WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

2006

Model-based risk assessment

Walid M. Abdelmoez
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Abdelmoez, Walid M., "Model-based risk assessment" (2006). Graduate Theses, Dissertations, and
Problem Reports. 2445.
https://researchrepository.wvu.edu/etd/2445

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2445?utm_source=researchrepository.wvu.edu%2Fetd%2F2445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Model-based Risk Assessment

Walid M. Abdelmoez

Dissertation submitted to the
College of Engineering and Mineral Resources
at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Engineering

Hany H. Ammar, Ph.D., Chair
Katerina Goseva-Popstojanova, Ph.D., Co-Chair
Gerald Hobbs, Ph.D.

Ali Mili, Ph.D.

Tim Minzies, Ph.D.

Lane Department for Computer Science and Electrical Engineering

Morgantown, West Virginia
2006

Keywords: reliability-based risk, maintainability-based risk, software architecture
Copyright 2006 Walid M. Abdelmoez

ABSTRACT

Model-based Risk Assessment

Walid M. Abdelmoez

In this research effort, we focus on model-based risk assessment. Risk assessment is essential in any
plan intended to manage software development or maintenance process. Subjective techniques are human
intensive and error-prone. Risk assessment should be based on architectural attributes that we can
quantitatively measure using architectural level metrics. Software architectures are emerging as an
important concept in the study and practice of software engineering nowadays, due to their emphasis on
large-scale composition of software product, and to their support for emerging software engineering
paradigms, such as product line engineering, component based software engineering, and software

evolution.

In this dissertation, we generalize our earlier work on reliability-based risk assessment. We introduce
error propagation probability in the assessment methodology to account for the dependency among the
system components. Also, we generalize the reliability-based risk assessment to account for inherent

functional dependencies.

Furthermore, we develop a generic framework for maintainability- based risk assessment which can
accommodate different types of software maintenance. First, we introduce and define maintainability-
based risk assessment for software architecture. Within our assessment framework, we investigate the
maintainability-based risk for the components of the system, and the effect of performing the maintenance
tasks on these components. We propose a methodology for estimating the maintainability-based risk when
considering different types of maintenance. As a proof of concept, we apply the proposed methodology on
several case studies. Moreover, we automate the estimation of the maintainability-based risk assessment

methodology.

Dedication

To my family with love,

To my mentors with gratitude

iii

Acknowledgements

Thanks to Allah, Most Gracious, and Most Merciful. I would like to express my appreciation and gratitude
to my advisor Professor Dr. Hany Ammar. 1 am thankful for his guidance, support and patience. I was
honored to have Dr. Katerina Goseva-Popstojanova co-advise my Ph.D. research, it has been a great
experience working with her. I appreciate her patience, humbleness and friendliness. 1 would like to
express my thanks and gratitude to Dr. Ali Mili for his continuous support and encouragement. It has been
a pleasure and a privilege to work with him. I am also very grateful to Dr. Gerald Hobbs and Dr. Tim

Minzies for being valuable members of my examination committee.

I thank all my West Virginia University research colleagues: Dr. Diaa Eldin Nassar, Dr. Ahmed Hassan,
Dr. Vittorio Cortellessa, Dr. Mark Shereshevsky, Rabieh Elkradely, Rajesh Gunnalan, Kalaivani
Appukkutty, Tianjian Wang, Ajith Guedem, Venu Dalta, Israr Shaik, Khader Sheik and Sweatha Reddy

I am indebted to my great friends: Mohamed Hussein, Walid Moustafa, Hossam AdelBari, Ahmed
Elsherif, Walid AbdelHaleem, Shady Koriatam, Tamer Saber, Magdy El-Batouty, Ayman Abazza, Dr.
Mohamed Salem, Dr. Khalid Elmorsy, Hatem Elkanifati and to my friends and colleagues in the Arab

Academy for Science and Technology for their great support and valuable advice.

My family has always been a great source of support and love; I really cannot thank each of my family
members enough. I am very thankful to my Father Dr. Mohammad Rabie Abdelmoez, my Mother Dr.
Samia Farag, and my brother Tarek. I am also very grateful to my Father-in-law Mr. Saber Moustafa , my
late Mother-in-law Mrs. Fatheya Shahein and my brother-in-law Emad Moustafa.. And last but by no
means least; I am truly grateful for my great wife Rania for being caring, supportive, and considerate ;

and my lovely son Youssof and daughter Yosr for being a source of delight, pleasure and hope.

This work is supported by the National Science Foundation through ITR program and by NASA through a
grant from the NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research
Program (SARP) managed through the NASA Independent Verification and Validation (IV&V) Facility,

Fairmont, West Virginia.

v

Table of Contents

1 Introduction

1.1 Overview

1.2 Background

1.2.1 Software Architecture

1.2.2 The Unified Modeling Language

1.2.3 Reliability-Based Risk Assessment

1.2.4 Software Maintenance

1.2.5 Software Design Patterns

1.3 Dissertation Organization

I IR N N R O SR S

2 The Problem

2.1 Problem Statement

2.2 Research Objectives

2.3 Research Contribution

3 Related Work

3.1 Software Architecture Analysis Method (SAAM) and Architecture Trade-off
Analysis Method (ATAM)

3.2 Reliability-Based Risk Assessment

3.2.1 Error Propagation Probabilities

3.2.2 Estimating Error Propagation Probabilities

3.2.3 Empirical Error Propagation

3.3 Maintainability-Based Risk Assessment

3.3.1 Change Propagation

3.3.2 Maintainability Metrics

3.3.3 Request Generation Using Non-Homogeneous Poisson Process

4 Error Propagation Probabilities and Reliability-Based Risk Assessment
4.1 Analytical Error Propagation Results

4.2 Experimental Error Propagation Results

4.3 Error Propagation Probabilities Validation

4.3.1 Correlating One Step Matrices

4.3.2 Correlating Cumulative Matrices

4.3.3 Statistical Significance of the Correlations

4.4 Ranking Components According to their Error Proneness

4.5 Considering Error Propagation Probabilities in Assessing Components
Reliability-Based Risk

4.5.1 Pace Maker Case Study Results

4.5.2 CMI1 Case Study Results

-
N =S O

~
BN

14
14

15
17
18
19
19

21
25

27

27
31
32

33
34
35
36

37

38
41

4.5.3 Command and Control System Case Study Results
4.6 Summary and Discussion

5 Reliability-Based Risk Assessment with Functional Dependencies

5.1 Reliability-Based Risk Assessment Methodology

5.1.1 The Risk Analysis Process

5.1.2 Assessment of the Component/Connector Risk Factors

5.1.3 Scenarios Risk Factors

5.1.4 Use Cases and Overall System Risk Factors

5.2 The Use-Case Based Analysis

5.3 Risk Assessment Methodology with Functional Dependencies

5.3.1 Use Cases Terminology Used

5.3.2 Estimating the Risk Factor of Use Cases

5.4 Algorithm for System Risk Estimation

5.5 Command and Control System Case Study Results

5.5.1 Scenario Risk Factors

5.5.2 Use Case and System Level Risk Factors

5.6 Summary and Discussion

Change Propagation Metrics

6.1 Change Propagation Probabilities

6.1.1 Change Propagation Usage

6.1.2 Analytical estimates of Change Propagation Probabilities

6.1.3 Multi Step Change Propagation

6.2 Predicting Change Propagation Patterns

6.3 Experimental Change Propagation

6.4 Change Propagation Probabilities Validation

6.4.1 Correlating Single Step Change Propagation Matrices

6.4.2 Statistical Significance of the Correlations

6.5 Multi-Step Change Propagation Matrix

6.6 Using Change Propagation Probabilities to Assess Quality Attributes of Software

Architectures

6.6.1 Comparison of Change Propagation Metric with Other Metrics

6.7 Size of change

6.8 Change Propagation Probabilities and Size of Change for the Case Studies

6.9 Summary and Discussion

7 Maintainability-Based Risk Assessment

7.1 Maintainability-based Risk

7.2 Estimation Methodology of Maintainability-based Risk
7.2.1 Estimating Initial Change Probabilities

vi

44
46

47

47

47
49
52
54
55
56

56
58

61
62
62
64
67
69
69

70
70
72
73

77
79

79
79
80

83

88
90

91
95

96
96

96
96

7.2.2 Estimating Change Propagation Probabilities 97

7.2.3 Estimating Size of Change 97

7.2.4 Estimating Components Maintainability-based Risk 98

7.3 Maintainability-Based Risk Assessment in Adaptive Maintenance Context_ 99

7.3.1 CMI1 Maintainability-Based Risk in Adaptive Maintenance Context 99

7.4 Maintainability-Based Risk due to Requirements Changes 101

7.4.1 CMI1 Maintainability-Based Risk due to Requirements Changes 102

7.5 Maintainability-Based Risk Assessment in Corrective Maintenance Context_____ 104

7.5.1 CMI1 Maintainability-Based Risk Results 105

7.5.2 Pace Maker Maintainability-Based Risk Results 107

7.5.3 Command and Control System Maintainability-Based Risk Results 108

7.6 Maintainability Based Risk in Perfective Maintenance Context 109

7.7 Worst Case Maintainability-Based Risk Estimate 112
7.8 Using Non-Homogeneous Poisson Process to Estimate Maintainability-Based

Risk 114

7.9 Validation Prospects for Maintainability Based Risk Estimation 118

7.10 Summary and Discussion 119

8 Software Architecture Risk Assessment (SARA) Tool 120

8.1 Structural Description 120

8.2 Functional Description 120

9 Conclusions and Future Work 124

I. Glossary 127

I1. Bibliography 130

II1. Appendix I : Case Studies 141

1IV. Appendix II Analytical Formula of Estimating Error Propagation Probabilities165

vii

List of Figures

Figure 1 The framework of experimental error propagation analysis.cceccerveeriiersiieneeneenieneenieeieeeen 18
Figure 2 A state diagram of COMPONENL 8.c..eiiiiiiiiiiiiiiieiieite ettt ettt st ebees 28
Figure 3 A sample of a sanitized message protocol (components 2 and 8)..........ccceevueereeneenieneeneenneeenen. 29
Figure 4 Updated state diagram of COMPONENE 8........cocuiiiiiiiiiiiiiiiiieeeeree ettt 29
Figure 5 Correlation between analytical and empirical error propagationc.cceeeveereeneeneeneeneenneeenenn 35
Figure 6 Imported error proneness for command and control system case Studyc..ccocceeveereeneenneeennen. 36
Figure 7 Analytical error proneness of the COMPONENts iN SLEPS......ccueerveereerieriieriieriierieeneeste et 37
Figure 8 Pace maker cyclomatiC COMPIEXILYcoouiruiriiiiniieniieniteete ettt ettt ettt 39
Figure 9 Pace maker initial error probability..........ccccceeiiiiiiiinieniiiiececccecrecececee et 39
Figure 10 Pace maker error propagation matrix - analytical 1eSults........cccccevveirviiriiriiinienienicnienieeeeeees 40
Figure 11 Comparing components reliability-based risk factors for pace maker case studyc...ccceeu.ee. 41
Figure 12 CM1 case study cyclomatic COMPIEXILYc.eeveeriiriiriiriiiiienieenteneceteeeee et 42
Figure 13 CM1 case study initial error probabilitycc.ccoceviiriiiiiiiiinienieeeeeeeeee e 42
Figure 14 CM1 case study error propagation matrix - analytical TeSUultsc.cccecerviiriiinienienienrenieeees 42
Figure 15 Comparing CM1 case study reliability risk factors.........ccccceveeneeniiniiniinniniiicceceeeeeceeen 43
Figure 16 Command and control system cyclomatic COMPIEXItYcccceeveereereiriiersiernieneeneeneeneeeeeenee 44
Figure 17 Command and control system initial error probabilityccccceeveriiiriiniiniiinienicncneeeeeees 44
Figure 18 Comparing command and control system reliability risk factors............ccocceeveinieniininicnnennn. 45
Figure 19 The risk analysis PrOCESS.ceruterierttiiiiiteieette ettt et ettt sttt e b e sbe e s bt e sbeesaeeeeeenbees 48
Figure 20 <<ExXtend>> relationsShipco.ccoiiiiiiiiiiiiiieeete ettt st 57
Figure 21 <<Include>> relationShip......cooeerieiiiiiiiiieietetee ettt st 57
Figure 22 Dealing with use case relationShipsccooeerieriiniiniiiieeeee et 59
Figure 23 Plan Itinerary SeqUeNCe diagralllcoccomiimiiriiriieirieenieeniieniteeteeteesbeesbeesbeesaeesaeesaeeeneees 60
Figure 24 Purchase Ticket SeqUeNCE diaZram......cccccoriiriiriiiiiiirieenieeniie sttt sbeesiee st saee e eneees 60

viii

Figure 25 DTMCs of the Plan Itinerary and Purchase Ticket USe CaseS.....ccccoemvirverreennnenn 61

Figure 26 Outline of the risk estimation algorithmcccciiiiiiiiiiiiiii e 62
Figure 27 Sequence diagram of the Retry Both Pumps SCENATIO........ccoceeriiriiirsiieriieniienieeneeneeeeeeneeen 63
Figure 28 Risk model of the Retry_Both_Pumps SCENATIO.......cevutirieeriieniierienieeieesieenieesieesieeseeeeeeeeees 64
Figure 29 Risk factors of the primitive USE CASEScocueeruieriirieriirieeitenieenee ettt et seesee e e eeees 65
Figure 30 DTMC of the MON 1t 0T 1 NG USE CASE...eeuvtrtiiiieniieniteeiteeteeieerieesttesite bt et e bt esbeesbeesmeesaeeeaeeeneees 66
Figure 31 The risk factor of Monitoring and Mode_Setting USE CASES.....cccoverrueerrieernueenveennieeennnes 66
Figure 32 Distribution of the overall system IisK factor.........ccovueriiriiiiiiinieniericceeeeeeeee e 67
Figure 33 Single-step change propagation estimation............cocueruiriiereeneenienienieeieeeereeseesee e 72
Figure 34 An example on how to calculate Mn(Cg) = 8.....ccciiriiriiiiiiiiiienicnicceceeceeeeeee e 75
Figure 35 Parameterization of the categorization of the change behaviorc.cccoccoiviiiniininncnneeen. 76
Figure 36 Graphical representation of the critical change propagation...........cceceevueeveeieeneeneeneenienieeeen 78
Figure 37 Mn(Ci) of the components through multi-step change propagationccccceveevieniinvicnnennnen. 82
Figure 38 Pattern of Ripple COMPONENLSccouiiiiiiiiiieiieiterteete ettt ettt s e s 82
Figure 39 Pattern of a potential Avalanche COMPONENL...........cccueriiiiiiiiiiniinieiie e 83
Figure 40 Pattern of Wave COMPONENLSccc.eiruiiriiiiiiiieiienitenite ettt et e sttesate st et et e bt e sbeesaeesaeeeaeeensees 83
Figure 41 Change propagation of Job Application before applying strategy pattern.cceceeveereereeennen. 85
Figure 42 Change propagation of Job Application after applying strategy pattern..........ccccceeeeereerveervueennen. 85
Figure 43 Weighted Methods per Class and McCabe Cyclomatic Complexity for Job Application........... 86
Figure 44 Change propagation probabilities for the simple design on case study Colleague States............ 87
Figure 45 Change propagation probabilities for the architecture employing mediator design pattern 87
Figure 46 Weighted Methods per Class and McCabe Cyclomatic Complexity for Colleague States.......... 88
Figure 47 CBO for the case studies on Colleague States and Job Applicationc.c.cecceeeeereeneeneenneeennen. 89
Figure 48 RFC for the case studies Colleague States and Job Application..........c.ccceeeeveenieneensenneenneeennen. 89
Figure 49 MPC for the case studies on Job Application and Colleague States........c.c.coeveeveereeneeneerneeennenn 90
Figure 50 Size of change eStIMAatioNccoceeriiriiriiiiiiiiieterteete ettt sttt et eeees 91

1X

Figure 51 Change propagation probabilities for Pace Maker case studyc.ccoeceevienieneenienieniennieenen. 92

Figure 52 Size of change for Pace Maker case StUAYcoeieriiriiiiiiiieirieenie ettt 92
Figure 53 Change propagation probabilities for CM1 case StUAYcccceeveerieriiiriiernieiiienieneeseeeeeeeeeen 93
Figure 54 Size of change for CM1case StUAYceouiiiuiiiieniinieeeeee ettt 93
Figure 55 Change propagation probabilities for command and control case study..........cccccevceeveenienneennnen. 94
Figure 56 Size of change for command and control case Studycccccevveeriiriiiriieriinnienereeeeeeeeeeeen 94
Figure 57 Maintainability-based risk estimation methodolOgyccoceeveenieriiriiiriiiiieeereereeeeeeeeeen 97
Figure 58 Incoming maintenance change propagation through component Ci........c.c.cocceevieneinennenneenen. 98
Figure 59 Outgoing maintenance change propagation through component Ci........ccccocceeveenveneenienneeennen. 99
Figure 60 Initial change probabilities for CM1 COMPONENLS.......ccceveiruerriirriienienienienientcereere et 100
Figure 61 Maintainability-based risk for CM1 components in adaptive maintenance context.................. 100
Figure 62 Initial change probabilities resulted from Transfer, for CM1 components..........ccccceceeereeneenne. 104
Figure 63 Components maintainability- based risk resulted from Transfer, for CM1 components........... 104
Figure 64 Initial change probabilities for components of CM1 case studycceceereerveericrsernieenreenneenne 106
Figure 65 Maintainability- based risk and severity levels for CM1 components.........c..ccocccevveevueenreenneenne 106
Figure 66 Initial change probabilities for components of PM case studyccoeceereeniieniinicnnceneeneene. 107
Figure 67 Maintainability- based risk and severity levels for pace maker components...........c...ccceevueenee. 107
Figure 68 Initial change probabilities for components of command and control case study 109
Figure 69 Maintainability- based risk and severity levels for command and control components 109
Figure 70 Components maintainability-based risk for job application case study.ccccceeverveeneenuennne. 111
Figure 71 Components maintainability-based risk for the case study.........ccceveeneiniiniiniiiiiiieeeee 112
Figure 72 Worst-case Maintainability- based risk estimate for PM case study.......cc.cccoceereuerviirnieenieeneene. 113
Figure 73 Worst-case Maintainability- based risk estimate for command and control case study 113
Figure 74 Worst-case Maintainability- based risk estimate for CM1 case studyc.ccceceeveriieeneenennne. 113
Figure 75 Simulation settings for perfective and adaptive maintenance for CM1cccccoviriinniennnnne 115
Figure 76 Estimated mean request arrivals rate for maintenance simulation of CM1ccc.cocccevienenne 115

Figure 77 Estimated maintenance requests per component using the simulationccccceceeveeneenennne. 116

Figure 78 Initial change probabilities for CM1 COMPONENLS.......cc.cereiriiriiiriieenieeneeniie e 116
Figure 79 Components maintainability-based risk for CM1 components...........ccoceeveereeriieriennieeneeneenne. 117
Figure 80 The architecture of the Software Architecture Risk Assessment (SARA) Toolccceeuueee. 121
Figure 81 Use case diagram of maintainability-based risk functionality of the SARA tool 122
Figure 82 Change propagation probabilities for StarUML model...........cccoovuiriiiniiniieniiniieiieiceeeieeeee 123
Figure 83 Maintainability based risk for corrective maintenancec.ccceeeeveeneeneeriieriecrnernreeneeneenne 123
Figure 84 Software architecture of the SYSIEMLc.ccooiiiiiiiiiiieee e 141
Figure 85 Use case diagram of the Internal Thermal Control subsystem............cceccevveerviericrncrneeneeneenne 142
Figure 86 Top-level state diagram of Component C1ccccovieriiriiniiniinniieneeneeneenee e 142
Figure 87 First-level state diagrams of Component Cl........c.cocieiiiriiniiniiinienienenecneercee e 143
Figure 88 Second-level state diagrams of Component C1ccceeveiriiriiiniiinienenicniencecereereeeeee 143
Figure 89 Top-level state diagram of Component C2c.cocieriiriiriirniiiniieneeneeneeneeeee e 144
Figure 90 First-level state diagrams of Component C2..........coceevieriiriiriiinnieeneeneeneenee e 144
Figure 91 State diagrams of Components C3 and C4.........ccc.coviiiiiniiniiniiiieeeeeneeee e 144
Figure 92 State diagrams of Components C5 and CO.........coceerieiiiniiiiiniiiieeeeee et 145
Figure 93 State diagrams of Components C7, C8, C9 and C10cooueriiriiiniinienienie e 145
Figure 94 The architecture of the pacemaker eXample...........cocceriiiiiiiiiiiiiiee e 146
Figure 95 Use case diagram of the pacemakercoccoviiiiiiiiiiiiiiieeeeeeeee et 147
Figure 96 Use case diagram fOr CIM 1cooiiiiiiiiiiiiieeeetetete ettt st 148
Figure 97 Structure diagram fOor CIMTcooiiiiiiiiiiiiieeeete ettt st st 148
Figure 98 Sequence diagram Tr7amSIEr.ccccouueriiiiiiiiiiiiieeetete ettt st st 149
Figure 99 Sequence diagram HEArt BeaLoocucovuiiiieiiiiiiiieiieeteee ettt st sttt 149
Figure 100 State diagrams of BIT COMPONENL.......cccueriiiiiiiiiiiiiieiienierte ettt 150
Figure 101 State diagrams of CCM COMPONENLcocuiriiriiieriienieniienienieeeeenteeniee sttt ere e sree e 150
Figure 102 State diagrams of DCI COMPONENLccveriiriiriiieiieiienitente ettt 151

X1

Figure 103 State diagrams of DCX COMPONENL.........cccuiiriiriiieriieriienitenteete ettt st st be e 151

Figure 104 State diagrams of DPA COMPONENLc...couiiiiiiiiiiieiienieeteeeeeeee ettt 152
Figure 105 State diagrams of EDAC COMPONENLcc.eiriiriiiiiiieniieniieiteeieeieesieesiee sttt 153
Figure 106 State diagrams of ICUT COMPONENLcocuiriiiriiieriieniieniienteete ettt ettt be e 154
Figure 107 State diagrams of SCUI COMPONENLcccuerviiiiiiiriieniienieiieete ettt 155
Figure 108 State diagrams of MIL 1553 COMPONENL.....ccc.eriuiiiiiniiiiiiiiiiieieeieeniee sttt 156
Figure 109 State diagrams of SST COMPONENLcoviriiriiiriiiiiiiiiiiereececeeeeee e 156
Figure 110 State diagrams of TIS COMPONENLccccoviiriiiriiiiiiiieierieeeee et 157
Figure 111 State diagrams of TMALI COMPONENLc...covuiriieiiiiriiiniiinienieeieeieeieeniee e 157
Figure 112 Part of the reversed-engineered class diagram of Sharp tool........cccccceceriiriiniiniinninneneenne 159
Figure 113 Class diagram of Job Application case study before applying strategy pattern.............cc........ 160
Figure 114 Class diagram of Job Application case study after applying strategy pattern............cccceeuee.e. 161
Figure 115 Class diagram of an initial design of colleague states case studyccoccceveerccrverneeneenneenne 162

Figure 116 Class diagram of a design that uses mediator design pattern in colleague states case study ...162
Figure 117 Class diagram of Borg case study before implementing the controller of the MVC pattern. ..163

Figure 118 Class diagram of Borg case study after implementing the controller of the MVC pattern.164

Xii

List of Tables

Table 1 Conditional Error Propagation Matrix - Analytical Results........c..ccocerviriiniiniiinincniniceeeeee. 27
Table 2 Probability distribution of states Sg 0f C 8....ccc.coiiiiiiiiiriiiieeceeeeeee e 29
Table 3 Probability distribution of messages V _,g exchanged between C 2 and C 8......ccccceeeevvinienieennen. 29
Table 4 Unconditional Error Propagation Matrix - Analytical Results..........ccocccoceriiiiinniiniincninieeen. 30
Table 5 Cumulative Error Propagation Matrix - Analytical Resultsc..ccocevviriiniiniinnincncnceieeeen 30
Table 6 Unconditional Error Propagation Matrix Eg - Empirical Resultsccccoviiiiininiininicneeen. 31
Table 7 Cumulative Error Propagation - Experimental Results ..o, 31
Table 8 Correlation between analytical and experimental EP probabilities.............ccccceveenieniininiennennnen. 34
Table 9 Components severity of the pace maker case StUAYcccueevueereerienieniiinieeceeeee e 40
Table 10 Components severity of the CM1 €ase StUAYcceeviiriiiiiiiiiiinieniente et 43
Table 11 Components severity of the command and control case Study.........ccoceevueerieeneenienieneenienieeeen 45
Table 12 Components error reports of the CM1 case StUAYcoceereeriiiiiiiiiinieneee e 105

Xiii

1. Introduction

1 Introduction

To plan the development for a software system, the project manager should assess the risks facing the
development effort. Domain experts’ subjective decision is inherent to several risk assessment techniques.
Thus, they require intensive human involvements and are error-prone. Therefore, risk assessment is
supposed to rely on system attributes that we can quantitatively measure from its models. Model-based
assessment is gaining importance because it enables us to quantitatively evaluate the attributes of a
system. In this dissertation, we focus on model-based risk assessment derived from the system

architecture.

1.1 Overview

A sound architecture is the key to build a software system with high quality attributes. Software
architecture explicates the structure of the system in terms of components and interactions among them to
accomplish the desired requirements. Furthermore, it supports many software development paradigms
such as COTS-based software development, product line engineering and component based software
engineering. In [Shaw 1995], Shaw was the first to advocate the shift from functional view of software
development to architectural view which has been widely embraced since. As architecture became a more
significant artifact in developing software systems, the need to quantitatively analyze the architecture has
become eminent. The architecture quantitative analysis should reflect its pertinent quality attributes and

help us to predict the quality of the software products instantiated from it.

According to NASA-STD-8719.13A standard [NASA 1997] risk is a function of the anticipated
frequency of occurrence of an undesired event and the potential severity of resulting consequences. This
standard defines several types of risk, such as for example availability risks, acceptance risk, performance
risk, cost risk, schedule risk, etc. Software risk management concentrates on developing a product with
better quality attributes such as reliability, performance, maintainability, and the uncertainty associated
with the product development. It helps project managers in avoiding unpredicted catastrophic problems.
Also, it prevents wrong allocation of resources and taking decisions without proper knowledge or
adequate information on anticipated future consequences [SEI 2005]. To manage software development
projects, managers and developers should rely on processes, methods and tools to facilitate assessment,
prioritization and mitigation of various risk aspects. Therefore, risk assessment is an essential part in the

management of software development.

In this research effort, we are concerned with model-based risk assessment, which includes reliability-

based risk and maintainability-based risk. Reliability-based risk takes into account the probability that the

Model-Based Risk Assessment 1 Ph.D. Dissertation

1. Introduction

software product will fail in the operational environment and the consequences of that failure. While,
maintainability-based risk takes into account the probability that the software product will need to endure

a certain type of maintenance and the consequences of performing this maintenance on the system.

1.2 Background

This Dissertation is related to several areas in the field of software engineering. The main theme
works around model-based risk assessment for software architecture modeled using Unified Modeling
Language (UML). The major contribution is in the field of reliability-based and maintainability-based risk
assessment methodologies. The following sections give a basic background on the recent work in these

fields.

1.2.1 Software Architecture

Abstracting the software system to highest level obtain us its architecture. As the size and the
complexity of the software systems increase, the need for structuring and organizing it into components
increases. As a result, the discourse of software system’s architecture becomes essential [SEI 2005].

Software architecture is an important asset because of the following:

e The architecture can be used for communication purposes, as it provides an understandable

abstraction by stakeholders, not only software developers but also users and managers.

e Early in the development process of new software, architecture can be available for early analysis

of the system’s properties.

e Existing systems that evolve can be analyzed at the architectural level to provide a foundation for

further development.

1.2.2 The Unified Modeling Language

As software systems become more complex, modeling them to guide development or to help
maintenance becomes essential. System models are used to document the analysis and design and to
communicate the system artifacts among development and maintenance teams. Therefore, to have a
modeling language standard is an important factor for the success of an application development and
maintenance. The Unified Modeling Language UML has become the de-facto standard for building
Object-Oriented software. UML unified the efforts of Booch [Booch+ 1999], Rumbaugh [Rumbaugh+
1997], and Jacobson [Jacobson+ 1992]. That effort has matured into UML becoming an OMG (Object
Management Group) standard [OMG 2005]. Adopting UML as a standard is motivated by:

Model-Based Risk Assessment 2 Ph.D. Dissertation

1. Introduction

It is programming languages independent.
* It provides a rich language for visual modeling to develop and communicate meaningful models.
* It integrates lots of efforts over the years and blends many models developed.

*]t provides the means to extend and to specialize the core concepts.

1.2.2.1 UML Definition:
According to OMG specification: [OMG 2005]

"The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system. The UML offers a
standard way to write a system's blueprints, including conceptual things such as business
processes and system functions as well as concrete things such as programming language

statements, database schemas, and reusable software components.”

It is important to note that UML is a 'language' for specifying and not a procedure or method. The
UML is used to define a software system; to detail the system artifacts, to document and construct. It is the
language that the blueprint is written in. The UML may be used in a variety of ways to support a software

development methodology but in itself it does not specify that methodology or process.

1.2.2.2 UML Models

A single model cannot capture static and dynamic system properties. The used models influence how
to tackle the problem and how to come up with an appropriate solution. Therefore, complex systems
should be analyzed by examining independent views. Static models define the static architecture of the
system. They are used to model the elements that make up a system - the classes, objects, interfaces and
physical components. Furthermore, they are used to model the relationships and dependencies among the
elements of the system. Class diagrams, Package diagrams, Component diagrams, and Deployment
diagrams are some of the static views of the system. Dynamic models define the interaction among the
system elements to accomplish a system behavior. They contain events, responses, messages, and
invocations. Use-Cases, Sequence and Collaboration diagrams, and State-charts diagrams are some of the
dynamic views of the system. The following summarizes the modeling diagrams supported by UML

[UML 2005]:

e (lass diagrams: A class diagram defines the basic building blocks of a model: the types, classes and

general materials that are used to construct a full model. They depict possible classes and their

Model-Based Risk Assessment 3 Ph.D. Dissertation

1. Introduction

relationships. Details of the design are communicated through detailed class diagrams, which include

the attributes and the methods of the classes.

® Package diagrams: are used to divide the model into logical containers or 'packages' and describe the

interactions between them at a high level.

® Implementation diagrams:
o Component diagram: are used to model higher level or more complex structures, usually built up

from one or more classes, and providing a well defined interface.

o Deployment diagram: show the physical disposition of significant artifacts within a real-world
setting. Deployment diagrams are related to component diagrams in that a node typically

encompasses one or more components.

e Use Case diagrams: describe the boundary and interaction between the system and users. They
conform in some regards to a requirements model. A use case designates a situation in which the
system is used. It defines the system inputs, actions and possible outputs. Use cases are analyzed to
construct possible scenarios.

® Behavior diagrams: capture the varieties of interaction and instantaneous state within a model as it
'executes' over time.

o State-chart diagram: State-charts are used to model the behavior of complex systems [Harel88].

State charts describe the states or conditions that classes assume over time

o Interaction diagrams: They include sequence diagrams and collaboration diagrams
* Sequence diagrams: show the sequence of messages passed among objects using a vertical
timeline. A sequence diagram reflects a scenario of interactions in the system to manifest a

use case of the system. Normally, there are one or more scenarios for each use-case.

* Collaboration diagrams: are another view of scenarios. They show the network and sequence

of messages between objects at run-time during a collaboration instance.

1.2.3 Reliability-Based Risk Assessment

Risk assessment is an essential part in the management of software development. Performing it in the
early phases of software development can enhance allocation of resources within the software lifecycle.
Also, it provides useful means for identifying potentially troublesome software components that require
careful development and allocation of more testing effort. We are concerned with reliability-based risk,
which takes into account the probability that the software product will fail in the operational environment

and the consequences of that failure.

Model-Based Risk Assessment 4 Ph.D. Dissertation

1. Introduction

In [Yacoub+ 1999], Yacoub et. al. defined dynamic metrics that include dynamic complexity and
dynamic coupling to measure the quality of software architectures. Their approach was based on dynamic
execution of UML state chart specification of a component and the proposed metrics were based on
simulation reports. In [Yacoub+ 2002], Yacoub et. al. combined severity and complexity factors to
develop heuristic risk factors for the components and connectors. Based on scenarios, they developed
component dependency graph that represents components, connectors, and probabilities of component
interactions. The overall system risk factor as a function of the risk factors of its constituting components

and connectors was obtained using the aggregation algorithm.

In [Goseva-Popstojanova+2003], Goseva-Popstojanova et. al. proposed a methodology for risk
assessment based on the UML specifications such as use cases and sequence diagrams that can be used in
the early phases the software life cycle. This risk assessment methodology was entirely based on the
analytical methods. First, components and connectors dynamic risk factors were estimated analytically
based on the information from UML sequence diagrams. Then, a Markov model wass constructed for
estimation of each scenario risk factor and closed form exact solutions are derived for the scenarios, use

cases, and overall system risk factors.

1.2.4 Software Maintenance

According to IEEE Standard for Software Maintenance [IEEE 1998], software maintenance is defined

as follows:

“Modification of a software product after delivery to correct faults, to improve performance

or other attributes, or to adapt the product to a modified environment”.

Other definitions for software maintenance were listed in [Pigoski 1996]. Pigoski concluded that any

change activity to the software product after being accepted by the client is maintenance.

Thus, software maintenance is concerned with error corrections and system changes as requirements and
environment change. Software maintainers usually are not involved in the original software development
cycle generally. They must learn how a program functions before they can change it. The status of system
documentation, programmer skill and experience and the attributes of the system itself are some of the

variables that affect the maintenance process.

1.2.4.1 Types of Software Maintenance

In “That Maintenance Iceberg” [Canning 1972], Canning summarized how maintenance is

categorized. According to Canning, maintenance can be considered in narrow sense as to correct errors

Model-Based Risk Assessment 5 Ph.D. Dissertation

1. Introduction

and in wide sense as to extend the functionality of the software and to accommodate changes in the
underlying system software or hardware. In [Swanson 1976], E. Burton Swanson offered a typology that
account for what was seen as the cause or purpose of the maintenance, or why was the maintenance to be

done. In [Lientz+ 1980], authors categorized three types of software maintenance:

* Perfective maintenance: to perfect the system in terms of its performance, processing efficiency, or

maintainability,

* Adaptive maintenance: to adapt the system to changes in its data environment or processing

environment, and

* Corrective maintenance: to correct processing, performance, or implementation failures of the

system.

This categorization was adopted by the IEEE Standard for Software Maintenance [IEEE 1998]. There
is a fourth type of software maintenance mentioned in the IEEE Standard for Software Maintenance’s

Annex A.
* Preventive maintenance: to prevent system problems before they occur

Close examination of preventive maintenance reveals that it is not a well established and understood

discipline. There is a lot of confusion regarding its definition, scope and meaning [Chapin 2000].

1.2.4.2 Software Maintenance Risks

Many types of risk are ushered when software systems undergo maintenance. They are akin to those
we face when developing new software systems, but with different level of risk. Also, maintainers often
interact with complex and difficult to comprehend systems, which introduce other types of risk that

distinguish the software maintenance process. These types of risk are [Sherer 1997]:

® Project risk— Maintenance project cannot be carried out within budget or on time, no effective

maintenance process and lack of personnel and maintenance capabilities.

® Usability risk— Systems will cause problems and failures after the maintenance is conducted. Usability

risk includes functionality, performance, financial and software failure risk.

® Maintainability risk— It will be difficult to maintain the system in the future because of the way we

conducted this maintenance.

Model-Based Risk Assessment 6 Ph.D. Dissertation

1. Introduction

1.2.4.3 Maintainability

According to [Pigoski 1996], the cost of software maintenance averages from 60% to 80% of the
overall software system cost. As a result, maintainability is an important software quality factor. The
effect of good maintainability of a system is realized in the maintenance stage. It is justifiable to make an
investment in software maintainability if there will be a reward in terms of productivity in the

maintenance stage.

Software maintainability is an attribute that reflects the ease of performing maintenance to the

software product. IEEE definition of software maintainability is as follows [IEEE 1990]:

“The ease with which a software system or component can be modified to correct faults,

improve performance or other attributes, or to adapt to a changed environment”.

Software maintenance cost can be significantly reduced if maintainability is integrated early on in the
software development lifecycle. To delay considering maintainability as a goal of the development effort,
till reaching the operation phase of the software product, affects its quality and causes the maintenance
cost to increase. Software development process, documentation and program comprehension considerably
affect maintainability [Pigoski 1996]. It would be useful to quantify the relative magnitude of the risk
associated with a maintenance task through an analysis of the system artifacts and the maintenance tasks

required.

Furthermore, in recent years the use of commercial software components has increased to cut the cost
of software development. Without internal modification, the developer integrates the COTS software into
the system that will affect the overall maintainability. This is because the evolution and maintenance of
the software cannot be fully controlled by the users. Moreover, the quality of the COTS software
documentation and vendor support is immature [Pdivi+ 2002]. To achieve a faster and more efficient
software development process [William+ 2002], it is highly recommended to use standards with proven
techniques and notations such as Unified Modeling Language UML. Several problems result from the lack
of communication and integration. One of these problems is implicit inconsistency caused by making
changes to the UML model or the system design. This will significantly lead to an increase of the cost and

complicate the maintenance process of such systems.

1.2.5 Software Design Patterns

In Merriam-Webster dictionary, some of the definitions of the word pattern are “a form or model
proposed for imitation” or “something designed or used as a model for making things”. Thus, when we

use the word pattern we are reflecting on how we do something or how we pursue our intent. In a mature

Model-Based Risk Assessment 7 Ph.D. Dissertation

1. Introduction

craft, it is common to find an archive of best practices that describes effective methods for achieving aims
or solving problems in different context. Also in any community of practitioners, you find that they invent
jargons to help them explain their intent or how to accomplish that intent. These jargons usually refer to
patterns, or standardized ways to do things. As the community becomes more mature, they try to
document these patterns in order to standardize the way things are done. This documentation tries to

convey the accumulated wisdom to next generations.

The architect Christopher Alexander was the first to document a craft’s best practices. Though, his
patterns relates to architecture of building, not software. He described patterns for successful towns,
buildings, and room designs. He developed a prototype of pattern books from his work in pattern
cataloging for architecture [Alexander+ 1977, Alexander 1979]. He developed the fundamental template

of a pattern, as a Context-Problem-Solution.

The software community adopted Alexander ideas; Kent Beck and Ward Cunningham introduced the
idea of patterns to software development. They wrote the first set of patterns that were addressing user
interfaces [Beck+ 1994] [Cunningham 1994] [Beck+ 1996]. Erich Gamma's 1991 doctoral thesis [Gamma
1991] was the first published work about patterns in software development. The Hillside Group was
formed to explore patterns further and promote their use in software development. In 1994, they founded

the first PLoP (Pattern Languages of Programs) conference.

The 'Gang of Four' book [Gamma+ 1995] presented the first well-described and documented catalog
of design patterns for object-oriented designs. It presented well-used and known design solutions for
object-oriented development. They documented a set of twenty-three patterns. They classified them under
Behavioral, Structural, and Creational. The use of patterns at the architectural level of software
development is introduced in The "Gang of Five" book [Buschmann+ 1996]; they classified the software
patterns as architectural patterns, design patterns and idioms. Nowadays, the main sources of pattern

evaluation and cataloging are the Pattern Language of Programs conferences.
Design patterns can help improve the software development because they:

e Provide a common vocabulary for the designs, which helps in understanding it
® Provide abstractions for the system, which reduces its complexity.
e Are proven building blocks from that help in building more complex applications.

e Help producing new designs as they are used as guiding blue prints.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: in chapter 2, we present the problem

statement, research objectives and contributions. We discuss the related work in chapter 3. Chapter 4

Model-Based Risk Assessment 8 Ph.D. Dissertation

1. Introduction

addresses error propagation probabilities and components reliability-based risk assessment. In Chapter 5,
we generalize the reliability-based risk assessment to accommodate functional dependencies of the
system. Chapter 6 deals with architectural metrics that captures the characteristics of the phenomenon of
change propagation in software systems. We present maintainability-based risk concept and its estimation
procedure and apply it in different maintenance contexts in chapter 7. In chapter8, an overview for the
Software Architecture Risk Assessment (SARA) tool is described. Finally, we conclude and discuss future

work in chapter 9.

Model-Based Risk Assessment 9 Ph.D. Dissertation

2. The Problem

2 The Problem

2.1 Problem Statement

Non-functional validation of software systems yet today does not find an appropriate consideration in
the practice of software developers. Too little time and effort are devoted to this aspect during the
software development process and a “fix-it-later” approach is still dominant. This allows software
products to obey to the “short time to market” law, but their quality, as the ability to meet non-functional

requirements, suffers of continuous (and sometime unaffordable) product updates after delivery.

This lack of validation appears even more serious if we consider that the software development has
been rapidly going, in the last few years, towards component-based system configurations. Availability of
self-contained software components (either previously developed or acquired from other
companies/teams) is changing the software development process. Large effort has been spent to study the
implications of reuse on the functional aspects of software systems, whereas the consequences of
replacing a component (even with a functionally equivalent one) on the non-functional software aspects

need more investigation.

Among the risks associated with non-functional attributes, a large significance has been given to
software risk in the safety-critical system domain. Wherever software controls systems whose failures
may be dangerous for environment and/or human life (e.g., aircrafts, nuclear plants, etc.), the
consequences of software failures are better to be considered from the very early phases of the lifecycle.
However, quantification of software risk is also suitable in other domains (independently of an absolute
risk level), in order to detect components and events that may typically put in trouble the software system

and the environment where the system will be running.

The risk of a software product has always been considered as a combination of the likelihood of a
failure and the severity of “damages” that the failure may produce. The sources of failures are usually
software behavioral faults, intended as behaviors that do not meet functional requirements. We refer to

this type of risk as reliability-based risk.
In pursue of our research effort, we identify the following problems:

e How can we assess risk associated with the non-functional attributes of reliability and maintainability
of a system based on quantitative means rather qualitative ones that are used in the current risk

assessment methodologies

Model-Based Risk Assessment 10 Ph.D. Dissertation

2. The Problem

e How to define a practical reliability-based risk assessment methodology that captures the

dependencies between the system functionalities and among components.

2.2 Research Objectives

Model-based risk assessment should guide the management of software development and
maintenance. Anticipating what might go wrong and managing potential risks should be integrated into
the software development process. Model-based risk assessment is capable of pinpointing the risky
components of the system and helping in the allocation of the available resources to mitigate these risks.
We are concerned with reliability-based risk taking into consideration of use-case relationships.
Furthermore, the process of building software systems is quite complex and the word change characterizes
many of the encountered problems: change in environment, change in users’ expectations, change in
organizational environment, and change in software requirements. Prolonging the software system life is
highly profitable for the developing organization. Integrating the system with other systems, reusing it in
different situations, or simplifying the maintenance process might help in extending the system life.

Unfortunately, there are no universally used techniques for doing so.

As the need for software systems expands, development methodologies and techniques to automate
the production of software and facilitate its maintainability is needed. Researchers look for techniques that
reduce maintenance cost and improve quality. Using exiting solutions of recurring problems and cutting
off applications development from scratch is one of the effective improvements to software productivity

and maintainability.
The objectives of this research are:

e To generalize the reliability-based risk assessment methodology to account for the relationships

between use cases and profile of execution of the use cases of the system.

e To generalize the assumption of failure occurrence independence in the components of the system

and to account for error propagation among the components of the system in the methodology.

e To apply the generalized methodology on a real complex industrial case study, rather than on a
hypothetical case study or an example adopted from the literature, which proves its value of

pursuing this approach in tackling the problem of use case relationships.

e To develop a methodology for assessing maintainability-based risk for the system components
based on the characteristics of the component and its interactions with other components.

Sepecifically:

o To introduce and define maintainability-based risk assessment for software architecture.

Model-Based Risk Assessment 11 Ph.D. Dissertation

2. The Problem

o To develop a general framework to accommodate different software maintenance types.

o To apply the estimation methodology on case studies with different size from different

domains considering different types of software maintenance.

¢ To automate the methodology and to provide the analyst with tool support.

2.3 Research Contribution

This dissertation introduces a new approach for model-based risk assessment methodology for
evaluating software architectures. The results of the research conducted in this thesis are (as discussed

later in details):

e We address architectural attributes which differ from code-level software attributes. Architectural

attributes focus on the level of components and connectors. In Specifics:

o We introduce and define architectural attributes such as change propagation probabilities and

size of change between components of the architecture.
o We derive formulas for estimating these metrics using architectural level information.

o We estimate error propagation probabilities, change propagation probabilities and size of

change for several case studies from different domains.
o We conduct empirical experiments to assess the estimation of these architectural attributes

® We relax some of the assumptions of the reliability-based risk assessment methodology [Goseva-

Popstojanova+2003].

o We generalize the methodology to accommodate relationships that model extensions and
commonality within the UML use case model and apply it a real industrial case study which is
a large command and control system used in a mission-critical application.It should be
emphasized that, to the best of our knowledge, this is the first work which addresses

relationships between use cases in assessing reliability-based risk.

o We generalize the methodology to capture the dependencies among the system components

and apply it on number of case studies.

e We are also concerned with maintainability-based risk analysis which assesses how difficult it is to

maintain the system in the future because of possible maintenance tasks.

o We introduce and define maintainability-based risk assessment for software architecture.

Model-Based Risk Assessment 12 Ph.D. Dissertation

2. The Problem

o We propose a methodology for estimating the maintainability-based risk when considering

different types of maintenance: corrective, adaptive or perfective.

o We apply the proposed methodology on several case studies considering alternative

maintenance types.

o We use Non-Homogeneous Poisson Process to get the maintainability-based risk estimate as a
function of time when introducing new features in the system and/or due to adaptive

maintenance.

o We automate the steps for the estimation methodology.

Model-Based Risk Assessment 13 Ph.D. Dissertation

3. Related Work

3 Related Work

In this chapter, we discuss literature review for scenario based risk assessment, reliability-based risk

assessment and maintainability-based risk assessment.

3.1 Software Architecture Analysis Method (SAAM) and Architecture Trade-
off Analysis Method (ATAM)

Software Architecture Analysis Method (SAAM) is a first generation “scenario-based” architectural
assessment method. It was developed at the Software Engineering Institute (SEI) at Carnegie-Mellon
University (CMU). SAAM focuses on functionality and ease of change. It is simple and easy to apply. The
focus on function and modifiability can mask other problems as it neglects other quality properties.

SAAM lacks wide stakeholder involvement. [SEI 2005]

Architecture Trade-off Analysis Method (ATAM) is second generation “scenario-based” architectural
assessment method. It also was developed at the SEI. ATAM focuses on tradeoffs made between different
requirements and quality properties. ATAM has two phases; the first phase is performed by architects,

then stakeholders join in the second phase. [SEI 2005]

Risk assessment is conducted in both software evaluation approaches. In both approaches, the

assessment is based on qualitative measures and the experience of the analyst.

3.2 Reliability-Based Risk Assessment

We developed a risk assessment methodology to be used in the early phases of the software life cycle
[Goseva-Popstojanova+2003]. We used the Unified Modeling Language (UML) [OMG 2001] and
commercial modeling environment Rational Rose Real Time (RoseRT) [Rational Rose RT] to obtain
UML model statistics. First, a heuristic risk factor was obtained for each component and connector in
software architecture. This factor combined severity and complexity (coupling) metrics for the
components (connectors). Then, a Markov model was constructed to obtain scenarios’ risk factors. The
risk factors of use cases were estimated by averaging the scenarios’ risk factors. This estimation
methodology assumed independent use cases. Then, the overall system risk factor was estimated by
weighting the independent use cases risk factors with the probability of their execution. We further
identified critical components and connectors that would require careful analysis, design, implementation,

and more testing effort.

Several other papers involved UML use cases in the analysis but they considered only independent

use cases. In particular, in [Singh+ 2001] Singh et al. proposed an approach for reliability analysis of

Model-Based Risk Assessment 14 Ph.D. Dissertation

3. Related Work

component-based systems based on UML. In this work authors assumed independent use cases. Houmb et
al. presented the CORAS UML profile for risk assessment in [Houmb+ 2002] and demonstrated its use on
an e-commerce system assuming independent use cases. In [Hawkins+ 2002] Hawkins et al. addressed the
hazard and safety analysis of object-oriented systems. Although the approach proposed in [Hawkins+

2002] starts from the use cases, relationships among them were not considered.

3.2.1 Error Propagation Probabilities

To generalize the assumption of the independence of error occurrence in the components of the system,
we used error propagation probabilities among the components of the system [Abdelmoez+ 2004A]. In
this section, we first introduce and discuss the feature of error propagation in an architecture. Then, we

review a derivative of this feature. Finally, we discuss related work to error propagation.

3.2.1.1 Error Propagation: Definition

We consider two components, say A and B, of an architecture, and we let X be the connector that
carries information from A to B; for the purposes of our current discussion, the specific form of connector
X is not important, we will merely model it as a set (of values that A may transmit to B). Also, the specific
form of components A and B is not important; we will merely model them as functions that map an

internal state and an input stimulus into a new state and an output.

Definition 1. The Error Propagation Probability from component A to component B is denoted by

EP(A,B) and defined by:
EP(A,B) = Prob([B](x)#[B](x’) | x#x’), (3.1

where [B] denotes the function of component B, and x is an element of the connector X from A to B. We
interpret [B] to capture all the effects of executing component B, including the effect on the state of B and

the effect on any outputs produced by B.

We interpret EP(A,B) as the probability that an error in A is propagated by B (as opposed to being
masked by B) because the outcome of executing B will be affected by the error in A. By extension of this
definition, we let EP(A,A) be equal to 1, which is the probability that an error in A causes an error in A.
Given an architecture with N components, we let EP be an NxN matrix such that the entry at row A and

column B be the error propagation probability from A to B.

Model-Based Risk Assessment 15 Ph.D. Dissertation

3. Related Work

3.2.1.2 Unconditional Error Propagation

Note that the definition of the error propagation given above uses the concept of conditional
probability, i.e. we calculate the probability that an error propagates from A to B under the condition that
A actually transmits a message to B. It is often useful, however, to use the unconditional error
propagation which we will denote simply as E(A,B), and define as the probability that an error propagates
from A to B not conditioned upon the event that A sends a message to B. Function E(A,B) is clearly

dependent on EP(A,B), but it further integrates the probability that A does send a message to B.

In order to bridge the gap between the original (conditional) error propagation and the newly
introduced unconditional error propagation, let us consider the transmission probability matrix T where
the entry T(A, B) reflects the probability with which the connector (A — B) gets activated during a typical/
canonical execution. 7 is the NxN matrix whose entry T(A, B) is the probability that the component A
sends a message to component B given that the A is expected to transmit a message to some component.

Note that:

e Itis reasonable to assume that T(A, A) = O for all components A,

e C(learly, T is a stochastic matrix, i.e. ZT(A,B) =1 for every component A.
B

The matrix T is used to distinguish between a connector that is invoked intensively in each execution
and one that is invoked only occasionally, under exceptional circumstances. The matrix T reflects the

variance in frequency of activations of different connectors during a typical execution.

By virtue of simple probabilistic identities, we find that the unconditional error propagation is
obtained as the product of the conditional error propagation probability with the probability that the

connector over which the error propagates is activated, i.e.

E(A,B) =EP(A,B) X T(A, B). (3.2)

3.2.1.3 Related Work

In [Voas 1997], Voas analyzed error propagations between COTS components and presented an
automated tool to simulate error propagation, which is used to deploy a fault injection experiment. This
approach is code based and do not address the architecture of the system. Also, it is effort and time
consuming even though it is supported with automated tool but it requires instrumentation for the code

and then further analysis for the generated logs.

Michael et al [Michael+1997] presented an empirical study of data state error propagation behavior.

The authors argue that at a given location either all data state errors injected tend to propagate to the

Model-Based Risk Assessment 16 Ph.D. Dissertation

3. Related Work

output, or else none of them does. This kind of analysis does not take the specific topology of the systems
under consideration. It treats the system using their average behavior which we try to overcome by using

error propagation probabilities.

In [Hiller+ 2001] Hiller et al. analyzed error propagation conceptually, introducing the concept of error
permeability and discussing means to measure it using fault injection techniques. This work is similar to
the error propagation study that we conduct but they consider how the error propagates through the

component as an input/output relationship.

3.2.2 Estimating Error Propagation Probabilities

In [Abdelmoez+ 2004 A], the authors have found that analytically, the error propagation probability,
can be expressed in terms of the probabilities of the individual A-to-B messages and states, via the
following formula:

1=) P Y PasslF OO

xeSp YESp

1= > Pasbl?

veVap

EP(A—B) =

(3.3)

where Fx’I(y) ={ve Vua_p | F(v) =y}, and we assume a probability distribution Py on the set of states Sp
of component B, and a probability distribution P,_,3 on the set of messages V,_jp passed from A to B. For

further details, see Appendix II.

If we assume that the states of B, as well the messages passing through the connector from A to B are

equi-probable, then the formula (3.3) for error propagation is simplified into

1- WZZIF (|

A—B XeSpyeSy (34)

1
I VA—>B I

EP(A—B)=

In [Popic+ 2005], Popic et. al. extended their Bayesian reliability prediction of component based
systems by introducing the error propagation probability. They studied the impact of the error propagation
in a case study of an automated Personnel Access Control System. They concluded that error propagation
has a significant impact on the system reliability prediction and, therefore, future architecture-based

models should not ignore it.

Model-Based Risk Assessment 17 Ph.D. Dissertation

3. Related Work
3.2.3 Empirical Error Propagation

In order to validate our analytical study, we developed a framework for experimental error
propagation analysis in which we utilize fault injection experiments to alter architecture specifications.
We then simulated the corrupted specifications and record component traces as “faulty-run” logs. Finally
we compared the faulty-run logs against a fault-free “golden-run” log obtained by simulating the
uncorrupted architecture specifications. The framework is shown in Figure 1. We performed the

simulation-based error propagation analysis in two phases: an acquisition phase and an analysis phase.

v Fault

Arch. Fault-Injection Model
Specs. > Arch Info. ! Experir_lien[%
Extraction Design .
| Simulation (Design
Corruption

¢

Log el Experimental Error Propagation

Analysis

i Analysis Phase

Reference Log

Figure 1 The framework of experimental error propagation analysis.
In the acquisition phase:

We extracted architecture information about the components and connectors that make up the
software system. We used a message swapping fault model [Ammar+ 2001] to generate fault injection
experiments. In each of the fault injection experiments we replaced all occurrences of a message
nominally flowing over a connector (from component A to component B) by a different message (as a
result of an error in component A) that belongs to the set of messages that A may send to B. We simulated
the corrupted specifications and recorded simulation traces for the different experiments that cover all

messages for the different connectors present in the architecture.
In the analysis phase:

We conducted post-simulation comparison between the faulty-run logs and the reference (fault-free)
log. The comparisons were based on state transitions at simulation time instances following a fault
injection. Immediately before injection of a fault, there were no difference between the state of component
B as recorded on the reference log and its state recorded on the faulty log. After a fault was injected, any

discrepancy between the two logs was due to error propagation from A to B. A faulty-message

Model-Based Risk Assessment 18 Ph.D. Dissertation

3. Related Work

propagating (from A to B) would at most cause a single instance of error propagation (from A to B). We
computed the experimental error propagation probability from component A to B as the ratio of the fault
injections (corresponding to errors in A) that propagated to component B over the total number of faults

injected from component A to component B.

3.3 Maintainability-Based Risk Assessment

The cost of software maintenance accounts for 60% - 80% of the overall software system cost and
enhancements (perfective/ adaptive) account for 78%-83% of the maintenance effort [Pigoski 1996]. Good
maintainability of the system facilitates easy modifications when adapting to changes in the environment.
Several studies address the quantification of hardware maintainability but only few attempt to quantify
software maintainability. In [Oman+ 1994], Oman et al. presented the Maintainability Index (MI), which
is a polynomial of widely used code level metrics. In [Muthanna+ 2000], Muthanna et al. conducted a

similar study on the design level metrics to statistically estimate the maintainability of software systems.

The maintenance process introduces many types of risk such as project risk, usability risk and
maintainability risk [Sherer 1997]. Maintainability-based risk assessment should guide the management of
the software maintenance process. It can help maintainers in identifying the risky areas of the system.

Hence, project managers can assign experienced maintainers to the risky areas.

Risk assessment can help with key decisions regarding allocation of resources. In [Papapanagiotakis+
1994], the authors presented a model to allocate personnel and software/hardware environments utilities to
maintenance efforts. This model assigned personnel based upon complexity indices for the application
software, allowing for a threshold for skills and abilities of the servers assigned to different tasks. They
suggested consideration of the level of software failure risk when allocating resources so that high failure

risk modules requiring change were assigned to more experienced maintainers.

In this dissertation, we are introducing a general framework for assessing maintainability-based risk
for system components. This framework assesses how difficult it will be to maintain the system in the
future as a result of performing current maintenance tasks. It strives to capture the nature of the
propagation of changes among the components when performing software maintenance. In the following
subsections, we present related work for change propagation and change impact in software system,

metrics to assess system maintainability and software maintainability models.

3.3.1 Change Propagation

Research of Change impact analysis was summarized in [Bohner+ 1996]. It dealt with finding all

classes impacted by change. In the computer-aided mechanical design field, engineers used tools, such as

Model-Based Risk Assessment 19 Ph.D. Dissertation

3. Related Work

C-FAR system [Cohen+ 2000], to trace and predict change propagation. They divided the system under
investigation into parts that are described according to their attributes. Interactions of the attributes were
stated in semi C-FAR matrices. Then, the interactions were analyzed to predict the mutual effect between
the attributes. C-FAR’s computational complexity made it appropriate for small or relatively simple

products.

Also, Design Structure Matrices (DSMs) [Steward 1981] estimated how change would propagate in a
system. They are well-established techniques used to identify relationships between the components of the
system or the design tasks [Eppinger+ 1994]. High connectivity found between design tasks suggested
that high levels of dependency existed between the resulting system components. No indication such as

the probability or scale of any such redesign was given by the DSMs.

In [Clarkson+ 2001], Clarkson et al. were concerned with the prediction and management of changes
to an existing product resulting from faults or new requirements. They developed mathematical models to

predict the risk of change propagation in terms of likelihood and impact of change.

In [Briand+ 1999B], Briand et al. investigated a probabilistic decision models based on coupling
measurement to support impact analysis. They provided an ordering of classes where ripple effects were
more likely. They investigated a commercial C++ system and they identified the coupling dimensions
related to ripple effects and ranked the classes according to their probability of containing ripple effects. In
[Briand+ 2003], Briand et al. proposed a UML model-based approach to impact analysis that can allow
early decision-making and a change planning process. They first made a consistency check for UML
diagrams. Then they identified changes between two different versions of a UML model according to a
change taxonomy, and determined model elements that are impacted by changes using defined impact
analysis rules. They prioritized the results of impact analysis according to the likelihood of occurrence
using a measure of distance between a changed element and potentially impacted elements. They also

presented a prototype tool that provides automated support for their impact analysis strategy.

In [Fanta+ 1998], Rajlich et al studied refactoring of an object oriented C++ code which had a number
of misplaced functions. They developed some tools to reengineer the code. In [Rajlich+ 2000], they
summarized the evolution role in the lifecycle of a software. Software lifecycle was split into stages and
the characteristics of each stage were highlighted. Change propagation in evolutionary development had
been the focus of prior models [Rajlich 2000], [Schach+ 2000]. In these models, a program was divided
into parts that were used to construct a propagation graph. These Techniques focused upon the potential
necessary changes that were required in redesigning the software. They used program variables to locate

links that might propagate the change, but they only predicted one step of change at a time.

Model-Based Risk Assessment 20 Ph.D. Dissertation

3. Related Work

In [Rajlich+ 2002], Rajlich et al. presented a technique for unanticipated incremental change and a
case study. The technique emphasized the role of software comprehension and the role of programming
concepts. In [Rajlich+ 2004], Rajlich et al. presented a set of selected incremental change activities—
change request, concept extraction, concept location, impact analysis, actualization, incorporation, change
propagation, refactoring, and role splitting—in which programming concepts and program dependencies

played a key role.

In [Hassan+ 2004] , Hassan et al. suggested a number of heuristics to anticipate change propagation in
software systems. In order to evaluate the performance of the proposed heuristics, they presented a
measuring framework to calculate recall and precision. They analyzed the history of development for five
large open source software systems to validate empirically their results. Their results doubted the
efficiency of code structure heuristics as indicators for change propagation. Furthermore, they concluded
that the historical change data could be used to develop better heuristics to assist developers during the

change propagation process.

In [Tsantalis+ 2005], The authors proposed a probabilistic approach to estimate the change proneness
of an object-oriented design. They evaluated the probability that each class of the system will be affected
when adding new functionality or when modifying existing functionality. Their proposed model had been

evaluated on two multi-version open source projects.

3.3.2 Maintainability Metrics

In this subsection, we review the literature for metrics and models used to assess the fuzzy maintainability
concept of software systems. Early work of maintainability focused on source code metrics. Later,

maintainability models tried to evaluate it using a set of metrics rather that relying on a single metric.

3.3.2.1 Traditional Metrics

In [Rombach 1987], Rombach advocated that source code metrics can predict maintenance effort,
maintainability, comprehensibility, locality and modifiability. Also in [Kafura+ 1987], Kafura et al. found

correlation between software code metrics and developers perceived maintainability.

In [Stark+ 1994], Stark et al. proposed a set of software metrics to assist in managing corrective and
adaptive maintenance processes. This set followed the Goal/Question/Metrics paradigm. Some of these
metrics tried to maximize effort and schedule by answering the question “How maintainable is the
system?”. Software size and software complexity metrics can assist answering that question Line of Code
(LOC) is the mostly used metric for measuring software size. Halstead metrics is the first metrics that try

to capture the size by other means rather than counting the lines of code [Halstead 1977]. McCabe’s

Model-Based Risk Assessment 21 Ph.D. Dissertation

3. Related Work

Cyclomatic Complexity is used usually as a measure for software complexity. It measures the number of

independent execution paths in the software [McCabe 1976].

A complexity measure should be useful in predicting maintenance costs. In [Gill+ 1991], authors
showed how the cyclomatic complexity metric relates to software maintenance productivity. They
introduced a simple transformation to the cyclomatic complexity metric, dividing it by the size of the
system, resulting into a complexity density ratio. This complexity density ratio showed to be useful in

predicting software maintenance productivity on small maintenance projects.
The following is brief overview of these traditioal metrics :

e Line of Code (LOC) is one of the mostly used metric. This is because of LOC is the most available
size metrics, as most of the editor programs count the lines of the file being edited. There are different
kinds of line of code such as blank lines, comment lines, lines with more than one instruction and
program headers. According to [Grady+ 1987], non-commented Lines of code NLOC considers all

lines that contains any program statement other than blank or comments.

e Halstead metrics are one of the first metrics that try to capture the size by other means rather than
counting the lines of code [Halstead 1977]. They try to capture the physical and psychological aspect

of the software. They are based on the following:
;= number of unique operators. 1> =number of unique operands.
N, = total occurrences of operators. N, = total occurrences of operands.

From these basic measurements, Halstead derived different metrics such as program vocabulary
(n), length (N), volume (V), total effort (E) and development time (7). These derived metrics received
lots of criticism such as in [Card+ 1990] and [Fenton+ 1996] because they lack any theoretical or

empirical foundations.

e McCabe’s Cyclomatic Complexity measures the number of independent execution paths in the
software program. In [McCabe 1976], McCabe suggested that small number of cyclomatic complexity

increases the module testability and understandability. He calculated the cyclomatic complexity as:
V(G)=e-n+2 (3.5

Where

V(G) = cyclomatic complexity of graph G.

e = number of edges.

n = number of nodes.

Model-Based Risk Assessment 22 Ph.D. Dissertation

3. Related Work

In [Grady 1994], the author analyzed 830KLOC FORTRAN code and found a strong relation
between cyclomatic complexity and number of module updates. He suggested that no module
cyclomatic complexity should exceed 15. On the hand, [Fenton+ 2000] showed that the cyclomatic
complexity does not correlate with fault metrics but when combined with other metrics some
correlation was found. Furthermore in [Card+ 1990], authors found weak correlation between

cyclomatic complexity and fault metrics.
¢ The Chidamber and Kemerer object oriented metrics: [Chidamber+ 1994]

o Coupling Between Objects (CBO) is defined as the number of the components coupled to a

component in an architecture.

o Response For a Class (RFC) is the sum of all the methods that can be invoked in response to a

message to an object of a component or by a method of the component.

o Weighted Methods per Class (WMC) is the sum of the complexities of all the methods in a

component.

e Message Passing Coupling (MPC) is the sum of the number of method calls made by all the methods
in a component. [Briand+ 1999A]

3.3.2.2 Maintainability Metrics Model

There have been several studies trying to characterize and quantify software maintainability. One of
the famous studies by Oman et al. introduced the Maintainability Index measure. In [Oman+ 1992], he
developed the MI equations. The study indicated that widely-used measures; such as Halstead measures
and McCabe’s cyclomatic complexity; are good predictors of maintainability. In [Oman+ 1994], Oman
introduced a modification of the MI and described how to calibrate it using large suite of industrial-use
operational code. Oman developed a prototype tool to support capture and use of maintainability measures

for Pascal and C [Oman 1991]. Ml is given by a polynomial in the following form

MI=171-5.2 * In(aveV) - 0.23 * aveV(g') - 16.2 * In (aveLOC) + 50 * sin (sqrt(2.4 * perCM)) (3.6)
The terms are defined as follows:

aveV = average Halstead Volume V per module.

aveV(g') = average extended cyclomatic complexity per module.

aveLOC = the average lines of code (LOC) per module; and

perCM = average percent of lines of comments per module

Model-Based Risk Assessment 23 Ph.D. Dissertation

3. Related Work

In a joint research effort, the software maintainability metrics models were used to quantify
maintainability via Maintainability Index (MI) [Welker+ 1995]. Measurement and use of the MI was
integrated as part of the overall development or maintenance process. These efforts indicated that MI
measurement applied during software development could help reduce lifecycle costs. It worth noting that
the maintainability-index lack theoretical foundations and was conducted on rather small systems with
current consideration. Even though, it is one of the most reported studies and there is no further
investigations on how helpful it is or how widely it is used. In contrast, our proposed methodology is
based on architectural artifacts so it can be applied early on in the life cycle where maintainability index
relies on code-level metrics. Moreover, our methodology tries to capture the change propagation
phenomena that affect the maintenance process. Also, our methodology is generic enough to consider

different types of maintenance: corrective, adaptive and perfective.

In [Muthanna+ 2002], Muthanna et al. conducted a similar study but rather on the design level metrics
to statistically estimate the maintainability of software systems. They constructed a linear model based on

a minimal set of design level software metrics to predict Software Maintainability Index (SMI), as follow:
SMI=125-3.989-FAN,,,—0.954-DF-1.123-MC,,, (3.7)
Where FAN,,,is the average number of external calls coming from this module.
DF is the number of incoming and outgoing dataflow for the module.
MC,,, is the average cyclomatic complexity for the module.

The authors only validated the model on a single 92KLOC industrial software system against
developers’ opinions. According to the authors, the model gave a good prediction in most cases. There is a
restriction to use this model; the system should be decomposed into modules of 1 to 2KLOC. Also, this
work lacks any theoretical foundation. On the other hand, our methodology tries to capture the change
propagation phenomena that run behind the scene. Also, our methodology is accommodate different types

of maintenance: corrective, adaptive and perfective while this work does not differentiate between them.

In [Menzies+ 2000], the authors tried to assess the maintainability of software systems. They
suggested a theoretical model of maintenance effort. They assumed that a large portion of maintenance
cost is spent on continual retesting. They depicted testing by the pathways that reach from inputs to some
interesting zone of a program, i.e. a bug or a desired feature. Their goal of testing was to show that a test
set uncovers no bugs while reaching all desired features. If the system was hard to test; i.e. if it had low
reachability, it was hard to maintain. Therefore, easy maintenance required easy testing and easy testing

required easy reachability. They developed and simulated a model of system reachability. Then, they used

Model-Based Risk Assessment 24 Ph.D. Dissertation

3. Related Work

a sensitivity analysis to find the key parameters that change system reachability. This model assumes an
average topology for the system and does not into consideration the specifics of the architecture topology
of a certain system. Also, it concentrates only on corrective maintenance and fixing bugs. While, our
proposed methodology takes into account other maintenance types beside corrective maintenance and

takes into consideration the specifics characteristics of the components of the system.

3.3.3 Request Generation Using Non-Homogeneous Poisson Process

In [Burch+ 1997] and [Gefen+ 1996], the authors observed the non-homogeneous nature of
maintenance request arrivals. They found an empirical support for the evolution of the mean rate of
maintenance requests overtime. In [Tan+ 2005], Tan et al. modeled the random arrival of maintenance
requests using non-homogeneous Poisson process with time varying mean rate. In their model two sources

with time varying mean rate. In their model two sources of system enhancements were considered:

e Adaptive maintenance: They assumed that the mean rate of request arrivals of adaptive maintenance

can be constant or increasing with time

e Perfective maintenance: They assumed that the mean request rate M.g(z) of perfective maintenance
for a certain feature can be modeled as inverted U-shape starting from the time of introducing this

feature to the system [Burch+ 1997].
Thus, the total mean arrival rate of requests, A(t), is the sum of the mean arrival rates from theses two

sources. A(t) can be given by the following:

A,(t) = h(t+ilT,)+§Mk g (t+ fT,—Lk+l)+Mi,l-g(t— L) 6(t-1L) (3.8)
=1 k=0

l=k+1
Where:
e tis the elapsed time since the introduction of the system

e T, denote the interval between the (i-1)" and the i™ maintenance activity. Assuming that, in the

system useful lifetime.T, there are r maintenance activities.

e M, is starting function points of the system and M; function points are added during the i"

activity.
e [, is the time to implement M; function points (L; =0), and

® q(.) is the step function.

H(t) mean rate of request arrivals of adaptive maintenance

Model-Based Risk Assessment 25 Ph.D. Dissertation

3. Related Work

e M.g(z) is the mean rate for request arrivals of perfective maintenance of a new system feature of

complexity M. g(z)is given by:

ﬁa+1

s =KD

2% exp(—fBz) (3.9)

where

e o and P are factors reflecting the learning effect and the saturation effect characteristics of the

users of the system.
e The term I'(0+1) is the Gamma function.

e 7 is the time measured from the first introduction of the new feature to the users

Model-Based Risk Assessment 26 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

4 Error Propagation Probabilities and Reliability-Based Risk
Assessment

In this chapter, we address error propagation probabilities as an architectural attributes. Also, we deal
with the generalization for the assumption of error occurrence independence in the components of the
system. We account for error propagation among the components of the system. Furthermore, we use error

propagation probabilities in refining the reliability-based risk assessment methodology.

4.1 Analytical Error Propagation Results

As a case study, we inspect a command and control system used in a mission-critical application. We
present only the analysis of the Internal Thermal Control subsystem. The detailed artifacts of the
command and control case study are in Appendix I.A. Using the architecture of a command and control
system, we first estimate the error propagation probabilities analytically. We get the set of states Sg and
messages Va_p from the artifacts of the system specification. We obtain the matrix EP of (conditional)
error propagation probabilities of this system, using the equation (3.3). The analytical error propagation

probabilities of the case study are shown in Table 1.

Table 1 Conditional Error Propagation Matrix - Analytical Results

B
Cl1 C2 C3 C4 C5 Cé6 C7 C8 C9 C10
Cl1 0.1061 |0.4210 |0.3368 |0.4472 |0.4623
C2 10.2001 0.5238
C3]0.0105]0.4722
C4 10.0190]0.2332
C5 0.2765
Cé6 0.1265
C7 10.3761
C8
C9
C10]0.0014

To illustrate how we compute the (conditional) error propagation, we work out our computation steps

for EP(2—8), the (conditional) error propagation from component 2 to component 8:

e From Figure 2 , the state diagram of component 8, we determine the set of states Sg={s/, s2}.
From Figure 3, the message protocol between component 2 to component 8, we determine set of

messages V,_g={ml, m2, m3, m4}.

Model-Based Risk Assessment 27 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

¢ From simulating the operational profile, we estimate the probability distribution of states Sg of
component § and the probability distribution of messages V-5 exchanged between component 2

and component 8. These are given in Table 2 and Table 3, respectively.

¢ Considering Figure 2 for the state diagram of component 8§, we get FX’I(y) ={ve Vy_p | F(v) =y}
for each pair of states in component 8. For example, we find that F,'(s2) = {m2}, which means
that the message m2 is the set of messages that cause us to make a transition to state s2 given that
we are in state s1. Then, the term P,_g [F’ ! (s2)]2 will be P,_s [{m2}] ? that we calculate using

Table 3.

e Similarly, we get Fi,"(s2) = {m3, m4} and P,_g [Fs,”" (S2)]* will be P,_s [{m3,m4}] °. Note that
we need to consider all the messages for a certain state. For state S2, the message ml is not
defined from the state transition diagram. So, we assume that receiving a message ml given that
we are at state s2 will cause us to remain in State s2 (Self reflective transition). As a result, we get
Fy'(s2) = {ml, m3, m4} and P,_g [Fs,"(S2)]* will be P,_s [{ml,m3,m4}]>. Then the state
transition diagram of component 8 will be as in Figure 4 to take undefined messages into

consideration.

e According to equation (3.3), we continue evaluating these probabilities for each pair of states in
component 8, multiply them with the corresponding state probabilities Py and use the probabilities

of the messages V5,5 between component 2 and component 8. Then, we get EP(2—>8)=0.5238.

(o R
\

Switch_Close

-

m2 mi

Switch_Open

) i
- /

Figure 2 A state diagram of component 8.

Model-Based Risk Assessment 28 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Table 2 Probability distribution of states Sg of C 8

State Switch Open (S1) Switch Closed (S2)
Prob(State) 0.99 0.01
il . Protocol specification for FR_RPCM 2|
General Signals | Heletionsl Componentsl Files I Ca+ TargetHTSI
V' Show inherited V' Show lacal ™ Show excluded
In Sighals I D ata Class |
Open_Switch_MT woid
Cloze_Switch_ kT woid
Open_Switch LT woid
Cloze_ Switch LT woid
Out Signals I Data Class |
;. Browse v| oK I Cancel | Apply |

Figure 3 A sample of a sanitized message protocol (components 2 and 8).

Table 3 Probability distribution of messages V _,g exchanged between C 2 and C 8

Message ml m2 m3 ma
Prob(Message) 0.267 0.267 0.266 0.2
.\ m2_m3_m4
(Switch_Close Ij
Switch_Open j1_m3_m4

Model-Based Risk Assessment

Figure 4 Updated state diagram of component 8.

29

Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

For this particular case study, we have derived the connector activation matrix T as a stochastic matrix
of probabilities that contains for each entry (A,B), the probability that connector (A,B) is activated, given
that component A is broadcasting a message. Using this connector activation matrix, we derive the
unconditional error propagation matrix Ea, also referred to as the 1-step error propagation matrix of the
system; this is given in Table 4. We get the matrix T through the simulation of the system representing the

operational profile of the execution.

Table 4 Unconditional Error Propagation Matrix - Analytical Results

B
Cl1 C2 C3 C4 G5 Cé6 C7 C8 Cc9 | C10
Cl 0.00120.0132]0.0102 |0.0146 |0.0145
C2 10.1104 0.1264
C3]0.0060 |0.2024
C4 10.0107 |0.1026
C5 0.1005
Cé6 0.0506
C7 10.3761
C8
C9
C10]0.0014

Using the unconditional error propagation matrix, say Ea, given above, we derive the matrix of cumulative
error propagation probabilities, which we call E'y. Table 5 gives cumulative error propagation
probabilities matrix for the command and control case study. Except for possible round-off errors, matrix

E*, is greater than matrix E,, entry by entry.

Table 5 Cumulative Error Propagation Matrix - Analytical Results

B
Cl Cc2 C3 4 C5 Cé6 C7 C8 Cc9 | CI0
Cl [1.00 1.16E-03 |1.32E-02 |1.02E-02 |1.46E-02 |1.45E-02 1.46E-04
C2 |1.10E-01 |1.00 1.46E-03 |1.12E-03 |1.61E-03 |1.60E-03 1.26E-01
C3 [6.04E-03 |2.02E-011.00 6.15E-05 |8.82E-05 |8.78E-05 2.56E-02
C4 [1.07E-02 |1.03E-01|1.41E-041.00 1.56E-04 |1.55E-04 1.30E-02
< C5 |[1.11E-02 |1.01E-01|1.47E-04|1.13E-04|1.00 1.61E-04 1.27E-02
C6 |5.59E-03 |5.06E-02|7.39E-05 |5.69E-05 |8.15E-05 |1.00 6.40E-03
C7 |3.76E-01 |4.35E-04]4.98E-03 |3.83E-03 |5.49E-03 |5.47E-03 |1.00 |5.49E-05
C8 1.00
C9 1.00
C10 |1.41E-03 |1.62E-06|1.86E-05 |1.43E-05 |2.05E-05 |2.04E-05 |0.00 |2.05E-07|0.00 [1.00

Model-Based Risk Assessment 30 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

4.2 Experimental Error Propagation Results

Table 6 shows the experimentally obtained error propagation matrix Ep from the fault injection

experiment explained in section 3.2.3 considering the same mode of operation whose analytical error

propagation matrix E, is given in Table 4.

Table 6 Unconditional Error Propagation Matrix Eg - Empirical Results

B
Cl1 C2 C3 C4 C5 Cé6 C7 C8 C9 C10
Cl1 0.5000 10.0557 10.4912 0.1331]0.1280
C2]0.7838 0.4286
C3]0.0161]0.7083
C4 10.7917 10.6429
< G5 1.0000
Cé6 1.0000
C7 10.7500
C8
C9
C10 [1.0000

Using matrix Eg, we derive matrix E*g of cumulative error propagation probabilities, and find the

results shown in Table 7. Note that except for round-off errors, this matrix is greater than the matrix of

unconditional probabilities, entry by entry.

Table 7 Cumulative Error Propagation - Experimental Results

B
Cl C2 C3 C4 C5 Cé6 C7 C8 C9 | C10
Cl]1.00 5.00E-01 |5.57E-02 |4.91E-01 |1.33E-01 [1.28E-01 2.14E-01
C2 |7.84E-01 [1.00 4.37E-02 |3.85E-01 |1.04E-01 |1.00E-O1 4.29E-01
C3 |1.61E-02 |7.08E-01 |1.00 7.91E-03 |2.14E-03 |2.06E-03 3.04E-01
C4 |7.92E-01 |6.43E-01 |4.41E-02 |1.00 1.05E-01 |1.01E-01 2.76E-01
< C5 |7.84E-01 [1.00E+00 [4.37E-02 |3.85E-01 |1.00 1.00E-01 4.29E-01
C6 |7.84E-01 [1.00E+00 |4.37E-02 |3.85E-01 |1.04E-01 |1.00 4.29E-01
C7 |7.50E-01 |3.75E-01 |4.18E-02 |3.68E-01 |9.98E-02 |9.60E-02 |1.00 |1.61E-01
C8 1.00
C9 1.00
C10 |1.00E4+00 |5.00E-01 [5.57E-02 |4.91E-01 |1.33E-01 |1.28E-01 2.14E-01 1.00

Model-Based Risk Assessment

31

Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

4.3 Error Propagation Probabilities Validation

In this section, we confront the results computed by the analytical formula against the results derived
from the fault injection experiment to assess the validity of our analytical formulas. We let E5 and Eg be
(respectively) the analytical matrix and the empirical matrix of (unconditional) error propagation for our

sample architecture; these are both 10x10 matrices. We use a number of criteria to this effect:

e The first possible criterion is simply the correlation between the entries of the two matrices;

because these matrices contain 100 values each, the correlations do bear some significance.

¢ The second possible criterion is to correlate, not all the values of the matrices, but rather the non-
trivial values (other than those that are either O or 1 by definition); the rationale behind this

criterion is that trivial values do not really test our analytical results.

e The third criterion discriminates between empirical values that were derived from a small number
of fault injections and those that were derived from a large number of fault injections. If our
analytical results are accurate, we should find empirical values that stem from large numbers of
fault injections to be highly correlated to their corresponding analytical values, whereas those
values than stem from small numbers of fault injections are not guaranteed to correlate to their

corresponding analytical results.

Orthogonally, we find it useful to compare not only E, and Eg, which represent single step
propagations, but also cumulative versions of these matrices, which represent probabilities of error
propagations that may have taken more than one step through the architecture. There are two reasons why

we may want to consider the cumulative matrix E* in addition to the single-step matrix E:

e In practice, if we are interested in the probability that an error in A propagates to B, we usually do
not care in how many steps the propagation takes place; hence E* is a better reflection of what we

want to measure than E.

Model-Based Risk Assessment 32 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

e Also, if there is any discrepancy between what the analytical study defines as a single step and
what the empirical study does, this discrepancy will be smoothed out once we consider

propagations of arbitrary length.

In the remainder of this sub section, we apply these criteria to matrices E and E* in order to determine to

what extent the values obtained empirically are consistent with those found analytically.

4.3.1 Correlating One Step Matrices

In this section, we present the results of the study that we conducted to explore the correlation
between the analytically estimated single step error propagation matrix and its experimentally derived
counterpart. The correlation coefficient between all the cells of the analytical EA matrix and the

experimental EE matrix is:

Cor(EA,EE) = 0.628 (r value) 4.1

where ‘r’ denotes the Pearson product-moment correlation coefficient.

We note, however, that there are only 15 non-trivial entries in each of the two matrices. Trivial entries
correspond to self-loops from a component to itself (with error propagation probability of 1 by definition)
and to the non-directly connected components (with error propagation probability of 0 by definition). It
may be useful to evaluate the correlation between the set of non-trivial values of matrices EA and EE
having a significant number of fault injections(>20). The connectors that has <20 fault injections are

shaded in Table 8 We find:

Cor’ (EA,EE) =0.5576 (r value) 4.2)
Table 8 contains the 15 non-trivial entries corresponding to the 15 connectors over which faults were
injected during the controlled experiment. Note that the number of injected faults over connectors varies
considerably across the entries. The connectors in the table follow a descending order with respect to the

number faults injected over each connector. Overall, the correlation decreases as the number of injected

Model-Based Risk Assessment 33 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

faults drop, although not monotonically; the disturbances in the first few rows may stem from the fact that

a correlation is not necessarily meaningful when too few values are involved.

The results in this table are interesting, in that they show a fairly high correlation between
experimental results and analytical results in those cases where the experimental result is based on a large

number of fault injections. Also, predictably, the correlation drops (as shown in Table 8) as the number of

fault injections drop (though not monotonically).

Table 8 Correlation between analytical and experimental EP probabilities

Entry Connector Ea EE # Injected Faults Correlation Coefficient
From| To
1 1 5 0.0146 0.1331 1067|N/A N/A
2 1 6 0.0145 0.1280 1055(1.0000 |(Entries 1 through 2
3 1 3 0.0132 0.0557 592|0.9999 |Entries 1 through 3
4 3 1 0.0060 0.0161 559|0.8708 |Entries 1 through 4
5 7 1 0.3761 0.7500 64|0.9894 |Entries 1 through 5
6 1 4 0.0102 0.4912 57(0.8160 |Entries 1 through 6
7 2 1 0.1104 0.7838 3710.7153 |Entries 1 through 7
8 1 2 0.0012 0.5000 36|0.6488 |Entries 1 through 8
9 4 2 0.1026 0.6429 28|0.6433 |Entries 1 through 9
10 3 2 0.2024 0.7083 24/0.6829 |Entries 1 through 10
11 4 1 0.0107 0.7917 24/0.5576 |Entries 1 through 11
12 2 8 0.1264 0.4286 7|0.5501 |Entries 1 through 12
13 5 2 0.1005 1.0000 4]0.5068 |Entries 1 through 13
14 6 2 0.0506 1.0000 410.4291 |Entries 1 through 14
15| 10 1 0.0014 1.0000 4]0.3240 |Entries 1 through 15

4.3.2 Correlating Cumulative Matrices

In addition to analyzing the correlation between matrices E5 and Eg (which represent the one-step
unconditional error propagation probabilities, estimated analytically and experimentally), we are
interested in analyzing the correlations between matrices E*, and E*g, which represent the cumulative

(multi-step) versions of these matrices. The results of our study are shown in Figure 5. We find for all

elements,

Cor (E*A,E*E)=0.737

(r value)

4.3)

Also, we find that the correlation for multi-step error propagation for non-trivial values, is

Model-Based Risk Assessment

34

Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment
Cor’(E*a,E*E) = 0.460 (r value) “4.4)
Hence our analytical formula can be used to predict cumulative error propagation probabilities

throughout an architecture with a significant positive correlation, at least in this sample case study - all the

while using nothing more than the UML-RT description of the system.

0.8

0.¥37

07 1 0.628

0.6 0.5576

0.5 4 0.45

O All Elements
W Mon-Trivial Elements

Correlation Co

1-Step Cumulative
Class of Error Propogation

Figure 5 Correlation between analytical and empirical error propagation
4.3.3 Statistical Significance of the Correlations

Now we need to validate our results, i.e. to make sure that the positive correlation values we observed
are statistically significant. To further test the relationship between analytical and experimental error
propagation hypothesis testing was done using the T-test (One-tail) [Moore+ 2003] for the non-trivial
entries using the level of significance o = 0.05

e HO : p = 0 (There is no linear association between analytical error propagation values and

empirical error propagation values)

e HI:p >0 (There is a positive linear association between analytical error propagation values and

empirical error propagation values)

The null-hypothesis is rejected when the p value is smaller than 0.05.

We have computed the value of t statistic for the non-trivial values of 1-step matrices ¢,, = 2.015

(n=11),and the corresponding P < 0.05; whence we infer that the correlation of 0.628 is statistically

Model-Based Risk Assessment 35 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

significant. Likewise, the value of t statistic for the non-trivial values of cumulative error propagation
matrices was found to be #,, = 3.5893(n=50), and the corresponding P < 0.05 which shows that the
correlation between experimental and analytical cumulative error propagation matrices is statistically

significant.

The T-test results showed that there is a linear association between analytical error propagation and
experimental error propagation as well as between cumulative analytical error propagation and cumulative
experimental error propagation as in both cases based on the P value the null hypothesis of no linear

association was rejected.

4.4 Ranking Components According to their Error Proneness

One of the usages of the error propagation matrix is to check for components that tend to be affected
by errors arising throughout the architecture; component error proneness. Thus, this calls for providing

these components with fault tolerance capabilities (error detection, damage assessment, error recovery).

Imported Error Proneness Analytical Imported Error Proneness Experimental
T T T T T T T T T T T T T T T T T T

Error Proneness
Error Proneness

Components Components

(a) Analytical imported error proneness (b) Experimental imported error proneness
Figure 6 Imported error proneness for command and control system case study

We use the column sum of the error propagation matrix as measure for the imported error proneness

of the component then we ranked the components accordingly. In Figure 6, we show the results of the

Model-Based Risk Assessment 36 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

component error proneness estimated from analytical and experimental error propagation matrices. If we
compare the ranking of the component in both cases, we find that the components with highest error
proneness identified from analytical results are the same as those identified from experimental results

(components C1 and C2).

Furthermore, we want to study the behavior of error proneness of the components across the steps of
propagation of the error. First, let us assume uniform initial error proneness for the components of the
system. Then multiply the initial error proneness by the powers of the analytical unconditional error
propagation matrix to get the 1-step, 2-steps... error proneness of the components, as shown in Figure 7.
From the results, we find that components C1 and C2 are the most error prone across the steps of
propagation of the error. Thus, they are the most critical components considering error proneness (similar

to the results of the column sum).

Ermor Proneness in Steps-Analytical

Emor Proreness

Components =

Figure 7 Analytical error proneness of the components in steps

4.5 Considering Error Propagation Probabilities in Assessing Components
Reliability-Based Risk

In [Goseva-Popstojanova+2003], we estimate component’s reliability-based risk factor as a product of
the dynamic complexity and the severity level of that component for a certain scenario. (See Section 5.1.2
for details). To get an estimate for the system-level reliability-based risk factor for the component, we can
use static cyclomatic complexity as a predictor for the probability of error occurrence in that component
and multiply it by the system-level severity. Such estimation assumes independence of error occurrences

in the components of the system. To generalize this assumption, we use error propagation probabilities

Model-Based Risk Assessment 37 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

among the components of the system in reliability-based risk assessment. We use the static component
complexity as measure of the probability of having initial failures. Then, we use the error propagation
probabilities to get the unconditional error probability of the components to account for the effect of the
dependency among the components of the system. Thus, the reliability-based risk factor of a system

component C; will be
rrfi:[Z:jlepj*epij]*csv, (4.5)

Where RRF =[rrf;] is the Component Reliability-based Risk Factor
1IEP = [iep;] is the Initial Error Probability
EP = [ep;] is the the Error Propagation Probabilities matrix
CSv = [csvi] is the Component Severity

It is worth noting that cyclomatic complexity is a good predictor for fault density. As many faults do
not manifest themselves into errors, thus there is weak correlation between fault density and error density.
Even though, in a risk assessment context, we consider worst-case scenario, so it is justifiable to use
cyclomatic complexity as a first-order approximation for initial error probability in the early life-cycle of
the system. Also, cyclomtic complexity is used also by NASA as on the attributes to assess error potential

in their SILAP risk assessment process [Costello 2005].

In the following subsections, we estimate the reliability-based risk for the components of the system.
First, we use the normalized cyclomatic complexity of the system components as an estimate for the initial
error probabilities IEP. Then, we use the system artifacts to estimate the error propagation probabilities
EP. Finally, the severity of the system components CSv is assessed according to MIL_STD_1629A
[MIL_STD_1629A]. Severity considers the worst case consequence of a failure determined by the degree
of injury, property damage, system damage, and mission loss that could ultimately occur. Based on hazard
analysis, we identify the severity classes: Catastrophic, Critical, Major and. Minor. The assignment of
component severity level of each component is based on the hazard analysis conducted by domain experts

knowledgeable about these case studies.

4.5.1 Pace Maker Case Study Results

A cardiac pacemaker [Douglass 1998] is an implanted device that assists cardiac functions when the
underlying pathologies make the intrinsic heartbeats low. An error in the software operation of the device

can cause loss of a patient’s life. The detail of this case study is introduced in Appendix I.B.

Model-Based Risk Assessment 38 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

The cyclomatic complexity of the pace maker components are shown in Figure 8. By normalizing the
cyclomatic complexity by their total sum, we get as an estimate for the initial error probabilities IEP,
given in Figure 9 . Using the pace maker artifacts, the pace maker error propagation probabilities results
are estimated, shown in Figure 10. Finally, the severity of the system components CSv is assessed and

shown in Table 9.

Cyclomatic Complexity

R= [] [=) AR R
Component

Figure 8 Pace maker cyclomatic complexity

Initial Error Prob.

RS D [AR R
Caomponent

Figure 9 Pace maker initial error probability

Model-Based Risk Assessment 39 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Errar Propagation

Component B RS

Cornponent A

Figure 10 Pace maker error propagation matrix - analytical results

Table 9 Components severity of the pace maker case study

Components
RS CD CG AR VT
Severity Level Minor Minor. Major. Catastrophic Catastrophic

The reliability-based risk factors for the components of the pace maker system using equation (4.5)
are estimated, shown in Figure 11. It also shows a comparison between components reliability-based risk
factors for pace maker case study with and without considering error propagation. There is a difference
between the components risk factor levels in each case. This difference becomes more significant when
considering cumulative error propagation. Furthermore component CG changes its risk level ranking when
considering error propagation. Due to relatively high error propagation values and high connectivity
among the components of the case study, errors propagate among the components and causes failures to

occur causing the components reliability-based risk factor to increase

Model-Based Risk Assessment 40 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

0.7 T T T T T

Il o Error Propagation

[1 Step Analytical Error FPropagation
06 Bl Curmulative Analytical Error Propagation |H
0.5 =

=2 0.4 1

[)

o= —

L

= .

& 03 -
0.2F =
0.1 F 1

D — |
R= D (e AR T
Components

Figure 11 Comparing components reliability-based risk factors for pace maker case study
4.5.2 CM1 Case Study Results

CM1 is a software component of a data processing unit used in an instrument which exploits data to
probe the early universe. This case study is from the Metrics Data Program [NASA MDP]. A UML-RT
model for CM1 is constructed from the artifacts provided. (The detail of this case study is introduced in
Appendix L.C). The cyclomatic complexity of the CMI1 components are shown in Figure 12. By
normalizing the cyclomatic complexity by their total sum, we get as an estimate for the initial error

probabilities IEP, given in Figure 13.

Using the CM1 case study artifacts, the error propagation probabilities results are estimated, shown in
Figure 14. The components severity levels of the CM1 case study are given in Table 10. In general, the
device drivers have a catastrophic severity level, as they could be very difficult to debug them on-orbit.
The application-level components are of critical severity levels, as they make use of the device drivers.
The application level components usually are of major severity levels. Finally, there are components of

minor severity levels as they are not mission-critical.

Model-Based Risk Assessment 41 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Cyclometlc Complexty

Inital Error Prab,

12

10 |

008

006

004

BIT CCh DI

DCX DPFAEDACICU 1553 SCUI S51
Component

TIS ThaALI

Figure 12 CM1 case study cyclomatic complexity

Error Propagation

BIT CCmM DCI

o
o

o
m

o
IS

DCxX DPAEDACICUI 1553 SCUl S5I
Component

TIS ThALL

Figure 13 CM1 case study initial error probability

Component B

Component A

Figure 14 CM1 case study error propagation matrix - analytical results

Model-Based Risk Assessment

42

Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Table 10 Components severity of the CM1 case study

Components

BIT |CCM | DCI | DCX | DPA [EDAC| ICUI | 1553 [SCUI | SSI | TIS |[TMALI

Severity

Level Minor | Cat. | Cat. | Minor | Major | Major |Critical| Cat. |Critical| Cat | Major | Critical

The reliability-based risk factors for the components of the CM1 system using equation (4.5) are
estimated, shown in Figure 15. The Figure also shows a comparison between components reliability-based
risk factors for CM1 case study when considering: no error propagation, 1-step analytical error
propagation and cumulative analytical error propagation. The difference between the components risk
factor levels in each case is limited to components DCX, ICUI, SCUI and TMALI. The difference is quite
significant in these components and becomes more significant when considering cumulative error
propagation probabilities. As result of considering error propagation in the estimation of components
reliability-based risk factors, components DCX, ICUI and TMALI change their risk level ranking when

considering error propagation.

It is worth noting that the estimation of the error propagation probabilities in this case study is based
on a high-level model that does not capture lots of the details of the system. That results in an inaccurate
estimate for error propagation of the system. As the model becomes more detailed, the error propagation
estimates will be more accurate and the estimates for the risk factors for the rest of the components will

differ as a result.

018 T T T T T T T
Il o Error Propagation
[1 Step Analytical Error Propagation
014 — Wl Cumulative Analytical Errar Propagation —
012+ —
01 —
=
3
w 0.08 ,
e
5
]
0.06 ~ =
004 - E
002~ ‘ ‘ I =
L |

BIT CCM ocl DCx DPA EDAC [Lev]} 1853 SCul == TS ThALL
Components

Figure 15 Comparing CM1 case study reliability risk factors

Model-Based Risk Assessment 43 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment
4.5.3 Command and Control System Case Study Results

To get an estimate for the initial error probabilities IEP, we normalize the cyclomatic complexity by
their sum. The cyclomatic complexity of the command and control system components is shown in Figure
16. (The case study details are in appendix I.A). The initial error probabilities IEP estimates are given in
Figure 17. Using the command and control case study artifacts, the error propagation probabilities results
are estimated. In sections 4.1 and 4.2, we estimated the analytical one-step, empirical one-step, analytical
cumulative, empirical cumulative error propagation probabilities matrices. We use these estimates to
evaluate the reliability-based risk factors for the components of the system the assignment of component
severity level of each component is based on the hazard analysis conducted by domain experts
knowledgeable about the case study. The components severity levels of the command and control system

case study are given in Table 11.

45

.
o
T
|

-)]))
M o [aj) o (5]
T T T T T
| | | | |

Cyclomatic Complexity

-
m)
T
|

m
T
|

a l:”:' I L LI LI l

1 o2 o5 cB [y 8 fo==) 10
Cormponent

Figure 16 Command and control system cyclomatic complexity

[ritial Ermor Prab.
]
b
l

o l;”:‘ | L | L |

(o] o2 =5 CB [ory s} =) <10
Cormponent

Figure 17 Command and control system initial error probability

Model-Based Risk Assessment 44 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Table 11 Components severity of the command and control case study

Components
C1 C2 C3 C4 Cs Co Cc7 C8 c9 C10
Si‘:::lt Y| Cat Cat. | Critical | Critical | Major | Major | Critical | Minor | Major | Minor

Figure 18 presents the reliability-based risk factors for the components of the command and control
system using equation (4.5) and different error propagation estimates probabilities. The comparison shows
that there is an increase in the components risk factor levels between considering error propagation and
not considering it. In the case of empirical results, the increase is larger when considering cumulative error
propagation than one step error propagation, as it accounts for all error propagating regardless of just
being in one step. That increase is caused by relatively high error propagation values among the
components of the case study. Thus, errors propagate among the components and causes failures to occur

causing the components reliability-based risk factor to increase.

07+ [1 Step Empirical Error Propagsation [
Cumulative Empirical Error Propagation

0.8 T T T T T T T T
Il o Error Propagation
B 1 Step Analytical Error Propagation
[Curnulative Analytical Errar Propagation
|

.
o2 o3 [o] o= [ord [z [ac] 315}
Coampanents

Figure 18 Comparing command and control system reliability risk factors

This case study represents the case when there is one component in the system (component C1) that
manages most of the behavior of the system and controls the rest of the components in the system. Also, in
the case study there is failure recovery component (component C2) that takes control in case of a failure.
The rest of the components are playing just supporting roles and the whole system functionality is

concentrate in these two components. This explains the huge difference in risk factor values between these

Model-Based Risk Assessment 45 Ph.D. Dissertation

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

two components C1 and C2 and the rest of the components of the system. Furthermore, this architecuture
causes the error propagation matrix to be sparse. Thus, errors are not capable of making further
propagations in the system. Therefore, there are no significant changes in the ranking of the components
of the system when considering their reliability-based risk factor, except component C4 when considering

empirical results.

4.6 Summary and Discussion

In this chapter, we analytically estimated the error propagation probabilities for an industrial case
study. In order to validate the analytical results, we conducted a fault injection experiment to get empirical
estimates of the error propagation probabilities. We found a correlation of at least 0.55 between the two
results in case of single-step error propagation probabilities and a correlation of 0.46 in the case of
cumulative error propagation probabilities. Furthermore to ensure that we didn’t get these correlations by
chance, we computed the t statistic to examine the statistical significance for these correlations. We
obtained p-values < 0.05 which shows that the correlation between experimental and analytical error

propagation matrices is statistically significant.

Based on the validated results of the error propagation study, we modified the estimation methodology
of components reliability-based risk to consider error propagation among the system components. The
topology of the components of the system captured in terms of error propagation probabilities of these
components alters their reliability-based risk level. The results obtained from the case studies show that it
is important to take into consideration the specifics of the architecture of the system under investigation.
As each system characteristics are quite different and that results into different reliability-based risk
associated with the system. These finding agrees with [Pelanek 2004]. Pelanek explored the state space of
a number of systems with model checking algorithms. The author gathered a large collection of state
spaces and performed an extensive study of their structural properties. He concluded that although state

spaces share some typical properties in common, some can differ significantly.

In order to get a good estimate of the error propagation probabilities, the estimation procedure requires
detailed software architecture in term of detailed state diagram for each component in the system. Early in
the software life-cycle, such data are usually not available. The error propagation estimation procedure
can be applied if the software developers agree on investing in detailed architecture of the system and
keep it up to date as the software progress in development stages. On the other hand when comparing the
effort required to get the error propagation probabilities using a detailed architecture to the effort required
to conduct fault injection analysis, estimating error propagation from the architecture requires much less

effort.

Model-Based Risk Assessment 46 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

5 Reliability-Based Risk Assessment with Functional
Dependencies

In this chapter, we concentrate on reliability-based risk assessment with functional dependencies. In
the context of object-oriented modeling, we deal with risk assessment estimation taking into account use-
case relationships. First, we start by discussing the reliability-based risk assessment methodology.
Afterward, we investigate the use-case based analysis for software system. Then, we define the use cases
terminology, describe the proposed risk analysis process and present the approach for dealing with
relationships between uses cases. Finally, we propose an algorithm for estimating the system risk factor

from the use case model that includes relationships among use cases.

5.1 Reliability-Based Risk Assessment Methodology

For sake of completeness, this section describes the analytical modeling approach used to estimate
scenario’s risk factor based on the results presented in [Goseva-Popstojanova+2003]. The estimation of
the heuristic risk factors of architecture elements in [Goseva-Popstojanova+2003] is based on the previous
work presented in [Yacoub+ 2002] which used dynamic complexity and dynamic coupling metrics to
define complexity factors for the architecture elements (components and connectors) and then combined
these complexity factors with severity levels estimated using Failure Mode and Effect Analysis. In
[Goseva-Popstojanova+2003], we generalized the state-based modeling approach previously used for

architecture-based software reliability estimation [Goseva-Popstojanova+2001].

We start by describing the risk analysis process. Then, we describe the techniques for determining the
risk factors of components and connectors in a given scenario and present a Markov model for
determining scenario risk factor. Next, we present the methods used to estimate use cases and overall

system risk factors.

5.1.1 The Risk Analysis Process

The use cases and scenarios of a UML specification drive the risk analysis process that we propose in
this section. The proposed risk analysis process consists of the steps shown in Figure 19. We assume that
the UML logical architectural model consists of a use case diagram defining several independent use
cases, and that each use case is realized with one or more independent scenarios modeled using sequence

diagrams.

The proposed risk analysis process iterates on the use cases and the scenarios that realize each use

case and determines the component/connector risk factors for each scenario, as well as the scenarios and

Model-Based Risk Assessment 47 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

use cases risk factors. For each scenario, the component (connector) risk factors are estimated as a product
of the dynamic complexity (coupling) of the component (connector) behavioral specification measured
from the UML sequence diagrams and the severity level assigned by the domain expert using hazard
analysis and Failure Mode and Effect Analysis. Then, a Markov model is constructed for each scenario
based on the sequence diagram and a scenario risk factor is determined. Further, the use cases and overall
system risk factors are estimated. The outcome of the above process is a list of critical scenarios in each
use case, a list of critical use cases, and a list of critical components/connectors for each scenario and each

use case.

For each use case
For each scenario
For each component
Measure dynamic complexity
Assign severity based on FMEA and hazard analysis
Calculate component’s risk factor
For each connector
Measure dynamic coupling
Assign severity based on FEMA and hazard analysis
Calculate connector’s risk factor
Generate critical component/connector list
Construct Markov model & Calculate transition probabilities
Calculate scenario’s risk factor
Rank the scenarios based on risk factors, Determine critical scenarios list
Calculate use case risk factor
Rank use cases based on risk factors, Determine critical use case list
Determine critical component/connector list in the system scope
Calculate overall system risk factor

Figure 19 The risk analysis process

Model-Based Risk Assessment 48 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

5.1.2 Assessment of the Component/Connector Risk Factors

For each scenarioS , we calculate heuristic risk factors for each component and connector

participating in the scenario based on the dynamic complexity, dynamic coupling and severity level. Note

that in general these values will be different for different scenarios.

The risk factor rf," of a component i in scenario S is defined as
f;* = DOC;* - svt}* (5.1)

where DOC;" (0 < DOC;" < 1) is the normalized complexity of the i ™ component in the scenario S o

and svt;' (0< svt;' < 1) is the severity level for the i” component in the scenario S .
The risk factor rfijc for a connector between components i and j in the scenario S, is given by
ifii* = EOCjj - svijj (5.2)

where EOC; (0 < EOC; < 1) is the normalized coupling for the connector between i” and

j" components in the scenario S, and svt; 0 < svt; < 1) is the severity level for the connector

x°

between the i” and the j” components in the scenario S .

Next we describe the process of estimating the normalized component complexity DOC;", normalized

X

connector coupling EOC;

and severity levels for the components svt; and connectors svt; .

5.1.2.1 Dynamic Specifications Metrics using UML

To develop risk mitigation strategies and improve software quality, we should be able to estimate the
fault proneness of software components and connectors in the early design phase of the software life
cycle. It is well known that there is a correlation between the number of faults found in a software
component and its complexity [Munson+ 1996]. In this study we compute the dynamic complexity of
state charts as a dynamic metric for components [Hassan+ 2001]. Coupling between components provides
important information for identifying possible sources of exporting errors, identifying tightly coupled
components, and testing interactions between components. Therefore, we compute dynamic coupling

between components as a dynamic metric related to the fault proneness for connectors [Hassan+ 2001].

Model-Based Risk Assessment 49 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

i) Normalized dynamic complexity of a component

We use a measure of component complexity similar to McCabe’s cyclomatic complexity [McCabe
1976]. However, in contrast to McCabe’s cyclometric complexity which is based on the control flow
graph of the source code, our metric for component’s dynamic complexity is based on the UML state
charts that are available during early stages of the software life cycle. The state chart of each component i

has a number of states and transition between these states that describe the dynamic behavior of the

component. For each scenario S, a subset of all states of component i are visited and a subset of all
transitions is traversed. Let denote with Cl«x the subset of states for a component i visited in the scenario
S . and with Tix the subset of transitions traversed in the state chart of component i in the scenario S .
The subset of states Cl«x and the corresponding transitions Tl«x are mapped into a control flow graph. The
Gt

number of nodes in this graph is cix = which is the cardinality of C lx . Similarly, the number of edges

T

;| which is the cardinality of Tix. It follows that the dynamic complexity doc;” of

in this graph is tix =

component i in scenario S is defined as
X X X
doc; =t —c; +2. (5.3)

The normalized dynamic complexity DOC;" of a component i in scenarioS, is obtained by
normalizing the dynamic complexity doc; with respect to the sum of complexities for all active

components in scenario S

X
doc;

> doc
keS,

DOC;} = (5.4)

ii) Normalized dynamic coupling of a connector

We use the matrix representation for coupling where rows and columns are indexed by components
and the off-diagonal matrix cells represent coupling between the two components of the corresponding
row and column [Hassan+ 2001]. The row index indicates the sending component, while the column index

indicates the receiving component. Dynamic coupling metrics are calculated for active connectors during

Model-Based Risk Assessment 50 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

execution of a specific scenario. We compute these metrics directly from the UML sequence diagrams by

applying the same set of formulas given in [Yacoub+ 1999].
Let denote with M lex the set of messages sent from component i to component j during the execution
of scenario S, and with M T* the set of all messages exchanged between all components active during

the execution of scenarioS,. Then, we define the export coupling EOC ; from component i to
component j in scenario S as a ratio of the number of messages sent from i to j and the total number of

messages exchanged in the scenario S

i,jesS iz
prx

M
EOC;} =

(5.5)

5.1.2.2 Severity Analysis

In addition to the estimates of the fault proneness of each component and connector based on the
dynamic complexity and dynamic coupling, for the assessment of components and connectors risk factors
we need to consider the severity of the consequences of potential failures. For example, a component may
have low complexity, but its failure may lead to catastrophic consequences. Therefore, our methodology
takes into consideration the severity associated with each component and connector based on how their
failures affect the system operation. Domain experts play a major role in ranking the severity levels.
Experts estimate the severity of the components and connectors based on their experience with other
systems in the same field. Domain experts can rank severity in more than one way and for more than one
purpose [Bowles 1998]. According to MIL_STD_1629A, severity considers the worst case consequence
of a failure determined by the degree of injury, property damage, system damage, and mission loss that
could ultimately occur. Based on hazard analysis [Sundararajan 1991], we identify the following severity

classes:
® Catastrophic: A failure may cause death or total system loss.

e Critical: A failure may cause severe injury, major property damage, major system damage, or major

loss of production.

® Marginal: A failure may cause minor injury, minor property damage, minor system damage, or

delay or minor loss of production.

Model-Based Risk Assessment 51 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

® Minor: A failure is not serious enough to cause injury, property damage, or system damage, but will

result in unscheduled maintenance or repair.

We assign severity indices of 0.25, 0.50, 0.75, and 0.95 to minor, marginal, critical, and catastrophic
severity classes respectively. The selection of values for the severity classes on a linear scale is based on
the study conducted by Ammar et.al. [Yacoub+ 2000]. However, other values could be assigned to

severity classes, such as for example using the exponential scale.

5.1.3 Scenarios Risk Factors

We use an analytical modeling approach to derive the risk factor of each scenario. For this purpose we
generalize the state-based modeling approach previously used for architecture-based software reliability
estimation [Goseva-Popstojanova+2001]. Thus, the software reliability model first published in [Cheung
1980] considers only component failures. In the scenario risk model we account for both component and
connector failures, that is, consider both component and connector risk factors. In addition, instead of a
single failure state for the scenario, we consider multiple failure states that represent failure modes with
different severity. This approach allows us to derive not only the overall scenario risk factor, but also its
distribution over different severity classes which provides additional insights important for risk analysis.
For example, the two scenarios may have close values of scenarios risk factors with significantly different
distributions among severity classes. Then, it can be inferred that the scenario with a risk factor distributed
among more severe failure classes (e.g., critical and catastrophic) deserves more attention than the other

scenario.

The scenario risk model is developed in two steps. First, a control flow graph that describes software
execution behavior with respect to the manner in which different components interact is constructed using
the UML sequence diagrams. It is assumed that a control flow graph has a single entry (S) and a single
exit node (7) representing the beginning and the termination of the execution, respectively. Note that this
is not a fundamental requirement. The model can easily be extended to cover multi-entry, multi-exit

graphs.

The states in the control flow graph represent active components, while the arcs represent the transfer of
control between components (i.e. connectors). It is further assumed that the transfer of control between
components has a Markov property which means that given the knowledge of the component in control at

any given time, the future behavior of the system is conditionally independent of the past behavior. This

assumption allows us to model software execution behavior for scenario S, with an absorbing discrete

time Markov chain (DTMC) with a transition probability matrix P~ =[pl-f], where pg- is interpreted as

Model-Based Risk Assessment 52 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

the conditional probability that the program will next execute component j, given that it has just

completed the execution of the component i . The transition probability from component i to component j
X

X

. . o x M
in scenario S is estimated as pij = 0 where nj;

is the number of times messages are transmitted from
i
component i to component j and nlx = an)j is the total number of massages from component i to all other
J

components that are active in the sequence diagram of the scenario § , .

The second step of building the scenario risk model is to consider the risk factors of the components
and connectors. Failure can happen during the execution period of any component or during the control
transfer between two components. It is assumed that the components and connectors fail independently.
Note that this assumption can be relaxed by considering higher order Markov chain [Goseva-

Popstojanova+2001].

In architecture-based software reliability models [Cheung 1980], [Goseva-Popstojanova+2001] a
single state F' is added representing the occurrence of a failure. Because the severity of failures plays an
important role in the risk analysis, in this work we add m failure states that represent failure modes with
different severity. In particular, since for the pacemaker case study we consider four severity classes for
each failure we add four failure states to the DTMC: Fiyinor > Frmarginal » Feritical » a0d Featastrophic - The
transformed Markov chain, which represents the risk model of a given scenario has (n+1) transient states
(n components and a starting state S) and (m + 1) absorbing states (m failure states for each severity class

and a terminating state 7).

Next, we modify the transition probability matrix P* to P* as follows. The original transition
probability p; between components i and j is modified into (1- ') Pif‘ -(1- rfle) which represents
the probability that the component i does not fail, the control is transferred to component j, and the
connector between component [and j does not fail. The failure of component i is considered by

creating an arc to the failure state associated with a given severity with transition probability rf;".

Similarly, the failure of a connector between the components i and jis considered by creating an arc to

1

failure state associated with a given severity with transition probability (1—rf;")- p;; - r; . The transition

probability matrix of the transformed DTMC, P” | is then partitioned so that

Model-Based Risk Assessment 53 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

F _ Q.X Cx
0 1

(5.6)

where Q% is an (n+1) by (n+1) sub-stochastic matrix (with at least one row sum less than 1)

describing the probabilities of transition only among transient states, I is an (m+1)by (m+1) identity
matrix and C”is a rectangular matrix that is (n+1)by (m+1) describing the probabilities of transition

from transient to absorbing states. We define the matrix A* = [al-),c(] so that al-),i denotes the probability

that the DTMC starting with a transient state i eventually gets absorbed in an absorbing state k . Then it
can be shown that [Trivedi 2002]

AN =1-0%7"1c*. (5.7)

Since in our case we assume a single starting state S, the first row of matrix A" gives us the
probabilities that DTMC is absorbed in absorbing states 7, Fminor> Fmarginal> Feritical» and

Featastrophic - In particular, aiy is equal to(I—rf™), where rf” is the scenario risk, whileajs, aj3,

alx4, and alx 5 give us the distribution of the scenario risk factor among minor, marginal, critical, and

catastrophic severity classes respectively.

5.1.4 Use Cases and Overall System Risk Factors

The risk factor rf) of each use case U}, is obtained by averaging the risk factors of all scenarios S,

that are defined for that use case

= 2 bk (5.8)

vS.e U,

where rf " is the risk factor of scenario S, in use case U and p]f is the probability of occurrence of

scenario S, in the use case Uy . Since in the pacemaker example we considered one scenario per use

case, the use case risk factors are identical to the scenarios risk factors.

Model-Based Risk Assessment 54 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

Similarly, the overall system risk factor is obtained by averaging the use case risk factors

=Y rfi b (5.9)

YU,
where rf; and pj are the risk factor and probability of occurrence of the use case Uy, .

It is obvious from equations (5.8) and (5.9) that the use cases and overall system risk factors depend
on the probabilities of scenarios occurrence p]f in the use caseU; and the probability of use case

occurrence pj . Hence, scenarios (use cases) with high risk factors but very low probability of occurrence

will not contribute significantly to the overall system risk factor.

5.2 The Use-Case Based Analysis

When a large complex system is modeled, a significant amount of requirements information is
represented in the use case model. A use case is defined as a set of sequences of actions the system is
required to perform in order to get an observable result of value to an actor [Armour+ 2001]. When a use
case model is defined, commonality among the use cases is likely to be discovered and shared. Possible
extensions and additional behavior may also be uncovered and defined. Some use cases may contain
behaviors that are similar in many aspects. To effectively design a use case model that avoids redundant
use cases, UML includes the use of relationships between use cases. Modelers who develop a use case
model without showing relationship between the use cases are not modeling the system properly. In real
software systems, use cases model different requirements that the system should provide and these
requirements are typically dependent on each other. These dependencies must be modeled as use case

relationships.

Before we proceed with our approach, we present the UML use case terminology and the basic
definitions. The base use case captures the behavior and interactions that occur between the actors and the
system within the use case flow of events [OMG 2005]. It provides an excellent viewpoint on the overall
system behavior. The addition of alternative flow descriptions and conditional logic helps to define the
variation and exceptions within a use case. Use case modeling provides a number of constructs that
support the clear elaboration of added complexity and details of the relationships between use cases

[Armour+ 2001], such as:

o <<Extend>> relationship models significant extensions and behavior that can occur as additions

to the base use case. Thus, as shown in Figure 20 the flow of events of the base use case can be

Model-Based Risk Assessment 55 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

extended by the flow of events in the extended use case. The actual control transfer in this kind of
extension is optional, i.e., it takes place when a conditional guard is satisfied. Then, the flow of

events returns to the same extension point in the flow of events in the base use case.

® <<Include>> relationship models encapsulated behavior that can be inserted into a use case and
possibly reused across multiple use cases. As shown in Figure 21, the included behavior is always

exercised, that is, no conditional guard is checked.

The examples shown in Figure 20 (b) and Figure 21 (b) illustrate the difference between the
<<extend>> and <<include>> relationships. Thus, planning an itinerary might or might not include

purchasing a ticket. On the other side, each attempt to register courses includes user validation.

5.3 Risk Assessment Methodology with Functional Dependencies

In this section, we start by defining the terminology. Then, we describe the proposed risk analysis
process and present the approach for dealing with relationships between uses cases. Finally, we propose an
algorithm for estimating the system risk factor from the use case model that includes relationships among

use cases.

5.3.1 Use Cases Terminology Used

To come up with a systemic approach for dealing with relationships between use cases, we introduce the

following terminology.

e Primitive Use Case (PUC) is a use case that is not extended and does not include any other use
cases. The risk factor of a primitive use case is calculated directly from its sequence diagrams as
outlined in the next section. In Figure 20 (b) and Figure 21 (b), the use cases Purchase Ticket and

Validate User are examples of primitive use cases.

® Non-Primitive Use Case (NPUC) is a base use case related to other primitive or non-primitive use
case(s) by <<extend>> and/or <<include>> relationship(s). The realization of a NPUC must have
at least one dependent scenario that depends on a scenario of a related use case. Figure 23 shows a
sequence diagram of a dependent scenario where the related scenario Purchase Ticket
mentioned at the bottom of Figure 23 is shown in Figure 24, the risk factor of a non-primitive use
case cannot be calculated directly. In the following sections, we describe the way to estimate the
risk factor of a non-primitive use case and present a general algorithm which is used to calculate

the system risk factor based on the use case diagram that includes relationships among use cases.

Model-Based Risk Assessment 56 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

Base use case
A N

~
~

<
<<extend>>

~

Extended use case

/
/

a) UML notation

A —

Actor A
Plan Itinerary

i

<<extend>3

Purchase Ticket

b) Example

Howof everts in
the base vse case
Howof everts in
the extended tse
case

¢ ¢) Flow of events

Figure 20 <<Extend>> relationship

Baseuwsecase)
~

~

N

<ndude>> A
Included use case

a) UML notation

Actors T T—

$': =include ==

Validate User

b) Example

Howof events in
the base use case
Howof events in
the included use
case

¢) Flow of events

Figure 21 <<Include>> relationship

o Terminal Use Case (TUC) is a use case directly associated with an actor. Terminal use cases can

be either primitive or non-primitive.

Model-Based Risk Assessment 57

Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

In Figure 20 (b) and Figure 21 (b), the use cases Plan Itinerary and Register Courses are both non-
primitive and terminal use cases since they are related to other use cases and they are also directly

associated with actors.

5.3.2 Estimating the Risk Factor of Use Cases

In this section, we discuss how to estimate the risk factors of primitive and non-primitive use cases

from UML models.

5.3.2.1 Primitive Use Cases

We use the estimation of scenario’s risk factor to estimate the risk factor of primitive use cases. The
scenario risk model is developed in two steps. First, a discrete time Markov chain (DTMC) which
describes software execution behavior with respect to the manner in which different components interact
is constructed using the UML sequence diagram of a use case. The transition probability matrix of this
DTMC is calculated based on the frequency of message exchange. The right part of Figure 25 shows an

example of a DTMC of the UML sequence diagram shown in Figure 24.

The second step of building the scenario risk model is to consider the risk factors of the components
and connectors. Failure can happen during the execution period of any component or during the control
transfer between two components. It is assumed that the components and connectors fail independently.
The DTMC of the software execution behavior of the scenario is transformed by adding the failure
severity states which represent failure modes with Minor, Marginal, Critical, and Catastrophic severity.
Figure 27 and Figure 28 show a sequence diagram of the case study described in section A and the
corresponding DTMC with the failure severity states. The DTMC is then solved to estimate the risk factor
of the scenario and its distribution among Minor, Marginal, Critical and Catastrophic severity classes as

shown in Section 5.1.1.

5.3.2.2 Non-Primitive Use Cases

In this section we propose a method that can be used to estimate the risk factor of a non-primitive use
case which is related to a primitive use case by either <<extend>> or <<include>> relationship. Then, in
the next section, we propose an algorithm that allows us to estimate the system risk factor from a general
use case diagram that may include many different <<extend>> and <<include>> relationships among use

cases.

Model-Based Risk Assessment 58 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

The method for estimating the risk factor of a non-primitive use case related to primitive use cases
consists of aggregating the risk factor of each primitive use case into the calculation of the risk factor of
the non-primitive use case [Abdelmoez+ 2003]. For this purpose, we first estimate the risk factor of the
primitive use cases. That is, we develop a discrete time Markov chains (DTMCs) that represent the
primitive use cases and solve to estimate the risk factors. Each of these factors are then aggregated in the
DTMC of the non-primitive use case as a single state with the corresponding estimated risk factor, as
shown in Figure 22. The value of the transition probability which leads to this aggregated state that
represents a primitive use case depends on the type of relationship. Thus, in the case of <<extend>>
relationship, we assign probability O<p</ to the transition probability leading to the state that represents
the primitive use case. For <<include>> relationships, the probability of making transition to the primitive

use case is set to one (p=1) because it is always part of the non-primitive use case.

-

Aggregate

~/"
asp2 asn aayuilid D
wo.f orwvuads v fo HJWIA

DTMC of a scenario from
a non-primitive use case
A

Figure 22 Dealing with use case relationships

To illustrate this process, let us consider the simple sequence diagrams shown in Figure 23 and Figure
24 which describe the interactions in the Plan Itinerary and Purchase Ticket use cases from
the simple use case diagram shown in Figure 20 (b). The DTMC of the Plan Itinerary and

Purchase Ticket use cases developed from theses sequence diagrams are shown in Figure 25.

After the risk factor of the primitive Purchase Ticket use case is estimated, it is aggregated in the
Purchase Ticket state of the non-primitive Plan Itinerary use case. Because the Plan
Itinerary use case is extended by the Purchase Ticket use case, the probability p of execution of
the Purchase Ticket use case is assigned to the arc leading to the state representing it in the DTMC

of the Plan Itinerary use case.

Model-Based Risk Assessment 59 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

User Interface Client Travel Agency Airline Reservation

Actor A E
g 1: Welcome Page H
=0 P 2 : Welcome Page() L :
1 Ll H
I I P I 5
4 : Flight Planning 3 1 Flgiht Planning H i
altsearch J 5 ; ;
i 5 : Seach Flgiht(Mo Fares Available for Start and
E Lt & : Search Flight() - i Destination requestd
1 Ll]
! e u :
PRI 7 : No Flight Fares T ;
o 8 : Mo Flight Fares L | E E
S
: 9 : Search Flight() _ ; :
[. i i H
: 10 : Search Fiight(- 11 : Search Flight() .
i e
: R it L_|
] e . 12 : Candidate Flights H
; 14 : Candidate Flgihts L | 13 : Candidate Flights T :
: 15 : Reserve Seat() = E E E
H 16 : Ru Seatl ' '
i il sssne =t e 17 : Reserve Seat() H
1 !
: =S s LI
: e e e L LT TP 18 : Confirm ;
1 19 : Confirm 0
=} — H
|_| 20 : Confirm{) L 1 H
Opt Purchase Ticket) i i i
Purchase Ticket

Figure 23 Plan Itinerary sequence diagram

% User Interface Client

1 : Credit Purchase()

Travel Agency Airline Reservation Credit Cards Authorization

2 2 Credit Purchase() = : 3 : Credit Purchase[}___ I I
Lantl 4 : Aprrove Transaction()

5 : Approved

7 1 Purchase Confirmed ' |

="
1 8 Purchase Confirmed

Figure 24 Purchase Ticket sequence diagram

Model-Based Risk Assessment 60 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

User Interface Client
ticket purchase requested

Airline Reservation
(tidiet purchase requested)

Credit Card
Authorization
Airline Reservation

(ticket purchased)

User Interface Client
(request semt)

Travel Agency System
(tidket purchase requested)

Aggregat

User Interface Client

(request received) Travel Agency System

(ticket purchased)

User Interface Clent
(tidiet purchased)

Figure 25 DTMCs of the Plan Itinerary and Purchase Ticket use cases

In general, use case diagrams are much more complex than the example given in Figure 20 (b). For
example, the Purchase Ticket use case may be extended with Rent a Car use case, in which case
Plan Itinerary and Purchase Ticket both are non-primitive use cases, while Rent a Car
use case is a primitive use case. In the next section we propose an algorithm which uses recursively the
method for estimation of the risk factor of a non-primitive use case related to a primitive use case by either
<<extend>> or <<include>> relationship presented in this section and allows us to estimate the use cases

and system risk factor of a complex use case diagram.

5.4 Algorithm for System Risk Estimation

The algorithm proposed uses an annotated use case diagram as input. We treat the use case diagram as
a graph, where nodes represent use cases and arcs represent relationships between use cases. Arcs are
annotated with probability O<p</ in case of <<extend>> relationship or with probability p=1/ in case of
<<include>> relationship. The algorithm traverses the use case diagram, identifies use cases according to
relationships between them, and then aggregates the risk factors of the use cases according to the

relationships. An outline of the risk estimation algorithm is shown in Figure 26.

Our algorithm works in two passes. In the first pass the algorithm traverses the use case diagram using a
depth first priority. The main outcomes of the first pass are to identify the use cases based on the
relationships and to color them accordingly and to estimate the risk factors of the primitive use cases. In
the second pass the algorithm traverses the colored use case diagram starting from the actors and estimates

the risk factor of each terminal use case (i.e., use case directly connected to an actor) recursively Finally,

Model-Based Risk Assessment 61 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

the system risk factor is calculated as a sum of risk factors of terminal use cases multiplied by the
corresponding execution probabilities. An implementation for this risk aggregation algorithm
considering one scenario per use case was developed by Ajith and Venu. The implementation

details are given in [Guedem 2004].

Determine terminal, primitive, and non-primitive use cases and

their dependent scenarios

For each primitive use case
Determine the risk factor of each scenario
Determine the use case risk factor by taking the max risk

scenario

For each terminal use case
For each dependent scenario
Recursively determine the risk factor of the
scenario
Determine the use case risk factor by taking the max risk

scenario

Determine the system risk using a weighted sum of the risk

factors of the terminal use cases
Figure 26 Outline of the risk estimation algorithm

5.5 Command and Control System Case Study Results

One of the contributions is the application of our risk assessment methodology on an industrial case
study of a command and control system used in a mission-critical application. (The details of the case

study are presented in Appendix I).A. In the following subsections, the case study results are presented.

5.5.1 Scenario Risk Factors

The process of building and solving the scenario risk model is illustrated on the
Retry_Both_Pumps scenario. As mentioned in section 5.3.2.1, the first step is to develop a control

flow graph that describes software execution behavior with respect to the manner in which different

Model-Based Risk Assessment 62 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

components interact using the UML sequence diagram of a scenario. Thus, the white states of the DTMC
shown in Figure 28 represent the software execution behavior which corresponds to the sequence diagram
of the Retry_Both_Pumps scenario shown in Figure 27. The transition probability matrix of this
DTMC is calculated based on the frequency of message exchange as described in [Goseva-

Popstojanova+2003].

‘ : C1 ‘ ‘ 1 C2 ‘ ‘ : C3

‘ Failure () ‘ ‘

‘ Lﬁ FaiILLJre O ‘ ‘
Pump_Retry (3) Lﬁ u ‘

‘ Open_Switch ()

|
‘ Open_Switch () /U

Close_Syitch () /LH
1]

Retry_F}’ump [¢)
\

Retry_Slﬂccess [¢) ‘

Pump_Retry_Success| (P1) ‘

Lﬁ T Pump_OJ:erating [¢)

‘ Close_Switch
u

|

Retry_Pump () ‘ /Lﬁ

Pu

Retry_Success ()
p_Retry_Success| (P2)

|

|

|

T | i |
| | |

| |

| Pump_Operating ()

v |
| |

Figure 27 Sequence diagram of the Retry Both Pumps scenario

The second step of building the scenario risk model is to consider the risk factors of the components
and connectors. The DTMC of the software execution behavior (white states only) of the

Retry_Both_Pumps scenario is transformed by adding the dark states which represent failure modes

Model-Based Risk Assessment 63 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

with Minor, Marginal, Critical, and Catastrophic severity (see Figure 28). The estimated risk factor of the
Retry_Both_ Pumps scenario is 0.7605. This risk factor is distributed among Minor, Marginal,
Critical and Catastrophic severity classes (0.0000, 0.1100, 0.0703 and 0.5802 respectively).

e S D

Figure 28 Risk model of the Retry_Both_Pumps scenario

5.5.2 Use Case and System Level Risk Factors

Next, we illustrate how the use case and system level risk factors are estimated using the generalized
risk assessment methodology. As shown in Figure 96, the use case diagram of the Internal Thermal
Control subsystem has many <<extend>> relationships between use cases. As presented in Section 5.3, we
first estimate the risk factors of mode setting use cases and pump retry use cases, as they are the primitive
ones. The risk factors of theses primitive use cases are shown in Figure 29. Then, we aggregate the risk
factors of these primitive use cases to estimate the risk factors of the non-primitive use cases. Using the
scenarios of Failure_Recovery and Mode_Setting non-primitive use cases, the DTMC of these use cases
are constructed. Then, we embed the risk factors of the primitive use cases in the DTMC of the non-
primitive use case as described in Section 5.3.2. Since the pattern of extending these non-primitive use
cases is not known, we assume the probability p to be equal. Thus, the risk factors of the non-primitive use
cases Failure_Recovery and Mode_Setting over different severity classes (i.e., Minor, Marginal,

Critical, and Catastrophic) are evaluated.

Model-Based Risk Assessment 64 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

S

o

©

[T

L4

9

'S

N
QY <
Use Cases Qo@ &7 Severity
S
Q;o%v

Figure 29 Risk factors of the primitive use cases

From the domain knowledge , we know that the Failure_Recovery use case is executed (i.e.,
extends the Monitoring use case) with probability 0.01. To estimate the risk factor of the non-primitive
use case Monitoring, we build the DTMC of the scenario in the Monitoring use case and embed
with probability p=0.01 the non-primitive use case Failure_Recovery, as shown in Figure 30.

Sovling the DTMC, we get the risk factor of Monitoring use case.

Model-Based Risk Assessment 65 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

Failure Recovery

Figure 30 DTMC of the Monitoring use case

In Figure 31, the risk factors of the terminal use cases Monitoring and Mode_Setting are
presented. The bars represent the total risk factors of these use cases along with the distribution of the risk
factors over the severity classes. The Mode_Setting use case is riskier than the Monitoring use
case. Even more, it has higher risk in the catastrophic severity class. Therefore, more attention should be
given to the development and testing of Mode_Setting use case, as it is more critical than the

Monitoring use case.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Risk Factor

Monitoring ModeSetting

Usecases

O Minor @ Marginal @ Critical @ Catastrophic

Figure 31 The risk factor of Monitoring and Mode_Setting use cases.

Model-Based Risk Assessment 66 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

The overall risk factor of the Internal Thermal Control subsystem is obtained by multiplying the risk
factors of the terminal use cases (Monitoring and Mode_Setting) with the corresponding
probabilities of execution of these use cases (0.95 and 0.05, respectively). Its value is 0.81/89 and it is

distributed over the severity classes as shown in Figure 32.

Risk Factor

System

O Minor O Marginal @ Critical B Catastrophic

Figure 32 Distribution of the overall system risk factor

It should be noted that the overall system risk factor depends on the execution probabilities of the
terminal use cases. In other words, terminal use cases which have low execution probability, such as for
example the Mode_Setting use case in our case study, typically will not contribute much to the overall
system risk factor. From this perspective, system analysts very often will need to take into account use
cases with high risk factors, regardless of their execution probability and their contribution towards the

system risk factor.

5.6 Summary and Discussion

As the software systems become more complicated, there are more composite functional dependencies
within the system. Considering object-oriented software models, these functional dependencies are
captured in terms of use case relationships. In any analysis of UML models of software systems that deals
with use cases, it would not be acceptable to overlook these relationships among use-cases and treat them
as independent. In this chapter, we addressed UML use case relationships for quantitative analysis of

reliability-based risk assessment.

Model-Based Risk Assessment 67 Ph.D. Dissertation

5. Reliability-Based Risk Assessment with Use Case Relationships

We presented a new algorithm for risk assessment that generalizes our earlier work on risk assessment
by relaxing the assumption that use cases are independent. For this purpose, we first proposed a method
which is used to estimate the risk factor of a non-primitive use case related to a primitive use case by
either <<extend>> or <<include>> relationship. Then, we proposed an algorithm that allows us to
estimate the use cases and system risk factors from a general use case diagram that may include many
different <<extend>> and <<include>> relationships, the most widely used relationships between use

cases. Finally, we applied the generalized methodology on an industrial case study.

In order to validate the results obtained from the proposed methodology against other sources of risk
evaluation, we are focusing on applying the generalized methodology on other case studies that have

reliability-based risk assessment data for their components.

Model-Based Risk Assessment 68 Ph.D. Dissertation

6. Change Propagation Metrics

6 Change Propagation Metrics

In the next chapter, we address maintainability-based risk assessment which tries to assess
how difficult in the future the system maintenance will be due to current maintenance tasks. This
assessment methodology relies on change propagation probabilities and the size of change
between components of the architecture. Thus, in this chapter we define and provide an estimate
of the probabilities of changes that arises in a component (in the context of
corrective/adaptive/perfective maintenance) requiring changes to other components and their
corresponding size of change in these components. We introduce, analyze, and validate formulas

for estimating these probabilities using architectural level information.

6.1 Change Propagation Probabilities

Let us consider a software architecture modeled by components and connectors. We are
interested in the maintainability of the products instantiated from it. In corrective or perfective
maintenance tasks, change propagation probability matrix for an architecture reflects on the
probability of changing component C; as a result of a change to component C,.[Abdelmoez+
2005A]. The estimation of the elements cp; of the change propagation matrix CP is based on the

following definition:

Definition 1.

Given components C; and C; of a system S, the change propagation probability from C; to C;

is denoted by cp; and defined as the following conditional probability

cpiy = Pr(([Gl#[G DIACI#IC DASI=[ST), (6.1)

where [X] denotes the functionality of component/system X and S’ is the system obtained

from S by changing C; into C;’ (and possibly C; into C;’ as a consequence).

In practice it is useful to add some qualifications to the above definition and distinguish
between the /-step and multi-step change propagation. The I-step change propagation, accounts
for the change propagating from one component to another directly as a result of one component
using services (information) provided by another, i.e., “in one step”. We denote the /-step change
propagation by CP,.The term n-step change propagation (n>2) refers to the probability of a
change propagating from one component to another as a result of n consecutive acts of 1-step

change propagation. We denote the n-step change propagation by CP,

Model-Based Risk Assessment 69 Ph.D. Dissertation

6. Change Propagation Metrics

6.1.1 Change Propagation Usage

We submit that the matrix of change propagation probabilities can help the software architect
to make assessments and take decisions regarding the projected maintainability of software

products that stem from the architecture at hand. Specifically, we cite the following uses:

e A summary inspection of the matrix can reveal quickly the difficulty and the cost of
maintenance operations on the system. An idealistic (and usually uninteresting) system
that is perfectly modular has an identity matrix, whereby each change is localized to the
component where it is applied and does not propagate to other components (in principle,
this is possible only if the components are independent); the case of unrelated

components notwithstanding, the closer a matrix is to the identity, the better.

e If the row corresponding to a component A has high values, we infer that changes to this
component must be avoided because they propagate widely throughout the system.
Preventive measures include focusing verification and validation activity on this
component (to minimize subsequent corrective maintenance), and optimizing the design

of this component (to minimize subsequent perfective maintenance).

e If the column corresponding to a component A has high values, we infer that this
component is likely to undergo frequent changes in the maintenance phase. Preventive

measures include special care to design this component for ease of modification.

e The matrix of change propagation probabilities can also be used to compare candidate
system architectures when maintenance costs are an important consideration. To this
effect, we have Change Propagation Coefficient which is a quantitative measure of
diagonality, which indicates to what extent a given matrix is diagonal (i.e. has non-zero
values in the diagonal and near zero values outside the diagonal). This measure can be
used to give a summary comparison of candidate architectures when other, more

meaningful, criteria fail to discriminate between the candidates.

6.1.2 Analytical estimates of Change Propagation Probabilities

The purpose of the analytical step is to derive a formula for estimating change propagation
probabilities using architectural information. For the sake of tractability, we alter the definition

slightly, prior to our analytical study:

cpij = Pr(([Gl2[G DIACIZC D A ([G * CI=[C * C]) (6.2)

Model-Based Risk Assessment 70 Ph.D. Dissertation

6. Change Propagation Metrics

In other words, the probability that we are computing is not conditioned on the overall system
function being preserved ([S]=[S’]) but rather on the aggregate composition of C; by C; being
preserved ([C; * Cj]=[C; * C;’]), where * is an operation that reflects the interaction between C;
and C; in system S. We find it useful to distinguish, conceptually, between two broad classes of

changes in C;:

® The case where the interface between C; and C; remains unchanged but the function of C;

changes.
® The case where the interface between C; and C; changes.

Also, we observe empirically, and can easily verify analytically (by a combinatorial
argument), that the probability of a change propagation under the first condition (preserving the
interface, altering the actual function) is very low: there are very few changes in the function of C;
that we can make without having to change C; as a consequence. Factoring these observations
into the revised formula of change propagation, we find that we can approximate the change

propagation probability from C; and C; by the formula:
cpij = Pr(([cj];t[Cj,])l(ICi.Cj * ICi'.Cj‘) A ([Ci * Cj]=[C,” * Cj’])) (63)
where L. is the interface (i.e. set of relevant connectors) between C; and C;.

An architecture can be seen as a collection of components C;, i=1,....N. With every

component C;, we associate the set V; of the interface elements of the provided functions of C;.

We determine the usage coefficient value 7["’ for every interface element ve V; and every other

component C;, j=i. They take binary values:

. 7Z'éj =1, if the interface element v provided by C; is required by C;. This means that any

signature change in component C; associated with interface element v will propagate to

component C;.
. 7["’ =0, otherwise.

Hence, for every pair of components C; and C;, i#j, the change propagation probability cp;; can be

estimated based on the values of the usage coefficients 7Z'éj by:

1 .
=T 2T 4
Cpijj IVz IZ > (6.4)

vev;

Model-Based Risk Assessment 71 Ph.D. Dissertation

6. Change Propagation Metrics

We need to remark here that formula (6.4) is based on the assumption that an interface in C;
whose propagation we are trying to trace is equally likely to affect any of its interface elements,

as shown in Figure 33.

Figure 33 Single-step change propagation estimation

The method described above allows us to evaluate the (1-step) change propagation
probabilities, given the information on the interface specification of the architecture. Once the 1-
step CP values are obtained, we can get upper-bound estimates on the multi-step change

propagation.

6.1.3 Multi Step Change Propagation

Suppose we have obtained the 1-step change propagation matrix CP using (6.4). For

convenience, here we use shorter notations:
A(, j) = CP(C,;, C)), i,j=1,...,N (6.5)

In the directed graph G representing our architecture, let Ils(i, j) be the set of all simple
(directed) paths leading from node i (i.e. component C;) to node j (i #j). For a path 7= (i, iy, iy,...,
in1,J) € I (i, j), where n = Il is the length of &, let us denote by A(7) the probability of a change
in { propagating to j via the path 7 i.e., the probability that a change in i causes a change in iy,
which in turn causes a change in i,, etc., finally causing a change in j. If we make the simplifying

assumption that change propagation events in different connectors are independent, we obtain:
A(m = AG, i) ACi, 1) .. ACin-1,)). (6.6)
Let Ax(i, j) be the probability of a change in i propagating to j in & steps (k=1). It is easy to see

that Ax(Z, j) is the probability of the union of the events that consist in the change propagating

Model-Based Risk Assessment 72 Ph.D. Dissertation

6. Change Propagation Metrics

from i to j along particular simple paths of length k£ in G. Since the probability of a union is never

greater than the sum of the probabilities of the constituent events, we have:

AGpS D A (6.7)

rell G,])
ITl=k

The reason we only consider simple paths is that we are interested only in the first
propagation of a change to its destination component. From inequality (6.7) we can obtain the
following result that supplies an easily computable upper bound for the n-step change

propagation.
Proposition 1:

Au(i, j) S A, j) (6.8)

where A" is just the n” power of the change propagation matrix A.

This, in particular, means that even though we can multiply CP probabilities along any
particular path (without making any independence assumptions), we cannot sum these products
for various paths, to get an n-step CP value as a result. In other words, the n-step CP matrix
cannot be obtained by merely taking n" power of the original 1-step CP matrix. The n™ power

give us an upper bound for the n-step CP probabilities.

6.2 Predicting Change Propagation Patterns

In addition to the many applications we have briefly discussed, we find that the availability of
change propagation probabilities of an architecture allows us to quantify an important
classification of change propagations, first proposed by Clarkson et al. [Clarkson+ 2000]
,Clarkson et al present a three-tiered classification of changes as follows:

1. Ripple of change: the introduced changes will result in an acceptable behavior to

be observed for the maintenance process. Changes are controlled and limited.

2. Wave of change: the introduced changes will still result in an acceptable behavior
to be observed for the maintenance process. Although there are many changes, they

are under control.

Model-Based Risk Assessment 73 Ph.D. Dissertation

6. Change Propagation Metrics

3. Avalanches of changes: the introduced changes will result in an unacceptable
behavior to be observed in the maintenance process. There are many changes and

they are uncontrolled.

The avalanche type of change propagation is the one that software maintainers worry
most about; such changes would make managing the software maintenance very difficult
and very costly. It would be a great benefit to be able to predict in advance if a certain

component is prone to this type of change propagation.

Because of its highly heuristic and qualitative nature, the above classification [Clarkson+
2000], while being conceptually useful, cannot be applied directly for an analytical study. In
order to make Clarkson’s classification more usable for the purposes of our quantitative analysis
of change propagation, we give it a more rigorous quantitative interpretation. Whereas Clarkson
et al present this classification to characterize individual changes; we use it to characterize

components. Specifically,

e We consider that a component belongs to the Ripple class if, on average, the changes
initiated in this component produce a ripple effect.

® We consider that a component belongs to the Wave class if, on average, the changes
initiated in this component produce a wave effect.

* We consider that a component belongs to the Avalanche class if, on average, the changes
initiated in this component produce an avalanche effect.

In order to give formalization to these concepts, we must introduce some numeric parameters.

e The negligibility threshold & (0< 0<1), indicates the level below which the change
propagation probability is considered negligible.

e The propagation area significance & (0 < a < 1), indicates the fraction of the total
number of the system components affected by a single component that can be considered
significant in a single step.

e The ripple threshold © (0< 7<1), determines the fraction of the total number of
components affected by ripple change propagation.

e The avalanche threshold y (0< y<1), determines the fraction of the total number of

components that must be affected in order for a change to be considered an avalanche.

Having chosen a value of ¢, we can, for each integer n>0 define the n-th step CP-graph

CPG,, s of the architecture to be the subgraph of the original architecture graph G obtained by

Model-Based Risk Assessment 74 Ph.D. Dissertation

6. Change Propagation Metrics

erasing in G all the edges (A,B) for which CP,(A,B)< d. Notice that the graph CPG, s
monotonically decreases as odincreases (for o sufficiently close to 0, CPG,, s = G, while for &

sufficiently close to 1, it is empty).

Definition 2.

The n-th step CP range of A (with sensitivity threshold o), denoted by M,, s(A), is the out-
degree of the node A in the graph CPG, s, i.e.,

M, s (A) =|{Be S| CP,(A,B) > 5 }| (6.9)
ST /::\.‘\\

o

~) !ﬁ\
ol 'nﬁnin [o
/’ \

S ‘—-.JJ'
\KMD /?5 /

Figure 34 An example on how to calculate Mn(Cg) = 8

If we apply the definition on the part of the graph for a single-step change propagation for
component Cg presented in Figure 34 we find that Mn(Cg) = 8. Based on these metrics, we can
interpret Clarkson’s classification of CP behavioral patterns of the system according to the
dynamics of M, s(A) considered as a function of the step n. (Here, we interpret the step of the
unfolding process of change propagation, as an analogue of the time into the maintenance cycle in

Clarkson’s classification.)

Definition 3.
For any component A in the architecture S, we say that A has a potential for generating

- aripple of changes, if M, s(A) < diS| for n>7ISl, i.e., steps of change emanating from A
beyond the ripple threshold TS| have negligible effect on any other component;

- anavalanche of changes, if M, 5 (A) 2 alS| for n>wlS|, ie., steps of change emanating
from A beyond the avalanche threshold w|S| affects more than &S| of the components;

- a wave of changes, if neither of the two conditions above are satisfied (i.e., it is neither

ripple nor avalanche).

Model-Based Risk Assessment 75 Ph.D. Dissertation

6. Change Propagation Metrics

An illustrative description for change propagation behavior is presented in Figure 35. Using
these parameters, we can now characterize Clarkson’s classification using change propagation

probabilities.

,MH(CD Avalanche

(1_____ o ____- __

Where:
a (0< a< 1) is the propagation area significance,
T(0< 7<1)is the ripple threshold, and

w(0< w< 1)is the avalanche threshold

Figure 35 Parameterization of the categorization of the change behavior

Furthermore, we attempt to develop some heuristic methods of predicting the type of
change propagation behavior expected to occur in the system (ripple, wave, or
avalanche). It is easy to see that for the n-step change CP probability from component A
to component B to be positive, it is necessary that there exist in the architecture graph G a
simple path starting at A and ending at B of length exactly n. From this observation we

derive the following proposition, which we present without formal proof.

Proposition 2:

Let the directed graph G"™ be derived from the architecture graph G by the following rule:
there is an edge from A to B in G™ if and only if there exists in G a directed path of length n
from A to B. Then the n-th step CP-graph CPG,, s (defined in Section 2) for any O is a sub-

Model-Based Risk Assessment 76 Ph.D. Dissertation

6. Change Propagation Metrics

graph of G™. In particular, the n-th step CP range of A (with any sensitivity threshold &)

M, s(A) is never greater than the out-degree of A in graph G™.

Proposition 2 can be used to classify some components as being capable of producing only a
ripple change (as defined in Definition 3) without even estimating the CP probabilities between it

and other components. Namely, we have the following proposition.

Proposition 3:

If the out-degree of node A is less than p |S| in the architecture graph G and in G, and is
zero (no outgoing edges) in G for all n > 2, then component A generates only ripple

changes.

Similarly, one may be able to conclude simply from the topological structure of the

architecture graph that a certain component cannot produce an avalanche change.
6.3 Experimental Change Propagation

In this section, we discuss an experiment that we ran to validate the analytical formula that we
propose for estimating change propagation. First, we present a brief description of the sample
system that we chose for this experiment. Then, we apply the aforementioned single-step change
propagation on the system. We also use a controlled experiment of “mutation operators” changes
to see how well the analytical results correlate with the controlled experiment results of the

system under investigation.

The system we have selected for our experiment is a spreadsheet application written in Java,
named Sharp Tools. The details of the Sharp Tools case study are presented in Appendix I.D.1.
Using the interface specification of the system, we first determine the interface elements that have
an effect on the neighboring components of the architecture of the system. Then, we analytically
compute an estimated change propagation matrix for the system. This gives us an estimate of the
probability that an interface change will propagate to a neighboring component due to that

change.

To have a better understanding of the resulting matrix, we produce a graphical representation
of it. In Figure 36, we present the critical change propagation of the system, using a high
threshold of significance; specifically, we let the significance threshold be 0.4 in order to identify

the more critical components of the system.

Model-Based Risk Assessment 77 Ph.D. Dissertation

6. Change Propagation Metrics

It is worth noting that this graph cannot be considered as a Markov chain model, as the sum
of the probabilities outgoing from a node can go beyond 1, violating the Markov constrain. For
example if we examine component C8, we find the sum of probabilities of a change propagating

from C8 to other components is greater than 1.

Figure 36 Graphical representation of the critical change propagation

In the “mutation operators” controlled experiment, we introduce changes into interface
element of the components of the Sharp Tools case study. Specifically, we change the variable
types of the methods signature in each interface element in each component. With the help of a
compiler, we determine the components that are affected by the changes introduced. The ratio of
the times the component required to be changed and the times of changes introduced into that

component interface is an estimate of the empirical change propagation probability.

It is worth mentioning that “mutation operators” analysis is time and effort consuming. In
the following sections, we compare the analytical results with the controlled experiment results of
the Sharp Tools case study. Then, we expand our single step change propagation results to get a
multi-step change propagation view of the same system. Using these results, we to assess the

change propagation behavior of this system

Model-Based Risk Assessment 78 Ph.D. Dissertation

6. Change Propagation Metrics

6.4 Change Propagation Probabilities Validation

In this section, we judge the results evaluated by the analytical formula against the results
derived from the controlled experiment of “mutation operators” to assess the validity of our

analytical formulas.

6.4.1 Correlating Single Step Change Propagation Matrices

In this section, we present the results of the study that we conducted to explore the correlation
between the analytically estimated single-step change propagation matrix C, and its
experimentally derived counterpart Cg. The correlation coefficient between all the cells of the

analytical single-step matrix and the experimental single-step matrix is:

Cor(Ca,Cg) =0.93 (r value) (6.10)

R-Sq =0.8649,
Where “r”” denotes the Pearson product-moment correlation coefficient.

For the nontrivial values (other than those that are either O or 1 by definition), the rationale

behind this criterion is that trivial values do not really test our analytical results, we find:

Cor(C,,Cg) =0.85 (r value) (6.11)

R-Sq = 0.7225

A significant relationship between some variables does not necessarily mean that the
relationship is very useful in building predictive models. Thus the R-Sq values are also shown

above to assess the explanatory power of each model.

6.4.2 Statistical Significance of the Correlations

Now we need to validate our correlation results, i.e., to make sure that the positive correlation
values we observed are statistically significant (did not occur by chance). To test the relationship
between analytical and experimental change propagation, a statistical hypothesis testing was
performed using the #-test (one-tail) for the nontrivial entries using the level of significance o =

0.05.

Our hypotheses were

Model-Based Risk Assessment 79 Ph.D. Dissertation

6. Change Propagation Metrics

e HO: p =0 (There is no linear association between analytical change propagation values
and empirical error propagation values)

e HI :p >0 (There is a positive linear association between analytical change propagation
values and empirical error propagation values)

where p denotes the correlation coefficient.

We have computed the value of the 7 statistic for the nontrivial values of single-step matrices
as t,, = 18.98632 (with n=140 samples), and the corresponding P-value is less than o = 0.05.
Thus, we reject the null hypothesis of no correlation, and thus infer that the correlation of 0.85 is
statistically significant. The #-test results showed that the fairly high correlation values between
analytical and experimental change propagation values we obtained did not occur by chance (i.e.,

are statistically significant).

6.5 Multi-Step Change Propagation Matrix

Form the single-step change propagation results, we can get an estimate of the multi-step
change propagation according to Section 6.1.3.We can then estimate the outgoing change
propagation of a component as the total change propagation that is exported by this component to
other components. We can track the outgoing change propagation as change propagates in multi-
steps, and observe the behavior of this component. Thus, we can categorize the components

according to their outgoing change propagation as ripple, wave or avalanche.

Ripple components are those having outgoing change propagation that dies out rapidly with
very few steps of change propagation. Wave components are those that sustain a large value of
outgoing change propagation for a number of steps, but this value dies out eventually. Avalanche
components are those that have an increasing value of outgoing change propagation as the
number of steps of change propagation increase, and this value does not die out eventually. From
the experimental results, we can recognize three patterns of outgoing change propagation for

ripple, wave and avalanche components.

For each component in the architecture, The n-th step CP range Mn(Ci), which is directly
proportional to outgoing change propagation, is shown in Figure 37. We can see that there are
only ripple and wave components and no avalanche components. So, we can expect that, when
making a change in this system, we can recognize a ripple change propagation or at most a wave

of change propagation. But, it is highly unlikely to have an avalanche change.

Model-Based Risk Assessment 80 Ph.D. Dissertation

6. Change Propagation Metrics

Mn through Multisteps

Components

Figure 37 Mn(Ci) of the components through multi-step change propagation

Model-Based Risk Assessment 81 Ph.D. Dissertation

6. Change Propagation Metrics

We can recognize that any change for component C8 should be handled with care, as it is a
component with high change propagating probabilities. Any maintenance effort that may be needed to
deal with this component should be expected to cause a wave of changes since this is a highly centralized
component that might affect the others much by its high mutual dependencies. Figure 38 shows a pattern
for ripple components where the Mn(Ci) tends to decay in very few steps. When checking Figure 39, we
find a pattern of a potential avalanche component. The Mn(Ci) still have a significant magnitude over a
large number of steps. In Figure 40, we can recognize a pattern of wave components that are midway

between the ripple and the avalanche components.

Ripple Components @C2
mC6
—\ﬁs;; Oc19
I O C25
N 2
X 1.8
— 1.6
1 I M 1.4
B ith 1.2
=| “ i 1 Mn(Ci)
1 I 0.8
. 0.6
T A 0.4
0o 0.2
Steps >=='0
@« Q Compon
T2 O@ o enF:

Figure 38 Pattern of Ripple components

Model Based Risk Assessment 82 Ph.D. Dissertation

6. Change Propagation Metrics

Potential Avalanche Component

Component

Figure 39 Pattern of a potential Avalanche component

Wave Component

2.5

@ C31
m C30
ocie
1.5 Mn(Ci) O c2e

Figure 40 Pattern of Wave components
6.6 Using Change Propagation Probabilities to Assess Quality Attributes of
Software Architectures
In [Shaik 2006], we have designed an experiment that compares architectures using object-oriented
metrics and change propagation matrices. The goal of the experiment is to assess to what extent the

object-oriented metrics on one hand and the Change propagation probability matrices on the other hand

are good predictors of architectural quality attributes. To this effect, we consider sample applications, and

Model Based Risk Assessment 83 Ph.D. Dissertation

6. Change Propagation Metrics

derive two candidate architectures for each: one that is based on design patterns (hence is presumably of
higher quality) and one that is design ad-hoc, without predefined patterns. The following methodology
has been applied:

1. Prepare a pair of architectures for the same application. One of the architectures is designed using

design patterns while the other has no patterns.
2. Apply the CP metric on both architectures.
3. Apply other object-oriented metrics on both architectures.

4. Analyze and compare the results. The architecture the employs software patterns should have a

better quality in terms of extensibility and maintainability.

It is worth noting that we carry out the comparison of design quality for the architectures with the
help of the Software Architecture Change Propagation Tool (SACPT) [Abdelmoez+ 2004B]. Inputs to
our tool are obtained with the help of Understand for Java tool [JavaUnderstand]. SACPT generates the

CP matrix of components in the architecture.

Our first example is a simple application where an employer is seeking employment applications for
the various jobs available, which are submitted through detailed electronic forms that must be validated.
There are two versions; one version is a simple switch case whereas the other version is implemented
using the strategy pattern.(See details in Appendix [.D.2). We restrict the analysis to the components that

exist before and after the application of the pattern.

Figure 41 shows the change propagation probabilities of the case study when using switch cases.
Figure 42 shows the change propagation probabilities of the case study after applying the strategy design
pattern. The Change Propagation Coefficient (CPC) for the architectures before and after using the design
pattern are 0.18 and 0.11 respectively. From the CPC values, the architecture, which employs a design
pattern, is better in design quality than the one which does not. Figure 43 shows the Weighted Methods
per Class (WMC) and McCabe Cyclomatic Complexity metrics (MCC) for the components before and
after applying the pattern. The JobApplicantForm component has been improved by employing strategy

design pattern.

Model Based Risk Assessment 84 Ph.D. Dissertation

6. Change Propagation Metrics

Change P ropagation Betore P attern

=
oo
L

]
o
L

[
I
Il

Change P ropagaion
-
[
r

=
A

Job&pplicantF orm
JobApplicant TestClient Eanm SlEEess
JobApplicartTestClient

JobApplicant Form
Component &

FomnSuccess
Componert B

Figure 41 Change propagation of Job Application before applying strategy pattern.

Charge P ropagstion Lfer Pattern

0.4.]

Change P ropagaion
=
()
Pl

=
i

JobApplicantF arm

Job&pplicant TestClient FonmSuccess

Jobdpplicart TestClient

Job2Applicant Form
Campanert &

FormSuccess
Component B

Figure 42 Change propagation of Job Application after applying strategy pattern.

Model Based Risk Assessment 85 Ph.D. Dissertation

6. Change Propagation Metrics

Job Application

OWMC_BeforePattern
BWMC_AfterPattern
40 B MCC_BeforePattern
OMCC_AfterPattern

35
30 A
25
20

15

S Y E——

FormSuccess JobApplicantTestClient JobApplicantForm

WMC, MCC

Components

Figure 43 Weighted Methods per Class and McCabe Cyclomatic Complexity for Job Application

The second example is an application that tracks the states of colleague components. Each colleague
will update its state according to its current state and the changes to the states of the other colleagues. (See
details in Appendix 1.D.3). Figure 44 and Figure 45 show the change propagation probabilities of the
architectures before and after applying the mediator pattern. In Figure 44, we recognize that the three
colleague components are tightly coupled to one another. In Figure 45, adding the mediator pattern
decreased coupling between the colleague components. The three colleague components are completely
decoupled with respect to one another. The Change Propagation Coefficient CPC for the architecture that
does not employ any design pattern is 0.11, where as CPC value for the one, which employs mediator
design pattern is 0.05. From the CPC values, the architecture, which employs a design pattern, is better in

design quality when compared to the same architecture that does not.

Figure 46 shows the Weighted Methods per Class (WMC) and McCabe Cyclomatic Complexity
(MCC) metrics for the architecture before and after using the mediator pattern. All the three colleague
components have been improved in terms of complexity when a mediator design pattern has been
employed. Both the metrics WMC and MCC show this improvement as a decrease in value for the

components in the architecture that employs a design pattern.

One of the disadvantages of using the mediator design pattern is the localization of the behavior of the
components. The distributed behavior of the components is localized to few components in the
architecture that employs a mediator design pattern. Even though, the architecture that employs a

mediator design pattern is more extensible, maintainable and reusable than the one which does not. When

Model Based Risk Assessment 86 Ph.D. Dissertation

6. Change Propagation Metrics

adding new colleagues to the architecture, we need only to change the components of mediator pattern.
All the other colleagues will not be affected as they will not be directly coupled to the new colleague

component.

Change Propagation

ColleaguelF
ColleaguelF
CancreteColleague
ConcreteColleague?
ConcreteColleague3

Colleague State
Component B

ConcreteColleaguel
ConcreteColleagueZ
ConcreteColleague3

Colleague State
Component A

Figure 44 Change propagation probabilities for the simple design on case study Colleague States

Change Propagation
]
m

ColleaguelF
ColleaguelF
ConcreteCaolleaguel

ConcreteColleague
. ConcreteColleague2

ConcreteColleague?
g ConcreteColleague3

ConcreteColleague3
. Colleague State

Colleague State Component B
Component A

Figure 45 Change propagation probabilities for the architecture employing mediator design pattern

Model Based Risk Assessment 87 Ph.D. Dissertation

6. Change Propagation Metrics

Colleague States

9 OWMC _BeforePattern

BWMC _AfterPattern
8 BmMCC_BeforePattern
7 OMCC_AfterPattern

WMC, MCC

& Components

Figure 46 Weighted Methods per Class and McCabe Cyclomatic Complexity for Colleague States
6.6.1 Comparison of Change Propagation Metric with Other Metrics

In this section, the change propagation metric is compared with respect to three other coupling-based,
object-oriented metrics: Coupling Between Objects (CBO), Response For a Class (RFC) and Message
Passing Coupling (MPC). We restrict the analysis to the components that exist before and after the
application of the pattern. Figure 47 shows the Coupling Between Objects (CBO) for the two case studies
before and after the application of the design pattern. Observing Figure 47, one can conclude that CBO
metric is not sufficient to compare and state that an architecture is better in design quality when compared
with another. Though there are improvements in the CBO values for the three colleague components in
the Colleague States case study, there is an increase in the CBO value for the JobApplicationForm

component in the architectures which implements the strategy pattern for case study Job Application.

In Figure 48, the Response For a Class (RFC) metric could not show the difference between the two
architectures in the Job Application case study. In fact, it showed that the architecture that employs a
simple design is better in design quality than the architecture that employs strategy design pattern. On the
other hand, for the Colleague States case study the RFC metric confirmed a relative improvement of using
design patterns. This shows that RFC metric may not be a good choice to compare between two candidate
architectures. Furthermore, the MPC metric showed no difference in design when applied to both the
architectures on each of the two case studies. Figure 49 shows the values for the MPC metric computed
on the Job Application and the Colleague States case studies. MPC metric could not show the difference

between the architectures in both cases.

Model Based Risk Assessment 88 Ph.D. Dissertation

6. Change Propagation Metrics

On the other hand the change propagation probability metric shows these variations and points out

that one of the architectures is better than the other. Check the change propagation probability values for

the three colleagues components in the Colleague States case study, Figure 41 and Figure 42, and

JobApplicationForm component in the Job Application case study, Figure 44 and Figure 45. Change

propagation probability metric can show different perspective and complements the usage of other object

oriented metrics: CBO, MPC and RFC in both case studies.

CBO Metric OBeforePattern
10 B AfterP attern
HBeforePattern
9 OAfterPattern
8 a
7 u
6 |
o
m 5
(]
4 a
3 a
2 a
, [
0 - . o
> & & N N 9%) @
& o & & S & ?
< & & N\ W 3\ W S
& N 5 N P S o S Components
9 ‘qu ‘?QQ & & & 0\\®
S o N N N\ @)
QQ ¢ & & &
Boo‘? < < oy
Figure 47 CBO for the case studies on Colleague States and Job Application
RFC Metric
35 OBeforePattern
HEAfterPattern
30 HBeforePattern
25 OAfterPattern
(&) 20
L
o 15
10
5 .
0 .
% > S ~ v o}
& & & & q\)e qe Q\)e; %\f{,\
N Py S > i & & @
P (& K N N N N N
& Q N d P ¢S 9 S
<«° & K © @ 5@ @ W
& $ o ¢ 5 &
Bé,v‘? 3 & & & Components

Figure 48 RFC for the case studies Colleague States and Job Application

Model Based Risk Assessment 89 Ph.D. Dissertation

6. Change Propagation Metrics

MPC Metric

90

OBeforePattern
B AfterPattern
CBeforePattern
WA fterPattern

80

70

60

50

MPC

40

30

20

S ™ N 42 5o} 2
& & o & N &° F
%’ & & & & \¢ & ®
& Y & N S S S O
3 Q & S (€) (€) (€) &
«9 Q > x@ x@ x@ N
\a © @ @ @ Q
560 N o°0 o°0 o°0)
Ra < < <

Components

Figure 49 MPC for the case studies on Job Application and Colleague

6.7 Size of change

States

The size of change SC=[scl.j] is defined as the ratio between the number of affected methods of the

receiving component caused by the changes in the interface elements of the providing components and

the total number of methods in the receiving component. For every component C;, we associate the set M;

of the methods of component C;, as shown in Figure 50. We determine the effect coefficient value ,uff; for

every method m in component C;, j#i. They take binary values:

n; =0, otherwise.
The size of change scjj can be estimated:

>l

meMj

1
SC,‘/‘:
M, |

where |M, | is the cardinality of the methods set of component C;.

Model Based Risk Assessment Ph.

90

W; =1, if the method m is affected by any interface element ve V; provided by C;

l

(4.6)

D. Dissertation

6. Change Propagation Metrics

@[‘rﬂ@ﬁﬂ@’

Figure 50 Size of change estimation

6.8 Change Propagation Probabilities and Size of Change for the Case
Studies

In the next chapter we assess maintainability- based risk factors for the components of the system.
Therefore, we need to estimate change propagation probabilities and size of change for the case studies
under investigation. Using the software architecture artifacts of the pace maker, CM1 and the command
and control system case studies, we estimate the change propagation probabilities and the size of change
for each case study. Figure 51 and Figure 52 show the change propagation probabilities and the size of
change of the pace maker. The change propagation probabilities and the size of change for the CM1 case
study are shown in Figure 53 and Figure 54. While Figure 55 and Figure 56 give the change propagation

probabilities and the size of change of the command and control case study.

Model Based Risk Assessment 91 Ph.D. Dissertation

6. Change Propagation Metrics

o
m

o
m

o
a

Change Propagation
[}
=

[}

Component B =ie
Component A

Figure 51 Change propagation probabilities for Pace Maker case study

= =
O I =«

Size of Change

—
[

=

Component B RS

Component A

Figure 52 Size of change for Pace Maker case study

Model Based Risk Assessment 9 Ph.D. Dissertation

6. Change Propagation Metrics

= =
m oo

=
I

Change Propagation

0.2

Component B BIT
Component A,

Figure 53 Change propagation probabilities for CM1 case study

Size of Change

Component B

Component &

Figure 54 Size of change for CM1case study

Model Based Risk Assessment 93 Ph.D. Dissertation

6. Change Propagation Metrics

=
un]
‘

=
[ny]
i

=
[ou]
F)

Change Propagation
=
=
'l

o
i

c10

C t B
S C1 Compaonent A

Figure 55 Change propagation probabilities for command and control case study

=
om
i

=
=
;

oize of Change

=
[uu]
2

L]
i

C t B
S Component A

Figure 56 Size of change for command and control case study

Model Based Risk Assessment 94 Ph.D. Dissertation

6. Change Propagation Metrics

6.9 Summary and Discussion

In this chapter, we proposed a set of simple, automatable formulas to quantify and assess change
propagation probabilities through software architecture. For the purpose of validation of the analytical
estimates, we conducted empirical experiment of “mutation operators”. We found a correlation between
the two results for single-step change propagation probabilities of at least 0.85. To be certain that we
didn’t obtain these correlations by chance, we computed the t statistic to examine the statistical
significance for these correlations. We got p-values < 0.05 which shows that the correlation between

experimental and analytical error propagation matrices is statistically significant.

The proposed formulas are used to determine the impact of a change in a given component as a ripple,
a wave, or an avalanche impact. The ripple change has minimal impact, a wave change has more impact
but still controllable, and an avalanche change which is uncontrollable. We derived easy to compute
upper bounds for n-step change propagation and cumulative change propagation, which can be used to

measure the global impact of local changes.

In the following chapter, we will examine maintainability-based risk in perfective maintenance
context. Refactoring the software using design patterns is a technique of conducting perfective
maintenance. According to [Kerievsky 2004], there are practical situations where patterns improve the
quality of the design. We conducted an experiment to assess to what extent the object-oriented metrics on
one hand and the change propagation probability matrices on the other hand are good predictors of quality
attributes. The experiment compared two candidate architectures: one that is based on design patterns and
one that is design ad-hoc, using object-oriented metrics and change propagation matrices. Change

propagation probabilities showed better ability to capture improvements in the design.

Also, we introduced the concept of size of change, which tries to capture the maintenance impact on a
certain component given that other components coupled to it changes their interfaces. To check the
validity of the proposed estimate for the size of change metric, we plan to conduct empirical experiment

on several case studies noting that these kinds of empirical studies are effort and time consuming.

Model Based Risk Assessment 95 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

7 Maintainability-Based Risk Assessment

Software maintenance accounts for a large part of the life cycle software cost. Systems with good
maintainability can be easily modified to fix faults or to adapt to changing environments. In this Chapter,
we are concerned with maintainability-based risk that assesses how difficult it is to maintain the system in
the future because of current maintenance tasks. We estimate maintainability-based risk of system

components taking into consideration different types of maintenance: corrective, adaptive or perfective.

7.1 Maintainability-based Risk

In accordance with NASA-STD-8719 standard [NASA 1997], we define maintainability base risk is as
a combination of two factors: the probability performing maintenance tasks and the impact of performing

these tasks [Abdelmoez+ 2005B]. Accordingly, Maintainability-based Risk for a component is defined as:
Probability of changing the component* Maintenance impact of changing the component.

Maintainability-based risk assessment helps in managing software maintenance process. It can be

used to identify the most risky parts of the system.

7.2 Estimation Methodology of Maintainability-based Risk

The proposed methodology for estimating maintainability-based risk depends on architectural artifacts
such as system requirements and system design and their evolution through the life cycle of the system, as
shown in Figure 57. First, we estimate initial change probabilities of the components according to the
maintenance type and available data. Using the initial change probabilities of the components and change
propagation probabilities between them, we get the unconditional probability of change of the
components of the system. To get the impact of the maintenance tasks, we use the size of change between
the components of the system. Finally, the maintainability-based component risk factor is the product of
unconditional change probability and the maintenance impact. The detailed steps of the proposed

methodology in the following subsections are presented using UML models [UML 2005].

7.2.1 Estimating Initial Change Probabilities

The maintenance effort can be due to corrective, perfective or adaptive maintenance. According to the
type of effort considered, we estimate the initial change probabilities /CP of the system components. We
use error reports, change reports, system requirement enhancements or requirements stability indexes to

estimate /CP depending on the type of maintenance and the data available.

Model Based Risk Assessment 9 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment
7.2.2 Estimating Change Propagation Probabilities

Change propagation probability CP= [cp;;] is the conditional probability that a change originating in
one component of the architecture requires changes to be made to other components. To account for the
dependency among the components of the system, we multiply the initial change probabilities vector of
the components by the conditional change propagation probabilities obtained from the system

architecture.

Maintenance Type
Corrective: error reports

Adaptive: change reports SW Architecture
Perfective : Bad Smells

Requirments maturity Index

! a a4

(1) Estimate components (2) Estimate Change (3) Estimate
Initial Change Probability Propagation (CP) Size of Change
(ICP) probabilities (5C)
ICP=[icp,] CP=[cp,,] SC=[scy,f

(4) Estimate component risk factor

MR = [mrz.]= zicpf 'sza’j : SCE!;’ . chja’z' . Scja’z'

F NEZ

Figure 57 Maintainability-based risk estimation methodology

7.2.3 Estimating Size of Change

To get the impact of the maintenance task, we use the size of change between pairs of the system

components. We define the size of change SC=[sc,] as the ratio between the number of affected methods

Model Based Risk Assessment 97 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

of the receiving component caused by the changes in the interface of the providing components and the

total number of methods in the receiving component.

7.2.4 Estimating Components Maintainability-based Risk

For estimating the maintainability, we try to capture the maintenance change propagation shown in
Figure 58 and Figure 59. If we consider change propagation through component C; , the initial change in
other components C; are propagated to component C; with change propagation probability cp;; and size of
change sc;; , as shown in Figure 58. Furthermore, the initial change in component C; and the changes
propagated from other components to component C; propagate once again to other components C; with
change propagation probability cp;; and size of change scj;, as depicted in Figure 59. Thus, the

maintainability-based risk MR is given by

MR =[mri]= Zicpj €Dy SCyi |- ZCPM- SC)i (7.1)

j J#EI

Hence, the methodology provides the maintainer with an estimate of the maintainability risk of the

components.

O
ch,
SCx
r CPs
' BCs O
O

O

Figure 58 Incoming maintenance change propagation through component Ci

Model Based Risk Assessment 98 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

! cp

CPy / 5Ck
@]
O
@]

Figure 59 Outgoing maintenance change propagation through component Ci

7.3 Maintainability-Based Risk Assessment in Adaptive Maintenance Context

In this section, we limit our scope of maintenance effort to adaptive maintenance [Abdelmoez+
2006B]. Thus, we alter the methodology for estimating the maintainability-based risk of software
components as follows. Basically, we make use of adaptive maintenance reports of changes to estimate
the initial change probabilities ICP=[icp;]. First, we evaluate the rate of occurrence of changes in each
component C; of the system. Then, we estimate the initial probability of change for each component by
normalizing the rate of occurrence for each component by the total number of change reports. Hence, the

estimation methodology of maintainability-based risk is tailored for adaptive maintenance.

To take into consideration the dependency between the components of the system, we estimate the
conditional change propagation probabilities matrix CP and the size of change SC from the system
architecture. Finally, the maintainability-based risk of a component C; due to adaptive maintenance
changes mr; is estimated using equation (7.1). We propose to use the maintainability-based risk of the

system components to order the adaptive maintenance tasks for a certain project.

7.3.1 CM1 Maintainability-Based Risk in Adaptive Maintenance Context

The maintenance data of the CM1 case study contain 31 change reports. (See the details of the case

study in Appendix 1.C). We want to prioritize the tasks of the adaptive maintenance effort. First, we

Model Based Risk Assessment 99 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

calculate the frequency of requested change occurrences in the components of the system. Second, we
estimate the initial change probability ICP of the components of CM1 by normalizing the frequency of
change occurrences by the total number of change reports. The estimated initial change probabilities ICP

for CM1 components are shown in Figure 60.

0.35 | -

e
W
T
|

o
)
[}
T
|

a
=
M
T
|

Initial Change Prob.
jm]
hJ
|

Q
T
|

o
[m]
M
T
|

[] . || L]

BIT CCcrkd DCI DCX DPAEDACICUI 1553 5SCUI S51 TIS ThaaLl
Component

Figure 60 Initial change probabilities for CM1 components
Then using the software architecture artifacts of CMI1, we estimate the change propagation
probabilities and size of change, as shown in Figure 53 and Figure 54. Using equation (7.1), the
maintainability-based component risk factor for each CM1 component is estimated. The results are shown

in Figure 61.

Rigk Factor
]}
{8}
|

0.0s —

. | {om —

BIT CCha D2l DS DPAEDACICUT 1553 SCU S50 TIS Thaald
Components

Figure 61 Maintainability-based risk for CM1 components in adaptive maintenance context

Model Based Risk Assessment 100 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

The most risky component with respect to adaptive maintenance is CCM. This is a result of CMM
having the highest initial change probability. Moreover, CCM is coupled to most of the components, so it
is likely to be affected by the changes introduced in these components (CP values are high). Furthermore,
CMM has a high maintenance impact on the rest of CM1 components (Xsc; is large). As it is coupled to

other components in the system, the change is likely to propagate further.

On the other hand, even though component 1553 has a relatively high initial change probability value,
but it is coupled to a limited number of components in CM1 (CP values are low). Moreover, it has a
limited maintenance impact (Xsc;; is small) and it is less risky in terms of maintainability. On the contrary,
component EDAC has a relatively low initial change probability value. But due to change propagation
(CP values are relatively high) and maintenance impact (Xsc; is not small), it is more risky in terms of

maintainability

7.4 Maintainability-Based Risk due to Requirements Changes

In this subsection, we are addressing changes in the system requirements [Abdelmoez+ 2006A]. We
propose an estimation methodology for the maintainability-based risk using UML models, which are
becoming a de facto standard for modeling software systems. The detailed steps of the maintainabilitiy-
based risk methodology are adapted to fit the adaptive maintenance context. First, we estimate the
requirement maturity by analyzing their evolution across the versions of the system. A software system is

developed according to a set of requirements
RO ={rq;, rq,,......... rqy,} (7.2)
where rg; is a functional requirement. In UML, requirements are mapped into a set of use cases:
RO(UML) = {ucy, ucy,......... ucy} (7.3)

Use cases describe the functional behavior of the system. Each use case is realized through one or
more sequence diagrams. Sequence diagrams describe the interactions among the components to fulfill
certain requirement. Since it is not possible to account for all possible maintenance tasks, we only

consider a maintenance profile MP [Bosch+ 2001] consisting of likely change scenarios
MP = {cs;, csp,......... cs,} (7.4)
A change scenario is defined by a set of requirement changes

cSi=1{rqie, Qoeyeevneen.. rqic} (7.5)

where rq,. is an addition, deletion or modification of use case uc;.

Model Based Risk Assessment 101 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

The IEEE 982 standard [IEEE Std 982.1] suggests Software Maturity Index to quantify properties of
requirements evolution. In [Anderson+ 2002], The Software Maturity Index is adapted to Requirements
Maturity Index (RMI) to measure the requirements stability. We adapt the metric to Use Case Maturity
Index (UCMI) and use function points as a size measure for the use cases [Cantone+ 2004]. Thus, the

UCMI of the use case uc; is given by

UCMI = UTU_—UC (7.6)

T
where Uy is the function point size of the use case uc; in the current release; U is the function point size
of the change in the use case uc; in the current release from the previous due to requirement change rg;. of

change scenario cs,,.

In order to get the probability of change due to a maintenance task, we use the sequence diagrams to
get the set of components that contribute to each use case. Then, we can map the use case stability into
components stability, which reflects on the likelihood of making changes to the components due to
changes in the requirements. Consequently, we estimate Initial Change Probabilities ICP of the system
components. For components that are part of multiple scenarios, we consider the maximum ICP as it

accounts for the worst-case scenario.

To account for the dependency among the components of the system, we multiply the initial change
probabilities vector ICP of the components by the conditional change propagation probabilities matrix CP
obtained from the system architecture. To get the impact of the maintenance task, we estimate the size of
change SC=[sc;] between pairs of the components of the system based on the architecture artifacts.
Finally, the components maintainability-based risk MR = [mr;] can be estimated using equation (7.1),
where mr; is maintainability-based risk of a component C; due to requirement changes. Hence, the
methodology provides the maintainer with an estimate of the maintainability risk of the components for

different change scenarios of the maintenance profile.

7.4.1 CM1 Maintainability-Based Risk due to Requirements Changes

We illustrate our risk assessment methodologies on CM1 case study from the Metrics Data Program
[NASA MDP]. The details of the case study are in Appendix I.C. From the use case model in Figure 96,

we identify the set of functional requirement RQ as:
RQO(CM1) = {Transfer, RecvCmd, ChBound, CalcOrbitDrift, HeartBeat,

HouseKeeping, TimeSync} .7

Model Based Risk Assessment 102 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

We estimate the requirement maturity by analyzing their evolution across the versions of the system.
As, it is not possible to account for all possible maintenance tasks; we only consider a maintenance profile
MP. To make it easier to follow the steps of the methodology, we consider only a maintenance profile that

has only one change scenario.
MP = {cs;)} (7.8)

The change scenario that we picked is adding a new transfer sequence, shown in Figure 98, to the

Transfer use case:
cs; = { Transfer,. } (7.9)

We measure the function point size of the use case Transfer in the current release; and the function
point size of the changes in the use case Transfer in the current release from the previous due to change
Transfer. of change scenario cs;. We follow the rules presented in [Cantone+ 2004] to estimate the
function point size of the Transfer use case and the change in it. Then, we estimate the use case maturity

index, according to equation (7.6). We find UCMI(Transfer)=0.702.

We map the use case maturity index into components stability using the sequence diagram Transfer.,.
We determine how each component stability been affected according to its amount of contribution in the
added sequence diagram Transfer.. Then, we estimate initial change probabilities of the components. The

results are shown in Figure 62.

We estimate the initial change probabilities of the components and change propagation probabilities
between them the components of CM1. Then, we estimate the size of change between the components to
account for the maintenance impact. Using equation (7.1), The maintainability-based component risk
factor for CM1 is estimated. The results are shown in Figure 63. The most risky components are DPA and

DCX as they have the highest initial change probability value when considering the change scenario cs;.

It worth noting that component as CCM has a significant level of risk factor even though it is not in
the set of components of the initial change. This is due to the fact that CCM is coupled to all of the
components of the initial change set, so it is likely to be affected by the changes introduced in these
components. Furthermore, CMM has a high maintenance impact on the rest of CM1 components. As it is
coupled to other components in the system other than the components of the initial change set, the change

is likely to propagate further.

Model Based Risk Assessment 103 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

0.35

Inital Changg Prob.

o.0s - —

L L L L L L L
BIT CCr DCl DCX DPAEDACICU 1553 SCL S50 TES ThAaALL
Component

Figure 62 Initial change probabilities resulted from Transfer, for CM1 components

Risk Factor
[m]
b
l

0.0s - 1

Iu] L fe— L L
EIT CCrd Dl DCX DPAEDACICUL 1553 =2CUT 231 TIS Th4AAL
Cormponents

Figure 63 Components maintainability- based risk resulted from Transfer, for CM1 components

7.5 Maintainability-Based Risk Assessment in Corrective Maintenance
Context

In this section, we limit our consideration of maintenance effort to corrective maintenance
[Abdelmoez+ 2006C]. Therefore, we use error reports of errors that have not been yet fixed. To estimate
the initial change probabilities ICP=/[icp;], we first evaluate the frequency of occurrence of errors in each
component C; of the system. Then, we estimate the initial probability of change for each component by
normalizing the frequency of occurrence for each component by the total number of error reports. Hence,

the estimation methodology of maintainability-based risk is adapted for corrective maintenance.

To order the corrective maintenance tasks for a certain project according to the importance of each
task, we propose using the maintainability-based risk of the components that need to be fixed. Also, we
propose to consider the severity-level of failures that may be manifested from the errors in these

components. For maintenance tasks of components with critical or catastrophic severity-levels, the

Model Based Risk Assessment 104 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

maintainability-based risk should not be of concern because of the consequences of such potential failures
on the system. Such tasks should be of high priority in the maintenance plan. On the other hand for
maintenance tasks of components that have severity-levels of minor or major, we should examine the
components maintainability-based risk. So, maintenance tasks of low severity-level and high
maintainability-based risk should be avoided or delayed in the maintenance plan. But if the priority is to
have a system with low maintainability risk, we start with the components with the high level of
maintainability-based risk and fix them into more maintainable components. Thus, we can prioritize the

maintenance tasks accordingly.

7.5.1 CM1 Maintainability-Based Risk Results

In the following, we present the results of the severity analysis and the maintainability-based risk for
the CM1 case study. Then, we discuss the results and how to prioritize corrective maintenance tasks based
on both of severity level and maintainability-based risk. The CM1 case study has 98 error reports of
components bugs. Assuming that these errors have not been yet fixed, we want to prioritize the tasks of
the corrective maintenance effort. First, we calculate the frequency of errors occurrences in the
components of the system, as shown in Table 12. Second, we estimate the initial change probability ICP
of the components of CM1 by normalizing the frequency of error occurrences by the total number of error
reports. The estimated initial change probabilities ICP for CM1 components are shown in Figure 64. Then
using the software architecture artifacts of CM1, we estimate the change propagation probabilities and the

size of change, as shown in Figure 53 and Figure 54.

Table 12 Components error reports of the CM1 case study

Components

BIT | CCM | DCI | DCX | DPA |EDAC| ICUI | 1553 | SCUI'| SSI | TIS |TMAL]

Errors 0 15 11 0 5 5 6 4 13 14 4 21

Using equation (7.1), the maintainability-based component risk factor for each CM1 component is
estimated. The assignment of component severity level of each component is based on the hazard analysis
conducted by domain experts knowledgeable about the case study (See Section 4.5.2). The results are

shown in Figure 65.

For planning corrective maintenance of this system, we should think about components

maintainability-based risk. Also, we should take into consideration the severity level of potential failures

Model Based Risk Assessment 105 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

that could be caused by errors in components needed to be fixed. CMM, DCI, 1553 and SSI components
with catastrophic severity-levels and DPA, EDAC and TMALI components with critical severity-levels,
they should be fixed regardless of their corresponding maintainability-based risk because of the
consequences of such potential failures on the system. On the other hand for maintenance tasks of the rest

of the components having low severity-levels, we should examine the components maintainability-based

risk.
025
oz i
Eoas) i
o.os | i
PTTET com bol box DPAEDACICUI 1553 SCUI 581 TIS TMAL
Figure 64 Initial change probabilities for components of CM1 case study
0.25
0.2 .
= a.15s -
0.05 - i
. []
BIT CChl DI DX DP%E%?&I;:D%IE;?SSS SCUl 551 TIS Thiall
Components
BIT |CCM | DCI | DCX | DPA [EDAC| ICUI | 1553 [SCUI | SSI | TIS |[TMALI
Si‘:i::y Minor | Cat. | Cat. | Minor | Major | Major |Critical| Cat. |Critical| Cat | Major | Critical

Figure 65 Maintainability- based risk and severity levels for CM1 components

Model Based Risk Assessment 106 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

7.5.2 Pace Maker Maintainability-Based Risk Results

As we don’t have error reports for the pace maker, we estimate the initial change probability ICP of
the components by normalizing the components cyclomatic complexity by the total sum. The estimated
initial change probabilities ICP for pace maker components are shown in Figure 66. Then using the
software architecture artifacts of pacemaker, we estimate the change propagation probabilities and the

size of change, as shown in Figure 51 and Figure 52.

Using equation (7.1), the maintainability-based component risk factor for each pace maker
component is estimated. The assignment of component severity level of each component is based on the
hazard analysis conducted by domain experts knowledgeable about the case study (See Section 4.5.1).

The results are shown in Figure 67.

0.35

Initial Change Prab.

0.05 -

R= cD [=) AR M
Component

Figure 66 Initial change probabilities for components of PM case study

Components
RS CDh CG AR VT
Severity Level| Minor Minor. Major. Catastrophic Catastrophic

Figure 67 Maintainability- based risk and severity levels for pace maker components

Model Based Risk Assessment 107 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

For prioritizing maintenance tasks for this pace maker in corrective maintenance context, we should

consider the followin:.

e AR and VT components with catastrophic severity-levels, they should be fixed regardless of
their corresponding maintainability-based risk because of the consequences of such potential

failures on the system.

e On the other hand for maintenance tasks of the RS and CD components having minor
severity-levels and CG component with major severity-level, we should examine the

components maintainability-based risk.

7.5.3 Command and Control System Maintainability-Based Risk Results

For the command and control system case study, we also don’t have error reports. So, we estimate the
initial change probability ICP of the components by normalizing the cyclomatic complexity of the system
components by their total sum. The estimated initial change probabilities ICP for command and control
system components are shown in Figure 68. Using the software architecture artifacts of command and
control system, we estimate the change propagation probabilities and the size of change, as shown in

Figure 55 and Figure 56.

Using equation (7.1), the maintainability-based component risk factor for each command and control
system component is estimated. The assignment of component severity level of each component is based
on the hazard analysis conducted by domain experts knowledgeable about the case study (See Section
4.5.3). The results are shown in Figure 69. We can recognize that other than components C1 and C2, the
maintainability-based risk factors are quite small. That is because these components haves mall values of
change propagation probabilities. Furthermore, they are not highly coupled with each other. They are
mainly coupled to component C1 or/and C2. Thus, all change propagation of maintenance tasks will

affect components C1 and C2.

For prioritizing maintenance tasks for this system in corrective maintenance context, we should
consider the following. First, C1 and C2 components have catastrophic severity-levels and C3, C4 and C7
component have critical severity-level. They should be fixed regardless of their corresponding
maintainability-based risk because of the consequences of such potential failures on the system. On the
other hand for maintenance tasks of the rest of the components having low severity-levels, we should

examine the components maintainability-based risk.

Model Based Risk Assessment 108 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

Inttial Change Prab,

[y}

o2

[CB

[y L]

Component

Figure 68 Initial change probabilities for components of command and control case study

Risk Factor

[1]

L e = [s (=] m‘
Components
Components
C1 C2 C3 C4 Cs Ceé Cc7 C8 c9 C10
Si‘:,rg Y| cat Cat. | Critical | Critical | Major | Major | Critical | Minor | Major | Minor

Figure 69 Maintainability- based risk and severity levels for command and control components

7.6 Maintainability Based Risk in Perfective Maintenance Context

In this subsection, we focus on perfective maintenance and refactoring activities in particular.

Refactoring is defined as a change made to the internal structure of software to make it easier to

understand and cheaper to modify without changing its observable behaviors. Refactoring to improve the

design of the system requires knowing which parts of the system need to be improved. In [Fowler+ 1999],

Model Based Risk Assessment

109

Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

Fowler and Beck presented a list of bad smells that help to identify where refactoring is needed. Examples
of bad smells include large class, lazy class, data class and switch statements. Considering the

architectural level, not all of the smells can be identified.

One way to refactor the software is to use design patterns. According to [Kerievsky 2004], there are
practice situations where patterns help to improve the quality of the design. We improve maintainability
by:

® reducing or removing duplication,

e simplifying what is complicated and

¢ making the design better at communicating its intent.

We use bad smells of the architecture to estimate components’ maintainability-based risk. In

particular, we consider two smells: divergent change and shotgun surgery.

Divergent change is when one component is commonly changed in different ways for different
reasons [Fowler+ 1999]. For example, we have to modify the same component whenever we change the
database or add a new calculation formula. To estimate divergent change smell using the CP matrix, we
examine if we have high values in a column corresponding to a component C;. Such a component is likely

to undergo frequent changes in the maintenance phase due to changes in other components.

Shotgun surgery is when every time a change is made to a component; lots of little changes need to be
made to a lot of different components [Fowler+ 1999]. For example, whenever we change a database we
must change several components. To estimate shotgun smell using the CP matrix, we examine if we have
high values in a row corresponding to a component C;. Changes to such a component need to be avoided

because they propagate throughout the system.

We use equation (7.1) to estimate components’ maintainability risk of the original system and the
refactored system after applying design pattern. We want to show that the maintainability based risk
estimated based on the change propagation probabilities can capture improvements in the maintainability
of the system components as result of introducing these design pattern. We use Strategy pattern and MVC

pattern in our case studies.

The first case study is a simple application where an employer is seeking applications for the various
jobs available. There are two versions; one version is a simple switch case whereas the other version is
implemented using the strategy pattern. (The details of the case study are in Appendix [.D.3). We restrict
the analysis to the components that exist before and after the application of the pattern. Figure 70 shows

Components maintainability-based risk for the case study before and after applying the pattern. We see

Model Based Risk Assessment 110 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

that there are improvements in Components maintainability-based risk. The addition of the strategy
pattern results in decoupling the FormSuccess and JobApplicantForm components. That causes the
maintainability-based risk of these components to improve. These improvements in these components are

associated with the cost of adding new components to the system.

The second case study is an open source calendar and task tracking software written in Java [Borg].
(The details of the case study are in Appendix 1.D.4). Figure 71 shows components maintainability-based
risk for the case study before and after implementing the controller of the MVC pattern. We can identify
that errmsg is the most risky component. This component is responsible of showing an error message
whenever an exception occurs. The risk factor of this component didn’t change before and after adding
the controller class of the MVC pattern because this modification does not address the errmsg component.
There are improvements in some components’ maintainability-based risk. On the other hand, there is
deterioration in others. We restrict the analysis to the components that existed before adding the controller
to the MVC pattern. The biggest improvement in maintainability risk factor is in borg component. This is
a result of adding the controller class, as it causes the coupling of the borg component to decrease because
it is redirected to the added controller class. Also, this modification causes other components to be more
coupled like taskmodel and taskgui because they need to interact with the added controller class. Thus, it

increases the maintainability risk factor of these components.

Component Risk

0.3

0.2 .

Rizk Factor

0.1

JobA pplicant Form

JobApplicantTest Client

Befare
FarmSuccess

Com ponents After

P atterns

Figure 70 Components maintainability-based risk for job application case study.

Model Based Risk Assessment 111 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

Component Risk

0as "

-
H v

- s i e i

03514 ! H [: 0 e ' i RES
R S S N : :
e T S : i (R T

' N P : : RS SO R

- VT] : St i i

[=1

b [=1
th [0
I
v

I

Risk Factor
%
!

054" !

005 | «:'

-

apptgui
banner

calgui
calmode| 7"“‘
arrmsg

helps crn

model
propgui

=rchgui

task gui

taskmaodeal

Befare

tdgui Adtter
Components

Patterns

Figure 71 Components maintainability-based risk for the case study.

7.7 Worst Case Maintainability-Based Risk Estimate

It is helpful to conduct worst case analysis, for maintainability-based risk this corresponds to
the case when the initial change probability equals to one for all the components of the system.
This is the case when the system is totally unstable. Thus, we are certain that there will be
maintenance changes to all of the components of the system. Figure 72, Figure 73 and Figure 74
show the worst case components maintainability-based risk for the pace maker, command and
control system and CMI case studies. Using the software architecture artifacts of the case
studies, we estimate the change propagation probabilities and the size of change Then we use
equation (7.1) for estimating the worst case components maintainability-based risk by

substituting for ICP=[icp;] with ones.

Model Based Risk Assessment 112 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

Rigk Factar

CG
Components

Figure 72 Worst-case Maintainability- based risk estimate for PM case study

Risk Factor

c4 5 CE c7 cE c9 C10

c1 2 3
Cormponents

Figure 73 Worst-case Maintainability- based risk estimate for command and control case study

1.4 T T T T

Risk Factor

TIS ThALI

BIT CCh DCI DCH DPAEDACICUl 1553 SCUI 551
Components

Figure 74 Worst-case Maintainability- based risk estimate for CM1 case study

Model Based Risk Assessment 113 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

7.8 Using Non-Homogeneous Poisson Process to Estimate Maintainability-
Based Risk

Unlike the previous maintainability-based risk models, Non Homogeneous Poisson Process NHPP
provide us with an estimate which is a function of time when considering adaptive and perfective
maintenance (See section 3.3.3). The NHPP model captures the nature of maintenance request arrivals
[Tan+ 2005]. Furthermore, the estimation procedure is more flexible as it relies on a statistical model to
estimate initial change probability ICP at different points of time. As the system gains more stability
through the development or the maintenance effort, we are able to acquire better estimates for the
parameters of the NHPP statistical model. Thus, we can have a better predication of the maintainability

level of the system under consideration

We simulate the random arrival rate of the maintenance request rates based on the model proposed by
[Tan+ 2005]. We use the arrival rates to get an estimate of the initial change probability as a function of
time according to the assumed adaptive maintenance for the system components and the perfective
maintenance of the system features (i.e. modifying use cases of the model in context of perfective
manitnenance). We estimate the initial change probabilities of the components of the CM1 case study. We
consider adaptive maintenance and perfective maintenance modeled by a maintenance profile that has

three change scenarios.
MP = {cs;, csy, cs3} (7.10)

We assume that these change scenarios consist of c¢s; for modifying the initial system features, cs, for
modifying the transfer sequence Transfer., shown in Figure 98, and cs; for modifying HeartBeat shown

in Figure 99:
csy = { HeartBeat}, cs; = { Transfer, } (7.11)

These simulation settings are shown in Figure 75. We assume that change request for each change
scenario is distributed among the contributing components in a uniform fashion. For example, the change
scenario cs;, for the HeartBeat use case have the following contributing components CCM, ICUI and SSI.
Thus in the simulation setting for the maintenance request that is generated by the inhomogeneous
Poisson process for the change scenario cs;, are distributed uniformly among these components. For each
component at any instance of the simulation time, we accumulate the generated request rate from all the
sources of maintenance (adaptive maintenance and perfective maintenance for each feature introduced

into the system).

Model Based Risk Assessment 114 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

T Beremte
'
=
£l Y All Cemponents -
5 % 15 ,
=
" - L 1aaian i ' . = =
=) T £ 5) BN 1 sl
ikt
T O
e
)Jr ER-Lnr
=
— -
i ,/'} /f’
—7_/ '/’
o
g dwdes
[— P r—
All Components =
5 "
L
=) . F
2 4 E2r
3 5 o
B |5
= ER
L ® sl
1 - 5
. y
u " - T " J o 3 = E] s &=)
Tive

Figure 75 Simulation settings for perfective and adaptive maintenance for CM 1

Figure 76 shows the estimated mean request arrivals rate for maintenance simulation of CM1
generated from the simulation following the mentioned settings. The estimated maintenance requests per
component using the simulation are shown in Figure 77. To get an estimate for the initial change

probability shown in Figure 78, we normalize these estimated maintenance requests per component by the

max sum of generated request at any time.

irfal System Features

Heat Beat Scnaro
- Total Mean Request Rate
e
o A 5 it
Y R
24 . 30
s |+ s
L H f
H H o
FR &° [+
§05) i 0 A B 4%
2 b), HE ok
(b i A [
st hY i ! bl
. ' | L
s, ., 14 ! A
™ iy, = . *;
0 zn i i i B i] E] @ i B RN 4
Time Time 5
@ ¥ o
s | PR
24 N
*i
— i i ek% *m%
— I v ¥ 4,
Transter 3 Scenaiio Adapie Malntenance ey, Foek,
4 5 +
n
é i+ 18
! \
+ * 16
- S a \ . . \ .
3 ! 4 " o 10 20 0 40 a0 B0
& + + &n Time
25 | v 3
g] ¥ 0
&, H
H ! * 58
H R . H
=15 i ¥ &3
1] + 8
: i % [
0s j n**
Y+, 2
i e
10 20 30 40 20 60 10 2 0 @ 50

Time Time

Figure 76 Estimated mean request arrivals rate for maintenance simulation of CM1

Model Based Risk Assessment 115 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

- ;o om

[

Cornponents faintenance Requests
ol

o

Time 70 BIT
Cormponents

Figure 77 Estimated maintenance requests per component using the simulation

o
=
‘

=
L
‘

=
a
‘

Initial Change Probability
]
(]
'l

[
L7

Time g0 BIT

Companents

Figure 78 Initial change probabilities for CM1 components

Model Based Risk Assessment 116 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

The change propagation probabilities and the size of change for the CMI1 case study are given in
Figure 53 and Figure 54. Using equation (7.1), the maintainability-based component risk factor for each
CM1 component is estimated as a function of time. The components maintainability- based risk for CM1
case study is shown in Figure 79. Across the time of the simulation, we found that the most risky
component is CCM. This is due to the fact that CCM is coupled to most of the components of the system,
so it is likely to be affected by the changes introduced in these components. Furthermore, CMM has a
high maintenance impact on the rest of CM1 components. As it is coupled to other components in the
system other than the components of the initial change set, the change is likely to propagate further. Other
risky components are ICUI and SCUI Note that we can locate peaks in the function of the risk level of

these risky components as a result of introducing new features into the system.

On the other hand, components like DCX, SSI and TMALI even though they are part of the
components affected by the assumed change scenarios; they have low level of maintainability risk
because they are coupled to a limited number of components in CM1 case study. Therefore, they have a

limited maintenance impact and they are less risky in terms of maintainability.

Fisk Factor

Time B0 BIT Components

Figure 79 Components maintainability-based risk for CM1 components

Model Based Risk Assessment 117 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

7.9 Validation Prospects for Maintainability Based Risk Estimation

In order to demonstrate the value of applying the maintainability-based risk assessment, an

experiment design should incorporate monitoring several maintenance projects with different size and try

to accomplish the following:

In a bottom-up approach, we should investigate the validity of the metrics used in the estimation
methodology. We need to ensure that the initial change probabilities are predicted correctly. We have
to validate that change propagation is accurately estimated and is reflecting on the conditional
probability that a change in a component might cause propagation of changes into other components
of the system (See section 6.3 and section 6.4). Also, the size of change metrics should be examined

to make sure that it correlates with the maintenance impact of the change under consideration.

For each project, we should conduct an analysis of the system components changes history to
evaluate the change impact for each maintenance task and the frequency of changes to estimate the

probability of change for the system components.

In the monitoring process, we should continuously evaluate the maintainability-based risk of the
system components and keep track of it and compare it with the subjective assessment of the
components maintainability risk by the maintenance engineers with in-depth knowledge of the

maintained systems.
In order to validate the methodology, we carried out some pilot exploratory studies:

e We used the architectural artifacts and maintenance data for the CM1 case study from NASA
Metrics Data Program MDP. We applied the estimation methodology for the maintainability-
based risk assessment on the system for different type of software maintenance (See section 7.3.1,
section 7.4.1, section 7.5.1 and section 7.8). As future validation work we intend to contact a
domain expert for the CM1 case study and use their subjective judgment to assess our results and

check whether they reflect the level of maintainability risk of the system components.

e We executed controlled experiment on three case studies: Job Application, Colleague states and
Borg (See section 6.6 and section 7.6). We performed pre/post analysis of software systems for
different types of maintenance activities in a controlled and managed environment, i.e. we know
the set of changes that will be applied and the objective of making the change (e.g. refactoring
part of the system or applying some design patterns to improve the architecture of the system).

Then, we examined the components maintainability risk to see if the changes in their risk level

Model Based Risk Assessment 118 Ph.D. Dissertation

7. Maintainability-Based Risk Assessment

can be explained in accordance with the maintenance objective, i.e. they reflect the objectives and

the intentions required from the maintenance task.

7.10 Summary and Discussion

In this chapter, we defined maintainability-based risk as a product of two factors: the probability of
performing maintenance tasks and the impact of performing these tasks. We presented a generic
methodology for assessing maintainability-based risk to account for changes in the system components in
the context of corrective, adaptive and perfective maintenance. The proposed methodology depends on
the architectural artifacts and their evolution through the life cycle of the system. We illustrated the
methodology on three case studies using UML models. One of these cases studies is an industrial real
software system; we plan to validate our results obtained with subjective assessment of the system from

its developers and maintainers.

In order to validate the maintainability-based risk assessment methodology, we need to track a system
form the early life-cycle stages and continuously assess the components maintainability-based risk
through the development stages. Finally, we asses the maintainability of the software product and
compare it with the earlier results. We need to notice that beside the resources and time span required for
such a research, there is a risk that the system developed early in the life-cycle will deviate significantly
forms the original models that we based our estimates upon. We would end up with comparing two

different systems. This would result form many factors that you can not control.

Even though, it is important to notice that the modular approach of our maintainability-based risk
assessment allow flexible improvements and validation of specific modules in our proposed methodology.
Thus, we can easily modify the risk estimation according to the finding of the empirical maintenance data
in order to have a better assessment for the component maintainability risk. Furthermore, the modular
facilitates validation of parts of the methodology. As we validated the estimation of change propagation

probabilities, we plan to validate the other modules in the approach.

For example, we used the size of change as way to predict the maintenance impact. We need to refine
this module in the methodology to capture not only the size of changes introduced in the component but
also to take into account the effort of finding these changes and conducting these changes. For example,
we can use the cyclomatic complexity of the component combined with the size of change. In this case,
we assume that the more complex a component is, more effort is required to find where to introduce the
changes and more difficult to carry out these changes. Such enhancements will affect only some module

in the methodology without altering the whole structure.

Model Based Risk Assessment 119 Ph.D. Dissertation

8. Software Architecture Risk Assessment (SARA) Tool

8 Software Architecture Risk Assessment (SARA) Tool

In this chapter, we describe the Software Architecture Risk Assessment (SARA) tool that support
architectural level model-based risk assessment [Sheik 2006]. The SARA tool provides estimates for
reliability-based risk, requirements-based risk and maintainability-based risk. The tool extends our earlier
Architectural-level Risk Assessment Tool [Wang+ 2003] by providing support for more architectural

models and different perspective of risk assessment other than reliability-based risk.

8.1 Structural Description

The architecture of SARA tool is shown in Figure 80. It accepts different input formats, such as Rose
RealTime [Rational Rose RT] models, StarUML [StarUML] models and Java Understand

[JavaUnderstand] static analysis files.

First, we extract the required architectural —level information from the examination of these inputs
and store it in the software architecture artifacts repository for further analysis. According to the type of
risk assessment to be performed, the tool evaluates the metrics required such as cyclomatic complexity,
dynamic coupling, change propagation probabilities, size of change and error propagation probabilities

using the stored artifacts in the repository.

Then, the tool admits the analyst to provide the severity analysis corresponding to the considered type

of risk. Finally, the tool provides the analyst with the risk estimates for the components of the system.

8.2 Functional Description

In our functional description of the SARA tool, we concentrate on the maintainability-based risk
assessment part of the tool. For the details of the functional description for the other functionalities check
[Wang 2003]. The tool enables automatic assessment of the risk and hence makes it possible for the
analyst to identify critical components. The tool automates the steps of the estimation methodology for
the maintainability-based risk. The tool estimates change propagation probabilities, and size of change
metrics collected from architectural information of the system. The output of the tool can help in the

allocation and management of the maintenance effort.

Model Based Risk Assessment 120 Ph.D. Dissertation

8. Software Architecture Risk Assessment (SARA) Tool

Rel’f\]-iszglty User
Risk Interface
Reguirements -
based 7
Risk - P
- !
Mlaintainability - -
based rd - £
Risk ’ S ,
F -
./:‘". T - — rd
Rl DL e R G L o aeflacins s gmen uZine menme Zeeeoge Seae B0 e —memno i s o JMalioe ses o
I b B £
N Cyclomatic
| . Complexity ¥
, 4
' LN :
[} - 5 Dy marmic
) Size of ' Coupling
change 4
" . A
; P~ ;
Change] 5 ' et
Propagation b . ; FPropagation
Fropabilities . I Propabilities
— " .
______—’“:_______._ —_—_ — — — = = == =
e
Software
Architecture artitacts Repository
— e
- &
-~ oy "
- I
- I 1
U U - . I - S — S-S - - | |G E—
] %
-) \
P) i
= Y
Java |I
Understand
Parser StarUnL
Pasrser UMNIL-FRT
I Pasrser

Model Based Risk Assessment

Figure 80 The architecture of the Software Architecture Risk Assessment (SARA) Tool

Ph.D. Dissertation

121

8. Software Architecture Risk Assessment (SARA) Tool

Our methodology for estimating maintainability-based risk depends on architectural artifacts
collected by static analysis of the source code files of the system. First, we estimate the initial change
probabilities using metrics reflecting the bad smells of the components of the software architecture. Using
the initial change probabilities of components and change propagation probabilities between them, we get
the unconditional probability of change of the components of the system. To get the impact of the
maintenance tasks, we use the size of change between the components of the system. Finally, the
maintainability-based component risk factor is estimated using equation (7.1). In Figure 81, a UML use

case model of the tool is shown.

@ A

Java_Source_Code

A

<«<lse>> Repository

T

Estimate_Component Maintainability Risk ~ Estimate_Size_of Change Retrieve_Analysis_information

Figure 81 Use case diagram of maintainability-based risk functionality of the SARA tool

In Figure 82, a snap shot of the tool is showing the results of change propagation probabilities
obtained from a StartUML model. In Figure 83, a snap shot of the tool showing the results of the

maintainability-based risk for corrective maintenance of the same case study.

Model Based Risk Assessment 122 Ph.D. Dissertation

8. Software Architecture Risk Assessment (SARA) Tool

Window Help
= & [E P bp @ Thecumentfolder: |cakhaderbackuplFalllsProjectsiRiskT |
=] Model & & B il £ Result - Change Pr StarUML
¢ T mModel 0 1 2 3 4 5 [7 8] 10 11
@ ol BT CCM'_['DCI_ |'DCX’ ['DPA"['EDAC" ['ICUI' ['SCUP_['S88I" ['TIS" ['TMALI" ['1553"
[1og.t e |10 1.0 0a 0.0 0.0 (] 0.0 (] (] 0.0 (] 0.0
[config s "con [0.0833. 1.0 0o 0.0833. |0.25 0.0833.. 01666 |0.1666. (0.0 0.0833... |0.1666.. |0.0
[AnalCh-1FF sl Do |00 0.0 1.0 0.0 0.3333.. [0.0 0.0 (] (] 0.0 0.5666... |0.0
'Dox |00 025 |00 1.0 0.25 [il] 0.0 05 iG] 00 [il] 0.0
'DPA" 0.0 0.0769. 00769, 0.1538.. 1.0 [0.2307. [0.0768... 0.0 00 0.3075.. |00
"EDAC |00 1.0 0.a 0.0 0.0 1.0 0.0 (] [} 0.0 (] 0.0
icur |00 0.5 0o 0.0 0.3333. (0.0 10 00 0.5666.. |0.0 00 00
'scur |oo 0.1666... 0.0 0.3333... 0.0 (] 0.0 1.0 (] 0.0 (] 0.3333...
'ssr oo 0.0 0o 0.0 0.0 0.0 1.0 0.0 1.0 00 0.0 00
TS |00 10 0o 0.0 0.0 [0.0 [[10 [0o
'TMaLr (0.0 025 D325 0.0 1.0 0.0 0.0 iG] 0.0 00 1.0 0.0
1553 0.0 0.0 0o 0.0 0.0 iG] 0.0 05 iG] 05 iG] 10
3 s
irmpart File:final Gh-1FF 1 xmi 4 &
ed Aug 09 14:54:08 EDT 2008 g 12]
Flotting Change Propagation Probabilities for STAR A []
L o -
8 os =
e ™
Espres§ v by Quadbase Systems Inc. All Rights Reserved. -
g o <> =
2 %{&iﬁiﬁmaﬁ o -
Tt E= 1N GO & W
2 5
ll‘ I T T Rl ...nlllll"""" 32—%
RIE TR El——L

Software Risk Assessment

File Run Risk Sewverity Window Help
[= & [E P b @& Thecurentrolder: |cnaderbackupFallosProjectsiRIskT |
I Modet = 7 i & [E [j] Result -- Corrective Maintability Risk--StarUmML |
@ [Madal 0 1 7] 3 4 5 3 7 8] 10 1 T |
@ oMl Compo... | Correct. -
[togte bit 0.0081
D config bt ccm 019326
[finalGw-1FF1 xemi el 01390
el 00171
01411
0.0691
00754
01374
01817
0.0503.
0.3487..
0.0659.,
FlLog 3 chart
IStart System......]
ed Aug 09 15:02:13 EDT 2008 -4
Impart FilesfinalCha-1FF 1 sml B
ed Aug 08 16:02:38 EDT 2006 -\\:‘ W it
Flotting Change Propagation Probabilities for STAR - B com
L. = o e
Piotting size of Size of Change for STARUML... ol : g‘]’;
Plotting Corrective Initial Change Prabahility for STA ‘E' ™ E:hpwﬂ
LML ! W eni
Flotting Adaptive Initial Change Probability for STAR! E o seni
il o o o
Plotting Corrective Maintainability Risk for STARUML. g M 1y
EspressCl W twali
= H 1553
4 R i =) i a8 -
g = g 4 &om[ganeﬂt F:4 g 4
& H
=] =

Figure 83 Maintainability based risk for corrective maintenance

Model Based Risk Assessment Ph.D. Dissertation

123

9. Conclusion and Future Work

9 Conclusions and Future Work

In this dissertation, we present risk assessment estimation methodologies based on the architectural
models of the software system. These methodologies rely on quantitative assessment of non-functional
quality attributes rather that subjective predicators based on domain expert knowledge. These subjective
predictors are human intensive and error prone only. Moreover, there is a need to shift the emphasis of
metrics from design and code artifacts into new metrics that address the risk of making requirement
changes and improvements of the system. It is not easy to deal with these kinds of artifacts that relate to
requirements changes and perfective maintenance. Even though, it is beneficial to have early indicator of

future software problems. The deliverables of this dissertation as new contributions can be arranged into:
1. Reliability-based risk assessment:

e Used Error Propagation Probability in the reliability-based risk assessment to account for the
dependency among the system components. We conducted an analytical and an experimental
analysis of error propagation probabilities for a command and control system case study. Also,
we correlated the analytical and empirical results. Furthermore, we addressed the generalization
for the assumption of error occurrence independence in the components of the system by
accounting for error propagation among the components of the system on a number of case

studies.

e Generalized the reliability-based risk assessment to account for functional dependencies. In the
context of object-oriented Unified Modeling Language UML, we handled risk assessment with
use-case relationships. We first proposed a method which is used to estimate the risk factor of a
non-primitive use case related to a primitive use case by either <<extend>> or <<include>>
relationship. Then, we proposed an algorithm that allows us to estimate the use cases and system
risk factors from a general use case diagram that may include many different <<extend>> and
<<include>> relationships among use cases. Finally, we applied the generalized reliability-based
risk assessment methodology on an industrial case study. It should be emphasized that although
many papers used use cases for different type of quantitative analysis, to the best of our

knowledge, this is the first work which accounts for relationships between use cases.
2. Maintainability-based risk assessment:

¢ Introduced and defined maintainability-based risk, which assesses how difficult it is to maintain

the system in the future because of possible maintenance task, as a product of two factors: the

Model Based Risk Assessment 124 Ph.D. Dissertation

9. Conclusion and Future Work

probability of performing maintenance tasks and the impact of performing these tasks. We
investigated the maintainability risk of the system components, and the effect of performing the

maintenance tasks.

e Developed a general methodology for estimating the maintainability-based risk when considering
different types of maintenance that the software undergoes such as adaptive, corrective and
perfective maintenance. The proposed methodology depends on the architectural artifacts and
their evolution through the life cycle of the system. We applied the proposed methodology on

several case studies.

e Automated the estimation of the maintainability-based risk assessment methodology. We
presented the architecture of the Software Architecture Risk Assessment (SARA) tool. We
extended the functionality of the by providing support for more architectural models and different
perspective of risk assessment other than reliability-based risk, specifically maintainability based

risk assessment
The future work has the following aspects:

1. We plan to apply the generalized reliability-based risk assessment methodology presented in this

dissertation on other case studies.

2. To validate the maintainability-based risk assessment estimation methodology, we also intend to
apply methodology on other case studies/system architectures such as product lines and evaluate

the estimated risk against actual maintenance records.

a. We intend to mine history repositories of the open-source projects to analyze its change
data and use it to give insights about the maintainability risk of the systems. Then, we can
compare it with our estimation procedure results. Moreover, we can contact the
administrators of such projects to get a subjective assessment of the maintainability of the

components of the system.

b. We will execute additional controlled experiments and perform pre/post analysis of
software systems for different types of maintenance activities in a controlled and

managed environment.

c. We intend to further refine the model by using better estimators for the parameters. For
example to better estimate the maintenance impact, size of change parameter could be

weighted by the complexity of the component to capture the difficulty of finding and

Model Based Risk Assessment 125 Ph.D. Dissertation

9. Conclusion and Future Work

making changes. In that case, we assume that it is more difficult to find where changes
needed to be conducted and to perform these changes in a more complex component than
the case in a less complex one. Also, incorporating multi-step change propagation in the

model would get a better estimate for components maintainability-based risk.

3. In our risk assessment methodology, we used the structure of the system as an equivalent to the
architecture without considering the different architecture styles that could be adopted. For the
purpose of our analysis, we only need the control flow and component interactions. We need to
refine our methodologies to take into consideration the different styles of the software

architecture and how they would affect the risk factors estimation.

4. We aim to extend the Software Architecture Risk Assessment (SARA) tool so that it can account
for the changes in the system requirements and to support the generalized reliability-based risk

assessment methodology to account for the use-case relationships.

Model Based Risk Assessment 126 Ph.D. Dissertation

I. Glossary

l. Glossary

Abstraction: A model that summarizes the details of the subject it is representing.

Actor: External entities interacting with the design

Adaptive Change: A change made in order to adapt the system to changes in its data environment or
processing environment.

Change: The act, process, or result of being made different in some particular.

Class Associations: Relationships between classes, which can be aggregation, composition,
generalization, and dependency as specified in UML

Corrective Change: A change made in order to correct processing, performance, or implementation
failures of the system.

Dependency: In general, a dependency implies that the complete functioning of an element requires the
presence of another, which exists in the same level of abstraction or realization (i.e. pattern,
class, or subsystem level of abstraction).

Design Pattern: A design component composed of collaborating classes that are customized to solve a
general frequent-recurring design problem in a particular context.

Empirical: Capable of being verified or disproved by observation or experiment.

Environment: The totality of conditions and influences which act from outside upon an entity.

Evolution: A process of continuous change from a lower, simpler, or worse to a higher, more complex, or
better state.

Forward Engineering: The traditional software engineering approach starting with requirements analysis
and progressing to implementation of a system.

Framework: A set of ideas, conditions, or assumptions that determine how something will be
approached, perceived, or understood.

Impact Analysis: The determination of the major effects of a proposed project or change.

Maintainability: The ease with which maintenance can be carried out.

Maintenance Personnel: The individuals involved in maintaining a software product.

Maintenance Process: Any activity carried out, or action taken, either by a machine or maintenance
personnel during software maintenance.

Maintenance: The act of keeping an entity in an existing state of repair efficiency, or validity; to preserve

from failure or decline

Model Based Risk Assessment 127 Ph.D. Dissertation

I. Glossary

Measurement: The process of empirical, objective encoding of some property of a selected class of
entities in a formal system of symbols so as to describe them.

Methodology: is a collection of methods applied across the software development life cycle and unified
by some general philosophical approach.

Metric: A criterion to determine the difference or distance between two entities, like the distance of a
query and a document in information system Retrieval systems.

Object Oriented Programming: computer programming in which code and data pertaining to a single
entity (object) are encapsulated, and communicate with the rest of the system via messages.

Operating Environment: All software and hardware systems that influence or act upon a software
product in any way.

Perfective Change: A change made in order to perfect the system in terms of its performance, processing
efficiency, or maintainability.

Preventive Change: A change made in order to prevent system problems before they occur.

Product: a concrete documentation or artifact created during a software project.

Program: Code components, at the source and object code level, such as modules, packages, procedures,
functions, routines, etc. Also commercial packages such as spreadsheets and databases.

Quality Assurance: The systematic monitoring and evaluation of aspects of a project, service or facility
to ensure that necessary standards of excellence are being met.

Reengineering: The process of examination and alteration whereby a system is altered by first reverse
engineering and then forward engineering

Restructuring: The transformation of a system from one representational from to another.

Reverse Engineering: The process of analyzing a subject system to:

- Identifying the system’s components and their interrelationships and
- Create representations of the system in another form or at higher levels of abstraction

Ripple Effect: Consequences of a action in one place, occurring elsewhere e.g. a stone dropped in a pond
resulting in waves/ ripples far from the point of impact.

Safety-Critical: A system where failure could result in death, injury or illness, major economics loss,
environmental or property damage.

Software Architecture of a program or computing system is the structure or structures of the system,
which comprise software elements the externally visible qualities of those elements, and the
relationships among them

Software Evolution: The tendency of software to change over time.

Model Based Risk Assessment 128 Ph.D. Dissertation

I. Glossary

Software Maintenance Framework: The context and environment in which software maintenance
activities are carried out.

Software Maintenance Tool: An artifact used to carry out automatically a function relevant to software
change.

Software: The programs, documentation and operating procedures by which computers can be made
useful to man.

Tool: Implement or device used to carry out functions automatically or manually.

UML: The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system. The UML offers a
standard way to write a system's blueprints, including conceptual things such as business
processes and system functions as well as concrete things such as programming language

statements, database schemas, and reusable software components.

Model Based Risk Assessment 129 Ph.D. Dissertation

II. Bibliography

Il. Bibliography
[Abdelmoez+ 2003] W. Abdelmoez, A. Hassan, A. Guedem, K. Goseva-Popstojanova, H. Ammar,
“Considering Use Case Dependencies in Architectural-Level Risk Analysis Based on UML

Specifications” Suppl. Proc. 14th International Symposium on Software Reliability Engineering
(ISSRE'03), November 17 - 20, 2003 Denver CO., pp. 323-324.

[Abdelmoez+ 2004A] W. Abdelmoez, D.M. Nassar, M. Shereshevsky, N. Gradetsky, R. Gunnalan, H.H.
Ammar, Bo Yu, A. Mili, “Error Propagation In Software Architectures”, Proc. 10th IEEE
International Software Metrics Symposium (METRICS 2004), Chicago, IL, September 2004.

[Abdelmoez+ 2004B] W. Abdelmoez, R. Gunnalan, M. Shereshevsky, H.H. Ammar, Bo Yu, M.
Korkmaz, A. Mili, “Software Architectures Change Propagation Tool (SACPT)”, Proc. 20th
IEEE International Conference on Software Maintenance (ICSM 2004), Chicago, IL, September
2004.

[Abdelmoez+ 2005A] W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H.H. Ammar, Bo Yu, S. Bogazzi,
M. Korkmaz, A. Mili, “Quantifying Software Architectures: An Analysis of Change Propagation
Probabilities”, ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA 05), Cairo, Egypt, January 3-6, 2005.

[Abdelmoez+ 2005B] W. AbdelMoez, 1. Shaik, R. Gunnalan, M. Shereshevsky, K. Goseva-Popstojanova,
H.H. Ammar, A. Mili, C. Fuhrman, “Architectural level Maintainability Based Risk Assessment”,
Proc. of poster papers in IEEE International Conference on Software Maintenance (ICSM 2005),
Budapest, Hungray, September 25-30,2005.

[Abdelmoez+ 2006A] W. Abdelmoez, K. Goseva-Popstojanova, H.H. Ammar,” Methodology for
Maintainability-Based Risk Assessment”, Proc. of the 52nd Annual Reliability & Maintainability
Symposium (RAMS 2006), Newport Beach, Ca., January 23-26, 2006.

[Abdelmoez+ 2006B] W AbdelMoez, K. Goseva-Popstojanova, H.H. Ammar, “Maintainability-Based
Risk Assessment in Adaptive Maintenance Context”, Proc. of the 2nd PRedictOr Models In
Software Engineering (PROMISE 2006) workshop, Philadelphia, Pa. USA, September 24, 2006.

[Abdelmoez+ 2006C] W. AbdelMoez, K. Goseva-Popstojanova, H. Ammar, “Using Maintainability

Based Risk Assessment and Severity Analysis in Prioritizing Corrective Maintenance Tasks”,

Model Based Risk Assessment 130 Ph.D. Dissertation

II. Bibliography

Suppl. Proc. 17th International Symposium on Software Reliability Engineering (ISSRE'06),
Raleigh, NC., November 7-10, 2006.

[Alexander 1979] Alexander, C., "The Timeless Way of Building", Oxford University Press, 1979.

[Alexander+ 1977] Alexander, C., S. Inshikawa, M. Silverstiein, M. Jacobson, I. Fiksdahl-king, and S.
Angel. “A Pattern Language”, Oxford University Press, New York, 1977.

[Ammar+ 2001] H. Ammar, S. M. Yacoub, A. Ibrahim, “A Fault Model for Fault Injection Analysis of
Dynamic UML Specifications,” International Symposium on Software Reliability Engineering,

IEEE Computer Society, November 2001.

[Anderson+ 2002] S. Anderson, M. Felici, “Quantitative Aspects of Requirements Evolution”. In
Proceedings of the 26th Annual International Conference on Computer Software and
Applications Conference, COMPSAC 2002, Oxford, England, 26-29th August 2002, IEEE
Computer Society, pp. 27-32.

[Armour+ 2001] F. Armour and G. Miller, Advanced Use Case Modeling, Addison-Wesley, 2001.
[Baude 2003] E. Baude, “Software Design: From Programming to Architecture”, Wiley, 2003.

[Beck+ 1994] Beck, K., R. Johnson, "Patterns Generate Architectures" ECOOP'94, LNCS 821, pp139-
149.

[Beck+ 1996] Kent Beck, James Coplien, Ron Crocker, Lutz Dominick, Gerard Meszaros, Frances
Paulisch, John M. Vlissides: Industrial Experience with Design Patterns. ICSE 1996: 103-11

[Bohner+ 1996] Bohner, S.A., Arnold, R.S. Software Change Impact Analysis. IEEE Computer Society
Press, Los Alamitos, CA, 1996.

[Booch+1999] Grady Booch, Jim Rumbaugh, and Ivar Jacobson, "The Unified Modeling Language User
Guide", ISBN: 0-201-57168-4, Addison Wesley, est. publication December 1997.

[Borg] Source Forge Project: BORG Calendar http://sourceforge.net/projects/borg-calendar/

[Bosch+ 2001] J. Bosch and P. Bengtsson, “Assessing Optimal Software Architecture Maintainability”,
Proc. of fifth European Conference on Software Maintenance and Reengineering, Lisbon,

Portugal, March 2001.

[Bowles 1998] J. Bowles, “The New SEA FMECA Standard”, Proc.1998 Annual Reliability and
Maintainability Symp. (RAMS 1998), Anaheim, California, 1998, pp. 48-53.

Model Based Risk Assessment 131 Ph.D. Dissertation

II. Bibliography

[Briand+ 1999A] Briand L., Wust J, Ikonomomovski S. and Lounis H, “Investigating Quality Factors in
Object Oriented Designs: An Industrial Case Study,” Proc. of the 1999 International Conference
on Software Engineering, Los Angeles, May 16-22, 1999,pp 345-354.

[Briand+ 1999B] Briand L., J. Wuest, H. Lounis, "Using Coupling Measurement for Impact Analysis in
Object-Oriented System", IEEE International Conference on Software Maintenance (ICSM),
1999, Oxford, UK.

[Briand+ 2003] Briand L., Labiche Y., O'Sullivan, “Impact Analysis and Change Management of UML
Models”, IEEE International Conference on Software Maintenance (ICSM) 2003.

[Burch+ 1997] Burch E. and H. Kung, “Modeling Software Maintenance Requests: A Case Study,” Proc.
IEEE Int’1 Conf. Software Maintenance, pp. 40-47, 1997

[Buschmann+ 1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal, "Pattern-Oriented Software Architecture - A Pattern System", Addison-Wesley, 1996.
[Canning 1972] Canning RG, “That maintenance iceberg”, EDP Analyzer 1972,(10):1-14.

[Cantone+ 2004] G. Cantone, D. Pace, G. Calavaro, “Applying Function Point to Unified Modeling
Language: Conversion Model and Pilot Study”, Proc. of 10th International Symposium on

(METRICS'04), September 11 - 17, 2004, Chicago, Illinois, pp.280-291.

[Card+ 1990] Card, D.N. and Glass R.L., Measuring Software Design Quality, Prentice Hall, Englewood
Cliffs, New Jersey,1990.

[Chapin 2000] Chapin N., “Do we know what preventive maintenance is?”, In Proceedings International

Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA, 2000.

[Cheung 1980] Cheung R. C., “A User-Oriented Software Reliability Model”, IEEE Transactions on
Software Engineering, Vol.6, No.2, 1980, pp. 118-125.

[Chidamber+ 1994] Chidamber S.M and Kemerer C.F, “A Metrics Suite for Object Oriented Design,”
IEEE Transactions on Software Engineering, Jun 1994, pp 476-493.

[Clarkson+ 2000] Clarkson, P.J., Simons, C. and Eckert, C.M., “Change propagation in the design of
complex products”, in Engineering Design Conference (EDC2000), Brunel University,
Uxbridge,2000, 563-570

[Clarkson+ 2001] Clarkson, P.J., Simons, C. and Eckert, C.M., “Predicting change propagation in

complex design”, Proceedings 13th International Conference on Design Theory and Methodology

Model Based Risk Assessment 132 Ph.D. Dissertation

II. Bibliography

(DETC'01), ASME Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Pittsburgh, Pennsylvania, USA, 2001.

[Cohen+ 2000] Cohen T., Navthe, S. and Fulton, R. E.,“C-FAR, change favorable representation”,
Computer-Aided Design 32: 321-38, 2000.

[Costello 2005] Costello K., Software Integrity Level Assessment Process (SILAP), NASA V&V
Facility, 2005.

[Cunningham 1994] Cunningham, W., "The CHECKS Pattern Language of Information Integrity", in
Proceedings of Pattern Languages of Program PLoP'94

[Douglass 1998] Douglass B., Real-Time UML: Developing Efficient Objects for Embedded Systems,
Addison-Wesley, 1998.

[Eppinger+ 1994] Eppinger, S. D., Whitney, D. E., Smith, R. P. and Gebala, D. A.,A Model-based
Method for Organizing Tasks in Product Development”, Research in Engineering Design 6(1):1-
13,1994.

[Fanta+ 1998] Fanta, R., Rajlich, V. Reengineering an Object Oriented Code. In Proceedings of IEEE

International Conference on Software Maintenance,1998, IEEE Computer Society Press, 238-246

[Fenton+ 1996] Fenton, N.E. and Pfleeger, S.L., Software Metrics, 2™ edition, Thomson Publishing Inc.,
1996.

[Fenton+ 2000] Fenton, N.E. and Ohlsson, N., “ Quantitative Analysis of Faults and Failures in a
Complex Software System”, IEEE Trans Software Engineering, Vol. 26, No. 8, pp. 797-814.

[Fowler+ 1999] Fowler M. and Beck K, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[Gamma 1991] E. Gamma, "Objectorientierte Software-Entwicklung am Beispiel von ET++"
Klassenbibliothek, Werkseuge, Design, Dissertation, Universitat Zurich, 1991 (Translated as
"Object-oriented software development with examples from ET++: class library, tool, and

design").

[Gamma+ 1995] E. Gamma, R. Helm, R. Johnson and J. Vlissides, "Design Patterns: Elements of
Object-Oriented Software", Addison-Wesley, 1995.

Model Based Risk Assessment 133 Ph.D. Dissertation

II. Bibliography

[Gefen+ 1996] Gefen D. and S.L. Scheberger, “The NonHomogeneous Maintenance Periods: A Case
Study of Software Modifications,” Proc. 1996 Int’l Conf. Software Maintenance (ICSM ’96), pp.
134-141, 1996.

[Gill+ 1991] G.K. Gill, C.F. Kemerer, “Cyclomatic Complexity Density and Software Maintenance
Productivity,” IEEE Trans. Software Eng., Vol.17,No. 12, pp. 1284-1288, 1991.

[Goseva-Popstojanova+2001] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture Based Approach
to Reliability Assessment of Software Systems”, Performance Evaluation, Vol. 45, No. 2-3, 2001,
pp- 179-204.

[Goseva-Popstojanova+2003] K. Goseva-Popstojanova , A. Hassan, A. Guedem, W. Abdelmoez, D.
Nassar, H. Ammar, A. Mili, “Architectural-Level Risk Analysis using UML”, IEEE Trans.
Software Engineering, Vol. 29, No.10, October 2003, pp. 946-960 .

[Grady 1994]. R.B. Grady, “Successfully Applying Software Metrics,” IEEE Computer, Vol. 27, No. 9,
September 1994, pp. 18 - 25.

[Grady+ 1987] R.B. Grady and D.L. Caswell, Software Metrics: Establishing a Company-Wide Program,
Prentice Hall, Englewood Cliffs, New Jersey, 1987.

[Guedem 2004] Guedem A. R., “Software Architectural Risk Assessment”, Master's Thesis, West

Virginia University, 2004.

[Halstead 1977] Halstead, Maurice H., “Elements of Software Science”, Operating, and Programming
Systems Series, Volume 7. New York, NY: Elsevier, 1977.

[Harel88] David Harel, "On Visual Formalism", Communications of the ACM, Vol 31, No 5, May 1988

[Hassan 2004] A. Hassan, “Architectural Level Risk Assessment”, Dissertation, West Virginia
University, 2004.

[Hassan+ 2001] A. Hassan, W. Abdelmoez, R. Elnaggar, and H. Ammar, “An Approach to Measure the
Quality of Software Designs from UML Specifications”, Proc. 5th World Multi-Conference on
Systems, Cybernetics and Informatics and the 7th Int’l Conf. Information Systems, Analysis and

Synthesis, July. 2001, Vol. IV, pp 559-564.

[Hassan+ 2004] A. Hassan and Richard C. Holt, “Predicting Change Propagation in Software Systems”,
in proceedings of International Conference on Software Maintenance (ICSM) 2004, Chicago,

Mlinois, USA, September 11-17, 2004

Model Based Risk Assessment 134 Ph.D. Dissertation

II. Bibliography

[Hawkins+ 2002] R. D. Hawkins and J. A. McDermid. “Performing Hazard and Safety Analysis of
Object Oriented Systems”, Proc. 20th International System Safety Conference (ISSC),
2002,Denver, CO.

[Hiller+ 2001] M. Hiller, A. Jhumka, and N. Suri, “An Approach for Analyzing the Propagation of Data
Errors in Software,” Dependable Systems and Networks, pp. 161 -170, 2001.
[Houmb+ 2002] S. Houmb, F. den Braber, M. S. Lund and K. Stolen, “Towards a UML Profile for

Model-based Risk Assessment”, Proc. UML'2002, Satellite Workshop on Critical Systems
Development with UML, September 30 - October 4, 2002, Dresden, Germany, pp.79-92.

[IEEE 1990] IEEE Standard Glossary of Software Engineering Terminology, The Institute of Electrical

and Electronics Engineers, Inc., New York, 1990.

[IEEE 1998] IEEE Standard for Software Maintenance, The Institute of Electrical and Electronics
Engineers, Inc., New York, 1998.

[IEEE Std 982.1] IEEE Std 982.1- IEEE Standard Dictionary of Measures to Produce Reliable Software.

[Jacobson+ 1992] Jacobson, L., Christerson, M., Jonsson, P., and Overgaard, G., "Object Oriented
Software Engineering", Workingham, England: Addison-Wesley 1992.

[JavaUnderstand] Java Understand http://www.scitools.com/uj.html

[Johannessen+ 2001] Johannessen P., Grante C., Alminger A. and Torin U. E. J., “Hazard Analysis in
Object Oriented Design of Dependable Systems”, Proceeding of the 2001 Int’] Conference on
Dependable Systems and Networks, Goteborg, Sweden, July 2001, pp 507-512.

[Kafura+ 1987] Kafura, D.; Reddy, G.R., “The Use of Software Complexity Metrics in Software
Maintenance”, IEEE Transactions on Software Engineering, Vol. 13, No. 3, 1987, pp. 335-343

[Kerievsky 2004] Kerievsky J., Refactoring to Patterns, Addison-Wesley, 2004.

[Lazowska 1984] Lazowska E., Quantitative System Performance: Computer System Analysis Using

Queuing Network Models, Prentice Hall, 1984.

[Lientz+ 1980] Lientz BP and Swanson EB, “Software Maintenance Management”, Addison-Wesley
Publishing Co.: Reading MA, 1980; 214 pp.

[McCabe 1976] T. J. McCabe, "A complexity measure," IEEE Trans. Software Eng., vol. SE-2, pp. 308-
320, 1976.

Model Based Risk Assessment 135 Ph.D. Dissertation

II. Bibliography

[Menzies+ 2000] Menzies T. and Cukic B., “Maintaining maintainability = recognizing reachability”, In
International Workshop on Empirical Studies of Software Maintenance (WESS 2000), October
14, San Jose CA, 2000.

[Michael+1997] Michael C. C., and Jones R. C., "On the Uniformity of Error Propagation in Software,"
Proc. of the 12th Annual Conference on Computer Assurance (COMPASS'97), pp. 68-76, 1997.

[MIL_STD_1629A] Procedures for Performing Failure Mode Effects and Criticality Analysis, US
MIL_STD_1629 Nov. 1974, US MIL_STD_1629A Nov. 1980, US MIL_STD_1629A/Notice 2,
Nov. 1984.

[Mira 2001] Mira Kajko-Mattsson, “Can We Learn Anything from Hardware Preventive Maintenance?”,
Proceedings of the Seventh International Conference on Engineering of Complex Computer

Systems (ICECCS’01), 2001.

[Moore+ 2003] D.S. Moore and G.P.McCabe, “Introduction to the practice of statistics”, W.H. Freeman
and Company, 4th edition ,2003.

[Munson+ 1996] J. Munson and T. Khoshgoftaar, “Sotware Metrics for Reliability Assessment,”
Handbook of Software Reliability Eng., M. Lyu, ed., 1996, pp. 493-529

[NASA 1997] NASA-STD-8719.13A,“Software Safety NASA Technical Standard”, 1997.
http://satc.gsfc.nasa.gov/assure/nss8719 13.html

[NASA MDP] Metrics Data Program, NASA IV&V Facility http://mdp.ivv.nasa.gov/

[Oman 1991] Oman, P. HP-MAS: A Tool for Software Maintainability, Software Engineering (#91-08-
TR). Moscow, ID: Test Laboratory, University of Idaho, 1991.

[Oman+ 1992] Oman, P. & Hagemeister, J. Construction and Validation of Polynomials for Predicting
Software Maintainability (92-01TR). Moscow, ID: Software Engineering Test Lab, University of
Idaho, 1992.

[Oman+ 1994] P. Oman, J. Hagemeister, "Constructing and Testing of Polynomials Predicting Software
Maintainability", Journal of Systems and Software 24, 3 (March 1994), pp. 251-266.

[OMG 2001] Revision Task Force. OMG Unified Modeling Language Specification, Version 1.4.
Technical report, Object Management Group (OMG), 2001. OMG document formal/01-09-67.
http://www.uml.org/

Model Based Risk Assessment 136 Ph.D. Dissertation

II. Bibliography

[OMG 2005] Object Management Group (OMG), “Unified Modeling Language: Superstructure, version
2.0- Final Adopted Specification”, OMG document formal/ 05-07-04, Available at:
http://www.omg.org/cgi-bin/doc?formal/05-07-04. August 2005.

[OMG UML Profile] UML Profile for Schedulability, Performance, and Time, ptc/02-03-02, OMG
Adopted Specification, http://www.omg.org.

[Paivi+ 2002] Piivi Kallio and Tuomas Thme, “Evolution of the Use and Risks of Commercial Software

Components”, Proceedings of the 28" Euromicro Conference (EUROMICRO’02), 2002.

[Papadopoulos+ 1999] Papadopoulos Y. and McDermid J. A., “Hierarchically Performed Hazard Origin
and Propagation Studies”, Proceedings of SAFECOMP °99, 18th International Conference on
Computer Safety, Reliability and Security, Toulouse France, Lecture Notes in Computer Science,

1698, Springer Verlag, 1999, pp.139-152.

[Papapanagiotakis +1994] Papapanagiotakis G. and Breuer P., “A software maintenance management
model based on queueing networks”, Journal of Software Maintenance - Research and Practice,

vol. 6, no. 1, pp. 73-97, 1994.

[Pelanek 2004] Pelanek R., “Typical Structural Properties of State Spaces”, in Proc. of 11th International
SPIN Workshop on Model Checking of Softwar, April 1-3, Barcelona, Spain, 2004.

[Pigoski 1996] T.M. Pigoski, Practical Software Maintenance: Best Practices for Managing Your

Software Investment, John Wiley & sons, 1996.

[Popic+ 2005] Popic, P. Desovski, D. Abdelmoez, W. Cukic, B., “Error Propagation in the Reliability
Analysis of Component Based Systems”, Proc. of 16th IEEE International Symposium on

Software Reliability Engineering ISSRE 2005, Chicago, Illinois., 8-11 Nov.,2005,pp. 53-62

[Pumfrey 1999] Pumfrey D. J., “The Principled Design of Computer System Safety Analyses”, PhD
thesis, University of York, Department of Computer Science, September 1999.

[Rajlich 2000] Rajlich, V., “Modeling software evolution by evolving interoperation graphs”, Annals of
Software Engineering 9: 235-248,2000.

[Rajlich+ 2000] Rajlich, V.T., Bennett, K.H. The staged model of the software lifecycle. IEEE Computer,
July 2000, 66-71.

[Rajlich+ 2002] Rajlich, V., Prashant G., A Case Study of Unanticipated Incremental Change, In
Proceedings of IEEE International Conference on Software Maintenance, 2002, IEEE Computer
Society, 2002, 442 — 451.

Model Based Risk Assessment 137 Ph.D. Dissertation

II. Bibliography

[Rajlich+ 2004] Rajlich, V., Prashant G., “Incremental Change in Object-Oriented Programming ” IEEE
Software, July/August 2004, Vol. 21, No. 4, pp.62-69

[Rational Rose RT] Rational Rose Real-Time.

http://www.rational.com/products/rosert/index.jtmpl

[Rombach 1987] Rombach, H.D., “A Controlled Experiment on the Impact of Software Structure on
Maintainability”, IEEE Transactions on Software Engineering, Vol. 13, No.3, 1987, pp. 344-354.

[Rumbaugh+ 1997] Jim Rumbaugh, Ivar Jacobson, and Grady Booch, "Unified Modeling Language
Reference Manual", ISBN: 0-201-30998-X, Addison Wesley, est. publication December 1997.

[Schach+ 2000] Schach, S. R. and Tomer, A.,“A maintenance-oriented approach to software

construction”, Journal of Software Maintenance-Research and Practice 12(1): 25-45,2000.

[SEI 2005] http://www.sei.cmu.edu/architecture/sw_architecture.html Software Architecture for

Software-Intensive Systems (last visited November 2005)

[Shaik 2006] 1. Shaik , W. AbdelMoez, R. Gunnalan, M. Shereshevsky, A. Zeid, H.H. Ammar, A. Mili,
C. Fuhrman, “Using Change Propagation Probabilities to Assess Quality Attributes of Software
Architectures” , Proc. of The 4th ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA-06), Dubai/Sharjah, UAE, March 8-11, 2006.

[Shaw 1995] Shaw M., “Architectural issues in software reuse: It's not just the functionality, it's the
packaging”, In Proceedings Symposium on Software Reusability, Seattle, WA, April 1995.

Association for Computing Machinery.

[Sheik 2006] Sheik K, AbdelMoez W., Ammar H., “Software Architecture Risk Assessment (SARA)
Tool”, Suppl. Proc. 17th International Symposium on Software Reliability Engineering
(ISSRE'06), Raleigh, NC., November 7-10, 2006

[Sherer 1997] Sherer S., “Using Risk Analysis to Manage Software Maintenance,” Software
Maintenance: Research and Practice, Vol. 9, 345-364, 1997.

[Singh+ 2001] H. Singh, V. Cortellessa, B. Cukic, E. Gunel and V. Bharadwaj, “A Bayesian Approach to
Reliability Prediction and Assessment of Component Based Systems”, Proc. 12th International

Symposium on Software Reliability Engineering (ISSRE'01), 2001, Hong Kong, China, pp. 12-21.

[Smith 1990] Smith, C.U. , Performance Engineering of Software Systems, SEI Series in Software
Engineering, Addison-Wesley, Readings, Mass. 1990.

Model Based Risk Assessment 138 Ph.D. Dissertation

II. Bibliography
[Smith+ 2002] Smith, C.U. and Williams L.G., Performance Solutions: A Practical Guide To Creating
Responsive, Scalable Software, Addison-Wesley, 2002.

[Stark+ 1994] Stark G.E., Kern L.C., and C.V. Vowell, “A Software Metric Set for Program Maintenance
Management”, Journal of Systems and Software, 1994, pp. 239-249.

[StarUML] StarUML - The Open Source UML/MDA Platform http://staruml.sourceforge.net/en/

[Steward 1981] Steward, D. V., “The Design Structure System: A Method for Managing the Design of
Complex Systems”, IEEE Transactions on Engineering Management, EM-28 (3),1981.

[Sundararajan 1991] C. Sundararajan, Guide to Reliability Engineering, Data, Analysis, Applications,

Implementation, and Management, Van Nostrand Reinhold, New York, 1991.

[Swanson 1976] Swanson EB, “The dimensions of maintenance”, In Proceedings 2nd International
Conference on Software Engineering. IEEE Computer Society Press: Long Beach CA, 1976;
492-497.

[Tan+ 2005] Tan Y. and V. S. Mookerjee, “Comparing Uniform and Flexible Policies for Software
Maintenance and Replacement”, IEEE Trans. Software Eng, Vol. 31, No. 3, 2005, pp. 238 - 255.

[Trivedi 2002] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science
Applications, 2nd ed., John Wiley & Sons, 2002.

[Tsantalis+ 2005] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, "Predicting the Probability of Change

in Object-Oriented Systems," IEEE Transactions on Software Engineering, vol. 31, no. 7, pp.

601-614, Jul., 2005.

[UML 2005] Unified Modeling Language OMG Resource Page http://www.uml.org/ (last visited
November 2005)

[Voas 1997] J. Voas, “Error propagation analysis for COTS system,” Journal of Computing & Control
Engineering, vol. 8, no. 6, pp. 269 272, Dec. 1997.

[Wang 2003] Wang T., “Architecture-level Risk Assessment Tool Based on UML Specification”,
Master's Thesis, West Virginia University, 2003.

[Wang+ 2003] T. Wang, A. Hassan, A. Guedem, W. Abdelmoez, K. Goseva-Popstojanova, H. Ammar,
“Architectural Level Risk Assessment Tool Based on UML Specifications”, 25th International

Conference on Software Engineering, Portland, Oregon, 2003.

Model Based Risk Assessment 139 Ph.D. Dissertation

II. Bibliography

[Welker+ 1995] Welker, Kurt D. & Oman, Paul W. "Software Maintainability Metrics Models in
Practice." Crosstalk, Journal of Defense Software Engineering 8, 11 (November/December 1995):

19-23.

[William+ 2002] William C. Chu, Chih-Wei Lu, Chih-Hung Chang, Yeh-Ching Chung, Yueh-Min Huang
and Baowen Xu, “Software Maintainability Improvement: Integrating Standards and Models”,
Proceedings of the 26" Annual International Computer Software and Applications Conference

(COMPSAC’02), Oxford, England, 26-29 August 2002.

[Yacoub 1999] Yacoub S., “Pattern-Oriented Analysis and Design (POAD): A Methodology for Software

Development”, Dissertation, West Virginia University, 1999.

[Yacoub+ 1999] S. Yacoub, H. Ammar, and T. Robinson, “Dynamic Metrics for Object-Oriented
Designs”, Proc. 6th Int’l Symp. Software Metrics (Metrics’99), Boca Raton, Florida, 1999, pp 50-
61.

[Yacoub+ 2000] S. Yacoub, T. Robinson, and H. Ammar, “A Matrix-Based Approach to Measure
Coupling in Object-Oriented Designs", Journal of Object Oriented Programming, vol. 13, no. 7,
Nov. 2000, pp. 8-19.

[Yacoub+ 2002] S. Yacoub and H. Ammar, “A Methodology for Architectural-Level Reliability Risk
Analysis,” IEEE Trans. Software Eng, Vol. 28, No. 6, June 2002, pp. 529-547.

Model Based Risk Assessment 140 Ph.D. Dissertation

III. Appendix I: Case Studies

lll. Appendix | : Case Studies

A. Command and Control System Case Study

This case study is a command and control system used in a mission-critical application. We present
only the analysis of the Internal Thermal Control subsystem. This subsystem is responsible for providing
overall management of pumps, as well as performing the necessary monitoring and responding to sensors
data. Also, it is responsible for performing automated startup, and controlling the Internal Thermal
Control subsystem reconfigurations. During each execution cycle, incoming commands are checked and
validated. A failure recovery system detects failure conditions, such as combinations of Pump failures and

Shutoff Valve failures, and performs recovery operations in response to detected failures.

The software architecture of this system is shown in Figure 84. The use case diagram of the Internal
Thermal Control subsystem is shown in Figure 85. It consists of 5 actors and 11 use cases. Five use cases
are named for mode setting (Setting_1, Setting_2, Setting_3, Setting_4, and
Setting_5) and three use cases are named for pump activation retry (Pump_1_Retry,
Pump_2_Retry, and Retry_Both_Pumps). These use cases are examples of primitive use
cases. The Failure_Recovery, Monitoring, and Mode_setting use cases are examples of non-
primitive use cases. Monitoring and Mode_setting use cases are also terminal use cases since they
are connected directly to actors. Figure 86 to Figure 93 show hierarchal state diagrams for the

components of the system. Further details about the system are given in [Hassan 2004].

/C7
/ C9
\ / /C4
/ C6 I !
/C1 jc2 = /C8
/ C5

/ C10

Figure 84 Software architecture of the system.

Model Based Risk Assessment 141 Ph.D. Dissertation

III. Appendix I: Case Studies

<<exlend>>/ P 7 g
=T P Mode_setting Monitoring
- <<extfrp5> 7’ /:\ P} N
S ——— g i) <<eXtend>> <gextend>>
~,- -~ _<<extenqi>> \ H _
Setting_1 Rkl I _ ss4en®> Ratry Both_ Pumps

e e <<extand>> (Bt TSN <
e)/ ! \\ -
e / <<extendons - — ==\ "7 T T <~ ~ sgexend>>
. e lme—mm T \ -7 : RN
- 7 | «<extend>> -~~~ Failure_Recovery =<
F<extend>> (- \<extena$
/ - N A A

Settin972 / T - :' /,’ <\ <<ext9ﬁd>> \\i<extend>> RJ”D_z_Retfy
O ! e - \\ // \\
| P \ 1
< N 7
Setting_3 Q O O
- Pump_1_Retry
Setting_4 Setting_5

Figure 85 Use case diagram of the Internal Thermal Control subsystem

Reconfiguring (Failure‘ \

Figure 86 Top-level state diagram of Component C1

Model Based Risk Assessment 142 Ph.D. Dissertation

III. Appendix I: Case Studies

D DalLT Fild Dual MTFailed M Cedcor Command
Riconfigure_Dual Recontigure_Dual Dual_Tans
Pual_MT_Failed
r Dual_MT_Failed
Dual
@ ow
i Configure_Dual
Initial [Check command Pual_LT_Failed
Cperational p Dual_LT_Failed
Configure_Single configure_failed
Recfnfigure_Single
Reconfigure_Single
> led
Check for_Qmmand Check for_Pommand

? 2

MT T Feconfigus, Dual Feconigure_Single

Figure 87 First-level state diagrams of Component C1

/ — \ SFOAT Qpan Purp Sefting SFCAMT Close LT Full Sucoessful_Parameters Settings x
up._ Sop
sreauT_Coee [~ | o } } } } }
SFOALT Open PPALT Saip [] Trans to_Dual MT._Failed
Dual_MT_Failed
sron aear it [
Cofour Srgle ol _Pammeters Setings
iisa_srge
carigure failed
rigre e
rod
DAl
wr
Trans to_Dual LT Failed
Dual LT Failed
O
Dug .
Reconfigure_Single
Recorfigue Singe
Dual
Feoonfigure Dl
Reconfigure_Dual
Dual_|

\. J \. J

Figure 88 Second-level state diagrams of Component C1

Model Based Risk Assessment 143 Ph.D. Dissertation

III. Appendix I: Case Studies

Change W

-

Checking_Status

SFCA,LT,§ %FCA_LT_R} \

-

Single_Mode
Both_Valves_Failed
Initial LT LT F
StandBy1 pi i Total_Failure

Y Inifial_Single Failed ailure_Recovered_Single =

VA LT_R
StandBy StandBy3 f LT _and_MT_Failed_PUMP_RETRY Failure_Persst E
=
- Trans Single @
Trans_Dual
Failuré_Recovered_Dual
ailed v
ailed
StandBy > e
LT_ahd_SF | MT_F
Y
Dual_Mode Both_Valves Failed
Retry_Success -
MT_R
Retry_Failure -

Change -

e S

*SFCAiMTiF l

Figure 89 Top-level state diagram of Component C2

LT_agd SFOAMT_Falled

LT_and SFOWT._Feiled Singe

PPAT_F SFOMT_F SFOALT O

LT o

[SFOMMT_Failed
LT ard SFOMMT_Failed Dl

0

QpenSwitch Qowe Switch LT Purmp_ Fety . PRty

Falre_ Fecowered Sirgle

;,_!G Cpen SWtch Cloe Swich MT_Rup Rty

S i T Falled MT_and SFCALT Faled Singe

Failure_Perig

LT fnd MT_Failed

LT_ard MT_Faled Siglel
LT_and MT_Failed Dl

-0
L} ad MT_Failed

Failure_Recovered Dl

\enves Failed
Bith Vehves Falled Dl

Figure 90 First-level state diagrams of Component C2

Initial

I
Operating
New_Motor_Speed fo%e)
0
Startup Shutdown

Vv
Shutdown
-0

(fal jnital_o

Pump_Retry
-0

Fail

~

N

J

Initial
Operational
-0
Failure
Retry_Pump
Failed
O

%{down

Figure 91 State diagrams of Components C3 and C4

Model Based Risk Assessment

144

Ph.D. Dissertation

III. Appendix I: Case Studies

(

.

Initial
Operational
O
|
Operate Fail
Inhibit
Y
Clear_Inhibit ‘ Failure ‘
-0
Open_Shutoff_Valve Arm_Close_Shutoff_Valve Confirm_Close_Shutoff_Valve

Y Y _/

Figure 92 State diagrams of Components C5 and C6

ITCS_Command_in_Q
O
Non_ITCS_Command_in_Q
-0

N (e -
._

Switch_Close
-0

Switch_Open
-O

a) Component C7

b) Component C8

Processing_Cycle

_1HZ_Processing

hitial

Waiting
-0

Idle_Standby

=0

Standh

Qperate
Y

Operational
O

AN

a) Component C9

b) Component C10

Figure 93 State diagrams of Components C7, C8, C9 and C10

Model Based Risk Assessment

145

Ph.D. Dissertation

III. Appendix I: Case Studies

B. Pace Maker Case Study

A cardiac pacemaker [Douglass 1998] is an implanted device that assists cardiac functions when the
underlying pathologies make the intrinsic heartbeats low. An error in the software operation of the device
can cause loss of a patient’s life. This is an example of a critical real-time application. We use the UML
real-time notion to model the pacemaker. Figure 94 shows the components and connectors of the
pacemaker in the capsule diagram. The figure also shows the input/output port to the Heart as an external
component, as well as the two input ports to the Reed Switch and the Coil Driver components. A
pacemaker can be programmed to operate in one of the five operational modes depending on which part
of the heart is to be sensed and which part is to be paced. Next, we briefly describe the components of the

pacemaker system.

1 Reed_Switch (RS): A magnetically activated switch that must be closed before programming the

device. The switch is used to avoid accidental programming by electric noise.

2 Coil_Driver (CD): Receives/sends pulses from/to the programmer. These pulses are counted and then
interpreted as a bit of value zero or one. The bits are then grouped into bytes and sent to the
Communication Gnome. Positive and negative acknowledgments, as well as programming bits, are
sent back to the programmer to confirm whether the device has been correctly programmed and the

commands are validated.

+/magnet

fREED_SWITCH
[+ ! commEnable_G~
b+ i magnet
+/ commEnable_t

+ i commEnableCail

f COMBUNICATION_GNOME

+/{coilComme~ + ¢ commChamber_A +/commChamber_W
- =

it
+ i commEnablaCoil

COIL_DRIVER geieciicenm o +iYencommChambem

+f AfrialcommChambe m
l—‘"-” ER9ED e TATRIAL_MODEL

+ [atrialVentricular ¥

{WENTRICULAR

+ / atrialVentriculam

+f Obgeniedtr +/hears +{ Observeten~ +/ heart~
E—

+/ pogramming

p—
L L

+ i obzenvationm +{ heart~

Figure 94 The architecture of the pacemaker example

Model Based Risk Assessment 146 Ph.D. Dissertation

III. Appendix I: Case Studies

3 Communication_Gnome (CG): Receives bytes from the Coil Driver, verifies these bytes as
commands, and sends the commands to the Ventricular and Atrial models. It sends the positive and

negative acknowledgments to the Coil Driver to verify command processing.

4 Ventricular_Model (VT) and Atrial_Model (AR): These two components are similar in operation.
They both could pace the heart and/or sense the heartbeats. Once the pacemaker is programmed the
magnet is removed from the RS. The AR and VT communicate together without further intervention.

Only battery decay or some medical maintenance reasons may force reprogramming.

The pacemaker runs in either a programming mode or in one of five operational modes. During
programming, the programmer specifies the operation mode in which the device will work. The operation
mode depends on whether the atrial, ventricular, or both are being monitored or paced. The programmer
also specifies whether the pacing is inhibited, triggered, or dual. For example, in the AVI operation mode,
the atrial portion of the heart is paced (shocked), the ventricular portion of the heart is sensed (monitored),

and the atrial is only paced when a ventricular sense does not occur (inhibited mode).

The use case diagram of the pacemaker application is given in Figure 95. It presents the six use cases
and the two actors: doctor programmer and patient’s heart. Each use case in Figure 95 is realized by at
least one sequence diagram (i.e., scenario). For the pacemaker example, according to [Douglass 1998] the
inhibit modes are more frequently used than the triggered mode. Also, the programming mode is executed
significantly less frequently than the regular usage of the pacemaker in any of its operational modes. For

further details about the case study check [Yacoub 1999] and [Hassan 2004].

=

DoctorsProgramer

Programming g)
Mode
Programming

Operating_in_AVI Operating_in_ AAI ~ Operating_in_ AAT Operating_in_ VVI Operating_in_ VVT

Modes

N

PatientsHeart

Figure 95 Use case diagram of the pacemaker

Model Based Risk Assessment 147 Ph.D. Dissertation

III. Appendix I: Case Studies
C. CM1 Case Study

CM1 is a case study from the Metrics Data Program [NASA MDP]. The CM1 is a software
component of a data processing unit used in an instrument, which exploits data to probe the early
universe. Rajesh, Tom and Nathan constructed this UML model [UML 2005] for the case study from the
artifacts provided. The functional requirements of CM1 are captured in the use case model, as shown in
Figure 96. The structure diagram of CM1 is shown in Figure 97. Sample sequence diagrams of data
transferring with compression and of heart beat are shown in Figure 98 and Figure 99. Figure 100 To

Figure 111 show hierarchal state diagrams for CM1 components.

J

Transfer

@\

\

RecwCmd

ChEound

X
X

CalcObservDrift
HeartB eat
Icy
Housekeeping

TimeSpnc

0

Figure 96 Use case diagram for CM 1

\

filstd

..

Figure 97 Structure diagram for CM 1

Model Based Risk Assessment 148 Ph.D. Dissertation

III. Appendix I: Case Stud

ies

1: doneRecy

dacuic SCUI

£ trnali : ThiaL

A dox: DCx 4 dpa: DFA i |CUI
H 2 dexEng : if compression is[s
B _ | :
- -
1 3 englane ; i
' L1 '
A :
i 4: dixEngDone i E
[J— l 5 icuUiEng '
< Comprezzing] E
' E: engDone '

==
=

7 dpaFindC h

4.1: dewCompress IillZI 3 dpaE ngineer
I::IZI 9: dpallpdateHk

ScuiSending

zendz periodicaly
untl gets responese

10 events

11: ready

17: dexEventin

[.

12 zcuiEng

G ettingE vent:

132 englone

until all zent [

14: zouiEngDone

Ready

l[---'-[

Feady

Figure 98 Sequence diagram Transfer,

£ zetup - Setup

Ready

1: Initial '

A oom: CCM

dicui 1CUI

4 ozzic 551

uninitialized

2 init5 s

uninitialized

uniniialized

4 initCem

3 nifoui

Iritialized

Model Based Risk Assessment

[

B icuiHBSend

Feady

Figure 99 Sequence diagram Heart Beat

149

]

[
TR v B I SR

CL

=

Ph.D. Dissertation

III. Appendix I: Case Studies

\ (niH k
®
v-
\ _/ \.
a) Top-level b) First-level

Figure 100 State diagrams of BIT Component

b) First-level

Figure 101 State diagrams of CCM Component

Model Based Risk Assessment 150 Ph.D. Dissertation

III. Appendix I: Case Studies

moreEvents

Figure 102 State diagrams of DCI Component

notN eeded

D etem ine S cen aro

a) Top-level

(. \ (hifk \
®
nik
V
Ready

sendHk

\- / \\ y,

b) First-level

Figure 103 State diagrams of DCX Component

Model Based Risk Assessment 151 Ph.D. Dissertation

III. Appendix I: Case Studies

Detem neScenard
[eze]
DummysState

a) Top-level

DiTrans@r

initia lize

ScuiSending

sendEvents

changeM ode

changeM ode

/U /A

(nicmd \ r nichBound \ 7 niH k
® ®
nicmd
niH k
\

sendH k

b) First-level

Figure 104 State diagrams of DPA Component

Model Based Risk Assessment

152

Ph.D. Dissertation

III. Appendix I: Case Studies

SendToScui

\f.

com pressD one

com pressD one \

(. configb ci

confyDone

getN um Events

doneRecv

hkNumLe f

C) Second-level

Figure 104 (continued) State diagrams of DPA Component

notN eeded

\

hithlze

Detem heScenarb

GO

J

a) Top-level

hitk

Ik
Y

Ready

-

b)First-level

Figure 105 State diagrams of EDAC Component

Model Based Risk Assessment

153

Ph.D. Dissertation

III. Appendix I: Case Studies

notN eeded

Determ neScenarb

a) Top-level

enqueue

N [

hiChBound

enqueue

(. ni¥Transfer \ Db \ (Py
in itia lize .
hitk
hiHb
modeReady v
Ready
done enqueue Ready
Enqueuing .
& J sendHb J k
b) First-level

Figure 106 State diagrams of ICUI Component

Model Based Risk Assessment

154

Ph.D. Dissertation

III. Appendix I: Case Studies

(

In itia 1

notN eeded

U ninidalized Determ ineS cenarbd

nitTransfer

Transfer

O

a) Top-level

(hiTmnsfer \

hiTmnsfer

‘nqueueD cx
G etthgEvents
‘ enqueueD pa

enqueD one

, engqueD one \

w rite

b) First-level

Figure 107 State diagrams of SCUI Component

Model Based Risk Assessment 155 Ph.D. Dissertation

III. Appendix I: Case Studies

f

MniT i eSync

in #tT in S ync

b) First-level

Figure 108 State diagrams of MIL 1553 Component

b) First-level

Figure 109 State diagrams of SSI Component

Model Based Risk Assessment 156 Ph.D. Dissertation

III. Appendix I: Case Studies

b) First-level

Figure 110 State diagrams of TIS Component

N nik
hilk
v
)
sendH k
setT ineout

Model Based Risk Assessment

b) First-level

Figure 111 State diagrams of TMALI Component

157

Ph.D. Dissertation

III. Appendix I: Case Studies

D. JAVA Case studies

1. Sharp Tools

The Sharp Tools case study is a spreadsheet application written in Java. It features full formula support
(nested functions, auto-updating, and relative/absolute addressing), a file format compatible with other
spreadsheets, printing support, undo/redo, a clipboard, sorting, data exchange with Excel, histogram
generation, and a built-in help system. We are considering each java file as an architectural component.
The interface of the components is defined by function parameters and public variables. The application

was reverse-engineered to get a better understanding of the system (Figure 112).

Model Based Risk Assessment 158 Ph.D. Dissertation

III. Appendix I: Case Studies

java

CellPoint

| CellRange
I

ellRange()
ellRange() 1
ellRange()
etStartRow()
etEndRow()
etStartCol ()

etEndCol ()
etWidth()
etHeight()
etminComer()
etmaxComer()
oString()

SharpOptionPane

howlinputDialog()
howlntegerinputDialog()
howlinputDialog()
howMessageDialog()

howMessageDialog()
howMessageDialog()
howOptionDialog()
howOptionDialog()

Model Based Risk Assessment

ParserException

FunctionAverage

[FunctionAbs I evalugte
f -$efdeption
getUsage()
Z:tllljjsa;:g) getDescription()
getDescription()
FunctionAtan
X Function
| Functionint evaluate()
f getUsage()
getDescription()

evaluate()
getUsage()
getDescription()

isRange()

getFirst()
checkParamsExist()
getSingleParameter()
evaluate()

getUsage()

getDescription()
requireParams ()

setDebug()
isDebug()
printin()

| FunctionAcos

FunctionAsin

luate()
getUsage()

eval
getDescription()
FunctionLog
evaluate()
getUsage()
getDescription()

FunctionMax

evaluate()
getUsage()
getDescription()

FunctionE

FunctionMedian

evaluate()
getUsage()
getDescription()

evaluate()
getUsage()
getDescription()
requireParams ()

FunctionMeandev

evaluate()
getUsage()
getDescription()

I
valuate()
etUsage(
etDescription()

Figure 112 Part of the reversed-engineered class diagram of Sharp tool

159

Ph.D. Dissertation

III. Appendix I: Case Studies

2. Job Application

Job Application is a simple application where an employer is seeking applications for the various jobs
available. There are two versions; one version is a simple switch case whereas the other version is
implemented using the strategy pattern. Strategy design pattern comes into play when there are different
implementations of an algorithm. The subclasses of the abstract class define the algorithm and define the
implementations according to their needs. More flexibility is introduced when applying the pattern, if
there are new positions to be filled rather than modifying the switch cases we just add another subclass to
the abstract class that fulfills the new criteria. Figure 113 shows the reversed engineered class diagram of

the case study when using switch cases. Figure 114 shows the reversed engineered class diagram of the

case study after applying the strategy design pattern.

JobApplicantForm
(from procedural)

FormSuccess
(from common)

EHsuccess :boolean = false

EZresultMessage : String = null

®Form Success()
FisSuccess|()
$setSuccess()
¥getResultMessage()
FsetResultMessage()

<JOB MANAGER :int=1
«JOB WAIT STAFF :int=2
JOB BUSSER :int=3
E&position :int
E¥name : String
E&phone : String
EHemail : String
E&lyearsExp : Double
E&reference : String
E&reference2 : String
E&reference3 : String

JobApplicantTestClient
(from common)

®main()
E¥runTest()

Model Based Risk Assessment

getPosition()
¥setPosition()
WgetName()
WsetName()
FgetPhone()
¥setPhone()
BgetEmail()

Ss etEmail()
BgetYearsExp()
WsetYearsExp()
WgetReference(
WsetReferencel (
SgetReference2(
WsetReference2(
WgetReference3(
WsetReference3(
Svalidate()

E¥isEmpty()

)
)
)
)
)
)

160

Figure 113 Class diagram of Job Application case study before applying strategy pattern.

Ph.D. Dissertation

III. Appendix I: Case Studies

ApplicantRuleFactory JobApplicantForm
(from patterns) (from patterns)

«JOB MANAGER :int=1
®getApplicantValidationRule() <JOB WAIT STAFF :int=2
<JOB BUSSER :int=3
«JOB BARTENDER:int=4
«JOB HOSTER :int=5
B5position : int

B5name : String

Bphone : String

Bfemail : String

ByearsExp : Double
Bfreference : String
Bfreference? : String
Bfreference3 : String

Blegal : boolean = false

FormValidator
(from patterns)

fasuccessMessage : String = "\nThankyou for submitting your job application."

@isEmpty()
Svalidate() FormSuccess

Wil egal()
Ssetlegal
QFormSucceS() ‘;tPe(?;ign()
BusValidator SisSuccess() e tPosition)
(from patterns) ‘SEISUCCGSS()
®getResultMessage()
Svalidate() SsetResultMessage()

ManagerValidato
(from patterns)

SgetName()
FsetName()

@basicvalidation() (from common)
Svalidate() SoctPhons(

/ T A ~— B5success : boolean = false
SsetPhone()

B5resultMessage : String = null
HostValidator BartenderValidator| SgetEmail()

{(from petieiTs) | (fompatierns) | SsetEmail ()
I ®getYearsExp()
Svalidate() Svalidate() SsetYearsExp()
JobApplicantClient SgetReference ()
WaitStaffValidator (from common) SsetReference()

(from patterrs) ®getReference2()
®main () SsetReference2()
Svalidate() ErunTest() SgetReference3()
®setReference3()
Bvalidate()

Figure 114 Class diagram of Job Application case study after applying strategy pattern.

3. Colleague States

Colleague states case study is an application that tracks the states of colleague components. Each
colleague will update its state according to its current state and the changes to the states of the other
colleagues. We have reverse engineered the architecture of the case study. Figure 115 shows the class
diagram of the initial design with the colleague components directly coupled to each other. In Figure 116,
the mediator pattern [Baude 2003] is used to let the interactions of the colleagues be more independent
with respect to each other and facilitate the addition of new colleagues to the architecture. Generally, the

mediator pattern provides a mean of encapsulating the various interactions of the other objects.

Model Based Risk Assessment 161 Ph.D. Dissertation

III. Appendix I: Case Studies

Colleague State

ConcreteColleague1

E&istate : boolean

®EConcreteColleague()

®¥Emain()

ConcreteColleague2
E¥istate : String = "false"

®ConcreteColleague2()

[®setState()
[®changeState()

[®toString()
[®state1Changed()
[®state1Changed()

O

ColleaguelF

ConcreteColleague3
[Efstate : boolean

[®setState()
[®changeState()

[®¥toString()
[®state2Changed()
[®state2Changed()

I®EConcreteColleague3()
[®setState()
[®changeState()

[®toString()

[®state3Changed()

[®state3Changed()

Figure 115 Class diagram of an initial design of colleague states case study

Colleague State

O

O

F®¥main()

ColleaguelF

colleague1

ConcreteColleaguei

ConcreteColleague2

[E¥state : boolean

E¥state : String = "false”

®ConcreteColleague ()
[®setState()
[®changeState()

[®toString()

@ ConcreteColleague2()
[®setState()
[®changeState()
®toString()

Figure 116 Class diagram of a design that uses mediator design pattern in colleague states case study

4. Borg Calender

This case study is an open source calendar and task tracking software written in Java [Borg]. The
design of the calendar depends on MVC (Model view controller) design pattern. We studied two versions
of the calendar. The first version implements only the view and the model of the MVC design pattern, as

shown in Figure 117. The second version incorporates the controller, Figure 118.

Model Based Risk Assessment

ConcreteColleague3
E5state : boolean

®ConcreteColleague3()
[®setState()
[®changeState()

[®toString()

MediatorlF

ConcreteMediator

[®registerColleague()
[®registerColleague2()
[®registerColleague3()
[®state1Changed()
[®state2Changed()
[®state3Changed()

Ph.D. Dissertation

III. Appendix I: Case Studies

Ritask types_: java.util.Vector

BSexport()

E¥jButton21ActionPerformed ()
E¥mouseClick)
[E¥changeActionPerformed()

[E¥exitMenultemActionPerformed()
Ef¥exitForm ()
BSirefresh()

taskmodel

faskmoa~

bemod_

ents()

E¥jButton 1 ActionPerformed ()
BupdateUT()

& Menuliem1 ActionPerformed()

onsole
BSnotice()
fermsg ()

Figure 117 Class diagram of Borg case study before implementing the controller of the MVC pattern.

Model Based Risk Assessment

borg ™

BaseModel

KB aseModel(
[@refresh()

gister()

org
®iverson_: String

Bborg()
main()
it)

task_clone()
I®¥task _change()

borg>

gorg_

4
tdgui
[®itds_: java.util.Vector

BS1dguio
ESrerresn(

@iMenuliem 1 ActionPeriormed)
@dicommon()
E®oxitMenultemActionPerformed()
Ef¥fexitForm ()

==

[Mviews : java.util. AmayList

banner

163

propgui

Eoropgui()
nitComponents()
miltimeActionPerformed()
[E®¥mondaycbActionPerformed()
ersioncheckActionPerlormed()
[E¥autoupdateActionPerformed()
holiday 1 ActionPerformed()
E®¥loggingActionPerformed ()
& ButtonsActionPerformed()
B¥inclontActionPerformed()
EdeciontActionPerformed()
[E¥privboxActionPerformed ()
[E¥pubboxActionPerformed(y
EcolomrintActionPsriormed()
& ButtoneAdtionPerformed()
eckBox1ActionPerformed ()
Ef¥fexitForm ()

View

-

~calmod_

calmodel

nt = 0x04
:java.util HashMap

: java.util. HashMay
wa.util.Vector = new Vector ()

almodel()
dkey(
SnewAppt)

lel| Appt()
lelOneOnly()
e AppL)
Sgetappt)
jetDaylInfo()
gotDayinfo(
nthdom ()
Sget_sch(
®do_todo()

et_todos)
BShaveTodos)
Bopen_db(

ote
BgetTimeFomat()

calmdf_

calgui

E®setDayLabels)
[B8refresh()

@ AboutMIActionPerformed()
E®SearchMiActionPerfomed
PrintMonthMIActionPerformed()
‘oDoMenuActionPerformed()
GotoActionPerformed()
Broday)
|E¥PrevActionPerformed ()
lextActionPerformed ()
xitMenultemActionPerformed()
xitForm()

[%®popup_chi)

Ph.D. Dissertation

psern()
nitComponents()
exitForm)

[E®¥initComponents()
[E¥exitMenultem ActionPerformed()
&exitForm(

III. Appendix I: Case Studies

[BrefreshViews()
M destroy Views()
(®destroy()

PRIV int =004
mep_: java.ull. Hashi. |

®getReference()

-calmod_

(®get_tasks(

#close)

mportS tates()
| ®getTaskTypes()

Logging()
|®getTimeFomnat()
imodel(

Figure 118 Class diagram of Borg case study after implementing the controller of the MVC pattern.

Model Based Risk Assessment

Bexport)
|Bversion_chk()

propgui

|E¥initComponents()
[®gestroy()

0
[EBversioncheckA cionPerform.

incfontActionP erormed)

ed)
holiday 1ActionPerfommed)
loggingActionP eformed)
ution5A ctionPerormed()

fontA ctionP erformed)

red)

helpsom

[Bhelpscm()

Brmonth_
|@8pops - java.util. HashMap = new H..

(Rcalgui(
|E®init)
| destroy()

tody(
|E®initStyles(
|®updStyles()
|EPaddString()
|®setDayLabels()
refresh()
itComponents()
pup_chk()

| E®printprevA cionPerformed()
|E®exportMIA ctionP erformed()
|E®jMenultem? ActionP eformed()
sendActionP eformec)
w\Acn‘mPe«umo

togui

164 Ph.D. Dissertation

|@étds_: java.util.Vector

ommon()
pintListActionP erfomed()

Jeton

|Ewhich()
|E¥initComponents()

resetstActionP erformed)

|EexpstA ctionP efomed()
|E®printitA ctionP efomed()
|E¥closeA ctionP efomed()

|E¥deleteA ctionPerformed()

|EcloneA ctionP efomed()

|E¥changeA ctionP erormed)

IV. Appendix II: Analytical Formula of Error Propagation

V. Appendix Il Analytical Formula of Estimating Error
Propagation Probabilities

Consider two architectural components, say A and B communicating through some sort of connector.
Every act of A-to-B communication consists of passing from A to B a message selected from certain
vocabulary V,_;5. Let S, be the set of states of component A, and Sy be the set of states of component B.
When component A transmits to component B a message ve V,_p, it in general results in B changing its

state, thus defining the state transition mapping F : Sp XVa_p — Sp.

Assuming that the system in question operates deterministically, F(x, v) represents the state of
component B after receiving message from A if the state of B before the transmission occurred was x. For
the sake of convenience, we will write F(x, v) as a function of one variable v only, i.e. as F\(v), assuming
the pre-transmission state x to be fixed. Now suppose an error occurs in A and instead of transmitting v to
B it sends v’. The error propagates into B if the (post-transmission) state of B resulting from receiving the

corrupted message v’ differs from the state which would result from receiving the correct message v, i.e.

if F,(v) = F.(V)).

The error propagation can be defined as the probability that a random error in the data transmitted
from A to B results in an erroneous state of B (assuming the pre-transmission state to be random as well),

i.e.
EP(A—B) = Prob(F(v) #F(v)lxe Sg; v, v'e Vy_p, v #v) (AIL1)

Prob{(x,v,v')e Sp XV, g XV g | F,(v)# F . (v")}
Prob{(x,v,v")e Sp XV ,p xVa_p lv#V'}

EP(A—B) =

>

by virtue of the definition of conditional probability and of the fact that F,(v) # F,(v’) implies v' #v for

any x. The last fraction can be further rewritten in terms of probabilities of individual messages and states:

1-Prob{(x,v,v')e Sp XV g XV, g |F . (v)=F, (")} _
1-Prob{(x,v,v')e Sp XV, _,p XV, g lv=V"}

1= Pg(0)). PasyplF (017

xeSpy yeSy

- D Pasplv)’

veVap

Thus, we have

Model Based Risk Assessment 165 Ph.D. Dissertation

IV. Appendix II: Analytical Formula of Error Propagation

1- ZPB(X) ZPA_W[FX‘I(y)]2
EP(A—B) = =5 <5 (AIL2)

1= D PasshT?

veVap

where F,”’ () ={ve Vu_p | F(v) =y}, and we assume a probability distribution Py on the set of states Sp
and a probability distribution P,_ on the data vocabulary V,_;.
As we can see from the above formula, the value of EP(A—B) depends on two expressions.

e The expression that appears in the denominator of the error propagation formula

E(A,B) = ZPA_ﬂg[v]2

veVisp

It is easy to see that 1NV, _pl <EAB) < 1.

e The expression that appears in the numerator of the error propagation formula,

NAB) =Y Py[x]Y P, ,[F, " (I

XeSg yeSy

Assume, for the sake of simplicity, that all states xe Sz of component B are equi-probable (with

probabilities Pp(x) =), and all messages ve V,_p sent by A to B are also equi-probable probable

1S, |

(with probabilities P 4_p (v) =). In this case the expression for N(A,B) is reduced to:

A—>B

1

SDUF TP,

2
lSB I VA—>B I ¥eSpyeSy

where IF,”(y)l is calculated simply by counting the number of messages B receives from A that trigger the

state transition from x to y. Also, when all the messages are equally probable, the expression &(A,B)

reaches its minimum value . Thus, under the equi-probability assumption (stated above), the

A—B

formula for the error propagation from A to B gets simplified as follows:

F 2
s, IIVA_>B AR

xeSp yeSy

EP(A—B) = (AIL3)

Model Based Risk Assessment 166 Ph.D. Dissertation

	Model-based risk assessment
	Recommended Citation

	Model-based Risk Assessment

		2010-01-14T13:19:26-0500
	John H. Hagen

