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COMPUTATIONAL MODELS OF PARTICLE SIZE EFFECTS ON
BRITTLE OXIDE SCALE EROSION

Ravi Tangirala

(ABSTRACT)

Metals and alloys designed for machines at elevated temperatures have

microstructures and chemistries optimized to provide strength and resistance to oxidation.

The majority of the commercial high temperatures metal or alloys intended to use at

temperatures below 850o C or so rely on the formation of a continuous surface layer of

essentially oxide scale for further oxidation resistance.  Erosion of these machine parts by

the small solid particle entrained in the liquid or gaseous working environment is a

serious problem in many industrial applications.  Numerous experiments have been

conducted to obtain empirical relations for predicting material loss during erosion and to

arrive at an appropriate material for a particular working environment.  Arrival of many

new materials and surface coatings being used for different applications demand

analytical models that are more generic in applying and predicting the volume loss due to

erosion.  The current thesis work is focused on finite element modeling that takes into

account various boundary conditions and predicts the loss of material due to erosion.

Two models, aluminum oxide model and iron/iron-oxide model were developed

using IDEAS and analyzed using LS-DYNA3D.  The aluminum oxide model was used to

validate the computational model with the experimental work of Allan Levy.  The results

indicated the correlation with the experimental observations.  The same procedure is

extended to estimate the material loss for iron/iron-oxide model.  Several parameters such
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as size of the erodent, temperature, velocity of the erodent, angle of attack were varied

and the influence on volume loss of oxide layer was studied.  The results were presented

in the form of stress contours and the graphs between the volume loss in mm3 and the

parameter affecting erosion.
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CHAPTER 1

INTRODUCTION

Erosion and corrosion are important material degradation mechanisms

encountered in many engineering systems.  Erosion is a complex phenomenon involving

not only material deformation but also its fracture.  The degradation of rocks lying on the

seashore is a typical example of pure erosion.  While erosion happens to be a physical

phenomenon, corrosion is a chemical one in which, metals or alloys when subjected to

elevated temperatures or exposed to various environments undergo oxidization.  The

damage caused by the combined effect of both erosion and corrosion can be enormous

and catastrophic.

The erosion of materials by surface impact of hard particles is one of several

forms of material degradation classified as wear and also known as solid particle erosion.

Erosion and corrosion are serious problems in many industrial operations such as thermal

power plants, aircraft gas turbine engines, pneumatic bulk transport systems, coal

liquification or gasification plants, ore or coal slurry pipe lines.  These systems may work

at high temperatures and involve the transport of solids in liquids or gases.  But this

damage is more predominant in gaseous medium than in liquid medium.  In some

situations erosion is a useful application as a cutting process.  Basically, the material

removal processes in erosion are similar to that of grinding or single tool cutting.  An

individual tool or particle displacing or fracturing the work surface removes material.

The erosion prone joints, corners, and attachment of components in machinery and other

devices impart severe life limitations due to the progression of wear.  As such, material
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loss determination becomes very important in predicting the failure of the component

parts.

Components operating at high temperatures are frequently subjected to stresses

generated by thermal cycling or externally applied tensile loads.  Combustion generates

most of the high temperature applications, and the component is protected from the

environment by a surface oxide scale.  These scales are ceramic materials and do not

have the ductility of the underlying metallic component.  If they should crack under

applied loading or by particle impact, then the environment will have direct contact with

the metallic component that will cause enhanced corrosion.  Hence, the manner of failure

is also very important.

The eroded material is commonly given as a function of the impacting particle

velocity as well as particle diameter.  It is also termed as mass or material removed per

unit mass of the impacting particle.  It is given by the equation:  [1]

W = K V a D b (1.1)

Where  W = erosion wear per impacting particle,

V = impacting particle velocity,

            D = impacting particle diameter, and

 a and b are constants.

The velocity exponent generally depends on the material and the erosion conditions and

is in the range of 2.3 to 2.9.  The exponent values are different for ductile and brittle

materials therefore the phenomena by which they erode is also different.  In a ductile
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material, large plastic strains precede fracture and material is removed by the

displacement action of the cutting tool or impacting particle.  By contrast, in an ideally

brittle material plastic deformation is not present, and the material is removed by the

propagation and intersection of cracks ahead of and around the cutting tool or impacting

particle.

The properties and structures of the most commonly used metals or alloys have

relatively small effects on their erosion resistance [2].  There are various parameters that

influence the erosion-corrosion process. They are erodent velocity, mass of erodent,

temperature of the system, mechanical properties of the erodent and the target, angle of

attack of the erodent, impact duration, shape of the erodent and its size.  These

parameters have different effects on ductile and brittle materials.

The velocity of the erodent has direct impact on the erosion rate.  High

momentum and kinetic energy are associated with the high velocity erodents,

consequently they have the potential to cause more degradation to the impacting surface.

The impact duration is a function of the velocity of the erodent.  The mass of the erodent

also effects in the same manner, the more the mass the more the erosion rate.

The temperature and the environment are major parameters that affect the

oxidation.  The target surface becomes soft and ductile at elevated temperatures, which

facilitates the betterment of fracture properties and also Young’s Modulus is a function of

temperatures.

The elastic impact and the duration of the impact develops impulsive force is a

function of mechanical properties such as modulus of elasticity, bulk modulus, Poisson

ratio etc. of both the erodent and target.  The failure mode due to impact is decided on the
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basis of material behavior, such as brittle and ductile of the oxide scale as well as the

metal substrate.

The effect of angle of attack of the erodent is different for ductile and brittle

materials.  In brittle materials, the erosion loss is more at normal incidence where as in

the ductile materials maximum loss is at shallow angles.  During impact the normal and

the shear stresses are induced on the surface.

Numerous experiments have been conducted to get many empirical relations for

predicting material loss during erosion.  Arrival of many new materials and surface

coatings being used for different applications demand analytical models that are more

generic in applying and predicting the volume loss due to erosion.  Hence the current

work is focused on finite element modeling of Iron/Iron Oxide which takes into account

appropriate loading and various boundary conditions for predicting material loss due to

erosion.  The same procedure can be adopted in calculating erosion loss for various metal

oxides and various erodent particle shapes, velocities and angle of attack.

Chapter 2 deals with the literature review explain the process of erosion and

corrosion.  It also explains the theorems and empirical formulae dealing with the brittle

and ductile materials.  An in-depth review of the parameters affecting erosion is also a

part of chapter 2.

Theory of LS-DYNA3D software is described in chapter 3.  Initial sections

explain the preliminaries and the equations that support LS-DYNA3D.  The later sections

deal with the solid elements, hour glassing, contacts, material models and time

integration.
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Methodology used to develop the model is given in chapter 4.  The mechanical

properties of the oxide scale, particle, the metal substrate and the behavior of the

metal/metal-oxide are described.  The major assumptions involved in the modeling of the

system are listed.

 Chapter 5, which deals with finite element modeling, explains, clearly, the

different steps involved in the analysis of solid particle erosion.  At the end of the

chapter, the procedure used in calculating the erosion loss due to impact is explained.

The size effects of the impacting particle on erosion loss are explained in the

results.  The chapter 6 also has the results due to impact of the various velocities,

different temperatures and the angle of attack.

Finally, the conclusions drawn out of the result section are presented in chapter 7.

The recommendations for the future work were discussed at the end of the chapter.
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CHAPTER 2
LITERATURE REVIEW

To understand erosion and corrosion it is often convenient to separate materials

into two categories: ductile and brittle.  In a ductile materials large plastic strains precede

fracture, where as in brittle materials no plastic deformation is present and the material is

removed by the propagation of cracks ahead of particle impact.  Oxide scales on metallic

components are examples of brittle materials.  There have been several experimental and

laboratory studies of erosion–corrosion to explain their affect on ductile and brittle

materials.  The similarities and differences between those theories and mechanisms are

discussed in this chapter.

2.1 Classification of Erosion – Corrosion Process

Metals and alloys designed for machines at elevated temperatures have

microstructures and chemistries optimized to provide strength and resistance to oxidation.

The majority of the commercial high temperature metals or alloys intended to use at

temperatures below 850°C or so rely on the formation of a continuous surface layer of

essentially oxide scale for further oxidation resistance.  This oxide scale is slow growing

and reasonably adherent to the alloy.  Depending on the intended use of the temperature,

and to some extent on the chemistry of the metal, minimum levels of oxide scale have

been expected in order that can form a continuous protective external oxide layer.  In the

simplest terms, erosion–corrosion phenomenon can be separated into two regimes pure

erosion or pure corrosion.  Erosion of metallic surfaces at room temperature can be
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characterize as pure erosion where material degradation is dominated by highly erosive

conditions for very low corrosion rates.  Where as at high corrosion rates and mild

erosion conditions, corrosion dominates and is termed as pure corrosion.  In 1987 Kang et

al. [3] described the response of erosion–corrosion of material in terms of four regimes.

These include

1. Pure Erosion

2. Erosion Enhanced Oxidation

3. Oxidation affected Erosion

4. Pure Corrosion

The erosion at low temperatures or in inert gas medium is pure erosion.  The

oxide growth rate is comparable with the erosion rate in pure erosion.  In this regime

oxide can grow into a continuous and protective scale, and the damage caused by the

particle impact is confined to the oxide scale.  Further a study state can be reached where

the rate of oxide formation approaches the rate of oxide loss, and the thickness of oxide

remains constant.  In the third regime, oxidation affected erosion, the damage caused by

the particle impact extends not only to the thickness of the oxide scale but also to the

metal substrate.  The substrate is plastically deformed and a significant amount of erodent

fragments are embedded in the metal substrate forming a composite of embedded

particles, oxide scale and extruded metal.

Similar to the proposal of Kang et al., in an another model Hogmark et al. [4]

identified six different regimes of material removal depending on the relative

aggressiveness of the corrosive and erosive atmospheres.  They divided the region of

combined effect into four distinguishable regimes.  The defined six regimes are
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1. Pure Corrosion

2. Erosion Affected Corrosion

3. Erosion of Corrosive film without flaking

4. Flaking of Corrosive film at individual impacts

5. Simultaneous Erosion of Corrosive layer and metallic substrate.

6. Pure Erosion

Hogmark et al. considered flaking or spallation of the oxide scale to play major role in

material degradation.  In the second regime, erosion affected corrosion, the material is

removed by corrosive flaking from the metal substrate influenced by a relative mild

erosion which induces additional internal stresses in the scale.  In the regime, erosion of

the corrosive film without flaking, material removal occurs by erosion of corrosive layer,

which can behave in brittle or ductile manner.  In this regime no material loss would have

occurred without erosion.  In the fourth regime, corrosion/erosion process was balanced

and the local flaking of the corrosive film at individual impacts was observed.  The rate

of material removal is found highly sensitive to adhesion and the brittleness of the layer

when compared to the pure erosion or pure corrosion of the base material.  In the fifth

one, erosion dominates and impinging particle penetrates into the substrate to detach

oxide scale as well as metallic fragments.  Pure erosion in principle, should be restricted

to conditions of zero corrosion rate but in practice, slightly corroded layer is also taken

into consideration.  If the oxide adhesion is poor, an increase in the material degradation

rate or spallation can be expected for the erosion–corrosive conditions of four and five

regimes.
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Fig 2.1  Erosion Corrosion Regimes
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Fig. 2.2 Different Regimes of Erosion-Corrosion as Corrosive
Aggressiveness Vs Erosive Aggressiveness [4].
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While all these experimental and laboratory studies contribute to an understanding of

combined affect of erosion and corrosion, there is still a need to correlate the various

regimes since the boundaries of these regimes are not well defined.  This is especially the

case for spalling of oxide which should be a subdivision of erosion enhanced oxidation

regime.

2.2 Spallation Mechanism

Spallation is highly detrimental to the erosion–corrosion process, as such

understanding its mechanism is very important.  Simple mechanisms, which may account

for spalling are related to the immediate physical and mechanical effects of the impacting

particles.  These mechanisms are dependent upon how deep the impacting particle

penetrates into the scale and through the metal substrate.  The stream of erosive particles

impacting on the specimen surface forms the simple model of spalling.

Evans et al. [5] analyzed and quantified the modes of coating failure by

assembling the basic information regarding residual stresses, failure mechanics, and

mechanical properties of the coatings, and found that it is dependent on the stress state of

the coating.  The residual stresses developed during film formation and upon subsequent

changes in temperature will tend to induce film fracture normal to the interface whereas

residual compressive stresses provide a driving force for scale and eventual spallation.

The prerequisite for this analysis is the presence of an interface separation prior to

buckling of the scale.  Such separation may occur by localized void coalescence.
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Single-impact technique, was used by Stephenson et al. [6] to investigate the

particle surface interactions during the erosion of a typical turbine blade material by

pyrolytic carbon particles.  Though substantial damage to the oxide layer was observed at

700°C, due the particle impact, there was no deformation caused to the alloy substrate.

The occurrence of limited plastic deformation of the oxide scale is attributed to the low

temperature.  At 850°C a decrease in alloy hardness resulted in some target deformation.

In addition the thin oxide surface formed was more plastic at 850°C than at 700°C and

could thus, generally accommodate deformation resulting in limited oxide removal.

Thicker scales were formed at 950°C and the situation gave rise to fracture of oxide and

extensive scale removal.  The thicker oxide scales and hard alumina internal oxidation

zone prevent any substrate deformation.

Levy et al. [7] interpreted that spalling‘ phenomenon was a result of the hot

pressing action caused by the force of erodent particle striking the surface.  Internal

stresses are thus formed as a result of thermal and mechanical gradients, that are of

sufficient magnitude to cause microscopic spalling when combined with the stresses

caused by the impacting particles.  The scales that are removed by this phenomenon are

larger than those removed by cracking and chipping.

Van der Zwaag et al. [8] used a finite element program to examine the effect of

thin rigid coatings on the stress field generated by the spherical indentation on the flat

half space.  It was shown that a stiff coating reduced radial displacements (a body

element displaced in the radial direction away from the point of contact) at the coating

substrate interface and thus, the radial stresses in the substrate.  However, for the coating

parameters studied, the maximum shear stress at the coating-substrate interface was more
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than doubled.  This is an important point, since coating de-bonding may result if the

interfacial shear stress is of sufficient magnitude.  This critical condition of de-bonding is

also dependent on the magnitude of the pre-existing stresses at the interface.  They also

showed that the maximum shear stress is weakly dependent on the coating thickness but

reaches a maximum value for a coating thickness of about 10% of the indentor contact

radius.  Also for very thin coatings, the region of high shear stress is localized around the

contact edge, whereas for thicker coatings, the high stresses are generated over much

larger areas.

2.3 Erosion Mechanism

Small particle impact erosion of materials occurs by the removal of material from

a surface by a micromechanical deformation or fracture process.  Solid particle erosion

occurs on exposed components in many different types of equipments.  It occurs by itself

or in conjunction with other surface degrading mechanisms such as abrasion or aqueous

or elevated temperature corrosion.  Erosion mechanisms are different for ductile and

brittle materials.

2.3.1 Erosion Mechanism of Ductile Material

On ductile materials, the impacting material cause severe, localized plastic strain

to occur that eventually exceeds the strain to failure of the deformed material.  These

deformations are produced by loss of kinetic energy and by work during the impact by

external forces on the particle.
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 Finnie [9] experimentally showed that the manner of material removal varies

with the direction and the velocity of erodent particles and predicted the velocity

exponent as n=2. .  Assuming the constant values of depth of cut and the ratio of vertical

force component on the particle face to the horizontal force component, Finnie derived an

expression for material removal, as given by the equations below

Q = (M V2/ 8 p) [sin 2∝ - 3 sin2 ∝] ∝ < 18.5 (2.1)

Q = (M V2/ 24 p) cos2 ∝ ∝ > 18.5 (2.2)

The two expressions worked well in finding the erosion rate for angles below 45°.

However for angles above 45°, the equations estimated a lower volume loss with a zero

loss at normal incidence.

The phenomenon of volume loss at angles above 45°, which were not explained

by the Finnie’s equations, was better accounted by Bitter [10].  Depending on the angle

of impact he explained erosion as cutting wear, deformation wear and as the combination

of the two.  For ductile materials at low angles, the cutting wear predominates, while at

acute angle deformation wear predominates.  Later Nelson et al., [11] simplified the

expressions that gave a good fit to the experimental data.

Unlike the previous theories Sheldon et al. [2] in 1972 gave the velocity exponent

as 3 and showed that the results matched closely with the experimental work.  He used

indentation theory and energy balance equation to explain the deformation and machining

action.  He also showed that material removal action has the same characteristics as

multiple-particle erosion of surface by particles larger than 100µm.

Hutchings et al. [12] in 1974 explained the material removal mechanism of

aluminum surface impacted obliquely by 3mm steel ball at velocities up to 250m/s.  They
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showed the formation of overhanging lip in the direction of motion of the projectile and

removed subsequently.  They also showed that material is more readily removed from

work hardened copper than from annealed copper.  The deformation is concentrated in

the surface layers aiding the formation of fragile lip for the work hardened, whereas in

annealed metal the impact energy is spread through a large volume.  In one of his

theoretical studies in 1981, Hutchings [13] proposed the erosion of metals by spheres at

normal incidence employing critical plastic strain as the failure criterion.  He

incorporated two material strength properties: dynamic hardness and ductility, the high

values of which are needed for good resistance to erosion and also predicted a velocity

exponent of 3.0.

In 1981 Bellman et al. [14] observed the formation of three distinct types of

craters; indentation, ploughing and smear craters on the stress free surface, due the

impact of the particles.  Depending on the impingement angles, the frequency of

occurrence of these craters varies.  The author provided experimental evidence to show

that the material removal during erosion involves the deformation of surface material into

platelets by repeated impacts, that eventually detaches from the metal surface.

In 1983 Rao et al. [15] investigated the influence of exposure time on volume loss

rate and found a direct relation between erosion versus time curves and pit morphology

(width, depth, and width-depth ratio) for both of glass erodents.  Through analysis they

showed four types of erosion rate versus time curves, owing to the different combinations

of incubation, acceleration/deceleration, and steady state periods.  The same year Levy

[16] studied the erosion mechanism of both brittle and ductile materials and found that

the behavior to be completely different.  He explained the ductile erosion
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Fig2.3. Sequence of Ductile Erosion [19].
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mechanism in the same manner as that of Bellman et al., in 1981.  In 1986, Hutchings et

al. [17] considered that during high velocity impact, the surface temperature increases,

that leads to the softening of near surface region, and a work hardened material beneath

acts as an anvil against which the softer material is deformed.  They estimated the

temperature rise and considered published evidence for and against softening and

concluded that it was not necessary to postulate a thermal softened surface layer as an

essential feature of erosion mechanism under all conditions.

In 1994 Shimizu et al. [18] performed various tests on austempered ductile iron

(ADI), ferritic ductile iron (FDI), and pearlitic ductile iron, to observe the mechanism of

erosive wear and concluded that ADI has excellent erosion resistance.  In 1995 Levy [19]

made an effort to combine all his experimental and theoretical results correlating with

other theories in a book.  He explained the erosion mechanism in ductile metals as a

series of operations resulting in the formation of platelets and craters.  Initial impacts

produce platelets without material loss.  Adiabatic shear heating occurs on the impacted

surface causing the formation of work hardened zone, beneath its surface, which acts as

an anvil increasing the efficiency of the hammer like impacting particles.  When the anvil

is fully in place and the platelets are fully formed, maximum, steady state, material

removal condition occurs.

2.3.2 Erosion Mechanism of Brittle Materials

The majority of current and potential applications of brittle materials in

mechanical components are either through the use of composite materials or in
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conjunction with the relatively higher ductility materials to form bimaterial and

multimaterial components with joints.  Brittle material erosion is due to the crack

formation in the surface and the resultant chipping of the material [20].  The material is

removed by the intersection of the crack, which radiate out from the point of impact of

the eroding particle.  Many engineering materials such as glass, iron oxide, nickel oxide

aluminum oxide, etc. fall in this category.

In 1960, Finnie [21] conducted several experiments at a variety of velocities with

an elastic sphere impacting perpendicularly onto a brittle material like glass, which

remains elastic until fracture occurs.  He proposed the equations for maximum radial

stress, which included the influence of the elastic modulus and poisson’s ratio of the

surface, and the density, velocity, poisson’s ratio, modulus of elasticity of the impacting

sphere.  He also showed that the maximum tensile stress occurs at the surface in the

radial direction around the periphery of the contacted area.  He observed an expected ring

crack in glass, formed at right angles to the maximum tensile stress (around the

circumference of the contact area).  The cone shaped fracture surfaces intersected with

the ring cracks, with an increasing number of impacts and the material was removed.

Sheldon et al. [22] in 1966 extended the classical Hertz equations for static

loading of a continuous plane surface by a sphere to impact conditions and assumed that

erosion occurs as a result of a contact stress.  They proposed an equation that enabled the

dependence of material removal in erosion on the radius and velocity of the impacting

particle, through bending tests.  They included constants m and σ in the equation to

calculate erosion rate W, shown as
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W = K1  r
a  Vo

b (2.3)

Where r the radius and Vo the velocity of the impacting particle, and exponents a and b

are given by

b is velocity exponent 2 or 3 depending on the shape of the particle

a = 3 (m - 0.67)/(m – 2) for round particles.

a = 3.6 (m – 0.67)/(m – 2) for angular particles.

a = 2.1 (m – 0.67)/(m – 2) for either shapes.

For particles much stiffer than the target, the constant K1 is given by:

K1  = E 0.8(µ+1)/(µ-2) ρ1.2(µ-0.67)/(µ-2) σ-2.0/(µ-2) (2.4)

Where E is modulus of elasticity of the target

ρ is the density of the particle

m is the mass of the particle.

These predicted equations were compared with numerous tests on a variety of brittle

materials and found to be applicable over a wide range of particle sizes and velocities.  In

another study [22], authors observed plastic deformations in indentation, scratching and

microcutting on the brittle surface when the loaded region is sufficiently small, which is

erosion mechanism of ductile materials.  They found silica glass and hardened steel to

behave as typical ductile materials when eroded by silicon carbide particle, and

aluminum showed very little evidence of ductile behavior.
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According to Zambelli et al, [23] NiO scales formed at higher temperature

consisted of two distinct layers, a columnar outer layer and a fine-grained inner layer,

which have different erosion mechanism and rate of erosion.  Using fracture propagation

concepts they proposed a two-step erosion mechanism.  Plastic flow indentation and

lateral crack growth in the columnar outer layer as the first step, and subsequent

formation of pits from Hertzian cone fractures in the inner layer as the second step.  The

microstructure, mechanical properties and the bonding state of the oxide layers were

found to be important parameters in the erosion behavior of the oxide scales.

In later years, Mehrothra et al. [24] found that material removal proceeds initially

by the interaction of cone cracks followed by chipping.  Sharp and angular particles

generally produce radial cracks, which lie perpendicular to the surface and are semi-

circular in shape.  These cracks were formed during loading.  Upon unloading, the

stresses generated by the plastically compressed zone cause the formation of lateral vent

cracks approximately parallel to the surface.  These stresses initiated beneath the

indentation travels upward to the surface, resulting in material removal from the surface.

Hockey et al. [25], in 1978, used transmission electron microscope to observe the

dislocation structures beneath impact craters in magnesium oxide and aluminum oxide.

They observed dislocation densities in all cases, although the relative extents of

dislocation damage and crack propagation compared with indentation size varied with the

material.  In the same year, Evans et al. [26] explained erosion in terms of experimental

crack behavior during single particle impact events, taking into account lateral crack

formation during erosion.  The erosion model developed by Evans et al., assumes that the
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erosion rate is proportional to the amount of material removed by each impact.  The

volume lost per impact is proportional to the product given by

 Vo 
19/6 r11/3 ρ19/12  Kc 

-4/3  H-1/4 (2.5)

The elastic-plastic theory used by Wiederhorn et al. [27] in 1979 assumed that the

lateral crack size to be proportional to the radial crack size, and that the depth of the

lateral cracks be proportional to the maximum particle penetration.  The volume loss

predicted by them, is proportional to the product given by

V ∝ Vo 
22/9 r11/3 ρ11/9  Kc 

-4/3  H1/9 (2.6)

Where V is volume lost per particle impact.

Vo is the particle velocity.

r is the radius of the particle.

ρ is the density of the particle.

Kc is the material toughness.

H is the material hardness.

Wada and Wantanabe [28] in 1987, through their experiments on brittle materials

at constant 80° impact angle, found that the particle-hardness to target-hardness ratio

much greater than unity results in extensive target erosion.  When the particles were
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softer than the target, significant erosion was seen only when the target fracture

toughness was small.

Levy [19] investigated duplex nickel oxide scale and found that they erode

sequentially down their thickness by cracking and chipping mechanism rather than being

knocked off the metal in pieces at the scale metal interface.  He observed that the harder,

denser, columnar grain outer scale protected the inner porous, equiaxed scale from

erosion as long as it was present.

2.4 Parameters that Influence Erosion

The various parameters that influence the erosion process are listed below [1]

• Mechanical properties of the erodent and the target.

• Temperature

• Exposed environment

• Erodent size

• Erodent velocity

• Angle of incidence

• Shape of the erodent.

The mechanical properties of metals are highly dependent on the temperature for

large temperature ranges.  The modulus of elasticity of metals decreases as the

temperature increases and vice versa.  Elevated temperature values of elastic modulus of
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metals may be determined by tensile testing at the designated test temperatures.  The

mechanical properties are discussed in detail in later sections.

The temperature and the environment to which metal is exposed are major factors that

affect the oxidation process.  The oxide scales formed at high temperatures have fewer

imperfections, which facilitates the betterment of the fracture properties of the oxide.

In 1976, Golightly et al. [29] observed the behavior of iron alloys with and without

the presence of 0.82% yttrium in 1 atm oxygen at 1200°C.  He found a lateral growth of

oxide, resulting from the formation of oxide within the oxide layer leading to the

detachment from the alloy at temperatures and extensive spalling during cooling, on the

yttrium free alloy.  Additions of yttrium hindered the formation of oxide with in the oxide

layer and prevented the detachment and spall.  Young et al., [30] reported the different

effects on oxide formation at different temperatures.  They showed the large increase in

erosion of steel when the temperature raised from 25° to 975°C.  In a study on the effect

of temperature on the erosion, Levy [19], observed one order of magnitude difference in

erosion rates between 480°C and 978°C.  At temperatures above 875°C formation of

sulfides were observed, that subverts the physical integrity of the scale.  In extreme cases

damage is further intensified by the formation of liquid phases (metal-sulfide eutectics),

that leads to complete destruction by alloy melt down.  Hockey et al. [31] measured the

erosion rate of glass and aluminum oxide as a function of temperature and impingement

angle using silicon carbide particle as an erodent and also demonstrated the occurrence of

plastic flow processes during brittle material erosion.

The size of the particle has little effect on the erosion rate of ductile material but is

directly proportional to erosion rate of brittle material until a limiting value, which in
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most cases is 200µm.  Goodwin et al. [32] in 1969 observed the increase in erosion with

increasing particle size up to a limiting size of 100µm, above which the volume loss was

found to be constant.  This critical particle size (dp) above which erosion is not

influenced by size appears to be increasing linearly with velocity.  Compared to the

particle shape and hardness, Levy [33] in 1989 observed a significant effect of the

particle size on wear rate.  The effect of particle sizes above 200µm and up to about

500µm remains essentially constant.  Based on the microscopic studies on the particle

tracks, he observed that they traverse along the metal or scale for distances from a few

microns up to 200µm at most at a singular relationship with the surface.  A computational

model of oxide layer was developed by Veluswamy et al., [34] in 1995.  They showed the

relationship between volume loss to the erodent size ranging from 20µm to 200µm.

Mills et al. [35] studied the wear rate in tube bends due to the conveying of abrasive

sand.  They reported depth of penetration for small particles was much greater than that

for large particles.  Misra et al. [36] discussed many theories on the effect of particle size

on wear rate and concluded that that this was probably due to the actual increase in flow

stress with decreasing indentation size.  Liebhard et al. [37] found that the erosion rate

became constant for silicon carbide particle sizes above 200µm on 1018 steel, but after

certain size it continued to increase up to 850µm particle sizes.

Erosion rates are related directly and are proportional to the particle velocity, higher

the velocity the greater the erosion.  As the velocity increases the initial kinetic energy of

the particle increases, that has more potential to degrade the surface than a particle with

less velocity.  Experiments were conducted to determine the erosion loss per impact with

change in velocity, on a various number of materials with about three orders of
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magnitude of velocity.  The erosion rate was found to increase as V2 to V3 in most cases.

Sheldon et al., [38] showed that for normal impact the erosion rate brittle material is

proportional to Vb, and found that the power function of velocity b was not same.  He

concluded that tangential forces contribute to the wear of brittle materials.  Through a

series of tests conducted on 1018 steel for different velocities, Levy [19] found the study

state erosion to be constant and related directly to the particle velocity.  Even at high

velocity of 130m/s, the pattern of the incremental erosion rate curve was the same.

In 1995, Veluswamy et al. [34] observed the relationship of the volume loss for two

velocity ranges, low velocity range from 1m/s to 20m/s and high velocity range from

10m/s to 100m/s in their two dimensional computational model.  Yalamanchili et al., [39]

in 1996, developed a three dimensional model using INGRID and LS-DYNA3D, and

observed the effect of particle velocity for different shapes of erodents at different

temperatures and for different angle of incidence on erosion rate.  They found the

variation of volume loss with velocity as non linear through out the range from 0m/s to

100m/s, also observed the volume loss for velocity ranges from 0 to 50m/s was more at

570°C than at 743°C and for velocities from 50 to 100m/s, the volume loss was much

more at temperature 743°C than at 570°C.

Angle of incidence on to the target surface by the impacting particle is another

parameter that influences the erosion rate.  It effects differently for ductile and brittle

materials.  For ductile materials the volume loss is more at shallow angles and for brittle

materials the loss is more at normal incidence (sometimes referred as angle of attack in

some theories).  For given erosion model many quantitative procedures were developed

to evaluate the relative amounts of brittle and ductile erosion.  Sheldon and Finnie [40]
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observed the ductile behavior of nominally brittle materials during erosive cutting.  They

showed that volume loss was higher at an angle α, near normal incidence for brittle

materials that decreases with decrease in the angle α.  By contrast, ductile materials

showed maximum volume loss at angles about 20 to 30 degrees.  They observed that the

silica glass and fully hardened tool steel to behave in a typically ductile material when

eroded with the silicon carbide particles, where as a slight change towards ductile

behavior showed by magnesia and graphite.  On the other hand, high-density aluminum

oxide exhibited brittle erosion for all particle sizes and velocities when eroded by 1000

mesh silicon carbide particles.  Yalamanchili et al. [39] observed similar relationship

between volume loss and angle of attack by the impacting particle on the target surface.

They explained that the steep variation of volume loss at angles 40° and 50° is due to the

effect of both sliding and impact forces.

The shape of the impacting particle also had a greater influence on the erosion rate.

The shape determines the contact area between the particle and the target surface during

an impact.  Numerous experiments were done on the impact of spherical particle on to the

target surface, which represents point contact.  Sheldon et al. [40] conducted experiments

on brittle materials like glass, aluminum oxide and magnesium oxide, impacting them by

spherical and angular silicon carbide particles and observed that erosion rate was more in

case of angular particles, compared to spherical particles.

In order to investigate the type of impact that occurs in case of erosion by solid

particle, Hutchings [41] studied theoretically and experimentally the impact of rigid

square plates onto ductile steel targets.  He classified them according to the sense of

rotation of plate after impact.  Depending on the orientation of the plate on impact, he
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observed two different types of damages, cutting a chip from the surface when the plate

rotates backward during impact and formation of crater lip that removed by impact of

subsequent projectiles when the plate rotates forward during impact.  He calculated

energy loss, crater volume and rotational energy after impact from the experimental data

that were in good agreement with theoretical predictions.  In another study, Hutchings et

al. [42] used two different types of particles, steel sphere and square steel plates,

accelerating them using a compressed gun.  These experiments were designed to

investigate two classes of surface deformation that occurred at oblique impact angles.

They are termed as ploughing deformation, caused by spherical particles and cutting

deformation caused by angular particles.

In their three dimensional computational model, Yalamanchili et al. [39] investigated

the volume loss for three different types particle shapes, representing line contact,

quadrilateral area of contact and point contact.  They compared the volume loss of three

particle shapes based on the initial kinetic energy and observed that volume loss depends

on contact area, the more the contact area, the more the loss of material due to erosion.

2.5 Erosion Models.

2.5.1 Single Particle Erosion.

Erosive wear of materials in practice generally involves long times of exposure

under study state conditions.  However, by its nature, solid particle erosion is a discrete,

accumulative process and the single impact is worth of as accurate an understanding as

possible.  Various experimental techniques were used in the past to cause single particles
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to impact on a target surface under controlled conditions and the erosion loss was

calculated.  Large particles are directly accelerated while the micrometer particles are

indirectly accelerated using a carrier on to the target surface.

Sheldon and Kanhere [2] used a gas projectile gun to accelerate individual

particles of silicon carbide, steel and glass shot at various velocities from about 130m/s to

400m/s on to both eroded and uneroded surfaces.  They noted considerable evidence of

deformation adjacent to the crater in annealed material.  Observations of the impact

craters showed that the displaced crater material appear to have flowed in the direction of

the particle incidence until the material fractured at high-accumulated strains.  They

found a small difference in the velocity dependence of erosion between eroded and

uneroded surface.  The displaced lip material detached earlier on previously eroded

surfaces.  Hutchings and Winter [12] studied the erosion process by emphasizing on the

geometry and the mechanism of material removal.  They impacted large steel sphere (3

mm) on to the aluminum surface.  They showed that the characteristic deformation

pattern resulting from particle impact consisted of a depression and a lip of a displaced

material.

Ives et al. [43], did transmission electron microscope studies of the damage

associated with particle impact in 1978.  They observed zone of high dislocation density

typically few micrometers thick around an impact crater.  They also found the

localization of damage near the craters from the measurements using electron-channeling

method.  In Further studies Hutchings used a compressed gas gun system to accelerate

two shapes of projectiles: steel spheres of 9.5 mm diameter and 8 mm square plates onto

a target surface.  These experiments were designed to investigate two modes of surface
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deformation that occurred at oblique angles.  He showed that the erosion efficiency of the

angular particles as more compared to round particles.  The angular particles either

displaces more material into the crater lip when it becomes vulnerable to further erosion

or actually detaches material from the target surface.

2.5.2 Multiple Particle Erosion.

Technological concern with the erosion of materials usually involves with

multiple particle impacts in a study state long term regime.  Complex aspects are added to

the basic problem, when flux of particles impact a target surface.  These include particle

impact with in the stream, a wide range of simultaneous attack angles, particle

fragmentation, particle embedding and surface shielding due to rebounding particles.

Some of these effects also occur in single particle impact.  Clearly multiple particle

erosion exposures must be conducted in order to measure meaning full erosion rates of

materials for application purpose and also to search for new significant effects due to

multiple impacts.

Two basic types of design techniques have been used in many experiments on the

multiple particle impact erosion.  In one, the specimen is moved under controlled velocity

through a slowly moving erosive stream.  The exposure may be intermittent but can

continue for a long period of time.  The second one involves exposing a stationary

specimen to a stream of particles.  In order to confine the erosive stream a nozzle or flight

tube is used.  Since the erosion rate is proportional to the square or cube of the particle

velocity, accurate measurement of impact velocity is necessary in both cases.
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Grant et al., [44] used type I model, moving the specimen under controlled

velocity through a slowly moving stream of erosive particles.  This design allowed for an

accurate measurement of impact velocity since the principal velocity component is that of

the specimen.  They predicted the erosion loss for impact velocities ranging from 85m/s

to 137m/s and angle of attack ranging from 30° to 60° for various metals.  Hutchings et

al. considered erosion model that had spherical particles impacting a target surface at

normal incidence.  They assumed that the material removal was due to the formation and

subsequent removal of the platelets from the material surface and detachment occurs

when the plastic strain reaches the maximum value.
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CHAPTER 3

THEORY OF LS-DYNA3D

3.1 Introduction

The finite element method is a numerical analysis technique for obtaining

approximate solutions to a wide variety of engineering problems.  Although originally

developed to study the stresses in complex airframe structures, it has since been

extended and applied to the broad field of continuum mechanics.  Because of its

diversity and flexibility as an analysis tool, it is receiving much attention in

engineering schools and in industry.

LS-DYNA3D is an explicit 3-D finite element program for analyzing the large

deformation dynamic response of elastic and inelastic solids and structures.  The

program is extensively used by (i) aircraft analysis and improved methods for

manufacturing aircraft wings, (ii) Analysis of shipping containers for radioactive

material (iii) automobile design and crash tests, and (iv) train accident analysis.  A

wide range of material types and interfaces enable the efficient mathematical

modeling of many engineering problems.  The explicit time integration algorithms

used in LS-DYNA3D [51] are much less sensitive to machine precision than other

finite element solution methods.

LS-DYNA3D - dynamics in three dimensions - is a nonlinear structural

dynamics code that can analyze the complex structural response of mechanical

systems to high-rate loading and impacts.  Basically, the program simulates the effect

of stress on structures. Like many other engineering codes, LS-DYNA3D is based on
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finite-element analysis, a method of examining physical systems by breaking them

into discrete but interconnected pieces.

LS-DYNA2D and LS-DYNA3D are explicit finite element codes for solving

two and three-dimensional nonlinear solid mechanics problems, respectively.  LS-

DYNA3D relies on mesh generators for creation of input files.  INGRID [49] is the

recommended method of generating LS-DYNA3D input format since it provides

complete support for all slide surface data, boundary conditions, loads, material

properties and control parameters.  The input format can also be generated by

HYPERMESH, software developed by ALTAIR Inc.  Models can also be generated

using I-DEAS software and the file is transferred to LS-DYNA3D input format with

the help of IDEADYN (Aida, 1994) translator, developed by department of

Mechanical and Aerospace Engineering, West Virgina University.

3.2 Governing Equations in LS-DYNA [51]

(The following sections are taken from the LS-DYNA3D theory manual.)

The governing equations of DYNA can be derived from the momentum

equation as follows [50].

 σij,j +  ρ fi = ρ &&x i            

(3.1)

satisfying the traction boundary conditions

σijni = ti (t)            

(3.2)

on boundary δb1, the displacement boundary conditions
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xi (Xα, t) = Di (t)

(3.3)

and on boundary δb2, the contact discontinuity

(σij
+ - σij

− )nj = 0 

(3.4)

along and interior boundary δb3 when xi
+ = xi

−.  Here σij represents the Cauchy stress,

ρ is the density, fi the body force, &&x  is the acceleration, comma denotes the covariant

differentiation and nj is the unit vector normal to the boundary δb.

Equations of global energy balance and state evaluations can be obtained by

integrating the energy equation in time.  The energy equation is given as

X1

x1

t=0

n

b

X3x3

ΜB

x2 X2

B0

Μb
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&E = Vsij &ε ij − (p + q) &V  

(3.5)

the above equation is integrated in time and used for equation of state evaluation.  sij

is the deviatoric stresses and p represents the pressure.  Deviatoric stress is given by

sij = σij + ( p  + q ) δij                       (3.6)     

q is the bulk viscosity, δij is the Kronecker delta (δij = 1 if i = j; otherwise δij = 0, and

&ε ij is the strain rate tensor.  The weak form for the equilibrium equation when δxi

satisfies all boundary conditions on δb2 and integration over the geometry gives

ν
∫ (ρ &&x i − σij,j − ρ fi ) δxi dν + 

∂b1

∫ (σijni − ti ) δxi ds  + 
∂b3

∫ (σij
+ - σij

− )nj δxi ds =0

(3.7) and (σij δxi), j − σij,j δxi = σij δxi,j leads to the divergence theorem giving rise to

the statement of principle of virtual work

δ∏ = 
ν
∫ ρ &&x i δxi dν + 

ν
∫ σij,j δxi dν −

ν
∫ ρ fi δxi dν − 

∂b1

∫ ti δxi ds = 0            

(3.8)

By superimpose a mesh of finite elements interconnected at nodal points on a

reference configuration and track particles through time, i.e.,

xi (Xα, t) = xi (Xα(ξ,η,ζ), t) = 
j

k

=
∑

1

φj (ξ,η,ζ) i

j

x (t)

(3.9) where φj are shape (interpolation) functions of the parametric coordinates

(ξ,η,ζ), k is the number of nodal points defining the element, and 
i

jx is the nodal

coordinate of the jth node in the ith direction.
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Summing over the n elements it is approximated to

δ∏ = ∑ δ∏m = 0

(3.10)

The matrix notation of the above equation, using 3.8, is

m

n

=
∑

1

{
mv
∫ ρ Nt N a dv + 

mv
∫ Bt σ dv −

mv
∫ ρ Nt b dv − 

1
∂ b
∫  Nt t ds }= 0

(3.11)

using the interpolation matrix N, strain-displacement matrix B, nodal acceleration

vector a, and displacements in matrix notation becomes,

1

2

3

&&
&&
&&

x
x
x

















 = N 

x

y

yk

zk

a
a

a

a

1

1
M



























 = N a

and

b = 
x

y

z

f
f
f



















, and t = 
x

y

z

t
t
t

















where b is the body force load vector and t is the applied traction loads.

3.3 Solid Element
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In the present study a mesh of 8-node hexahedron solid element is used.  A

typical eight-node solid hexahedron element is shown below

                               

 

and the node definition for the above eight-node hexahedron element is as

follows

Node     ξ    η   ζ

 1    -1   -1  -1
 2     1   -1  -1
 3     1    1  -1
 4    -1    1  -1
 5    -1   -1   1
 6     1   -1   1

     7         1        1       1
 8    -1    1   1

For a mesh with an 8-node hexahedron solid element, equation (3.2.10) becomes

xi (Xα, t) = xi (Xα(ξ,η,ζ), t) = 
j=
∑

1

8

φj (ξ,η,ζ) i

j

x (t)

(3.12)

and the shape function φj can be defined as

η

ζ

ξ

6

 5
  8

7

1
4

3
 2
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φj = 
1

8
 (1 + ξξj) (1 + ηηj) (1 + ζζj)

(3.13)

where ξj, ηj, ζj take their nodal values of ( ± 1, ± 1, ± 1) as shown above in the figure.

Summing over the n elements δπ may be approximated to δπ = 
m

n

=
∑

1

δπm 

(3.14)

For an 8-node hexahedron solid element B is the 6 × 24 strain-displacement

matrix and N is the 3 × 24 rectangular interpolation matrix and are given by

B =  N 

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂

x

y
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y x

z y

z x

0 0

0 0
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0

0
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(3.15)

and

 N (ξ,η,ζ) = 
1 2

1 2 8

1 8

0 0 0 0 0

0 0 0 0

0 0 0 0 0

φ φ
φ φ φ

φ φ

L

L

L



















(3.16)

Terms in the strain-displacement matrix are
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which can be rewritten as
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Hence, inverting the Jacobian Matrix J as follows can solve the desired terms
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3.4 Volume Integration
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Volume integration is carried out with Gaussian quadrature.  If g is some

function defined over volume, and n the number of integration points then

gdv
v
∫  = 

−−−
∫∫∫
1

1

1

1

1

1

g | J | dξ dη dζ

(3.20)          equation (3.20) may be approximated by
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(3.21)

where wj , wk , wl are weighting factors and gjkl = g (ξj, ηk, ζl) and | J | is the

determinant of the Jacobian matrix.  For one point quadrature n = 1, wj = wk = wi = 2

and ξ1 = η1 = ζ1 = 0 from which we can write

gdv∫  = 8g (0,0,0) | J (0,0,0) | 

(3.22) note that 8 | J (0,0,0) | gives an approximation to the element volume.

The biggest advantage of one-point integration is a substantial saving in the

computer time and the disadvantage is that a fine mesh may be needed.  An anti-

symmetry property of the strain matrix

∂φ
∂
∂φ
∂

∂φ
∂
∂φ
∂

∂φ
∂
∂φ
∂

∂φ
∂
∂φ

∂

1

2

7

8

3

4

5

6

x

x

x

x

x

x

x

x

i

i

i

i

i

i

i

i

=

=

−
=

=

−

−

(3.23)

When ξ = η = ζ = 0, the amount of effort to compute strain matrix given in equation

(3.4.4) is reduced to more than 25 times over an 8-point integration.  These cost

savings can be extended for the strain and nodal force evaluations where the number
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of multiples is reduced by a factor of 16.  Since only one constitutive evaluation is

required, the time spent on determining stresses is reduced by a factor of 8.  However,

8-point integration has another disadvantage in addition to cost.  When fully

integrated elements used in the solution of plasticity problems and other problems

where Poisson’s ratio approaches 0.5 results in the constant volume bending modes.

An average pressure must be applied to all the elements to avoid the elements

becoming locked in the constant volume bending modes, consequently, the

hourglassing modes are resisted by the deviatoric stresses.  If these deviatoric stresses

become negligible when compared to the pressure or if the material failure causes

loss of this stress state component, then hourglassing will still occur without any

means to resist it.  Most of the times the cost of fully integrated element may be

justified by increased reliability.

3.5 Hourglass Control

Hour glassing modes are zero energy modes.  At this situation, the sum of internal

and kinetic energies is not equal to the total energy.  These undesirable hourglass

modes are often observed to be oscillatory and they tend to have periods that are

typically much shorter than the periods of the structural response.  If these hourglass

modes tend to have periods that are comparable to the structural response periods

then it forms a stable kinematic component of the global deformation and is

admissible.  One way of resisting zero energy modes is with a viscous damping or

small elastic stiffness capable of stopping the anomalous modes while having a

negligible affect on the state global deformation modes.  The work done by the hour
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glass resistance are neglected because the zero energy modes are made orthogonal to

the real deformation which may lead to the slight loss of energy.  However, hourglass

control is always recommended for the underintegrated solid elements.

3.6 Contact-Impact Algorithm

DYNA3D uses three approaches for dealing with the impact contact and

sliding interfaces of the models.  The methods are known as the “kinematic constraint

method”, the “penalty method”, and the “distributed parameter method”.  Interfaces

are defined in three dimensions by listing in arbitrary order all triangular and

quadrilateral segments that comprise each side of the interface.  One side of the

interface is designated as the slave side and the other as the master side.  The nodes

are classified as slave and master nodes respectively.  The slave nodes are constrained

to move over the master surface after impact and must remain on master surface until

a tensile force develops between the node and the surface.

3.6.1 Kinematic Constraint Method

The kinematic constraint method is used only for tying surfaces.  In this method,

constraints are imposed in the global equations by a transformation of the nodal

displacement components of the “slave” nodes along the contact interfaces.  This way

only the global degrees of freedom of each master node are coupled.  Impact and

release conditions are imposed to ensure momentum conservation.  Problems arises

when the meshing of master surface is finer than the slave surface where the master

nodes can penetrate through the slave surface meshing.  A better zoning would

minimize such problems.  This method requires “consistent” zoning of the interfaces.
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3.6.2 Penalty Method

In the penalty method, artificial interface springs are placed normal to the

contacting surfaces on all the penetrating nodes.  These artificial spring elements are

assembled in the global stiffness matrix and their modulus is determined based on the

elements in which the nodes reside.  This method seems to be very stable and

produces less noise for hourglassing modes.  Momentum is exactly conserved without

the necessity of imposing impact and release conditions.  However, for relatively

large interface pressures, the stiffnesses have to be scaled up and the time step

reduced.  In such cases the third method “distributed parameter” is more appropriate.

3.6.3 Distributed Parameter Method

This last method is mainly used for “sliding interfaces” in which the internal

stress in each element in contact determines the pressure distribution for the

corresponding master surface.  One half of the slave element mass of each element in

contact is distributed to the covered master surface area.  Accelerations are updated

after mass and pressure distributions on the master surface are completed.

Constraints are then imposed on the slave node accelerations and velocities to ensure

their movement along the master surface

With these three algorithms, an array of contacting interfaces is available in

DYNA3D, which allow the simulation of most contact conditions.
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3.7 Time Step Control

A new time step size is determined by taking the minimum value over all

elements as follows

t
n∆ +1

 = α min { }ttt N∆∆∆ ,,,
21
L  

(3.24)

where N is the number of elements.  For stability reasons the scale factor α is

typically set to a value of 0.9 (default) or smaller value.

For a solid element, a critical time step size te∆ , is computed as follows:

te∆  = [ ]{ }
eL

Q Q c+ +( ) /2 2 1 2

(3.25)

where eL = 
maxA

v
e

e  for 8-node solid element and Q (C0 , C1) and C0 , C1 are the bulk

viscosity coefficients and Q is given by
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(3.26)

Q = 0 for 
kk&ε  ≥ 0

where ve is the element volume, Ae max
is the area of the largest side, and c is the

adiabatic sound speed given by
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and ρ is the specific mass density.

For an isentrope sound speed, c is given by
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 for the incremental energy, E, in the units of pressure is the product of pressure, p,

and the incremental relative volume, dV:
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(3.29)

Sound speed for elastic materials with constant bulk modulus is given by

c
E

=
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+ −
( )

( ) ( )

1

1 1 2

υ
υ υ ρ

 

(3.30)

where E is the Young’s modulus and υ  is the Poisson’s ratio.

3.8 Time Integration

Consider the single degree of freedom damped system as shown below

Forces acting on mass m are shown below

m p(t)

u(t) - displacements

fI - inertia force
fs - elastic force

fD - damping
        forces

p(t) - external forcesm
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The equilibrium equations for the given system are obtained from d’Alembert’s

principle

fI + fD + fint = p(t) fI + fD + fint = p(t)

(3.31)

fI = m &&u  ; &&u
d u

dt
=

2

2  acceleration

fD = cu&  ; &u
du

dt
=  velocity, and c is the damping coefficient

fint = k u⋅ ; u displacement, and k is the linear stiffness

For a linear system the equations of motion lead to linear ordinary differential

equation given by m &&u + cu&  + k u⋅  = p(t) and for a nonlinear case the inertial force

varies as a nonlinear function of the displacement which leads to a nonlinear ordinary

differential equation given by m &&u + cu&  + fint (u) = p(t).  Let us consider the dynamic

response of linear system subjected to a harmonic loading

p(t) = p t0 sinω

The closed form solution with initial conditions u0 = initial displacement, &u0 = initial

velocity and 
p

k
0 = static displacement is given by

u(t) = ( )u t
u

t
p

k
t t0

0 0
2

1

1
cos

&

sin sin sinω
ω

ω
β

ω β ω+ +
−

−

(3.32)
homogeneous solution

steady state transient

particular solution
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For nonlinear problems, only numerical solutions are possible.  LS-DYNA3D uses

the explicit central difference method to integrate the equations of motion.

The semi-discrete equations of motion at time n are :

Man = Pn - Fn + Hn

(3.33)

where M is the diagonal mass matrix, Pn is the external and body force loads, Fn is the

stress divergence vector, and Hn is the hourglass resistance.  Central difference time

integration method to advance time tn+1 is as follows:

an = M-1 (Pn - Fn + Hn ) 

(3.34)
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where 
( )

2

1
2

1 ++ ∆+∆=∆
nnn tt

t

and v and u are the global nodal velocity and displacement vectors, respectively.

Initial geometry can be updated by adding the displacement increments

x x un n+ += +1 0 1  

(3.37)

The stability of the central difference method is determined by looking at the stability

of the linear system.  The equations of a linear system is uncoupled into the modal

equations where the modal matrix of eigen vectors, φ, are normalized with respect to
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the mass matrix M, and linear stiffness matrix K.  The decoupling of damping matrix,

C for viscous proportional damping is obtained from the normalization as

φT C φ = 2ξω

The equations of motion in the modal coordinates x are

{

&& &x x x pT

Y

+ + =
=

2 2ξ ω ω φ

(3.38)

with central differences we obtain for the velocity and acceleration
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substituting equation (4.7.9) into equation of motion at time tn leads to

nnnn Y
t

t
x

t

t
x

t

t
x 2

2

12

22

1 2121

21

21

2

∆+
∆+

∆+
∆−−

∆+
∆−= −+ ωξωξ

ωξ
ξω
ω

   

(3.40)

and equation (4.7.10) in the matrix form is given by
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(3.41)

or

[xn+1] = [A] [xn] + [L] Yn

where, A is the time integration operator for discrete equations of motion.  After m

time steps with L= 0

[xm] = [Am] [x0]
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The spectral radius ρ(A) is the largest eigenvalue of A.  The solution will be stable if

and only if  | ρ(A) ≤ 1|.  The condition that | ρ(A) ≤ 1| for an undamped equation of

motion gives the value of time step ∆t as

max

2

ω
≤∆t

Thus the time step size is bound by the largest natural frequency in the model which,

in turn is bound by the highest natural frequency of any element in the model.

The time step size is always limited by the single element in the model.  The

disadvantage of this method is that even if only one element has a time step very less,

then all other elements should also be calculated for the same step size.  So,

‘subcycling’ called as mixed time integration was introduced.  This method employs

in grouping the elements based on their step size and individual time integration is

carried out for each group.  This method is helpful as it reduces the time for solving.

3.9 Numerical Analysis

The numerical analysis attempts to solve the differential equations by

numerical procedures, which can be easily programmed using a standard

programming language.   The higher time step values from the initial boundary values

can be programmed by the differential equations.  This is done by splitting the

differential equation into numerical components in the time axis using the forward,

central or the backward differentiation methods.  The numerical method can be

broadly classified as the explicit and implicit methods.  In the explicit method,

previous time step method is used to calculate the next time step method.  On the

otherhand, implicit method calculates the next time step values by solving a matrix of
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the present and the previous time step values.  The explicit method gives an accurate

solution for a shorter time step and is conditionally stable that is underlying principle

used in LS-DYNA3D.
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CHAPTER 4
MODEL DEVELOPMENT: PRELIMINARY CONDITION

4.1 Introduction

Many experiments were conducted in the past to come to a comprehensive

understanding of how and why small solid particles entrained in the gas or liquid

media can cause material degradation.  Based on these experiments many theories

have been proposed.  Erosion material wastage is dependent on many inter related

factors that include the properties and structures of the target material, the micro and

macro exposures, the metal/metal oxide interface properties, strength of the interface

and the physical and the chemical characteristics of the impacting particle.  Each

experimental work covers a single or a set of metals, alloys or coatings, leaving

behind a large number of substances not experimented.  There are several new

materials that are used for different applications, many of them working at high

temperatures and it is difficult to conduct experiments for each of them.  A numerical

model is proposed that takes into account all the available parameters and estimates

the volume loss due to particle impact.

IDEAS, a powerful pre-processor, was used to model the metal, metal oxide

and the rigid spherical particle.  The dynamic analysis was done using LS-DYNA3D.

Referring to Levy’s [52] experimental work on effect of the size of impacting particle

on the aluminum model, the procedure was validated comparing the erosion loss

trend lines.  Later the model was extended to Iron/Iron Oxide, changing several
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parameters like size of the particle, velocity, temperature and the angle of attack of

the impacting particle and the erosion loss was calculated.

The present work can be extended to several materials and the erosion

procedure can be adopted in calculating erosion loss. By changing the material

properties, new models can be created and trend lines (effect of size, velocity, and

angle of attack of particles on volume loss) can be observed.  Once the pre-model is

ready, the material properties of the particle and the target surface are very important

for dynamic solutions.

4.2 Material Properties

The control of test conditions in numerical analysis of mechanical materials

has limits.  Variations beyond the control of the tester can have significant effects on

the behavior of the material.  Similarly, unknown or uncontrolled aspects of the

operating conditions of an computational model compounds the problem of being

able to precisely calculate the desirable quantities.  The material properties of the

model play an important role in avoiding numerical errors.  In the present work the

material properties of the metal, metal-Oxide and the bombarding particle are key

factors.  The mechanical properties of the metal (elastic) and that of the spherical

particle (rigid) are directly obtained from mechanical handbooks.  But properties of

the oxide scales at different temperatures are complex and need a clear understanding

of the physical nature.
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4.2.1 Metal Oxide Scales

Successful simulation of the in service operating conditions at the surface of a

component such as a tube or tubing blade that is being degraded by erosion or

erosion-corrosion requires both the depth of oxide scale at a particular temperature

and the mechanical properties.  Because the exact conditions at the target surface are

not precisely known, the accuracy of the numerical simulation relies on the material

property, Yalamanchilli [39].

Oxide scales that act like protective scale on metallic components may

experience stresses having various origins.  Stress in the oxide-metal system either

arises from external mechanical or thermal loading or from the oxidation processes

itself.  When these stresses exceed critical values various types of scale damage may

occur, such as microcrack formation, through scale cracking, formation of cracks at

the interfaces, between oxide partial layers, stable growth of delaminations at the

scale/metal interface, and or spalling of parts or of the entire scale [45].  According to

Schutze, separation at the scale/metal interface occurs either when the tensile stresses

perpendicular to the interface exceed a critical value σ or the interfacial shear stresses

exceed a critical value τ.  Also the superposition of both type of loading is possible.

The loading is referred to mode I, mode II and the combination as mixed mode I and

II.  Assuming linear elastic behavior of the oxide-metal system, the tensile stress

necessary to increase a separation of length C was given by

2/1
*







∏
=

C

GEσ , (4.1)
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where E* is the effective young’s modulus of the scale metal system and G is the

critical crack extension force which corresponds to the energy necessary to extend the

separation.  He also observed that decohesion slows down the oxidation process as a

result of the interruption of the diffusion paths at the interface when no scale cracks

are present.  Such unsupported scales are very sensitive to cracking by external forces

and no reliable protection is expected.

Measuring the natural frequency of the freely suspended specimen was the

technique used by Bruce et al. [46] for studying the high-temperature oxidation of

metals.  They investigated the oxidation characteristics of iron and nickel by this

technique and compared the results with the conventional thermobalance.  They

showed that oxide cracking during scale growth can be detected by vibrational

technique and found that nickel produces crackfree oxide scale at 800-900 oC, and

appreciable cracking of iron oxide layer at 500-1000 oC.

Bruce and Hancock [46] derived the relationship between the frequency

change of a freely supported specimen and the mass increase due to oxidation.  They

worked with a long thin cylindrical rod subjected to flexural vibration in a freely

supported position.  The characteristic frequency of the firstmode of vibration f0 is

related to the dimensions and young modulus (E) of the rod, given by,

o

o
ml

Ea
f

3

44
2

16

)73.4(

∏
= , (4.2)

where a, l, and m0 are the radius, length, and mass of the rod, respectively.
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If the rod carries a surface oxide film then the system approximates a

composite cylinder, and if the radius of the metal and composite is b and the radius of

the inner metal core is c, then again following Rayleigh, the frequency of the first

mode of vibration of the composite is given by

[ ])(
16

)73.4( 44
2

4
13

4
2 cbEcE

ml
f −+

∏
= , (4.3)

where m is the total mass of the composite rod and E1 and E2 are the moduli of the

metal and the oxide respectively.

During oxidation the increase in the weight of the specimen can be determined

by the thermobalance and most of the kinetic data available are based on such

measurements.  Using the above equations they derived the relationship between the

natural frequency f and the weight increase by the oxidation.

2

12

1

1

2
2

1

2
2

21

12
2

12

12

12

1
2

0

2
0

2

2
1

2






−








−+

∆+
∆+








−
+

−
−

∆=
−

MM

M

M

M

M

M

M

M

MM

MM

MM

M

f

ff ββ
ρ
ρβ

 

(4.4)

Where ∆ is defined by m = m0 (1+∆)

f is the natural frequency of the oxidized rod

f0 is the natural frequency of the original rod before oxidation



55

M1, ρ1 and E1 are the atomic weight, density and young’s modulus of the

oxide and

121

212

ME

ME

ρ
ρβ = ,

The above equation can be simplified to

(4.5)

And for most oxidation conditions the error involved by using the simplified equation

is 2%.

In the present work, the volume loss of the oxide scales of the Armco iron was

calculated.  As explained above, the oxide layer formed at different temperatures on

the iron substrate has a lot of imperfections and because of this there are lot of

variations in the physical properties.

4.2.2 Metal-Metal Oxide Interface

To assess the tendency of an oxide scale to decohesion under the presence of

stresses, appropriate methods for adhesion strength measurements are necessary.  The

properties of the metal/metal-oxide interface are very important for numerical

simulation to estimate the erosion loss accurately.  Good adherence requires a high
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fracture toughness of the oxide and the metal, few flaws, zero voids at the interface

and non-planar defects.  Several testing methods have been developed for this

purpose.  By fixing a brass cone to the oxide surface, scale adhesion has been

measured by Gulyaev et al. [47].  The brass cone was connected to a steel wire and

the interface adhesion strength was determined by performance of the tensile test.  In

another method [48] the concept of forming a metal/scale joint, similar in a shape to a

fillet weld was used.  The metal/scale joint was produced when oxide formed around

the periphery of the small diameter (10 mm) cylinder and the large diameter (20 mm)

cylinder.  The specimen configuration was subjected to the tensile test in which the

decohesion forces are measured.  In each of the above methods problems may arise

with the exact determination of the geometrical values necessary for stress

calculations.

Bruce et al. [46] developed a vibration technique to detect the onset of

cracking in the scale, measuring adhesion of a growing oxide scale by subjecting it to

thermal stresses without attaching any device to the specimen and measuring the

thermal stresses necessary to cause cracking and breakdown of the adhesion.  The

data obtained from this technique was used in the present work.

4.2.3 Particle

In order to understand the nature of erosivity of various kinds of particles that

can occur singularly or together in a group, series of experiments have been

conducted in the past.  The geometry of the deformation due to solid particle impact
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depends on the shape, velocity and the orientation of the impacting particle.

Researchers classify the particles into two categories, spherical and angular.  The

spherical particle is a point contact bombardment and angular is subdivided to sharp

point contact, line contact and the surface contact.  Spherical particle deforms the

target surface by ploughing, displacing material to the side and in front of the

impacting particle as shown in Figure 4.1a.  Angular particle deformation depends on

the orientation of the particle during bombardment and on whether the particle is

rolling forward or backwards during contact.

If the particle rolls forward, it is termed as a type I cutting as in Figure 4.1b, intending

towards surface degradation by raising the material onto prominent lip which can be

removed by subsequent impacts by erodents.  True machining action occurs when the

impacting particle rolls back after impacting the target surface, shown in the Figure

4.1c.   Effects of the particle shape, orientation and the velocity (flow rate) was

explained clearly in chapter 2.

In the present work spherical silicon carbide particles were considered.

Different particle sizes ranging from 100µm to 300µm with a gradual increase in

diameters were taken into account for size effects.  Since the silicon carbide particles

are very hard compared to the target surface, they were treated as rigid particles in

analysis.
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Fig. 4.1 Different Types of Impact Damages.

(a) Ploughing

(b) Type I Cutting

(c) Type II Cutting
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4.3 Assumptions

• Single particle erosion was considered.

• The impacting particles were spherical in shape indicating a point contact.

• The metal was assumed to be ductile.

• The metal oxide was assumed to be brittle.

• The target surface was assumed to be flat without the influence of previous failure

effects.

• Tied nodes with failure constraints were used to simulate the metal/metal-oxide

interface.

• Vibrational effects during particle impact were neglected.

• Damping effects were not included in the model.

• Axis-symmetric model was used in order to save computational time.

• Temperature effects were not actually simulated in the model but were included in

the material properties.

• Silicon carbide particle was assumed to be rigid in solutions.
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CHAPTER 5

MODEL DEVELOPMENT: FINITE ELEMENT ANALYSIS

5.1 Introduction

The purpose of this thesis is to develop a numerical model simulating solid

particle erosion and to account for all of the available parameters and boundary

conditions.  The knowledge of volume loss of an oxide scale by solid particle impact

is necessary in selecting the most economical materials of construction and operating

conditions in the design of equipment.  In this thesis, effort has been made to model it

and thereby be able to predict accurately the volume loss at particular set of

conditions.  The first model simulates the impact of silicon carbide particle onto the

aluminum oxide scale and the second one simulates that of iron/iron–oxide system.

Both the models were developed in IDEAS MS 4.0 and solved in sequential LS-

DYNA3D.  IDEADYN, software developed at Mechanical and Aerospace

Engineering Department, WVU was used to transfer the IDEAS output file to LS-

DYNA3D input format.

5.2 Mesh Generation

The initial step in finite element modeling is to develop a two-dimensional

mesh.  Effort was made to see that the fine mesh was generated near the contact area

and a coarse mesh away from the point of contact, for which the wire frame was
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divided into surfaces accordingly.  The 2D model was map meshed and extruded in z

direction.  As LS-DYNA3D software cannot understand the definition of the wedge

elements enough care was taken in modeling the spherical particle.  All the above

mentioned modeling details were done using a powerful software called IDEAS.

IDEAS provides the capability to generate complex geometry’s, meshing and specify

boundary conditions with minimum user input.  It is a user-friendly interactive

graphics with the ability to identify irregularities in the mesh like warpage and the

stretch of the element.  Once the model is ready other definitions like initial and

boundary conditions can be added and modified interactively.

The current model was developed with user defined unit system of

millinewton, millimeter and millisecond.  The types of elements used were three

dimensional hexahedral brick elements.  The first model was to simulate the impact

of silicon carbide particle onto the aluminum oxide scale.  The second model was of

silicon carbide particle bombarding with the iron/iron-oxide system.  The finite

element model consisting of spherical particle, metal and metal oxide is shown in the

Figure 5.1.

5.3 Material models

The second step of finite element modeling is defining the material models for

the metal, metal oxide and the rigid spherical particle.  The materials should be

defined properly according to the specified units in order to get accurate results from

analysis.  LS-DYNA3D has several inbuilt material models defining various
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materials.  IDEADYN, a translator used to transfer the IDEAS universal file to LS-

DYNA3D input format, does not allow the definition of material properties in IDEAS

itself.  The material

Fig 5.1 Iron/Iron Oxide System

Spherical
Particle

Metal
Oxide

Metal
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properties were to be given in the LS-DYNA3D file only.  In the present work

the effects of impact on the particle were neglected, as the work is focussed only on

the erosion loss of the oxide layer.  The particle is assumed to be rigid and was

assigned rigid material properties.  The rigid material model takes into account all the

material properties of the silicon carbide particles, but doesn’t show the deformations

and other results of the particle.  The following are the properties of the rigid material

required by the LS-DYNA3D input file to solve.

Mass Density

Modulus of Elasticity

Poisson’s Ratio

Rigid body constraints (rotational and translational)

The metal substrate was assumed to be ductile and was assigned elastic

material type.  The properties of the metal substrate are needed for dynamic solution

Mass density

Modulus of Elasticity

Poisson’s Ratio

     The metal oxide scale is assumed to be brittle and was assigned the properties

of the elastic-plastic material model.  The metal oxides behave linearly elastic until

fracture.  The oxide scales are treated as elastic-plastic material model with kinematic

hardening in the mode.  The stress strain curve of the metal oxide is shown in figure

5.2.

The elastic-plastic material type requires the following properties.

Mass Density
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Modulus of Elasticity

Poisson’s Ratio

Yield stress

Tangent Modulus or Hardening Modulus

Hardening Parameter

Fig. 5.2 Stress-Strain Plot of Elastic-Plastic Material Type (T=Temperature)

Stress

Strain

E

Et

T=5700C

T=6740C

T=7430C



65

5.4 Initial and Boundary Conditions

In order to save the computational time only half of the model was considered.

Axi-symmetric boundary conditions were applied to take care of the other half.  The

metal and the metal-oxide were restrained at the bottom and on the sides in order to

avoid rigid body motion of the whole model.  Sliding with friction definition was

used to define the sliding contact of the impacting particle and the target surface.

This particular sliding interface was designated as a type III algorithm.  The spherical

particle nodes were taken as master nodes and those of the oxide scale as slave nodes.

Tied nodes with failure constraint were used to define the metal/metal-oxide

interface.  This particular constraint takes into account the failure strain, which when

exceeded, the nodes at the interface become detached.  The lower failure strain can be

used to define the spallation phenomenon.

The impacting particle was given an initial velocity (condition) in negative

direction onto the target surface.  The velocity and the direction of the impacting

particle can be easily modified with minimal user input in LS-DYNA3D input file.

The output of IDEAS file is then translated to LS-DYNA3D format using

IDEADYN.
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5.5 Model Solution

The third step of the analysis is solving the LS-DYNA3D file.  LS-DYNA3D

is an explicit finite element code for analyzing the transient dynamic response of

three dimensional solids and structure.  It takes the results from the previous time step

and calculates the present time step values.  Once the required material properties

were given

(a) Front View (b) Side View

(c) Top View

Fig. 5.3 Views of Iron/Iron Oxide System

Metal Oxide

Metal
500 µm

500 µm

250 µm

50 µm
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in the LS-DYNA3D input file and checked for accuracy in coding and default hour

glassing was added the file would be ready for the solution.  The results can be

viewed in the post processor called LS-TAURUS.

The total energy of the system is equal to the sum of the kinetic and internal

energy.  In the present work the system consists of metal/metal-oxide and the

impacting particle.  When the particle bombards with the target surface, it loses its

kinetic energy and the target surface gains the internal energy.  The kinetic and

internal energies with respect to the total energy are shown in the Figure 5.4.  It was

assumed that the damage was caused to the oxide scale at the time step where the

internal energy of the whole system reaches maximum value.  The effective stresses

in all the elements were calculated and compared to the failure stress of the oxide

scale at that particular temperature.

5.6 Post Processing

The output file from the LS-DYNA3D had to be post processed in order to get

the solutions in the designed fashion.  The LS-TAURUS was used as post processor

in the analysis.  LS-TAURUS is a powerful, interactive and user-friendly software

that can read binary and time history files generated by LS-DYNA3D.  Also the

software has the feature of displaying the results in various forms, like line plots,

contour plots, arrow plots, data reports and XY graph plots.

In the present work the required results for the failure analysis are stresses and

the displacements.  The displacement results provide the qualitative estimate of the



68

deformation and that of stresses provides the quantitative estimation of the erosion

loss.

The binary plot files GLSTAT and MATSUM were used for the energy plots

that give the kinetic and internal energies with respect to the total energy.  The phase

I of the TAURUS commands gives a plot of effective stresses (Von Mises stresses)

against the element numbers at a particular time step during analysis and prints the

data in HSPBULL file.  These graphs and data are used in the estimation of volume

loss of the system.

5.7 Erosion Loss Estimation

The maximum internal energy point was taken as the time step where the

target experiences damage.  At that particular time interval the plot between effective

stress profiles and the elements were obtained and the data reports printed in

HSPBULL file.  A program was written in C language to estimate the erosion loss for

particular conditions.  The first program scans the HSPBULL file for the elements

whose stress values were more than that of the failure stress for that particular

temperature giving the output file as a count of failed elements.  The second program

which was also written in C language reads the output of the first program and takes

into account the volume of a single element giving the volume loss for the half model

in mm3 units.  The output of each solution was used as a point in the graph for the

erosion loss in micrometer to size of the impacting particle, velocity, temperature or
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the angle of attack and comparing the trend lines with the previous experimental

results.
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Fig. 5.4  A Graph from GLSTAT file, Energies (N/mm2) Vs Time (ms).

Total

Internal
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Fig. 5.5 Graph from MATSUM file, Energies (N/mm2) of Particle and Oxide Scale

Vs Time (ms)

Kinetic
Energy of
Particle

Internal
Energy of
Oxide Layer

Internal
Energy of
Metal
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Fig. 5.6 Effective Stress (N/mm2) Vs Element Number.
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CHAPTER 6

RESULTS AND DISCUSSIONS

6.1 Introduction

The main objective of this chapter revolves around the results and conclusions

of the comparison between in service wear rates with the developed numerical model

to assess the value of the computational model in depicting the behavior of in service

material.  The first step that included in this study is the volume loss estimation of the

aluminum oxide model and comparing the results with that of Levy’s [52] work.  The

core of this study based on the Levy’s statement “the effect of the particle sizes above

200 µm and up to 500 µm remains essentially constant.”  He worked with the

aluminum oxide models at different temperatures comparing in service and the three-

body abrasion testing conditions.  As the results given by Levy in this paper are based

on different parameters of the three body wear which were not clearly mentioned, the

present comparison had been done with the statement rather than with the numerical

data of the erosion loss.  The results showed a good correlation with the Levy’s

statement.  The same procedure was then extended to the iron/iron-oxide system to

study the effect of the various parameters such as

• Size of the Impacting Particle.

• Velocity of the Impacting Particle.

• Angle of Incidence of the Impacting Particle.

• Temperature Effects.
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The size effects were tested for diameters ranging from 100 µm to 300 µm, with

a gradual increase in diameter length at different temperatures.  The study

focuses the effect of particle velocity and the angle of incidence on the 100 µm

particle.  The results were presented as graphs and plots between the volume loss

(µm)3 and the parameters effecting the erosion loss.

6.2 Aluminum Oxide System

The initial step to validate the computational model with the experimental

work and to extend the procedure to the iron/iron oxide system.  The aluminum

model was used for validation.  The system consists of the silicon carbide particle

and aluminum oxide.  The depth of the oxide scale was taken as 50 µm as given

by Levy [52], the oxide scale formed for temperature range 450-500 0C.  The

material properties of the Silicon particle were taken from a material handbook

[53] and those of the aluminum oxide were from Coors ceramics.  Material

properties of the Aluminum Oxide Scale as given by Coors ceramics are given in

the table 6.1.

The model developed was exactly based on the experimental work of Levy

[52].  The depth of the oxide scale and the particle diameters were taken from his

work for a better comparison.  The dimensions of the aluminum model was 500

X 450 X 250 µm3.  In which 50 µm was the oxide scale thickness and 200 µm

was the thickness of the aluminum.  The particle was spherical and the size

ranges from 100 to 300 µm.  The velocity of the particle was 50 m/s and
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impacted to the aluminum oxide scale at normal incidence.  The volume loss was

calculated by impacting particles to the target surface and the results were shown

in the figures 6.1 to 6.3.

Properties of the Aluminum Oxide Model

 Modulus Of Elasticity (Gpa) 372.3

Mass Density (kg/m3) 3890

Poison’s Ratio 0.22

Fracture Stress (MPa) 26.10

6.1 Material properties of the Aluminum Oxide model as given in Coors

ceramics.

Properties of the Silicon Carbide Particles

Modulus Of Elasticity (Gpa) 37.49

Mass Density (kg/m3) 71.28

Poisson’s Ratio 0.192

Table 6.2. Material Properties of Silicon Carbide Particles required for the LS-

DYNA3D input format.
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The assumption that the aluminum oxide and iron oxide behaves as brittle

materials was taken from the conclusions of the Yalamanchilli et al., [39] work.  Levy

[52] conducted experiments on erosion wear of different particle sizes to compare the

three body wear methods with that of in service materials.  He concluded that the

effect of size is significant to that of particle hardness or its strength.  According to

him the particle size above 200 µm and up to 500 µm had same effect on the erosion

of target surface.

In the present work numerical model was used to simulate the experimental

work of Levy [52].  The analysis was performed using the IDEAS and LS -DYNA3D.

The details of the procedure adopted for the estimation of volume loss was given in

the Chapter 5.  The erosion loss was estimated to µm3.

The results show that the volume loss increases steadily with increase in

diameter of the particle.  The kinetic energy of the particle increases with the size,

increasing its capability to penetrate into the target surface developing cracks

resulting in more volume loss.  Until 200 µm the dominating factor is the size of the

particle.  But as the size increases further than 200 µm, the diameter becomes

dominating factor comparing to its mass and the kinetic energy, decreasing its ability

to penetrate the target surface.  Hence, the erosion loss remains same or decreases as

predicted by Levy.  In the present work the volume loss remained more or less the

same as that at 200 µm.  The graph between the volume loss (µm3) Vs the size of the
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impacting particle (µm) is shown in the figure 6.2.  The stress contours for the

impacting particle range 200 to 300 µm is shown in the figure 6.3.

Fig 6.1 Aluminum/Aluminum-Oxide System

Metal/Metal-Oxide
Interface
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Fig 6.2 Volume loss Vs size of the particle impacting at normal incidence with 50 m/s

velocity at temperature 570oC, Oxide layer thickness is 50 µm
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Fig 6.3 The stress contour of  aluminum oxide model

N/mm2
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Fig 6.4 the effect of particle sizes on volume loss through contour plots.

N/mm2
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6.3 Iron/Iron Oxide System

The above model after validating with the experimental work, has been

extended to the Iron/Iron-Oxide system.  The Iron/Iron-Oxide system consists of

metal substrate, an oxide layer and the silicon carbide particle.  The dimensions of the

substrate and the oxide scale were 500 X 450 µm.  The thickness of the oxide scale

and the metal substrate depends on the temperature, namely 570, 674, 743 and 800

0C.  The thickness of the oxide layer depends on the oxidation process that in turn

depends on the temperature.  The silicon carbide particle was assumed to be rigid

with astrength great enough to prevent from fracturing or shattering.  The oxide

surface was assumed to be flat with no effects of earlier impacts.  Only half the model

was considered to save the computational time and the axis-symmetric boundary

conditions were applied.  The particle was given a constant velocity in the negative Y

direction.

The material properties of the silicon carbide particle was taken from the hand

book [ ] as shown in the table 6.2.  The properties of the iron and the oxide layer were

taken from the experimental results of Bruce et al. [46] and were given in the table

6.3.  The particle was spherical in shape and the solid particle erosion analysis was

performed for various particle sizes, velocities, and angles of incidence and

temperatures.

In both laboratory and in service equipment the particles are free to change

their orientation with the target surface and can hit in any direction.  Hence all angles
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of attack from 10 to 90 0  was considered for analysis.  The size of the particles ranges

from 100µm to 300 µm with velocity ranging from 10m/s to 100m/s.  In all these

cases transient dynamic analysis was performed using LS-DYNA3D.  The procedure

adopted was the same as that used for aluminum model.  The results were given in the

form of graphs.

                      Temperature

Properties

570 oC 674 oC 743 oC 800 oC

Iron Oxide

Modulus of Elasticity (Gpa) 182 168 158 151

Mass Density (Kg/m3) 5190 5188 5187 5185.5

Poisson’s Ratio 0.345 0.345 0.345 0.345

Scale Thickness (µm) 36 111 206 325

Fracture Stress (Mpa) 38 2.4 1.9 4.9

Iron

Modulus Of Elasticity (Gpa) 155 149.53 135.06 125.41

Mass Density (Kg/m3) 7810 7802 7800 7798

Poisson’s Ratio 0.34 0.34 0.34 0.34

Scale Thickness (µm) 150 100 50 25

Table. 6.3 Mechanical Properties of Iron Oxide and the Iron Substrate at Different

Temperatures
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6.3.1 Influence of Size

The effect of size of particle on iron/iron oxide system was similar to that of

aluminum oxide model.  The volume loss was estimated for all the sizes of impacting

particle for velocity of 50 m/s at normal incidence.  The analysis was conducting for

temperatures 674 oC and 743 oC.  The thickness of oxide layer was 111 and 206 µm

respectively.  The particle was impacted on to the target surface and analysis was

done for 9.0E-04 ms that was obtained from initial test run.

With the increase in the size of the particle, the mass as well as kinetic energy

associated with the particle increases, increasing its ability to penetrate the target

surface developing cracks resulting in the more volume loss.  The difference in

volume loss for 100 µm  and 150 µm was more, owing to the large kinetic energy of

the particle.  Thereafter the difference in the volume loss for 50 µm increase in size

was less, as the dominating factor was its diameter decreasing the capability of

particle to penetrate the target surface.  Unlike aluminum system volume loss for

particle impact on iron oxide surface increased until 250 µm.  This can be attributed

to the oxide layer thickness 111 and 206 µm as compared to 50 µm of aluminum

model.

The analysis was performed at two different temperatures 674 oC and 743 oC.

The volume loss at 674 oC for 250 µm particle was 1.41E+07 µm3 and that of at 743

oC was 3.05E+07 µm3.  This is because at lower temperature the volume loss is due to

the brittle fracture and at higher temperature the plastic flow dominates , reducing the
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volume loss.  The iron oxide scale formed at 570 oC has higher modulus of elasticity

than that at 743 oC.

The graphs for volume loss of oxide layer Vs size of particles at 674 and 743 oC was

shown in figures 6.5 and 6.6 and the comparison of both temperatures in 6.7.  The pie

diagram shows the %age of internal energy taken by oxide layer out of total energy

for all the three particle sizes 250, 275 and 300 µm.  The internal energy of the oxide

scale for all the above mentioned three particles was same, hence the same volume

loss.

6.3.2 Effect of Velocity on Erosion Mechanism

Analysis was performed at normal incidence for 100 µm particle at several

velocities ranging from 10 m/s to 100 m/s to determine the volume loss and in order

to obtain trend lines.  The analysis was carried out at temperature  570, 674 and 743

oC respectively.  The steady state erosion rates were constant and were related

directly to the particle velocity.  The rate of increase in volume loss was different for

different velocities.  The slight linear variation of volume loss for the case of

temperature 570oC and for a velocity of 30 m/s is attributed to the numerical error and

error due to rounding off  volume loss estimation which was based on each individual

failed brick element. In real life the eroded material need not be in the shape of brick.

For temperatures 674 and 743 oC, the variation of volume loss followed the constant

slope.  The results are in correlation with the work of Yalamanchili et al. [39].
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6.3.3 Effect of Impact Angle

In real life the particles are free to change their orientation with the target

surface bombarding at different angles.  In the present work the angle of attack was

varied from 0o to 90o for 100 µm spherical particle keeping the velocity constant at 50

m/s.  The variation of volume loss was linear at all the temperatures considered.  In

all the cases the variation of volume loss was more at shallow angles and less at

higher angles.  In all the three cases the volume loss was maximum at normal

incidence.  The volume loss was 7.26E+05, 2.93E+06 and 4.02E+06 µm3 at

temperatures 570, 674 and 743oC respectively.  The variation of volume loss at the

shallow angle s can be attributed to the more surface contact between the particle and

the oxide layer as the erosion is due to the impact and sliding.
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Fig 6.5 Iron/Iron-Oxide System at 674o
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Fig 6.6 Comparison of Size Effects at 743 and 674 0C at 50m/s velocity and

for thickness 206 and 111µm respectively.
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Fig 6.7 Stress contours for particle impact at 674 0C

N/mm2



89

Fig 6.8 Stress contours for particle impact at 674 0C

N/mm2
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Fig 6.9 Stress contours for particle impact at 743 0C

N/mm2



91

Fig 6.10 Stress contours for particle impact at 743 0C

N/mm2
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Iron Oxide System

Fig. 6.11 Volume loss Vs Velocity for 100 µm impacting Particle

T is the thickness of oxide scale
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Iron Oxide System

Fig. 6.12 Volume loss Vs Angle of attack for 100 µm particle at 570oC

T is the thickness of the oxide layer.
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Fig. 6.13 Sequence of steps of particle impact on to target surface at 50 m/s
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Fig. 6.14 Sequence of steps of particle impact on to target surface at 50 m/s
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Iron Oxide System

Fig. 6.15 Volume loss Vs Velocity for 100 µm particle

T is the thickness of oxide scale
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Iron Oxide System

Fig. 6.16 Volume loss Vs Angle of attack for 100 µm
T is the thickness of oxide scale
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 Iron Oxide System

Fig. 6.17 Volume loss Vs Velocity for 100 µm particle

    T is the thickness of oxide scale
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      Iron Oxide System

Fig. 6.18 Volume loss Vs Velocity for 100 µm particle

T is the thickness of the oxide scale
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Iron Oxide System

Fig. 6.19 Comparison of Velocity Effects at three different temperatures
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Iron Oxide System

Fig. 6.20 Comparison of Effects of Angle of Attack at three different

temperatures
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The finite element results of aluminum oxide model showed good correlation

with the experimental work of Levy [52].  The erosion loss increased with increase in

size until 200 µm and there after the volume loss was nearly constant.  For the initial

size of particle the mass and kinetic energy increases with size and the ability of the

particle to penetrate through the target surface increased developing cracks and an

increase in the volume loss.  As the size of the particle increases beyond 200 µm the

diameter becomes the dominating factor decreasing the ability of the particle to

penetrate the target surface.  As predicted by Levy [52] this behavior continues until

500 µm beyond which the volume loss decreases.

The validated model has been extended to the iron/iron oxide system.  The

analysis was performed at different temperatures.  The effects of size of particles

were performed at 674 and 743 0C.  The particle was impacted at normal incidence

with 50 m/s.  Unlike aluminum model the volume loss increases until 250 µm and

remains the same thereafter.  This difference can be attributed to the difference of the

oxide layer thickness, which is 111 µm as compared to 50 µm of aluminum model.

The reason for this volume loss is the same as explained in the previous paragraph.

The other major parameter that was tested was velocity of the impacting

particle.   The analysis was performed for several velocities ranging from 10 to 100

m/s.  The 100 µm particle was impacted on to the target surface at normal incidence.
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The variation of volume loss was similar at all temperatures tested.  The maximum

volume loss was at 100 µm owing to the maximum kinetic energy of the particle.

The volume loss increased with increase in the velocity of the particle.

In the study on the influence of the angle of incidence, the 100 µm particle

was impacted on to a target surface at 50 m/s.  The erosion loss was more at normal

incidence, which proves the assumption that the iron oxide behaves as brittle material.

The variation of erosion loss at shallow angles was more compared to higher angles,

because erosion was due to sliding and impact.  The variation was similar for all the

temperatures.  The results are in correlation with the work of Yalamanchili et al.,

[39].

The study of effect of temperature on erosion showed that the volume of iron

oxide increased gradually with the temperature for 100 µm impacting particle.  This

can be attributed that for smaller diameter the dominating factor was the kinetic

energy of the impacting particle.

7.2 Future Recommendations

In the present work, iron/iron oxide interface properties were taken from the

conclusions of Bruce et al.[46] which were based on vibration tests taken over a

range.  With the development of ultrasonic testing, better results can be accounted for

better simulation.  The present work dealt only with the erosion of brittle materials.

The surface was free from previous impacts, but in real life equipment’s, deterioration

occurs after a series of impacts, a procedure has to be developed for erosion loss

estimation.
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The properties of the materials and the interface might change after some

hours of service, which are not available in the literature that should be obtained

through experiments.  The procedure adopted in this thesis can be extended to the

multiple particle erosion.
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APPENDIX A

Sample LS-DYNA3D Input File

* Analysis input data for LS-DYNA3D 92
* Translated from I-DEAS universal file Fe-R150.unv
* written by I-DEAS Master Series 3:    Simulation
* vis IDEADYN Revision 9.5  .
*
*
* Title
VC LARGE
/simba/people/ravi/Fe_Oxide/570/Iron_oxide
92 large
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card  1:  Model Size  --  General
*    NMMAT/    NUMNP/   NUMELH/   NUMELB/   NUMELS/
NUMELT/   NUSRMT
         3     26874     23081         0         0
0         0
*________________________________________________________
_______________________
* Control Card  2:  Model Size  --  Boundary Conditions
*NSPC/COOR/VEAC/NRBS/  RC/ RCF/ JOY
    0    0    0    0    0    0    0    0
*________________________________________________________
_______________________
* Control Card  3:  Model Size  --  Loading
*LDCV/CNLD/ PLC/ GBL/ BPC/DTPT/ELMD/ NDP
    0    0    0    0    0    0    0    0
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card  4:  Model Size  --  Constraints and
Contact
* RWL/  SI/ BLK/TBSL/TNWF/TNPF/NNCC/NCEQ/NOSL
    0    1    0    0    1    0    0    0    0
*________________________________________________________
_______________________
* Control Card  5:  Model Size  --  Rigid Body Parameters
* RBS/ RBC/ JTD/EXTR/ RBI
    0    0    0    0    0    0    0
*________________________________________________________
_______________________
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* Control Card  6:  Model Size  --  Discrete Elements and
Seat Belts
*MTDF/CORD/ ELD/ MAS/ SBM/ SBE/SBSR/SBRT/SBSE/SBPT/ ACC
    0    0    0    0    0    0    0    0    0    0    0
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card  7:  Model Size  --  Output Control
* CSD/NOFG/ IFS/RWSG
    0    0    0    0
*________________________________________________________
_______________________
* Control Card  8:  Model Size  --  Termination
*  ENDTIM /TERM.CYCL/   TSMIN /%DE-RATIO
 9.000E-04         0 0.000E+00         0 0.000E+00
*________________________________________________________
_______________________
* Control Card  9:  Computation Options  --  Time Step
Size Control
*  DT2OLD /  TSSFAC /    ISDO /   TSLIMT/   DT2MS /
LCTM
 0.000E+00 7.000E-01         0 0.000E+00 0.000E+00
0    0
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card 10:  Computation Options  --  Body Forces
*X-AC/Y-AC/Z-AC/XROT/YROT/ZROT
    0    0    0    0    0    0
*________________________________________________________
_______________________
* Control Card 11:  Computation Options  --  Input
Control
*INIT/NSRT/IARB/ NIF/ CNV/BROD
    1    0    0E20.0    0    0
*________________________________________________________
_______________________
* Control Card 12:  Computation Options  --  Beams and
Shells
*  WRPANG /MITR/TRST/RNXX/SUPD/BELY/UBIR/PUBR/USIR/PUSR
 0.000E+00    0    0    0    0    0    0    0    0    0
2
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card 13:  Computation Options  --  Material
Related Input
* IHQ/QH-DEFLT./ IBQ/Q1 (QUAD)/Q2 (LIN.)/RDFL/RDMS/TEMP
    0 1.500E-01    1 1.500E+00 6.000E-02    0    0    0
0



113

*________________________________________________________
_______________________
* Control Card 14:  Computation Options  --  Damping /
Dynamic Relaxation
*LCDP/  VALDMP /DRFL/CYCK/   DRTOL /  DRFCTR /  DRTERM /
TSSFDR /DRAL/    EDTTL
    0 0.000E+00    0  250 1.000E-03 9.950E-01 0.000E+00
0.000E+00    0 0.000E+00
*________________________________________________________
_______________________
* Control Card 15:  Computation Options  --  Contact
*  SLSFAC /  RWPNAL /INIC/THIK/
PSV/STCC/INIR/SCIC/SCIF/IGEO/ BCS/INTS
 1.000E+00 0.000E+00    2    0    0    0    2    0    0
10    0 0.000E+00
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card 16:  Computation Options  --  Parallel and
Subcycling
*NCPU/SORT/SUBS/
    1    0    0
*________________________________________________________
_______________________
* Control Card 17:  Computation Options  --  Coupling
*   UNLEN /  UNTIME / UNFORCE /MREP/
 0.000E+00 0.000E+00 0.000E+00    0  000 0.000E+00    0
*________________________________________________________
_______________________
* Control Card 18:  Computation Options  --  Output
Control
*POPT/TSPF/EDIT/RDEC/CBRF/ECHO/DEBG/RFUP/ACCA/OPIF/
    0    1    0    0    0    0    1    0    0 0.000E+00
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card 19:  Computation Options  --  Output
Energy
*HGEC/NRWO/SIED/RDED
    2    0    2    0
*________________________________________________________
_______________________
* Control Card 20:  Computation Options  --  TAURUS
Database Control I
*STATEDUMP/ IFF-DUMP/THDT-DUMP/NDTH/NSTH/NSTB/NSTS/NSTT
 9.000E-05 0.000E+00 9.000E-05    0    0    0    0    0
*________________________________________________________
_______________________
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* Control Card 21:  Computation Options  --  TAURUS
Database Control II
*DREL/NIPH/NIPS/SINT/STRN/STEN/EFPS/SRES/IETH/PSEP/
    0    0    0    3    1    1    1    1    1    0    1
*___+____1____+____2____+____3____+____4____+____5____+__
__6____+____7____+____8
* Control Card 22:  Computation Options  --  ASCII Output
Control I
* SECFORC /  RWFORC /  NODOUT /  ELOUT  /  GLSTAT /
DEFORC /  MATSUM /  NCFORC
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 9.000E-05
0.000E+00 9.000E-05 0.000E+00
*________________________________________________________
_______________________
* Control Card 23:  Computation Options  --  ASCII Output
Control II
*  RCFORC /  DEFGEO / SPCFORC /  SWFORC /  ABSTAT /
AVSFLT /  NODFOR /  BNDOUT
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
*________________________________________________________
_______________________
* Control Card 24:  Computation Options  --  ASCII Output
Control III
*  RBDOUT /  GCEOUT /   MPGS  /   MOVIE /  SLEOUT /
SBTOUT /
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00
*...*....1....*....2....*....3....*....4....*....5....*..
..6....*....7....*....8
*
*------------------------------- Material Cards ---------
----------------------*
*
*...*....1....*....2....*....3....*....4....*....5....*..
..6....*....7....*....8
* MATERIAL MODEL 1
*Properties of the metal.
    1    1 7.810E+00    0    00.1500E+00
00.0000E+000.0000E+00    0    0    0
material type # 1  (elastic)
 1.550E+08 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 3.400E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
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 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
*Properties of the oxide.
    2    3 5.190E+00    0    00.1500E+00
00.0000E+000.0000E+00    0    0    0
material type # 3  (elastic-plastic)
 1.820E+08 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 3.450E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 3.800E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 1.896E+06 0.000E-00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
*Properties of particle
    3   20 7.128E+00    0    00.1500E+00
00.0000E+000.0000E+00    0    0    0
material type # 20  (rigid)
 3.749E+07 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 1.920E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00
*------------------------------ Node Definitions --------
----------------------*
*      #/ DBC/      X-COOR       /      Y-COOR       /
Z-COOR       / RBC
       1    7-1.3499999046326E-01 3.7058875412832E-10
0.0000000000000E+00    7
       2    0-1.3499999046326E-01 3.3333335071802E-02
0.0000000000000E+00    0
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       3    0-1.3499999046326E-01 6.6666670143604E-02
0.0000000000000E+00    0
       4    7-1.5833333134651E-01 3.7058875412832E-10
0.0000000000000E+00    7
       5    0-1.5833333134651E-01 3.3333335071802E-02
0.0000000000000E+00    0
       6    0-1.5833333134651E-01 6.6666670143604E-02
0.0000000000000E+00    0
       7    7-1.8166665732861E-01 3.7058875412832E-10
0.0000000000000E+00    7
       8    0-1.8166665732861E-01 3.3333335071802E-02
0.0000000000000E+00    0
       9    0-1.8166665732861E-01 6.6666670143604E-02
0.0000000000000E+00    0
      10    7-2.0499999821186E-01 3.7058875412832E-10
0.0000000000000E+00    7
      11    0-2.0499999821186E-01 3.3333335071802E-02
0.0000000000000E+00    0
      12    0-2.0499999821186E-01 6.6666670143604E-02
0.0000000000000E+00    0
      13    7-1.1999999731779E-01 3.7058875412832E-10
0.0000000000000E+00    7
      14    0-1.1999999731779E-01 3.3333335071802E-02
0.0000000000000E+00    0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

*...*....1....*....2....*....3....*....4....*....5....*..
..6....*....7....*....8
*
*---------------------- Element Cards for Solid Elements
----------------------*
*      #/ MAT/     N1/     N2/     N3/     N4/     N5/
N6/     N7/     N8/
       1    1       1       2       5       4     829
859     949     919
       2    1     829     859     949     919     830
860     950     920
       3    1     830     860     950     920     831
861     951     921
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       4    1     831     861     951     921     832
862     952     922
       5    1     832     862     952     922     833
863     953     923
       6    1     833     863     953     923     834
864     954     924
       7    1     834     864     954     924     835
865     955     925
       8    1     835     865     955     925     836
866     956     926
       9    1     836     866     956     926     837
867     957     927
      10    1     837     867     957     927     838
868     958     928
      11    1     838     868     958     928     839
869     959     929
      12    1     839     869     959     929     840
870     960     930
      13    1     840     870     960     930     841
871     961     931
      14    1     841     871     961     931     842
872     962     932
      15    1     842     872     962     932     843     873     963     933

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

*...*....1....*....2....*....3....*....4....*....5....*..
..6....*....7....*....8
*

*----------------------------- Initial Conditions -------
----------------------*
*      #/      IVX/      IVY/      IVZ
       1 0.000E+00 0.000E+00 0.000E+00
       2 0.000E+00 0.000E+00 0.000E+00
       3 0.000E+00 0.000E+00 0.000E+00
       4 0.000E+00 0.000E+00 0.000E+00
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       5 0.000E+00 0.000E+00 0.000E+00
       6 0.000E+00 0.000E+00 0.000E+00
       7 0.000E+00 0.000E+00 0.000E+00
       8 0.000E+00 0.000E+00 0.000E+00
       9 0.000E+00 0.000E+00 0.000E+00
      10 0.000E+00 0.000E+00 0.000E+00
      11 0.000E+00 0.000E+00 0.000E+00
      12 0.000E+00 0.000E+00 0.000E+00
      13 0.000E+00 0.000E+00 0.000E+00
      14 0.000E+00 0.000E+00 0.000E+00
      15 0.000E+00 0.000E+00 0.000E+00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

26856 0.000E+00-5.000E+01 0.000E+00
   26857 0.000E+00-5.000E+01 0.000E+00
   26858 0.000E+00-5.000E+01 0.000E+00
   26859 0.000E+00-5.000E+01 0.000E+00
   26860 0.000E+00-5.000E+01 0.000E+00
   26861 0.000E+00-5.000E+01 0.000E+00
   26862 0.000E+00-5.000E+01 0.000E+00
   26863 0.000E+00-5.000E+01 0.000E+00
   26864 0.000E+00-5.000E+01 0.000E+00
   26865 0.000E+00-5.000E+01 0.000E+00
   26866 0.000E+00-5.000E+01 0.000E+00
   26867 0.000E+00-5.000E+01 0.000E+00
   26868 0.000E+00-5.000E+01 0.000E+00
   26869 0.000E+00-5.000E+01 0.000E+00
   26870 0.000E+00-5.000E+01 0.000E+00
   26871 0.000E+00-5.000E+01 0.000E+00
   26872 0.000E+00-5.000E+01 0.000E+00
   26873 0.000E+00-5.000E+01 0.000E+00
   26874 0.000E+00-5.000E+01 0.000E+00
*...*....1....*....2....*....3....*....4....*....5....*..
..6....*....7....*....8
*
*----------------------- Sliding Interface Definitions  -
----------------------*
*   NUMS/   NUMM/R//T/      NUS/      NUK/     DECC/LCN//
SS/  MS/ SFSPS/ SFMPS
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    1085      68    3 0.000E+00 0.000E+00 0.000E+00   00
1    11.0E+001.0E+00
       1      87      94   17569   17359
       2   17359   17569   17570   17360
       3   17360   17570   17571   17361
       4   17361   17571   17572   17362
       5   17362   17572   17573   17363
       6   17363   17573   17574   17364
       7   17364   17574   17575   17365
       8   17365   17575   17576   17366
       9   17366   17576   17577   17367
      10   17367   17577   17578   17368
      11   17368   17578   17579   17369
      12   17369   17579   17580   17370
      13   17370   17580   17581   17371
      14   17371   17581   17582   17372
      15   17372   17582   17583   17373

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

*-------------------------- Tied Nodes with Failure  ----
----------------------*
*
*NTNC/NMAX/ELET/
 1152    2    1
*    DPSFF
 1.600E-01
*     PSFF/           N1/     N2/     N3/     N4/     N5/
N6
 1.600E-01            17      40
 1.600E-01            19      50
 1.600E-01            21      60
 1.600E-01            23      70
 1.600E-01            25      80
 1.600E-01           536     566
 1.600E-01           537     567
 1.600E-01           538     568
 1.600E-01           539     569
 1.600E-01           540     570

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .
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APPENDIX B

c-Program to find out number of failed elements
from HSPBULL file

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

main(int argc, char * argv[])
{

int count=0;
FILE * fp, *fq;

char s[100];

double Threshold, x, y;

sscanf(argv[1],"%lf",&Threshold);

printf("Threshold : %lf\nInput file : %s\nOutput file :
%s\n\n\n",Threshold,argv[2],argv[3]);

fp=fopen(argv[2],"r");
fq=fopen(argv[3],"w");

while(fgets(s,100,fp)!= NULL)
{

sscanf(s,"%lf %lf",&x,&y);
if(y >= Threshold)
{

fputs(s,fq);
count++;
printf("Element Failed\t\tCount : %d\n",count);

}
}
fprintf(fq,"\n\n No of failed elements: %d\n", count);
fclose(fp);
fclose(fq);

}
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