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ABSTRACT 
 
 
Prenatal Stress Alters Fear-Conditioned Behaviors and the Response to Serotonergic 

Drugs 
 
 

William C. Griffin III 
 
 
 Chronic, inescapable stress during pregnancy (i.e. prenatal stress) modifies the 
behavior of the adult offspring.  Several behaviors were evaluated in adult prenatally 
stressed (PS) rats, most notably the acoustic startle response and behavioral inhibition (i.e. 
freezing).  PS rats do not differ in baseline peak startle responding, or in the habituation of 
the peak startle response when compared to the non-prenatally stressed (CON) rats.  
However, PS rats have greater peak responses and longer latencies to reach the peak 
response following systemic doses of the 5-HT1A agonist, 8-OH-DPAT, compared to CON 
rats.  The PS rats had shorter latencies than the CON rats under vehicle treatment.   

In fear-potentiated startle testing, peak startle responding did not reach the same 
levels in the PS rats as it did in the CON rats; thus, it was inhibited.  Latencies were 
depressed during fear-potentiated startle testing compared to baseline testing, and the PS 
rats had generally shorter latencies than the CON rats.  Additionally, the latency was more 
sensitive to context after the training, demonstrating a decrease during the leader trials of 
the test session, before the increase in peak startle was noted during the testing trials.  In 
defensive freezing, PS rats displayed more freezing following acute footshock and 24 hours 
later in the same context when the footshock was not presented.  Rears were markedly 
attenuated immediately post-shock and, the next day, and only recovered significantly in 
the CON rats.   

The data presented are consistent with PS rats being more reactive to fear 
provoking stimuli.  The ramifications of this are discussed in terms of the neural circuitry 
that underlie the behaviors with possible changes that might be induced by prenatal stress.  
Additionally, some observations regarding the contextual influence on the acoustic startle 
response and freezing are discussed.  Finally, several pieces of evidence are presented 
demonstrating that gross developmental and some neurochemical parameters of PS rats are 
indistinguishable from CON rats from birth to adulthood suggesting that source of the 
behavioral differences noted above is subtle in nature.   
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INTRODUCTION 
 

Early life experiences shape how humans and other animals react to the world 

around them as adults.  Contemporary research demonstrates that the developing brain is 

quite malleable and, therefore, susceptible to alteration by outside influences.  A number of 

studies describe the detrimental effects of alcohol use, illicit drug use and even therapeutic 

drug use on normal development of the fetus [e.g.(Hepper, 1995) (Tavares and Silva, 1996) 

(Heaton et al., 1995) (Lee and Rivier, 1994) (Canger et al., 1999)].  It is also clear that 

chronic maternal psychological stress during pregnancy disrupts normal development of 

the fetal brain, creating the potential for behavioral and emotional problems later in life.   

 

The Prenatal Stress Syndrome 

 In 1941, Sontag synthesized the available information regarding maternal-fetal 

interactions and proposed the hypothesis that behavioral disturbances in some children may 

have their origin during pregnancy (Sontag LW, 1941).  Sontag supported his hypothesis 

with anecdotal evidence.  The first true attempt at quantifying this hypothesis did not occur 

until 1956 with a study by Pasaminick et. al. who demonstrated that stressful complications 

during pregnancy were associated with behaviorally disturbed children (Pasamanick et al., 

1956).  One year later, Thompson studied the effects of inescapable stress on pregnant rats 

(Thompson, 1957).  In that study by Thompson, female rats were trained to avoid a 

footshock in one chamber by escaping through a door to another chamber when a buzzer 

sounded.  Later, during pregnancy the door was closed to prevent escape when the buzzer 

sounded, although no shock was delivered.  The male offspring of those mothers were less 

active in an open field, had longer latencies to emerge from their home cage and longer 

latencies to approach food after 24 hours of food deprivation.  Another study published 
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later that same year, by D.H. Stott, was a retrospective study on stress during human 

pregnancies (Stott, 1957).  Stott found strong correlations between mental retardation and 

maternal psychological stress during pregnancy.  Together, the studies by Pasaminick et. 

al., Thompson and Stott provided the first quantifiable evidence that psychological trauma 

during pregnancy was detrimental to the fetus and initiated the study of the prenatal stress 

syndrome.  

Further studies of human pregnancies demonstrated that children of mothers 

exposed to psychological stressors involving difficult inter-personal relationships were 

more likely to express behavioral and emotional problems (e.g. excessive crying, clinging, 

fretfulness, neuroticism) than children with no such background (Stott, 1973) (Ward, 1991) 

(Stott and Latchford, 1976).  Stott also found that children subjected to prenatal stress were 

more likely to experience developmental delays (late walking or poor walking ability) as 

well as an increased incidence of physical ailments (eczema, respiratory problems) (Stott, 

1973).  Other studies demonstrated that the death of the father or the experience of war 

during pregnancy correlated with behavioral disturbances in children, including 

schizophrenia (Huttunen and Niskanen, 1978) (Meijer, 1985) (Van Os and Selten, 1998).  

Together, these studies suggest that prolonged maternal psychological stress during 

pregnancy increases the likelihood of emotional disturbances or developmental delays in 

children.    

Experiments utilizing non-human primates, stressed during gestation, nicely 

complement the human studies.  Prenatally stressed (PS) Rhesus monkeys demonstrate 

more clinging behavior and less social contact with their peers under baseline and stressful 

conditions when compared with non-prenatally stressed (CON) monkeys (Clarke and 

 2



Schneider, 1993).  After exposure to novelty, the PS monkeys show less exploratory 

behavior than CON monkeys, indicating fearfulness (Schneider, 1992).  Investigations into 

motor activity have also revealed that PS monkeys have impaired neuromotor maturity; 

that is, activities utilizing neuromuscular coordination do not develop as quickly in PS 

monkeys (Schneider, 1993).  Finally, another study examined the hypothalamic-pituitary-

adrenal (HPA) axis activity and indicated that adrenocorticotropin hormone (ACTH) levels 

were greater at all instances measured in PS monkeys than in CON monkeys. This implies 

that the HPA axis of the PS monkeys is not appropriately regulated and hints at an 

underlying mechanism for the behavioral abnormalities (Clarke et al., 1994). 

Many studies of the prenatal stress syndrome have used rats.  Behaviorally 

speaking, PS rats are less active in open field tests than CON rats [(Suchecki and Palermo, 

1991) (Wakshlak and Weinstock, 1990), but see (Poltyrev et al., 1996)].  PS rats also spend 

less time in the open arms of the elevated plus maze (Poltyrev et al, 1996) (Fride and 

Weinstock, 1988).  Additionally, PS rats demonstrate more behavioral inhibition (i.e. 

freezing) to acute footshock than non-PS rats (Takahashi et al., 1992a) (Takahashi et al., 

1990).  Finally, PS rats display increased defensive withdrawal, before and after 2 hours of 

restraint (Ward et al., 2000).  These studies suggest that PS rats are more fearful in novel or 

stressful environments.  Although it is difficult to directly extrapolate these findings to the 

human condition, the behavioral disturbances seen in prenatally stressed children may be 

signs of fear related to novel or stressful situations. 

A hallmark feature of prenatal stress in rats is HPA axis dysregulation.  A number 

of investigators have reported that PS rats have greater plasma corticosterone and ACTH 

levels than CON rats following a stressful intervention, including exposure to an open field 
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(Fride et al., 1986) (Peters, 1986a).  Furthermore, Peters reported elevated plasma 

corticosterone and ACTH following a subcutaneous (s.c.) 0.9% saline injection in adult PS 

rats (Peters, 1982).  In addition to this phenomenon occurring in adult rats, Takahashi has 

shown this to be true for young, pre-weanling PS rats following a footshock (Takahashi and 

Kalin, 1991).  Elevated corticosterone and ACTH after a stressful intervention may be due 

to decreased numbers of hippocampal glucocorticoid receptors (type I and II) in PS rats, 

which are integral parts of the negative feedback loop of the HPA axis (Barbazanges et al., 

1996) (Koehl et al., 1999) (Gilman et al., 1990).  Regardless of these observations, basal 

levels of corticosterone and ACTH do not appear to be drastically different between male 

PS and CON rats.  Koehl et. al., using chronic indwelling venous catheters, reported no 

differences in daily basal corticosterone levels throughout most of the day, although they 

did find that the daily peak response was somewhat higher and occurred sooner in male PS 

rats than in CON rats (Koehl et al, 1999).  

Unfortunately, studies exploring HPA axis regulation in PS humans have not been 

published and studies in PS non-human primates are rare.   In fact, only two studies could 

be found that have been published regarding HPA axis activity in PS non-human primates.  

The first was alluded to earlier and showed differences in levels of ACTH (Clarke et al, 

1994).  The other study, by Reyes and Coe, looked at HPA axis response to interleukin-6 

challenge and did not see differences between PS and CON monkeys; however, the 

prenatal stressor was quite mild and involved a single exposure to noise during the middle 

of the pregnancy (Reyes and Coe, 1997).  Clearly, more studies are needed in humans and 

non-human primates to determine if the effects found in rodents are pertinent to the human 

condition.   
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 Although most research about prenatal stress has focused on male subjects, 

particularly in rodents, it should be noted that prenatal stress affects both genders but not 

necessarily in the same way.   In most studies regarding prenatal stress in human and non-

human primates, distinctions about gender effects are left unstated, leaving the reader to 

assume that prenatal stress affects males and females equally [e.g. (Clarke et al, 1994) 

(Clarke and Schneider, 1993) (Ward, 1991) (Stott, 1973)].  Only one study could be found 

that compared PS and CON monkeys in terms of gender and prenatal condition, but no 

differences were detected in this regard (Schneider, 1992).  The lack of gender effects in 

this study may be related to the small number of subjects in the PS and CON groups. 

On the other hand, in rodent models, investigators have reported clear differences 

with regard to the effects of prenatal stress on males and females.  For example, PS female 

rats have higher basal plasma corticosterone levels during the nadir in the corticosterone 

circadian rhythm than CON female rats; whereas, PS and CON male rats do not differ in 

this respect (Koehl et al, 1999) (Szuran et al., 2000).  Behaviors are also differentially 

affected by prenatal stress with regard to gender.   Szuran et. al. reported that cold water 

escape latencies for PS females were faster at 10oC than either PS males, CON males or 

CON females which were all essentially equal in escape latency (Szuran et al, 2000).   

Additionally, Fride and Weinstock noted that PS female rats spend more time on the open 

arms of the plus-maze than PS males, indicating that the PS females are less fearful than 

their male counterparts (Fride and Weinstock, 1988).    

As with the paucity of studies on HPA axis regulation in primate species, more 

work needs to be done with regard to gender effects and prenatal stress to determine if the 

findings with gender effects in rodents apply to the human condition.  Given the gender 
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differences found in rodents, it seems reasonable to speculate that if the results of human 

and non-human primates were stratified according to gender, some instances where 

differences were not detected originally may actually yield differences.  For example, 

Clarke et. al. in their studies with Rhesus monkeys and HPA axis activity only found 

effects with ACTH and not cortisol (Clarke et al, 1994).  However, they did not collect 

blood over a 24 hour period and did not sort the results by gender (the cohorts were 

composed of males and females).  The results from rodent studies using catheters suggest 

that the timing of blood collection and the gender of the subject are important variables to 

control with regard to prenatal stress and HPA axis regulation.    

A major tenet of the prenatal stress syndrome is that the stressor is applied 

chronically for some or all of the gestational period.  Furthermore, the mother is not given a 

chance to adapt or cope with the stressor.  In fact, the original experiment in rats performed 

by Thompson included this as part of the method of stressing (Thompson, 1957).  In 

discussing their studies on human pregnancies, D.H. Stott and A.J. Ward both point out that 

the common denominator with the PS syndrome was that the mothers were in situations 

with which they could not easily cope or escape (Stott, 1973) (Ward, 1991).  In accordance 

with this observation, the non-human primate and rodent studies cited above all contained a 

chronic stressor applied for large portions or all of the gestational period.  Moreover, 

several studies cited above examined single stressful events during pregnancy and failed to 

replicate the findings from the chronically stressed pregnancies [e.g. see (Stott, 1973) 

(Schneider, 1993)].   

 What, then, causes the prenatal stress syndrome?  The leading candidate is 

excessive circulating maternal glucocorticoids resulting from the applied stressor, which is 
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corticosterone for rats and cortisol for humans [see reviews, (Ward, 1984) (Weinstock, 

1997)].  Glucocorticoids are relatively lipophilic, enabling them to cross the placental 

barrier and gain access to the fetal compartment (Zarrow et al., 1970).  Additionally, the 

stressors employed in many studies (e.g. footshock, saline injection, restraint) are known to 

elevate plasma glucocorticoids well above baseline levels.  Indeed, several investigators 

have reported increased maternal as well as fetal plasma glucocorticoids after the stressful 

intervention with the mother (Ward and Weisz, 1984) (Williams et al., 1999) (Barbazanges 

et al, 1996) (Skinner and Birkle, unpublished observations).  This seems to be in spite of 

the presence of 11-β-hydroxysteroid dehydrogenase, an enzyme expressed in the placenta 

and thought to protect the fetus from the natural rise in plasma glucocorticoids associated 

with pregnancy (Yang, 2000).  Interestingly, blockade of this enzyme with carbenoxolone 

during an otherwise normal pregnancy in rats results in offspring which are behaviorally 

very similar to PS rats, presumably because the normal levels of maternal glucocorticoids 

gained access to the fetal compartment (Welberg et al., 2000).   

Glucocorticoids, when bound to their intracellular receptors and translocated to the 

nucleus, function as transcription factors and will ultimately affect levels of a diverse 

number of proteins (Meyer, 1985) (Gilman et al, 1990).  Glucocorticoids decrease or 

repress the production of gene products such as corticotropin-releasing hormone (CRH), 

glucocorticoid receptors and serotonergic 5-HT1A receptors, all of which are of interest to 

the study of the prenatal stress syndrome (Malkoski et al., 1997) (Biegon et al., 1985) (Sze 

et al., 1976) (Sapolsky and McEwen, 1985) (Zhong and Ciaranello, 1995) (Meijer et al., 

2000).   
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Alternatively, glucocorticoids can also increase levels of some proteins such as 

tryptophan hydroxylase, tyrosine hydroxylase and even CRH under the right circumstances 

(Azmitia and McEwen, 1974) (Meyer, 1985) (Tanimura and Watts, 1998).   To further 

complicate matters, the effects of glucocorticoids on transcription vary by brain region.  

For example, adrenalectomy leads to increases in numbers of 5-HT1A receptors in the 

hippocampus but leaves numbers of 5-HT1A receptors unchanged in the dorsal raphe 

nucleus (DRN), indicating that different transcriptional regulatory elements control 

expression in those brain regions (Meijer et al, 2000) (Laaris et al., 1995).   

Therefore, chronically exposing the fetus to excessive levels of maternal 

glucocorticoids may lead to modulation of RNA transcript levels and subsequent protein 

expression early in life and may be the ultimate culprit behind the prenatal stress syndrome.  

Furthermore, PS animals continue to face the problem of excessive glucocorticoid exposure 

during stressful events as they grow older due to deficits in the HPA axis negative feedback 

loop.  

The preceding observations and comments regarding prenatal stress naturally lead 

to speculations about whether it serves an adaptive or a maladaptive function for the 

offspring.  Certainly, when taken at face value, the results of the human and the non-human 

primate studies suggest that prenatal stress is a maladaptive phenomenon.  PS offspring that 

are behaviorally disruptive or that demonstrate excessive clinging (and perhaps fear?) 

would find it difficult to benefit from the social support that is so important for gregarious 

societies like those of primates.  Additionally, the HPA axis regulation problem described 

in the previous paragraphs would suggest that multiple exposures to stressful events would 

also be detrimental in PS offspring.  Nevertheless, if many of the behavioral sequelae that 
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characterize prenatal stress are indicative of enhanced fear, then perhaps there are situations 

where prenatal stress also serves an adaptive function since fear is such an important, basic 

emotion for the preservation of life.  For example, in the case of PS rats, which have been 

shown to demonstrate enhanced behavioral inhibition, remaining motionless for extended 

periods of time in the face of a threat may help them evade detection by a predator.  

Additionally, PS rats are also known to display more defensive withdrawal behavior, which 

may keep them from being spotted by a predator in the first place.  Ultimately, whether 

prenatal stress is adaptive or maladaptive may only be decided by the circumstances in 

which the animal is involved and how long those circumstances last.     

 

The CRHergic Neurotransmitter System 

 Vale and colleagues discovered the molecule now known as corticotropin-releasing 

hormone (CRH) in 1981 (Vale et al., 1981).  When released into the portal veins of the 

median eminence (ME) by the parvocellular neurons of the paraventricular nucleus of the 

hypothalamus (PVNH), CRH is a potent secretagogue of ACTH from the cells of the 

anterior pituitary [for a brief review, (Fisher, 1989)].  Thus, CRH plays the role of initiator 

for the classic HPA axis response to stress.  It is probable that increased CRH release from 

the ME could account for the hyper-responsive HPA axis described in PS rats.  Only one 

study has examined this possibility, and although there was a larger amount of CRH found 

in the ME of PS rats, statistical differences were not detected, and the investigators were 

looking at content not release (Smythe et al., 1996).   

It is also appreciated that CRH is a neurotransmitter in other areas of brain and 

plays an important role in modulating behavior, particularly fearful behaviors [for reviews, 
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see (Owens and Nemeroff, 1991) (Dunn and Berridge, 1990)].   In fact, if CRH is 

administered intracerebroventricularly (i.c.v.), rats display behaviors indicative of 

increased fearfulness such as increased defensive withdrawal, increased stress-induced 

freezing, and elevated startle responses (Ward et al., 1998) (Kalin et al., 1988) (Liang et al., 

1992) (Sherman and Kalin, 1988).  Interestingly, i.c.v. CRH is also associated with 

increased grooming in rats, implying that under some circumstances grooming may be a 

sign of anxiety in rodents [reported in (Owens and Nemeroff, 1991)].     Importantly, many 

of these effects are blocked by CRH antagonists also injected i.c.v.(Liang et al, 1992) 

(Ward et al, 2000) (Kalin et al, 1988).  Finally, a CRH over-expressing mouse displays 

signs of anxiety (e.g. decreased open arm time); although, as predicted, it does suffer from 

a syndrome very much like Cushing’s disease (Stenzel-Poore et al., 1996). 

Endogenous, extrahypothalamic CRH containing neurons are found in brain regions 

such as the central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis 

(BNST), dorsal raphe nucleus (DRN), parabrachial nucleus (PBN) and the locus ceruleus 

(LC) (Palkovits et al., 1985) (Skofitsch and Jacobowitz, 1985) (Swanson et al., 1983) 

(Cummings et al., 1983).  CRH receptors are found in these regions as well (De Souza, 

1987) (Potter et al., 1994) (Cummings et al, 1983).  These brain regions are associated with 

fear responses in a variety of experimental paradigms and CRH plays a role in those fear 

responses.  For example, CRH micro-injected into the amygdala decreases interaction time 

in the social interaction test and will reduce exploratory behavior (Sajdyk et al., 1999) 

(Liang and Lee, 1988).   Ablation of the BNST abolishes the elevation of startle responding 

seen when CRH is administered i.c.v., implying that the CRHergic system in this nucleus is 

responsible for elevated startle with this route of administration (Lee and Davis, 1997). 
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Lastly, intra-amygdalar infusions of CRH increase aggressive behavior (number of fighting 

bouts) between rats (Elkabir et al., 1990). 

Of course, CRH accomplishes these actions through its receptors found throughout 

the brain (De Souza, 1987) (Potter et al, 1994) (Steckler and Holsboer, 1999).  There are at 

least two CRH receptor subtypes that have been discovered, CRH1 and CRH2 (Lovenberg 

et al., 1995b) (Chalmers et al., 1995).   Additionally, the CRH2 receptor is known to have 

two major splice variants, CRH2α and CRH2β which have been differentiated by 

pharmacological and molecular biological techniques (Lovenberg et al., 1995a) (DeSouza, 

1995).  Two other shorter splice variants of the CRH2 receptor have been discovered 

recently and classified based on sequence homology and in vitro pharmacological studies.  

The CRH2α-tr receptor was cloned from rat amygdala while the CRH2γ receptor was found 

to be expressed in several limbic regions in the human brain (Miyata et al., 1999) (Kostich 

et al., 1998).  It remains to be seen what role the CRH2α-tr and CRH2γ receptors have in 

behavior. 

CRH1 and CRH2α receptors are differentially located throughout the brain 

suggesting different roles in behavior.  For example, the density of the CRH1 receptors is 

quite high in areas of the brain dealing with the stress response such as the amygdala, 

hippocampus, BNST, pituitary and olfactory bulbs (DeSouza, 1995).  The CRH1 receptor is 

thought to be the major receptor of the CRHergic system that mediates fear and anxiety-

like behaviors and, of course, causes release of ACTH in the classic HPA axis cascade 

(Steckler and Holsboer, 1999).  The CRH2α receptor is found in high quantities in the 

lateral septum, PVNH and ventromedial nucleus of the hypothalamus (Chalmers et al, 

1995) (Lovenberg et al, 1995a).   A review of the literature suggests a role for CRH2α 
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receptors in reducing food intake, but other roles similar to those of the CRH1 receptor 

cannot be ruled out (Eghbal-Ahmadi et al., 1999) (Steckler and Holsboer, 1999).  On the 

other hand, the CRH2β receptor is largely found in non-neuronal tissue, particularly cardiac 

muscle, skeletal muscle, cerebral arterioles and choroid plexus (Lovenberg et al, 1995a).  

The distribution of the CRH2β receptor makes it unlikely that these receptors play a direct 

role in generating behaviors.   

The CRH receptors are members of the G-protein coupled, seven transmembrane- 

spanning receptor superfamily of proteins (Steckler and Holsboer, 1999).  Primary cell 

culture experiments and tissue homogenate experiments indicate that the CRH1 and CRH2α 

receptors are positively coupled to cAMP production (Lutz-Bucher et al., 1991) (Battaglia 

et al., 1987).   The reported EC50 measurements in tissue homogenates of CRH at the CRH1 

receptor for cAMP production is 36 nM (Battaglia et al, 1987). The EC50 value in cellular 

expression systems of CRH for cAMP production at the CRH1 receptor has been reported 

to be in the 3 to 4 nM range (Chen et al., 1993) (Lovenberg et al, 1995b).  The EC50 value 

for cAMP production of CRH at the CRH2α receptor in cellular expression systems is a 

little higher at 20 nM (Lovenberg et al, 1995b).   

In that same system used by Lovenberg et. al., another endogenous peptide related 

to CRH, urocortin, produced an EC50 value of 2 nM for cAMP production, suggesting that 

CRH may not be the endogenous ligand for the CRH2α receptor (Lovenberg et al, 1995b) 

(Koob and Heinrichs, 1999).  This idea is also supported by the observation that c-fos 

induction is stronger and correlates better with CRH2α distribution following i.c.v. 

urocortin administration than after i.c.v. CRH administration (Bittencourt and Sawchenko, 
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2000).  Certainly, more work needs to be done before the implications of these findings are 

fully understood.  

The CRHergic system develops late during gestation in the rat.  CRH mRNA is 

detectable by gestational day 17 in rat brain (Baram and Schultz, 1992).  One of the CRH 

receptors (CRH2) is detectable a little earlier at gestational day 16 (Eghbal-Ahmadi et al., 

1998).  Consequently, it has been shown that prenatal stress alters the CRHergic system.  

Cratty et. al. discovered that amygdala minces from PS rats, when stimulated by high 

potassium buffers, release more CRH than minces from CON rats (Cratty et al., 1995).  

That same study also showed that CRH content was increased in block dissected tissue 

taken from PS rats containing the amygdala.  Another study demonstrated increased CRH 

receptor binding in the amygdala of PS rats (Ward et al, 2000).  Finally, i.c.v. injected CRH 

antagonists block the increase in defensive withdrawal seen in PS rats (Ward et al, 2000).  

Thus, the developing CRHergic system is vulnerable to manipulation by outside influences 

during the latter part of gestation in the rat.  Furthermore, these observations suggest that an 

up-regulated CRHergic system may be at least partially responsible for the behavioral 

differences between PS and CON rats.    

 

The Serotonergic Neurotransmitter System 

In recent years, the role of serotonergic system in psychiatric disorders has become 

evident, particularly with regard to anxiety and depression.  Interest in this system is 

spurred on by a variety of drugs used in clinical practice that target elements of the 

serotonergic system, e.g. fluoxetine and buspirone, that are efficacious in treating various 

psychiatric disorders.  A plethora of reviews on the serotonergic system have been 
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published and, consequently, theories abound regarding the serotonergic system’s 

involvement in these afflictions and behavior in general (Graeff et al., 1996) (Chaouloff, 

1993) (Chopin and Briley, 1987) (Handley and McBlane, 1993).  One thing is quite clear, 

the involvement of the serotonergic system in any behavior is complicated because of the 

diverse nature of the system. 

 The majority of serotonergic neurons, discriminated by tryptophan hydroxylase 

labeling, arise in the DRN and medial raphe nucleus (MRN), although there are 

serotonergic neurons found arising in the raphe magnus and raphe obscurus as well (Tork, 

1990).  The DRN is usually considered to supply the majority of serotonergic innervation 

to the brain (Tork, 1990).  The neurons of the DRN project to many locations in the brain, 

particularly the forebrain, but there are projections to areas of the brainstem as well.  

Targets of the DRN include:  the hippocampus, amygdala, cortex, MRN, PVNH, reticularis 

pontis caudalis (RPC) and periaqueductal gray (PAG) (Tork, 1990) (Vertes and Kocsis, 

1994).   

 Serotonin exerts its effects through a huge variety of receptors.  At the present time 

there are 7 known families of serotonin receptors with several families having a number of 

subtypes differentially located throughout the brain (Hoyer et al., 1994) (Radja et al., 

1991).  These receptors belong to the G-protein coupled, seven transmembrane-spanning 

family of receptor proteins and initiate a variety of signal transduction systems including 

cAMP production, phospholipid hydrolysis and ion channel activation (Pauwels, 2000).  

One of the best characterized subtypes, the 5-HT1A receptor, is found in a number of brain 

regions associated with limbic functions and is involved in emotionally driven behaviors.   
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The 5-HT1A receptor is found in discrete regions throughout the brain as 

demonstrated by autoradiographic techniques using 3H-8-OH-DPAT, a selective agonist of 

this receptor (Palacios et al., 1990).  Particularly dense populations of 5-HT1A receptors are 

found in the dentate gyrus of the hippocampus and the DRN (Hoyer et al., 1986).  Other 

locations supporting populations of 5-HT1A receptors are the amygdala, entorhinal cortex, 

lateral septum, PVNH and striatum (Hall et al., 1985) (Radja et al, 1991).   

The use of the serotonergic neurotoxin, 5,7-dihydroxytryptamine, has shown that 5-

HT1A receptors are found pre-synaptically and post-synaptically (Verge et al., 1986).  

Receptors found in the DRN are somatodendritic autoreceptors, i.e. found on the cell 

bodies and dendrites (Verge et al, 1986).  The available evidence supports the idea that 

these somatodendritic autoreceptors receptors are coupled to inwardly rectifying potassium 

channels and, when activated, promote hyperpolarization of the DRN neurons to inhibit 

neuronal firing (Mundey et al., 1996) (Forster et al., 1995).   Conversely, 5-HT1A receptors 

in other brain regions are post-synaptic relative to the DRN projections.  These 

postsynaptic receptors are usually found negatively coupled to cAMP production with 

reported IC50 values ranging from 1 to 18 nM in tissue homogenates (De Vivo and 

Maayani, 1986) (Mork and Geisler, 1990) (Koyama et al., 1999).   However, there are 

reports of post-synaptic 5-HT1A receptors being coupled to potassium channels in the 

hippocampus having EC50 values for 5-HT (not 8-OH-DPAT) of about 5 nM (Okuhara and 

Beck, 1998) (De Vivo and Maayani, 1986).   

 Two pharmacological tools permit the study of 5-HT1A receptor involvement in 

behavior.  Systemic treatment with low doses (<1mg / kg) of the 5-HT1A agonist, 8-OH-

DPAT produces anxiolytic responses in the elevated plus maze, the social interaction test 
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and shock-induced vocalization (Collinson and Dawson, 1997) (Picazo et al., 1995) (Remy 

et al., 1996).  Conversely, at higher doses, systemic 8-OH-DPAT elevates acoustic startle 

responding, which is considered an anxiogenic response (Svensson, 1985).  Davis and 

colleagues have reported that systemically administered 8-OH-DPAT does not block fear-

potentiated startle responses, but does not increase fear-potentiation either (Davis et al., 

1999).  Low doses ( <1 mg / kg) of 8-OH-DPAT are also anxiogenic in the defensive 

withdrawal test (DeBastiani and Birkle, unpublished observations).  The second 

pharmacological tool is the antagonist, WAY-100635 (Gozlan et al., 1995).  Treatment 

with WAY-100635 alone does not produce signs of the serotonin syndrome (Fletcher et al., 

1996).  WAY-100635 given in combination with 8-OH-DPAT will antagonize behavioral 

responses to 8-OH-DPAT as well as prevent decreases in DRN neuronal firing rates caused 

by 8-OH-DPAT (File et al., 1996) (Fletcher et al, 1996) (Remy et al, 1996).   

Micro-injections of 8-OH-DPAT into discrete brain regions such as the DRN and 

MRN are also anxiolytic in the ultrasonic vocalization test, social interaction test, the 

elevated plus maze and tend to reduce maternal aggression and these anxiolytic actions are 

blocked by WAY-100635 (Remy et al, 1996) (Picazo et al, 1995) (File et al, 1996) (De 

Almeida and Lucion, 1997).   Conversely, injections of 8-OH-DPAT into the dorsal 

hippocampus are anxiogenic in the social interaction test as well as in the elevated-plus 

maze when rats are not naïve to the plus maze (File et al, 1996).  8-OH-DPAT injected into 

the medial septal area tends to increase maternal aggression, but the effect is not very 

strong (De Almeida and Lucion, 1997). 

As a final point, two different laboratories have generated 5-HT1A knock-out mice 

from different genetic backgrounds that display many signs of anxiety such as decreased 
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locomotion in an open-field and decreased time in open-arms of the elevated plus maze 

(Ramboz et al., 1998) (Parks et al., 1998).  On balance, then, it would appear that activation 

of 5-HT1A receptors produces an anxiolytic response, particularly the presynaptic receptors.  

However, this is not always the case, considering the effects of systemic 8-OH-DPAT on 

acoustic startle responding, defensive withdrawal test as well as the effects of intra-

hippocampal injections of 8-OH-DPAT on the elevated plus maze.  Ultimately, these 

discrepancies may be explained by determining which brain regions containing 5-HT1A 

receptors are important (if at all) to a given behavioral response. 

Like the CRHergic system, the serotonergic system is vulnerable to the effects of 

gestational stress due to its course of development.  Serotonergic cell bodies, discriminated 

by tryptophan hydroxylase labeling, are detectable in the brainstem of fetal rats by 

gestational day 12 (Aitken and Tork, 1988).  Accordingly, Peters reported that prenatal 

stress affects elements of the serotonergic system in a series of studies published in the mid 

1980’s.   Peters found that, upon administration of several doses of 5-hydroxy-l-trytophan 

(5-HTP), PS rats displayed more “wet dog shakes” (a sign of the serotonin syndrome) than 

the CON rats at all the doses, except the highest dose (Peters, 1986a).  In the same study, 

measurements of serotonin content from the hypothalamus showed that 5-

hydroxytryptamine (5-HT) and  5-hydroxyindolacetic acid (5-HIAA) content were 

decreased in PS pre-weanling rats compared to control, but after weaning the content of 5-

HT and 5-HIAA in the hypothalamus actually increased in the PS rats compared to control 

(Peters, 1986a).  Conversely, Hayashi et. al. found that 5-HT was decreased in the rat 

hippocampus at 35 days of age (Hayashi et al., 1998).  Peters also discovered that [3H]-5-

HT binding in adult PS rats was increased in the cortex and hippocampus (Peters, 1986a).  
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Lastly, Peters compared the effects of performing his gestational stressor (once daily saline 

injection) at various times during pregnancy with stressing for the entire pregnancy (Peters, 

1989).  He found that stressing the rats during the last week of the three week gestational 

period replicated findings from studies where the stressing was conducted for the entire 

pregnancy (Peters, 1989).  This observation fits nicely with the ontogeny of the 

serotonergic and CRHergic systems and the prenatal stress syndrome. 

 

The Acoustic Startle Response (ASR) 

 The ASR is a reflexive contraction of skeletal muscle in response to a sudden, loud 

noise.  The response can be elicited in rats, mice, humans, non-human primates and many 

other mammalian species.  The response itself has a non-zero baseline and can be 

modulated up or down depending on the emotional state of the animal.  The ASR has been 

studied for quite sometime and there are two excellent reviews on this subject (Koch, 2000) 

(Davis, 1984). 

 Two behavioral paradigms demonstrate modulation of acoustic startle responding.  

The least studied phenomenon is pleasure-attenuated startle.  Rats trained to associate a 

conditioned stimulus (CS) such as a light with a food reward display decreased ASR in the 

presence of the CS alone (Bechara et al., 1999).  This effect appears to be modulated by the 

nucleus accumbens since ablation of that nucleus abolishes the response to the CS (Koch et 

al., 1996).  Conversely, Brown and colleagues first reported in 1951 that an aversive CS-

unconditioned stimulus (US) pairing produces an increase in ASR in the presence of the CS 

alone (Brown et al., 1951).  Since that time, many studies have followed describing the 

phenomenon of fear-potentiated startle [for reviews, (Davis, 1986) (Davis et al., 1987)].  

 18



These observations, coupled with similar observations in humans, have led to the idea that 

startle is increased in states of fear and decreased in non-fearful states (Morgan, III et al., 

1995) (Grillon et al., 1997). 

The neuroanatomical circuitry underlying the basic ASR is rather simple, consisting 

of an multisynaptic pathway from the Organ of Corti in the ear to motor neurons in the 

spinal cord (Figure 1) (Koch, 2000).  So, like spinally mediated pain withdrawal reflexes, 

there is a short latency between stimulus and response.  Response latencies measured in the 

human ocular muscles occur on the order of 20 milliseconds while responses recorded at 

the hind leg of the rat can be as short as 8 milliseconds [reported in (Davis, 1984)].  The 

short response times support the notion of only a few primary synapses in the primary ASR 

pathway.  

Upward or downward modulation of the ASR occurs by neuronal projections from 

various higher brain centers, notably the limbic system, to obligatory synapses in the startle 

pathway (Figure 1).  The synapses of critical importance are found in the cochlear root 

nucleus (CRN), RPC and at the spinal motor neurons (Davis et al., 1982).  Of these 

synapses, the RPC plays a particularly important role in modulating the startle response.  

The RPC has been identified as an obligatory synapse in the acoustic startle response by 

lesion as well as stimulation studies (Lee et al., 1996). (Davis et al, 1982) (Leitner et al., 

1980).   The RPC appears to be involved in other types of startle as well since lesions of the 

RPC also block shock-induced startle (Leitner et al, 1980). 

The CRHergic system positively modulates startle.  CRH injected into the 

ventricles produces a long-lasting elevation in startle responding.  Lesion studies suggest  
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 Figure 1.  A simplified diagram describing the acoustic startle pathway and its 

modulation.  The primary reflex arc follows the bolded, horizontal arrows.  The firing of 
the motor neurons causes muscular contractions that are the response to sudden, loud 
acoustic stimuli.  Modulatory pathways are known to influence the reflex arc at the level 
of the RPC.  The non-bolded arrows demonstrate known anatomical projections to the 
RPC and the neurotransmitters involved, where they are known or suspected.  (+) 
indicates a positive effect and (-) indicates a negative effect on startle responding.  *This 
negative affect has only been shown in fear-potentiated startle and does not seem to affect 
baseline startle responses.  (Abbreviations:  CRN, Cochlear Root Nucleus; Lat/BLA, 
Lateral and Basolateral Nucleus of the Amygdala; BNST, Bed Nucleus of the Stria 
Terminalis; RPC, Reticularis Pontis Caudalis; vPAG, ventral Periaqueductal Gray; DRN, 
Dorsal Raphe Nucleus; GLU, Glutamate; CRH, Corticotropin Releasing Hormone; 5-HT, 
Serotonin; SOM, Somatostatin)
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that this effect is mediated by the BNST, a source of CRHergic cell bodies and projections 

to the RPC (Lee and Davis, 1997).  CRH injected into the RPC also increases startle 

responding (Birnbaum and Davis, 1998) (Fendt et al., 1997).  Ablation of the CeA, a rich 

source of CRHergic cell bodies, does not change startle responding but does eliminate fear-

potentiated startle (Campeau and Davis, 1995).  In support of this observation, there are 

anatomical projections to the RPC from the CeA (Rosen et al., 1991).  This evidence does 

not suggest CRHergic tone is important for generating ASR itself, but that it is important 

for increasing ASR in fearful states.  

In contrast to the CRHergic system, the serotonergic system negatively modulates 

startle.  Lesions of the DRN and MRN, thereby removing their influence, elevate startle 

responding (Davis and Sheard, 1974).  Curiously, systemically administered 8-OH-DPAT 

elevates ASR (Svensson, 1985).  This affect of 8-OH-DPAT may be mediated by activation 

of 5-HT1A somatodendritic receptors, an action known to depress neuronal activity of these 

serotonergic neurons (Mundey et al, 1996) (Fletcher et al, 1996).  Finally, direct projections 

from the DRN to the RPC have been demonstrated, providing an anatomical pathway for 

DRN involvement in the ASR (Vertes and Kocsis, 1994). Together, this evidence suggests 

an inhibitory influence on the startle response by the serotonergic system arising in the 

raphe nuclei. 

 The ASR serves as a useful behavioral index for several reasons.  First, the response 

itself can be elicited in a wide variety of species, including humans, making it possible to 

test hypotheses across a number of species.  Secondly, the acoustic startle response is a 

non-zero response that can be modulated up or down by conditioning experiences that 

humans associate with positive or negative emotions.  Thus, there is some insight into the 
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functional consequences of startle modulation.  Lastly, when utilizing a conditioning 

paradigm, the ASR can be measured in the presence and absence of the CS.  This allows 

the observer to determine if the experimental manipulation affected the acoustic startle 

response itself. 

 Does the startle response serve a useful purpose for animals?  Acoustic startle 

responding has been observed in a wide variety of mammalian species.  The list includes 

humans, rats, mice, monkeys, cats, guinea pigs and many others [(Landis and Hunt, 

1939)reported in (Davis, 1984)].  Additionally, other types of startle exist such as tactile 

startle (Engelmann et al., 1996).  In general, startle responding is considered to be part of 

the “Active Defense” system for animals which allows animals to actively engage and 

monitor threats to their well-being (Handley, 1995).  

Time lapse photography of humans and rats show that contraction of flexor muscles 

is the primary response to startling stimuli, although other muscle groups do get involved 

(Davis, 1984).  This leads to a very characteristic posture for both humans and rats.  The 

shoulders are lifted up towards the ears and the arms are drawn towards the midline of the 

body.  This posture may serve to protect the animal from an impending blow or impact that 

follows the stimulus.  Additionally, some authors have proposed that the characteristic 

posture “resets” the musculature to allow a quick escape or offensive reaction, which might 

be particularly important for rodents (Pilz and Schnitzler, 1996).  Finally, human subjects 

report that the experience of startle responding is highly aversive (Handley, 1995).  These 

observations suggest that the startle responding serves to arouse the animal as well as to 

reset the animal’s body posture to protect the animal and prepare the animal for an escape 

or offensive reaction.          
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 Only one study has been published so far regarding prenatal stress and ASR (White 

and Birkle, 2001).  In this study, baseline startle responding was largely unaffected by 

prenatal stress, although the PS rats had slightly elevated startle responses to the first few 

trials of the test when compared to the CON rats.  Interestingly, the PS rats were less 

responsive to the anxiogenic effects of yohimbine at 5 mg/kg when compared to the CON 

rats (i.e. PS startle responses were not elevated to the same degree as the CON responses).  

This difference does not seem to be due to a lack of sensitivity to α2 adrenoceptor 

modulation, since a selective drug (RS79982 HCl) for that receptor caused the same 

changes in startle responding between the two groups.  Yohimbine is capable of interacting 

with a wide variety of receptor types, including 5-HT1A receptors (Arthur et al., 1993) 

(Winter and Rabin, 1992).  Furthermore, 5-HT1A activation increases startle.  This raises 

the possibility that PS rats are less sensitive to 5-HT1A modulation and, therefore, do not 

demonstrate increased ASR at high doses of yohimbine.  

 To date, the phenomenon of fear-potentiated startle has not been investigated in the 

prenatal stress syndrome.  However, based on what is known about the behavioral nature of 

the prenatal stress syndrome, PS rats would be expected to demonstrate larger fear-

potentiated responses in this paradigm.  

 

Behavioral Inhibition 

 Behavioral inhibition, more commonly known as freezing, is thought to be a 

defensive behavior that has evolved to protect small animals from being detected by 

predators (Fanselow, 1991) (Fendt and Fanselow, 1999).  Freezing in rats has been 

recognized and formally studied as an index of fear for many years dating back to 1899 
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with detailed observations reported by Small [reported in (Fanselow, 1991)].  However, 

predatory animals, a group which includes humans, are capable of freezing as well.  

Although, in the case of predatory animals, the freezing response likely serves to help 

orient the animal to possible prey (but it can be protective since the predator can sometimes 

be the prey!) (Reese et al., 1984). 

 For a rat, freezing behavior describes a rat that, in the face of a threat, ceases all 

movement except that required to breathe.  This can be a long-lasting response ranging 

from minutes to hours (Blanchard and Blanchard, 1969).  The freezing response can be 

elicited by acute threats such as exposure to a cat or footshock or by a CS presentation 

following aversive conditioning procedures involving footshock (Blanchard and Blanchard, 

1969) (Fanselow and Helmstetter, 1988).  Freezing can occur as a long bout of total 

immobility or as discrete episodes of freezing interupted by head swiveling or walking 

short distances.  The fact that benzodiazepines, which are classic anti-anxiety drugs in 

humans, abolish or significantly reduce freezing to acute and conditioned stimuli serves as 

further evidence that freezing behavior is motivated by fear (Fanselow and Helmstetter, 

1988) (Helmstetter, 1993). 

It is worthwhile to note that freezing rats are neither flaccid nor asleep but can 

exhibit considerable muscle tone as well as reflex responses.  A particularly striking 

example of this capacity comes from Griffith in 1920 [reported in (Fanselow, 1991)]. 

Griffith reported that he witnessed a rat, which was exploring the lid of its home cage, hang 

upside down from the food hopper for 22 minutes following a brief exposure to a cat.  

Despite the immobility, freezing rats are capable of autonomic responses (increases in 

arterial pressure) and acoustic startle responding (LeDoux et al., 1988) (Plappert et al., 
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1993).  These examples indicate that freezing rats are quite alert and responsive to their 

environment. 

 A number of brain regions are involved in generating the freezing response to a 

threat, either acute or conditioned (Figure 2).  Lesion studies demonstrate that the ventral 

PAG is absolutely critical for the generation of the acute and conditioned freezing 

responses (Kim et al., 1993) (Fanselow, 1991).  Not surprisingly, given its central role in 

fear related behaviors, the amygdala also plays a crucial role in behavioral inhibition.  

Lesions of the amygdala complex abolish or attenuate conditioned as well as unconditioned 

freezing (Kim et al, 1993) (Phillips and LeDoux, 1992).  Lesions of the hippocampus 

disrupt the generation of conditioned freezing responses, but not freezing to acute 

footshock (Kim et al, 1993) (McNish et al., 1997).  The hippocampus is involved in 

contextual conditioning, since lesions of it impair freezing to contextual cues and not 

explicit cues such as a sound (Phillips and LeDoux, 1992).  Lastly, there is some evidence 

that the BNST has a role in generating the acute freezing response since lesions of that 

nucleus tend to reduce freezing as well (Schulz and Canbeyli, 1999).   

The CRHergic system is involved in the freezing response.  CRH microinjected into 

the ventricles of the brain increases freezing behavior to acute footshock and conditioned 

stimuli and is blocked by CRH antagonists, α-helical CRH and antalarmin (Kalin et al, 

1988) (Deak et al., 1999) (Kalin and Takahashi, 1990).  Additionally, CRH antagonists 

injected into the amygdala attenuate the freezing response to footshock (Swiergiel et al., 

1993).   On the other hand, activation of the serotonergic system tends to reduce freezing.  

Systemic adminstration of citalopram and ipsapirone dose dependently attenuates the  
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Figure 2.  A simplified diagram describing the basic neuroanatomy of the freezing 
response.  The figure is adapted from one by Fendt & Fanselow, 1999.  The 
diagram shows the key nuclei involved in generating the freezing response and 
shows where information from conditioning paradigms may enter the system.  For 
example, aversive stimuli entering the pathway via the dorsal horn of the spinal 
cord might be tactile information from a footshock.  Information converging on the 
Lat/BLA nucleus of the amygdala might ultimately come from sensory information 
such as light cues, auditory cues or contextual cues.  Please note that this pathway 
shares some features with the ASR pathway.  (Abbreviations:  Lat/BLA, lateral and 
basolateral nuclei of the amygdala; CeA, central nucleus of the amygdala; vPAG, 
ventral periaqueductal gray) 
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freezing response to conditioned stimuli (Inoue et al., 1996).  And finally, chronic 

fluoxetine treatment reduces freezing behavior to conditioned stimuli but not the 

neuroendocrine responses such as increased plasma corticosterone (Zhang et al., 2000). 

 Corticosteriods play a pivotal role in freezing behavior.  In fact, corticosterone is 

required for pre-weanling rats to even acquire the ability to freeze as indicated by the 

effects of adrenalectomy on young rats (Takahashi, 1994) (Takahashi and Kim, 1995).  

Pups adrenalectomized on post-natal day 10, do not freeze when faced with a unfamiliar 

adult male rat (Takahashi and Kim, 1995).  On the other hand, pups adrenalectomized on 

post-natal day 18 can freeze in that situation (Takahashi and Kim, 1995).  The influence of 

corticosteriods on freezing behavior is also evident in adult animals.  Kalin and colleagues 

reported that the time spent freezing following exposure to a human intruder by both infant 

Rhesus monkeys and their mothers positively correlated with plasma corticosterone levels 

(Kalin et al., 1998).  

There are two published reports describing freezing behavior in PS rats.  Takahashi 

and colleagues found that prenatal stress enhances freezing to a brief footshock (Takahashi 

et al., 1992a).  These findings are not surprising since PS rats are known to have a hyper-

active HPA axis, enhanced CRH release from the amygdala and alterations in the 

serotonergic system (Takahashi et al, 1990) (Cratty et al, 1995) (Peters, 1986a).  

 

Chronic Mild Stress 

 Chronic stress in humans correlates well with the appearance of depressive 

symptoms (Kessler, 1997).  One of the core symptoms of major affective disorder is 

anhedonia, or lack of finding pleasure in pleasurable things (American Psychological 

 27



Association Diagnostic and Statistical Manual of Mental Disorders (DSM-IV)1995).  An 

animal behavioral paradigm seeking to model this symptom of depression has been 

proposed by Paul Willner.  Willner and colleagues have demonstrated that chronically 

stressed rats show decreased sucrose intake after several weeks of stress exposure 

compared to their pre-stress baseline values (Willner, 1997) (Willner et al., 1998).  As 

Willner has shown, non-stressed rats prefer sucrose solutions over plain water and then, 

after repeated exposure to a series of mild stressors, sucrose intake declines.  Furthermore, 

administration of a variety of drugs that have antidepressant activity in humans restores 

sucrose intake to pre-stress baseline values in chronically stressed rats (Papp et al., 1996) 

(Monleon et al., 1995).  Two examples of drugs that increase sucrose intake under 

conditions of chronic mild stress are imipramine and buspirone.  In contrast, drugs without 

anti-depressant activity do not have such an effect, for example haloperidol and 

chloprothixene (Papp et al, 1996).   

 Describing the neural circuitry contributing to depression or even decreased sucrose 

intake under conditions of chronic stress is considerably more difficult than with “simple” 

responses such as acoustic startle or freezing.  This fact notwithstanding, several remarks 

can be made regarding this issue, particularly as they may apply to depression and the 

neurotransmitter systems discussed previously.    

The CRHergic system certainly appears to be involved in depressive illness.  CRH 

is increased in the cerebrospinal fluid of many depressed patients (De Bellis et al., 1993) 

(Smith and Nemeroff, 1988).  Plasma cortisol is also found to be increased in many 

depressed patients but it can be decreased in specific forms of depression, compared to 

non-depressed controls (Jiang et al., 2000) (Bouwer et al., 2000).  Finally, the number of 
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neurons expressing CRH was found to be increased in the PVNH of depressed patients who 

died of causes other than suicide (Raadsheer et al., 1994).   The serotonergic system is also 

changed in depression.  Platelet binding of 3H-paroxetine and platelet concentration of 5-

HT are decreased (Alvarez et al., 1999) (Figueras et al., 1999).  Serotonin transporter sites 

are also decreased in the prefrontal cortex of depressed patients who died of natural causes 

as well as the prefrontal cortex of suicide victims (Mann et al., 2000).   

Finally, changes in elements of both the CRHergic and serotonergic systems can be 

affected by drug therapy, presumably for the benefit of the patient (De Bellis et al, 1993) 

(Alvarez et al, 1999).  Sorting out the precise nature of the CRHergic and serotonergic 

involvement in depression is difficult.  The question arises:  are the changes that have been 

found the cause of the depression or an effect of the depression?  Perhaps both?  

Regardless, the findings detailed above implicate these two systems in the pathology of 

depression.  

Although no studies have been reported, several observations suggest that PS rats 

may be more susceptible to the debilitating effects of chronic mild stress than CON rats.  

Numerous studies have described increased plasma corticosterone in PS rats as compared 

to CON rats following stressful interventions, including repetitive exposure to the same 

open-field (Peters, 1982) (Fride et al, 1986).  Increased release of CRH from the amygdala 

and increased content has been noted several brain regions as a result of prenatal stress 

(Cratty et al, 1995).   As mentioned previously, pathology within the serotonergic system is 

also believed to be involved in depression and PS rats are known to have differences in the 

serotonergic system when compared to CON rats.  Peters reported changes in 5-HT and 5-

HIAA content and changes in [3H]-5-HT binding as a result of prenatal stress (Peters, 
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1986a).  Taken together, these findings imply that PS rats may be more susceptible to a 

chronic mild stress paradigm and display behavioral signs indicative of “depression” such 

as depressed sucrose intake.   

 

Introduction Summary  

 Prenatal stress in several species of mammals results in offspring that react 

differently to novel and stressful situations than offspring whose mothers were not stressed 

during gestation.  An explanation for these observations lies in alterations of the 

neurobiology of the stress responsive systems.  As described above, these stress responsive 

systems include the CRHergic and serotonergic neurotransmitter systems.  

 There are at least two ramifications of studying the prenatal stress syndrome.  First, 

we gain a better understanding of the etiology and neurobiology of affective and anxiety 

related disorders in humans, not only in children, but adults as well.  It is interesting to note 

that the studies of prenatal stress in humans have focused exclusively on children (and the 

ages were unspecified).  Yet, animal studies, including those of non-human primates, show 

that the effects of prenatal stress are long-lived since many of those studies were conducted 

on adolescent and adult-aged animals.  Understanding the neurobiological and behavioral 

sequelae caused by prenatal stress will hopefully point the way towards refined therapeutic 

interventions for affective and anxiety disorders. 

 Secondly, there is the theoretical consideration of understanding the neural circuitry 

related to fear and anxiety and how it may function.  The behaviors described above, 

acoustic startle responding and freezing, are “simple” behaviors in that they are well 

described anatomically, quantifiable and readily modified by experience.  As such, they 
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provide a framework for understanding information processing in the brain and the net 

behavioral output.  Prenatal stress is unlikely to alter the basic neural circuitry of these 

behaviors.  Rather, prenatal stress is likely to produce subtle changes at the level of the 

neurotransmitters and the synaptic connections that is reflected in the behavioral response.  

The prenatal stress syndrome may provide the basis of a neural circuitry model 

demonstrating the natural plasticity of fearful behaviors.  

 The principal aim of this project is to explore the interaction of prenatal stress and 

basic behaviors related to fear:  acoustic startle, fear-potentiated startle and conditioned 

freezing.  Other parts of the project will begin to survey elements of signal transduction 

pathways, particularly 5-HT1A receptors, that are involved in fear-related responses and 

may be affected by prenatal stress.  Additionally, developmental aspects of PS rats will be 

investigated, particularly with regard to the CRHergic system, since this system contributes 

to fearful behaviors.  There will also be a brief look at the possibility that prenatal stress 

may confer susceptibility to chronic mild stress.  Together, the data generated in this 

project will contribute to a better understanding of the prenatal stress syndrome and how 

prenatal stress changes behavior.       

 31



 

DISSERTATION OBJECTIVES 

 Research demonstrates that prolonged maternal stress during pregnancy can 

adversely affect the fetus leading to developmental and emotional problems later in life.  

Given the timing of the maternal stress it is plausible to expect differences in basic 

parameters of growth and the neurochemistry of PS and CON rats to be detectable as early 

as day one of life.  Logically, neurochemical differences, such as changes in CRH content, 

may contribute to behavioral differences later in life.   Additionally, PS rats have a well-

documented HPA axis dysregulation which may predispose them to the debilitating effects 

of chronic mild stress.  Our laboratory has demonstrated that adult PS rats demonstrate a 

smaller increase in acoustic startle responding following high doses of yohimbine (e.g. 5 

mg/kg) than do CON rats.   A number of reports have shown that adult PS rats demonstrate 

behavioral responses indicative of increased fearfulness to novelty or stressful stimuli; thus, 

they may also demonstrate increased responding in fear-conditioning paradigms. With 

these basic thoughts in mind, the following seven objectives are proposed for study. 

 

Part A, Developmental Analyses 

1. Perform an evaluation of gestational and growth parameters to determine if differences 

exist between PS and CON rats.   

Method: 

a) Retrospective study of length of gestation and litter size at P1 

b) Measure body weights and ano-genital distance from P1 through adulthood. 
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Hypothesis:  Chronic maternal stress during pregnancy will decrease length of 

gestation, litter size, body weights and ano-genital distance. 

2. Measure CRH content in the CeA/BLA, PVNH, BNST and DRN from early life 

through adulthood to determine when differences in CRH content occur. 

Method: 

a) Micropunch these regions and perform CRH RIA in pre-weanling animals 

b) Micropunch these regions and perform CRH RIA in post-weanling and young adult 

animals 

Hypothesis:  Differences in CRH content detected in older, adult animals originate as a 

result of the applied maternal stress and are detectable as early as the first day of life. 

 

Part B, Susceptibility to Chronic Mild Stress 

3. Determine if PS rats are more susceptible to the effects of Chronic Mild Stress. 

a) Sucrose intake measurements in the chronically stressed rats  

b) Sucrose intake measurements in naïve PS and CON rats  

c) Adrenal weights in the same rats from part A and age-matched, naïve PS and CON 

rats 

Hypothesis:  Chronically stressed PS rats will have decreased sucrose intake, and larger 

adrenal glands than chronically stressed CON rats.  

 

Part C, Acoustic Startle and Serotonergic Modulation of Acoustic Startle 

4. Determine if differences between PS and CON rats exist in acoustic startle responding 

over a range of decibel levels. 
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a) Peak startle responses over a range of decibel levels (80-125 dB SPL) 

b) Latency to peak startle response over a range of decibel levels (80-125 dB SPL) 

Hypothesis:  PS rats will have greater peak startle responses and faster latencies than 

CON rats at higher decibel levels. 

5. Determine if the 5-HT1A receptor system is functionally affected by prenatal stress. 

Method: 

a) 8-OH-DPAT modulated ASR 

b) WAY-100635 modulated ASR 

Hypothesis:   PS rats will be more sensitive to serotonergic modulation of acoustic 

startle responding than the CON rats.    

  

Part D, Fear-Conditioned Responses 

6. Determine if PS rats have greater fear-conditioned responses than CON rats. 

Method: 

a) fear-potentiated startle 

b) fear-condititioned freezing  

Hypothesis:  PS rats have more fearful reactions to novel and stressful stimuli so they 

will demonstrate a greater potentiated startle and conditioned freezing than CON rats. 

 

Part E, Signal transduction mechanisms 

7. Measure 5-HT1A receptor binding to determine if differences exist between PS and 

CON rats that may help explain behavioral differences. 

Method: 
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a) Receptor binding in block dissections of amygdala and hippocampus of PS and 

CON rats aged P60 to P80. 

b) Basal and forskolin-induced cAMP production in block dissections of amygdala 

and hippocampus of PS and CON rats aged P60 to P80. 

Hypothesis:  Behavioral differences in PS rats are related to changes in signal 

transduction systems in one or more brain regions involved in those behaviors. 
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METHODS 

Animals 

 Male (225-250g) and female (225-250g) Sprague-Dawley rats to be used as mating 

pairs were purchased from Hilltop Labs, Inc. (Hilltop, PA).  All animals were housed in the 

AALAC approved animal quarters at the Robert C. Byrd Health Sciences Center and all 

procedures performed had the approval of the Animal Care and Use Committee of WVU.  

The animals had food and water available ad libitum.  Lights were turned on at 0800 hours 

and turned off at 2000 hours in the animal facility.  All behavioral testing took place 

between the hours of 0900 and 1800, except for some of the sucrose intake assays as noted 

below.  Tissue collection procedures took place between the hours of 0900 and 1230. 

 

Breeding and Induction of Prenatal Stress 

 A male rat and a female rat were paired for six nights.  The appearance of vaginal 

plugs in the bottom of the cage was counted as Gestational Day 0 (GD0).  The pairs were 

separated and the females were housed singly for the duration of pregnancy and the nursing 

period.  Half of the pregnant dams were designated to be in the prenatally stressed (PS) 

group; the other half of the group was designated to be left untouched except for routine 

animal care (CON).  Beginning on GD14, the dams in the PS group were removed from 

their home cage and placed in a new cage briefly to receive a subcutaneous injection of 0.1 

ml of 0.9% saline at the nape of the neck and then returned to their home cage.  This 

procedure was repeated once daily, at random times of the day by different lab personnel, 

until the pups were born, about GD22.  Within 24 hours of birth, all litters with greater than 

12 pups were randomly culled to 12 pups each without regard to sex.  Pups were weaned 
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from the dams on postnatal day 22 and housed as same-sex sibling pairs or triplets.  

Behavioral and neurochemical experiments were only performed on the male offspring 

from the PS and CON dams. 

  

I.  Behavioral Methods 

Acoustic Startle Apparatus 

 Two sets of acoustic startle equipment were available.  One set was manufactured 

by Med Associates (MA) (St Albans, VT) and the other set by San Diego Instruments 

(SDI) (San Diego, CA).  Both sets of equipment utilize personal computers to program test 

sessions as well as retrieve and store data.  Additionally, both sets of equipment rely on 

piezo-electric transducers that convert animal movement into voltage readings.  Several PS 

and CON animals could be tested during the same session since multiple cabinets were 

available for each set of equipment.  The type of equipment used in a given experiment is 

noted in the figure legend.    

 

Acoustic Startle Testing (baseline startle response and drug studies) 

 Rats were placed in the testing apparatus and, following a 5 minute acclimation 

period, were exposed to either 60 acoustic startle stimuli (baseline) or 120 acoustic startle 

stimuli (drug studies) of 95 decibels SPL with an inter-stimulus interval of 30 seconds.  

The stimuli were 50 milliseconds in duration with the minimal programmable rise/decay 

time.  Startle response data were  recorded for a 250 millisecond period beginning at the 

onset of the noise burst.  Data from across all of the trials of the session were averaged to 

create a mean response for the rat. 
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 The following parameters from each trial were evaluated from the acoustic startle 

test sessions as well as from the fear-potentiated startle test sessions:  peak amplitude, 

latency to peak response and null period average responding.  The peak amplitude is the 

maximum voltage change recorded during the 250 millisecond recording period.  The 

latency to peak response is the time, in milliseconds, that the rats needed to reach the peak 

amplitude.  Finally, the null period average response is the average voltage change 

recorded prior to any stimulus presentation to the animal, either a  noise or a light stimulus.  

The null period was 50 milliseconds with the MA equipment and 1 millisecond with the 

SDI equipment.  The null period average response serves as an index of motor activity of 

the rat not elicited by an overt stimulus. 

 

Fear-Potentiated Startle Training and Testing 

 Rats were trained in the same acoustic startle apparati described above.  The 

methods were modeled after those of Campeau, Liang and Davis (Campeau et al., 1990).  

Following a 5 minute acclimation period, the rats were exposed to ten 0.5mA shocks paired 

with a light which served as the conditioned stimulus.  The shocks were delivered by a 

removable metal grid in the floor of the animal holder.  The light was illuminated for 3.7 

seconds, the shock being presented during the last 500 milliseconds and then both stimuli 

co-terminated.  The inter-stimulus interval was randomly timed, averaging 2.8 minutes.  

Ten such pairings constituted a daily training session and rats were trained for 2 or 4 

consecutive days for the experiments presented here (Figure 3). 

 Testing occurred in the same acoustic startle apparatus as the training and was 

conducted 24 hours after the last training session.  Following the 5 minute acclimation 
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period, rats were exposed to 60 acoustic startle stimuli of 95 decibels with an inter-stimulus 

interval of 30 seconds.  During the first 30 trials only noise was presented but during the 

last 30 trials, 15 randomly chosen noise trials were presented in conjunction with the same 

light used during training.  During these 15 light plus noise trials, the 50 millisecond noise 

burst was presented at the same time as the shock would have been during the training 

sessions.  Only noise was presented during the remaining 15 trials of the second half of the 

test.   Please see Figure 3 for further illustration of these methods. 

 

Conditioned Freezing Apparatus 

 An operant conditioning chamber, Model 80000, from Lafayette Instrument 

Company (Lafayette, IN) was used to conduct the conditioned freezing experiments.   

Shock was delivered to the chamber via Lafayette’s Model 82400-SS Master Shocker and 

the model 58020 Neon grid scrambler.  The repeated, timed delivery of shock was 

accomplished using their Dual Repeat Cycle Timer, model 51012. 

 

Conditioned Freezing to Context 

 Naïve PS and CON rats were tested one at time in a counter-balanced fashion.   

After 5 minutes of exposure to the chamber, the animal received 3 scrambled shocks of 0.5 

mA intensity for 1 second duration with an interval of 10 seconds.  The rat was observed 

for 5 more minutes and then returned to his home cage.   The following day, the rat was 

placed into the same chamber for 10 minutes but no shocks were presented.  Both sessions 

were videotaped for later analysis by a blinded observer.  Comparisons were made between 

the groups with regard to freezing behavior and rearing behavior observed during the pre-
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shock and post-shock periods for session 1 and the entire session 2 period 24 hours later.  

Freezing behavior was defined as the absence of movement except that required for 

respiration, although slight head movements were permitted.  Rears were defined as lifting 

both front paws off the grid floor in order to sniff at a higher level.  Please see Figure 4 for 

further illustration of these methods. 

 

Conditioned Freezing to a Light Cue 

 The same conditioning apparatus previously described was used with the addition 

of a 40 watt, clear light bulb suspended approximately 12 cm above the plexiglass ceiling.  

The methods were modeled after those published by Philips and LeDoux (Phillips and 

LeDoux, 1992).  Naïve CON and PS rats tested one at time in a counterbalanced fashion as 

before.  On day 1, following a 1 minute acclimation, the light was illuminated for 20 

seconds.  A footshock of 0.5 mA intensity and 0.5 seconds in duration was delivered during 

the last second of illumination.  Another 60 seconds elapsed and the procedure was 

repeated.  Cleaning between sessions was accomplished using 1% acetic acid.  The 

following day, the rats were placed back into the chamber which was modified from the 

previous day by covering the floor and two walls with plastic sheeting and the use of 70% 

ethanol to clean between sessions.  There was a 1 minute acclimation and then the light was 

illuminated for 20 seconds.  Both sessions were videotaped for analysis by a blinded 

observer.  Freezing and rearing behaviors were assessed on both days during the 20 second 

light exposure as well as a 20 second period just before light exposure.  Please see Figure 4 

for further illustration of these methods. 
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Sucrose Intake Assay 

 Testing lasted for one hour and began at 0830 or 2030 hours so that diurnal 

variations in feeding behavior could be taken into account in the series of assays.  The rats 

were singly housed for this hour and exposed to 2 bottles, one with tap water and another 

with 1% sucrose.  The bottles were weighed before and after the test session, the difference 

representing the amount consumed in grams.  Lastly, the rats were weighed before each 

assay. 

 

II.  Drug Study Methods 

Drugs 

 8-OH-DPAT HBr and WAY-100635 Maleate were purchased from Sigma, Inc.  

CRF and the CRF antagonist, D-Phe-CRF, were purchased from RBI, Inc.   

 

Systemic Dosing Studies (Acoustic Startle) 

 These studies were a randomized cross-over design such that each rat received 

vehicle and several doses in the study.  Drug washout periods were 24 or 48 hours and are 

indicated in the figure legends.  Saline (0.9%) was the vehicle used in all studies.  All 

injections were given intraperitoneally (i.p.).    
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Fear-Potentiated Startle Methods 
 
 
A.  Training Trial 

 
 
 
 
 
 
 Light + Shock Trial 
 
 

B.  Testing Trials 
 
 

Light + Noise Trial Noise Alone Trial 

 
 
 
 
 
 
 
 
 
C.  Test Session Map 
 
 
 
 
 
 
 
 

Testing Trials 
15 Noise Alone and 15 Light + Noise Trials 

randomly presented 

Leader Trials 
30 Noise Alone Trials 

 
Figure 3.  Schematic representation of the Fear-Potentiated Startle methods showing the 
temporal arrangement of the conditioned stimuli and unconditioned stimuli during the 
training and testing sessions.  A) The ten training trials per session were identical and 
occurred on a random interval averaging 2.8 minutes.  B) There were two types of trials, 
noise alone and light + noise, and the presentations occurred on a 30 second interval.  The 
noise burst was presented at the same time as the shock would have been during training.   
C) A diagram showing the composition of a single test session.  See Methods Section for 
more details.  Please note that the diagrams in parts A, B and C are not to scale. 
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Fear-Conditioned Freezing Methods 
 
 
A.  Fear-Conditioned Freezing to Context 
 

Testing session 
(no overt stimuli or shock) 

Training Session 

 
 
 
 
 
 
 
 
 
 
 
 
B.  Fear-Conditioned Freezing to a Light Cue 
 
 
 

Training Trial 

 
 
 
 
 
 
 
 
 
 
 

Testing Trial  
 
 
Figure 4.  Schematic representation of the fear-conditioned freezing methods showing the 
temporal arrangement of the conditioned stimuli and unconditioned stimuli in the training 
and testing sessions.  A) There was one exposure to the testing chamber, with the three 
shocks presented in the middle of the time period.  Testing was conducted 24 hours later in 
the same chamber, but no overt stimuli or shocks were presented.  B) There were two 
training trials separated by a one minute period.  Testing occurred 24 hours later in a 
different context, but used the same light as during the training.  The “no light” period 
served to measure freezing to the context.  See Methods section for more details. Please 
note that the diagrams in parts A and B are not to scale. 
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III.  Biochemical Methods 

Tissue Collection and Dissection 

 All tissue was collected between the hours of 0900 and 1230.  Rats were sacrificed 

by decapitation.  The brain was quickly removed, placed on its dorsal surface inside a 

plastic vial and frozen in liquid nitrogen.  The brains were stored at –80oC until use.  For 

experiments using block dissected tissue, the brains were thawed and cut using a razor 

blade according to the method of Glowinski and Iversen (Glowinski and Iversen, 1966).  

The block of tissue was weighed and quickly placed into the appropriate ice-cold buffer.  

Other experiments utilized a micro-dissection technique.  The frozen brains were mounted 

on a tissue stage and sectioned in the coronal plane at 200 microns using a Model HM505E 

Cryostat (Microm, Inc.)  The sectioned tissue was thaw mounted onto a glass slide and then 

refrozen.  Disks of frozen tissue were removed using 1 or 2 mm dissecting curettes.  For 

tissue from P25 and older brains landmarks for micropunching specific nuclei were judged 

using the 2nd edition atlas of Paxinos and Watson(Paxinos and Watson, 1982).  Landmarks 

for micropunching nuclei in younger tissue were determined using the altlas of Sherwood 

and Timiras (Nancy M.Sherwood and Paola S.Timiras, 1970) as well as the atlas of Altman 

and Bayer for P1 tissue (Altman and Bayer, 1995).   

 

CRH Extraction Procedure   

CRH was extracted by homogenizing the micro-dissected tissue with a Model 60 

Sonic Dismembrator (Fisher Scientific, Inc) at setting 3 for 10-15 seconds in a buffer of 

0.05 N HCl, 1mg/ml Ascorbate and 0.1% Triton X-100.  The samples were heated in a 

70oC water bath for 10 minutes and then frozen overnight.  The next day, the samples were 
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thawed and 100 µL aliquot was removed for protein concentration measurement.  The 

remainder of the sample was centrifuged at 3000g for 25 minutes.  Finally, 300 µL of the 

supernatant was dried down in a Speed Vac Concentrator (Savant, Inc) and then stored at –

80oC until use. Protein concentrations were determined by the method of Lowry et. 

al.(Lowry et al., 1951).  

 

CRH RIA 

 Lyophilized tissue samples were reconstituted in 1 ml of RIA buffer (0.03M 

Sodium Phosphate, 0.01M Sodium EDTA, 0.1% Triton X-100, 0.2 Units/ml Aprotinin).  

Samples were incubated at 4oC for 24 hours with rabbit derived anti-CRH antibody (RC70, 

compliments of Wiley Vale, Salk Institute, CA).  Excess 125I-labeled CRH was then added 

and the samples were incubated for another 24 hours at 4oC. Next, the samples were 

incubated for 20 minutes in the presence of sheep anti-rabbit IgG antibody and 0.14g/ml of 

Polyethylene Glycol (6,000-8,000 MW).  Finally, the samples were centrifuged for 20 

minutes at 5000 rpm in a Sorvall centrifuge and the supernatant discarded.  Pellets were 

counted in a 1470 Wizard Gamma Counter (Wallac, Inc) and were compared against 

known concentrations of CRH. 

 

Membrane Preparation Procedure for Radioligand Binding 

The block dissected tissue samples were homogenized using a Model 60 Sonic 

Dismembrator (Fisher Scientific, Inc) at setting 4 for 20-30 seconds in 3.5 mL of 320 mM 

sucrose and 5 mM Tris-HCl at pH 7.4.  The homogenate was centrifuged at 100g for 10 

minutes at 4oC.  The supernatant was saved and the pellet washed in the same buffer by 
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centrifugation as before.  This second supernatant was pooled with the first supernatant and 

the entire volume was centrifuged at 70,000g for 25 minutes at 4oC.  The pellet was 

resuspended in ~10 volumes of 50 mM Tris-HCl at pH 7.4.  Aliquots were frozen at –80oC 

for later use.  

 

[3H]8-OH-DPAT Binding Studies 

Aliquots of membranes (50-80 µg)were incubated with 50 mM Tris-HCl (pH 7.4) 

containing various concentrations of 3H-8-OH-DPAT (0.10 – 50 nM) (NEN Dupont, Inc).  

The incubation was 30 minutes at room temperature.  The reaction was terminated by rapid 

filtration over Whatman GF/B filters followed by 3 washes with 3.5 ml of the same ice-

cold buffer.  Non-specific binding was determined in the presence of 10 µM 5-HT HCl.  

Protein concentrations of the final dilution used in the assay were determined by the 

method of Lowry et. al.(Lowry et al, 1951).  

 

Tissue Preparation for cAMP Studies 

 Blocks of tissue were collected as described above for the block dissections used in 

the receptor binding experiments.  The dissected tissue was placed into 2 mL of buffer 

containing:  80 mM Tris HCl, 300 mM sucrose, EGTA 1mM, Na2EDTA 5mM, 

dithiothreitol 5mM and the pH was adjusted to 7.4.   The tissue was homogenized by hand 

in glass-on-glass homogenizers (Pyrex) and then centrifuged at 50g for 5 minutes.  The 

supernatant was collected and centrifuged for 10 minutes at 39,000g.  The final pellet was 

resuspended in 500 microliters of homogenization buffer and stored in 100 microliter 
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aliquots at –80oC until use.  A sample of the resuspended pellet was taken for protein 

determination by the method of Lowry et. al. (Lowry et al, 1951). 

 

cAMP Studies 

 Thawed tissue samples containing 100 to 120 µG of protein were incubated at 37oC 

for 10 minutes in the following buffer:  Tris HCl 200mM, EGTA 1mM, MgAcetate 5mM, 

3-isobutyl-1-methylxanthine 0.5mM, ATP (2Na+) 1mM, GTP (Na+) 10µM and the 

appropriate cocentration of drugs.   Stock forskolin was obtained from Sigma-Aldrich, Inc 

and initially dissolved in dimethylsulfoxide before a 1:1000 final dilution in the buffer 

described above.  The reaction (500 µL final volume) was started with the addition of the 

tissue and terminated by exposure to a 95oC water bath for 3 minutes.  Following 

inactivation, the sample was diluted 1:20 and stored at –20oC until the cAMP assay.  A 50 

µL aliquot of each reaction was assayed in duplicate.  The amount of cAMP was 

determined using an enzyme-immunoassay (EIA) kit manufactured by IBL-Hamburg 

(Cayman Chemical, Inc.).  The manufacturer’s instructions were followed for non-

acetylated standards and samples.  Additionally, the manufacturer’s test results state that 

the kit was specific for the detection of cAMP and would not cross react with other cyclic 

nucleotides. 

   

IV.  Statistical Analysis 

 Statistical analysis was performed as indicated under the Results section using GB-

Stat Version 7.0 (Dynamic Microsystems, Inc).  For experiments with 2 groups, Student’s 

t-tests were performed.  For experiments with multiple groups, ANOVA or repeated 
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measures ANOVA was performed with post-hoc analysis using Fisher’s Least Significant 

Difference (LSD) protected t-test, unless otherwise stated.  GraphPad Prism® Version 3.0 

(GraphPad Software, Inc) was used for non-linear regression fitting and comparisons of 

those regressions where necessary.  A p value of 0.05 or less was considered significant for 

statistical comparisons. 
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RESULTS 

Part A, Parameters of Development   

A retrospective study of our records of 72 CON litters and 71 PS litters was 

conducted (Table 1).  These litters were conceived and born over a two year period from 

1998 to 2000.  The study showed that length of gestation was not different between the 

groups (Student’s t-test; t = 0.10, p<0.55) and the total litter size was not different between 

the groups on postnatal day 1 (Student’s t-test; t = 0.09, p<0.99).  Additionally, the gender 

ratio of these same litters was not affected by our random culling procedure, as determined 

at weaning (Student’s t-test, t = 0.20, p<0.39 and p<0.62 for males and females 

respectively).  The distribution of litter size at birth was also reviewed in the same study 

(Table 2a).  Litters sizes determined at the P1 culling event were sorted into 3 groups:  <9 

pups, 10 to 19 pups and >19 pups.  The CON group had 5 more litters with >19 pups and, 

consequently, had a greater number of dead pups discovered at the P1 culling event on a 

per litter basis.  Chi-square analysis of the data in Table 2a did not reveal a difference 

between the groups when litter sizes were distributed this way (χ2 = 0.01, p<0.99).  

Body weight varied as a function of litter size at the P1 age point (Table 2b).  Since 

no differences were detected between the groups in these parameters, group data were 

averaged together.  Additionally, data were not available for litter sizes less than 12 pups at 

the P1 age.  Body weights were smaller with larger litter sizes (1 factor ANOVA; F(2,23) = 

14.82, p<0.0001).  AG distance was not evaluated in this respect. 

The weight and ano-genital distance of PS and CON rats were compared as a 

function of age in experimentally naïve rats (Figures 5 and 6).  Figure 5 shows body weight 

and ano-genital distances taken at four pre-weanling ages.  No statistical differences could 
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be found at these ages between the two groups (2 factor ANOVA; F(1,292) = 0.90 for weights 

and F(1, 292) = 0.312 for AG Distance).  There is the expected age-related increase in these 

parameters (2 factor ANOVA; F(3,292) = 2158, p < 0.0001 for weights and F(3,292) = 2412, p 

<0.0001 for AG Distance).  Figure 6 shows body weight and AG distance measurements 

taken at three post-weaning ages.  As with the pre-weanling pups, no statistical differences 

were detected between the groups (2 factor ANOVA; F(1,62) = 1.40 for weights and F(1,62) = 

0.32 for AG Distance).  However, there was an age-related increase in both parameters (2 

factor ANOVA; F(2,62) = 917, p < 0.0001 for weights and F(2,62) = 590, p < 0.0001 for AG 

Distance). 

Previous studies demonstrated that CRH content in the CeA/BLA and PVNH was 

increased in the PS group when the rats were >90 days of age.  CRH content was measured 

in micro-punched samples containing these brain regions as well as the BNST from ages as 

early as P1 up to P21 in experimentally naïve rats.  Figure 7 shows CRH content 

measurements in pre-weanling rats of both groups.  No differences were detected in the 

BNST, PVNH or CeA/BLA at any age between the groups (2 factor ANOVA; F(1,46)= 1.95 

for BNST, F(1,46) = 0.09 for CeA/BLA, F(1,45) =0.00007 for PVNH).   However, there was 

an age related increase in CRH content in both groups (2 factor ANOVA; F(1,46)= 31.27, 

p<0.0001 for BNST, F(1,46) = 22.59, p<0.0001 for CeA/BLA, F(1,45) = 30.66, p<0.0001 for 

PVNH).  

Figure 8 shows CRH content measurements in micro-punched samples of BNST, 

BLA/Lat and PVNH from experimentally naïve post-weanling and young adult-aged rats.  

Again, no differences were detected between the groups within any brain regions (2 factor 

ANOVA; F(1,43)=1.04 for BNST, F(1,45) = 0.27 for CeA/BLA, F(1,45) = 0.07 for PVNH and 
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F(1,45) = 0.32 for DRN).  The age related increase seen in the pre-weanling rats was not 

detected in this data set (2 factor ANOVA; F(1,43) = 0.87 for BNST, F(1,45) = 2.25 for 

CeA/BLA and F(1,45) = 1.57 for PVNH and F(1,45) = 1.66 for DRN). 
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Table 1. 

Parameter CON PS 

Length of Gestation (days) 21.96 ± 1.02  21.85 ± 0.99  

No. Pups at P1 17.07 ± 4.57  17.08 ± 4.73  

No. Females at Weaning 6.19 ± 1.57  5.96 ± 1.84  

No. Males at Weaning 5.16 ± 1.57  5.54 ± 1.77  
 
Table 1 shows several parameters of litter development. 72 litters and 71 litters were 
surveyed for the CON and PS groups, respectively.  No statistical differences were detected 
in any of the parameters. Values are means  ±  S.D. (see results for details). 
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Table 2a.   

Parameter CON PS 

No. Litters with > 19 pups 21 16 

No. Litters with 10–19 pups 50 52 

No. Litters with < 9 pups 1 3 

Death rate/litter > 19 pups 0.00987 0.00261 
 
Table 2a shows the distribution of litter size between the two groups. 72 litters and 71 
litters were surveyed for the CON and PS groups, respectively.  Differences were not 
detected in the distribution of litter size (see results). 
 
 
 
 
 
Table 2b. 

Parameter 14-16 pups 17-19 pups 22-27 pups 

Body weight (g) 6.53 ± 0.05 6.32 ± 0.12  5.36 ± 0.09* 
 
Table 2b shows the effect of litter size on body weight at P1.  Litters with large numbers of 
pups at P1 are significantly smaller than litters with fewer pups at P1.  CON and PS 
weights were averaged for inclusion in the table.  There are 6 to 11 independent litters 
represented at each litter size.  Values are weights ± S.E.M. (See results for details; 
*p<0.01 compared to 14-16 pups)
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Figure 5.  Changes in body weight and ano-genital distance with age in male
pre-weanling PS and CON rats. Both parameters show an age related increase
in these parameters but no between group differences were detected. Each
data point represents the average of mean values from 18-68 individual rats
taken from 8-10 independent litters. Values are means ± S.D. (See results
for statistical details).
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Figure 6.  Changes in body weight and ano-genital distance with age in male
PS and CON rats. Both parameters show an age related increase in these
parameters but no differences were detected between the groups. Each data
point represents 6-14 rats from 4-7 independent litters. Values are means ±
S.D. (See results for statistical details).
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Figure 7. CRH content in pre-weanling PS and CON rats. A)  CRF content in
the BNST.  Each data point consists of measurements from 7-8 individual rats
from independent litters. B)  CRH content in the CeA/BLA.  Each data point
consists of 5-6 individual rats from independent litters. C)  CRH content in the
PVNH.  Each data point consists of 5-6 individual rats from independent litters.
No differences were detected between PS and CON rats at any age or in any brain
region.  An age related increase was detected in all three brain regions. Values in
each graph are means ± S.E.M. (See results for statistical details)
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Figure 8.  The graphs show pg CRH/ mg protein in 4 brain regions from naive
post-weanling and  young adult rats.  No differences were detected in any brain region
between the groups.  Additionally there were no age related increases detected.  The n value
was 7-8 per region per group, representing  7-8  independent litters per group.  Values are
means ± S.E.M. (See results for statistical details).
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Part B, Preliminary Chronic Mild Stress Experiments 

 PS and CON rats that were subjected to various experimental procedures from ~25 

days of age to 120 days of age were assessed for the possibility that PS rats are more 

susceptible to the effects of Chronic Mild Stress.  The nature of the experimental 

procedures is outlined in Table 3.  The behavioral index of stress was sucrose intake 

assayed once weekly for four weeks (Figure 9).  The PS rats had significantly less sucrose 

intake than the CON rats during nighttime and daytime assays (RM 2 factor ANOVA; 

F(1,39) = 17.18, p = 0.0006 for nighttime, F(1,39) = 4.69, p = 0.044 for daytime).  Post hoc 

analysis using of the nighttime intake data using Fisher’s test showed that PS rats had less 

sucrose intake than the CON rats during week three.  Additionally, a Student’s t-test found 

that PS rats had less intake during week two (t=2.3, p<0.02).  Water intake was comparable 

between the groups during the nighttime and daytime assays (RM 2 factor ANOVA; F(1,70) 

= 1.05).  Body weight was generally lower in the PS group over the course of conducting 

the assays, although both groups demonstrated an age related increase in body weight (RM 

2 factor ANOVA; F(1,99) = 7.09, p = 0.0159 for group, F(1,99) = 20.46, p<0.0001 for age).  

There was not a significant interaction between the group and age parameters suggesting 

that the two groups were gaining weight at the same rate (RM 2 factor ANOVA; F(1,99) = 

0.31).  Post-hoc analysis using Fisher’s LSD protected t-test did not detect specific 

differences between the groups at any time point with regard to body weight.    

 Another group of 8 naïve PS and CON rats was assessed for sucrose intake over 

four weeks as before to see if PS rats naturally had less sucrose intake.  The average 

sucrose intake during both weeks during the daytime for the CON and PS rats was 0.90 ± 

0.29 and 1.37 ± 0.48 milligrams, respectively.  During the nighttime assays, the average 
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sucrose intake for the CON and PS rats was 3.76 ± 1.07 and 2.30 ± 0.61 milligrams, 

respectively.  Statistical analysis did not reveal an effect of group but did reveal an effect of 

time of day (RM 2 Factor ANOVA; F (1,31) = 0.96 for group, F (1,31) = 17.34, p<0.0002 

for time of day).  Water intake was comparable across both assay times and groups (data 

not shown).  

 At sacrifice, the adrenal glands were collected from these chronically stressed PS 

and CON rats as well as in a group of age-matched, experimentally naïve PS and CON rats 

(Table 4).  Adrenal weights were not different across the 4 groups of when normalized by 

kilogram of body weight rats (2 factor ANOVA; F(1,49) = 0.01).  Following this observation, 

the adrenal weights of the PS and CON rats were averaged within the CMS and nonCMS 

groups and compared by Student’s t-test.  No statistical differences were found with this 

analysis (t = 0.32, p<0.56).    
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Table 3. 
Age Range (days) Event 

22 Weaning 

26 – 30 Defensive Withdrawal Testing 

30 – 34 Open Field Testing 

39 – 43 Defensive Withdrawal Testing 

59 – 63 FPS Testing (SDI Equip.) 

66 – 70 8-OH-DPAT and Startle Response 

74 – 78 WAY100635 and Startle Response 

90 – 94 ASR; Sucrose Assay #1 

94 – 98 FPS Testing (MA Equip.); Sucrose Assay #2 

103 – 107 Variable dB ASR; Sucrose Assay #3 

111 – 115 Sucrose Assay #4 

114 – 118 Sacrifice 
 
Table 3 shows the time course and nature of the behavioral testing in which the CMS rats 
participated.   Experimental use began at about post-natal age day 28 and continued at 
regular intervals until about post-natal age day 116. 
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Figure 9: Comparison of sucrose intake, water intake and body weights over a  4 week
period. A) Nighttime Sucrose intake was measured once during Weeks 1 and 3 and was
generally larger in both groups than daytime intake.  At nighttime, the PS group had less
sucrose intake than the CON group. B)  Daytime sucrose intake was measured once during
weeks 2 and 4.  The PS group had significantly less intake during the daytime than the CON
group . C)  Water intake was comparable across both groups at night and during the day.  No
statistical differences were detected between the groups. D)  Body weights were
consistently lower in the PS group over the time week period of the assays.  The weights
shown at week zero were obtained 4 weeks prior to the start of measuring sucrose intake.
The n values are 10 per group, representing 5 independent litters per group, except for week
1, where the n value was 5 to 6, representing 2-3 independent litters.  The reported values
are means ± S.E.M.  (See results for statistical details; * p<0.05)
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Table 4.   

Parameter CON PS 

CMS Adrenal Weight (g/Kg) 0.1187 ± 0.008 0.1188 ± 0.005 

Non-CMS Adrenal Weight (g/Kg) 0.1130 ± 0.005 0.1137 ± 0.007 
 
Table 4 shows total adrenal weight normalized by kilogram of body weight.  The CMS 
adrenal glands were taken from PS and CON exposed to numerous experimental 
procedures.  The non-CMS adrenal glands were taken from age-matched naïve animals.  
No differences were detected in the data.  Values are weights ± S.E.M. (See results for 
details). 
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Part C, Acoustic Startle and the Serotonergic Neurotransmitter System 
 

Naïve CON and PS rats were randomly exposed to noise bursts over a range of nine 

different decibel levels within the same test session (Figure 10).  The nine different decibel 

levels were presented within each of nine consecutive blocks of the test session.  For 

simplicity of analysis, the data were compared at 90,95,100, 115, 120 and 125 decibels and 

not across all decibels presented to the rats.  Peak startle responses increased with 

increasing decibel levels but no differences were detected between the groups (RM 2 

Factor ANOVA; F (1,23) = 0.49 for group F (5,120) = 98.75, p<0.0001 for decibel level).  The 

peak responses were also evaluated as a function of the presentation blocks.  There was a 

decline in responding, but no differences were detected between the groups when block 1 

was comapred to block 9 (see inset Figure 10; F (1,23) = 0.82 for group; F (1,24) = 18.87 for 

block, p <0.01).  Latency to peak startle response was also evaluated in this same study and 

no differences were detected with regard to group or decibel (RM 2 factor ANOVA; F (1,23) 

= 0.02 for group F (5,120) = 0.53 for decibel level). 

PS and CON rats were treated with two serotonergic drugs in order to determine if 

the lack of an increase in startle responding seen in PS rats with a high dose of yohimbine, 

as observed by White and Birkle (2001),  was due to differences in sensitivity to 5-HT1A 

receptor activation (Figure 11).  Using the 5-HT1A receptor agonist, 8-OH-DPAT, PS and 

CON rats were exposed to 120 noise bursts on a 30 second inter-trial interval.  A repeated 

measures design was incorporated such that each rat received each dose in a randomized 

fashion over the course of the study.  There was a dose related increase in startle 

responding but no differences were detected between the groups (RM 2 factor ANOVA; 

F(3,87) = 12.01, p<0.0001 for dose, F(1,87) = 1.46 for group).   Post hoc analysis with Fisher’s 
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LSD protected t-test revealed that the highest dose of 8-OH-DPAT increased responding in 

both groups above their own vehicle responses.  Additionally, the post-hoc analysis showed 

that the responding of the PS rats at the 8mg/kg dose was greater than that of the CON rats 

at the same dose.  The data presented in Figure 11, part A are taken from the first half of 

the one hour test session.  Time course analysis (data not shown) showed that the effect of 

the 8 mg/kg dose of 8-OH-DPAT was greatest during this time in the PS and CON rats.   

The 5-HT1A antagonist, WAY-100635, was tested in the same fashion described for 

8-OH-DPAT.  WAY-100635 did not have a statistically significant effect on startle 

responding in either group (RM 2 factor ANOVA; F(2,35) = 1.18 for dose,  F(1,35) = 3.27 for 

group).  The data presented in Figure 11, Part B are taken from the second half of the test 

because time course analysis showed that the variability of peak startle responding was less 

during this time period (since there was no drug effect).   

The latency to peak startle response was also evaluated in these two drug studies 

(Figure 12).  Statistical analysis of the latencies for 8-OH-DPAT detected an effect of 

group and dose (RM 2 factor ANOVA; F(1,95) = 11.7, p = 0.0024 for group,  F(3,95) = 3.7 for 

dose, p = 0.0162). Furthermore, there was a significant interaction detected between the 

groups and dose suggesting that the groups were reacting differently to the drug (RM 2 

factor ANOVA; F(66,95) = 9.6, p < 0.0001).   Post-hoc analysis with Fisher’s LSD protected 

t-test revealed that the PS rats had increasing latencies with increasing doses.  In contrast, 

the latencies in the CON rats did not reveal a consistent change with increasing doses.  

Statistical analysis of the latencies to peak startle response were evaluated for WAY-

100635 as well (Figure 12).  The analysis did not detect any differences between the groups 
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or with the various doses (RM 2 factor ANOVA; F(1,24) = 0.01 for group,  F(2,24) = 0.01 for 

dose).   

The latencies to peak response in the CON group measured in response to the 

vehicle injection (and the two doses of WAY-100635) were lower than those reported for 

the CON rats in the 8-OH-DPAT study (Figure 12).  The latencies in the CON rats for the 

vehicle doses in both studies were compared by Student’s t-tests and not found to be 

different (t = 2.24, p<0.06).  
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Figure 10.  Acoustic startle responding to noise bursts covering a range of decibel
levels presented within the same test session (9 presentations per decibel level). A)
Peak startle responses increased with increasing decibel levels, but CON and PS rats
were not different in their responses at any of the decibel levels. The inset shows
the general decline in responding to the same decibel levels as the session
progressed. B)  Latency to reach the peak startle response was not different at any
decibel level or between the groups.  There were 12 rats per group representing 6
independent litters per group.  The experiment was conducted in MA Equipment.
(See results for details)
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Figure 11: Peak startle measurements in the presence of drugs selective for the
5-HT1A receptor. A)  Startle responses are increased in the presence of the 5-HT1A
agonist, 8-OH-DPAT, but only in the PS group.  There were 11 rats per group,
representing 6 independent litters per group in this study. B)  Startle responses are
unchanged in the presence of the 5-HT1A antagonist, WAY-100635.  No differences
were detected between or within the groups with WAY-100635.  There were 6 rats per
group, representing 3 independent litters per group in this study.  In parts A & B, the
responses to the vehicle are indicated next to the y-axis with open symbols.
Experiments were conducted in MA equipment.  Values are peak startle amplitudes ±
S.E.M. (See results for statistical details; **p<0.01 within group compared to vehicle
and the other doses, *p<0.05 within group compared to vehicle; +p<0.01 between
groups same dose).
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Figure 12.  The mean latency to the peak startle responses shown in
Figure X for 8-OH-DPAT and WAY-100635. A) Latencies for the
8-OH-DPAT treated rats.  The PS rats show a dose related increase in
latencies to reach the peak startle response.  The CON rats are not do
show a dose related change. B) Latencies for the WAY-100635
treated rats where not different with respect to dose or group. The
values reported are milliseconds ± S.E.M. (see results for details; *
p<0.05 between  groups same dose and vehicle; ^ p<0.05within group
compared to 0.08 dose; + p<0.01 within group compared to vehicle)
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Part D, Conditioned Fear Assessments  

 Fear-potentiated startle testing was performed on adult PS and CON rats and two 

parameters were evaluated, peak response and null period average responding in this initial 

set of experiments.  The first set of experiments were conducted such that the training 

context and testing context were exactly the same.  The two variables that were 

manipulated in these experiments were the shock intensity used in training and the number 

of training days.  Figure 13 shows the percent difference scores, calculated from the peak 

startle response values obtained in these experiments, were not different from zero.  In fact, 

at the highest shock intensity used, the percent difference scores were actually negative.  

Despite the calculation of negative difference scores, absolute peak values 

following FPS training were increased during the testing trials (Figure 14).  After 2 days of 

training at a shock intensity of 0.5 mA, no differences were detected between the groups in 

terms of elevated peak responses ( Part A, Figure 14).  However, startle responding was 

generally increased during the testing trials in both groups above that of the leader trials 

(RM 2 factor ANOVA; F (1,65) = 0.04 for group and F (2,65) = 6.35, p =  0.0004 for trial 

type).  Post-hoc analysis confirmed that the responding during the testing trials was 

increased above that of the leader trials in both groups.  After 4 days of training at 0.5 mA 

shock intensity, there was not an effect of group but there was an effect of training (Part B, 

Figure 14; RM 2 factor ANOVA; F (1,44) = 2.42 for group, F (2,44) = 4.31, p = 0.0242 for 

training).  Post hoc analysis with Fisher’s LSD protected t-tests revealed that only the PS 

group had a large increase in peak startle responses testing trials compared to the leader 

trials and baseline testing.  Interestingly, the responses to the testing trials from the CON 
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group did not show a statistically significant elevation in startle responding above the 

leader trials or even compared to their own baseline results.   

The null period average responses were also considered from the same set of 

experiments just described (see methods for a description of this parameter).  Null period 

average responses were evaluated by trial type (i.e. noise alone versus light plus noise) and 

no differences were found (data not shown; RM 2 factor ANOVA; F (1,20) = 2.2 for group 

and F (1,20) = 0.05 for trial type).  Figure 15 shows the null period responses from baseline 

ASR testing trials, leader trials and testing trials after two and four days of training (Parts A 

& B, respectively).  The PS rats, after two training days, had a greater depression in null 

period responding during the leader trials and testing trials when compared to their baseline 

values and the CON group (RM 2 factor ANOVA; F(1,68) = 23.46, p < 0.0001 for group, 

F(2,68) = 9.80, p = 0.0003 for session).  The statistical analysis revealed a significant 

interaction between the groups and the trial types suggesting that the two groups were 

responding differently to the test session (RM 2 factor ANOVA; F(42,68) = 5.83, p = 

0.0058).  In fact, post hoc analyses with Fisher’s LSD protected t-tests demonstrated that 

the CON group’s null period responding was increased during the testing trials versus their 

leader trial null period responding.   After 4 days of training, PS rats continue to show 

markedly depressed null period responding during both halves of the test; however, the 

training effect was lost (RM 2 factor ANOVA; F(1,44) = 17.55, p = 0.0011 for group, F(2,44) 

= 1.4 for training).  Again, there was an interaction with group and session suggesting that 

the two groups were reacting differently during the test and may have contributed to the 

loss of the training effect (RM 2 factor ANOVA; F(2,65) = 9.90, p = 0.0006).  Indeed, the 
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CON rats, after 4 days of training had increased null period responding during the testing 

trials as determined by post hoc analysis with Fisher’s LSD protected t-test. 

 Observationally based conditioned freezing experiments were conducted and 

seconds freezing per minute and rears per minute were compared between the groups 

(Figure 16).  There was an effect of group and session detected in the amount of time spent 

freezing (RM 2 factor ANOVA; F (1,59) = 5.45, p = 0.0313 for group, F (2,59) = 86.00, 

p<0.0001 for session).   Furthermore, there was an interaction detected with regard to group 

and session (RM 2 factor ANOVA; F (36,59) = 3.38, p = 0.0452).  Post-hoc analyses with 

Fisher’s LSD protected t-tests revealed that the PS rats were freezing more to the acute 

footshock as well as 24 hours later in the same context without the footshock.  Rears per 

minute were also affected as a function of shock, but not as a function of group (RM 2 

factor ANOVA; F (1,59) = 0.30 for group, F (1,59) = 65.07, p<0.0001 for shock).  Post-hoc 

analysis revealed that rears were markedly decreased after the shock as well as the next 

day.  Rears were increased the next day in the CON group compared to the post-shock 

period, but this was not found to be true for the PS group. 

 The PS and CON rats were also evaluated for their ability to freeze to an explicit 

cue, a light (Figure 17).  Freezing to the light was non-existent to either the context or the 

light itself during the training period for both groups but increased dramatically the next 

day during the testing session (RM 2 factor ANOVA: F (3,71) = 71.74, p<0.0001 for 

training).  Post-hoc analysis demonstrated that there was freezing to the context but there 

was more freezing to the light cue.  However, no differences were found between the 

groups (RM 2 factor ANOVA; F (1,71) = 0.17).  Rears were evaluated in the same fashion as 

freezing and were found to be decreased following the training session, but no differences 
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were found between the group or between context and the light cue (RM 2 factor ANOVA; 

F (1,71) = 0.08 for group, F (3,71) = 25.81 for training effect,  p < 0.0001). 

Another FPS experiment was conducted with slight methodological changes aimed 

at altering the context (the shock grids were not in place during testing and 70% EtOH was 

used to clean between rats) (Figure 18).  Statistical analysis of the leader trials and testing 

trials session data did not reveal an effect of group but demonstrated an effect of training 

(RM 2 factor ANOVA; F (1,55) = 3.97 for group and F (2,55) = 27.39, p < 0.0001 for trial 

type).  Additionally, the statistical analysis revealed an interaction with group and trial 

type, indicating that the two groups were responding differently to the light + noise trials (F 

(26,55) = 4.56, p = 0.0422).  Post hoc analysis with Fisher’s LSD protected t-test revealed 

that responding to the light + noise trials in the CON groups was elevated above their noise 

alone as well as the light + noise trials of the PS group.  Difference scores were calculated 

by simply subtracting noise alone responses from light + noise responses and the difference 

scores for each group were compared to zero and each other.  Both were found to be 

significantly different from zero (Student’s t-test; t = 4.01, p = 0.0015 for CON and t = 

5.90, p = 0.0001 for PS) but not from each other (Student’s t-test; t = 0.37).  

Difference scores were evaluated as a function of repeated CS exposure within the 

FPS test session shown in Figure 18 (Part B, Figure 18).  The testing trials of the test 

session were divided into 3 sequential blocks of 10 trials each with the blocks composed of 

5 noise alone trials and 5 light plus noise trials.  Difference scores were calculated using the 

peak startle responses within these blocks.  A one-factor repeated measures analysis for 

each group detected an effect of block for each group (RM 1 factor ANOVA; F(2,41) = 5.82, 

p = 0.0082 for CON and F(2,41) = 3.42, p = 0.0476 for PS).  Post hoc anlaysis showed that, 
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in both groups, block 3 was less than block 1.  Finally, the difference scores of block one 

were compared between the groups, but were found not to be different (Student’s t-test; t = 

1.68, p = 0.1042).   

Figure 19 also shows the null period responses from the same experiment.  

Statistical analysis of this data set revealed an effect of the training but not of group (RM 2 

factor ANOVA; F(2,83) = 14.61, p < 0.0001 for session, F(1,83) = 0.99 for group).  Post hoc 

analysis using Fisher’s LSD protected t-test demonstrated that testing trial null period 

responding was decreased in both groups, but only during the testing trials and not during 

the leader trials. 

 Shock induced movements across both training sessions were evaluated for some of 

the rats in this last FPS experiment.  The average peak movement response on day 1 of 

training was 552.2 ± 76 mV for PS rats and 517.1 ± 56 mV for CON rats, respectively.  On 

day 2, the shock induced movement response was 623.1 ± 97 mV for the PS rats and 668.2 

± 107 mV for the CON rats.  Statistical analysis did not detect any differences in these 

parameters with respect to group but differences were found with regard to day of training 

(RM 2 factor ANOVA; F(1,39) = 0.01 for group, F(1,83) = 6.25 for day, p = 0.0223).  Post-hoc 

analysis with Fisher’s LSD test showed that responses in the CON group were elevated the 

second day of training. 

Latencies to peak startle response were evaluated in the FPS experiments shown in 

Figure 15, part A and in Figure 18 (Table 5).  First, latencies during the testing trials of the 

experiment shown in Figure 18 were analyzed by trial type according to group (i.e. noise 

alone or light + noise) but no differences were found (RM 2 factor ANOVA; F (1,20) = 2.2 

for group and F (1,20) = 0.05 for trial type).  Since no differences were found, trial types 
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were averaged during the testing trials for further analyses of latency to peak startle (see 

Table 5).  In the FPS experiment shown in Figure 15 (labeled “A” in Table 5), ANOVA 

detected an effect of group and training when the baseline trials, leader trials and testing 

trials were analyzed (RM 2 factor ANOVA; F (1,68) = 5.32, p = 0.0313 for group and F (2,68) 

= 119.84, p < 0.0001 for the training effect).  Post hoc analysis revealed that the PS rats 

reached peak startle times faster during the baseline test session and during the testing trials 

when compared to the CON rats.  Both groups demonstrated a dramatic decrease in time to 

reach peak startle response following the FPS training, which was evident during the leader 

trials as well as the testing trials.  Latency to peak responses were analyzed in the same 

way for the FPS experiment shown in Figure 18 (labeled “B” in Table 5).  In this 

experiment, there was an effect of group and training (RM 2 factor ANOVA; F (1,83) = 4.30, 

p = 0.0481 for group and F (2,83) = 57.80, p<0.0001 for the training effect).  Post-hoc 

analysis of this data set demonstrated that latencies to peak response were shorter in both 

groups during the leader trials and even shorter during the testing trials.  Furthermore, the 

post-hoc analysis demonstrated that the PS rats had shorter times than the CON rats during 

the leader trials.   

A final FPS experiment was conducted as described in the methods, including the 

contextual changes, except that the light and shock were intentionally not paired during the 

training sessions (data not shown).  Baseline peak startle responding in the 8 naïve CON 

and PS rats used in this experiment were not different (366 ± 55 mV and 394 ± 51 mV for 

CON and PS, respectively).  Following two days of training, the calculated difference 

scores were negative indicating that, as expected, potentiation of startle had not occured.  

Interestingly, the pattern of peak startle responses resembled that shown in Figure 15, with 
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the PS rats demonstrating an increase in peak startle responses to the testing trials, 

regardless of trial type (eerily, both groups had the same leader trial responses of 300 ± 52 

mV; whereas testing trial responses were 402 ± 72 mV for CON rats and 510 ± 83 mV for 

PS rats).  However, statistical differences were not detected in this data set when baseline, 

leader trial and testing trial responses were evaluated (RM 2 factor ANOVA; F(1,47) = 1.61 

for group and F(2,47) = 2.49 for training effect). 
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Figure 13.  The percent difference scores from several experiments utilizing
different training conditions and tested in the same context.  No differences were
detected between the groups with any of the experimental conditions. All
experiments were conducted in SDI Equipment.  % Difference = (mean light plus
noise trials - mean noise alone)/mean noise alone X 100.  Values are means ±
S.E.M.  (See results for statistical details).
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Figure 14.  A comparison of startle responses before and after FPS training at 0.5
mA shock intensity.  Responses to both trial types were averaged for the testing trial
results. A)  Baseline responses were not different between the groups.  Leader trial
startle responding was not different from baseline responding in either group after 2
training days.  During the testing trials both groups increased responding above
baseline and first half responding. (n = 11-12 per group). B)  Baseline differences
were not detected between the groups.  Differences in startle responding were not
detected within in the CON group after 4 days of training, although there is a
non-significant trend towards increased responding during the testing trials.  During
the testing trials, the PS group showed increased responding above baseline and
leader trial responding as well as testing trial responses of the CON group (n = 7-8
per group). The experiments were conducted in SDI equipment.  The reported values
are peak amplitudes ± S.E.M.  (See results for statistical details; *p<0.05 for within
group leader/testing trial comparison).
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Figure 15.  A comparison of null period responses in the same experiments that were
shown in Figure 8.  Responses to both trial types were averaged for the testing trials. A)
After training for 2 days, both groups have depressed null period responses during the
leader trials, but the difference is greatest in the PS group.  PS null period responses
remain depressed during the leader trials but the CON group shows increased null period
responses. B) After training for 4 days, the PS group has depressed null period
responding during the entire test session compared to its baseline value.  However, after
4 training days, the CON group has increased null period responding during the testing
trials. The values are means ± S.E.M.  (See results for statistical details; *p<0.01 for
within group baseline comparison; #p<0.01 for between group each session comparison;
@p<0.05 for within group comparison of leader and testing trials; ^p<0.05 for within
group comparison of leader trials and testing trials).
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Figure 16: Behavioral inhibition during the conditioned freezing
experiment. A ) The seconds per minute spent freezing was negligible
during the pre-shock period but increased in both groups following the onset
of the first shock with the PS group showing more freezing to the acute
shock presentation.  Freezing was also evident the following day in both
groups, with the PS group showing significantly more freezing in the context
where shock was delivered. B ) Rears per minute were high in the pre-shock
period in both groups and negligible in the acute post-shock period in both
groups.  Testing the following day showed that the rears were increasing
only in the CON group. The n value was 10 per group.  Values are means ±
S.E.M.  (see results for statistical details; # p<0.05 and ## p<0.01 for
between group comparisons; * p<0.01 for within group comparisons to the
preshock condition; + p<0.01 within group compared to the post-shock
condition; ^ p<0.05 within group compared to the post-shock condition).
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Figure 17. Behavior before and after conditioning to an explicit light cue.  A)  The
freezing times reported in the graph were recorded for 20 seconds prior to the light
(e.g. the context) and for the 20 seconds of exposure to the light (e.g. the light).
Freezing was increased in both instances following the training. B)  The number of
rears counted during the same conditions as A. Rears were attenuated following the
training.  The data for the training session are from the first training trial.  There
were 9 animals per group representing 4-5 independent litters.  The values are means
± S.E.M.  (see results for details; *p<0.01 for training effect within group, ^p<0.01
for effect of context versus light within group).
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Figure 18.  Peak startle responding from the fear-potentiated startle experiment. A)
Baseline startle responses were not different between the two groups.  Following
training, the CON rats demonstrated a robust potentiation of startle; whereas, the PS
rats only had a small potentiation. B)  Difference scores were calculated within the
test session and became smaller as the session progressed.  This resembles a learning
extinction phenomenon and demonstrates that both the CON and PS rats learned the
CS-US association. The values reported are means ± S.E.M.  There were 14 rats per
group representing  7 independent litters per group.  The experiment was conducted in
SDI equipment (See results statistical details; *p<0.01 within group noise alone versus
light plus noise, #p<0.01 between groups same trial type, $p<0.05 comparison to zero,
+p<0.05 compared to block 1, ++ p<0.01 compared to block 1)
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Figure 19 .  Null period responding from the experiment shown in Figure 18.
There was a depression in null period responding during the leader trials in
both groups, but no differences were detected between the groups.  The values
are means ± S.E.M. (see results for statistical details; + p<0.01 within group
compared to baseline and leader trials).
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Table 5. 
Group (Experiment) Baseline trials Leader trials Testing trials 

CON (A) 34 ± 1 18 ± 0.5 * 19 ± 1 * 

PS (A) 30 ± 1 ^ 17 ± 0.5 * 15 ± 0.3 *^ 

CON (B) 36 ± 2 28 ± 3 * 16 ± 1 *# 

PS (B) 33 ± 2  22 ± 2 *& 14 ± 1 *# 
 
Table 5 shows the average latency to peak startle responses, in milliseconds, from two FPS 
experiments conducted using two days of training at 0.5 mA shock intensity.  Experiment 
A was also shown in Figure 15, Part A and  Experiment B was shown in Figure 19.  
Latencies were faster during the leader and testing trials of both experiments when 
compared to baseline values.  Latencies during the leader trials of Experiment B were 
shorter than the latencies during the testing trials of Experiment B.   The difference 
between the two experiments was the contextual changes made during Experiment B.  The 
reported values are means ± S.E.M.  (See results for details; *p<0.01 within group 
compared to baseline, ^ p<0.01 between groups same trial type, #p<0.01 within group 
compared to leader trials, &p<0.05 between groups same trial type).
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Part E, Signal Transduction 
  

5-HT1A Receptor Binding Assays 

Figure 20 shows the staturable binding of 3H-8-OH-DPAT in block dissected tissue 

from CON and PS rats.  The amount of staturable binding (Bmax) and the affinity (KD) were 

determined by non-linear regression of the data using GraphPad Prism.  Prism 

automatically compares the parameters of interest using Student’s t-test.  In the amygdala 

samples, the calculated Bmax  and KD values for the CON and PS rats were 48.1 ± 15.2 

fmol/mg protein and 6.9 ± 4.1 nM and 50.2 ± 5.2 fmol/mg protein and 4.5 ± 1.0 nM, 

respectively.   Differences between the groups were not detected in this analysis (Bmax: t = 

0.1297, p = 0.8974; KD:  t = 0.5692, p = 0.5720).   

In the hippocampus, the PS rats had a significant decrease in Bmax when compared 

to the CON rats (t-test; t = 2.075, p = 0.0422).  The calculated Bmax was 105.2 ± 10.5 

fmol/mg protein for the PS rats and 139.0 ± 12.5 fmol/mg protein for the CON rats. The 

calculated KD values of  4.5 ± 1.4 nM and 5.8 ± 1.5 nM for the PS and CON rats, 

respectively, were not different between the groups (t-test; t = 0.6388, p = 0.5253). 
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Figure 20. 3H-8-OH-DPAT binding in block dissections of the amygdala and
the hippocampus. A) Saturable binding in the amygdala.  No differences were
detected between the groups. B)  Saturable binding in the hippocampus.  PS rats
were found to have a smaller Bmax but the KD was unchanged compared to CON
rats.  There were 5-6 rats per group representing 2-3 independent litters.  See
results for details.  (#p<0.05 between groups)
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cAMP Production 

Figure 21 shows basal and forskolin stimulated cAMP production in block 

dissections from CON and PS rats containing the amygdala and hippocampus.  Each data 

set was analyzed by a Student’s t-test since each pair of columns in the graph represents an 

independent experiment.  No differences were detected between the groups in either brain 

region under basal conditions of cAMP production (t-test; t = 0.6169, p = 0.5511 for the 

amygdala and t = 0.2266, p = 0.8253 for the hippocampus).  There was the expected 

increase in the amount of cAMP due to forskolin stimulation of adenylyl cyclase in both 

brain regions, but no differences were found between PS and CON rats in either brain 

region (t-test; t = 1.362, p = 0.2 for the amygdala and t = 1.313, p = 0.2217 for the 

hippocampus).   Interestingly, there appears to be more basal production of cAMP in the 

amygdala when compared to the hippocampus (>3x).  However, as pointed out above, the 

experiments were conducted independently so statistical comparisons were not made of this 

data.  
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Figure 21. cAMP production in  block dissected tissue samples from amygdala
and hippcampus.  A) Basal and Forskolin stimulated cAMP production in the
amygdala.  No differences were detected between the groups. B) Basal and
Forskolin stimulated cAMP production in the hippocampus. No differences were
detected between the groups.  The were 6 rats per group, representing 3
independent litters per group.  See results for more details.
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DISCUSSION 
Development 

 Psychological trauma during human pregnancy has been associated with adverse 

outcomes for the infant, such as low birth weight and shorter gestational periods  (Wadhwa 

et al., 1993) (Rothberg and Lits, 1991) (Newton and Hunt, 1984).  Accordingly, we wanted 

to determine if our stressful intervention during pregnancy resulted in these types of 

outcomes.  In our model of prenatal stress, length of gestation and average litter size were 

not different between the PS and CON litters (Table 1).   Interestingly, over the period of 

our record review the CON group tended to have larger litter sizes, but this was not 

statistically significant (Table 2a).  Finally, body weights and AG distance were found not 

to be different between naïve PS and CON rats over a range of ages from P1 to P65 

(Figures 5 and 6).   

A few reports utilizing rodent prenatal stress models have been published 

describing the effects of the chronic stress on length of gestation, birth weight and AG 

distance of the pups, which have been negative in this regard (Peters, 1986a) (Kinsley and 

Svare, 1987) (Poltyrev et al, 1996).   On the other hand, there are also reports of low birth 

weight and shorter AG distances (Williams et al., 1998).  Differences in these parameters 

are usually seen with more severe prenatal stressors (e.g. restraint three times daily) [for a 

review see (Weinstock et al., 1988)].  Additionally, maternal stress during gestation, such 

as restraint or social stressors, is known to result in resorption of fetuses in rodent species 

which would be detected as a decrease in litter size by our recording methods (Wise and 

Eldred, 1986) (Sugino et al., 1994).  The resorption process might explain the slight 

tendency for the CON group to have larger litter sizes as compared to the PS group.  

 88



However, given the mild nature of our gestational stress paradigm as compared compared 

to more involved stressing protocols, it is not surprising that significant changes in basic 

parameters of gestation are not seen. 

 As might be expected, body weight at the P1 age decreased as a function of litter 

size (Table2b).  This may point to a confounding factor for our studies that relates to 

prenatal nutrition and subsequent development of the fetuses and young offspring.  A 

priori, larger litter sizes in utero get proportionally less nutrition per fetus than smaller 

litter sizes in utero.  This is not meant to imply that the nutritional intake of the mother is 

inadequate since viable pups are born and survive to adulthood.   However, the data in 

Table 2b for clearly indicate that smaller litter sizes result in larger pups at birth suggesting 

that the growth process is accelerated. 

It has been shown that smaller litter sizes in utero (by isolation of one uterine horn) 

correlate with larger body sizes, heavier brain weights, accelerated acheivement of 

developmental milestones (e.g. pinnae opening) and better performance on behavioral 

measures in the pups during the first week of life (Wehmer F and Jen KL, 1978).  Thus, if 

the CON group tends to have larger litter sizes (Table 2a), then this effect may be 

confounding experimental analyses.  Finally, nutritional deficits in animal studies have 

been hypothesized to be linked to neurobiological problems related to psychiatric disorders 

such as schizophrenia (Butler et al., 1994).  A reasonable methodological change in our 

model would be to impose a cut-off value, above which litters of either group would not be 

used.  Further work is needed to accurately determine a cut-off value that lessens the 

presumed impact of large litter sizes yet allows reasonable production of subjects for 

research projects.  
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 Previous studies in our laboratory have shown that CRH content is increased in the 

amygdala and the hypothalamus of older, adult PS rats (Cratty et al, 1995) (White and 

Birkle, unpublished).  We were interested in describing the ontogeny of this phenomenon 

by determining CRH content in preweanling and young adult rats.  Using a micropunch 

dissection technique, we did not detect any differences in CRH content of the BNST, 

CeA/BLA and PVNH in preweanling PS and CON rats (Figure 7).  Using the same 

technique, we measured CRH content of these same brain regions, with the addition of the 

DRN, in PS and CON rats aged P25 to P65 (Figure 8).  Again, no differences were detected 

in CRH content at these ages between PS and CON rats.   

 There are two related possibilities that may explain the current findings with respect 

to the previous findings.  In the first study by Cratty et. al., the investigators utilized block 

dissected tissue to make their observations (Cratty et al, 1995).  This raises the possibility 

that other brain regions, not investigated in the current study, are contributing to the 

difference in CRH content between PS and CON rats.  The candidate brain regions for this 

effect, each containing copious amounts of CRH, are the hippocampus, endopiriform 

cortex and median eminence (Palkovits et al, 1985) (Skofitsch and Jacobowitz, 1985).  

Nevertheless, this still does not provide a complete explanation.  The unpublished study by 

White and Birkle did employ the micropunch dissection technique and managed to find 

small differences in total CRH content in the CeA/BLA and PVN in adult offspring.  The 

difference between the present study and the previous study may be in the experimental 

history of the animals used in the studies.  The rats used in the current study were all 

experimentally naïve, where CRH content was not different between PS and CON rats.  

Both of the previous studies utilized tissue taken from rats used in behavioral experiments.  
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Thus, the differences in CRH content between PS and CON rats detected previously may 

be related to prior use in experiments and the stress involved in those procedures.   

 A mechanism for increases in CRH content in stressed PS rats may be HPA axis 

dysregulation.  PS rats have greater plasma corticosterone responses to a variety of 

stressors than do CON rats.  This finding is true for brief tailshocks and saline injections 

(Takahashi and Kalin, 1991) (Peters, 1982).  Fride et. al. demonstrated that PS rats 

continued to show increased plasma corticosterone, when compared to CON rats,  even 

after 8 days of repetitive exposure to an open-field (Fride et al, 1986).  It is counter-

intuitive to expect glucocorticoids to increase CRH when they are known to participate in 

the negative feedback loop of the HPA axis.  However, there is one report demonstrating 

that following footshock or cold water swim, CRH mRNA is increased (Lightman and 

Harbuz, 1993).  Protein kinase A stimulation, via forskolin-induced elevations of cAMP, in 

primary amygdalar cultures also increases CRH production (Kasckow et al., 1997).  

Finally, psychologically stressing a rat by putting it in the presence of other rats being 

footshocked leads to increases in CRH mRNA in the amygdala but not the hypothalamus 

(Makino et al., 1999).   These observations indicate that, despite the negative feedback 

loop, CRH production can be increased under the right circumstances in vivo.    

 In summary, the mild gestational stress employed during the present studies does 

not alter the length of gestation and litter size.  Body weight and AG distance, over a range 

of postnatal ages, are also not affected by the gestational stress.  Body weight at birth was 

found to be inversely proportional to litter size and may reflect important issues related to 

prenatal nutrition.  Finally, CRH content in several brain regions is not affected by the 
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gestational stress at the ages assessed in this study when the rats are naïve to experimental 

use. 

 

Preliminary Study of Chronic Mild Stress 

The previous observations regarding experimental use and CRH content, coupled 

with known HPA axis dysregulation in PS rats, led to the hypothesis that PS rats may be 

more susceptible to chronic mild stress than the CON rats.  For a preliminary examination 

of this idea, we assessed our PS and CON rats while the rats were being used in other 

experiments (Table 3).  In this situation, the other experiments became the stressors.  In this 

study, the rats were subjected to a variety of experimental manipulations from a young age, 

ranging from open field testing to footshock based fear-conditioning which occurred more 

or less on regular intervals.   The primary outcome measure of interest was anhedonia, as 

measured by sucrose intake. 

During the course of exposure to the other experiments, sucrose intake was found to 

be depressed in the PS group relative to the CON group during the daytime and nighttime 

assays over the 4 weeks that the measurements were conducted (Figure 9).  This behavioral 

assessment used a two-bottle paradigm with tap water serving as the alternate choice.  

Water intake was found not to be different between the groups or as a function of time of 

day.  Unfortunately, baseline measurements were not conducted in these sucrose intake 

determinations.  Thus, we cannot judge the extent to which the chronic stress affected the 

sucrose intake in either group, i.e. there could have been preexisting differences in sucrose 

intake and sucrose intake remained unchanged despite the stressors.  There is at least one 

report suggesting that saccharin preference is decreased by prenatal stress, so the 
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suggestion of pre-existing differences cannot be ruled out entirely in this experiment 

(Keshet and Weinstock, 1995).   Additionally, there was not an age-matched set of non-

stressed rats to allow an assessment of sucrose intake as a simple function of age between 

the PS and CON groups.    

However, another group of younger, naïve CON and PS rats was assessed for basal 

sucrose intake and differences were not found between the groups; although, sucrose and 

water intake values were generally lower than those reported in Figure 9 (See results).   

Although more work must be done, together these observations are consistent with the idea 

that sucrose intake in PS rats may be depressed to a greater extent by chronic stress than in 

CON rats.    

Body weights were generally lower in the PS group over the course of this study, 

although specific differences were not detected by the post-hoc analysis.  This finding, 

albeit weak, may be related to the chronic mild stress of experimental use since body 

weights were not different 4 weeks prior to the start of the sucrose assays (approximately 

the middle of the behavioral series, see Table 3).  As noted previously, naïve PS and CON 

rats are not different in terms of body weight over a range of ages (Figures 5 and 6).  This 

mild weight loss can result from the chronic stress.  Willner has reported weight losses on 

the order of 10% compared to pre-stress baseline values in his studies (Willner et al., 

1996).    

It needs to be pointed out that Willner’s paradigm is somewhat controversial. with 

at least three reports demonstrating negative findings.  Part of the controversial nature of 

the paradigm stems from the reproducibility of the decrease in sucrose intake in response to 

chronic mild stress, something that even Willner has acknowledged in his own work 
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following a change in laboratory locations (D'Aquila et al., 1997).  Moreover, other 

investigators have reported negative results (Harris et al., 1997) (Matthews et al., 1995) 

(Forbes et al., 1996).  The controversy also extends to the philosophical underpinnings of 

the model; for example, does decreased sucrose consumption actually indicate anhedonia if 

sucrose preference does not change?  In fact, in addition to a review by Willner, a couple of 

informative commentaries debating the usefulness of this model of anhedonia appear in 

volume 134 of the journal Psychopharmacology (Willner, 1997) (Weiss, 1997) 

(Broekkamp, 1997).  Despite the controversy, Willner and his colleagues have reported a 

number of different experiments using a variety of pharmacological assessments, two 

different rodent species and other physiological parameters not related to sucrose intake 

(e.g. intracranial self-stimulation) to argue their point that their chronic mild stress 

paradigm results in anhedonic rats (Cheeta et al., 1997) (Monleon et al, 1995) (Papp et al, 

1996).  

 At sacrifice, adrenal glands from the chronically stressed rats were removed and the 

weights compared to adrenal glands taken from an age-matched set of naïve CON and PS 

rats (Table 4).  No differences were detected across the four groups of rats or when the 

analysis was performed as merely a function of stress versus non-stress groups.  There was 

a trend towards increased adrenal weights in the chronically stressed rats, but it did not 

reach statistical significance.  Adrenal glands in rodents are known to hypertrophy during 

times of chronic stress (Blanchard et al., 1998) (Zelena et al., 1999). The lack of a 

difference between the stressed and non-stressed rats suggests the chronic mild stress used 

in the present studies was not robust enough to produce this effect, despite the presumed 

effect on sucrose intake. 

 94



In our model of prenatal stress, young PS rats (~60 days) have been shown to have 

larger adrenal glands than CON rats (Ward et al, 2000).  The lack of a detectable difference 

in adrenal weights between the naïve PS and CON rats in the present study implies that, as 

the rats age, the difference in adrenal gland size between the groups becomes less 

pronounced.  The reason for this finding is unclear.  However, an intriguing hypothesis is 

that, in general, rats are more susceptible to adrenal gland hypertrophy at younger ages in 

response to stressful events such as weaning and exposure to routine handling by animal 

care technicians.  A key corollary to this hypothesis is that the PS rats are even more 

sensitive to this type of physiological plasticity than the CON rats, as has been previous 

reported by our laboratory.  Some evidence supporting this hypothesis and its corollary 

comes from a report by Vallee et. al., where they demonstrated that age related changes in 

glucocorticoid secretion differed between PS and CON rats (Vallee et al., 1999).  In this 

study, PS rats had greater corticosterone levels following restraint stress than the CON rats, 

but only at the younger ages (4 months).  Additionally, basal corticosterone levels, 

although not different between the groups at the youngest and oldest ages, were elevated 

more than 3 times at the oldest age (24 months) compared to the youngest age (Vallee et al, 

1999).  Thus, it appears that adrenocortical activity increases with age regardless of 

prenatal condition.  These observations may provide a rationale for the lack of difference in 

adrenal gland weights between the CON and PS rats in the present study.  

In conclusion, the PS rats seem to be more susceptible to chronic mild stress in 

terms of depressed sucrose intake.  However, more studies are needed to definitively prove 

this point, since baseline sucrose intake values for the stressed and non-stressed groups of 

rats were not obtained.  The effect of prenatal stress on adrenal gland weights was not 
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found in this study, as previously reported in younger animals.  Some available evidence 

implies that the physiology of adrenal gland hypertrophy is complex and that it relates to 

age, stress and prenatal condition.  Certainly, more studies are needed to determine the 

validity of this hypothesis. 

 

Acoustic Startle Responding and Serotonergic Neurotransmission 

 Our laboratory has demonstrated that PS and CON rats do not differ with regard to 

normal acoustic startle responding (White and Birkle, 2001).  However, these studies were 

conducted using only one decibel level, 95 decibels.  Exposure to loud sounds is known to 

be stressful and can change such things as eating behaviors (Krebs et al., 1996) (Krebs et 

al., 1997).  Accordingly, acoustic startle responding was assessed over a range of decibel 

levels to determine if PS rats would respond differently at higher decibel levels than CON 

rats (Figure 10).  Differences were not detected between PS and CON rats with regard to 

peak startle responses or latency to peak startle response at any of the decibel levels tested.   

The data in Figure 10a show that startle responding increases linearly from 95 

decibels up to about 110 decibels where responding does not appear to increase in a linear 

fashion.  The lack linearity at the higher decibel levels is probably due to habituation of the 

startle response as the session progresses since habituation is known to be more 

pronounced with stimuli at higher decibel levels (Pilz and Schnitzler, 1996).  Habituation is 

a decremental process that degrades the acoustic startle response with repetitive 

presentation of the stimulus(Pilz and Schnitzler, 1996).   The inset shown in Figure 10a 

shows a decline in startle responding to the same stimuli as the session progressed, in 

keeping with this idea (also see results).  Thus, in addition to peak startle responding not 
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being different over a range of decibel levels between the groups, habituation of the peak 

startle response over a range of randomly presented decibel levels does not appear to be 

different between the groups.   

 One might argue that a weakness with this experiment is that a variety of decibel 

levels were presented to the rats within the same test session.  The range of decibel levels 

presented to the rats encompasses decibel combinations that can be used in pre-pulse 

inhibition experiments.  Pre-pulse inhibition is a paradigm in which a weak pre-stimulus is 

presented just prior to a stronger stimulus and, as a result, the response to the stronger 

stimulus is inhibited (Koch, 2000).  However, for the pre-pulse to be effective at reducing 

the magnitude of the response to the next stimulus, it must be presented 30 to 500 

milliseconds prior to the stronger stimulus (Koch, 2000).  Since the present experiment 

used an inter-trial interval of 30 seconds, there are unlikely to be effects resembling pre-

pulse inhibition on the peak startle response. 

 Figure 10b shows the results of randomly presented acoustic stimuli on the latency 

to peak startle.  As noted before, the statistical analysis did not detect any effect of decibel 

level or group; in fact, the latencies are quite similar across each decibel level.  Therefore, 

one can conclude that within the confines of this experiment, latency to peak response is 

not dependent upon the decibel level of the stimulus as is the peak response.  This is an 

intriguing finding, since the usual expectation is to see a decrease in latency times as peak 

startle responses increase (Pilz and Schnitzler, 1996).  Furthermore, evidence from pre-

pulse inhibition studies suggests that latency to peak response and the peak response are 

controlled by separate mechanisms (Koch, 2000).  If this proposition is true, then perhaps 
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this variable decibel experiment also provides evidence of the dissociation between these 

two parameters of the ASR.      

Previous studies from our laboratory have shown that with a high dose of 

yohimbine (e.g. 5mg/kg), acoustic startle responding is not elevated in the PS rats to the 

same degree as with CON rats (White and Birkle, 2001).  Tests with RS79948-197 HCl, a 

selective alpha2-adrenoceptor antagonist, during that same study determined that this effect 

was probably not due to differences in the PS rat’s sensitivity to yohimbine’s antagonism 

of α2 adrenoceptors.  Unfortunately, yohimbine is capable of interacting with several 

neurotransmitter systems, including the adrenergic, serotonergic and dopaminergic systems 

(Smith et al., 1996) (Scatton et al., 1980) (Lattimer et al., 1984).  In particular, yohimbine 

has been shown to act as a partial agonist at 5-HT1A receptors (Arthur et al, 1993).  The fact 

that yohimbine can interact with 5-HT1A receptors is also supported by drug discrimination 

testing revealing that 8-OH-DPAT can generalize to yohimbine (Winter and Rabin, 1992). 

 The present studies sought to determine if the difference in response to yohimbine 

between the PS and CON rats was due to differences in 5-HT1A receptor mediated events.  

For these studies, two well characterized ligands were available.  The antagonist, WAY-

100635, is highly selective for the 5-HT1A receptor and has extremely low efficacy 

(Fletcher et al, 1996) (Gozlan et al, 1995).  The agonist, 8-OH-DPAT, has been regarded 

for many years as being very selective for 5-HT1A receptors with high efficacy; however, it 

does have affinity for 5-HT7 receptors at low micromolar concentrations (Fletcher et al, 

1996) (Wood et al., 2000). 

 Figure 11a shows the peak startle responses for PS and CON rats treated with 

various doses of 8-OH-DPAT.  Treatment with 8-OH-DPAT produced an increase in startle 
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responding at the highest dose in the PS and CON rats compared to their respective vehicle 

responses.  Additionally, the post-hoc analysis also revealed that the responses of the PS 

rats at the 8 mg/kg dose was greater than that of the CON group.  A follow-up study using 

a 16 mg/kg dose of  8-OH-DPAT yielded even higher peak responses responses in both 

groups and the same difference between the groups (data not shown; Skinner, Griffin and 

Birkle, unpublished observations).   Additionally, in the present study, latency to reach 

peak startle amplitude was increased in a dose-dependent fashion by 8-OH-DPAT in the PS 

rats (Figure 12a).  Curiously, the CON rats did not show a consistent change in terms of the 

effects of 8-OH-DPAT on the latency parameter.  Svensson reported increases in peak 

startle responding and latency to peak startle response with systemic treatment of 8-OH-

DPAT with a similar range of doses (Svensson, 1985).  These observations demonstrate 

that the PS rats are more sensitive to the effects of 8-OH-DPAT on the acoustic startle 

response than the CON rats.  The fact that the PS rats are more sensitive to a serotonergic 

agonist is consistent with reports by D.A. Peters from the mid-1980’s showing enhanced 

behavioral responses to 5-hydroxy-L-tryptophan (Peters, 1986a). 

It is interesting that the PS rats are more sensitive to the effects of 8-OH-DPAT in 

ASR testing and it indicates that there is a leftward shift in the dose-response curve for the 

peak response and the latency parameter.  Obtaining the plateau of the dose-response curve 

in order to prove a leftward shift would be the logical next experiment.  Unfortunately, this 

is not possible with 8-OH-DPAT due to the prevelance and severity of the serotonin 

syndrome as higher doses are used.  This syndrome manifests itself as flattened posture, 

increased forward movement, wet-dog shakes and temperature dysregulation (Blanchard et 

al., 1993).  In fact, during the course of the follow-up study alluded to previously, several 
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CON rats died, probably from temperature dysregulation induced by the 8-OH-DPAT.  The 

temperature dysregulation manifests itself as hypothermia, which can be blocked by WAY-

100635 indicating the involvement of 5-HT1A receptors (Trillat et al., 1998).  Interestingly, 

chronic corticosterone treatment attenuates the hypothermic response to 8-OH-DPAT, and 

given the noted HPA-axis hypersecretion of coritcosterone in PS rats, this may explain why 

no PS rats died in the course of the follow-up study (Takao et al., 1997).  In spite of that, 

the motor symptoms of the serotonin syndrome may interfere with the generation of the 

acoustic startle response and the hypothermia can obviously endanger the life of the rat, 

making the generation of a full dose-response curve very difficult. 

The mechanism for this increased sensitivity on the part of the PS rats is unclear, 

but there are at least two possible explanations.  The first consideration is a difference in 

metabolism of 8-OH-DPAT between PS and CON rats.  In the rat, 8-OH-DPAT is excreted 

largely as a glucuronidated molecule with a terminal half-life of ~1.5 hours (Mason et al., 

1995).   Additionally, stress is known to alter liver function enzymes such that drug levels 

can be changed (Stitzel and Furner, 1967) (Stitzel, 1972).  Although no reports exist, if 

such actions can occur via prenatal stress or by the interaction of prenatal stress with other 

stressful events in the life of a rat, then PS rats would obviously metabolize drugs 

differently.  In the case of PS rats, the altered metabolism may result in higher plasma 

levels of 8-OH-DPAT and, consequently, larger responses at a given dose.  This 

explanation, though plausible, is not completely satisifactory since elevations in ASR are 

apparent within minutes of the i.p. injection, before the effects of altered metabolism would 

be expected to be seen (time course data not shown).  The second consideration, which will 
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discussed in more detail below, are alterations in discrete elements of the serotonergic 

system such as changes in receptor density in key brain nuclei associated with the ASR. 

 On the other hand, WAY-100635 does not affect acoustic startle at all in either 

group (Figure 11b).  No dose related changes were detected in this study in terms of peak 

startle amplitude, in keeping with control data from an FPS study published by Joordens et. 

al. (Joordens et al., 1998).  Evaluation of the latency to peak response gave similar findings 

(Figure 12b).  Latency times seemed to be depressed in the CON group under vehicle 

treatment as compared to what was seen in the 8-OH-DPAT study, but this was not 

statistically different (See results).  It should be noted that a weakness in this experiment 

with WAY-100635 was the high variability of responding which was probably related to 

the small number of rats tested. 

 The current results with 8-OH-DPAT, particularly with the PS rats, create a curious 

dilemma with data interpretation.  The magnitude of the acoustic startle response increases 

in states of fear or with the administration of anxiogenic drugs (Davis, 1984).  Therefore, 

the effects of 8-OH-DPAT on peak startle responding in either group can be interpreted as 

an anxiogenic response.  Conversely, the present study has demonstrated that decreases in 

latency to peak response occur in states of fear and, therefore, must be interpreted as an 

anxiogenic response (see Table 5 and the discussion below under Fear Conditioning).  The 

PS rats demonstrated a clear increase in the latency parameter with increasing doses of 8-

OH-DPAT.  There is not any published evidence to argue that the increase in latency to 

peak startle response is actually an anxiolytic response, but the increase in latency is not 

consistent with a presumed anxiogenic effect of 8-OH-DPAT on peak startle responding 

given the findings in the fear-conditioning studies.  Furthermore, as noted above, peak 
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response and latency to peak response are generally related by a negative correlation (Pilz 

and Schnitzler, 1996).  In fact, as the startle responding habituates (i.e. decreases with 

repetitive presentation) there will be a general increase in latency to peak response (Pilz 

and Schnitzler, 1996).  Thus, the interpretation of the data must include some explanation 

for the apparent disconnect between peak response and latency to peak response. 

 It is known that ablation of the DRN results in an increase in peak acoustic startle 

responses (Davis and Sheard, 1974).  The DRN supports a rich population of 5-HT1A 

autoreceptors, that, when activated, decrease neuronal activity (Forster et al, 1995).  It 

could be hypothesized that activation of these receptors decreases inhibitory serotonergic 

tone supplied to the primary acoustic startle pathway which, in turn, results in an elevated 

startle response.  Alternatively, there could be a direct effect of 8-OH-DPAT on the spinal 

cord that results in elevated startle responses.  5-HT1A receptors are found in the spinal cord 

and 5-HT applied directly to the spinal cord is known to elevate responses to acoustic 

stimuli, although it is unknown which serotonergic receptor mediates this action of 5-HT 

(Astrachan and Davis, 1981).  Furthermore, in an unrelated paradigm, a control experiment 

showed that 8-OH-DPAT applied directly to the spinal cord increased reflexive twitches in 

the gastrocnemius muscle caused by electrical stimulation of the sural nerve in spinalized 

rabbits (Ogilvie and Clarke, 1998).  Thus, there are at least two locations in the central 

nervous system for a direct effect of 8-OH-DPAT can enhance peak startle responding and 

two locations were prenatal stress may have changed neural function to yield greater 

responses in the PS rats.  Changes caused by prenatal stress might include alterations in 

receptor density or alterations in second messanger signalling. 
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There is also the consideration of 8-OH-DPAT’s low micromolar affinity for 5-HT7 

receptors, which has been elucidated by in vitro binding assays using cells transfected with 

5-HT7 receptors (Wood et al, 2000).  Therefore, at high systemic doses of 8-OH-DPAT, the 

possibility of cross-over to the 5-HT7 system cannot be excluded.  Unfortunately, there are 

no known selective drugs for this receptor and, consequently, there are no published 

investigations of the involvement of the 5-HT7 system with the acoustic startle response.  

However, the distribution of 5-HT7 receptors, as determined by northern blotting and in situ 

hybridization, indicates that the receptors are not localized to any great extent in nuclei 

associated with the acoustic startle response.  The primary sites of expression in the brain 

are the hypothalamus and thalamus (Lovenberg et al., 1993) .  In this same study by 

Lovenbrrg et. al., weak expression of 5-HT7 receptors was detected in “medulla” but they 

did not elaborate on what structures might contained in this tissue preparation (Lovenberg 

et al, 1993).  For example, did it include more caudal areas of the pons, perhaps parts of the 

RPC?  The investigators also did not examine samples of spinal cord in this experiment.  

Thus, an involvement of 5-HT7 receptors in acoustic startle responding cannot be ruled out, 

but given the limited distribution uncovered so far, it seems unlikely that these receptors 

would contribute to any great extent to 8-OH-DPAT mediated increases in peak startle 

responses.  

The effect of 8-OH-DPAT on the latency to peak startle response is more difficult 

to explain due to the paucity of literature on this parameter and the factors that control it.  

The latency parameter reflects the speed of transmission of the auditory stimulus from the 

Organ of Corti in the ear to the skeletal muscles that produce the response (Koch, 2000).   

Interestingly, the PS rats, under vehicle conditions, have faster latencies than the CON rats 
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when auditory stimuli of a single decibel level are presented (95dB SPL), which is 

consistent with the baseline startle data shown in Table 5 but not with the WAY 100635 

study (Figure 12a).   The reason for this observation is not clear but the vehicle response 

data imply that prenatal stress improves synaptic efficacy to speed up neurotransmission 

through the startle pathway.  Furthermore, the data imply that 5-HT1A receptors are 

involved, either directly or indirectly, with this enhanced synaptic efficacy in the PS rats 

since activation of these receptors retards the flow of information through the pathway.    

 In conclusion, the current results support the idea that acoustic startle responding 

and habituation of the response, is generally unchanged in PS rats, even at higher decibel 

levels.  Another finding was the faster latency times of the PS rats.  This is an admittedly 

weak finding since it is not always detected.  However, the drug-modulated startle data 

presented here are not consistent with PS rats being less sensitive to yohimbine’s agonist 

activity at 5-HT1A receptors, since 8-OH-DPAT is increasing startle to a greater extent in 

the PS group (yohimbine had the opposite effect).  The results are also not consistent with 

yohimbine depressing startle in the PS group via 5-HT1A blockade, since WAY-100635 

does not have an effect on startle in either group.   

The response difference between PS and CON rats to a 5 mg/kg dose of yohimbine 

may be explained by increased sensitivity of the PS rats to α1 adrenoceptor modulation.  

Yohimbine has affinity for these receptors so an interaction with these receptors with 

systemic dosing cannot be excluded (Lattimer et al, 1984).   Furthermore, activation of α1 

adrenoceptors in the spinal cord by intrathecal phenylephrine increases the peak startle 

response (Astrachan et al., 1983).   So, assuming that yohimbine is acting as an α1 

adrenoceptor antagonist in the spinal cord, one might expect increases in peak startle 
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responding caused by descending noradrenergic projections to be antagonized by high 

doses of yohimbine and yield the paradoxical inhibition in  startle responding.  This 

hypothesis also assumes that the contributions of the α2 adrenoceptors in the spinal cord, 

which do increase startle when yohimbine is directly applied, are outweighed by the 

influence of α1 adrenoceptors particularly in the PS rats (Davis and Astrachan, 1981).  

Certainly, given the number of interactions that yohimbine has with a variety of 

neurotransmitter systems, the complexity of the problem cannot be over-emphasized.  The 

final answer will only come with further pharmacological analysis using more selective 

drugs directed at specific regions of the central nervous system. 

 

Conditioned Fear 

 Fear-potentiated startle experiments were conducted to ascertain whether PS rats 

would demonstrate greater responses to a conditioned stimulus.  The first series of 

experiments did not yield potentiation in either the PS or CON rats (Figure 13).  Two 

variables were adjusted in these experiments:  shock intensity and number of training trials.  

It is important to note that training context and testing context were exactly the same in 

these experiments.  Neither of these adjustments resulted in potentiation, i.e. percent 

difference scores greater than zero (Figure 13).  In fact, at the 0.5mA shock intensity, the 

difference scores were actually negative indicating that many of the responses to the light + 

noise trials were less than the responses to the noise alone trials. 

 Nevertheless, two interesting observations were uncovered during these 

experiments.  Figures 14 and 15 show peak startle responses and null period responses 

taken from the experiments using 0.5mA of shock intensity.  The first discovery was that 

the rats had increased peak startle responses regardless of trial type during the second half 
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of the test after two training days (Figure 14).  This is the portion of the test when the 

conditioned stimulus is presented.  After four training days, this effect is quite pronounced 

in the PS group, as indicated by a large increase in startle responding during the testing 

trials compared to the CON rats (Figure14).   These observations indicate that the light has 

acquired a fearful association since peak startle responding is selectively elevated during 

the portion of the test when it is presented to the rats.  Furthermore, these observations 

suggest that the state of fear induced by the light during the testing trials is not easily 

extinguished from trial to trial since positive difference scores could not be calculated 

(Figure 13).    

This phenomenon has been reported before with the FPS paradigm, but is not well 

understood (Joordens et al., 1997).  Obviously, simply increasing the number of CS-US 

pairings during training does not resolve the issue and, in fact, only serves to enhance a 

generalized increase in peak startle responding in the PS rats (Figure 14).  On the other 

hand, Davis and his colleagues have shown that when the FPS paradigm is working 

properly in their laboratory, the conditioned state of fear is greatest during the light cue, 

particularly when the shock would have been presented, and disappears very soon after the 

light cue is extinguished (Davis et al., 1989).  Such a pattern of conditioned fear responding 

would allow the calculation of a positive difference score.  As will be discussed below, the 

lack of a positive difference score in these two experiments may be related to subtle issues 

of context. 

The findings in Figure 14 are consistent with the observation that, in general, startle 

responding can be increased following prior experience of footshock in the same context as 

testing, particularly if the light cue has become part of the context (Richardson and 
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Elsayed, 1998).  This effect after either two or four training days may be mediated by the 

CRHergic system, which is known to be active in states of fear and i.c.v. administered 

CRH is known to elevate ASR (Dunn and Berridge, 1990) (Kalin and Takahashi, 1990) 

(Liang et al, 1992).   

With regards to the peak startle data shown for four training days, PS rats have 

documented increases in CRHergic system function, such as increased release in ex vivo 

amygdala preparations, and CRH content of the amygdala (Cratty et al, 1995) .  

Furthermore, repeated footshock induced stress or several days of corticosterone treatment 

facilitates CRH-potentiated startle (Lee et al., 1994) (Pelton et al., 1997).  There is also 

published evidence that the degree of fear-conditioning positively correlates with the 

amount of circulating corticosterone as well as the shock intensity used during training 

(Cordero et al., 1998).  Thus, the current findings support the idea that the CRHergic 

system is more active in the PS rats and, coupled with deficits in HPA axis negative 

feedback, may be responsible for the dramatic increase in startle responding after four days 

of footshock training.   

 The null period responses from these experiments provided the other interesting 

observation from these experiments (Figure 15).  The null period response serves as an 

index of voluntary motor activity during the test session (Plappert et al, 1993).  In the PS 

group, after only 2 training days, null period responding was markedly depressed during 

the leader trials compared to the baseline value and this was true for testing trials as well.  

In contrast, the CON group’s null period responding after 2 training days was only slightly 

depressed during the leader trials and seemed to be increasing during the testing trials.  

These effects were also evident after 4 training days (Figure 15).     
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 The depression in null period responding of the PS rats after two or four training 

days occurred initially during the leader trials of the test session.  In contrast, in either 

experiment, the CON rats did not have marked depression in null period responding during 

the leader trials.  A plausible hypothesis was that the PS rats were freezing more to context 

as a result of the footshock based training in that same context.  Unfortunately, the short 

duration of the null recording period relative to the length of the test session as well as the 

restrictions on movement imposed by the testing equipment were weaknesses in supporting 

this hypothesis. 

 A traditional, observationally based conditioned freezing experiment was conducted 

to determine if PS rats were indeed capable of greater behavioral inhibition to context (i.e. 

the context is the conditioned stimulus) following an aversive experience 24 hours earlier.  

Figure 16 shows the data from that experiment.  Rears were assessed as a measure of 

voluntary motor activity and were high during the pre-shock period.  The data show that 

freezing was practically non-existent in both groups during the pre-shock period.  

Immediately following the shocks, freezing increased dramatically in both groups but to a 

greater extent in the PS group.  As expected, rearing behavior was severely attenuated.  The 

next day, freezing was still evident in both groups and still greater in the PS group.  Rears 

were increasing the next day but only in the CON group.  These observations are consistent 

with the data in Figure 15 and support the notion that PS rats are more sensitive to 

contextual cues after even a brief training session. 

Somewhat in contrast to our results, Takahashi et. al. saw increased freezing in PS 

rats in the immediate aftermath of foot-shock presentation but did not see increased 

freezing when the PS rats were placed back into the context 24 hours later (Takahashi et al, 
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1992a).  The disagreement between our studies is probably due to methodological 

differences.  The former study exposed the rats to the testing context for 2 days prior to 

shock presentation; whereas, in our study, the rats were shocked during the first visit to the 

chamber.  Perhaps the lack of increased freezing 24 hours after footshock in the previous 

study was due to the phenomenon of latent inhibition where repeated exposure to the 

stimulus (e.g. the context) prior to training dampens the conditioning effect [for review 

(Lubow R.E., 1989)].   In fact, at least one report has been published showing that latent 

inhibition can contribute to the attenuation of conditioned freezing to context (Cruz et al., 

1993).   

 Another freezing experiment was conducted that evaluated the rats’ ability to freeze 

to an explicit cue, a light (Figure 17).  After training, freezing was significantly increased 

in the presence of the light in both groups; however, PS rats and CON rats were immobile 

to the same extent.  It is worth noting that the degree of freezing obtained to the light cue in 

this experiment is consistent with the published study from which the methods were 

derived (Phillips and LeDoux, 1992).  Additionally, there was a high degree of freezing to 

the context in both groups, although less than to the light cue.  There were no differences 

detected between the groups under either condition.  The fact that there was a significant 

increase in freezing to the context after training, despite some changes in context, may be a 

result of the location of the conditioning chamber being the same from training to testing 

(See methods). 

The lack of a difference between the groups in freezing to the light cue is probably 

a result of the long lived nature of the freezing response and the short duration of the 

observational periods (Blanchard and Blanchard, 1969) (Phillips and LeDoux, 1992).  It is 
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is worthwhile to point out that freezing in rodents does not necessarily have to occur as an 

extended period of total immobility, rather freezing can occur in discrete bouts that are 

periodically interrupted by head swiveling, sniffing or walking short distances.  This 

statement is supported by the fact that, in the experiment shown in Figure 16, the rats were 

observed for 20 seconds but were not immobile for the whole period of observation.  

Nevertheless, future behavioral inhibition experiments using an explicit light cue will have 

at least two methodological changes:  1) change the location of the conditioning chamber 

between training and testing and 2) incorporate longer periods of observation after the light 

cue has been extinguished.  These two changes would maximize the difference in freezing 

between the context and cue as well as expose differences between PS and CON rats that 

are consistent with those seen in the experiment shown in Figure 16. 

An explanation for increased behavioral inhibition to contextual cues on the part of 

the PS rats may also be explained using the same rationale as described above for the 

increases in peak startle responding seen after 4 days of training.  Freezing behavior can be 

blocked using CRH antagonists, indicating the involvement of the CRHergic system (Kalin 

and Takahashi, 1990).  And, as noted previously, increases in plasma corticosterone are 

positively correlated with fear-conditioned behavior, in particular, defensive freezing 

(Cordero et al, 1998).  Thus, given the known elevation of plasma corticosterone following 

stressors as well as the enhanced activity of the CRHergic system in the amygdala, PS rats 

should be pre-disposed to display increased fear-conditioned responses.  As will be 

discussed below, alterations in other brain regions may also contribute to the enhanced 

freezing response. 
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 The observations regarding the importance of context in conditioning experiments 

for explicit cues led to a revision in the fear-potentiated startle methods.  The training was 

conducted as before, using 2 training days with 0.5mA of shock.  However, during the 

testing session, the shock grids were removed and 70% ethanol was used to clean between 

test sessions creating differences in tactile and olfactory cues between the training and 

testing sessions.  These simple changes resulted in a dramatic potentiation in the CON rats 

(Figure 18).  Surprisingly, there was a smaller potentiation in the PS group indicated by the 

difference in responding to the light + noise trials.  However, statistical analysis did not 

reveal a difference between the calculated difference scores (Figure 18).  Additionally, the 

difference score was evaluated as a function of time in this experiment (Figure 18).  Both 

groups demonstrated a significant decline in difference scores as the session progressed.  

This pattern resembles an extinction phenomenon and indicates that the rats learned the 

CS-US association because the association was less fear provoking later in the test session 

(Davis and Astrachan, 1978). 

The null period responses recorded during this FPS experiment are shown in Figure 

19.  The findings demonstrate that the methodological changes were adequate to mask the 

training environment in terms of peak startle responding since neither group showed 

changes in these responses during the leader trials, as was found during the previous FPS 

experiments (Figure 15).  However, during this experiment, null period responses were 

decreased during the testing trials when the CS was being presented to the rats, albeit to the 

same extent in either group.  Although there was not a difference between the groups, this 

depression in null period responding is consistent with states of fear suppressing voluntary 

motor activity in rodents (Fanselow, 1991).   
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 It is important to note that the difference scores calculated in this experiment were 

not statistically different; however, the CON rats demonstrated much larger responses to 

the light + noise trials than the PS rats (Figure 18).  It was expected that the PS rats would 

have a difference score of similar magnitude or greater than that of the CON rats.  Since the 

PS rats did not demonstrate a large, positive difference score as expected, there is a 

possibility that the PS rats are not as fearful of the CS as the CON rats or perhaps they did 

not learn the CS-US association as readily as the CON rats.  Two findings in the present 

work argue against these possibilities.  First, the PS rats demonstrated enhanced behavioral 

inhibition to context after only one training trial (Figure 16) and to a light cue after two 

training trials (Figure 17).  Secondly, the PS rats demonstrated an extinction phenomenon 

in the last FPS experiment proving that they did learn the association in this paradigm.  

Both of these findings indicate that PS rats are fully capable of learning fearful 

associations, even after only a single conditioning trial. 

 What, then, could explain the results?  Davis has described a non-monotonic 

relationship with shock intensity used in training and difference scores (Davis and 

Astrachan, 1978).  At the low end of the scale, low shock intensity produces low difference 

scores.  As shock intensity increases the difference score will increase up to a certain point 

but then begin to decline as the shock intensity continues to increase.  The 0.5 mA intensity 

used in these experiments was in the middle of the curve described by Davis and his 

colleagues.  Thus, the suggestion is that PS rats experience shock differently and this shifts 

the non-monotonic relationship to the left in that group relative to the CON group. This 

suggestions fits the theory that PS rats are generally more fearful than CON rats.   
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Davis and his colleagues have also shown that chemical lesions of the PAG restore 

potentiation to normal levels in rats trained at high shock intensities (Walker et al., 1997).  

A specific neural mechanism has been discovered that might explain these observations.  

Fendt and his colleagues have demonstrated that somatostatinergic projections from the 

periaqueductal gray (PAG), when activated, interfere with the generation of fear-

potentiated startle responses (Figure 1) (Fendt et al., 1996).  Importantly, baseline startle 

responding is not hindered by this action of somatostatin.  Thus, the fear-potentiated startle 

response is selectively interupted by the PAG 

It is important to mention that there is a discrepancy between these theories 

proposed by Davis and Fendt regarding this action of the PAG.  Fendt and colleagues 

demonstrated, via tract-tracing analysis, that the lateral and ventral PAG supplies the 

somstatinergic projections to the RPC (Fendt et al, 1996).  On the other hand, Davis and his 

colleagues have demonstrated, by chemical lesion studies, that it is the dorsal-lateral PAG  

(Walker et al, 1997).  The two studies are not incompatible if one considers that the overlap 

between the two studies involves the lateral aspect of the PAG.  Nevertheless, the studies 

also suggest that other areas of the PAG, and probably other neurotransmitter systems, may 

also be involved in the inhibition of the potentiated startle. 

As suggested above, it is possible that PS rats “experience” the footshock more 

intensely than the CON animals.  And this results in a low difference score by recruiting 

the somatostatinergic-based suppressant activity of the PAG on fear-potentiated startle.  

This idea would also be consistent with the enhanced behavioral inhibition seen in the PS 

rats in this study (Figure 16).   In other words, the PAG may be activated at lower shock 

intensities in the PS rats; thus, behavioral inhibition is increased and fear-potentiated startle 
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is decreased.  Nevertheless, shock-induced movement responses measured during training 

are not different between the groups and do not support the idea that the PS rats are 

reacting differently to the shock during the training (See results).  However, as mentioned 

several times already, PS rats are known to have elevated corticosterone responses to shock 

challenge (Weinstock et al., 1998) (Takahashi and Kalin, 1991).  Therefore the lack of a 

difference between the groups in terms of shock-induced movement during training does 

not preclude differences from being detected during the testing phase of an experiment 

since increased plasma corticosterone is associated with increased responding in behavioral 

indices of fear [(Campeau et al., 1997) (Cordero et al, 1998) and see also (Korte, 2001)]. 

The PAG, together with the amygdala, integrates a number of defensive responses 

to prepare an animal for conflict (Fanselow, 1991).  Lesion studies and drug studies 

demonstrate the involvement of the PAG in generating the freezing response to conditioned 

aversive stimuli (Kim et al, 1993) (Fanselow, 1991). In this regard, enhanced activation of 

the PAG during fear conditioning may explain the increased behavioral inhibition to 

aversive contexts with the PS rats.  In addition to the results presented here, Takahashi and 

co-workers provided the first evidence that PS rats do freeze more following acute 

footshock (Takahashi et al, 1992a).   The evidence from the current studies implicating the 

PAG, together with previous findings showing enhanced CRHergic activity in the 

amygdala of PS rats, provides a plausible mechanism for the enhanced behavioral 

inhibition and a “depression” of the FPS response, both of which would be indicative of 

greater fear on the part of the PS rats.    

Latency to peak response was the final parameter evaluated in the FPS experiments 

(Table 5).  Generally speaking, FPS training resulted in faster latency times during the 
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testing trials in both groups when compared to the baseline values.  Latency times were 

depressed across both trial types and not just to the light + noise trials.  This decrease is 

consistent with a yohimbine study on the effects of startle in humans, where that known 

anxiogenic drug decreased the latency times of the peak startle response (Morgan, III et al., 

1993).  The data obtained during the testing trials are also consistent with the general 

negative correlation of peak startle response and latency described earlier (Pilz and 

Schnitzler, 1996).  Thus, decreases in latency times can be interpreted as an anxiogenic 

response in the FPS paradigm. 

Furthermore, latencies were shorter during the leader trials of both experiments than 

the respective baseline values (Table 5).  This pattern of responses suggests that the latency 

parameter is a more sensitive indicator of fear than peak startle responding, since the peak 

startle response during the leader trials is unchanged from baseline peak startle responses 

(See Figure 14 and results).  Interestingly, the PS rats had shorter times during the leader 

trials of experiment B and this finding would be consistent with the proposition that the PS 

were more fearful, at least in the beginning of the test session, than the CON rats.  Finally, 

this evidence, coupled with the lack of a difference in latency times between the noise 

alone and light + noise trials, is also more evidence suggesting that the latency parameter 

and the peak startle response are controlled by different mechanisms (See also the 

discussion above regarding 8-OH-DPAT and latency).   

It is intriguing that, as with the vehicle responses in the 8-OH-DPAT study, the PS 

rats generally have shorter latencies than the CON rats in these experiments.   However, the 

fear-conditioning training does not seem to enhance this phenomenon in the PS rats, since 

the relative differences were maintained.  The difference in latency times are not large, but  
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they do indicate that the PS rats have faster neurotransmission through the startle pathway.  

The exact mechanism for this effect of prenatal stress remains to elucidated. 

In conclusion, PS rats demonstrate enhanced fear-conditioning in terms of 

behavioral inhibition and, perhaps, in terms of “depressed” FPS responding.  Prenatal stress 

may affect the functioning of the PAG-amygdala system that can be detected in terms of:  

1)  dramatically elevated acoustic startle responding after four days of footshock-based 

training;  2)  “suppressed” fear-potentiated startle responding under moderate training 

conditions; and  3)  enhanced behavioral inhibition to context after only a brief aversive 

training session.  Additionally, it appears that PS rats generally have shorter times to reach 

the peak startle response.  Finally, in general, fear-conditioning decreases the latency of the 

peak startle response and may serve as a very sensitive indicator of fear. 

 
 
5-HT1A Receptor Binding and cAMP production 

 Two considerations revealed the importance of measuring and comparing the 

number of 5-HT1A receptors between PS and CON rats.  First, there was the observation 

that PS rats were more sensitive to the anxiogenic effects of 8-OH-DPAT in ASR testing.  

Changes in receptor density might provide a rationale for this observation.  Second, there 

was the observation that PS rats were more sensitive to fear-conditioning, particularly with 

regard to context.  As described in the introduction, the amygdala and the hippocampus 

play important roles in fear-conditioned responses [e.g.  (Campeau and Davis, 1995) 

(Phillips and LeDoux, 1992)].   

 The density of 5-HT1A receptors in block dissections of the amygdala were found 

not to be different between the groups.  However, density of 5-HT1A receptors in block 

dissections of the hippocampus were found to be different between the groups, with the PS 

 116



rats having roughly 30% fewer receptors.  As a brief aside, it should be noted that the 

relative differences between the amygdala and the hippocampus as well as the calculated 

KD values agree with published reports (Chalmers and Watson, 1991) (Popova et al., 1998) 

(Nenonene et al., 1994).  

 The reason for decreased numbers of 5-HT1A receptors in the hippocampus of PS 

rats is unclear.  Nevertheless, the literature offers some ideas on why this may be the case.  

As pointed out previously, PS rats have a dysregulated HPA axis that ultimately results in 

prolonged, higher levels of circulating plasma corticosterone.  High levels of circulating 

corticosterone are damaging to the hippocampus and result in decreases in the number of 

synapses (McEwen, 1999).  A recent report, by Hayashi et. al., has demonstrated that 

prenatal stress results in offspring with 32% fewer synaptic connections in the 

hippocampus (Hayashi et al, 1998).  Consequently, it is reasonable to speculate that the 

decrease in 5-HT1A binding found in the hippocampus of PS rats is due to decreases in the 

number of synapses. 

 The involvement of the hippocampus in spatial learning is well documented.  

Lesions of the hippocampus impair the conditioned freezing response to contextual cues 

(Phillips and LeDoux, 1992) (Kim et al, 1993).  It would appear that if there is damage to 

the hippocampus caused by excessive, stressed-induced corticosterone in PS rats, it does 

not impair fear-conditioned responses to context as indicated by the behavioral inhibition 

experiments (Figures 16 and 17).  In support of this observation, Hayashi et. al. showed 

that, despite synaptic loss of 32% in the hippocampus, PS rats performed equally as well as 

the CON rats in spatial learning tasks (Hayashi et al, 1998) .  In fact, it might be 

hypothesized that the enhanced behavioral inhibition to context may be aided by synaptic 
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loss in PS rats if those synapses contained 5-HT1A receptors and those receptors are 

involved in generating anxiolytic tone.   

The 5-HT1A system of the hippocampus has been shown to be involved in fearful 

behaviors.  For example, Kostowski et. al. showed that a high dose of the 5-HT1A partial-

agonist buspirone injected into the hippocampus increased exploratory behavior in the open 

field and the elevated plus maze, which are considered anxiolytic effects (Kostowski et al., 

1989).  Additionally, Steidl et. al. showed that activation of 5-HT1A receptors with 8-OH-

DPAT in the hippocampus, impaired fear-conditioned freezing in mice and this effect could 

be blocked by WAY-100635 (Stiedl et al., 2000).  Given these reports, it could be posited 

that the deficit in 5-HT1A receptors in the hippocampus of PS rats contributes to the 

increased behavioral inhibition to context noted in Figure 16.   

Not to be forgotten, cAMP was measured in the hippocampus and the amygdala 

under basal conditions as well as stimulation by 10 µM Forskolin (Figure 22).  No 

differences were found in either brain region or condition.   This second messenger 

activates a variety of intracellular effectors, such as protein kinase A, that are critical for a 

variety of nervous system functions, including production of CRH in the hypothalamus and 

memory consolidation in fear-conditioning (Itoi et al., 1996) (Schafe and LeDoux, 2000).  

Interestingly, the basal values found in the amygdala were roughly 3 times that of that 

found in the hippocampus and might indicate that this second messanger is relatively more 

important in this brain region.  Slight differences in the incubation times of the reactions 

only provide a partial explanation for this observation, since cAMP production increases 

linearly with reaction time (De Vivo and Maayani, 1986).    
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In conclusion, prenatal stress decreases 5-HT1A binding in the hippocampus but not 

in the amygdala.  The reason is unclear, but it may be related to changes in synaptic 

density.  A brief look at cAMP production demonstrated that there are not gross alterations 

in this second messenger system, however, this does not preclude differences from existing 

with the intracellular effectors such as CREB or PKA. 

 

Issues of Context and Specific Cues 

The data shown in the studies on fear-conditioning present an intriguing opportunity 

to discuss behavioral reactions to context and specific cues.  As shown in Figures 16 and 

17, behavioral inhibition is a robust response in rodents presented with fear provoking 

stimuli, even with brief exposures to those stimuli.  In fact, in the experiment where the rats 

were trained to freeze to a light cue, there was considerable freezing to the context as well 

as the light cue (Figure 17).  This was in spite of tactile and olfactory changes in the 

conditioning chamber intended to disguise the training environment and maximize the 

freezing response to the light cue.  

Behavioral inhibition was also detected in the FPS experiments in the PS rats by 

depressed null period responding. This indicated that, following training, the PS rats were 

freezing to the context where the training had occurred and this subsquently lead to the 

hypothesis regarding enhanced conditioned freezing.  This is an important point, since the 

only other study to look at this issue in PS rats found no conditioning effect (See discussion 

above) (Takahashi et al, 1992a).  The null period responses were also important in proving 

the effectiveness of the contextual changes implemented in the FPS experiment shown in 

Figure 18, since null period responding was unchanged during the leader trials and a 
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difference score was calculated (Figure 19).  That set of data helped demonstrate that the 

calculation of the difference score is remarkably sensitive to contextual changes. 

Nonetheless, although null period responding is a quite objective measure of 

behavioral inhibition, it may only be a useful approximation for the assessment of freezing 

behavior.  As mentioned previously, the null period is only a short interval of time relative 

to the test session and equipment design prevents lengthening that period.  Secondly, due to 

the nature of acoustic startle testing, the rat is enclosed in a small area and not permitted 

much room to move.  By their nature, these two points weaken the use of the null period 

response as an estimate of behavioral inhibition.   

Peak startle responding itself is not affected by context to the same extent as 

freezing.  Even four days of footshock based training does not elevate the peak startle 

responses during the leader trials to levels that are statistically different from baseline 

(Figure 14b).  On the other hand, peak startle responding is responsive to a specific cue.  

General increases in startle responding were seen during the portions of the test when the 

light cue was presented to the rats after 2 days of training even though a positive difference 

score could not be calculated (Figure 14a).  However, as noted above, contextual cues can 

“obscure” the calculation of a difference score, since seemingly small changes in context 

allowed the difference score to emerge (Figure 18).  Thus, if changes in contextual cues 

allowed the calculation of a difference score, then the state of fear that allows the 

calculation of the difference score must be a fleeting entity.   

The latency to peak startle response is also affected by fear conditioning and it may 

be the most sensitive indicator of fear recorded in the FPS studies (Table 5).  Latency was 

decreased after training regardless of any methodological manipulations and there were 

 120



differences in the degree of depression.  First, in experiment A shown in Table 5, latency 

was decreased to same extent during leader and testing trials, suggesting an effect of 

context on this parameter because the decrease was seen prior to the presentation of the 

light cue.  It is worth noting that the leader trial peak startle responses were not different 

from baseline peak startle responses in this experiment (Figure 14a).  Secondly, the 

contextual changes implemented in the second FPS experiment did not totally leave leader 

trial latencies unchanged from the baseline latencies, even though peak startle responding 

was again unchanged during the leader trials compared to the baseline trials (Table 5 and 

results).  Latency is also affected by the presence of a specific cue since, during experiment 

B, latencies were decreased even further during the testing trials.  Finally, latency times 

appear to have a lower limit that was reached in both experiments during the testing trials 

since the times were remarkably similar (Table 5).  In fact, during the testing trials 

differences were not detected between the two trial types used in the FPS tests (See 

results).  

It is usually emphasized that the conditioned response obtained in FPS experiments 

is a “state of fear” and not simply the increase of peak startle responding in the presence of 

the light cue (Davis, 1990).  Published evidence would describe this state of fear as 

occuring at a specific point in time that is confined to the period when the light cue is 

presented to the animal because peak startle responses are greatest during this time (Davis 

et al, 1989).  Certainly, the data shown in Figure 18 support this notion, since difference 

scores were calculated using the peak startle responses.  However, given the findings with 

the latency parameter as well as the null period responses during the testing trials of this 

experiment, the scope of what encompasses a “state of fear” must be expanded.  In fact, the 
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lack of differences between the trial types with the latency parameter and the null period 

responses demonstrates that the rats are not merely switching between a “state of fear” and 

a “state of non-fear” as the light is switched on and off.  Following this logic then, one 

interpretation of the present data set is that, upon presentation of appropriate contextual 

cues, the rats enter a generalized state of fear regardless of how the peak startle response 

might be affected.   If this proposition is true, then the potentiated startle response is not 

merely indicative of anticipatory anxiety, as has been proposed (Koch, 2000). 

 

Conclusion 

 The data presented in this report demonstrate that changes produced by prenatal 

stress are quite varied and are likely to affect a variety of brain nuclei and neurotransmitter 

systems.  These changes are evident in the behaviors assessed in this project.  For example, 

PS rats are more sensitive than CON rats to the effects of 8-OH-DPAT on startle 

responding.  Additionally, PS rats have shorter processing times through the acoustic startle 

pathway as indicated by faster latency times, although peak startle responding under 

baseline conditions is not usually different from that of the CON rats.  PS rats demonstrate 

an enhanced behavioral inhibition to acute footshock as well as to contextual stimuli 

previously associated with footshock.  And finally, PS rats may demonstrate greater fear-

conditioned responses in the FPS paradigm as evidenced by  “suppressed” peak startle 

responses to the light + noise trials and faster latency times during the leader trials.  

It is intriguing that a simple manipulation, such as a once daily saline injection, 

performed at a critical time of development can result in behavioral changes later in life.  

Even more intriguing is the idea that behaviors are selectively affected by such a 
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manipulation.  For example, exploratory behavior in a novel environment (e.g. estimated 

by numbers of rears) prior to footshock was similar between PS and CON rats.  Yet the 

footshock elucidated rather clear differences in the behavior of the PS and CON rats.  

Likewise, peak startle responding is not usually different, but the latency to peak startle 

responding tends to be shorter in PS rats.  These observations point to the plasticity of the 

central nervous system since there are unlikely to be gross differences in neural circuitry 

underlying these behaviors between the PS and CON rats.   

 A theme that emerged throughout the discussion was that the root of the behavioral 

differences between PS and CON rats is excessive exposure to corticosterone on the part of 

the PS rats, either during pregnancy or later in life because of the HPA axis dysregulation.  

As described in the introduction, corticosterone has widespread effects on cellular 

functions.  If one couples this observation with the plethora of reports that describe the 

effects of prenatal stress on corticosterone secretion, either in the mother or the offspring, 

then this becomes a reasonable conclusion.  However, corticosterone is only one of many 

stress-responsive hormones and it happens to be easily measured.  Other stress-responsive 

systems have not received nearly the level of attention as has corticosterone.  For example, 

vasopressin and oxytocin are released during stress and both are capable of affecting 

behavior (Young, 1999).  Thus, it is unlikely that corticosterone is unilaterally causing the 

behavioral differences and keeps the field open for further exploration. 

 Several of the behaviors examined in this project relied on learning and memory in 

order to measure a response.  The data show that the PS rats are more adept at learning 

fearful associations than the CON rats.   A neural mechanism for supporting learning and 

memory that has been proposed is long-term potentiation, which is described as a 
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strengthening of synaptic connections (Lynch et al., 1988) .  It has been shown to occur in 

the amygdala as a result of fear-conditioning (Rogan et al., 1997).  And it has also been 

widely studied in the hippocampus [e.g. (Ikegaya et al., 1996) (Sarvey et al., 1989)].  Of 

course, as has been alluded to above, these two brain regions are integral to the behaviors 

of interest in this project.  Additionally, given the results found in the behavioral inhibition 

experiments, the PAG should be considered a brain region where neural plasticity is 

occuring as a result of prenatal stress.  It could be hypothesized that the long-term 

potentiation mechanism is altered by prenatal stress in brain regions that are known to be 

involved with specific behaviors. 

An unmentioned rationale for examining a variety of behaviors was to find a 

behavior that was reliably different between PS and CON rats, yet would be easy to 

measure and interpret.  One effect of prenatal stress stands out as particularly robust and 

deserving of future study.  That is the effect of prenatal stress on acute footshock-induced 

freezing.  Of all the behavioral differences reported in these studies, it produced the most 

dramatic differences between PS and CON rats.  It has the advantage of being reproducible 

since this finding has been replicated in other experiments in the literature and in our 

laboratory (Skinner and Birkle, unpublished observations)  (Takahashi et al, 1992a).  

Additionally, many rats can be evaluated in a single day of testing.  It also has the 

advantage of being a single behavior which makes data interpretation much easier.  In 

contrast, the defensive withdrawal test, although it is reproducible and a number of rats can 

be tested in a short period, there are a number of parameters that are measured which can 

make data interpretation difficult depending on the experimental circumstances [e.g. (Ward 

et al, 2000)].  Finally, the neuroanatomy of freezing behavior is well described; therefore, 

 124



solid hypotheses can be derived and tested to determine why differences exist between PS 

and CON rats. 

In closing, the rodent prenatal stress model provides a unique opportunity to explore 

the complex interactions in the brain.  Future studies with this model will likely yield 

insight into the subtleties of nervous system functioning and the control of anxiety related 

behaviors.  Understanding the cause of these differences should ultimately improve the 

understanding of psychological problems in people. 
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FUTURE DIRECTIONS 

 The results presented in this manuscript raise many interesting questions about 

prenatal stress and provide opportunities for future experiments.  A variety of broad 

subjects have been investigated in this project, some more thoroughly than others:  

parameters of development, chronic mild stress, functioning of the serotonergic system, 

elements of signal transduction and fear-conditioning.   Although many avenues for future 

experiments have been explored in the discussion, a few seem to be particularly 

noteworthy. 

1.) Are PS rats really more susceptible to the anhedonic effects of chronic mild stress?  

Future experiments should include a pre-stress baseline assessment of sucrose intake 

and a much “harsher” stressing regimen.   

2.) Are PS rats really more fearful in the FPS paradigm?  Future experiments should 

include several types of training regimens involving changing the number of CS-US 

pairings and the shock intensity.  The purpose would be to elucidate the non-monotonic 

relationship in the difference scores described by Davis and his colleagues. 

3.) What is the cause of the enhanced sensitivity to 8-OH-DPAT on the part of the PS rats?  

Future studies should include an evaluation of possible differences in metabolism as 

well as an attempt to block the rise in startle responding with WAY-100635 to ascertain 

if the effect of 8-OH-DPAT is actually due to 5-HT1A receptors and not 5-HT7 

receptors. 

4.) Extend the results reported  in the section on signal transduction.  For example, 

evaluated 5-HT1A binding in the DRN and look at the functional coupling of cAMP to 
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receptors.  Additionally, measuring intracellular effectors of cAMP, PKA and CREB, 

may yield explanations for the differences behaviors between PS and CON rats. 

5.) Use the acute freezing response as a behavioral assay to evaluate differences between 

PS and CON rats with regard to specific brain nuclei.  For example, use intra-

amygdalar or intra-PAG injections of various doses of D-Phe-CRF to determine the if 

the if previously reported the differences in CRHergic funtioning are contributing to the 

enhanced freezing to footshock. 

6.)  Can the prenatal stress paradigm provide a useful model for studying the role of 

corticosterone in processes related to learning and memory?  For example, measure the 

long-term potentiation process in PS and CON rats.  Can PS rats learn operant 

conditioning tasks as readily as they can learn fearful associations? 
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