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ABSTRACT 

Models for Reducing Deadheading through Shipper and Carrier Collaboration 

Erin D. Bailey 

The competitive nature in the trucking industry has forced trucking firms to develop 

innovative solutions to improve their operational efficiency and decrease marginal costs. There is 

also a great need to reduce deadheading miles of heavy trucks to help reduce the amount of air 

pollutants they emit. One way carriers and shippers are attempting to accomplish these goals is 

through various collaborative operational strategies.  This work focuses on developing multiple 

collaboration frameworks and formulating optimization models for each framework that 

demonstrates the operations and reveals the potential cost savings of each framework.  

The first collaboration framework focuses on how a medium level shipper or carrier can 

introduce collaboration in their operations by fulfilling a collaborative carrier’s or shipper’s 

delivery requests on its backhaul route.  Two optimization models are developed to route the 

carrier of interest’s backhaul routes and select collaborative shipments to fulfill; one is 

formulated as an integer program and the other is formulated as a mixed integer program.  Two 

solution methodologies, a greedy heuristic and tabu search, are used to solve the two problems, 

and numerical analysis is performed with a real world freight network. Numerical analysis on a 

real world freight network reveals that the percentage of cost savings for backhaul routes can be 

as high as 27%.  

The second collaboration framework focuses on a group of shippers that collaborate their 

operations and form cycles between their long-haul shipping lanes. If the shippers provide the 

bundled lanes, as loops, to a common carrier they can realize cost savings from the carrier. The 

problem is formulated as a mixed integer program and forms least cost loops between the 

shipping lanes. A tabu search heuristic is used to solve the second collaboration framework and 



 

 
 

results using a real freight network reveal collaborative network costs savings between 7% to 

12%. Three cost allocation mechanisms are proposed for the problem to distribute the costs to 

the shippers involved in the collaboration and computational results are provided for each of the 

allocation mechanisms. 
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CHAPTER 1.    INTRODUCTION 

 
1.1  Motivation 

The U.S. economic strength and growth depends significantly on the flow of 

commodities and goods and particularly the trucking industry for its ground movement. In 2009, 

the U.S. transportation system moved about 44 million tons of freight each day, with the trucking 

industry transporting about 30 million tons of freight each day (FHWA, 2010).  Heavy duty 

trucks consumed nearly 40 billion gallons of fuel costing approximately US $114 billion (ATA, 

2010). This number is expected to increase as freight tonnage is expected to grow over the next 

several decades, increasing at an average rate of 1.6% per year (US DOT, 2010). The increased 

freight traffic will require a more efficient freight transportation system. Businesses are requiring 

more timely and reliable service of their goods, which also demands more efficient freight 

operations.  

Since the deregulation of the trucking industry in the 1980s, the trucking industry has 

become more competitive and dynamic. The deregulation allowed carriers to set their prices 

independently and removed restrictions on geographical locations they could serve. Entry 

barriers into the industry were eliminated and many new firms joined the transportation industry. 

By November 2009, there were approximately 517,100 for-hire motor carriers and private fleets 

registered with the U.S. Department of Transportation. Nearly 88% of these trucking companies 

operated less than six trucks (ATA, 2010).  Due to the highly competitive nature of the industry, 

trucking firms have had to improve their operations and lower their marginal costs through 

innovative solutions.  The U.S. trucking industry has a wide range of truck company size and 

capability and it is essential for small- and medium-sized firms to decrease their operation costs 

to compete with the larger ones. Many technologies have emerged to improve operations and 
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allow the exchange of information. Trucking companies have used communication technologies 

to develop more sophisticated scheduling and routing tools.  New technologies assist carriers and 

shippers in information exchange and transactions. Shippers, sometimes along with third-party 

logistics providers, are using new procurement methods to find carriers at low prices. For 

example, various online auction mechanisms have been developed to help match capacity and 

loads (Song et al., 2004). There is significant scope for the trucking companies in the United 

States to exploit the synergies in their operations to control costs and increase competitiveness. 

In addition, environmental and health concerns due to emissions from the transportation 

sector is receiving increasing attention. Heavy freight trucks are a major source of pollutants into 

the atmosphere.  In the U.S., considering only mobile source emissions, heavy trucks account for 

20% of greenhouse gases (GHG), 47% of nitrogen oxides (NOx), 75% of particulate matter 

(PM), 7% of carbon monoxide (CO), and 4% of hydrocarbons (HC) (EPA 2007, EPA 2011).  In 

a study conducted by the South Coast Air Quality Management District in California, 71% of 

cancer risk from air pollutants comes from diesel exhaust (SCAQMD, 2000). These air 

pollutants have negative affects to the environment and people’s health and it is one of the 

nation’s top objectives to reduce and regulate emissions. The EPA set standards to reduce 

emissions from heavy truck diesel engines through a three stage process, which was 

implemented through 2010. Some of the strategies included manufacturing diesel particulate 

filters, cooled exhaust gas recirculation, and selective catalytic reduction (Thompson et al., 

2010).  In October 2010, the EPA and NHTSA created the heavy-duty national program to set 

rules on reducing fuel consumption and GHG emissions from highway sources.  The EPA 

proposed emission standards for CO2, CH4 and N2O (GHGs that contribute to global warming) 

and the NHTSA proposed fuel consumption standards for each of the categories: combination 
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tractors; heavy-duty pickup trucks and vans; and vocational vehicles (EPA, 2010). In addition to 

the technological advancement made in truck engines and fuels, environmental concerns and 

emissions can be further reduced by decreasing the number of truck trips through efficient truck 

operations. Nearly 30% of the total miles traveled by trucks operated by small trucking 

companies in the United States in February of 2008 had zero loads (ATA, 2008). Reducing these 

zero-load trips and truck miles on highways in general can help accomplish the goals of reducing 

fuel consumption and emissions. 

With expected increase in freight movement, a competitive trucking environment, and 

businesses’ demand for timely delivery of products, there is a great need for more innovative 

solutions to improve efficiency and lower operation costs in truck transportation. Transportation 

cost has a significant effect on the cost of goods and can commonly comprise 10% of a product’s 

cost (Rodrigue et. al., 2009).  Reducing empty truck miles can help in reducing final product 

costs to consumers. 

Collaboration among trucking firms can help the trucking industry to help accomplish 

these goals. Freight demand is often geographically widespread, creating empty backhauls after 

shipment delivery, called deadheading.  Deadheading results in significant costs to carriers and 

shippers and ultimately increases costs to consumers. When carriers or shippers form alliances 

they can collaborate their truck operations and change non-profitable empty hauls into profitable 

backhauls.  Other benefits of collaboration include increased asset utilization, decreased lead 

times, improved service levels to customers, and improved highway safety due to reduced truck 

traffic. 

Freight collaboration has become increasingly popular due to its great potential to 

increase profitability. It has been practiced in the sea cargo and airline industry, and more 
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recently in the trucking industry.  Starting in 1990, Sea-Land and Maersk have collaborated 

through sharing ship capacities (Argawal et al., 2010). Collaborations in the sea cargo industry 

have become more common since then:  The New World Alliance is a collaboration between 

Hyundai Merchant Marine, APL, and MOL; the Australia and China Express consists of OOCL 

and China Shipping (Agarwal et al., 2005). Recently, alliance formation has become very 

common in the passenger airline industry. The practice of code sharing is used to fill passenger 

capacity and improve operational efficiency. It is an agreement between two airline carriers 

where a carrier can market and sell the seats on some of its partner’s flights. (Ito et al., 2007).  

Alliances have formed in the air passenger and in the air cargo industries.  In passenger airlines, 

code sharing has been used for many years for international flights, but more recently code 

sharing agreements have become very common on U.S. domestic flights.  Three major passenger 

airline alliances are Star Alliance, SkyTeam and Oneworld, linking U.S. airline carriers to 

airlines in other countries (Brueckner, 2003). In cargo airlines, some of the largest alliances are 

the WOW alliance and SkyTeam Cargo (Zhang et al., 2007). The alliances allow the airlines to 

extend their networks and offer new destinations to their costumers and provide lower costs to 

costumers and passengers.  

In the last 20 years, collaboration has occurred between the various freight companies 

involved in the (full) truckload industry, and more recently in the less-than-truckload (LTL) 

industry.  Two common types of collaboration in truckload transportation are shipper 

collaboration and carrier collaboration.  Truckload shipper collaboration involves multiple 

shippers coordinating with one or more carriers and matching their loads so that optimal routing 

can be found at a minimum cost. In truckload carrier collaboration, multiple carriers reduce 

operating costs by pooling delivery tasks and vehicle capacities in common to find efficient ways 



 

5 
 

of fulfilling all shipping requests. Collaboration among agents involved in the less-than-

truckload (LTL) industry has only been recently studied and primarily focuses on the 

collaboration among carriers in the LTL industry.  LTL transportation involves shipping smaller 

freight, typically from many shippers and has shorter planning periods than truckload 

transportation.  Because many LTL carriers have overlapping networks and use distribution 

centers, depots or warehouses, it provides the opportunity for carriers to easily exchange freight 

and utilize one another’s capacities (Hernandez et al., 2010). 

  

1.2  Overview  

In this thesis multiple collaboration frameworks are developed to demonstrate how truck 

carriers and shippers can integrate their operations and realize significant cost savings. The 

trucking industry is fragmented in the US, with a wide variety of trucking company size and 

capability. The same collaboration frameworks and model cannot be applied to every firm. In 

order to produce the best outcome, it is imperative that models incorporate a collaborative 

framework that considers the type of companies involved, their operations and their constraints.  

It is for this reason that multiple models are presented in this thesis.  

The first collaboration framework, presented in detail in Chapter 3, demonstrates how 

small- to medium-sized truckload carriers can reduce empty backhauls to a depot or distribution 

center location by adding pickup and delivery tasks of collaborative shippers or carriers to their 

backhaul.  A carrier of interest can increase their profit margins by fulfilling a shipping request 

of another firm during its backhaul route.  Reducing the empty and often long hauls to the depot 

will greatly increase the carrier’s profitability.  This collaboration framework is called Problem 

A and two mathematical models are developed to route backhaul shipments for the carrier of 
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interest’s fleet of trucks. The first model, Model A1, allows at most one collaborative shipping 

request be fulfilled for each truck and is formulated as an integer program. Model A2 is more 

complicated, allows multiple pick-up and delivery tasks for each truck and is formulated as a 

mixed integer program. Model A1 is solved using a greedy heuristic and a tabu search heuristic 

is provided for solving Model A2. If it is feasible for the carrier of interest to fulfill another 

carrier’s or shipper’s request during its backhaul route, the routing is as follows: from a truck’s 

last delivery location, the empty truck would pick up a collaborative shipper's or carrier’s 

shipment, deliver the shipment to its destination, then return back to the depot.  Model A1 is a 

simpler model that is easier to solve while Model A2 provides more collaborative options and is 

more difficult to solve. One advantage of Problem A’s approach over a full collaboration is that 

the carrier of interest would not have to alter its existing line haul routes, and only slightly 

change its backhaul routes.  This type of collaboration can be a good transition into full 

collaboration later, where all delivery tasks and vehicle capacities are in common and optimal 

routing is found for the collaborative network.  Note that the models are flexible with respect to 

whom the carrier of interest collaborates.  Collaboration can occur with other TL shippers that 

have origin-destination shipping locations close to the carrier of interest’s backhaul routes.  

Collaboration with carriers is also possible if a carrier does not have available capacity to service 

all of their requests.  The models described in further sections refer to the collaborative shipper 

or carrier as the “collaborator” or “collaborative freight company” to not exclude a type of 

collaborator. 

The second collaboration framework is presented in detail in Chapter 5 and demonstrates 

how shippers can collaborate their truck movements to attain lower rates from a common carrier. 

This problem, named Problem B, is particularly applicable to long haul truckload shipments that 
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have very long, costly empty trips to return to their depot or origin. These deadhead miles cause 

increase in rates that carriers offer to shippers. If shippers coordinate their shipping lanes and 

form loops between their lanes, the empty repositioning miles are significantly less. The shippers 

can then provide bundled lanes to a common carrier and realize much lower rates. For this 

collaboration framework, one model is developed and is formulated as a mixed integer program. 

Differing from Problem A, this problem is a “full” collaboration between shippers where all 

truck capacities and demand are taken in common to fulfill all requests.  

 

1.3  Contributions  

The thesis has the following contributions: 

• Two collaboration frameworks are examined. Framework A is for small or 

medium sized carriers or shippers and collaboration only occurs on the 

carrier/shipper’s backhaul routes. The other framework B is for multiple large 

shipping companies and involves full collaboration of all shippers’ lanes and 

truck capacities. 

• Under framework A, two modes named A1 and A2 are formulated to match 

backhauls with potential collaborators. An integer programming formulation is 

developed for Model A1 which is similar to a constrained capacitated matching 

problem. The model can be solved efficiently on larger sized networks but limits 

trucks’ backhauls to be matched with at most one collaborator.  A mixed 

integer programming formulation is developed for Model A2. It is more 

computationally difficult to solve on large sized networks, but allows a truck’s 

backhaul to be matched with more than one collaborator. 
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• Solution methodologies are developed for Model A1 and Model A2, which 

provide accurate solutions with a reasonable amount of computation time. A 

greedy heuristic is used for solving Model A1 and a tabu search heuristic is used 

to solve Model A2. The models consider realistic carrier and shipper constraints, 

such as vehicle driver hour restrictions and vehicle capacity constraints. 

• A real freight network, obtained from a third party logistics company, is used to 

implement Models A1 and A2.  Making assumptions where necessary, the 

network is modified to be suitable for each model. Model A1 and A2 results 

reveal cost savings as high as 27% for the carrier of interest’s backhauls.  The 

models show how a small or medium sized freight company can introduce 

collaboration into their operations without significant modifications of their 

schedule. 

• For the second collaboration framework, a mathematical formulation is 

developed, called Model B.  Realistic freight shipping constraints are considered 

in Model B, such as capacity constraints and maximum length of each vehicle’s 

cycle. The problem is shown to be NP-Hard. A tabu search heuristic is developed 

to solve Model B to provide good solutions with reasonable computation time. 

• A real world network, obtained from a third party logistics company, is used to 

implement Model B with appropriate assumptions made where needed. Model B 

results show collaborative network cost savings of up to 12%.  

• Various cost allocation mechanisms are investigated to allocate the worth of a 

collaborative network in Problem B.  Two proportion allocation methods and a 
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marginal contribution allocation method are implemented on the real world 

network to demonstrate cost sharing among collaborators. 

1.4  Organization 

The remainder of the report is organized as follows. Chapter 2 provides a literature 

review of general freight modeling, the vehicle routing problem, tabu search heuristics, and a 

detailed review of collaborative trucking logistics. The two formulations of Problem A are 

provided in Chapter 3. Chapter 4 provides Problem A’s solution methodologies and numerical 

analysis using a real world freight network with modified parameters. The model formulation of 

Problem B is presented in Chapter 5.  Chapter 6 provides the solution methodology, cost 

allocation methodology and numerical analysis of Problem B using a real world truckload freight 

network.  Finally, Chapter 7 provides conclusions and directions for future research.  
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CHAPTER 2.   LITERATURE REVIEW 

 

2.1  Introduction 

The literature review of this report first covers the various optimization models used in 

freight modeling. An overview of the vehicle routing problem (VRP) is then provided because 

Models A2 and B in the thesis are variants of the VRP. A literature review of the Tabu search 

heuristic commonly used to solve VRP problems is then provided. The Tabu search heuristic is 

used in this thesis to solve Model A2 and Model B. Finally, the collaborative logistics literature 

of the trucking industry is reviewed. 

 

2.2  Freight Modeling 

After the deregulation of the trucking industry in the 1980s, trucking firms were driven to 

develop more efficient operations to be profitable in a competitive environment. This initiated an 

interest in improving planning and routing of freight through new mathematical models that 

incorporate the economical structure of the freight industry.   These models can be classified into 

two general categories: predictive models and design models. The objective of the predictive 

models is to predict the flow on a network, given values for the network parameters. The 

objective of the design models is to determine the optimal design of the network parameters to 

maximize the use of the owner’s resources.  

The predictive models can be classified into three categories: spatial equilibrium models, 

freight network equilibrium models, and integrated network equilibrium models.  Spatial 

equilibrium models involve the interaction between producer, consumer and shipper. The models 

have been used to calculate interregional freight flows (Friesz. et al.,1983a; Florian et al., 1982). 

In freight network equilibrium models, the interaction between the shipper and carrier is 
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considered. Two subclasses are sequential models and simultaneous models. The sequential 

models have a two step process to determine the flow through a carrier’s network, while the 

simultaneous model takes the shipper and carrier’s decisions at the same time to attain an 

equilibrium flow (Gottfried, 1983; Friesz et al., 1983b).  The third classification of predictive 

models is the integrated network equilibrium model. It considers the interaction between the 

producer, consumer, shipper and carrier (Harker et al., 1986; Friesz et al., 1986). 

The second main category of freight models is design models, where network parameters 

are designed in order to maximize the owner’s profit. Design models can be divided into carrier 

design models and shipper design models, since they are independent decision makers. Under 

each type, there are various decisions that the models make, depending on the planning horizon: 

strategic decisions (long term); tactical decisions (medium term); and operational decisions 

(short term). Within carrier design models, the literature is basically divided into carrier network 

design models (Crainic, 2000; Unnikrishnan et al., 2009) and tariff setting models (Brotcorne et 

al., 2000), depending on the model objective.  Shipper design models optimize the planning 

decisions of the shipper, particularly the routing of goods and inventory levels at each time step 

(Baita et al., 1998). They can be separated into three categories: frequency models, frequency 

models with terminal inventory, and dynamic flow models.  The next section provides an 

overview of vehicle routing problem (VRP). 

 

2.3  Vehicle Routing Problem 

The formulations of Model A2 and B in future sections of this thesis are rooted in the 

vehicle routing problem, or VRP.  The following is a brief overview of the VRP, some variations 

to the VRP and some common solution methods. The VRP was first introduced by Dantzig and 
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Ramser (1959) and is a generalization of the Traveling Salesman Problem (TSP). In the TSP, the 

goal is to find a minimum cost tour that reaches all nodes, or costumers, in the network.  The 

VRP is a TSP with multiple vehicles that must reach all costumers in the network. When the 

VRP includes vehicle capacity constraints, it is a Capacitated Vehicle Routing Problem (CVRP).  

When each customer is associated with a time window, say a delivery needs to be made at a 

certain time, the problem becomes the VRP with time windows (VRPTW) (Toth and Vigo, 

2001).  

Two VRP variants are relevant to the work done in the thesis - VRP with backhauls 

(VRPB) and VRP with pickup and delivery (VRPPD).  In the VRPB, the customers are divided 

into two subsets. One subset includes the line haul costumers, who require deliveries.  The other 

subset is the backhaul costumers, requiring pickups. VRPB includes precedence constraints so 

that on any particular vehicle route, the line haul costumers are visited before the backhaul 

costumers (Toth and Vigo, 1997; Mingozzi et al., 1999; Toth and Vigo, 2001).  In the VRP with 

pickup and delivery (VRPPD), goods need to be moved from specific pickup locations to drop-

off locations. (Dumas et al., 1991; Nagy et al., 2005; Montane et al., 2006). 

To solve VRPs, there exist exact solution methods and heuristic methods. Some exact 

solution methods include Bender’s decomposition (Fisher et al., 1981), branch-and-bound 

schemes (Christofides et al., 1981; Fisher 1994a, 1994b; Laporte et al., 1986), column generation 

(Balinski et al., 1964; Lysgaard et al., 2004; Baldacci et al., 2008), and dynamic programming 

approaches (Eilon et al., 1974). Popular heuristics for solving CVRPs include the Clarke and 

Wright Savings Algorithm (Clark et al., 1964; Laporte et al., 2002), the Cluster-First Route-

Second (Fisher et al., 1981), and the Sweep heuristic (Wren et al., 1972). Tabu search meta-

heuristic has been found to be extremely effective in solving VRP’s and its variants. Tabu search 
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was first applied to VRP by Willard (1989) and has been updated and applied to various VRP 

problems since then (Gendreau et al., 1991, Osman, 1993; Semet et al., 1993; Cordeau et al., 

1998; Barbarosoglu et al., 1999). 

 

2.4   Tabu Search 

Tabu search is an iterative meta-heuristic which has been found to be extremely effective 

in solving combinatorial optimization problems such as VRP (Glover, 1977; Gendreau et al., 

1991, Osman, 1993; Semet et al., 1993; Cordeau et al., 1998; Barbarosoglu et al., 1999).  Given a 

current solution, tabu search applies a local search procedure to iteratively find a new solution in 

the neighborhood of the current solution.  To avoid convergence to local optima, the 

neighborhood search space is modified continuously for each solution.  This ensures that the 

entire feasible region is covered. The search procedure also maintains a tabu list – a list which 

contains the most recent solutions visited in the neighborhood of the current solution. The tabu 

list prevents the algorithm to move to points which have already been evaluated recently. Tabu 

search was chosen to solve Models A2 and B because of their VRP structure.   

 

2.5  Collaborative Modeling in Truck Transportation 

The literature in sections 2.2, 2.3, and 2.4 includes modeling from a regional perspective 

or from one carrier’s perspective.  The focus of this thesis is on modeling collaborations between 

carriers and shippers. This section includes a review of literature for collaborative logistics, 

particularly in truck transportation.  

One group of carrier collaborative literature studies truckload transportation procurement, 

where least cost methods of obtaining additional capacity for a carrier of interest or shipper of 
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interest are investigated (Chu, 2005; Ball et al., 1983; Song et al., 2004; Figliozzi, 2006).  

Although not distinctively collaboration, Chu (2005) and Ball et. al. (1983) studied how a 

shipper with limited capacity could execute all of its delivery tasks by utilizing an outside carrier 

to meet the demand it could not self fulfill.  Song et. al. (2004) and Figliozzi (2006) studied an 

auction-based carrier collaboration mechanism among TL carriers.  Song et al. (2004) developed 

a framework for a collaborative carrier network that is exclusively designed for small and 

medium sized TL carriers. An auction occurs in a post-market exchange, where non-profitable 

lanes are bid on by other carriers in the collaboration. The model uses global optimization and an 

auction so that efficient solutions are found for every carrier. Compared to the static model 

presented in Song et. al. (2004), Figliozzi (2006) examined a dynamic mechanism. Simulations 

of a truckload pick-up and delivery problem are run to examine the dynamic auction-based 

collaboration mechanism. Results reveal up to 50% reduction in deadheading trips when existing 

capacities of carriers are used.  Hernández et al. (2010) studied LTL carrier collaboration and 

developed the single carrier collaboration problem (SCCP) to gain insights on the potential for a 

carrier with excess demand to collaborate with other carriers to service that demand.  Their static 

model is formulated from the perspective of a carrier of interest with the objective of minimizing 

its cost to fulfill all shipments. Under a collaborative scenario, the results reveal savings up to 

59% for the carrier of interest when compared to a leasing option to obtain additional capacity. 

Hernandez et. al. also developed models for carrier collaboration with time-dependent aspects 

(2011a) and with dynamic capacities (2011b).  

Another set of literature addresses LTL collaboration from the perspective of optimizing 

the operations of the whole collaborative freight network (Dai et al., 2009; Berger et al., 2010).  

Dai and Chen (2009) developed an optimization model for LTL collaboration that can be applied 
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to a set of shippers and/or carriers, in which all delivery tasks are shared and all vehicle 

capacities are known. Their model allows for pick up and/or delivery at every node in the 

network. The mathematical model determines the number of times each transportation lane in the 

network needs to be covered to carry out all delivery requests. Then a Lagrangian relaxation 

methodology is used to construct a set of feasible vehicle tours from the model’s solution. Berger 

and Bierwirth (2010) developed a model in a post-market environment, where LTL carriers can 

exchange non-profitable delivery requests. The model optimizes the operations of all carriers 

while ensuring that no carrier loses profit under the collaboration. A cash flow model, called the 

Collaborative Carrier Routing Problem, reassigns requests to a carrier in which the profit of the 

collaborative network is maximized. They developed two solution approaches to perform 

analysis on their model, involving decentralized control and an auction based exchange 

mechanism. 

Shipper collaboration is limited in literature and was first introduced by Ergun, Kuyzu 

and Savelsbergh (2007b).  They studied how truckload shippers can collaborate to minimize 

asset repositioning, thereby reducing deadhead trips.  They translated their problem into the Lane 

Covering Problem (LCP), where a minimum cost set of constrained cycles is found to cover a 

subset of arcs (delivery lanes) in a directed Euclidean graph. They presented algorithms to solve 

this problem, which were found to be solved in polynomial time. Özener and Ergun (2008) 

developed cost-allocation schemes in similar shipper alliances after determining the optimal 

collaborative routing.  They apply several types of the cost allocation mechanisms where the 

goal in all of them is to ensure the stability of the collaboration. Using the basis of the Lane 

Covering Problem, Ergun, Kuyzu and Savelsbergh (2007a) developed optimization technology 

to assist in identifying collaborative shippers’ repeatable, dedicated truckload continuous move 
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tours in order to reduce the need for carriers to reposition empty trucks. The intention is that this 

technology can help shippers identify potential collaboration partners. Ergun et. al. (Agarwal et 

al., 2010; Agarwal et al., 2008; Houghtalen et al., 2010) have addressed carrier collaboration in 

the air cargo and sea cargo industries and have developed models and allocation mechanisms for 

these types of collaborations.     

Other literature focuses on minimizing empty truckloads for a single company’s 

operations without collaboration. Arcelus et. al. (1998) formulated a dynamic model for reducing 

empty hauls within a company’s hub-and-spoke structured network.  Using data from a Canadian 

trucking company, they performed sensitivity analysis on whether or not it was beneficial to 

obtain more freight requests for specific origin-destination pairs. Jordan (1987) examined 

deadheading trip reduction for a single company’s operations with more than two terminals. 

After delivering shipments, trucks would carry out a backhaul shipment before returning to their 

respective originating terminals, thereby reducing the number of empty truck-miles within the 

company’s network.  Jordan developed a backhaul model that can be solved as a matching 

problem, but is only appropriate for solving small networks. To solve the problem for larger, 

more realistic networks, he developed a Lagrangian Relaxation method (Jordan, 1987).  

Another set of literature focuses on the allocation of profit or costs when freight operators 

enter into alliances with each other. The authors of these papers use the concepts of cooperative 

game theory to develop mechanisms that split the collaborative profit among the members. Since 

every member in the collaboration contributes differently and every member needs an incentive 

to participate in the collaboration, it is important that a profit allocation mechanism distributes 

the profits in a fair manner and is desirable to everyone in the collaboration. A good cost or 

profit allocation mechanism ensures stability of the collaboration. Xu et al. (2009) developed a 
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profit allocation mechanism, called the weighted relative savings model, to allocate profit in a 

less-than-truckload carrier alliance. The model provides a stable allocation to their problem by 

minimizing the maximum difference between the relative savings among the alliance members. 

They performed computational analysis on collaborations in groups of 1, 2 and 3 members. 

Krajewska et al. (2008) and Voruganti et al. (2011) used the popular Shapley value scheme to 

allocate profit in the context of their carrier collaboration problem. Özener and Ergun (2008) 

investigated multiple cost allocation mechanisms to apply to their shipper collaboration problem, 

and each mechanism used different desirable properties of a cost allocation. Outside of the realm 

of collaborative freight literature, much literature exists on allocating costs or profits among 

members that share those costs/profits (Engevall et al., 1998; Castro et al., 2008; Fatima et al., 

2008; Castro et al., 2009)  

 The models presented in this paper for the first problem, called Problem A, differentiate 

themselves from past works as they focus on optimizing the backhaul route of a specific carrier 

of interest through collaboration with other shippers and/or carriers. Another distinction is that 

the models ensure that the new modified backhauls are not significantly longer than the existing 

backhauls so that the carrier of interests can satisfy the new requests without significantly 

modifying their driver schedule.  Carriers can use the backhaul models presented in this report to 

evaluate the savings obtained by optimizing the backhauls in their entire network or part of their 

network.   

The second type of problem, Problem B, investigated in this report is similar to the Lane 

Covering Problem (LCP), presented by Ergun et al. (2007b), but uses a much different 

formulation than used in this report.  One distinction of Model B over the LCP is that truck 
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capacities are taken into consideration and multiple loops may cover a lane to fulfill the demand 

on that lane.  

The two formulations for the backhaul models, Models A1 and A2, are described next.  
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CHAPTER 3.   PROBLEM A MODEL FORMULATIONS 

 

3.1  Problem A Description 

The problem of interest is to reroute the empty backhaul trucks of a carrier to fulfill other 

collaborative carriers’ or shippers’ requests.  Given a set of locations for the trucks’ last 

deliveries (described heretofore as origin locations), the models decide if a collaborative freight 

operator’s request can be fulfilled by one of the trucks.  If not, the truck will keep its original 

empty backhaul route.  The two models presented in this section route the backhauls such that 

the cost to the carrier of interest is minimized.  Both models consider truck capacity constraints 

and vehicle driver hour constraints.  The backhaul trip length cannot exceed an upper time limit, 

which is explained in more detail in the numerical analysis section of Problem A.   

The first model, called Model A1, is an integer programming model that pairs each origin 

node with a collaborator node or the depot node.  If an origin is paired with a collaborator, then it 

will fulfill that shipping request before returning to the depot.  This model will allow at most one 

collaborative shipping request to be fulfilled for each truck.  Model A1 is similar to a constrained 

matching problem. The second model, Model A2, is a mixed integer programming problem and 

a more complicated model than Model A1.  Model A2 is similar to a capacitated vehicle routing 

problem with pickup and delivery (Goetschalckx et al., 1989; Dumas et al., 1991; Toth et al., 

1999; Nagy et al., 2005; Montane et al., 2006) with the vehicles not returning to the originating 

depot. Note that in the above mentioned works both the line haul and backhaul deliveries are 

optimized whereas in this work the focus is on the backhaul variation.  This model also has the 

advantage of allowing multiple pick-up and deliveries in one truck’s backhaul. Similar problems 

involving pick-up and deliveries have been studied in the literature by Dumas et. al. (1991) and 

Nagy et. al. (2005). Model A2 is different as there are constraints on the route length 
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corresponding to driver hour restrictions and there is the option of not picking up goods if it is 

not profitable for the carrier of interest. The model also ensures that an O-D shipment is not split 

up in its delivery.  

A simple example is provided in Figure 1 to demonstrate the routing of Model A1 and 

Model A2 for a very small network. Figure 1 displays how two backhaul routes would be 

rerouted for a collaboration using Model A1 and a collaboration using Model A2. Notice that 

Model A2 provides multiple pickup and delivery tasks along a backhaul route. 

 

 
FIGURE 1.  Simple Example for Model A1 and Model A2 

 

3.2 Model A1 

Model A1 maximizes the collaborative savings, sij, of the carrier of interest.  Some 

explanation of the collaborative savings computation is needed before the model formulation can 
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be presented.  The original transportation cost, cid, is the cost for the truck to go from a backhaul 

origin node i to the depot node d and cip, is the cost for the truck to leave its origin node, carry 

out the shipping request of collaborator p and return to the depot.  If a collaborator’s request is 

fulfilled, then that collaborator will provide compensation to the carrier of interest, resulting in a 

revenue rp for that request.  The backhaul savings, as shown in equation (1), is computed by 

subtracting the collaborative transportation cost from the original transportation cost.  Equation 

(2) explains that the backhaul savings is zero for a truck returning to the depot instead of making 

a backhaul delivery. 

sip = cid –(cip – rp)                                   (1) 

sid =cid – cid = 0                    (2) 

 

The model parameters and the variables used in the Model A1 formulation are described 

below.  

 

3.2.1  Model A1 Parameters 

O set of all origin nodes i 

P set of all collaborators p 

J set of all collaborator nodes p and the depot node d, indexed by j 

uj product demand of node j 

C capacity of trucks 

tij total trip length, in time, to travel from the origin node, pick up and deliver request p, and 

return to depot 

Ti upper limit of the total backhaul trip length, in time, for origin node i 
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3.2.2  Model A1 Variable 

    

  
                                                                                            

                                      
  

 

3.2.3  Model A1 Formulation 

Maximize                 

      

                                                                                                               

Subject to: 

    

   

                                                                                                               

                                                                                                                         

   

 

         

   

                                                                                                                

       
   

                                                                                                          

                                                                                                                 

 

3.2.4  Model A1 Constraints Explanation 

The objective function of Model A1, equation (3), maximizes the collaborative savings of 

the carrier of interest.  Equation (3) sums the collaborative savings of all of the backhaul routes. 

Constraint (4) ensures that each origin truck node is paired with exactly one of the collaborators 

p or the depot d.  An origin node cannot be paired up with both a collaborator node and a depot 

node because being matched up with the depot node means that the backhaul route will go 

directly from the origin node to the depot node.  Constraint (5) ensures that each collaborator is 

paired with no more than one origin node.  A collaborator can either be unmatched or it can be 

matched with one origin node.  Constraint (6) is a capacity constraint, ensuring that the demand 
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on any arc of a backhaul route does not exceed the carrier of interest’s truck capacity. The 

demand at the origin and depot nodes are zero, so this constraint actually ensures that any 

collaborator with demand exceeding capacity will not be matched to any of the backhaul routes. 

The capacity is considered homogenous for all trucks leaving the origin nodes. Constraint (7) 

ensures that the total backhaul trip length does not exceed the maximum trip length for a truck at 

node i so that the carrier of interest can meet the collaborative freight operator’s shipping request 

without significantly altering the driver schedule.  Constraint (8) identifies the variable xij as an 

integer variable, taking the values of 0 or 1. The formulation of Model A2 is explained next. 

  

3.3  Model A2 

The parameters and decision variables for Model A2 are described, followed by the 

mixed integer programming formulation.   

 

3.3.1  Model A2 Parameters 

N  set of all nodes i 

A set of all arcs (i,j) 

P set of all collaborators’ pick-up nodes 

B set of all collaborators’ delivery nodes 

O set of all origin nodes for empty trucks 

D depot node 

M set of all collaborator’s origin-destination shipment pairs m 

cij transportation cost to travel on arc (i,j)  

ri carrier of interest’s revenue for fulfilling a collaborator’s shipment from pick-up node i 
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ui
m  collaborator’s product demand of O-D shipment m at node i 

tij length of time to travel on arc (i,j) 

To upper limit on length of backhaul trip, in time, of truck originating from node o 

C capacity of trucks 

 

3.3.2  Model A2 Variables 

      
                                                          

                                    
  

 

yijo
m quantity of product m shipped on arc (i,j) by truck originating from node o 

 

    
                                                 

                                    
  

 

3.3.3  Model A2 Formulation 

Minimize                                                                                                                

             

 

 

Subject to: 
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3.3.4   Model A2 Constraints Descriptions 

The objective function for Model A2, equation (9), subtracts the total revenue earned 

from collaborative shipments from the total transportation cost.  Therefore, the objective function 

minimizes the overall cost of the carrier of interest’s backhaul trips.  Constraints (10) and (11) 

are truck flow conservation constraints for the collaborators’ pick-up and delivery nodes.  

Constraint (11) ensures that at most one truck visits each pick-up node, thereby ensuring that an 

O-D shipment is not split. Constraint (10) ensures that the number of trucks leaving and arriving 

at a collaborator’s node is equal. Therefore, constraints (10) and (11) ensure that the number of 

trucks arriving and leaving a collaborator’s node is either zero or one. It also ensures that the 

collaborator’s shipments will get from its origin to its destination.  Constraints (12) and (13) are 

truck flow constraints for the empty trucks at the origin nodes, ensuring that exactly one trip 

leaves each origin node and no trips arrive at the origin nodes. Constraints (14) and (15) are truck 

flow constraints for the depot node, ensuring that each trip returns to the depot node and no trips 
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leave it.  Constraint (16) ensures that the product demand at all of the nodes is met; the demand 

at the collaborator nodes is only met if the nodes are visited. The demand for the origin and 

depot nodes is zero.  It also ensures that each collaborator’s shipment is delivered to its 

corresponding delivery node because the demand parameter has an O-D shipment type 

specification. Constraint (17) ensures that a backhaul route’s total trip length does not exceed the 

maximum allowable trip length.  This places a restriction on trucks to not fulfill those 

collaborator’s shipments that will extend the backhaul trip beyond the maximum allowable 

driver hours. Constraint (18) ensures that the capacity of a truck is not exceeded; all trucks have 

equal capacity in this model.  Because this model allows a truck to do multiple pick-ups followed 

by multiple deliveries, constraint (18) ensures that the sum of all shipments on a truck on each 

arc does not exceed the capacity. Constraint (19) must be included to eliminate any subtours in 

the solution and is the well-known generalized subtour elimination constraint (Toth et al., 2001). 

Without constraint (19), subtours could form between the collaborator nodes, which would go 

against the purpose of the model. Constraints (20) through (22) define the variables of Model 

A2:  the variables xijo and zi are integer variables taking the values of 0 or 1; the product flow 

variable yijo
m takes the value of zero or a positive real number. The next chapter describes the 

heuristics to solve Models A1 and A2 and the numerical analysis for these models. 
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CHAPTER 4.   PROBLEM A SOLUTION METHODS AND NUMERICAL RESULTS 

 

4.1  Introduction 

Model A1 is similar to a constrained matching problem and Model A2 is similar to a 

constrained vehicle routing problem with pickup and delivery (VRPPD). We present a greedy 

heuristic to solve Model A1 and a tabu search based heuristic to solve Model A2.  Models A1 

and A2 have integer variables and are difficult to solve for larger sized problems. Also Model A2 

has the subtour elimination constraints which explode for any decent sized network.  The greedy 

algorithm to solve Model A1 is described in the next subsection followed by the tabu search 

heuristic. Then the example network setup is described and the numerical analysis of Model A1 

and Model A2 is provided. 

 

4.2   Greedy Algorithm 

Greedy algorithms can be used to solve many optimization problems. It does not always 

result in an optimal solution, but for many types of problems it does.  In a greedy algorithm, a 

locally optimal solution is found in hopes that it will eventually find a globally optimal solution. 

In other words, the algorithm is a sequence of choices that seem best at the moment. Many 

weighted matching problems can be solved using a “greedy” heuristic methodology to obtain 

good solutions in a reasonable amount of time (Jordan, 1987).  It provides a simple and efficient 

solution methodology. Therefore, we use a greedy matching algorithm to solve Model A1.  This 

greedy method differs from Jordan’s (1987) algorithm in that this method checks for capacity 

and time limitations. Let A = {(iO, jJ)} denote the set of arcs, where O is the set of all origin 

nodes and J is the set of all collaborator nodes and the depot node.  The algorithm is as follows: 

(1)  Set all xij = 0 for all arcs (i,j). 
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(2)  Delete any (i,j) from list A where the demand at j exceeds the vehicle capacity, C. 

(3)  Select the arc (i,j) from list A which has the maximum value of arc savings, sij.  (sij 

must be greater than or equal to zero). Remove the selected (i,j) from list A. 

(4)  For the selected (i,j) in step (3), if xij tij  Ti (the total trip length does not exceed the 

maximum trip length from origin i), then set xij = 1, remove any arc (i,j) from list A 

that contains either the selected i or selected j, except where the selected j is the depot 

node D. If xij tij > Ti, go back to step (3). 

(5)  Repeat steps (3) and (4) until number of matched pairs (xij = 1) equals the number of 

origins, O. 

The greedy algorithm might not produce optimal solutions to Model A1, but it provides 

good solutions for examining numerical results of the model. The tabu search methodology for 

solving Model A2 is described next. 

 

4.3   Tabu Search Methodology 

A brief overview of the Tabu search methodology used for solving Model A2 is provided 

in Figure 2. Tabu search was chosen among other meta-heuristics as it was found to be extremely 

efficient and thus popular for solving vehicle routing problems (Gendreau et al., 1991; Taillard et 

al., 1997; Cordeau et al., 1998). While the focus of the current paper is on a new problem 

definition and formulation, the design of the Tabu search heuristics follows the common 

principles (Glover, 1990).  
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1. Initialization

2. Create a candidate list of 
moves

5. Evaluate the candidate

3. Is a candidate tabu?

6. Is the candidate better than 
the incumbent?

7. Update the incumbent and 
place the candidate into tabu list

8. Move to the candidate

9. Is the stopping criterion 
met?

Yes

10. Terminate and report the 
incumbent solution

4. Is aspiration criteria 
satisfied?

No

No

Yes

No

Yes

No

Yes

 
 

 

FIGURE 2  Tabu Search Flowchart  
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Step 1 initializes the tabu search procedure by assuming that no collaborator’s request is 

fulfilled.  Further, initial parameters (the size of tabu list, maximum number of iteration, memory 

size and incumbent solution) are also assigned in that step.  Step 2 creates a candidate list of 

moves where each move corresponds to a new solution generated from the current solution. 

Details of the neighborhood search and the edge-swapping procedure for generating candidate 

lists are available in Glover (1990).  Step 3 selects a candidate move from the candidate list and 

checks if the selected candidate is tabu.  If a candidate is tabu, go to Step 4.  Otherwise, the 

procedure evaluates the performance of the move based on the objective function (Equation (9)) 

in Step 5.  In Step 4, if a candidate satisfies aspiration criteria (yields better objective value than 

the incumbent solution), the procedure goes to Step 5.  Otherwise, the procedure goes back to 

Step 2 and Step 3 to choose another candidate move.  If the candidate move evaluated in Step 5 

yields better objective value, the procedure goes to Step 7 to update the incumbent solution and 

places the move into the tabu list such that the move will not be admissible in the following few 

iterations.  The procedure then moves to the candidate in Step 8 and checks the stopping criteria 

in Step 9.  Two stopping criteria are employed in this research.  The first one is the iteration limit 

which constrains the maximum number of iterations that can be performed.  However, if the 

incumbent solution fails to improve over the pre-defined number of iterations, the procedure is 

terminated, which forms the second stopping criterion.  If any of the stopping criteria is met, the 

procedure stops and the incumbent solution is reported.  Otherwise, the procedure goes back to 

Step 2 and starts the procedure over again. 
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4.4  Problem A Numerical Analysis 

Computational runs are conducted to analyze the variation in model savings obtained 

through collaboration using Model A1 and Model A2. The example network used to analyze 

theses models is first described followed by the results from the computation runs. 

 

4.4.1  Example Network Setup 

An example network was used to implement Model A1 and Model A2 and to analyze the 

models’ performance and potential cost savings for the carrier of interest.  Real network data 

from a third-party logistics firm was used to establish the carrier of interest’s inputs into the 

model.  This data set includes 15 backhaul origin nodes and one depot node location.  The depot 

node location is York, PA and the origin node locations are the following: Orlando, FL; Crofton, 

MD locations; Clementon, NJ; Glassboro, NJ; Robinsville, NJ; Olean, NY; Oneonta, NY; 

Miamisburg, OH; Troy, OH; Allentown, PA; Bensalem, PA; Hazleton, PA; Palmyra, PA; and 

Norfolk, VA. The maximum backhaul trip length, Ti in Model 1 and To in Model 2, was 

determined by considering the Federal Motor Carrier Safety Administration hours-of-service 

regulations for truck drivers (FMCSA, 2010). When fulfilling collaborator’s shipping requests, 

the carrier of interest’s backhaul trip should not be lengthened such that any driver’s hours would 

exceed limits set by FMCSA regulations.  The time constraints used for this model in hours for 

the origins are: 22.5, 13, 6.75, 6.75, 5.5, 9.75, 4.75, 9.25, 20, 6, 7, 8.75, 6, 7.75, 10.25 

respectively.  To obtain potential collaborator pick-up and delivery locations and their O-D 

demand, we used shipping lanes from a real shipping network.  We chose 45 of the O-D pairs as 

potential collaborators due to their geographic proximity to the carrier of interest’s backhaul 

route network.  Table 1 provides the list of potential collaborator nodes with the demand units. 

Due to privacy constraints, the trucking company did not reveal the nature of the goods and 
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modified the demands. The truck fleet is considered homogenous for our example with capacities 

of 1000 demand units.   

TABLE 1  Collaborator Nodes for Models A1 and A2 

Pick-up City Delivery City 
Product 
Demand 

Units 
Pick-up City Delivery City 

Product 
Demand 

Units 
Jacksonville, FL Charlotte, NC 672 Columbus, OH Harrisburg, PA 360 
Jacksonville, FL Rocky Mount, NC 328 Sidney, OH Harrisburg, PA 1083 
Haines City, FL Rocky Mount, NC 1142 Sidney, OH Eighty Four, PA 745 
Lake Wales, FL Charlotte, NC 323 Columbus, OH Harrisburg, PA 341 
Lake Wales, FL Baltimore, MD 292 Springfield, OH Harrisburg, PA 901 
Savannah, GA Charlotte, NC 157 York, PA Harrisburg, PA 429 
Owings Mills, MD Harrisburg, PA 443 Quakertown, PA Harrisburg, PA 155 
Baltimore, MD Harrisburg, PA 375 Coatesville, PA Harrisburg, PA 243 
Gaithersburg, MD Harrisburg, PA 1270 Hermitage, PA York, PA 234 
Hampstead, MD York, PA 221 Hershey, PA Harrisburg, PA 374 
Mount Olive, NC York, PA 235 York, PA Harrisburg, PA 126 
Cherry Hill, NJ Philadelphia, PA 388 York, PA Manayunk, PA 758 
Cranbury, NJ Philadelphia, PA 400 Leola, PA York, PA 155 
Trenton, NJ Philadelphia, PA 303 Manheim, PA Philadelphia, PA 4290 
South Brunswick, NJ Pennsauken, NJ 576 Bethlehem, PA Manayunk, PA 225 
Edison, NJ Philadelphia, PA 224 Breinigsville, PA Philadelphia, PA 299 
North Brunswick, NJ Pennsauken, NJ 672 Hazleton, PA Philadelphia, PA 262 
North Brunswick, NJ Philadelphia, PA 229 Plains, PA Harrisburg, PA 591 
Totowa, NY Harrisburg, PA 192 Philadelphia, PA Harrisburg, PA 378 
Canandaigua, NY Conklin, NY 1656 King of Prussia, PA York, PA 315 
Canandaigua, NY Harrisburg, PA 823 Leesport, PA York, PA 342 
Silver Springs, NY Kirkwood, NY 199 Richmond, VA Harrisburg, PA 239 
Middletown, NY York, PA 667    

 
The data set structure for the transportation costs, revenue, travel time, and product 

demand varies from Model A1 to Model A2.  For the Model A2 parameter, tij, the travel time 

between every node in the network was determined and 1 hour for loading time and 1 hour for 

unloading time was added to arcs containing pick-up or delivery nodes, respectively.  The Model 

A2 data set for transportation costs required finding the distance between each node in the 

network, and applying a unit cost per mile.  The base cost per mile used for both models’ 

networks was $1.60 per mile and is based on typical industry values. Additional data sets were 
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established using variations to the cost and the results are shown in the next section. The revenue 

parameter, ri, in Model A2 represents the collaborator’s compensation for satisfying a shipment 

request from node i.  Each ri was taken as a percentage of the transportation cost, cij, from its 

pick-up node to its delivery node.  This revenue percentage was varied from 30% to 50% during 

the numerical analysis of the models.  The product demand input for Model A2 consisted of 

identifying product demand for each O-D pair m, in which there was zero demand at every origin 

node and the depot node, positive demand at each pick-up node and negative demand at each 

delivery node.  Most of Model A1’s data set can be taken from Model A2’s data set.  The 

transportation time, tij, is not needed between every node as in Model A2, but only from each 

origin node to each pick-up node, each pick-up node to its corresponding delivery node, and 

from each delivery node to the depot node. The loading and unloading time was added to the 

transportation time in Model A1 as discussed earlier for Model A2.  The collaborative savings, 

sij, data input of Model A1 is computed from transportation costs and collaborative revenues as 

previously described in equations (1) and (2).  The transportation costs for the backhaul routes 

and revenue of each collaborator’s shipment were found in the same manner as they were for 

Model A2.  The input for product demand of collaborator’s shipments is the same as in Model 

A2 but simplified in that there’s only one positive demand value for each collaborator.  

 

4.4.2  Model A1 - Analysis of Results 

Table 2 summarizes the percent cost savings obtained from Model A1 and A2 with 

variations to the transportation arc cost and the revenue percentage parameter.  The fourth 

column, the total cost of backhauls without collaboration, is the cost of all backhaul routes to 

travel from the origin node to the depot node.  The fifth column shows the total cost savings with 

collaboration and for Model A1 this is the objective value solution. Computation times of 
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running the models are also provided in Table 2. The $1.60/mile transportation cost is considered 

our “typical” cost and additional results are shown for transportation costs ranging from 

$1.20/mile to $2.00/mile.  The results of Model A1 show that varying the transportation cost 

does not affect the number of matched backhauls to collaborators. The percent cost savings also 

does not vary with transportation costs. For example, a $1.20/mile transportation cost at the 30% 

revenue level results in 10 matched pairs and a collaborative cost savings of 13.17%; a 

$2.00/mile transportation cost at the 30% revenue level produces these results. The savings 

dollar amount increases with transportation cost increase because the transportation cost is built 

into the computation of revenue and savings.   

Variations to the percent revenue show that more backhaul routes are paired with 

collaborators at a higher percent revenue than at a lower percent revenue.  As shown in Table 2, 

when the percent revenue is set at 30% and 40% of the transportation cost, 10 out of the 15 

carrier of interest’s backhaul routes are matched with a collaborator’s shipment.  When the 

percent revenue is 50%, an additional 3 backhaul routes are matched with collaborator’s 

shipments. The cost savings experienced for the backhaul routes are found to range from about 

13% to 27% for the three revenue levels.  More of the longer mileage backhaul routes match up 

with collaborators at the 30% revenue level than the shorter mileage routes.  Results show that 

backhaul routes match up with collaborator O-D pairs that are very close geographically to the 

backhaul route, which is as expected.   Collaborator O-D shipments that consist of longer hauls 

are more likely to be matched with a backhaul route than those with shorter hauls.  This is 

because the revenue, ri, that the carrier of interest receives is greater for the longer O-D hauls.  It 

should be noted that the assumption is made that all collaborators are willing to pay the 

compensation price to the carrier of interest, be it 30%, 40% or 50% of the carrier of interest’s 
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shipping costs.  Typically this price would be appealing to a collaborative shipper, but not 

appealing for all collaborative carriers. Further research could explore the development of a 

profit sharing mechanism incorporated with the models presented in this paper. The greedy 

heuristic for Model A1 takes on an average 20% of the time needed to solve the tabu search 

heuristic for Model A2 on a Dell Latitude Laptop with Core 2 Duo 2.53 GHz processor with 3 

GB Ram. 

 

TABLE 2  Model A1 Results with Variations in Transportation Cost and Percent Revenue 

Parameters 

Transportation 
arc cost 

parameter 

Percentage 
revenue 

parameter 

Number of 
backhaul 

routes matched 
to 

collaborators 

Total cost of 
backhauls 
without 

collaboration 

Total cost 
savings with 
collaboration 

Percent cost 
savings of 

backhauls with 
collaboration 

Computation 
time (sec) 

$1.20 / 
mile 

30% 10 $4,279.20 $563.52 13.17% 0.047 
40% 10 $4,279.20 $848.16 19.82% 0.032 
50% 13 $4,279.20 $1,156.80 27.03% 0.031 

$1.40 / 
mile 

30% 10 $4,992.40 $657.44 13.17% 0.047 
40% 10 $4,992.40 $989.52 19.82% 0.047 
50% 13 $4,992.40 $1,349.60 27.03% 0.062 

$1.60 / 
mile 

30% 10 $5,705.60 $751.36 13.17% 0.031 
40% 10 $5,705.60 $1,130.88 19.82% 0.047 
50% 13 $5,705.60 $1,542.40 27.03% 0.031 

$1.80 / 
mile 

30% 10 $6,418.80 $845.28 13.17% 0.031 
40% 10 $6,418.80 $1,272.24 19.82% 0.047 
50% 13 $6,418.80 $1,735.20 27.03% 0.032 

$2.00 / 
mile 

30% 10 $7,132.00 $939.20 13.17% 0.047 
40% 10 $7,132.00 $1,413.60 19.82% 0.047 
50% 13 $7,132.00 $1,928.00 27.03% 0.047 

 

Effects of Model A1 results to variations of loading and unloading times at the 

collaborator pick-up and delivery locations are shown in Table 3.  The loading/unloading times 

for the base data sets utilizes times of 1 hour for loading and 1 hour for unloading, which is 

typical of the carrier of interest’s existing schedule.  The results in Table 3 are from model runs 
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all using the 30% revenue level and the base $1.60/mile transportation cost.  For the example 

network, reducing the loading/unloading times to 0.5 hour and 0.75 hour did not reduce the 

number of matched pairs as compared to the 1 hour times.  Extending the loading/unloading 

times to 1.25 hour and 1.5 hour reduced the number of matched pairs to 7 out of 15.  The percent 

cost savings is higher for the 1.25 hour case than the 1.5 hour case because the 7 matched pairs 

are not the same 7 collaborators. 

 

TABLE 3  Model A1 Results with Variations in Unloading and Loading Times 

Unloading and 
loading time 
parameters 

(hours) 

Number of 
backhaul 

routes matched 
to 

collaborators 

Total cost of 
backhauls 
without 

collaboration* 

Total cost 
savings with 

collaboration* 

Percent cost 
savings of 

backhauls with 
collaboration 

0.5 10 $5,705.60 $751.36 13.17% 
0.75 10 $5,705.60 $751.36 13.17% 

1 10 $5,705.60 $751.36 13.17% 
1.25 7 $5,705.60 $660.58 11.58% 
1.5 7 $5,705.60 $649.28 11.38% 

*All trials use a transportation arc cost of $1.60/mile and 30% revenue 
 

The sensitivity of Model A1 results to reduction in the maximum backhaul time length 

parameter was analyzed and the results are shown in Table 4.  Recall that the maximum backhaul 

time length, Ti, is based on the FMCSA hours-of-service rules (FMCSA, 2010).  Results in Table 

4 show the affects of reducing the original Ti values by 10%.  At the 50% revenue level, the 

reduced Ti results in only 9 of the 15 backhaul routes matching with a collaborative shipment 

while the original Ti values have 13 of the 15 routes matched. 
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TABLE 4 Model A1 Results with Reduction of the Maximum Backhaul Time Parameter 

Maximum 
backhaul trip 

length 

Percentage 
revenue 

parameter 

Number of 
backhaul 

routes matched 
to 

collaborators 

Total cost of 
backhauls 
without 

collaboration* 

Total cost 
savings with 
collaboration 

Percent cost 
savings of 

backhauls with 
collaboration 

Original 
30% 10 $5705.60 $751.36 13.17% 
40% 10 $5705.60 $1,130.88 19.82% 
50% 13 $5705.60 $1,542.40 27.03% 

10% 
Reduction 

30% 7 $5705.60 $660.48 11.58% 
40% 8 $5705.60 $986.88 17.30% 
50% 9 $5705.60 $1,314.40 23.04% 
*All trials use a transportation arc cost of $1.60/mile 

 

4.4.3  Model A2- Analysis of Results 

Model A2 was solved using the tabu search heuristic. After sensitivity analysis, the 

parameters used in the tabu search were: (i) max number of iterations - 2000, (ii) size of tabu list 

- 7. Also the program is terminated if the incumbent solutions fail to improve over 100 iterations. 

The results of Model A2 are summarized in Tables 5 through 8.  Table 5 shows the results of 

Model A2 when the transportation arc costs and the percent revenue parameters are varied. 

Model A2 results show some similar trends to the Model A1 results. Model A2 results show that 

changing the transportation arc cost while keeping the percent revenue constant does not affect 

the number of backhaul routes matched to collaborators or affect the percent cost savings.  The 

increasing of the percent revenue parameter does not have as much of an effect on the number of 

matched pairs as it does for Model A1.  For the computational runs using $1.20/mile 

transportation cost, only one additional backhaul route is matched when increasing the percent 

revenue from 30% to 50%.  For the other transportation cost trials, the number of matched 

backhaul routes does not increase with increased percent revenue.  Model A2 has more matched 

backhaul routes than Model A1 at the 30% and 40% revenue levels, but Model A1 has more 

matched backhauls than Model A2 at the 50% revenue level.  However, all trials of Model A2 
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experience more percent cost savings than Model A1.  This is because some of the matched 

backhaul routes are matched to more than 1 collaborator. Model A1 does not allow for a 

backhaul route to fulfill more than 1 collaborator’s demand.  Table 6 shows how many 

collaborators each backhaul route is matched with for varying transportation costs and revenues. 

Some of the backhauls are matched with two collaborators, and the backhaul route from origin 9 

is matched with up to 3 collaborators. 

 

TABLE 5   Model A2 Results with Variations in Transportation Cost and Percent Revenue 

Parameters 

Transportation 
arc cost 

parameter 

Percentage 
revenue 

parameter 

Number of 
backhaul 

routes matched 
to 

collaborators 

Total cost of 
backhauls 
without 

collaboration 

Total cost 
savings with 
collaboration 

Percent cost 
savings of 

backhauls with 
collaboration 

Computation 
time (sec) 

$1.20 / 
mile 

30% 11 $4,279.20 $706.32 16.51% 0.203 
40% 11 $4,279.20 $941.76 22.01% 0.203 
50% 12 $4,279.20 $1,177.20 27.51% 0.218 

$1.40 / 
mile 

30% 11 $4,992.40 $824.04 16.51% 0.218 
40% 11 $4,992.40 $1,098.72 22.01% 0.203 
50% 11 $4,992.40 $1,373.40 27.51% 0.203 

$1.60 / 
mile 

30% 11 $5,705.60 $941.76 16.51% 0.218 
40% 11 $5,705.60 $1,255.68 22.01% 0.218 
50% 11 $5,705.60 $1,569.60 27.51% 0.218 

$1.80 / 
mile 

30% 11 $6,418.80 $1,059.48 16.51% 0.234 
40% 11 $6,418.80 $1,412.64 22.01% 0.218 
50% 11 $6,418.80 $1,765.80 27.51% 0.188 

$2.00 / 
mile 

30% 11 $7,132.00 $1,177.20 16.51% 0.218 
40% 11 $7,132.00 $1,569.60 22.01% 0.187 
50% 11 $7,132.00 $1,962.00 27.51% 0.218 

 

 

 

 

 

 

 



 

39 
 

TABLE 6  Model 2 Results for Number of Collaborators Serviced on Each Route 

 $1.20/mile $1.40/mile $1.60/mile $1.80/mile $2.0/mile 
Route  30

% 
40
% 

50
% 

30
% 

40
% 

50
% 

30
% 

40
% 

50
% 

30
% 

40
% 

50
% 

30
% 

40
% 

50
% 

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 
9 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
12 2 1 1 2 2 1 1 2 1 1 2 2 1 1 2 
13 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 
14 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 
15 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 

 

Table 7 summarizes how Model A2 is affected by variations to the loading and unloading 

time parameters. The results in Table 7 are from model runs all using the 30% revenue level and 

the base $1.60/mile transportation cost.  Similar to Model A1 results, Model A2 results show that 

increasing the loading and unloading times above 1 hour causes the number of matched 

backhauls to decrease by 3 backhauls.  

 
TABLE 7  Model A2 Results with Variations in Unloading and Loading Times 

Unloading and 
loading time 
parameters 

(hours) 

Number of 
backhaul 

routes matched 
to 

collaborators 

Total cost of 
backhauls 
without 

collaboration* 

Total cost 
savings with 

collaboration* 

Percent cost 
savings of 

backhauls with 
collaboration 

0.5 11 $5,705.60 $941.76 16.51% 
0.75 11 $5,705.60 $941.76 16.51% 

1 11 $5,705.60 $930.48 16.31% 
1.25 8 $5,705.60 $726.48 12.73% 
1.5 8 $5,705.60 $726.48 12.73% 

*All trials use a transportation arc cost of $1.60/mile and 30% revenue 
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Model A2 results for reduction in the maximum backhaul length parameter, To, are 

summarized in Table 8 and reveal similarities with Model A1 results from Table 4.  When the 

maximum backhaul time length is reduced by 10% from the original times, the number of 

matched backhaul routes decreases between 2 to 3 backhauls, depending on percent revenue. 

 
TABLE 8 Model A2 Results with Reduction of the Maximum Backhaul Time Parameter 

Maximum 
backhaul trip 

length 

Percentage 
revenue 

parameter 

Number of 
backhaul 

routes matched 
to 

collaborators 

Total cost of 
backhauls 
without 

collaboration* 

Total cost 
savings with 
collaboration 

Percent cost 
savings of 

backhauls with 
collaboration 

Original 
30% 11 $5705.60 $941.76 16.51% 
40% 11 $5705.60 $1,255.68 22.01% 
50% 11 $5705.60 $1,569.60 27.51% 

10% 
Reduction 

30% 8 $5705.60 $755.52 13.24% 
40% 9 $5705.60 $1,007.36 17.66% 
50% 9 $5705.60 $1,314.40 23.04% 
*All trials use a transportation arc cost of $1.60/mile 

 

In this chapter the solution methodologies have been presented: a greedy algorithm to 

solve Model A1; a tabu search heuristic to solve Model A2. The example network was 

constructed using a real world freight network, with modified parameters. Assumptions were 

made where information was not provided. Numerical analysis was performed on the two models 

using the example network to reveal potential cost savings of the collaboration framework A. 
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CHAPTER 5.   PROBLEM B MODEL FORMULATION 

 

5.1  Problem B Description 

The second collaboration framework presented in the thesis demonstrates how full 

truckload shippers can collaborate their truck movements to attain lower rates from a common 

carrier. This problem, named Problem B, is particularly applicable to shippers who have long 

haul truckload shipments and have costly empty trips to return to their depot or origin. These 

deadhead miles cause increase in rates that carriers offer to shippers. Problem B matches 

shippers to form loops between their lanes, to reduce empty repositioning miles. The shippers 

can then provide bundled lanes to a common carrier and realize lower rates. 

Figure 3 demonstrates a simple example of collaboration under problem B. Given four 

shippers with two of the shipping lanes’ origins near the other two shipping lanes’ destinations, 

the potential to form two loops with the four shipping lanes is great.  As can be seen in Figure 3, 

the collaboration scenario involves much shorter reposition arcs, resulting in less costs for the 

four shippers.  

 

 
FIGURE 3  Simple Example for Model B  
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Problem B is a capacitated loop model and is formulated as a mixed integer program. 

One significant difference between this framework and the framework of Problem A is that this 

is a “full” collaboration, where the all shipper’s points of view are taken into consideration. The 

problem consists of a group of collaborative shippers whose shipping lanes and truck capacities 

are taken in common to route trucks such that all shipping lanes are covered and all the demand 

is met.  This is accomplished through the creation of loops, or cycles. Each loop starts and ends 

at an origin node and covers a set of shipping lanes and reposition arcs. Reposition arcs connect 

O-D shipping lanes in order to form a loop. The model minimizes the transportation cost all of 

the loops while meeting the demand of all the shippers. More than one loop, or truck route, can 

cover a lane to ensure all of the demand is met, meaning an O-D shipment can be split up into 

more than one truck movement. The model assigns arcs to loops to accomplish the routing of 

trucks while minimizing the cost of the loops. The number of loops l in the model is the 

maximum number of truck routes that can be formed by the network. The worst case scenario is 

that all shippers operate separately, and therefore, the set of all loops l is equal to the number of 

truck routes to fulfill all of the shippers’ demand. Depending on truck capacity, some shippers 

could require multiple truck routes to complete the demand of a shipping lane. Truck capacity is 

taken into consideration in the model and a homogenous fleet is assumed. Because this 

collaborative scenario is from the perspective of the whole collaborative network, it is of interest 

to examine an effective and fair method of allocating the costs to the shippers. The routing is 

accomplished first by solving Model B, followed by cost allocation to the shippers.  The cost 

allocation methodologies used in the thesis are provided in Chapter 6. The following is the 

formulation of Model B: 
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5.2  Model B Parameters 

N set of all nodes i 

A set of all arcs (i,j) 

L set of all loops l  

M set of all O-D shipment lanes m 

ui
m demand at node i for O-D shipment m 

K maximum number of arcs for each loop  

cij cost to traverse arc (i,j) 

C truck capacity 

 

5.3  Model B Variables 

xijl binary decision variable indicating whether arc (i,j) is covered by loop l 

yijl
m product flow on arc (i,j) for loop l of O-D shipment m 

 

5.4  Model B Formulation 

Minimize                                                                                                                     
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5.5  Model B Constraints Descriptions 

The objection function of Model B (23) minimizes the total transportation cost of all the 

loops in the network. Constraint (24) is a flow balance constraint, ensuring that the number of 

arcs coming into a node equals the number of arcs coming out of the node for each loop. 

Constraint (25) is a product flow balance constraint ensuring that the demand at each node is 

met. This constraint allows O-D shipments to be split up into multiple loops. Constraint (26) 

ensures that the truck capacity is not exceeded on each arc of the loop. Constraint (27) provides a 

limit on the maximum number of arcs per loop. This provides the model with a length constraint 

on each loop, to restrict how many consecutive days a driver would work to complete a cycle. 

This is not as precise of a time constraint as the ones used in Models A1 and A2, but allows for 

some restriction on the length of a truck cycle. After Model B solves the routing, the loops can 

then be examined to determine loops that would cause the driver to exceed maximum driver 

hours set by the Federal Motor Carrier Safety Administration and reconfigure those select loops. 

Constraints (28) and (29) define the decision variables of Model B.  The product flow variable 

yijl
m can take the value of any positive real number or zero. The variable xijl can take the value of 

0 or 1. 

Note that Ergun et al. (2007b) prove that the cardinality constrained lane covering 

problem (CCLP) is NP - Hard. The above formulation can be viewed as a capacitated cardinality 

constrained lane covering problem (CCCLP).  CCLP can be viewed as a special case of the 

CCCLP with sufficiently high capacities. If we had a polynomial time algorithm for CCCLP then 
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the CCLP can also be solved in polynomial time. Therefore CCCLP is also an NP –Hard 

problem. The next chapter presents the solution methodology for solving Model B and cost 

allocation methodologies, followed by the numerical analysis.  



 

46 
 

CHAPTER 6.  PROBLEM B SOLUTION METHODOLOGY AND NUMERICAL 

RESULTS 

 

6.1 Tabu search solution methodology 

To solve the capacitated loop model, Model B, the tabu search methodology is used due 

to its efficiency in solving vehicle routing problems (Gendreau et al., 1991; Taillard et al., 1997; 

Cordeau et al., 1998). Because Model B has integer variables, it becomes difficult to solve for 

larger networks. Tabu search provides good results with reasonable computation time. The 

methodology to solve Model B is very similar to the methodology used to solve Model A2, as 

described in Section 4.2, with one notable difference. In this implementation of tabu search, 

neighborhood solutions are generated using a two step process. In the first step a random lane is 

linked with a random loop in the current solution. In the second step, a new loop is created by 

combining the linked loop and the random lane.  

 

6.2 Cost allocation methodology 

Cooperative game theory analyzes situations where a group of players, or members, may 

operate together either partially or fully to obtain benefits.  It provides frameworks for profit/cost 

allocation when a set of members called coalitions agree to collaborate (Shoham et al., 2009). 

Model B forms least cost loops between shipping lanes but a framework for allocating the costs 

to the shippers needs to be specified. Since every shipper brings very different contributions to 

the collaboration, it is important that a cost allocation methodology provides a “fair” allocation 

and is desirable to every shipper. Three cost allocation schemes are selected to demonstrate how 

costs can be allocated to shippers involved in the collaboration framework of Model B: 

proportion allocation; proportion allocation by loop; and marginal contribution allocation. 
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6.2.1  Proportion Allocation 

One of the most commonly used allocation mechanism is proportion allocation, which 

distributes the cost among the players equally, weighted by each players stand-alone cost (Xu et 

al., 2009). In the context of Model B, the players of the cooperative game are the shippers. The 

stand-alone cost is the cost of a shipper operating on its own, without collaboration. The weight 

of shipper i,  represented as ri, is computed as the ratio of its stand alone cost c({i}) to the sum of 

all shippers’ stand alone costs. The weight of each shipper i is expressed as 

   
      

          
 

The cost allocation of each shipper i is then computed as 

           

where c(N) is the cost of the collaborative network, or the objective value of the Model B 

solution.  Proportion allocation is a method that is easy to understand and compute.  It also 

ensures that every shipper in the collaboration is allocated a cost that is no more than if it were to 

operate alone. In collaborative game theory this concept is known as individual rational (Xu et 

al., 2009). A disadvantage of proportion allocation is that it does not take into consideration the 

contribution of each shipper in the collaboration. For instance, if a shipper cannot easily form 

loops with other shippers in the collaborative network, its weight is computed in the same 

manner as a shipper who easily forms loops with many other shippers and contributes 

significantly to the cost savings of the collaboration. 

 

6.2.2  Proportion Allocation by Loop 

Additional analysis using proportion allocation is applied to the results of Model B by 

using proportion allocation to individual loops.  In this analysis, the results of Model B are 
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separated into individual loops and then proportion allocation is applied within each loop. Each 

shipper’s weight is based on the proportion of its stand-alone cost to the sum of the stand-alone 

costs of the shippers in the same loop. The allocated cost is then computed as the shipper’s 

weight multiplied by the collaborative loop cost. 

  

6.2.3  Marginal Contribution Allocation 

The second cost allocation scheme which is applied to Model B is a marginal 

contribution allocation. Its concept is rooted in the popular Shapley value allocation method but 

does not follow the Shapley value definition exactly. The Shapley value is described next, 

followed by the marginal contribution allocation used in this thesis.  

Shapley value is a very popular cost allocation method, and is based on each players 

contribution to the collaboration. The grand coalition, N, is the set of all players in the 

collaboration and S represents any subset of the grand coalition. The Shapley value, Shi for each 

player i, is the average marginal contribution of each player if it were to join the grand coalition 

one member at a time.  c(N) represents the value/cost of the N-player coalition. The marginal 

contribution of player i to the subset S is defined as c(S) – c(S\{i}).  The Shapley value is defined 

as the weighted average of the player’s marginal contribution to each possible subset S of the 

collaboration (Shapley, 1953).  

The following definition is a popular definition for the Shapley value. Shi represents the 

Shapley value for player i in the collaboration. 

        
            

  
                          

       

 

where N and S are the number of shippers in the collaborative network and the number of 

shippers in the subset, respectively. 
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Computing the Shapley value for larger sized coalitions becomes computationally hard to 

solve. Because this analysis uses a large sized example collaborative network, the concepts of the 

Shapley value are used to develop a marginal contribution cost allocation method which is more 

computationally easy to solve. For each loop that Model B forms, the costs of that loop are 

distributed to the shippers in the loop. Within loop L, a shipper’s allocated cost, MCi(c),  is 

computed as: 

        
            

  
                          

       

 

 

6.3  Problem B Numerical Analysis 

Computational runs are conducted on Model B using a real freight network to determine 

the potential for cost savings under this collaboration scenario. The example network setup is 

described in this chapter, followed by an analysis of the results. Computational results for the 

proportion allocation, proportion allocation by loop, and marginal contribution allocation are 

then provided for select problem instances. 

 

6.3.1  Example Network Setup 

An example network was used to implement Model B and examine the cost savings of 

the collaborative network.  The network consists of real truckload lanes across the United States.  

Fifty lanes were chosen from this network to comprise the example network used in this analysis. 

Lanes were chosen in a manner so that there was good potential for collaboration; one lane’s line 

haul route is close to another lane’s backhaul route. Lanes were selected to cover many regions 

of the U.S. Each lane is taken as an individual shipper, so that there are 50 shippers and 50 lanes 

in the network. Table 9 provides a list of the shipping lanes’ origins and destinations and each 
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lane’s demand. Due to privacy concerns, information about the commodity type was not made 

available and the demand values were scaled in relation to the capacity. The set of loops l is the 

maximum number of truck cycles to complete all of the shippers’ demand. The truck capacity, C, 

was taken as 2000 units, then adjusted to 3000 units and 4000 units during the analysis.  The 

transportation cost, cij, was determined by first calculating the distance between every node in 

the network. A base cost of $1.60 per mile was used to compute cij for every arc in the network. 

The cost per mile is adjusted from $1.20, $1.40, $1.80 and $2.00 per mile in the analysis of 

results section. The maximum number of arcs per loops, K, was set as 4 for a base level and was 

adjusted to 6 and 8 arcs per loop during the analysis.  
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TABLE 9  Shipping Lanes in Model B Dataset 

Origin Destination Demand Origin Destination Demand 

Franklin, OH Portland, OR 2758 Florence, KY Newnan, GA 617 
Columbus, OH Clackamas, OR 193 Louisville, KY Newnan, GA 136 
Portland, OR Columbus, OH 460 Suwanee, GA Louisville, KY 755 
Salem, OR Columbus, OH 728 Villa Rica, GA Fairborn, OH 849 

Boardman, OR Columbus, OH 272 Bremen, GA Ridgefield Park, NJ 3478 
Portland, OR Danville, IL 161 Doraville, GA Elizabeth, NJ 1955 
Portland, OR Danville, IL 198 Duluth, GA South Plainfield, NJ 207 

Monmouth, IL Portland, OR 1070 Elizabeth, NJ Newnan, GA 1015 
Belvidere, IL Clackamas, OR 2671 Elizabeth, NJ Atlanta, GA 265 

Shelbyville, IL Portland, OR 1528 Haines City, FL Harrisburg, PA 2460 
Franklin, OH Los Alamitos, CA 1968 Sarasota, FL Harrisburg, PA 2821 
Marion, OH Los Alamitos, CA 115 Lake Wales, FL Baltimore, MD 291 

Columbus, OH Lancaster, CA 325 Philadelphia, PA Orlando, FL 243 
Fullerton, CA Columbus, OH 507 Chambersburg, PA Orlando, FL 133 

Los Angeles, CA Columbus, OH 813 San Antonio, TX Charlotte, NC 194 
Vernon, CA Danville, IL 3465 Houston, TX Charlotte, NC 100 
Irvine, CA Danville, IL 2823 Spartanburg, SC Temple, TX 675 
Irvine, CA Columbus, OH 3853 Mooresville, NC San Antonio, TX 244 

Indianapolis, IN Lancaster, CA 2342 Statesville, NC Lafayette, LA 1332 
Monmouth, IL Los Alamitos, CA 378 Concord, NC Arlington, TX 184 
Monmouth, IL Phoenix, AZ 378 Newton, NC Arlington, TX 187 
Stuttgart, AR Danville, IL 966 Euless, TX Charlotte, NC 291 

Fort Smith, AR Danville, IL 2281 McCook, IL Phoenix, AZ 3100 
Osceola, AR Hanover Park, IL 248 Wauconda, IL Phoenix, AZ 346 

Louisville, KY Winter Garden, FL 2376 Tolleson, AZ University Park, IL 255 

 

6.3.2  Model B – Analysis of Results 

Table 10 shows the results of Model B using tabu search with the 50-lane network.  The 

cost per mile was varied from $1.20 per mile to $2.00 per mile, in $0.20 increments. The second 

column in Table 10 shows the total stand-alone cost for the network. This represents the total 

cost of all shippers if they operated separately, or the no-collaboration scenario. The stand-alone 

cost was computed by first determining the number of times a shipping lane would need to be 

traversed, based on truck capacity, in order to fulfill all of the demand. Then the cost of the 
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loop/s for that shipper was computed based on the cost per mile of that test instance. The 

collaborative cost, shown in the third column, is the objective value solution of Model B.  Table 

10 also shows the number of loops formed in the solution and the percent network cost savings, 

computed as the cost savings of the collaborative cost divided by the stand-alone cost. Because 

the tabu search algorithm provides different results in each run, multiple runs for each problem 

instance are necessary to get the true performance of the model. The tabu search algorithm was  

run ten times for each instance, then average values were calculated for the collaborative cost, 

the number of loops formed in the results, and the network percent cost savings were calculated.  

When varying the cost per mile from $1.20 to $2.00, the number of loops that are formed range 

from 39 to 41 loops. The average network cost savings ranges from 6.65% to 9.79%.  If more 

iterations are performed on each instance, it is likely the average cost savings for each instance 

will converge.   

TABLE 10  Results of Model B Analysis with Variations in Cost Per Mile 

Cost Per Mile  
Stand-Alone 

Cost 

Collaborative 

Cost 

Number of 

Loops Formed 

Network 

Cost Savings  

$1.20 $220,948.80  $206,259.24 40 6.65% 
$1.40 $257,773.60 $232,548.54 40 9.79% 
$1.60 $294,598.40 $267,763.84 41 9.11% 
$1.80 $331,423.20 $301,229.37 40 9.11% 
$2.00 $368,248.00 $333,372.70 39 9.47% 

* All of these test instances used the following parameters: truck capacity = 2000; 
maximum arcs per loop = 4 

 

Table 11 shows how the results of Model B respond to changes in the maximum number 

of arcs per loop allowed in the solution. The model was run using 4, 6, and 8 maximum arcs per 

loop. When the maximum arcs per loop parameter is set to 4, the numerical analysis resulted in a 

maximum of 2 shippers collaborating in a loop. Two arcs are line haul arcs and two arcs are 

backhaul, or repositioning, arcs. When the maximum arcs per loop parameter is set to 6 and 8, it 
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resulted in a maximum of 3 and 4 shippers, respectively, collaborating in a loop. After running 

10 iterations of each instance, the average number of loops formed and the average percent cost 

savings was computed. Using 4 to 8 maximum arcs per loop the resulting number of loops 

formed in the network is 41 to 30 loops, respectively. Using 4 arcs per loops, there is more of a 

restriction on the model and more loops are formed as a result. When the maximum arcs per 

loops is increased to 8, fewer loops are formed to cover all of the lanes. Increasing the maximum 

arcs per loop results in a slight increase in the cost savings for the collaborative network.  

 

TABLE 11  Results of Model B Analysis with Variations in the Maximum Arcs per Loop 

Maximum Arcs 

Per Loop 

Stand-Alone 

Cost 

Collaborative 

Cost 

Number of 

Loops Formed 

Network Cost 

Savings 

4 $294,598.40 $267,763.84 41 9.11% 
6 $294,598.40 $262,355.92 35 10.94% 
8 $294,598.40 $260,739.76 33 11.94% 

* All of these test instances used the following parameters: cost per mile = $1.60; truck 
capacity = 2000 

 

The results in Table 12 show how Model B performs when altering the truck capacity 

parameter. For these tests instances, the capacity was changed from 2000, 3000 and 4000 units 

using the base cost level of $1.60 per mile and using a maximum of 4 arcs per loop for each test 

instance. All of the shipping lanes' demands are under 4000 units so the 4000 capacity instance 

requires each shipping lane to be traversed only once in order to meet all of the demand. 

Increasing the capacity from 2000 units to 4000 units resulted in 41 and 38 loops formed, 

respectively. Increasing the demand relaxes the model and requires fewer shipments to be made, 

thus fewer loops to be formed. Changing the truck capacity did not result in much variation in 

the percent cost savings of the network; the cost savings ranged from 8.34% to 9.11%. 
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TABLE 12  Results of Model B Analysis with Variations in the Capacity 

Truck Capacity 
Stand-Alone 

Cost 

Collaborative 

Cost 

Number of 

Loops Formed 

Network 

Cost Savings 

2000 $294,598.40 $267,763.84 41 9.11% 
3000 $255,996.80 $234,656.96 38 8.34% 
4000 $233,731.20 $210,582.32 38 9.90% 

* All of these test instances used the following parameters: cost per mile = $1.60; 
maximum arcs per loop = 4 

 

Additional runs of Model B were performed with modifications to the demand input data. 

Some of the shippers’ demands are very small in comparison to the other shippers. Therefore, 

these demands were increased to be comparable to the other shippers’ demands. For one set of 

runs, all of the demand which was less than 1000 units was increased to be greater than 1000 

units. The original demand was increased by multiplying by the lowest integer which makes the 

demand greater than 1000. This is called case 1 and the results are summarized in Tables 13 and 

14.  As shown in Table 13, the network cost savings ranged from 7.71% to 9.64% when the cost 

per mile parameter was varied from $1.20 per mile to $2.00 per mile, not respectively.  Table 14 

shows the results of case 2 when the maximum number of arcs per loop was varied from 4 to 6 to 

8 arcs; the cost savings increased from 9.09% to 11.68%. For the second set of runs, called case 

2, all demand less than 1500 units is increased to be greater than 1500 units using the same 

procedure as case 1. The results of case 2 analysis is summarized in tables 15 and 16. When 

varying the cost per mile parameter, the network cost savings ranged from 7.95% to 9.91%. As 

shown in Table 16, the network cost savings increased from 9.12% to 10.59% using a maximum 

of 4 arcs per loop and 8 arcs per loop, respectively. 
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TABLE 13   Case 1 Results of Model B with Variations in Cost per Mile 

Cost Per Mile  
Stand-Alone 

Cost 

Collaborative 

Cost 

Number of 

Loops 

Formed 

Network Cost 

Savings 

$1.20 $220,948.80  $201,395.64 41 8.85% 
$1.40 $257,773.60 $237,893.46 40 7.71% 
$1.60 $294,598.40 $267,813.12 39 9.09% 
$1.80 $331,423.20 $299,478.24 40 9.64% 
$2.00 $368,248.00 $335,087.40 40 9.00% 

* All of these test instances used the following parameters: truck capacity=2000; 
maximum arcs per loop = 4 

 

TABLE 14   Case 1 Results of Model B with Variations in the Maximum Arcs Per Loop 

Maximum 

Arcs Per 

Loop 

Stand-Alone 

Cost 

Collaborative 

Cost 

Number of 

Loops 

Formed 

Network Cost 

Savings 

4 $294,598.40 $267,813.12 39 9.09% 
6 $294,598.40 $261,070.08 34 11.38% 
8 $294,598.40 $260,175.04 32 11.68% 

* All of these test instances used the following parameters: cost per mile = $1.6; 
truck capacity = 2000 

 

TABLE 15   Case 2 Results of Model B with Variations in Cost per Mile 

Cost Per 

Mile  

Stand-

Alone Cost 

Collaborative 

Cost 

Number of 

Loops 

Formed 

Network 

Cost Savings  

$1.20  $238,286.40  $219,348.78 43 7.95% 
$1.40  $278,000.80 $252,133.98 40 9.30% 
$1.60  $317,715.20 $288,737.04 41 9.12% 
$1.80  $357,429.60 $322,021.26 43 9.91% 
$2.00  $397,144.00 $363,656.60 41 8.43% 

* All of these test instances used the following parameters: truck 
capacity=2000; maximum arcs per loop = 4 
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TABLE 16   Case 2 Results of Model B with Variations in the Maximum Arcs per Loop 

Maximum 

Arcs Per 

Loop 

Stand-

Alone Cost 

Collaborative 

Cost 

Number of 

Loops 

Formed 

Network 

Cost Savings  

4 $317,715.20 $288,737.04 41 9.12% 
6 $317,715.20 $287,495.76 35 9.51% 
8 $317,715.20 $284,067.28 34 10.59% 

* All of these test instances used the following parameters: cost per mile = 
$1.6; truck capacity = 2000 

 
 

6.3.3   Proportion Allocation - Analysis of Results 

Using the results of Model B, the costs are then allocated to the shippers in the 

collaborative network using the three previously mentioned methods- a proportion cost 

allocation, a proportion cost allocation by loop and a marginal contribution cost allocation. Three 

cases are used to apply the cost allocation methodologies. All cases are test instances using $1.60 

per mile, and a 2000 unit capacity. Case 1 uses 4 maximum arcs per loop, Case 2 uses 6 

maximum arcs per loop and Case 3 uses 8 maximum arcs per loop.  

The results of the proportion cost allocation methodology are shown in Tables 17 through 

19.   Each table represents the cost allocation for the specific test instances of Case 1, 2, and 3.  

With proportion allocation the collaborative network cost is divided equally among the shippers 

weighted by each shipper’s stand-alone cost. Therefore, the percent cost savings of each shipper 

in the 50-shipper network is the same for each test instance. For the test instance shown in Table 

18 (Case 2) the percent cost savings of the collaborative network is 12.43%. Therefore, each 

shipper is allocated a cost which is 12.43% lower than their stand-alone cost. This allocation 

method provides an incentive to every shipper to participate in the collaboration, but it does not 

take into consideration the contribution of each shipper to the collaboration. 
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TABLE 17   Proportion Allocation Results for Case 1 

Shipper 
Stand-

Alone Cost Allocated 
  

Shipper 
Stand-

Alone Cost 

Allocated 

Cost 
  

1 $15,040.00 $13,178.62 26 $1,548.80 $1,357.02 
2 $7,731.20 $6,774.26 27 $1,472.00 $1,289.91 
3 $7,724.80 $6,768.58 28 $1,398.40 $1,225.37 
4 $7,872.00 $6,897.65 29 $1,670.40 $1,463.63 
5 $7,206.40 $6,314.52 30 $5,875.20 $5,148.01 
6 $6,883.20 $6,031.35 31 $2,764.80 $2,422.61 
7 $6,886.40 $6,034.19 32 $2,704.00 $2,369.43 
8 $6,288.00 $5,509.65 33 $2,915.20 $2,554.51 
9 $13,228.80 $11,591.60 34 $2,790.40 $2,445.06 

10 $6,688.00 $5,860.20 35 $6,406.40 $5,613.43 
11 $7,008.00 $6,140.54 36 $6,848.00 $6,000.37 
12 $7,296.00 $6,393.00 37 $3,020.80 $2,646.93 
13 $7,123.20 $6,241.47 38 $3,145.60 $2,756.38 
14 $7,168.00 $6,280.71 39 $3,040.00 $2,663.71 
15 $7,200.00 $6,308.84 40 $3,942.40 $3,454.38 
16 $13,088.00 $11,468.21 41 $3,328.00 $2,916.16 
17 $13,056.00 $11,440.07 42 $3,296.00 $2,888.03 
18 $14,368.00 $12,589.55 43 $4,016.00 $3,518.91 
19 $13,152.00 $11,524.22 44 $2,745.60 $2,405.83 
20 $6,032.00 $5,285.33 45 $3,424.00 $3,000.31 
21 $4,966.40 $4,351.66 46 $3,392.00 $2,972.18 
22 $1,654.40 $1,449.69 47 $3,488.00 $3,056.33 
23 $4,032.00 $3,532.85 48 $11,200.00 $9,813.81 
24 $1,600.00 $1,401.94 49 $5,696.00 $4,991.06 
25 $5,440.00 $4,766.74 50 $5,737.60 $5,027.46 
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TABLE 18   Proportion Allocation Results for Case 2 

Shipper 
Stand-

Alone Cost 
Allocated 

Cost 
Shipper 

Stand-

Alone Cost 
Allocated 

Cost 

1 $15,040.00 $13,169.88 26 $1,548.80 $1,356.12 
2 $7,731.20 $6,769.77 27 $1,472.00 $1,289.05 
3 $7,724.80 $6,764.10 28 $1,398.40 $1,224.56 
4 $7,872.00 $6,893.08 29 $1,670.40 $1,462.66 
5 $7,206.40 $6,310.33 30 $5,875.20 $5,144.59 
6 $6,883.20 $6,027.35 31 $2,764.80 $2,421.00 
7 $6,886.40 $6,030.19 32 $2,704.00 $2,367.86 
8 $6,288.00 $5,506.00 33 $2,915.20 $2,552.82 
9 $13,228.80 $11,583.91 34 $2,790.40 $2,443.44 

10 $6,688.00 $5,856.32 35 $6,406.40 $5,609.70 
11 $7,008.00 $6,136.47 36 $6,848.00 $5,996.39 
12 $7,296.00 $6,388.76 37 $3,020.80 $2,645.17 
13 $7,123.20 $6,237.33 38 $3,145.60 $2,754.55 
14 $7,168.00 $6,276.54 39 $3,040.00 $2,661.94 
15 $7,200.00 $6,304.66 40 $3,942.40 $3,452.08 
16 $13,088.00 $11,460.60 41 $3,328.00 $2,914.23 
17 $13,056.00 $11,432.48 42 $3,296.00 $2,886.11 
18 $14,368.00 $12,581.20 43 $4,016.00 $3,516.58 
19 $13,152.00 $11,516.58 44 $2,745.60 $2,404.23 
20 $6,032.00 $5,281.83 45 $3,424.00 $2,998.32 
21 $4,966.40 $4,348.77 46 $3,392.00 $2,970.21 
22 $1,654.40 $1,448.73 47 $3,488.00 $3,054.30 
23 $4,032.00 $3,530.51 48 $11,200.00 $9,807.31 
24 $1,600.00 $1,401.01 49 $5,696.00 $4,987.75 
25 $5,440.00 $4,763.58 50 $5,737.60 $5,024.12 
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TABLE 19   Proportion Allocation Results for Case 3 

Shipper 
Stand-

Alone Cost 
Allocated 

Cost 
Shipper 

Stand-

Alone Cost 
Allocated 

Cost 

1 $15,040.00 $13,323.77 26 $1,548.80 $1,371.97 
2 $7,731.20 $6,848.88 27 $1,472.00 $1,304.11 
3 $7,724.80 $6,843.14 28 $1,398.40 $1,238.87 
4 $7,872.00 $6,973.63 29 $1,670.40 $1,479.75 
5 $7,206.40 $6,384.07 30 $5,875.20 $5,204.71 
6 $6,883.20 $6,097.78 31 $2,764.80 $2,449.29 
7 $6,886.40 $6,100.65 32 $2,704.00 $2,395.53 
8 $6,288.00 $5,570.34 33 $2,915.20 $2,582.65 
9 $13,228.80 $11,719.27 34 $2,790.40 $2,471.99 

10 $6,688.00 $5,924.75 35 $6,406.40 $5,675.25 
11 $7,008.00 $6,208.17 36 $6,848.00 $6,066.46 
12 $7,296.00 $6,463.41 37 $3,020.80 $2,676.08 
13 $7,123.20 $6,310.22 38 $3,145.60 $2,786.74 
14 $7,168.00 $6,349.88 39 $3,040.00 $2,693.04 
15 $7,200.00 $6,378.33 40 $3,942.40 $3,492.42 
16 $13,088.00 $11,594.52 41 $3,328.00 $2,948.28 
17 $13,056.00 $11,566.08 42 $3,296.00 $2,919.84 
18 $14,368.00 $12,728.22 43 $4,016.00 $3,557.67 
19 $13,152.00 $11,651.16 44 $2,745.60 $2,432.33 
20 $6,032.00 $5,343.55 45 $3,424.00 $3,033.36 
21 $4,966.40 $4,399.59 46 $3,392.00 $3,004.91 
22 $1,654.40 $1,465.66 47 $3,488.00 $3,089.99 
23 $4,032.00 $3,571.76 48 $11,200.00 $9,921.91 
24 $1,600.00 $1,417.38 49 $5,696.00 $5,046.03 
25 $5,440.00 $4,819.24 50 $5,737.60 $5,082.83 

 

 

6.3.4  Proportion Allocation by Loop – Analysis of Results 

In this section, the results of Model B are separated into individual loops and then 

proportion allocation is applied within each loop. The numerical results of this methodology are 

provided in Tables 20 through 22, showing the allocated costs and percent cost savings of each 

shipper. Tables 28 through 31 in the appendix show more detail analysis for computing the cost 

allocations by showing the allocated costs for each loop. With this methodology, every shipper is 
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allocated the same percent cost savings as each shipper that is involved in the same loop so a 

shipper’s contribution to the savings of the network is not taken into consideration. It should be 

noted that shippers can be in multiple loops so the allocated costs in the Tables 20, 21 and 22 are 

aggregate values. 

 

TABLE 20 – Results of Proportion Allocation by Loop for Case 1  

Shipper 
Stand 

Alone-

Cost 

Allocated 

Cost 
Cost 

Savings 
Shipper 

Stand 

Alone-

Cost 

Allocated 

Cost 
Cost 

Savings 

1 $15,040.00 $14,740.50 1.99% 26 $1,548.80 $1,418.80 8.39% 
2 $7,731.20 $7,731.20 0.00% 27 $1,472.00 $1,314.00 10.73% 
3 $7,724.80 $7,652.52 0.94% 28 $1,398.40 $1,398.40 0.00% 
4 $7,872.00 $4,349.89 44.74% 29 $1,670.40 $1,670.40 0.00% 
5 $7,206.40 $6,693.19 7.12% 30 $5,875.20 $5,875.20 0.00% 
6 $6,883.20 $4,381.89 36.34% 31 $2,764.80 $2,764.80 0.00% 
7 $6,886.40 $6,312.85 8.33% 32 $2,704.00 $1,412.83 47.75% 
8 $6,288.00 $6,219.60 1.09% 33 $2,915.20 $1,523.17 47.75% 
9 $13,228.80 $10,269.31 22.37% 34 $2,790.40 $2,790.40 0.00% 

10 $6,688.00 $4,384.59 34.44% 35 $6,406.40 $6,406.40 0.00% 
11 $7,008.00 $4,461.31 36.34% 36 $6,848.00 $6,123.03 10.59% 
12 $7,296.00 $5,875.28 19.47% 37 $3,020.80 $3,020.80 0.00% 
13 $7,123.20 $3,625.26 49.11% 38 $3,145.60 $2,776.35 11.74% 
14 $7,168.00 $6,756.75 5.74% 39 $3,040.00 $2,865.65 5.74% 
15 $7,200.00 $3,664.34 49.11% 40 $3,942.40 $3,479.65 11.74% 
16 $13,088.00 $13,088.00 0.00% 41 $3,328.00 $2,679.92 19.47% 
17 $13,056.00 $13,056.00 0.00% 42 $3,296.00 $3,021.55 8.33% 
18 $14,368.00 $11,291.01 21.42% 43 $4,016.00 $3,129.96 22.06% 
19 $13,152.00 $13,152.00 0.00% 44 $2,745.60 $2,550.01 7.12% 
20 $6,032.00 $6,032.00 0.00% 45 $3,424.00 $3,424.00 0.00% 
21 $4,966.40 $4,889.34 1.55% 46 $3,392.00 $2,673.77 21.17% 
22 $1,654.40 $1,636.40 1.09% 47 $3,488.00 $3,488.00 0.00% 
23 $4,032.00 $3,796.68 5.84% 48 $11,200.00 $11,200.00 0.00% 
24 $1,600.00 $1,600.00 0.00% 49 $5,696.00 $5,557.36 2.43% 
25 $5,440.00 $5,440.00 0.00% 50 $5,737.60 $4,471.64 22.06% 
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TABLE 21 - Results of Proportion Allocation by Loop for Case 2  

Shipper 
Stand 

Alone-

Cost 

Allocated 

Cost 
Cost 

Savings 
Shipper 

Stand 

Alone-

Cost 

Allocated 

Cost 
Cost 

Savings 

1 $15,040.00 $15,040.00 0.00% 26 $1,548.80 $1,442.37 6.87% 
2 $7,731.20 $5,048.77 34.70% 27 $1,472.00 $1,429.84 2.86% 
3 $7,724.80 $7,724.80 0.00% 28 $1,398.40 $1,398.40 0.00% 
4 $7,872.00 $5,140.61 34.70% 29 $1,670.40 $1,670.40 0.00% 
5 $7,206.40 $7,206.40 0.00% 30 $5,875.20 $4,507.00 23.29% 
6 $6,883.20 $6,883.20 0.00% 31 $2,764.80 $2,520.34 8.84% 
7 $6,886.40 $5,467.90 20.60% 32 $2,704.00 $2,368.63 12.40% 
8 $6,288.00 $6,288.00 0.00% 33 $2,915.20 $2,300.34 21.09% 
9 $13,228.80 $10,518.30 20.49% 34 $2,790.40 $2,790.40 0.00% 

10 $6,688.00 $5,310.38 20.60% 35 $6,406.40 $6,406.40 0.00% 
11 $7,008.00 $6,065.72 13.45% 36 $6,848.00 $5,403.59 21.09% 
12 $7,296.00 $4,994.77 31.54% 37 $3,020.80 $3,020.80 0.00% 
13 $7,123.20 $4,816.37 32.38% 38 $3,145.60 $2,413.07 23.29% 
14 $7,168.00 $6,803.26 5.09% 39 $3,040.00 $2,627.61 13.57% 
15 $7,200.00 $7,200.00 0.00% 40 $3,942.40 $3,407.59 13.57% 
16 $13,088.00 $12,849.80 1.82% 41 $3,328.00 $3,328.00 0.00% 
17 $13,056.00 $8,937.89 31.54% 42 $3,296.00 $2,841.10 13.80% 
18 $14,368.00 $9,714.98 32.38% 43 $4,016.00 $3,740.03 6.87% 
19 $13,152.00 $13,152.00 0.00% 44 $2,745.60 $2,502.81 8.84% 
20 $6,032.00 $5,220.97 13.45% 45 $3,424.00 $2,999.37 12.40% 
21 $4,966.40 $3,943.33 20.60% 46 $3,392.00 $3,092.05 8.84% 
22 $1,654.40 $1,426.10 13.80% 47 $3,488.00 $3,019.05 13.44% 
23 $4,032.00 $3,778.72 6.28% 48 $11,200.00 $11,200.00 0.00% 
24 $1,600.00 $1,570.86 1.82% 49 $5,696.00 $5,696.00 0.00% 
25 $5,440.00 $5,163.26 5.09% 50 $5,737.60 $5,573.36 2.86% 
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TABLE 22 - Results of Proportion Allocation by Loop for Case 3  

Shipper 
Stand 

Alone-

Cost 

Allocated 

Cost 
Cost 

Savings 
Shipper 

Stand 

Alone-

Cost 

Allocated 

Cost 
Cost 

Savings 

1 $15,040.00 $14,653.78 2.57% 26 $1,548.80 $1,286.72 16.92% 
2 $7,731.20 $7,731.20 0.00% 27 $1,472.00 $1,118.40 24.02% 
3 $7,724.80 $7,724.80 0.00% 28 $1,398.40 $1,280.92 8.40% 
4 $7,872.00 $7,872.00 0.00% 29 $1,670.40 $1,387.70 16.92% 
5 $7,206.40 $5,475.10 24.02% 30 $5,875.20 $5,823.40 0.88% 
6 $6,883.20 $5,229.54 24.02% 31 $2,764.80 $2,584.94 6.51% 
7 $6,886.40 $6,886.40 0.00% 32 $2,704.00 $2,704.00 0.00% 
8 $6,288.00 $6,288.00 0.00% 33 $2,915.20 $2,861.84 1.83% 
9 $13,228.80 $10,923.19 17.43% 34 $2,790.40 $2,739.32 1.83% 

10 $6,688.00 $6,688.00 0.00% 35 $6,406.40 $6,378.20 0.44% 
11 $7,008.00 $7,008.00 0.00% 36 $6,848.00 $6,848.00 0.00% 
12 $7,296.00 $5,543.18 24.02% 37 $3,020.80 $2,509.57 16.92% 
13 $7,123.20 $6,659.86 6.50% 38 $3,145.60 $3,145.60 0.00% 
14 $7,168.00 $6,565.84 8.40% 39 $3,040.00 $2,984.35 1.83% 
15 $7,200.00 $6,595.18 8.40% 40 $3,942.40 $3,130.88 20.58% 
16 $13,088.00 $8,239.01 37.05% 41 $3,328.00 $1,903.31 42.81% 
17 $13,056.00 $10,780.81 17.43% 42 $3,296.00 $2,297.47 30.30% 
18 $14,368.00 $14,368.00 0.00% 43 $4,016.00 $2,799.29 30.30% 
19 $13,152.00 $8,947.72 31.97% 44 $2,745.60 $2,514.86 8.40% 
20 $6,032.00 $6,032.00 0.00% 45 $3,424.00 $3,424.00 0.00% 
21 $4,966.40 $2,873.94 42.13% 46 $3,392.00 $1,939.89 42.81% 
22 $1,654.40 $1,654.40 0.00% 47 $3,488.00 $2,431.24 30.30% 
23 $4,032.00 $3,884.24 3.66% 48 $11,200.00 $11,200.00 0.00% 
24 $1,600.00 $1,558.86 2.57% 49 $5,696.00 $4,523.52 20.58% 
25 $5,440.00 $5,240.56 3.67% 50 $5,737.60 $5,737.60 0.00% 

 

 
6.3.5  Marginal Contribution Allocation - Analysis of Results 

Using the results from Model B analysis, the costs are allocated to the shippers in the 

collaborative network using the marginal contribution allocation method.  This allocation 

mechanism distributes the costs of each loop to the shippers in the loop based on their marginal 

contributions. Some numerical results of this allocation mechanism are shown in Tables 23, 24 

and 25 for Cases 1, 2, and 3, respectively. Tables 23 through 25 show the percent cost savings 
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for each shipper in the three test scenarios. For the Case 1 (Table 23), the cost savings ranges 

from about 0% to 49.6%. The more a shipper contributes to the cost savings of a loop, the less 

cost it is allocated and the more cost savings it realizes. The shippers that have 0% cost savings 

are not matched up in a loop with other shippers and therefore are allocated their stand-alone 

cost. As shown in Table 24, the cost allocation of Case 2 reveals individual cost savings ranging 

from -6.4% to 65.14% with one shipper experiencing negative cost savings. Case 3 marginal 

contribution allocation is shown in Table 25 and the cost savings ranges from -38.7% to 61.2% 

with three shippers allocated negative cost savings.  The reasoning behind the negative cost 

savings of some shippers in Case 2 and 3 is explained in section 6.3.6. Tables 32 through 34 in 

the appendix provide the marginal cost allocation computations for each loop. 

  



 

64 
 

TABLE 23   Results of Marginal Contribution Allocation for Case 1 

Shipper 
Stand- 

Alone 
Cost 

Allocated 
Cost 

Percent 
Savings 

Shipper 
Stand -

Alone 
Cost 

Allocated 
Cost 

Percent 
Savings 

1 $15,040.00 $14,782.40 1.71% 26 $1,548.80 $1,182.40 23.66% 
2 $7,731.20 $7,731.20 0.00% 27 $1,472.00 $1,284.80 12.72% 
3 $7,724.80 $7,679.20 0.59% 28 $1,398.40 $1,398.40 0.00% 
4 $7,872.00 $4,631.20 41.17% 29 $1,670.40 $1,670.40 0.00% 
5 $7,206.40 $6,852.00 4.92% 30 $5,875.20 $5,875.20 0.00% 
6 $6,883.20 $4,359.20 36.67% 31 $2,764.80 $2,764.80 0.00% 
7 $6,886.40 $6,462.40 6.16% 32 $2,704.00 $1,362.40 49.62% 
8 $6,288.00 $6,244.80 0.69% 33 $2,915.20 $1,573.60 46.02% 
9 $13,228.80 $9,988.00 24.50% 34 $2,790.40 $2,790.40 0.00% 
10 $6,688.00 $4,299.20 35.72% 35 $6,406.40 $6,406.40 0.00% 
11 $7,008.00 $4,484.00 36.02% 36 $6,848.00 $6,126.40 10.54% 
12 $7,296.00 $6,261.60 14.18% 37 $3,020.80 $3,020.80 0.00% 
13 $7,123.20 $3,606.40 49.37% 38 $3,145.60 $2,729.60 13.22% 
14 $7,168.00 $6,875.20 4.08% 39 $3,040.00 $2,747.20 9.63% 
15 $7,200.00 $3,683.20 48.84% 40 $3,942.40 $3,526.40 10.55% 
16 $13,088.00 $13,088.00 0.00% 41 $3,328.00 $2,293.60 31.08% 
17 $13,056.00 $13,056.00 0.00% 42 $3,296.00 $2,872.00 12.86% 
18 $14,368.00 $11,612.80 19.18% 43 $4,016.00 $2,940.00 26.79% 
19 $13,152.00 $13,152.00 0.00% 44 $2,745.60 $2,391.20 12.91% 
20 $6,032.00 $6,032.00 0.00% 45 $3,424.00 $3,424.00 0.00% 
21 $4,966.40 $4,869.60 1.95% 46 $3,392.00 $2,670.40 21.27% 
22 $1,654.40 $1,611.20 2.61% 47 $3,488.00 $3,488.00 0.00% 
23 $4,032.00 $3,799.20 5.77% 48 $11,200.00 $11,200.00 0.00% 
24 $1,600.00 $1,600.00 0.00% 49 $5,696.00 $5,535.20 2.82% 
25 $5,440.00 $5,440.00 0.00% 50 $5,737.60 $4,661.60 18.75% 
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TABLE 24  Results of Marginal Contribution Allocation for Case 2 

Shipper 
Stand- 

Alone 
Cost 

Allocated 
Cost 

Percent 
Savings 

Shipper 
Stand -

Alone 
Cost 

Allocated 
Cost 

Percent 
Savings 

1 $15,040.00 $15,040.00 0.00% 26 $1,548.80 $1,357.60 12.35% 
2 $7,731.20 $6,037.33 21.91% 27 $1,472.00 $1,368.80 7.01% 
3 $7,724.80 $7,724.80 0.00% 28 $1,398.40 $1,398.40 0.00% 
4 $7,872.00 $2,937.33 62.69% 29 $1,670.40 $1,670.40 0.00% 
5 $7,206.40 $7,206.40 0.00% 30 $5,875.20 $5,174.93 11.92% 
6 $6,883.20 $6,883.20 0.00% 31 $2,764.80 $2,236.27 19.12% 
7 $6,886.40 $3,984.53 42.14% 32 $2,704.00 $2,324.00 14.05% 
8 $6,288.00 $6,288.00 0.00% 33 $2,915.20 $1,542.40 47.09% 
9 $13,228.80 $11,702.66 11.54% 34 $2,790.40 $2,790.40 0.00% 
10 $6,688.00 $5,451.73 18.48% 35 $6,406.40 $6,406.40 0.00% 
11 $7,008.00 $6,274.93 10.46% 36 $6,848.00 $6,161.60 10.02% 
12 $7,296.00 $3,016.53 58.65% 37 $3,020.80 $3,020.80 0.00% 
13 $7,123.20 $2,483.20 65.14% 38 $3,145.60 $1,745.07 44.52% 
14 $7,168.00 $6,740.27 5.97% 39 $3,040.00 $2,566.40 15.58% 
15 $7,200.00 $7,200.00 0.00% 40 $3,942.40 $3,468.80 12.01% 
16 $13,088.00 $12,998.93 0.68% 41 $3,328.00 $3,328.00 0.00% 
17 $13,056.00 $10,916.27 16.39% 42 $3,296.00 $2,954.40 10.36% 
18 $14,368.00 $12,048.00 16.15% 43 $4,016.00 $3,824.80 4.76% 
19 $13,152.00 $13,152.00 0.00% 44 $2,745.60 $2,599.47 5.32% 
20 $6,032.00 $5,842.93 3.13% 45 $3,424.00 $3,044.00 11.10% 
21 $4,966.40 $5,285.30 -6.42% 46 $3,392.00 $3,279.47 3.32% 
22 $1,654.40 $1,312.80 20.65% 47 $3,488.00 $2,187.73 37.28% 
23 $4,032.00 $3,809.06 5.53% 48 $11,200.00 $11,200.00 0.00% 
24 $1,600.00 $1,421.87 11.13% 49 $5,696.00 $5,696.00 0.00% 
25 $5,440.00 $5,226.14 3.93% 50 $5,737.60 $5,634.40 1.80% 
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TABLE 25  Results of Marginal Contribution Allocation for Case 3 

Shipper 
Stand- 

Alone 
Cost 

Allocated 
Cost 

Percent 
Savings 

Shipper 
Stand -

Alone 
Cost 

Allocated 
Cost 

Percent 
Savings 

1 $15,040.00 $14,897.60 0.95% 26 $1,548.80 $715.20 53.82% 
2 $7,731.20 $7,731.20 0.00% 27 $1,472.00 $2,042.13 -38.73% 
3 $7,724.80 $7,724.80 0.00% 28 $1,398.40 $1,454.67 -4.02% 
4 $7,872.00 $7,872.00 0.00% 29 $1,670.40 $1,367.20 18.15% 
5 $7,206.40 $6,478.13 10.11% 30 $5,875.20 $5,848.53 0.45% 
6 $6,883.20 $4,864.80 29.32% 31 $2,764.80 $2,443.20 11.63% 
7 $6,886.40 $6,886.40 0.00% 32 $2,704.00 $2,704.00 0.00% 
8 $6,288.00 $6,288.00 0.00% 33 $2,915.20 $2,888.80 0.91% 
9 $13,228.80 $10,938.40 17.31% 34 $2,790.40 $2,763.20 0.97% 
10 $6,688.00 $6,688.00 0.00% 35 $6,406.40 $6,353.07 0.83% 
11 $7,008.00 $7,008.00 0.00% 36 $6,848.00 $6,848.00 0.00% 
12 $7,296.00 $3,981.33 45.43% 37 $3,020.80 $3,101.60 -2.67% 
13 $7,123.20 $6,801.60 4.51% 38 $3,145.60 $3,145.60 0.00% 
14 $7,168.00 $6,764.00 5.64% 39 $3,040.00 $2,933.60 3.50% 
15 $7,200.00 $6,945.87 3.53% 40 $3,942.40 $2,950.40 25.16% 
16 $13,088.00 $6,465.87 50.60% 41 $3,328.00 $1,889.60 43.22% 
17 $13,056.00 $10,765.60 17.54% 42 $3,296.00 $2,776.53 15.76% 
18 $14,368.00 $14,368.00 0.00% 43 $4,016.00 $3,399.73 15.35% 
19 $13,152.00 $11,053.33 15.96% 44 $2,745.60 $1,792.27 34.72% 
20 $6,032.00 $6,032.00 0.00% 45 $3,424.00 $3,424.00 0.00% 
21 $4,966.40 $2,541.60 48.82% 46 $3,392.00 $1,953.60 42.41% 
22 $1,654.40 $1,654.40 0.00% 47 $3,488.00 $1,351.73 61.25% 
23 $4,032.00 $3,858.40 4.31% 48 $11,200.00 $11,200.00 0.00% 
24 $1,600.00 $1,315.20 17.80% 49 $5,696.00 $4,704.00 17.42% 
25 $5,440.00 $5,266.40 3.19% 50 $5,737.60 $5,737.60 0.00% 

 

 

6.3.6  Stability of Model B 

As mentioned in the previous section, the marginal contribution cost allocations resulted 

in some shippers being allocated costs which are higher than their stand-alone costs. Shipper 21 

has negative cost savings in Case 2 and shippers 27, 28 and 37 have negative cost savings in 

Case 3. A shipper can be allocated a higher cost than its stand-alone cost, and have negative cost 

savings, when it is contributes insignificantly to the collaborative cost savings of the loop it’s 
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involved. Because some shippers are allocated costs which are higher than their stand-alone 

costs, it can be concluded that marginal contribution allocation is not a stable allocation for 

Model B when using more than 4 arcs per loop. In cooperative game theory, a stable allocation 

means that no subset of the coalition can operate separately and experience lower costs than the 

costs when operating with the grand coalition. Model B does will not form loops that increase 

the objective value of the problem and, therefore, each loop has positive cost savings.  In the 4 

arcs per loop case, this means no shipper will be allocated a negative cost savings using marginal 

contribution allocation. This is not the situation, however, with cases involving more than 4 arcs 

per loop.  

To provide more insight into why some shippers are allocated higher costs than their 

stand-alone costs, a detailed cost analysis is provided for shipper 21 of Case 2. In loop 23 of 

Case 2, shippers 7, 10, and 21 are matched up together. Using the marginal contribution 

allocation, shipper 21 is allocated negative cost savings because shippers 7 and 10 will 

experience more savings if they operate separately from shipper 21. Table 26 shows every 

possible combination of loop formation between these three shippers and the resulting allocated 

cost using marginal contribution allocation. They can form loops separately, two shippers can 

form a loop together, or all three shippers can form a single loop. When shippers 7 and 10 form a 

loop, their allocated costs are lower than if they would form a loop with shipper 21. Therefore, 

shippers 7 and 10 would prefer to operate without shipper 21, making the original 3-shipper loop 

unstable. Additional incentives will have to be developed to ensure the stability of this 

collaboration (Agarwal et al., 2010).  
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TABLE 26 – Cost Analysis of Loop 23 for Case 2 

Potential 

Loop 

Formations 

Loop Cost 

Allocated Cost 

Shipper 

7 

Shipper 

10 

Shipper 

21 

7 $6,886.40 $6,886.40 - - 
10 $6,688.00 - $6,688.00   
21 $4,966.40 - - $4,966.40 

7, 10 $6,976.00 $3,587.20 $3,388.80 - 
10, 21 $11,497.60 - $6,609.60 $4,888.00 
7, 21 $8,364.80 $5,142.40 - $3,222.40 

7, 10, 21 $14,721.60 $3,984.53 $5,451.73 $5,285.33 
.   

6.3.7  Cost Allocation Summary 

Table 27 summarizes the cost allocation mechanism applied to three cases of Model B 

results. Proportion allocation allocates the same percent cost savings to every shipper in the 

network. Marginal cost allocation allocates costs in each loop depending on each shipper’s 

contribution to the overall loop cost savings. Proportional allocation by loop allocates the same 

percent cost savings to the shipper in the same loop. Marginal cost allocation is the only unstable 

allocation mechanism investigated in this report, as indicated by the negative cost savings. 

However, it is a more fair allocation methodology than proportion allocation.   
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TABLE 27   Summary of Cost Allocations 

Allocation 

Type 
Case 

Allocated Cost Allocated Percent Cost Savings 

Minimum Maximum Average Minimum Maximum Average 

PA 1 $1,225.37 $13,178.62 $5,162.73 12.4% 12.4% 12.4% 
PA 2 $1,224.56 $13,169.88 $5,159.30 12.4% 12.4% 12.4% 
PA 3 $1,238.87 $260,979.46 $10,234.49 11.4% 11.4% 11.4% 
PA by Loop 1 $1,314.00 $14,740.50 $5,162.72 0.0% 49.1% 12.1% 
PA by Loop 2 $1,398.40 $15,040.00 $5,159.30 0.0% 34.7% 11.1% 
PA by Loop 3 $1,118.40 $14,653.78 $5,219.57 0.0% 42.8% 11.5% 
MC 1 $1,182.40 $14,782.40 $5,162.72 0.0% 49.6% 12.7% 
MC 2 $1,312.80 $15,040.00 $5,159.30 -6.4% 65.1% 12.7% 
MC 3 $715.20 $14,897.60 $5,219.58 -38.7% 61.2% 11.5% 
PA: Proportion allocation, PA by loop: Proportion allocation by loop, MC: Marginal contribution 
allocation 

 
 

In this chapter the tabu search was presented to solve Model B. The example network 

was constructed using a real world freight network, with modified parameters. Assumptions were 

made where information was not provided. Numerical analysis was performed on the model 

using the example network to reveal potential cost savings of the collaboration framework B. 

Then computations were performed on the results to demonstrate proportion allocation, 

proportion allocation by loop and marginal contribution allocation mechanisms for Model B. 
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CHAPTER 7.   CONCLUSIONS 

 

With expected increase in freight movement, a competitive trucking environment, and 

businesses’ demand for timely delivery of products, there is a great need for more innovative 

solutions to improve efficiency and lower operation costs in truck transportation. There are 

increasing concerns to reduce the air pollutants that heavy trucks emit. Collaboration among 

trucking firms is a great way for the trucking industry to help accomplish these goals. 

Collaboration can improve truck operations by increasing efficiency and reducing empty truck 

movements. Reducing deadhead miles reduces the amount of pollutants that trucks emit and can 

greatly reduce costs of freight companies. When carriers or shippers form alliances they can 

collaborate their truck operations and change non-profitable empty hauls into profitable 

backhauls.  Other benefits of collaboration include increased asset utilization, decreased lead 

times and improved service levels to customers. 

In this thesis, collaboration scenarios are investigated to demonstrate how shippers or 

carriers can collaborate their operations to realize cost savings. Two frameworks are 

investigated. The first problem focuses on a carrier of interest wanting to collaborate with other 

carriers and/or shippers to reduce operating costs along its backhaul routes.  The second 

problem’s focus is how shippers can collaborate to form loops with their truckload lanes and 

submit their loops to a common carrier for better rates. The backhaul problem or Problem A, 

shows how a carrier can introduce collaboration into their operations without modification of its 

line haul routing. Only the backhaul route includes collaboration with other shippers and/or 

carriers.  The loop model, or Problem B, is a full collaboration where all demand and capacities 

of the shipper network are taken into consideration and optimal routing is found. 
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For Problem A, two formulations are presented to solve the backhaul routing under 

collaboration. Model A1 is formulated as an integer program and matches the carrier of interest’s 

backhaul origins to either collaborator nodes or the depot node, while maximizing cost savings 

for the carrier of interests.  Model A2 is formulated as a mixed integer program, minimizes the 

carrier of interest’s transportation costs and routes the backhaul trucks to collaborator pick-up 

and delivery nodes where profitable, and then routes back to the depot node.  One 

distinguishable difference between the models is that Model A1 allows each backhaul truck to 

fulfill at most one collaborator’s shipping requests, while Model A2 allows more than one to be 

fulfilled. 

The numerical analysis of the models using our example network reveal backhaul cost 

savings between 13% and 28%. The original empty hauls to the depot are non-profitable trips 

and any savings for the carrier of interest is significant.  Through computational runs, it was 

found that the arc transportation cost does not affect the percent cost savings of the solutions.  

The revenue percentage level, the percent transportation cost that the carrier of interest charges 

for delivering a collaborator’s shipment, affects the results of the models. The higher the percent 

revenue, the more likely backhaul routes are matched with collaborators.  Model A2 results show 

that the percent cost savings is greater than the Model A1 results. This is because Model A2 

allows for each backhaul truck to fulfill more than one delivery task.  

Problem B is a capacitated loop model and is formulated as a mixed integer program. 

One significant difference between this framework and the framework of Problem A is that this 

is a “full” collaboration, where the all shipper’s points of view are taken into consideration. The 

problem consists of a group of collaborative shippers whose shipping lanes and truck capacities 

are taken in common to route trucks such that all shipping lanes are covered and all the demand 
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is met.  This is accomplished through the creation of loops, or cycles. The model assigns arcs to 

loops to accomplish the routing of trucks while minimizing the cost of the loops. Model B is 

solved by the tabu search heuristic because of its similarity to a VRP formulation. Tabu search 

does not provide optimal solutions to Model B, but provides good solutions in a reasonable 

amount of time. The results of the model showed between 7% and 12% network cost savings.  

To allocate costs to the shippers involved in the collaboration of problem B, three 

allocation mechanisms were used. Proportion allocation distributes costs to the shippers evenly, 

weighted by each shipper’s stand alone cost. This mechanism is easy to understand and easy to 

compute, but does not incorporate the contribution of each shipper to the collaboration. The 

results show that each shipper is allocated a cost which is less than the cost of that shipper 

operating separately.  Also, proportion allocation was used to allocate costs by individual loops, 

depending on the collaborative cost of each loop. This resulted in each shipper being allocated a 

cost which is less than or equal to its stand-alone cost. The third allocation mechanism used was 

a marginal contribution cost allocation and uses the concepts of the Shapley value to allocate 

costs to shippers involved in a loop. The marginal contribution mechanism is more 

computationally difficult than the proportion allocation, but it considers the contribution of each 

shipper to a loop it participates.  

 

7.1  Future Research 

Areas of possible future research for the backhaul problem, Problem A, lie in developing 

a profit-sharing mechanism for the carrier of interest and the collaborative carriers/shippers.  

This could allow more insight on the collaborator’s incentives to form partnerships with the 

carrier of interest.  
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A potential area for development of Model B is a Shapley value allocation that 

incorporates the whole collaborative network. For larger sized networks, this is very 

computationally difficult but an approximation method that is less time consuming could 

possibly provide good results. In general, incentive mechanisms which ensure that everybody 

participating in the collaboration experience adequate cost savings have to be developed. This 

will ensure stability of the collaboration.  

In this thesis also it was assumed that all the parameters such as demand, travel time and 

travel costs are time invariant and are known with certainty. In reality, such parameters are time-

dependent and are uncertain. Truck routes passing through urban areas are more likely to be 

affected by recurrent and non-recurrent congestion. Demand for goods may exhibit significant 

variations and uncertainties across seasons. More robust collaboration models should be 

developed which account for the time varying and stochastic travel time, travel costs and 

demands.  

Another potential area for development is to develop models for evaluating potential for 

collaboration in more complex freight systems. The models developed in this thesis focus on 

relatively simple point to point pick-up and delivery systems. There is significant scope for 

extending the above models to more complex freight delivery systems including cross-docking 

and intermodal transportation.  
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APPENDIX 

TABLE 28  Proportion Allocation by Loop for Case 1  

Loop 

Number 

Stand-Alone Cost Collaborative 

Loop Cost 

Allocated Cost 

Shipper A Shipper B Total  Shipper A Shipper B 

Loop 1 $6,614.40 - $6,614.40 $6,614.40 $6,614.40 - 
Loop 2 $7,731.20 - $7,731.20 $7,731.20 $7,731.20 - 
Loop 3 $3,328.00 $7,296.00 $10,624.00 $8,555.20 $2,679.92 $5,875.28 
Loop 4 $7,872.00 $6,614.40 $14,486.40 $8,004.80 $4,349.89 $3,654.91 
Loop 5 $7,168.00 $3,040.00 $10,208.00 $9,622.40 $6,756.75 $2,865.65 
Loop 6 $1,600.00 - $1,600.00 $1,600.00 $1,600.00 - 
Loop 7 $1,398.40 - $1,398.40 $1,398.40 $1,398.40 - 
Loop 8 $5,696.00 $7,520.00 $13,216.00 $12,894.40 $5,557.36 $7,337.04 
Loop 9 $6,688.00 $7,184.00 $13,872.00 $9,094.40 $4,384.59 $4,709.81 
Loop 10 $7,008.00 $6,883.20 $13,891.20 $8,843.20 $4,461.31 $4,381.89 
Loop 11 $7,123.20 $7,200.00 $14,323.20 $7,289.60 $3,625.26 $3,664.34 
Loop 12 $2,016.00 $1,472.00 $3,488.00 $3,113.60 $1,799.60 $1,314.00 
Loop 13 $7,184.00 $1,548.80 $8,732.80 $8,000.00 $6,581.20 $1,418.80 
Loop 14 $6,528.00 $6,528.00 $13,056.00 $13,056.00 $6,528.00 $6,528.00 
Loop 15 $3,424.00 - $3,424.00 $3,424.00 $3,424.00 - 
Loop 16 $6,576.00 $6,576.00 $13,152.00 $13,152.00 $6,576.00 $6,576.00 
Loop 17 $6,032.00 - $6,032.00 $6,032.00 $6,032.00 - 
Loop 18 $1,654.40 $6,288.00 $7,942.40 $7,856.00 $1,636.40 $6,219.60 
Loop 19 $3,392.00 $3,424.00 $6,816.00 $5,372.80 $2,673.77 $2,699.03 
Loop 20 $2,720.00 $2,720.00 $5,440.00 $5,440.00 $2,720.00 $2,720.00 
Loop 21 $2,745.60 $7,206.40 $9,952.00 $9,243.20 $2,550.01 $6,693.19 
Loop 22 $1,670.40 - $1,670.40 $1,670.40 $1,670.40 - 
Loop 23 $2,937.60 - $2,937.60 $2,937.60 $2,937.60 - 
Loop 24 $2,764.80 - $2,764.80 $2,764.80 $2,764.80 - 
Loop 25 $7,520.00 $4,966.40 $12,486.40 $12,292.80 $7,403.46 $4,889.34 
Loop 26 $2,915.20 $2,704.00 $5,619.20 $2,936.00 $1,523.17 $1,412.83 
Loop 27 $3,203.20 $3,203.20 $6,406.40 $6,406.40 $3,203.20 $3,203.20 
Loop 28 $3,020.80 - $3,020.80 $3,020.80 $3,020.80 - 
Loop 29 $3,296.00 $6,886.40 $10,182.40 $9,334.40 $3,021.55 $6,312.85 
Loop 30 $7,724.80 $2,016.00 $9,740.80 $9,649.60 $7,652.52 $1,997.08 
Loop 31 $3,942.40 $3,145.60 $7,088.00 $6,256.00 $3,479.65 $2,776.35 
Loop 32 $2,937.60 - $2,937.60 $2,937.60 $2,937.60 - 
Loop 33 $6,544.00 $6,544.00 $13,088.00 $13,088.00 $6,544.00 $6,544.00 
Loop 34 $3,424.00 - $3,424.00 $3,424.00 $3,424.00 - 
Loop 35 $2,790.40 - $2,790.40 $2,790.40 $2,790.40 - 
Loop 36 $3,488.00 - $3,488.00 $3,488.00 $3,488.00 - 
Loop 37 $5,600.00 $5,600.00 $11,200.00 $11,200.00 $5,600.00 $5,600.00 
Loop 38 $5,737.60 $4,016.00 $9,753.60 $7,601.60 $4,471.64 $3,129.96 
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TABLE 29   Proportion Allocation by Loop for Case 2 

Loop  
Stand-Alone Cost 

Collaborative 

Loop Cost  

Allocated Cost 

Shipper 

A 
Shipper 

B 
Shipper 

C 
Shipper 

A 
Shipper  

B 
Shipper 

C 

1 7,520.00 7,520.00 - $15,040.00 $7,520.00 $7,520.00 - 
2 7,724.80 - - $7,724.80 $7,724.80 - - 
3 7,206.40 - - $7,206.40 $7,206.40 - - 
4 6,883.20 - - $6,883.20 $6,883.20 - - 
5 6,614.40 7,872.00 7,731.20 $14,508.80 $4,319.41 $5,140.61 $5,048.77 
6 7,200.00 - - $7,200.00 $7,200.00 - - 
7 4,016.00 1,548.80 - $5,182.40 $3,740.03 $1,442.37 - 
8 7,123.20 7,184.00 7,184.00 $14,531.20 $4,816.37 $4,857.49 $4,857.49 
9 3,040.00 3,942.40 - $6,035.20 $2,627.61 $3,407.59 - 

10 1,654.40 3,296.00 - $4,267.20 $1,426.10 $2,841.10 - 
11 6,528.00 6,528.00 7,296.00 $13,932.80 $4,468.95 $4,468.95 $4,994.77 
12 6,288.00 - - $6,288.00 $6,288.00 - - 
13 6,576.00 6,576.00 - $13,152.00 $6,576.00 $6,576.00 - 
14 2,016.00 2,016.00 6,614.40 $9,977.60 $1,889.36 $1,889.36 $6,198.88 
15 1,600.00 6,544.00 6,544.00 $14,420.80 $1,570.86 $6,424.90 $6,424.90 
16 5,600.00 5,600.00 - $11,200.00 $5,600.00 $5,600.00 - 
17 1,398.40 - - $1,398.40 $1,398.40 - - 
18 2,937.60 2,937.60 3,145.60 $6,920.00 $2,253.50 $2,253.50 $2,413.07 
19 2,704.00 3,424.00 - $5,368.00 $2,368.63 $2,999.37 - 
20 2,915.20 3,424.00 3,424.00 $7,704.00 $2,300.34 $2,701.79 $2,701.79 
21 2,790.40 - - $2,790.40 $2,790.40 - - 
22 3,203.20 3,203.20 - $6,406.40 $3,203.20 $3,203.20 - 
23 6,688.00 4,966.40 6,886.40 $14,721.60 $5,310.38 $3,943.33 $5,467.90 
24 3,020.80 - - $3,020.80 $3,020.80 - - 
25 7,168.00 2,720.00 2,720.00 $11,966.40 $6,803.26 $2,581.63 $2,581.63 
26 1,670.40 - - $1,670.40 $1,670.40 - - 
27 3,328.00 - - $3,328.00 $3,328.00 - - 
28 7,008.00 6,032.00 3,488.00 $14,305.60 $6,065.72 $5,220.97 $3,019.05 
29 3,392.00 2,745.60 2,764.80 $8,115.20 $3,092.05 $2,502.81 $2,520.34 
30 5,696.00 - - $5,696.00 $5,696.00 - - 
31 5,737.60 1,472.00 - $7,003.20 $5,573.36 $1,429.84 - 
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TABLE 30   Proportion Allocation by Loop for Case 3 (Part 1)  

Loop  
Stand-Alone Cost 

Shipper 

A 
Shipper 

B 
Shipper 

C 
Shipper 

D 

1 $7,520.00 $7,520.00 $1,600.00 - 
2 $7,731.20 - - - 
3 $7,724.80 - - - 
4 $6,576.00 $6,576.00 $6,544.00 - 
5 $6,886.40 - - - 
6 $6,288.00 - - - 
7 $6,614.40 $6,614.40 $6,528.00 $6,528.00 
8 $6,688.00 - - - 
9 $7,008.00 - - - 
10 $1,472.00 $7,206.40 $7,296.00 $6,883.20 
11 $7,184.00 $7,184.00 - - 
12 $7,200.00 $2,745.60 $7,168.00 $1,398.40 
13 $6,032.00 - - - 
14 $1,654.40 - - - 
15 $7,872.00 - - - 
16 $2,720.00 $2,720.00 $2,016.00 $2,016.00 
17 $1,548.80 $3,020.80 $1,670.40 - 
18 $4,966.40 $6,544.00 - - 
19 $2,937.60 $2,937.60 $3,203.20 - 
20 $2,704.00 - - - 
21 $2,915.20 $2,790.40 $3,040.00 - 
22 $3,203.20 - - - 
23 $3,424.00 $3,424.00 - - 
24 $3,145.60 - - - 
25 $7,123.20 $2,764.80 - - 
26 $3,296.00 $3,488.00 $4,016.00 - 
27 $3,424.00 - - - 
28 $3,392.00 $3,328.00 - - 
29 $5,600.00 $5,600.00 - - 
30 $5,696.00 $3,942.40 - - 
31 $5,737.60 - - - 
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TABLE 31   Proportion Allocation by Loop for Case 3 (Part 2)  

Loop  
Collaborative 

Loop Cost  

Allocated Cost 

Shipper 

A 
Shipper 

B 
Shipper 

C 
Shipper 

D 

1 $16,212.80 $7,326.89 $7,326.89 $1,558.86 - 
2 $7,731.20 $7,731.20 - - - 
3 $7,724.80 $7,724.80 - - - 
4 $13,400.00 $4,473.86 $4,473.86 $4,452.15 - 
5 $6,886.40 $6,886.40 - - - 
6 $6,288.00 $6,288.00 - - - 
7 $21,704.00 $5,461.59 $5,461.59 $5,390.41 $5,390.41 
8 $6,688.00 $6,688.00 - - - 
9 $7,008.00 $7,008.00 - - - 

10 $17,366.40 $1,118.40 $5,475.10 $5,543.18 $5,229.54 
11 $14,368.00 $7,184.00 $7,184.00 - - 
12 $16,956.80 $6,595.18 $2,514.86 $6,565.84 $1,280.92 
13 $6,032.00 $6,032.00 - - - 
14 $1,654.40 $1,654.40 - - - 
15 $7,872.00 $7,872.00 - - - 
16 $9,124.80 $2,620.28 $2,620.28 $1,942.12 $1,942.12 
17 $5,184.00 $1,286.72 $2,509.57 $1,387.70 - 
18 $6,660.80 $2,873.94 $3,786.86 - - 
19 $8,998.40 $2,911.70 $2,911.70 $3,175.00 - 
20 $2,704.00 $2,704.00   - - 
21 $8,585.60 $2,861.84 $2,739.32 $2,984.35 - 
22 $3,203.20 $3,203.20 - - - 
23 $6,848.00 $3,424.00 $3,424.00 - - 
24 $3,145.60 $3,145.60 - - - 
25 $9,244.80 $6,659.86 $2,584.94 - - 
26 $7,528.00 $2,297.47 $2,431.24 $2,799.29 - 
27 $3,424.00 $3,424.00 - - - 
28 $3,843.20 $1,939.89 $1,903.31 - - 
29 $11,200.00 $5,600.00 $5,600.00 - - 
30 $7,654.40 $4,523.52 $3,130.88 - - 
31 $5,737.60 $5,737.60 - - - 
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TABLE 32   Marginal Contribution Cost Allocation Results for Case 1  

Loop 
Number of Shippers 

in Loop 
Collaborative 

Cost Of Loop 

Allocated Cost 

Shipper A Shipper B 

1 1 $6,614.40 $6,614.40 - 
2 1 $7,731.20 $7,731.20 - 
3 2 $8,555.20 $2,293.60 $6,261.60 
4 2 $8,004.80 $4,631.20 $3,373.60 
5 2 $9,622.40 $6,875.20 $2,747.20 
6 1 $1,600.00 $1,600.00 - 
7 1 $1,398.40 $1,398.40 - 
8 2 $12,894.40 $5,535.20 $7,359.20 
9 2 $9,094.40 $4,299.20 $4,795.20 
10 2 $8,843.20 $4,484.00 $4,359.20 
11 2 $7,289.60 $3,606.40 $3,683.20 
12 2 $3,113.60 $1,828.80 $1,284.80 
13 2 $8,000.00 $6,817.60 $1,182.40 
14 2 $13,056.00 $6,528.00 $6,528.00 
15 1 $3,424.00 $3,424.00 - 
16 2 $13,152.00 $6,576.00 $6,576.00 
17 1 $6,032.00 $6,032.00 - 
18 2 $7,856.00 $1,611.20 $6,244.80 
19 2 $5,372.80 $2,670.40 $2,702.40 
20 2 $5,440.00 $2,720.00 $2,720.00 
21 2 $9,243.20 $2,391.20 $6,852.00 
22 1 $1,670.40 $1,670.40 - 
23 1 $2,937.60 $2,937.60 - 
24 1 $2,764.80 $2,764.80 - 
25 2 $12,292.80 $7,423.20 $4,869.60 
26 2 $2,936.00 $1,573.60 $1,362.40 
27 2 $6,406.40 $3,203.20 $3,203.20 
28 1 $3,020.80 $3,020.80 - 
29 2 $9,334.40 $2,872.00 $6,462.40 
30 2 $9,649.60 $7,679.20 $1,970.40 
31 2 $6,256.00 $3,526.40 $2,729.60 
32 1 $2,937.60 $2,937.60 - 
33 2 $13,088.00 $6,544.00 $6,544.00 
34 1 $3,424.00 $3,424.00 - 
35 1 $2,790.40 $2,790.40 - 
36 1 $3,488.00 $3,488.00 - 
37 2 $11,200.00 $5,600.00 $5,600.00 
38 2 $7,601.60 $4,661.60 $2,940.00 
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TABLE 33   Marginal Contribution Cost Allocation Results for Case 2 

Loop 
Number of 

Shippers 
in Loop 

Collaborative 

Cost Of Loop 

Allocated Cost 

Shipper A Shipper B Shipper C 

1 2 $15,040.00 $7,520.00 $7,520.00 - 
2 1 $7,724.80 $7,724.80 - - 
3 1 $7,206.40 $7,206.40 - - 
4 1 $6,883.20 $6,883.20 - - 
5 3 $14,508.80 $5,534.13 $2,937.33 $6,037.33 
6 1 $7,200.00 $7,200.00 - - 
7 2 $5,182.40 $3,824.80 $1,357.60 - 
8 3 $14,531.20 $2,483.20 $6,024.00 $6,024.00 
9 2 $6,035.20 $2,566.40 $3,468.80 - 
10 2 $4,267.20 $1,312.80 $2,954.40 - 
11 3 $13,932.80 $5,458.13 $5,458.13 $3,016.53 
12 1 $6,288.00 $6,288.00 - - 
13 2 $13,152.00 $6,576.00 $6,576.00 - 
14 3 $9,977.60 $1,904.53 $1,904.53 $6,168.53 
15 3 $14,420.80 $1,421.87 $6,499.47 $6,499.47 
16 2 $11,200.00 $5,600.00 $5,600.00 - 
17 1 $1,398.40 $1,398.40 - - 
18 3 $6,920.00 $2,587.47 $2,587.47 $1,745.07 
19 2 $5,368.00 $2,324.00 $2,324.00 - 
20 3 $7,704.00 $1,542.40 $3,080.80 $3,080.80 
21 1 $2,790.40 $2,790.40 - - 
22 2 $6,406.40 $3,203.20 $3,203.20 - 
23 3 $14,721.60 $5,451.73 $5,285.30 $3,984.53 
24 1 $3,020.80 $3,020.80 - - 
25 3 $11,966.40 $6,740.27 $2,613.07 $2,613.07 
26 1 $1,670.40 $1,670.40 - - 
27 1 $3,328.00 $3,328.00 - - 
28 3 $14,305.60 $6,274.93 $5,842.93 $2,187.73 
29 3 $8,115.20 $3,279.47 $2,599.47 $2,236.27 
30 1 $5,696.00 $5,696.00 - - 
31 2 $7,003.20 $5,634.40 $1,368.80 - 
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TABLE 34   Marginal Contribution Cost Allocation Results for Case 3 

Loop 

Number 

of 

Shippers 

in Loop 

Cost Of 

Loop 

Allocated Cost 

Shipper A Shipper B Shipper C Shipper D 

1 3 $16,212.80 $7,448.80 $7,448.80 $1,315.20 - 
2 1 $7,731.20 $7,731.20 - - - 
3 1 $7,724.80 $7,724.80 - - - 
4 3 $13,400.00 $5,526.67 $5,526.67 $2,346.67 - 
5 1 $6,886.40 $6,886.40 - - - 
6 1 $6,288.00 $6,288.00 - - - 
7 4 $21,704.00 $5,469.20 $5,469.20 $5,382.80 $5,382.80 
8 1 $6,688.00 $6,688.00 - - - 
9 1 $7,008.00 $7,008.00 - - - 

10 4 $17,366.40 $2,042.13 $6,478.13 $3,981.33 $4,864.80 
11 2 $14,368.00 $7,184.00 $7,184.00 - - 
12 4 $16,956.80 $6,945.87 $1,792.27 $6,764.00 $1,454.67 
13 1 $6,032.00 $6,032.00 - - - 
14 1 $1,654.40 $1,654.40 - - - 
15 1 $7,872.00 $7,872.00 - - - 
16 4 $9,124.80 $2,633.20 $2,633.20 $1,929.20 $1,929.20 
17 3 $5,184.00 $715.20 $3,101.60 $1,367.20 - 
18 2 $6,660.80 $2,541.60 $4,119.20 - - 
19 3 $8,998.40 $2,924.27 $2,924.27 $3,149.87 - 
20 1 $2,704.00 $2,704.00 - - - 
21 3 $8,585.60 $2,888.80 $2,763.20 $2,933.60 - 
22 1 $3,203.20 $3,203.20 - - - 
23 2 $6,848.00 $3,424.00 $3,424.00 - - 
24 1 $3,145.60 $3,145.60 - - - 
25 2 $9,244.80 $6,801.60 $2,443.20 - - 
26 3 $7,528.00 $2,776.53 $1,351.73 $3,399.73 - 
27 1 $3,424.00 $3,424.00 - - - 
28 2 $3,843.20 $1,953.60 $1,889.60 - - 
29 2 $11,200.00 $5,600.00 $5,600.00 - - 
30 2 $7,654.40 $4,704.00 $2,950.40 - - 
31 1 $5,737.60 $5,737.60 - - - 
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