost was reduced from 

$1.38/piece to $1.32/piece. 

Now, we can start the sensitivity analysis procedure by examining the main effect of input 

parameters on the cost and surface finish. The computer model provides main effect plots 

as in Figure 5.6 and Figure 5.7. Note that the “non-smooth” points in the plots represent 

the points where the solution changes from a loose power constraint case to a tight power 

constraint. Let us examine, for example, the tool life constant main effect on cost in details, 

Figure 5.8. Note that we have added its effect on the cost using regular solution methods 

in the literature [49]. We can see the offset in the cost function occurs when the power 

constraint becomes loose, at a tool life constant of 73. This happens particularly because, 

in the developed method, we let the surface finish increases, which provides some 

reduction in the cost function. Similarly, Figure 5.9 shows a comparison of the effect of 

labor rate on cost. It is evident that using the developed method, the larger the labor rate, 

the more saving on cost occurs since more portion of labor cost is assigned to the solution 

provided. The computer model also provides a tornado chart to help decide what 

parameters to include in the sensitivity procedure, as in Figure 5.10. It also sorts the 

parameter according to their impact, the highest first. For example, a 10% increase in tool 

life constant from the base value of 80 would provide 14.5% increase in cost.     
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Figure 5.6: Main Effect plots for the cost function 
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Figure 5.7: Main effect plots for surface finish  
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Figure 5.8: Comparing the effect of the tool life constant on costs 

 

Figure 5.9: Comparing the effect of labor rate on costs  
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Figure 5.10: A Tornado chart – Effect of 10% change in input parameters on cost 

Also, the computer model provides a bar chart which shows the effect of changes in input 

parameters to surface finish, as in Figure 5.11.  

 

Figure 5.11: A Bar chart – Effect of 10% change in input parameters on surface finish 

% Change in Cost  

% Change in Surface Finish  
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The impact on surface finish was plotted as a bar chart instead of a tornado chart because 

an increase or a decrease in input parameters may cause only an increase in surface finish. 

Also, it is important to note that the bar chart shows the impact of the individual input 

parameter on surface finish. In Figure 5.11 we note that tool life constant has no effect on 

surface finish if it has been decreased by 10%, because the power constraint becomes loose 

at this point, making the appropriate solution unique as in Case 1. Figure 5.12 shows the 

main effect of tool life constant on surface finish with some important points markers. We 

see that the lower bound as well as a 10% decrease from the base value of 80 would results 

in a solution with loose power constraint, with no change in attained surface finish. One 

could change these points to obtain the better results if tool life constant is the only 

parameter to be changed in the model. However, if two or more parameters are changed 

simultaneously, then the interaction becomes significant.  

 

Figure 5.12: Tool life constant bounds values 

Lower Bound 

10% Decrease 

Base Value 
10% Increase 

Upper Bound 
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For example, Figure 5.13 shows the effect of changing tool life constant from 80 to 70 as 

well as its lower bound from 70 to 60. This change would make the solution becomes loose 

for horsepower value more than 2 hp. 

 

Figure 5.13: Illustrating the effect of changing one input parameter on another 

  

Model 1 Model 2 
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Now, after examining the effect plots and the impact plots, suppose now that we would 

like to obtain 20 different alternative solutions while allowing the surface finish to go up 

to 8 micro-inches from the required 50 micro-inches with the following parameters bounds: 

 0.2 0.7cT     

 cost0.2 0.8T     

 0.05 0.2rL     

 70 90C     

 max1 2.3HP     

max max 58allowanceSF SF SF    

The model would suggest 20 alternatives as shown in Table 5.2. 

Now suppose that we would not like to go the extremes of the bounds and obtain 

alternatives that adhere to a targeted cost of $1/piece with 2% tolerance. Then we can run 

the sensitivity analysis model with target mode and get 20 alternative solutions as shown 

in  

Table 5.3. We note that the suggested alternatives are now more relaxed.  

The user can then sort the alternative solutions based on his or her preferences. For 

example, the following solution, number 10, is best suited when higher production rate is 

preferred: 

# Q D1 D2 v f HP SF Tc Tcost Lr C 

10 1.00 0.62 0.38 404.17 3.53E-03 2.06 51.47 0.60 0.42 0.07 81.12 
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Table 5.2: Results of the numerical example – ranges mode. 

# Q D1 D2 v f HP SF Tc Tcost Lr C 

1 0.64 0.70 0.30 382.67 3.63E-03 2.00 57.55 0.58 0.21 0.05 78.16 

2 0.72 0.71 0.29 363.26 3.38E-03 1.81 57.99 0.35 0.52 0.05 89.68 

3 0.65 0.71 0.29 379.35 3.61E-03 1.98 57.97 0.22 0.20 0.05 75.65 

4 0.70 0.70 0.30 369.33 3.44E-03 1.86 57.68 0.47 0.47 0.05 89.44 

5 0.66 0.70 0.30 380.13 3.59E-03 1.97 57.48 0.32 0.23 0.05 77.84 

6 0.65 0.71 0.29 379.58 3.60E-03 1.98 57.85 0.32 0.20 0.05 76.30 

7 0.64 0.71 0.29 382.64 3.64E-03 2.01 57.84 0.58 0.31 0.05 86.06 

8 0.66 0.71 0.29 378.06 3.58E-03 1.96 57.87 0.24 0.34 0.05 85.51 

9 0.66 0.71 0.29 379.27 3.59E-03 1.97 57.78 0.23 0.31 0.05 83.43 

10 0.72 0.71 0.29 363.80 3.38E-03 1.81 57.93 0.26 0.52 0.05 89.74 

11 0.71 0.71 0.29 367.43 3.43E-03 1.85 57.94 0.37 0.33 0.05 81.99 

12 0.70 0.71 0.29 368.09 3.44E-03 1.86 57.97 0.40 0.49 0.05 89.90 

13 0.68 0.70 0.30 375.16 3.51E-03 1.92 57.34 0.33 0.45 0.05 89.50 

14 0.68 0.71 0.29 372.31 3.50E-03 1.90 57.96 0.47 0.20 0.05 74.54 

15 0.69 0.71 0.29 371.00 3.49E-03 1.89 57.96 0.30 0.45 0.05 89.21 

16 0.73 0.71 0.29 362.30 3.36E-03 1.80 57.94 0.45 0.25 0.05 75.13 

17 0.64 0.71 0.29 383.44 3.66E-03 2.02 57.85 0.55 0.37 0.05 89.86 

18 0.70 0.70 0.30 371.59 3.46E-03 1.88 57.37 0.20 0.33 0.05 81.53 

19 0.65 0.70 0.30 384.02 3.61E-03 2.00 57.04 0.38 0.24 0.05 79.80 

20 0.66 0.70 0.30 380.57 3.58E-03 1.97 57.24 0.31 0.25 0.05 79.59 

 

Table 5.3: Results of the numerical example – target cost of $1/piece 

# Q D1 D2 v f HP SF Tc Tcost Lr C 

1 1.00 0.56 0.44 373.71 3.04E-03 1.71 50.00 0.51 0.49 0.05 75.28 

2 1.00 0.68 0.32 359.02 3.15E-03 1.69 55.06 0.45 0.45 0.06 77.34 

3 1.00 0.56 0.44 387.04 3.21E-03 1.84 50.00 0.43 0.57 0.06 80.07 

4 1.00 0.70 0.30 344.57 3.06E-03 1.60 57.00 0.61 0.62 0.06 82.76 

5 1.00 0.56 0.44 400.92 3.38E-03 1.98 50.00 0.30 0.41 0.06 76.12 

6 1.00 0.56 0.44 399.58 3.37E-03 1.97 50.00 0.20 0.48 0.06 78.48 

7 1.00 0.56 0.44 378.27 3.10E-03 1.75 50.00 0.25 0.41 0.05 72.33 

8 0.99 0.69 0.31 350.21 3.11E-03 1.64 56.41 0.40 0.36 0.06 73.07 

9 1.01 0.56 0.44 402.95 3.41E-03 2.00 50.00 0.55 0.31 0.06 72.23 

10 1.00 0.62 0.38 404.17 3.53E-03 2.06 51.47 0.60 0.42 0.07 81.12 

11 1.08* 0.56 0.44 362.08 2.90E-03 1.60 50.00 0.30 0.60 0.05 75.19 

12 1.19* 0.56 0.44 409.54 3.49E-03 2.07 50.00 0.39 0.35 0.08 71.89 

13 1.00 0.66 0.34 338.99 2.83E-03 1.48 53.94 0.51 0.73 0.05 82.07 

14 1.00 0.56 0.44 401.65 3.39E-03 1.99 50.00 0.33 0.67 0.06 85.80 

15 1.05* 0.70 0.30 347.21 3.11E-03 1.63 57.16 0.34 0.44 0.06 75.38 

16 1.02* 0.56 0.44 378.77 3.10E-03 1.76 50.00 0.34 0.62 0.05 79.94 

17 1.00 0.65 0.35 355.39 3.01E-03 1.62 53.33 0.51 0.60 0.06 80.79 

18 1.00 0.56 0.44 371.00 3.01E-03 1.68 50.00 0.40 0.73 0.05 82.26 

19 1.19* 0.56 0.44 360.81 2.88E-03 1.59 50.00 0.69 0.56 0.06 72.64 

20 0.99 0.56 0.44 383.34 3.16E-03 1.80 50.00 0.34 0.60 0.05 80.50 

          *Solutions that are not within the required tolerance of 2% 
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Each solution has unique characteristics, and it is difficult to develop an algorithm that 

selects the best of these alternatives because that would depend on the preferences of users. 

Based on the obtained results and the impact of the parameters the user can go back and 

forth and alter the input values until a satisfactory solution is obtained, as shown early in 

Figure 1.2. 

5.6 Conclusion 

Because the developed methodology is theoretically novel, a mathematical validation for 

the solutions obtained was developed. Moreover, some examples from the literature were 

tested in order to validate the accuracy of the developed equations. In addition, a sensitivity 

analysis model was developed to illustrate the power of the methodology further. An 

illustrative numerical example was also presented that showed how setting up bounds for 

parameters is examined and how alternative solutions can be obtained and selected to best 

suit user preferences. 
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 Chapter 6: Discussion, Limitations, Conclusion, and 

Recommendations   

6.1 Introduction 

In this chapter, discussion on the importance of the developed methodology to the industry 

will be presented. Also, a framework of how the results obtained from the model should be 

communicated between different entities in a firm. In addition, other applications of the 

presented method will be stated. Finally, a summary of the research contribution, 

concluding remarks, and future work recommendation will be addressed.  

6.2 Discussion 

6.2.1 The Importance of the Developed Methodology 

The developed methodology is connected to design for manufacturability (DMF) in some 

aspects. DFM is defined by Poli as a philosophy and mind-set in which manufacturing 

input is used at the earliest stages of design in order to design parts and products that can 

be produced more easily and more economically [91]. These aspects are the base ground 

for the importance of the developed method to manufacturing. These aspects are: 

Aspect 1: Shifting cost reduction focus toward labor cost. 

The developed method shifts the cost to include a higher percentage of labor cost, 

and consequently lower tooling cost. A cost analysis is recommended to be 

conducted to determine the degree of the automation best suited to the machining 

conditions.   
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Aspect 2: Making tools more available. 

Tooling cost percentage becomes relatively minor, mostly because tool failures are 

minimized. Hence, tools become more available. Consequently, average production 

uptime will increase. In addition, more budget becomes readily available for more 

advanced tools. 

Aspect 3: Reducing total cost while maintaining quality. 

In this context, the quality of the part is defined as the fitness of the manufactured 

part for its purpose. Thus, assuming the manufacturer defines ranges for surface 

finish requirement, then the model provides alternatives cutting conditions that lead 

to economically better cost. 

Each of the preceding aspects addresses an issue that eventually influences the design of 

the part and helps improve the manufacturing process. 

The following table, Table 6.1, summarizes the advantages and disadvantages of applying 

the developed methodology and tools: 

Table 6.1: Advantages and disadvantages of the developed methodology and tools 

Advantages Disadvantages 

The method reduces cost Some constraints must be tolerated 

The method reduces tools failures Production rate decreases because speed 

decreases 

The method provides alternative solutions Needs user analysis and input 

The algorithm solves more efficient than 

search methods 

Only applicable to this type of nonlinear 

functions 

The sensitivity model systematically helps 

the design engineer 

It is based on evolutionary techniques and 

takes time to provide results 

The method is theoretically applicable Has limited applications  
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6.2.2 Communicating Results 

When certain firm implements the suggested model, different entities or stakeholders are 

involved in the decision-making process of establishing or changing the design of the 

process and part specifications. These decisions are affected based on the functional 

requirements of the part to be produced and the constraints that should be satisfied. The 

decision process is an iterative process which starts with an initial design and ends with a 

final design that includes part and process specifications such as dimensions, surface finish, 

cutting conditions. Figure 6.1 shows a framework that involves relevant stakeholders, 

internal and external, that might be affected by the decision after implementing our model.  

 

Figure 6.1: A framework to communicate results between stakeholders 

The process starts by request from the management to reduce cost. Typically, a team of 

engineers is established to conduct the project. This team may involve professionals such 

as design engineer, manufacturing engineer, quality engineer, procurement engineer, and 

quality engineer. The role of each member of the team is to examine the design of the part 
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and process based on relevant specialty. On the one hand, the design engineer uses the 

developed model and obtain an initial part and process design based on financial 

requirements from the management. He or she establishes the part knowledge necessary to 

carry out manufacturing. The manufacturing engineer assists the design engineer by 

providing inputs regarding the capability of the current machines that perform the turning 

process. He or she should review the design to make sure the part can be produced in 

manufacturing. Also, the manufacturing engineer is responsible for checking if the new 

cutting conditions satisfy the production rate required. On the other hand, the quality 

engineer examines the effect of the change in process parameters and cutting condition on 

the quality of the part, which ultimately leads to customer satisfaction. In addition, changes 

to cutting conditions may affect the procurement of tools as fewer failures should occur. 

Thus, procurement engineer role is vital so that further communication with external 

stakeholders such as tool suppliers are considered. The design process continues back and 

forth between the different stakeholders until a final design is accepted. 

6.2.3 Other Applications 

The book of professor Creese [92], named “geometric programming for design and cost 

optimization,” contains many engineering applications and case studies for geometric 

programming such as journal bearing design, liquefied petroleum gas (LPG) cylinders, the 

open cargo shipping box, and more. Most of the applications discussed are different in the 

structure of the model. For example, the journal bearing design problem has an objective 

function that has three cost terms, which will lead to three dual variables in the normality 

equation for the dual model. Such applications need further investigation, and perhaps 

more development, for the presented method to be applied on. Applications that has similar 
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structure can be used as other examples where the developed methodology can be helpful. 

For example, the case of LPG Cylinders, which deals with the design of propane gas 

cylinders, can be used to demonstrate another application of our method. The problem is 

to design a tank by deep drawing with minimum drawing force such that the tank would 

have a minimum volume and the height to diameter ratio is less than one. Hence, the 

problem can be modeled as geometric programming model with the objective: 

 2
1 2Minimize Z T hd T d     (6.1) 

Where h and d are the internal height and diameter of the cylinder respectively. T1 and T2 

are constants. The constraints can be stated in standard geometric programming form as: 

 1 2
3 1T h d     (6.2) 

 1 1hd     (6.3) 

Where,  

 1 /P FT Y C   (6.4) 

 2 (2 ) / (2 )PC Y FT E     (6.5) 

 3
4

minT V


   (6.6) 

Z = drawing force, P = internal gas pressure, Y = material yield strength, F = hoop stress, 

C = constant = 1.04, and E = constant = 0.65. 

Note that the relation in (6.2) will be always considered tight at optimality since minimum 

volume is required. The dual problem can be formulated as: 
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With the normality condition: 

 1 2 1D D    (6.8) 

Also, the orthogonality conditions: 

 1 3 4 0D D D     (6.9) 

 1 2 3 42 2 0D D D D      (6.10) 

1 2 3 4, , , 0D D D D   

It can be shown that the general solution for the case when the two constraints are tight 

is: 

 1
1

1 2

T
D

T T



  (6.11) 

 2 11D D    (6.12) 

 3
2

3
D    (6.13) 

 4 1
2

3
D D    (6.14) 

The other case, when the ratio constraint is loose, is not relevant to our demonstration.  

The primal solutions can be recovered according to the following relations:  

 2

2

D G
d

T
   (6.15) 

 1

1

D G
h

T d
   (6.16) 
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Now we use the values provided for the constants from the evaluation questions following 

the case in professor Creese’s book [92], 

P = 0.2535 kg/mm2 

F = 32.33 kg/mm2 

Y = 25 kg/mm2 

C = 1.04 

E = 0.65. 

Vmin =1.75x107 mm3 

 

Then we get 1 0.64T  , 2 0.44T  , and 3 22281692T  . Using (6.11), the optimal 1D  value 

is 0.59 and for 2D it is 0.41 with an optimal cost of $85579.82. The required minimum 

volume of 1.75x107 mm3 can be attained by designing the tank with height and diameter of 

281.39 mm each. Now suppose the cost need to be reduced further, but we do not want to 

violate the minimum required volume much.  

Looking at Figure 6.2, which shows the primal-dual representation plot, we see that 

reducing the value of the optimal 1D  will violate the volume requirement, alpha, and would 

make the ratio constraint loose, beta. The function ρ, in this case, is defined as the ratio of 

the change in cost to change in volume. By applying the developed algorithm in Section 

4.5.1, and changing initial uncertainty region to [0, 
*
1D ], we can obtain a new value for 1D

of 0.43. This new solution has 5.21% less cost, but a volume of 13,861,670.97 mm3, which 

is 20.79% less than the required. Sensitivity analysis can also be applied to achieve 

workable alternative solutions if the new volume is not applicable.  
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Figure 6.2: Primal-dual representation for the LPG cylinders example 

 

Figure 6.3: The function ρ for the LPG cylinders example  

6.3 Research Limitations 

In this section, the limitations of the research will be discussed. These shortcomings restrict 

the applicability of the developed methodology to a certain extent. They are as follow: 
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1. The restriction to single-pass turning: The single-pass restriction considered in 

this research may prevent additional cost reduction. Multi-pass turning was shown 

to be more efficient than single-pass turning in some cases as shown early by Ermer 

and Kromodihardjo [88], and then many studies used multiple passes in their 

optimization models [6, 9, 20, 26, 58, 93]. Going back to the numerical example 

presented in the previous chapter, we can see that depth of cut significantly affects 

cost, see Figure 6.4 (A). The smaller the depth of cut the less the cost. Moreover, 

changing depth of cut will affect the diameter of the workpiece after each pass, 

which is also a significant parameter to cost. Our analysis shows that, in certain 

cases, same surface finish value can be attained with some range of depth of cut 

when using the method developed and adjusting the required surface finish for the 

base model, Figure 6.4 (B). Each corresponding solution will have specific speed 

and feed that is different from the other solutions.  

 

Figure 6.4: The effect of changing depth of cut on cost and surface finish 
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This type of analysis should be performed to find the least depth of cut required to 

perform either a roughing cut or finish cut in a multi-pass turning optimization. 

However, it is out of the scope of the project and is recommended to be performed 

in future research work. 

2. The developed model is not considered robust: Most of the equations developed 

in this research are particularly applicable to problems with exactly similar model 

structure. In other words, the primal model should have two variables with two 

posynomial terms in the objective function as well as one in each of two constraints. 

This structure is important so that we would have a maximum degree of difficulty 

of one, where we can render the problem in terms of one dual variable and apply 

the algorithm. In addition, if three terms of costs are presents in the primal objective 

function then we would have three dual variables present in the normality constraint 

of the dual problem, which is considered a more complicated problem. Similarly, 

increasing the number of constraints would increase the number of dual variables 

and, hence, increase complexity. 

3. The exclusion of exponents in the analysis: Sensitivity to the changes in 

exponents values were not included. Although the user can change the base values 

for the exponents when using different work material, the model provides no 

support as far as the individual effect of these values on either cost or surface finish. 

The reason for not including exponents in the analysis is that the practitioner 

prefixes these values beforehand for the work material used for the turning 

operation. Liu has developed a solution methodology for geometric programs that 

has exponents as intervals [94]. This methodology can be incorporated into our 
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model but that would increase the complexity of the problem, and evolutionary 

techniques would be the best tools to be used in such cases.     

4. On the practical validation of the model: One primary reason for creating 

mathematical models of complex systems is that the true relationships that govern 

the real system are often virtually impossible to know precisely. Other reasons 

would be time and cost constraints. Although the mathematical part was verified as 

described in section 5.2, the practical validity of the obtained results is essential to 

put the developed methodology into practice. In other words, theoretically, the 

method is applicable, but practically, further experimentation is needed. 

Applications may include basic turning operations where limited horsepower is 

available or more reduction in cost per piece is required given that the required 

surface finish can be tolerated.  

5. The sensitivity analysis is user-driven: The sensitivity analysis is user-driven, and 

the developed system is not considered a smart system. In our model, the user 

decides which parameters to be included in the model or excluded. Also, he or she 

define the bounds for parameters. Moreover, the time to stop the analysis and 

declare that the best solution has been achieved is also decided by the user. Hence, 

the process requires user knowledge and input in order to succeed. Improvements 

to the model can be made to include computer interpretation that is fed to the user. 

6.4 Research Contribution 

The contribution of this research work lies in the following: 

1. The development of a methodology that provides alternative solutions for 

geometric programming applications when optimal solutions are not applicable. 
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2. The development of an algorithm that solves convex functions more efficient in 

most cases than search methods particularly for this problem. 

3. The development of a computer model that can be used to apply the developed 

methodology. 

4. The development of a sensitivity analysis model that is incorporated into the 

developed model to provide further solutions. 

6.5 Conclusion 

It is evident that current literature prefers non-traditional optimization techniques to solve 

optimizations models particularly because of the increasing complexity of today’s 

applications. Nevertheless, traditional techniques such as geometric programming should 

not be abandoned since theoretical developments lie mainly on such techniques. The 

methodology developed in this research was based on geometric programming where 

alternative solutions can be obtained by moving away from the optimal solution. These 

types of solutions are only applicable when the optimal solution is practically inapplicable, 

or a further reduction in cost is strictly required. Working within the framework suggested, 

a team of professionals is essential to conclude alternative solutions that work best for the 

management’s financial requirements. The design engineer can use the developed 

methodology that is supported by an algorithm, which works better than search methods 

available in most cases, and comes up with the initial design. Sensitivity analysis is also 

essential to support the iterative procedure to obtain a final design ultimately. 

Finally, it should be mentioned that the results obtained in this dissertation are theoretical 

and solely depend on the validity of the model developed. Hence, the applications of the 

developed methodology are limited at present to be taken and directly used by the industry.   
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6.6 Future Research Work Recommendations 

Future work recommendations are listed as the following: 

 It has been noted that a special pattern is present when developing the equations in 

this research case. Hence, it might be appropriate to examine the development for 

higher dimensions, where we have more than two terms in the objective function 

as well as more than two constraints. 

 The solutions approach may be improved by looking at the following points: 

o Apply Nelder-Mead method as a solution approach for the problem to be 

handled in higher dimensions instead of rendering the equations in terms 

of one dual variable. 

o Apply the methods of roots finding to equation (4.39) as a solution 

procedure for the main problem, because the roots of the natural logarithm 

of that equation represent the two solution cases. 

o Use available methods to convert the initial geometric programming primal 

model to the convex problem and use interior point method as a solution 

approach. 

 Utilize process planning knowledge to study if additional manufacturing process 

can be applied to composite the lost quality of surface finish. 

 Utilize multiple pass turning environment as discussed in the limitations of this 

work.  

 The sensitivity analysis model needs to be studied in much more details. For 

example, it is possible to set some termination rules for the sensitivity analysis 

model to get solutions faster. 
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