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Abstract

Identi�cation and Control

of Dynamical Systems

Eugene Mihaliuk

Practical methods, based upon linear systems theory, are explored for applications to

nonlinear phenomena and are extended to a larger class of problems. An algorithm

for stabilizing, characterizing, and tracking unstable steady states and periodic or-

bits in multidimensional dynamical systems is developed and applied to stabilize and

characterize an unstable four-cell 
ame front of the Kuramoto-Sivashinsky equation

with six unstable degrees of freedom. A new method is presented for probing chemi-

cal reaction mechanisms experimentally with perturbations and measurements of the

response. Time series analysis and the methods of linear control theory are used to

determine the Jacobian matrix of a reaction at a stable stationary state subjected to

random perturbations. The method is demonstrated with time series of a model sys-

tem, and its performance in the presence of noise is examined. A new theory based on

the construction of a multitude of linear models, each serving to represent one small

region of the phase space, is presented together. Details of its implementation are pre-

sented in predicting chaotic Kuramoto-Sivashinsky wave fronts, demonstrating how

it overcomes some of the problems associated with high dimensionality phase spaces.

Motivated by the relationship between nonlinear prediction methods and the capa-

bilities of neural systems, we demonstrate the possible role of nonlinear phenomena

in the morphogenesis of neural tracts.
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Chapter 1

Introduction

Signi�cant progress has been made over the past two decades in developing a the-

oretical understanding of nonlinear phenomena;1,2 however, the gap between theory

and practice is still considerable. We seek to narrow this gap by exploring methods

based upon linear systems theory. We demonstrate how linear methods can be ap-

plied to complex nonlinear phenomena and, equally important, determine when these

methods fail. We seek to improve the range of applicability by carefully extending

the linear methods so that they may be used in the nonlinear regime. We draw upon

existing theories of linear identi�cation and control, striving to preserve the eÆciency

and simplicity pertinent to the linear approach.

We begin in Chapter 2 with the application of linear control theory3 for the sta-

bilization of a strongly nonlinear system in the local vicinity of a stationary steady

state. An algorithm for stabilizing, characterizing and tracking unstable steady states

and periodic orbits in multidimensional dynamical systems is presented, which pro-

vides an explicit connection between phase space approaches and time series analysis.

The algorithm is applied to the stabilization and characterization of an unstable four-

cell 
ame front of the Kuramoto-Sivashinsky equation,4 with six unstable degrees of

freedom.

We further explore the connection between time series and phase space of linearized

dynamical systems in Chapter 3, where a method is presented for probing chemical

reaction mechanisms experimentally with perturbations and measurements of the

response. Time series analysis and the methods of linear control theory are used to

1



determine the Jacobian matrix of a reaction at a stable stationary state subjected

to random perturbations. The method is demonstrated with time series of a model

system, and its performance in the presense of noise is examined. We show that the

Jacobian matrix of a chemical system in a stable stationary state can be determined

from the time series of a single observable variable by applying perturbations to the

relevant chemical species.

In Chapter 4 we present an extension of linear methods for prediction in spatial-

temporal systems in a general domain, as opposed to a nearly linear vicinity of the

steady state in the previous work. The attempt to extend the range of applicabil-

ity, while preserving the simplicity of linear models leads to the introduction of the

locally-linear method. This approach introduces a multitude of linear models, each

representing one small region of the phase space. Thus, at any given moment in time,

a single linear model is used, which preserves its amenability to the analysis by meth-

ods generally applicable to linear models. At the same time, as the system traverses

the phase space, the model used is constantly changing, allowing for unrestricted

topological complexity of the phase space, regardless of the e�ective dimensionality

of the local model. The approach falls into the general class of State Dependent Mod-

els (SDM).5 However, previously published examples of SDM have been limited to

low-dimensional cases, whereas we have been able to demonstrate the accurate pre-

diction of the dynamics of a spatially extended chaotic system. This has been possible

due to an eÆcient implementation of the multidimensional prediction method, which

is based upon a dynamically restructured mesh maintaining the structure of the 
ows

in phase space. Since the eÆciency of the high-dimensional implementation is of

singular importance for the practical applicability of the method, we consider the de-

velopment of this mesh-based method to be a signi�cant improvement over previously

known techniques. The performance of the method is veri�ed by its application to

the temporal and spatial prediction of the Kuramoto-Sivashinsky wave front.

With the goal to explore the similarities between the incremental growth and re-

organization of the phase-space mesh and information processing associated with

self-organization in biological systems, we have studied the interactions between en-

trainment in coupled dynamical systems and mechanisms of learning in biological

systems. There is a striking similarity between pattern-driven self-organization in

2



neural systems6 and certain aspects of the behavior of coupled spatially extended

chemical systems.7 In Chapter 5, using a minimal model, we show that entrainment

of the activity in circuits with suÆciently similar dynamical properties can occur on

the basis of weak and di�use coupling. We conjecture that a reorganization of Heb-

bian connections and a gradually increasing synchronization of activity in the source

and target circuits give rise to a positive-feedback loop. Starting with an array of

initially random connections, such systems converge to a stable and topologically

consistent con�guration. We present this organizing principle as a possible mecha-

nism for �ne-tuning of neural connections. We believe that the exploration of the

similarities between nonlinear �ltering and prediction methods and the capabilities

of neural systems may provide clues to the biological mechanisms responsible for the

separation of signals and other fundamental elements of the recognition processes.
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Chapter 2

Stabilizing and Characterizing Unstable

States in High Dimensional Systems

from Time Series

2.1 Introduction

Major strides have been made over the past few years in controlling chaos in low

dimensional systems.1 Unstable periodic orbits have been stabilized in magnetoelastic

strips,2 electronic circuits,3,4 laser systems5,6 and chemical reactions,7{9 and recent

reports of stabilizing periodic rhythms in heart tissue10 and inducing periodic and

chaotic behavior in hippocampal brain tissue11 have stimulated widespread interest.

It is clear that new developments in controlling dynamical systems o�er opportunities

for potentially important practical applications.

Several theoretical approaches have been advanced for stabilizing periodic orbits

in chaotic systems. The feedback method proposed by Ott, Grebogi and Yorke

(OGY)1,12 and the various modi�cations of this method have been the most pop-

ular. The OGY method is appealing because it is easily understood in terms of the

system state in phase space. Stabilizing an unstable orbit simply involves perturbing

the system such that the stable manifold of the orbit is targeted each return. Thus,

the positions of the system state and �xed point are known (in a suitable Poincar�e

section), and the e�ect of the perturbation is explicitly de�ned. Other control meth-
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ods, including the continuous feedback algorithm of Pyragas,13,14 are described and

compared to the OGY method by Alsing et al.15

In systems that can be described by e�ectively 1-D maps, the OGY method can

be reduced to an algorithm that directly targets the �xed point rather than the sta-

ble manifold.16,17 The reduced algorithm is attractive for experimental applications

because it requires minimal computational e�ort.3,5,7 It can also be easily modi-

�ed to permit tracking unstable steady and periodic states through bifurcation se-

quences.18,19 Unstable periodic orbits4,20 and steady states21{23 have also been tracked

with techniques that minimize 
uctuations around the targeted �xed point.

It is known that the simple map-based approach may fail, even when a system is

low dimensional and governed by a 1-D map.17 This arises when the �xed point is

shifted away from the unstable manifold of the original attractor as the parameter is

perturbed. In such cases, the perturbed system can no longer be described in terms

of the shifted 1-D map, which causes the method to fail. Rollins, Parmananda and

Sherard24 have recently proposed a recursive algorithm that corrects for this e�ect.

They added a linear recursive term to the map-based algorithm, following an earlier

suggestion by Dressler and Nitsche25 for modifying the OGY method when time-delay

coordinates are used. This yields a one-variable, one-parameter method that allows

stabilization in the otherwise pathological case when the �xed point is shifted away

from the original unstable manifold.8

Stabilizing and tracking states with more than one unstable direction remains an

important challenge. Such states are common in spatially extended systems, and

techniques beyond those developed for low-dimensional systems will be required for

controlling spatiotemporal chaos. Simple techniques may be successful in certain

spatiotemporal systems, such as when the behavior is highly spatially correlated.19

Spatiotemporal chaos has also been controlled in a convectively unstable system,

where the stabilized behavior is swept into the surrounding regions.26 Proportional

feedback has been used to stabilize periodic behavior in a coupled map lattice by

multiple pinnings at locally stabilized sites, where the density of sites is increased until

ordered behavior is exhibited.27 Auerbach et al.28 have proposed a generalization of

the OGY approach, applicable to systems with one unstable and many stable degrees

of freedom. Romerias et al.29 have developed an approach for stabilizing states with

6



multiple unstable directions and have applied this to a kicked double rotor model. It

was necessary, however, to monitor all of the system variables for control.

In this chapter, we present a general method for stabilizing and characterizing

states with many unstable degrees of freedom and possibly an in�nite number of

stable degrees of freedom. This generalization provides an explicit connection be-

tween the OGY and related phase space approaches and the linear control routines

of classical single-input, single-output (SISO) systems.30 The stabilization of high-

dimensional unstable steady or periodic states requires only one system variable to be

monitored and only one system parameter to be perturbed. The essential features of

the approach are illustrated in Section 2.2 by considering a simple two-variable sys-

tem, beginning with the case in which the system variables can be monitored directly

and then generalizing this to a single experimental observable. A generalization of

the approach to an n-dimensional system is described in Section 2.3. The algorithm

is applied in Section 2.4 to stabilize and characterize an unstable four-cell 
ame front

of the Kuramoto-Sivashinsky equation, which is found to have six unstable degrees

of freedom. The method is also applied to stabilize and track a periodic orbit with

two unstable directions. The advantages and limitations of the approach along with

potential applications are described in Section 2.5.

2.2 Two-Variable System Illustration

A geometric description of the general stabilization method can be developed by con-

sidering its application to a simple two-variable system. The system behavior around

the unstable steady state is described by two linearized equations. Discrete dynamics

is assumed, re
ecting an experimental setting in which the system is sampled and

perturbed at a �xed rate. Oscillatory behavior in the vicinity of an unstable periodic

orbit can be reduced to linear discrete-time equations by using a suitable Poincar�e

section.

For illustration purposes, we imagine that �1 and �2, the coordinates along the

system eigenvectors, are monitored at regular time intervals to give the set of data

pairs (�1;i; �2;i). If the ith point lies away from the �xed point (�1;F ; �2;F ) and if the

7



characteristic exponents describing the motion along the eigenvectors are �1 and �2,

respectively, then the discrete-time equations of motion for the i+ 1 point are

�1;i+1 � �1;F = �1(�1;i � �1;F );

�2;i+1 � �2;F = �2(�2;i � �2;F ): (2.1)

For convenience, we assume that the �xed point lies at the origin: (�1;F ; �2;F ) =

(0; 0). If, however, we also impose a small perturbation on some parameter p, the

position of the �xed point is shifted along some line in phase space by an amount

proportional to the perturbation. Denoting this perturbation as pi+1, the evolution

equations now become

�1;i+1 = �1�1;i + (1� �1)�1pi+1;

�2;i+1 = �2�2;i + (1� �2)�2pi+1: (2.2)

where the coeÆcients �1 and �2 are the projections of the shift vector @�F=@p deter-

mining the change in the �xed point position along the corresponding eigenvectors

with change in the parameter p.

If a second perturbation pi+2 is made at the next step, the second iteration will be

given by

�1;i+2 = �21�1;i + (1� �1)�1(�1pi+1 + pi+2);

�2;i+2 = �22�2;i + (1� �2)�2(�2pi+1 + pi+2): (2.3)

Note that the eigenvalues are assumed to be independent of the parameter perturba-

tion, at least to leading order. From Eq. (2.3) it follows that �1;i+2 and �2;i+2 can be

set equal to zero by an appropriate choice of the perturbations pi+1 and pi+2, which

are found as a solution of the linear system provided �1 6= �2 and �i 6= 0. The re-

quirement of the system eigenvalues to be nonequal and the parameter perturbation

to displace the system along all of the unstable manifolds are the main conditions for

achieving stabilization of multivariable systems using a single parameter.
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Figure 2.1: Geometrical description of control method. Application to a two-variable sys-

tem with a �xed point characterized by �1 = 1:5 and �2 = 3. Two successive perturbations

cause the system to evolve from point 0 to point 2, corresponding to the �xed point of the

unperturbed system.
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Figure 2.1 shows an application with �1 = 1:5 and �2 = 3, where the system

has evolved away from the unstable �xed point at the origin to the point marked

0. In the �rst perturbation, the �xed point is moved along the shift vector @�F=@p

to �1F = (�1;F ; �2;F )
1. The system state evolves relative to the shifted �xed point

according to the multipliers to the point marked 1. In the second perturbation, the

�xed point is moved again along the shift vector to �2F = (�1;F ; �2;F )
2. The system now

evolves relative to this �xed point position to the point marked 2, which corresponds

to the targeted �xed point of the unperturbed system.

This example provides a graphical description of the targeting procedure; however,

it di�ers from the operational procedure in that the sequence of n controlling pertur-

bations must be determined in advance. In real-time applications of the algorithm,

the value of the controlling perturbation is updated each step. For the two-variable

example, the i + 1 perturbation is

pi+1 = k1�1;i + k2�2;i; (2.4)

where the coeÆcients k1 and k2 are chosen to ensure that the �xed point is targeted

on the second iteration. There are several possibilities for �nding the appropriate k1

and k2 when the system coordinates or all independent system variables are known.

The approach originally suggested by OGY targets the stable manifold of a state

with one unstable direction.12 If the �xed point has two unstable manifolds, it can

still be targeted using Eq. (2.4) with two successive perturbations.29 In the absence

of noise, control equations (2.3) and (2.4) each produce the same sequence of two

perturbations for targeting the �xed point.

In experimental settings, we commonly do not have access to the actual system

variables, nor can we monitor n independent observable variables. Time-delay embed-

ding techniques can be used to reconstruct the system state around a periodic orbit12

provided that a correction for the shift of the Poincar�e section is carried out.25,28,29

Here we present a general approach for reconstructing the system state from the

readings of one observable variable in the presence of perturbations. The approach is

applicable to system dynamics on a Poincar�e section or around a steady state.

In general, we monitor some observable x that is a linear combination of the system

variables. For our two-variable illustration, we have

10



xi = t1�1;i + t2�2;i: (2.5)

The choice of variable x is largely unrestricted; however, the expected unstable be-

havior must be observable by monitoring x.

We will show that the system state vectors �, scaled by projection coeÆcients ti,

can be reconstructed from successive readings of x and p. We rewrite Eqs. (2.2) for

i � 1 and then sum the �rst multiplied by �2t1 with second multiplied by �1t2, and

with Eq. (2.5) for i� 1 obtain

�1�2xi�1 + [�2(1� �1)�1t1 + �1(1� �2)�2t2]pi = �2t1�1;i + �1t2�2;i: (2.6)

The system state (t1�1;i; t2�2;i) can therefore be found as a solution of Eqs. (2.5) and

(2.6) from the xi, xi�1 and pi, provided that �1 6= �2. The control equation (2.4) can

then be written as

pi+1 = q2xi + q1xi�1 + r1pi; (2.7)

where coeÆcients q1, q2 and r1 can be expressed through the system parameters.

It follows from Eq. (2.6) that the term involving xi�1 disappears from the control

equation in the case when one of the manifolds is strongly attracting (for which

�2 � 0). This corresponds to the recursive feedback algorithm of Rollins et al.24 for

the control of highly dissipative systems. It also follows from Eq. (2.6) that when the

perturbation does not signi�cantly shift the �xed point o� the unstable manifold (

�2 � 0 and �2 � 0) the simple map-based algorithm16,17 is recovered.

We show in Section 2.3 that n successive readings of the observable x and n � 1

values of the previous perturbations are required to control an n-dimensional sys-

tem. We also show how the coeÆcients q1, q2 and r1 of the control equation can be

found, along with other system unknowns, from the time series of the experimental

observable.

2.2.1 System identi�cation and control

The control algorithm requires that the dynamical system be continuously interro-

gated by imposing random perturbations to a suitable parameter p at regular sampling

11



intervals. The time series obtained by recording some observable x then consists of a

set of data pairs:

(x1; p1); (x2; p2); (x3; p3); : : : ; (xi; pi): (2.8)

For a system with two independent variables, we need to record at least 7 data pairs

(i.e., 3n + 1) to allow identi�cation of the system. Control can then begin with the

parameter perturbation p8.

The time series can be �tted to a recursive SISO (single-input, single-output)

model30 of the form

xi+1 = a2xi + a1xi�1 + a0 + b2pi+1 + b1pi: (2.9)

This form is also known as an ARX (auto-regressive with auxiliary input) equation.31

The number of �tting coeÆcients a and b and their relation to the system parameters

is discussed in Section 2.3. For the two-dimensional system n = 2 and there are �ve

unknowns: a0 - a2, b1 and b2. Applying this approach to obtain the data pairs in

(2.8) produces a set of �ve equations, which we can write explicitly as

x3 = a2x2 + a1x1 + a0 + b2p3 + b1p2;
...

x7 = a2x6 + a1x5 + a0 + b2p7 + b1p6; (2.10)

where the coeÆcient a0 is related to the �xed point xF by

a0 = (1� a2 � a1)xF : (2.11)

We note that a0 = 0 if xF = 0, which we assume in the following treatment. [Al-

ternatively, the optimal values of the coeÆcients could be determined more precisely

from a longer data set using singular value decomposition, but here we proceed from

this minimum basis set.]

The eigenvalues �1 and �2 governing the \autonomous" system, i.e., the system in

the absence of perturbations, can be determined from the ai coeÆcients. Motion along

12



the ith eigenvector occurs according to xn / �ni , and substituting the corresponding

terms into (2.9) yields the characteristic equation for the system eigenvalues:

��2 + a2� + a1 = 0: (2.12)

The eigenvalues of the \closed loop" system under control can be obtained by

deriving the recursive model in a form that does not depend on the perturbations.

We obtain the perturbation-independent equation by combining Eqs. (2.7) and (2.9)

to express pi+1:

pi+1 =
r1xi+1 + (b1q2 � r1a2)xi + (b1q1 � r1a1)xi�1

r1b2 + b1
: (2.13)

Equation (2.13) for pi and pi+1 can be substituted into Eq. (2.9), allowing xi+1 to be

expressed as a linear combination of xi, xi�1, and xi�2:

xi+1 = l3xi + l2xi�1 + l1xi�2; (2.14)

where

l3 = r1 + a2 + b2q2;

l2 = a1 � r1a2 + b1q2 + b2q1;

l1 = b1q1 � a1r1: (2.15)

The controlled system is described by Eq. (2.14) and is characterized by a total of

three eigenvalues, �1, �2 and �3, which can be found as roots of the polynomial

��3 + l3�
2 + l2�+ l1 = 0: (2.16)

We achieve stabilization using the pole placement technique, i.e., by requiring these

eigenvalues to adopt the target values ��1, �
�

2 and �
�

3. The roots of Eq. (2.16) will have

the appropriate values of ��i when

l1 = ��1�
�

2�
�

3;

l2 = �(��1�
�

2 + ��2�
�

3 + ��3�
�

1);

l3 = ��1 + ��2 + ��3: (2.17)
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There is some freedom in selecting the target values. In general, we require j��i j < 1

so the system converges toward the �xed point: the smaller the magnitude of the tar-

get eigenvalues, the faster will be the convergence. When all of the eigenvalues of the

system under control are chosen to be zero (so-called \dead-beat" control) the system

should converge to the steady state after n iterations. This, however, may involve the

imposition of larger perturbations at the early stages of control. One approach is to

leave the stable eigenvalues unchanged. This control results in targeting the corre-

sponding stable manifolds rather than the �xed point and reduces the magnitude of

the control perturbations. It is important to note that setting the eigenvalues close to

unity is dangerous, since even small errors in the system identi�cation can then make

the system unstable. Also, if the system is high dimensional, errors in the system

parameters that are inevitably carried over from the identi�cation stage may become

large. Selecting the optimal control law in the presence of system parameter errors is

the subject of the H1 control approach.32

The various coeÆcients a0 - a2, b1 - b2 and l1 - l3 are now used to calculate the

required perturbation to be imposed at the next time step:

p8 = q2x7 + q1x6 + q0 + r1p7; (2.18)

Here q1, q2 and r1 are given by the solutions of Eqs. (2.15) and (2.17) and q0 is

assumed to be zero (which is equivalent to xF = 0). This perturbation is applied

at the seventh sampling time. The process is then repeated, with the appropriate

perturbation p9 being calculated from x8, x7, and p8.

2.3 Generalization to n-Variable System

The control algorithm can be generalized to apply to a system of dimensionality n.

The coeÆcients a0 - an and b1 - bn are determined by �tting the recursive SISO

model to at least 3n + 1 data pairs collected from the interrogated system (i.e., the

system subjected to random perturbations at each sampling time) and the target

values selected for the eigenvalues of the controlled system.

If a sequence of n perturbations pi is applied to an n-dimensional system, the

14



following equations can be written for n consecutive iterations of the state vector

(i.e., the coordinates along the system eigenvectors):

�1 = �1;

�2 = �̂�1 + (Î � �̂)p2�;

�3 = �̂2�1 + (Î � �̂)(p2�̂+ p3)�;
...

�3 = �̂n�1 + (Î � �̂)(p2�̂
n�1 + � � �+ pn�̂+ pn+1)�; (2.19)

where

�̂ =

2
664
�1 0 0

0
. . . 0

0 0 �n

3
775 ; Î =

2
664
1 0 0

0
. . . 0

0 0 1

3
775 ; � =

@�F
@p

: (2.20)

In the general case, the observable variable x is a linear combination of �i,

x = t � �: (2.21)

We can therefore rewrite the last equation of (2.19) as

xn+1 = (�nt̂�1) + (pn+1L(Î � �̂)t̂�); (2.22)

where

L =

2
666664
�n�11 : : : �n�1n
...

...

�1 : : : �n

1 : : : 1

3
777775 ; �n =

2
664
�n1
...

�nn

3
775 ; (2.23)

and

t̂ =

2
664
t1 0 0

0
. . . 0

0 0 tn

3
775 ; pn+1 =

2
664

p2
...

pn+1

3
775 : (2.24)
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We can further rearrange Eq. (2.22) to express xn+1 as a function of xn = (x1; : : : ; xn)

and pn+1 = (p2; : : : ; pn+1):

xn+1 = (a � xn) + (at̂(Î � �̂)LTApn+1); (2.25)

where

a =

2
664
1 �1 : : : �n�11
...

...
...

1 �n : : : �n�1n

3
775
�1

�n; A =

2
666664

1 0 : : : 0

�an 1 : : : 0
...

. . .

�a2 : : : �an 1

3
777775 : (2.26)

Equation (2.25) can be rewritten as

xi+1 = anxi + an�1xi�1 + � � �+ a1xi�n+1 + a0 + bnpi + � � �+ b1pi�n+1: (2.27)

Equations (2.25, 2.26, 2.27) provide the connection between the coeÆcients ai, bi

and the phase space description of the system, as used in the OGY control algorithm.

Speci�cally, the eigenvalues of the system are the roots of the polynomial

��n + an�
n�1 + � � �+ a2�+ a1 = 0; (2.28)

and the bi coeÆcients are linear combinations of the projections of the shift vec-

tor. Equation (2.25) is related to the Laplace transformation from the state space

realization to the transfer function widely used in classical control theory.30

The 2n + 1 unknown coeÆcients of Eq. (2.27) can be calculated from the time

series of a single observable variable. If n is the dimensionality of the system, then

3n + 1 successive readings of the variable and 3n + 1 corresponding perturbations

are required for the solution. Since n previous perturbations and observations are

required to predict the future of the system according to Eq. (2.27), the control law

should involve the same number of variables.

The control perturbation for the i + 1 step is calculated from the equation

pi+1 = qnxi + qn�1xi�1 + � � �+ q1xi�n+1 + q0 + rn�1pi + � � �+ r1pi�n+1; (2.29)
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using the pole placement technique for recursive models.30 The coeÆcients q1 - qn

and r1 - rn�1 are the solutions of the linear system

2
666666666666664

an �1 0 : : : 0 bn 0 : : : : : : 0
...

. . . . . . . . .
...

...
. . . . . .

...

a1
. . . . . . 0 b1

. . . . . .
...

0
. . . . . . �1 0

. . . . . . 0
...

. . . . . . an
...

. . . . . . bn
...

. . . . . .
...

...
. . . . . .

...

0 : : : : : : 0 a1 0 : : : : : : 0 b1

3
777777777777775

2
66666666666664

1

�rn�1
...

�r1

qn
...

q1

3
77777777777775
=

2
664
l2n�1
...

l1

3
775 ; (2.30)

where the li are the 2n � 1 coeÆcients that correspond to the target eigenvalues of

the controlled system:

���2n�1 + l2n�1�
�2n�2 + � � �+ l2�

� + l1 = 0: (2.31)

We note that the overall dimensionality of the controlled system is increased by (n�1).

In general, the dimensionality of the system will not be known in advance. Nor

can the e�ective number of degrees of freedom always be deduced from the evolution

of the autonomous system in the linear region of the unstable �xed point. The

parameter perturbations used for control may shift the system onto stable manifolds

not evident in the unperturbed case and reveal additional dimensions. On the other

hand, the e�ective dimensionality can be determined by interrogating the system

with the method outlined above. For spatiotemporal systems, most of the in�nite

number of modes will decay rapidly compared to the sampling period. We follow

the suggestion by Auerbach et al.28 of lumping all the highly attracting manifolds

together as one. The e�ective dimensionality is therefore equal to the number of

unstable and slowly attracting stable manifolds plus one. The method of determining

n will be illustrated with reference to a particular example in the next section.
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2.4 Stabilizing High Dimensional States of the

Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (KS) equation is one of the simplest nonlinear partial

di�erential equations for modeling spatiotemporal chaos. It has been found to mimic

the dynamical behavior of many di�erent physical systems, but is most often used to

model the spatiotemporal evolution of 2D 
ame fronts.33 The governing equation for

the contour of the front has the form

@ 

@t
+

�
@ 

@z

�2

+
@2 

@z2
+
@4 

@z4
= 0: (2.32)

We use the KS equation as an example of a multidimensional system that can be

stabilized with the control algorithm. With a reaction zone width of L = 35:0, a

symmetrical four - cell solution is found to be unstable and the system diverges away

from this state to exhibit spatiotemporal chaos. Figure 2.2 shows the front as it moves

away from the symmetrical state and the two quantities, y1 and y2, that serve as the

\experimental" observables to monitor the spatiotemporal evolution of the pro�le. A

two-dimensional projection of the phase portrait constructed from these observables

is shown in Figure 2.3, where the system is evolving away from the unstable state.

Although the evolution of the system is followed very close to the unstable state,

it is clear that the behavior is high dimensional. Generally, the time series of only

one observable variable provides enough information for control. Figure 2.4 shows

the corresponding time series generated from the observable y1, which is used as the

monitored variable in the control algorithm. The points in Figures 2.3 and 2.4 show

the sampling times of the monitored variable.

2.4.1 Determination of dimensionality

The evolution of the four-cell front away from the unstable symmetric solutionwhere

a random perturbation is applied to a selected parameter each sampling intervalis

shown in the identi�cation part of Figure 2.5. The parameter chosen for perturbation

is the gradient @ =@z at z = 0. The unperturbed boundary condition, corresponding

to the autonomous system in Figures 2.3 and 2.4, is @ =@z = 0 at this point. In
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Figure 2.2: Four-cell solution of the KS equation for the system width L = 35:0. The

symmetrical solution is unstable at this value of L, and this pro�le shows a snapshot in the

early evolution away from the symmetrical state. The observables y1 and y2 are used to

monitor the spatiotemporal evolution of the pro�le.
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Figure 2.3: Phase portrait showing evolution of system away from symmetrical four-cell

solution. Two-dimensional projection is constructed from the observables y1 and y2.
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Figure 2.4: Time series showing observable y1 used in identi�cation and control as system

evolves away from symmetrical four-cell solution.
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Figure 2.5: Identi�cation and control of the unstable symmetrical four-cell solution of

the Kuramoto-Sivashinsky equation. (a) Value of observable xi during identi�cation and

control phases, and (b) value of the controlling parameter pi+1.
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Figure 2.6: The dependance of the �tting error of Eq. (2.27) on n, showing plateau from

n = 9. An e�ective dimensionality of n = 9 is used for stabilization of the symmetrical

four-cell front shown in Figure 2.2. Error E is calculated with respect to standard deviation

of predicted amplitude error relative to average amplitude of oscillation as shown in the

identi�cation stage of Figure 2.5(a).

general we utilize \mirror" boundary conditions, where the �rst and third derivatives

in Eq. (2.32) are required to be zero at the boundaries.

The data pairs (xi; pi) from the perturbed system (up to t = 250:0 in Figure 2.5) are

used to determine the dimension and the corresponding eigenvalues of the autonomous

system. Error estimates for di�erent choices of n are obtained by summing the error

between the measurements and the optimized n-dimensional �t to Eq. (2.27) over the

entire data set. Figure 2.6 shows the variation of this error as a function of n. For

n � 9, there is no signi�cant reduction in the �tting error on increasing the e�ective

dimension, so we choose n = 9 for this system. It should be noted that the small error

for convergence (typically 10�3 to 10�4) suggests that it may be diÆcult to determine

dimension from experimental data with this method due to the possibility of noise at
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higher magnitudes than the convergence criterion. The eigenvalues of the unstable

four-cell solution are then calculated as the roots of the equation

��9 + a9�
8 + � � �+ a2�+ a1 = 0; (2.33)

which are shown in Figure 2.7. There are six unstable eigenvalues ( k�k > 1) and

three stable eigenvalues, the latter corresponding to modes excited by the parameter

perturbations. The eigenvalue of smallest magnitude represents the lumping of an

in�nite number of stable modes that decay quickly compared to the sampling interval.

2.4.2 Stabilization of steady four-cell front

Once n and the coeÆcients ai and bi are determined, the algorithm is implemented

in the control stage from t = 250:0. All the eigenvalues of the closed-loop system

were chosen to be zero by setting li = 0 in Eq. (2.30). As indicated in Figure 2.5,

the state is e�ectively stabilized after the �rst cycle of 9 perturbations. The control

algorithm is applied continuously, with the values of the coeÆcients revised after each

sampling and then used to calculate the next perturbation. In the present example,

the magnitude of the control perturbations becomes very small after two cycles, or on

the 19th iteration of the algorithm. We note that stabilization was also achieved with

assumed system dimensionalities of n = 10 and 11. The higher order control laws

are less desirable in experimental settings, however, due to their higher sensitivity to

errors.

2.4.3 Stabilization of periodic two-cell front

The Kuramoto-Sivashinsky equation exhibits fronts with di�erent numbers of cells on

increasing the reaction zone width L. Each of these fronts loses its temporal stability

through a bifurcation sequence that leads to chaotic behavior before the next front

with more cells is established. We now examine the spatiotemporal behavior of a

two-cell front in order to apply the control algorithm to a periodic orbit with more

than one unstable direction. Speci�cally, we will stabilize and track a period-1 limit

cycle through a secondary Hopf bifurcation, where the orbit is characterized by two
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Figure 2.7: Eigenvalues of the unstable four-cell solution calculated as roots of Eq. (2.33).

Solid dots represent the unstable eigenvalues of the autonomous system. Open circles show

the stable eigenvalues obtained by interrogating the system with random perturbations.

25



unstable directions. The oscillatory front is monitored by recording the position of

the minimum in the front pro�le. The minimum in the temporal oscillations is then

used as the system observable. This choice eliminates the need to construct the n-1

dimensional Poincar�e section in time delay coordinates and is therefore convenient

for monitoring high-dimensional periodic states of unknown dimensionality. Possible

shifts of the attractor25 do not cause diÆculties because such e�ects are automati-

cally incorporated into Eq. (2.25) from the identi�cation procedure. The bifurcation

diagram is shown in Figure 2.8, where the minimum of oscillation is plotted as a

function of the reaction zone width. (Further examples of spatiotemporal behavior in

the two-cell KS front along with a detailed description of the monitoring technique

can be found in Ref. 19).

The two-cell solution exhibits period-1 oscillations at a reaction zone width of L =

20:7 where we begin tracking. As the width is decreased, the period-1 orbit becomes

unstable through a secondary Hopf bifurcation at L = 20:57 with the appearance of

quasiperiodic behavior. At L = 20:4, the imaginary part of the eigenvalues responsible

for the quasiperiodic behavior become zero and two new period-1 solutions appear.

As L is decreased further, the quasiperiodic behavior enters the basin of attraction

of one of the stable period-1 solutions and nonsymmetric periodic oscillations are

exhibited.

The symmetric period-1 solution was stabilized and tracked through the range of

L shown in Figure 2.8(a) using the control algorithm with n = 2. The controlling

perturbation of the boundary condition was found to introduce a negligible displace-

ment along the stable manifolds; therefore, it was necessary to explicitly consider only

two unstable degrees of freedom for control. The algorithm was applied according to

Eq. (2.29), with small random perturbations added to the control perturbations to

interrogate the system. This technique allows the coeÆcients to be updated every

time the bifurcation parameter is changed by repeating the identi�cation procedure.

The eigenvalues of the periodic state were calculated from the roots of Eq. (2.12) and

are shown in Figure 2.8(b).
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Figure 2.8: Bifurcation diagram showing quasiperiodic behavior of two-cell front of the

KS equation. (a) Solid points show minimum of oscillations of front pro�le minimum. Open

circles show symmetrical oscillatory state tracked from right to left through secondary Hopf

bifurcation and quasiperiodic oscillations to region where unsymmetrical period-1 oscillation

is stable. (b) The real (Re) and imaginary (Im) parts of the eigenvalues as a function of L

shown by solid and open circles, respectively.
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2.5 Conclusion

A general method for the control of unstable steady or periodic states of dynamical

systems has been presented. The algorithm requires only a single observable quantity

and acts through perturbations imposed on a single system parameter. For an n

dimensional system, n previous observations and n � 1 previous perturbations are

required for control. The states that are stabilized under this control correspond

directly to the states of the autonomous system. The algorithm also provides a full

characterization of the autonomous state in terms of its e�ective dimensionality and

eigenvalues. The approach can be readily applied to experimental systems without

any knowledge of the underlying mechanism or governing equations.

The e�ective reduction of high dimensional dynamics to a single variable makes the

method especially useful for stabilizing spatiotemporal systems by small perturbations

localized in space. Local perturbations were suÆcient for stabilizing stationary and

periodic behavior in the Kuramoto-Sivashinsky equation. We note, however, that

this approach may be less successful in spatiotemporal systems with a lower degree

of spatial correlation. Local application of the algorithm in such systems will likely

result in stabilization only within a correlation radius.

Selection of a particular unstable behavior is also possible using the control algo-

rithm. Setting one of the closed-loop eigenvalues to be the same as the eigenvalue

of a chosen unstable manifold will result in a control law that stabilizes all but the

selected unstable manifold. This approach requires only very small perturbations and

can be used to manipulate the dynamics of a high dimensional system by observing

only a single variable. The method may provide a more precise implementation of

\anti-control" recently demonstrated in experiments with hippocampal brain tissue.11

When coupled with tracking techniques, the algorithm provides a model-independent,

path-following method for the bifurcation analysis of experimental systems. The

availability of the eigenvalues means that the character of bifurcations in real systems

can be determined directly, rather than by inference from observations of qualitative

changes in the time series. The algorithm can also be used to extend the param-

eter range of desired responses, such as stable burning in 
ame systems or steady

output in high dimensional lasers. It should also be noted that even though the
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method has been illustrated using a discrete-time approach, it can be reformulated

in a continuous-time framework. Such a modi�cation might allow the stabilization of

very fast processes by using a control law that is precalculated and then implemented

with an analog circuit.
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Chapter 3

Normal Modes for Chemical Reactions

from Time Series Analysis

3.1 Introduction

The dynamical behavior of a chemical reaction close to a stationary state is described

by the elements of the associated Jacobian matrix. If a fully speci�ed model is known

for a system, it is straightforward to calculate the stationary state and the correspond-

ing Jacobian matrix. However, the reverse problem of deducing the mechanism from

a knowledge of the Jacobian is much more diÆcult, and, in addition, such problems

do not a�ord unique solutions. Nevertheless, valuable information about the mecha-

nism can be gleaned from a knowledge of the Jacobian matrix.1 In fact, mechanistic

insights can be obtained even if only a part of the matrix or just the signs of the ele-

ments are known.2{6 Most of the methods that have been proposed for experimental

determination of the Jacobian require the ability to measure the concentrations of all

species that signi�cantly a�ect the dynamics. Unfortunately, this condition is often

not met in practice.

A previously developed method, called quenching analysis,7 overcomes many of

these diÆculties by carrying out the chemical reaction in a continuous-
ow stirred

tank reactor (CSTR) close to a supercritical Hopf bifurcation. The operating con-

ditions are adjusted such that the system shows small amplitude, sinusoidal limit
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cycle oscillations around a saddle focus. For each of the essential species there exists

a characteristic perturbation magnitude and phase of the oscillation for which the

oscillatory behavior can be temporarily stopped (quenched) by the e�ectively instan-

taneous addition of an appropriate compound. The perturbation moves the current

state of the system from the limit cycle to the codimension-two stable manifold of

the saddle focus, from which it slowly returns to the limit cycle. This behavior is

universal for a chemical system near a supercritical Hopf bifurcation. Observing the

concentration of just one of the essential species and measuring the quenching pa-

rameters for n essential species allows the calculation of the 2n elements of the two

left eigenvectors associated with the Hopf oscillatory mode. The corresponding right

eigenvectors of the Jacobian matrix can be determined by additional measurements of

the oscillating concentrations of n�3 of the remaining species.8 The concentrations of

the stationary state can then be computed from an additional quenching experiment

performed by an instantaneous dilution of the system. The quenching method has

been used to investigate the mechanisms of a number of di�erent chemical systems.9

In this chapter we present a new method for determining the complete Jacobian

matrix of an n-species chemical system in a stable stationary state. The method

consists of making n time series measurements of a single property that is a linear

(but not necessarily known) function of the concentrations. In each series of mea-

surements, a di�erent set of species is subjected to random known perturbations at

regular time intervals. If some of the characteristic times are much smaller than the

time interval of the measurements, it is then not possible to determine the complete

Jacobian; however, the method allows the computation of the characteristic times of

the remaining slow modes together with the corresponding left eigenvectors of the

Jacobian matrix.

3.2 Method

Following linear control theory,10 we write an autoregression equation for successive

measurements and perturbations of a chemical system very close to a stationary

state.11 The measured quantity is typically some linear function of the concentrations

of the dynamical species, such as optical absorbance. Considering an n-dimensional
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chemical system that is perturbed at equal time intervals by the addition of one (or

more) of the dynamically important species, the autoregression equation takes the

form:

yk = a1yk�1 + a2yk�2 + : : :+ anyk�n + b0 +

b1wk�1 + b2wk�2 + : : :+ bnwk�n (3.1)

where yk is the measured quantity and wk is the magnitude of the perturbation at

time tk. This equation is often seen without the bias term, b0, which can always

be set to zero by a suitable scaling for the y measurements. We �nd it convenient,

however, to consider b0 as a parameter that is identi�ed from the experimental data

in the same step as ai and bi. It is necessary to carry out at least 3n + 1 readings

of y in order to obtain the 2n + 1 equations needed to determine the 2n + 1 coeÆ-

cients. However, in practice, many more readings are typically required to adequately

determine the coeÆcients, due to unavoidable noise. The method of singular value

decomposition (SVD)12,13 allows the coeÆcients to be accurately estimated from the

over-determined system. The magnitudes of the perturbations, wk, are randomly

varied in order to ensure that the equations determining the coeÆcients ai and bi

can be solved. Alternatively, perturbations with the same magnitude can be made at

irregular intervals.

In Figure 3.1, we show a speci�c example of the identi�cation procedure. We

use time series generated by integrating the Oregonator model14 of the Belousov-

Zhabotinsky15 reaction (BZ), with parameters adjusted to �t results from previous

quenching experiments.16,17 The model parameters were chosen so that the chemi-

cal system exhibits a stable stationary state. The Oregonator model includes three

essential chemical species, HBrO2, Br
�, and Ce4+, designated X, Y, and Z, with con-

centrations X, Y , and Z. The eigenvalues of the Jacobian at the stationary point are

-0.34 and �0:012� i 0:087. The upper curve shows the evolution of the concentration

Z in response to the perturbations shown in the lower part of the �gure. The circles

indicate the sampling intervals. The coeÆcients of the autoregression eq (3.1) for

the three-dimensional model were determined from 500 readings of Z and the corre-

sponding random perturbations at 3.0 s intervals. The singular value decomposition

yields the following values:18
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Figure 3.1: Perturbations wk and time series of responding chemical system yk = (Z�Zs).

Calculations were carried out using the three-variable Oregonator model, identical to model

M3 described in Nielsen et al.
16 The system is perturbed by making momentary changes

in the variable Z = [Ce4+]. The perturbations are random in magnitude, drawn from a

uniform distribution in the interval from 0.0 to 0.5 nM. The measurements of Z are made

at 3.0 s intervals (indicated by circles), and a perturbation is made immediately after each

measurement. All parameters are the same as in Nielsen et al.
16 except [H+] is changed from

1.0 M to 0.8 M to produce a weakly stable system. The stationary state concentrations for

the three variable species are Xs = 2:84�10�8 M, Ys = 2:17�10�7 M, and Zs = 1:37�10�7

M.
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(a1; a2; a3) = (2:215;�1:586; 0:338)

(b1; b2; b3) = (0:589;�1:031; 0:328)

In simulations, the adequacy of the coeÆcients obtained from the autoregression

model can be readily checked by comparing the predicted signal with the original

computed signal. The residual error is quite small, with the one-step prediction of Z

by the autoregression model virtually indistinguishable from the time series shown in

Figure 3.1.

The numerical experiment was carried out three times, with perturbations applied,

in turn, to the X; Y , and Z concentration variables of the model. The measured

variable in each case was Z. The range of perturbation magnitudes for each run was

chosen to yield responses of similar magnitude in Z. For the perturbations in X; Y ,

and Z, the maximum magnitudes were 1.7 x 10�10 M, 3.9 x 10�10 M, and 5.2 x 10�10

M, respectively. The coeÆcients of the associated autoregression models were then

used to determine the elements of the Jacobian matrix as described below.

3.3 Computing the Jacobian Matrix

In a series of measurements and perturbations, the perturbation at time tk results in

a shift in concentration space of wk g in a �xed direction given by the vector g. The

coeÆcients aj and bj of the autoregression equation (3.1) for the series can now be

used to write the following matrices:

L =

0
BB@

0 1 0

0 0 1

a3 a2 a1

1
CCA ; C =

0
BB@

1 0 0

�a1 1 0

�a2 �a1 1

1
CCA and b =

0
BB@

b1

b2

b3

1
CCA

The coeÆcients aj are characteristic of the dynamics of the unperturbed system and

are independent of the direction of perturbation, whereas the coeÆcients bj depend

on g. By carrying out three di�erent series with perturbations in three directions,

given by the linearly independent vectors, g1, g2, and g3, we obtain three di�erent

vectors, b1, b2, and b3. These vectors can be combined in matrices G = (g1; g2; g3)
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and B = (b1;b2;b3), with the vectors g and b as columns. Using G and B, we can

now compute the matrix F governing the discrete dynamics corresponding to a �xed

sampling interval �t,

F = GB�1 CLC�1 BG�1 (3.2)

and hence the Jacobian matrix from the relation

F = eJ�t (3.3)

The development of eqs (3.2) and (3.3) can be found in the Appendix.

3.4 Results

Repeating the integration of the Oregonator model, �rst with Br� (Y) and then

with HBrO2 (X) replacing Ce4+ (Z) as the perturbed species, we obtain the same

a coeÆcients but di�erent b coeÆcients. This procedure makes G equal to the 3D

identity matrix, since in each case the perturbation vector, g, is directed along one

of the coordinate axes in concentration space.

Forming the matrices L;C;B, and G and inserting them into eqs (3.2) and (3.3)

results in the following Jacobian matrix (in units of s�1):

J =

0
BB@

�0:121 �0:052 0:000

�0:530 �0:084 0:131

0:811 0:000 �0:165

1
CCA

in good agreement with the Jacobian matrix calculated directly from the Oregonator

model:

J =

0
BB@

�0:1174 �0:0528 0:0000

�0:5202 �0:0835 0:1320

0:8064 0:0000 �0:1670

1
CCA

In an actual experiment, the signal to noise ratio (SNR) is limited due to uncon-

trollable external 
uctuations. It is therefore important to assess the robustness of
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the method in the presence of noise. Figure 3.2 shows the relative Jacobian error as

a function of the SNR. We see that the error increases proportionally with the noise

level above a certain level. It is important to note that the e�ect of noise on the re-

constructed Jacobian error depends sensitively on the eigenvalues and a degradation

of performance occurs even at low noise levels in very sti� systems. A small amount

of noise (0.1 % of the signal amplitude) was added to the measured variable in each of

the following calculations in order to simulate realistic experimental measurements.

The Jacobian error re
ects noise in the data and nonlinearities of the system, which

can, to some extent, be separated by varying the amplitude of the perturbations.

Excessively large perturbations result in deviations from the linear regime and degrade

the precision of the reconstructed Jacobian. Perturbations that are too small, on the

other hand, reduce the available signal to noise ratio and are also undesirable. These

trends can be seen in Figure 3.3, which shows the relative Jacobian error as a function

of perturbation amplitude. We see that the perturbation amplitude can be as large

as 5.2 x 10�9 M, which is about 4.0 % of the stationary state concentration (Zs =

1.37 x 10�7 M), before the relative Jacobian error begins to increase. Perturbation

amplitudes of about 1.0 % of the stationary state concentration give rise to a relative

Jacobian error of about 3.0 %.

There is similarly an optimal choice of the sampling interval, as shown in Figure 3.4.

The faster dynamical modes become unobservable for very long sampling intervals,

while very short sampling intervals give rise to measured signals primarily re
ecting

the noise. The optimal value of the sampling interval is therefore a complex function

of the system time scales and properties of the noise. The variation in the coeÆcients

during a particular experiment or from experiment to experiment can serve as an

empirical measure of the robustness of the autoregression model. We see in Figure 3.4

that a 3.0 s sampling interval is close to the optimal value, which is comparable to

the reciprocal eigenvalues of J. It should also be noted that a large variation in the

Jacobian error was observed between individual runs. It is frequently possible to

obtain errors as low as 1.0 % with an optimal choice of parameters, but large errors

occasionally occur, which limits the average precision to approximately 3.0 %.

Reconstruction of the Jacobian depends upon the precision of the autoregression

model obtained from the experimental data. Increasing the number of samples results
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Figure 3.2: Dependence of the relative Jacobian error on the signal to noise ratio. Uniform

noise is added to the measurements of yk and the relative Jacobian error is shown as a

function of relative noise amplitude. The vertical lines show the standard deviation from

the mean values for 40 numerical experiments. The abscissa is the logarithm of the rms

of the noise relative to the rms of the signal. The relative Jacobian error is de�ned as

the Euclidian norm of the di�erence between the analytical and reconstructed Jacobians

divided by the Euclidian norm of the analytical Jacobian, where the Euclidian norm is the

square root of the sum of the squared elements. Parameters and procedures are the same

as in Fig. 3.1.
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Figure 3.3: Dependence of the relative Jacobian error on the perturbation amplitude.

The solid curve shows the error as a function of the maximum perturbation kwk relative

to kw0k = 0:5 nM as in Fig. 1. The perturbation amplitudes for X and Y were varied

proportionally, as each Jacobian reconstruction requires data from three experiments, with

each interrogating one of the variables. The vertical lines show the standard deviation

from the mean values for 40 numerical experiments. Low level noise (0.1 % of the signal

amplitude) was added to the measured variable. The parameters and procedures are the

same as those for Fig. 3.1. The relative Jacobian error is de�ned in Fig. 3.2.
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Figure 3.4: Dependence of the relative Jacobian error on the sampling interval. The

solid curve shows the error as a function of the sampling interval, and the vertical lines

show the standard deviation from the mean values for 40 numerical experiments. Low

level noise (0:1% of the signal amplitude) was added to the measured variable. Parameters

and procedures are the same as in Fig. 3.1, except that the perturbation amplitude was

adjusted to maintain a constant amplitude of the response signal. The relative Jacobian

error is de�ned in Fig. 3.2.
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Figure 3.5: Dependence of the relative Jacobian error on the number of samples. The

solid curve shows the error as a function of the total number of samples used with each

dynamical variable in reconstructing the Jacobian. The vertical lines show the standard

deviation from the mean values for 40 numerical experiments. Low level noise (0.1 % of the

signal amplitude) was added to the measured variable. Parameters and procedures are the

same as in Fig. 3.1. The relative Jacobian error is de�ned in Fig. 3.2.

43



in a more precise autoregression model. Using the same parameters as above, we show

in Figure 3.5 the relative Jacobian error as a function of the number of data pairs

collected in each numerical experiment (for each dynamical variable). We see in this

particular example that there is no signi�cant advantage in increasing the number of

samples above approximately 500 data pairs. We have not determined how this error

dependence varies with di�erent dynamical systems.

We note that the identi�cation procedure can be carried out in an alternative man-

ner that may be advantageous in actual experiments. Rather than random amplitude

perturbations delivered at constant time intervals, constant amplitude perturbations

can be delivered at nonperiodic time intervals. Identical values for the coeÆcients

(a1; a2; a3) and (b1; b2; b3) were obtained when the calculation for Figure 3.1 was re-

peated using perturbations at time intervals that were tk
3:0s

multiples of 7, 13, or 17.

This scheme has the advantage that constant perturbations can be delivered more

accurately and conveniently in an experimental setting. In addition, fewer pertur-

bations are required for the system identi�cation, and the system state is therefore

moved away from the stationary state less than it would be with constant time interval

perturbations.

3.5 Discussion

The determination of chemical reaction mechanisms is often diÆcult, particularly for

complex reactions, because no systematic methods exist for identifying the essential

component steps of a reaction. Chemical mechanisms are usually deduced by consid-

ering combinations of elementary steps that give rise to a scheme consistent with the

experimentally measured chemical kinetics of the reaction. Relaxation kinetics o�ers

a convenient approach for experimentally probing chemical mechanisms. Originally

developed by Eigen and co-workers,19 the technique involves monitoring relaxations

very close to the equilibrium state such that the reaction follows �rst-order kinetics.

Relaxation methods have been utilized extensively for the investigation of chemical

mechanisms, particularly for very fast reactions.20 Recently, there has been renewed

interest in perturbation methods for mechanism elucidation, in which the dynamical

behavior around a nonequilibrium stationary state is probed. Quenching techniques,
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where an oscillatory reaction is driven to its unstable stationary state by precisely

time perturbations, have been successfully applied to several experimental chemical

systems.7{9 These studies have focused on the Jacobian matrix of the nonequilibrium

stationary state to provide insights into the possible restrictions of a scheme of mech-

anistic steps. The elements of the Jacobian matrix tell how each dynamical species

responds to all of the other dynamical species, as well as to itself, and therefore

provides vital information on allowed and forbidden steps in a chemical mechanism.1

Determining the Jacobian matrix from experimental data and deducing a reaction

mechanism that is consistent with the Jacobian elements is an important challenge.

A number of studies have recently considered this problem in e�orts to develop a

systematic approach for mechanism elucidation.2{6 In this chapter, we have addressed

the essential step of determining the Jacobian matrix from experimental data. Our

approach is based on classical linear control theory, where a system in a stationary

or periodic state is subjected to very small, random perturbations to determine the

\normal modes" of the reaction. The perturbations and corresponding responses form

a discrete time series as a sequence of data pairs that can be analyzed to yield the

Jacobian matrix.

In principle, the Jacobian can be unambiguously determined from time series anal-

ysis of a chemical reaction subjected to random perturbations, provided that the

system is observable and controllable.21 In practice, however, there are uncertainties

that pose technical challenges to the method. The �rst is ascertaining all of the dy-

namically important species and then devising a means to impose perturbations on

each of these species. As we have noted, the method yields useful mechanistic infor-

mation even if some of the essential species cannot be accessed. The other limitation

is the e�ect of noise on the accuracy of the Jacobian matrix elements when apply-

ing the method in an experimental setting. For some systems, the method is quite

robust to external noise; however, for other systems, especially those with a large

negative eigenvalue, noise may signi�cantly degrade the reliability of the Jacobian

matrix. It should still be possible in such cases to determine the sign of the Jacobian

matrix elements, which can o�er valuable insights into the mechanistic possibilities

of a chemical reaction. There are other well-known controllability and observabil-

ity pathologies, such as degenerate eigenvalues, that cause the method to fail.21 On
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the other hand, in favorable cases the method can o�er an experimental means to

determine the possible chemical steps as well as the associated rate constants.

We have shown that the Jacobian matrix of a chemical system in a stable stationary

state can be determined from the time series of a single observable variable by applying

perturbations to the relevant chemical species. If some of the modes of the system

are too fast to be measured by the method, the information on the remaining modes

can still be recovered. The performance of the method depends upon an appropriate

choice of the perturbation magnitude and sampling interval, and, in general, increases

with an increasing amount of data available for processing. The method can be readily

applied to higher-dimensional chemical systems by a straightforward extension of the

corresponding vectors and matrices.

3.6 Appendix

The kinetic equations for a homogeneous chemical system with n chemical species

can be written as

dc(t)

dt
= f(c(t)) (3.4)

where the column vector c(t) describes the time dependent concentrations. We as-

sume that the system has a stationary state, cs. A linear expansion of the kinetic

equations around the stationary state gives

du(t)

dt
= J � u(t) + : : : (3.5)

where u(t) = c(t)� cs describes the deviation from the stationary state and J is the

Jacobian matrix with elements Jij =
@fi(c)
@cj

���
c=cs

. We consider values of u(t) at a set of

equidistant discrete moments tk. The vectors u(tk) and u(tk�1) are formally related

by the expression

u(tk) = eJ�tu(tk�1); (3.6)

where �t = tk � tk�1. The matrix F = eJ�t has the same eigenvectors as J and has

eigenvalues �j = e�j�t, where �j are the eigenvalues of J.
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The evolution of the chemical system is monitored by measuring a property y(t),

which is a function of c(t). A linear expansion of y from ys = y(cs) gives

z = y � ys = hT � u; (3.7)

where h is the vector of coeÆcients of the �rst-order terms in the expansion. All

essential changes in the system are re
ected in y(t), provided that the matrix

A =

0
BBBBBBB@

hT

hT � F

hT �F2

...

hT �Fn�1

1
CCCCCCCA

(3.8)

is of rank n (the observability condition).21

We follow Lee21 in the subsequent transformations leading to the identi�cation of

the Jacobian matrix elements. Perturbations are applied to the system at tk resulting

in an instantaneous concentration change of gwk. To ensure that the perturbation

excites all of the characteristic modes, the vector g must be selected such that the

matrix

(g;F � g;F2 � g; : : : ;Fn�1 � g) (3.9)

has rank n (the controllability condition).21 By convention, the perturbation at any

time tk is made immediately after the measurement and therefore does not a�ect the

value measured at tk. Successive uk and zk = z(tk) are related by

uk = F � (uk�1 + gwk�1)

= F � uk�1 + F � gwk�1 (3.10)

zk = hT � uk:

By direct substitution it can be shown that the coordinate transformation v = A � u

transforms eq (3.10) into the canonical form

47



vk = L � vk�1 + dwk�1 (3.11)

zk = (1; 0; � � � ; 0) � vk

where

L = A � F �A�1 =

0
BBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

...

0 0 0 � � � 1

Ln1 Ln2 Ln3 � � � Lnn

1
CCCCCCCA

(3.12)

d = A � F � g

The elements Lni of the matrix L can be determined explicitly from F and h, but

Lni can also be determined from the following autoregression equation involving the

experimental observables yk and perturbations wk:

yk = a1yk�1 + a2yk�2 + ::: + anyk�n + b0 +

b1wk�1 + b2wk�2 + ::: + bnwk�n: (3.13)

It can be shown21 that

Ln1 = an; Ln2 = an�1; : : : ; Lnn = a1 (3.14)

and that the elements of d are related to the coeÆcients of eq (3.13) by

d = C�1 � b (3.15)

where

C =

0
BBBBBBB@

1 0 0 � � � 0

�a1 1 0 � � � 0

�a2 �a1 1 � � � 0
...

...
...

...

�an�1 �an�2 �an�3 � � � 1

1
CCCCCCCA

and b =

0
BBBBBBB@

b1

b2

b3
...

bn

1
CCCCCCCA

(3.16)
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In an experimental investigation, F and, consequently, A are usually unknown.

The coeÆcients ai and bi in eq (3.13) can be identi�ed from time series. The ma-

trices L and C are determined by these coeÆcients, and h and g are de�ned by

the experimental conditions. We see from eq (3.12) and eq (3.15) that A must sat-

isfy the equation A � F � g = C�1 � b. By carrying out perturbation experiments with

n linearly independent vectors g and determining the corresponding vectors b, the

following matrix equation can be established:

A �F �G = C�1 �B (3.17)

where G = (g1; : : : ; gn) and B = (b1; : : : ;bn). Introducing

� = A � F = C�1 �B �G�1 (3.18)

the F matrix can be determined from

F = ��1 � L �� (3.19)

provided the matrix � is invertible. Consequently,

J = V � log (�) �V�1 1

�t
(3.20)

where V is a matrix of right eigenvectors of F and � is a diagonal matrix of corre-

sponding eigenvalues. The � matrix corresponds to the coordinate transformation

from the concentration space of eq (3.10) to the \canonical" space of eq (3.11).

For many chemical systems, some of the modes are too fast to be observed, and

therefore the states that are actually observed are essentially con�ned to a p dimen-

sional subspace, where p < n. In this case, eq (3.19) can no longer be used directly,

since � becomes ill-conditioned. The problem can be traced back to a degeneracy

arising in the autoregression model (3.13). Partial extraction of information about

F is still possible, however. We assume that the eigenvalues of F = eJ�t can be

separated into two groups, �i and �j, where i = 1 : : : p and j = p+ 1 : : : n, such that

j�ij � j�jj. The �rst group corresponds to the slow modes, while the second group

corresponds to the fast modes.
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The autoregression model, identi�ed from the motion in the slow subspace, will

have a reduced order of p, and, correspondingly, matrices L and C will become p� p.

However, we can still perform n experiments with n perturbing species, obtaining the

full rank n � n matrix G and p � n matrix B. Equation (3.18) is still well de�ned

in this case, but � becomes a rectangular p� n matrix and does not provide a one-

to-one correspondence between the canonical space and the concentration space. If

we represent the canonical transition matrix L through its left eigenvectors U, where

L = U�1 �� �U, then we can obtain the left eigenvectors W for the slow modes by

using the coordinate transformation provided by �:

W = U �� (3.21)

The left eigenvectors for the slower (measurable) modes are recovered by this

method. If all of the modes are measurable, we recover the full set of left eigen-

vectors, and by inversion of the matrix of the left eigenvectors we obtain the full set

of right eigenvectors. Knowing both the left and right eigenvectors, together with

the corresponding eigenvalues, allows us as in eq (3.20) to determine the transition

matrix for the discrete model and the corresponding Jacobian matrix for the con-

tinuous model. If m modes are so fast that their dynamics cannot be recovered, we

assign zero eigenvalues to these modes (where zero eigenvalues of the transition ma-

trix correspond to in�nitely large negative eigenvalues of the Jacobian). We can still

determine the left eigenvectors for the slower modes, as previously described. How-

ever, we do not obtain a complete set and thus we cannot use matrix inversion to

obtain the unique right eigenvectors.
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Chapter 4

Locally-Linear Prediction

of the Chaotic Flame Front

4.1 Introduction

Forecasting enables one to choose actions with more desirable outcomes. The funda-

mental prediction and planning mechanisms, perfected by the millennia of evolution,

are argued to be among the core building blocks of intelligence.1,2 It is something

so basic and automatic that we do not even notice its very existance. The awe at

the eÆciency of these intricate capabilities grows even greater when one attempts

to replicate them in a scienti�c or technological domain. Understanding the general

principles that govern practical high-dimensional predictors is thus not only of consid-

erable applied interest but also an enquiry into our own nature. It is worth pointing

out that low-dimensional methods typically do not scale up for high-dimensional

systems, and there are non-trivial and often overlooked pathologies speci�c for high-

dimensional spaces.3 This makes modeling and prediction of complex systems and

signals quite challenging and requires methods speci�cally designed for the purpose.

In this chapter we present an approach to the prediction of high-dimensional systems

based upon a locally-linear map in the embedding space. We demonstrate an eÆcient

realization of such methods using a modi�ed Relative Neighborhood mesh with local

restructuring. The method is applied to prediction of both the future behavior and

behavior at distant spatial locations of the chaotic 
ame front using time series of the
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front position at a single spatial location.

Many real world systems can be adequately described on the macroscopic level

by the deterministic laws, in which case the future of the system can, in principle,

be derived from its current state. However, the erasure of the state information,

inherent in chaotic systems sets practical limits to the actual extent of the possible

prediction. The bounds on the extent and precision of the prediction are set by

the local Lyapunov exponents of the system, available signal to noise ratio in the

measurements and the prediction method.4 Considering the properties of the system

and the measuring process �xed, we focus on the prediction method itself.

It can be demonstrated5,6 that the problem of prediction of a nonlinear dynamical

system, whenever feasible, is equivalent to the problem of approximating the relation-

ship between an input vector describing the current state of the system in a suitably

chosen space and the desired output or future state. Intuitively, this follows from the

embedding result by Takens7,8 and determinism of the system dynamics. The choice

of the approximation method depends upon the availability of additional knowledge

about the system.

If a speci�c class of functional forms is preferred as a description of the empirical

mapping, a small number of parameters are adjusted to tailor a function for the best �t

to the empirical data. This constitutes the essence of the parametric methods and the

obvious prior assumption here is the choice of the class of functions used to describe

the input-output relationship. The most important feature is the small number of

degrees of freedom (parameters) that are adjusted, thus making the task possible

without requiring an in�nite amount of input data for high-dimensional systems.

If there is no reason to favor any particular functional description, data-based

models are used. In this case, the a priori assumptions are less obvious; however

such assumptions are required for any method. Since there is an in�nite number of

functions (curved surfaces) passing through a given set of points in space, there must

be a criterion to select one of these in�nite possibilities. The assumption hidden in

most of the data-based methods comes in the form of smoothness constraints on the

input-output function.

Neural networks are often used for data-based approximation.9 The structure of
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the network and the learning algorithm determine its properties as a function ap-

proximator. It has been shown10,11 that several of the most popular structures can

be derived in a uni�ed way using slightly di�erent smoothness constraints. Unfortu-

nately, there is a considerable burden in using neural-network approximators: their

implementations are typically slow, they are hard to analyze with respect to per-

formance problems, and the extraction of information from the trained network is

diÆcult.

A locally linear approximation of the input-output function can be used to over-

come these de�ciencies. Generally suboptimal, this approach has a number of prac-

tical advantages over more advanced methods. As we show further, it lends to an

eÆcient implementation, is robust in the presence of moderate noise, and its intrinsic

organization of data is naturally suitable for analysis of the phase space of the system.

The simplicity of the method allows one to analyze general problems associated with

high-dimensional modeling with minimal artifacts from the method itself. In the rest

of this chapter, we describe the details of the method and study its properties and

performance in a realistic situation, using as a model a high-dimensional, spatially

extended chaotic system such as the Kuramoto-Sivashinsky (KS) equation.

4.2 Method

Linear models and associated identi�cation, prediction and control methods12 are

extremely well developed and o�er a number of desirable properties. It has been

demonstrated13 that in a vicinity of a steady state or a periodic orbit, many non-

linear systems can be treated by these methods. However, one can not expect a

linear approach to be successful beyond these restricted domains. The 
ows in the

phase space of practically any nonlinear system, including the KS model presented

here, have non-trivial topology and it is not possible to represent them by a single

linear model. The attempt to extend the range of applicability, while preserving the

simplicity of linear models leads to the introduction of the locally-linear method. This

approach introduces a multitude of linear models, each representing one small region

of the phase space. Thus, at any given moment in time, a single linear model is used,

which preserves its amenability to the analysis by the methods generally applicable
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to the linear models. At the same time, as the system traverses the phase space, the

model used is constantly changing, allowing for unrestricted topological complexity

of the phase space, regardless of the e�ective dimensionality of the local model.

The following steps are required to construct and use a locally-linear model:

1. Employ time-delay embedding to convert the scalar measurements into vectors.

Time delay space of suÆcient dimensionality is isomorphous to other represen-

tations of the phase space, such as one in terms of individual system variables.7,8

2. Search for the trajectories in the past evolution of the system that passed close

to the current point.

3. Carry out linear regression on the 
ow in the neighborhood of the current point

using the neighboring trajectories from the history of the system.

4. Predict future trajectory based upon the known current position and the cal-

culated 
ow.

While steps 1,3 and 4 are straightforward to implement eÆciently, there is a dif-

�culty with step 2, due to the large amounts of data necessary for an adequate

representation of the 
ows throughout the phase space. Several alternatives exist for

its implementation providing di�erent tradeo�s between computational time and the

memory required to store auxiliary data.

A naive implementation of the method involves a straightforward linear search

through all of the available history, represented as a simple sequence of vectors. This

is a serious limitation to the utility of the method, since the time required to search

through the history is proportional to nm log(m), where n is the dimensionality of

the data and m is the total number of vectors in the history.14

It seems that it should be possible to partition the data using one of the known

methods based on the search trees to speed up the retrieval of the neighbors, as

suggested by Farmer and Sidorovich.15 The performance gains, however, cannot be

realized in case of high dimensionality of the space. This is a non-trivial observation,

which is better understood if one considers the relationship between the Euclidean

distance between two points in high dimensional space and the distance between these

56



points along any single direction. For higher dimensional spaces, there is less and less

correlation between the two, and due to this fact, partitioning becomes increasingly

ineÆcient. Practically all of the tree must be traversed during the search, which

results in very poor performance, considering the intrinsic complexity of the algo-

rithm. A similar observation is presented by Kanerva3 for other problems involving

high-dimensional search spaces.

The alternative approach is based upon explicitly maintaining the references from

the trajectories to their neighbors. However, the high dimensionality implies an ex-

ponentially high number of neighbors. To overcome this problem we do not explicitly

store all of the neighborhood relationships, but only a small number of them, satisfy-

ing certain properties. We use local a modi�cation of the relative neighborhood mesh

(RNM).16 RNM is de�ned as a linked set of nodes with the nodes i and j connected

if the distance ij is smaller than either ik or jk for all k. The remaining relations are

then eÆciently computed by iterative closure of explicit neighborhood relationships.

What makes this approach particularly attractive is the observation that the set of

neighboring trajectories identi�ed from the history changes relatively slowly during

the evolution of a chosen target trajectory. Maintaining this set requires the addition

and removal of only a small number of members. The actual procedure is based upon

iterating through the previous set of neighbors of the target trajectory, reevaluating

their current membership, and evaluating the distances to the neighbors of the current

neighbors as candidates for the inclusion into the set of neighbors. Those of the

accessed trajectories that satisfy the given neighborhood criterion are retained as the

new set of neighbors.

The running time of this procedure depends only on the number of the current

neighbors, as opposed to the total size of the data set. It seems that it would be

necessary to conduct an extensive search for neighbors during the construction phase

of the required mesh structure. This can be avoided, however, by an incremental

approach. Due to the design of the method, the neighborhood relations are known at

any moment for the vicinity of the current location. Restructuring this small domain

to include new data at run time is suÆcient to maintain an eÆcient mesh.

The mesh created by a long sequence of such local restructurings contains only

57



a small number of artifacts violating the neighborhood criterion on the global scale.

Furthermore, the number of the artifacts appears to reach a limit and does not grow

signi�cantly in the course of further remeshing. There is also no noticeable per-

formance di�erence between incrementally constructed mesh and one obtained by

application of the globally acting method. Since the time required to construct a

local neighborhood mesh grows at least cubically with the number of vertices being

considered, a small size of the domain being restructured at each step is the key factor

that enables \growing" the mesh at practically a constant rate, regardless of the total

amount of data collected.

Finally we note that phase space is isomorphous to the time-delay space, and we

therefore use time delay coordinates. However, in general, these spaces have di�erent

metrics, which makes spherical neighborhoods in one space to correspond to ellipsoids

in the other. Thus when speaking in terms of the phase space we must be cautious.

We do not know how this complication a�ects the performance of the method, which

is an important practical issue, especially in the presence of noise in the data. It is

likely that our method is suboptimal in this respect.

4.3 Kuramoto-Sivashinsky Equation

We use the Kuramoto-Sivashinsky (KS) equation17,18 as an example of a spatially

extended system exhibiting complex chaotic behavior, which cannot be adequately

described or predicted by previously employed methods.13 Figures 4.1 and 4.2 illus-

trate the complexity of the dynamical behavior exhibited by the KS equation.

The Kuramoto-Sivashinsky equation is one of the simplest nonlinear partial dif-

ferential equations for modeling spatiotemporal chaos. It has been found to mimic

the dynamical behavior of many di�erent physical systems but is most often used to

model the spatiotemporal evolution of 2D 
ame fronts.17 The governing equation for

the contour of the front has the form

@ 

@t
+

�
@ 

@z

�2

+
@2 

@z2
+
@4 

@z4
= 0: (4.1)

The width L of the front is the only parameter in the system. Its value determines
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Figure 4.1: A 3D space-time plot representing the oscillating wave front. The left axis is

time t, the right axis is the position x, along the front, and the vertical axis is the variable.

59



0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

T
im

e

X

Figure 4.2: A space-time plot of the oscillations, with values of the represented by gray

scale levels. The abscissa is the position x along the front, the ordinate is the time. Note

the complex character of the oscillations observed in �gures one and two.
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Figure 4.3: Singular values of the oscillation modes of the KS equation.

the dynamical properties of the front, which range from a simple steady state for

narrow fronts to fully developed turbulence for wider ones.19 We choose a moderate

width L = 18:3 where a 2-cell regime is competing with a 3-cell regime resulting in

chaotic oscillations.

Normal mode analysis yields the oscillatory modes having the largest contribution

to the spatiotemporal shape of the front. The shape of the oscillating wave front

can be represented as a sum of basic pro�les. SVD20 is used to construct a set of

orthogonal modes, which are ordered by the decreasing variation of their coeÆcient

in the sum. The singular value is this variation, i.e., the �rst mode accounts for most

of the wave front dynamics, the next one is less important but it accounts for most

of the dynamics not accounted for by the �rst mode, and so on. Note that the shape

of the wave front can be described with an error of less than 0.1 by the �rst twelve

modes.
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Figure 4.4: Logarithmic plot of singular values in Figure 4.3.
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Figure 4.5: Time delay plot of � at a �xed spatial location x = 10. The abscissa is �(t),

while the ordinate is �(t+�t), where �t = 2.

Figure 4.4 is identical to the Figure 4.3 except that a logarithmic scale is used

for the singular values, to better represent their full range of values. This plot is a

manifestation of the true complexity of the wave front dynamics: Even though the

impact of the higher order modes decreases, the number of modes necessary to exactly

represent the dynamics is very large. It has been shown, however, that this number

is �nite.19 The dominant in
uence of a few largest modes is also evident from the

following scatter plots.

The plot in Figure 4.5 demonstrates a complex but non-random dependence of

the successive values, which is a key requirement for the predictability of the time

series. Generally, predictability can be related to the mutual information between

current readings and vectors of the past readings of the variable. The time delay plot

thus illustrates the simplest one-dimensional case of this dependency. The clustering
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of trajectories clearly indicates the possibility of their prediction, which can only

improve with the use of higher order dependancies.

Figure 4.6 shows that there is a certain degree of interdependence between the

values at the spatially distant locations, as expected from the mode analysis. If all

of the dynamics were explainable by a single spatial mode, then values at di�erent

locations would be proportional to each other, even with chaotic time series. The

varying in
uence of several di�erent modes causes the spatial complexity. If n modes

provide a complete description of the front shape, it is then necessary to perform

measurements at n non-degenerate locations to exactly predict the position every-

where in the front. The low dimensionality of the system dynamics on a coarse scale

is evident from the high degree of localization present in the above plots.

4.4 Results

As described in Chapter 2, the dynamics very close to a steady state of a fairly wide

KS front (L = 35:0) can be adequately described by a linear model. This description,

however, is valid for only a very small region surrounding the steady state. In the

case of autonomous chaotic oscillations, excursions of the system cover a considerable

fraction of the available phase space, and it is therefore not surprising that a single

linear model does not provide a faithful description to these 
ows in the phase space.

Figures 4.7 and 4.9 illustrate the failure of the linear models to capture the dynamics

of the system. In Figure 4.7 we demonstrate the prediction of the future values at a

given spatial location. In Figure 4.9 we predict simultaneous, but spatially distant

values. Note the poor performance of the linear predictors, regardless of order. A

linear predictor is the simplest possible model, which is also easy to �t to the available

data in a way that minimizes the RMS prediction error.

For the nonlinear method, ten thousand time instances were collected to represent

the history of the system. Another �ve hundred instances were then both simulated

and predicted using the data-based locally linear SDM. We now present the RMS

prediction error as a function of temporal and spatial extent of the prediction interval.

Note the dramatic improvement of the prediction quality at the expense of a much
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Figure 4.6: Scatter plot of values at one spatial location (x = 10) as related to the

simultaneous readings at another location (x = 30).
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Figure 4.7: RMS prediction error of linear predictors of di�erent order (n = 1::5) as a

function of iterates into the future predicted. The value in the future is calculated as a

linear combination (with constant coeÆcients) of a sequence of n values ending with the

current reading.
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Figure 4.8: RMS prediction error of linear predictors of order n = 1::5 as a function of the

predicted point location. The vector of the measurements is taken at the spatial location

(x = 10).
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Figure 4.9: RMS prediction error of linear predictors of order n = 5 as a function of the

distance between the predicted point and the point where the vector of the measurements is

taken. The di�erent plots demonstrate the prediction using measurements at four di�erent

spatial locations.
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larger amount of data constituting the predictor. In the linear case n = 5, there are

just �ve constant coeÆcients. In the n = 5 SD predictor, we maintain the history

consisting of 10,000 measurements to recompute the �ve coeÆcients at every point

in the phase space whenever necessary. In fact, we use the history as the sampled

representation of the 
ow in the phase space and compute a linear approximation

of this 
ow at every point were the prediction is attempted. This leaves the global

structure of the 
ow completely unconstrained by the model and it is de�ned solely by

the experimental data available. Trying to approximate this structure with a single

linear predictor in many cases is not possible, obviously so if there is more than one

singularity in the phase space.

4.5 Conclusion

An eÆcient implementation of the multidimensional prediction method has been pre-

sented. The method was developed as a generalization of the previous work on linear

methods13 and shows improved performance and wider range of applicability. It of-

fers a concrete mechanism allowing the application of recently popularized nonlinear

control and prediction principles.6 The approach falls into the general class of State

Dependent Models.21 However, known previously published examples of SDM have

been limited to low-dimensional cases,22 whereas we have been able to demonstrate

prediction of a spatially extended chaotic system. We recently became aware of the

work by Farmer and Sidorovich,15,23 proposing a method substantially similar to ours.

However, in their work the authors propose a di�erent approach to the implementa-

tion of the idea. As we have already discussed, the eÆciency of the high-dimensional

implementation is of singular importance for the practical applicability of the method.

We consider the development of the mesh-based method to be an improvement over

the implementations discussed by Farmer and Sidorovich.15 The performance of the

method was veri�ed by its application to the temporal and spatial prediction of the

Kuramoto-Sivashinsky wave front.
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Figure 4.10: RMS prediction error for SD predictors of di�erent order (a) n = 4, (b)

n = 5 as a function of iterates into the future predicted. Analogous to Figure 4.7, but with

state-dependent predictor.
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Figure 4.11: RMS prediction error of SD predictors of order n = 5 as a function of

distance between the predicted point and the point where the vector of the measurements

is taken. The di�erent plots demonstrate prediction using measurements at four di�erent

spatial locations. Analogous to Figure 4.9, but using state-dependent predictor.
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Chapter 5

Entrainment with Hebbian Learning

5.1 Motivation

There is a great degree of uni�cation in the biological world. The genes initiating

the construction of an eye are very similar, in fact, interchangeable, in such di�er-

ent organisms as 
ies and mice.1 Molecular biologists understand the fundamental

mechanisms used to encode the body plan of a particular animal in its genome.2

These mechanisms are also almost exactly preserved across the species. Similarly, the

\control system" of any animal is made up of neurons, specialized cells with electri-

cally active membranes that serve, depending upon their exact nature and state, as

�lters, ampli�ers, oscillators and other building blocks of the nervous system. The

complexity of the system arises not from the elements themselves, although they

can individually perform highly complex functions,3 but from the fact that there are

myriads of them, with an even larger number of synaptic interconnections between

them.4 It is easy to demonstrate that such a large number of connections can not

be independently speci�ed by the genetic material available to the development pro-

cess (see Appendix). Yet it is not known what mechanisms are responsible for the

creation of this intricate organization. The uni�cation mentioned above implies that

there must be similarity in the mechanisms acting in di�erent organisms, and insights

gleaned from studies of insects, for instance, may apply to more complex species, like

ourselves. The nervous systems of 
ies and cockroaches appear to be very similar in

two individuals with identical genetic makup.5 Thus, we can imagine the existance
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of a constructive mechanism that unfolds the genetic program to indirectly guide the

construction of a structure that can not possibly be directly speci�ed. In higher or-

ganisms, even identical twins do not posses exactly the same brain structures. It is

apparent that larger brains in more complex animals are at least as precisely speci�ed

as the nervous systems of simpler animals. Learning is concurrent with maturation in

humans; however, for animals with shorter maturation period many non-trivial traits

and instincts are inborn, i.e., genetically encoded and ready for use practically from

birth. Thus, there are speci�c degrees of freedom in development that are not rigidly

controlled by the genetic program, while genes continue to exercise precise control

over the rest of the process. The questions arise: What degrees of freedom are most

likely to be left out of the exact speci�cation ? What happens to these degrees of

freedom ?

One of the obvious di�erences between the cockroach nervous system and the

human brain is the presence in the human brain of the large neural tracts, comprised

of the millions of the axons. Another striking feature of the human brain is that it has

a number of \patches" with topographic correspondence to the body parts or to other

brain regions.6,7 There is a signi�cant economy for the encoding process to represent

the connections on the level of tracts whenever possible, rather than individual axons.

For such encoding to be possible, a mechanism must exist to provide \automatic"

routing of the neurons within a given tract to their precise targets, without speci�cally

designating these targets genetically. In the case of a neural tract connecting two

isomorphic areas, such a mechanism appears to be most plausible, with the exact

speci�cations replaced by certain self-organization mapping processes.

The visual system is one in which topographic maps are the rule rather than excep-

tion, although they are also common in auditory, somatosensory and motor areas.8,9

Thus it seems natural to explore the available evidence for the tract routing processes

in the visual system. This system starts with the eye, where optics produce a two-

dimensional projection of the light from the environment onto � 108 photosensitive

rod and cone cells. These sensors convert light quanta into electric potentials, and

provide ampli�cation with gain control to operate over the necessary dynamic range.

The �rst rudimentary neural processing occurs in the eye, where six layers of neurons

are incorporated in the retina, with �106 axons emerging as the output to the brain
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in the form of the optic nerve. The optic nerves from the two eyes cross at the optic

chiasma, after which axons carrying information about the left half of the visual �eld

from both eyes travel to the right and those carrying information about the right half

travel to the left. They arrive at the dorsal Lateral Geniculate Nucleus (LGN), where

information from magnacellular and parvacellular paths of the two eyes is segregated,

processed, partially combined, and sent further, mostly to the V1 area of the primary

visual cortex. The top layers of the LGN are in simple topographic correspondence

with the retinas of the eyes. More complex patterning, due to the interaction of infor-

mation from the two eyes necessary for binocular vision, exists in the lower layers and

in most of the higher areas such as V1,V2,V4, MT etc. However, certain topographic

features are preserved throughout the system.

It is known that the unscrambling of initially imperfect connections in the optic

nerve requires visual input.10,11 Pre-birth spontaneous wave activity in the retina,

observed experimentally, has been suggested as the necessary input early in develop-

ment.12 The common explanation is that localized stimulation of the retina, together

with coincidence-detecting mechanisms in the brain, are responsible for re�ning the

connections. We develop this view further, showing how entrainment of wave-like

activity in two imperfectly connected excitable layers { interacting with the mech-

anisms of plasticity, represented on the abstract level by Hebbian learning { results

in improved connectivity. We suggest that establishing the precise mapping can be

based upon an essential similarity in the dynamical properties of the source and the

target layers.

A typical biological neuron receives input from as many as 10,000 other neurons.

The strength of these connections is not �xed. The most general principle, due to

Hebb,13 postulates an increase in the connection eÆcacy proportional to the frequency

of simultaneous excitation of both source and target neurons. Even this simplistic

mechanism can account for a host of adaptation and learning phenomena. We point

out the possibility of interaction between Hebbian learning and entrainment of ac-

tivity in the target neural layer by the received input. Entrainment occurs when a

dynamical system is subjected to a signal correlated with the dynamics of the sys-

tem. This phenomenon can be considered as a generalized example of resonance. The

e�ects of perturbations that are synchronous with the system evolution accumulate
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and give rise to e�ects that are larger than those independent of the dynamics of the

system. Thus, similar systems can exhibit considerable in
uence on each other even

under relatively weak coupling, while random noise is much less e�ective in perturb-

ing either of them. In this chapter we present the results of numerical simulations

of a system combining the e�ects of Hebbian learning with entrainment and demon-

strate the evolution of the connections between two similar neural layers under such

conditions. The observed phenomena and conditions necessary for their occurrence

closely resemble those present in the developing visual system and, possibly, other

parts of the brain involving topological connections between layers of neurons. In the

next section we present a simple example of an excitable medium and demonstrate

entrainment of activity in this medium by a suitably chosen input.

5.2 Entrainment

Nerve cells transmit excitation as electrochemical pulses. Propagation of the pulse is

due to electrical conductance along the cell axle (a small displacement of a large popu-

lation of ions), with constant signal regeneration due to the transversal ionic currents

(a large displacement of a comparatively small number of ions).14 The Hodgkin-

Huxley model14,15 incorporates a detailed description of the ionic currents to produce

a quantitatively accurate picture of the processes occurring at every point of the axon

during the pulse propagation. The Fitzhugh-Nagumo equations are a simpli�cation

of this model:

_uj = � �

�
v + uj �

u3j
3
+ z

�
;

_vj =
1

�
� (a� uj � bvj) : (5.1)

These equations with two variables can exhibit excitability and oscillations similar

to those in real neurons, but they are intended only as a quantitative model of the

action potential.16 In these equations, u can be roughly identi�ed with the voltage,

and v accounts for the recovery processes; a, b, c, and z are the model parameters

with typical values a = 0:7, b = 0:8, c = 3, z = 0; h is the time scale factor, which is

super
uous unless used in a nonuniform spatially extended system (otherwise, h = 1
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Figure 5.1: A phase portrait of the FitzHugh-Nagumo model.

). The values of the parameters determine the behavior in a manner that can be

most easily understood upon analysis of the phase portrait of the system, as shown in

Figure 5.1. The relative position of the nullclines, y = (a�x)=b and y = x3=3�x�z,

determines the character of the singular point at their intersection and thus the

stability of the system, Figure 5.2. Changing the value of either a or z allows one to

select an excitable, oscillatory or non-excitable regime.

Consider a one-dimensional excitable medium with point dynamics described by

the Fitzhuh-Nagumo (FN) equations, and di�usive coupling between the elements:

_uj = � �

�
v + uj �

u3j
3
+ z

�
+Du � (uj+1 + uj�1 � 2uj) ;

_vj =
1

�
� (a� uj � bvj) : (5.2)

This system of the ODEs can be considered as a discretization of the corresponding

PDE, and as such is often used as a computational scheme for the numerical solu-

tion of the latter.17 With the proper choice of parameters it possesses a traveling

79



Figure 5.2: Stability of the FitzHugh-Nagumo model.

wave solution similar to that shown in Figure 5.4. In a biological context, the cou-

pling between neighboring cells can be considered to be di�usive in the case of signal

transmission by di�usion of extracellular factors, or in the case of the gap junction

between cells. In case of synaptic contacts between the cells, however, transmission

occurs only in one direction and can not be accurately described by the di�usive

model. A comparison of the propagating wave of excitation in the array of synapti-

cally coupled neurons, Figure 5.5, to one in a di�usively coupled array, Figure 5.4,

reveals the qualitative similarity between the two. The di�usively coupled model will

therefore be used throughout this work.

The propagation velocity depends upon the excitability of the system. Parameter

z is introduced into the equation to provide a straightforward control of the excitation

threshold, with more negative values corresponding to a more excitable system. The

relationship between the value of the z parameter and the wave velocity is shown in

Figure 5.6.

We use this model in its discrete interpretation to represent a layer of di�usively

coupled neurons. The excitation projected onto this layer from outside is applied
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Figure 5.3: A one-dimensional array of excitable elements with di�usive coupling between

neighbors and excitatory input.
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Figure 5.4: A typical excitation wave. The value of the variable u across the spatial array.
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Figure 5.5: Similar to Figure 5.4, except coupling between the cells in one-way excitatory:

if ui < 0, add � = 0:01 to zi+1 and zi�1.
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Figure 5.6: The velocity v of the wave as a function of the excitatory input. The value of
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Figure 5.8: Two one-dimensional arrays of excitable elements with di�usive coupling

between neighbors and one-to-one excitatory connections from the upper (source) to the

lower (target) layers.

to the z parameter. The alternative choice is to make the input additive to the u

variable. However, we believe that our method better accounts for the independence of

the synaptic action upon the state of the target neuron. If the input reaching the layer

is spatially uniform, it alters the threshold of excitation, and a�ects the propagation

velocity in the manner that has been discussed above (Figure 5.6). The behavior of

the system under inhomogeneous input conditions is of particular interest as a step

toward understanding the interaction between coupled layers. It is natural to expect

an acceleration of the wave at the regions receiving a stronger excitatory input and

deceleration in the regions of weak input. This behavior is indeed present as illustrated

by the Figure 5.7. It also shows that similar, although slightly more complicated,

behavior is observed in response to the spatially uniform but time-varying excitation.

The latter also demonstrates that the response of the system to a sequence of inputs

cannot be simply predicted from the responses to the individual stationary patterns.

This complication prevents drawing conclusions from these examples for the case

of arbitrary inputs. However, the above results help in the interpretation of more

complicated situations. Consider two identical layers, each similar to those described

above. We will let the top (source) layer project one-way, excitatory connections to

the bottom (target) layer in a one-to-one fashion (Figure 5.8):
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zti = zt + �; usi � threshold ;

zti = zt; usi < threshold : (5.3)

If a wave is initiated in the top layer, it will project onto the bottom layer as

a localized excitation, moving synchronously with the top layer wave. Intuitively,

a wave in the target layer will move faster when coincident with the excitation and

slower otherwise. This can be con�rmed by arranging slightly di�erent parameters for

the layers (zbottom = ztop+ Æ) to make the autowave in the bottom layer move slightly

slower than the one in the top layer and allowing them to interact in this adiabatic

condition (vs � vt, since Æ is small) when passing one another. Measurements of

instantaneous wave velocity in the target layer as a function of the wave position

relative to the source wave are presented in Figure 5.9. There are several features of

interest in this velocity pro�le. First, it can be seen that for short displacements the

target wave accelerates when trailing the source wave, as would be expected from the

previous examples. For larger displacements, however, there is a reduction in the wave

velocity. A simple analysis of this �gure allows the determination of the displacement

corresponding to the target wave \locked" to the source wave and the range of the

initial displacements from which the system converges to this stable con�guration.

Such locking of the target wave to the moving excitation provided by the source wave

is commonly referred to as entrainment.

Figure 5.10 shows the two steady states SS1 and SS2 corresponding to the target

wave velocity being equal to the source wave velocity. The �rst steady state SS1 is

unstable, since the small perturbation of the displacement results in the change in the

target wave velocity tending to move the wave further in the direction of the initial

perturbation. The other steady state SS2 is stable, with the range of displacements

from SS1 at the left to in�nity at the right converging to SS2 (note v2 < v1). Thus,

the distance between SS1 and SS2 determines the stability of the steady state SS2

with respect to random perturbations on the wave position and as such can serve as

a measure stability of the entrainment. In general, this range depends upon both the

strength of the coupling between the source and target layers and the di�erence in

their propagation velocities. Figure 5.11 shows the range of stability jx(SS1)�x(SS2)j
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Figure 5.9: The change (dv) in the velocity of the target wave as a function of the relative

position (dx) of the target and source waves.
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Figure 5.10: The dynamic steady states SS1 and SS2 of the wave-to-wave entrainment.

as a function of the mismatch in the intrinsic wave velocity in the layers, as controlled

by changing the Æ parameter. To a �rst approximation, the pro�le of dv does not

depend on the di�erence in the wave velocity and the range can be determined form

the Figure 5.10 by drawing the source velocity lines and determining the intersections

SS1 and SS2 with the dv curve. A similar result is obtained by maintaining Æ constant

(Æ = 0:01) while varying the strength of the coupling between the layers (Figure 5.12).

In this case, the source velocity line and the base of the dv curve remain �xed, while

the hight of the curve is changing, leading to a similar relationship.

The entrainment is not limited to the case of one-to-one connections. It is not sur-

prising that a slight spreading out of the excitation does not cause qualitative changes

in the behavior. Assume that every source neuron connects to a multiplicity of target

neurons, with the strength of the connections following gaussian pro�le G, centered

around the source location (Figure 5.13). To a �rst approximation, the velocity plots
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Figure 5.11: The region of stable entrainment as a function of �Z, the mismatch in the

excitatory input to the source and target layers.
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Figure 5.12: The region of stable entrainment as a function of �, the excitatory input to

the target layer from the source layer.
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Figure 5.13: The distribution of the weights Wij as a function of (i� j).

presented above change by a convolution with G. Figure 5.14 demonstrates this e�ect

by comparing the original dv pro�le convolved with the gaussian G to that obtained

by direct measurement of the system with a gaussian-spread excitation. It is worth

mentioning that high spatial frequency variations in the strength of the connections

between layers have a rather minor e�ect on the behavior of the system, owing to the

low-pass properties of the di�usive coupling between the neighboring neurons.

Comparing the projection of the activity of the input layer to the output layer to

the activity elicited in the output layer, the following observation can be made: The

projection depends upon the distribution and strength of the connections between

the layers, while the activity also involves the in
uence of the target dynamics. As

demonstrated above, in the case of identical or nearly identical dynamics of the lay-

ers, there will be dramatically better correspondence between the source and target

activity as compared to the source activity and its projection to the target. Based
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Figure 5.14: Similar to the Figure 5.9 - the overlay of the target velocity pro�le dv for

the gaussian-spread excitation (solid line) and the result of the convolution of the original

(Figure 5.9) pro�le with the weight distribution function (Figure 5.13) (dotted line).
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on this observation, we suggest that this mechanism can provide matching patterns

of activity in two imperfectly connected neural layers. Further we shall demonstrate

that these patterns can serve as a reference for the establishment of the topologically

precise connections between the layers.

5.3 Model

We consider the development of connections between two layers of neurons. A bi-

ological example of such a system is the photoreceptors in the eye that transmit

information to the LGN several inches away. The input (I) and output (O) layers

are each modeled as a one-dimensional string (N = 128) of Fitzhuh-Nagumo neurons

with di�usively coupled nearest neighbors:

_xj = � �

�
y + xj �

x3j
3
+ z

�
+Du � (xj+1 + xj�1 � 2xj) ;

_yj =
1

�
�
�
aI � xj � byj

�
;

_uj = � �

�
v + uj �

u3j
3
+ z

�
+Du � (uj+1 + uj�1 � 2uj) +

NX
i=1

Wijxi;

_vj =
1

�
�
�
aO � uj � bvj

�
; (5.4)

with � = 3:0, �I = 0:62 for I layer (x; y), �O = 0:38 for O layer (u; v), b = 0:8, and

Dx = 1:0; j = 1::N . The di�usion term is modi�ed for j = 1; N to provide no-
ux

boundary conditions. We include unidirectional excitatory connections from each

element Ii to every element Oj with the strengthWij (Figure 5.15). It is known that

the precision of the initial sketch of the connections, established by the gradients of

the chemical markers that are present in both the source and target layers, is orders

of magnitude lower than that of the �nal precision. Thus, we start with randomized

initial distribution of Wij, with a controlled bias toward the correct location (ideal

Wij = Æij), accounting for the marker-based initial layout:

_W0
ij =

r

ji� j + f(j)j+ s
; (5.5)
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Figure 5.15: Two one-dimensional arrays of excitable elements with di�usive coupling

between neighbors and excitatory connections from each element Ii of the source layer to

every element Oj of the target layer with the strength Wij .

where r are random numbers drawn from a uniform distribution on the interval 0::1,

s = 6:0 is a parameter controlling the half-width of the distribution, and f(j) =

10:0 sin(2�j=N) is arbitrarily chosen function to simulate distortion in the initial

layout of the connections. [For a representative W0, see Figure 5.16]

It is known that the unscrambling of initially imperfect connections in the optic

nerve requires visual input. Pre-birth spontaneous activity, observed experimentally

in the retina, has been suggested as the necessary input early in development.12,19

To simulate this spontaneous wave activity, layer I is infrequently stimulated (at

40s intervals) at random locations to initiate individual waves of activity. Layer O

will occasionally become activated at certain locations due to the excitation received

through the connections. The initiated waves will propagate across this layer in a

manner similar to that in the layer I. The simultaneous excitation of every pair Ii,

Oj causes a small increase in Wij, accounting to the Hebbian rule:

_Wij = 0:01 if ui < 0 & uj < 0: (5.6)

The total sum of all of the weights converging to a given cell is kept constant by peri-

odic normalization in order to account for \unlearning" and other negative feedback

processes not explicitly incorporated in the model:18
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Figure 5.16: The weight matrix W is represented as a grayscale image with intensity at

each (x; y) location corresponding to the magnitude of a Wyx; Successive images are taken

every 100 epoch of simulation starting from the initial distribution.

Figure 5.17: A grayscale image is applied as the input to the layer I and excitation

projected using the current weight matrix W to the output layer O is shown. Successive

output images correspond to the progressively evolvingW weight matrix as presented above

on Figure 5.16.
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NX
i=1

Wij = 1: (5.7)

Every 1000 seconds of simulated time, the weight matrix is evaluated by applying

a known pattern to the I layer and computing the excitation projected onto the O

layer. Individual lines of a photographic image were used as input patterns, and the

output was reassembled into a two-dimensional array, allowing visual inspection of

the extent of scrambling occuring in the transmission from the I to O layers.

5.4 Results

The local-scale disorder in the connections makes the activation reaching the output

di�erent from the pattern of activity in the input layer. However, on a coarser scale

there is correlation between ongoing and projected activities, because coarse-scale

topology can be established by developmental mechanisms. Under such conditions,

activity elicited in the output layer, on average, resembles ongoing activity in the input

layer much closer than would be expected from the pattern of the received activation.

The two layers synchronize their patterns of activity under relatively weak, di�use

coupling. This synchronization allows the Hebbian mechanism to adjust the existing

scheme of connections to a higher degree of topological correspondence. The e�ect of

this adjustment is an increased correlation between the activation reaching the output

layer and the pattern of activity in the input layer. This, in turn, allows for an even

higher degree of synchronization between the patterns of activity in the input and

output layers, and so on, until a nearly perfect match is established.

The analysis of the behavior of this model provides a new perspective on the pos-

sible mechanisms for the establishment of a precise topology of connections in the

visual pathways and other neural tracts between isomorphic areas. In particular, the

model provides insights into the mechanism responsible for the organization of proper

connections in the \receiving" layer. We draw two conclusions from our results: (1)

Entrainment of the receiving circuit by the source circuit, on the basis of initially

weak and di�use coupling, can provide matching patterns of activity in both cir-

cuits, allowing plasticity mechanisms to establish more precise connections, and (2),
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entrainment and plasticity can behave in a closed - loop manner, resulting in fast,

iterative improvement of an initially imprecise scheme of connections. Weak, di�usive

coupling with Hebbian learning o�ers an attractive mechanizm for the development

of neurophysiological connections.

5.5 Conclusion

A number of experimental studies have demonstrated the importance of spontaneous

activity in di�erent areas of visual,19,20 auditory,8 and other parts of neural system9

for the development of appropriate neural connections. It has been clearly demon-

strated that genetically encoded labels provide guidance for the di�use connections,

but no more than a partial bias towards the correct locations,22{24 while the onset of

synaptic activity leads to a rapid reorganization of the connections, resulting in pre-

cise and topologically correct projections.25 Similarly, in the mature nervous system,

spontaneous activity during certain sleep phases has been implicated in maintain-

ing the pattern of existing connections, thus stabilizing the structure with respect

to adverse environmental inputs. While it is certain that the details of spontaneous,

pattern-driven self-organization vary in di�erent systems due to anatomical di�er-

ences, there is a striking similarity between all these phenomena and certain aspects

of the behavior of coupled spatially extended chemical systems. Entrainment observed

experimentally in a chemical system containing two active layers26 o�ers a possible

mechanism for matching patterns of activity in source and target systems, as well as

serving as a guide in establishing and maintaining topographic projections between

the connected layers. In this chapter we have initiated an exploration of the inter-

actions between entrainment and Hebbian mechanisms. The model presented here,

which can be viewed as a caricature of a neural system, such as the eye { LGN cir-

cuit, exhibits rapid convergence to a topological order in a system of initially random

connections, without the use of any specialized mechanisms. Such behavior, although

not directly comparable to any biological system due to the crudeness of the model,

o�ers a possible explanation of the observed developmental processes on the gross

level. Inclusion of the structural details and use of a more realistic neuron model may

enable more direct comparisons with real neural circuits (at the expense, however,
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of conceptual clarity). Another possible extension of the model lies in the possibility

of synchronizing chaotic systems27 without requiring detailed topological correspon-

dence. In this case, the term \projection" would acquire additional meaning, since

such systems would perform projections from the state space of the source circuit to

the state space of the target circuit, thus performing information processing equiv-

alent to the nonlinear transformation from one coordinate system to another. The

relevance of such circuits to neural processing is not clear at this time; however, such

circuits seem to be biologically possible, and it also should be noted that an extension

of the \�ltering" technique presented in the previous chapter, using mesh-based inter-

polation as the basis for an Extended Kalman Filter, could be implemented as such a

circuit. Exploration of this possibility may provide an explanation of the mechanisms

responsible for the separation of signals, such as source separation in the \cocktail

party" situation and �gure-background separation in the case of visual inputs, which

are among the fundamental elements of the recognition processes.

5.6 Appendix A. Brain is not directly encoded

The human genome contains n � 3 � 109 nucleotide pairs.28 Since each of these

locations contains one out of the four possible nucleotides, it carries m = 2 bits of

information (log2(4)), giving the complete genome the information capacity mn =

6 �109 bits. It is believed that 95% to 99% of the chromosomal DNA serves structural

roles and does not encode any genes. Furthermore, the coding part is substantially

redundant, frequently containing multiple copies of the same gene. These facts place

an upper bound on the order of 108 bits to the amount of useful genetic information

contained in the humane genome.

It is estimated that the number of neurons in the brain reaches n � 1011, with

each neuron making from a few hundred to a few hundred thousand connections with

an average of about m � 104.4 The amount of information necessary to describe the

connectivity of this structure is at least nmlog2(n) > 1016. This number does not

take into account the variable strength of the connections, the representation of which

would require a great deal of additional information. It also neglects the additional

complexity that connections to a speci�c neuron can occur at various parts of its
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soma and dendritic tree, also requiring speci�cation. These factors may increase the

above estimate by several orders of magnitude. Comparing the numbers estimated

from the genetic information and the complexity of the nervous system, it is obvious

that the genetic material cannot possibly specify each individual neural connection

independently, and thus, the structure of the brain cannot be directly encoded in the

genome.

The evidence from experiments on 
ies and cockroaches demonstrates that struc-

ture of the neural systems in these organisms is highly conservative.5 The neural struc-

ture is almost exactly the same in individual insects with identical genetic makeup.

The genetic material of a 
y is �0:1 of the human28 and its nervous system contains

about 103 times less neurons, which, in analogy with the above estimates, corresponds

to 107 bits and more than 1013 bits, respectively. The mismatch between the amount

of genetic material and the complexity of the neural structure is similar to that in the

case of the human species. However, we are certain that the structure of the nervous

system is very precisely de�ned by the genetic material. Thus the structure of the

nervous system must be presented in the genetic material in an eÆciently compressed

form.

5.7 Appendix B. Numerical Method

The simulations were performed using the following scheme:

xn+1 = xn + hf(xn+1=2): (5.8)

To �nd the value of the derivative at the interval midpoint we proceed as follows:

xn+1=2 = xn + hf(xn+1=2);

xn+1 = xn+1=2 + hf(xn+1=2): (5.9)

The solution of the nonlinear equation arising from the implicit step is found by

Newton-Raphson iterations:29

xn
j+1 = xn�1

1 + hff(xjn) + f(xjn)(x
j+1
n � xjn)g; (5.10)
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thus

�xn = [E � hJ(xn)]
�1fxn�1 + hf(xn)� xng; (5.11)

where

[E � hJ ]�1 =
1

D

"
1 + bh=c �h=c

�h=c 1 + ch(x2 � 1);

#
(5.12)

and

D = f1 + ch(x2 � 1)gf1 + bh=cg+ h2: (5.13)
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