
Graduate Theses, Dissertations, and Problem Reports 

2014 

Stem cell matrix and cartilage regeneration Stem cell matrix and cartilage regeneration 

Jingting Li 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Li, Jingting, "Stem cell matrix and cartilage regeneration" (2014). Graduate Theses, Dissertations, and 
Problem Reports. 394. 
https://researchrepository.wvu.edu/etd/394 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/394?utm_source=researchrepository.wvu.edu%2Fetd%2F394&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


STEM CELL MATRIX AND CARTILAGE REGENERATION 
 
 
 

Jingting Li 

 
Dissertation submitted to the School of Medicine 

 at West Virginia University 
 

 in partial fulfillment of the requirements for the degree of  
 

Doctor of Philosophy in 
Exercise Physiology 

 
Ming Pei, M.D., Ph.D., Chair 

Stephen E. Alway, Ph.D. 
John M. Hollander, Ph.D. 
Emidio E. Pistilli, Ph.D. 

Yon Rojanasakul, Ph.D. 
 

Division of Exercise Physiology 
 

Morgantown, West Virginia 
2014 

 
 

Keywords: Mesenchymal stem cells, Nucleus pulposus,  
Decellularized extracellular matrix, Chondrogenesis 

Copyright 2014 Jingting Li 



i 

Abstract 

 

STEM CELL MATRIX AND CARTILAGE REGENERATION 

 Jingting Li 
 

Cartilage defects caused by injuries of the knee affect about 900,000 Americans annually, 

resulting in more than 200,000 surgical procedures. Cartilage repair remains a major challenge 

due to its limited healing capacity. Current cell-based therapy using autologous chondrocyte 

implantation has been developed for decades and promising results have been observed in clinic. 

However, the shortage of autologous chondrocytes and their uncertain long-term effectiveness 

have led researchers to find alternative solutions. Stem cells from various tissues have been 

shown to be potential sources of chondrocytes. Among them, synovium-derived stem cells 

(SDSCs) have been suggested as tissue-specific stem cells for chondrogenesis. However, a 

major obstacle challenging the cartilage tissue engineering is cell senescence, which is due 

mainly to extensive ex vivo passaging and elderly donors. A reconstructed ex vivo 

microenvironment that can maintain or enhance stemness is urgently needed for facilitating large-

scale tissue engineering. To facilitate ex vivo expansion, the conventional methods for stem cell 

expansion were extensively investigated. We first compared the influence of low- and high-

seeding density on human SDSC stemness during ex vivo expansion. Low-density seeding 

expansion yielded SDSCs with enhanced proliferative and multi-differentiation capacities 

compared to high-density seeding though it was not highly efficient. Downregulation of ERK1/2 

and JNK and upregulation of p38 might be attributed to the retained “stemness” under low-density 

expansion. We next compared the impact of hypoxia, fibroblast growth factor-2 (FGF-2) 

supplementation and a novel approach of SDSC-deposited decellularized extracellular matrix 

(DECM) on SDSC stemness. DECM expansion enhanced greater SDSC proliferation while 

retaining stem cell characteristics, compared to FGF-2 supplementation alone. The combination 

of hypoxia, FGF-2 and DECM contributed to the highest cell number in SDSC expansion, 

indicating their synergistic effects. Although the chondrogenic index was comparable between 

DECM expansion and FGF-2 supplementation, which were much higher than expansion on 

plastic flask alone, the observations that FGF-2 induced hypertrophic marker genes suggested 

the superiority of DECM in enhancing SDSC self-renewal while retaining stemness. Other 

potential cell sources for depositing DECM were also evaluated. We found that, besides SDSCs, 

adipose- or urine-derived stem cells and dermal fibroblasts could also deposit the DECM, which 

could enhance SDSC self-renewal and chondrogenic potential without concomitantly enhancing 

adipogenic and osteogenic potentials. These findings suggest that, given an optimal DECM 

substrate, the chondrogenic potential within the tissue-specific SDSC could be substantially 
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enhanced. We further characterized human fetal synovial fibroblasts as fetal SDSCs as they 

possessed the multi-lineage differentiation capacities and mesenchymal stem cell surface marker 

expression. Fetal SDSC-derived DECM expansion not only increased cell number and enhanced 

chondrogenic potential; it also lowered SDSC senescence marker expression while enhancing 

MSC marker expression compared to expansion on plastic flasks alone. As cell senescence is a 

limiting factor for tissue regeneration, we then investigated whether the DECM derived from fetal 

SDSCs referred to as a young stem cell microenvironment could be used for rejuvenating adult 

SDSC. We found that fetal SDSC-derived DECM (FE) was superior to adult SDSC-deposited 

DECM (AE) in promoting SDSC proliferation and chondrogenic potential. Further investigation 

revealed that unique proteins in FE might be responsible for the rejuvenation effect and 

advantageous proteins in AE might contribute to differentiation more than proliferation. Compared 

to AE, the lower elasticity of FE yielded expanded SDSCs with lower elasticity, which could be 

responsible for the enhancement of chondrogenic differentiation. MAPK and noncanonical Wnt 

signals were also actively involved in DECM-mediated SDSC rejuvenation. The young and 

healthy microenvironment provided by fetal SDSCs could serve as a “fountain of youth” for adult 

SDSC rejuvenation. Finally, we tested whether the DECM expansion system would also be 

beneficial to the chondrocyte-like nucleus pulposus cell (NPC) rejuvenation from human herniated 

discs and whether fetal DECM was superior to adult DECM. Although both SDSC and NPC 

deposited DECMs (SECM and NECM) significantly enhanced NPC proliferation, only NECM 

expanded NPCs manifested the increased redifferentiation capacities after chondrogenic 

induction. NECM was better than SECM in functioning as an expansion system in vitro by 

promoting NPC proliferation and redifferentiation. In conclusion, we have demonstrated that the 

DECM deposited by human primary cells or stem cells serves as an ex vivo expansion system for 

maintaining self-renewal and differentiation potential, which could greatly benefit the future 

generation of cell-based therapy for cartilage and intervertebral disc regeneration. 
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SPECIFIC AIMS 

	  
Cartilage defects caused by injuries to the knee affect about 900,000 Americans annually, 

resulting in more than 200,000 surgical procedures.1 Cartilage repair remains a major challenge 

due to its limited healing capacity. Current cell-based therapy using autologous chondrocyte 

implantation (ACI) has been developed for decades and promising results have been observed in 

clinic.2;3 However, the shortage of autologous chondrocytes and their uncertain long-term 

effectiveness have led researchers to find alternative solutions. Stem cells from various tissues 

have been shown to be potential sources of chondrocytes. Among them, the synovium-derived 

stem cell (SDSC) has been suggested as a the tissue-specific stem cell for chondrogenesis.4 

However, a major obstacle challenging the cartilage tissue engineering is cell senescence, which 

is due mainly to extensive ex vivo passaging and elderly donors.5 A reconstructed ex vivo 

microenvironment that can maintain or enhance stemness is urgently needed for facilitating large-

scale tissue engineering. 

 

Recently many studies have suggested that decellularized tissue matrix provides a three-

dimensional structure with biochemical and biomechanical cues to facilitate tissue and organ 

regeneration. Previous work have demonstrated that porcine SDSC derived stem cell matrix 

could be decellularized (DECM) and serve as a substrate that can significantly enhance cell 

proliferation and facilitate chondrogenesis.6 However, it remains unclear if this DECM system 

could be successfully translated into human primary cells. 

 

Based on these exciting data and our preliminary novel data along with the urgent clinical need 

for cartilage regeneration, we hypothesized that (i) DECM as a novel expansion system is 

superior to conventional methods in maintaining SDSC stemness and facilitatating 

chondrogenesis; (ii) Young DECM derived from fetal SDSCs can rejuvenate adult stem 

cells and restore their self-renewal and chondrogenic differentiation potentials; and (iii) 

Young DECM expansion system could also be applied to rejuvenate chondrocyte-like 

nucleus pulposus cells (NPCs) from herniated discs toward higher proliferation and 

redifferentiation potentials.  
 

Our long-term goal was to develop an efficient in vitro expansion system with proliferation and 

chondrogenic differentiation rejuvenating capacities, which can provide a large quantity of high 

quality cells for cartilage engineering. The potential impact of this study is that the optimization of 

ex vivo stem cell protocols with decellularized extracellular matrix for maintaining stemness and 

facilitating chondrogenesis will provide high quality and a large quantity of cells for ACI. The 
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understanding of the rejuvenation mechanism by matrixes will advance the knowledge of 

cartilage regeneration and benefit the development of better treatment for cartilage defect.  

 

The objectives of this dissertation were to: (1) investigate the effect of conventional methods 

(seeding density, low oxygen, growth factor) and the novel DECM expansion system on SDSCs 

for facilitating chondrogenesis and explore the potential cell sources of DECM; (2) characterize 

the rejuvenating effect of fetal SDSCs deposited young DECM on adult SDSCs and its potential 

mechanisms; (3) apply the young DECM expansion system to the rejuvenation of primary NPC 

from herniated human discs. The central hypothesis was that DECM deposited by human 

primary cells or stem cells can serve as ex vivo expansion system for cartilage regeneration. The 

following three specific aims and correspondent hypothesis are described as below. 

 
Specific Aims: 

 

Specific aim 1: Demonstrate that DECM is superior to conventional methods as an 

expansion system in maintaining SDSC stemness and facilitating chondrogenesis. 

 

1.1 Investigate the effect of seeding density, hypoxia, fibroblast growth factor-2 (FGF-2) and 

DECM on SDSC expansion and chondrogenic differentiation. 

 

Hypothesis 1.1: We hypothesized that low density seeding can enhance SDSC self-renewal and 

chondrogenic differentiation. Hypoxia, FGF-2 and DECM deposited by SDSCs in combination or 

alone can increase the proliferative and chondrogenic differentiation potentials in SDSCs. 

 

1.2 Investigate whether DECM derived from sources including SDSCs, dermal fibroblasts, 

adipose and urine-derived stem cell can reprogram SDSCs.  

 

Hypothesis 1.2: We hypothesized that DECMs derived from SDSCs, dermal fibroblasts, adipose 

and urine-derived stem cells can reprogram SDSCs toward more proliferation and stemness, 

especially chondrogenesis. 

 

Specific aim 2: Characterize the rejuvenation effect of young DECM on adult SDSCs 

towards proliferation and chondrogenesis.  

 

2.1 Characterize fetal synovium fibroblasts as fetal SDSCs and investigate its deposited DECM. 
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Hypothesis 2.1: We hypothesized that fetal synovium fibroblasts contain fetal SDSCs due to the 

capacity to express MSC markers and undergo multi-lineage differentiation. 

 

2.2 Examine the rejuvenation effect from young DECM on adult SDSCs by comparing SDSCs 

expanded on either young or old DECM through evaluating their self-renewal and chondrogenic 

differentiation potentials. 

 

Hypothesis 2.2: We hypothesized that young DECM deposited by fetal SDSCs can rejuvenate 

adult SDSCs towards proliferation and chondrogenesis.  

 

Specific aim 3: Investigate the rejuvenation effect of primary NPCs from herniated human 

discs using young or adult DECMs deposited by SDSCs and NPCs.  
 

3.1 Investigate whether human fetal or adult SDSC deposited DECM can rejuvenate NPCs from 

herniated intervertebral discs. 

 

Hypothesis 3.1: We hypothesized that DECM derived from fetal or adult SDSCs can enhance 

proliferative and/or chondrogenic potentials.  

 

3.2 Investigate whether human fetal or adult NPC derived DECM can enhance NPC proliferation 

and redifferentiation potentials.  

 

Hypothesis 3.2: We hypothesized that DECM derived from fetal or adult NPCs can enhance 

proliferative and/or chondrogenic potentials.  
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C H A P T E R  1 : L I T E R A T U R E  R E V I E W  

1.1 Current Status of Cartilage Defect and Intervertebral Disc Degeneration 
 

1.1.1 Cartilage Biology and Intervertebral Disc Biology 

Articular cartilage is a unique, hypocellular, and avascular tissue, made mostly of extracellular 

collagens and proteoglycans (PGs). It allows for a smooth gliding of articulating surfaces of a joint 

in order to withstand high loads during a lifetime. The structural integrity of the articular cartilage 

is essential to perform physical activity throughout life.  

 

Different types of cartilage tissue are present throughout the body at various sites. According to 

the histological classification, there are hyaline, elastic, and fibrocartilage depending on their 

molecular composition.1 Hyaline articular cartilage is formed by the chondrocytes (~5% of the 

cartilage wet weight and <10% of the cartilage tissue volume) surrounded by an intricate network 

of extracellular matrix (ECM). The cartilage matrix is rich in PGs (~10%) (mostly aggrecan, but 

also decorin, biglycan, and fibromodulin) and collagen fibrils (~15%) (mostly type-II collagen, but 

also type-IX, -XI, -VI, and -XIV collagens) and a number of additional molecules for stabilization 

(link protein, cartilage oligomeric matrix protein, fibronectin, tenascin).2-4 Normal hyaline articular 

cartilage contains about 70-80% water mainly bound to PGs, but a proportion of which can move 

freely for joint lubrication and for nutrition of the chondrocytes. Adult hyaline articular cartilage is 

avascular and aneural tissue that does not possess a lymphatic drainage. The chondrocytes thus 

derive oxygen and nutrition from the synovial fluid by diffusion.  

 

The cartilage (~2-5 mm thick) is structurally divided in three zones (Figure 1.1), each with a 

unique cell morphology and collagen fibers that depend on the expression of specific molecules. 

The superficial/tangential zone (~10-20%) contains flattened chondrocytes (at the highest density 

and expressing lubricin essential for lubrication) and fibers parallel to the surface. The 

intermediate/ transitional zone (~40-60%) is formed of round-shaped cells and oblique, less 

organized fibers. The deep/basal zone (~30%) (Including the calcified zone) also contains round-

shaped cells (at the lowest density) and fibers, both in vertical columns perpendicular to the 

surface. The specific organization of articular cartilage and the embedded chondrocytes result 

from complex developmental processes in which the joints are formed during embryogenesis.5  

 

This process is called endochondral ossification (Figure 1.2), and can be divided into four steps: 

chondrogenesis from early mesenchymal condensations, chondrocyte differentiation and 

hypertrophy, mineralization of the matrix and invasion of bone cells, and finally, the definitive 

formation of bone. Chondrogenesis is the first step in endochondral ossification and is based on 
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strongly regulated events that comprise condensation of mesenchymal chondroprogenitor cells, 

differentiation into chondrocytes, and the patterning of chondrofying tissues into skeletal 

structures. The composition of ECM changes during the differentiation of mesenchymal cells into 

chondrocytes. The expression of collagen I decreases, chondrocytes start producing collagen II, 

IX, and XI as well as aggrecan, link protein, and Gla protein. This composition of cartilage is 

largely retained in adult articular cartilage. In those parts of the embryonic cartilage in which 

cartilage is replaced by bone, chondrocytes differentiation further and become hypertrophic 

expressing collagen X. The invasion of blood vessels from the perichondrium indicated the 

vascularization of cartilage and the beginning of bone formation.5;6 The ECM gets mineralized in 

part by hypertrophic chondrocytes, and through the coordinated action of mineralizing osteoblasts 

and bone resorbing osteoclasts that migrate into the remodeling cartilage.  

 

The chondrocytes exist at low oxygen tension, especially those in the deep/basal zone. In normal 

adult cartilage, the chondrocytes do not show proliferative activity and the network of type-II 

collagen fibers is extremely stable, with a half-life of several years, and also the turnover of 

aggrecan is not excessive (months to years),2 making cartilage a very consistent tissue. This 

results in a limited ability of cartilage to self-heal after trauma and degenerative disease.7  

 

Nevertheless, the adult chondrocytes are capable of adjusting the metabolic (structural and 

functional) cartilage homeostasis by regulating the balance of ECM components (synthesis 

versus degradation) depending on the (complex) presence and influence of various factors 

including the composition of the matrix itself, mechanical loads, local hormones, growth factors 

(transforming growth factor beta - TGF-β, insulin-like growth factor I - IGF-I, the bone 

morphogenetic proteins 2 and 7 - BMP-2, -7), and cytokines (interleukin 1 - IL-1, tumor necrosis 

factor alpha - TNF-α), disease (osteoarthritis - OA) or injury, and aging.2;8 The chondrocytes 

respond for instance to mechanical forces by interactions between their cell surface integrins and 

the components of the matrix or to local factors (hormones, growth factors, cytokines) by 

interactions with specific cell surface receptors. As a consequence, these cells can either secrete 

matrix molecules or the enzymes that degrade them (matrix metalloproteinase’s - MMPs, 

aggrecanases) by undergoing phenotypic changes.2;9-11 

 

Intervertebral disc (IVD) stabilizes the spine by anchoring adjacent vertebral bodies to each other; 

at the same time allowing movement between vertebrae, which gives the spine its flexibility, and 

they absorb and distribute loads applied to the spine. With increasing age they undergo striking 

changes in volume, shape, structure, and composition that decrease motion and alter the 

mechanical properties of the spine. Like other connective tissues, discs consist of a sparse 

population of cells and an abundant ECM formed by an elaborate framework of macromolecules 
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filled with water. The cells synthesize the macromolecules and then maintain and repair the 

framework created from these molecules. The integrity and mechanical properties of the IVD 

depend on the macormolecules and their interactions with water. Due to lack of blood supply in 

the mature disc, the cells rely on the ability of nutrients and wastes to move through the matrix. 

Transport of these molecules through the matrix depends on the composition and organization of 

the macromolecular framework, and the matrix water content, which is largely determined by the 

PG concentration.12  

 

The IVD is part of an anatomic unit that includes the nucleus pulposus (NP) located centrally, the 

annulus fibrosus (AF) located peripherally, and the cartilaginous end-plates (CEP) with their 

associated capillary beds both cranially and caudally. The healthy AF comprises concentric layers 

of predominantly type I collagen fibrils, which serve as a boundary containing the inner NP. The 

healthy NP tissue is characterized by high PG and water content within a loose collagen network. 

It has a sparse, heterogeneous population of cells responsible for maintaining the matrix. The 

negatively charged ECM retains between 66-86% water,13 which permits distribution of and 

resistance to spinal loads while sustaining disc height.  

 

Interestingly, articular cartilage in synovial joints bears a lot of resemblance to NP (Figure 1.3). 

But the NP is not a viable option due to a lack of precursors, high susceptibility to degeneration, 

and various other pathologies. In contrast, synovial lining has a highly robust adult stem cell 

population that exhibits a great capacity for both cartilage and NP repair and may be suitable for 

NP regeneration. A recent comprehensive review also suggested the potential of using synovium 

derived stem cells (SDSCs) as a source for NP regeneration.14 

 

1.1.2 Degenerative Joint and Disc Disease 

OA is the most common and highly prevalent degenerative joint diseases in which articular 

cartilage integrity is compromised. It affects more than 20% of American adults and 10% of men 

older than 60 develop OA. It is highly associated with age and characterized by a change in 

chondrocyte behavior that leads to elevated production of proteolytic enzymes, such as MMP13, 

and consequently to cartilage damage and loss of joint function. The current understanding about 

OA is that it is a disease of the entire joint and not only a pathological degradation of articular 

cartilage. Inflammation of synovial membrane causes release of chondrotoxic proteins leading to 

cartilage destruction. Typical OA is characterized by areas of poorly delineated defects. 

Untreated cartilage defects resulting from trauma or osteochondritis dissecans tend to predispose 

patients to the development of OA. Current treatments are focused on symptomatic relief but they 

lack efficacy to control the progression of this disease, which is a leading cause of disability. The 

pharmacological interventions that address chronic pain are insufficient, and no proven structure-
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modifying therapy is available.9 With the progress of defining the molecular mechanisms involved 

in the initiation and progression of OA, the effective disease-modifying drugs is being developing. 

Cell-based therapy and novel approaches using mesenchymal stem cells (MSCs) as an 

alternative cell source to chondrocytes are currently on trial.15;16 Patients suffering from 

degenerative diseases such as OA are the main group that will benefit from successful cartilage 

regeneration.17 

 

Rheumatoid arthritis (RA) is an autoimmune disease that results in a chronic, systematic 

inflammatory disorder that affects many tissues and organs, but principally attacks flexible joints. 

During RA pathogenesis, proinflammatory cytokines present in the rheumatoid synovial fluid 

activated MMP secretion by chondrocytes, synoviocytes and increase pericellular degradation of 

these cells. Cartilage degeneration is the result of the action of MMP. To date, the goal of 

treatment in RA is to reduce joint inflammation and pain, maximize joint function, and prevent joint 

destruction and deformity.  

 

Degenerative disc disease is the degeneration of one or more IVD of the spine, also called 

degenerative disc disorder. It is a disease of aging and can cause severe chronic pain and greatly 

affects the quality of one’s life. Current treatments are predominantly conservative or, less 

commonly, surgical; in many cases there is no clear diagnosis and therapy is considered 

inadequate.  

 

Aging is the accumulation of changes in a person over time. It affects every organ to a different 

degree. Aged chondrocytes are less responsive to mechanical and inflammatory stimulus. Their 

protein secretion has been altered, as evidenced by decreased anabolic activity and increased 

production of proinflammatory cytokines and matrix-degrading enzymes. The above changes 

make cartilage more susceptible to damage and can lead to the early onset of OA and other 

degenerative diseases. Age also has an influence on cell properties when using autologous 

chondrocytes.18  

 

1.1.3 Cartilage Defects and Disc Degeneration 

Age-related degeneration of articular cartilage and IVD is the most common causes of pain and 

disability in middle-aged and older people.19;20 OA, trauma, and metabolic disorders of the 

subchondral bone, such as osteonecrosis or osteochondritis dissecans are the primary causes of 

cartilage defects accompanied with degeneration.21 Cartilage is vulnerable to traumatic injury; 

due to its avascular nature, inability to access MSCs, and the irreversible aging process, the 

ability of cartilage to self-heal is disappointing. In 1000 knee arthroscopies, 61% of the knee joints 

had cartilage defects; 44% of them were due to OA, 28% were due to focal cartilage defects, and 
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2% were due to osteochondritis dissecans.22 Patients with symptomatic cartilage defects often 

report pain, swelling, joint locking, stiffness, and clicking. Symptoms may cause significant 

functional impairment, often limiting one’s ability to work, play sports, and perform activities of 

daily living.  

 

Symptomatic disc degeneration is thought to be a significant contributor to low back pain (LBP), 

which is estimated to trigger between 2.8%23 and 5%24 of health-care visits in the United States. 

The overall cost of LBP exceeds $100 billion/year in the United States alone, when considering 

both direct costs and indirect costs, such as lost wages and productivity.25 The lumbar spine disc 

degeneration begins earlier in life than degeneration of any other connective tissue in the human 

body, often by the second decade.19;26-28 As degeneration progresses, the IVD becomes less able 

to efficiently absorb physiological loads, resulting in load transfer to adjacent vertebral bodies 

leading to end plate changes, osteophyte formation, and trabecular microfractures.29 

Degenerative fissures in the lamellae of the AF coalesce30 leads to a lack of structural integrity, 

which may allow heriniation of the central NP material. 

 

During development, the immature NP arises from the embryonic notochord and remains 

populated with notochordal cells (NCs).31 These large, highly-vacuolated, and metabolically active 

cells produce a high PG content matrix in addition to providing regulatory cues for surrounding 

cells.32-34 With age and degeneration, NP undergoes extensive changes in terms of matrix 

composition and cell population. Initial signs of degeneration present around the first decade of 

life along with a decline in NCs,26 though it is still unclear whether the decline is due to the 

continued differentiation of NCs into chondrocyte-like NPs or due to the programmed death 

(apoptosis) of the resident cells with invasion by cells from CEP or AFs, both of which together 

with NP consist IVD.35-37 Degeneration of NP results in a transition from the gelatinous healthy 

tissue to a more fibrous structure that is unable to provide mobility to the spine and allows 

complex motion. The consequent altered transmission of spinal loads can ultimately lead to disc 

failure.  

 

1.2 Current Treatments for Cartilage Defect and Disc Degeneration 

	  
1.2.1 Conservative Treatments and Autologous Chondrocyte Implantation 

The first step in the management of articular cartilage lesion is always conservative treatment, 

which typically begins with the use of medications or nutritional supplements including 

acetaminophen, nonsteroidal anti-inflammatory drugs, and glucosamine and chondroitin sulfate. 

These medications may help decrease the symptoms of articular cartilage lesion, but they are 

generally of limited benefit to relatively young and active patients. Although physical therapy 
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helps optimize extremity strength and flexibility, it is not highly effective in reducing the symptoms 

associated with cartilage defect. 

 

Current surgical methods of managing chondral defects include palliative treatment with 

arthroscopic debridement and lavage, reparative treatment with marrow-stimulation and 

restorative treatment, including osteochondroal grafting, total joint arthroplasty and autologous 

chondrocyte implantation (ACI). The first generation of ACI was introduced in 1987 and published 

in 1994.38 The procedure involves harvesting autologous chondrocytes from non-weight bearing 

aspects of the knee. Chondrocytes are then isolated by collagenase digestion and expanded in 

vitro. During a second surgery, the cartilage defect is debrided up to the healthy edges and 

covered with an autologous periosteal patch, taken from the medial tibia. Finally, the suspension 

of healthy autologous cultured chondrocytes is directly injected into the chondral defect under the 

periosteal patch. Despite significant improvements and positive clinical reports, the adoption of 

periosteal based ACI (ACI-P) has been limited partly owing to post-operative complications such 

as cell leaking and periosteal-related hypertrophy.  

 

The second generation of ACI is known as collagen-covered ACI (ACI-C) and is characterized by 

the application of a bioabsorbable collagen membrane in place of the periosteal flap. The 

chondrocytes are cultured with collagen membrane for several weeks; the membrane is then cut 

to the correct size and shape of the cartilage defect. Despite ACI-C showing similar clinical 

improvements and fewer complications, cutting and repeated manipulation of the seeded 

membrane may result in the loss of critical chondrocytes. A modified ACI-C technique has been 

developed in which expanded chondrocytes are applied to the collagen membrane after it has 

been cut to size, reducing the risk of viable cell loss while retaining the ease and speed of the 

technique. However, ACI-C still suffers from technical problems such as insufficient mechanical 

stability, uncertain cell distribution within the defect, and the necessity of an intact cartilage 

shoulder surrounding the defect.  

 

The third generation of ACI is tissue-engineered matrices seeded with autologous chondrocytes; 

it is called matrix associated/induced ACI (MACI). Cultured autologous chondrocytes are directly 

seeded onto biodegradable collagen type I/III membrane or allowed to penetrate into a three-

dimensional (3D) scaffold or fleece prior to intra-articular implantation. The cell carrier based 

MACI technique procedure was recently reviewed by Brittberg.39 Several commercially available 

products have been developed and marketed in Europe, such as MACI®, Hyalograft® C, 

Novocart® 3D, and BioSeed®-C etc.40 The widely adopted MACI® used in routine orthopaedic 

practice is the only third-generation cell carrier that is currently being evaluated in a randomized, 

controlled trial to meet European regulations for marketing approval and potentially those of other 
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countries. MACI minimizes donor site morbidity by avoiding the harvest and implantation of a 

periosteal flap. The 3D cultures that MACI can provide also solve the problem of chondrocyte 

dedifferentiation during expansion and serve as a barrier to fibroblast invasion.  

 
1.2.2 Current Therapeutic Strategies for Nucleus Pulposus Regeneration 

Conservative treatments of acute and/or chronic LBP, such as bed rest, anti-inflammatory 

medications, and physical therapy, have been proved ineffectual. The most popular surgical 

options are still discectomy followed by fusion. Despite the many reports of good to excellent 

outcomes with this method, long-term adverse biomechanical consequences to adjacent 

functional spinal unit need to be concerned.41  

 

Regenerative strategies over the past decades have advanced significantly, but a number of 

hurdles remain before a clinical treatment can be widely accepted. Autologous transplantation 

techniques are among the earliest tissue engineering strategies and recently have demonstrated 

promise for long-term articular cartilage repair in humans.42 Due to a number of similarities 

between cartilage and the NP tissue, the autologous paradigm has been extended to disc repair. 

After promising results in canine models,43 the Euro Disc randomized trial found that, two years 

after surgery, patients maintained increased pain reduction and decreased loss of tissue 

hydration.44 However, the results of this strategy may be limited due the reliance on a population 

of cells with a deteriorated capacity due to the degenerative process. Procurement of cells is also 

difficult, in part due to the high incidence of apoptosis,45 which reduces an already sparse cell 

population. This issue is further complicated by the extensive passaging procedure required to 

obtain sufficient numbers of cells for in vivo implantation. When passaged in monolayer, NP cells 

(NPCs) are known to proliferate slowly46 and undergo increasing dedifferentiation.47-49 Cells from 

degenerated NP also become increasingly senescent which makes them minimally responsive to 

growth factor or cytokine stimulation; the cells display increased catabolic metabolism 

characterized by the increased production of matrix degrading enzymes.50-53 

 

1.3 Current Efforts and Challenges of Cartilage Tissue Engineering  

	  
1.3.1 Cell Sources and Biomaterials for Cartilage Engineering 

Without doubt, autologous chondrocytes are the idea cell source for repairing cartilage. 

Unfortunately, the use of autologous chondrocytes is fraught with unsolved challenges, such as 

the loss of chondrocyte markers and dedifferentiation in culture during expansion, potential cell 

leakage, uneven cell distribution in 3D space, potential donor site morbidity (complications of 

donor site healing), shortage of chondrocytes due to limited cell number from biopsy, short 

lifespan of chondrocytes, lack of uniformity of in vitro expanded chondrocytes from laboratory to 
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laboratory, and low cell quality from aged patients.  

 

Two broad types of stem cells in mammals include embryonic stem cells (ESCs), which are 

isolated from the inner cell mass of blastocysts and adult stem cells, which are found in various 

tissues. ESCs possess the capability to self-renewal and to differentiate into all types of cells. 

However, its application in humans are restricted by ethical issues. Adult stem cells were first 

discovered in bone marrow and other accessible sources such as adipose, blood, skin, and urine. 

The most frequently investigated adult stem cells for cartilage tissue engineering is bone marrow, 

adipose, synovium-derived stem cells (SDSC). The tissue-specificity of SDSC as a stem cell for 

cartilage regeneration has been recently reviewed.54  

 

Other candidate cell sources are also promising. Fetal stem cells located in the organs of fetuses, 

are not immortal but highly proliferative and multipotent. Recently, induced pluripotent stem cells 

(iPSCs) have been developed by reprogramming human somatic cells, providing a more 

abundant and ethical-feasible source of progenitor cells that also possess the capacity of 

generating all types of human cells.55 However, the low efficiency of reprogramming terminally 

differentiated cells into iPSCs has remained a major obstacle that prevents the wide application of 

this technology in practical use. (Table 1.1) 

 

Cell type Advantages Disadvantages 

Autologous 

chondrocyte 

Native phenotype  

Minimal risk of immunological 

problem 

Small initial cell number 

De-differentiation on expansion 

Allogeneic 

chondrocyte  

Larger cell number  

Off-the-shelf solution 

Limited donor availability 

Risk of disease transmission 

Fetal 

mesenchymal 

stem cell 

Strong potential to produce large 

numbers 

Off-the-shelf solution 

Limited donor availability 

Risk of diease transmission 

Potential ethical considerations 

Adult 

mesenchymal 

stem cell 

Potential to produce large numbers 

Various harvest sites 

Additional paracrine signaling 

potential 

Potential for hypertrophy 

Heterogeneous population of 

cells 

Stable and reproducible 

differentiation still problematic 

Induced 

pluripotent stem 

cells 

Large source of patient specific cells 

Multiple cell types can be produced 

Stable and reproducible 

differentiation still problematic 

Potential for teratoma 

Embryonic stem Off-the-shelf solution Stable and reproducible 
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cells Multiple cell types can be produced differentiation still problematic 

Potential for teratoma 

Ethical considerations 

Table 1.1 Advantages and disadvantages of various cell sources. 

 

Scaffolds made of natural biomaterials, such as collagen and hyaluronic acid, can maintain the 

expression of aggrecan and type-II collagen in chondrocytes. For instance, collagen has been 

intensively studied as a natural polymer with respect to cartilage tissue engineering. 

Chondrocytes cultured within collagen gels preserve their phenotype and glycosaminoglycan 

(GAG) production for as long as six weeks in culture.56 Matrices and membranes derived from 

collagen also stimulate chondrocytes to produce new collagen.57 Hyaluronan, a highly 

concentrated component in the ECM of articular cartilage, is also a good candidate for 

biodegradable and biocompatible scaffold material. Chondrocytes cultured with chemical cross-

linking hyaluronan scaffold express more chondrogenic markers, type-II collagen, aggrecan, and 

less type-I collagen.58 Other natural polymers derived from ECM used in cartilage engineering as 

3D culture systems include fibrin glue, alginate, agarose, chitosan, chondroitin sulfate, gelatin, 

and silk fibroin.59  

 

1.3.2 Challenges of Cell Senescence in Cartilage Engineering  

Adult stem cell based therapies present great potentials for cartilage regeneration. However, cell 

senescence remains a big challenge for large scale ex vivo expansion and maintenance of MSC 

stemness. It is known that intrinsic and extrinsic factors are involved in the process of cell 

senescence. The intrinsic mechanism is called the Hayflick limit.60 Most somatic cell types reach 

cell-cycle arrest after a characteristic number of population doublings, which is also referred to as 

“cellular or replicative senescence”. In humans, cell-cycle arrest is typically reached after 20 to 

100 cell population doublings. It prevents cells from immortalization and suppresses oncogenesis. 

However, it also limits the goal of large-scale ex vivo cell expansion as required for cartilage 

regeneration and tissue engineering applications. Although it is possible to overcome the Hayflick 

limit by genetically modifying cells, for instance, transfecting human articular chondrocytes with 

the human telomerase gene,61 such manipulations are regarded as potentially dangerous in the 

context of tissue engineering. On the other hand, extrinsic factor-associated senescence, also 

called stress-induced senescence, is considered more premature, as it can halt cell growth before 

the Hayflick limit is reached. Theoretically, through modifying the culture conditions and 

minimizing the stress in ex vivo culture, growth potentials can be regained. Recent concepts 

about cell senescence are similar to a stress-responsive, adaptive phenotype that develops 

through multiple stages during the development of degenerative diseases, which can spread from 

cell to cell and occur at any point in life.62 In other words, senescence could be an alternative cell 



 
10 

fate that develops in response to injury or metabolic dysfunction and might occur in nondividing 

as well as dividing cells.63 Below is a brief review of the cell number limitations and loss of 

phenotype during ex vivo expansion, donor-site morbidity, and age-related decline in 

chondrogenic capacities; all these elements lead to cell senescence during cartilage tissue 

engineering. Critical obstacles for researchers and clinical therapists will also be presented 

(Figure 1.4). 

 

1.3.2.1 Ex vivo expansion 

Chondrocyte senescence developing during ex vivo expansion is commonly characterized by 

accumulation of reactive oxygen species (ROS) and advanced glycation end products, increased 

expression of senescence-associated β-galactosidase (SA-β-gal), nuclear and mitochondrial DNA 

damage, and decreased mitochondrial function. Average articular chondrocyte telomere erosion 

rate in vivo is about 30bp per year.64 During an 8–10-fold cellular ex vivo expansion, telomere 

length is impaired as long as 900 bp due to loss of the telomerase activity of chondrocytes.65  

 

Similar to chondrocytes, MSC senescence results in cell proliferation arrest, characterized by flat 

shape, circumscribed nuclei, increased lysosome compartment, shortened telomere, and 

endogenous SA-β-gal activity.66;67 All the characteristics just mentioned develop during MSC 

long-term ex vivo culture.67 Bone marrow-derived stem cells (BMSCs) isolated from fresh bone 

marrow aspirates underwent senescence with a change in morphology and shape after 38 

population doublings and largely lost their ex vivo differentiation capacities at or around the sixth 

passage,68;69 but there is also evidence of adverse changes as early as the first or second 

passage.70;71 Surprisingly, the osteogenic differentiation potential, including alkaline phosphatase 

(ALP) expression and bone nodule formation ex vivo, appeared to be retained despite replicative 

senescence.72 Banfi et al. observed loss of osteogenic differentiation along with proliferation 

capacities in BMSCs passaged at around 22 cell doublings.70 Consistent results were obtained 

from Muraglia et al., who investigated differentiation in a BMSC population derived from a single 

cell.73 What the cases just mentioned have in common is the initial loss of adipogenic 

differentiation capacity. Overall, ex vivo expansion leads to a progressive decrease of proliferative 

abilities and differentiation potentials. Similarly, Li et al. found that human placenta-derived MSCs 

underwent aging and spontaneous osteogenic differentiation during regular culture expansion, 

with down-regulation of human telomerase reverse transcriptase and up-regulation of the 

osteogenic gene runt-related transcription factor 2 (RUNX2) and ALP expression. Stem cell self-

renewal associated genes octamer-binding transcription factor 4 (OCT4) and SRY (sex 

determining region Y)-box 2 (SOX2) expression declined progressively.63 

 

In addition, researchers have investigated the effect of seeding density during MSC ex vivo 
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expansion. Despite sporadic evidence suggesting that plating density is not critical for maintaining 

a multipotent MSC population, time in culture does affect MSC characteristics in general; loss of 

adipogenic and chondrogenic differentiation abilities was observed in the higher density group.74 

More studies have shown that high-density plating produced a higher percentage of flattened 

human BMSCs with characteristics of cellular senescence and the loss of ability to differentiate, 

while low-density plating resulted in a higher proliferation rate as well as more multi-potent 

cells.75-77 The evidence just provided suggests that seeding density could be an influential factor 

for developing senescence; low-density seeding could be useful when selecting the homogenous 

subpopulations of MSCs with higher proliferation and differentiation potentials.78;79 

 

1.3.2.2 Donor age 

Another parameter that should be considered is aging, as decreased proliferation and the 

propensity toward senescence were observed in aged donors. Chondrocytes obtained from aged 

individuals (older than 40 years) have a much lower ability to repair cartilage damage than those 

obtained from younger patients.80 Pestka et al. recently revealed the difference in chondrocyte 

quality during ex vivo expansion in cells collected from 252 ACI patients.21 Results suggested that 

no specific parameters other than age could be identified as influencing the quality of cells.21 A 

more dramatic change in chondrogenic potentials of human chondrocytes from juveniles (< 13 

years old) and adults (13 years and older) is also documented by Adkisson et al..81 

 

More attention has been paid to multi-potent cells in cartilage tissue engineering. Differences in 

MSCs from aged donors have been found in proliferation, cell attachment, and senescence in 

both animal and human cells.82-87 However, there have been conflicting reports about changes in 

MSC differentiation potentials attributed to donor age. Several previous studies have shown no 

difference attributable to donor age in human BMSC differentiation potential.88-91 In recent years, 

Kretlow et al. observed different chondrogenic capacities of murine BMSCs from animals of 

different ages.92 Zheng et al. demonstrated the impaired chondrogenic differentiation in aged rat 

BMSCs.93 Microarray analysis indicated significant age-related differences in the expression of 

genes that influence cartilage ECM formation.93 Age-related mechanical properties and collagen 

content changes were also noted in bovine BMSCs.94 Inconsistent results were obtained from 

human BMSCs as well. Scharstuhl et al. isolated BMSCs from the femoral shafts of 98 patients 

and investigated the relationship between chondrogenic differentiation capacities and age or 

OA.91 Surprisingly, no correlation from either factor was observed. However, Payne et al. found 

an age-related decline in chondrogenic differentiation in BMSCs even with transforming growth 

factor β1 (TGF-β1) stimulation, though only in men.95 Since 1999, donor age has been identified 

as an important factor in periosteum-derived stem cell (PDSC) ex vivo chondrogenic 

differentiation.96 Later, De Bari et al. demonstrated that adult PDSCs could undergo 
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chondrogenesis regardless of donor age.97  

 

1.3.2.3 Trauma and degenerative diseases 

Trauma such as joint injuries is most commonly caused by mechanical factors, which promote 

human articular chondrocyte senescence by increasing oxidative stress, as characterized by cell-

cycle arrest, senescent morphology, and increased SA-β-gal activity, possibly through 

accelerating telomere shortening.98 Challenging human MSCs with oxidative stress results in 

similar characteristics, but manifests an increased tolerance regarding proliferation.99 Intracellular 

ROS were found to correlate with articular chondroctye senescence through activation of p38 

kinase, which further promotes ROS generation, forming a positive feedback loop. Hong et al. 

found that ionizing radiation induced chondrocyte senescence by negative post-transcriptional 

regulation of SIRT via ROS-dependent p38 kinase activation.100 Sirtuin 1, a mammalian Sir2 

ortholog and nicotine adenine dinucleotide-dependent deacetylase, has reportedly been involved 

in cell aging pathways.101 

 

OA is characterized by degeneration of articular cartilage, limited intraarticular inflammation with 

synovitis, and changes in peri-articular and subchondral bone. Murphy et al. observed reduced 

chondrogenic differentiation capacities of BMSCs from patients with advanced OA.102 Han et al. 

observed decreased proliferative and chondrogenic potentials of SDSCs collected from OA 

patients during ex vivo expansion; microarray analysis suggested late-passage cells 

overexpressed cell-cycle prolongation and cell aging-associated genes, while repressing 

expression of cell growth-related genes.103 Additionally, aging changes in the joint tissue 

contribute to the development of OA, as cellular senescence results in the development of a 

senescent secretory phenotype, and aging changes the matrix with increased formation of 

advanced glycation end products that affect the mechanical properties of joint tissues. 

 

1.4 Potential contribution of Decellularized Extracellular Matrix for Cartilage Regeneration 

The stem cell niche is a specific site in adult tissues where stem cells reside and undergo self-

renewal and differentiation. It is formed by the supporting cells and ECM that provide a 

microenvironment for stem cells and the cytokines and physical signals emanating from the 

supporting cells.104-106 In vivo, the cells are surrounded by an ECM that is responsible for the 

multidimensional and long-range ordering of highly organized tissues. The ECM is primarily 

composed of various collagens, laminins, and glycoproteins serving as substrates for a myriad of 

adhesion molecules including integrins, cadherins, and discoidin domain receptors.107 Cell-matrix 

interaction-induced signaling constitutes a critical determinant of cell behavior, making the ECM 

composition a key factor in the stem cell niche. It functions as a reservoir for growth factors and 

provides natural and intrinsic cues that direct the remodeling process during cell differentiation.108-
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111 

 

Due to the highly conserved nature of ECM components between species, decellularized matrix 

is applicable in tissue engineering through tissue-processing methods. Recently, decellularized 

tissue matrix derived from different tissues or organs such as heart, lung, brain, liver, bladder, 

and adipose have been engineered through simple biochemical methods that function as a 

natural scaffold to support proliferation and differentiation of the recellularized cells as 

summarized in a recent review.112 Demineralized bone matrix was able to induce ectopic bone 

formation due to the existence of the active osteoinductive ingredient BMP.113 Cartilage-derived 

matrix can also induce chondrogenesis of BMSCs and can support neocartilage formation from 

chondrocytes without exogenous growth factors.114;115 Cartilage-derived matrix is advantageous 

in serving as a scaffold for cell-based cartilage repair. Chondrocytes can be used to deposit 

matrix, which can be decellularized later to from DECM.  

 

Similarly, stem cells, especially tissue-specific stem cells can be applied to deposit the 

decellularized stem cell matrix (DSCM). DSCM deposited by porcine SDSCs provides a tissue-

specific microenvironment favoring expanded cell chondrogenesis.116 A rejuvenated effect was 

also observed in porcine chondrocytes and NPC after expansion on SDSC derived DSCM.117;118 

Human BMSCs derived DSCM provides a tissue-specific microenvironment favoring expanded 

BMSC endochondral bone formation.119 The combination of a tissue-specific stem cell and DSCM 

would help provide large-quantity and high-quality cells to improve cartilage regeneration and 

benefit cartilage repair, which will greatly advance the development of the next generation ACI in 

the near future. 

 

1.5 Future Directions of Cartilage Engineering 

	  
The need for cartilage defect repair is demanding as the aging population grows. The benefits of 

a cell based technique such as ACI that results in hyaline repair tissue with good integration at 

the defect is attractive and companies have been investing to support research.120 However, 

modest results from clinical trials show that limitations of ACI, such as poor cell persistence, 

viability, post-translation, and cell relocation to non-target sites, still exist.121 Long-term evaluation 

and more in vivo studies are needed. Current development of ACI and the next generation of 

cartilage repair largely depend on progress in the cartilage tissue engineering field. One focus in 

the next generation of cell-based cartilage tissue engineering and repair is stem cells, especially 

tissue-specific stem cells.122;123 Finding tissue-specific stem cells for cartilage tissue engineering 

is not accomplished yet though SDSCs have been proposed as a good candidate.54 Biomaterials, 

which can be applied directly or used as stem cell delivery vehicles, should help elicit and 
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enhance beneficial stem cell responses. Other than these, cell senescence also presents a big 

challenge in cartilage engineering due to the unmet demand of large quantity of high quality cells 

from donor of elder age, degenerative disease or extensive ex vivo expansion. Current efforts in 

applying growth factors, antioxidants, and modulating nutrients and oxygen factors have 

significantly improved proliferative abilities in both chondrocytes and MSCs. The promoted 

chondrogenic differentiation also alleviated progression to cell senescence to a lesser extent. 

However, efficiency and concerns about immune rejection as well as transformation of cells could 

be worrisome. Fortunately, the creation of the ex vivo microenvironment using DECM, especially 

DSCM, has given us hope. Through incubating cells in a more youthful and natural ex vivo niche, 

cell senescence could be slowed. Ideally, a tissue-specific DSCM could be reconstructed to 

rejuvenate and/or reprogram autologous chondrocytes and stem cells in proliferation and 

chondrogenic potential, which may be a future direction for the next generation of cartilage 

engineering.  
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Figure 1.1 

 
Figure 1.1	  Section of cartilage detailing the various zones from the upper superficial zone down 

to the underlying bone. Differences in cell phenotype can be detected between the superficial, 

middle and deep zones. These differences can still be observed during in vitro culture, 

demonstrating functional differences between the cells of each zone. Figures are from Johnstone 

B, Alini M, Cucchiarini M et al.	  Tissue engineering for articular cartilage repair--the state of the art. 

Eur Cell Mater 2013;25:248-67. 
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Figure 1.2 

	  
Figure 1.2 Schematic representation of the chondrogenesis and endochondral ossification. A. 

First mesenchymal cells condense to form a dense cell mass. B. Mesenchymal cells proliferate 

and differentiate into chondroblasts. C. These cells start secreting cartilage ECM and become 

mature chondrocytes. D. Eventually, chondrocytes grow to become hypertrophic, and if the tissue 

undergoes endochondral ossification. E. Cartilage is vascularized, ECM is degraded, 

hypertrophic chondrocytes become apoptotic, and osteoblasts invade the free space within the 

tissue. Figures are from Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory 

mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue 

engineering. Tissue Eng Part B Rev. 2009;1:29-41. 
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Figure 1.3 

 
Figure 1.3 Resemblance between synovial joint and intervertebral disc. Figures are from Shoukry 

M, Li J, Pei M. Reconstruction of an in vitro niche for the transition from intervertebral disc 

development to nucleus pulposus regeneration. Stem Cells Dev. 2013;8:1162-76. 
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Figure 1.4 

 

 
Figure 1.4 Senescence-associated signal transduction pathways in chondrogenic differentiation. 

Figures are from Li J, Pei M. Cell senescence: a challenge in cartilage engineering and 

regeneration. Tissue Eng Part B. 2012;4:270-87. 
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ABSTRACT 

 
Our hypothesis in this study is that low seeding density expansion could retain human synovium-

derived stem cell (hSDSC) “stemness”, defined as higher proliferation and multi-differentiation 

capacity; retention of “stemness” probably occurs through the mitogen-activated protein kinase 

(MAPK) signaling pathway. hSDSCs were expanded in conventional plastic flasks for two 

consecutive passages at either low or high density (30 or 3,000 cells/cm2). Expanded cells were 

assessed for the effect of seeding density on their morphology, proliferation, apoptosis, stem cell 

surface markers, and multi-lineage differentiation capacity (chondrogenic, adipogenic, and 

osteogenic differentiation) using flow cytometry, biochemical analysis, histology, immunostaining, 

and real-time polymerase chain reaction. The MAPK signaling pathway (Erk1/2, p38, and JNK) 

and senescence-associated markers (p21 and caveolin) were also evaluated for their role in cell 

density-based monolayer expansion using western blot. Our data suggested that low seeding 

density expansion yielded hSDSCs with enhanced proliferation and multi-differentiation capacity 

compared to those grown at high seeding density, despite the fact that the cells expanded at both 

high and low density had lower osteogenic capacity. Low seeding density also down-regulated 

Erk1/2 and JNK expression and up-regulated p38 expression, which might be responsible for the 

retained “stemness” in the cells expanded at low density. Low seeding density expansion could 

retain hSDSC proliferation and multi-differentiation capacity and protect cells from replicative 

senescence. 
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INTRODUCTION 

 
Autologous chondrocyte implantation is a biological solution for the treatment of focal cartilage 

defects [1]. Due to the limited sources of chondrocytes available from patients themselves and 

lack of an effective ex vivo expansion system, researchers turned to mesenchymal stem cells 

(MSCs), which reside in adult tissues and possess multi- lineage differentiation potentials. MSCs 

have been isolated from various human tissues, such as bone marrow, adipose, periosteum, and 

synovium [2, 3]. Further application in clinical treatment is based on efficient ex vivo expansion to 

produce large-scale and high-quality human MSCs. 

 

Since MSCs have proliferation potential, optimization of cell seeding density during monolayer 

expansion represents a simple and effective method to yield a sufficient number of cells for 

clinical use. This approach has been investigated in bone marrow stromal cells (BMSCs) and 

adipose stem cells (ASCs). Recent data indicate that altering the monolayer expansion conditions 

affects ASCs in their self-renewal rate, multipotency, and lineage-specific differentiation potential. 

Estes et al. found that monolayer culture conditions (such as growth factor supplementation, cell 

seeding density, etc.) may “prime” cells or predispose them toward a specific phenotype and thus 

underscore the importance of early culture conditions in determining the growth and 

differentiation potential of ASCs [4]. Time in culture affects BMSC stem cell characteristics [5]. 

More interestingly, seeding BMSCs at low densities allows for the detection of a distinct 

population of rapidly self-renewing cells that have a higher capacity for multi-lineage 

differentiation [6, 7]. 

 

Recently, synovium-derived stem cells (SDSCs), tissue-specific stem cells for chondrogenic 

differentiation [8, 9], have attracted much attention in cartilage engineering and regeneration [10–

14]. Since there is no study on whether seeding density during ex vivo cell expansion favors 

SDSC proliferation and differentiation capacity, this study seeks to determine the effects of cell 

seeding density on human SDSC (hSDSC) ex vivo expansion and subsequent multi- lineage 

differentiation potentials. Considering the roles of the three major mitogen-activated protein 

kinase (MAPK) signaling pathways [the extracellular signal-regulated kinase 1/2 (Erk1/2), p38, 

and c-jun N-terminal kinase (JNK) pathways] in controlling embryogenesis, cell differentiation, cell 

proliferation, and cell death [15], we wondered whether the MAPK signaling pathway and 

replicative senescence were involved in the potential mechanisms underlying seeding density-

based cell expansion. In this study, we hypothesized that low seeding density expansion could 

retain hSDSC “stemness”, defined as higher proliferation and multi-differentiation capacity; 

retention of stemness likely occurs through the MAPK signaling pathway. 
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MATERIALS AND METHODS 

 
Expansion of hSDSCs at low and high density 

Adult human synovium fibroblasts, referred to as hSDSCs [16], were pooled from two donors 

(one Hispanic female, 43 years old; one Caucasian male, 60 years old; both had no known joint 

disease). These cells were obtained at passage 1 from Asterand (North America Laboratories, 

Detroit, MI, USA). Passage 2 hSDSCs were expanded for two consecutive passages at either low 

density (30 cells/cm2) or high density (3,000 cells/cm2) in conventional plastic flasks in complete 

medium [α-minimum essential medium (Invitrogen, Carlsbad, CA, USA) containing 10 % fetal 

bovine serum (FBS, Atlanta Biologicals, Lawrenceville, GA, USA), 100 U/mL penicillin, 100 "g/mL 

streptomycin, and 0.25 "g/mL Fungizone (Invitrogen)] at 37 °C in a humidified 5 % CO2 and 21 % 

O2 incubator. Culture medium was changed every 3 days. Cell number was counted using a 

hemocytometer and cell morphology was photographed by phase contrast microscope. 

 

Cell surface area measurement 

At day 4 during cell expansion, images were taken from 10 fields in culture flasks from both low- 

and high-density groups. Cell surface areas were measured quantitatively using Image J software 

(NIH Image, National Institutes of Health, Bethesda, MD, USA). Fifty cells were randomly 

selected from either low- or high-density groups. Values were presented as vertical scatter plot. 

 

Cell proliferation and apoptosis assay 

Cell number fold change was calculated by expanded cell number {cell number per flask [total cell 

number/ number of flasks (n)] in high-density group (n=6) and low-density group (n=26)} divided 

by seeded cell number (seeding density × surface area). Human SDSCs were pre-labeled with 

CellVue® Claret (Sigma, St. Louis, MO, USA) at 2×10-6 M for 5 min according to the 

manufacturer’s protocol. After a 9-day expansion, cells from both low- and high-density groups 

were collected and analyzed using BD dual laser FACS Calibur (BD Biosciences, San Jose, CA, 

USA). For each sample, 20,000 events were collected using CellQuest Pro software (BD 

Biosciences) and cell proliferation index was analyzed by ModFit LT™version 3.1 (Verity 

Software House, Topsham, ME, USA). 

 

After cell expansion, Annexin V-FITC Apoptosis Detection Kit (Biovision, Mountain View, CA, 

USA) was used to detect apoptosis. Briefly, 2 × 105 cells from both low- and high-density groups 

(n=3 each) were labeled with FITC annexin V and propidium iodide for 15 min at room 

temperature. For each sample, 10,000 events were collected; samples were analyzed using 

FACS Calibur (BD Biosciences). FCS Express 3 software package (De Novo Software, Los 

Angeles, CA, USA) was used to generate histograms. 
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Surface marker analysis using flow cytometry 

After cell expansion, 2 × 105 hSDSCs from each group were incubated on ice for 30 min in PBS 

containing 0.1 % ChromPure Human Immunoglobulin (IgG) whole molecule (Jackson Immuno 

Research, West Grove, PA, USA) and 1 % NaN3 (Sigma), and then incubated on ice for 30 min 

with mouse anti-human monoclonal FITC-conjugated antibodies to the stage-specific embryonic 

antigen-4 (SSEA-4) (Biolegend, San Diego, CA, USA) and isotype-matched IgG3 (Beckman 

Coulter, Fullerton, CA, USA). After washing with cold PBS, hSDSCs were fixed in 300 μL of 0.4 

% paraformaldehyde. Cells were analyzed on a BD dual laser FACS Calibur (BD Biosciences) 

using the FCS Express 3 software package (De Novo Software). 

 

Chondrogenic induction of expanded hSDSCs 

After cell expansion, 3 × 105 of passage 4 hSDSCs from each group were centrifuged at 500×g 

for 5 min in a 15- mL polypropylene tube to form a pellet. After overnight incubation, the pellets 

were transferred to a serum-free chondrogenic medium consisting of high-glucose Dulbecco’s 

Modified Eagle’s Medium, 40 μg/mL proline, 10-7 M dexamethasone, 100 U/mL penicillin, 100 μ

g/mL streptomycin, 0.1 mM ascorbic acid-2-phosphate, and 1× ITS™ Premix (6.25 μg/mL insulin, 

6.25 μg/mL transferrin, 6.25 μg/mL selenous acid, 5.35 μg/mL linoleic acid, and 1.25 μg/mL 

bovine serum albumin, from BD Biosciences) with the supplementation of 10 ng/mL transforming 

growth factor-beta3 (TGF-β3; PeproTech Inc., Rocky Hill, NJ, USA) in a 37°C, 5% O2 incubator 

for up to 27 days. At days 0, 9, and 27, pellets from each group were collected for evaluation of 

chondrogenic differentiation using histochemistry, immunohistochemistry, biochemistry, and 

quantitative real-time polymerase chain reaction (PCR). 

 

Histochemistry and immunohistochemistry 

The pellets (n=2) were fixed in 4 % paraformaldehyde at 4 °C overnight, followed by dehydrating 

in a gradient ethanol series, clearing with xylene, and embedding in paraffin blocks. Five-

micrometer sections were histochemically stained with Alcian blue (Sigma, counterstained with 

fast red) and Safranin O (Sigma, counterstained with hematoxylin) for sulfated 

glycosaminoglycans (GAG). For immunostaining, the sections were immunolabeled with primary 

antibodies against collagen I (Abcam, Cambridge, MA, USA), collagen II (II-II6B3; Developmental 

Studies Hybridoma Bank, Iowa City, IA, USA), and collagen X (Sigma), followed by the secondary 

antibody of biotinylated horse anti-mouse IgG (Vector, Burlingame, CA, USA) or IgM (Vector). 

Immunoactivity was detected using Vectastain ABC reagent (Vector) with 3,3’-diaminobenzidine 

as a substrate. 

 

Biochemical analysis for DNA and GAG content 
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The pellets (n04) were digested at 60 °C for 6 h with 125 μg/mL papain in PBE buffer (100 mM 

phosphate, 10 mM EDTA, pH 6.5) containing 10 mM cysteine. To quantify cell density, the 

amount of DNA in the papain digestion was measured using the QuantiT™ PicoGreen® dsDNA 

Assay kit (Invitrogen) with a CytoFluor® Series 4000 (Applied Biosystems, Foster City, CA, USA). 

GAG was measured using dimethylmethylene blue dye and a Spectronic™ BioMate™ 3 

Spectrophotometer (Thermo Scientific, Milford, MA, USA) with bovine chondroitin sulfate (Sigma) 

as a standard. 

 

TaqMan quantitative PCR 

Total RNA was extracted from the pellets (n=4) using an RNase-free pestle in TRIzol® 

(Invitrogen). Two micrograms of mRNA was used for reverse transcriptase with High- Capacity 

cDNA Archive Kit (Applied Biosystems) at 37 °C for 120 min. Chondrogenic marker genes 

[collagen I (assay ID Hs00164004_m1), collagen II (assay ID Hs00156568_m1), collagen X 

(assay ID Hs00166657_m1), aggrecan (assay ID AIQJAP5), and SRY (sex determining region 

Y)-box 9 (Sox9) (assay ID Hs00165814_m1)] were customized by Applied Biosystems as part of 

the Custom TaqMan® Gene Expression Assays. Eukaryotic 18S rRNA (assay ID HS99999901-s1 

ABI) was carried out as the endogenous control gene. Real-time PCR was performed with iCycler 

iQ™Multi-Color Real-Time PCR Detection System and the data were calculated by computer 

software (Perkin-Elmer, Wellesley, MA, USA). Relative transcript levels were calculated as χ=2-Δ

ΔCt, in which ΔΔCt=ΔE-ΔC, ΔE=Ctexp-Ct18s, and ΔC=Ctct1-Ct18s.  

 

Adipogeneic induction and analysis of expanded hSDSCs 

Expanded hSDSCs (n = 3) were replated at 10,000 cells/ cm2. Once cells reached confluence, 

the culture medium was switched to adipogenic induction medium consisting of complete medium 

supplemented with 1 μ M dexamethasone, 0.5 mM isobutyl-1-methyxanthine, 200 μ M 

indomethacin, 10 μg/mL insulin, and 1 nM 3,3’5’-triiodo-L-thyronine (T3) for an additional 21 

days. Oil Red O (ORO) staining and quantitative assay were conducted as described in our 

previous study [17]. Briefly, cells were fixed in 4 % paraformaldehyde for 60 min and stained with 

0.3 % ORO solution (Sigma) for 30 min. After rinsing in distilled water, cells were photographed 

using AMSCOPE MP1900 digital camera (Amscope, iScope Corporation, USA). ORO was 

extracted from cells using 100 % isopropanol and the absorbance at 510 nm was determined. For 

a blank control, we used 100 % isopropanol. ORO optical density (OD) value was normalized by 

total DNA content. 

 

Osteogenic induction of expanded hSDSCs 

Expanded hSDSCs were replated at 8,000 cells/cm2. Once cells reached 90 % confluence, the 

culture medium was switched to osteogenic induction medium consisting of complete medium 
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supplemented with 0.01 μM dexamethasone, 10 mM β-glycerolphosphate, 50 μM ascorbate-2-

phosphate, and 0.01 μM 1,25-dihydroxyvitamin D3 for an additional 21 days. Osteogenic 

differentiation was assessed using alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining 

as described before [17]. ALP activity and accumulated calcium quantitative assay were 

conducted using a spectrophotometric method. 

 

ALP staining and activity assay 

After a 21-day incubation in osteogenic medium, hSDSCs were stained using the Leukocyte 

Alkaline Phosphatase Kit (Sigma). Expanded hSDSCs (n=3) were also collected for ALP activity 

assay by measuring the formation of p-nitrophenol (p-NP) from p-nitrophenyl phosphate. Briefly, 

cell cultures were lysed in a buffer containing 1.5 M Tris–HCl, 1 mM ZnCl2, and 1 mM MgCl2, pH 

9.0, containing 2 % Triton X-100, and reacted with phosphatase substrate reagent (2 mg/mL) in a 

microplate. p-NP was quantified based on the spectrophotometric absorbance at 405 nm and 

enzymatic activity was expressed as millimoles of p-NP per microgram of protein. 

 

ARS staining and extracellular calcium quantitative assay 

Expanded hSDSCs (n=3) cultured for 21 days in osteogenic medium were fixed with 70 % ice-

cold ethanol for 1 h, and then incubated in 40 mM ARS at pH 4.2 for 20 min at room temperature 

with agitation on an orbital shaker (60 rpm). After two rinses with deionized water, matrix mineral-

bound staining was photographed under a Nikon TE300 phase-contrast microscope (Nikon, 

Japan). Accumulated calcium was extracted using 0.5 mL of 0.5 N HCl and quantified according 

to the manufacturer’s instructions in Quanti-Chrom Calcium Assay Kit (BioAssay Systems, 

Hayward, CA, USA). Total calcium was calculated from standard solutions prepared in parallel 

and normalized to the total protein content. The values of blank controls were subtracted from the 

corresponding samples. 

 

Western blot 

To investigate whether the MAPK signaling pathway was involved in seeding density-based cell 

expansion, the expanded cells from each group were homogenized and dissolved in the lysis 

buffer (Cell Signaling, Danvers, MA, USA) with protease inhibitors. Total proteins were quantified 

using BCA™ Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA). Thirty micrograms 

of protein from each sample was denatured and separated using NuPAGE® Novex® Bis–Tris Mini 

Gels (Invitrogen) in the XCell Sure-Lock™ Mini-Cell (Invitrogen) at 120 V at 4 °C for 3 h. Bands 

were transferred onto a nitrocellulose membrane (Invitrogen) using an XCell II™ Blot module 

(Invitrogen) at 15 V at 4 °C overnight. The membrane was incubated with primary mono-clonal 

antibodies in 5 % bovine serum albumin (BSA) in TBST buffer (10 mM Tris–HCl, pH 7.5, 150 mM 

NaCl, and 0.05 % Tween-20) at room temperature for 1 h (β-actin served as an internal control), 
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followed by the secondary antibody of horseradish peroxidase-conjugated goat anti-mouse 

(Thermo Fisher Scientific) at room temperature for 1 h. SuperSignal West Femto Maximum 

Sensitivity Substrate (Thermo Fisher Scientific) and CL-XPosure Film (Thermo Fisher Scientific) 

were used for exposure. The primary antibodies used in immunoblotting included MAPK family 

antibody sampler kit [p44/42 MAPK (Erk1/2), MAPK/JNK, and p38 MAPK] and phosphor-MAPK 

family antibody sampler kit, p21, and caveolin-1; all were from Cell Signaling. 

 

Statistical methods 

Numerical data are presented as the mean and the standard error of the mean. Mann–Whitney U 

test was used for pair-wise comparison in biochemistry, ALP activity, calcium assay, ORO assay, 

and real-time PCR data analysis. All statistical analyses were performed with SPSS 13.0 

statistical software (SPSS Inc., Chicago, IL, USA). P values less than 0.05 were considered 

statistically significant. 
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RESULTS 

	  
Low-density expansion enhanced hSDSC proliferation capacity 

Expanded hSDSCs at low and high density exhibited differences in cell morphology, cell number, 

and cell size. Compared to cells grown at high density, low-density expanded cells remained 

spindle shaped and smaller in size, and formed colony-forming units (Fig. 2.1a). When cells 

plated at high density became confluent, cell number change was compared between the high-

density group from six 175-cm2 flasks and the low-density group from twenty-six 175 cm2 flasks. 

We found that 9-day expansion of passage 2 hSDSCs yielded a 5.1-fold increase in cell number 

(15,200 cells/cm2) when seeded at high density compared to an 84.4-fold increase (2,533 

cells/cm2) when plated at low density. Passage 3 hSDSCs continued to expand at the same 

density for another passage. Compared to the previous passage (passage 2), 9-day expansion at 

high density yielded a lower cell number increase (11,429 cells/cm2, 3.8-fold) while low-density 

expansion yielded a higher cell number increase (2,725 cells/cm2, 90.8-fold) (Fig. 2.1b). Cell 

seeding density-based changes were also reflected in cell size. Low-density expansion cell size 

(3,065.2 ± 2,540.1 pixels) was significantly smaller (p = 0.0000) than those grown at high density 

(8,407.9 ± 4,240.6 pixels) (Fig. 2.1c). 

 

Our flow cytometry data showed that cell changes were also reflected in the stem-cell-related 

marker, proliferation index, and apoptosis in expanded cells at low and high density (Fig. 2.2). We 

found that low-density expansion yielded cells with higher levels of SSEA-4 expression not only in 

percentage (51.9 % vs. 47.5 %) but also in median fluorescence intensity (58.8 vs. 50.0) 

compared to those seeded at high density. SSEA-4 data also corroborated proliferation index 

data showing that low-density expansion yielded cells with a higher proliferation index (89.6 vs. 

5.7) compared to those grown at high density. Intriguingly, there was a similar apoptotic cell rate 

(4.1 % vs. 3.0 %) in the cells expanded at low and high density. 

 

Low-density expansion enhanced hSDSC multi-differentiation potentials 

To determine whether seeding density affected cell multi-differentiation potential, expanded cells 

at either low or high density were evaluated for their chondrogenic, adipogenic, and osteogenic 

differentiation capacity. 

 

After a 27-day incubation in chondrogenic induction medium, low-density expanded cells yielded 

pellets with intensified staining of sulfated GAG and collagens I, II, and X compared to those 

expanded at high density (Fig. 2.3a). The pellet size from cells expanded at high density was 

slightly larger than those from low-density expanded cells (Fig. 2.3a), which might be explained 

by the higher cell viability in day 27 pellets from cells expanded at high density (Fig. 2.3b). Our 
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biochemical analysis data showed that, compared to the cells plated at high density, low-density 

expanded cells yielded pellets with a significantly higher ratio of GAG to DNA (chondrogenic 

index) (Fig. 2.3b). Consistent with the above data, our real-time PCR data also showed that low-

density expansion yielded day 27 pellets with higher mRNA levels of Sox9 (p=0.0000), aggrecan 

(p=0.0002), collagen I (p=0.0015), collagen II (p=0.0002), and collagen X (p=0.0007) than those 

from high-density groups (Fig. 2.4). 

 

After a 21-day incubation in osteogenic induction medium, low-density expanded cells exhibited 

intensified staining of ALP while high-density expanded cells had much weaker ALP staining; this 

finding is corroborated by quantitative data that ALP activity was higher (p=0.0030) in cells 

expanded at low density than those grown at high density (Fig. 2.5a). Surprisingly, both groups 

showed weak staining for calcium deposition using alizarin red S staining without a significant 

difference (p=0.6492) between the groups (Fig. 2.5b). Similar to osteogenic potential, after a 21-

day incubation in adipogenic induction medium, low-density expanded cells exhibited intensified 

staining of lipid droplets detected using Oil Red O staining compared to those from high-density 

expanded cells; this finding was supported by quantitative data (p=0.0002) (Fig. 2.5c). 

 

Potential mechanisms underlying low seeding density-mediated cell rejuvenation 

To further determine potential mechanisms underlying low seeding density-mediated cell 

rejuvenation, western blot was used to investigate the expression of the MAPK signaling pathway 

(Erk1/2, p38, and JNK) and senescence-associated markers (p21 and caveolin-1) in hSDSCs 

after expansion at low and high density. Image J analysis showed that Erk1/2 expression was 

about one fifth the level in the cells expanded at low density than at high density; JNK expression 

followed that same trend. In contrast, p38 MAPK had a 2.3-fold increase in the cells expanded at 

low density than at high density (Fig. 2.6a). As expected, senescence-associated markers, p21 

and caveolin-1, decreased to some extent in the cells expanded at low density compared to high 

density (Fig. 2.6b). 
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DISCUSSION 

 
Stem cell ex vivo expansion is an approach to overcome the shortage in cell number in cartilage 

engineering and regeneration. However, replicative senescence is a concomitant consequence 

during monolayer expansion; expanded cells lose their proliferation and multi-differentiation 

capacity [18]. Though challenging, strategies to expand stem cells in vitro with intact self-renewal 

and differentiation potentials have focused on identifying molecules and signaling pathways 

involved. A variety of methods have been investigated to fulfill this need especially in long-term ex 

vivo culture [19, 20]. Optimization of cell seeding density is a promising solution to protect stem 

cells from undergoing replicative senescence. Our study, for the first time, demonstrated that low 

seeding density not only benefited hSDSC proliferation but also enhanced expanded cell multi-

differentiation capacity. We also found that the MAPK signaling pathway was involved in seeding 

density-based cell expansion and low seeding density tended to retard hSDSC replicative 

senescence. 

 

Generally, low seeding density expansion results in dense colony formation while high seeding 

density expanded cells are more evenly distributed across the culture plate. Relatively sparse 

distribution of high seeding density expanded cells does not benefit colony formation [21] and 

may not provide the necessary stimuli for growth due to loss of cell-cell contact [7]. Single-cell-

derived colonies in low seeding density were directly related to expanded cell adipogenic 

potential [21], which may explain why the cells expanded at low density had higher adipogenic 

capacity in our study. Cell morphology changes, such as cell shape in the low- seeding-density 

group, have been reported to favor DNA synthesis [22], which might be responsible for higher cell 

proliferation potential. Cell shape has also been reported to regulate the switch in lineage 

commitment by modulating endogenous RhoA activity [23]. Rho kinases (ROCKs), the major 

downstream effector of RhoA GTPase, regulate renewal and neuronal differentiation of 

embryonic stem cells in a cell-seeding-density-dependent manner [24]. RhoA was also reported 

to regulate BMSCs undergoing adipogenic and osteogenic differentiation through ROCKs [23]. 

Smaller size hSDSCs from low-density expansion benefited generation of single-cell-derived 

colonies and therefore apparently retained their multi-potentiality for differentiation, which was 

consistent with previous reports from other groups [4, 6, 21]. 

 

Consistent with other reports [5, 21], we found that low seeding density promoted hSDSC 

proliferation and produced a higher percentage of smaller sized cells; in expanded hSDSCs, low 

seeding density enhanced proliferation index and SSEA-4 expression but not apoptosis, 

indicating that low- seeding-density expansion can retain hSDSC “stemness”. The retention of 

“stemness” was also demonstrated by low-seeding-density-expanded hSDSCs’ multi-
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differentiation capacity, despite low osteogenic differentiation in the cells expanded at both low 

and high density. This effect is probably because hSDSCs are a tissue-specific stem cell for 

chondrogenesis [8, 11]. In contrast, expansion at high seeding density resulted in decreased cell 

proliferation, increased cell senescence, and loss of multi-differentiation capacity, which is 

consistent with a previous report [25]. 

 

Three MAPK conduits, Erk1/2, p38, and JNK, rank among the most extensively examined signal 

transduction networks, and their contribution in MSC chondrogenesis has been thoroughly 

reviewed recently [26]. For the first time, our study found that low seeding density expansion 

yielded hSDSCs with down-regulation of the Erk1/2 and JNK levels and up-regulation of the p38 

level, which might be responsible for enhancing expanded cell “stemness” in terms of proliferation 

and multi-differentiation capacity. Consistent with our findings, other investigators found that 

Erk1/2 was remarkably up-regulated in senescent cells [27] and Erk1/2 and p38 exerted an 

opposite role in the regulation of chondrogenesis of mesenchymes [28]. The progression of 

spontaneous chondrogenesis in micromass cultures of embryonic chick limb bud MSCs is 

accompanied by a gradual increase in endogenous p38 phosphorylation [28]. Treatments with 

p38 inhibitors have been shown to decrease cartilage matrix formation in embryonic chick or 

mouse limb MSCs [28, 29] and to inhibit chondrogenic marker genes (Sox9, Col2a1, and 

aggrecan) as well [30]. The transfection of prechondrogenic limb mesenchymes with 

constitutively active MKK6, which activates p38, was shown to significantly increase Sox9 

expression [29]. To sum up, the p38 signaling pathway is a positive regulator of the differentiation 

of prechondrogenic limb mesenchyme cells into hyaline chondrocytes. The loss of Erk1/2 and 

JNK expression in the low seeding density group could possibly be related to increased 

adipogenic differentiation [31–33]. 

 

Expression of caveolin-1 and p21 is down-regulated in the cells expanded at low density. 

Caveolins are major structural components of caveolae, the lipid rafts on cell membranes. 

Caveolin functions as a scaffolding protein that interacts with signaling molecules and growth 

factor receptors. Caveolin-1 expression is up-regulated in senescent human diploid fibroblasts 

and MSCs [34, 35]. Decreased expression of caveolin-1 in hSDSCs expanded at low seeding 

density might also be responsible for the enhanced adipogenic differentiation potential [34]. 

Caveolin-1 is reported to be able to induce expression of p21 and further cellular senescence 

[36]. Expression of p21, the inhibitor of cyclin-dependent kinase, was found to be increased in 

late-passage MSCs. Knockdown of p21 promoted proliferation and enhanced osteogenic 

potentials of human MSCs, possibly through increasing telomere length and telomerase activity 

without chromosomal abnormalities [37, 38]. Despite no difference in calcium deposition between 

low- and high-density groups, our data suggested that the slight down-regulation of p21 was 
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possibly responsible for the increase of ALP level in the cells expanded at low density after 

osteogenic induction. 

 

In summary, our study demonstrates that low seeding density can protect expanded cells from 

replicative senescence and enhance hSDSC proliferation and multi-differentiation capacity, 

especially for expanded cell chondrogenic potential. Similar to our previous study in expanding 

SDSCs using basic fibroblast growth factor (FGF-2) [39], chondrogenically differentiated SDSCs 

exhibited an increased amount of collagen I and collagen X compared with the high-density 

group, indicating that low seeding density may favor multi- differentiation capacity instead of a 

specific tissue lineage, such as chondrogenesis. This study was done using pooled cells from two 

donors. One donor was male and one was female; one was middle-aged and one was elderly. 

Even with this range of donors, donor-to-donor variability cannot be determined, which is a 

limitation of the study. Our finding also suggests that the MAPK signaling pathway is involved in 

cell-seeding-density-based cell expansion. Despite the fact that the underlying mechanism is still 

under investigation, low seeding density provides a feasible and promising approach to yield a 

sufficient number of cells for hSDSC-based cartilage engineering and regeneration. 



 
40 

ACKNOWLEDGEMENTS 

 
We thank Suzanne Smith for editing the manuscript. This study was supported by a faculty start-

up fund from West Virginia University. 



 
41 

REFERENCES 

 
1. Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic 

review. J Bone Joint Surg Am. 2010;92(12):2220–33. 

2. Csaki C, Schneider PR, Shakibaei M. Mesenchymal stem cells as a potential pool for cartilage 

tissue engineering. Ann Anat. 2008;190 (5):395–412. 

3. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from 

adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42. 

4. Estes BT, Diekman BO, Guilak F. Monolayer cell expansion conditions affect the chondrogenic 

potential of adipose-derived stem cells. Biotechnol Bioeng. 2008;99(4):986–95. 

5. Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I. Effects of plating density and 

culture time on bone marrow stromal cell characteristics. Exp Hematol. 2008;36(9):1176–85. 

6. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in 

cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA. 2000;97 

(7):3213–8. 

7. Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and 

multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci 

USA. 2001;98(14):7841–5. 

8. Jones B, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage tissue 

engineering and regeneration. Tissue Eng Part B Rev. 2012;18(4):301–11. 

9. Kurth TB, Dell’accio F, Crouch V, Augello A, Sharpe PT, De Bari C. Functional mesenchymal 

stem cell niches in the adult knee joint synovium in vivo. Arthritis Rheum. 2011;63(5):1289–300. 

10. Pei M, He F, Boyce BM, Kish VL. Repair of full-thickness femoral condyle cartilage defects 

using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage. 

2009;17(6):714–22. 

11. Pei M, He F, Vunjak-Novakovic G. Synovium-derived stem cell-based chondrogenesis. 

Differentiation. 2008;76(10):1044–56. 

12. Pei M, He F, Kish V, Vunjak-Novakovic G. Engineering of functional cartilage tissue using 

stem cells from synovial lining: a preliminary study. Clin Orthop Relat Res. 2008;466(8):1880–9. 

13. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from 

various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 

2005;52(8):2521–9. 

14. Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju YJ, et al. Mesenchymal stem 

cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes 

share similar gene expression profiles. J Orthop Res. 2009;27(4):435–41. 



 
42 

15. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. 

Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr 

Rev. 2001;22(2):153–83. 

16. Li J, He F, Pei M. Creation of an in vitro microenvironment to enhance human fetal synovium-

derived stem cell chondrogenesis. Cell Tissue Res. 2011;345(3):357–65. 

17. Pei M, He F, Kish VL. Expansion on extracellular matrix deposited by human bone marrow 

stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng 

Part A. 2011;17(23–24):3067–76. 

18. Li JT, Pei M. Cell senescence: a challenge in cartilage engineering and regeneration. Tissue 

Eng Part B. 2012;18(4):270–87. 

19. Csaszar E, Kirouac DC, Yu M, Wang W, Qiao W, Cooke MP, et al. Rapid expansion of 

human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem 

Cell. 2012;10 (2):218–29. 

20. Pei M, Li JT, Shoukry M, Zhang Y. A review of decellularized stem cell matrix: a novel cell 

expansion system for cartilage tissue engineering. Eur Cell Mater. 2011;22:333–43. 

21. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human 

adult stem cells from bone marrow stroma: conditions that maximize the yields of early 

progenitors and evaluate their quality. Stem Cells. 2002;20 (6):530–41. 

22. Ben-Ze’ev A, Farmer SR, Penman S. Protein synthesis requires cell-surface contact while 

nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell. 1980;21(2):365–

72. 

23. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, 

and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95. 

24. Chang TC, Chen YC, Yang MH, Chen CH, Hsing EW, Ko BS, et al. Rho kinases regulate the 

renewal and neural differentiation of embryonic stem cells in a cell plating density-dependent 

manner. PLoS One. 2010;5(2):e9187. 

25. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and 

senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies 

samples with the greatest potential to propagate and differentiate. Br J Haematol. 

1999;107(2):275–81. 

26. Bobick BE, Kulyk WM. Regulation of cartilage formation and maturation by mitogen-activated 

protein kinase signaling. Birth Defects Res C Embryo Today. 2008;84(2):131–54. 

27. Lim IK, Won Hong K, Kwak IH, Yoon G, Park SC. Cytoplasmic retention of p-Erk1/2 and 

nuclear accumulation of actin proteins during cellular senescence in human diploid fibroblasts. 

Mech Ageing Dev. 2000;119(3):113–30. 



 
43 

28. Oh CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, et al. Opposing role of mitogen-

activated protein kinase subtypes, erk-1/ 2 and p38, in the regulation of chondrogenesis of 

mesenchymes. J Biol Chem. 2000;275(8):5613–9. 

29. Weston AD, Chandraratna RA, Torchia J, Underhill TM. Requirement for RAR-mediated gene 

repression in skeletal progenitor differentiation. J Cell Biol. 2002;158(1):39–51. 

30. Bobick BE, Kulyk WM. MEK-ERK signaling plays diverse roles in the regulation of facial 

chondrogenesis. Exp Cell Res. 2006;312 (7):1079–92. 

31. Fu L, Tang T, Miao Y, Zhang S, Qu Z, Dai K. Stimulation of osteogenic differentiation and 

inhibition of adipogenic differentiation in bone marrow stromal cells by alendronate via ERK and 

JNK activation. Bone. 2008;43(1):40–7. 

32. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human 

mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by 

mitogen-activated protein kinase. J Biol Chem. 2000;275(13):9645–52. 

33. Chiu LH, Yeh TS, Huang HM, Lu SJ, Yang CB, Tsai YH. Diverse effects of type II collagen on 

osteogenic and adipogenic differentiation of mesenchymal stem cells. J Cell Physiol. 

2011;227(6):2412–20. 

34. Park JS, Kim HY, Kim HW, Chae GN, Oh HT, Park JY, et al. Increased caveolin-1, a cause 

for the declined adipogenic potential of senescent human mesenchymal stem cells. Mech Ageing 

Dev. 2005;126(5):551–9. 

35. Park WY, Park JS, Cho KA, Kim DI, Ko YG, Seo JS, et al. Up-regulation of caveolin 

attenuates epidermal growth factor signaling in senescent cells. J Biol Chem. 

2000;275(27):20847–52. 

36. Galbiati F, Volonte D, Liu J, Capozza F, Frank PG, Zhu L, et al. Caveolin-1 expression 

negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a 

p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell. 2001;12(8):2229–44. 

37. Yew TL, Chiu FY, Tsai CC, Chen HL, Lee WP, Chen YJ, et al. Knockdown of p21(Cip1/Waf1) 

enhances proliferation, the expression of stemness markers, and osteogenic potential in human 

mesenchymal stem cells. Aging Cell. 2011;10(2):349–61.  

38. Plasilova M, Schonmeyr B, Fernandez J, Clavin N, Soares M, Mehrara BJ. Accelerating stem 

cell proliferation by down-regulation of cell cycle regulator p21. Plast Reconstr Surg. 2009;123(2 

Suppl):149S–57. 

39. Li JT, Pei M. Optimization of an in vitro three-dimensional microenvironment to reprogram 

synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A. 2011;17:703–12. 



 
44 

FIGURE LEGENDS 

 
Figure 2.1 Cell seeding density affected expanded cell morphology, cell number, and cell size. a 

Human SDSCs were expanded at high and low density on conventional plastic flasks for 9 days. 

Scale bar is 200 µm. b Cell number was presented as a fold increase by initially seeded cell 

amount during two consecutive passages. c Cell size was measured in pixels using Image J 

software from 50 cells chosen randomly in 10 fields. 

 

Figure 2.2 Cell seeding density affected expanded cell stem cell marker expression, proliferation 

index, and apoptosis. a Flow cytometry was used to evaluate SSEA-4 expression in the cells 

expanded at either high or low density. b Passage 3 expanded cells were measured for 

proliferation index using CellVue® Claret flow cytometry kit. c Flow cytometry was used to 

evaluate apoptosis in the cells expanded at either high or low density. 

 

Figure 2.3 Cell seeding density affected expanded cell chondrogenic potential at the protein 

level. a After a 27-day incubation in chondrogenic induction medium, representative pellets were 

photographed for the final size. Safranin O (SO) and Alcian blue (AB) were used to stain sulfated 

GAG. Immunostaining was used to detect collagens I, II, and X. b Biochemical analysis was used 

to measure DNA and GAG amounts. DNA ratio, DNA amount adjusted by that at day 0, indicates 

cell viability in a serum-free pellet culture system; ratio of GAG to DNA indicates chondrogenic 

index. Significant differences were indicated as follows: **p<0.01 and ***p<0.001. Data were 

shown as average±SD for n=4. 

 

Figure 2.4 Cell seeding density affects expanded cell chondrogenic potential at the mRNA level. 

Chondrogenic markers Sox9, aggrecan (AG), collagen I (Col I), collagen II (Col II), and collagen X 

(Col X) were measured at the mRNA level in pellets from the cells expanded at either high or low 

density. Significant differences were indicated as follows: **p <0.01 and ***p<0.001. Data were 

shown as average±SD for n=4. 

 

Figure 2.5 Cell seeding density affects expanded cell osteogenic and adipogenic potential. After 

a 21-day incubation in osteogenic medium, osteogenesis was evaluated using alkaline 

phosphatase (ALP) staining and quantitative activity assay (a) and Alizarin Red S (ARS) staining 

and quantitative extracellular calcium assay (b). After a 21-day incubation in adipogenic medium, 

adipogenesis was evaluated using Oil Red O (ORO) staining and quantitative lipid assay (c). 

Significant differences were indicated as follows: **p<0.01 and ***p<0.001. Data were shown as 

average±SD for n=4. 
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Figure 2.6 Western blot was used to measure the expression of Erk1/2, JNK, and p38 in the 

MAPK signaling pathway (a) and the expression of p21 and caveolin-1 (senescence-associated 

markers) (b) in the cells expanded at either high or low density. A band (with an asterisk) between 

Jnk bands (46 and 54 kDa) was a contamination from a previous binding with another antibody 

but could not be stripped from 1.2 the membrane. Image J software was used to measure 

immunoblotting bands. The activation of Erk1/2, JNK, or p38 was represented by phosphorylated 

protein adjusted by total protein; the activation of p21 or caveolin-1 was represented by 

expressed protein adjusted by β-actin. The value of interest was set up as 1 in the high-density 

group. 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 
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Figure 2.6 
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ABSTRACT 

	  
Adult stem cells gradually lose their stemness when plated in monolayer culture after isolation 

from their in vivo niche. In this study, we hypothesized that the in vitro microenvironment can be 

optimized by modulating oxygen tension andmitotic signal in a tissue-specific extracellularmatrix 

(ECM) deposited by synovium-derived stem cells (SDSCs) to rejuvenate expanded SDSC 

proliferation and chondrogenic potential. Passage 3 SDSCs were plated on either SDSC-derived 

ECM or plastic flask and incubated in either hypoxia (5% O2) or normoxia (21% O2) with or 

without the supplementation of 10 ng/mL of basic fibroblast growth factor-2 (FGF-2) for 7 days, 

followed by pellet culture in a serum-free chondrogenic medium for 14 days. Our data showed 

that, compared with the mitotic effect of FGF-2 on SDSCs, ECM expansion greatly enhanced 

SDSC proliferation while retaining SDSC stem cell characteristics. More importantly, ECM 

pretreatment yielded SDSC pellets with a comparable chondrogenic index to FGF-2 pretreatment, 

both of which were much higher than SDSC expansion on plastic flask alone. FGF-2 pretreatment 

led to the highest glycosaminoglycans and DNA content; intriguingly, it also contributed to the 

highest expression level of hypertrophic marker genes. Surprisingly, the hypertrophic marker 

genes could be downregulated if the pretreatment was combined with hypoxia or ECM. The 

combination of hypoxia, FGF-2, and SDSC-derived ECM contributed to the highest cell number in 

SDSC expansion. Our study indicates that the three-dimensional microenvironment for ex vivo 

expansion can be optimized to provide high-quality stem cells for stem cell-based cartilage defect 

repair.  
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INTRODUCTION 

 
Damage to the articular cartilage caused by osteoarthritis is becoming a significant clinical 

problem due to the limited ability of cartilage to regenerate and the increase in the elderly 

population. Autologous cartilage transplantation is a solution but is limited by donor-site 

availability.1 Recently, significant advances and tremendous progress have been made in 

exploring the potential of adult stem cells in cartilage repair. Adult stem cells have proliferation 

and multi-lineage differentiation capacity; however, once isolated from the body and expanded in 

monolayer, they lose their proliferation and multi-lineage differentiation ability (stemness) during 

passaging. Reconstructing a three-dimensional (3D) microenvironment by imitating an in vivo 

stem cell niche for ex vivo expansion becomes an important priority for stem cell-based therapy of 

cartilage defects.  

 

Recent studies suggest that growth factors can enhance proliferation and differentiation potential 

of adult stem cells. Of them, basic fibroblast growth factor-2 (FGF-2) is unique because 

mesenchymal stem cells (MSCs) expanded in FGF- supplemented medium were smaller and 

grew more rapidly than those in non-FGF-supplemented medium. Eighty percent of differentially 

expressed extracellular matrix (ECM)-related genes were downregulated; moreover,MSC 

expansion in the presence of FGF-2 enhanced their chondrogenic potential.2 Another important 

parameter, low oxygen, also contributes to the establishment of an undifferentiated niche 

microenvironment. Early embryonic development takes place in a hypoxic microenvironment and 

hypoxia seems to prevent cellular differentiation and to maintain pluripotency of stem/ progenitor 

cells.3 When exposed to hypoxia, MSCs increased expression of a subset of genes normally 

found in embryonic cells, such as OCT-4 and Rex-1,4,5 as well as SSEA-4.4 Hypoxia-

preconditioned MSCs acquired higher colony forming units and increased differentiation 

potential.5–7  

 

It is well established that stem cells reside, proliferate, and differentiate inside the body within a 

complex 3D microenvironment, indicating that a tissue-specific stem cell canbeusedto prepare its 

own in vitro microenvironment for stem cell proliferation while maintaining and enhancing its 

lineage-specific stemness. As a new member in MSC families, synovium-derived stem cells 

(SDSCs) are reported as a tissue-specific stem cell for chondrogenesis.8–11 Our previous studies 

suggested that SDSCs could be negatively isolated from the synovial membrane12 for in vitro 

cartilage tissue engineering13 and in vivo cartilage regeneration.14 Our most recent study 

indicated that SDSC-derived extracellular matrix (S-ECM) can serve as an in vitro 3D 

microenvironment, greatly enhancing SDSC propagation and allowing restoration of stem cell 

stemness toward chondrogenesis.15 Considering that articular chondrocytes reside in a hypoxic 
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condition16 and mitogens such as FGF- 2 are involved in MSC chondrogenesis,2 three important 

microenvironmental factors—oxygen tension and mitogens as well as 3D ECM—are assumed to 

contribute to the regulation of the seeded SDSCs for chondrogenesis. In this study, we 

hypothesized that the in vitro microenvironment can be optimized by modulating oxygen tension 

and mitotic signal in ECM deposited by SDSCs to rejuvenate expanded SDSCs’ proliferation and 

chondrogenic differentiation capacity. The ability to reconstitute an in vitro 3D microenvironment 

will greatly benefit SDSC-based therapy for cartilage defects.  
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MATERIALS AND METHODS 

 
Isolation and culture of SDSCs  

Two 3-month-old pigs were collected from a local slaughterhouse and synovial tissue was 

harvested from both knees. After finely mincing, synovial tissue was digested in 0.1% trypsin 

(Roche, Indianapolis, IN) at 37°C for 30 min and then in 0.1% collagenase P (Roche) for 2 h. The 

released synovial cells were collected from the filtrate and plated in a complete medium (a-

minimum essential medium containing 10% fetal bovine serum, 100U/mL penicillin, 100 mg/mL 

streptomycin, and 0.25 mg/mL fungizone [Invitrogen, Carlsbad, CA]). Nonadherent cells were 

removed during the medium change every 2 days. For negative isolation of synovial fibroblasts 

from primary cultures, the synovial cell suspension (107 cells/mL) was incubated with 5✕107/mL 

Dynabeads® M-450 CD14 containing a monoclonal antibody specific for macrophages (Dynal 

Biotech, Oslo, Norway) at 4°C for 1 h. The conjugatedcells andthe unboundDynabeads were 

collected using the Dynal Magnetic Particle Concentrator® (Dynal Biotech), and the depleted 

supernatant with synovial fibroblasts (characterized as SDSCs in our previous study12) was saved 

for further passaging.  

 

Preparation of SDSC-derived ECM  

The preparation method of SDSC-derived ECM was described in our previous study.15 Briefly, 

plastic flasks (P-Flask) were precoated with 0.2% gelatin (Sigma, St. Louis, MO) at 37°C for 1h 

and seeded with passage 3 SDSCs. After cells reached 90% confluence, 50mM L-ascorbic acid 

phosphate (Wako Chemicals USA Inc., Richmond, VA) was added for 8 days. The deposited 

ECM was incubated with 0.5% Triton X-100 containing 20mM ammonium hydroxide at 37°C for 

5min and stored at 4°C in phosphate-buffered saline containing 100U/mL penicillin, 100mg/mL 

streptomycin, and 0.25 mg/mL fungizone.  

 

SDSC expansion under different microenvironmental conditions  

Passage 3 SDSCs were plated at 3,000 cells/cm2 in P-Flask (‘‘P’’) or ECM-coated flasks (S-

ECM, ‘‘E’’) and incubated in hypoxia (5% O2, ‘‘5’’) or normoxia (21% O2, ‘‘21’’) in the complete 

medium with or without treatment of 10ng/mL FGF-2 (‘‘F’’) for one passage. There were eight 

pretreatments in SDSC expansion: ‘‘P-Flask+21% O2’’ (P21), ‘‘P-Flask+5% O2’’ (P5), ‘‘P-

Flask+FGF-2+21% O2’’ (PF21), ‘‘P-Flask+FGF-2+5% O2’’ (PF5), ‘‘S-ECM+21% O2’’ (E21), ‘‘S-

ECM 5% O2’’ (E5), ‘‘S-ECM+FGF-2+21% O2’’ (EF21), and ‘‘SECM+FGF-2+5% O2’’ (EF5). During 

SDSC expansion, cell number was counted and morphology was photographed.  

 

Chondrogenic differentiation of SDSCs  
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After in vitro expansion, 0.3X106 of SDSCs from each pretreatment were centrifuged at 500g for 

5min in a 15-mL polypropylene tube to form a pellet. After overnight incubation, the pellets were 

cultured in a serum-free chondrogenic medium consisting of high-glucose Dulbecco’s modified 

Eagle’s medium, 40 mg/mL proline, 100nM dexamethasone, 100U/mL penicillin, 100mg/mL 

streptomycin, 0.1mM ascorbic acid-2-phosphate, and 1XITS™ Premix (6.25 mg/mL insulin, 6.25 

mg/mL transferrin, 6.25 mg/mL selenous acid, 5.35 mg/mL linoleic acid, and 1.25 mg/mL bovine 

serum albumin, from BD Biosciences, Bedford, MA) with the supplementation of 10ng/mL 

transforming growth factor beta 3 (PeproTech Inc., Rocky Hill, NJ) for 14 days. At days 0, 7, and 

14, the pellets were collected for chondrogenic evaluation.  

 

Histochemistry and immunohistochemistry  

The pellets (n = 2) were fixed in 4% paraformaldehyde at 4°C overnight, followed by dehydrating 

in a gradient ethanol series, clearing with xylene, and embedding in paraffin blocks. About 5-mm 

sections were histochemically stained with Alcian blue (Sigma; counterstained with fast red) and 

Safranin O (Sigma; counterstained with hematoxylin) for sulfated glycosaminoglycans (GAG). For 

immunohistochemical analysis, the sections were immunolabeled with primary antibodies against 

collagen II (II-II6B3; DSHB, Iowa City, IA), collagen I (Abcam, Cambridge, MA), and collagen X 

(Sigma), followed by the secondary antibody of biotinylated horse anti-mouse IgG (Vector, 

Burlingame, CA). Immunoactivity was detected using Vectastain ABC reagent (Vector) with 3,30-

diaminobenzidine (DAB) as a substrate.  

 

Biochemical analysis for DNA and GAG content  

The pellets (n=4) were digested for 4h at 608C with 125 mg/mL papain in PBE buffer (100mM 

phosphate and 10mM EDTA, pH 6.5) containing 10mM cysteine, by using 200 mL enzyme per 

sample. To quantify cell density, the amount of DNA in the papain digestion was measured using 

the QuantiT™ PicoGreen® dsDNA assay kit (Invitrogen) with a CytoFluor® Series 4000 (Applied 

Biosystems, Foster City, CA). GAG was measured using dimethylmethylene blue dye and a 

Spectronic™ BioMate™ 3 Spectrophotometer (Thermo Scientific, Milford, MA) with bovine 

chondroitin sulfate (Sigma) as a standard. 

 

Real-time polymerase chain reaction  

Total RNA was extracted from samples (n=4) using an RNase-free pestle in TRIzol®  

(Invitrogen). About 1mgof mRNA was used for reverse transcriptase with High-Capacity cDNA 

Archive Kit (Applied Biosystems) at 37°C for 120 min. Chondrogenic marker genes [collagen II, 

aggrecan, and SRY (sex determining region Y)-box 9 (Sox9)] and hypertrophic marker genes 

(collagen X, alkaline phosphatase [ALP], and matrix metalloproteinase 13 [MMP13]) were 

customized by Applied Biosystems as part of the Custom TaqMan® Gene Expression Assays 
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(Table 3.1). Eukaryotic 18S rRNA (Assay ID HS99999901_s1 ABI) was carried out as the 

endogenous control gene. Real-time polymerase chain reaction (PCR) was performed with the 

iCycler iQ™ Multi Color reverse transcriptase-PCR Detection and calculated by computer 

software (Perkin-Elmer, Wellesley, MA). Relative transcript levels were calculated as χ=2-
ΔΔ

Ct, in 

which ΔΔCt = ΔE - ΔC, ΔE = Ctexp - Ct18s, and ΔC=Ctct1-Ct18s.  

 

Statistics  

The Mann–Whitney U-test was used for pairwise comparison in biochemistry analysis and real-

time PCR data. All statistical analyses were performed with SPSS 13.0 statistical software (SPSS 

Inc., Chicago, IL). ρ-Values <0.05 were considered statistically significant. 
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RESULTS 

 
In vitro microenvironment to rejuvenate SDSC proliferation  

After SDSCs reached confluence, ascorbic acid supplementation stimulated SDSCs to produce 

ECM in a 3D format. Three key components (S-ECM, hypoxia, and FGF-2) of the stem cell niche 

were evaluated for their roles in enhancing stem cell proliferation and maintaining stem cell 

unique morphology. Compared with flattened and irregular shapes (characteristic of aged cells) in 

the ‘‘P21’’ and ‘‘P5’’ groups, the expanded SDSCs had shorter and glistening shapes in the 

‘‘PF21’’ and ‘‘PF5’’ groups, and longer and glistening fibroblast-like shapes in all ECM groups 

(‘‘E21,’’ ‘‘EF21,’’ ‘‘E5,’’ and ‘‘EF5’’). Compared with the random arrangement of cells plated on P-

Flask, S-ECM-expanded cells were aligned with matrix fibers (Fig. 3.1).  

 

To assess proliferation efficiency in various microenvironments, after a 6-day expansion, the cell 

number increased 2.39-fold in the ‘‘P5’’ group, 2.61-fold in the ‘‘P21’’ group, 6.90- fold in the 

‘‘PF21’’ group, 12.50-fold in the ‘‘PF5’’ group, 34.52- fold in the ‘‘E21’’ group, 54.52-fold in the 

‘‘EF21’’ group, 77.38-fold in the ‘‘E5’’ group, and 93.45-fold in the ‘‘EF5’’ group (Fig. 3.2A). 

Compared with SDSC expansion on P-Flask in normoxia, a hypoxic culture did not improve 

SDSC proliferation until combined with FGF-2 and/or S-ECM. In contrast, FGF-2 improved SDSC 

proliferation not only when combined with hypoxia and/or S-ECM but alsowhen applied alone in 

P-Flask culture. SDSC expansion on S-ECM acquired a higher cell number than the 

pretreatments with hypoxia and/or FGF-2. Intriguingly, the highest cell number was in the 

pretreated groups with S-ECM, hypoxia, and FGF-2. Despite the fact that the same cell number 

(0.3×106) was used to form a pellet followed by incubation in a serum-free chondrogenic medium, 

SDSC pellets from S-ECM pretreatments were initially smaller in size (not shown here) but 

became much bigger after a 14-day incubation compared with those from hypoxia or normoxia in 

P-Flask culture (Fig. 3.2B).  

 

In vitro microenvironment to rejuvenate SDSCs for chondrogenic differentiation  

To characterize the effects of various pretreatments on SDSC chondrogenesis, pellets from P4 

SDSCs expanded on P-Flask or S-ECM under normxia or hypoxia with or without FGF-2 were 

induced in a serum-free chondrogenic medium for 14 days. Our histology data (Fig. 3.3) showed 

that P-Flask expansion yielded SDSC pellets with comparable sulfated GAGs, collagen I, and 

collagen II staining under normoxia (P21) and hypoxia (P5), mainly located in the peripheral 

regions of pellets. In contrast, other pretreatments with FGF-2 and/or S-ECM dramatically 

increased pellet size, sulfated GAGs, and collagen II intensity with homogenous distribution 

throughout the pellets under either normoxia (PF21) or hypoxia (PF5); on the contrary, collagen I 

was only detected at the edge of the pellets. Our data suggested that pretreatments with FGF-2 
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and S-ECM were key components in the in vitro microenvironment for SDSC chondrogenic 

potential. Our data also suggested that pretreatment with low oxygen alone in P-Flask culture did 

not make a significant difference in SDSC chondrogenic potential.  

 

Compared with a decrease in cell number (about 60%) in the groups pretreated with P-Flask (P21 

and P5), our DNA data (Fig. 3.4) showed that pretreatment with ECMs (E21, E5, EF21, and EF5) 

yielded SDSC pellets with a cell number around 86% at day 14, which was comparable to those 

pretreated with FGF-2 under hypoxic condition (PF5), despite the fact that FGF-2 pretreatment 

(PF21) yielded pellets with increased cell number up to 124% after 14-day incubation with 

chondrogenic medium.  

 

For the pretreated effect of oxygen tension on SDSC chondrogenic potential, our biochemical 

data (Fig. 3.4) showed that when SDSCs were plated on ECM, pretreatment with hypoxia (E5) 

yielded SDSC pellets with a higher chondrogenic index (GAG/DNA) than those from pretreatment 

with normoxia (E21). However, there was no significant difference in chondrogenic index from 

either pretreatment with hypoxia (P5) and normoxia (P21) when SDSCs were plated on P-Flask, 

or pretreatment with and without FGF-2 presence, regardless of culture on ECM (EF21 vs. EF5) 

or P-Flask (P21 vs. P5).  

 

For the pretreated effect of FGF-2 on SDSC chondrogenic potential, our biochemical data (Fig. 

3.4) showed that when SDSCs were plated on P-Flask, pretreatment with FGF-2 yielded SDSC 

pellets with a higher chondrogenic index than those cultured in basal medium alone, at either 

normoxic (PF21 vs. P21, p<0.001) or hypoxic conditions (PF5 vs. P5, p<0.001). When SDSCs 

were seeded on ECM, however, supplementation with FGF-2 yielded SDSC pellets with no 

significant difference in chondrogenic index from those cultured in the basal medium alone, 

regardless of normoxia (EF21 vs. E21) or hypoxia (EF5 vs. E5).  

 

For the pretreated effect of ECM on SDSC chondrogenic potential, our biochemical data (Fig. 3.4) 

showed that ECM-treated SDSCs yielded pellets with much higher chondrogenic index than 

those from P-Flask-expanded SDSCs (p<0.001) no matter if they were incubated in a normoxic or 

hypoxic incubator. Intriguingly, with supplementation of FGF-2, the chondrogenic index in ECM-

treated SDSCs was not statistically different from that of P-Flask-expanded SDSCs, in either the 

normoxic (EF21 vs. PF21) or hypoxic condition (EF5 vs. PF5).  

 

Our real-time PCR data (Fig. 3.5) were consistent with our biochemical data. There was no 

significant difference in chondrogenic marker gene levels (collagen II, aggrecan, and Sox9) 

between hypoxia and normoxia when the SDSCs were pretreated on either P-Flask (P5 vs. P21) 
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or ECM (E5 vs. E21 or EF5 vs. EF21). With the supplementation of FGF-2 in P-Flasks, however, 

hypoxic pretreatment (PF5) yielded SDSC pellets with comparable aggrecan and Sox9 marker 

genes to all ECM groups. In contrast, normoxic pretreatment (PF21) yielded SDSC pellets with 

the highest aggrecan and Sox9 marker genes than the other groups as well as comparable 

collagen II marker level to the hypoxic group (PF5).  

 

To identify if a higher chondrogenic index was associated with chondrocyte hypertrophy, real-time 

PCR (Fig. 3.6) was used to evaluate three hypertrophic marker genes (collagen X, ALP, and 

MMP13). Our finding was that pretreatment with ECM and FGF-2 yielded pellets with higher 

expression of collagen X at day 0; these results were much closer after a 14- day incubation in a 

serum-free chondrogenic medium despite the highest expression level in FGF-2-expanded 

SDSCs. Pretreatment with FGF-2 yielded pellets with the highest ALP and MMP13 mRNA levels 

than the other pretreated groups, indicating that the supplementation of FGF-2 was associated 

with chondrogenic hypertrophy of expanded cells. Surprisingly, hypoxic pretreatment could 

decrease the hypertrophic marker gene level of FGF-2-expanded SDSCs (PF5 vs. PF21). 
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DISCUSSION 

 
The goal for stem cell research is to eventually provide differentiated products for regenerative 

medicine; thus, the promotion of stem cell self-renewal at the expense of differentiation is not an 

option. Considering the signals that govern the transition between self-renewal and differentiation 

programs being of utmost importance when designing defined stem cell culture and derivation 

formats, our study, for the first time, investigated three key components for the in vitro 3D 

microenvironment reconstruction: ECM (supporting 3D structure), hypoxia (environmental factor), 

and FGF-2 (growth modulating factor). We demonstrated that the in vitro microenvironment can 

be optimized by modulating oxygen tension and mitotic signal in a 3D ECM deposited by SDSCs 

to rejuvenate SDSC expansion and chondrogenic differentiation capacity. Our data indicated that, 

compared with the mitotic effect of FGF-2 on SDSCs, ECM expansion greatly enhanced SDSC 

proliferation while retaining SDSC stem cell morphology. More importantly, ECM pretreatment 

yielded SDSC pellets with a comparable chondrogenic index to FGF-2 pretreatment, both of 

which were closer to that from cartilage pellets (50.43±1.22, data not shown) and much higher 

than that in SDSCs expanded on P-Flask alone. FGF-2 pretreatment led to the highest GAG and 

DNA content; intriguingly, it also contributed to the highest expression level of hypertrophic 

marker genes. Surprisingly, the hypertrophic marker genes could be down-regulated if 

pretreatment was combined with hypoxia or ECM. The combination of hypoxia, FGF-2, and S-

ECM contributed to the highest cell number in SDSC expansion.  

 

Strategies for influencing MSC proliferation and differentiation are not yet well defined.17,18 

Microenvironmental factors, such as FGF-2, ECM, and oxygen tension, largely contribute to the 

regulation of these MSCs. FGF-2 could maintain MSCs in an immature state during in vitro 

expansion and enhance MSC proliferation and differentiation potential2,19–22 through the 

regulation of mitogen-activated protein kinase (MAPK) and the canonical Wingless-type MMTV 

integration site family (Wnt) signaling.2 There is an increasing body of evidence demonstrating a 

role for the MAPK signaling cascade in the regulation of chondrogenic differentiation that requires 

exquisite temporal regulation of P38 and extracellular signal-regulated kinases (ERK1/2) 

phosphorylation.23–25 Wnts are a family of secreted proteins that play important roles in 

development, including chondrogenesis. Wnt pathways have been linked to the MAPK pathway in 

the regulation of chondrogenesis.26,27 Recently, Solchaga et al. found that eighty percent of the 

differentially expressed ECM-related genes were downregulated on MSCs expanded in the 

presence of FGF-2, suggesting the maintenance of the undifferentiated status of the cells by 

FGF-2 through the downregulation of genes that encode the specialized ECM components of 

differentiated tissues.2 Similarly, Ito et al. found that the overall insulin-like growth factor I and 

transforming growth factor beta (differentiationrelated) signaling pathways were inactivated by 
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FGF-2, suggesting that FGF-2 suppresses MSC senescence.28 FGF-2 was also found to promote 

MSC chondrogenic potential.29 However, the enhanced chondrogenic differentiation was 

accompanied by increased expression of hypertrophic marker genes, indicating that MSCs 

expanded in the presence of FGF-2 also acquired osteogenic differentiation capacity.29 Our 

findings corroborated the above studies. Although FGF-2 pretreatment greatly enhanced SDSC 

chondrogenic differentiation potential, the expanded SDSCs also exhibited the highest level of 

hypertrophic marker genes when incubated in a serum-free chondrogenic medium.  

 

As an in vitro 3D structure, ECM was deposited by SDSCs, which appears to approximate native 

tissue more closely and presents a unique opportunity for in vitro studies of cell behavior under in 

vivo-like conditions.30,31 In 3D cultures, the steady-state level of ERK1/2 activity was enhanced 

when compared with that by 2D signaling.30 This steady-state level may be responsible for ECM-

expanded SDSCs acquiring a higher proliferation capacity with comparable chondrogenic 

potential because in the same way signaling through ERK1/2 pathway is required to shift 

embryonic stem cells from a program of self-renewal to one allowing for differentiation and 

lineage commitment.32 Our study also suggested that SDSC expansion in the presence of ECM 

combined with FGF-2 yielded more stem cells without compromised chondrogenic potential. This 

increase in cell proliferation may reflect the reciprocal interaction of ECM and FGF-2 in the body. 

In vivo, numerous growth factors and morphogens are immobilized by binding to the ECM 

through specific heparin-binding domains or by direct binding to ECM molecules such as 

collagen, or direct anchoring to cell membranes.33 Immobilization of growth factors in this manner 

can serve to increase local concentration of the protein by hindering diffusion and receptor-

mediated endocytosis. Heparin sulfate-proteoglycans are required for functional FGF-FGF 

receptor binding and also act as reservoirs for local ligand availability, regulating diffusion, 

gradient formation, and degradation of FGFs as well as other morphogenetic proteins that have 

important roles to play in the development of musculoskeletal tissues.34–36 Surprisingly, the 

combined application of ECM decreased osteogenic potential of FGF-2-pretreated SDSCs though 

the underlying mechanism remains to be elucidated.  

 

Hypoxia alters fundamental and physiologically important intracellular pathways and has long 

been recognized as a critical stimulus for chondrocyte development.37 Because MSCs are 

adapted to low oxygen in vivo, standard in vitro culture may be inherently stressful to these MSCs 

and appears to induce an oxidative stress response in these cells. However, MSCs expanded in 

low oxygen appeared to be adapted to the physiological environment, in which low oxygen 

selected a population of cells with faster proliferation potentials.5 Moreover, gene analysis 

revealed that a low oxygen condition affects specific regulatory pathways in MSCs, leading to the 

activation of several molecular and cellular events that favor the production of chondrogenic- 
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specific ECM components.38 Induction of collagen II in hypoxia-expanded cells is attributed to 

enhanced chondrogenic ability.39 These data suggest that low oxygen tension is a key regulatory 

factor of proliferation, differentiation, and activity of chondrogenic cells. In our study, pretreatment 

with low oxygen alone did not show a role in SDSC expansion and subsequent chondrogenic 

differentiation; however, hypoxia pretreatment increased SDSC proliferation when combined with 

ECM and acquired the highest cell number when combined with ECM and FGF-2. More 

importantly, hypoxia decreased osteogenic potential of FGF-2-preteated SDSCs without 

compromising chondrogenic capacity, which is consistent with previous investigations.40–42 It was 

reported that expanded MSCs under low oxygen showed attenuated osteogenic responsiveness 

in vitro.40 Similarly, hypoxia has also recently been suggested to inhibit expression of type X 

collagen, which is the major marker of chondrocyte hypertrophy, during the chondrogenesis of 

epiphyseal chondrocytes41 and of adipose-derived MSCs,42 thereby preventing the potential 

calcification of engineered cartilage. This result strongly suggested that hypoxia is a useful tool 

for cartilage tissue engineering.  

 

The stress of in vitro culture could induce cell senescence.43 The causative role of oxidative 

stress in cell senescence has been confirmed by studies in which cells cultured under hyperoxia 

displayed accelerated onset of telomere-driven replicative senescence,44 whereas these treated 

with oxidants senesced prematurely in a telomere-independent manner.45 In contrast to 

fibroblasts and other somatic cells, the role of reactive oxygen species (ROS) in MSC growth and 

senescence remains elusive. Some indirect evidence showing the involvement of ROS in MSC 

proliferation is derived from studies on bone marrow and adipose tissue-derived cells, whose 

growth rate and replicative lifespan were markedly improved upon treatment with 

antioxidants.46,47 Other studies have shown that significant MSC growth prolongation may also be 

achieved in cells cultured under reduced oxygen pressure,48 which may be attributed to over- 

expression of genes favoring MSC proliferation.49 Recently, MSCs cultured on this ECM showed 

remarkable promotion of proliferation and retention of stem cell population with a lower level of 

ROS and higher level of telomerase activity when compared with those cultured on uncoated P-

Flask.50 However, a high level of ROS was reported to be associated with a loss of stem cell 

characteristics and increased differentiation and apoptosis.51 Therefore, the ability of hypoxia and 

ECM to suppress ROS may contribute to the retention of stem cell characteristics.  

 

Taken together, FGF-2, low oxygen, and ECM may play a key role in reconstituting an in vitro 

tissue-specific microenvironment. To provide large-scale and high-quality stemcells for cartilage 

tissue engineering and regeneration, the potential mechanisms underlying the 3D 

microenvironment for expansion and reprogramming of SDSCs toward chondrogenic 

differentiation need to be elucidated. The functionality of tissue constructs engineered using 
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microenvironment-expanded stem cells needs to be further evaluated for mechanical properties. 

Inaddition, bonemarrowstromal cells also deserve to be compared with SDSCs for the difference 

in tissue-specific induction after expansion in such a 3D microenvironment.  
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FIGURE LEGENDS 

 
Figure 3.1 SDSC morphology in preparation of ECM (before and after the supplementation of 

ascorbic acid [AA]) and after plating on S-ECM (‘‘E’’) or plastic flasks (P-Flask, ‘‘P’’) and 

incubated in hypoxia (5% O2, ‘‘5’’) or normoxia (21% O2, ‘‘21’’) with or without 10ng/mL of 

fibroblast growth factor-2 for 5 days. SDSC, synovium-derived stem cell; S-ECM, SDSC-derived 

extracellular matrix.  

 

Figure 3.2 After 6-day plating with initial cell number as 0.53 × 106 in one 175cm2 flask, the 

expanded SDSCs under different pretreatments were counted for cell number (A) followed by a 

14-day incubation of SDSC pellets in a serum-free chondrogenic medium (B).  

 

Figure 3.3 Histology and immunohistochemistry of SDSC pellets after 7-day and 14-day 

chondrogenic induction in a serum-free chondrogenic mediu. Safranin-O (SO) and Alcian blue 

(AB) were used to detect collagen I (Col I) and collagen II (Col II). The scale bar is 800 µm. GAG, 

glycosaminoglycans.  

 

Figure 3.4 Biochemical analysis for DNA and GAG contents in SDSC pellets after 14-day 

chondrogenic induction in a serum-free chondrogenic medium. Cell proliferation was shown as 

DNA content adjusted by that at day 0. The ratio of GAG to DNA was used to represent 

chondrogenic index. Data are shown as average ± SD for n=4. SD, standard deviation. 

 

Figure 3.5 TaqMan real-time polymerase chain reaction for evaluation of chondrogenic marker 

genes (Col II, aggrecan, and Sox9) in SDSC pellets after 14-day chondrogenic induction. 18S 

RNA was used as an internal control. The mRNA level in SDSC pellets at day 0 from P21 was set 

as 1. Data are shown as average±SD for n=4. 

 

Figure 3.6 TaqMan real-time polymerase chain reaction for evaluation of hypertrophic marker 

genes (Col X, ALP, and MMP-13) in SDSC pellets after 14-day chondrogenic induction. 18S RNA 

was used as an internal control. The mRNA level in SDSC pellets at day 0 from P21 was set as 1. 

Data are shown as average±SD for n=4. ALP, alkaline phosphatase; MMP, matrix 

metalloproteinase. 
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Table 3.1 TaqMan-customized porcine marker gene primers and probes 

Name Primer/probe Sequence (5’-3’) Gene ID 

Chondrogenic markers    

Collagen II α1 Forward TCCTGGCCTCGTGGGT 397323 

 Reverse GGGATCCGGGAGAGCCA   

 Probe CTCCCCTGGGAAACC   

Aggrecan Forward GCCACTGTTACCGCCACTT 397255 

 Reverse CACTGGCTCTCTGCATCCA  

 Probe CTGACCGGGCGACCTG   

Sox9 Forward TGGCAAGGCTGACCTGAAG 396840 

 Reverse GCTCAGCTCGCCGATGT  

 Probe CCCCATCGACTTCCGC   

Hypertrophic markers    

Collagen X α1 Forward GGCCCGGCAGGTCATC  448809 

 Reverse TGGGATGCCTTTTGGTCCTT  

 Probe TCAGACCTGGTTCCCC   

ALP Forward CCCTTCACTGCCATCCTGTAC 100170147 

 Reverse CCATGGAGACGTTCTCTCTCTCA    

 Probe ACGGCCCTGGCTACAA  

MMP13 Forward AGTTTGGCCATTCCTTAGGTCTTG 397346 

 Reverse GGCTTTTGCCAGTGTAGGTATAGAT  

 Probe ACCACTCCAAGGACCC  
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Figure 3.1 
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Figure 3.2 
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Figure 3.3  
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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ABSTRACT 

	  
Application of cell-based therapy in cartilage defect repair remains challenging due to the 

shortage of autologous chondrocytes and limited regenerative capacity of cartilage. Alternative 

cell source such as synovium-derived stem cell (SDSC) has been characterized as tissue-specific 

stem cell for chondrogenesis. Decellularized extracellular matrix (DECM) deposited by SDSCs 

served as ex vivo expansion system for maintaining stemness and enhancing chondrogenic 

potential. However, whether other potential and more accessible cell deposited DECMs could 

also provide an ex vivo microenvironment as human SDSC-derived DECM (SE) is not known. In 

this study, we found that human adipose-, urine-derived stem cell and dermal fibroblast deposited 

DECMs (AE, UE and DE) could also serve as ex vivo expansion system for promoting SDSC 

proliferation and chondrogenic potential. Compared to the plastic flask (PL) expansion, all DECM-

expanded SDSCs yield higher cell number and proliferation index. The highest cell number and 

proliferation index were obtained in UE, followed by AE, DE, SE and PL. The expansion on AE, 

UE, and DE resulted the SDSCs with an elongated and less spread cell shape than SDSCs on 

SE and PL analyzed by scanning electron microscopy. The significantly lower elasticity was 

observed in SDSC expanded on DECMs than SDSCs on PL accordingly, which is consistent with 

the elasticity measurement of DECMs (DE>SE>AE>UE). Despite a robust and enhanced 

chondrogenesis was also observed in DECM-expanded SDSCs pellets compared to PL 

expanded cells, AE, DE and UE pretreated SDSCs yielded pellets exhibited the larger size, 

higher DNA content and chondrogenic index (GAG/DNA), and higher level of chondrogenic 

marker genes expression than SE-expanded pellets. Histological staining and immunostaining for 

sulfated GAGs, collagens I and II were consistent with the biochemistry and real-time PCR data. 

However, the higher hypertrophic marker gene expression is also observed in DE-expanded 

SDSC pellets, which could be explained by the higher stiffness of DE. There was no concomitant 

enhancement of osteogenic and adipogenic potential of DECM-pretreated SDSCs. In conclusion, 

the DECM deposited by the adipose, skin and urine-derived cells can serve as ex vivo expansion 

substrates, enhancing the maintenance of the embedded SDSCs and rejuvenate them with 

higher chondrogenic potential. Although the mechanisms underlying the greatest chondrogenic 

potential in SDSCs expanded on AE, DE and UE are under further investigated, the potential 

application of these easily accessible sources would provide great opportunity for repairing 

cartilage defects in patients with autologous cells. 
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INTRODUCTION 

 

Adult articular cartilage exhibits little capacity for intrinsic repair. Injury and joint degeneration 

resulted minor lesions may lead to progressive damage, causing significant pain and disability. 

The successful repair of articular cartilage defects is a major clinical challenge. There have been 

numerous attempts to develop tissue-engineered grafts or patches to repair focal chondral and 

osteochondral defects. Cell-based therapy remains the most promising for articular cartilage 

repair. However, with the practical clinical limitations (donor morbidity, shortage of healthy 

donors) surrounding the use of autologous chondrocytes, the cartilage engineering filed rapidly 

move towards other progenitor cell sources. 

 

Mesenchymal stem cells (MSCs) were firstly isolated from bone marrow by Johnstone and 

Pittenger1;2 and widely applied in tissue engineering since then. Other than bone marrow, MSCs 

has also been identified in adipose,3 skeletal muscle4 and other tissues.5 In determining the 

optimal source of cells for cartilage repair, the two primary criteria that are generally considered 

are the performance of the cells and their ease of access. MSCs from different sources 

suggested their tissue-specificity. Synovium-derived stem cells (SDSCs) has been suggested as 

a tissue-specific stem cell for chondrogenesis.6 Low yield and high donor morbidity makes bone 

marrow-derived stem cells (BMSCs) less abundant and accessible than adipose-derived stem 

cells (ASCs). Recently, urine-derived stem cells (USCs) have been demonstrated to express 

MSC surface markers and possess multi-lineage differentiation potentials.7 Dermal fibroblasts 

(DFs) from skin was also reported to acquire multi-lineage differentiation potentials.8 Thus, the 

skin, adipose, urine derived MSCs constitutes promising cell source in clinical applications. 

 

Dedifferentiation of chondrocytes due to traditional two-dimensional cell culture and cell 

senescence due to repeated passaging and elderly donor bring challenge for large-scale ex vivo 

expansion.9;10 Potential genetic modification, biomaterial scaffolds and growth factors have been 

investigated to improve the efficiency.11 Our previous studies indicated that decellularized 

extracellular matrix (DECM) deposited by SDSCs can serve as an in vitro three-dimensional 

expansion system, greatly enhancing SDSC propagation and facilitating restoration of stem cell 

stemness toward chondrogenesis.12;13 However, whether MSCs derived from easily accessible 

sources such as skin, adipose or urine can be used to deposit DECMs and served as 

microenvironment for maintaining or promoting SDSC stemness is not known. 

 

In this study, we intended to investigate whether DECMs from the more accessible human cell 

sources, including ASCs, USCs and DFs, can serve as in vitro microenvironment for stem cell 

expansion while promoting chondrogenic potential.  
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MATERIALS AND METHODS 

 

Preparation of DECMs 

Adult human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ASCs) and 

dermal fibroblasts (DFs) purchased from ZenBio Inc., Research Triangle Park, NC and human 

urine-derived stem cells (USCs), a generous gift from Dr. Yuanyuan Zhang, Wake Forest Institute 

for Regenerative Medicine, were used to prepare DECMs. Methods for preparing these DECMs 

were described in our previous study.10 Briefly, plastic flasks were pre-coated with 0.2% gelatin 

(Sigma, St. Louis, MO) at 37°C for 1 h and seeded with passage 4 SDSCs, ASCs, DFs and USCs 

at 6,000 cells per cm2. After cells reached 90% confluence, 250 µM L-ascorbic acid phosphate 

(Wako Chemicals USA Inc., Richmond, VA) was added for another 10 days. The deposited ECM 

flasks were incubated with 0.5% Triton X-100 containing 20 mM ammonium hydroxide at 37°C for 

5 min to remove the cells and stored at 4°C in PBS containing 100 U/mL penicillin, 100 µg/mL 

streptomycin and 0.25 µg/mL fungizone until use. 

 

SDSCs expansion on plastic flasks or different DECMs 

Passage 3 SDSCs (3,000 cells per cm2) were plated on either DECM-coated flasks (SE, AE, DE, 

UE) or conventional uncoated plastic flasks (PL) for one passage. The growth medium was 

changed every three days. Cell number was counted by hemacytometer (Hausser Scientific, 

Horsham, PA) and morphology was photographed by phase contrast microscopy during cell 

expansion. 

 

Proliferation index assay 

Before passage 3 SDSCs were seeded on plastic flasks or DECMs, cells from each group were 

labeled with CellVue® Claret (Sigma) at 2 × 10-6 M for 5 minutes according to the manufacture 

protocol. After 6-day expansion, cells were collected and measured by a BD dual laser FACS 

Calibur (BD Biosciences). 20,000 events of each sample were collected using CellQuest Pro 

software (BD Biosciences) and cell proliferation index was analyzed by ModFit LTTM version 3.1 

(Verity Software House). 

 

Fluorescence-activated cell sorting analysis  

The following primary antibodies were used to detect expanded SDSC surface immunophenotype 

profiles: CD29 (Abcam, Cambridge, MA), CD90 (BD Pharmingen, San Jose, CA), CD105 

(BioLegend, San Diego, CA), stage-specific embryonic antigen 4 (SSEA4) (BioLegend) and 

isotype- matched IgGs (Beckman Coulter, Fullerton, CA). The secondary antibody was goat anti-

mouse IgG (H + L) R-phycoerythrin conjugated (Life Technologies). Samples (n = 3) of each 2 × 

105 expanded cells were incubated on ice in cold PBS containing 0.1% Chrom-Pure Human IgG 
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whole molecule (Jackson ImmunoR- esearch Laboratories, West Grove, PA) and 1% NaN3 

(Sigma) for 30 min. The cells were then sequentially incubated in the dark in the primary and 

secondary antibodies for 30 min. Fluorescence was analyzed by a FACS Calibur (BD 

Biosciences) using FCS Express software package (De Novo Software, Los Angeles, CA). 

 

Chondrogenic differentiation of SDSCs 

Expanded SDSCs (0.3 × 106) from each pretreatment group were centrifuged at 500 × g for 5 min 

in a 15-mL polypropylene tube to form a pellet. After overnight incubation, the pellets were 

cultured in a serum-free chondrogenic medium consisting of high-glucose DMEM, 40 µg/mL 

proline, 100 nM dexamethasone, 100 U/mL penicillin, 100 µg/mL streptomycin, 0.1 mM ascorbic 

acid-2-phosphate, and 1 × ITS™ Premix (6.25 µg/mL insulin, 6.25 µg/mL transferrin, 6.25 µg/mL 

selenous acid, 5.35 µg/mL linoleic acid and 1.25 µg/mL bovine serum albumin, from BD 

Biosciences, Bedford, MA) with the supplementation of 10 ng/mL transforming growth factor 

beta3 (TGF-β3, PeproTech Inc., Rocky Hill, NJ) in 5% O2 incubator as long as 35 days. At days 

0, 14, and 35, pellets from each group were collected for evaluation of chondrogenesis. 

 

Immunofluorescent staining of DECMs 

Decellularized ECMs were fixed with 4% paraformaldehyde for 30 min. After blocking in 10% 

normal goat serum for 1 h, ECMs were incubated with monoclonal antibody for type I collagen 

(Sigma), fibronectin (Santa Cruz Biotechnology, Dallas, TX), or laminin (Santa Cruz 

Biotechnology) overnight followed by Alexa Fluor 488 goat anti-mouse IgG (Life Technologies) for 

30 min. DECMs were visualized with a Zeiss LSM 510 confocal on an AxioImager Z1 microscope 

using a 63 × objective lens (Carl Zeiss, Jena, Germany).  

 

Adipogeneic differentiation and detection of SDSCs 

Expanded cells were cultured for 21 days in adipogenic medium (growth medium supplemented 

with 1 mM dexamethasone, 0.5 mM isobutyl-1-methyxanthine, 200 mM indomethacin, and 10 mM 

insulin). The cultures (n = 3) were fixed in 4% paraformaldehyde and stained with a 0.6% (w/v) 

Oil Red O (ORO) solution (60% isopropanol, 40% water) for 15 min. Intracellular lipid-filled 

droplet-bound staining was photographed under a Nikon TE300 phase-contrast microscope 

(Nikon, Tokyo, Japan).  

 

Osteogenic differentiation and detection of SDSCs 

Expanded cells (n = 3) cultured for 21 days in osteogenic medium (growth medium supplemented 

with 0.1 mM dexamethasone, 10 mM β-glycerol phosphate, 50 mM ascorbate-2-phosphate, and 

0.01 mM 1,25-dihydroxyvitamin D3) were collected for alkaline phosphatase (ALP) activity assay 

with a reagent kit (Sigma) by measuring the formation of p-nitrophenol (p-NP) from p-nitro-phenyl 
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phosphate following the manufacturer’s instructions. p-NP was quantified based on the 

spectrophotometric absorbance at 405 nm, and enzymatic activity was expressed as millimoles of 

p-NP/min/mg DNA. For evaluation of calcium deposition, induced cells (n = 3) were fixed with 

70% ice-cold ethanol for 1 h, and then incubated in 40 mM Alizarin Red S (ARS) at pH 4.2 for 20 

min with agitation. After rinsing, matrix mineral-bound staining was photographed. Quantification 

of staining was performed by incubating cells with a solution of 10% acetic acid and 20% 

methanol for 15 min to extract the calcium-chelated ARS stain. Samples were analyzed for 

absorption at 450 nm, which was normalized to total DNA amount for standardization. 

 

Histochemistry and immunostaining 

Representitive pellets (n=2) were fixed in 4% paraformaldehyde at 4°C overnight, followed by 

dehydrating in a gradient ethanol series, clearing with xylene, and embedding in paraffin blocks. 

5-µm sections were histochemically stained with Alcian blue (Sigma, counterstained with fast red) 

and Safranin O (Sigma, counterstained with hematoxylin) for sulfated glycosaminoglycans (GAG). 

For immunostaining, the sections were immunolabeled with primary antibodies against collagen II 

(II-II6B3, DSHB, Iowa City, IA), collagen I (Abcam, Cambridge, MA., USA), and collagen X 

(Sigma), followed by the secondary antibody of biotinylated horse anti-mouse IgG or IgM (Vector, 

Burlingame, CA., USA). Immunoactivity was detected using Vectastain ABC reagent (Vector) with 

3, 3’-diaminobenzidine as a substrate. 

 

Biochemical analysis for DNA and GAG content 

The pellets (n=4) were digested for 4 h at 60°C with 125 µg/mL papain in PBE buffer (100 mM 

phosphate, 10 mM EDTA, pH 6.5) containing 10 mM cysteine. To quantify cell density, the 

amount of DNA in the papain digestion was measured using the QuantiT™ PicoGreen® dsDNA 

assay kit (Invitrogen) with a CytoFluor® Series 4000 (Applied Biosystems, Foster City, CA). GAG 

was measured using dimethylmethylene blue dye and a Spectronic™ BioMate™ 3 

Spectrophotometer (Thermo Scientific, Milford, MA) with bovine chondroitin sulfate (Sigma) as a 

standard. 

 

Real-time polymerase chain reaction (PCR) 

Total RNA was extracted from samples (n=4) using an RNase-free pestle in TRIzol® (Invitrogen). 

2 µg of mRNA was used for reverse transcriptase (RT) with High-Capacity cDNA Archive Kit 

(Applied Biosystems) at 37ºC for 120 min. Chondrogenic marker genes [collagens II (Assay ID 

Hs00156568_m1), SRY (sex determining region Y)-box 9 (SOX9)	   (Assay ID Hs00165814_m1), 

and aggrecan(ACAN)	   (Assay ID AIQJAP5) and hypertrophic marker genes (collagen X) (Assay 

ID Hs00166657_m1)] were customized by Applied Biosystems as part of the Custom Taqman® 

Gene Expression Assays. Eukaryotic 18S rRNA (Assay ID HS99999901_s1 ABI) was carried out 
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as the endogenous control gene. Real-time PCR was performed with the iCycler iQ™ Multi Color 

RT-PCR Detection and calculated by computer software (Perkin-Elmer, Wellesley, MA). Relative 

transcript levels were calculated as χ=2-∆∆Ct, in which ∆∆Ct=∆E-∆C, ∆E=Ctexp-Ct18s, and ∆C=Ctct1-

Ct18s. 

 

Atomic force microscopy (AFM)  

Elasticity of decellularized ECMs and expanded cells was investigated using an MFP-3D-BIO 

AFM (Asylum Research, TE2000- U, Santa Barbara, CA) integrated with an inverted fluorescence 

microscope (Nikon Eclipse, TieU, Nikon Instruments Inc., Melville, NY) and Olympus TR400-PB 

cantilevers with spring constant of 0.09 N/m. The samples were imaged in Petri dishes filled with 

aMEM containing 10% FBS. The location of the cantilever on the sample was confirmed using a 

10 microscopy objective; each sample was mapped in five randomly selected 50 mm by 50 mm 

areas for a total of 2000 data points/sample. For the quantitative nanomechanical analysis, a 

Sneddon’s modification of the Hertz model developed for a four-sided pyramid was employed. 

The ECM and cell elasticity (Young’s modulus, E) were corrected with the indentation of the tip, d, 

through the following equation: E = π/2 ! (1 - ν2F)/tanαδ2, where E is the Elastic modulus, ν is 

Poisson’s ratio with a value of 0.5 for ECM and cells, F is the force given by the cantilever 

deflection multiplied with the cantilever spring constant (0.09 N/m), a is the open angle used in 

this study which had a value of 36 º, and lastly δ is the indentation depth.14  

 

Scanning electron microscope (SEM) 

Representative samples (n = 2) were primarily fixed in 2.5% glutaraldehyde (Sigma) for 2 h, 

followed by secondary fixation in 2% osmium tetroxide (Sigma) for another 2 h. The samples 

were then dehydrated in a gradient ethanol series, in hexamethyldisila- zane (HMDS, Sigma) at a 

ratio of 1:1 with ethanol twice for 1 h each time, in HMDS at a ratio of 1:2 with ethanol overnight, 

and in HMDS three times for 4 h each time. The samples were air-dried for 24 h and gold sputter 

was added. The images were recorded by an SEM (Hitachi, Model S 2400).  

 

Statistics 

Kruskal-Wallis test was used to determine significant differences among all groups and the Mann-

Whitney U test was used to determine differences when there were only two groups in 

biochemistry analysis and real-time PCR data. All statistical analyses were performed with SPSS 

13.0 statistical software (SPSS Inc., Chicago, IL). P values less than 0.05 were considered 

statistically significant. 
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RESULTS 

 

Evaluation of proliferative capacity and MSC surface marker expression on DECMs expanded 

SDSCs  

To evaluate the proliferative effect exerted by DECMs, human SDSCs were seeded on five 

different substrates. After one passage expansion on plastic flasks or DECMs, the embedded 

cells exhibited a flattened and irregular shape with enlarged size (characteristic of aged cells) in 

Plastic groups (PL) and a glistening spindle shape in all DECM groups (SE, AE, DE and UE). 

Compared to the random distribution of cells plated on Plastic, DECM-expanded cells were more 

organized (Figure 4.1A). Compared to that in the PL group, after 8-day-expansion cell number 

increased 1.08-fold in the SE group, 5-fold in the DE, 6-fold in the AE and 11-fold in the UE group 

(Figure 4.1a). Proliferation index results also suggested the same trend (Figure 4.1B and 4.1b). 

Median fluorescence intensity (MFI) of MSCs surface marker including CD29, CD90 and CD105 

were significantly decreased especially in DE, UE and AE, despite the percentages of positive 

staining was the same. SSEA-4 expression was also higher in all four DECMs expanded SDSC 

groups than SDSC from PL group (Figure 4.1C and 4.1c).  

 

Evaluation of DECMs and expanded SDSC ultra-morphology, elasticity and composition on 

different culture substrates 

Scanning electron microscopy was employed to observe the fine cell and matrix morphology 

during expansion on different substrates. SDSC expanded on PL exhibited enlarged, well spread 

and flatten shape; in contrast, SDSCs expanded on DECMs groups (especially DE, UE and AE) 

were less spread and embedded in the matrix, with an elongated and spindle fibroblast like shape 

(Figure 4.2A). Compared to a fiber-like surface appearance in DE, AE and SE, UE exhibited a 

smoother appearance, indicative of fine matrix fibers.  

 

To characterize DECMs physically, we analyzed the elasticity properties of DECMs alone and 

elasticity of SDSCs expanded on these DECMs. The elasticity of plastic flasks is considered 

infinite. Compared to SE, AE [25.65 ± 9.38 versus 61.82 ± 35.86 (kPa)] and UE [21.41 ± 11.3 

versus 61.82 ± 35.86 (kPa)] have lower elasticity; accordingly SDSCs seeded on these DECMs 

also have lower elasticity than SDSCs on SE [3.29 ± 1.42 versus 3.58 ± 1.94] [1.9 ± 1.15 versus 

3.58 ± 1.94]. However, DE has highest elasticity among all DECMs (88.29 ± 49.9 kPa) and 

SDSCs expanded on DE also have higher elasticity than SDSCs on SE [4.87 ± 2.16 versus 3.58 

± 1.94] though lower than PL [4.87 ± 2.16 versus 9.07 ± 4.56] (Figure 4.2B). 
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Three main common components of ECM were immunostained to probe the composition of 

DECM-derived from different cell sources (Figure 4.2C). Both fibronectin and collagen I but not 

laminin were detected (data not shown).  

 

Evaluation of DECM-mediated SDSC chondrogenic capacity  

To determine the rejuvenating effects of DECMs on SDSC chondrogenic potential, expanded 

SDSC were chondrogenically induced for up to 35 days. The evaluation of chondrogenesis 

consisted of biochemical, histological and real-time PCR for chondrogenic markers.  

 

As shown in Figure 4.3A, chondrogenic index (ratio of GAG to DNA) of PL expanded pellet is the 

highest among all groups. After 14-day differentiation, all four DECM-treated SDSCs yielded 

pellets with higher GAG content than PL expanded SDSCs; however, only pellets from the DE 

had the highest chondrogenic index among all groups (Figure 4.3B). At day 35, all pellets from 

DECM groups had a higher DNA content suggesting higher cell viability, and higher chondrogenic 

index than pellets in the PL group, especially for pellets from the UE and AE groups, which had 

the highest chondrogenic index, followed by DE and SE (Figure 4.3C). Consistent with 

biochemistry data, day 35 pellets from all DECM groups had bigger size compared to the PL 

group, especially pellets from the AE, DE and UE groups were larger than the SE group. Among 

the four DECM groups, pellets from the UE group had the biggest size. Sulfated GAGs stained by 

alcian blue and safarnin O and immunostaining for collagens II also suggested the strongest 

staining in pellets from SDSCs expanded in the UE groups, followed by DE, AE and SE (Figure 

4.4). Chondrogenic marker genes (SOX9, ACAN, COL2A1) expression was highest in UE at day 

14 and highest in DE, followed by AE, UE and SE at day 35 (Figure 4.5A). Interestingly, the 

hypertrophic marker COL1A1 and COL10A1 were also highly expressed in DE (Figure 4.5B). 

 

Evaluation of DECM-expanded SDSC adipogenic and osteogenic potentials 

To determine the rejuvenation effect of DECM expansion on SDSC, expanded SDSC were 

induced in adipogenic or osteogenic medium for 21 days. Our adipogenic induction data showed 

that all DECM expanded SDSC exhibited comparable level of positive staining for ORO. The AE 

expanded SDSC showed the highest adipogenesis among all groups though no significant 

difference was observed (Figure 4.6A). Osteogenic induction data showed that expanded SDSC 

from all substrates stained positive and comparable level for ALP except UE groups being the 

highest. However, the ARS staining for calcium deposition as later stage osteogenic marker and 

quantitative assessment showed low level of positive staining and calcium but not significant in 

DE and AE expanded SDSCs (Figure 4.6B).  
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DISCUSSION 

 

Large quantity and high quality of cells is urgently needed for successful cartilage regeneration. 

Our previous studies have indicated that decellularized extracellular matrix (DECM) deposited by 

stem cells especially the tissue-specific synovium-derived stem cells (SDSCs) for chondrogenesis 

could serve as expansion substrates for promoting proliferative and chondrogenic potentials. 

Recently, adipose, urine-derived mesenchymal stem cells (MSCs) and dermal fibroblasts and 

their deposited matrixes have been intensively studied in regenerative medicine due to their 

availability. However, whether these more accessible autologous stem cells deposited matrix 

could exhibit same or even better effect than SDSC-derived DECM in terms of enhancing SDSC 

stemness is not known. In this study, we successfully deposited DECMs using MSCs from 

synovium, adipose and urine and dermal fibroblasts. We demonstrated that DECMs derived from 

these sources could significantly enhance not only proliferative but also chondrogenic potentials 

without concomitant adipogenic and osteogenic potentials of the recellularized SDSCs. The 

evaluation of microstructure and elasticity of the DECMs and cells suggested that the optimized 

DECMs could maintain stem cell function and rejuvenate the SDSC stemness.  

 

Currently, the decellularization of tissue or organ has been widely shown to be an attractive 

scaffold for tissue engineering. However, the potential risks of pathogen transmission and the 

provocation of undesirable inflammatory and immunological reactions could rise during the 

application of xenogenic or allogenic decellularized matrix and lead to negative outcomes for the 

regenerated tissues and organs. Autologous subcutaneous adipose tissue depots a potential 

source of adult or somatic stem cells. Within the increase incidence of obesity in the United 

States and abroad, subcutaneous adipose tissue is abundant and readily accessible.15 

Approximately 400,000 liposuction surgeries are performed in the United States each year.16 

These procedures yield anywhere from 100 mL to >3 L of lipoaspirate tissue, which is routinely 

discarded.16 Within these tissue, up to 300-fold more stem cells can be obtained from 100 g of 

adipose tissue compared to 100 mL of bone marrow aspirate.17;18 Application of human adipose-

derived stem cells (ASCs) and decellularized adipose tissue have been intensively investigated in 

recent years. The mutlipotent ASCs were investigated for their potentials to become adipocyte, 

cardiomyocyte, chondrocyte, endothelial cell, myocyte, neuronal-like cell, osteoblasts etc. as 

recently reviewed.19;20 Flynn et al. showed that decellularized adipose tissue can enhance 

adipogenesis in human ASCs.21 However, the enormous potential of ASC-deposited DECM is not 

fully uncovered yet. Cerqueira et al. suggested that human ASC-derived cell sheet-based 

constructs could potentially treat full-thickness excisional skin wounds.22 Infrapatellar fat pad 

tissue derived ASC-deposited matrix expansion could also enhance chondrogenic potential in 

porcine ASCs.23  
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Similarly, human voided urine and urine obtained from the upper urinary tract could be used to 

isolate and expand stem/progenitor cells.24;25 The urine-derived stem cells (USCs) isolated from 

one single urine specimen can generate up to 100 million cells at early passage. Our recent work 

showed that these nonchondrogenic USCs deposited DECM can strengthen the chondrogenic 

capacity of repeated passaged bone marrow-derived stem cells.26 Dermal fibroblasts (DFs) can 

be extracted from biopsies. It is useful for obtaining cells from smaller specimens. It can 

synthesize and deposit ECM components and has been widely applied in tissue engineering, 

such as tendon/ligament.27 All the above evidences suggest that sufficient numbers of these 

autologous cells could be obtained from simple procedure and few specimens and used for cell-

based therapy. In this study, ASC, USC and DF-deposited DECMs exhibited proliferative and 

chondrogenic potential enhancing effect on the tissue-specific SDSC. This provides great 

opportunity for repairing cartilage defect with patient’s own stem cells. These easily accessible 

cells deposited DECM expansion system could serve as expansion system for providing enough 

tissue specific cells for cell based transplantation or therapy. 

 

The exploration of DECMs deposited by different cells is from the concept of mimicking the “stem 

cell niche” in vivo. Stem cells reside within instructive and tissue-specific niches in the body, 

which is a complex and controlled biochemical mixtures of soluble and insoluble factors.28;29 It is 

widely accepted that stem cells display high sensitivity to the ECM composed of complex and 

well-defined nanostructures of protein fibers such as fibrillar collagens and elastins with feature 

sizes (diameter and spacing). Only if we find the best microenvironment, we can bring out the 

best potentials of the stem cells. It is well known that physical properties of the substrates can 

influence the MSC spreading and differentiation potentials. When cultured on stiff substrate, MSC 

are well spread, with high cytoskeletal tension, and express high levels of bone cell markers.30 In 

contrast, cells on soft substrate are less spread, have low cytoskeletal tension, and become 

quiescent.31 Our study also showed similar finding. The expansion of SDSCs on the lower elastic 

DECMs exhibiting a less spread morphology compared to the well spread shape SDSCs on 

plastic flasks. The maintained or enhanced stemness were demonstrated by higher proliferation 

and chondrogenesis after induction for 35 days in SDSCs expansion on DECM groups. The 

higher expression of COL10A1 as a hypertrophic marker in DE also corroborated the higher 

elasticity of DE.  

 

Other than substrate elasticity, cell shape has also been known to regulate human MSCs lineage 

commitment.32 Kim et al. fabricated the nanogrooves with different widths and spacing to study 

the adhesion, migration and differentiation response of human MSCs. Interestingly, the 

proliferation is not influenced but the osteogenic and neurogenic potentials were enhanced at the 
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1:3 spacing ratio rather than 1:1 or 1:5 spacing ratio, suggesting an existence of potentially 

optimized nanotographical density for stem cell function.33 The interplay between matrix elasticity 

and cell shape has been revealed by a recent study. It indicated that cells cultured on 1000 µm2 

circles, squares, and rectangles tend to commit to primarily adipogenic and osteogenic lineage 

regardless of matrix elasticity, while cell cultured on 2500 and 5000 µm2 shapes more heavily 

depend on shape and elasticity for lineage specification.34 Similarly, we also observed that SDSC 

expanded on DE, AE and UE exhibiting a more spindle and enlongated shape compared to 

enlarged shape of SDSC expanded on SE and PL. Correspondently, we also observed higher 

proliferative and chondrogenic potentials in the DE, AE and UE expanded SDSCs than SE and 

PL groups. Since there has been no studies correlated the specific cell shape, matrix elasticity 

with chondrogenic potential, the further investigation is on the way. 

 

The future direction of this study is that the fully characterization of DECMs with biochemical 

methods. Although our immunofluorescence data suggested that all these DECMs contained 

collagen I and fibronectin (two of the most common components in the ECMs), we cannot 

exclude that differences among these DECMs existed since they are deposited by different cells. 

Consistently, Lu et al. investigated the ECM scaffolds prepared by autologous chondrocytes, 

MSC and dermal fibroblasts also showed differences among them.35 However, not only the 

composition but also the quantification of these components within the ECMs matters since a 

subtle difference might provide important cues for proliferation and differentiation of cells in vivo 

and in vitro.  
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FIGURE LEGENDS 

 

Figure 4.1 DECMs expansion enhanced SDSC proliferation. SDSCs were expanded on five 

different substrates, including plastic flasks (PL), SECM (SE), AECM (AE), DECM (DE) and 

UECM (UE) for one passage (A). Cell number was counted (a). Proliferation index in expanded 

SDSCs was analyzed by flow cytometry (B and b). Histogram (C) and the quantification of 

percentage and median fluorescence intensity of positive MSC surface markers including CD90, 

CD29, CD105 and SSEA-4 were analyze by flow cytometry (c).  

 

Figure 4.2 Cell and DECMs morphology was observed by scanning electron microscopy (A). 

Elasticity of SDSCs during expansion and matrix alone was analyzed by atomic force microscopy 

(B). Immunofluorescent staining of collagen I and fibronectin was used to characterize the 

components of DECMs (C). 

 

Figure 4.3 Biochemical analysis of sulfated GAG and DNA content in expanded SDSC after 

chondrogenic differentiation for up to 35 days. (A) Chondrogenic index in day 0 pellets. (B and C) 

DNA and GAG content was analyzed in day 14 and day 35 pellets from expanded SDSCs. 

Chondrogenic index was calculated as ratio of GAG to DNA. 

 

Figure 4.4 Histological staining and immunostaining for chondrogenic differentiation markers in 

day 35 pellets of SDSC after expansion. Alcian blue (AB) and Safranin O (SO) were used to stain 

sulfated GAGs and immunohistochemistry staining (IHC) was used to stain collagen II, I and X.  

 

Figure 4.5 Real-time PCR was employed to detect the chondrogenic and hypertrophic marker 

gene expression. Chondrogenic marker genes (SOX9, ACAN, COL II) (A) and hypertrophic 

marker gene (COL I and X) (B) was detected in both day 14 and 35 pellets. 

 

Figure 4.6 Adipogenic and osteogenic potential was analyzed in expanded SDSCs after 

induction for 21 days. Oil Red O staining (ORO) was used to evaluate the adipogenesis. Alkaine 

phosphatase (ALP) staining as well as Alizarin Red staining (ARS) was applied to evaluate the 

osteogenesis (A). Quantification of ORO, ALP activity and extracellular calcium assay was also 

evaluated. 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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ABSTRACT 

 

Our aim was to assess the feasibility of the sequential application of extracellular matrix (ECM) 

and low oxygen to enhance chondrogenesis in human fetal synovium-derived stem cells 

(hfSDSCs). Human fetal synovial fibroblasts (hfSFs) were characterized and found to include 

hfSDSCs, as evidenced by their multi-differentiation capacity and the surface phenotype markers 

typical of mesenchymal stem cells. Passage-7 hfSFs were plated on either conventional plastic 

flasks (P) or ECM deposited by hfSFs (E) for one passage. Passage-8 hfSFs were then reseeded 

for an additional passage on either P or E. The pellets from expanded hfSFs were incubated in a 

serum-free chondrogenic medium supplemented with 10 ng/ml transforming growth factor-β3 

under either normoxia (21% O2; 21) or hypoxia (5% O2; 5) for 14 days. Pellets were collected for 

evaluation of the treatments (EE21, EE5, EP21, EP5, PE21, PE5, PP21, and PP5) on expanded 

hfSF chondrogenesis by using histology, immunostaining, biochemistry, and real-time 

polymerase chain reaction. Our data suggest that, compared with seeding on conventional plastic 

flasks, hfSFs expanded on ECM exhibit a lower expression of senescence-associated β-

galactosidase and an enhanced level of stage-specific embryonic antigen-4. ECM-expanded 

hfSFs also show increased cell numbers and an enhanced chondrogenic potential. Low oxygen 

(5% O2) during pellet culture enhances hfSF chondrogenesis. Thus, we demonstrate, for the first 

time, the presence of stem cells in hfSFs, and that modulation of the in vitro microenvironment 

can enhance hfSDSC chondrogenesis. hfSDSCs might represent a promising cell source for 

cartilage tissue engineering and regeneration. 
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INTRODUCTION 

 

Cartilage defects are a common feature of joint diseases. Despite progress in orthopaedic 

surgery, the avascular nature of cartilage renders cartilage defect repair challenging1. The 

application of mesenchymal stem cell (MSC)-based tissue engineering has provided a new and 

exciting opportunity for cartilage repair and regeneration. As a tissue-specific MSC for 

chondrogenesis2-5, synovium-derived stem cells (SDSCs), contained amongst synovial 

fibroblasts, are a promising source of stem cells for cartilage tissue engineering and 

regeneration6-9. However, adult MSCs have less plasticity and limited proliferation capacity. Adult 

MSCs cultured in vitro lack telomerase activity10-11, resulting in telomere shortening with serial 

passaging12. In contrast, fetal MSCs have longer telomeres and higher telomerase activity than 

adult MSCs13, indicating that this stem cell source is preferable for tissue engineering and 

regeneration. Fetal MSCs not only grow more rapidly with more population doublings14-15, but also 

express pluripotency markers, such as Oct-4, Nanog, and stage-specific embryonic antigen-4 

(SSEA-4)13,16. Fetal MSCs from umbilical cord blood have demonstrated multilineage potential, 

including chondrogenic differentiation16-21. Therefore, the application of fetal MSCs might meet 

the tremendous demand of patients suffering from cartilage defects. 

 

Like other MSCs, SDSCs tend to become senescent during ex vivo monolayer expansion. Our 

recent studies have suggested that extracellular matrix (ECM) deposited by porcine adult SDSCs 

(paSDSCs) can serve as an in vitro three-dimensional microenvironment, facilitating paSDSC 

propagation and allowing the restoration of cell-stemness toward chondrogenesis22. However, no 

studies have investigated whether human fetal synovial fibroblasts (hfSFs) contain human fetal 

SDSCs (hfSDSCs). Whether ECM deposited by hfSFs can enhance hfSF chondrogenic potential 

remains to be determined. As articular chondrocytes reside in a hypoxic environment23, low 

oxygen tension has been assumed to benefit expanded hfSF chondrogenic differentiation in a 

pellet culture system. In this study, we have hypothesized that hfSFs include hfSDSCs, and that 

the sequential application of ECM for cell expansion and low oxygen for expanded cell 

differentiation can enhance hfSDSC chondrogenesis. Our long-term goal is to promote hfSDSC-

based cartilage tissue engineering and regeneration. 
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MATERIALS AND METHODS 

 

Characterization of hfSF multilineage differentiation capacity 

hfSFs were obtained from ScienCell Research Laboratories (catalog number: 4700; Carlsbad, 

Calif., USA) and characterized for multilineage differentiation capacity. Briefly, hfSFs were plated 

in growth medium [αMEM containing 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 

µg/ml streptomycin, and 0.25 µg/ml fungizone] until 90% confluence. For adipogenesis, the 

medium was switched to adipogenic medium consisting of growth medium supplemented with 1 

µM dexamethasone, 0.5 mM isobutyl-1-methyxanthine (IBMX), 200 µM indomethacin, and 10 µM 

insulin for an additional 14 days. Adipogenic differentiation was assessed by using Oil Red O 

staining for adipocytes22. For osteogenesis, the medium was switched to osteogenic medium 

consisting of growth medium supplemented with 0.1 µM dexamethasone, 10 mM β-glycerol 

phosphate, 50 µM L-ascorbic acid phosphate, and 0.01 µM 1,25-dihydroxyvitamin D3 for an 

additional 14 days. Osteogenic differentiation was assessed by using alkaline phosphatase 

staining for bioactivity 24 (Kroeze et al. 2011). Cells incubated in growth medium served as a 

control. For chondrogenesis, hfSFs were incubated in a pellet culture system supplemented with 

a serum-free chondrogenic medium for 14 days. Chondrogenic differentiation was assessed by 

using immunostaining for collagen II and Alcian blue staining for sulfated glycosaminoglycans 

(GAGs); the detailed protocol is described below. 

 

Preparation of hfSF-derived ECM 

hfSFs were used to prepare ECM according to our published method25. Briefly, conventional 

plastic flasks were precoated with 0.2% gelatin (Sigma, St. Louis, Mo., USA) at 37°C for 1 h and 

seeded with hfSFs. After cells reached 90% confluence, 50 µM L-ascorbic acid phosphate was 

added for 8 days. The deposited ECM was incubated with 0.5% Triton X-100 containing 20 mM 

ammonium hydroxide at 37°C for 5 min to remove the cells and then stored until use at 4°C in 

phosphate-buffered saline (PBS) containing 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.25 

µg/ml fungizone. 

 

ECM-mediated hfSF expansion 

Passage 7 hfSFs (3000 cells per cm2) were plated in growth medium in either ECM-coated flasks 

(ECM; E) or conventional plastic flasks (plastic; P) for one passage. Passage 8 hfSFs were then 

reseeded for an additional passage in either E or P. This gave four pretreatment groups in total : 

EE, EP, PE, and PP. The medium was replaced every 3 days. 

 

Flow cytometry assay 
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Triple individual samples of 0.3×106 cells each were incubated on ice in PBS containing 0.1% 

ChromPure Human IgG (Jackson Immuno Research, West Grove, Pa., USA) and 1% NaN3 for 

30 min. Primary monoclonal antibodies (fluorescein-isothiocyanate-conjugated) were applied for 

30 min, including CD29 (catalog number: ab21845; Abcam, Cambridge, Mass., USA), CD90 

(catalog number: 555595; BD Pharmingen, San Jose, Calif., USA), CD105 (catalog number: 

312403; Biolegend, San Diego, Calif., USA), the SSEA-4 (catalog number: 330409; Biolegend), 

and isotype-matched IgGs (Beckman Coulter, Fullerton, Calif., USA). After being washed with 

cold PBS, hfSFs were fixed in 300 µl 0.4% paraformaldehyde. Cells were analyzed on a BD dual 

laser FACSCalibur (BD Biosciences, San Jose, Calif., USA) by using FCS Express Version 3 (De 

Novo Software, Los Angeles, Calif., USA) software package. 

 

Senescence β-galactosidase staining 

The Senescence β-galactosidase Staining Kit (Cell Signaling Technology, Mississauga, ON, 

Canada; catalog number: 9860) was used to detect senescence-associated β-galactosidase 

activity in expanded hfSFs according to the manufacturer’s protocol. Briefly, hfSFs expanded on 

either ECM or plastic were fixed in 2% formaldehyde/0.2% glutaraldehyde. After being rinsed, 

they were incubated in the staining solution [5 mM potassium ferrocyanide, 5 mM potassium 

ferricyanide, 1 mg X-gal in N-N- dimethylformamide, 40 mM citric acid/sodium phosphate (pH 6), 

0.15 M NaCl, and 2 mM MgCl2] at 37°C for 48 h. Development of a cytoplasmic blue color was 

visualized under a phase-contrast microscope. 

 

Chondrogenic differentiation of expanded hfSFs 

Expanded hfSFs (0.3×106) from each pretreatment group were centrifuged at 500g for 5 min in a 

15-ml polypropylene tube to form a pellet. After overnight incubation (day 0), the pellets were 

cultured in a serum-free chondrogenic medium consisting of high-glucose DMEM, 40 µg/ml 

proline, 100 nM dexamethasone, 100 U/ml penicillin, 100 µg/ml streptomycin, 0.1 mM L-ascorbic 

acid phosphate, and 1× ITS Premix (6.25 µg/ml insulin, 6.25 µg/ml transferrin, 6.25 µg/ml 

selenous acid, 5.35 µg/ml linoleic acid, and 1.25 µg/ml bovine serum albumin; BD Biosciences, 

Bedford, Mass., USA) with supplementation of 10 ng/ml transforming growth factor beta3 (TGF-

β3; PeproTech, Rocky Hill, N.J., USA) for 14 days. The pellets were incubated under either 

normoxic (21% O2; 21) or hypoxic (5% O2; 5) conditions for 14 days. This gave a total of eight 

treatment groups: EE21, EE5, EP21, EP5, PE21, PE5, PP21, and PP5. The pellets were 

collected for evaluation of the effect of ECM and/or hypoxia on expanded hfSF chondrogenesis. 

 

Histochemistry and immunohistochemistry 

The protocols for histochemistry and immunochemistry were as given in Pei et al.7-9. Pellets (n=2) 

were fixed in 4% paraformaldehyde at 4°C overnight, followed by dehydrating in a gradient 
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ethanol series, clearing with xylene, and embedding in paraffin blocks. Sections (5 µm thick) were 

histochemically stained with Alcian blue for sulfated GAGs. For immunohistochemical analysis, 

the sections were immunolabeled with primary antibodies against collagen I (Abcam) and 

collagen II (II-II6B3; DSHB, Iowa City, Iowa, USA), followed by the secondary antibody 

(biotinylated horse anti-mouse IgG; Vector, Burlingame, Calif., USA). Immunoactivity was 

detected by using Vectastain ABC reagent (Vector) with 3,3’-diaminobenzidine as a substrate. 

 

Biochemical analysis for DNA and GAG content 

Pellets (n=6) were digested for 4 h at 60°C with 125 µg/ml papain in PBE buffer (100 mM 

phosphate, 10 mM EDTA, pH 6.5) containing 10 mM cysteine, by using 200 µl enzyme per 

sample. The amount of DNA per pellet was measured by using the QuantiT PicoGreen dsDNA 

assay kit (Invitrogen, Carlsbad, Calif., USA) with a CytoFluor Series 4000 (Applied Biosystems, 

Foster City, Calif., USA). The amount of GAG per pellet was measured by using 

dimethylmethylene blue dye and a Spectronic BioMate 3 Spectrophotometer (Thermo Scientific, 

Milford, Mass., USA) with bovine chondroitin sulfate as a standard. 

 

Real-time polymerase chain reaction 

Total RNA was extracted from pellets (n=4) by using RNase-free pestles in TRIzol (Invitrogen). 

Samples of 1 µg mRNA were used for reverse transcriptase (RT) with the High-Capacity cDNA 

Archive Kit (Applied Biosystems) at 37°C for 120 min. Chondrogenic marker genes [collagen II 

(Assay ID Hs00156568_m1), aggrecan (Assay ID AIQJAP5), and SRY (sex determining region 

Y)-box 9 (Sox9; Assay ID Hs00165814_m1)] and a hypertrophic marker gene [collagen X (Assay 

ID Hs00166657_m1)] were customized by Applied Biosystems as part of their Custom TaqMan 

Gene Expression Assays. Eukaryotic 18S RNA (Assay ID HS99999901_s1 ABI) was employed 

as the endogenous control gene. Real-time polymerase chain reaction (PCR) was performed with 

the iCycler iQ™ Multi Color RT-PCR Detection System and calculated by computer software 

(Perkin-Elmer, Wellesley, Mass., USA). Relative transcript levels were calculated as χ=2-ΔΔCt, in 

which ΔΔCt=ΔE-ΔC, ΔE=Ctexp-Ct18s, and ΔC=Ctct1-Ct18s. 

 

Statistics 

The Mann-Whitney U test was used to determine differences when there were only two groups 

for comparison in the biochemistry analysis and real-time PCR data. All statistical analyses were 

performed with SPSS 13.0 statistical software (SPSS, Chicago, Ill., USA). P values less than 0.05 

were considered to indicate statistical significance. 
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RESULTS AND DISCUSSION 

 

hfSFs exhibited mesenchymal stem cell properties 

To determine whether hfSFs included hSDSCs, hfSFs were characterized for their multilineage 

differentiation capacity (Fig. 5.1a-f). After incubation in an adipogenic medium, hfSFs were 

intensively stained with Oil Red O suggesting their adipogenic differentiation. Following 

incubation in an osteogenic medium, hfSFs were positively stained with alkaline phosphatase 

indicating their osteogenic potential. After incubation in a serum-free chondrogenic medium, hfSF 

pellets were intensively stained with sulfated GAGs and collagen II indicative of their 

chondrogenic differentiation. hfSFs were also characterized for MSC surface phenotype markers 

by using flow cytometry (Fig. 5.1g-i). A high percentage of expression of CD29 (99.4%), CD90 

(99.6%), and CD105 (96.5%) was recorded in hfSFs. For the first time, our data provide evidence 

supporting the idea that hfSFs include stem cells (referred to as hfSDSCs); we have previously 

found stem cells in adult synovial fibroblasts8. 

 

ECM-expanded hfSFs exhibited “anti-senescence” and enhanced “stemness”  

To identify whether ECM could prevent senescence in expanded hfSFs and enhance their 

chondrogenic potential, hfSFs were expanded for two passages on PP, PE, EP, or EE. 

Compared with expansion on P during the last passage (PP and EP), hfSFs incubated on ECM 

during the last passage (PE and EE) produced longer, more fibroblast-like cells (Fig. 5.2a-d). 

After incubation in a serum-free chondrogenic medium for 14 days, intriguingly, the hfSF-pellet 

sizes in the ECM groups (PE21, PE5, EE21, EE5) were generally larger than those in the P 

groups (PP21, PP5, EP21, EP5; Fig. 5.2a-d). Our β-galactosidase data suggested that ECM 

could effectively decrease expansion-associated senescence compared with that on conventional 

plastic flasks (11.70±1.51% versus 37.21±0.75%, P=0.0000; Fig. 5.2e-g). In contrast, our flow 

cytometry data showed that ECM could increase expanded hfSF “stemness” by up-regulation of 

SSEA-4 expression (percentage: 76.2% versus 46.1%; mean fluorescence intensity: 31.9 versus 

24.1, compared with conventional plastic flasks; Fig. 5.2h, i). 

 

ECM-expanded hfSFs exhibited enhanced chodrogenic potential 

In vitro expansion of fetal synovial fibroblasts was different from that of their adult counterpart. 

When expanded on conventional plastic flasks, adult synovial fibroblasts easily became 

senescent, as evidenced by their decreased proliferation rate and differentiation potential and 

their increased size22. In contrast, hfSFs retained their fibroblast shape and smaller size for many 

passages (at least nine passages in this study). We collected hfSFs from passages 2, 7, and 9 

and then incubated hfSFs in a pellet culture system supplemented with a serum-free 

chondrogenic medium for 14 days. We found that the chondrogenic index (GAG/DNA) was 
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2.48±0.24 in pellets from passage-2 cells, 3.61±0.29 in pellets from passage-7 cells, and 

12.26±0.45 for pellets from passage-9 cells (data not shown), suggesting that hfSFs maintained 

excellent differentiation capabilities until at least passage 7. Therefore, hfSFs at passage 7 were 

chosen for expansion and comparison after a two-passage incubation on ECM and/or plastic. Our 

biochemical analysis showed that, compared with those from PP21, hfSFs from EE21 

(131.82±3.43% versus 115.98±8.12%, P=0.0171) and PE21 (170.31±17.37% versus 

115.98±8.12%, P=0.0021) yielded pellets with a higher DNA ratio, and compared with those from 

PP5, hfSFs from PE5 (190.20±2.05% versus 167.73±10.55%, P=0.0102) yielded pellets with a 

higher DNA ratio (Fig. 5.3a). Our chondrogenic index data showed a similar trend. Compared with 

those from PP21, hfSFs from EE21 (16.47±0.70 versus 12.26±0.45, P=0.0001) and PE21 

(15.07±0.69 versus 12.26±0.45, P=0.0012) yielded pellets with a higher chondrogenic index, and 

compared with those from PP5, hfSFs from PE5 (22.92±1.09 versus 15.82±1.12, P=0.0004) 

yielded pellets with a higher chondrogenic index; the difference was not statistically significant 

(16.49±0.78 versus 15.82±1.12, P=0.4232) in pellets from EE5 and PP5 (Fig. 5.3b). Taken 

together, the pellets from the ECM groups exhibited a higher cell number and greater matrix 

deposition contributing to their larger size. 

 

Our histology data showed that pellets from cells with a plastic pretreatment and grown under 

normoxic conditions (PP21) displayed less intensity for sulfated GAGs and collagen II staining, 

even than those with pretreatment of ECM followed by plastic (EP21). The pellets from the ECM 

groups (PE21, PE5, EE21, EE5) exhibited an intense distribution of sulfated GAGs (Fig. 5.3c-j) 

and collagen II (Fig. 5.3c2-j2) throughout the pellets. Real-time PCR data showed that pellets 

from cells with a plastic pretreatment and grown under normoxic conditions (PP21 and EP21) had 

lower mRNA levels of aggrecan (Fig. 5.4a), collagen II (Fig. 5.4b), and Sox9 (Fig. 5.4c), whereas 

pellets from cells with ECM pretreatment and grown under hypoxic conditions (PE5) yielded the 

highest mRNA levels of aggrecan (Fig. 5.4a) and collagen II (Fig. 5.4b). The pellets from the ECM 

groups had relatively comparable collagen X mRNA (Fig. 5.4d) expression compared with those 

from the plastic group. Intriguingly, despite the significant difference between EE21 and EE5 with 

regard to mRNA levels of aggrecan, collagen II, and Sox9, no significant difference was noted in 

the chondrogenic index or for the histological staining. 

 

Low oxygen enhanced hfSF chondrogenesis in a pellet culture system 

To identify whether hypoxia enhanced expanded hfSF chondrogenesis, hfSF pellets were 

incubated in a serum- free chondrogenic medium in a 5% or 21% O2 incubator for 14 days. The 

pellets cultured under low oxygen were larger in size than the corresponding pellets under normal 

oxygen incubation (Fig. 5.2a-d). Expanded hfSFs on plastic yielded pellets with a higher DNA 

ratio when incubated under low oxygen compared with normal oxygen (PP5 versus PP21, 
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P=0.0002; EP5 versus EP21, P=0.0001). Intriguingly, 5% O2 incubation failed to result in a DNA 

difference in the pellets from hfSFs expanded on ECM (Fig. 5.3a). In addition, expanded hfSFs 

yielded pellets with a higher chondrogenic index when incubated under low oxygen compared 

with normal oxygen (PP5 versus PP21, P=0.0010; EP5 versus EP21, P=0.0000; PE5 versus 

PE21, P=0.0005), except for the EE group (EE5 versus EE21, P=0.9778; Fig. 5.3b). Our 

histology data showed that hfSF-pellets incubated in 5% O2 yielded intense staining of sulfated 

GAGs (Fig. 5.3c-j) and collagen II (Fig. 5.3c2-j2) compared with those under normoxic conditions, 

despite similar staining between EE21 and EE5; these results are in accord with our biochemistry 

data and real-time PCR data, indicating that 5% O2 incubation enhances hfSF-pellet 

chondrogenesis. Our real- time PCR data also suggested that plastic-expanded hfSFs yielded 

pellets with a higher mRNA level of collagen X when incubated under 5% O2 instead of 21% O2. 

However, this phenomenon did not apply to hfSFs expanded on ECM (Fig. 5.4d). 

 

Our study demonstrated that low oxygen (5% O2) played a key role in hfSF chondrogenesis. 

Upregulation of Sox9 mRNA (a chondrogenic transcriptional factor) in hfSF pellets treated with 

low oxygen might be responsible for the enhanced mRNAs of chondrogenic marker genes, such 

as aggrecan and collagen II. Hypoxia is a critical factor in cartilage development23. Hypoxia 

inducible factors (HIF) 1α and 2α are induced when cells surviving hypoxia exposure are involved 

in inducing genes related to cell proliferation, apoptosis, and resistance to oxidative stress. Our 

data might be explained on the basis that hypoxia and HIF-1α upregulate Sox9 expression26,27 

and subsequent chondrogenic matrix formation28, 29 in mesenchymal cells.  

 

Concluding remarks 

To the best of our knowledge, we have demonstrated, for the first time, that (1) hfSFs include 

hfSDSCs; (2) ECM deposited by hfSFs enhances hfSDSC “anti-senescence” and “stemness” and 

chondrogenic potential; (3) low oxygen improves hfSDSC chondrogenesis in a pellet culture 

system. The mechanism underlying the enhancement of the chondrogenic potential of the 

expanded hfSDSCs by the ECM microenvironment needs to be further investigated. hfSDSCs 

might provide a robust cell source for cartilage tissue engineering and regeneration. 
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FIGURE LEGENDS 

 

Figure 5.1 Characterization of multilineage differentiation capacity (a–f) and mesenchymal stem 

cell properties (g–i) of human fetal synovial fibroblasts (hfSF). Adipogenic differentiation was 

assessed by using Oil Red O staining for lipid droplets (a) with cells incubated in growth medium 

serving as a control (b); osteogenic differentiation was assessed by using alkaline phosphatase 

(ALP) staining for ALP activity (c) with cells incubated in growth medium serving as a control (d); 

chondrogenic differentiation was assessed by using Alcian blue staining for sulfated 

glycosaminoglycans (GAGs; e) and immunostaining for collagen II (f). Bar 800 µm. Flow 

cytometry was used to characterize MSC surface phenotype markers, namely, CD29 (g), CD90 

(h), and CD105 (i), in hfSFs 

 

Figure 5.2 Effect of extracellular matrix (ECM) on hfSF expansion and anti-senescence. 

Following substrate pre-treatment, hfSFs were expanded on either plastic (P) or ECM (E) for two 

passages with either the same substrate (PP, a; EE, b) or a different substrate (PE, c; EP d). Cell 

morphology was studied 6 days post-expansion by phase-contrast microscopy; expanded cells 

were centrifuged to form pellets and cultured in a serum-free chondrogenic medium for 14 days 

under either normoxia (21% O2, 21) or hypoxia (5% O2, 5). Cell senescence was evaluated by 

using β-galactosidase (Beta-gal) staining (g) after expansion for 48 h on either plasitc (e) or ECM 

(f). Data are shown as average ± SD for n=4; ***P<0.001 indicates a statistically significant 

difference. Flow cytometry was used to determine the stage-specific embryonic antigen-4 level in 

hfSFs after expansion on either ECM (h) or plastic (i) 

 

Figure 5.3 Assessment of expanded hfSF chondrogenic differentiation at the protein level. 

Biochemistry analyses were used to measure DNA and GAG contents per pellet. The DNA ratio 

was used to represent cell proliferation (a) and was calculated from the DNA content at day 14 

adjusted by that at day 0 to minimize the initial difference in cell amounts in pellet preparation. 

The ratio of GAG to DNA at day 14 was used to represent the chondrogenic index in pellets (b). 

Data are shown as average ± SD for n=6; *P<0.05, **P<0.01, ***P<0.001 indicate a statistically 

significant difference. Alcian blue staining was conducted for sulfated GAGs (c-j) and 

immunohistochemical staining was carried out for collagen I (c 1 -j 1 ) and collagen II (c 2 -j 2 ). 

Treatments as explained in Fig. 2. Bar 800 µm 

 

Figure 5.4 Assessment of expanded hfSF chondrogenic differentiation at the molecular level. 

TaqMan real-time polymerase chain reaction was used to assess quantitatively the mRNA levels 

of aggrecan (AG, a), collagen II (Col II, b), Sox9 (c), and collagen X (Col X, d) in the pellets from 

expanded hfSFs at day 14. Treatments as explained in Fig. 2. Data are shown as average ± SD 
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for n=4; *P<0.05, **P<0.01, ***P<0.001 indicate a statistically significant difference 
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Figure 5.1 
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Figure 5.2 
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Figure 5.3  
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Figure 5.4 
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ABSTRACT 

 

Autologous cells suffer from limited cell number and senescence during ex vivo expansion for 

cartilage repair. Here we found that expansion on extracellular matrix (ECM) deposited by fetal 

synovium-derived stem cells (SDSCs) (FE) was superior to ECM deposited by adult SDSCs (AE) 

in promoting cell proliferation and chondrogenic potential. Unique proteins in FE might be 

responsible for the rejuvenation effect of FE while advantageous proteins in AE might contribute 

to differentiation more than to proliferation. Compared to AE, the lower elasticity of FE yielded 

expanded adult SDSCs with lower elasticity which could be responsible for the enhancement of 

chondrogenic and adipogenic differentiation. MAPK and noncanonical Wnt signals were actively 

involved in ECM-mediated adult SDSC rejuvenation. 
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INTRODUCTION 

	  
Cartilage regeneration is a primary focus in the tissue engineering field due to the limited 

regenerative abilities of cartilage. Presently, the most effective treatment for repairing cartilage 

defects is autologous chondrocyte implantation (ACI). Though this technique has developed 

through generations and achieved short-term success, it is still mostly restricted by availability of 

a large quantity of high quality autologous chondrocytes. Despite the fact that bone marrow-

derived stem cells (BMSCs) and adipose-derived stem cells (ASCs) have been investigated, 

there are increasing concerns of donor site morbidity due to harvesting, chondrogenic 

hypertrophy, and unstable chondrogenic phenotype [1,2]. Fortunately, mesenchymal stem cells 

(MSCs) derived from synovial tissue (SDSC) are currently attractive solutions due to their 

characteristic as a tissue- specific stem cell for chondrogenesis as well as the ease of harvesting 

through a small punch biopsy during arthroscopic surgery [3]. However, challenges remain in 

lengthened culturing time for preparing a sufficient number of such autologous cells, especially 

when elderly patients are considered [4]. 

 

To optimize the application of adult stem cells, an efficient expansion system that can rejuvenate 

or at least maintain the self- renewal and differentiation potentials of adult SDSCs (ASDSCs) is 

urgently needed. Recent work from our laboratory suggested that decellularized extracellular 

matrix (ECM) derived from 3-month- old porcine SDSCs enhanced proliferation and subsequent 

chondrogenic differentiation of both stem cells [5-11] not only in vitro [12] but also in vivo [13]. 

Different from the above reports using young porcine cells, in clinics, patients with cartilage 

defects are usually middle-aged. Adult MSCs lack telomerase activity resulting in telomere 

shortening after serial passaging in vitro [14]. Studies have shown that decellularized ECM from 

human adult stem cells, such as SDSCs [15] or BMSCs [16], exhibited a limited capacity to 

rejuvenate expanded stem cells’ chondrogenic potential. Compared to adult MSCs, fetal MSCs 

maintained longer telomeres and higher telomerase activity [17]. Further, our recent studies 

demonstrated that human fetal SDSCs (FSDSCs) possessed multi-differentiation capacities, 

including chondrogenesis, osteogenesis, and adipogenesis [18], suggesting SDSCs from a fetal 

source could be a cell source for deposition of a decellularized ECM, which provides a young and 

healthy microenvironment for ASDSC rejuvenation. 

 

In this study, we hypothesized that ECM deposited by FSDSCs provided a better in vitro 

microenvironment for ASDSC expansion and retention of chondrogenic potential. We explored 

potential mechanisms underlying ASDSC rejuvenation by using proteomics and 

immunofluorescent staining for chemical composition of ECM, atomic force microscopy (AFM) for 

elastic modulus of both ECM and expanded ASDSCs, and Western blot for potential involvement 
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of the mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. We also evaluated 

ECM expanded cells in adipogenic and osteogenic potentials to determine whether this 

rejuvenation only favored a tissue-specific lineage. 
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MATERIALS AND METHODS 

 

DSCM preparation 

Human fetal source SDSCs (FSDSCs) were obtained from Scien-Cell™, Research Laboratories 

(Carlsbad, CA) and adult source SDSCs (ASDSCs) were obtained from Asterand (North America 

Laboratories, Detroit, MI). Both cell types were used to prepare decellularized ECM, termed FE 

and AE, respectively, as described previously [15,18]. Briefly, plastic flasks (PL) were precoated 

with 0.2% gelatin (Sigma, St. Louis, MO) at 37 °C for 1 h and seeded with passage 3 SDSCs at 

6000 cells per cm2. After cells reached 90% confluence, 250 mM of L-ascorbic acid phosphate 

(Wako Chemicals USA Inc., Richmond, VA) was added for 10 days. The deposited ECMs were 

incubated with 0.5% Triton X-100 containing 20 mM ammonium hydroxide at 37 °C for 5 min to 

remove the cells; they were stored at 4 °C in phosphate-buffered saline (PBS) containing 100 

U/mL penicillin, 100 mg/mL streptomycin, and 0.25 mg/mL fungizone until use. 

 

Evaluation of cell proliferation and apoptosis 

Cell counting and morphology 

PL expanded passage 3 ASDSCs (PL3) were plated at 3000 cells per cm2 on FE, AE, or PL for 

one passage with growth medium containing alpha-minimum essential medium (αMEM), 10% 

fetal bovine serum (FBS), 100 U/mL penicillin, 100 mg/mL streptomycin, and 0.25 mg/mL 

fungizone. Expanded ASDSCs were termed FE4, AE4, and PL4. Cell number was counted in 175 

cm2 flasks (n = 6) using a hemocytometer. To observe cell morphology, FE4, AE4, and PL4 were 

fixed in 4% paraformaldehyde; the cell membrane was labeled with Vybrant® Dil Cell-labeling 

solution (Life Technologies, Grand Island, NY) and mounted with Prolong® Gold antifade reagent 

with 4’,6-diamidino-2-phenylindole (DAPI) (Life Technologies). Both FE and AE were 

immunostained using monoclonal antibody for type I collagen (Sigma) conjugated with fluorescein 

isothiocyanate (FITC) and visualized with a Nikon TE2000-S Eclipse inverted microscope 

(Melville, NY). 

 

Proliferation index 

Before cell expansion, passage 3 ASDSCs were labeled with CellVue® Claret (Sigma) at 2 × 10-

6 M for 5 min according to the manufacturer’s protocol. After eight days, expanded cells were 

collected and measured using a BD FACS Calibur™ flow cytometer (dual laser) (BD Biosciences, 

San Jose, CA). Twenty thousand events of each sample were collected using CellQuest Pro 

software (BD Biosciences) and cell proliferation index was analyzed by ModFit LT™ version 3.1 

(Verity Software House, Topsham, ME).  

 

Flow cytometry analysis 
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The following primary antibodies were used to detect expanded SDSC surface immunophenotype 

profiles: CD29 (Abcam, Cambridge, MA), CD90 (BD Pharmingen, San Jose, CA), CD105 (Bio-

Legend, San Diego, CA), stage-specific embryonic antigen 4 (SSEA4) (BioLegend), integrin b5 

(Cell Signaling, Danvers, MA), and isotype-matched IgGs (Beckman Coulter, Fullerton, CA). The 

secondary antibody was goat anti-mouse IgG (H + L) R-phycoerythrin conjugated (Life 

Technologies). Samples (n = 3) of each 2 × 105 expanded cells were incubated on ice in cold 

PBS containing 0.1% Chrom-Pure Human IgG whole molecule (Jackson ImmunoResearch 

Laboratories, West Grove, PA) and 1% NaN3 (Sigma) for 30 min. The cells were then 

sequentially incubated in the dark in the primary and secondary antibodies for 30 min. 

Fluorescence was analyzed by a FACS Calibur (BD Biosciences) using FCS Express software 

package (De Novo Software, Los Angeles, CA). 

 

Apoptosis assay 

Apoptosis of expanded cells was detected using the Annexin V-FITC Apoptosis Detection Kit 

(BioVision Inc., Milpitas, CA). Briefly, 2 × 105 detached cells from each group (n = 3) were 

labeled with FITC conjugated annexin V and propidium iodide for 15 min. Samples were 

measured using FACS Calibur (BD Biosciences) and analyzed using the FCS Express software 

package (De Novo Software). 

 

Resistance to oxidative stress 

Expanded cells were incubated with 1 mM hydrogen peroxide (H2O2) at 37 °C for 1 h. To 

measure intracellular reactive oxygen species (ROS), cells were incubated with 1 µM 2’,7’-

dichlorodihydrofluorescein diacetate (H2DCFDA) (Life Technologies) for 15 min. The plates were 

read on a FlUOstar OPTIMA (BMG Labtech Inc., Cary, NC) with an excitation wavelength of 485 

nm and emission of 530 nm. Samples were assayed in triplicate. 

 

Cell and ECM interaction: evidence in morphology, chemistry, and elasticity 

Scanning electron microscope (SEM) 

Representative samples (n = 2) were primarily fixed in 2.5% glutaraldehyde (Sigma) for 2 h, 

followed by secondary fixation in 2% osmium tetroxide (Sigma) for another 2 h. The samples 

were then dehydrated in a gradient ethanol series, in hexamethyldisilazane (HMDS, Sigma) at a 

ratio of 1:1 with ethanol twice for 1 h each time, in HMDS at a ratio of 1:2 with ethanol overnight, 

and in HMDS three times for 4 h each time. The samples were air-dried for 24 h and gold sputter 

was added. The images were recorded by an SEM (Hitachi, Model S 2400). 

 

Proteomics analysis of AE and FE 
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Decellularized ECMs were collected in 25 mM Tris-HCl (pH 7.6)/ 150 mM NaCl/0.5% SDS buffer 

solution containing protease inhibitors. Samples were precipitated with cold acetone and the 

pellet was solubilized with ProteaseMax (Promega, Madison, WI) detergent prepared in 50 mM 

NH4HCO3 buffer (pH 7.9). Protein samples were reduced with dithiothreitol (DTT) at 56 °C for 45 

min and alkylated with 20 mM iodoacetamide in the dark at room temperature for 0.5 h. Trypsin 

digestion was performed at 37 °C overnight. Digested peptide mixtures were each separated by 

high pH reversed phase chromatography on a C18 column and 40 fractions (600 mL each) were 

collected and pooled into eight larger fractions due to the preliminary nature of the experiment. 

Samples were concentrated under vacuum to approximately 50 mL, and 8 mL of sample was 

analyzed on an LTQ-FT Ultra hybrid mass spectrometer (Thermo Fisher Scientific, San Jose, 

CA). In addition, we performed chemical digestion on the remaining pellets using CNBr for 24 h. 

The digests were neutralized and peptides were separated by 1D SDS-PAGE; the entire lanes 

were cut and the bands subjected to trypsin digestion and tandem mass spectrometry analysis as 

described above. Data analysis was performed as previously reported (reference: 

http://www.ncbi.nlm.nih.gov/pubmed/ 22897585) with the following exceptions: Spectra were 

searched against human entries in the Swissprot sequence database (release 04/18/2012; 

20,324 sequences), and identifications required a minimum protein confidence of >99%, two or 

more unique peptides, and peptide confidence of >95%. 

 

Immunofluorescent staining of AE and FE 

Decellularized ECMs were fixed with 4% paraformaldehyde for 30 min. After blocking in 10% 

normal goat serum for 1 h, ECMs were incubated with monoclonal antibody for type I collagen 

(Sigma), fibronectin (Santa Cruz Biotechnology, Dallas, TX), or laminin (Santa Cruz 

Biotechnology) overnight followed by Alexa Fluor 488 goat anti-mouse IgG (Life Technologies) for 

30 min. ECMs were visualized with a Zeiss LSM 510 confocal on an AxioImager Z1 microscope 

using a 63 objective lens (Carl Zeiss, Jena, Germany). 

 

Atomic force microscopy (AFM) 

Elasticity of decellularized ECMs and expanded cells was investigated using an MFP-3D-BIO 

AFM (Asylum Research, TE2000U, Santa Barbara, CA) integrated with an inverted fluorescence 

microscope (Nikon Eclipse, TieU, Nikon Instruments Inc., Melville, NY) and Olympus TR400-PB 

cantilevers with spring constant of 0.09 N/m. The samples were imaged in Petri dishes filled with 

αMEM containing 10% FBS. The location of the cantilever on the sample was confirmed using a 

10 × microscopy objective; each sample was mapped in five randomly selected 50 µm by 50 µm 

areas for a total of 2000 data points/sample. For the quantitative nanomechanical analysis, a 

Sneddon’s modification of the Hertz model developed for a four-sided pyramid was employed. 

The ECM and cell elasticity (Young’s modulus, E) were corrected with the indentation of the tip, δ, 
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through the following equation: E = π/2 ! (1 - ν2F)/tanαδ2, where E is the Elastic modulus, ν is 

Poisson’s ratio with a value of 0.5 for ECM and cells, F is the force given by the cantilever 

deflection multiplied with the cantilever spring constant (0.09 N/m), α is the open angle used in 

this study which had a value of 36°, and lastly δ is the indentation depth [19]. 

 

Chondrogenic induction and evaluation 

Chondrogenic induction 

Expanded cells (3 × 105) were centrifuged at 500g in a 15-mL polypropylene tube to form a pellet. 

After overnight incubation (day 0), the pellets were cultured in a serum-free chondrogenic 

medium consisting of high-glucose Dulbecco’s modified Eagle’s medium (DMEM), 40 mg/mL 

proline, 100 nM dexamethasone, 100 U/mL penicillin, 100 mg/mL streptomycin, 0.1 mM ascorbic 

acid-2-phosphate, and 1 ✕ ITS™ Premix (BD Biosciences) with the supplementation of 10 ng/mL 

transforming growth factor beta3 (TGF-β3, PeproTech Inc., Rocky Hill, NJ) in a 5% O2 incubator 

as long as 21 days. 

 

Histology and immunostaining 

Representative pellets (n = 2) were fixed in 4% para-formaldehyde at 4 °C overnight, followed by 

dehydrating in a gradient ethanol series, clearing with xylene, and embedding in paraffin blocks. 

Five-µm sections were stained with Alcian blue (counterstained with fast red) and Safranin O 

(counterstained with hematoxylin) for sulfated glycosaminoglycans (GAGs). For 

immunohistochemistry, the sections were immunolabeled with primary antibody against type II 

collagen [II-II6B3, Developmental Studies Hybridoma Bank (DSHB), Iowa City, IA], followed by 

the secondary antibody of biotinylated horse anti-mouse IgG or IgM (Vector, Burlingame, CA). 

Immunoactivity was detected using Vectastain ABC reagent (Vector) with 3,3’-diaminobenzidine 

as a substrate. 

 

Biochemical analysis for DNA and GAG content  

Representative pellets (n = 4) were digested at 60 °C for 4 h with 125 mg/mL papain in PBE 

buffer (100 mM phosphate, 10 mM ethyl-enediaminetetraacetic acid, pH 6.5) containing 10 mM 

cysteine. To quantify cell density, the amount of DNA in the papain digestion was measured using 

the QuantiT™ PicoGreen® dsDNA assay kit (Life Technologies) with a CytoFluor® Series 4000 

(Applied Bio-systems, Foster City, CA). GAG was measured using dimethyl-methylene blue dye 

and a Spectronic™ BioMate™ 3 Spectrophotometer (Thermo Fisher Scientific) with bovine 

chondroitin sulfate (Sigma) as a standard. 

 

TaqMan® real-time polymerase chain reaction (PCR) 
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Total RNA was extracted from pellets (n 1⁄4 4) using an RNase-free pestle in TRIzol® (Life 

Technologies). Two mg of mRNA was used for reverse transcriptase with the High-Capacity 

cDNA Archive Kit (Applied Biosystems) at 37 °C for 120 min. Chondrogenic marker genes [SRY 

(sex determining region Y)-box 9 (SOX9) (Assay ID Hs00165814_m1), aggrecan (ACAN) (Assay 

ID AIQJAP5), and type II collagen (COL2A1) (Assay ID Hs00156568_m1)] were customized by 

Applied Biosystems as part of their Custom TaqMan® Gene Expression Assays. Eukaryotic 18S 

rRNA (Assay ID HS99999901_s1 ABI) was carried out as the endogenous control gene. Real-

time PCR was performed with the iCycler iQ™ Multi Color RT-PCR Detection and calculated by 

computer software (PerkineElmer, Wellesley, MA). Relative transcript levels were calculated as χ 

= 2-ΔΔCt, in which ΔΔCt = ΔE – ΔC, ΔE = Ctexp – Ct18s, and ΔC = CtCt1 – Ct18s. 

 

Biomechanical testing 

Representative pellets (n = 6) were placed into a reservoir filled with PBS and loaded onto the 

custom miniature stepper motor driven compression device. This device used a 10 g load cell and 

a miniature differential variable reluctance transducer (DVRT) for displacement readout. A small 

preload of 0.0001 N was applied followed by a 10% strain at 1s duration. From the linear portion 

of the load displacement curve, the Stiffness and Young’s modulus (YMOD) were calculated for 

the spherical shaped pellet according to Rodriguez et al. [20]. 

 

Potential mechanisms underlying ECM-based cell expansion and subsequent chondrogenic 

differentiation 

Western blot 

Adult SDSCs from cell expansion and pellets before (day 0) and after (day 10) chondrogenic 

induction were dissolved in the lysis buffer (Cell Signaling) with protease inhibitors. Total proteins 

were quantified using BCA™ Protein Assay Kit (Thermo Fisher Scientific). Thirty micrograms of 

protein from each sample were denatured and separated using NuPAGE® Novex® Bis-Tris Mini 

Gels in the XCell SureLock™ Mini-Cell (Life Technologies) at 120 V at 4°C for 3 h. Bands were 

transferred onto a nitrocellulose membrane using an XCell II™ Blot module (Life Technologies) at 

15 V at 4°C overnight. The membrane was incubated with primary monoclonal antibodies in 5% 

bovine serum albumin (BSA) in TBST buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.05% 

Tween-20) for 1 h (β-actin served as an internal control), followed by the secondary antibody of 

horseradish peroxidase-conjugated goat anti-mouse (Thermo Fisher Scientific) for 1 h. 

SuperSignal West Femto Maximum Sensitivity Substrate and CL-XPosure Film (Thermo Fisher 

Scientific) were used for exposure. The primary antibodies used in immunoblotting included the 

MAPK family antibody sampler kit [extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), 

Jun N-terminal kinase (Jnk), and p38], phosphorylated (p-) MAPK family antibody sampler kit, 
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and Wnt signaling antibody sampler kit (Cell Signaling). Wnt11 polyclonal antibody was obtained 

from Thermo Fisher Scientific. 

 

Adipogenic and osteogenic induction and evaluation 

Adipogenic differentiation 

Expanded cells were cultured for 21 days in adipogenic medium (growth medium supplemented 

with 1 mM dexamethasone, 0.5 mM isobutyl-1-methyxanthine, 200 mM indomethacin, and 10 mM 

insulin). The cultures (n = 3) were fixed in 4% paraformaldehyde and stained with a 0.6% (w/v) 

Oil Red O (ORO) solution (60% iso-propanol, 40% water) for 15 min. Intracellular lipid-filled 

droplet-bound staining was photographed under a Nikon TE300 phase-contrast microscope 

(Nikon, Tokyo, Japan). Adipogenic marker genes [lipoprotein lipase (LPL, Assay ID 

Hs00173425_m1) and peroxisome proliferator-activated receptor gamma (PPARG, Assay ID 

Hs01115513_m1)] were quantified using TaqMan® real-time PCR. 

 

Osteogenic differentiation 

Expanded cells (n = 3) cultured for 21 days in osteogenic medium (growth medium supplemented 

with 0.1 mM dexamethasone, 10 mM β-glycerol phosphate, 50 mM ascorbate-2-phosphate, and 

0.01 mM 1,25-dihydroxyvitamin D3) were collected for alkaline phosphatase (ALP) activity assay 

with a reagent kit (Sigma) by measuring the formation of p-nitrophenol (p-NP) from p-nitrophenyl 

phosphate following the manufacturer’s instructions. p-NP was quantified based on the 

spectrophotometric absorbance at 405 nm, and enzymatic activity was expressed as millimoles of 

p-NP/min/mg DNA. For evaluation of calcium deposition, induced cells (n = 3) were fixed with 

70% ice-cold ethanol for 1 h, and then incubated in 40 mM Alizarin Red S (ARS) at pH 4.2 for 20 

min with agitation. After rinsing, matrix mineral-bound staining was photographed. Quantification 

of staining was performed by incubating cells with a solution of 10% acetic acid and 20% 

methanol for 15 min to extract the calcium-chelated ARS stain. Samples were analyzed for 

absorption at 450 nm, which was normalized to total DNA amount for standardization. 

 

Statistical analysis 

ManneWhitney U test was used for pairwise comparison. All statistical analyses were performed 

with SPSS 13.0 statistical software (SPSS Inc., Chicago, IL). p values less than 0.05 were 

considered statistically significant. 
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RESULTS 

 

Evaluation of ECM-expanded ASDSC proliferation and viability 

To evaluate the proliferative effect exerted by FE and AE, human ASDSCs were seeded on three 

substrates: PL, AE, or FE. Cell morphology showed that PL4 exhibited flattened and enlarged 

morphology (red color); in contrast, ASDSCs grown on ECMs, especially FE4, exhibited a 

spindle-like shape overlapped with matrix fibers immunostained with type I collagen (initial color 

was green and merged color was yellow); cell expansion on FE yielded the highest cell number 

followed by AE with PL having the lowest cell number (Fig. 6.1A). Consistent with the cell 

counting, AE expansion yielded a 2.1-fold increase and FE expansion yielded a 2.6-fold increase 

in proliferation index compared with PL expansion (Fig. 6.1B). Our flow cytometry data showed 

that MSC surface markers, CD29, CD90, and CD105, were down-regulated slightly in percentage 

but heavily at the median; SSEA4 was up-regulated both in percentage and at the median despite 

an up-regulation only in percentage for integrin β5 (Fig. 6.1C). To evaluate cell viability after 

expansion on these substrates, flow cytometry was used to measure the percentage of apoptotic 

cells as well as expanded cells’ resistance to apoptotic stimuli; the data showed that FE4 

exhibited the fewest apoptotic cells (Fig. 6.1D) and both FE4 and AE4 produced about half the 

ROS compared with PL4 upon treatment with H2O2 (Fig. 6.1E). 

 

 Evaluation of ECM microstructure, composition, and elasticity 

SEM was used to evaluate cell and matrix morphology and help characterize the expansion of 

ASDSCs on their culture substrates. In accord with cell morphology under confocal microscopy 

(Fig. 6.1A), SEM data showed that PL4 exhibited an enlarged and flattened cell shape (Fig. 

6.2A); in contrast, both AE4 and FE4, with a fibroblast-like shape, were embedded in the 

corresponding matrix (Fig. 6.2B and C, respectively). Compared to a rough surface in AE (Fig. 

6.2B), FE exhibited a smoother appearance (Fig. 6.2C), indicative of fine matrix fibers. 

 

From proteomics analyses, we identified peptides that were mapped to approximately 260 

proteins or protein families; the most prominent proteins were from the ECM. Collagens were the 

most abundant as reflected by number of peptides identified, sequence coverage, and ion 

envelope areas (Fig. 6.2D,E). As shown in Table 6.1, several proteins of interest were identified 

and the number of spectra assigned to a given protein for both ECMs was listed. Intriguingly, we 

found that fibrillar collagens shifted into the “insoluble” fraction for AE but not in FE; in contrast, 

FE contained a fair amount of clusterin but none was detected in AE. Furthermore, we found that 

some unique matrix proteins existed in FE, such as fibrillin-2, tenascin, and versican core protein, 

while AE had advantageous matrix proteins, such as elastin, fibulin-6, periostin, thrombospondin-

1, and TGFB1. Intriguingly, no laminin was measured in either ECM despite plenty of fibronectin 
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and type I collagen, which was confirmed by our immunostaining data in both AE (Fig. 6.2F) and 

FE (Fig. 6.2G). 

 

To determine the effect of mechanical properties of culture substrates on grown cells, AFM was 

used to measure the elasticity of both substrates and expanded cells. The elasticity of PL could 

be considered as infinite [21]; AE exhibited a higher elasticity than FE [61.82 ± 35.86 versus 

58.26 ± 13.37 (kPa) (p = 0.000)] (Fig. 6.2H). Interestingly, the elasticity of expanded ASDSCs 

was parallel to their substrate; the comparison between PL4 and AE4 was 9.07 ± 4.56 versus 

3.60 ± 1.79 (kPa) (p = 0.000) while the comparison between AE4 and FE4 was 3.60 ± 1.79 

versus 3.45 ± 2.29 (kPa) (p = 0.024) (Fig. 6.2I). 

 

ECM-mediated ASDSC chondrogenic capacity and potential mechanisms 

To determine the rejuvenation effects of ECM expansion on ASDSC chondrogenic potential, 

expanded ASDSCs were chondrogenically induced for 21 days. The evaluation consisted of 

chondrogenic mechanism analysis at the early stage and chondrogenic functionality assessment 

at the later stage. At the early stage, 10-day pellets were evaluated for chondrogenic 

differentiation using histology, immunostaining, and real-time PCR. The pellets from PL4 were the 

smallest in size while those from FE4 were the largest; the pellets from FE4 were also intensely 

stained with both Alcian blue and Safranin O for sulfated GAGs and immunostained for type II 

collagen (Fig. 6.3A). All chondrogenic marker genes (SOX9, ACAN, and COL2A1) showed a 

similar trend, which was that plastic expansion down-regulated while ECM expansion up-

regulated chondrogenic genes with FE4 being the highest (Fig. 6.3B). To determine potential 

mechanisms underlying ECM expansion and subsequent chondrogenic differentiation, the MAPK 

and Wnt signaling pathways were evaluated using Western blot. Our data showed that, compared 

to up-regulation of p-p38 and p-Jnk, ECM expansion dramatically down-regulated p-Erk; despite 

the fact that p-Erk bounced back in the cell condensation phase, the lowest level was seen in FE4 

pellets; different from the change of p- Erk, ECM expansion yielded ASDSC pellets with a 

relatively lower level of p-Jnk in the cell condensation phase though no significant difference was 

found among groups after 10-day chondrogenic induction (Fig. 6.4A). Our data also showed that 

ECM pretreatment down-regulated Wnt3a but up-regulated Wnt5a and Wnt11 in expanded 

SDSCs; these effects were relayed through cell condensation and chondrogenic differentiation, 

especially for the Wnt11-mediated non-canonical pathway (Fig. 6.4B). 

 

At the later stage, 21-day pellets were evaluated for chondrogenic differentiation using histology, 

immunostaining, real-time PCR, biochemistry, and mechanical properties. Similar to the data at 

day 10, the pellets from PL4 were the smallest in size while those from FE4 were the largest; the 

pellets from ECM expansion, particularly from FE4, were intensely stained for sulfated GAGs and 
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immunostained for type II collagen (Fig. 6.5A). The pellets from FE4 exhibited the highest level of 

chondrogenic marker genes (SOX9, ACAN, and COL2A1) followed by those from AE4 (ACAN 

and COL2A1); pellets from the plastic expansion group had the lowest level (Fig. 6.5B). Our 

biochemistry data showed that AE expansion yielded higher cell viability (DNA% by day 0) during 

chondrogenic induction; FE expansion yielded the highest GAG amount per pellet and ratio of 

GAG to DNA (chondrogenic index) followed by those from AE expansion with PL expansion 

having the least (Fig. 6.5C). Our functionality data showed that ECM expansion yielded ASDSC 

pellets with significantly enhanced size and comparable Stiffness and Young’s modulus (Fig. 

6.5D). 

 

Evaluation of ECM-expanded ASDSC adipogenic and osteogenic potentials 

To determine the rejuvenation effect of ECM expansion on ASDSC adipogenic and osteogenic 

potentials, expanded ASDSCs were incubated in corresponding lineage induction medium for 21 

days. Our adipogenic induction data showed that expanded ASDSCs from varied substrates all 

stained positive for ORO (Fig. 6.6A); FE4 exhibited the highest levels of LPL and PPARG mRNAs 

followed by AE4 (LPL); PL expansion had the lowest levels (Fig. 6.6B). Our osteogenic induction 

data showed that expanded SDSCs from varied substrates all stained positive for ARS (Fig. 

6.6C) and ALP (Fig. 6.6E); the quantitative assessment for relative ARS density (Fig. 6.6D) and 

ALP activity (Fig. 6.6F) did not show a significant difference among groups. 
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DISCUSSION 

 

Aging is characterized by reduced tissue and organ functions and regenerative capacities, 

accompanied by decreases in tissue resident stem cell numbers and loss of potency. Ever since 

Conboy et al.’s study [22], researchers focused their interest on the influence of ECM on stem cell 

rejuvenation; however, none have investigated the effect of young ECM on old tissue-specific 

stem cells’ chondrogenic potential. In this study, we found that decellularized ECM, especially 

from young donors, rejuvenated ASDSCs in expansion, as evidenced by increased cell 

proliferation and resistance to apoptosis. Chondrogenic differentiation also improved, as 

evidenced by enhanced pellet size, pellet composition (aggrecan and type II collagen at both 

mRNA and protein levels), and pellet functionality (Stiffness and Young’s Modulus). We found 

that the MAPK and Wnt signaling pathways were also actively involved in ECM-mediated ASDSC 

expansion and chondrogenic potential. In the characterization of cell and matrix interaction, we 

found that unique proteins in FE favored ASDSC rejuvenation; the low elasticity of FE decreased 

expanded ASDSC elasticity, which might benefit cell chondrogenic and adipogenic potentials. 

 

In previous reports, we discussed the rejuvenation effect and underlying potential mechanisms of 

decellularized ECM on expanded ASDSCs compared with plastic expansion [5,12]. In this study, 

we were interested in the comparison between FE and AE in composition and their influence on 

rejuvenation. We found that FE was better than AE in promoting cell proliferation and preventing 

apoptosis, which might be explained by the discrepancy in chemical composition of these two 

matrices. Our proteomics data showed that FE had more fibrillin-2 (76:2), tenascin C (259:120), 

and clusterin (5:0) than AE. Fibrillins are produced by fibroblasts physiologically in developing or 

regenerating tissues; fibrillin-2 binds to other ECM proteins, forming microfibrils, and is mostly 

expressed during embryogenesis [23]. Tenascin C is a hexameric ECM glycoprotein, which is 

responsible for various dynamic cellular activities, including adhesion [24], tissue remodeling [25], 

migration [25], proliferation [26], and growth [24]. Absence of tenascin C alters neural stem cell 

number and function in the subventricular zone [27]; tenascin C deletion has also been shown to 

affect primitive cell populations in the hematopoietic system, raising the possibility that it 

participates in several stem cell niches as a modulator of growth factor signaling [28]. Despite the 

fact that both are largely restricted to developing fetal tissues [29], enhanced expression of 

fibrillin-2 and tenascin C has been observed in adults with fibroproliferative conditions, such as 

wound healing and sclerosis [23,25,30]. Moreover, a fair amount of clusterin was found in FE 

while none was detected in AE, which might be responsible for less apoptosis observed in FE 

expanded ASDSCs since clusterin could inhibit apoptosis by interacting with activated Bax [31]. 
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In contrast, AE had more biglycan (95:37), decorin (95:40), dermatopontin (35:16), elastin (18:2), 

periostin (400:125), thrombospondin-1 (79:6), and TGFβ1 (258:164) than FE. Small leucin-rich 

proteoglycans (SLRPs) decorin and biglycan were reported to reduce proliferation of pre-

adipocytes, partly by induction of apoptosis [32]. Dermatopontin has been implicated in 

chondrogenic differentiation [33,34]. Periostin was first identified in osteoblast-like cells [35] and it 

is thought to play an important role in bone formation and development of periodontal ligaments 

[36,37]. Notably, periostin and TGFβ are all involved in osteo-chondrogenesis [38]. 

Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other 

stem cell transcription factors [39]. Elastin, a structural component of ECM that confers elasticity 

to tissues, has been used to make biopolymers for MSC differentiation [40]. The low level of 

elastin measured in FE is because donor cells were contributed by a 6-month-old fetus and 

elastin expression occurs from midgestation [41]. The above data showed that, compared with 

the role of FE during cell expansion, AE has more matrix components favoring cell differentiation 

and apoptosis rather than cell proliferation, which is consistent with the observed differences in 

elasticity and ECM/collagen architecture, i.e. fibrillar collagens were shifted into the “insoluble” 

fraction in AE but not in FE. 

 

Our previous study using flow cytometry in human BMSCs showed that ECM expansion 

dramatically increased the level of integrin β5 but decreased integrin β1 (also termed CD29) at 

median rather than in percentage [16] and is further confirmed by this report. We also found that 

FE expansion yielded human ASDSCs with even higher integrin β5 but lower integrin β1 

expression than AE, which might be associated with ECM elasticity. Matrix elasticity could have 

an effect on lineage differentiation potential according to a recent report that ECM elasticity 

affects integrin activity and trafficking to modulate integrin bone morphogenetic protein (BMP) 

receptor internalization, thus contributing to stem cell lineage specification [42]. The lower level of 

elastin in FE may be responsible for lower matrix elasticity compared with AE, which is confirmed 

by the AFM data; lower elasticity in FE might be associated with enhancement of ASDSC 

chondrogenic and adipogenic potentials, suggesting that matrix elasticity might contribute to 

lineage-specific differentiation. In contrast to previous reports in which direct differentiation effects 

assessed matrix elasticity [43,44], in this study, matrix elasticity was investigated for its influence 

on cell proliferation and differentiation potential. 

 

There have been few studies investigating potential mechanisms underlying the rejuvenating 

effect of ECM on stem cells. Heterochronic parabiosis by exposure of satellite cells from old mice 

to young serum restored the activation of Notch signaling as well as the proliferation and 

regenerative capacity of aged satellite cells [22]. Young matrix derived from human diploid 

fibroblasts restored senescent fibroblasts evidenced by resumption of proliferative potential, 
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growth factor responsiveness, reduction of intracellular ROS levels, recovery of mitochondrial 

membrane potential, and increased telomere length [45]. Besides the mechanisms mentioned 

above, in this study, we investigated ECM expansion related changes of the MAPK and Wnt 

signals, two key pathways involved in cell proliferation and chondrogenic differentiation. ECM 

pretreatment down-regulated p-Erk level in expanded ASDSCs, indicative of a decline in cell 

senescence [46]; p- Erk was then up-regulated during cell condensation and down- regulated 

after 10-day chondrogenic induction, in particular for those expanded on FE, in accord with 

previous reports that p-Erk signals could promote stem cell chondrogenesis in the early stage but 

inhibit chondrogenic differentiation in the later stage [47]. The functional switch of p-Erk during 

chondrogenesis supported the claim that expansion on ECM, especially from a young donor, 

favored ASDSC proliferation and chondrogenic potential. 

 

Our data also showed that Wnt3a, a typical canonical signal, was down-regulated in ECM 

expanded ASDSCs and then maintained a comparable level with plastic expanded cells during 

chondrogenic differentiation; in contrast, Wnt5a and Wnt11, two typical noncanonical signals, 

were dramatically up-regulated in ECM expanded cells, especially those cells grown on FE, and 

subsequent chondrogenic differentiation. This finding is surprising because Wnt3a was previously 

considered a stimulator of MSC proliferation [48] while Wnt5a and Wnt11 function by inhibiting β-

catenin signaling and favoring cell migration and differentiation [49,50], despite the fact that both 

Wnt5a and Wnt11 were also involved in cell proliferation. Wnt5a controlled the proliferation of 

undifferentiated limb mesenchymal cells in vivo [51] and Wnt11 regulated transcriptional factors 

octamer-binding transcription factor 4 (OCT4) and NANOG associated with the pluripotent state 

and affected lineage specification genes toward mesodermal development [52]. Our 

immunoblotting data showed that Wnt5a and p38 shared a similar trend in cell expansion and 

condensation, which is in agreement with a previous report that the stimulatory roles of Wnt5a on 

chondrogenesis in micromass cultures are dependent on the activation of both p38 and protein 

kinase C (PKC) signaling [53]; PKC is required for MSC chondrogenesis [54]. After a 10-day 

chondrogenic induction, FE expanded ASDSCs exhibited a down- regulation of p-p38 but an up-

regulation of Wnt5a which corresponds to the highest chondrogenic differentiation because the 

inhibition of p38 can cause early stage hypertrophic chondrocytes to revert back to a 

prehypertrophic phenotype [55] while Wnt5a conversely blocks chondrocyte hypertrophy [56]. 

The up-regulation of p-Jnk in ASDSCs after expansion on ECM might contribute to an increase of 

Wnt11. Wnt11 was found to have expression sites restricted within the prehypertrophic 

chondrocytes of the cartilage elements; it enhanced chondrogenesis without promoting terminal 

differentiation [57]. Despite the fact that Wnt3a might be transiently up-regulated in the early 

stage of ECM expansion, our data indicated that noncanonical Wnt signals dominated ECM 

expanded ASDSCs and subsequent chondrogenic differentiation. 
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Our study demonstrated that decellularized ECM deposited by fetal SDSCs can provide a 

rejuvenating effect and a tissue-specific stem cell microenvironment to enhance adult SDSC 

expansion and chondrogenic potential, possibly through the MAPK and Wnt signaling pathways. 

The detailed mechanisms underlying ECM enhanced cell proliferation and chondrogenic potential 

need further investigation. Decellularized ECM from fetal SDSCs, which demonstrates a 

“Fountain of Youth” effect for adult SDSC rejuvenation, provides hope for solving the challenge of 

cell senescence in cartilage engineering and regeneration. 
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FIGURE LEGENDS 

 
Figure 6.1 ECM expanded ASDSCs exhibited an enhanced proliferative and anti-apoptotic 

capacity, especially for cell expansion on FE. (A) ASDSCs were expanded on three substrates 

(PL, AE, and FE) for one passage; the cell membrane was labeled with Vybrant Dil Cell labeling 

solution (red) and the nuclei were stained using DAPI (blue), the ECM fibers were immunostained 

with type I collagen (green); cell number was counted in 175 cm2 flasks (n = 6) using a 

hemocytometer. (B) Flow cytometry was used to measure the proliferation index of expanded 

ASDSCs. (C) Flow cytometry was used to measure both percentage and median of MSC surface 

markers (CD29, CD90, and CD105), SSEA4, and integrin β5 of expanded ASDSCs. (D) Flow 

cytometry was used to measure percentage of apoptotic cells after expansion on the three 

substrates. (E) Generation of ROS followed by hydrogen peroxide incubation was evaluated. 

Relative fluorescence emitted by fluorescent dye 2′7′-dichlorofluorescein diacetate was measured 

and presented as means ± standard deviation (SD) of the mean for n = 3. *p < 0.05 indicated a 

statistically significant difference. 

 

Figure 6.2 Contribution of ECM structure and composition to ASDSC rejuvenation. SEM was 

used to observe ASDSC morphology during expansion on PL (A), AE (B), or FE (C). Scale bar: 

50 µm. Surface topography and morphology of AE (B) and FE (C) were also observed. Scale bar: 

5 µm. Proteomics was used to measure chemical composition of AE (D) and FE (E). Image 

figures of both AE and FE showed phase-contrast microscope (PCM) for cell morphology and 

structure before making ECM and immunostaining for type I collagen, fibronectin, and laminin. 

AFM was used to measure elasticity of both expanded substrates (H) and expanded ASDSCs (I). 

 

Figure 6.3 FE promoted expanded ASDSCs' early chondrogenic differentiation. PL expanded 

passage 3 ASDSCs (PL3) were grown on either PL, AE, or FE for one passage; the expanded 

cells were PL4, AE4, and FE4. The above four cells were chondrogenically induced in a pellet 

culture system for 10 days. (A) Before histological staining, pellet size was measured with a scale 

bar as mm; Alcian blue (AB) and Safranin O (SO) were used to stain sulfated GAGs and 

immunohistochemistry staining (IHC) was used to detect type II collagen (Col II). (B) Real-time 

polymerase chain reaction (PCR) was used to evaluate chondrogenic marker gene expression 

(SOX9, ACAN, and COL2A1) in day-10 pellets. Data are shown as average ± standard deviation 

(SD) for n = 4. *p < 0.05 indicated a statistically significant difference. 

 

Figure 6.4 Potential mechanisms underlying ECM-mediated ASDSC proliferation and 

chondrogenic potential. Western blot was used to detect the MAPK signals (Erk, p38, and Jnk) at 

both phosphorylation and total protein levels and Wnt signals (Wnt3a, Wnt5a, and Wnt11). β-
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actin was also measured as an internal control. ImageJ software was used to quantify 

immunoblotting bands. 

 

Figure 6.5 FE promoted expanded ASDSCs' later chondrogenic differentiation. PL expanded 

passage 3 ASDSCs (PL3) were expanded on either PL, AE, or FE for one passage; the 

expanded cells were PL4, AE4, and FE4. The above four cells were chondrogenically induced in 

a pellet culture system for 21 days. (A) Before histological staining, pellet size was measured with 

a scale bar as mm; Alcian blue (AB) and Safranin O (SO) were used to stain sulfated GAGs and 

immunohistochemistry staining (IHC) was used to detect type II collagen (Col II). (B) Real-time 

polymerase chain reaction (PCR) was used to evaluate chondrogenic marker gene expression 

(SOX9, ACAN, and COL2A1). (C) Biochemical analysis was used for DNA and GAG contents of 

pellets; cell viability in chondrogenic medium was evaluated using DNA ratio (DNA content at day 

21 adjusted by that at day 0); a ratio of GAG to DNA indicated chondrogenic index. (D) 

Functionality of chondrogenically differentiated pellets was evaluated using pellet size, Stiffness, 

and Young's modulus. Data are shown as average ± standard deviation (SD) for n = 4. *p < 0.05 

indicated a statistically significant difference. 

 

Figure 6.6 ECM pretreatment promoted expanded ASDSC adipogenesis rather than 

osteogenesis. After expansion on PL, AE, or FE, ASDSCs were replated in either adipogenic or 

osteogenic induction medium. After a 21-day incubation in adipogenic medium, adipogenesis was 

evaluated using Oil Red O (ORO) staining (A) and quantitative adipogenic marker genes (LPL 

and PPARG). After a 21-day incubation in osteogenic medium, osteogenesis was evaluated 

using Alizarin Red S (ARS) staining and quantitative extracellular calcium assay as well as 

alkaline phosphatase (ALP) staining and quantitative activity assay. Data were shown as 

average ± SD for n = 4. *p < 0.05 indicated a statistically significant difference. 
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Table 6.1 Select ECM and ECM interacting proteins identified in fetal and adult ECMs 

Swiss-Port accession Assigned spectra % of protein in the 

insoluble pellet 

 FE AE FE AE 

 Selected ECM proteins     

P98160 Perlecan 91 95 22% 51% 

P21810 Biglycan 37 95 14% 53% 

P07585 Decorin 40 95 65% 54% 

Q07507 Dermatopontin 16 35 100% 66% 

P15502 Elastin 2 18 100% 89% 

Q9Y6C2 EMILIN-1 131 113 1% 25% 

Q9BXX0 EMILIN-2 35 46 46% 43% 

P35555 Fibrillin-1 394 529 39% 53% 

P35556 Fibrillin-2 76 2 0% 0% 

P02751 Fibronectin 767 873 29% 43% 

P23142 Fibulin-1 5 4 0% 50% 

P98095 Fibulin-2 149 150 68% 63% 

Q96RW7 Fibulin-6 (hemicentin-1) 1 12 0% 0% 

P09382 Galectin-1 22 12 0% 0% 

P55001 Microfibrillar-assoc. prot. 2 39 47 85% 81% 

Q13361 Microfibrillar-assoc. prot. 5 28 37 86% 68% 

P20774 Mimecan 16 6 0% 17% 

Q14112 Nidogen-2 7 6 0% 0% 

Q15063 Periostin 125 400 15% 57% 

P24821 Tenascin 259 120 3% 36% 

P22105 Tenascin-X 59 49 10% 0% 

P07996 Thrombospondin-1 6 79 33% 68% 

Q15582 TGFBI 164 258 45% 44% 

P13611 Versican core protein 58 22 74% 50% 

P02452 Collagen alpha-1(I) chain 250 494 11% 86% 

P08123 Collagen alpha-2(I) chain 206 339 6% 59% 

P02461 Collagen alpha-1(III) chain 41 31 0% 81% 
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P20908 Collagen alpha-1(V) chain 18 36 28% 47% 

P05997 Collagen alpha-2(V) chain 7 12 0% 75% 

P12109 Collagen alpha-1(VI) chain 602 799 79% 68% 

P12110 Collagen alpha-3(VI) chain 3019 3542 67% 56% 

Q99715 Collagen alpha-1(XII) chain 798 1563 30% 64% 

Q05707 Collagen alpha-1(XIV) chain 163 47 17% 34% 

 Additional proteins  

Q6UY14 ADAMTS-like protein 4 8 18 0% 0% 

P10909 Clusterin 5 0 0%  

Q08397 Lysyl oxidase homolog 1 22 23 36% 35% 

P21980 Transglutaminase 2 18 44 28% 30% 
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Figure 6.1 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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Figure 6.5 
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Figure 6.6 
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ABSTRACT 
 

Low back pain is often related to intervertebral disc (IVD) degeneration and herniation that results 

from a progressive loss of proteoglycans and water content in the nucleus pulposus. Autologous 

disc cell-based therapy is a promising approach for IVD regeneration. Unfortunately, the quantity 

and quality of the autologous herniated nucleus pulposus cells (NPCs) is limited and 

compromised. The current in vitro expansion of NPCs in monolayer results in dedifferentiation of 

these cells. Our previous studies indicated that decellularized extracellular matrix (DECM) 

deposited by stem cell could serve as an in vitro expansion system for enhancing proliferative 

and chondrogenic differentiation potential in the recellularized cells. Moreover, such an in vitro 

three-dimensional microenvironment benefits porcine NPCs by allowing them to expand more 

efficiently while maintaining their differentiation phenotypes. Our most recent study also 

suggested the young DECM was superior to old DECM in rejuvenating cells with higher 

proliferation and chondrogenic capacities. However, there has been no study investigated if the 

DECM deposited by human NPCs (NECM) has the same or better effect than DECM deposited 

by human SDSCs (SECM) and whether cells derived from fetal donors can serve as a better 

tissue-specific high-quality microenvironment than adult donors for ex vivo expansion of human 

NPCs from middle-aged patients while promoting re-differentiation potential. In this study, for the 

first time, we evaluated the rejuvenating effect of DECMs deposited by human NPCs and SDSCs 

and compared the effect of fetal and adult donors’ NPCs and SDSCs deposited DECMs. First, 

both fetal and adult SDSC and NPCs were used to prepare young and old SECMs and NECMs. 

Cell proliferation after expansion evaluated by cell number and proliferation index showed 

significantly enhanced proliferation in both SECMs and NECMs compared to plastic flasks group 

as a control. Surface markers for mesenchymal stem cells were analyzed by flow cytometry after 

expansion on different substrates. Redifferentiation potential to chondrogenesis evaluated by 

biochemistry, histochemistry and immunohistochemistry, real-time PCR was consistently 

enhanced in both NECMs expanded NPCs but not in both young and old SECMs expanded cells. 

In conclusion, both human SDSC and NPC deposited DECMs can rejuvenate NPCs from 

herniated IVD with higher proliferative potential. But redifferentiation potential of NPCs can only 

be enhanced by NPC-derived NECMs. The development of an autologous disc cell-based 

minimally invasive therapeutic approach is beneficial toward physiological reconstruction of a 

biologically functional disc in a clinical setting. 
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INTRODUCTION 

 
Approximately 80% of the adult population is affected by low back pain; this condition has a 

massive economic impact due to both health care costs and loss of productivity.1 Although the 

causes of low back pain are complicated and not fully understood, an important underlying cause 

is commonly believed to be degeneration of the intervertebral disc (IVD).2;3 The IVD consists of 

two components: the gelatinous nucleus pulposus (NP) at the center of the disc surrounded by 

the annulus fibrosus, a more highly organized ring composed mainly of type-I collagen.4 The 

extracellular matrix (ECM) of the NP is up to 80% hydrated as a result of large amounts of the 

aggregating proteoglycan aggrecan.5 This proteoglycan is enmeshed in a randomly oriented 

network of type-II collagen fibers.6 IVD degeneration is reported to begin in the NP with a 

progressive decrease in proteoglycan content, leading to loss of hydrogel properties of the NP.7 

Clinical treatments of IVD disease include various noninvasive and invasive therapies, but are 

limited to symptomatic relief.  

  

Cell transplantation is a suitable and promising approach for IVD regeneration. Although human 

NP cells (NPCs) share matrix-producing properties with chondrocytes, recent studies have shown 

that there are indeed phenotypic differences.8 Stem cells seem to be another candidate for cell 

transplantation; however, the lack of a definitive cell marker to distinguish NPCs from other cells 

has made clinical application more difficult and less realistic. Animal studies9-11 and an early 

clinical trial (Euro Disc Randomized Trial)11 have indicated that autologous disc cell 

transplantation (ADCT) is technically feasible and biologically relevant to repairing disc damage 

and retarding disc degeneration. However, one concern of critics of ADCT is that cells isolated 

from degenerative discs may lack the potential of healthy counterparts.12 In addition, the 

preparation of NPCs for reimplantation is problematic because autologous transplantation 

requires more cells than can be harvested from a small biopsy. During in vitro expansion, 

however, like articular chondrocytes, NPCs undergo a characteristic process of dedifferentiation, 

marked by a loss of type-II collagen expression and the induction of type-I collagen 

expression.13;14 With low cellular yields and low proliferative activity of NPCs in monolayer culture, 

further enhancement of the biologic and metabolic viability of NPCs is desirable.  

 

In order to make clinical application a reality, in vitro expansion cultures are expected to yield 

large amounts of high-quality cells in a short period of time. Moreover, these expanded NPCs 

should preferably express or at least be able to reexpress their NPC phenotype (redifferentiation 

capacity) in order to produce a functional ECM. Thus, expanded cell amount and redifferentiation 

capacity are two important parameters in disc regeneration. Our recent finding has shown that 

decellularized extracellular matrix (DECM) deposited by porcine synovium-derived stem cells 
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(SDSCs) can serve as a three-dimensional cell expansion system for SDSC proliferation while 

enhancing chondrogenic potential.15 Such an in vitro three dimensional microenvironment 

benefits porcine NPCs by allowing them to expand more efficiently while maintaining their 

differentiation phenotypes.16;17 Our recent study also suggests that human fetal SDSC-derived 

DECM can rejuvenate adult SDSC by decreasing replicative senescence, evidenced by 

enhancing adult SDSC expansion and chondrogenic differentiation capacity.18 

 

Despite the fact that we demonstrated that DECM expansion could overcome porcine NPC 

replicative senescence, there has been no study investigating whether DECM deposited by 

human SDSCs or NPCs can rejuvenate NPCs from middle-aged patients’ herniated IVD and 

whether SDSCs or NPCs from young donor is superior to adult donor for depositing the matrix. 

This is an important issue to be addressed because most NPCs that need expansion are from 

middle-aged patients, at which herniated discs often occur. In this study, we aim to investigate 

whether DECM deposited by human SDSC or NPCs from fetal donors can serve as a tissue-

specific high-quality microenvironment for ex vivo expansion of human NPCs from middle-aged 

patients while maintaining NPC differentiation phenotype and re-differentiation potential. The 

development of an autologous disc cell-based minimally invasive therapeutic approach would 

greatly benefit physiological reconstruction of a biologically functional disc in a clinical setting.  
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MATERIALS AND METHODS 

 
DECM preparation 

Human fetal source nucleus pulposus cells (NPCs) and synovium-derived stem cells (SDSCs) 

were obtained from Scien-Cell™, Research Laboratories (Carlsbad, CA) and adult SDSCs 

(ASDSC) were obtained from Asterand (North America Laboratories, Detroit, MI). Adult NPC from 

herniated discs were collected from lumbar spine (L1-L5) of patients (age 30 – 50 years old) 

following Institutional Review Board approval and donor consent. Both cell types were used to 

prepare DECMs, termed SECM and NECM, respectively, as described previously.18 Both DECMs 

from fetal and adult donors were termed FE and AE. Briefly, plastic flasks (PL) were precoated 

with 0.2% gelatin (Sigma, St. Louis, MO) at 37 °C for 1 h and seeded with passage 3 NPCs at 

6000 cells per cm2. After cells reached 90% confluence, 250 mM of L-ascorbic acid phosphate 

(Wako Chemicals USA Inc., Richmond, VA) was added for 10 days. The deposited ECMs were 

incubated with 0.5% Triton X-100 containing 20 mM ammonium hydroxide at 37 °C for 5 min to 

remove the cells; they were stored at 4 °C in phosphate-buffered saline (PBS) containing 100 

U/mL penicillin, 100 mg/mL streptomycin, and 0.25 mg/mL fungizone until use. 

 

Cell counting and morphology 

PL expanded passage 2 NPCs were plated at 3000 cells per cm2 on both FE, AE, or PL for two 

passages with growth medium containing alpha-minimum essential medium (αMEM), 10% fetal 

bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL fungizone. 

Cell number was counted in 175 cm2 flasks (n = 6) using a hemocytometer for both passages and 

cell morphology was photographed. 

 

Proliferation index 

Before cell expansion, passage 2 NPCs were labeled with CellVue® Claret (Sigma) at 2 × 10-6 M 

for 5 min according to the manufacturer’s protocol. After eight days, expanded cells were 

collected and measured using a BD FACS Calibur™ flow cytometer (dual laser) (BD Biosciences, 

San Jose, CA). Twenty thousand events of each sample were collected using CellQuest Pro 

software (BD Biosciences) and cell proliferation index was analyzed by ModFit LT™ version 3.1 

(Verity Software House, Topsham, ME).  

 

Histological analysis   

The pellets (n=3) will be fixed in 4% paraformaldehyde, dehydrated in a gradient ethanol series, 

cleared with xylene, and embedded in paraffin blocks. 5-µm sections will be histochemically 

stained with Alcian blue (Sigma, St. Louis, MO). For immunohistochemical analysis, the sections 

will be immunolabeled with primary antibodies against collagen I (Sigma), collagen II [II-II6B3, 
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Developmental Studies Hybridoma Bank (DSHB), Iowa City, IA], and collagen X (Sigma), 

respectively. A secondary antibody of biotinylated horse anti-mouse IgG (Vector, Burlingame, CA) 

will be incubated on the sections for 30 min. Immunoactivity will be detected using Vectastain 

ABC reagent (Vector) with 3,3’-diaminobenzidine (DAB, 0.05%) and hydrogen peroxide (H2O2, 

0.015%) as a substrate. Hematoxylin (Vector) served as a counterstain. 

 

Biochemical analyses 

Representative pellets (n=6) will be digested for 6 h at 60oC with 125 µg/mL papain in PBE buffer 

(100 mmol/L phosphate, 10 mmol/L EDTA, pH 6.5) containing 10 mmol/L cysteine, by using 100 

µL enzyme per sample. To quantify cell density, the amount of DNA in the papain digests will be 

measured using the Quant-iT™. PicoGreen® dsDNA Assay kit (Invitrogen) with a CytoFluor® 

Series 4000 (Applied Biosystems). GAG will be measured using dimethylmethylene blue dye and 

a Spectronic™ BioMate™ 3 Spectrophotometer (Thermo Scientific, Milford, MA) with bovine 

chondroitin sulfate as a standard. 

 

Flow cytometric analysis  

The following antibodies will be used: stage specific embryonic antigen-4 (SSEA-4), CD29 

(BioLegend), CD90 (BD Pharmingen), and CD105 (GeneTex Inc., San Antonio, TX). As isotype 

controls, IgG1 and IgG2a (Beckman Coulter, Fullerton, CA) along with IgG3 (BD Pharmingen) will 

be used. The secondary antibody will use FITC-conjugated goat anti-mouse Ig (Abcam). 0.2 × 

106 cells will be incubated on ice in cold PBS containing 5% FBS and 1% NaN3 (Sigma) for 30 

min. After incubation, primary antibodies will be added and the cells will be incubated for 60 min 

at room temperature in the dark. After washing with cold PBS, cells will be incubated with the 

secondary antibody for 30 min in the dark. Finally, the cells will be fixed in 400 µL of PBS with 1% 

paraformaldehyde. The cells will be analyzed on a BD dual laser FACSCalibur (BD Biosciences) 

using the CellQuest Pro (BD Biosciences) software package. 

 

TaqMan real-time PCR 

For studies of quantitative gene expression, the total RNA samples from representative pellets 

(n=6) and reverse transcript (RT) will be prepared according to RT-PCR protocol. Chondrogenic 

marker genes [SRY (sex determining region Y)-box 9 (SOX9) (Assay ID Hs00165814_m1), 

aggrecan (ACAN) (Assay ID AIQJAP5), and type II collagen (COL2A1) (Assay ID 

Hs00156568_m1)] were customized by Applied Biosystems as part of their Custom TaqMan® 

Gene Expression Assays. Eukaryotic 18S RNA (Assay ID Hs99999901_s1 ABI) is carried out as 

the endogenous control gene. Real-time PCR will be performed with iCycler iQ™ Multi Color RT-

PCR Detection System (Bio-Rad Laboratories, Hercules, CA). The cycle parameters are 50°C for 

2 min, hot start at 95°C for 10 min followed by 40 cycles of denaturation at 95°C for 15 seconds, 
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and annealing and extension at 60°C for 1 min. The cycle threshold (Ct) values for 18S RNA and 

that of samples will be measured and calculated by computer software (Perkin-Elmer, Wellesley, 

MA). Relative transcript levels will be calculated as χ = 2-
ΔΔ

Ct, in which ΔΔCt = ΔE - ΔC, ΔE = Ctexp - 

Ct18s, and ΔC = Ctct1 - Ct18s. 

 

Statistical analysis 

ManneWhitney U test was used for pairwise comparison. All statistical analyses were performed 

with SPSS 13.0 statistical software (SPSS Inc., Chicago, IL). ρ values less than 0.05 were 

considered statistically significant.  
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RESULTS 

 

Both SDSC and NPC deposited DECMs enhanced NPC proliferation 

Both fetal and adult SDSCs and NPCs were used to deposit DECMs (SECM and NECM). To 

evaluate proliferative effect exerted by fetal and adult SECMs or NECM, human adult NPCs were 

respectively seeded on three different substrates: PL, FE or AE (PL, FNPE or ANPE).  Cell 

morphology showed that NPCs expanded on PL was sporadic and randomly clustered; in 

contrast, NPCs grown on both DECMs exhibited a glistening look and spindle-like shape (Figure 

7.1A and 7.2A). For SECM groups, cell expansion on FE yielded the highest cell number followed 

by AE with PL having the lowest cell number (Figure 7.1B). Proliferation index data was also 

consistent with the cell counting (Figure 7.1C). For NECM groups, highest cell number was 

observed in ANPE instead of FNPE (Figure 7.2B). ANPE expansion yielded a 1.8-fold increase 

and FNPE expansion yielded a 1.2-fold increase in proliferation index compared with PL 

expansion (Figure 7.2C).  

 

Our flow cytometry data showed that MSC surface markers, CD29 and CD90, were down-

regulated slightly in percentage but heavily at the median fluorescence intensity (MFI) in both 

DECMs expanded NPCs despite an up-regulation in MFI for CD105 in FNPE from NPCs (Figure 

7.3A and 7.3B).  

 

NPC redifferentiation capacity enhanced by NPC- but not SDSC-derived DECM 

To determine the influence of DECM expansion on NPC redifferentiation potential, expanded 

NPC were induced for chondrogenic differentiation for up to 21 days. After 10 or 21-day 

incubation, pellets were evaluated using histology, immunostaining and biochemistry analysis.  

 

As shown in Figure 7.4A, for SECM pretreatment groups, compared to pellets from PL, AE and 

FE expanded pellets were smaller in size though pellets from FE is slightly larger than pellets 

from AE at both day 10 and day 21. Biochemistry data and stronger staining for sulfated GAGs 

and collagen II also showed highest chondrogenesis in PL expanded NPC pellets (Figure 7.5A). 

 

Intriguingly, for NECM groups, pellets from PL were smallest in size at both time points while 

those from FNPE were the largest (Figure 7.4B); the FNPE pellets also contained the highest 

GAGs content analyzed by biochemistry (Figure 7.5B). The enhanced DNA content in FNPE and 

ANPE pellets was also shown at both day 10 and day 21. The chondrogenic index (ratio of GAG 

to DNA content) of FNPE pellets is almost 2-fold of PL pellets. Stronger staining for sulfated 

GAGs by Alcian Blue and immunostaining for collagen II also showed the same trend, which was 
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that PL expansion down-regulated while DECM expansion upregulated chondrogenesis in NPCs 

with FNPE being the highest (Figure 7.4B). 

 

Down-regulation of hypertrophic, catabolic and senescent markers in NPC-derived DECM 

rejuvenated pellets  

Our real-time PCR data also suggested that expression of hypertrophic markers (COLX, RUNX2, 

ALPL, MMP13) was up-regulated in SECM pretreated NPCs, while down-regulated in NECM 

expanded NPCs compared to their own respective PL control. Similarly, the catabolic matrix 

genes that associated with inflammatory (COX2, MMP3, ADAMTS4, ADAMTS5, TIMP1) were 

also down-regulated in NECM expanded NPCs but up-regulated in SECM pretreated NPCs. The 

senescence marker genes (CASP3, P53, SIRT1, BMI1) also showed similar trend (Figure 7.6). 
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DISCUSSION 

 
Low back pain is often related to intervertebral disc (IVD) degeneration and herniation that results 

from a progressive loss of proteoglycans and water content in the nucleus pulposus (NP). 

Autologous disc cell-based therapy is a promising approach for IVD regeneration. Unfortunately, 

the quantity and quality of the autologous herniated NP cells (NPCs) is limited and compromised. 

The current in vitro expansion of NPCs is insufficient. Our previous studies have shown the 

rejuvenation of porcine NPCs by SDSC-deposited SECM, which significantly enhanced NPC 

proliferation and redifferentiation into chondrocyte like cells.16;17 In this study, for the first time, we 

have shown that human NPCs could be rejuvenated by its own deposited matrix, especially the 

young matrix. Although the proliferative potentials of human NPCs can be rejuvenated by both 

SDSC- and NPC-deposited DECMs, the NPC-deposited NECM is superior to SDSC-derived 

DECM in enhancing the redifferentiated chondrogenic potentials in herniated NPCs.  

 

In this study, the NP tissue that we collected from patients was the part of the herniated disc, 

which could be the degenerated NP tissue. There have been only few studies evaluated the 

quality of these NPCs. Up-regulated senescence associated markers as well as decreased 

telomere length and loss of replicative potential have been shown in degenerated human IVD19-21 

or with progressing age.22 Hegewald et al. observed significant signs of dedifferentiation and 

degeneration as well as very limited regenerative potential for cells harvested from herniated disc 

tissue of patients aged around 45-year old.23 Ciapetti et al. suggested that the tissue in the 

degenerated disc is disorganized and the paucity of cells out of cluster/chondron association 

make the IVD-derived cells an unreliable source for disc regeneration.24 Oppositely, degenerated 

porcine NPC had been shown to have a higher colony-forming rate and a higher proliferation rate 

though the differentiation towards chondrogenic lineage is lower than the healthy NPC in vitro.25 

Degenerated human NPC also exhibited regenerative potentials when treated with TGFβ3 and 

dexamethasone by Abbott et al..26 Our characterization of the proliferative and chondrogenic 

potential evaluation also supported that adequate proliferation and redifferentiation potentials 

were possessed in human NPCs from herniated disc. This provided a precious opportunity for 

application of autologous NPCs in future patients. 

 

We also observed the expression of MSC surface marker in NPCs from herniated disc and their 

significantly enhanced potentials to be rejuvenated towards more proliferative and 

redifferentiation especially after the NPC-derived NECM expansion. It is plausible that these 

NPCs possess mesenchymal stem cell (MSC) like stemness. However, it is still debatable 

whether NP tissue, especially the degenerated NP tissue contains MSCs. A potential stem cell 

niche was proposed in the IVD in four different species.27 Blanco et al. suggested that MSCs 
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existed in human degenerated NP and exhibited similar properties except the adipogenic 

potential as bone marrow-derived stem cells that came from the same subjects.28 Although 

further investigation is needed before we reach a conclusion, the further promoted the yield of cell 

number and proteoglycan synthesis in NPCs during redifferentiation especially by the young 

NECM matrix suggested that the three-dimensional DECM could serve as an ex vivo expansion 

system or “niche” for rejuvenating these NPCs from herniated disc. 

 

Interestingly, the rejuvenated NPC redifferentiated pellets showed lower expression of 

hypertrophic, catabolic and senescent marker genes. The altered NPCs feature behavior during 

IVD degeneration include increased hypertrophic differentiation,29 increased catabolic metabolism 

and decreased anabolic metabolism30-33 and induced cell death.34 Addition of growth factors such 

as TGFβ1,35 TGFβ3 and dexamethasone,36 IGF-1 and BMP-7,37;38 have been shown to increase 

the expression of proteoglycans and collagens in degenerated NPCs in vitro. However, the 

confirmation of the effect of these growth factors treatment in vivo and detailed dose-dependent 

study as well as long-term safety study in large animal model are still higly anticipated as 

suggested by Masuda et al..39 Our data indicated that the three-dimensional DECMs, especially 

young matrix could serve as expansion system for providing larger quantity of high quality NPCs 

without administration of exogenous growth factors.  

 

The application of acellularized NPC derived matrix for rejuvenating NPC is promising. The 

unique combination, quantity and organization of ECM components give rise to the tissue-specific 

structure and function. This is nowhere more evident than in this study that no attempt to emulate 

native ECM is better than the native ECM itself. Similarly, Mercuri et al. also showed that acellular 

porcine NP hydrogel could serve as scaffold for promoting NP regeneration when combined with 

human adipose-derived stem cells.40;41 Also NPC-derived acellular matrix facilitated the bone 

marrow-derived MSC differentiation towards NPC-like lineages.42 Our previous study also 

showed that DECM deposited by porcine NPC also benefited SDSC viability and guided its 

differentiation to NP lineage.17 As a tissue-specific DECM, it serves as a scaffold for rejuvenating 

herniated NPCs, especially the fetal NPC-derived young matrix.  

 

Our previous studies indicated that porcine NPCs can be rejuvenated by porcine SDSC-

deposited DECM towards more proliferative and chondrogenic potential.16,17 In this study, we did 

not observed the enhanced chondrogenesis in redifferentiated potential in NPCs. One of the 

possible explanations is the difference between porcine NPCs and human NPCs. Laminin is 

found to be highly expressed in immature NP tissue. Chen et al. suggested that with age, this 

unique laminin decreased both in porcine and human NPCs.43 The immunostaining of 3-month 

old porcine and 2-year old human showed some positive staining of laminin, but none were 
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observed in 24-month old porcine and 35-year old human. As laminin is an essential component 

of basement membrane surrounding the notochord during notochord formation and 

differentiation, the presence of laminin and receptors is unique to NP tissue of IVD. Also a soft 

(<720 pa) and laminin containing ECM substrate has been proved to promote the immature NPC 

morphology, cell-cell interactions, and proteoglycan synthesis.44 Our recent proteomic data of 

SDSC deposited SECMs suggested that laminin is missing.18 Based on above evidence, we 

highly suspected that the absence of laminin in SECMs is probably responsible for the 

unidentified enhancement of chondrogenesis in NPCs. The further investigation is ongoing. 

 

Our next step is to perform the microarray analysis of gene expression changes in three NPCs 

that expanded on different substrates and proteomics of both young and old NECMs. The 

identification of significantly changed genes could suggest important signaling pathways that 

manipulate the rejuvenation of NPCs by the NECMs. The critical component within the NECMs 

could be identified by proteomics data and facilitate future applications of biomaterials in NP 

tissue engineering and regeneration. Our purpose is to determine specific genes involved in 

DECM reprogramming and/or rejuvenation so as to find specific signal transduction pathways. 

Elucidating the underlying mechanism will help commercialize this technology in the near future, 

which could make clinical application of large-scale expansion of high-quality NP cells from 

degenerated disc patients a reality. 
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FIGURE LEGENDS 

 

Figure 7.1 (A) Cell morphology of passage 2 NPC during expansion on plastic flasks (PL) or fetal 

and adult SDSC derived DECM (SECM) (FE and AE) for two passages. Cell number was 

counted (B) and proliferation index was analyzed by flow cytometry (C). 

 

Figure 7.2 (A) Cell morphology of passage 2 NPC during expansion on plastic flasks (PL) or fetal 

and adult NPC derived DECM (NECM) (FNPE and ANPE) for two passages. Cell number was 

counted (B) and proliferation index was analyzed by flow cytometry (C). 
 

Figure 7.3 Mesenchymal stem cell surface markers (CD29, CD90 and CD105) were analyzed by 

flow cytometry after expansion on three different subtrates from both SECM (A) and NECM (B). 

 

Figure 7.4 Histology and immunostaining analysis of SECM (A) or NECM (B) pre-expanded 

NPCs pellets after 10 or 21 days chondrogenic induction. Gross appearance of the pellets, alcian 

blue staining for sulfated GAGs and immunostaining collagen II were displayed at both time 

points. 

 

Figure 7.5 Biochemistry analysis for GAGs and DNA content in SECMs expanded NPCs (A) or 

NECMs expanded NPCs (B) were measured at day 0, 10 and 21. DNA content of NPC pellets 

changes was normalized by the content of pellets at day 0. Chondrogenic index (the ratio of GAG 

to DNA) indicated the degree of chondrogenic differentiation of NPCs. 

 

Figure 7.6 Real-time PCR to examine the hypertrophic (COLX, RUNX2, ALPL, MMP13, VEGFA), 

catabolic metaboism (COX2, MMP3, ADAMTS4, ADAMTS5, TIMP1) and senescence (CASP3, 

P16, P21, P53, SIRT1, BMI1) gene markers was tested in SECM expanded NPC pellets (A) and 

NECM expanded NPC pellets (B). 
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C H A P T E R  8 : G E N E R A L  D I S C U S S I O N  

The objectives of this dissertation were to investigate the effect of conventional methods and the 

novel DECM expansion system on SDSCs for facilitating chondrogenesis and explore the 

potential cell sources of DECM; to characterize the rejuvenating effect of fetal SDSC deposited 

young DECM on adult SDSCs and its potential mechanisms; to apply the young DECM 

expansion system to the rejuvenation of primary NPCs from herniated human discs. The long-

term goal is to develop an efficient ex vivo expansion system with proliferation and chondrogenic 

potential rejuvenating capacities, which can provide a large quantity of high quality cells for 

cartilage engineering. The central hypothesis is that DECM deposited by human primary cells or 

stem cells can serve as an excellent ex vivo expansion system for cartilage regeneration. Due to 

the shortage of autologous chondrocytes, it is critical to identify a tissue-specific stem cell for 

chondrogenesis from various sources. The DECM based ex vivo stem cell expansion system has 

shown promising potential in maintaining stemness and facilitating chondrogenesis but it could be 

optimized. Understanding of the rejuvenation mechanism of DECM has moved forward through 

biophysical and biochemical analysis. The involvement of signaling pathways and potential 

epigenetic mechanisms are also subjected to scrutiny. 

 

8.1 Synovium Derived Stem Cells are a Tissue-Specific Stem Cell for Chondrogenesis 

	  
Adult stem cells are undifferentiated cells found among differentiated cells in a tissue or organ 

that can renew themselves and can differentiate to yield some or all of the major specialized cell 

types of the tissue or organ. The search for adult stem cells began in the 1950s, when 

researchers first discovered two populations in bone marrow. One population is the hematopoietic 

stem cells and the other is bone marrow stromal stem cells [also called BMSCs]. The MSC is 

known to be able to give rise to a variety of cell types, among them osteocytes, chondrocytes, 

adipocytes, and other kinds of connective tissue cells. A wide variety of MSCs have been isolated 

from a number of different tissues and organs, suggesting that the homeostatic maintenance of 

most tissues is capable of regeneration and repair and is ultimately mediated by such tissue-

specific stem cells. The tissue-specific stem cell is derived from a known tissue type and can 

respond to organ-specific signals when recruited to that organ; in other words, the differentiation 

potential reflects the local cell population.1;2 

 

Recently, SDSCs have been proposed as tissue-specific stem cells for chondrogenesis for the 

following reasons. First, synovium and cartilage share an adjacent anatomical location. The 

synovium is a fluid-filled cavity that surrounds joint cartilage and tendons and facilitates smooth 

movement of joints. Unsurprisingly, chondrocytes and SDSCs share a similar gene expression 
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profile.3 SDSCs, like chondrocytes, have been shown to accumulate type II collagen and express 

the gene for proteoglycan 4, but do not accumulate large amounts of type X collagen.4;5 Although 

type X collagen is a marker of hypertrophy, it is sometimes expressed by deep-zone 

chondrocytes. Also, the cells of the synovium and articular cartilage develop from the same pool 

of precusor cells and remain in close relationship into adulthood.6-8 Second, synovium can serve 

as a stem cell niche/microenvironment for stem cells to reside and functions in conjunction with 

nurturing cells to retain pluripotency, prevent apoptosis, and inhibit excessive cell replication.9 A 

recent study from Kurth et al. demonstrated that a slow-cycling, MSC-like cell population existed 

in murine knee joints, which spread out through synovium, in both the intimal layer and subintimal 

layer.10 Upon injury, the synovium and cartilage function together in the absence of medical 

intervention, further demonstrating the tissue-specific capacity of SDSCs. Third, our recent study 

also showed porcine SDSC-derived DECM can provide a three-dimensional environment for 

promoting proliferation and chondrogenic potential without a concomitant increase in 

adipogenesis and osteogenesis.11 In Chapter 3, addition of FGF-2 during cell expansion 

promoted not only SDSC chondrogenic potential but also hypertrophic marker expression. 

However, expansion on DECM deposited by SDSCs could enhance chondrogenic potential 

without increase of hypertrophy. As shown in Chapter 4, the tissue-specificity of SDSC could be 

further enhanced by DECMs as demonstrated by increased chondrogenic but not osteogenic and 

adipogenic potentials. Interestingly, in Chapter 6 we discovered that young DECM derived from 

fetal SDSC rejuvenated adult SDSCs with higher proliferation and chondrogenic and adipogenic 

but not osteogenic potential. The most feasible explanation is that fewer tissue-specific signals 

were provided by young DECM than adult DECM. Also SDSCs have been reported to possess 

superior chondrogenic and adipogenic potentials rather than osteogenic potential.12 

 

8.2 Reconstruction and Optimization of Decellularized Stem Cell Matrix Based Ex Vivo 

Expansion System for Cartilage Degeneration 

	  
A stem cell niche is a specific site in adult tissues where stem cells reside and undergo self-

renewal and differentiation by producing large numbers of progeny. Ever since the concept of 

“niche” was proposed by Schofield in 1978 to describe the physiologically limited 

microenvironment of bone marrow in which the hematopoietic stem cells reside,13 the niche 

hypothesis has been supported by a variety of co-culture experiments in vitro.14-17 Structurally, the 

niche is formed by supporting cells that provide a microenvironment for stem cells and the signals 

emanating from the supporting cells.18-20 However, it still remains a major challenge to accurately 

define the precise cellular components and anatomical structure of the niche. 
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The ECM comprises a scaffold of collagens and other structural proteins that are interlaced with 

proteoglycans which, together, control the local mechanical environment and contribute to the 

“stem cell niche” microenvironment through their own signaling moieties and their ability to bind 

growth factors, cytokines, enzymes, and other diffusible molecules. Compared to traditional 2D 

culture, culturing stem cells in 3D environments provides another dimension for external 

mechanical inputs and for cell adhesion, which dramatically affects integrin ligation, cell 

contraction, and associated intracellular signaling.21;22 Furthermore, the 3D environment might be 

necessary to model morphogenetic and remodeling events that occur over larger-length scales. 

The mechanisms by which nanotopographic cues derived from ECM influence stem cell 

proliferation and differentiation are not well investigated yet but appear to involve changes in 

cytoskeletal organization and structure, potentially in response to the geometry and size of the 

underlying features of the ECM. That is, changes in the feature size of the substrate may 

influence the clustering of integrins and other cell adhesion molecules, thus altering the number 

and distribution of focal adhesions. The composition and function of adhesions characterized in 

3D matrices derived from tissues or cell culture were demonstrated to be different from focal and 

fibrillar adhesions characterized on 2D substrates in their content of α5β1 and ανβ3 integrins, 

paxillin, other cytoskeletal components, and tyrosine phosphorylation of FAK.23 Relative to 2D 

substrates, 3D matrix interactions also display enhanced cell biological activities and narrowed 

integrin usage. Similarly, in recent years, the importance of ECM has been recognized due to the 

application of decellularized tissue matrix in organ or tissue regeneration.24-30 Partially, it is 

because of the highly conservative nature of ECM components between species. Different from 

the above studies, we deposited ECM using stem cells and decellularized it for reconstructing this 

ex vivo microenvironment for cartilage engineering due to its demand of a large quantity of high 

quality cells. Our first success came from the porcine SDSC deposited DECM, which enhanced 

the proliferation and chondrogenic potential when applied as an expansion system compared to 

traditional expansion on plastic flask for porcine SDSC.11 Human SDSC (both fetal and adult 

SDSC) deposited DECM also exhibited the same effect as shown in Chapter 4, Chapter 5 and 

Chapter 6. The investigation of the DECMs deposited by adipose and urine derived stem cells 

and dermal fibroblasts in Chapter 4 also showed that, despite the differences in these DECMs, all 

were able to enhance the self-renewal and chondrogenic potential compared to the 2D culture. It 

not only demonstrated the advantage of 3D DECMs over 2D plastic culture in facilitating ex vivo 

expansion but also suggested that there are common core components among all these DECMs. 

The exploration of these similarities in future studies would benefit the development of an ex vivo 

expansion system for cartilage engineering.  

 

Communication within the niche is essential for the maintenance of proper stem cell function and 

for determining the rate of stem cell self-renewal. Soluble factors may act locally or may diffuse 
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throughout the niche to direct stem cell fate decisions. Studies indicate that supporting cells, 

which are located adjacent to stem cells, secrete soluble factors that are required for maintaining 

stem cell identity and for specifying stem cell self-renewal.31-33 Soluble factors, such as growth 

factors and cytokines, are important for the initiation and control of stem cell differentiation. A 

wide variety of soluble growth factors, such as FGF-2,34 TGF-β,35 vascular endothelial growth 

factor, and hepatocyte growth factor,36 bind to a component of ECM, which greatly slows their 

diffusion and therefore serves to fine-tune their local concentrations and gradients.35;36 Matrix 

binding can create locally higher concentrations of autocrine growth factors,37 allowing smaller 

amounts of the factor to signal more effectively.38 In this dissertation, we also investigated the 

influence of soluble growth factor, FGF-2, on SDSC stemness in Chapter 3. We showed that 

addition of FGF-2 during cell expansion significantly increased SDSC proliferation and 

chondrogenic potential. The combination of DECM with FGF-2 further enhanced the proliferation 

and chondrogenic potential in recellularized SDSCs, suggesting a synergistic effect between 

them. However, unlike DECM, the addition of FGF-2 also significantly increased the expression of 

hypertrophic markers (type X collagen).  

 

The physiological condition, including oxygen tension, is an important component of the stem cell 

microenvironment and has been shown to play a role in regulating both embryonic and adult stem 

cells. Low oxygen tensions (hypoxia) maintain undifferentiated states of embryonic, 

hematopoietic, mesenchymal, and neural stem cell phenotypes and also influence proliferation 

and cell-fate commitment. Despite the presence of a decreased osteogenic and chondrogenic 

potential when induced to differentiate in hypoxic conditions,39 adipose stem cells exhibited 

increased chondrocytic markers when expanded in hypoxic conditions and differentiated in 

normoxic cultures.40 The effect of hypoxia in committing adipose stem cells to chondrocytes is 

thought to be mediated by hypoxia-inducible transcription factor (HIF)-1α. Inhibition of HIF-1α 

leads to decreased chondrogenic potential, normal osteogenic potential, and enhanced 

adipogenic potential.41 The role of hypoxia and HIF-1α in cell differentiation is tissue-specific, 

because HIF-1α maintains the stem cells in an undifferentiated state, inhibits differentiation of 

mesenchymal cells into osteoblasts, adipocytes, and myocytes, and stimulates differentiation into 

chondrocytes.42-45 These data support the role of oxygen tension as an important factor in the 

determination of cell fate and maintenance of stemness in adipose and bone marrow derived 

MSCs. In Chapter 3, application of low oxygen level (5%) in combination with FGF-2 or DECM 

during expansion significantly promoted proliferation with strong chondrogenic potential, 

suggesting the maintenance of stemness by hypoxia. One limitation of this study is that 

expression of HIF-1α was not analyzed. In Chapter 5, we also investigated the influence of 

hypoxia during pellet culture for chondrogenesis. Our data showed that low oxygen level 
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increased the pellet size, GAG content, and chondrogenic marker expression after a 14 day 

induction. Thus, the low oxygen level in pellet culture for chondrogenesis is established. 

 

8.3 Biophysical and Biochemical Explanations of Decelluarized Extracellular Matrix 

	  
Another key challenge in stem cell research is to learn how to direct the differentiation of stem 

cells toward specific fates. Other than the components of the ECM, a variety of cues including 

biophysical factors, such as the stiffness of ECM and extrinsic mechanical factors as well as cell 

shape changes, are also capable of influencing stem cell proliferation, self-maintenance, and 

differentiation toward specific cell phenotypes. Recently, the elasticity of the matrix 

microenvironment was identified as regulating stem cell fate. By changing the stiffness of the 

substrate, human MSCs could be directed along neuronal, muscle, or bone lineages.46 Since 

then, substrate stiffness has been applied to modulate the proliferation and differentiation of 

embryonic stem cells47;48 as well as certain types of adult MSCs.49;50 The Ras superfamily, 

especially the Rho subfamily members that are well known to regulate the cytoskeleton, cell 

growth, and transcription, is reported to be involved in substrate stiffness sensing.51 Rho-

stimulated contractility drives stress fiber and focal adhesion formation and the up-regulation of α-

smooth muscle actin correlates with contractility on a rigid substrate.52;53 RhoA and downstream 

Rho kinase (ROCK) also mediate substrate rigidity-regulated Ca2+ oscillation, which determines 

the physiological functions of human MSCs.54 Rac1 is another Rho family protein that can be 

activated by myosin inhibition, which also has provided evidence for the critical role of contractility 

in substrate sensing.55;56 Understanding has increased about how underlying matrix stiffness can 

guide stem cells toward a specific developmental lineage,46;57 but matrix stiffness alone is likely to 

be insufficient to achieve complete terminal differentiation.46 In order to understand how DECM 

exhibits influence on recellularized cells, we measured the elasticity of different DECMs and of 

cells expanded on different substrates in Chapter 4 and Chapter 6. Not surprisingly, all the DECM 

expanded cells exhibited a lower elasticity compared to plastic flask expanded cells. The 

maintained or enhanced stemness in the DECM expanded cells could be due to its elasticity 

mimicking the in vivo niche. Additionally, the lower elasticity of fetal SDSC DECM compared to 

adult SDSC DECM also resulted in a lower elasticity in recellularized adult SDSCs in Chapter 6, 

which could explain the enhanced rejuvenating effect by young DECM. In Chapter 4, we also 

compared the differences of elasticity in four different DECMs and cells expanded on them. As 

expected, SDSCs expanded on all DECMs exhibited lower elasticity than cells expanded on 

plastic flasks. However, the elasticity does not match the enhanced chondrogenic potential in 

cells, which confirmed that matrix stiffness is not sufficient to determine lineage differentiation. 

Alternatively, matrix stiffness could be an underlying mediator of growth factors, such as TGFβ-

driven processes, regulating the equilibrium between storage and release of a host of matrix-
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bound growth factors.58 Although matrix stiffness is not the most effective at driving a specific 

lineage differentiation, it is an important determinant and co-factor for directing cell differentiation 

induced by soluble biochemical factors. Stem cells need to integrate microenvironmental cues 

from both soluble biochemical factors and ECM to regulate differentiation. 

 

In this dissertation, we also employed scanning electron microscopy to observe the morphology 

of cells and the substrates (plastic flasks or DECMs) and interactions between them in Chapter 4 

and Chapter 6. The most striking difference is between the cells expanded on plastic flasks and 

DECMs. The well-spread and enlarged morphology accompanied with proliferation arrest 

signified the development of senescence. The less spread and spindle shaped cells expanded on 

DECMs showed a higher proliferation rate and chondrogenic potential in the later stage. Cell 

shape is defined within the niche by the constraints imposed by the surrounding ECM on cells 

during development and adulthood.59;60 Alterations in adhesive interactions and crosstalk 

between the ECM and the cells work to define each other. Evidence suggests that physical 

control of cell shape alone can act as a potent regulator of cell signaling and lineage 

differentiation.61 As suggested in a recent review, a thorough understanding of the physical 

properties of ECM could facilitate the development of biomaterials to display and deliver stem cell 

regulatory signals in a precise and near-physiological fashion, and serve as a powerful artificial 

microenvironment in which to study and instruct stem cell fate both in vitro and in vivo.62 

 

ECM is primarily composed of various collagens, laminins, and glycoproteins serving as 

substrates for a myriad of adhesion molecules including integrins, cadherins, and discoidin 

domain receptors. Cell-matrix interaction-induced signaling constitutes a critical determinant of 

cell behavior, making ECM composition a key factor in the stem cell niche. In Chapter 6, we 

applied proteomics to analyze the components of SDSC DECM from young and old donors. We 

identified interesting discrepancies in the composition of these matrices, such as young matrix 

contains more fibrillin-2, clusterin, and tenascin C and old matrix possesses more biglycan, 

decorin, dermatoponin, elastin, periostin, thrombospondin-1, and TGF-β1. Existing literature has 

shown that the young matrix contains proteins involved in cell proliferation while the old matrix 

possesses components that prefer cell differentiation and apoptosis. One of the future directions 

to investigate the mechanism is to focus on a specific protein that may influence the cells the 

most. Identification of the critical protein would benefit the development of biomaterials for 

cartilage engineering. Interestingly, we found no laminin in young or old matrix. We also 

confirmed our proteomics data with immunofluorescence staining. Full characterization of DECM 

using biophysical and biochemical analysis will offer great opportunities to biomaterials 

technologies, which can be designed to act as carriers for local delivery of stem cells, supporting 

cells, or molecular niche cues.  
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8.4 Signaling Pathways Involved in the Rejuvenating Effect of Decellularized Extracellular 
Matrix 

	  
The rejuvenating effect of DECM was mainly manifested in maintaining and promoting stemness 

of recellularized cells. MAPK and Wnt signaling pathways are two key pathways involved in cell 

proliferation and chondrogenic potential. As a major family of ECM receptors that transmit 

information from the matrix to the cells, integrins play a role as key mediators for cell proliferation. 

Integrin-mediated cell adhesion is required for cell motility and affects cell proliferation.63;64 

Ligands present in ECM, such as vitronectin, fibronectin, laminin, and collagen, are recognized by 

specific integrins, such as integrin α5β1 for fibronectin.65 Integrin-ECM interaction can activate 

signaling cascades, such as ERK1/2, MAPK, PI3-K, and AKT.66;67 It is agreed that sustained ERK 

activation requires cooperative signaling between receptor tyrosine kinases and integrins.64 The 

induction of cyclin D1 mRNA has most frequently been attributed to the activation of ERKs.68 

However, only a sustained ERK signal is not sufficient to induce cyclin D1 protein. PI3-K is also 

required for the expression and stability of cyclin D1.69;70 in addition, FAK is an important 

regulator of cyclin D1. Overexpression of wild-type and dominant negative FAK cDNAs showed 

that integrin-dependent phosphorylation of FAK plays an important role in phosphorylation of ERK 

and induction of cyclin D1.71  

 

The Wnt/β-catenin pathway is related to stem-cell self-renewal and proliferation. Maruyama et al. 

found that, besides directly regulating renewal and proliferation, activation of β-catenin also alters 

the lineage commitment of MSCs to differentiate into chondrocytes through cooperating with FGF 

receptor 1 and balancing between BMP and FGF signaling pathways.72 Since Wnt signaling is 

also involved in inhibiting adipogenesis of MSCs through β-catenin dependent and independent 

pathways,73 tumor necrosis factor-alpha (the activator of the NF-κB pathway) inhibits 

adipogenesis by the β-catenin/TCF4-dependent pathway.74 Interactions between NF-κB and β-

catenin/TCF pathways also play a part in regulating MSC proliferation and differentiation.75 

However, balance among signaling pathways is more important in regulating MSCs through 

lineage differentiation, as well as maintaining stemness. Coordination between Wnt signals and 

other secreted signals contributes to the regulation of stem cell self-renewal in tissue 

microenvironments.76 Wnt signals are not only involved in ECM-mediated enhancement of stem 

cell proliferation, but also contribute to retaining or promoting differentiation potential. Czyz and 

Wobus reported evidence that the interaction of stem cells with ECM via integrins determines the 

expression of the signaling molecules BMP-4 and Wnt-1, resulting in the activation of the 

mesodermal and neuroectodermal lineage, respectively.77 Defective Wnt signaling, however, 
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affects ECM synthesis, possibly being responsible for the etiology of the segmental premature 

aging disease Hutchinson-Gilford Progeria because mice exhibit skeletal defects and apoptosis in 

major blood vessels proximal to the heart.78 This study provided insights into the role of Wnt 

signaling and ECM in aging. 

 

Wnt signaling plays an important role in chondrocyte maturation. Wnt inhibitors were reported to 

promote chondrogenic differentiation of human MSCs.79 Moreover, Wnt signaling may play a 

“dual” role in chondrogenesis, depending on the specific Wnt ligand responsible for the signaling 

and the development stage when Wnt is engaged. During chondrogenesis in the chicken limb, 

Wnt5a delays the maturation of chondrocytes while Wnt4 accelerates the process.80 Like Wnt5, 

Wnt7a also induces a chondro-inhibitory effect, which involves the MAPK pathway and activator 

protein-1 transcriptional activity.81 Wnt14, another member of the Wnt family, is expressed in the 

chondrogenic region and has been reported to arrest and even reverse chondrogenic 

differentiation.82 β-catenin, the central player in canonical Wnt signaling, is required during the 

early differentiation and late-stage maturation of chondrocytes, but the canonical pathway inhibits 

the progression of chondrocyte differentiation. Constitutively active β-catenin can prevent chicken 

chondrocytes from differentiation by down-regulating Sox9 and type II collagen;83 meanwhile, 

mice with elevated β-catenin activity resulting from secreted frizzled-related protein deficiency 

exhibit accelerated chondrocyte maturation.84 

To the best of our knowledge, there has been no study investigating MAPK and Wnt signaling in 

3D DECM expanded cells and followed condensation and chondrogenesis. In Chapter 6, we 

found that MAPK (especially ERK, JNK, and p38) and Wnt signaling were actively involved in 

young ECM-mediated adult cell expansion and chondrogenic differentiation. The down-regulation 

of p-ERK in young ECM expanded adult SDSCs indicated a decrease in cell senescence. The 

increase of p-ERK in cell condensation and decrease in 10-day chondrogenic induction could be 

explained by the dual role of p-ERK in promoting chondrogenesis in the early stage and inhibiting 

it in the later stage. Our data also showed that the canonical Wnt3a signal is downregulated in 

ECM treated adult SDSCs and remained at a comparable level during chondrogenesis with 

plastic expanded adult SDSCs. In contrast, Wnt5a and Wnt11, the non-canonical signals, were 

dramatically up-regulated in ECM treated adult SDSCs, especially in the young ECM group. The 

same trend was observed in chondrogenic induced pellets as well.  

 

Two tumor-suppressor proteins, p53 and pRB, are the central activating pathway of senescence. 

Senescence stimuli activate p53, which then induces pRB related senescence by activating p21, 

the transcriptional target of p53. This senescence is reversible by the subsequent inactivation of 

p53.85 The p53-p21-pRB pathway has also been demonstrated as playing a more important role 

in senescent nucleus pulposus chondrocytes in vivo.86 In addition, the p53/p21 pathway is 
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activated by excessive activation of Wnt/β-catenin signaling, which leads to MSC senescence as 

well.87 The induction of caveolin 1 up-regulates p53 and p21 and down-regulates pRB. Caveolin 

overexpression also activates the p38 MAPK pathway, suggesting that both of these pathways 

are involved in mediating chondrocyte senescence.88 Caveolin 1 overexpression has been shown 

to be responsible for loss of adipogenic differentiation abilities in senescent human MSCs.89 

Consistently, a decreased level of p21 and caveolin 1 expression was observed in low-density 

seeding SDSC along with the retained the stemness in Chapter 2. Low-density seeding of SDSCs 

also expressed lower levels of p-ERK and p-JNK but a higher level of p38 MAPK expression.  

 

8.5 Decellularized Stem Cell Matrix: A Potential In Vitro Model of Epigenetic Application for 

Cartilage Regeneration 

	  
Decellularized tissue matrix has proven to be beneficial in regenerative medicine;90 it serves as a 

biological scaffold for selective cell types allowing increased proliferation. The characterization of 

decellularized cartilage ECM suggested that it is not only a complex 3D structure full of 

biochemical signals, but also a mechanotransduction device.91 This attribute makes 

decellularized cartilage ECM a perfect candidate for cartilage tissue engineering. Encouraging 

preliminary animal and clinical data have been reported.92-94 More interestingly, DECM deposited 

by human MSCs (DSCM) could be used as an in vitro expansion system.95 DSCM promoted cell 

attachment, spreading, migration, proliferation, and the maintenance of responses to 

differentiation signals.96 The rejuvenating effect of DSCM has been observed in not only adult 

stem cells such as SDSCs (Chapter 3, 4, and 6)97-99 and BMSCs100 but also fetal SDSCs 

(Chapter 5) and primary cells such as articular chondrocyte101;102 and nucleus pulposus cells 

(Chapter 7).103;104 In this dissertation, we also found that DSCM deposited by fetal SDSCs 

provided a robust rejuvenating effect in promoting adult SDSC proliferation and chondrogenic 

capacities in Chapter 6.105 The increased proliferative and chondrogenic potentials may possibly 

provide large quantities of high quality cells in an autologous implantation strategy, which has 

been encouraged by a recent minipig study in which DSCM-expanded SDSCs were injected 

intraarticularly to treat partial-thickness cartilage defects.106 

 

Other than the mechanisms mentioned above, the connections of environmental cues to 

chromatin and associated signaling factors that are involved in early epigenetic regulation of 

cartilage regeneration have also been proposed. Several potentially related environmental factors 

including aging, growth factors, hypoxia, inflammatory factors, mechanics, and oxidative stress 

that may serve as epigenators (a signal that emanates in the cellular environment and initiates an 

intracellular pathway that triggers expression of the epigenetic phenotype) in cartilage 

regeneration have been proposed.107 The rejuvenation effect of DSCM is supported by its 
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excellent ability in managing environmental factors. DSCM deposited by fetal SDSCs aided in the 

protection of expanded cells from senescence in Chapter 5.108 DSCM expanded SDSCs showed 

robust resistance to hydrogen peroxide-induced oxidative stress.99 Our unpublished data 

suggested that DSCM expanded SDSCs exhibited an up-regulated ability to resist IL-1 β -

mediated inflammation. The proteomics data in Chapter 6 showed that DSCM is also rich in 

growth factors and acts as a reservoir for the needs and demands of the cell.105 The addition of 

hypoxia and FGF-2 in the DSCM expansion system improved expanded SDSC proliferative and 

chondrogenic potentials in Chapter 3.98 The presence of hypoxia alone also enhanced the 

rejuvenating effect of the DECM on nucleus pulposus cells.103 

 

While the mechanisms involved in DSCM rejuvenation remain unclear, Choi et al. showed that 

the restoration of senescent human diploid fibroblasts by matrix was regulated by epigenetic 

mechanisms; both Ku and SIRT1 were induced during restoration and were required for 

senescent cells to return to a youthful phenotype.109 Our microarray data also showed that both 

miR-140 and miR-145 were dramatically down-regulated during cell expansion and up-regulated 

during chondrogenic differentiation in DSCM pretreated SDSCs accompanied with enhanced 

proliferative and chondrogenic potentials, suggesting a pivotal role of miR-140 and miR-145 in 

DSCM mediated SDSC rejuvenation mechanisms (unpublished data). In response to 

environmental stimuli, miR-140 targeted multiple genes to play different roles during 

chondrogenic differentiation, endochondral bone formation, and osteoarthritis pathogenesis, as 

summarized by Hong and Reddi.110 Interestingly, miR-140 has been reported to target chemokine 

(CXC motif) ligand 12 (CXCL12) and ADAMTS-5 in equine cord blood-derived MSCs;111 its 

overexpression protected cartilage from antigen-induced arthritis and maintained cartilage 

homeostasis in a knockout mouse model.112 It also stimulated in vitro chondrogenesis by up-

regulating SOX9 and ACAN in human MSCs.113 SOX9 has been suggested as a downstream 

target gene of miR-145 or miR-449a, which directly or indirectly represses SOX9 and cartilage 

matrix gene expression in human primary chondrocytes, BMSCs, and a murine embryonic 

mesenchymal cell line C3H10T1/2.114-116 

 

In conclusion, we demonstrated that decellularized stem cell matrix is superior to conventional 

methods and provides a better microenvironment for ex vivo expansion of SDSCs while 

maintaining its stemness. Decellularized matrix derived from young stem cells could rejuvenate 

adult stem cells toward proliferation and chondrogenesis. This novel expansion system could also 

be applied to restore the proliferative and redifferentiation potentials in herniated nucleus 

pulposus cells as well.  
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