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Abstract

Identifying Prognostic Gene Signatures Using a Network-Based Approach
Swetha Bose Nutakki

The main objective of this study is to develop a novel network-based methodology to identify
prognostic signatures of genes that can predict recurrence in cancer. Feature selection algorithms were
used widely for the identification of gene signatures in genome-wide association studies. But most of
them do not discover the causal relationships between the features and need to compromise between
accuracy and complexity. The network-based techniques take the molecular interactions between pairs of
genes in to account and are thus a more efficient means of finding gene signatures, and they are also
better in terms of its classification accuracy without compromising over complexity. Nevertheless, the
network-based techniques currently being used have a few limitations each. Correlation-based
coexpression networks do not provide predictive structure or causal relations among the genes. Bayesian
networks cannot model feedback loops. Boolean networks can model small scale molecular networks, but
not at the genome-scale. Thus the prediction logic induced implication networks are chosen to generate
genome-wide coexpression networks, as they integrate formal logic and statistics and also overcome the
limitations of other network-based techniques.

The first part of the study includes building of an implication network and identification of a set
of genes that could form a prognostic signature. The data used consisted of 442 samples taken from 4
different sources. The data was split into training set UM/HLM (n=256) and two testing sets DFCI (n=82)
and MSK (n=104). The training set was used for the generation of the implication network and eventually
the identification of the prognostic signature. The test sets were used for validating the obtained signature.
The implication networks were built by using the gene expression data associated with two disease states
(metastasis or non-metastasis), defined by the period and status of post-operative survival. The gene
interactions that differentiated the two disease states, the differential components, were identified. The
major cancer hallmarks (E2F, EGF, EGFR, KRAS, MET, RBI1, and TP53) were considered, and the
genes that interacted with all the major hallmarks were identified from the differential components to
form a 31-gene prognostic signature. A software package was created in R to automate this process which
has C-code embedded into it. Next, the signature was fitted into a COX proportional hazard model and
the nearest point to the perfect classification in the ROC curve was identified as the best scheme for
patient stratification on the training set (log-rank p-value =1.97¢-08), and two test sets DFCI (log-rank p-
value =2.13e-05) and MSK (log-rank p-value = 1.24e-04) in Kaplan-Meier analyses.

Prognostic validation was carried out on the test sets using methods such as Concordance
Probability Estimate (CPE) and Gene Set Enrichment Analysis (GSEA). The accuracy of this signature
was evaluated with CPE, which achieves 0.71 on the test set DFCI (log-rank p-value= 5.3e-08) and 0.70
on test set MSK (log-rank p-value =2.1e-07). The hazard ratio of this 31-gene prognostic signature is 2.68
(95% CI: [1.88, 3.82]) on the DFCI dataset and 3.31 (95% CI: [2.11, 5.2]) on the MSK set. These results
demonstrate that our 31-gene signature was significantly more accurate than previously published
signatures on the same datasets. The false discovery rate (FDR) of this 31-gene signature is 0.21 as
computed with GSEA, which showed that our 31 gene signature was comparable to other lung cancer
prognostic signatures on the same datasets.

Topological validation was performed on the test sets for the identified signature to validate the
computationally derived molecular interactions. The interactions from implication networks were
compared with those from Bayesian networks implemented in Tetrad IV. Various curated databases and
bioinformatics tools were used in the topological evaluation, including PRODISTIN, KEGG, PubMed,
NCI-Nature pathways, MATISSE, STRING 8, Ingenuity Pathway Analysis, and Pathway Studio 6. The
results showed that the implication networks generated all the curated interactions from various tools and
databases, whereas Bayesian networks contained only a few of them. It can thus be concluded that
implication networks are capable of generating many more gene or protein interactions when compared to
the currently used network techniques such as Bayesian networks.
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Chapter 1

1 Introduction

Lung Cancer is caused due to the uncontrolled growth of cells in the tissues of lungs. It is critical
to identify gene signatures that can predict cancer recurrence to improve patient care. Genes
having high degree of connections with the major cancer markers have strong impact on the
network topology [7] and are thus the critical genes of the network. There are different

techniques which can identify these critical genes.

Feature selection techniques have been used earlier to find prognostic markers from a group of
data by eliminating genes which have little or almost no predictive information [47]. These
techniques were used in machine learning particularly for the purpose of removing irrelevant or
redundant features from data and forming a subset of relevant features. Though feature selection
techniques have a good number of advantages, they still have a few limitations. When there are a
large number of features, the search for a good subset of features (which provides optimal
results) becomes very complicated and tedious. Moreover feature selection techniques consider
the behavior of genes individually which might not act in the same manner in the presence or

absence of other genes.

Network-based techniques can be used to find gene signatures and overcome the limitations of
feature selection methods. Network-based techniques work in uncovering the causal
relationships between the genes and are also better in terms of stability and classification
accuracy [7] and thus they are an efficient means of finding prognostic gene signatures when
compared to feature selection algorithms. They consider the signature of genes as a whole

instead of considering each gene individually and thus emphasize on the molecular interactions
1



between pairs of genes. This works well as genes might not act in the same way when they are
alone and when they are acting along with other regulators. Network-based techniques are more
useful in cases where huge datasets come into picture [8]. This is due to the fact that performing
an exhaustive or complete feature selection technique on a huge dataset would be very time
taking and also requires a lot of resources. Most of the lung cancer datasets are huge and thus
using these network techniques helps in identifying signatures faster and in an accurate manner

and it also helps in analyzing the signatures in a better way.

Currently, there are different network-based techniques that are in use such as coexpression
network, Bayesian network, and artificial neural network. Though these network-based
techniques overcome the limitations of feature selection methods, they still have a few
limitations each. Correlation-based coexpression networks are inconsistent as their accuracy
decreases with increase in network size [7]. Bayesian networks cannot model feedback loops and
their complexity increases exponentially with the number of genes in the network [4]. Artificial
neural networks are very complex and time taking in nature. Moreover to our knowledge, neural

networks have not been used for modeling molecular interactions yet.

To overcome the limitations of the currently used network-based techniques, implication
networks based on prediction logic were chosen to generate the genome wide networks [2]. The
methodology used in implication networks is computationally manageable for analyzing large

datasets and integrates formal logic and statistics [1], thus making it more efficient.

To generate the genome wide networks based on prediction logic [2], the gene expression data
(from University of Michigan Cancer Center (UM) and Moffitt Cancer Center (HLM) together used as

training dataset [20]) was separated in to two groups (metastasis: corresponds to the high risk
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group and non-metastasis: corresponds to the low risk group) based on the survival period and
survival status. The genome wide networks of both the groups were compared and the common
interactions they have were removed. Thus we could focus on the differential components in
networks that remained which are the interactions that differentiated the metastasis group from

the non-metastasis group.

To identify prognostic signatures, major cancer hallmarks such as E2F, EGF, EGFR, KRAS, MET,
RBI1, and TP53 were considered and the genes that interact with all these major cancer hallmarks
were considered to form a signature. The hallmark E2F had many probes like E2F1, E2F2, E2F3,
E2F4, and E2F5. These probes can be picked in various combinations depending on their
functionality. Thus different sets of hallmarks can be considered. Different signatures can be
identified by varying the set of hallmarks used to pick the genes. Thus different gene signatures
were identified based on the interactions between the genes and the hallmarks under diseased

conditions.

To identify the most prognostic signature from the obtained signatures, survival analysis [35]
was done using techniques such as Time-dependent ROC [16] (statistical p-values and area
under curves (AUC) over time were used as measures to compare the different signatures),
Random testing (different signatures as the same size of the identified signatures were picked
randomly and checked where our signature stands among the randomly picked signatures), and
COX proportional hazard model [18, 19, 28] (Kaplan-Meier plots and log-rank test results were
observed). For analysis with COX proportional hazard model, both univariate (considering the
gene expression values of the genes only) and multivariate analysis (considering the risk scores
of the signatures as a predictor and comparing with other predictors such as age, gender,

smoking status, tumor size etc. with and without the risk scores) were done. Kaplan Meier plots
3



were used for determining the significance of the signature in differentiating the two groups from
one another. Log-rank p-values were observed from the COX proportional hazard model and
signature was picked which had values less than 0.05 for training and test sets, showing it to be
significant. Multivariate analysis using the COX proportional hazard model was done as a part of

the evaluation of the signature with respect to other clinical parameters.

To validate the signature obtained, both prognostic and topological validation was performed on
the test datasets (from Memorial Sloan-Kettering Cancer Center (MSK) and the Dana-Farber Cancer
Institute (CAN/DF) [20]). The prognostic validation was conducted using techniques such as
Overall Accuracy [32], Concordance Probability Estimate (CPE) [29], and Gene Set Enrichment
Analysis (GSEA) [30]. Sensitivity and specificity were measured along with the overall accuracy
values. CPE was used to evaluate the distinguishing power and the predictive accuracy of the
statistical model. CPE measures included the statistical log-rank p-values, hazard ratios, and 95%
confidence intervals which were compared with published signature from Shedden et al [20].
The results showed that the 31-gene signature had more significant statistical p-values, higher
hazard ratios, and higher CPE values which confirm that the signature is better when compared
to the other published signature. GSEA is a powerful analytical method that computed whether
the 31 gene signature is statistically significant and whether the gene set has agreeable
differences between the two phenotypes (biological states). GSEA was used to compare our
signature with many other previous signatures using False Discovery Rates (FDR) and
Normalized Enrichment Scores (NES). GSEA results showed that the signature had FDR < 0.25
which makes it significant. The comparisons above showed that our signature was either

comparable or better than the other signatures on the same datasets.



To topologically validate the gene signature, the interactions from implication network were
compared with interactions from Bayesian network generated by Tetrad IV'. Then various tools
such as Prodistin®, KEGG’, NCI* pathways, PubMed’, Matisse®, String’, Ingenuity Pathway
Analysis®, and Pathway studio’ were used. These tools extracted their interactions from various
sources such as literature, curated databases, etc. All the interactions found from the above
mentioned tools were compared with the interactions generated from implication network and

interactions from Tetrad IV (Bayesian network).

From the interactions extracted from various biomedical tools, it was concluded that implication
networks are capable of generating many more gene or protein interactions which were validated
by the molecular interactions from other tools when compared to the Bayesian networks. The
functional classes identified from the signature reveal that the genes are not just structurally
connected but also have biological relationships. Thus these genes could be focused in predicting

cancer recurrence in therapeutic conditions.

The chapters in this thesis are as divided as follows. The second chapter provides literature
review of the currently used techniques. It also provides descriptions of all the methods and web-
based tools used in this study. The third chapter describes the methodology used to identify the
gene signature from the genome wide coexpression networks. The fourth chapter discusses the
results obtained from prognostic and topological validation techniques. The fifth chapter

describes the implementation of the software used to generate the results in both C and R'’. It

1. http://www.phil.cmu.edu/projects/tetrad/

2. http://crfb.univ-mrs.fr/webdistin/

3. http://www.genome.jp/kegg/

4. http://pid.nci.nih.gov/

5. http://www.ncbi.nlm.nih.gov/pubmed/

6. http://acgt.cs.tau.ac.il/matisse/

7. http://string.embl.de/

8. http://www.ingenuity.com/

9. http://www.ariadnegenomics.com/products/pathway-studio/
10. http://www.r-project.org



also describes the versions of the editors and the configuration of the system used to run the
analyses. The sixth chapter concludes all the above mentioned chapters and also includes the

prospective work that will be carried out relating this approach.



Chapter 2

2 Background

2.1 Introduction

This chapter describes various techniques to identify signatures. Feature selection methods are
described in brief followed by their limitations. These limitations are overcome by introduced
network-based techniques. Different network-based techniques currently used such as
correlation-based coexpression networks, Bayesian belief networks, and artificial neural
networks are discussed followed by their limitations which are overcome by the implication
networks. The implication networks are discussed and the algorithm which has been used to
induce the implication networks is discussed. Different validation techniques which have been
used to validate the signature found from implication networks were discussed. Finally a

summary of the entire chapter is given.

2.2 Different techniques to identify signatures

There are different procedures to identify gene signatures. Potential markers have been screened
earlier by identifying the overexpressed or the underexpressed genes. But this process is not
good enough as the information of each individual gene is considered when the interactions

between genes were supposed to be considered [15].

Feature selection [47] techniques have been used earlier to find prognostic markers from a group
of data by eliminating genes which have little or almost no predictive information. These
techniques were used in machine learning particularly for the purpose of removing irrelevant or

redundant features from data and forming a subset of relevant features. They help in overcoming



the curse of dimensionality by reducing the number of features that have to be considered and
thus speeding up the process. They can be used with both supervised (to produce high
classification accuracy) and unsupervised learning (to find good subsets of features that form
quality clusters). Though feature selection techniques have several advantages such as removal
of redundant and irrelevant features, improving the classifier performance, etc., they still have a
few limitations. When there are a large number of features in the beginning, as in the case of
lung cancer genes, feature selection techniques become very complicated and it becomes tedious
to find a good subset of features. Moreover they consider the genes individually which might not

act in the same manner in the presence or absence of other genes.

The most important advantage of network-based approaches over feature selection methods is
that they can capture and represent more complex types of relationships among genes or any
variables of interest [8]. Since there will be a large number of relationships between genes,
methods other than network-based procedures become more complex and the computation of
such models becomes very tedious (for example, in case of feature selection methods, optimal
output requires exhaustive search which is very time consuming). Network-based techniques
help in revealing the underlying molecular mechanisms related to the genes. Networks built with
genes can be used to identify disease mechanisms [34] and for drug discovery [33], and also for
identifying prognostic subnetworks which lead to metabolic pathways [33]. Other methods (such
as feature selection techniques) ignore genes which do not have significant differential
expression individually in different classes but which actually play vital roles as a member of a

group in certain pathways.



Gene networks are constructed in such a way that any pair of genes are connected if some
measure (calculated from the current conditions of the genes) related to both the genes exceeds a

given threshold [13].

There are many network-based approaches that are already in use for classification analyses and

for identifying interactions between genes. Some of them are described below.

2.2.1 Coexpression Network

Gene coexpression network connects genes with similar expression profiles (such as the Pearson
correlation coefficient [15] or the clustering coefficient [13]) and thus connects functionally
related genes [13, 15]. This network tries to investigate the transcriptional changes in terms of

“gene interactions” rather than at the level of “individual genes”.

Pearson correlation coefficient measures the degree of linear dependence between two time-
courses of gene expression levels [14]. It is close to one when there is good correlation between
the time series. It is near negative one when there is negative correlation and is close to zero
when there is no correlation between the expression values [42]. It can be calculated as shown
below. If p stands for correlation between the genes g; and g;; Gy, and Gj, are the gene
expression values of genes g; and g; respectively; y; and p; are the means and o; and o; are the
standard deviations of the genes g; and g; respectively; N is the total number of genes; then
Pearson correlation (r) is defined as

r=plg0g) =% Y. (G""Gj “) (Gj"; X > .1
k

]




Hence Pearson correlation (1) was calculated for each dataset and was converted in to a standard
normal metric using the Fisher’s transformation [15]. This standard normal metric shown below
is called effect size (z) which was used as a measure of treatment or covariate effect.

1+r7)
1-7)

z = 0.5log (2.2)

Clustering is generally used to cluster (group) genes based on a correlation-based distance
measure quantifying the degree of co-regulation [14]. Thus the function of an unknown gene can
be predicted from the known functions of other genes present in the same cluster [14]. Clustering
algorithms work well when the genes are co-regulated. Gene expression clusters can also be
mapped on to metabolic networks in order to discover pathways of interest. The clustering
coefficient of gene i is denoted by C; and is calculated as shown below. If k; is the number of
first neighbors of gene i and E; is the number of edges between the k; first neighbors, clustering
coefficient of the entire network can be calculated by taking the average of the clustering
coefficients of all the genes in the network as shown below.

2E;

S a-D

(2.3)

The underlying postulation of the network distance metric is that the enzymes are related
according to their proximity in the network. If this metric is above a specific threshold, the pair
of genes would be connected. It considers that a rise or fall in the correlation of a gene pair might
be associated with the upregulation or downregulation of other genes in the same functional
cluster. These networks constructed from pair-wise correlation coefficients have provided a
productive procedure to recognize functional transcriptional modules related with specific

biological processes [6].
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Aoki et al. [6] explored the gene co-expression networks in plant biology and concluded that co-
expression network analysis provided innovative awareness in the system level understanding of
plant biology. In many cases, gene co-expression networks implied the presence of functional

linkage between genes associated with biological processes.

L.L. Elo et al [13] proposed a systematic approach for the estimation of the threshold of
coexpression networks directly from their topological properties. They used the clustering
coefficient for the threshold selection which when gradually increased reduced the number of
links from the initially complete graph of coexpression networks. They experimented on the
simulated data generated using the stochastic model of Thalamuthu et al [49] which consisted of

60 datasets. The biological relevance of the coexpression was investigated by the p-values.

Hanisch et al. [14] proposed the construction of a distance function (correlation-based distance
function) which combined the information from biological networks (in an integrated manner)
and gene expression data. They focused on the analysis of co-regulated metabolic pathways
which were supported by gene expression measurements. They calculated the Pearson
correlation coefficient on log-ratio transformed data and then converted it in to a distance metric
which quantified the degree of dissimilarity of their gene expression dataset. They defined a
graph distance function on the networks and combined it with correlation based distance function
for gene expression measurements. They conducted the experiments on the organism

S.cerevisiae (yeast).

Choi et al [15] introduced a model (mentioned above using Pearson correlation coefficient and
its Fisher transformation to find effect size) for finding the differential coexpression from

microarrays and testing its biological validity with respect to cancer. They collected data from 10
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published gene expression datasets from cancers of 13 various tissues and built 2 different

coexpression networks, a tumor network and a normal network which were compared.

S. Tornow and H. Mewes [41] proposed a technique which was based on collective, multi-body
correlations in a genetic network. They calculated the correlation strength of a group of genes in
a coexpression network which were identified as members of a module in another protein

interaction network and estimated its correlation probability.

Zhang and Horvath [43] proposed a general framework for soft thresholding which assigned a
connection weight to each gene pair. They used several adjacency functions (such as sigmoid
function, power adjacency function, etc.) to convert the correlation coefficients to connection
weights. They experimented on simulated data, a cancer microarray dataset and a yeast

microarray dataset.

Thus coexpression networks have been used in several applications such as for discovery of
genetic modules, applying to human T helper cell differentiation process [13], for topology based

cancer classification [7], for molecular characterization of cellular state, etc.

There are a few limitations of coexpression networks. Correlation-based coexpression networks
are based on similarities and clustering based coexpression networks are based on the distance
measures. Thus they do not provide a predictive structure and do not infer causal relationships
among genes. High correlation is exhibited by genes when the entire set of expression patterns
across different conditions is similar. On the other hand, high correlation is also exhibited by
genes if they are expressed together under a few conditions and are otherwise silent [6].
Moreover the accuracy of correlation-based coexpression networks decreases, as the network

size increases and it is highly inconsistent.
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2.2.2 Bayesian Network

The Bayesian networks model is a causal network which represents the joint probability
distributions. Bayesian networks are useful for describing complex probabilistic models which
require learning from noisy observations. Bayesian Networks are thus capable of estimating the
confidence in different features of the network and thus are a promising tool for examining gene

expression patterns [4].

If we have a finite set of random variables, X = {X;, ..., X,,}, where X; is a variable which might
take values from the domain Val(X;), Bayesian networks are represented using joint probability
distributions consisting of two components, B = (G, 6); a directed acyclic graph [4] (DAG) G
(whose vertices correspond to the random variables, X) and a conditional distribution for each
variable 8 (given its parents in G). According to Markov assumption, each variable X; is
independent of its non-descendents, given its parents in G and their joint probability distribution

can be defined as below [4].
n
P(Xy, ..., X,) = 1_[ P(X; |Pa®(X;)) (2.4)
i=1

Here Pa®(X;) is the set of parents of X; in G. Once networks are built, they are needed to be
scored by some means so that the networks are evaluated and the optimal network can be found.
Posterior probability can be used to evaluate the graphs. If a large number of networks are given,
learning procedures can pinpoint the exact network structure which has best dependencies in the

distribution.

Bayesian Networks were used to describe the interactions between genes in a paper by Friedman

et al. [4] where they described a method to recover the gene interactions from microarray data.
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They also applied the method to the S.cerevisiae cell-cycle measurements of Spellman et al.
(1998). They used priors described by Heckerman and Geiger (1995) for hybrid networks of

multinomial distributions and conditional Gaussian distributions.

It has been described by Friedman et al. [4] that a causal network models the distribution of the
observations as well as the effects of interventions. X — Y and X « Y are equivalent in Bayesian
networks but they are not equivalent in causal networks. If X causes Y, then changing the value
of X affects the value of Y. But it is not true the other side, i.e., changing the value of Y does not
affect the value of X. Their approach was to analyze a high number of high scoring networks
which requires an efficient learning algorithm such as the Sparse Candidate algorithm. To relate
their analysis with the biological phenomena in the data, they used the order relations and

Markov relations found from their data.

As Bayesian networks have the capability of working even in highly noisy surroundings, it has
many real-world applications. Some of them in bioinformatics are for building gene regulatory
networks and protein structures [34]. They are also applicable to other fields such as medicine,

image processing, information retrieval, etc.

There are a few limitations to the Bayesian network approach. Since the Bayesian networks are
directed acyclic graphs, the probabilities of the child nodes are calculated from the parent nodes.
Thus Bayesian networks cannot have loops and they also require a subjective prior (for the first
parent node). Bayesian networks need complete knowledge of the real-world in order to build the
correct causal model. These networks are expensive to compute and the rate of complexity
increases exponentially with the number of genes present in the network [8]. Thus they become

more impractical and inappropriate.
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TETRAD IV'' and its search algorithms were developed with the support of National
Aeronautics and Space Administration and the Office of Naval Research. TETRAD 1V is a
program for working on causal/statistical models particularly Bayesian belief networks. It is used
for creating, simulating data from, estimating, testing, predicting with and searching for causal
models. It has a friendly interface and no programming knowledge is required to use it. It is

unique in the suite of principled search algorithms.

A program description of a causal model is done in three stages in TETRAD IV. The first one is
a picture which uses a directed graph to state in detail the hypothetical causal relations among
variables. The second stage would be to specify the family of probability distributions and the
kinds of parameters associated with the graphical model. The final stage would be to specify the

numerical values of the parameters explained earlier.

Sessions in TETRAD IV are built by dragging boxes in to the workspace and then connecting
them with arrows in legal ways that represent their dependencies. The Figure 2-1 below shows
the model used in TETRAD IV to build Bayesian networks. This network was compared to the

implication network built using prediction logic.
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Figure 2-1: Model used in TETRAD IV showing all the boxes

Data box:

We use data that was loaded from an external file. Here “Data set” list is a record of available
datasets, where one of the lists is considered as “selected”. There are three types of data that can
be stored in the data set list namely: Tabular data set, Covariance matrix, and Correlation matrix.

We use Tabular data set. The Data wrapper is shown in Figure 2-2 below.
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Figure 2-2: Data Wrapper shown
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Search Box:

TETRAD IV has a variety of search algorithms to assist in searching for causal explanations of a

body of data. The search algorithms read in data and return information about a collection of

alternative causal graphs that can explain features of the data. Some search algorithms can often

predict whether a particular variable influences another or not. Search algorithms do not output

an estimated model with parameter values; instead they output a description of a class of causal

graphs that explain statistical features of the data which were considered by the search

procedures. Some of the search procedures available are PC, CPC, PCD, FCI, etc which are

shown in Figure 2-3 below. We use PC technique which searches for Bayes net or SEM models

when it is assumed there is no unrecorded variable that contributes to the association of two or

more measured variables. The output obtained after execution of PC search algorithm is shown

in the Figure 2-4 below.

Types of Search Algarithms

S

Hame of node: Search2
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Figure 2-3: Available Search Algorithms
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Parametric Model Box:

A parametric model specifies the family of probability functions connecting cause and effect, but
does not specify values for its parameters. Two types of parametric models can be created using
TETRAD IV namely Bayes and SEM. If Bayes net is chosen, then the input graph to the PM box
will be parameterized as a categorical model in which the parameters are the unspecified
conditional probabilities of values of each variable on the values of its parent variables in the
graph. Bayes PM takes a DAG and adds to it, two bits of information (the number of categories
and the list of categories). If SEM is chosen, then the graph will be parameterized as a linear

Gaussian model with variances and linear coefficients. The Bayes PM is shown in the Figure 2-5

below.
[0 et aves Parametric Modal) 2212 e s a d
File
T
¥ Transfer
Bz M Edit categories for: [215642_at t Mext |
P TMEMT3S AC —
- Thsarew - : ACLILL Number of categories: 2
TEX11 ADAM3B =
i i Category names:
STATUS  Clotes th ]
} al ; 2.[1
SSFAZ / cap2
SLC22a11 CDKN2B
SCGB2A2 DAG1
SAMD4B | DEFAS
| ReLaza ESM1
| prRa L FARPT
PRKACA ¥ ~aa5Tq
R L L5 3w R B3
. .
Figure 2-5: Bayes Parametric Model
.
Estimator Box:

The Estimator box takes in information from the Parametric Model and the Data and outputs an
instantiated model. The procedures in the statistical estimator allow estimation of the parameters

based on the input data. Types of estimators include ML estimator, SEM estimator and Dirichlet
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estimator. There are also procedures for handling missing values in the input data

Bayes estimator is shown in the Figure 2-6 below.
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Instantiated Model Box:

Figure 2-6: ML Bayes Estimator

. The ML

An Instantiated model specifies particular numerical values for the parameters of a parametric

model. There might be three types of instantiated models namely Bayes instantiated model,

Dirichlet Bayes instantiated model, and SEM instantiated model. A Bayes instantiated model

extends a Bayes parametric model, specifying values of the parameters in the Bayes net. The

parameters for a Bayes net are the conditional probabilities stored in the conditional probability

tables, one for each variable in the Bayes net. The Bayes instantiated model is shown in the

Figure 2-7 below.
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Figure 2-7: Bayes Instantiated Model

Classify Box:

A Classifier box requires input from the Data and from IM box. It is used to classify new cases
with the Bayes net in the IM box. The user specifies a target variable in the IM and the classifier
uses the Bayes net structure of the IM to predict the values of the target in the data set. Statistics
on the classification accuracy are provided as ROC curves (shown in Figure 2-8), AUC and

confusion matrices (shown in Figure 2-9).
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Figure 2-8: ROC curve after classification Figure 2-9: Confusion Matrix after Classification

2.2.3 Artificial Neural Network

Artificial neural networks are computing systems which try to mimic the elements and structures
of the nervous system in a summarized manner [50]. They were actually developed as a better
means of understanding the human brain and then they were used for roles like optimization [9].
In other words, if a neural network is given a large set of information, it can generalize from that
data by learning about it (training). This network is built on the strategy of train, test,

differentiate, and retrain on reduced gene set and then retest [10, 12].

An artificial neural network is a group of nodes and lines between the nodes where each node
depicts a neuron and the lines depict the relationship between the neurons. Strength of each
relationship is defined by a variable on which threshold can be applied to remove insignificant
relationships. These nodes and their interconnections are organized as layers. There will be an
input layer (to which the input is presented), a hidden layer (where all the processing is done on

the incoming data), and an output layer (where output is retrieved) as show in figure below.
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Figure 2-10: Structural diagram of a general artificial neural network

The learning stage (training) of the neural networks uses a dataset which has both the input and
the output. When the input is fed in to the network and an output is found, it is compared with
the already present output for errors(test and differentiate) and then these outputs are fed as
inputs, again and again, till the minimum error requirements is reached (retrain) as shown in

Figure 2-11. This is also called back propagation as results obtained once are re-fed to the inputs.
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Figure 2-11: Training and Prediction Phases in a model built with Artificial Neural Networks [10]

Neural networks are particularly useful for classification analyses that are highly tolerant to
precision errors [11]. They can be used as alternatives to approaches which are limited by

assumptions of normality and linearity.

Good man and Harrell [9] discussed the advantages and limitation of using neural networks for
biostatistical modeling. They compared the neural network model with the generalized linear
model which is another popular biostatistical method. They found out that for binary outcomes

such as survival, cancer recurrence, etc. a link function is required to monotonically constraint
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the output prediction. The neural networks had efficient dimensional scaling but they had an

increased computational burden to optimize the model.

Boger [44] demonstrated the application of artificial neural networks for gene array analysis and
cancer cell identification. The data was first trained using a Principal Component Analysis
training algorithm and then local minima avoidance and escape algorithms were used. The inputs
were then ranked according to their relevance to the artificial neural network prediction accuracy
and the least relevant inputs were discarded. The remaining set of inputs was retrained to get

better prediction accuracy and this process is repeated.

Xu et al [45] discussed the method of distinguishing between two kinds of cancers using
artificial neural networks and gene filtering. In this method, the data was first clustered and it
was filtered using SAM gene filtering. The artificial neural network was then constructed based

on the principle of FeedForward with Error Backpropagation.

Keedwell et al [46] discovered a neural-genetic method which combines a genetic approach with
a supervised single layer artificial neural network to form a hybrid system. In this approach, they
formed a training set on which the gradient descent algorithm was applied via the artificial neural
network to determine the weights between the input genes and the output genes. The output is
tested for errors and the process is repeated until the errors meet the stopping criterion. They

experimented on the yeast S.cerevisiae data which consisted of 2468 genes.

Neural networks have been widely spread in various fields [9] such as pattern recognition,
speech synthesis, robotic control, etc. They can also be used to identify most relevant genes from
gene expression data, also to identify the high risk program modules [10] in software engineering

applications.
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Neural networks have a few limitations. Neural networks need a very huge training dataset to
generalize. If the dataset is not sufficiently large enough, the network model will be biased. They
cannot be used for data which do not have any correlation among the variables present in the
data. Moreover these networks need a lot of iterations to reach an approximation with minimum
errors. Since the iterative process is a time taking procedure, the amount of time required for
different networks is not always the same and hence it is a major shortcoming of neural
networks. Sometimes the neural networks might be over-trained which might lead to good results
only in the training but which actually don’t work for the test datasets. Neural networks are
difficult to understand and are not easily extensible. Neural networks are considered to be black
boxes [44] as the process that is going on in the hidden layer is not known to the user. Moreover
many applications of artificial neural networks include classification analyses but to our

knowledge, there are no applications for the complete modeling of gene-gene interactions yet.

2.2.4 Boolean Networks
Boolean networks are a kind of dynamic networks which are used to model gene regulatory

networks.

Sahoo et al [3] proposed a method for extracting the Boolean implications from large microarray
data. They analyzed the data from three species: humans, mice and fruit flies. They tried to
capture new relationships that were preserved in all the three species in spite of the differences in

various factors like tissue difference, gender differences, etc.

Boolean networks are limited to small scale networks. Since they are dynamic networks, it
becomes very difficult to model them at genome scale. This is due to the exponential increase in

computation with the number of entities [34].
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2.3 Implication Networks

Since all the above mentioned network-based approaches have a few limitations, another type of
network called the implication network is considered to build the interactions between the genes.
The algorithm to induce an implication network was first developed by Liu et al [1]. This
algorithm was based on binomial distribution. An alternative algorithm to induce the network
(which can be used not just with binomially distributed data as mentioned by Liu et al [1], but in
general to all implication networks built on either binomial or non-binomial data) was developed

by Guo et al [2] which was based on prediction logic.

Liu et al [1] described an algorithmic means for inducing implication networks from empirical
data samples. Several Monte-Carlo simulations were conducted to examine the effectiveness and
validity of the induction method. Dempster-Shafer belief updating scheme was used to predict

the values in implication networks.

Guo et al [2] proposed a novel methodology for predicting fault prone modules by using
Dempster-Shafer methodology. This methodology was applied on two case studies based on
NASA datasets and the performance of the methodology over other analyses was observed. The
prediction logic induced network in this paper has been used to build the implication networks

for our study.

In spite of the existence of many other network-based techniques, Implication networks were
used for this study. This is because they overcome the limitations of various other network-based
techniques. Implication networks are better than correlation networks in the sense that most of
the interactions between the genes in implication networks have comparable correlation

coefficients [3]. Thus it can be concluded that gene pairs with high correlation coefficients are
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almost always present in implication networks [3]. In addition, the accuracy of the correlation
networks decreases with increase in the size of the network and they cannot tolerate noise
accumulations. Thus gene networks with implication relationship are superior to those with
correlation relationship in terms of accuracy and stability of the classifier performance [7].
Moreover computing an implication network is not time taking as in the case of the neural
networks. They are simple to construct and are fast in terms of computation. The implication
networks do not need any prior learning regarding the implications, and their complexity does
not increase in an exponential manner and thus they overcome the limitations of Bayesian

networks.

A graph which involves nodes and arcs connecting each of the nodes in a directed manner is
called an implication network. In this network, each node represents a variable which might be a
gene or protein. Each arc between the nodes indicates the presence of a relation (a direct
implication like influence, binding, regulation, etc.) between the nodes (genes or proteins) it
connects. These arcs relate the values of each node with its parent nodes and child nodes and
these values are updated at regular intervals. The arcs are accompanied by weights which

represent the strength of the node relationships.

Contingency tables [2] are a tabular representation of categorical data which are used to record
and analyze the relationship between two or more variables. Thus it represents the strength of
association among the variables. In our network we used the contingency table to represent the

occurrences of errors in samples that are associated with the six possible implications.

An implication can be defined in the following manner [1, 2]. For A => B, If A is True, then B

is also True. If A is False, then B can be either True or False. So the erroneous case for A => B
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would be A being True and B being False. This is shown below as positive implication in the
Figure 2-12 with a shaded cell. Similarly for A => —B, the erroneous case would be both A and
B being True, which is shown as forward negative implication in Figure 2-12. Similarly inverse
negative implication and negative implication can be understood. For A <=> B, A and B should
both be True or both be False. So it combines the positive implication and the negative
implication to form the positive equivalence. Similarly for A <=> —B, A and B should be
opposite to one another. This combines the forward negative implication and the inverse negative

implication to form the negative equivalence. Thus all the six relation types can be explained.
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Figure 2-12: Six possible implications relating two variables [2]

The Contingency table that was used to calculate different values is shown below in Figure 2-13.
Each of the cells represents the errors that occurred while finding the implication between the

two variables.
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Figure 2-13: Contingency Table

The implication induction algorithm is shown in Figure 2-14 which was taken from Guo et al.
First significance level V,,;,, and a minimal U,,;, are set for each node;, i € [0, N4, — 1] and
node;, j € [i + 1,pqy]. Here npq, is the total number of attributes. Contingency table is
computed for all the possible sample cases and Max U,, that satisfy the condition on Uy, is

computed for all relation types. This process is iterated till a solution exists and once a solution is

found the value is returned.
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The Implication Induction Algorithm
Begin
Set a significance level v/ and a minimal [,
for node;. i € [0, nmar — 1] and node;. j € [i + 1, tmar)
(Note: ny, ., Is the total number of attributes)
for all empirical case samples NV
Compute a contingency table

M= | M b

Iy, Ny

for each relation type k find the solution to
Max U,
Subjectto Max Uy = Unin
Vi = Vmin

wi; = 1 or0 (if N;; corresponds to an error cell, w;; = 1;
otherwise, w;; =)

?|ij] - Tf":y] if w® =1 andw® =0

if the solution exists. then return a type & relation
End

Figure 2-14: Implication induction algorithm from Guo et al [2]

In this algorithm, U,,;,, and V,,;, correspond to U,,;, and del,,;, respectively in our project.
They are the minimum scope and minimum precision that are required for the implication rule to
be considered as significant. They are calculated from simple Z-test for a cutoff value of = 1.64 .

These values keep varying with the number of samples in the group.

All the values of U, and del, are calculated as shown below [2]. N is the total number of

samples.

_ (Naop + Nao_p) * (Nassp + N_y,_p)
N =N

U, (2.5)
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_ (Nosp + Naos_p) * (Nasp + N_y )

U, N*N (2.6)
U, = (N_yop + NA—»—B]\)[ : I(VN—A—>—B + N_a-p) 2.7)
U, = (Nysp + N—A—>B)1\;<>I<(11VV—A—>B +N_4,_p) 2.8)
del, =1— IZZ:‘Z (2.9)

del, =1— L];[;:iv (2.10)

del; = 1 —I\L":—:;\’; (2.11)

del, =1— 12/]:‘:; (2.12)

The first four values of del,, relate to each of the unsymmetrical implications. The values of del,,
for symmetrical implications can be found by combining values of two each of the

unsymmetrical implications as shown below.

U xdely + U, * del,
dels = (2.13)
° Uy + U,

U, x del, + Uz x dels
del. = (2.14)
o U, + Us

The implications are associated with two weight functions that specify the strength of the
relationship between the pair of nodes that are connected. These weight functions can thus be

defined as shown below [1, 2].
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Wit Npre X Neon = [0,1] (2.15)

W+ =Ngon X _Npre - [0;1] (2.16)

Thus they can be defined in terms of the contents of the contingency table as below.

NA—>B
" Nyop+ Naop @17
__ N 4
f A>-8 (2.18)

" N_asp+ Nusop

Thus if [ is a complete set of possible implication rules which can be generated, R is the relation
type, W, and W, are the weight functions that map the precedent node Ny, and the consequent

node N_,,, then an implication rule can be generalized as follows [2].
1 €1,1=(R,Nyre, Noon, W;, Wy) (2.19)

Implication networks extract many more relationships among the variables that are overlooked
by most of the current approaches. Most of the currently existing approaches concentrate only on
the relations which have same states for both the variables like in the cases of positive
equivalence and negative equivalence. But there might be some very significant connections in
the implication networks which are not significantly correlated. The implication networks have
the capability to identify many known biologically phenomena and also to extract hierarchical

relationships. They are also stable over various species.

2.4 Survival Analysis

To validate the prognostic signatures identified in the network-based approach, survival analysis
is performed on them. Survival Analysis is normally done with respect to the occurrence of an
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event (which is normally death of the patient) with time. It helps in finding out what portion of
the considered group survives past a certain time. It also gives the rate of increase or decrease of

the occurring event. Survival Analysis is done using the following methods

Time dependant ROC analysis and Random Test
Cox Proportional Hazards Model
Kaplan-Meier Plots

o bdh o=

Multivariate Analysis using Cox Proportional Hazards Model

2.4.1 Time dependent ROC analysis and Random Test

ROC curves are techniques used for visualization, organization, and selection of classifiers based
on their performance. They are plots between sensitivity and (1-specificity). Time dependent
ROC analysis is said to be done when ROC (Receiver Operating Characteristics) curves are
varied as functions of time t. Since most of the disease outcomes are dependent on time, Time

dependent ROC analysis becomes more apt.

ROC curves are capable of portraying the differentiation capacity of a test even without
considering a specific threshold [16]. Even when the diagnostic markers are on diverse scales of
measurement, ROC curves provide a convenient method for comparison. AUC or the Area under
the Curve [17] is also considered as an important standard of comparison. It can be considered as
the metric that compares the probability of diseased states to non-diseased states and thus
summarizes the ROC curve. Since ROC is a two-dimensional representation of the classifier
performance, it can be reduced to a single scalar value as AUC representing the expected
performance. Thus realistic classifiers should not have AUC value less than 0.5. Since ROC

graphs are conceptually very simple, they can be used as cost-sensitive learning techniques.
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If X is the explanatory variable or predictor, and D(t) is the event (which is death in our case) at
any time t. If a cutoff point ¢ is considered which keeps varying, then the sensitivity and
specificity would be functions of ¢ and t. Thus the sensitivity and specificity can be expressed as
[16]

sensitivity(c,t) = P{X > c|D(t) = 1} (2.20)

specificity(c,t) = P{X < c|D(t) = 0} (2.21)

Thus ROC(t) curve is a graph plotted between sensitivity(c,t) (it is the Y-axis in the ROC
curve) and {1 — specificity(c,t)} (it is the X-axis in the ROC curve). The area under the curve

for each ROC(t) is defined as AUC(t).

In Random Test, gene signatures are picked randomly and their performance is compared with
the performance of our gene signature. Thus it acts as a measure of the significance of our

signature when compared to some signatures picked randomly.

2.4.2 COX Proportional Hazards model

Cox Model was a regression model described by D.R.Cox in his paper, “Regression Models and
Life-Tables” [18] in 1972. Since then till to date, Cox model is a well-recognized statistical
technique which explores the relationship between survival times and several other predictors
(also called covariates or explanatory variables) simultaneously [18]. In other words, it gives an
estimate of the treatment effect on the survival after adjusting the covariates and also to estimate
the risk of death. Cox model has many coefficients. For each variable these coefficients describe

whether a patient is under poor prognosis or a good prognosis.
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Cox model helps in isolating the effects of treatment from the effects of other variables or
covariates. It helps in improving the treatment effect as it narrows down the confidence interval.
Survival times are censored if the patients followed up for several years are still alive after the
end of study. Their survival time is not known from their surgery, as it is even longer than the

time in study.

The regression model introduced by Cox is also known as proportional hazards regression
analysis as it is used to explore several variables at a time. The hazard function is the probability
that a patient will experience an event within a small interval of time, and therefore it can be
understood as the risk of dying at time ¢. The hazard function denoted by /(?) can be estimated
using the equation [19]. If two observations are considered as shown below, the hazard ratio of

these two observations is shown in the last equation.

number of individuals experiencing an event in interval beginning at t

O = = imber of individuals surviving at time £) X (interval width) (2.22)
hi(t) = ho(0) X exp (By. Xi1) (2.23)

by (©) = ho(®) X exp (By.X;1) (2.24)

hi(t)  exp (B Xir) 029

h;(©) ~exp (B1-x51)

2.4.3 Multivariate Analysis using COX Proportional Hazards model
Regression is a statistical technique used to explain the relationship between the values of two or
more variables. When more than one variable needs to be taken into account, the method is

called multiple regression technique (multivariate analysis) which is almost the same as Cox’s
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model except that Cox model allows considering in to account more than one explanatory

variable at any one time. Thus hazard [19] at any time t can be expressed as

h(t) = ho(t) X exp (Bage- age + Bauration- duration + -+ + Bigcation- location) (2.26)
By applying natural logarithms, we get

Inh(t) = Inhy(t) + Bage-age + Bauration- duration + -+ + Bigcation- location (2.27)

Thus hy(t) is the underlying hazard function or baseline hazard. The coefficients such as
Bages Bdurations -++» Blocation are the regression coefficients and they constitute the proportional

change that can be expected in the hazard or risk function related to the other variables which are

estimated by a statistical method called the maximum likelihood technique.
Consider two observations of hazards at times iand j.
h;(t) = hy(t) X exp (Bage-age;i + Bauration- duration; + - + Bocation- location;) (2.28)
h;(t) = hy(t) X exp (Bage-agej + Bauration- duration; + - + Bocation- location;) (2.29)
The hazard ratio for the above two would be [19]

h; (1) _€Xp (Bage- age; + Bauration- duration; + - + Bocation- 10cation;)
hj(t)  exp (Bage-agej + Bauration- duration; + -+ + Bygcation- location;)

(2.30)

Thus it can be seen that the hazard ratio does not depend on the baseline hazard. Proportional
hazard is the assumption of a constant relationship between the dependent variable and the
explanatory variables. Cox regression analysis will result in a final model which yields an

equation for hazard as a function of the several covariates.
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2.4.4 Kaplan-Meier Plots
The Kaplan-Meier curves, which are also known as product limit estimators, help in estimating

the survival function from life time data.

From a set of survival times, the proportion of the population who would survive a given length
of time under the same circumstances can be estimated using the Kaplan-Meier [48] (or product
limit) method. A plot of the Kaplan-Meier estimate of the survival function is a step function.
The estimated survival probabilities are constant between adjacent death times and they only

decrease at each death.

If n; is the number of samples at risk just prior to time t; and d; is the number of deaths at time
t;, then Kaplan-Meier estimate would be the nonparametric maximum likelihood estimate of
S(t), which is the probability that a sample from the given population would have a lifetime
exceeding t, which can be shown as below.

=~ n; — dl'
s@® = 1—[ . 2.31)

t;<t

2.5 Prognostic Validation

Prognostic validation is usually done to predict the chance of recovery of a patient. Prognosis is
normally estimated with the help of variables such as sensitivity, specificity, hazard ratios and

log-rank p-values. Prognostic validation is done using the following methods

1. Overall Accuracy
2. Concordance Probability Estimate

3. Gene Set Enrichment Analysis
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2.5.1 Overall Accuracy

There are many metrics such as likelihood ratio, area under receiver operator characteristic
(ROC) curve, overall accuracy, etc. which integrated both sensitivity and specificity to describe
the validity of models or tests. Overall Accuracy is a single summary metric which is calculated

from the 2 X 2 contingency tables which is the overall probability that a patient will be correctly

a
Sensitivity = "
Disease @ b ¢
Positiv Negativ Specificity = T
ositive egative pecificity =777
Test Positive a b
== Negative C d Prevalence = ate
atc b+d
b+d
Noa+b+c+d 1-Prevalence =
classified by a model. A 2 X 2 contingency table is shown below.
a+d a+tc a b+d b
Accuracy = = ( ) ( ) + (—) (—) (2.32)
N N a+c N b+d
-~ Accuracy = (Prevalence) (Sensitivity) + (1-Prevalence) (Specificity) (2.33)

Sensitivity is the probability that a person with the disease tests positive. Specificity is the
probability that a disease-free person tests negative. Disease prevalence refers to the ratio of the
number of patients with the disease and the total number of patients considered. Overall accuracy
is the probability that a patient tests positive when he has the disease and tests negative when he
is disease free; that is, the sum of true positives and the true negatives divided by the total
number of patients. In other terms it can be shown to be the weighted average of the sensitivity
and specificity where sensitivity is weighted by prevalence and specificity is weighted by the
complement of prevalence. Thus the formulae for Sensitivity, Specificity and Overall Accuracy

when a 2 X 2 contingency table is considered are shown above.
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Overall accuracy as a measure has a limitation in the sense that it is prevalence dependent which

sometimes gives a misrepresented idea of the validity of the model.

2.5.2 Concordance Probability Estimate (CPE)

Concordance probability is used to estimate the distinguishing power and the predictive accuracy
of statistical models. CPE forms a stable estimator of predictive accuracy which can be
computed easily. The proposed estimator for CPE is a function of regression parameters and the
covariate distribution and is asymptotically unbiased. A concordance probability of 1.0
represents a model that has perfect discriminating capacity where as a CPE of 0.5 indicates that
the model is not good enough as it cannot discriminate between the observations in an accurate
manner. If two observations (X;,T;) and (X,,T,) are considered, then their concordance

probability [29] is defined as below.
CPEX,T = pT(TZ > T1|X2 2 Xl) (234)

If the value of CPE is less than 0.5, it does not mean that the model is bad, but it may be

considered as below by taking - X instead of X as a predictor of T to obtain a CPE higher than

0.5.
1 - CPEX,T == pT(Tl > T2|X2 2 Xl) = CPE—X,T (235)

If x is a p-dimensional covariate vector, and h,(t) is the baseline hazard function independent
of the covariates, and ] is the vector of the regression parameters, then the hazard function

h(t|x) of Cox proportional hazards model is given by

h(tlx) = ho(t)exp (Bgx) (2.36)
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CPE is a simple function of the Cox proportional hazards model and is not sensitive to the degree

of censoring and does not require imputation of survival times.

The proportional hazards conditional survival function which determines the relationship

between the p-dimensional covariate vector x and the survival time t is given by

S(t;x,B) = exp {—exp (BTx) f ho(t)dt} (2.37)

The ordering between the survival times of two subjects with log relative risks f7x; and BT x,

under proportional hazards can be measured by

@ 1
pr{T(ﬁTXZ) > T(ﬁT‘xl )} = _[0 S(t, xZ'ﬁ)ds(t’ xliﬁ) = 1+ exp{ﬁT(xz — xl)} (238)
Thus concordance probability CPE(B) = pr(T, > T;|8Tx, > BTx,) may be written as
JITL + exp{B” (x; — %)} ' dF (B"x,)dF (B" x;) (2.39)

I dF (BTx1)dF (B x;)

for integrals ranging over the interval fTx; > BTx, and F is the distribution function of the

covariate linear combination B7X.

The concordance probability estimator [29] can be given as

o2 1(BTx;; < 0) 1(Tx;; < 0) }
CPEn(ﬁ) - n(n — 1)lz<jz {1 + exp (Biji) + 1+ exp (,[?Txij) (2.40)

where f is the partial likelihood estimator for f and empirical distribution function was used for

and x;; represents the pairwise difference x; — x;.
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In R, a package for CPE exists which includes a command named “phcpe”. This command is a
function used to calculate the Gonen & Heller concordance probability estimate (CPE) for the
Cox proportional hazards model. It outputs the CPE and the standard error of the CPE. The input
for phepe is a Cox fit model. Since a Cox fit model is present, we get various outputs such as p-
values from log-rank tests, hazard ratios and the confidence intervals also as outputs from phcpe.
The CPE values must always be greater than 0.5 for a data to be significant. The higher the CPE
values, the more significant the data is considered to be. Similarly, p-values from log-rank tests

must be lesser than 0.05 and hazard ratios must be greater than at least 1.

2.5.3 Gene Set Enrichment Analysis (GSEA)

Gene Set Enrichment Analysis'? is a powerful analytical method that computes whether a
predefined set of genes is statistically significant and whether the gene set has agreeable
differences between the two phenotypes (biological states). GSEA interprets gene expression
data and focuses on the gene sets as a whole. It generates analysis based on the groups of genes

that share common biological function, chromosome location or regulation.
GSEA [30] works in three steps:

1. Calculation of an Enrichment Score (ES): ES is the maximum deviation from zero
encountered in a random walk which corresponds to the Kolmogorov-Smirnov-like statistic.
It is calculated to show whether the gene set is overrepresented at the top or bottom of the
ranked list.

2. Estimation of the significance level of ES: The nominal P value of the enrichment score
which denotes its statistical significance is estimated by using an empirical phenotype-based

permutation test. The permutation of phenotypes preserves the complex correlation structure

12. http://www.broadinstitute.org/gsea/
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of the gene expression data which provides a more biologically reasonable estimation of
significance.

3. Adjustment for Multiple Hypothesis Testing: After the complete database of gene sets is
assessed, the estimated significance level is adjusted to account for multiple hypothesis
testing by calculating the normalized enrichment score (NES) and the false discovery rate
(FDR). FDR is the estimated probability that a gene set with a given NES represents a false

positive finding.
2.6 Topological Validation

Structural validation is done using the following methods

PRODISTIN"

PubMed"

NCI Pathways'

KEGG'®

MATISSE"

STRING 8"

Ingenuity Pathway Analysis'

® NS kWD =

Pathway Studio®

2.6.1 PRODISTIN

PRODISTIN method functionally classifies genes or proteins from all types of interaction
networks according to the identity of their interacting partners. It can also be used to obtain
information related to protein function and to relationships linking cellular processes [22].

Proteins can be compared functionally at the cellular level or the molecular level. In

13. http://crfb.univ-mrs.fr/webdistin/

14. http://www.genome.jp/kegg/

15. http://pid.nci.nih.gov/

16. http://www.ncbi.nlm.nih.gov/pubmed/

17. http://acgt.cs.tau.ac.il/matisse/

18. http://string.embl.de/

19. http://www.ingenuity.com/

20. http://www.ariadnegenomics.com/products/pathway-studio/
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PRODISTIN method, proteins are clustered according to their cellular processes more efficiently
rather than the molecular or the biochemical functions. The result of PRODISTIN method on
interaction networks allows the user to acquire a classification tree in which network
genes/proteins are grouped according to their functional similarity and to find out functional
classes in the tree using the biological process Gene Ontology annotations of genes/proteins. The
basic concept is that the more two proteins share interacting partners, the more they should be

functionally related.

PRODISTIN method consists of two different and successive bioinformatic steps as shown in
Figure 2-15 below. Initially a graph including all proteins connected by a specific relation is
constructed and Czekanowski-Dice distance is calculated between all possible pairs of proteins
in the graph with respect to the interacting partners they share. This classical distance on graphs
corresponds to the formula [22].

#[Int(i) A Int(j)]
[#(Int(i) U Int(j)) + #Int(i) n Int(j))]

D(i,j) = (2.41)

where 1 and j denote two proteins, Int(i) and Int(j) are the lists of their interacting partners plus
themselves (which are used to decrease the distance between the proteins interacting with each
other) and A is the symmetrical difference between the two sets. In other words it gives sum of
the interactors in both minus twice the number of common interactors between the two
interacting proteins. This distance was chosen because it increases the weight of the shared
interactors by giving more importance to the similarities than to the differences and also it
authorizes the use of tree representation. For two proteins that do not share any interactors, the
distance is 1 and is the maximum value. For two proteins interacting with each other and sharing

exactly the same interactors, the distance is 0 and is the minimum value. The second step would
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be to cluster all the distance values according to BioNJ, which would lead to a classification tree.
The tree can be visualized and subdivided in to formal classes according to the biological process

in Gene Ontology annotations.

Stepl: From a binary interaction list to a classification tree|

User-provided binary interaction list, model organism,
connectivity threshold

Czekanowski-Dice distance calculation between all
geng/ pratein pdairs,
D) = #0ntl) A It [#at0) o Intljn + #(0ntd) ~ et

I
Clustering with BioN)

Protein classification lree]

Step2: Functional class identification
Recovery of the Gene Ontolagy annotations and
parent terms for all genes)proteins with GOToolBox

Functional class identification according to user
defined parameters

[.&nnotated classification tree]

Figure 2-15: Step wise procedure for PRODISTIN method [21]

PRODISTIN has the ability to predict correctly, the function for unknown proteins and it shows
reliability even in the presence of both spurious and missing interactions in the dataset. It can
also be used to investigate the evolution of the function of duplicated genes. As more interactions
become available, it improves the relevance of the protein clusters found by the PRODISTIN

method. The PRODISTIN web interface is shown in Figure 2-16.
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Prodistin Web Site: Functional classification of proteins based on interactions.

Return Home Start Help References Contact

Step 1 : From a binary interaction list to a classification tree

Choose your
Species Crrosophila melanogaster ~ || favorite organism
help
List of
: 7 el Ch file:
interactions Browse... S;Ez:rlﬁj °
{demo} 3
Minimal
Gene/Protein e gene/protein
connectivity connectivity to be
classified reip
| Compute |

Figure 2-16: PRODISTIN website

2.6.2 PubMed

PubMed was developed by National Centre for Biotechnology Information (NCBI) at National
Library of Medicine (NLM) located at U.S. National Institutes of Health (NIH). It is available
through Entrez retrieval system. It helps search in biomedical citations and abstracts. PubMed is
a search engine that allows access to many databases including the MEDLINE database of

journal articles. Its focus is on medicine and related fields like nursing.

PubMed can be searched for required details in many ways as shown below in Figure 2-17. Any
data required can be searched in entire PubMed or it can be restricted to some fields such as
genes, proteins, journals, etc. The results could be even more focused by choosing the limits of
search such as the organisms, taxonomy, etc. It is one of the web based search engines which is

used widely by biostatisticians to extract gene information.

Advanced search is also available which allows finding data by author’s name, publication date,
title, etc. as shown below in Figure 2-18. The recent items searched are also stored and they can
be revisited when required. PubMed has an option called LinkOut which allows to access

resources in external websites directly from the PubMed database. LinkOut resources include
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research tools, full text publications, biological databases, etc. Thus instead of searching various
databases each separately, it would be sufficient to check in PubMed which give links to all the

other databases if they are present. The links are present in such a way that we could access just

the abstract or the entire text in required format (text or pdf).

PubMed Nucleotide Structure

OMIM

| Previewsndex | History | cClipboard | Details |

rted with PubMed, enter one or more search terms.

Fms may be topics, authors or journals.

@ CancerChromosomes The NIH Public A LT
Mew/Mat Conserved Domains cee:

S dbGaP Does NIH fund your work?
3D Domains

Gene

GELlEE Genome Project
BLTTGEE SEMNSAT How?
WESIRE GEO Profiles s - 5 |
SRR CO DataSets publish in one of these journals, they will take care of the whole proce:
E:_stmrhff. HomoloGene u publish anywhere else, deposit the manuscript in PubMed Central vi
Eha Journals 2 one of the options described at publicaccess nih.gov.

Clinical (Fyeais £ publicaccess nih.g

en your manuscript must be made available in PubMed Central

Figure 2-17: PubMed website
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Figure 2-18: Advanced Search in PubMed
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2.6.3 NCI Pathways (Pathway Interaction Database)

National Cancer Institute (NCI) is a part of the U.S. National Institutes of Health and supports a
national network of cancer centers and supports research projects in cancer control. Nature
Publishing Group (NPG) is a publisher of 60 prestigious scientific journals including the highly
impact Nature, the international weekly journal of science. A collaborative project between NCI

and NCI is the Pathway Interaction Database (PID).

PID is a highly structured database which includes a curated collection of information. The
schema of the database is very flexible which makes it easy to store a wide range of information
about cell signaling pathways. It includes known biomolecular interactions that are taking place
in human cells and also includes key cellular processes which when combined make up signaling
pathways. PID shows not only the predefined pathways but also interaction networks that are
dynamically constructed. Since the editorial section of PID also includes outlines of recent
research articles connected to cancer, it acts as a practical advice and tool to bioinformaticians

and biologists.
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Figure 2-19: Pathway Interaction Database
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Figure 2-20: Browsing Pathways in PID
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PID includes many pathways extracted from three types of data as shown in Figure 2-19 and
Figure 2-20. They are NCI-Nature Curated data, BioCarta data and Reactome data. NCI-Nature
Curated data are produced by Nature Publishing Group according to a few principles. They
include Human Model System, Biological relevance, Authority and Consistent nomenclature.
BioCarta was imported in to PID in June 2004 and Reactome was imported in December 2007.
In NCI-Nature Curated data and Reactome data, biomolecules are annotated with Uniprot protein
identifiers and relevant post-translational modifications whereas in BioCarta data, biomolecules

are annotated by Entrez gene identifiers without post-translational modifications.

A biologically meaningful set of interactions is defined as a pathway in PID. Molecular
interaction is the basic unit of representation in PID. Thus the information is very fine-grained
and highly structured. In each interaction, each biomolecule is identified along with the nature of
process (biological events) it is involved and its role in each of the processes. Pathways are

portrayed graphically labeled nodes and edges. Additional references are also provided.

2.6.4 KEGG

KEGG stands for Kyoto Encyclopedia of Genes and Genomes. It was initiated in May 1995 to
computerize the knowledge of molecular and cellular biology in terms of information pathways
that consist of interacting genes or molecules. Its objective was to link [24] the structural data
obtained by genome projects and the functional data. KEGG was built based on the pair wise
interaction of genes or molecules. Since information regarding known pathways has been
expanding rapidly, it has become necessary to computerize known pathways at the time of
KEGG’s initiation. KEGG was considered to be an effort to advance concepts and technologies
and real time data collection efforts [26]. KEGG contains an aspect of the deductive database

where new interactions could be deduced from relations stored in database. Thus the basic
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concept of KEGG is the relation and deduction. KEGG has a hierarchy which is important in the
sense that it represents functional, structural and evolutionary relationships of genes and
molecules. The advancements in the database and networking technology make KEGG even

better in the aspect of its functionality especially the deductive and object-oriented databases.

KEGG consisted of three databases [23, 25] when it started. KEGG PATHWAY represents
higher order functions in terms of the network of interacting molecules (mostly proteins). It is a
set of manually drawn pathway maps which represent knowledge on the molecular interaction
and reaction networks and also on structural relationships. The best organized part of
PATHWAY is that the organism specific pathways are constructed computationally by
correlating genes in the genome with gene products in the reference pathways according to the
matching EC numbers. Gene catalogs for all the completely sequenced genomes and some partial
genomes are accumulated under KEGG GENES. The number of GENES’s entries keeps
increasing every year to keep track of the updating genome sequences. Thus GENES acts as a
gateway to a number of other resources containing more detailed information. KEGG LIGAND
is the collection of chemical compounds in the cell, enzyme molecules and enzymatic reactions.
It is a composite database which includes COMPOUND, DRUG, GLYCAN, REACTION,
RPAIR and ENZYME databases. KEGG BRITE was added later which depicts the hierarchical

classifications.
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KEGG: Kyoto Encydopedia of Genes and Genomes
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Figure 2-21: KEGG Website
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Figure 2-22: KEGG PATHWAY
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KEGG was later updated with many other databases which came up to 19 databases categorized
in to systems information, genomic information and chemical information. KEGG website can

be seen in Figure 2-21 and KEGG PATHWAY is shown in Figure 2-22 above.

2.6.5 MATISSE

MATISSE is a program that implements a novel computational method for efficient detection
and analysis of JACSs. JACSs are Jointly Active Connected Subnetworks which are the
functional modules that are sought by identifying the connected subnetworks in the interaction
data that exhibit high average internal similarity [27]. MATISSE has a statistical basis, which
allows confidence estimation of the results and no prior knowledge of the JACSs is required
which removes the requirement of precalculation of the statistical significance of expression

values. Thus it suits all types of network data overlaid with pair wise similarities.

Qrganism

ethad: | MATISSE
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Network: Interaction types: -
Front nodes: Select Filker
) Don'tload network
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) Tmport fle Select Fie L
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Minimum seed size:
Exintcunnt ok Maximum seed size:
() Dan'tload expression
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@ [oad tab-delimited C:\Users\admin\Desktopiswetha files\Ma Select File Mo medils s
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Figure 2-23: MATISSE interface Figure 2-24: Choosing the Algorithm
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Figure 2-25: Displaying the module

MATISSE needs to choose a species first and then the interaction network and the expression
data must be loaded as shown in Figure 2-23. After the data is loaded, modules must be found
and for that the Algorithm which must be used to find the modules must be selected as shown in
Figure 2-24. The displayed modules can be filtered by applying filters which is shown in the

Figure 2-25.

MATISSE detects non-overlapping JACSs by identifying heavy subgraphs in an edge-weighted
similarity graph while maintaining connectivity in the interaction network. There are three
phases in the detection and analysis of JACSs: (1) relatively small, high-scoring gene sets, called
seeds must be detected; this detection can be done by any of the methods such as Best-neighbors
or All-neighbors or Heaviest-subnet, (2) Seed improvement or greedy optimization; this

optimization can be done using the methods like Node addition, Node removal, Assignment
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change, and JACS merge, (3) significance-based filtering; the empirical p-value of the score was

calculated for each JACS and a threshold of p=0.05 is applied.
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Figure 2-26: Module from MATISSE Figure 2-27: Module from Co-clustering method

In MATISSE, modules are also generated using Co-clustering method for the purpose of
comparison. Co-clustering methodology uses a distance function that combines similarity of
gene expression profiles with network topology. A few properties include Expression
homogeneity (calculated as the Pearson correlation between genes within the same module),
edge density (number of edges it contains as a fraction of all its node pairs), and clustering
coefficient (fraction of a node’s neighbor pairs connected in the network). MATISSE is designed
to produce connected subnetworks as shown in Figure 2-26 whereas Co-clustering generates
modules that are highly disconnected as shown in Figure 2-27 above. Thus MATISSE is much

better [27] in all the properties checked for comparison with Co-clustering technique.

2.6.6 STRING 8
STRING 8 stands for eighth version of Search Tool for the Retrieval of Interacting
Genes/Proteins. It is a database and web resource that constitutes most of the available protein-

protein interactions, scores and weighs it and escalates it with not only predicted interactions, but
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also with the results of automatic literature-mining searches. The latest version of STRING 8
covers almost 2.5 million proteins from 630 organisms and thus it provides a very
comprehensive view of the protein-protein interactions. It includes resources from various other
sources such as MINT, HPRD, BIND, DIP, BioGRID, KEGG, Reactome, IntAct, EcoCyc, NCI-
Nature Pathway Interaction Database, and Gene Ontology (GO) protein complexes, etc. Apart
from the interactions previously known interactions from the above resources, STRING 8 uses a
number of prediction algorithms that computationally predict many more interactions. It searches
for genes that are found in close surroundings of chromosomes as it would be a good indication
of functional relation. It then searches for instances where genes join to encode a single fusion
protein. It also searches for gene families that have similar phylogentic profiles and also genes
that are co-expressed under different conditions. It includes interactions identified from text
mining of databases like SGD, OMIM, The Interactive Fly and all the abstracts of PubMed.
STRING 8 is more fault tolerant when clustering conserved neighborhoods by ignoring false

predictions.

The network images in STRING are generated using a spring model where nodes are taken as

masses and the edges are considered as springs.

In STRING 8, one or more proteins of interest are entered as inputs by giving names or
identifiers as shown in Figure 2-28. The appropriate organism is selected. STRING 8 also has a
random input generator which will select randomly a gene/protein with a minimum of 4
predicted links above medium confidence or even better. Prediction summary is obtained for the

proteins that were given as input. All the predicted relations are sorted by their scores and each
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of them can be viewed in detail. The various types of evidence supporting the predicted

associations can be viewed by clicking the different views of the data.
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Figure 2-28: STRING 8 web interface

The network view briefly summarizes the interactions between the proteins with each of the
protein as a node in the network. Any two proteins may be connected using seven different
colored functional associations where each color indicates the presence of one evidence. A red
line implies presence of fusion (individual gene fusion events per species) evidence; a green line
implies conserved neighborhood (genes that occur repeatedly in close neighborhood in genomes)
evidence; a blue line implies co-occurrence (presence or absence of linked proteins across
various species) evidence; a purple line implies experimental (list of significant protein
interaction datasets acquired from other protein-protein databases) evidence; a yellow line
implies text mining (list of significant protein interaction groups extracted from the literature)

evidence; a light blue line implies database (list of significant protein interaction groups acquired
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from curated databases) evidence; a black line implies co-expression (genes that are co-
expressed in the same species or other species) evidence. Clicking on a node gives many details
about the protein and clicking the edge gives all the different scores relating to each of the

evidences.

2.6.7 Ingenuity Pathway Analysis

Ingenuity Pathway Analysis (IPA) integrates data from a variety of experimental platforms. It
provides insight into molecular and chemical interactions, cellular phenotypes, and disease
processes of our system. IPA is built upon a huge foundation of scientific evidence which
include journal articles, textbooks, and other data sources. It presents the data in a meaningful

visual and knowledgeable way.

There are different types of analyses that can be performed on a group of genes. They include
Core analysis, IPA-Tox analysis, [IPA-Metabolomics or IPA-Biomarker analysis. These analyses
in most cases give a good indication of what cellular processes the given dataset is related to.
Core analysis is used to interpret datasets in the context of biological processes, pathways and
molecular networks. IPA-Metabolomics analysis analyzes the metabolite data about cell
physiology and metabolism. IPA-Tox analysis assesses the toxicity and safety of the compounds
of interest. It also shows the appropriate toxicity phenotypes and clinical pathology endpoints
related to a dataset. IPA-Biomarker analysis identifies and prioritizes the most appropriate and
promising molecular biomarker candidates from the datasets. Each of these analyses can be run
multiple times on different inputs and they can be compared among themselves using
Comparison analyses which help in understanding which of the samples are more relevant to

each condition.
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Ingenuity systems have a database that is highly structured and context-rich which makes it
unique among the different pathway applications. All the results found in IPA are always
supported by experimental results and thus are not just based on the occurrence in few abstracts.
These results are structured in to an ontology which lets the use of very powerful computational

algorithms that presents the results in IPA when queried.

IPA includes many features such as integrated broadband coverage of systems biology (including
protein, gene, protein complex, cell, cellular component, tissue, organ, small molecule, and
disease interrelationships), broad genome wide coverage of human, mouse, and rat genes, huge
number of pathway interactions extracted from literature, very systematic capture of canonical

pathway relationships and almost up to date literature.

IPA uses different shapes for the nodes in the networks and different types of connectors
between the nodes for different types of relationships between the genes or proteins as shown in

Figure 2-29.
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Figure 2-29: Different Network and Path Designer shapes along with Relationships used in IPA to represent
different types of data

It is not an open source and hence a license is needed to use the entire version of IPA. There is a
free trial version but it does not include all the pathways and hence same results are not obtained

each time it is used.

2.6.8 Pathway Studio

Pathway Studio is a combination of three products:

1. ResNet database
2. MedScan application
3. Pathway Studio interface

ResNet is a database that comprises of the biological relations, ontologies and pathways that

were compiled by the Ariadne scientists for Mammalian (Human, Rat, and Mouse) and Plant
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research. This database stores information that has been successfully extracted from PubMed in a
manner such it allows searching, retrieving and even updating of the database by the user.
Moreover the extracted interactions have access linked to the original data source. All possible

aliases are also included which excludes redundancy and thus maintains identity of the genes.

MedScan is a computational approach used for data analysis that has the information from
literature as a coherent and integrated part within it. It is like a web search engine which not only
gathers knowledge about a query but also scans the literature for relationships and highlights
those relationships in the articles that were gathered. It also lists all the relationships and
molecular processes in appropriate tables which can be saved in to the ResNet database and
reused for further analysis. MedScan has access to PubMed and 47 full-text journals and
additional journals may also be added from different sources. MedScan can thus create many
databases of specific organisms, diseases, etc and it can highlight different proteins, chemicals,
cell processes, etc in literature. MedScan is used to update ResNet database and this can also be

automated.

Pathway Studio is a software which analyses gene expressions and builds pathways. These
pathways can be expanded and various relationships between genes, proteins, diseases, etc can
be extracted. It works together with ResNet database (and MedScan reader to update the
database). Once the experimental data is imported in to Pathway Studio, it enables in-depth
analysis of the data and relationships are extracted from the literature (PubMed). By changing
the settings in Pathway Studio, it can find common regulators and relates pathway components

with biological entities of similar functionality.
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Figure 2-30: Different shapes and colors used in Pathway Studio to represent for different types of data

There are 227 receptor signaling and 21 new cellular process regulation pathways that are
included in Pathway Studio. These can be further expanded using MedScan. Pathway Studio is

not an open source and license is needed to use it.

2.7 Summary

This chapter discussed the advantages of network-based techniques over feature selection
methods. Feature selection procedures considered the behavior of each gene individually. Hence
this chapter highlighted the importance of considering the “gene interactions” instead of each
gene individually. It also reviewed the various network-based techniques such as correlation-
based and clustering-based coexpression networks, Bayesian networks and artificial neural

networks. The literature study of these techniques was summarized. The limitations of the
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network-based techniques have been discussed. The correlation-based coexpression networks
and the clustering based coexpression networks do not provide predictive structure or causal
relations. Moreover their accuracy decreases with increase in network size. Bayesian networks
cannot contain loops and they require subjective priors. Neural networks are time consuming and
have the possibility of overtraining. It was thus discussed that all these limitations have been
overcome by the implication networks. Algorithm of the implication network that was used in
identifying the gene signatures was explained. Different validation techniques and tools, used for
both prognostic and topological validation of the signature identified from the implication

network were discussed.
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Chapter 3

3 Network-based approach for identification of prognostic signatures

3.1. Introduction

In the earlier chapter, major limitations of the compared network techniques along with the
advantages of implication networks were emphasized. In this chapter, details will be focused on
how implication networks were applied on the dataset and how gene signatures were identified.
Moreover descriptions of the datasets, procedures and results obtained from the application of

implication networks are provided.

NETWORK-BASED APPROACH TO IDENTIFICATION OF PROGNOSTIC SIGNATURES

WMICRO ARRAY DATA OF PATIENTS PROFIL
GENE EXPRESSION VALUE
ENOME WIDE INTERACTIONS FOR ENOME WIDE INTERACTIONS FOR
METASTASIS GROUP NON-METASTASIS GROUP

DIFFERENTIAL
COMPONENTS

DENTIFYING GENES INTERACTING WITH
MAJOR HALLMARKS

PROGNOSTIC VALIDATION TOPOLOGICAL VALIDATION

IME DEPENDEN
ROC ANALYSIS @ PUBMED PRODISTIN
GEMNUIT PATHWA
ACCURAGY. PATHWAY,

Figure 3-1: Flow chart of the methodology
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The flow chart of the methodology is shown in the Figure 3-1 above. The first top box of the
flow chart as displayed constitutes the identification of the gene signatures and this part will be

discussed in this chapter. Details of survival analysis will also be given in this chapter.

3.2. Methodology for identifying prognostic gene signatures

Identification of the gene signature is done on the training dataset and the validation of the

obtained signature is performed on the test datasets.

The gene expression data of the training dataset is divided in to two or more groups based on
some variables such as survival time, survival status, smoking status, etc. In this thesis, survival
time and survival status are used together to split the data in to two groups. These groups are
named Metastasis group (high risk group) and Non-Metastasis group (low risk group).
Interactions among the genes are induced using prediction logic algorithm [1, 2]. Thus genome
wide networks for both the groups are generated. After we get interactions among the genes in
both the groups (Metastasis and Non-Metastasis), differential components between the groups
are picked. Differential components are the set of interactions that are present in one group but
are not present in the other group and vice versa. In other words, differential components of
Metastasis group are unique and similarly, differential components of Non-Metastasis group are
unique. Thus we get the interactions that differentiate the high risk group and the low risk

groups.

Once the differential components are found, all the genes interacting with the major cancer
hallmarks are picked. Major cancer hallmarks are genes that were already known to be of great
importance in cancer research. Since these genes are known to have strong interactions with

other genes in the cancerous conditions, we consider that the genes, which interact with all these
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genes, might be in one or the other manner, included in the regulation or progression of tumors.
Hence the set of genes that interact with all the major cancer hallmarks are considered to form a

signature. By varying the set of hallmarks, we get different signatures.

Once signatures are found, we validate these signatures to find a signature that outperforms the
other signatures and later evaluate the better signature prognostically and topologically (this will

be dealt in the next chapter).

3.2.1 Datasets Information

The data required for acquiring, training and testing the signatures was taken from a consortium
[20] which was formed with the support and collaboration of US National Cancer Institute
investigators. The dataset is a combination of samples collected from four institutions [20] using
a common platform. The institutions that formed the consortium include University of Michigan
Cancer Center (UM), Moffitt Cancer Center (HLM), Memorial Sloan-Kettering Cancer Center
(MSK) and the Dana-Farber Cancer Institute (CAN/DF). The data from UM had 177 samples,
HLM had 79 samples, CAN/DF had 82 samples and MSK had 104 samples. There were a total
of 442 samples and 22215 genes. The data from UM and HLM were combined to form the
Training dataset which has 256 samples. This Training dataset was used to find signatures and

then they were validated on the remaining two datasets (CAN/DF and MSK).

3.2.2 Dataset processing

The Training dataset consists of 22215 genes and 256 samples. There were duplicate probes for
many genes. The duplicate probes of every single gene were averaged. This narrowed down the
number to be 13658 unique genes. This data was split in to 2 files, Metastasis (High risk) and

Non-Metastasis (Low risk) groups, based on the number of months the patients survived and
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their survival status. If the number of months the patients survived was greater than 60 (5 years),
the sample was put in Non-Metastasis group (Low risk). If the number of months the patients
survived was less than 60 months and if it was known that the patient died, the sample was put in
Metastasis group (High risk). If the number of months the patients survived was less than 60
months and if it was not known whether the patient died, the sample was censored. The
Metastasis group (High risk) consisted of 125 patients and the Non-Metastasis group (Low risk)
consisted of 104 patients. There were 27 samples that did not fall in to either of the groups and
hence they were censored. Then the data values were converted in to binary values (0’s and 1°s)
based on the mean of the expression values of each gene. The mean values were calculated using
bootstrapping so that the impact of the number of samples being different does not affect the
value of the mean. If the expression value of each gene for each sample was less than or equal to
the mean of all samples for that particular gene, it was defined as 0 and if it was greater it was

defined as 1.

3.2.3 Deriving genome scale gene interactions

The interactions between the 13658 genes in each of the groups containing 125 (for metastasis
group) and 104 (for non-metastasis group) samples were derived. The underlying principle in
generating the gene interactions is based on prediction logic used for inducing the implication
network [1, 2]. The minimum scope and minimum precision required were calculated using
simple Z-test for a cutoff value of 1.64. There were 159,402,305 interactions that were derived
from the Metastasis group (High risk). There were 154,144,728 interactions that were derived
from the Non-Metastasis group (Low risk). The comparison of the number of interactions from

both the groups is shown below in Figure 3-2.
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3.2.4 Identifying Differential Components

After the genome wide interactions for the dataset were obtained, the differential components of
each of the groups were obtained. Differential components are the gene interactions of one group
that are not present in the other group. The interactions present in Metastasis group (High risk)
but not present in the Non-Metastasis group (Low risk) are called the differential components of
Metastasis group (High risk). Similarly, the interactions present in the Non-Metastasis group
(Low risk) but not present in the Metastasis group (High risk) constitute the differential
components of the Non-Metastasis group (Low risk). In other words they are the interactions that
differentiate the two groups from one another. There were 91,445,437 common interactions
between the groups. Thus there were 67,956,868 differential components for Metastasis group
(High risk) and there were 62,699,291 differential components for Non-Metastasis group (Low
risk) were. The comparison of the differential components from both the groups along with the

genome wide interactions is shown below in Figure 3-2.
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Figure 3-2: Bar graph showing the number of interactions in Poor (high risk) and Good (low risk) prognosis
for genome wide interactions and differential components in the Training dataset
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3.2.5 Major Cancer Hallmarks used to identify prognostic markers

Major Cancer Hallmarks are the genes which are considered to be important. A different set of
hallmarks can be considered to find different signatures. Gene signatures are picked from the
genes which have interactions with all the hallmarks. There were 7 hallmarks that were
considered to find gene signatures. Six of them were EGF, EGFR, KRAS, MET, RB1, and TP53.
The seventh hallmark E2F had five different probes E2F1, E2F2, E2F3, E2F4, and E2F5. Hence

they totaled to 11 hallmarks.

3.2.6 Identifying Gene Signatures

All the genes which had interactions with the entire set of 11 hallmarks were picked from both
the Metastasis group (High risk) and the Non-Metastasis group (Low risk). There were 7 genes
from the Metastasis group (High risk) and 4 genes from the Non-Metastasis group (Low risk)

which totaled up to an 11 gene signature.

E2F had multiple probes and thus their functional properties were considered. A few subsets of

the 11 hallmarks with the help of PubMed were considered to identify gene signatures.

E2F1, E2F2, and E2F3 were a family with functional similarities and E2F3 had the least
significance among them. So it was ignored. Similarly E2F4 and E2F5 were another family with

functional similarities and E2F5 is not as significant as E2F4. So it was ignored.

Thus E2F1, E2F2, and E2F4 were only included with the. remaining 6 hallmarks to make a set of
9 hallmarks to find another signature. The genes that had interactions with all the 9 hallmarks
were picked from both the Metastasis group (High risk) and the Non-Metastasis group (Low
risk). There were 13 genes from the Metastasis group (High risk) and 8 genes from the Non-

Metastasis group (Low risk) which totaled to a 21 gene signature.
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Since E2F1 and E2F2 were a part of the same family, they had similar functionality and so they

were considered one at a time to find more gene signatures.

When E2F1 and E2F4 were considered along with the remaining 6 hallmarks, there were a total
of 8 hallmarks. All the genes that had interactions with the 8 hallmarks were picked from both
the Metastasis group (High risk) and the Non-Metastasis group (Low risk). There were 18 genes
from the Metastasis group (High risk) and 13 genes from the Non-Metastasis group (Low risk)

which totaled to a 31 gene signature.

When E2F2 and E2F4 were considered along with the remaining 6 hallmarks, there were a total
of 8 hallmarks. All the genes that had interactions with the 8 hallmarks were picked from both
the Metastasis group (High risk) and the Non-Metastasis group (Low risk). There were 32 genes
from the Metastasis group (High risk) and 19 genes from the Non-Metastasis group (Low risk)
which totaled to a 51 gene signature. But there was one gene which was common to both the

groups and thus the signature size becomes 50.

The number of genes identified from each group using different sets of hallmarks is shown in the

Table 3-1 below.

Table 3-1: Number of genes identified to have interactions with major cancer hallmarks in each prognosis
group in each gene signature

genes from poor prognosis genes from good prognosis
11 gene signature 7 4
21gene signature 13 8
31 gene signature 18 13
50 gene signature 32 19
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Hence 4 signatures were discovered where each one had 11 genes, 21 genes, 31 genes, and 50
genes which are shown in Table 3-2 below. The 50 gene signature has a gene FLJ13059 that was

extracted from both groups.

It can be seen that the 11 gene signature is a subset of all the remaining 3 signatures (21 gene, 31
gene, and 50 gene signatures) and the 21 gene signature is a subset of the remaining 2 signatures
(31 gene and 50 gene signatures). This was because the set of hallmarks used for identifying the
31 gene signature and the 50 gene signature were subsets of the hallmarks used for identifying

the other 2 signatures (11 gene and 21 gene signatures).

But the 31 gene signature and the 50 gene signature had a few unique genes each. Other than the

21 genes in common, they have just one more gene (ESM1) common to both the signatures.
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Table 3-2: All signatures obtained using different combinations of Hallmarks

50-GENE SIGNATURE

31-GENE SIGNATURE

21-GENE SIGNATURE

11-GENE SIGNATURE

1 | ACTL6B ACTL6B ACTL6B ACTL6B
2 | ADAM3B ADAM3B ADAM3B ADAM3B
3 | FABP7 FABP7 FABP7 FABP7
4 | PRR4 PRR4 PRR4 PRR4
5 | RPL27A RPL27A RPL27A RPL27A
6 | sLc22A11 SLC22A11 SLC22A11 SLC22A11
7 | TAC3 TAC3 TAC3 TAC3
8 | 215642_at 215642_at 215642_at 215642_at
9 | DEFAS DEFAS DEFAS DEFAS

10 | PALM PALM PALM PALM

11 | SCGB2A2 SCGB2A2 SCGB2A2 SCGB2A2

12 | BCDIN3 BCDIN3 BCDIN3

13 | GAL3ST1 GAL3ST1 GAL3ST1

14 | PCDHB3 PCDHB3 PCDHB3

15 | PCDHGA3 PCDHGA3 PCDHGA3

16 | PRKACA PRKACA PRKACA

17 | SAMD4B SAMD4B SAMD4B

18 | ACTR8 ACTRS ACTR8

19 | cAP2 CAP2 CAP2

20 | CDKN2B CDKN2B CDKN2B

21 | TMEM135 TMEM135 TMEM135

22 | 217363 x_at Clorf68

23 | BRD2 dJ222E13.2

24 | co LOR

25 | oG5 SSFA2

26 | DDB1 TEX11

27 | DKFzP586P0123 217470_at

28 | ESM1 DAG1

29 | FLI13059 ESM1

30 | GABRA1 H2AFB3

31 | HSPA2 TM4SF20

32 | KRT81

33 | Mucs

34 | PEX5L

35 | PPPIR2P9

36 | PRKAA1L

37 | SUPTEH

38 | TPSD1

39 | TRIM9

40 | vPs35

41 | ATP6VOB

42 | CHD6

43 | pUSP21

44 | ELL

45 | KIAA1446

46 | SCN8SA

47 | sLc26A1

48 | SPINK5

49 | STT3A

50 | TSPAN2
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3.3. Survival Analysis

To find the most significant signature from the obtained prognostic signatures, survival analysis
was performed on the four signatures. Survival Analysis was done using techniques which
include Time dependant ROC analysis, Random Test, and Cox proportional hazard model. Cox

model uses Kaplan-Meier plots and log-rank tests to identify the best signature.

3.3.1 Time dependant ROC analysis and Random Test

ROC curve stands for Receiver Operating Characteristic curve. It is a plot between the sensitivity
and the (1-specificity) as time is varied. It can also be considered as the plot between the True
Positive Rate and the False Positive Rate. That is it is used to describe the tradeoff between the
hit rates and the false alarm rates. The higher the area under curve (AUC) values, the better the

signature. The AUCs are calculated using R.

In Random test, genes are picked randomly from the entire set of genes. The number of genes
picked must equal the number of genes in the signature that is being validated. The AUC of the
signature genes is compared with the AUC of the picked genes. Similarly, a large number of
randomly picked signatures are compared with the signature that is being validated. The
performance of the identified gene signature must be significant when compared to the other
randomly picked signatures. The lower the p-value from the random test is, the better is the

signature.

In the datasets, when there were duplicate probes for genes, the probe that resulted in the most
significant (least) p-value when fitted in to Cox model was considered the best probe and was
used for time dependant ROC analysis of the entire signature. Thus time dependant ROC

analysis [16] was done on the Training dataset (UM+HLM) and on both the Test datasets (DFCI
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and MSK). The function “coxph” in R was used for the calculation of p-values to find the most

significant probe from duplicate probes.

The Tables 3-3, 3-5, 3-7 show the AUC values over years starting from 1 to 9 and for all the four
identified signatures in training dataset, DFCI test set and MSK test set respectively. The Tables
3-4, 3-6, 3-8 are the p-values of the corresponding signature obtained when compared to the
randomly picked signatures from random test for training dataset, DFCI test set and MSK test set

respectively.

Table 3-3: AUC’s of training set (256 samples) obtained when best probes among duplicates were considered

11-gene 21-gene 31-gene 50-gene
1-year 0.684292 0.73329 0.777634 0.812282
2-years 0.648464 0.683333 0.729109 0.722581
3-years 0.661654 0.684145 0.711605 0.730173
4-years 0.642624 0.675829 0.704544 0.715059
5-years 0.640428 0.687573 0.707053 0.728794
6-years 0.64902 0.69424 0.703125 0.749081
7-years 0.644137 0.696312 0.711665 0.749984
8-years 0.628796 0.68712 0.699266 0.743927
9-years 0.618716 0.680933 0.693261 0.744874

Table 3-4: p-values from Random test of training set (256 samples) obtained when best probes among
duplicates were considered

11-gene 21-gene 31-gene 50-gene
3yr random 0.05 0.11 0.12 0.35
Syr random 0.32 0.26 0.38 0.78

As per the values shown in the Tables 3-3 above for Training dataset, ROC values were good for
the 50 gene dataset. But according to Table 3-4, the Random test values were bad. The Random

test values from Table 3-4 of the 11 gene and the 31 gene signatures showed better results. So a
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tradeoff between the AUC values and the Random Test values points to the 31 gene signature

which is nearly good in both the validations.

Table 3-5: AUC’s of DFCI test set (82 samples) obtained when best probes among duplicates were considered

11-gene 21-gene 31-gene 50-gene
1-year 0.610755 0.682458 0.773368
2-years 0.660634 0.716742 0.80724
3-years 0.712601 0.778187 0.847458 Error in fitter
4-years 0.706731 0.802885 0.866071 Ran out of iterations
S-years 0.719577 0.789021 0.831349 and did not converge
6-years 0.7225 0.780625 0.839375
7-years 0.731618 0.77451 0.834559
8-years 0.728875 0.774468 0.828571
9-years 0.728875 0.774468 0.828571

Table 3-6: p-values from Random test of DFCI test set (82 samples) obtained when best probe among

duplicates were considered

11-gene 21-gene 31-gene 50-gene
3 yr random 0.51 0.45 0.61 Error in fitter
Syr random 0.49 0.67 0.7 Ran out of iterations

From the Table 3-5 above for DFCI dataset, it was seen that the 50 gene signature had errors to

fit in the model and hence was be ruled out. Since the Random test values from Table 3-6 were

not good for any signature in this dataset, only the AUC values were considered to decide that

the 31 gene signature was better than the other signatures.

Table 3-7: AUC’s of MSK test set (104 samples) obtained when best probes among duplicates were

considered

11-gene 21-gene 31-gene 50-gene
1-year 0.778878 0.933993 0.980198
2-years 0.720284 0.78876 0.861757
3-years 0.764359 0.828234 0.880837 Error in fitter
4-years 0.742069 0.816092 0.848736 Ran out of iterations
S-years 0.72479 0.833613 0.85 and did not converge
6-years 0.740196 0.841503 0.851307
7-years 0.745865 0.842275 0.84994
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8-years 0.745865 0.842275 0.84994

9-years 0.745865 0.842275 0.84994

Table 3-8: p-values from Random test of MSK test set (104 samples) obtained when best probes among
duplicates were considered

11-gene 21-gene 31-gene 50-gene
3yr random 0.23 0.19 0.23 Error in fitter
Syr random 0.35 0.08 0.32 Ran out of iterations

From the values from the Table 3-7 above for MSK dataset, it was seen that the AUC values
show in favor of the 31 gene signature where as the Random test values from Table 3-8 were in

favor of the 21 gene signature.

Thus considering all the three datasets, Time dependant ROC values and Random test together

were more in favor of the 31 gene signature over the other signatures.

3.3.2 Cox proportional hazards model on 11, 21 and 31 Gene Signatures
For the COX modeling, the training dataset is first fit in to the Cox model and then the cutoff
values obtained by the fitting are applied on the test datasets. Three different cutoffs from

training dataset were used which are mean, median and the nearest point.

Mean or Median as cutoff:

The means/medians of the samples of the training dataset were calculated and were applied as
the cutoffs for the test datasets. Kaplan Meier plots were plotted to see if the stratification was
significant. Only three signatures (11-genes, 21-genes and 31-genes) were considered for
evaluation in Cox model. The fourth signature was ignored as it gave errors in the previous

models. The results are shown in Tables 3-9, 3-10 and 3-11 for 11-gene, 21-gene, and 31-gene
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signatures respectively. The Kaplan Meier plots were not displayed for mean/median as cutoff,

as they were better for the nearest point cutoff which will be discussed below.

Nearest point as cutoff:
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Figure 3-3: Finding Nearest point as cutoff for Figure 3-4: KM plot of Training data with nearest
Training data for 31 genes point cutoff for 31 genes

In this process, the training dataset for each signature is fit in the Cox model for the predict time
equaling 3 years. The time dependant ROC curve is plotted. Then the cutoff point has to be
chosen. To choose the cutoff point, the distance from the point sensitivity=1 to each and every
point on the time dependant ROC curve plotted before is calculated. The cutoff point would be
none other than the point whose distance is the minimum. In other words, it is the point on the
curve nearest to the left top corner of the plot. The point would always be the point of
intersection of the time dependant ROC curve and the diagonal (not passing through origin). The
plot is shown in Figure 3-3. Kaplan Meier plots are drawn for the 31 gene signature to see if the
stratification of the data was significant or not as shown in Figure 3-4. Since the stratification

from KM plot was very good and the log-rank p-value of the dataset was very significant, this
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cutoff point from training set was used to fit the test datasets in the Cox model.Kaplan Meier

plots of the outputs were drawn as shown in Figure 3-5 and Figure 3-6.
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Figure 3-5: KM plot of DFCI data with nearest
point cutoff of training data for 31 gene signature

Figure 3-6: KM plot of MSK data with nearest
point cutoff of training data for 31 gene signature

Table 3-9: Cox model outputs for various cutoffs of training dataset applied on both DFCI and MSK test
datasets for 11-gene signature

11-gene signature

train cutoff train output MSK test output DFCI test output
Train p-value Test p-value Test p-value
) 0.02989034 0.08099651 0.2264746
median Train cutoff Test cutoff Test cutoff
-1.521898 -1.521898 -1.521898
Train p-value Test p-value Test p-value
0.007076216 0.03688842 0.109008
mean Train cutoff Test cutoff Test cutoff
-1.502247 -1.502247 -1.502247

nearest point

Train p-value
0.007076216
Train cutoff
-1.501426

Test p-value
0.03688842
Test cutoff
-1.501426

Test p-value
0.109008
Test cutoff
-1.501426
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From the Table 3-9 above, it can be seen that the log-rank p-values for 11 gene signature for

MSK dataset were significant but they were not significant for the DFCI dataset for any kind of

cutoff values.

Table 3-10: Cox model outputs for various cutoffs of training dataset applied on both DFCI and MSK test
datasets for 21-gene signature

train cutoff train output MSK test output DFCI test output

Train p-value Test p-value Test p-value

1.86E-05 3.99E-05 0.04601307
median Train cutoff Test cutoff Test cutoff
-0.7944426 -0.7944426 -0.7944426

Train p-value Test p-value Test p-value

3.51E-05 5.57E-05 0.06825427
21-gene signature mean Train cutoff Test cutoff Test cutoff
-0.8304135 -0.8304135 -0.8304135

Train p-value Test p-value Test p-value

1.26E-07 1.58E-07 0.01306106
nearest point Train cutoff Test cutoff Test cutoff

-0.63574 -0.63574 -0.63574

From the Table 3-10 above, it can be seen that the log-rank p-values for 21 gene signature were

significant, except when the mean was used as a cutoff for DFCI dataset.

Table 3-11: Cox model outputs for various cutoffs of training dataset applied on both DFCI and MSK test
datasets for 31-gene signature

train cutoff train output MSK test output DFCI test output
Train p-value Test p-value Test p-value
1.35E-08 4.59E-05 0.000148722
median Train cutoff Test cutoff Test cutoff
0.1062929 0.1062929 0.1062929
Train p-value Test p-value Test p-value
1.16E-07 2.13E-05 0.000607811
31-gene signature mean Train cutoff Test cutoff Test cutoff
0.1238266 0.1238266 0.1238266
Train p-value Test p-value Test p-value
1.97E-08 2.13E-05 0.000124558
nearest point Train cutoff Test cutoff Test cutoff
0.1784121 0.1784121 0.1784121
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From the Table 3-11 above, it can be seen that the log-rank p-values for 31 gene signature were

very significant in all the datasets.

Since all the above methods showed good results for 31 gene signature, it was considered to be
further validated. Though the 21 gene signature had almost good results, 31 gene signature was

considered as it included all the 21 genes from the 21 gene signature.

Since 31 gene signature performed well in the above validation techniques, we tried to evaluate

the performance of just the Stage I patients predicted from the above model.

There were 157 patients in the Training dataset who belonged to Stage I and among them 83
patients were predicted as Good Prognosis and 74 patients were predicted as Poor Prognosis. The
log-rank p-value and the KM plot shown in Figures 3-7 below show that Stage I is very

significant in the Training dataset.
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Figure 3-7: KM plot of Training data for Stage I patients

There were 56 patients in DFCI dataset who belonged to Stage I and among them 24 patients

were predicted as Good Prognosis and 32 patients were predicted as Poor Prognosis. There were
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63 patients in MSK dataset who belonged to Stage I and among them 41 patients were predicted
as Good Prognosis and 22 patients were predicted as Poor Prognosis.
Thus it can be seen from the Figures 3-8 and 3-9 below that the stratification for Stage I patients

was very significant and that the log-rank p-values were very significant.
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Figure 3-8: KM plot of DFCI data for Stage I Figure 3-9: KM plot of MSK data for Stage I
patients patients

Then the Stage I was further split in to Stage IA and Stage IB patients and the same analysis was

performed.

There were 76 patients in the training dataset (UM+HLM) who belonged to Stage IA and among
them 48 patients were predicted as Good Prognosis and 28 patients were predicted as Poor
Prognosis. Thus the training dataset (UM+HLM) was significant for Stage IA group according to

the log-rank p-value and KM plot as shown in Figure 3-10 below.
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Figure 3-10: KM plot of Training data for Stage IA patients

There were 11 patients in DFCI dataset who belonged to Stage IA and among them 5 patients
were predicted as Good Prognosis and 6 patients were predicted as Poor Prognosis. There were
27 patients in MSK dataset who belonged to Stage IA and among them 18 patients were

predicted as Good Prognosis and 9 patients were predicted as Poor Prognosis.

According to the KM plots and log-rank p-values shown in Figures 3-11 and 3-12, Stage IA of
the Test sets (DFCI and MSK) was not as significant as Stage I, which might be because of the

fewer number of patients belonging to Stage IA in the analysis.
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Figure 3-12: KM plot of MSK data for Stage IA

patients

There were 81 patients in the training dataset (UM+HLM) who belonged to Stage IB and among

them 35 patients were predicted as Good Prognosis and 46 patients were predicted as Poor

Prognosis as shown in the KM plot in Figure 3-13 below.
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Figure 3-13: KM plot of Training data for Stage IB patients

There were 45 patients in DFCI dataset who belonged to Stage IB and among them 19 patients

were predicted as Good Prognosis and 26 patients were predicted as Poor Prognosis. There were
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36 patients in MSK dataset who belonged to Stage IB and among them 23 patients were
predicted as Good Prognosis and 13 patients were predicted as Poor Prognosis.
Thus Stage IB in DFCI and MSK datasets was significant from the log-rank p-values and KM

plots in the Figures 3-14 and 3-15 shown below.
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Figure 3-14: KM plot of DFCI data for Stage IB Figure 3-15: KM plot of MSK data for Stage IB
patients patients

3.4. Summary

This chapter provided a flow chart of the methodology used and discussed how the gene
signatures were identified using implication networks. The details of the datasets used were
mentioned and all the procedures used and the results obtained by the methodology were also
summarized. The major cancer hallmarks which were used to identify signatures were described
and all the gene signatures identified were given. Survival analysis results were provided for all
the datasets. Thus the 31 gene signature was considered to be the most significant from all the

analysis done and it will be considered for further evaluation.
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Chapter 4

4 Prognostic Validation, Clinical Evaluation & Topological Validation

4.1 Introduction

In the earlier chapter, details were provided on the identification of gene signatures. This chapter
discusses about the validation techniques that were used and all the processing that was done on
the datasets. Details about the gene signature were provided. Prognostic validation performed
done using techniques like Concordance probability estimates and Gene set enrichment analysis.
Clinical evaluation was conducted using Multivariate COX proportional hazards model.
Topological validation was done by comparing the interactions from implication networks with
interactions from Bayesian networks built using Tetrad IV. Various web based tools were also
used to confirm the presence and the significance of the interactions from implication networks.
All the results that were obtained from Prognostic validation, Clinical evaluation, and

Topological validation are provided.

4.2 Gene Signature Details and Differentially Expressed genes

Since the 31 gene signature was considered to be the most prognostic signature, the details of the
31 genes were provided. The details include the chromosome locations, molecular functions and
classifications that have been confirmed by Dr. Yong Qian from The National Institute for

Occupational Safety and Health (NIOSH). These details are shown in the Table 4-1 below.
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Table 4-1: Details of the 31 gene signature that have been confirmed by Dr. Yong Qian from NIOSH

Name PROBESET ID | Chromosome Molecular function Classification
(of the best location
probe)
Unknown 215642 _at 10g23.33
Unknown 217470_at 4935.2
ACTL6B 206014 _at 7922 Vesicular transport, spindle orientation, | Structure
nuclear migration and chromatin
remodeling
ACTR8 218658 s_at 3 Structure
ADAM3B 217237 _at 16912.1
BCDIN3 219798 s_at 7q22.1 S-adenosyl-L-methionine-dependent Metabolism
methyltransferase
Clorf68 217087_at 1g21.3
CAP2 212554 _at 6p22.3
CDKN2B 207530_s_at 9p21 Cell growth regulator Oncogene
DAG1 205417 _s_at 3p21 Link the cytoskeleton to the Structure
extracellular matrix
DEFA5 207529_at 8pter-p21 Host defense Immunity
dJ222E13.2 | 214828 _s_at 22q13.2
ESM1 208394 _x_at 5q11.2 Lung endothelial cell-leukocyte Signaling transduction
interactions
FABP7 216192_at 6022-g23 Fatty acid uptake, transport, and Metabolism
metabolism
GAL3ST1 205670_at 22q12.2 Sulfotransferase activity Metabolism
H2AFB3 214412 at Xq28 A protein component of histone Structure
LOR 207720_at 1921 A major protein component of the Structure
cornified cell envelope
PALM 203859_s_at 19p13.3 control of cell shape Structure
PCDHB3 221410_x_at 5g31 Establishment and maintenance of Structure
specific neuronal connections in the
brain
PCDHGA3 209478_at 5931 Establishment and maintenance of Structure
specific neuronal connections in the
brain
PRKACA 216234 _s_at 19p13.1 Protein kinase Signaling transduction
PRR4 204919_at 12p13 Protection in eye Immunity
RPL27A 203034_s_at 11p15 A component of ribosome Metabolism
SAMDA4B 220457_at 19q13.2
SCGB2A2 206378_at 11g13
SLC22A11 220100_at 11913.1 Mediates saturable uptake of estrone Metabolism
sulfate, dehydroepiandrosterone
sulfate and related compounds
SSFA2 202506_at 2qg31.3
TAC3 219992 at 12g13-g21 Vasodilators and secretagogues Signaling transduction
TEX11 221259 s_at Xq13.1
TMA4SF20 220639 _at 2036.3
TMEM135 | 222209_s_at 11q14.2
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To find the differentially expressed genes from the 31 gene signature, T-tests and fold changes
were calculated. To perform the Fold change analyses, data should be distributed normally. Since
the data we have been using is not normally distributed, we log transform the data to change it to
the required form. The histograms of a few genes over all the samples and histograms of a few

samples over all the genes were plotted as shown below in the Figures 4-1 and 4-2.

MO LOG DATAFOR GALISTY NO LOG DATA FOR HZAFB3 NOLOG DATAFOR PALM NO LOG DATA FOR PCDHBE3

LOG DATAFOR GAL3STH LG DATA FOR H2ZAFBS LG DATA FOR PALM LOG DATA FOR PCDHES

Figure 4-1: Histograms for 4 genes over all the 442 samples of data showing that the log transformed data is
less skewed than data which was not log transformed

NO LOG DATA FOR NCI_LUNG_91_U133A NO LOG DATA FOR MOFF.3003D NO LOG DATA FOR CL2004110909AA NO LOG DATA FOR NCI_U133A_99L

LOG DATA FORNCI_LUNG_91_U133A LOG DATA FOR MOFF.3009D LOG DATA FOR CL2004110909AA LOG DATA FOR NCI_U133A_99L

Figure 4-2: Histograms for 4 samples, each from one dataset over all the 22215 genes of data showing that the
log transformed data is less skewed than data which was not log transformed
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To find the differentially expressed genes, T-tests and fold changes analyses were performed.
Their results for the 31 genes are shown below in Table 4-2 and Table 4-3. The data for all the
442 samples (UM+HLM+DFCI+MSK) was considered together. T-tests for the 31 genes with
respect to the different predictive factors such as Stage, Tumor Differentiation and Lymph node
metastases are performed. The genes that were significant in T-test (< 0.05) are shown with a star

in the plots shown for fold changes further below.

There were three stages (1, 2 and 3) and calculations were conducted with respect to stage 1
samples. For analysis with Stage, T-tests for Stage 2 to Stage 1 had four significant genes and T-
tests for Stage 3 to Stage 1 also had four significant genes. They are shown with a star in the

Figure 4-3 below.

There were three kinds of tumor differentiation (well, poorly and moderate differentiated) and
the calculations were performed with respect to well differentiated samples. For analysis with
Tumor Differentiation, T-tests for Moderate differentiation to Well differentiation had six
significant genes and T-tests for Poor Differentiation to Well differentiation had eight significant

genes. They are shown with a star in the Figure 4-4 below.

There were two kinds of lymph node metastases (LN- and LN+) where calculation was done
with respect to LN- samples. For analysis with Lymph node metastases, T-tests for lymph node
positive to lymph node negative had no significant genes. All the results obtained for T-tests are

shown below in Table 4-2.
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Table 4-2: T-test outputs for different predictors such as Stage (Stage-2 to Stage-1 and Stage-3 to Stage-1),
Tumor differentiation (Moderate to Well and Poor to Well) and Lymph node metastases (LN+ to LN-)
outputs for all the 31 genes in the signature

T-test for T-test for T-test for
T-test for stage | T-test for stage . Tum(?r . Tumor Lymph node
Gene Symbols Differentiation . .
2to 1l 3to1l Moderate to Differentiation metastases
well Poor to Well LN+ to LN-

215642 at 0.441814 0.145264 0.857738 0.738474 0.322506
217470_at 0.655542 0.338437 0.661369 0.131298 0.393442
ACTL6B 0.727608 0.607288 0.768965 0.173359 0.864637
ACTR8 0.033593 0.750247 0.551963 0.856646 0.055846
ADAM3B 0.938388 0.068125 0.013012 0.000868 0.288685
BCDIN3 0.858558 0.223081 0.289013 0.802365 0.648078
Clorf68 0.022491 0.700184 0.169695 0.012192 0.193197
CAP2 0.768851 0.457084 0.571463 0.000115 0.96312
CDKN2B 0.446325 0.945302 0.264274 0.894857 0.307397
DAG1 0.542864 0.775556 0.97073 0.350751 0.855356
DEFA5 0.259804 0.189907 0.160888 0.180041 0.729967
dJ222E13.2 0.595055 0.729298 0.15501 0.765353 0.262961
ESM1 0.039148 0.280311 0.000309 0.000389 0.050772
FABP7 0.838281 0.818263 0.713371 0.193622 0.929565
GAL3ST1 0.727634 0.01859 0.039144 0.002981 0.57002
H2AFB3 0.322762 0.528597 0.743628 0.448308 0.514133
LOR 0.469576 0.575702 0.987738 0.124489 0.998675
PALM 0.267144 0.685552 0.825739 0.884183 0.557783
PCDHB3 0.652335 0.085702 0.029541 0.067242 0.603537
PCDHGA3 0.354072 0.105162 0.32659 0.93396 0.470739
PRKACA 0.16995 0.224605 0.263827 0.023981 0.844798
PRR4 0.765668 0.02991 0.194364 0.109536 0.742261
RPL27A 0.553478 0.011909 0.079101 0.962865 0.378543
SAMD4B 0.877808 0.295199 0.405373 0.134323 0.935369
SCGB2A2 0.242397 0.298675 0.94019 0.769274 0.493917
SLC22A11 0.34981 0.770405 0.930257 0.986529 0.657845
SSFA2 0.024944 0.051833 0.366235 0.005074 0.330087
TAC3 0.258139 0.087507 0.903948 0.249307 0.743349
TEX11 0.164771 0.161557 0.006716 0.228346 0.695372
TM4SF20 0.858663 0.80129 0.654298 0.818728 0.993537
TMEM135 0.618155 0.003059 0.00016 0.039461 0.820871
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Fold Changes for the 31 genes with respect to the different predictive factors such as Stage,
Tumor Differentiation and Lymph node metastases are shown below in Figures 4-3, 4-4, and 4-5
respectively. The genes that have fold changes >2 are considered to be upregulated and the genes
that have fold changes <0.5 are considered to be down regulated. There were no genes that were

upregulated or down regulated according to Fold changes.

There were three stages (1, 2 and 3) and fold change calculations were conducted with respect to
stage 1 samples which are shown in Figure 4-3. There were three kinds of tumor differentiation
(well, poorly and moderate differentiated) and the calculations were performed with respect to
well differentiated samples which are shown in Figure 4-4. There were two kinds of lymph node
metastases (LN- and LN+) where calculation was done with respect to LN- samples as shown in

Figure 4-5. Error bars showing the 95% confidence intervals are also shown in the figures.
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Table 4-3: Fold changes for different predictors such as Stage (Stage-2 to Stage-1 and Stage-3 to Stage-1),
Tumor differentiation (Moderate to Well and Poor to Well) and Lymph node metastases (LN+ to LN-)
outputs for all the 31 genes in the signature

Fold Change
for Tumogr Fold Change elll Gt
Fold Change Fold Change Differentiation for Tumor eI i
Gene Symbols | forstage2to 1l | forstage3to1l | Moderate to Differentiation :O(ie
=A2/1 =A3/1 Well = Poor to Well = IT\li :; f;es:
AMod:IrIate/W APoor/Well ALN+/LN-

215642_at 1.024592 0.864067 0.96636 1.168628 1.047483
217470_at 0.867161 1.641676 1.585661 0.622946 0.893683
ACTL6B 0.559918 1.620453 1.347857 0.609641 0.722991
ACTRS8 0.378939 90.51783 42.39918 0.113063 0.236895
ADAM3B 0.559942 6.168879 2.771941 1.491585 0.854981
BCDIN3 4.87E-05 6.66E+12 84896277 2.63E-09 0.000392
Clorfe8 0.023504 317.101 51.31794 0.033108 0.141262
CAP2 0.369338 72610.67 58115.3 37.67143 0.757832
CDKN2B 0.260977 2.634748 2.371027 0.473173 0.43117
DAG1 0.000011 9.95E+23 5.51E+18 2.51E-09 2.44E-05
DEFAS5S 6.41E-19 282.4736 135.1423 6.94E-11 3.8E-13
dJ222E13.2 0.030751 230.7319 13.75698 0.023975 0.032192
ESM1 0.000932 254493.4 9091.178 0.023702 0.034733
FABP7 6.18482 1673.235 0.253757 0.017357 4.768529
GAL3ST1 0.066054 228.7593 19.25724 2.281099 0.28678
H2AFB3 0.473328 4.360512 7.784657 0.856106 0.494805
LOR 0.888696 3.77847 1.710162 0.877704 1.01584
PALM 0.237886 7.77E+08 1544293 0.000466 0.101454
PCDHB3 0.028522 450103.8 150.0798 3.77E-05 0.036493
PCDHGA3 0.820507 4.22E+18 502.1335 1.06E-11 0.207464
PRKACA 0.061531 131.563 18.31498 0.017633 0.112883
PRR4 2.905829 1447.149 143.6872 0.054177 2.557132
RPL27A 1.21E-82 3.3E+171 2.6E+124 2.66E-58 1.99E-69
SAMD4B 0.500379 7.762561 0.908299 0.304523 1.188885
SCGB2A2 0.95827 1.18309 0.922625 0.512091 0.908788
SLC22A11 0.759165 1.032998 2.002644 0.775557 0.717989
SSFA2 24945.98 2.12E+16 5.86E+24 1.584037 0.000148
TAC3 5.948372 2663.06 37.05733 0.0004 3.777423
TEX11 0.093164 233.0746 64.09065 0.249336 0.221878
TMA4SF20 2.79735 14.56566 2217.304 408.6983 2.20726
TMEM135 0.001094 118.9389 0.02566 2.61E-12 5.41E-05
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Figure 4-3: Fold changes of the 31 genes for Stage, where blue color bars represent fold change of stage 2

w.r.t. stage 1 and red color bars represent fold change of stage 3 w.r.t. stage 1 and genes with stars on the top
represent the significant genes from T-test with p<0.05.
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from T-test with p<0.05.
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Figure 4-5: Fold changes of the 31 genes for Lymph node metastases, where blue color bars represent fold
change of lymph node positive w.r.t. lymph node negative.

4.3 Prognostic Validation
Prognostic Validation is done using metrics such as Overall Accuracy, Concordance Probability
Estimate (CPE), and Gene Set Enrichment Analysis (GSEA). Our model is also validated using

other methods in Weka. Now only the 31 gene signature is considered for validation.

4.3.1 Overall Accuracy:

Training data:

Overall Accuracy of the Training data for 31 gene signature was calculated with 3 years as a
cutoff. Poor prognosis corresponds to samples that were dead by the end of the cut off period (in
actual data) or were predicted as high risk through the model (in predicted data). Similarly, good
prognosis corresponds to the samples that had their status to be living by the end of cutoff period
(in actual data) or were predicted as low risk through the model (in predicted data). The

contingency table was formed from the comparison of actual data with the predicted data. The 9
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censored cases were ignored. There were 67 cases in Training data which belonged to Poor
prognosis in both actual data as well as the predicted data which constituted the True Positives.
Similarly there were 88 cases which belonged to Good prognosis in both actual and predicted
data which constituted the True Negatives. Similarly False Positives and False Negatives were
determined for the Training data which are shown below in the Table 4-4 along with the
sensitivity, specificity and overall accuracy. The contingency table for the actual data versus the

predicted data is shown below.

Predicted data

Poor Good

Actual Poor TP=67 FP=64

data Good FN=28 TN=88

Table 4-4: Sensitivity, Specificity and Overall Accuracy of Training data calculated from contingency table

Training Actual data | Predicted data | Sensitivity Specificity Overall Accuracy

Poor prognosis 95 133 | Tp/(TP+FN) | TN/(FP+TN) | (TP+TN)/(TP+FP+FN+TN)
Good prognosis 152 123 =0.705263 =0.578947 =0.62753

DFCI data:

Overall Accuracy of the DFCI data for 31 gene signature was calculated with 3 years as a cutoff.
Poor prognosis corresponds to samples that were dead by the end of the cut off period (in actual
data) or were predicted as high risk through the model (in predicted data). Similarly, good
prognosis corresponds to the samples that had their status to be living by the end of cutoff period
(in actual data) or were predicted as low risk through the model (in predicted data). The
contingency table was formed from the comparison of actual data with the predicted data. The 5

censored cases were ignored. There were 19 cases in Training data which belonged to Poor
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prognosis in both actual data as well as the predicted data which constituted the True Positives.
Similarly there were 26 cases which belonged to Good prognosis in both actual and predicted
data which constituted the True Negatives. Similarly False Positives and False Negatives were
determined for the DFCI data which are shown below in the Table 4-5 along with the sensitivity,
specificity and overall accuracy. The contingency table for the actual data versus the predicted

data is shown below.

Predicted data

Foor Good
Actual Poor TP=19 FP=29
data Good FN=3 TN=26

Table 4-5: Sensitivity, Specificity and Overall Accuracy of DFCI data calculated from contingency table

DFCI Actual data | Predicted data | Sensitivity Specificity Overall Accuracy
Poor prognosis 22 49| TP/(TP+EN) | TN/(FP+TN) | (TP+TN)/(TP+FP+EN+TN)
Good prognosis 55 33 =0.863636 =0.472727 =0.584416

MSK data:

Overall Accuracy of the MSK data for 31 gene signature was calculated with 3 years as a cutoff.
Poor prognosis corresponds to samples that were dead by the end of the cut off period (in actual
data) or were predicted as high risk through the model (in predicted data). Similarly, good
prognosis corresponds to the samples that had their status to be living by the end of cutoff period
(in actual data) or were predicted as low risk through the model (in predicted data). The
contingency table was formed from the comparison of actual data with the predicted data. The 10
censored cases were ignored. There were 19 cases in Training data which belonged to Poor
prognosis in both actual data as well as the predicted data which constituted the True Positives.

Similarly there were 52 cases which belonged to Good prognosis in both actual and predicted
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data which constituted the True Negatives. Similarly False Positives and False Negatives were
determined for the MSK data which are shown below in the Table 4-6 along with the sensitivity,
specificity and overall accuracy. The contingency table for the actual data versus the predicted

data is shown below.

Predicted data

Poor Good
Actual Poor TP=19 FP=19
data Good FN=4 TM=52

Table 4-6: Sensitivity, Specificity and Overall Accuracy of MSK data calculated from contingency table

MSK Actual data | Predicted data | Sensitivity Specificity Overall Accuracy
Poor prognosis 23 43| TP/(TP+FN) | TN/(FP+TN) | (TP+TN)/(TP+FP+FN+TN)
Good prognosis 71 61 =0.826087 =0.732394 =0.755319

4.3.2 Concordance Probability Estimate (CPE)
CPE [29] was calculated for the 31 gene signature using the function “phcpe” from R for both
the test datasets DFCI and MSK. The outputs of the function were compared with the model

from Shedden et al [20] as shown in Table 4-7.

Table 4-7: Comparison of 31 gene signature with model from Shedden et al [20] on both the Test datasets
where log-rank p-values, hazard ratios, and confidence intervals were obtained from the CPE package which
use the risk scores of the entire signature as input

DFCI dataset Hazard ratio with 95% CI Log-rank p-value CPE
For model from Shedden et al [20] 1.83 [1.24, 2.70] 0.002 0.63
For 31 gene signature with Risk Scores 2.68 (1.88, 3.82] 5.30E-08 0.71
MSK dataset Hazard ratio with 95% ClI Log-rank p-value CPE
For model from Shedden et al [20] 1.76 [1.20, 2.60] 0.003 0.62
For 31 gene signature with Risk Scores 3.31[2.11,5.2] 2.10E-07 0.70

The hazard ratios for both the test datasets were higher for the 31 gene signature which shows

that the signature has strong capability of estimating the risk. The hazard ratios and the 95%
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confidence intervals are shown by error bars in the Figure 4-6. The log-rank p-values of the test
datasets are much lower for the 31 gene signature when compared to the results from the model
from Shedden et al [20] as shown in Figure 4-7 which shows that they are highly significant. The
CPE values are supposed to be higher than 0.5 and as high as possible. Figure 4-8 shows that the
31 gene signature had much higher CPE values than the model from Shedden et al [20]. This
proves that the 31 gene signature has better performance in terms of CPE, hazard ratios, and log-

rank p-values when compared to the model from Shedden et al [20].

Comparision of Hazard ratios and 95% confidence Comparision of p-values of 31 gene signature with
intervals of 31 gene signature with model from modelfrom Shedden et al
Shedden et al
0.01 0.002 uuua
s 0.001 -
5 T 0.0001 -
4 347 ™ Formodel from 0.00001 7 B For model
) Shedden et al from Shedden

3 71 0.000001 ] etal

0.0000001 -

B For 31 gene
signature with

B For3lgene 1E-08 -

1 signature with Risk Risk Scores
scores 1E-09 -
0 1E-10
DFCI Hazard ratio MSK Hazard ratio DFCl pvalues  MSK p-values

Figure 4-6: Hazard ratios and 95% Confidence Figure 4-7: Comparison of p-values (obtained
Intervals (obtained from the CPE package which from the CPE package which use the risk scores of
use the risk scores of the entire signature as input) the entire signature as input) for 31 gene signature
shown along with error bars for 31gene signature and model from Shedden et al. on a logarithmic
and the model from Shedden et al. scale
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Figure 4-8 : Concordance Probability Estimates compared between 31 gene signature and the model from

Shedden et al.

4.3.3 Gene Set Enrichment Analysis(GSEA)

To run GSEA [30], gene expression values of all the genes were taken. Since it is better to have
as many samples as possible, the training (UM+HLM) and test datasets (DFCI and MSK) were
combined to form the 442 samples dataset. The samples were then assigned a class and there
were a few censored cases which did not fall in to either of the classes. Hence there were 358
samples after censoring 84 samples. Three files are loaded into GSEA as shown in Figure 4-9:
first one is the expression dataset file which contains the gene expression values of the entire set
of genes; second one is the phenotype labels file which includes the phenotype labels associated

to each sample; third one is the gene sets file which gives the names of genes for one or more

gene sets.
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Figure 4-9: Screenshot for loading data in to GSEA

We used 15 gene sets which included our 31 gene dataset. The remaining 14 gene sets were

extracted from different published papers. The sizes of the datasets used and the sizes that were

identified by GSEA are shown in the Table 4-8 below.

Table 4-8: Different signatures used to compare the performance of the 31 gene signature in GSEA

NAME

ORIGINAL SIZE

AFTER RESTRICTING TO DATASET

STATUS

POTTI_133G [51]

131

125

CHEN_5G [52]

5

5

BEER_50G [53]

49

44

SHEDDEN_MA [20]

9591

Rejected!

SHEDDEN_MB [20]

50

38

SHEDDEN_MC [20]

23

22

SHEDDEN_MD [20]

36

32

SHEDDEN_MH [20]

252

223

BOUTROS_6G [54]

BHATTACHARIJEE_150G [55]

131

124

RAPONI_50G [56]

45

39

LAU_3G [57]

LU_64G [58]

63

59

GUO_35G [59]

35

26

IMPLICATION_31G

29

25
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Figure 4-10: Screenshot showing the Basic fields in running GSEA

The datasets were collapsed to gene symbols and HG U133A chip platform was used. 1000

permutations were done on phenotypes as shown in Figure 4-10. Ratio of classes was taken as a

metric for ranking the genes and the real values of the genes were considered as shown in

Figures 4-11 and 4-12.

Basic fields

Save results in this folder
Diff_of_Classes

Analysis name |my_analy5is |
Enrichment statistic |weighted v|
Metric for ranking genes |SignaI2Noise '|
Gene list sorting mode SignalZNoise =
tTest
Gene list ordering mode Cosine
Max size: exclude larger sets Euclidean
Manhatten
Min size: exclude smaller sets
Pearson

Figure 4-11: Screenshot showing the Selection of Metric for ranking genes
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507 =
15 =

| Ch\Usershadmingsea_home\output\aprld
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Figure 4-12: Screenshot showing the selection of sorting the gene list based on their real values

There were only 14 gene sets as one of the gene set which had more than 500 genes was filtered

out from the analysis. Out of the 14 gene sets, 9 gene sets were enriched in phenotype “Good”.

In other words they were upregulated in Good prognosis as shown in Table 4-9. There were 4

gene sets among these 9 gene sets which were significant at FDR<25% which includes the

31genes dataset. Out of the 14 gene sets, there were 5 gene sets which were enriched in the

phenotype “Poor”. One of them is significantly enriched at FDR<25% as shown in Table 4-10.

Table 4-9: Different signatures Enriched in phenotype “Good”, which include the 31 gene signature

SIGNATURE NAME SIZE ES NES NOMP- 1 toR gvalue | FWERP-
INDEX value value
1 SHEDDEN_MD [20] 32 0.597466 2.385339 0 0 0
2 SHEDDEN_MC[20] 22 0.558553 2.172679 0 0.006652 0.013
3 BHATTACHARJEE_150G [55] 124 0.2782 1.553199 0.044595 0.178669 0.41
4 IMPLICATION_31G 25 0.992265 1.518779 0.255459 0.218715 0.587
5 GUO_35G [59] 26 0.228604 1.359544 0.12989 0.28394 0.845
6 RAPONI_50G [56] 39 0.221071 1.393075 0.156566 0.313299 0.822
7 CHEN_5G [52] 5 0.435005 1.138269 0.299257 0.370527 0.965
8 SHEDDEN_MB [20] 38 0.172793 1.148412 0.299652 0.41296 0.962
9 POTTI_133G [51] 125 0.069968 0.786085 0.694957 0.681874 0.999
Table 4-10: Different signatures Enriched in phenotype “Poor”
SIGNATURE NAME SIZE ES NES NOMP- 1 cop qvalue | FWERP-
INDEX value value
10 SHEDDEN_MH [20] 223 -0.51735 -2.33102 0 0.00139 0.002
11 LU_64G [58] 59 -0.14059 -1.22657 0.236994 0.551122 0.664
12 BEER_50G [53] 44 -0.18432 -0.99556 0.416422 0.740632 0.897
13 BOUTROS_6G [54] 6 -0.2156 -0.72 0.826552 0.799505 0.989
14 LAU_3G [57] 3 -0.36642 -0.81345 0.699589 0.848576 0.977
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Figure 4-13: Enrichment score plot for the 31 gene
signature picked from implication networks which
shows the Enrichment profile on the top and the
ranked list metric on the bottom
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Figure 4-14: Plot showing the Nominal
Enrichment Scores, False Discovery Rates and
Nominal P-values for all the signatures with
Signature index of each signature from Table 4-9
and 4-10. Index 4 represents the 31-gene signature
from implication networks

The Figures 4-13 above shows the Enrichment score plot for the 31 gene signature and Figure 4-

14 shows the comparison plot for nominal p-values and FDR with respect to NES for all the

signatures used, highlighting the 31 gene signature.

4.3.4 Comparison of model with other classification methods using WEKA

The model used to classify the samples in to two groups was compared against randomly picked

classifiers in Weka. Five classifiers were considered which are Random Tree Classifier, Support

Vector Machine (SVM or SMO) classifier, K-nearest neighbors (IBK) classifier, Multilayered

Perceptron classifier (Neural networks), and Bayes Net classifier.
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The actual classification of the groups based on the survival period and status of post operative
survival was compared with the classifications performed by the above mentioned classifiers.
The classification accuracies using nearest point classification in Cox model for implication
networks were calculated from the sensitivity, specificity, and overall accuracy measures
mentioned in the previous sections. Bayesian networks generated from TETRAD IV were also

compared for overall accuracies.

The comparison was performed for 5 year survival on the Training dataset (ULM/HLM). This
dataset had 229 samples after 27 samples were censored. The results are given in the Table 4-11
below. It can be seen that the Cox model had the best classification accuracy. The sensitivity and
specificity values were also calculated along with the overall accuracy. Significance test was
conducted on the accuracies obtained to get the p-values. The significance of all the other models
was calculated with accuracy of the Cox model as reference. If the p-values are small they imply
that the NULL hypothesis (here equal significance of the two compared overall accuracies) is
rejected and that the Alternative hypothesis (significance of larger overall accuracy >
significance of smaller overall accuracy) is strongly supported. Since all the p-values are very
small, it is obvious that the Cox model is highly significant when compared to other models.
These classifications were used to find the Concordance Probability Estimates, log-rank p-

values, hazard ratios, and confidence intervals for each model.
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Table 4-11: Comparison of classification accuracies of various methods from Weka with Cox model on

implication networks on the training dataset using p-values from significance test

correctly | incorrectly overall 7. p.
Training dataset classified classified | Sensitivity | Specificity
. . Accuracy | score | value
instances instances
Random Tree 121 108 56.8% 48.1% 52.8% 2.48 | 0.006
SMO (or SVM) 132 97 72.0% 40.4% 57.6% 1.45 | 0.073
IBK 129 100 58.4% 53.8% 56.3% 1.73 | 0.042
Multilayered 132 97 64.0% 50.0% | 57.6% | 1.45 | 0.073
Perceptron(Neural)
Bayes Net 120 109 90.4% 6.7% 52.4% 2.56 | 0.005
Bayesian Networks
i 133 96 65.6% 49.0% 58.1% 1.34 | 0.090
using TETRAD IV
Implication Networks
147 82 66.4% 61.5% 64.2% - -
- COX model

The Concordance Probability Estimates, log-rank p-values, hazard ratios, and the confidence

interval calculated from classifications from various models on training dataset (ULM/HLM) are

shown below in Table 4-12. The CPE values are supposed to be higher than 0.5 and the higher

they are, the better is the model. The log-rank p-values of the models must be less than 0.05 and

the lesser they are, the more significant the model is considered to be. The hazard ratios should

be as high as possible and the 95% confidence intervals should not contain 1 in their range. The

Cox model had highly significant results when compared to the other techniques.

Table 4-12: Comparison of Concordance Probability Estimates, log-rank p-values (obtained from the CPE
package with risk scores of the entire signature as input), hazard ratios (based on 5-year cutoff) and
confidence intervals (obtained from the CPE package with risk scores of the entire signature as input) of

various methods from Weka with Cox model on implication networks on the training dataset

Training dataset CPE RS hazard ratios with 95% Cl
values
Random Tree 0.524456 0.535865 1.1[0.809, 1.5]
SMO (or SVM) 0.539067 0.157513 1.27 [0.909, 1.77]
IBK 0.55727 0.145277 1.26 [0.923, 1.72]
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Multilayered Perceptron(Neural) 0.57637 0.053659 1.36 [0.992, 1.87]
Bayes Net 0.516962 0.816327 0.934 [0.53, 1.65]
Implication Networks-COX model 0.7123937 3.90E-08 2.48 [1.79, 3.42]

Since the training dataset had good results, we tried to validate the model on the testing datasets.
The classification from survival time and status was used as actual classification for the DFCI
test dataset. This dataset had 64 samples after 18 samples were censored. The classification
results for DFCI dataset for various classifiers used in Weka are shown below in comparison
with the Cox model in Table 4-13. Bayesian networks generated from TETRAD IV were also
compared for overall accuracies. The sensitivity and specificity values were also calculated along
with the overall accuracy. Significance test was conducted on the accuracies obtained to get the
p-values. The significance of all the other models was calculated with accuracy of the Cox model
as reference. If the p-values are small they imply that the NULL hypothesis (here equal
significance of the two compared overall accuracies) is rejected and that the Alternative
hypothesis (significance of larger overall accuracy > significance of smaller overall accuracy) is
strongly supported. Since all the p-values are very small, it is obvious that the Cox model is

highly significant when compared to other models.

Table 4-13: Comparison of classification accuracies of various methods from Weka with Cox model on
implication networks on the DFCI test dataset using p-values from significance test

correctly | incorrectly overall 7. p.
DFCI dataset classified classified | Sensitivity | Specificity

. . Accuracy | score | value

instances instances
Random Tree 34 30 64.3% 44.4% 53.1% 1.44 | 0.075
SMO (or SVM) 27 37 92.9% 2.8% 42.2% | 2.66 | 0.004
IBK 26 38 39.3% 41.7% 40.6% | 2.83 | 0.002
Multilayered 27 37 92.9% 2.8% | 42.2% | 2.66| 0.004
Perceptron (Neural)
Bayes Net 28 36 100.0% 0.0% 43.8% | 2.48 | 0.007
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Bayesian Networks 0 o o
using TETRAD IV 30 34 60.7% 36.1% 46.9% | 2.13 | 0.017
Implication 0 o o
Networks-Cox Model 42 22 92.9% 44.4% 65.6%

The Concordance Probability Estimates, log-rank p-values, hazard ratios, and the confidence

interval calculated from the model on DFCI dataset are shown below. All the instances in Bayes

Net were classified to the same group (Poor prognosis) and hence calculation of the parameters

was not possible (NA). This is because the calculation of parameters requires at least two

different groups. The CPE values are supposed to be higher than 0.5 and the higher they are, the

better is the model. The log-rank p-values of the models must be less than 0.05 and the lesser

they are, the more significant the model is considered to be. The hazard ratios should be as high

as possible and the 95% confidence intervals should not contain 1 in their range. From the results

shown below in Table 4-14, it can be concluded that Cox model had much significant results

when compared to other techniques.

Table 4-14: Comparison of Concordance Probability Estimates, log-rank p-values (obtained from the CPE
package with risk scores of the entire signature as input), hazard ratios (based on 5-year cutoff) and
confidence intervals (obtained from the CPE package with risk scores of the entire signature as input) of
various methods from Weka with Cox model on implication networks on the DFCI test dataset

DFCI dataset CPE log-rank p- hazard ratios with 95% Cl
values
Random Tree 0.543057 0.620414 1.19[0.597, 2.36]
SMO (or SVM) 0.693209 0.319597 0.443 [0.106, 1.85]
IBK 0.600628 0.230398 0.665 [0.34, 1.3]
Multilayered Perceptron(Neural) 0.693209 0.319597 0.443 [0.106, 1.85]
Bayes Net NA NA NA
Implication Networks-COX model 0.845703 0.0014 5.48 [1.93, 15.6]
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The classification from survival time and status was used as actual classification for the MSK
test dataset. This dataset had 65 samples after 39 samples were censored. The classification
results for MSK dataset for various classifiers used in Weka are shown below in Table 4-15.
Bayesian networks generated from TETRAD IV were also compared for overall accuracies. The
sensitivity and specificity values were also calculated along with the overall accuracy.
Significance test was conducted on the accuracies obtained to get the p-values. The significance
of all the other models was calculated with accuracy of the Cox model as reference. If the p-
values are small they imply that the NULL hypothesis (here equal significance of the two
compared overall accuracies) is rejected and that the Alternative hypothesis (significance of
larger overall accuracy > significance of smaller overall accuracy) is strongly supported. Since
all the p-values are very small, it is obvious that the Cox model is highly significant when

compared to other models.

Table 4-15: Comparison of classification accuracies of various methods from Weka with Cox model on
implication networks on the MSK test dataset using p-values from significance test

correctly | incorrectly overall 7. p.
MSK dataset classified | classified | Sensitivity | Specificity

: . Accuracy | score | value

instances | instances
Random Tree 35 30 67.6% 38.7% 53.8% | 1.44 | 0.075
SMO (or SVM) 31 34 2.9% 96.8% 47.7% | 2.13 | 0.017
IBK 26 39 29.4% 51.6% 40.0% 2.99 0.001
Multilayered 34 31|  100.0% 0.0% | 52.3%| 1.61| 0.054
Perceptron(Neural)
Bayes Net 34 31 100.0% 0.0% 52.3% | 1.61| 0.054
Bayesian Networks

8.8 41.99 50.89 1.78 | 0.037

using TETRAD IV 33 32 >8.8% % %
Implication Networks- 43 22 64.7% 67.7% |  66.2% - -
COX model
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The log-rank p-values, CPE, hazard ratios, and the confidence interval calculated from the model
on MSK dataset are shown below. All the instances in Multilayered Perceptron and Bayes Net
were classified to the same group (Poor prognosis) and hence calculation of the parameters was
not possible (NA). This is because the calculation of parameters requires at least two different
groups. The CPE values are supposed to be higher than 0.5 and the higher they are, the better is
the model. The log-rank p-values of the models must be less than 0.05 and the lesser they are, the
more significant the model is considered to be. The hazard ratios should be as high as possible
and the 95% confidence intervals should not contain 1 in their range. From the results shown
below in Table 4-16, it can be concluded that Cox model had much significant results when

compared to other techniques.

Table 4-16: Comparison of Concordance Probability Estimates, log-rank p-values (obtained from the CPE
package with risk scores of the entire signature as input), hazard ratios (based on 5-year cutoff) and
confidence intervals (obtained from the CPE package with risk scores of the entire signature as input) of
various methods from Weka with Cox model on implication networks on the MSK test dataset

MSK dataset CPE RIS - hazard ratios with 95% Cl
values
Random Tree 0.539067 0.651084 1.17 [0.59, 2.32]
SMO (or SVM) 0.538504 0.882016 1.17 [0.16, 8.53]
IBK 0.548117 0.565333 0.824[0.425, 1.6]
Multilayered Perceptron(Neural) NA NA NA
Bayes Net NA NA NA
Implication Networks-COX model 0.782544 0.00019 3.6 [1.84, 7.05]

Thus all the results above show that the Cox model predicted the outcomes with best
classification accuracies, CPE, log-rank p-values, and hazard ratios with 95% confidence

intervals.
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4.4 Clinical Evaluation
Clinical evaluation was done by comparing various predictive factors such as Age, Gender,
Lymph node metastasis, Tumor size, etc with the risk scores from our model. This is done using

multivariate Cox proportional hazards model.

Multivariate Analysis on Cox proportional hazards model

Multivariate analysis was done using the Cox proportional hazards model to compare the
significance of the risk scores from 31 gene signature with the other pathological factors. For
multivariate analysis, the risk scores of the 31 gene signature obtained in Cox model earlier were
used as a predictor. Mostly used covariates such as Age, Gender, Lymph node Metastasis, and
Tumor size were used with the risk scores of 31 gene predictors as shown in Table 4-17. In this
table, the other predictors were fit in to Cox model without the risk scores and then they were
again fit in to Cox model with the risk scores included. Both the analyses were compared which
showed that the addition of risk scores to other predictors made the significance of other

predictors to decrease and that the risk scores of our model had the most significant p-value.

Table 4-17: Multivariate Cox Proportional Analysis of Age, Gender, Lymph node Metastasis, Tumor size and
Risk Score*

Variable Log-rank p-value Hazard Ratio [95% CI]*
Analysis without risk score
AGE 0.00081 1.69[1.243, 2.3]
GENDER 0.059 0.777 [0.598, 1.01]
Lymph node Metastasis 6.20E-14 2.716[2.092, 3.53]
Tumor Size 0.0035 1.537 [1.151, 2.05]
Analysis with risk score
31 genes Risk Scores 2.30E-14 2.43[1.933, 3.05]
AGE 0.0056 1.55[1.136, 2.11]
GENDER 0.12 0.81[0.623, 1.05]
Lymph node Metastasis 1.00E-13 2.7 [2.081, 3.51]
Tumor Size 0.084 1.29 [0.966, 1.73]
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*Age was a binary variable (0 for an age less than 60 years and 1 for an age of 60 years or greater); Gender
was a binary variable (0 for Male and 1 for Female); Lymph node Metastasis was a binary variable (0 for N0-
stage and 1 for all other N-stages and missing values); Tumor size was a binary variable (0 for T0-stage and 1
for all other T-stages and missing values); Risk score was a continuous variable.

¥ CI denotes Confidence interval.

To perform a complete and comprehensive analysis on the pathological factors of Non-Small
Cell Lung Cancer, all the other covariates like Race, Smoking status, and Tumor grade were
added to the above covariates to find the log-rank p-values and Hazard ratios as shown in Table
4-18. Again analyses with and without risk scores was done and it can be seen that 31 gene
predictors are most significant. The smoking status can be ignored as it has a group of unknown
samples which would not allow the correct prediction of the entire group. The descriptions of

each of the variables are given in the legends of the tables.
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Table 4-18: Multivariate Cox Proportional Analysis of Age, Gender, Race, Smoking Status, Lymph node
Metastasis, Tumor size, Tumor grade and Risk Score*

Variable

Log-rank p-value

Hazard Ratio [95% CI] ¥

Analysis without risk score

AGE 0.00069 1.705 [1.253, 2.32]
GENDER 0.059 0.763 [0.576, 1.01]
RACE

Other 0.76 0.877 [0.375, 2.05]

White 0.72 1.161 [0.512, 2.63]
SMOKING STATUS

Smokers 0.4 1.23[0.761, 1.99]

Unknown 0.25 1.385[0.797, 2.41]
Lymph node Metastasis 3.60E-14 2.788 [2.138, 3.64]
Tumor Size 0.0026 1.569 [1.17, 2.1]
TUMOR GRADE

POORLY DIFFERENTIATED 0.35 1.144 [0.865, 1.51]

WELL DIFFERENTIATED 0.38 1.211[0.788, 1.86]

Analysis with risk score

31 genes Risk Scores 1.80E-13 2.403 [1.903, 3.03]
AGE 0.0061 1.544 [1.132, 2.11]
GENDER 0.19 0.827[0.621, 1.1]
RACE

Other 0.56 0.774 [0.329, 1.82]

White 0.74 0.872[0.382, 1.99]
SMOKING STATUS

Smokers 0.54 1.164 [0.719, 1.88]

Unknown 0.3 1.35[0.769, 2.37]
Lymph node Metastasis 8.90E-14 2.737 [2.1, 3.57]
Tumor Size 0.074 1.311[0.975, 1.76]
TUMOR GRADE

POORLY DIFFERENTIATED 0.44 1.117 [0.843, 1.48]

WELL DIFFERENTIATED 0.61 1.116 [0.727, 1.71]

*Age was a binary variable (0 for an age less than 60 years and 1 for an age of 60 years or greater); Gender
was a binary variable (0 for Male and 1 for Female); Race was a binary variable (Other relative to
Black/African American, White relative to Black/African American; Other includes a few Native
Hawaiian/Pacific Islander, Asian and unknown); Smoking status was a binary variable (Smokers relative to
Non-Smokers and Unknown status relative to Non-Smokers); Lymph node Metastasis was a binary variable
(0 for NO-stage and 1 for all other N-stages and missing values); Tumor size was a binary variable (0 for T0-
stage and 1 for all other T-stages and missing values); Tumor grade was a binary variable (Poorly
differentiated relative to moderately differentiated and Well differentiated relative to moderately
differentiated); Risk score was a continuous variable.

¥ CI denotes Confidence interval.
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4.5 Topological Validation

To derive the biological insight using curated databases, topological validation was performed on
the prognostic signature obtained from prediction logic based implication networks. This
validation also required the comparison of the biological relevance of the interactions present in
the implication network with a currently used network such as Bayesian network. There are

many techniques for structural validation of the gene signature.

In prognostic validation, the best probe was considered based on the minimum p-value after
fitting in to Cox model. But in structural validation, the average of all the duplicate probes was
taken and was used for the analysis. The different structural validation techniques used include
Prodistin, Kegg, NCI pathways, PubMed interactions, Matisse, String 8, Ingenuity Pathway
Analysis, and Pathway Studio. Tetrad IV was used to generate Bayesian networks which were

compared in different aspects with the implication network.

The implication network was built from the 31 genes and the hallmarks used to identify the

signature.

The gene expression data of the 22215 genes was sorted according to their gene symbols. The
averages of the duplicate probes were taken which leaves 13658 unique genes. The 31 genes
along with the hallmarks which were used to get the 31 gene signature were picked. Hence there
were 31 genes plus 8 hallmarks. There were 256 samples in the Training dataset. This data is
split in to 2 files, Metastasis (high risk) and Non-Metastasis (low risk) groups, based on the
number of months they survived and survival status. If the number of months the patients
survived was greater than 60 (5 years), the sample was put in Non-Metastasis group (low risk). If

the number of months the patients survived was less than 60 months and if it was known that the
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patient died, the sample was put in Metastasis group (high risk). If the number of months the
patients survived was less than 60 months and if it was not known whether the patient died, the

sample was censored.

The Metastasis group (high risk) had 125 samples and the Non-Metastasis group (low risk) had
104 samples. The remaining 27 samples were censored as shown in Table 4-19. The data in the
files was converted in to 1’s and 0’s by partitioning based on the mean which was used to

generate the interactions among genes.

Table 4-19: Number of patients in each of the groups in each dataset along with number of censored patients

# patients in high risk # patients in low risk (Non- # patients

(Metastasis) group Metastasis) group censored
Training dataset 125 104 27
DFCI dataset 28 36 18
MSK dataset 34 31 39

Interactions between genes were generated using the files which had binary data. There were
1021 interactions from Metastasis group (high risk) and 897 interactions from the Non-

Metastasis group (low risk) as shown in Table 4-20.

The above steps were repeated for the 31 gene signature in DFCI data set and the MSK data set.

The DFCI dataset had 82 samples. After partitioning, there were 28 samples for Metastasis group
(high risk) and 36 samples for Non-Metastasis group (low risk). There were 18 samples which
were censored as shown in Table 4-19. There were 787 interactions from Metastasis group (high

risk) and 938 interactions from Non-Metastasis group (low risk) as shown in Table 4-20.
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The MSK dataset had 104 samples. After partitioning, there were 34 samples for Metastasis
group (high risk) and 31 samples for Non-Metastasis group (low risk). There were 39 samples
that were censored as shown in Table 4-19. There were 992 interactions from Metastasis group

(high risk) and 996 interactions from Non-Metastasis group (low risk) as shown in Table 4-20.

Table 4-20: Number of interactions between the 31 genes and the 8 hallmarks for various datasets in both the
groups

Low risk (Non-Metastasis) High risk (Metastasis)
Interactions from Training=897 Interactions from Training=1021
Interactions from DFCI=938 Interactions from DFCI=787
Interactions from MSK=996 Interactions from MSK=992

Differential components are the interactions that are present in one group (high or low) but not

present in the other group (low or high).

The interactions from the good and poor prognosis of the Training dataset had 235 interactions in
common. So there were 786 interactions from the Metastasis group (high risk) and 662
interactions from the Non-Metastasis group (low risk) that were considered as the differential

components as shown in Table 4-21.

Similarly, the interactions from the good and poor prognosis of the DFCI dataset had 308
interactions in common. So there were 479 interactions from the Metastasis group (high risk) and
630 interactions from the Non-Metastasis group (low risk) that were considered as the

differential components as shown in Table 4-21.

Similarly, the interactions from the good and poor prognosis of the MSK dataset had 359

interactions in common. So there were 633 interactions from the Metastasis group (high risk) and
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637 interactions from the Non-Metastasis group (low risk) that were considered as the

differential components as shown in Table 4-21.

Table 4-21: Number of differential components between both the groups for the 31 genes and the 8 hallmarks
for various datasets

Low risk (Non-Metastasis) High risk (Metastasis)
Differential Components from Training=662 Differential Components from Training=786
Differential Components from DFCI=630 Differential Components from DFCI=479
Differential Components from MSK=637 Differential Components from MSK=633

After getting the differential components for each dataset, the interactions that were common
among every two datasets and also those interactions that were common among all the three

datasets were found.

Among the Metastasis group (high risk), there were 81 interactions common to the differential
components of the Training dataset and the DFCI dataset. The interactions between the genes are
shown graphically in the Figure 4-15 below. There were 168 interactions common to the
differential components of the Training dataset and the MSK dataset. The interactions between
the genes are shown graphically in the Figure 4-16 below. There were 61 interactions common to
the differential components of the DFCI dataset and the MSK dataset. The interactions between
the genes are shown graphically in the Figure 4-17 below. The genes in yellow color are the
Hallmarks used and the uncolored genes are the regular signature genes. There were 31
interactions that were common to all the three datasets in the Metastasis group (high risk). The

interactions between the genes are shown in the Figure 4-18 below.
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Figure 4-16: Differential Components common to
Train & MSK datasets in high risk group

Figure 4-18: Differential Components common to
all 3 datasets in high risk group

Among the Non-Metastasis group (low risk), there were 96 interactions common to the

differential components of the Training dataset and the DFCI dataset. The interactions between

the genes are shown graphically in the Figure 4-19 below. There were 106 interactions common

to the differential components of the Training dataset and the MSK dataset. The interactions

between the genes are shown graphically in the Figure 4-20 below. There were 82 interactions

common to the differential components of the DFCI dataset and the MSK dataset. The



interactions between the genes are shown graphically in the Figure 4-21 below. There were 27
interactions that were common to all the three datasets in the Non-Metastasis group (low risk).

The interactions between the genes are shown in the Figure 4-22 below.
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Figure 4-19: Differential Components common to
Train & DFCI datasets in low risk group

Figure 4-21: Differential Components common to
DFCI & MSK datasets in low risk group

Figure 4-20: Differential Components common to
Train & MSK datasets in low risk group

Figure 4-22: Differential Components common to
all three datasets in low risk group

All these common interactions between the three datasets are shown in the Figure 4-23 below.

This figure also shows the number of genes present in the interactions common to all the three
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datasets in both poor and good prognosis groups. The molecular and cellular functions of these

genes are mentioned which were extracted from Ingenuity Pathway Analysis (IPA)

TRAIN DFCI

DIFFERENT IAL COMPONENTS OF TRAIN SET

- POOR =786
PROGNOSIS

POOR =479

PROGNOSIS DIFFERENT IAL COMPONENTS OF DFCI SET

DIFFERENTIAL COMPONENTS OF MSK SET
COMMON INTERACTIONS BETWEEN TRAIN & DFCI
COMMON INTERACTIONS BETWEEN TRAIN & MSK
COMMON INTERACTIONS BETWEEN DFCI & MSK

GOOD =662
PROGNOSIS

GOOD =630
PROGNOSIS

DEEEOO@E

COMMON INTERACTIONS TO ALL THREE DATASETS

MAJOR MOLECULAR & CELLULAR
FUNCTIONS FOR 17 GENES COMMON
TO INTERACTIONS IN 3 DATASETS IN
POOR PROGNOSIS

MAJOR MOLECULAR & CELLULAR
FUNCTIONS FOR 16 GENES COMMON
TO INTERACTIONS IN 3 DATASETS IN

GOOD PROGNOSIS PROGNOSIS

GOOD =637
PROGNOSIS

CELL DEATH, CELL CYCLE, GELL CELL CYCLE, CELLULAR DEVELOPMENT,
GROWTH AND PROLIFERATION, MSK CELL DEATH, CELL MORPHOLOGY, CELL-
GENE EXPRESSION, CELLULAR TO-CELL SIGNALING AND INTERACTION
DEVELOPMENT

Figure 4-23: Differential Components common among the three datasets in both the prognosis groups where
good prognosis corresponds to low risk group and poor prognosis corresponds to high risk group and the
major molecular and cellular functions identified from IPA were also shown

4.5.1 PRODISTIN

PRODISTIN is web based software that functionally classifies the genes based on the protein-
protein interactions. It is based on the principle that the more two proteins share common
interactors, the more they are functionally related. It clusters proteins in to functional classes

depending whether they participate in the same cellular process or not. It also predicts function

for unknown genes.

The process started with the selection of species to Homo sapiens. Then the interaction network,
which is a file that includes the total number of interactions and the interactions between the

genes common to Training data and the DFCI data in the Metastasis group were loaded. The

117



gene/protein connectivity was put as 1 as it is the minimal connectivity threshold. There were 22
genes/proteins that were classified by the Prodistin Method (by computing Czekanowski-Dice
distance between all possible pairs) from the uploaded network. From the 22 classified genes,
there were 12 genes that were non-annotated based on the Functional class identification. The
tree was drawn grouping the genes of the same functional annotation in to one class where
functional annotations are derived from the GO terms. There were 3 different GO terms which
are shown in the Figure 4-24 below. If there are multiple Gene Ontology terms for a single class,
that class would be represented by a color representing one of those multiple terms. Some classes

may contain other smaller classes.
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Figure 4-24: Clustering from interactions Common to Train and DFCI Metastasis group from PRODISTIN

The terms primary metabolism and macromolecule metabolism fall in to one class which is give

a class number 1. P-values are shown in Table 4-22. The p-values are not very significant in this

dataset.

Table 4-22: p-values of Gene Ontology terms identified from known classes in Common interactions among
Train and DFCI Metastasis group from PRODISTIN

Class Num Number of genes in each class Gene Ontology Term P-Value
1 5 primary metabolism 0.4762
1 5 macromolecule metabolism 0.4762
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The interaction network, which is a file that includes the total number of interactions and the
interactions between the genes common to Training data and the MSK data in the Metastasis
group were loaded. The gene/protein connectivity was put as 1 as it is the minimal connectivity
threshold. There were 34 genes/proteins that were classified by the Prodistin Method (by
computing Czekanowski-Dice distance between all possible pairs) from the uploaded network.
From the 34 classified genes, there were 16 genes that were non-annotated based on the
Functional class identification. The tree was drawn grouping the genes of the same functional
annotation in to one class where functional annotations are derived from the GO terms. There
were 10 different GO terms which are shown in the Figure 4-25 below. If there are multiple
Gene Ontology terms for a single class, that class would be represented by a color representing

one of those multiple terms. Some classes may contain other smaller classes.
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Figure 4-25: Clustering from interactions Common to Train and MSK Metastasis group from PRODISTIN

The terms cell communication, protein modification and system development fall into class
number 1, primary metabolism and macromolecule metabolism fall in to class number 2, protein
metabolism and cellular metabolism fall in to class number 3, signal transduction falls in to class

number 4, and morphogenesis falls in to class number 7. P-values are shown in Table 4-23. The

p-values of primary metabolism and macromolecule metabolism are significant.
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Table 4-23: p-values of Gene Ontology terms identified from known classes in Common interactions among
Train and MSK Metastasis group from PRODISTIN

Class Num Number of genes in each class Gene Ontology Term P-Value
1 5 cell communication 0.3921
1 5 protein modification 0.2247
1 5 system development 0.2941
2 12 primary metabolism 0.0498
2 12 macromolecule metabolism 0.0498
3 8 protein metabolism 0.3628
3 8 cellular metabolism 0.2639
4 6 signal transduction 0.3620
7 6 morphogenesis 0.3111

The interaction network, which is a file that includes the total number of interactions and the
interactions between the genes common to DFCI data and the MSK data in the Metastasis group
were loaded. The gene/protein connectivity was put as 1 as it is the minimal connectivity
threshold. There were 21 genes/proteins that were classified by the Prodistin Method (by
computing Czekanowski-Dice distance between all possible pairs) from the uploaded network.
From the 21 classified genes, there were 11 genes that were non-annotated based on the
Functional class identification. The tree was drawn grouping the genes of the same functional
annotation in to one class where functional annotations are derived from the GO terms. There
were no GO terms identified. This is shown in Figure 4-26 below. Hence there are no p-values
identified. If there are multiple Gene Ontology terms for a single class, that class would be
represented by a color representing one of those multiple terms. Some classes may contain other

smaller classes.
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Figure 4-26: Clustering from interactions Common to DFCI and MSK Metastasis group from PRODISTIN

The interaction network, which is a file that includes the total number of interactions and the
interactions between the genes common to Training data and the DFCI data in the Non-
Metastasis group were loaded. The gene/protein connectivity was put as 1 as it is the minimal
connectivity threshold. There were 27 genes/proteins that were classified by the Prodistin
Method (by computing Czekanowski-Dice distance between all possible pairs) from the
uploaded network. From the 27 classified genes, there were 11 genes that were non-annotated
based on the Functional class identification. The tree was drawn grouping the genes of the same
functional annotation in to one class where functional annotations are derived from the GO

terms. There were 3 different GO terms which are shown in the Figure 4-27 below. If there are

123



multiple Gene Ontology terms for a single class, that class would be represented by a color

representing one of those multiple terms. Some classes may contain other smaller classes.
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Figure 4-27: Clustering from interactions Common to Train &DFCI Non-Metastasis group from
PRODISTIN

The term regulation of progression through cell cycle falls in to class number 1 and cell
organization and biogenesis falls in to class number 3. P-values are shown in Table 4-24. The p-

values are not very significant in this dataset.

124



Table 4-24: p-values of Gene Ontology terms identified from known classes in Common interactions among
Train &DFCI Non-Metastasis group from PRODISTIN

Class Num Number of genes in each class Gene Ontology Term P-Value
1 5 regulation of progression through cell cycle 0.2398
3 5 cell organization and biogenesis 0.3916

The interaction network, which is a file that includes the total number of interactions and the

interactions between the genes common to Training data and the MSK data in the Non-

Metastasis group were loaded. The gene/protein connectivity was put as 1 as it is the minimal

connectivity threshold. There were 31 genes/proteins that were classified by the Prodistin

Method (by computing Czekanowski-Dice distance between all possible pairs) from the

uploaded network. From the 31 classified genes, there were 14 genes that were non-annotated

based on the Functional class identification. The tree was drawn grouping the genes of the same

functional annotation in to one class where functional annotations are derived from the GO

terms. There were 8 different GO terms which are shown in the Figure 4-28 below. If there are

multiple Gene Ontology terms for a single class, that class would be represented by a color

representing one of those multiple terms. Some classes may contain other smaller classes.
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Figure 4-28: Clustering from interactions Common to Train & MSK Non-Metastasis group from
PRODISTIN

The terms primary metabolism, cellular metabolism and biopolymer metabolism fall into class
number 1, morphogenesis, cell organization, and biogenesis fall into class number 2 and protein
modification and cell communication fall into class number 3. P-values are shown in Table 4-25.

The p-values are very significant in this dataset.
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Table 4-25: p-values of Gene Ontology terms identified from known classes in Common interactions among
Train & MSK Non-Metastasis group from PRODISTIN

Class Num Number of genes in each class Gene Ontology Term P-Value
1 8 primary metabolism 0.1282
1 8 cellular metabolism 0.2447
1 8 biopolymer metabolism 0.3426
2 6 morphogenesis 0.1573
2 6 cell organization and biogenesis 0.2447
3 5 protein modification 0.2884
3 5 cell communication 0.4038

The interaction network, which is a file that includes the total number of interactions and the
interactions between the genes common to DFCI data and the MSK data in the Non-Metastasis
group were loaded. The gene/protein connectivity was put as 1 as it is the minimal connectivity
threshold. There were 25 genes/proteins that were classified by the Prodistin Method (by
computing Czekanowski-Dice distance between all possible pairs) from the uploaded network.
From the 25 classified genes, there were 10 genes that were non-annotated based on the
Functional class identification. The tree was drawn grouping the genes of the same functional
annotation in to one class where functional annotations are derived from the GO terms. There
were 6 GO terms as shown in the Figure 4-29 below. If there are multiple Gene Ontology terms
for a single class, that class would be represented by a color representing one of those multiple

terms. Some classes may contain other smaller classes.
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Figure 4-29: Clustering from interactions Common to DFCI & MSK Non-Metastasis group from
PRODISTIN

The terms cellular metabolism and protein metabolism fall into class number 1, intracellular
signaling cascade, cell organization, and biogenesis fall into class number 2, and cell
communication falls into class number 4. P-values are shown below in Table 4-26. The p-values

are not very significant in this dataset.

128



Table 4-26: p-values of Gene Ontology terms identified from known classes in Common interactions among
DFCI & MSK Non-Metastasis group from PRODISTIN

Class Num Number of genes in each class Gene Ontology Term P-Value
1 6 cellular metabolism 0.3730
1 6 protein metabolism 0.3730
2 6 intracellular signaling cascade 0.3730
2 6 cell organization and biogenesis 0.3730
4 8 cell communication 0.3496

The interaction network, which is a file that includes the total number of interactions and the
interactions between the genes common to all the three datasets (Train data, DFCI data and the
MSK data) in the Metastasis group were loaded. The gene/protein connectivity was put as 1 as it
is the minimal connectivity threshold. There were 14 genes/proteins that were classified by the
Prodistin Method (by computing Czekanowski-Dice distance between all possible pairs) from
the uploaded network. From the 14 classified genes, there were 7 genes that were non-annotated
based on the Functional class identification. The tree was drawn grouping the genes of the same
functional annotation in to one class where functional annotations are derived from the GO
terms. There were 2 GO terms as shown in the Figure 4-30 below. If there are multiple Gene
Ontology terms for a single class, that class would be represented by a color representing one of

those multiple terms. Some classes may contain other smaller classes.
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Figure 4-30: Clustering from interactions Common to 3 datasets Metastasis group from PRODISTIN

The term system development falls into class number 2. P-values are not related as shown in

Table 4-27.

Table 4-27: p-values of Gene Ontology terms identified from known classes in Common interactions of 3
datasets Metastasis group from PRODISTIN

Class Num Number of genes in each class Gene Ontology Term P-Value

2 8 system development NR

The interaction network, which is a file that includes the total number of interactions and the
interactions between the genes common to all the three datasets (Train data, DFCI data and the
MSK data) in the Non-Metastasis group were loaded. The gene/protein connectivity was put as 1

as it is the minimal connectivity threshold. There were 18 genes/proteins that were classified by
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the Prodistin Method (by computing Czekanowski-Dice distance between all possible pairs)
from the uploaded network. From the 18 classified genes, there were 8 genes that were non-
annotated based on the Functional class identification. The tree was drawn grouping the genes of
the same functional annotation in to one class where functional annotations are derived from the
GO terms. There were 4 GO terms as shown in the Figure 4-31 below. If there are multiple Gene
Ontology terms for a single class, that class would be represented by a color representing one of

those multiple terms. Some classes may contain other smaller classes.

. regulation_of_cell cycle
. biological_process_unknown

. call_communication

COKN2E HUMAN . call_organization_and_biogenasis

GISTI_HUMAN

217470 _at

RASK_HUMAN

KPCA_HUMAN

BCDING

PALM_HUMAN

Figure 4-31: Clustering from interactions Common to 3 datasets Non-Metastasis group from PRODISTIN

The term regulation of cell cycle falls in to class number 1, cell communication falls in to class

number 3, and cell organization and biogenesis falls in to class number 4. P-values are shown in
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Table 4-28. The cell communication and cell organization and biogenesis classes were very

significant in this dataset.

Table 4-28: p-values of Gene Ontology terms identified from known classes in Common interactions of 3
datasets Non-Metastasis group from PRODISTIN

Class Num Number of genes in each class Gene Ontology Term P-Value
1 5 regulation of cell cycle 0.1190
3 8 cell communication 0

4 3 cell organization and biogenesis 0.0476

4.5.2 TETRADIV

Tetrad IV is a software program used for simulating data from causal or statistical models. It is
also used for estimating, testing, predicting and searching for causal or statistical models. It
implements Bayes networks to generate graphical statistical/causal model for categorical data.
The networks were generated using Bayesian Belief networks. The 31 genes signature were
picked from all the three datasets and the data was partitioned in to 2 groups based on the
survival times and status of the patients. The Metastasis group and the Non-Metastasis group

were given as the data inputs to the software. The model used is shown in Figure 4-32 below.
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Figure 4-32: Model used to build Bayesian networks using Tetrad I'V which uses PC search, Bayes
parametric model, ML Bayes Estimator, Bayes instantiated model, and Bayes classifier

The Metastasis groups of the datasets were given as data wrappers and PC pattern search was
used on the data. DAG in pattern graph was considered as the output which was given as the
input to the Parametric Model which uses Bayes parametric model. The output of the Bayes PM
and the Data were given as input to the Estimator where ML Bayes Estimator is used. This
output was given to the Bayes instantiated model. The output of the Bayes instantiated model
along with the data is given to the Bayes updater classifier. The networks for Train Metastasis
group as input is shown in Figure 4-33, DFCI Metastasis group as input is shown in Figure 4-34,

and MSK Metastasis group is shown in Figure 4-35.
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Figure 4-33: Interactions from 31 genes and the 8 hallmarks in Train Metastasis group using Tetrad IV
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Figure 4-34: Interactions from 31 genes and the 8 hallmarks in DFCI Metastasis group using Tetrad IV
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Figure 4-35: Interactions from 31 genes and the 8 hallmarks in MSK Metastasis group using Tetrad IV

The same procedure used for Metastasis group was used for Non-Metastasis group also. The
only difference is that the input to Data wrappers would be Non-Metastasis group. The networks
for Train Non-Metastasis group as input is shown in Figure 4-36, DFCI Non-Metastasis group as

input is shown in Figure 4-37, and Non-MSK Metastasis group is shown in Figure 4-38.

135



UALLL
L1l

Figure 4-36: Interactions from 31 genes and the 8 hallmarks in Train Non-Metastasis group using Tetrad IV
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Figure 4-37: Interactions from 31 genes and the 8 hallmarks in DFCI Non-Metastasis group using Tetrad IV
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Figure 4-38: Interactions from 31 genes and the 8 hallmarks in MSK Non-Metastasis group using Tetrad IV

It can be seen that the 31 gene signature is connected even when using Bayesian Belief
Networks. It can also be seen from the figures above that the implication networks are more
connected when compared to the Bayesian Belief Networks. All the interactions from the

Bayesian networks were also present in the interactions from implication networks.

4.5.3 KEGG

KEGG stands for Kyoto Encyclopedia for Genes and Genomes. As the name suggests, it is an
encyclopedia (a large set) of genes. It is a database of 19 databases. These databases are
categorized in to systems information (includes 4 databases), genomic information (includes 9
databases), and chemical information (includes 6 databases). The database that was used was the
KEGG PATHWAY database which is in the systems information to find the signal pathways of
the 31 genes in the signature. All the genes are searched and the genes found interacting with the

remaining signature genes and hallmarks were noted. The Figure 4-39 below shows the
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interactions that were derived from KEGG PATHWAY. The genes that are colored are the
Hallmarks and the genes without colors are the signature genes. All the interactions extracted

from KEGG shown below were also confirmed to be a part of the implication networks.
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Figure 4-39: Interactions among 31 genes and the 8 hallmarks extracted from KEGG PATHWAY database
and all of them are confirmed with the interactions from implication networks

4.5.4 NCI Pathways

Pathway Interaction Database (PID) is a highly structured database. It is a curated collection of
information about known biomolecular interactions and key cellular processes assembled in to
authoritative human signaling pathways. It includes pathways from various reliable sources such
as NCI-Nature curated data, BioCarta data, and Reactome data. All the signature genes and the
hallmarks were searched in the pathways and those genes found to be interacting with one
another were noted down. The Figure 4-40 below shows the interactions that were derived from
PID. The genes that are colored are the Hallmarks and the genes without colors are the signature
genes. All the interactions extracted from NCI shown below were also confirmed to be a part of

the implication networks.
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Figure 4-40: Interactions among 31 genes and the 8 hallmarks extracted from NCI pathways and all of them
are confirmed with the interactions from implication networks

4.5.5 PubMed interactions

PubMed was developed at the National Library of Medicine (NLM) which was located at the US
National Institutes of Health (NIH). It was developed by National Center for Biotechnology
Information (NCBI). It is a search engine which includes accesses to many databases in the field
of medicine and related disciplines. It also holds the links to an enormous number of citations,
abstracts, journals and full text articles. The signature genes and the hallmarks were searched in
PubMed and their interactors were noted if they were present among the signature genes or the
hallmarks. The Figure 4-41 below shows the interactions between the signature genes and the
Hallmarks. The genes that are colored are the Hallmarks and the genes without colors are the
signature genes. All the interactions extracted from PubMed shown below were also confirmed

to be a part of the implication networks.
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Figure 4-41: Interactions among 31 genes and the 8 hallmarks extracted from PubMed and all of them are
confirmed with the interactions from implication networks

4.5.6 Matisse

Matisse stands for Modular Analysis via Topology of Interactions and Similarity Sets. It is a
software program for detecting the functional modules present in a set of data. It uses an
interaction network which has already been generated from trustworthy sources. It acts as a tool

to identify sets of genes that are highly correlated and also connected sub graphs in networks.

The species was selected as Homo sapiens. An interaction network for human genomes (pre
generated) was loaded. The gene expression file of the Training dataset for the 31 gene signature
along with the hallmarks was loaded and the program was ran which detects the nodes and edges
(6214 and 25086 respectively) of the interaction network and expression patterns and conditions
(39 and 256) of the dataset loaded. New Modules were found using different algorithms like
Matisse and Expression k-means. The minimum seed and module sizes were varied between 1
and 5. Correlation coefficients were found using one of the various methods such as Dot product
(Pearson), Euclidean distance, Spearman correlation, and Partial correlation. The modules
contained many genes which were not present in the 31 gene signature and so they were ignored.

The gene interactions which included the genes from the signature and Hallmarks are shown in
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the Figure 4-42 below. All the interactions extracted from Matisse shown below were also

confirmed to be a part of the implication networks.

@ @

Figure 4-42: Interactions among 31 genes and the 8 hallmarks extracted from MATISSE and all of them are
confirmed with the interactions from implication networks

4.5.7 STRING 8

STRING stands for Search Tool for the Retrieval of Interacting Genes/Proteins. It is web based
tool used to extract the protein-protein interactions between the set of genes that were input to it.
It also includes interactions from various other sources such as MINT, HPRD, BIND, DIP, etc.
other than the interactions that were extracted from its algorithm.

The 31 genes along with the 8 hallmarks were input to STRING. It identified all the genes from
its database in various species and generates a list where the most probable species was
highlighted at the top of the list. Once the species was selected, it gave a list of aliases for each of
the genes with the most important one highlighted. Some genes might not be found in its
database. After the required genes were selected, it generated a figure of the network that was
generated using medium confidence of 0.4 as a default value. The evidence view of the network
generated is shown in the Figure 4-43 below. Each color in the interactions corresponds to a
different source as shown in Figure 4-44. All the interactions extracted from STRING shown

below were confirmed to be present in the implication networks.
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Figure 4-43: Evidence view of the interactions
between the 31 genes and the 8 hallmarks and all
of them were confirmed with the interactions from
implication networks

=

b
e

]
(%]

S LSS
oy )
(=]
(1]
>
L]
-—
(1]
@
o

2]
=]

Figure 4-44: Various sources of identification of
gene interactions in STRING 8

String also gives the list of genes that have been identified along with their sources at the bottom

of the network as shown in Figure 4-45 below. The color of the bullet beside the gene name

gives its source.
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Actin-like protein 68 (53 kDa BRG1-asscciated facter B) (Actin-related protein BafS3b) (ArpNalpha)
(426 aa)

pProline-rich pretein 4 precursor (Lacrimal preline-rich pretein) (Nasepharyngeal carcinoma-associated
proline-rich pretein 4) (134 aa)

Protocadherin beta 3 precursor (PCDH-beta3) (796 aa)

Protocadherin gamma A12 precursor (PCDH-gamma-A12) (Cadherin-21) (Fibroblast cadherin 3) (944 aa)
GTPase KRas precursor (K-Ras 2) (Ki-Ras) (c-K-ras) (c-Ki-ras) (189 aa)

Sperm-specific antigen 2 (Cleavage signal-1 protein) (CS-1) (Ki-ras- induced actin-interacting protein)
(1255 aa)

Retinoblastorna-associated protein (PP110) (P105-RB) (RB) (928 aa)

Cellular tumor antigen pS3 (Tumor suppressor ps3) (Phosphoprotein ps3) (Antigen NY-C0-13) (393 aa)
Epidermal growth factor receptor precursor (EC 2.7.10.1) (Receptor tyrosine-protein kinase ErbS-1)
(1210 aa)

Cyclin-dependent kinase 4 inhibitor B (p14-INK4b) (p15-INK4b) (p15INK4B) (Multiple tumor suppressor
2) (MT52) (138 3a)

Protein kinase C alpha type (EC 2.7.11.13) (PKC-alpha) (PKC-A) (672 aa)

Transmembrane 4 L6 family member 20 (229 aa)

Transmembrane protein 135 (458 aa)

bin3, bicoid-interacting 3 (689 aa)

Dystroglycan precurser (Dystrophin-associated glycopretein 1) [Centains- Alpha-dystroglycan
(Alpha-DG); Beta-dystroglycan (Beta- DG)] (895 aa)

Sterile alpha metif demain-containing protein 48 (694 aa)

Hepatocyte growth factor receptor precursor (EC 2.7.10.1) (HGF receptor) (Scatter factor receptor) (SF
receptor) (HGF/SF receptor) (Met proto-oncogene tyrosine kinase) (c-Met) (1408 aa)

Serpin B3 (Cytoplasmic antiproteinase 2) (CAP-2) (CAP2) (Protease inhibitor 8) (374 aa)

Actin-related protein 8 (624 aa)

testis expressed sequence 11 isoform 1 (340 aa)

Paralemmin (387 aa)

Galactosylceramide sulfotransferase (EC 2.8.2.11) (GalCer sulfotransferase) (Cerebroside
sulfotransferase) (3'- phosphoadenylylsulfate-galactosylceramide 3'-sulfotransferase) (3'-
phosphoadenosine-5'-phosphosulfate-GalCer sulfotransferase) (423 aa)

Transcription factor E2F1 (E2F-1) (Retinoblastoma-binding protein 3) (RBBP-3) (PRB-binding protein
E2F-1) (PBR3) (Retinoblastoma-associated protein 1) (RBAP-1) (437 aa)

505 ribosomal protein L2735 (148 aa)

Fatty acid-binding protein, brain (B-FABP) (Brain lipid-binding pretein) (BLEBP) (Mammary-derived growth
inhibitor related) (166 aa)

Neurokinin-8 precursor (NKB) (Neuromedin-K) (Tachykinin-3) (ZNEUROK1) (135 aa)
Alpha-amincadipic semialdehyde synthase, mitochondrial precursor (LKR/SDH) [Includes- Lysine
ketoglutarate reductase (EC 1.5.1.8) (LOR) (LKR); Saccharopine dehydrogenase (EC 1.5.1.9) (SDH)]
(926 aa)

Uncharacterized protein Clorf68 (Late envelope protein 7) (Skin- specific protein xp32) (250 aa)
Histone H2A-Bbd (HZA Barr body-deficient) (H2A.Bbd) (115 aa)

EGF, Iatrophilin and seven transmembrane domain-containing protein 1 precursor (EGF-TM7-Iatrophilin-
related protein) (ETL protein) (690 aa)

Solute carrier family 22 member 11 (Organic anien transporter 4) (550 aa)

Mammaglobin-A precursor (Mammaglebin-1) (Secretoglobin family 24 member 2) (120 aa)
Transcription factor E2F4 (E2F-4) (417 aa)

Endothelial cell-specific molecule 1 precursor (ESM-1 secretory protein) (ESM-1) (184 aa)

Defensin 5 precursor (Defensin, alpha 5) (54 aa)

(Homo <anien<]

Figures 4-46 to 4-50.

Figure 4-45: List of the input genes (among 31 gene signature) that were identified by STRING 8 and were
displayed at the output

4.5.8 Ingenuity Pathway Analysis
When the 31 genes along with the 8 hallmarks were input in to IPA, it generated five networks
that were significant. The networks contained not only the genes from the signature but also

those that that played an important role in the network. The five networks are shown below in the

The first network shown in Figure 4-46 had 33 molecules and is associated with Network
Functions such as Cancer, Cellular Growth and Proliferation, and Hematological Disease. The
second network shown in Figure 4-47 is associated with Network Functions such as Cancer, Cell
Cycle, and Cellular Development. The third network shown in Figure 4-48 is associated with

Network Functions such as Cell Morphology, Cellular Assembly and Organization, and
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Connective Tissue Development and Function. The fourth network shown in Figure 4-49 is
associated with Network Functions such as Infection Mechanism, Cancer, and Hepatic System
Disease. The fifth network shown in Figure 4-50 is associated with Network Functions such as

Infection Mechanism, Gene Expression, and Cancer.

There are a lot of Bio Functions under the Discases and Disorder, Molecular and Cellular
Functions, Physiological System Development and Function that were found from the signature
which had very significant p-values. There were also Canonical Pathways, Tox lists, and Tox

Functions which were significant.
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Figure 4-46: Network 1 generated from IPA Figure 4-47: Network 2 generated from IPA
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Figure 4-48: Network 3
generated from IPA

Figure 4-49: Network 4
generated from IPA

Figure 4-50: Network 5
generated from IPA

When all the five networks were merged to form a big network, it had two types of connections.

The highlighted interactions between the genes were the inter network connections that did not

exist in the five networks shown above. They were emerged just because of the merging. This

merged network is shown below in Figure 4-51.
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Figure 4-51: Merged network from all the 5 networks shown above where grey connections are the intra-
network connections and orange connections are inter-network connections in IPA

All the interactions involving the 31 genes signature and the 8 hallmarks only were separated.
These interactions were confirmed to be present in the implication network. These interactions
are shown in the Figure 4-52 below. Each node is of different shape and the legend explains the
meaning of each of the shapes. The solid lines represent the direct interactions and the dotted

lines represent the indirect interactions.
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Figure 4-52: Interactions between the 31 genes and the 8 cancer hallmarks extracted from the merged
network of all the 5 networks in IPA shown above where the yellow genes represent the major cancer
hallmarks

4.5.9 Pathway Studio

The 31 genes signature and the 8 hallmarks were input to Pathway Studio. All the genes except
215642 at and 217470 at were found. Hence the signature contained only 29 genes which were
fed into Pathway Studio. It generated a network as shown below in Figure 4-61. There were
numerous interactions in between a pair of genes which indicate that different kinds of
relationships were found between those genes from different sources. All the interactions shown

in the Figure below were confirmed to be present in the implication network.
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Figure 4-53: Interactions between the 31 genes and the 8 hallmarks that were extracted from Pathway studio
where each kind of line represents different kinds of relationships between the genes

4.6 Summary

This chapter provided the results that were obtained from the performed analyses. Thus the
number of interactions of implication networks and Bayesian networks, in different datasets for
the 31 gene signature in each of the groups are concluded below in Table 4-29. It can be seen
that the implication networks were able to detect many more gene/protein interactions when

compared to the Bayesian networks.
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Table 4-29: Comparison of number of interactions from Poor and Good Prognosis of each dataset generated
in Implication Networks and Bayesian Networks (using Tetrad IV)

IMPLICATION NETWORKS

TETRAD IV (BAYESIAN)

TRAINING GOOD PROGNOSIS 897 13
TRAINING POOR PROGNOSIS 1021 13
DFCI GOOD PROGNOSIS 938 12
DFCI POOR PROGNOSIS 787 14
MSK GOOD PROGNOSIS 996 13
MSK POOR PROGNOSIS 992 14

The interactions among the 31 genes extracted from different tools were compared with the

interactions obtained from implication networks and Bayesian networks as concluded in Table 4-

30. It can be seen that the interactions from all the tools were present in implication networks but

most of them did not show up in Bayesian networks.

Table 4-30: Comparison of number of interactions among the 31 genes and the 8 hallmarks identified from

different biomedical tools found in implication networks and Bayesian networks

IMPLICATION NETWORKS

TETRAD IV (BAYESIAN)

MATISSE (8) 100% (8/8) 12.5% (1/8)

PUBMED (5) 100% (5/5) 20% (1/5)

KEGG (7) 100% (7/7) 0% (0/7)

NCI (20) 100% (20/20) 0% (0/20)
STRING(27) 100% (27/27) 3.7% (1/27)
PATHWAY STUDIO (26) 100% (26/26) 3.84% (1/26)
INGENUITY PATHWAY (24) 100% (24/24) 4.16% (1/24)

The interactions from implication networks and Bayesian networks were input in to Prodistin

and the biological processes they are involved are noted down along with the number of

significant processes. It can be seen from Table 4-31 that interactions from Bayesian networks

did not show any biological processes. On the other hand, interaction from implication networks

consisted of many biological processes.

149




Table 4-31: Number of Biological Processes identified using Prodistin when interactions from implication
networks and Bayesian networks are given as input.

IMPLICATION NETWORKS

TETRAD IV (BAYESIAN)

TRAINING GOOD PROGNOSIS 14(3 SIGNIFICANT) 0
TRAINING POOR PROGNOSIS 7(2 SIGNIFICANT) 0
DFCI GOOD PROGNOSIS 4 0
DFCI POOR PROGNOSIS 2 0
MSK GOOD PROGNOSIS 11 (3 SIGNIFICANT) 0
MSK POOR PROGNOSIS 11 0

To increase the possibility of biological relevance and to reduce the false discovery rate,

thresholds can be applied on the weight functions of the implication rules. For the results in

Table 4-29, no thresholds were applied and hence there were a large number of interactions. We

applied a threshold on the weight functions (equations 2.17 and 2.18) to reduce the number of

interactions that would remain along with all the interactions from curated databases. The

weights are variables between [0, 1]. The thresholds w1>0.539474 and w2>0.333333 made all

the interactions from curated databases remain in the implication networks. For these applied

thresholds, the number of interactions that remain in each of the datasets in Poor and Good

prognosis are summarized in the Table 4-32 below. A few intermediate calculations of threshold

on weights are also shown in the table below.

Table 4-32: Comparison of number of interactions from Poor and Good Prognosis of each dataset in
Implication Networks and Bayesian Networks (using Tetrad I'V) with application of thresholds on weights.

No Threshold w120.45 | wi1>0.5& | w1>0.515 | w1>0.539 &
on weights & w220.1 w2>0.1 & w220.2 w2>0.333

TRAINING GOOD PROGNOSIS 897 761 619 543 498
TRAINING POOR PROGNOSIS 1021 856 741 678 563
DFCI GOOD PROGNOSIS 938 886 851 772 709
DFCI POOR PROGNOSIS 787 758 706 676 605
MSK GOOD PROGNOSIS 996 949 911 849 752
MSK POOR PROGNOSIS 992 935 877 817 742
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The Figures below show the representation of the values in the Table above for the three datasets
separately. Figure 4-54 shows the variation of the number of gene interactions with threshold on
weights in the Training group. Figure 4-55 shows the variation of the number of gene
interactions with threshold on weights in the DFCI test group. Figure 4-56 shows the variation of

the number of gene interactions with threshold on weights in the MSK test group.

1200
I Interactions in
1000 Poor prognosis
g Training group
S 800
i
o I Interactions in
= .
= 600 Good prognosis
2 Training group
(O]
Ke]
= 400
3 A~ Interactions in
200 Poor prognosis
Training group
0 T T
No Threshold w1>0.45& w120.5& w120.515 & w120.539474 —o— Interactions in
on weights  w220.1 w220.1 w220.2 & Good prognosis
w220.333333 Training group

Figure 4-54: Variation of number of gene interactions with threshold on weights in Training Group. The first
set of data is the number of interactions without any thresholds and the fifth set of data is the number of gene
interactions with the given thresholds which include all the curated interactions. The second, third and fourth
set of data are intermediate set of results to show how the number of gene interactions decrease with an
increase in thresholds.
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Figure 4-55: Variation of number of gene interactions with threshold on weights in DFCI test Group. The
first set of data is the number of interactions without any thresholds and the fifth set of data is the number of
gene interactions with the given thresholds which include all the curated interactions. The second, third and
fourth set of data are intermediate set of results to show how the number of gene interactions decrease with

an increase in thresholds.
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Figure 4-56: Variation of number of gene interactions with threshold on weights in MSK test Group. The first
set of data is the number of interactions without any thresholds and the fifth set of data is the number of gene
interactions with the given thresholds which include all the curated interactions. The second, third and fourth
set of data are intermediate set of results to show how the number of gene interactions decrease with an

increase in thresholds.
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This chapter thus summarizes that the 31 gene signature that has been identified using
implication networks and interactions with hallmarks is a good predictor. It also summarizes that
the model used for generating the 31 gene signature is also very good in detecting more

gene/protein signatures when compared with Bayesian networks.
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Chapter 5

5 Software Implementation

5.1. Introduction

This chapter describes the implementation of the package which was used to perform the
analyses. The package is a combination of C and R where C-code was made to run through the
R-interface. This chapter also describes the different versions of the code available and the
changes between them. It also gives a few screen shots of the implementation of the package and

the configuration of the computer used to run the code.

5.2. Description

All the code was implemented in C. It was compiled at the command prompt to create the .dll
(dynamic linked library) file. After the compilation, the .dll file was loaded in to R. In R, the
code needed 4 filenames as input. Two of these filenames correspond to the files that were given
as input while the other two file names were the names of the output files that were created while
the code executed and the final output was stored. After the execution was over the .dll file that
was loaded initially had to be unloaded to avoid errors in the later executions. The first of the
input files contains the micro array data of patients profile gene expression values of all the
genes along with their gene symbols and the survival time and status at the end of the file. The
second file is the list of the hallmarks that were used. The two output files contain the genes that

interact with all the hallmarks, one file for each of the groups.

There are two versions of the C-codes. Both of them work in the above mentioned manner. But

the main difference between them is the speed of execution and the amount of memory utilized.
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First version of the code generates the entire genome wide interactions and keeps storing them in
the hard disk of the computer while generating. It takes time as there are a lot of memory read
and write operations. The second version of the code generates only the interactions between the
genes and the hallmarks ignoring all the interactions that do not contain at least one of the
hallmarks. This code does not require more memory as it uses linked lists and stores the

interactions in the cache. Thus it is much faster than the first version.

It required around 40 minutes for executing the first version of the package through R. The
second version required around 25 minutes. The codes were executed on a system with the
following configuration: The processor was an Intel® Core' ™2 Duo CPU E8300 @ 2.83GHz.
There was 4.00GB of Memory (RAM) in the system. The C drive was allocated with 455GB of
hard disk space. The version of the R editor used was R-2.7.2 and the C editor used was Dev-

C++4.9.9.2.
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5.3. Results & Screenshots

[%] Administrator: Command Prompt [ o | )

Microsoft Windows [Uersion 6.8.60811
Copyright (c> 2886 Microsoft Corporation. All rights reserved.

C:vUzerzradmin>cd DesktopsSwetha files“R—C intewrface

C:slUserssadminsDesktopB8wetha files“\R-C interfacel

C:vUzeprsradminsDesktop~Swetha files“R—C interface>R CHD SHLIB Rpackage_uwith_full
_rules_diff _writ_hardDisk.c

making Rpackage with_full wrules_diff weit_hardDizk.d from Rpackage_with_full_ pul)
es_diff _writ_hardDisk.c

goce  —std=gnu?? -IC: /PROGRA™L-/R/R-27"1_.2/include —03 -Wall -c¢ Rpackage_wit
h_full rules_diff weit_hardDiszk.c —o Rpackage with_full rules_diff weit_hardDisk

-J:i.t]l_fll].]._l‘u les_diff _writ_hardDisk.c: In function ’process_raw_data’:

th_full rules_diff_ werit_hardDizk.c:2308: warning: ‘temp_pat’ may be us
ialized in this function

windres ——preprocessor="gcc —E —xc —DRC_INUOKED" -1 C:-/PROGRA™1-R/R-27"1.2-incluy
de -i Rpackage with_full w»ules_diff_ writ_hardDizk_resz.rc —o Rpackage_ with_full
rules_diff_ writ_hardDisk_res.o
gce  —std=gnu?? -shared —= -0 Rpackage with_full rules_diff writ_hardDisk.dll
Rpackage with _full rules diff writ_hardDisk.def Rpackage with_full rules diff wr
it_hardDisk.o Rpackage with_full rules_diff_writ_hardDisk_res.o : /PROGRA™1 /R
AR-27"1.2/hin -1R

C:sUserssadminsDesktopsSwetha filessR—C interfacelr_

Figure 5-1: Changing the directory to the current directory and compiling the C-code to generate the
required dynamic linked library files to be used for executing code in R

[ Dev-C++ 4992 ) i
File Edit Search View Project Execute Debug Tools CVS Window Help

OnEsE BEEE

BEOMEES P [Onew  a]inset  ¢@]Toggle [0 Goto

| | |

F4 | »| Rpackage with full ules diff_wit_hardDisk.c 1

l void start(int flag, int cutoff, char ctf_time, char sur time, char filename[], char hallmarks[], char zero[]
Data data:

| if(flag = 1} {
srand (time (NULL) ) ;

data = get_data(flag, get_cutoff (cutoff, sur_time, ctf time), filename, hallmarks);

\es (data.gene_names, data.num genes, data.hallmarks, data.num hallmarks, zero, one);

output_)
\| h
Data get_data(int flag, double cutoff, char filename[], char hallmark[]) {
Data data;
int *num pat = (int *) malloc(sizeof (int)):

double **pat_data; =

i [

28 Campiler | B Resaurces | dlb Compie Lan | &7 Debug | [Bh Find Rresuts |

Insert 360 Lines in file

Figure 5-2: C-code for the first version of the package
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[ Dev-cr+ 2992 = ‘ @@
File Edit Search View Project Execute Debug Tools CVS Window Help
g IngEg|~~|BEEH) 4
EEOEEEY | P @ Ot s ETosde Boow

I =l =l

Falr Hpacakgemkedmlc\

Rule * generate rules(double min x, int **data, int cols, int rows, int *hallmarks, int num hallmarks) {
int i, 3, ki
dowble max u, dell, del2, del3, del%, delS, delé:
double u 1, u 2, u3, ud4, ub usb;
int op, count_ab, count_anb, count_nab, count_nanb, once;
Rule *temp = NULL, *rules;

for(i = 0; i < rows - 1; ++i) {
for(j =i + 1: 3 < rows; ++3) {

this gen= n=. =

£ g 3 3 ks
if (contains (hallmarks, num hallmarks, i) azks, 3)) {

continue;

max u = min x;

; del2 0.0:
o0:
count_ab = 0; count_amb = 0; count_nab = 0; count_nanb = 0;
for(k = 0; k < cols; ++k) {
if((data[i][k] == 1) && (data[3]l[k] == 1)) count_ab++;
else if((data[i] [k] 1) && (data[3][k] 0)) count_anb+
else if({(data(i] [k] 0) & (data[jl[k] == 1)) count_nab+
else count_nanb++;
4 | = = 1 = = = e — _- = »
B8 Compier | Bl Resources | ) Compie Log | & Debug | [, Find Resuts I
I irsent (957 Lines in file Al

Figure 5-3: Main difference between the C-codes shown in the second version of the code

RGu
File Edit View Misc Packages Windows Help

IR R Console

R version 2.7.2 (2008-08-25)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and
‘citation() ' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HIML browser interface to help.
Type 'g()' to quit R.

i

interface/Rpackage_wi
nterface/Tra

zeros rules: 159402305

154144728
67956868
diff-ones: 62699291

Printed from C:

input filel

C:/Users/admin/Desktop/Swetha files/R-C interface/Train Data 13658.csv
input file2

C:/Users/admin/Desktop/Swetha files/R-C interface/hallmarks.txt

output filel

C:/Users/admin/Desktop/Swetha files/R-C interface/Rzero.csv

output file2

C:/Users/admin/Desktop/Swetha files/R-C interface/Rone.csv

< e ] v

Figure 5-4: Output from R: Red lines are the input code and the next blue lines are the outputs after
execution of the entire package after around 40 minutes
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From the Figure 5-1 shown above, it can be seen that compiling the C-code was done first at the
command prompt and then Figure 5-4 shows the statements to be executed to run the package.

Figures 5-2 and 5-3 show parts of the C-code in the two versions of the package available.

5.4. Summary

This chapter thus shows the screenshots of the C-code. It also describes the differences in the
various versions of the code. The C-code which executes the required process was thus
embedded in to R to form a package which automated the process of finding good prognostic

gene signatures from an entire set of genome wide interactions.
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Chapter 6

6 Conclusions & Prospective Work

6.1. Conclusions

Identifying the critical genes in a network would help in predicting cancer recurrence. Thus a
novel network based methodology was developed which overcame the limitations of feature
selection techniques. It was thus concluded that network-based techniques are capable of finding
accurate and stable signatures when compared to the feature selection methods. They (network-
based techniques) considered the performance of the gene interactions instead of the behavior of

individual genes.

It was also seen from that implication networks are better than the currently used network-based
techniques such as the correlation coefficient based and clustering based coexpression networks,
Bayesian networks, and Artificial neural networks. Implication networks integrate formal logic
and statistics and are thus very efficient. They also overcome the limitations of the currently used
network-based techniques. Comparison of the Bayesian networks was done practically in chapter
4 from which it can be concluded that the prediction logic induced implication networks were

much better in finding more gene/protein connections when compared to the Bayesian networks.

The implication network was another kind of coexpression network which was built using
predication logic. Prognostic signatures were identified from the genome wide coexpression
networks based on the interactions with major cancer hallmarks (E2F, EGF, EGFR, KRAS,

MET, RBI1, and TP53). Once the signature was obtained using genome wide implication
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network, it was evaluated prognostically, clinically and structurally to make sure that the

obtained signature was significant.

The Prognostic validation showed that the signature was significant with the help of KM plots,
log-rank p-values, CPE values, and FDR from GSEA. The model was also compared to other
classification methods from Weka. It was found that the Cox model on implication networks was
much better in classifying the instances. Clinical evaluation was performed using multivariate
Cox model with respect to other clinical factors. The signature was highly significant when

compared to other predictors.

Structural validation was done by checking the interactions from implication networks with the
interactions from Bayesian networks generated by Tetrad IV. It was seen from various web
based tools that the implication networks were able to generate many more gene/protein
interactions with biological relevance when compared to Bayesian networks. Weights of the
implication rules were also tuned to increase the possibility of biological relevance and decrease
the false discovery rates. These weights were tuned in such a way that they still include all the
interactions from the curated databases. Thus all the validation methods have concluded that the
signature was good. Thus the implication networks help us in finding the functional clustering

between genes.

Thus it can be concluded that implication networks lead us to identify better down streamed

signatures that can be used in therapeutic conditions.
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6.2. Future Work

A lot of prospective work can be done using this approach.

New signatures are being found using other predictive factors like Smoking status of the patients.
This network generation approach can also be tried with other cancers such as breast cancer,
colon cancer, etc. Cross validation can be performed by using the signatures found in one kind of
cancer to validate using datasets of other kinds of cancers. Different models can be tried with
slight changes in the network generation.

In this thesis, only one set of expression values have been used to build the implication networks.
But implication networks actually have the potential to model dynamic networks with temporal

relevance which can be considered in future clinical trials after surgical resections.
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