
Graduate Theses, Dissertations, and Problem Reports

2006

Model-based risk assessment Model-based risk assessment

Walid M. Abdelmoez
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Abdelmoez, Walid M., "Model-based risk assessment" (2006). Graduate Theses, Dissertations, and
Problem Reports. 2445.
https://researchrepository.wvu.edu/etd/2445

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2445?utm_source=researchrepository.wvu.edu%2Fetd%2F2445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Model-based Risk Assessment

Walid M. Abdelmoez

Dissertation submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Engineering

Hany H. Ammar, Ph.D., Chair

Katerina Goseva-Popstojanova, Ph.D., Co-Chair

Gerald Hobbs, Ph.D.

Ali Mili, Ph.D.

Tim Minzies, Ph.D.

Lane Department for Computer Science and Electrical Engineering

Morgantown, West Virginia

2006

Keywords: reliability-based risk, maintainability-based risk, software architecture

Copyright 2006 Walid M. Abdelmoez

ABSTRACT

Model-based Risk Assessment

Walid M. Abdelmoez

In this research effort, we focus on model-based risk assessment. Risk assessment is essential in any

plan intended to manage software development or maintenance process. Subjective techniques are human

intensive and error-prone. Risk assessment should be based on architectural attributes that we can

quantitatively measure using architectural level metrics. Software architectures are emerging as an

important concept in the study and practice of software engineering nowadays, due to their emphasis on

large-scale composition of software product, and to their support for emerging software engineering

paradigms, such as product line engineering, component based software engineering, and software

evolution.

In this dissertation, we generalize our earlier work on reliability-based risk assessment. We introduce

error propagation probability in the assessment methodology to account for the dependency among the

system components. Also, we generalize the reliability-based risk assessment to account for inherent

functional dependencies.

Furthermore, we develop a generic framework for maintainability- based risk assessment which can

accommodate different types of software maintenance. First, we introduce and define maintainability-

based risk assessment for software architecture. Within our assessment framework, we investigate the

maintainability-based risk for the components of the system, and the effect of performing the maintenance

tasks on these components. We propose a methodology for estimating the maintainability-based risk when

considering different types of maintenance. As a proof of concept, we apply the proposed methodology on

several case studies. Moreover, we automate the estimation of the maintainability-based risk assessment

methodology.

iii

Dedication

To my family with love,

To my mentors with gratitude

iv

Acknowledgements

Thanks to Allah, Most Gracious, and Most Merciful. I would like to express my appreciation and gratitude

to my advisor Professor Dr. Hany Ammar. I am thankful for his guidance, support and patience. I was

honored to have Dr. Katerina Goseva-Popstojanova co-advise my Ph.D. research, it has been a great

experience working with her. I appreciate her patience, humbleness and friendliness. I would like to

express my thanks and gratitude to Dr. Ali Mili for his continuous support and encouragement. It has been

a pleasure and a privilege to work with him. I am also very grateful to Dr. Gerald Hobbs and Dr. Tim

Minzies for being valuable members of my examination committee.

I thank all my West Virginia University research colleagues: Dr. Diaa Eldin Nassar, Dr. Ahmed Hassan,

Dr. Vittorio Cortellessa, Dr. Mark Shereshevsky, Rabieh Elkradely, Rajesh Gunnalan, Kalaivani

Appukkutty, Tianjian Wang, Ajith Guedem, Venu Dalta, Israr Shaik, Khader Sheik and Sweatha Reddy

I am indebted to my great friends: Mohamed Hussein, Walid Moustafa, Hossam AdelBari, Ahmed

Elsherif, Walid AbdelHaleem, Shady Koriatam, Tamer Saber, Magdy El-Batouty, Ayman Abazza, Dr.

Mohamed Salem, Dr. Khalid Elmorsy, Hatem Elkanifati and to my friends and colleagues in the Arab

Academy for Science and Technology for their great support and valuable advice.

My family has always been a great source of support and love; I really cannot thank each of my family

members enough. I am very thankful to my Father Dr. Mohammad Rabie Abdelmoez, my Mother Dr.

Samia Farag, and my brother Tarek. I am also very grateful to my Father-in-law Mr. Saber Moustafa , my

late Mother-in-law Mrs. Fatheya Shahein and my brother-in-law Emad Moustafa.. And last but by no

means least; I am truly grateful for my great wife Rania for being caring, supportive, and considerate ;

and my lovely son Youssof and daughter Yosr for being a source of delight, pleasure and hope.

This work is supported by the National Science Foundation through ITR program and by NASA through a

grant from the NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research

Program (SARP) managed through the NASA Independent Verification and Validation (IV&V) Facility,

Fairmont, West Virginia.

v

Table of Contents

1 Introduction__ 1

1.1 Overview__ 1

1.2 Background ___ 2

1.2.1 Software Architecture ___ 2

1.2.2 The Unified Modeling Language __ 2

1.2.3 Reliability-Based Risk Assessment___ 4

1.2.4 Software Maintenance___ 5

1.2.5 Software Design Patterns __ 7

1.3 Dissertation Organization__ 8

2 The Problem __ 10

2.1 Problem Statement __ 10

2.2 Research Objectives ___ 11

2.3 Research Contribution ___ 12

3 Related Work__ 14

3.1 Software Architecture Analysis Method (SAAM) and Architecture Trade-off

Analysis Method (ATAM) __ 14

3.2 Reliability-Based Risk Assessment__ 14

3.2.1 Error Propagation Probabilities ___ 15

3.2.2 Estimating Error Propagation Probabilities______________________________________ 17

3.2.3 Empirical Error Propagation ___ 18

3.3 Maintainability-Based Risk Assessment ___________________________________ 19

3.3.1 Change Propagation ___ 19

3.3.2 Maintainability Metrics ___ 21

3.3.3 Request Generation Using Non-Homogeneous Poisson Process _____________________ 25

4 Error Propagation Probabilities and Reliability-Based Risk Assessment ______ 27

4.1 Analytical Error Propagation Results _____________________________________ 27

4.2 Experimental Error Propagation Results __________________________________ 31

4.3 Error Propagation Probabilities Validation ________________________________ 32

4.3.1 Correlating One Step Matrices ___ 33

4.3.2 Correlating Cumulative Matrices ___ 34

4.3.3 Statistical Significance of the Correlations ______________________________________ 35

4.4 Ranking Components According to their Error Proneness ___________________ 36

4.5 Considering Error Propagation Probabilities in Assessing Components

Reliability-Based Risk ___ 37

4.5.1 Pace Maker Case Study Results __ 38

4.5.2 CM1 Case Study Results__ 41

vi

4.5.3 Command and Control System Case Study Results _______________________________ 44

4.6 Summary and Discussion ___ 46

5 Reliability-Based Risk Assessment with Functional Dependencies ___________ 47

5.1 Reliability-Based Risk Assessment Methodology ____________________________ 47

5.1.1 The Risk Analysis Process __ 47

5.1.2 Assessment of the Component/Connector Risk Factors ____________________________ 49

5.1.3 Scenarios Risk Factors ___ 52

5.1.4 Use Cases and Overall System Risk Factors _____________________________________ 54

5.2 The Use-Case Based Analysis__ 55

5.3 Risk Assessment Methodology with Functional Dependencies _________________ 56

5.3.1 Use Cases Terminology Used __ 56

5.3.2 Estimating the Risk Factor of Use Cases__ 58

5.4 Algorithm for System Risk Estimation ____________________________________ 61

5.5 Command and Control System Case Study Results__________________________ 62

5.5.1 Scenario Risk Factors __ 62

5.5.2 Use Case and System Level Risk Factors _______________________________________ 64

5.6 Summary and Discussion ___ 67

6 Change Propagation Metrics ___ 69

6.1 Change Propagation Probabilities __ 69

6.1.1 Change Propagation Usage __ 70

6.1.2 Analytical estimates of Change Propagation Probabilities __________________________ 70

6.1.3 Multi Step Change Propagation___ 72

6.2 Predicting Change Propagation Patterns __________________________________ 73

6.3 Experimental Change Propagation _______________________________________ 77

6.4 Change Propagation Probabilities Validation ______________________________ 79

6.4.1 Correlating Single Step Change Propagation Matrices _____________________________ 79

6.4.2 Statistical Significance of the Correlations ______________________________________ 79

6.5 Multi-Step Change Propagation Matrix ___________________________________ 80

6.6 Using Change Propagation Probabilities to Assess Quality Attributes of Software

Architectures___ 83

6.6.1 Comparison of Change Propagation Metric with Other Metrics______________________ 88

6.7 Size of change___ 90

6.8 Change Propagation Probabilities and Size of Change for the Case Studies______ 91

6.9 Summary and Discussion ___ 95

7 Maintainability-Based Risk Assessment ________________________________ 96

7.1 Maintainability-based Risk__ 96

7.2 Estimation Methodology of Maintainability-based Risk ______________________ 96

7.2.1 Estimating Initial Change Probabilities___ 96

vii

7.2.2 Estimating Change Propagation Probabilities ____________________________________ 97

7.2.3 Estimating Size of Change __ 97

7.2.4 Estimating Components Maintainability-based Risk ______________________________ 98

7.3 Maintainability-Based Risk Assessment in Adaptive Maintenance Context ______ 99

7.3.1 CM1 Maintainability-Based Risk in Adaptive Maintenance Context __________________ 99

7.4 Maintainability-Based Risk due to Requirements Changes __________________ 101

7.4.1 CM1 Maintainability-Based Risk due to Requirements Changes ____________________ 102

7.5 Maintainability-Based Risk Assessment in Corrective Maintenance Context____ 104

7.5.1 CM1 Maintainability-Based Risk Results ______________________________________ 105

7.5.2 Pace Maker Maintainability-Based Risk Results ________________________________ 107

7.5.3 Command and Control System Maintainability-Based Risk Results _________________ 108

7.6 Maintainability Based Risk in Perfective Maintenance Context ______________ 109

7.7 Worst Case Maintainability-Based Risk Estimate __________________________ 112

7.8 Using Non-Homogeneous Poisson Process to Estimate Maintainability-Based

Risk ___ 114

7.9 Validation Prospects for Maintainability Based Risk Estimation _____________ 118

7.10 Summary and Discussion __ 119

8 Software Architecture Risk Assessment (SARA) Tool_____________________ 120

8.1 Structural Description___ 120

8.2 Functional Description __ 120

9 Conclusions and Future Work _______________________________________ 124

I. Glossary ___ 127

II. Bibliography ___ 130

III. Appendix I : Case Studies___ 141

IV. Appendix II Analytical Formula of Estimating Error Propagation Probabilities165

viii

List of Figures

Figure 1 The framework of experimental error propagation analysis. ...18

Figure 2 A state diagram of component 8. ...28

Figure 3 A sample of a sanitized message protocol (components 2 and 8)..29

Figure 4 Updated state diagram of component 8..29

Figure 5 Correlation between analytical and empirical error propagation ...35

Figure 6 Imported error proneness for command and control system case study ..36

Figure 7 Analytical error proneness of the components in steps..37

Figure 8 Pace maker cyclomatic complexity..39

Figure 9 Pace maker initial error probability..39

Figure 10 Pace maker error propagation matrix - analytical results...40

Figure 11 Comparing components reliability-based risk factors for pace maker case study41

Figure 12 CM1 case study cyclomatic complexity ..42

Figure 13 CM1 case study initial error probability ..42

Figure 14 CM1 case study error propagation matrix - analytical results ...42

Figure 15 Comparing CM1 case study reliability risk factors..43

Figure 16 Command and control system cyclomatic complexity ..44

Figure 17 Command and control system initial error probability ..44

Figure 18 Comparing command and control system reliability risk factors...45

Figure 19 The risk analysis process..48

Figure 20 <<Extend>> relationship ...57

Figure 21 <<Include>> relationship...57

Figure 22 Dealing with use case relationships ...59

Figure 23 Plan Itinerary sequence diagram ..60

Figure 24 Purchase Ticket sequence diagram..60

ix

Figure 25 DTMCs of the Plan Itinerary and Purchase Ticket use cases.................................61

Figure 26 Outline of the risk estimation algorithm ..62

Figure 27 Sequence diagram of the Retry Both Pumps scenario...63

Figure 28 Risk model of the Retry_Both_Pumps scenario..64

Figure 29 Risk factors of the primitive use cases...65

Figure 30 DTMC of the Monitoring use case...66

Figure 31 The risk factor of Monitoring and Mode_Setting use cases...66

Figure 32 Distribution of the overall system risk factor...67

Figure 33 Single-step change propagation estimation..72

Figure 34 An example on how to calculate Mn(C8) = 8...75

Figure 35 Parameterization of the categorization of the change behavior ...76

Figure 36 Graphical representation of the critical change propagation..78

Figure 37 Mn(Ci) of the components through multi-step change propagation ..82

Figure 38 Pattern of Ripple components ..82

Figure 39 Pattern of a potential Avalanche component..83

Figure 40 Pattern of Wave components ...83

Figure 41 Change propagation of Job Application before applying strategy pattern...................................85

Figure 42 Change propagation of Job Application after applying strategy pattern......................................85

Figure 43 Weighted Methods per Class and McCabe Cyclomatic Complexity for Job Application86

Figure 44 Change propagation probabilities for the simple design on case study Colleague States............87

Figure 45 Change propagation probabilities for the architecture employing mediator design pattern87

Figure 46 Weighted Methods per Class and McCabe Cyclomatic Complexity for Colleague States..........88

Figure 47 CBO for the case studies on Colleague States and Job Application ..89

Figure 48 RFC for the case studies Colleague States and Job Application..89

Figure 49 MPC for the case studies on Job Application and Colleague States ..90

Figure 50 Size of change estimation ..91

x

Figure 51 Change propagation probabilities for Pace Maker case study ...92

Figure 52 Size of change for Pace Maker case study ...92

Figure 53 Change propagation probabilities for CM1 case study ..93

Figure 54 Size of change for CM1case study...93

Figure 55 Change propagation probabilities for command and control case study......................................94

Figure 56 Size of change for command and control case study ...94

Figure 57 Maintainability-based risk estimation methodology ..97

Figure 58 Incoming maintenance change propagation through component Ci ..98

Figure 59 Outgoing maintenance change propagation through component Ci ..99

Figure 60 Initial change probabilities for CM1 components..100

Figure 61 Maintainability-based risk for CM1 components in adaptive maintenance context100

Figure 62 Initial change probabilities resulted from Transferc for CM1 components................................104

Figure 63 Components maintainability- based risk resulted from Transferc for CM1 components...........104

Figure 64 Initial change probabilities for components of CM1 case study..106

Figure 65 Maintainability- based risk and severity levels for CM1 components.......................................106

Figure 66 Initial change probabilities for components of PM case study ..107

Figure 67 Maintainability- based risk and severity levels for pace maker components.............................107

Figure 68 Initial change probabilities for components of command and control case study109

Figure 69 Maintainability- based risk and severity levels for command and control components109

Figure 70 Components maintainability-based risk for job application case study.111

Figure 71 Components maintainability-based risk for the case study. ...112

Figure 72 Worst-case Maintainability- based risk estimate for PM case study..113

Figure 73 Worst-case Maintainability- based risk estimate for command and control case study113

Figure 74 Worst-case Maintainability- based risk estimate for CM1 case study113

Figure 75 Simulation settings for perfective and adaptive maintenance for CM1115

Figure 76 Estimated mean request arrivals rate for maintenance simulation of CM1115

xi

Figure 77 Estimated maintenance requests per component using the simulation116

Figure 78 Initial change probabilities for CM1 components..116

Figure 79 Components maintainability-based risk for CM1 components..117

Figure 80 The architecture of the Software Architecture Risk Assessment (SARA) Tool121

Figure 81 Use case diagram of maintainability-based risk functionality of the SARA tool122

Figure 82 Change propagation probabilities for StarUML model ..123

Figure 83 Maintainability based risk for corrective maintenance ..123

Figure 84 Software architecture of the system. ..141

Figure 85 Use case diagram of the Internal Thermal Control subsystem...142

Figure 86 Top-level state diagram of Component C1 ..142

Figure 87 First-level state diagrams of Component C1..143

Figure 88 Second-level state diagrams of Component C1 ...143

Figure 89 Top-level state diagram of Component C2 ..144

Figure 90 First-level state diagrams of Component C2..144

Figure 91 State diagrams of Components C3 and C4...144

Figure 92 State diagrams of Components C5 and C6...145

Figure 93 State diagrams of Components C7, C8, C9 and C10 ...145

Figure 94 The architecture of the pacemaker example...146

Figure 95 Use case diagram of the pacemaker ...147

Figure 96 Use case diagram for CM1...148

Figure 97 Structure diagram for CM1 ..148

Figure 98 Sequence diagram Transferc ..149

Figure 99 Sequence diagram Heart Beat..149

Figure 100 State diagrams of BIT Component...150

Figure 101 State diagrams of CCM Component ..150

Figure 102 State diagrams of DCI Component ..151

xii

Figure 103 State diagrams of DCX Component...151

Figure 104 State diagrams of DPA Component ...152

Figure 105 State diagrams of EDAC Component ..153

Figure 106 State diagrams of ICUI Component...154

Figure 107 State diagrams of SCUI Component ..155

Figure 108 State diagrams of MIL 1553 Component...156

Figure 109 State diagrams of SSI Component ...156

Figure 110 State diagrams of TIS Component ...157

Figure 111 State diagrams of TMALI Component ..157

Figure 112 Part of the reversed-engineered class diagram of Sharp tool ...159

Figure 113 Class diagram of Job Application case study before applying strategy pattern.160

Figure 114 Class diagram of Job Application case study after applying strategy pattern..........................161

Figure 115 Class diagram of an initial design of colleague states case study ..162

Figure 116 Class diagram of a design that uses mediator design pattern in colleague states case study ...162

Figure 117 Class diagram of Borg case study before implementing the controller of the MVC pattern. ..163

Figure 118 Class diagram of Borg case study after implementing the controller of the MVC pattern.164

xiii

List of Tables

Table 1 Conditional Error Propagation Matrix - Analytical Results..27

Table 2 Probability distribution of states SB of C 8..29

Table 3 Probability distribution of messages VA→→→→B exchanged between C 2 and C 8..................................29

Table 4 Unconditional Error Propagation Matrix - Analytical Results..30

Table 5 Cumulative Error Propagation Matrix - Analytical Results ..30

Table 6 Unconditional Error Propagation Matrix EE - Empirical Results ...31

Table 7 Cumulative Error Propagation - Experimental Results ...31

Table 8 Correlation between analytical and experimental EP probabilities...34

Table 9 Components severity of the pace maker case study ..40

Table 10 Components severity of the CM1 case study ..43

Table 11 Components severity of the command and control case study..45

Table 12 Components error reports of the CM1 case study ...105

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 1

1 Introduction

To plan the development for a software system, the project manager should assess the risks facing the

development effort. Domain experts’ subjective decision is inherent to several risk assessment techniques.

Thus, they require intensive human involvements and are error-prone. Therefore, risk assessment is

supposed to rely on system attributes that we can quantitatively measure from its models. Model-based

assessment is gaining importance because it enables us to quantitatively evaluate the attributes of a

system. In this dissertation, we focus on model-based risk assessment derived from the system

architecture.

1.1 Overview

A sound architecture is the key to build a software system with high quality attributes. Software

architecture explicates the structure of the system in terms of components and interactions among them to

accomplish the desired requirements. Furthermore, it supports many software development paradigms

such as COTS-based software development, product line engineering and component based software

engineering. In [Shaw 1995], Shaw was the first to advocate the shift from functional view of software

development to architectural view which has been widely embraced since. As architecture became a more

significant artifact in developing software systems, the need to quantitatively analyze the architecture has

become eminent. The architecture quantitative analysis should reflect its pertinent quality attributes and

help us to predict the quality of the software products instantiated from it.

According to NASA-STD-8719.13A standard [NASA 1997] risk is a function of the anticipated

frequency of occurrence of an undesired event and the potential severity of resulting consequences. This

standard defines several types of risk, such as for example availability risks, acceptance risk, performance

risk, cost risk, schedule risk, etc. Software risk management concentrates on developing a product with

better quality attributes such as reliability, performance, maintainability, and the uncertainty associated

with the product development. It helps project managers in avoiding unpredicted catastrophic problems.

Also, it prevents wrong allocation of resources and taking decisions without proper knowledge or

adequate information on anticipated future consequences [SEI 2005]. To manage software development

projects, managers and developers should rely on processes, methods and tools to facilitate assessment,

prioritization and mitigation of various risk aspects. Therefore, risk assessment is an essential part in the

management of software development.

In this research effort, we are concerned with model-based risk assessment, which includes reliability-

based risk and maintainability-based risk. Reliability-based risk takes into account the probability that the

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 2

software product will fail in the operational environment and the consequences of that failure. While,

maintainability-based risk takes into account the probability that the software product will need to endure

a certain type of maintenance and the consequences of performing this maintenance on the system.

1.2 Background

This Dissertation is related to several areas in the field of software engineering. The main theme

works around model-based risk assessment for software architecture modeled using Unified Modeling

Language (UML). The major contribution is in the field of reliability-based and maintainability-based risk

assessment methodologies. The following sections give a basic background on the recent work in these

fields.

1.2.1 Software Architecture

Abstracting the software system to highest level obtain us its architecture. As the size and the

complexity of the software systems increase, the need for structuring and organizing it into components

increases. As a result, the discourse of software system’s architecture becomes essential [SEI 2005].

Software architecture is an important asset because of the following:

• The architecture can be used for communication purposes, as it provides an understandable

abstraction by stakeholders, not only software developers but also users and managers.

• Early in the development process of new software, architecture can be available for early analysis

of the system’s properties.

• Existing systems that evolve can be analyzed at the architectural level to provide a foundation for

further development.

1.2.2 The Unified Modeling Language

As software systems become more complex, modeling them to guide development or to help

maintenance becomes essential. System models are used to document the analysis and design and to

communicate the system artifacts among development and maintenance teams. Therefore, to have a

modeling language standard is an important factor for the success of an application development and

maintenance. The Unified Modeling Language UML has become the de-facto standard for building

Object-Oriented software. UML unified the efforts of Booch [Booch+ 1999], Rumbaugh [Rumbaugh+

1997], and Jacobson [Jacobson+ 1992]. That effort has matured into UML becoming an OMG (Object

Management Group) standard [OMG 2005]. Adopting UML as a standard is motivated by:

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 3

∗ It is programming languages independent.

∗ It provides a rich language for visual modeling to develop and communicate meaningful models.

∗ It integrates lots of efforts over the years and blends many models developed.

∗ It provides the means to extend and to specialize the core concepts.

1.2.2.1 UML Definition:

According to OMG specification: [OMG 2005]

"The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a software-intensive system. The UML offers a

standard way to write a system's blueprints, including conceptual things such as business

processes and system functions as well as concrete things such as programming language

statements, database schemas, and reusable software components."

It is important to note that UML is a 'language' for specifying and not a procedure or method. The

UML is used to define a software system; to detail the system artifacts, to document and construct. It is the

language that the blueprint is written in. The UML may be used in a variety of ways to support a software

development methodology but in itself it does not specify that methodology or process.

1.2.2.2 UML Models

A single model cannot capture static and dynamic system properties. The used models influence how

to tackle the problem and how to come up with an appropriate solution. Therefore, complex systems

should be analyzed by examining independent views. Static models define the static architecture of the

system. They are used to model the elements that make up a system - the classes, objects, interfaces and

physical components. Furthermore, they are used to model the relationships and dependencies among the

elements of the system. Class diagrams, Package diagrams, Component diagrams, and Deployment

diagrams are some of the static views of the system. Dynamic models define the interaction among the

system elements to accomplish a system behavior. They contain events, responses, messages, and

invocations. Use-Cases, Sequence and Collaboration diagrams, and State-charts diagrams are some of the

dynamic views of the system. The following summarizes the modeling diagrams supported by UML

[UML 2005]:

• Class diagrams: A class diagram defines the basic building blocks of a model: the types, classes and

general materials that are used to construct a full model. They depict possible classes and their

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 4

relationships. Details of the design are communicated through detailed class diagrams, which include

the attributes and the methods of the classes.

• Package diagrams: are used to divide the model into logical containers or 'packages' and describe the

interactions between them at a high level.

• Implementation diagrams:

o Component diagram: are used to model higher level or more complex structures, usually built up

from one or more classes, and providing a well defined interface.

o Deployment diagram: show the physical disposition of significant artifacts within a real-world

setting. Deployment diagrams are related to component diagrams in that a node typically

encompasses one or more components.

• Use Case diagrams: describe the boundary and interaction between the system and users. They

conform in some regards to a requirements model. A use case designates a situation in which the

system is used. It defines the system inputs, actions and possible outputs. Use cases are analyzed to

construct possible scenarios.

• Behavior diagrams: capture the varieties of interaction and instantaneous state within a model as it

'executes' over time.

o State-chart diagram: State-charts are used to model the behavior of complex systems [Harel88].

State charts describe the states or conditions that classes assume over time

o Interaction diagrams: They include sequence diagrams and collaboration diagrams

∗ Sequence diagrams: show the sequence of messages passed among objects using a vertical

timeline. A sequence diagram reflects a scenario of interactions in the system to manifest a

use case of the system. Normally, there are one or more scenarios for each use-case.

∗ Collaboration diagrams: are another view of scenarios. They show the network and sequence

of messages between objects at run-time during a collaboration instance.

1.2.3 Reliability-Based Risk Assessment

Risk assessment is an essential part in the management of software development. Performing it in the

early phases of software development can enhance allocation of resources within the software lifecycle.

Also, it provides useful means for identifying potentially troublesome software components that require

careful development and allocation of more testing effort. We are concerned with reliability-based risk,

which takes into account the probability that the software product will fail in the operational environment

and the consequences of that failure.

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 5

In [Yacoub+ 1999], Yacoub et. al. defined dynamic metrics that include dynamic complexity and

dynamic coupling to measure the quality of software architectures. Their approach was based on dynamic

execution of UML state chart specification of a component and the proposed metrics were based on

simulation reports. In [Yacoub+ 2002], Yacoub et. al. combined severity and complexity factors to

develop heuristic risk factors for the components and connectors. Based on scenarios, they developed

component dependency graph that represents components, connectors, and probabilities of component

interactions. The overall system risk factor as a function of the risk factors of its constituting components

and connectors was obtained using the aggregation algorithm.

In [Goseva-Popstojanova+2003], Goseva-Popstojanova et. al. proposed a methodology for risk

assessment based on the UML specifications such as use cases and sequence diagrams that can be used in

the early phases the software life cycle. This risk assessment methodology was entirely based on the

analytical methods. First, components and connectors dynamic risk factors were estimated analytically

based on the information from UML sequence diagrams. Then, a Markov model wass constructed for

estimation of each scenario risk factor and closed form exact solutions are derived for the scenarios, use

cases, and overall system risk factors.

1.2.4 Software Maintenance

According to IEEE Standard for Software Maintenance [IEEE 1998], software maintenance is defined

as follows:

“Modification of a software product after delivery to correct faults, to improve performance

or other attributes, or to adapt the product to a modified environment”.

Other definitions for software maintenance were listed in [Pigoski 1996]. Pigoski concluded that any

change activity to the software product after being accepted by the client is maintenance.

Thus, software maintenance is concerned with error corrections and system changes as requirements and

environment change. Software maintainers usually are not involved in the original software development

cycle generally. They must learn how a program functions before they can change it. The status of system

documentation, programmer skill and experience and the attributes of the system itself are some of the

variables that affect the maintenance process.

1.2.4.1 Types of Software Maintenance

In “That Maintenance Iceberg” [Canning 1972], Canning summarized how maintenance is

categorized. According to Canning, maintenance can be considered in narrow sense as to correct errors

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 6

and in wide sense as to extend the functionality of the software and to accommodate changes in the

underlying system software or hardware. In [Swanson 1976], E. Burton Swanson offered a typology that

account for what was seen as the cause or purpose of the maintenance, or why was the maintenance to be

done. In [Lientz+ 1980], authors categorized three types of software maintenance:

• Perfective maintenance: to perfect the system in terms of its performance, processing efficiency, or

maintainability,

• Adaptive maintenance: to adapt the system to changes in its data environment or processing

environment, and

• Corrective maintenance: to correct processing, performance, or implementation failures of the

system.

This categorization was adopted by the IEEE Standard for Software Maintenance [IEEE 1998]. There

is a fourth type of software maintenance mentioned in the IEEE Standard for Software Maintenance’s

Annex A.

• Preventive maintenance: to prevent system problems before they occur

Close examination of preventive maintenance reveals that it is not a well established and understood

discipline. There is a lot of confusion regarding its definition, scope and meaning [Chapin 2000].

1.2.4.2 Software Maintenance Risks

Many types of risk are ushered when software systems undergo maintenance. They are akin to those

we face when developing new software systems, but with different level of risk. Also, maintainers often

interact with complex and difficult to comprehend systems, which introduce other types of risk that

distinguish the software maintenance process. These types of risk are [Sherer 1997]:

• Project risk— Maintenance project cannot be carried out within budget or on time, no effective

maintenance process and lack of personnel and maintenance capabilities.

• Usability risk— Systems will cause problems and failures after the maintenance is conducted. Usability

risk includes functionality, performance, financial and software failure risk.

• Maintainability risk— It will be difficult to maintain the system in the future because of the way we

conducted this maintenance.

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 7

1.2.4.3 Maintainability

According to [Pigoski 1996], the cost of software maintenance averages from 60% to 80% of the

overall software system cost. As a result, maintainability is an important software quality factor. The

effect of good maintainability of a system is realized in the maintenance stage. It is justifiable to make an

investment in software maintainability if there will be a reward in terms of productivity in the

maintenance stage.

Software maintainability is an attribute that reflects the ease of performing maintenance to the

software product. IEEE definition of software maintainability is as follows [IEEE 1990]:

“The ease with which a software system or component can be modified to correct faults,

improve performance or other attributes, or to adapt to a changed environment”.

Software maintenance cost can be significantly reduced if maintainability is integrated early on in the

software development lifecycle. To delay considering maintainability as a goal of the development effort,

till reaching the operation phase of the software product, affects its quality and causes the maintenance

cost to increase. Software development process, documentation and program comprehension considerably

affect maintainability [Pigoski 1996]. It would be useful to quantify the relative magnitude of the risk

associated with a maintenance task through an analysis of the system artifacts and the maintenance tasks

required.

Furthermore, in recent years the use of commercial software components has increased to cut the cost

of software development. Without internal modification, the developer integrates the COTS software into

the system that will affect the overall maintainability. This is because the evolution and maintenance of

the software cannot be fully controlled by the users. Moreover, the quality of the COTS software

documentation and vendor support is immature [Päivi+ 2002]. To achieve a faster and more efficient

software development process [William+ 2002], it is highly recommended to use standards with proven

techniques and notations such as Unified Modeling Language UML. Several problems result from the lack

of communication and integration. One of these problems is implicit inconsistency caused by making

changes to the UML model or the system design. This will significantly lead to an increase of the cost and

complicate the maintenance process of such systems.

1.2.5 Software Design Patterns

In Merriam-Webster dictionary, some of the definitions of the word pattern are “a form or model

proposed for imitation” or “something designed or used as a model for making things”. Thus, when we

use the word pattern we are reflecting on how we do something or how we pursue our intent. In a mature

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 8

craft, it is common to find an archive of best practices that describes effective methods for achieving aims

or solving problems in different context. Also in any community of practitioners, you find that they invent

jargons to help them explain their intent or how to accomplish that intent. These jargons usually refer to

patterns, or standardized ways to do things. As the community becomes more mature, they try to

document these patterns in order to standardize the way things are done. This documentation tries to

convey the accumulated wisdom to next generations.

The architect Christopher Alexander was the first to document a craft’s best practices. Though, his

patterns relates to architecture of building, not software. He described patterns for successful towns,

buildings, and room designs. He developed a prototype of pattern books from his work in pattern

cataloging for architecture [Alexander+ 1977, Alexander 1979]. He developed the fundamental template

of a pattern, as a Context-Problem-Solution.

The software community adopted Alexander ideas; Kent Beck and Ward Cunningham introduced the

idea of patterns to software development. They wrote the first set of patterns that were addressing user

interfaces [Beck+ 1994] [Cunningham 1994] [Beck+ 1996]. Erich Gamma's 1991 doctoral thesis [Gamma

1991] was the first published work about patterns in software development. The Hillside Group was

formed to explore patterns further and promote their use in software development. In 1994, they founded

the first PLoP (Pattern Languages of Programs) conference.

The 'Gang of Four' book [Gamma+ 1995] presented the first well-described and documented catalog

of design patterns for object-oriented designs. It presented well-used and known design solutions for

object-oriented development. They documented a set of twenty-three patterns. They classified them under

Behavioral, Structural, and Creational. The use of patterns at the architectural level of software

development is introduced in The "Gang of Five" book [Buschmann+ 1996]; they classified the software

patterns as architectural patterns, design patterns and idioms. Nowadays, the main sources of pattern

evaluation and cataloging are the Pattern Language of Programs conferences.

Design patterns can help improve the software development because they:

• Provide a common vocabulary for the designs, which helps in understanding it

• Provide abstractions for the system, which reduces its complexity.

• Are proven building blocks from that help in building more complex applications.

• Help producing new designs as they are used as guiding blue prints.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: in chapter 2, we present the problem

statement, research objectives and contributions. We discuss the related work in chapter 3. Chapter 4

1. Introduction

Model-Based Risk Assessment Ph.D. Dissertation 9

addresses error propagation probabilities and components reliability-based risk assessment. In Chapter 5,

we generalize the reliability-based risk assessment to accommodate functional dependencies of the

system. Chapter 6 deals with architectural metrics that captures the characteristics of the phenomenon of

change propagation in software systems. We present maintainability-based risk concept and its estimation

procedure and apply it in different maintenance contexts in chapter 7. In chapter8, an overview for the

Software Architecture Risk Assessment (SARA) tool is described. Finally, we conclude and discuss future

work in chapter 9.

2. The Problem

Model-Based Risk Assessment Ph.D. Dissertation 10

2 The Problem

2.1 Problem Statement

Non-functional validation of software systems yet today does not find an appropriate consideration in

the practice of software developers. Too little time and effort are devoted to this aspect during the

software development process and a “fix-it-later” approach is still dominant. This allows software

products to obey to the “short time to market” law, but their quality, as the ability to meet non-functional

requirements, suffers of continuous (and sometime unaffordable) product updates after delivery.

This lack of validation appears even more serious if we consider that the software development has

been rapidly going, in the last few years, towards component-based system configurations. Availability of

self-contained software components (either previously developed or acquired from other

companies/teams) is changing the software development process. Large effort has been spent to study the

implications of reuse on the functional aspects of software systems, whereas the consequences of

replacing a component (even with a functionally equivalent one) on the non-functional software aspects

need more investigation.

Among the risks associated with non-functional attributes, a large significance has been given to

software risk in the safety-critical system domain. Wherever software controls systems whose failures

may be dangerous for environment and/or human life (e.g., aircrafts, nuclear plants, etc.), the

consequences of software failures are better to be considered from the very early phases of the lifecycle.

However, quantification of software risk is also suitable in other domains (independently of an absolute

risk level), in order to detect components and events that may typically put in trouble the software system

and the environment where the system will be running.

The risk of a software product has always been considered as a combination of the likelihood of a

failure and the severity of “damages” that the failure may produce. The sources of failures are usually

software behavioral faults, intended as behaviors that do not meet functional requirements. We refer to

this type of risk as reliability-based risk.

In pursue of our research effort, we identify the following problems:

• How can we assess risk associated with the non-functional attributes of reliability and maintainability

of a system based on quantitative means rather qualitative ones that are used in the current risk

assessment methodologies

2. The Problem

Model-Based Risk Assessment Ph.D. Dissertation 11

• How to define a practical reliability-based risk assessment methodology that captures the

dependencies between the system functionalities and among components.

2.2 Research Objectives

Model-based risk assessment should guide the management of software development and

maintenance. Anticipating what might go wrong and managing potential risks should be integrated into

the software development process. Model-based risk assessment is capable of pinpointing the risky

components of the system and helping in the allocation of the available resources to mitigate these risks.

We are concerned with reliability-based risk taking into consideration of use-case relationships.

Furthermore, the process of building software systems is quite complex and the word change characterizes

many of the encountered problems: change in environment, change in users’ expectations, change in

organizational environment, and change in software requirements. Prolonging the software system life is

highly profitable for the developing organization. Integrating the system with other systems, reusing it in

different situations, or simplifying the maintenance process might help in extending the system life.

Unfortunately, there are no universally used techniques for doing so.

As the need for software systems expands, development methodologies and techniques to automate

the production of software and facilitate its maintainability is needed. Researchers look for techniques that

reduce maintenance cost and improve quality. Using exiting solutions of recurring problems and cutting

off applications development from scratch is one of the effective improvements to software productivity

and maintainability.

The objectives of this research are:

• To generalize the reliability-based risk assessment methodology to account for the relationships

between use cases and profile of execution of the use cases of the system.

• To generalize the assumption of failure occurrence independence in the components of the system

and to account for error propagation among the components of the system in the methodology.

• To apply the generalized methodology on a real complex industrial case study, rather than on a

hypothetical case study or an example adopted from the literature, which proves its value of

pursuing this approach in tackling the problem of use case relationships.

• To develop a methodology for assessing maintainability-based risk for the system components

based on the characteristics of the component and its interactions with other components.

Sepecifically:

o To introduce and define maintainability-based risk assessment for software architecture.

2. The Problem

Model-Based Risk Assessment Ph.D. Dissertation 12

o To develop a general framework to accommodate different software maintenance types.

o To apply the estimation methodology on case studies with different size from different

domains considering different types of software maintenance.

• To automate the methodology and to provide the analyst with tool support.

2.3 Research Contribution

This dissertation introduces a new approach for model-based risk assessment methodology for

evaluating software architectures. The results of the research conducted in this thesis are (as discussed

later in details):

• We address architectural attributes which differ from code-level software attributes. Architectural

attributes focus on the level of components and connectors. In Specifics:

o We introduce and define architectural attributes such as change propagation probabilities and

size of change between components of the architecture.

o We derive formulas for estimating these metrics using architectural level information.

o We estimate error propagation probabilities, change propagation probabilities and size of

change for several case studies from different domains.

o We conduct empirical experiments to assess the estimation of these architectural attributes

• We relax some of the assumptions of the reliability-based risk assessment methodology [Goseva-

Popstojanova+2003].

o We generalize the methodology to accommodate relationships that model extensions and

commonality within the UML use case model and apply it a real industrial case study which is

a large command and control system used in a mission-critical application.It should be

emphasized that, to the best of our knowledge, this is the first work which addresses

relationships between use cases in assessing reliability-based risk.

o We generalize the methodology to capture the dependencies among the system components

and apply it on number of case studies.

• We are also concerned with maintainability-based risk analysis which assesses how difficult it is to

maintain the system in the future because of possible maintenance tasks.

o We introduce and define maintainability-based risk assessment for software architecture.

2. The Problem

Model-Based Risk Assessment Ph.D. Dissertation 13

o We propose a methodology for estimating the maintainability-based risk when considering

different types of maintenance: corrective, adaptive or perfective.

o We apply the proposed methodology on several case studies considering alternative

maintenance types.

o We use Non-Homogeneous Poisson Process to get the maintainability-based risk estimate as a

function of time when introducing new features in the system and/or due to adaptive

maintenance.

o We automate the steps for the estimation methodology.

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 14

3 Related Work

In this chapter, we discuss literature review for scenario based risk assessment, reliability-based risk

assessment and maintainability-based risk assessment.

3.1 Software Architecture Analysis Method (SAAM) and Architecture Trade-

off Analysis Method (ATAM)

Software Architecture Analysis Method (SAAM) is a first generation “scenario-based” architectural

assessment method. It was developed at the Software Engineering Institute (SEI) at Carnegie-Mellon

University (CMU). SAAM focuses on functionality and ease of change. It is simple and easy to apply. The

focus on function and modifiability can mask other problems as it neglects other quality properties.

SAAM lacks wide stakeholder involvement. [SEI 2005]

Architecture Trade-off Analysis Method (ATAM) is second generation “scenario-based” architectural

assessment method. It also was developed at the SEI. ATAM focuses on tradeoffs made between different

requirements and quality properties. ATAM has two phases; the first phase is performed by architects,

then stakeholders join in the second phase. [SEI 2005]

Risk assessment is conducted in both software evaluation approaches. In both approaches, the

assessment is based on qualitative measures and the experience of the analyst.

3.2 Reliability-Based Risk Assessment

We developed a risk assessment methodology to be used in the early phases of the software life cycle

[Goseva-Popstojanova+2003]. We used the Unified Modeling Language (UML) [OMG 2001] and

commercial modeling environment Rational Rose Real Time (RoseRT) [Rational Rose RT] to obtain

UML model statistics. First, a heuristic risk factor was obtained for each component and connector in

software architecture. This factor combined severity and complexity (coupling) metrics for the

components (connectors). Then, a Markov model was constructed to obtain scenarios’ risk factors. The

risk factors of use cases were estimated by averaging the scenarios’ risk factors. This estimation

methodology assumed independent use cases. Then, the overall system risk factor was estimated by

weighting the independent use cases risk factors with the probability of their execution. We further

identified critical components and connectors that would require careful analysis, design, implementation,

and more testing effort.

Several other papers involved UML use cases in the analysis but they considered only independent

use cases. In particular, in [Singh+ 2001] Singh et al. proposed an approach for reliability analysis of

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 15

component-based systems based on UML. In this work authors assumed independent use cases. Houmb et

al. presented the CORAS UML profile for risk assessment in [Houmb+ 2002] and demonstrated its use on

an e-commerce system assuming independent use cases. In [Hawkins+ 2002] Hawkins et al. addressed the

hazard and safety analysis of object-oriented systems. Although the approach proposed in [Hawkins+

2002] starts from the use cases, relationships among them were not considered.

3.2.1 Error Propagation Probabilities

To generalize the assumption of the independence of error occurrence in the components of the system,

we used error propagation probabilities among the components of the system [Abdelmoez+ 2004A]. In

this section, we first introduce and discuss the feature of error propagation in an architecture. Then, we

review a derivative of this feature. Finally, we discuss related work to error propagation.

3.2.1.1 Error Propagation: Definition

We consider two components, say A and B, of an architecture, and we let X be the connector that

carries information from A to B; for the purposes of our current discussion, the specific form of connector

X is not important, we will merely model it as a set (of values that A may transmit to B). Also, the specific

form of components A and B is not important; we will merely model them as functions that map an

internal state and an input stimulus into a new state and an output.

Definition 1. The Error Propagation Probability from component A to component B is denoted by

EP(A,B) and defined by:

EP(A,B) = Prob([B](x)≠[B](x’) | x≠x’), (3.1)

where [B] denotes the function of component B, and x is an element of the connector X from A to B. We

interpret [B] to capture all the effects of executing component B, including the effect on the state of B and

the effect on any outputs produced by B.

We interpret EP(A,B) as the probability that an error in A is propagated by B (as opposed to being

masked by B) because the outcome of executing B will be affected by the error in A. By extension of this

definition, we let EP(A,A) be equal to 1, which is the probability that an error in A causes an error in A.

Given an architecture with N components, we let EP be an N×N matrix such that the entry at row A and

column B be the error propagation probability from A to B.

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 16

3.2.1.2 Unconditional Error Propagation

Note that the definition of the error propagation given above uses the concept of conditional

probability, i.e. we calculate the probability that an error propagates from A to B under the condition that

A actually transmits a message to B. It is often useful, however, to use the unconditional error

propagation which we will denote simply as E(A,B), and define as the probability that an error propagates

from A to B not conditioned upon the event that A sends a message to B. Function E(A,B) is clearly

dependent on EP(A,B), but it further integrates the probability that A does send a message to B.

In order to bridge the gap between the original (conditional) error propagation and the newly

introduced unconditional error propagation, let us consider the transmission probability matrix T where

the entry T(A, B) reflects the probability with which the connector (A → B) gets activated during a typical/

canonical execution. T is the NxN matrix whose entry T(A, B) is the probability that the component A

sends a message to component B given that the A is expected to transmit a message to some component.

Note that:

• It is reasonable to assume that T(A, A) = 0 for all components A,

• Clearly, T is a stochastic matrix, i.e. ∑
B

BA),(T = 1 for every component A.

The matrix T is used to distinguish between a connector that is invoked intensively in each execution

and one that is invoked only occasionally, under exceptional circumstances. The matrix T reflects the

variance in frequency of activations of different connectors during a typical execution.

By virtue of simple probabilistic identities, we find that the unconditional error propagation is

obtained as the product of the conditional error propagation probability with the probability that the

connector over which the error propagates is activated, i.e.

E(A,B) = EP(A,B) × T(A, B). (3.2)

3.2.1.3 Related Work

In [Voas 1997], Voas analyzed error propagations between COTS components and presented an

automated tool to simulate error propagation, which is used to deploy a fault injection experiment. This

approach is code based and do not address the architecture of the system. Also, it is effort and time

consuming even though it is supported with automated tool but it requires instrumentation for the code

and then further analysis for the generated logs.

Michael et al [Michael+1997] presented an empirical study of data state error propagation behavior.

The authors argue that at a given location either all data state errors injected tend to propagate to the

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 17

output, or else none of them does. This kind of analysis does not take the specific topology of the systems

under consideration. It treats the system using their average behavior which we try to overcome by using

error propagation probabilities.

In [Hiller+ 2001] Hiller et al. analyzed error propagation conceptually, introducing the concept of error

permeability and discussing means to measure it using fault injection techniques. This work is similar to

the error propagation study that we conduct but they consider how the error propagates through the

component as an input/output relationship.

3.2.2 Estimating Error Propagation Probabilities

In [Abdelmoez+ 2004A], the authors have found that analytically, the error propagation probability,

can be expressed in terms of the probabilities of the individual A-to-B messages and states, via the

following formula:

EP(A→B) =
∑

∑∑

→∈
→

∈

−
→

∈

BA

BB

Vv

BA

Sy

xBA

Sx

B

vP-

yFPxP-

2

21

][1

)]([)(1

 (3.3)

where Fx
-1

(y) = { v∈ VA→B | Fx(v) = y}, and we assume a probability distribution PB on the set of states SB

of component B, and a probability distribution PA→B on the set of messages VA→B passed from A to B. For

further details, see Appendix II.

If we assume that the states of B, as well the messages passing through the connector from A to B are

equi-probable, then the formula (3.3) for error propagation is simplified into

EP(A→B)=

||

1
 1

|)(|
||||

1
 1 21

2

BA

Sx Sy

x

BAB

V
-

yF
VS

-
B B

→

∈ ∈

−

→
∑∑

 (3.4)

In [Popic+ 2005], Popic et. al. extended their Bayesian reliability prediction of component based

systems by introducing the error propagation probability. They studied the impact of the error propagation

in a case study of an automated Personnel Access Control System. They concluded that error propagation

has a significant impact on the system reliability prediction and, therefore, future architecture-based

models should not ignore it.

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 18

3.2.3 Empirical Error Propagation

In order to validate our analytical study, we developed a framework for experimental error

propagation analysis in which we utilize fault injection experiments to alter architecture specifications.

We then simulated the corrupted specifications and record component traces as “faulty-run” logs. Finally

we compared the faulty-run logs against a fault-free “golden-run” log obtained by simulating the

uncorrupted architecture specifications. The framework is shown in Figure 1. We performed the

simulation-based error propagation analysis in two phases: an acquisition phase and an analysis phase.

Figure 1 The framework of experimental error propagation analysis.

In the acquisition phase:

We extracted architecture information about the components and connectors that make up the

software system. We used a message swapping fault model [Ammar+ 2001] to generate fault injection

experiments. In each of the fault injection experiments we replaced all occurrences of a message

nominally flowing over a connector (from component A to component B) by a different message (as a

result of an error in component A) that belongs to the set of messages that A may send to B. We simulated

the corrupted specifications and recorded simulation traces for the different experiments that cover all

messages for the different connectors present in the architecture.

In the analysis phase:

We conducted post-simulation comparison between the faulty-run logs and the reference (fault-free)

log. The comparisons were based on state transitions at simulation time instances following a fault

injection. Immediately before injection of a fault, there were no difference between the state of component

B as recorded on the reference log and its state recorded on the faulty log. After a fault was injected, any

discrepancy between the two logs was due to error propagation from A to B. A faulty-message

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 19

propagating (from A to B) would at most cause a single instance of error propagation (from A to B). We

computed the experimental error propagation probability from component A to B as the ratio of the fault

injections (corresponding to errors in A) that propagated to component B over the total number of faults

injected from component A to component B.

3.3 Maintainability-Based Risk Assessment

The cost of software maintenance accounts for 60% - 80% of the overall software system cost and

enhancements (perfective/ adaptive) account for 78%-83% of the maintenance effort [Pigoski 1996]. Good

maintainability of the system facilitates easy modifications when adapting to changes in the environment.

Several studies address the quantification of hardware maintainability but only few attempt to quantify

software maintainability. In [Oman+ 1994], Oman et al. presented the Maintainability Index (MI), which

is a polynomial of widely used code level metrics. In [Muthanna+ 2000], Muthanna et al. conducted a

similar study on the design level metrics to statistically estimate the maintainability of software systems.

The maintenance process introduces many types of risk such as project risk, usability risk and

maintainability risk [Sherer 1997]. Maintainability-based risk assessment should guide the management of

the software maintenance process. It can help maintainers in identifying the risky areas of the system.

Hence, project managers can assign experienced maintainers to the risky areas.

Risk assessment can help with key decisions regarding allocation of resources. In [Papapanagiotakis+

1994], the authors presented a model to allocate personnel and software/hardware environments utilities to

maintenance efforts. This model assigned personnel based upon complexity indices for the application

software, allowing for a threshold for skills and abilities of the servers assigned to different tasks. They

suggested consideration of the level of software failure risk when allocating resources so that high failure

risk modules requiring change were assigned to more experienced maintainers.

In this dissertation, we are introducing a general framework for assessing maintainability-based risk

for system components. This framework assesses how difficult it will be to maintain the system in the

future as a result of performing current maintenance tasks. It strives to capture the nature of the

propagation of changes among the components when performing software maintenance. In the following

subsections, we present related work for change propagation and change impact in software system,

metrics to assess system maintainability and software maintainability models.

3.3.1 Change Propagation

Research of Change impact analysis was summarized in [Bohner+ 1996]. It dealt with finding all

classes impacted by change. In the computer-aided mechanical design field, engineers used tools, such as

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 20

C-FAR system [Cohen+ 2000], to trace and predict change propagation. They divided the system under

investigation into parts that are described according to their attributes. Interactions of the attributes were

stated in semi C-FAR matrices. Then, the interactions were analyzed to predict the mutual effect between

the attributes. C-FAR’s computational complexity made it appropriate for small or relatively simple

products.

Also, Design Structure Matrices (DSMs) [Steward 1981] estimated how change would propagate in a

system. They are well-established techniques used to identify relationships between the components of the

system or the design tasks [Eppinger+ 1994]. High connectivity found between design tasks suggested

that high levels of dependency existed between the resulting system components. No indication such as

the probability or scale of any such redesign was given by the DSMs.

In [Clarkson+ 2001], Clarkson et al. were concerned with the prediction and management of changes

to an existing product resulting from faults or new requirements. They developed mathematical models to

predict the risk of change propagation in terms of likelihood and impact of change.

In [Briand+ 1999B], Briand et al. investigated a probabilistic decision models based on coupling

measurement to support impact analysis. They provided an ordering of classes where ripple effects were

more likely. They investigated a commercial C++ system and they identified the coupling dimensions

related to ripple effects and ranked the classes according to their probability of containing ripple effects. In

[Briand+ 2003], Briand et al. proposed a UML model-based approach to impact analysis that can allow

early decision-making and a change planning process. They first made a consistency check for UML

diagrams. Then they identified changes between two different versions of a UML model according to a

change taxonomy, and determined model elements that are impacted by changes using defined impact

analysis rules. They prioritized the results of impact analysis according to the likelihood of occurrence

using a measure of distance between a changed element and potentially impacted elements. They also

presented a prototype tool that provides automated support for their impact analysis strategy.

In [Fanta+ 1998], Rajlich et al studied refactoring of an object oriented C++ code which had a number

of misplaced functions. They developed some tools to reengineer the code. In [Rajlich+ 2000], they

summarized the evolution role in the lifecycle of a software. Software lifecycle was split into stages and

the characteristics of each stage were highlighted. Change propagation in evolutionary development had

been the focus of prior models [Rajlich 2000], [Schach+ 2000]. In these models, a program was divided

into parts that were used to construct a propagation graph. These Techniques focused upon the potential

necessary changes that were required in redesigning the software. They used program variables to locate

links that might propagate the change, but they only predicted one step of change at a time.

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 21

In [Rajlich+ 2002], Rajlich et al. presented a technique for unanticipated incremental change and a

case study. The technique emphasized the role of software comprehension and the role of programming

concepts. In [Rajlich+ 2004], Rajlich et al. presented a set of selected incremental change activities—

change request, concept extraction, concept location, impact analysis, actualization, incorporation, change

propagation, refactoring, and role splitting—in which programming concepts and program dependencies

played a key role.

In [Hassan+ 2004] , Hassan et al. suggested a number of heuristics to anticipate change propagation in

software systems. In order to evaluate the performance of the proposed heuristics, they presented a

measuring framework to calculate recall and precision. They analyzed the history of development for five

large open source software systems to validate empirically their results. Their results doubted the

efficiency of code structure heuristics as indicators for change propagation. Furthermore, they concluded

that the historical change data could be used to develop better heuristics to assist developers during the

change propagation process.

In [Tsantalis+ 2005], The authors proposed a probabilistic approach to estimate the change proneness

of an object-oriented design. They evaluated the probability that each class of the system will be affected

when adding new functionality or when modifying existing functionality. Their proposed model had been

evaluated on two multi-version open source projects.

3.3.2 Maintainability Metrics

In this subsection, we review the literature for metrics and models used to assess the fuzzy maintainability

concept of software systems. Early work of maintainability focused on source code metrics. Later,

maintainability models tried to evaluate it using a set of metrics rather that relying on a single metric.

3.3.2.1 Traditional Metrics

In [Rombach 1987], Rombach advocated that source code metrics can predict maintenance effort,

maintainability, comprehensibility, locality and modifiability. Also in [Kafura+ 1987], Kafura et al. found

correlation between software code metrics and developers perceived maintainability.

In [Stark+ 1994], Stark et al. proposed a set of software metrics to assist in managing corrective and

adaptive maintenance processes. This set followed the Goal/Question/Metrics paradigm. Some of these

metrics tried to maximize effort and schedule by answering the question “How maintainable is the

system?”. Software size and software complexity metrics can assist answering that question Line of Code

(LOC) is the mostly used metric for measuring software size. Halstead metrics is the first metrics that try

to capture the size by other means rather than counting the lines of code [Halstead 1977]. McCabe’s

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 22

Cyclomatic Complexity is used usually as a measure for software complexity. It measures the number of

independent execution paths in the software [McCabe 1976].

A complexity measure should be useful in predicting maintenance costs. In [Gill+ 1991], authors

showed how the cyclomatic complexity metric relates to software maintenance productivity. They

introduced a simple transformation to the cyclomatic complexity metric, dividing it by the size of the

system, resulting into a complexity density ratio. This complexity density ratio showed to be useful in

predicting software maintenance productivity on small maintenance projects.

The following is brief overview of these traditioal metrics :

• Line of Code (LOC) is one of the mostly used metric. This is because of LOC is the most available

size metrics, as most of the editor programs count the lines of the file being edited. There are different

kinds of line of code such as blank lines, comment lines, lines with more than one instruction and

program headers. According to [Grady+ 1987], non-commented Lines of code NLOC considers all

lines that contains any program statement other than blank or comments.

• Halstead metrics are one of the first metrics that try to capture the size by other means rather than

counting the lines of code [Halstead 1977]. They try to capture the physical and psychological aspect

of the software. They are based on the following:

µ1 = number of unique operators. µ2 = number of unique operands.

N1 = total occurrences of operators. N2 = total occurrences of operands.

From these basic measurements, Halstead derived different metrics such as program vocabulary

(n), length (N), volume (V), total effort (E) and development time (T). These derived metrics received

lots of criticism such as in [Card+ 1990] and [Fenton+ 1996] because they lack any theoretical or

empirical foundations.

• McCabe’s Cyclomatic Complexity measures the number of independent execution paths in the

software program. In [McCabe 1976], McCabe suggested that small number of cyclomatic complexity

increases the module testability and understandability. He calculated the cyclomatic complexity as:

V(G) = e – n + 2 (3.5)

Where

V(G) = cyclomatic complexity of graph G.

e = number of edges.

n = number of nodes.

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 23

In [Grady 1994], the author analyzed 830KLOC FORTRAN code and found a strong relation

between cyclomatic complexity and number of module updates. He suggested that no module

cyclomatic complexity should exceed 15. On the hand, [Fenton+ 2000] showed that the cyclomatic

complexity does not correlate with fault metrics but when combined with other metrics some

correlation was found. Furthermore in [Card+ 1990], authors found weak correlation between

cyclomatic complexity and fault metrics.

• The Chidamber and Kemerer object oriented metrics: [Chidamber+ 1994]

o Coupling Between Objects (CBO) is defined as the number of the components coupled to a

component in an architecture.

o Response For a Class (RFC) is the sum of all the methods that can be invoked in response to a

message to an object of a component or by a method of the component.

o Weighted Methods per Class (WMC) is the sum of the complexities of all the methods in a

component.

• Message Passing Coupling (MPC) is the sum of the number of method calls made by all the methods

in a component. [Briand+ 1999A]

3.3.2.2 Maintainability Metrics Model

There have been several studies trying to characterize and quantify software maintainability. One of

the famous studies by Oman et al. introduced the Maintainability Index measure. In [Oman+ 1992], he

developed the MI equations. The study indicated that widely-used measures; such as Halstead measures

and McCabe’s cyclomatic complexity; are good predictors of maintainability. In [Oman+ 1994], Oman

introduced a modification of the MI and described how to calibrate it using large suite of industrial-use

operational code. Oman developed a prototype tool to support capture and use of maintainability measures

for Pascal and C [Oman 1991]. MI is given by a polynomial in the following form

MI= 171 - 5.2 * ln(aveV) - 0.23 * aveV(g') - 16.2 * ln (aveLOC) + 50 * sin (sqrt(2.4 * perCM)) (3.6)

The terms are defined as follows:

aveV = average Halstead Volume V per module.

aveV(g') = average extended cyclomatic complexity per module.

aveLOC = the average lines of code (LOC) per module; and

perCM = average percent of lines of comments per module

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 24

In a joint research effort, the software maintainability metrics models were used to quantify

maintainability via Maintainability Index (MI) [Welker+ 1995]. Measurement and use of the MI was

integrated as part of the overall development or maintenance process. These efforts indicated that MI

measurement applied during software development could help reduce lifecycle costs. It worth noting that

the maintainability-index lack theoretical foundations and was conducted on rather small systems with

current consideration. Even though, it is one of the most reported studies and there is no further

investigations on how helpful it is or how widely it is used. In contrast, our proposed methodology is

based on architectural artifacts so it can be applied early on in the life cycle where maintainability index

relies on code-level metrics. Moreover, our methodology tries to capture the change propagation

phenomena that affect the maintenance process. Also, our methodology is generic enough to consider

different types of maintenance: corrective, adaptive and perfective.

In [Muthanna+ 2002], Muthanna et al. conducted a similar study but rather on the design level metrics

to statistically estimate the maintainability of software systems. They constructed a linear model based on

a minimal set of design level software metrics to predict Software Maintainability Index (SMI), as follow:

SMI=125–3.989⋅FANavg–0.954⋅DF–1.123⋅MCavg (3.7)

Where FANavg is the average number of external calls coming from this module.

DF is the number of incoming and outgoing dataflow for the module.

MCavg is the average cyclomatic complexity for the module.

The authors only validated the model on a single 92KLOC industrial software system against

developers’ opinions. According to the authors, the model gave a good prediction in most cases. There is a

restriction to use this model; the system should be decomposed into modules of 1 to 2KLOC. Also, this

work lacks any theoretical foundation. On the other hand, our methodology tries to capture the change

propagation phenomena that run behind the scene. Also, our methodology is accommodate different types

of maintenance: corrective, adaptive and perfective while this work does not differentiate between them.

In [Menzies+ 2000], the authors tried to assess the maintainability of software systems. They

suggested a theoretical model of maintenance effort. They assumed that a large portion of maintenance

cost is spent on continual retesting. They depicted testing by the pathways that reach from inputs to some

interesting zone of a program, i.e. a bug or a desired feature. Their goal of testing was to show that a test

set uncovers no bugs while reaching all desired features. If the system was hard to test; i.e. if it had low

reachability, it was hard to maintain. Therefore, easy maintenance required easy testing and easy testing

required easy reachability. They developed and simulated a model of system reachability. Then, they used

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 25

a sensitivity analysis to find the key parameters that change system reachability. This model assumes an

average topology for the system and does not into consideration the specifics of the architecture topology

of a certain system. Also, it concentrates only on corrective maintenance and fixing bugs. While, our

proposed methodology takes into account other maintenance types beside corrective maintenance and

takes into consideration the specifics characteristics of the components of the system.

3.3.3 Request Generation Using Non-Homogeneous Poisson Process

In [Burch+ 1997] and [Gefen+ 1996], the authors observed the non-homogeneous nature of

maintenance request arrivals. They found an empirical support for the evolution of the mean rate of

maintenance requests overtime. In [Tan+ 2005], Tan et al. modeled the random arrival of maintenance

requests using non-homogeneous Poisson process with time varying mean rate. In their model two sources

with time varying mean rate. In their model two sources of system enhancements were considered:

• Adaptive maintenance: They assumed that the mean rate of request arrivals of adaptive maintenance

can be constant or increasing with time

• Perfective maintenance: They assumed that the mean request rate M.g(z) of perfective maintenance

for a certain feature can be modeled as inverted U-shape starting from the time of introducing this

feature to the system [Burch+ 1997].

Thus, the total mean arrival rate of requests, λ(t), is the sum of the mean arrival rates from theses two

sources. λ(t) can be given by the following:

∑ ∑∑
−

=
−+

−

+=

−

=

−⋅−⋅+−+⋅++=
2

0

11

1

1

1

1

)()()()()(
i

k

iiik

i

kl

lk

i

l

li LtLtgMLTtgMTtht θλ (3.8)

Where:

• t is the elapsed time since the introduction of the system

• Ti denote the interval between the (i-1)
th
 and the i

th
 maintenance activity. Assuming that, in the

system useful lifetime.T, there are r maintenance activities.

• M0 is starting function points of the system and Mi function points are added during the i
th

activity.

• Li is the time to implement Mi function points (L1 =0), and

• q(.) is the step function.

• H(t) mean rate of request arrivals of adaptive maintenance

3. Related Work

Model-Based Risk Assessment Ph.D. Dissertation 26

• M.g(z) is the mean rate for request arrivals of perfective maintenance of a new system feature of

complexity M. g(z)is given by:

)exp(
)1(

)(
1

zzKzg β
α
β α

α

−
+Γ

=
+

 (3.9)

where

• α and β are factors reflecting the learning effect and the saturation effect characteristics of the

users of the system.

• The term Γ(α+1) is the Gamma function.

• z is the time measured from the first introduction of the new feature to the users

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 27

4 Error Propagation Probabilities and Reliability-Based Risk

Assessment

In this chapter, we address error propagation probabilities as an architectural attributes. Also, we deal

with the generalization for the assumption of error occurrence independence in the components of the

system. We account for error propagation among the components of the system. Furthermore, we use error

propagation probabilities in refining the reliability-based risk assessment methodology.

4.1 Analytical Error Propagation Results

As a case study, we inspect a command and control system used in a mission-critical application. We

present only the analysis of the Internal Thermal Control subsystem. The detailed artifacts of the

command and control case study are in Appendix I.A. Using the architecture of a command and control

system, we first estimate the error propagation probabilities analytically. We get the set of states SB and

messages VA→B from the artifacts of the system specification. We obtain the matrix EP of (conditional)

error propagation probabilities of this system, using the equation (3.3). The analytical error propagation

probabilities of the case study are shown in Table 1.

Table 1 Conditional Error Propagation Matrix - Analytical Results

B

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0.1061 0.4210 0.3368 0.4472 0.4623

C2 0.2001 0.5238

C3 0.0105 0.4722

C4 0.0190 0.2332

C5 0.2765

C6 0.1265

C7 0.3761

C8

C9

A

C10 0.0014

To illustrate how we compute the (conditional) error propagation, we work out our computation steps

for EP(2→8), the (conditional) error propagation from component 2 to component 8:

• From Figure 2 , the state diagram of component 8, we determine the set of states S8={s1, s2}.

From Figure 3, the message protocol between component 2 to component 8, we determine set of

messages V2→8={m1, m2, m3, m4}.

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 28

• From simulating the operational profile, we estimate the probability distribution of states SB of

component 8 and the probability distribution of messages VA→B exchanged between component 2

and component 8. These are given in Table 2 and Table 3, respectively.

• Considering Figure 2 for the state diagram of component 8, we get Fx
-1

(y) = {v∈ VA→B | Fx(v) = y}

for each pair of states in component 8. For example, we find that Fs1
-1

(s2) = {m2}, which means

that the message m2 is the set of messages that cause us to make a transition to state s2 given that

we are in state s1. Then, the term P2→8 [Fs1
-1

(s2)]
2
 will be P2→8 [{m2}]

 2
 that we calculate using

Table 3.

• Similarly, we get Fs2
-1

(s2) = {m3, m4} and P2→8 [FS2
-1

(S2)]
2
 will be P2→8 [{m3,m4}]

 2
. Note that

we need to consider all the messages for a certain state. For state S2, the message m1 is not

defined from the state transition diagram. So, we assume that receiving a message m1 given that

we are at state s2 will cause us to remain in State s2 (Self reflective transition). As a result, we get

Fs2
-1

(s2) = {m1, m3, m4} and P2→8 [FS2
-1

(S2)]
2
 will be P2→8 [{m1,m3,m4}]

2
. Then the state

transition diagram of component 8 will be as in Figure 4 to take undefined messages into

consideration.

• According to equation (3.3), we continue evaluating these probabilities for each pair of states in

component 8, multiply them with the corresponding state probabilities PB and use the probabilities

of the messages VA→B between component 2 and component 8. Then, we get EP(2→8)=0.5238.

Switch_Close

Switch_Open

m1m2

Initial

m1m2

Initial

m3_m4m3_m4

Figure 2 A state diagram of component 8.

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 29

Table 2 Probability distribution of states SB of C 8

State Switch Open (S1) Switch Closed (S2)

Prob(State) 0.99 0.01

Figure 3 A sample of a sanitized message protocol (components 2 and 8).

Table 3 Probability distribution of messages VA→B exchanged between C 2 and C 8

Message m1 m2 m3 m4

Prob(Message) 0.267 0.267 0.266 0.2

Switch_Close

Switch_Open

m1m2

Ini tial

m1m2

Ini tial

m1_m3_m4m1_m3_m4

m2_m3_m4m2_m3_m4

Figure 4 Updated state diagram of component 8.

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 30

For this particular case study, we have derived the connector activation matrix T as a stochastic matrix

of probabilities that contains for each entry (A,B), the probability that connector (A,B) is activated, given

that component A is broadcasting a message. Using this connector activation matrix, we derive the

unconditional error propagation matrix EA, also referred to as the 1-step error propagation matrix of the

system; this is given in Table 4. We get the matrix T through the simulation of the system representing the

operational profile of the execution.

Table 4 Unconditional Error Propagation Matrix - Analytical Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0.0012 0.0132 0.0102 0.0146 0.0145

C2 0.1104 0.1264

C3 0.0060 0.2024

C4 0.0107 0.1026

C5 0.1005

C6 0.0506

C7 0.3761

C8

C9

A

C10 0.0014

Using the unconditional error propagation matrix, say EA, given above, we derive the matrix of cumulative

error propagation probabilities, which we call E
*
A. Table 5 gives cumulative error propagation

probabilities matrix for the command and control case study. Except for possible round-off errors, matrix

E*A is greater than matrix EA, entry by entry.

Table 5 Cumulative Error Propagation Matrix - Analytical Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1.00 1.16E-03 1.32E-02 1.02E-02 1.46E-02 1.45E-02 1.46E-04

C2 1.10E-01 1.00 1.46E-03 1.12E-03 1.61E-03 1.60E-03 1.26E-01

C3 6.04E-03 2.02E-01 1.00 6.15E-05 8.82E-05 8.78E-05 2.56E-02

C4 1.07E-02 1.03E-01 1.41E-04 1.00 1.56E-04 1.55E-04 1.30E-02

C5 1.11E-02 1.01E-01 1.47E-04 1.13E-04 1.00 1.61E-04 1.27E-02

C6 5.59E-03 5.06E-02 7.39E-05 5.69E-05 8.15E-05 1.00 6.40E-03

C7 3.76E-01 4.35E-04 4.98E-03 3.83E-03 5.49E-03 5.47E-03 1.00 5.49E-05

C8 1.00

C9 1.00

A

C10 1.41E-03 1.62E-06 1.86E-05 1.43E-05 2.05E-05 2.04E-05 0.00 2.05E-07 0.00 1.00

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 31

4.2 Experimental Error Propagation Results

Table 6 shows the experimentally obtained error propagation matrix EE from the fault injection

experiment explained in section 3.2.3 considering the same mode of operation whose analytical error

propagation matrix EA is given in Table 4.

Table 6 Unconditional Error Propagation Matrix EE - Empirical Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0.5000 0.0557 0.4912 0.1331 0.1280

C2 0.7838 0.4286

C3 0.0161 0.7083

C4 0.7917 0.6429

C5 1.0000

C6 1.0000

C7 0.7500

C8

C9

A

C10 1.0000

Using matrix EE, we derive matrix E*E of cumulative error propagation probabilities, and find the

results shown in Table 7. Note that except for round-off errors, this matrix is greater than the matrix of

unconditional probabilities, entry by entry.

Table 7 Cumulative Error Propagation - Experimental Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1.00 5.00E-01 5.57E-02 4.91E-01 1.33E-01 1.28E-01 2.14E-01

C2 7.84E-01 1.00 4.37E-02 3.85E-01 1.04E-01 1.00E-01 4.29E-01

C3 1.61E-02 7.08E-01 1.00 7.91E-03 2.14E-03 2.06E-03 3.04E-01

C4 7.92E-01 6.43E-01 4.41E-02 1.00 1.05E-01 1.01E-01 2.76E-01

C5 7.84E-01 1.00E+00 4.37E-02 3.85E-01 1.00 1.00E-01 4.29E-01

C6 7.84E-01 1.00E+00 4.37E-02 3.85E-01 1.04E-01 1.00 4.29E-01

C7 7.50E-01 3.75E-01 4.18E-02 3.68E-01 9.98E-02 9.60E-02 1.00 1.61E-01

C8 1.00

C9 1.00

A

C10 1.00E+00 5.00E-01 5.57E-02 4.91E-01 1.33E-01 1.28E-01 2.14E-01 1.00

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 32

4.3 Error Propagation Probabilities Validation

In this section, we confront the results computed by the analytical formula against the results derived

from the fault injection experiment to assess the validity of our analytical formulas. We let EA and EE be

(respectively) the analytical matrix and the empirical matrix of (unconditional) error propagation for our

sample architecture; these are both 10×10 matrices. We use a number of criteria to this effect:

• The first possible criterion is simply the correlation between the entries of the two matrices;

because these matrices contain 100 values each, the correlations do bear some significance.

• The second possible criterion is to correlate, not all the values of the matrices, but rather the non-

trivial values (other than those that are either 0 or 1 by definition); the rationale behind this

criterion is that trivial values do not really test our analytical results.

• The third criterion discriminates between empirical values that were derived from a small number

of fault injections and those that were derived from a large number of fault injections. If our

analytical results are accurate, we should find empirical values that stem from large numbers of

fault injections to be highly correlated to their corresponding analytical values, whereas those

values than stem from small numbers of fault injections are not guaranteed to correlate to their

corresponding analytical results.

Orthogonally, we find it useful to compare not only EA and EE, which represent single step

propagations, but also cumulative versions of these matrices, which represent probabilities of error

propagations that may have taken more than one step through the architecture. There are two reasons why

we may want to consider the cumulative matrix E* in addition to the single-step matrix E:

• In practice, if we are interested in the probability that an error in A propagates to B, we usually do

not care in how many steps the propagation takes place; hence E* is a better reflection of what we

want to measure than E.

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 33

• Also, if there is any discrepancy between what the analytical study defines as a single step and

what the empirical study does, this discrepancy will be smoothed out once we consider

propagations of arbitrary length.

In the remainder of this sub section, we apply these criteria to matrices E and E* in order to determine to

what extent the values obtained empirically are consistent with those found analytically.

4.3.1 Correlating One Step Matrices

In this section, we present the results of the study that we conducted to explore the correlation

between the analytically estimated single step error propagation matrix and its experimentally derived

counterpart. The correlation coefficient between all the cells of the analytical EA matrix and the

experimental EE matrix is:

Cor(EA,EE) = 0.628 (r value) (4.1)

where ‘r’ denotes the Pearson product-moment correlation coefficient.

We note, however, that there are only 15 non-trivial entries in each of the two matrices. Trivial entries

correspond to self-loops from a component to itself (with error propagation probability of 1 by definition)

and to the non-directly connected components (with error propagation probability of 0 by definition). It

may be useful to evaluate the correlation between the set of non-trivial values of matrices EA and EE

having a significant number of fault injections(>20). The connectors that has <20 fault injections are

shaded in Table 8 We find:

Cor’(EA,EE) = 0.5576 (r value) (4.2)

Table 8 contains the 15 non-trivial entries corresponding to the 15 connectors over which faults were

injected during the controlled experiment. Note that the number of injected faults over connectors varies

considerably across the entries. The connectors in the table follow a descending order with respect to the

number faults injected over each connector. Overall, the correlation decreases as the number of injected

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 34

faults drop, although not monotonically; the disturbances in the first few rows may stem from the fact that

a correlation is not necessarily meaningful when too few values are involved.

The results in this table are interesting, in that they show a fairly high correlation between

experimental results and analytical results in those cases where the experimental result is based on a large

number of fault injections. Also, predictably, the correlation drops (as shown in Table 8) as the number of

fault injections drop (though not monotonically).

Table 8 Correlation between analytical and experimental EP probabilities

Connector
Entry

From To
EA EE # Injected Faults Correlation Coefficient

1 1 5 0.0146 0.1331 1067 N/A N/A

2 1 6 0.0145 0.1280 1055 1.0000 Entries 1 through 2

3 1 3 0.0132 0.0557 592 0.9999 Entries 1 through 3

4 3 1 0.0060 0.0161 559 0.8708 Entries 1 through 4

5 7 1 0.3761 0.7500 64 0.9894 Entries 1 through 5

6 1 4 0.0102 0.4912 57 0.8160 Entries 1 through 6

7 2 1 0.1104 0.7838 37 0.7153 Entries 1 through 7

8 1 2 0.0012 0.5000 36 0.6488 Entries 1 through 8

9 4 2 0.1026 0.6429 28 0.6433 Entries 1 through 9

10 3 2 0.2024 0.7083 24 0.6829 Entries 1 through 10

11 4 1 0.0107 0.7917 24 0.5576 Entries 1 through 11

12 2 8 0.1264 0.4286 7 0.5501 Entries 1 through 12

13 5 2 0.1005 1.0000 4 0.5068 Entries 1 through 13

14 6 2 0.0506 1.0000 4 0.4291 Entries 1 through 14

15 10 1 0.0014 1.0000 4 0.3240 Entries 1 through 15

4.3.2 Correlating Cumulative Matrices

In addition to analyzing the correlation between matrices EA and EE (which represent the one-step

unconditional error propagation probabilities, estimated analytically and experimentally), we are

interested in analyzing the correlations between matrices E*A and E*E, which represent the cumulative

(multi-step) versions of these matrices. The results of our study are shown in Figure 5. We find for all

elements,

Cor (E*A,E*E)=0.737 (r value) (4.3)

Also, we find that the correlation for multi-step error propagation for non-trivial values, is

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 35

Cor’(E*A,E*E) = 0.460 (r value) (4.4)

Hence our analytical formula can be used to predict cumulative error propagation probabilities

throughout an architecture with a significant positive correlation, at least in this sample case study - all the

while using nothing more than the UML-RT description of the system.

Figure 5 Correlation between analytical and empirical error propagation

4.3.3 Statistical Significance of the Correlations

Now we need to validate our results, i.e. to make sure that the positive correlation values we observed

are statistically significant. To further test the relationship between analytical and experimental error

propagation hypothesis testing was done using the T-test (One-tail) [Moore+ 2003] for the non-trivial

entries using the level of significance α = 0.05

• H0 : ρ = 0 (There is no linear association between analytical error propagation values and

empirical error propagation values)

• H1 : ρ > 0 (There is a positive linear association between analytical error propagation values and

empirical error propagation values)

The null-hypothesis is rejected when the p value is smaller than 0.05.

We have computed the value of t statistic for the non-trivial values of 1-step matrices tob = 2.015

(n=11),and the corresponding P < 0.05; whence we infer that the correlation of 0.628 is statistically

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 36

significant. Likewise, the value of t statistic for the non-trivial values of cumulative error propagation

matrices was found to be tob = 3.5893(n=50), and the corresponding P < 0.05 which shows that the

correlation between experimental and analytical cumulative error propagation matrices is statistically

significant.

The T-test results showed that there is a linear association between analytical error propagation and

experimental error propagation as well as between cumulative analytical error propagation and cumulative

experimental error propagation as in both cases based on the P value the null hypothesis of no linear

association was rejected.

4.4 Ranking Components According to their Error Proneness

One of the usages of the error propagation matrix is to check for components that tend to be affected

by errors arising throughout the architecture; component error proneness. Thus, this calls for providing

these components with fault tolerance capabilities (error detection, damage assessment, error recovery).

1 2 3 4 5 6 7 8 9 1 0
0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6
Im p o rte d E rro r P ro n e n e s s A n a ly t ic a l

C o m p o n e n ts

E
rr

o
r

P
ro

n
e
n
e
s
s

1 2 3 4 5 6 7 8 9 1 0
0

1

2

3

4

5

6
Im p o rte d E rro r P ro n e n e s s E x p e rim e n ta l

C o m p o n e n ts

E
rr

o
r

P
ro

n
e
n
e
s
s

 (a) Analytical imported error proneness (b) Experimental imported error proneness

Figure 6 Imported error proneness for command and control system case study

We use the column sum of the error propagation matrix as measure for the imported error proneness

of the component then we ranked the components accordingly. In Figure 6, we show the results of the

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 37

component error proneness estimated from analytical and experimental error propagation matrices. If we

compare the ranking of the component in both cases, we find that the components with highest error

proneness identified from analytical results are the same as those identified from experimental results

(components C1 and C2).

Furthermore, we want to study the behavior of error proneness of the components across the steps of

propagation of the error. First, let us assume uniform initial error proneness for the components of the

system. Then multiply the initial error proneness by the powers of the analytical unconditional error

propagation matrix to get the 1-step, 2-steps… error proneness of the components, as shown in Figure 7.

From the results, we find that components C1 and C2 are the most error prone across the steps of

propagation of the error. Thus, they are the most critical components considering error proneness (similar

to the results of the column sum).

Figure 7 Analytical error proneness of the components in steps

4.5 Considering Error Propagation Probabilities in Assessing Components

Reliability-Based Risk

In [Goseva-Popstojanova+2003], we estimate component’s reliability-based risk factor as a product of

the dynamic complexity and the severity level of that component for a certain scenario. (See Section 5.1.2

for details). To get an estimate for the system-level reliability-based risk factor for the component, we can

use static cyclomatic complexity as a predictor for the probability of error occurrence in that component

and multiply it by the system-level severity. Such estimation assumes independence of error occurrences

in the components of the system. To generalize this assumption, we use error propagation probabilities

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 38

among the components of the system in reliability-based risk assessment. We use the static component

complexity as measure of the probability of having initial failures. Then, we use the error propagation

probabilities to get the unconditional error probability of the components to account for the effect of the

dependency among the components of the system. Thus, the reliability-based risk factor of a system

component Ci will be

ij ijji csv *] ep * iep [rrf ∑= (4.5)

Where RRF = [rrfi] is the Component Reliability-based Risk Factor

IEP = [iepi] is the Initial Error Probability

EP = [epij] is the the Error Propagation Probabilities matrix

CSv = [csvi] is the Component Severity

It is worth noting that cyclomatic complexity is a good predictor for fault density. As many faults do

not manifest themselves into errors, thus there is weak correlation between fault density and error density.

Even though, in a risk assessment context, we consider worst-case scenario, so it is justifiable to use

cyclomatic complexity as a first-order approximation for initial error probability in the early life-cycle of

the system. Also, cyclomtic complexity is used also by NASA as on the attributes to assess error potential

in their SILAP risk assessment process [Costello 2005].

In the following subsections, we estimate the reliability-based risk for the components of the system.

First, we use the normalized cyclomatic complexity of the system components as an estimate for the initial

error probabilities IEP. Then, we use the system artifacts to estimate the error propagation probabilities

EP. Finally, the severity of the system components CSv is assessed according to MIL_STD_1629A

[MIL_STD_1629A]. Severity considers the worst case consequence of a failure determined by the degree

of injury, property damage, system damage, and mission loss that could ultimately occur. Based on hazard

analysis, we identify the severity classes: Catastrophic, Critical, Major and Minor. The assignment of

component severity level of each component is based on the hazard analysis conducted by domain experts

knowledgeable about these case studies.

4.5.1 Pace Maker Case Study Results

A cardiac pacemaker [Douglass 1998] is an implanted device that assists cardiac functions when the

underlying pathologies make the intrinsic heartbeats low. An error in the software operation of the device

can cause loss of a patient’s life. The detail of this case study is introduced in Appendix I.B.

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 39

The cyclomatic complexity of the pace maker components are shown in Figure 8. By normalizing the

cyclomatic complexity by their total sum, we get as an estimate for the initial error probabilities IEP,

given in Figure 9 . Using the pace maker artifacts, the pace maker error propagation probabilities results

are estimated, shown in Figure 10. Finally, the severity of the system components CSv is assessed and

shown in Table 9.

Figure 8 Pace maker cyclomatic complexity

Figure 9 Pace maker initial error probability

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 40

Figure 10 Pace maker error propagation matrix - analytical results

Table 9 Components severity of the pace maker case study

 Components

 RS CD CG AR VT

Severity Level Minor Minor. Major. Catastrophic Catastrophic

The reliability-based risk factors for the components of the pace maker system using equation (4.5)

are estimated, shown in Figure 11. It also shows a comparison between components reliability-based risk

factors for pace maker case study with and without considering error propagation. There is a difference

between the components risk factor levels in each case. This difference becomes more significant when

considering cumulative error propagation. Furthermore component CG changes its risk level ranking when

considering error propagation. Due to relatively high error propagation values and high connectivity

among the components of the case study, errors propagate among the components and causes failures to

occur causing the components reliability-based risk factor to increase

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 41

Figure 11 Comparing components reliability-based risk factors for pace maker case study

4.5.2 CM1 Case Study Results

CM1 is a software component of a data processing unit used in an instrument which exploits data to

probe the early universe. This case study is from the Metrics Data Program [NASA MDP]. A UML-RT

model for CM1 is constructed from the artifacts provided. (The detail of this case study is introduced in

Appendix I.C). The cyclomatic complexity of the CM1 components are shown in Figure 12. By

normalizing the cyclomatic complexity by their total sum, we get as an estimate for the initial error

probabilities IEP, given in Figure 13.

Using the CM1 case study artifacts, the error propagation probabilities results are estimated, shown in

Figure 14. The components severity levels of the CM1 case study are given in Table 10. In general, the

device drivers have a catastrophic severity level, as they could be very difficult to debug them on-orbit.

The application-level components are of critical severity levels, as they make use of the device drivers.

The application level components usually are of major severity levels. Finally, there are components of

minor severity levels as they are not mission-critical.

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 42

Figure 12 CM1 case study cyclomatic complexity

Figure 13 CM1 case study initial error probability

Figure 14 CM1 case study error propagation matrix - analytical results

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 43

Table 10 Components severity of the CM1 case study

 Components

 BIT CCM DCI DCX DPA EDAC ICUI 1553 SCUI SSI TIS TMALI

Severity

Level
Minor Cat. Cat. Minor Major Major Critical Cat. Critical Cat Major Critical

The reliability-based risk factors for the components of the CM1 system using equation (4.5) are

estimated, shown in Figure 15. The Figure also shows a comparison between components reliability-based

risk factors for CM1 case study when considering: no error propagation, 1-step analytical error

propagation and cumulative analytical error propagation. The difference between the components risk

factor levels in each case is limited to components DCX, ICUI, SCUI and TMALI. The difference is quite

significant in these components and becomes more significant when considering cumulative error

propagation probabilities. As result of considering error propagation in the estimation of components

reliability-based risk factors, components DCX, ICUI and TMALI change their risk level ranking when

considering error propagation.

It is worth noting that the estimation of the error propagation probabilities in this case study is based

on a high-level model that does not capture lots of the details of the system. That results in an inaccurate

estimate for error propagation of the system. As the model becomes more detailed, the error propagation

estimates will be more accurate and the estimates for the risk factors for the rest of the components will

differ as a result.

Figure 15 Comparing CM1 case study reliability risk factors

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 44

4.5.3 Command and Control System Case Study Results

To get an estimate for the initial error probabilities IEP, we normalize the cyclomatic complexity by

their sum. The cyclomatic complexity of the command and control system components is shown in Figure

16. (The case study details are in appendix I.A). The initial error probabilities IEP estimates are given in

Figure 17. Using the command and control case study artifacts, the error propagation probabilities results

are estimated. In sections 4.1 and 4.2, we estimated the analytical one-step, empirical one-step, analytical

cumulative, empirical cumulative error propagation probabilities matrices. We use these estimates to

evaluate the reliability-based risk factors for the components of the system the assignment of component

severity level of each component is based on the hazard analysis conducted by domain experts

knowledgeable about the case study. The components severity levels of the command and control system

case study are given in Table 11.

Figure 16 Command and control system cyclomatic complexity

Figure 17 Command and control system initial error probability

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 45

Table 11 Components severity of the command and control case study

 Components

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Severity

Level
Cat. Cat. Critical Critical Major Major Critical Minor Major Minor

Figure 18 presents the reliability-based risk factors for the components of the command and control

system using equation (4.5) and different error propagation estimates probabilities. The comparison shows

that there is an increase in the components risk factor levels between considering error propagation and

not considering it. In the case of empirical results, the increase is larger when considering cumulative error

propagation than one step error propagation, as it accounts for all error propagating regardless of just

being in one step. That increase is caused by relatively high error propagation values among the

components of the case study. Thus, errors propagate among the components and causes failures to occur

causing the components reliability-based risk factor to increase.

Figure 18 Comparing command and control system reliability risk factors

This case study represents the case when there is one component in the system (component C1) that

manages most of the behavior of the system and controls the rest of the components in the system. Also, in

the case study there is failure recovery component (component C2) that takes control in case of a failure.

The rest of the components are playing just supporting roles and the whole system functionality is

concentrate in these two components. This explains the huge difference in risk factor values between these

4. Error Propagation Probabilities and Reliability-Based Risk Assessment

Model-Based Risk Assessment Ph.D. Dissertation 46

two components C1 and C2 and the rest of the components of the system. Furthermore, this architecuture

causes the error propagation matrix to be sparse. Thus, errors are not capable of making further

propagations in the system. Therefore, there are no significant changes in the ranking of the components

of the system when considering their reliability-based risk factor, except component C4 when considering

empirical results.

4.6 Summary and Discussion

In this chapter, we analytically estimated the error propagation probabilities for an industrial case

study. In order to validate the analytical results, we conducted a fault injection experiment to get empirical

estimates of the error propagation probabilities. We found a correlation of at least 0.55 between the two

results in case of single-step error propagation probabilities and a correlation of 0.46 in the case of

cumulative error propagation probabilities. Furthermore to ensure that we didn’t get these correlations by

chance, we computed the t statistic to examine the statistical significance for these correlations. We

obtained p-values < 0.05 which shows that the correlation between experimental and analytical error

propagation matrices is statistically significant.

Based on the validated results of the error propagation study, we modified the estimation methodology

of components reliability-based risk to consider error propagation among the system components. The

topology of the components of the system captured in terms of error propagation probabilities of these

components alters their reliability-based risk level. The results obtained from the case studies show that it

is important to take into consideration the specifics of the architecture of the system under investigation.

As each system characteristics are quite different and that results into different reliability-based risk

associated with the system. These finding agrees with [Pelànek 2004]. Pelànek explored the state space of

a number of systems with model checking algorithms. The author gathered a large collection of state

spaces and performed an extensive study of their structural properties. He concluded that although state

spaces share some typical properties in common, some can differ significantly.

In order to get a good estimate of the error propagation probabilities, the estimation procedure requires

detailed software architecture in term of detailed state diagram for each component in the system. Early in

the software life-cycle, such data are usually not available. The error propagation estimation procedure

can be applied if the software developers agree on investing in detailed architecture of the system and

keep it up to date as the software progress in development stages. On the other hand when comparing the

effort required to get the error propagation probabilities using a detailed architecture to the effort required

to conduct fault injection analysis, estimating error propagation from the architecture requires much less

effort.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 47

5 Reliability-Based Risk Assessment with Functional

Dependencies

In this chapter, we concentrate on reliability-based risk assessment with functional dependencies. In

the context of object-oriented modeling, we deal with risk assessment estimation taking into account use-

case relationships. First, we start by discussing the reliability-based risk assessment methodology.

Afterward, we investigate the use-case based analysis for software system. Then, we define the use cases

terminology, describe the proposed risk analysis process and present the approach for dealing with

relationships between uses cases. Finally, we propose an algorithm for estimating the system risk factor

from the use case model that includes relationships among use cases.

5.1 Reliability-Based Risk Assessment Methodology

For sake of completeness, this section describes the analytical modeling approach used to estimate

scenario’s risk factor based on the results presented in [Goseva-Popstojanova+2003]. The estimation of

the heuristic risk factors of architecture elements in [Goseva-Popstojanova+2003] is based on the previous

work presented in [Yacoub+ 2002] which used dynamic complexity and dynamic coupling metrics to

define complexity factors for the architecture elements (components and connectors) and then combined

these complexity factors with severity levels estimated using Failure Mode and Effect Analysis. In

[Goseva-Popstojanova+2003], we generalized the state-based modeling approach previously used for

architecture-based software reliability estimation [Goseva-Popstojanova+2001].

We start by describing the risk analysis process. Then, we describe the techniques for determining the

risk factors of components and connectors in a given scenario and present a Markov model for

determining scenario risk factor. Next, we present the methods used to estimate use cases and overall

system risk factors.

5.1.1 The Risk Analysis Process

The use cases and scenarios of a UML specification drive the risk analysis process that we propose in

this section. The proposed risk analysis process consists of the steps shown in Figure 19. We assume that

the UML logical architectural model consists of a use case diagram defining several independent use

cases, and that each use case is realized with one or more independent scenarios modeled using sequence

diagrams.

The proposed risk analysis process iterates on the use cases and the scenarios that realize each use

case and determines the component/connector risk factors for each scenario, as well as the scenarios and

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 48

use cases risk factors. For each scenario, the component (connector) risk factors are estimated as a product

of the dynamic complexity (coupling) of the component (connector) behavioral specification measured

from the UML sequence diagrams and the severity level assigned by the domain expert using hazard

analysis and Failure Mode and Effect Analysis. Then, a Markov model is constructed for each scenario

based on the sequence diagram and a scenario risk factor is determined. Further, the use cases and overall

system risk factors are estimated. The outcome of the above process is a list of critical scenarios in each

use case, a list of critical use cases, and a list of critical components/connectors for each scenario and each

use case.

For each use case

 For each scenario

 For each component

 Measure dynamic complexity

 Assign severity based on FMEA and hazard analysis

 Calculate component’s risk factor

 For each connector

 Measure dynamic coupling

 Assign severity based on FEMA and hazard analysis

 Calculate connector’s risk factor

Generate critical component/connector list

Construct Markov model & Calculate transition probabilities

Calculate scenario’s risk factor

 Rank the scenarios based on risk factors, Determine critical scenarios list

Calculate use case risk factor

Rank use cases based on risk factors, Determine critical use case list

Determine critical component/connector list in the system scope

Calculate overall system risk factor

Figure 19 The risk analysis process

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 49

5.1.2 Assessment of the Component/Connector Risk Factors

For each scenario xS , we calculate heuristic risk factors for each component and connector

participating in the scenario based on the dynamic complexity, dynamic coupling and severity level. Note

that in general these values will be different for different scenarios.

The risk factor
x

irf of a component i in scenario xS is defined as

x
i

x
i

x
i svtDOCrf ⋅= (5.1)

where
x

iDOC (0 ≤
x

iDOC ≤ 1) is the normalized complexity of the
th

i component in the scenario xS ,

and
x

isvt (0 ≤
x

isvt < 1) is the severity level for the
th

i component in the scenario xS .

The risk factor x
ijrf for a connector between components i and j in the scenario xS is given by

x
ij

x
ij

x
ij svtEOCrf ⋅= (5.2)

where
x

ijEOC (0 ≤
x

ijEOC ≤ 1) is the normalized coupling for the connector between
th

i and

thj components in the scenario xS , and
x

ijsvt (0 ≤
x

ijsvt < 1) is the severity level for the connector

between the
th

i and the
thj components in the scenario xS .

Next we describe the process of estimating the normalized component complexity
x

iDOC , normalized

connector coupling
x

ijEOC , and severity levels for the components
x

isvt and connectors
x

ijsvt .

5.1.2.1 Dynamic Specifications Metrics using UML

To develop risk mitigation strategies and improve software quality, we should be able to estimate the

fault proneness of software components and connectors in the early design phase of the software life

cycle. It is well known that there is a correlation between the number of faults found in a software

component and its complexity [Munson+ 1996]. In this study we compute the dynamic complexity of

state charts as a dynamic metric for components [Hassan+ 2001]. Coupling between components provides

important information for identifying possible sources of exporting errors, identifying tightly coupled

components, and testing interactions between components. Therefore, we compute dynamic coupling

between components as a dynamic metric related to the fault proneness for connectors [Hassan+ 2001].

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 50

i) Normalized dynamic complexity of a component

We use a measure of component complexity similar to McCabe’s cyclomatic complexity [McCabe

1976]. However, in contrast to McCabe’s cyclometric complexity which is based on the control flow

graph of the source code, our metric for component’s dynamic complexity is based on the UML state

charts that are available during early stages of the software life cycle. The state chart of each component i

has a number of states and transition between these states that describe the dynamic behavior of the

component. For each scenario xS a subset of all states of component i are visited and a subset of all

transitions is traversed. Let denote with
x
iC the subset of states for a component i visited in the scenario

xS and with
x

iT the subset of transitions traversed in the state chart of component i in the scenario xS .

The subset of states
x
iC and the corresponding transitions

x
iT are mapped into a control flow graph. The

number of nodes in this graph is
x
i

x
i Cc = which is the cardinality of

x
iC . Similarly, the number of edges

in this graph is
x

i
x
i Tt = which is the cardinality of

x
iT . It follows that the dynamic complexity

x

idoc of

component i in scenario xS is defined as

2+−= x

i

x

i

x

i ctdoc . (5.3)

The normalized dynamic complexity
x

iDOC of a component i in scenario xS is obtained by

normalizing the dynamic complexity
x

idoc with respect to the sum of complexities for all active

components in scenario xS

∑
∈

=

xSk

x
k

x
ix

i
doc

doc
DOC . (5.4)

ii) Normalized dynamic coupling of a connector

We use the matrix representation for coupling where rows and columns are indexed by components

and the off-diagonal matrix cells represent coupling between the two components of the corresponding

row and column [Hassan+ 2001]. The row index indicates the sending component, while the column index

indicates the receiving component. Dynamic coupling metrics are calculated for active connectors during

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 51

execution of a specific scenario. We compute these metrics directly from the UML sequence diagrams by

applying the same set of formulas given in [Yacoub+ 1999].

Let denote with
x

ijMT the set of messages sent from component i to component j during the execution

of scenario xS and with xMT the set of all messages exchanged between all components active during

the execution of scenario xS . Then, we define the export coupling
x

ijEOC from component i to

component j in scenario xS as a ratio of the number of messages sent from i to j and the total number of

messages exchanged in the scenario xS

x

x

x

ijx

ij
MT

jiSjiMT
EOC

≠∈
=

,,
 (5.5)

5.1.2.2 Severity Analysis

In addition to the estimates of the fault proneness of each component and connector based on the

dynamic complexity and dynamic coupling, for the assessment of components and connectors risk factors

we need to consider the severity of the consequences of potential failures. For example, a component may

have low complexity, but its failure may lead to catastrophic consequences. Therefore, our methodology

takes into consideration the severity associated with each component and connector based on how their

failures affect the system operation. Domain experts play a major role in ranking the severity levels.

Experts estimate the severity of the components and connectors based on their experience with other

systems in the same field. Domain experts can rank severity in more than one way and for more than one

purpose [Bowles 1998]. According to MIL_STD_1629A, severity considers the worst case consequence

of a failure determined by the degree of injury, property damage, system damage, and mission loss that

could ultimately occur. Based on hazard analysis [Sundararajan 1991], we identify the following severity

classes:

• Catastrophic: A failure may cause death or total system loss.

• Critical: A failure may cause severe injury, major property damage, major system damage, or major

loss of production.

• Marginal: A failure may cause minor injury, minor property damage, minor system damage, or

delay or minor loss of production.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 52

• Minor: A failure is not serious enough to cause injury, property damage, or system damage, but will

result in unscheduled maintenance or repair.

We assign severity indices of 0.25, 0.50, 0.75, and 0.95 to minor, marginal, critical, and catastrophic

severity classes respectively. The selection of values for the severity classes on a linear scale is based on

the study conducted by Ammar et.al. [Yacoub+ 2000]. However, other values could be assigned to

severity classes, such as for example using the exponential scale.

5.1.3 Scenarios Risk Factors

We use an analytical modeling approach to derive the risk factor of each scenario. For this purpose we

generalize the state-based modeling approach previously used for architecture-based software reliability

estimation [Goseva-Popstojanova+2001]. Thus, the software reliability model first published in [Cheung

1980] considers only component failures. In the scenario risk model we account for both component and

connector failures, that is, consider both component and connector risk factors. In addition, instead of a

single failure state for the scenario, we consider multiple failure states that represent failure modes with

different severity. This approach allows us to derive not only the overall scenario risk factor, but also its

distribution over different severity classes which provides additional insights important for risk analysis.

For example, the two scenarios may have close values of scenarios risk factors with significantly different

distributions among severity classes. Then, it can be inferred that the scenario with a risk factor distributed

among more severe failure classes (e.g., critical and catastrophic) deserves more attention than the other

scenario.

The scenario risk model is developed in two steps. First, a control flow graph that describes software

execution behavior with respect to the manner in which different components interact is constructed using

the UML sequence diagrams. It is assumed that a control flow graph has a single entry (S) and a single

exit node (T) representing the beginning and the termination of the execution, respectively. Note that this

is not a fundamental requirement. The model can easily be extended to cover multi-entry, multi-exit

graphs.

The states in the control flow graph represent active components, while the arcs represent the transfer of

control between components (i.e. connectors). It is further assumed that the transfer of control between

components has a Markov property which means that given the knowledge of the component in control at

any given time, the future behavior of the system is conditionally independent of the past behavior. This

assumption allows us to model software execution behavior for scenario xS with an absorbing discrete

time Markov chain (DTMC) with a transition probability matrix][x
ij

x pP = , where
x
ijp is interpreted as

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 53

the conditional probability that the program will next execute component j , given that it has just

completed the execution of the component i . The transition probability from component i to component j

in scenario xS is estimated as
x
i

x
ijx

ij
n

n
p = , where

x
ijn is the number of times messages are transmitted from

component i to component j and ∑=
j

x
ij

x
i nn is the total number of massages from component i to all other

components that are active in the sequence diagram of the scenario xS .

The second step of building the scenario risk model is to consider the risk factors of the components

and connectors. Failure can happen during the execution period of any component or during the control

transfer between two components. It is assumed that the components and connectors fail independently.

Note that this assumption can be relaxed by considering higher order Markov chain [Goseva-

Popstojanova+2001].

In architecture-based software reliability models [Cheung 1980], [Goseva-Popstojanova+2001] a

single state F is added representing the occurrence of a failure. Because the severity of failures plays an

important role in the risk analysis, in this work we add m failure states that represent failure modes with

different severity. In particular, since for the pacemaker case study we consider four severity classes for

each failure we add four failure states to the DTMC: minorF , marginalF , criticalF , and iccatastrophF . The

transformed Markov chain, which represents the risk model of a given scenario has)1(+n transient states

(n components and a starting state S) and)1(+m absorbing states (m failure states for each severity class

and a terminating state T).

Next, we modify the transition probability matrix
xP to

x
P as follows. The original transition

probability
x

ijp between components i and j is modified into)1()1(x
ij

x
ij

x
i rfprf −⋅⋅− which represents

the probability that the component i does not fail, the control is transferred to component j , and the

connector between component i and j does not fail. The failure of component i is considered by

creating an arc to the failure state associated with a given severity with transition probability
x

irf .

Similarly, the failure of a connector between the components i and j is considered by creating an arc to

failure state associated with a given severity with transition probability
x

ij

x

ij

x

i rprf ⋅⋅−)1(. The transition

probability matrix of the transformed DTMC,
x

P , is then partitioned so that

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 54












=

I

CQ
P

xx
x

0
 (5.6)

where
xQ is an)1(+n by)1(+n sub-stochastic matrix (with at least one row sum less than 1)

describing the probabilities of transition only among transient states, I is an)1(+m by)1(+m identity

matrix and
x

C is a rectangular matrix that is)1(+n by)1(+m describing the probabilities of transition

from transient to absorbing states. We define the matrix][x
ik

x
aA = so that

x
ika denotes the probability

that the DTMC starting with a transient state i eventually gets absorbed in an absorbing state k . Then it

can be shown that [Trivedi 2002]

xxx CQIA 1)(−−= . (5.7)

Since in our case we assume a single starting state S, the first row of matrix
xA gives us the

probabilities that DTMC is absorbed in absorbing states T, minorF , marginalF , criticalF , and

iccatastrophF . In particular,
xa11 is equal to)1(xrf− , where

xrf
is the scenario risk, while

xa12 ,
x

a13 ,

xa14 , and
x

a15 give us the distribution of the scenario risk factor among minor, marginal, critical, and

catastrophic severity classes respectively.

5.1.4 Use Cases and Overall System Risk Factors

The risk factor krf of each use case kU is obtained by averaging the risk factors of all scenarios xS

that are defined for that use case

∑
∈∀

⋅=
kx US

x
k

x
k prfrf (5.8)

where
xrf is the risk factor of scenario xS

 in use case kU and x
k

p

is the probability of occurrence of

scenario xS
 in the use case kU . Since in the pacemaker example we considered one scenario per use

case, the use case risk factors are identical to the scenarios risk factors.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 55

Similarly, the overall system risk factor is obtained by averaging the use case risk factors

∑
∀

⋅=
kU

kk prfrf (5.9)

where krf and kp are the risk factor and probability of occurrence of the use case kU .

It is obvious from equations (5.8) and (5.9) that the use cases and overall system risk factors depend

on the probabilities of scenarios occurrence x
k

p in the use case kU and the probability of use case

occurrence kp . Hence, scenarios (use cases) with high risk factors but very low probability of occurrence

will not contribute significantly to the overall system risk factor.

5.2 The Use-Case Based Analysis

When a large complex system is modeled, a significant amount of requirements information is

represented in the use case model. A use case is defined as a set of sequences of actions the system is

required to perform in order to get an observable result of value to an actor [Armour+ 2001]. When a use

case model is defined, commonality among the use cases is likely to be discovered and shared. Possible

extensions and additional behavior may also be uncovered and defined. Some use cases may contain

behaviors that are similar in many aspects. To effectively design a use case model that avoids redundant

use cases, UML includes the use of relationships between use cases. Modelers who develop a use case

model without showing relationship between the use cases are not modeling the system properly. In real

software systems, use cases model different requirements that the system should provide and these

requirements are typically dependent on each other. These dependencies must be modeled as use case

relationships.

Before we proceed with our approach, we present the UML use case terminology and the basic

definitions. The base use case captures the behavior and interactions that occur between the actors and the

system within the use case flow of events [OMG 2005]. It provides an excellent viewpoint on the overall

system behavior. The addition of alternative flow descriptions and conditional logic helps to define the

variation and exceptions within a use case. Use case modeling provides a number of constructs that

support the clear elaboration of added complexity and details of the relationships between use cases

[Armour+ 2001], such as:

• <<Extend>> relationship models significant extensions and behavior that can occur as additions

to the base use case. Thus, as shown in Figure 20 the flow of events of the base use case can be

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 56

extended by the flow of events in the extended use case. The actual control transfer in this kind of

extension is optional, i.e., it takes place when a conditional guard is satisfied. Then, the flow of

events returns to the same extension point in the flow of events in the base use case.

• <<Include>> relationship models encapsulated behavior that can be inserted into a use case and

possibly reused across multiple use cases. As shown in Figure 21, the included behavior is always

exercised, that is, no conditional guard is checked.

The examples shown in Figure 20 (b) and Figure 21 (b) illustrate the difference between the

<<extend>> and <<include>> relationships. Thus, planning an itinerary might or might not include

purchasing a ticket. On the other side, each attempt to register courses includes user validation.

5.3 Risk Assessment Methodology with Functional Dependencies

In this section, we start by defining the terminology. Then, we describe the proposed risk analysis

process and present the approach for dealing with relationships between uses cases. Finally, we propose an

algorithm for estimating the system risk factor from the use case model that includes relationships among

use cases.

5.3.1 Use Cases Terminology Used

To come up with a systemic approach for dealing with relationships between use cases, we introduce the

following terminology.

• Primitive Use Case (PUC) is a use case that is not extended and does not include any other use

cases. The risk factor of a primitive use case is calculated directly from its sequence diagrams as

outlined in the next section. In Figure 20 (b) and Figure 21 (b), the use cases Purchase Ticket and

Validate User are examples of primitive use cases.

• Non-Primitive Use Case (NPUC) is a base use case related to other primitive or non-primitive use

case(s) by <<extend>> and/or <<include>> relationship(s). The realization of a NPUC must have

at least one dependent scenario that depends on a scenario of a related use case. Figure 23 shows a

sequence diagram of a dependent scenario where the related scenario Purchase Ticket

mentioned at the bottom of Figure 23 is shown in Figure 24, the risk factor of a non-primitive use

case cannot be calculated directly. In the following sections, we describe the way to estimate the

risk factor of a non-primitive use case and present a general algorithm which is used to calculate

the system risk factor based on the use case diagram that includes relationships among use cases.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 57

Base use case

Extended use case
<<extend>>

a) UML notation

b) Example

 Flow of events in

the base use case

Conditional

guard

Flow of events in

the extended use

case

Extension

point Yes

No

• c) Flow of events

Figure 20 <<Extend>> relationship

Base use case

Included use case

<<Include>>

a) UML notation

b) Example

 Flow of events in

the base use case

Flow of events in

the included use

case

c) Flow of events

Figure 21 <<Include>> relationship

• Terminal Use Case (TUC) is a use case directly associated with an actor. Terminal use cases can

be either primitive or non-primitive.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 58

In Figure 20 (b) and Figure 21 (b), the use cases Plan Itinerary and Register Courses are both non-

primitive and terminal use cases since they are related to other use cases and they are also directly

associated with actors.

5.3.2 Estimating the Risk Factor of Use Cases

In this section, we discuss how to estimate the risk factors of primitive and non-primitive use cases

from UML models.

5.3.2.1 Primitive Use Cases

We use the estimation of scenario’s risk factor to estimate the risk factor of primitive use cases. The

scenario risk model is developed in two steps. First, a discrete time Markov chain (DTMC) which

describes software execution behavior with respect to the manner in which different components interact

is constructed using the UML sequence diagram of a use case. The transition probability matrix of this

DTMC is calculated based on the frequency of message exchange. The right part of Figure 25 shows an

example of a DTMC of the UML sequence diagram shown in Figure 24.

The second step of building the scenario risk model is to consider the risk factors of the components

and connectors. Failure can happen during the execution period of any component or during the control

transfer between two components. It is assumed that the components and connectors fail independently.

The DTMC of the software execution behavior of the scenario is transformed by adding the failure

severity states which represent failure modes with Minor, Marginal, Critical, and Catastrophic severity.

Figure 27 and Figure 28 show a sequence diagram of the case study described in section A and the

corresponding DTMC with the failure severity states. The DTMC is then solved to estimate the risk factor

of the scenario and its distribution among Minor, Marginal, Critical and Catastrophic severity classes as

shown in Section 5.1.1.

5.3.2.2 Non-Primitive Use Cases

In this section we propose a method that can be used to estimate the risk factor of a non-primitive use

case which is related to a primitive use case by either <<extend>> or <<include>> relationship. Then, in

the next section, we propose an algorithm that allows us to estimate the system risk factor from a general

use case diagram that may include many different <<extend>> and <<include>> relationships among use

cases.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 59

The method for estimating the risk factor of a non-primitive use case related to primitive use cases

consists of aggregating the risk factor of each primitive use case into the calculation of the risk factor of

the non-primitive use case [Abdelmoez+ 2003]. For this purpose, we first estimate the risk factor of the

primitive use cases. That is, we develop a discrete time Markov chains (DTMCs) that represent the

primitive use cases and solve to estimate the risk factors. Each of these factors are then aggregated in the

DTMC of the non-primitive use case as a single state with the corresponding estimated risk factor, as

shown in Figure 22. The value of the transition probability which leads to this aggregated state that

represents a primitive use case depends on the type of relationship. Thus, in the case of <<extend>>

relationship, we assign probability 0<p<1 to the transition probability leading to the state that represents

the primitive use case. For <<include>> relationships, the probability of making transition to the primitive

use case is set to one (p=1) because it is always part of the non-primitive use case.

D
T

M
C

 o
f a

 scen
a
rio

 fro
m

 a

 p
rim

tive u
se ca

se

D
T

M
C

 o
f

a
 s

ce
n

a
ri

o
 f

ro
m

a
 n

o
n

-p
ri

m
it
iv

e
u

se
 c

a
se

PUC Aggregate

p

Figure 22 Dealing with use case relationships

To illustrate this process, let us consider the simple sequence diagrams shown in Figure 23 and Figure

24 which describe the interactions in the Plan Itinerary and Purchase Ticket use cases from

the simple use case diagram shown in Figure 20 (b). The DTMC of the Plan Itinerary and

Purchase Ticket use cases developed from theses sequence diagrams are shown in Figure 25.

After the risk factor of the primitive Purchase Ticket use case is estimated, it is aggregated in the

Purchase Ticket state of the non-primitive Plan Itinerary use case. Because the Plan

Itinerary use case is extended by the Purchase Ticket use case, the probability p of execution of

the Purchase Ticket use case is assigned to the arc leading to the state representing it in the DTMC

of the Plan Itinerary use case.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 60

Figure 23 Plan Itinerary sequence diagram

Figure 24 Purchase Ticket sequence diagram

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 61

Figure 25 DTMCs of the Plan Itinerary and Purchase Ticket use cases

In general, use case diagrams are much more complex than the example given in Figure 20 (b). For

example, the Purchase Ticket use case may be extended with Rent a Car use case, in which case

Plan Itinerary and Purchase Ticket both are non-primitive use cases, while Rent a Car

use case is a primitive use case. In the next section we propose an algorithm which uses recursively the

method for estimation of the risk factor of a non-primitive use case related to a primitive use case by either

<<extend>> or <<include>> relationship presented in this section and allows us to estimate the use cases

and system risk factor of a complex use case diagram.

5.4 Algorithm for System Risk Estimation

The algorithm proposed uses an annotated use case diagram as input. We treat the use case diagram as

a graph, where nodes represent use cases and arcs represent relationships between use cases. Arcs are

annotated with probability 0<p<1 in case of <<extend>> relationship or with probability p=1 in case of

<<include>> relationship. The algorithm traverses the use case diagram, identifies use cases according to

relationships between them, and then aggregates the risk factors of the use cases according to the

relationships. An outline of the risk estimation algorithm is shown in Figure 26.

Our algorithm works in two passes. In the first pass the algorithm traverses the use case diagram using a

depth first priority. The main outcomes of the first pass are to identify the use cases based on the

relationships and to color them accordingly and to estimate the risk factors of the primitive use cases. In

the second pass the algorithm traverses the colored use case diagram starting from the actors and estimates

the risk factor of each terminal use case (i.e., use case directly connected to an actor) recursively Finally,

Aggregat

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 62

the system risk factor is calculated as a sum of risk factors of terminal use cases multiplied by the

corresponding execution probabilities. An implementation for this risk aggregation algorithm

considering one scenario per use case was developed by Ajith and Venu. The implementation

details are given in [Guedem 2004].

Determine terminal, primitive, and non-primitive use cases and

their dependent scenarios

For each primitive use case

 Determine the risk factor of each scenario

 Determine the use case risk factor by taking the max risk

scenario

For each terminal use case

 For each dependent scenario

 Recursively determine the risk factor of the

scenario

 Determine the use case risk factor by taking the max risk

scenario

Determine the system risk using a weighted sum of the risk

factors of the terminal use cases

Figure 26 Outline of the risk estimation algorithm

5.5 Command and Control System Case Study Results

One of the contributions is the application of our risk assessment methodology on an industrial case

study of a command and control system used in a mission-critical application. (The details of the case

study are presented in Appendix I).A. In the following subsections, the case study results are presented.

5.5.1 Scenario Risk Factors

The process of building and solving the scenario risk model is illustrated on the

Retry_Both_Pumps scenario. As mentioned in section 5.3.2.1, the first step is to develop a control

flow graph that describes software execution behavior with respect to the manner in which different

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 63

components interact using the UML sequence diagram of a scenario. Thus, the white states of the DTMC

shown in Figure 28 represent the software execution behavior which corresponds to the sequence diagram

of the Retry_Both_Pumps scenario shown in Figure 27. The transition probability matrix of this

DTMC is calculated based on the frequency of message exchange as described in [Goseva-

Popstojanova+2003].

 : C1 : C2 : C3 : C4 : C8 : C9

Pump_Operating ()

Retry_Pump ()

Retry_Success ()

Pump_Retry_Success (P2)

Pump_Operating ()

Failure ()

Failure ()

Pump_Retry (3)

Open_Switch ()

Open_Switch ()

Close_Switch ()

Retry_Pump ()

Retry_Success ()

Pump_Retry_Success (P1)

Close_Switch

Figure 27 Sequence diagram of the Retry Both Pumps scenario

The second step of building the scenario risk model is to consider the risk factors of the components

and connectors. The DTMC of the software execution behavior (white states only) of the

Retry_Both_Pumps scenario is transformed by adding the dark states which represent failure modes

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 64

with Minor, Marginal, Critical, and Catastrophic severity (see Figure 28). The estimated risk factor of the

Retry_Both_Pumps scenario is 0.7605. This risk factor is distributed among Minor, Marginal,

Critical and Catastrophic severity classes (0.0000, 0.1100, 0.0703 and 0.5802 respectively).

C4

Minor

Marginal

Critical

Catastrophic

C2

C1

C8

C9

C3 S

T

Figure 28 Risk model of the Retry_Both_Pumps scenario

5.5.2 Use Case and System Level Risk Factors

Next, we illustrate how the use case and system level risk factors are estimated using the generalized

risk assessment methodology. As shown in Figure 96, the use case diagram of the Internal Thermal

Control subsystem has many <<extend>> relationships between use cases. As presented in Section 5.3, we

first estimate the risk factors of mode setting use cases and pump retry use cases, as they are the primitive

ones. The risk factors of theses primitive use cases are shown in Figure 29. Then, we aggregate the risk

factors of these primitive use cases to estimate the risk factors of the non-primitive use cases. Using the

scenarios of Failure_Recovery and Mode_Setting non-primitive use cases, the DTMC of these use cases

are constructed. Then, we embed the risk factors of the primitive use cases in the DTMC of the non-

primitive use case as described in Section 5.3.2. Since the pattern of extending these non-primitive use

cases is not known, we assume the probability p to be equal. Thus, the risk factors of the non-primitive use

cases Failure_Recovery and Mode_Setting over different severity classes (i.e., Minor, Marginal,

Critical, and Catastrophic) are evaluated.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 65

Set
tin

g1

Set
tin

g2

Set
tin

g3

Set
tin

g4

Set
tin

g5

Pum
p1

_r
et

ry

Pum
p2

_r
et

ry

Bot
h_

Pum
ps

_R
et

ry
M

inor

M
ajor

C
ritical

C
astastrophic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
is

k
 F

a
c

to
r

Use Cases Severity

Figure 29 Risk factors of the primitive use cases

From the domain knowledge , we know that the Failure_Recovery use case is executed (i.e.,

extends the Monitoring use case) with probability 0.01. To estimate the risk factor of the non-primitive

use case Monitoring, we build the DTMC of the scenario in the Monitoring use case and embed

with probability p=0.01 the non-primitive use case Failure_Recovery, as shown in Figure 30.

Sovling the DTMC, we get the risk factor of Monitoring use case.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 66

C 11

C 2

C 1

C 10

Failure R ecovery

S

T

p

= 0 .01

C 11

C 2

C 1

C 10

Failure R ecovery

S

T

Figure 30 DTMC of the Monitoring use case

In Figure 31, the risk factors of the terminal use cases Monitoring and Mode_Setting are

presented. The bars represent the total risk factors of these use cases along with the distribution of the risk

factors over the severity classes. The Mode_Setting use case is riskier than the Monitoring use

case. Even more, it has higher risk in the catastrophic severity class. Therefore, more attention should be

given to the development and testing of Mode_Setting use case, as it is more critical than the

Monitoring use case.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
is

k
 F

a
c
to

r

Monitoring ModeSetting

Usecases

Minor Marginal Critical Catastrophic

Figure 31 The risk factor of Monitoring and Mode_Setting use cases.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 67

The overall risk factor of the Internal Thermal Control subsystem is obtained by multiplying the risk

factors of the terminal use cases (Monitoring and Mode_Setting) with the corresponding

probabilities of execution of these use cases (0.95 and 0.05, respectively). Its value is 0.8189 and it is

distributed over the severity classes as shown in Figure 32.

0

0.2

0.4

0.6

0.8

1

R
is

k
 F

a
c

to
r

System

Minor Marginal Critical Catastrophic

Figure 32 Distribution of the overall system risk factor

It should be noted that the overall system risk factor depends on the execution probabilities of the

terminal use cases. In other words, terminal use cases which have low execution probability, such as for

example the Mode_Setting use case in our case study, typically will not contribute much to the overall

system risk factor. From this perspective, system analysts very often will need to take into account use

cases with high risk factors, regardless of their execution probability and their contribution towards the

system risk factor.

5.6 Summary and Discussion

As the software systems become more complicated, there are more composite functional dependencies

within the system. Considering object-oriented software models, these functional dependencies are

captured in terms of use case relationships. In any analysis of UML models of software systems that deals

with use cases, it would not be acceptable to overlook these relationships among use-cases and treat them

as independent. In this chapter, we addressed UML use case relationships for quantitative analysis of

reliability-based risk assessment.

5. Reliability-Based Risk Assessment with Use Case Relationships

Model-Based Risk Assessment Ph.D. Dissertation 68

We presented a new algorithm for risk assessment that generalizes our earlier work on risk assessment

by relaxing the assumption that use cases are independent. For this purpose, we first proposed a method

which is used to estimate the risk factor of a non-primitive use case related to a primitive use case by

either <<extend>> or <<include>> relationship. Then, we proposed an algorithm that allows us to

estimate the use cases and system risk factors from a general use case diagram that may include many

different <<extend>> and <<include>> relationships, the most widely used relationships between use

cases. Finally, we applied the generalized methodology on an industrial case study.

In order to validate the results obtained from the proposed methodology against other sources of risk

evaluation, we are focusing on applying the generalized methodology on other case studies that have

reliability-based risk assessment data for their components.

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 69

6 Change Propagation Metrics

In the next chapter, we address maintainability-based risk assessment which tries to assess

how difficult in the future the system maintenance will be due to current maintenance tasks. This

assessment methodology relies on change propagation probabilities and the size of change

between components of the architecture. Thus, in this chapter we define and provide an estimate

of the probabilities of changes that arises in a component (in the context of

corrective/adaptive/perfective maintenance) requiring changes to other components and their

corresponding size of change in these components. We introduce, analyze, and validate formulas

for estimating these probabilities using architectural level information.

6.1 Change Propagation Probabilities

Let us consider a software architecture modeled by components and connectors. We are

interested in the maintainability of the products instantiated from it. In corrective or perfective

maintenance tasks, change propagation probability matrix for an architecture reflects on the

probability of changing component Cj as a result of a change to component Ci.[Abdelmoez+

2005A]. The estimation of the elements cpij of the change propagation matrix CP is based on the

following definition:

Definition 1.

Given components Ci and Cj of a system S, the change propagation probability from Ci to Cj

is denoted by cpij and defined as the following conditional probability

cpij = Pr(([Cj]≠[Cj’])|([Ci]≠[Ci’])∧([S]=[S’])), (6.1)

where [X] denotes the functionality of component/system X and S’ is the system obtained

from S by changing Ci into Ci’ (and possibly Cj into Cj’ as a consequence).

In practice it is useful to add some qualifications to the above definition and distinguish

between the 1-step and multi-step change propagation. The 1-step change propagation, accounts

for the change propagating from one component to another directly as a result of one component

using services (information) provided by another, i.e., “in one step”. We denote the 1-step change

propagation by CP1.The term n-step change propagation (n≥2) refers to the probability of a

change propagating from one component to another as a result of n consecutive acts of 1-step

change propagation. We denote the n-step change propagation by CPn

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 70

6.1.1 Change Propagation Usage

We submit that the matrix of change propagation probabilities can help the software architect

to make assessments and take decisions regarding the projected maintainability of software

products that stem from the architecture at hand. Specifically, we cite the following uses:

• A summary inspection of the matrix can reveal quickly the difficulty and the cost of

maintenance operations on the system. An idealistic (and usually uninteresting) system

that is perfectly modular has an identity matrix, whereby each change is localized to the

component where it is applied and does not propagate to other components (in principle,

this is possible only if the components are independent); the case of unrelated

components notwithstanding, the closer a matrix is to the identity, the better.

• If the row corresponding to a component A has high values, we infer that changes to this

component must be avoided because they propagate widely throughout the system.

Preventive measures include focusing verification and validation activity on this

component (to minimize subsequent corrective maintenance), and optimizing the design

of this component (to minimize subsequent perfective maintenance).

• If the column corresponding to a component A has high values, we infer that this

component is likely to undergo frequent changes in the maintenance phase. Preventive

measures include special care to design this component for ease of modification.

• The matrix of change propagation probabilities can also be used to compare candidate

system architectures when maintenance costs are an important consideration. To this

effect, we have Change Propagation Coefficient which is a quantitative measure of

diagonality, which indicates to what extent a given matrix is diagonal (i.e. has non-zero

values in the diagonal and near zero values outside the diagonal). This measure can be

used to give a summary comparison of candidate architectures when other, more

meaningful, criteria fail to discriminate between the candidates.

6.1.2 Analytical estimates of Change Propagation Probabilities

The purpose of the analytical step is to derive a formula for estimating change propagation

probabilities using architectural information. For the sake of tractability, we alter the definition

slightly, prior to our analytical study:

cpij = Pr(([Cj]≠[Cj’])|([Ci]≠[Ci’]) ∧ ([Ci * Cj]=[Ci’ * Cj’])) (6.2)

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 71

In other words, the probability that we are computing is not conditioned on the overall system

function being preserved ([S]=[S’]) but rather on the aggregate composition of Ci by Cj being

preserved ([Ci * Cj]=[Ci’ * Cj’]), where * is an operation that reflects the interaction between Ci

and Cj in system S. We find it useful to distinguish, conceptually, between two broad classes of

changes in Ci:

• The case where the interface between Ci and Cj remains unchanged but the function of Ci

changes.

• The case where the interface between Ci and Cj changes.

Also, we observe empirically, and can easily verify analytically (by a combinatorial

argument), that the probability of a change propagation under the first condition (preserving the

interface, altering the actual function) is very low: there are very few changes in the function of Ci

that we can make without having to change Cj as a consequence. Factoring these observations

into the revised formula of change propagation, we find that we can approximate the change

propagation probability from Ci and Cj by the formula:

cpij = Pr(([Cj]≠[Cj’])|(ICi,Cj ≠ ICi’,Cj’) ∧ ([Ci * Cj]=[Ci’ * Cj’])) (6.3)

where ICi,Cj is the interface (i.e. set of relevant connectors) between Ci and Cj.

An architecture can be seen as a collection of components Ci, i=1,…,N. With every

component Ci, we associate the set Vi of the interface elements of the provided functions of Ci.

We determine the usage coefficient value
ij

vπ for every interface element ν∈Vi and every other

component Cj, j≠i. They take binary values:

• ij

vπ =1, if the interface element ν provided by Ci is required by Cj. This means that any

signature change in component Ci associated with interface element ν will propagate to

component Cj.

• ij

vπ =0, otherwise.

Hence, for every pair of components Ci and Cj, i≠j, the change propagation probability cpij can be

estimated based on the values of the usage coefficients
ij

vπ by:

cpij = ∑
∈ iV

ij

v

iV ν

π
||

1
, (6.4)

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 72

We need to remark here that formula (6.4) is based on the assumption that an interface in Ci

whose propagation we are trying to trace is equally likely to affect any of its interface elements,

as shown in Figure 33.

Figure 33 Single-step change propagation estimation

The method described above allows us to evaluate the (1-step) change propagation

probabilities, given the information on the interface specification of the architecture. Once the 1-

step CP values are obtained, we can get upper-bound estimates on the multi-step change

propagation.

6.1.3 Multi Step Change Propagation

Suppose we have obtained the 1-step change propagation matrix CP using (6.4). For

convenience, here we use shorter notations:

Λ(i, j) := CP(Ci, Cj), i, j = 1,…,N (6.5)

In the directed graph G representing our architecture, let ΠG(i, j) be the set of all simple

(directed) paths leading from node i (i.e. component Ci) to node j (i ≠j). For a path π = (i, i1, i2,…,

in-1, j) ∈ Π G(i, j), where n = |π| is the length of π, let us denote by Λ(π) the probability of a change

in i propagating to j via the path π, i.e., the probability that a change in i causes a change in i1,

which in turn causes a change in i2, etc., finally causing a change in j. If we make the simplifying

assumption that change propagation events in different connectors are independent, we obtain:

Λ(π) = Λ(i, i1) Λ(i1, i2) … Λ(in-1, j). (6.6)

Let Λk(i, j) be the probability of a change in i propagating to j in k steps (k≥1). It is easy to see

that Λk(i, j) is the probability of the union of the events that consist in the change propagating

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 73

from i to j along particular simple paths of length k in G. Since the probability of a union is never

greater than the sum of the probabilities of the constituent events, we have:

Λk(i, j) ≤ ∑
=

Π∈
Λ

k
G

||
j)(i,

)(

π
π

π (6.7)

The reason we only consider simple paths is that we are interested only in the first

propagation of a change to its destination component. From inequality (6.7) we can obtain the

following result that supplies an easily computable upper bound for the n-step change

propagation.

Proposition 1:

Λn(i, j) ≤ Λn
(i, j) , (6.8)

where Λn
 is just the n

th
 power of the change propagation matrix Λ.

This, in particular, means that even though we can multiply CP probabilities along any

particular path (without making any independence assumptions), we cannot sum these products

for various paths, to get an n-step CP value as a result. In other words, the n-step CP matrix

cannot be obtained by merely taking n
th
 power of the original 1-step CP matrix. The n

th
 power

give us an upper bound for the n-step CP probabilities.

6.2 Predicting Change Propagation Patterns

In addition to the many applications we have briefly discussed, we find that the availability of

change propagation probabilities of an architecture allows us to quantify an important

classification of change propagations, first proposed by Clarkson et al. [Clarkson+ 2000]

,Clarkson et al present a three-tiered classification of changes as follows:

1. Ripple of change: the introduced changes will result in an acceptable behavior to

be observed for the maintenance process. Changes are controlled and limited.

2. Wave of change: the introduced changes will still result in an acceptable behavior

to be observed for the maintenance process. Although there are many changes, they

are under control.

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 74

3. Avalanches of changes: the introduced changes will result in an unacceptable

behavior to be observed in the maintenance process. There are many changes and

they are uncontrolled.

The avalanche type of change propagation is the one that software maintainers worry

most about; such changes would make managing the software maintenance very difficult

and very costly. It would be a great benefit to be able to predict in advance if a certain

component is prone to this type of change propagation.

Because of its highly heuristic and qualitative nature, the above classification [Clarkson+

2000], while being conceptually useful, cannot be applied directly for an analytical study. In

order to make Clarkson’s classification more usable for the purposes of our quantitative analysis

of change propagation, we give it a more rigorous quantitative interpretation. Whereas Clarkson

et al present this classification to characterize individual changes; we use it to characterize

components. Specifically,

• We consider that a component belongs to the Ripple class if, on average, the changes

initiated in this component produce a ripple effect.

• We consider that a component belongs to the Wave class if, on average, the changes

initiated in this component produce a wave effect.

• We consider that a component belongs to the Avalanche class if, on average, the changes

initiated in this component produce an avalanche effect.

In order to give formalization to these concepts, we must introduce some numeric parameters.

• The negligibility threshold δ (0< δ <1), indicates the level below which the change

propagation probability is considered negligible.

• The propagation area significance α (0 < α < 1), indicates the fraction of the total

number of the system components affected by a single component that can be considered

significant in a single step.

• The ripple threshold τ (0< τ <1), determines the fraction of the total number of

components affected by ripple change propagation.

• The avalanche threshold ψ (0< ψ <1), determines the fraction of the total number of

components that must be affected in order for a change to be considered an avalanche.

Having chosen a value of δ , we can, for each integer n>0 define the n-th step CP-graph

CPGn, δ of the architecture to be the subgraph of the original architecture graph G obtained by

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 75

erasing in G all the edges (A,B) for which CPn(A,B)< δ. Notice that the graph CPGn, δ

monotonically decreases as δ increases (for δ sufficiently close to 0, CPGn, δ = G, while for δ

sufficiently close to 1, it is empty).

Definition 2.

The n-th step CP range of A (with sensitivity threshold δ), denoted by Mn, δ (A), is the out-

degree of the node A in the graph CPGn, δ , i.e.,

Mn, δ (A) =|{B∈S| CPn(A,B) > δ }| (6.9)

Figure 34 An example on how to calculate Mn(C8) = 8

If we apply the definition on the part of the graph for a single-step change propagation for

component C8 presented in Figure 34 , we find that Mn(C8) = 8. Based on these metrics, we can

interpret Clarkson’s classification of CP behavioral patterns of the system according to the

dynamics of Mn, δ (A) considered as a function of the step n. (Here, we interpret the step of the

unfolding process of change propagation, as an analogue of the time into the maintenance cycle in

Clarkson’s classification.)

Definition 3.

For any component A in the architecture S, we say that A has a potential for generating

- a ripple of changes, if Mn, δ (A) < α|S| for n>τ |S| , i.e., steps of change emanating from A

beyond the ripple threshold τ |S| have negligible effect on any other component;

- an avalanche of changes, if)(, AM
an δ ≥ α |S| for n≥ ψ |S| , i.e., steps of change emanating

from A beyond the avalanche threshold ψ |S| affects more than α |S| of the components;

- a wave of changes, if neither of the two conditions above are satisfied (i.e., it is neither

ripple nor avalanche).

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 76

An illustrative description for change propagation behavior is presented in Figure 35. Using

these parameters, we can now characterize Clarkson’s classification using change propagation

probabilities.

Where:

 α (0 < α < 1) is the propagation area significance,

 τ (0 < τ < 1) is the ripple threshold, and

 ψ (0 < ψ < 1) is the avalanche threshold

Figure 35 Parameterization of the categorization of the change behavior

Furthermore, we attempt to develop some heuristic methods of predicting the type of

change propagation behavior expected to occur in the system (ripple, wave, or

avalanche). It is easy to see that for the n-step change CP probability from component A

to component B to be positive, it is necessary that there exist in the architecture graph G a

simple path starting at A and ending at B of length exactly n. From this observation we

derive the following proposition, which we present without formal proof.

Proposition 2:

 Let the directed graph G
(n)

 be derived from the architecture graph G by the following rule:

there is an edge from A to B in G
(n)

 if and only if there exists in G a directed path of length n

from A to B. Then the n-th step CP-graph CPGn, δ (defined in Section 2) for any δ is a sub-

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 77

graph of G
(n)

. In particular, the n-th step CP range of A (with any sensitivity threshold δ)

Mn, δ (A) is never greater than the out-degree of A in graph G
(n)

.

Proposition 2 can be used to classify some components as being capable of producing only a

ripple change (as defined in Definition 3) without even estimating the CP probabilities between it

and other components. Namely, we have the following proposition.

Proposition 3:

 If the out-degree of node A is less than ρ |S| in the architecture graph G and in G
(1)

, and is

zero (no outgoing edges) in G
(n)

 for all n > 2, then component A generates only ripple

changes.

Similarly, one may be able to conclude simply from the topological structure of the

architecture graph that a certain component cannot produce an avalanche change.

6.3 Experimental Change Propagation

In this section, we discuss an experiment that we ran to validate the analytical formula that we

propose for estimating change propagation. First, we present a brief description of the sample

system that we chose for this experiment. Then, we apply the aforementioned single-step change

propagation on the system. We also use a controlled experiment of “mutation operators” changes

to see how well the analytical results correlate with the controlled experiment results of the

system under investigation.

The system we have selected for our experiment is a spreadsheet application written in Java,

named Sharp Tools. The details of the Sharp Tools case study are presented in Appendix I.D.1.

Using the interface specification of the system, we first determine the interface elements that have

an effect on the neighboring components of the architecture of the system. Then, we analytically

compute an estimated change propagation matrix for the system. This gives us an estimate of the

probability that an interface change will propagate to a neighboring component due to that

change.

To have a better understanding of the resulting matrix, we produce a graphical representation

of it. In Figure 36, we present the critical change propagation of the system, using a high

threshold of significance; specifically, we let the significance threshold be 0.4 in order to identify

the more critical components of the system.

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 78

It is worth noting that this graph cannot be considered as a Markov chain model, as the sum

of the probabilities outgoing from a node can go beyond 1, violating the Markov constrain. For

example if we examine component C8, we find the sum of probabilities of a change propagating

from C8 to other components is greater than 1.

Figure 36 Graphical representation of the critical change propagation

In the “mutation operators” controlled experiment, we introduce changes into interface

element of the components of the Sharp Tools case study. Specifically, we change the variable

types of the methods signature in each interface element in each component. With the help of a

compiler, we determine the components that are affected by the changes introduced. The ratio of

the times the component required to be changed and the times of changes introduced into that

component interface is an estimate of the empirical change propagation probability.

It is worth mentioning that “mutation operators” analysis is time and effort consuming. In

the following sections, we compare the analytical results with the controlled experiment results of

the Sharp Tools case study. Then, we expand our single step change propagation results to get a

multi-step change propagation view of the same system. Using these results, we to assess the

change propagation behavior of this system

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 79

6.4 Change Propagation Probabilities Validation

In this section, we judge the results evaluated by the analytical formula against the results

derived from the controlled experiment of “mutation operators” to assess the validity of our

analytical formulas.

6.4.1 Correlating Single Step Change Propagation Matrices

In this section, we present the results of the study that we conducted to explore the correlation

between the analytically estimated single-step change propagation matrix CA and its

experimentally derived counterpart CE. The correlation coefficient between all the cells of the

analytical single-step matrix and the experimental single-step matrix is:

Cor(CA,CE) =0.93 (r value) (6.10)

R-Sq = 0.8649,

Where “r” denotes the Pearson product-moment correlation coefficient.

For the nontrivial values (other than those that are either 0 or 1 by definition), the rationale

behind this criterion is that trivial values do not really test our analytical results, we find:

Cor(CA,CE) =0.85 (r value) (6.11)

R-Sq = 0.7225

A significant relationship between some variables does not necessarily mean that the

relationship is very useful in building predictive models. Thus the R-Sq values are also shown

above to assess the explanatory power of each model.

6.4.2 Statistical Significance of the Correlations

Now we need to validate our correlation results, i.e., to make sure that the positive correlation

values we observed are statistically significant (did not occur by chance). To test the relationship

between analytical and experimental change propagation, a statistical hypothesis testing was

performed using the t-test (one-tail) for the nontrivial entries using the level of significance α =

0.05.

Our hypotheses were

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 80

• H0 : ρ = 0 (There is no linear association between analytical change propagation values

and empirical error propagation values)

• H1 : ρ > 0 (There is a positive linear association between analytical change propagation

values and empirical error propagation values)

where ρ denotes the correlation coefficient.

We have computed the value of the t statistic for the nontrivial values of single-step matrices

as tob = 18.98632 (with n=140 samples), and the corresponding P-value is less than α = 0.05.

Thus, we reject the null hypothesis of no correlation, and thus infer that the correlation of 0.85 is

statistically significant. The t-test results showed that the fairly high correlation values between

analytical and experimental change propagation values we obtained did not occur by chance (i.e.,

are statistically significant).

6.5 Multi-Step Change Propagation Matrix

Form the single-step change propagation results, we can get an estimate of the multi-step

change propagation according to Section 6.1.3.We can then estimate the outgoing change

propagation of a component as the total change propagation that is exported by this component to

other components. We can track the outgoing change propagation as change propagates in multi-

steps, and observe the behavior of this component. Thus, we can categorize the components

according to their outgoing change propagation as ripple, wave or avalanche.

Ripple components are those having outgoing change propagation that dies out rapidly with

very few steps of change propagation. Wave components are those that sustain a large value of

outgoing change propagation for a number of steps, but this value dies out eventually. Avalanche

components are those that have an increasing value of outgoing change propagation as the

number of steps of change propagation increase, and this value does not die out eventually. From

the experimental results, we can recognize three patterns of outgoing change propagation for

ripple, wave and avalanche components.

For each component in the architecture, The n-th step CP range Mn(Ci), which is directly

proportional to outgoing change propagation, is shown in Figure 37. We can see that there are

only ripple and wave components and no avalanche components. So, we can expect that, when

making a change in this system, we can recognize a ripple change propagation or at most a wave

of change propagation. But, it is highly unlikely to have an avalanche change.

6. Change Propagation Metrics

Model-Based Risk Assessment Ph.D. Dissertation 81

0

2

4

6

8

Mn(Ci)
1

4
7
10

13

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
1
7

C
1
8

C
1
9

C
2
0

C
2
1

C
2
2

C
2
3

C
2
4

C
2
5

C
2
6

C
2
7

C
2
8

C
2
9

C
3
0

C
3
1

C
3
2

Steps

Components

Mn through Multisteps

Figure 37 Mn(Ci) of the components through multi-step change propagation

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 82

We can recognize that any change for component C8 should be handled with care, as it is a

component with high change propagating probabilities. Any maintenance effort that may be needed to

deal with this component should be expected to cause a wave of changes since this is a highly centralized

component that might affect the others much by its high mutual dependencies. Figure 38 shows a pattern

for ripple components where the Mn(Ci) tends to decay in very few steps. When checking Figure 39, we

find a pattern of a potential avalanche component. The Mn(Ci) still have a significant magnitude over a

large number of steps. In Figure 40, we can recognize a pattern of wave components that are midway

between the ripple and the avalanche components.

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5 C

2

C
19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Mn(Ci)

Steps

Compon

ent

Ripple Components
C2

C6

C19

C25

Figure 38 Pattern of Ripple components

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C8

0

1

2

3

4

5

6

7

8

Mn(Ci)

Steps
Component

Potential Avalanche Component

C8

Figure 39 Pattern of a potential Avalanche component

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15 C31
C30

C16
C26

0

0.5

1

1.5

2

2.5

3

Mn(Ci)

Steps

Component

Wave Component

C31

C30

C16

C26

Figure 40 Pattern of Wave components

6.6 Using Change Propagation Probabilities to Assess Quality Attributes of

Software Architectures

In [Shaik 2006], we have designed an experiment that compares architectures using object-oriented

metrics and change propagation matrices. The goal of the experiment is to assess to what extent the

object-oriented metrics on one hand and the Change propagation probability matrices on the other hand

are good predictors of architectural quality attributes. To this effect, we consider sample applications, and

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 84

derive two candidate architectures for each: one that is based on design patterns (hence is presumably of

higher quality) and one that is design ad-hoc, without predefined patterns. The following methodology

has been applied:

1. Prepare a pair of architectures for the same application. One of the architectures is designed using

design patterns while the other has no patterns.

2. Apply the CP metric on both architectures.

3. Apply other object-oriented metrics on both architectures.

4. Analyze and compare the results. The architecture the employs software patterns should have a

better quality in terms of extensibility and maintainability.

It is worth noting that we carry out the comparison of design quality for the architectures with the

help of the Software Architecture Change Propagation Tool (SACPT) [Abdelmoez+ 2004B]. Inputs to

our tool are obtained with the help of Understand for Java tool [JavaUnderstand]. SACPT generates the

CP matrix of components in the architecture.

Our first example is a simple application where an employer is seeking employment applications for

the various jobs available, which are submitted through detailed electronic forms that must be validated.

There are two versions; one version is a simple switch case whereas the other version is implemented

using the strategy pattern.(See details in Appendix I.D.2). We restrict the analysis to the components that

exist before and after the application of the pattern.

Figure 41 shows the change propagation probabilities of the case study when using switch cases.

Figure 42 shows the change propagation probabilities of the case study after applying the strategy design

pattern. The Change Propagation Coefficient (CPC) for the architectures before and after using the design

pattern are 0.18 and 0.11 respectively. From the CPC values, the architecture, which employs a design

pattern, is better in design quality than the one which does not. Figure 43 shows the Weighted Methods

per Class (WMC) and McCabe Cyclomatic Complexity metrics (MCC) for the components before and

after applying the pattern. The JobApplicantForm component has been improved by employing strategy

design pattern.

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 85

Figure 41 Change propagation of Job Application before applying strategy pattern.

Figure 42 Change propagation of Job Application after applying strategy pattern.

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 86

Job Application

0

5

10

15

20

25

30

35

40

FormSuccess JobApplicantTestC lient JobApplicantForm

Com ponents

W
M

C
,

M
C

C

W M C_BeforePattern

W M C_AfterPattern

M CC_BeforePattern

M CC_AfterPattern

Figure 43 Weighted Methods per Class and McCabe Cyclomatic Complexity for Job Application

The second example is an application that tracks the states of colleague components. Each colleague

will update its state according to its current state and the changes to the states of the other colleagues. (See

details in Appendix I.D.3). Figure 44 and Figure 45 show the change propagation probabilities of the

architectures before and after applying the mediator pattern. In Figure 44, we recognize that the three

colleague components are tightly coupled to one another. In Figure 45, adding the mediator pattern

decreased coupling between the colleague components. The three colleague components are completely

decoupled with respect to one another. The Change Propagation Coefficient CPC for the architecture that

does not employ any design pattern is 0.11, where as CPC value for the one, which employs mediator

design pattern is 0.05. From the CPC values, the architecture, which employs a design pattern, is better in

design quality when compared to the same architecture that does not.

Figure 46 shows the Weighted Methods per Class (WMC) and McCabe Cyclomatic Complexity

(MCC) metrics for the architecture before and after using the mediator pattern. All the three colleague

components have been improved in terms of complexity when a mediator design pattern has been

employed. Both the metrics WMC and MCC show this improvement as a decrease in value for the

components in the architecture that employs a design pattern.

One of the disadvantages of using the mediator design pattern is the localization of the behavior of the

components. The distributed behavior of the components is localized to few components in the

architecture that employs a mediator design pattern. Even though, the architecture that employs a

mediator design pattern is more extensible, maintainable and reusable than the one which does not. When

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 87

adding new colleagues to the architecture, we need only to change the components of mediator pattern.

All the other colleagues will not be affected as they will not be directly coupled to the new colleague

component.

Figure 44 Change propagation probabilities for the simple design on case study Colleague States

Figure 45 Change propagation probabilities for the architecture employing mediator design pattern

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 88

C o l le a g u e S t a t e s

0

1

2

3

4

5

6

7

8

9

C
ol
le
ag

ue
IF

C
on

cr
et

eC
ol
le
ag

ue
1

C
on

cr
et

eC
ol
le
ag

ue
2

C
on

cr
et

eC
ol
le
ag

ue
3

C
ol
le
ag

ue
 S

ta
te

C o m p o n e n t s

W
M

C
,
M

C
C

W M C _ B e fo r e P a t te rn

W M C _ A f te rP a t te r n

M C C _ B e fo re P a t te rn

M C C _ A f te rP a t te rn

Figure 46 Weighted Methods per Class and McCabe Cyclomatic Complexity for Colleague States

6.6.1 Comparison of Change Propagation Metric with Other Metrics

In this section, the change propagation metric is compared with respect to three other coupling-based,

object-oriented metrics: Coupling Between Objects (CBO), Response For a Class (RFC) and Message

Passing Coupling (MPC). We restrict the analysis to the components that exist before and after the

application of the pattern. Figure 47 shows the Coupling Between Objects (CBO) for the two case studies

before and after the application of the design pattern. Observing Figure 47, one can conclude that CBO

metric is not sufficient to compare and state that an architecture is better in design quality when compared

with another. Though there are improvements in the CBO values for the three colleague components in

the Colleague States case study, there is an increase in the CBO value for the JobApplicationForm

component in the architectures which implements the strategy pattern for case study Job Application.

In Figure 48, the Response For a Class (RFC) metric could not show the difference between the two

architectures in the Job Application case study. In fact, it showed that the architecture that employs a

simple design is better in design quality than the architecture that employs strategy design pattern. On the

other hand, for the Colleague States case study the RFC metric confirmed a relative improvement of using

design patterns. This shows that RFC metric may not be a good choice to compare between two candidate

architectures. Furthermore, the MPC metric showed no difference in design when applied to both the

architectures on each of the two case studies. Figure 49 shows the values for the MPC metric computed

on the Job Application and the Colleague States case studies. MPC metric could not show the difference

between the architectures in both cases.

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 89

On the other hand the change propagation probability metric shows these variations and points out

that one of the architectures is better than the other. Check the change propagation probability values for

the three colleagues components in the Colleague States case study, Figure 41 and Figure 42, and

JobApplicationForm component in the Job Application case study, Figure 44 and Figure 45. Change

propagation probability metric can show different perspective and complements the usage of other object

oriented metrics: CBO, MPC and RFC in both case studies.

C B O M e t r i c

0

1

2

3

4

5

6

7

8

9

1 0

For
m

Suc
ce

ss

Jo
bA

pp
lic

an
tT

es
tC

lie
nt

Jo
bA

pp
lic

an
tF

or
m

C
ol
le
ag

ue
IF

C
on

cr
et

eC
ol
le
ag

ue
1

C
on

cr
et

eC
ol
le
ag

ue
2

C
on

cr
et

eC
ol
le
ag

ue
3

C
ol
le
ag

ue
 S

ta
te

C o m p o n e n t s

C
B

O

B e fo r e P a t te r n

A f te r P a t te r n

B e fo r e P a t te r n

A f te r P a t te r n

Figure 47 CBO for the case studies on Colleague States and Job Application

R F C M e tr ic

0

5

1 0

1 5

2 0

2 5

3 0

3 5

For
m

Suc
ce

ss

Jo
bA

pp
lic

an
tT

es
tC

lie
nt

Jo
bA

pp
lic

an
tF

or
m

C
ol
le
ag

ue
IF

C
on

cr
et

eC
ol
le
ag

ue
1

C
on

cr
et

eC
ol
le
ag

ue
2

C
on

cr
et

eC
ol
le
ag

ue
3

C
ol
le
ag

ue
 S

ta
te

C o m p o n e n ts

R
F

C

B e fo re P a tte rn

A fte rP a t te rn

B e fo re P a tte rn

A fte rP a t te rn

Figure 48 RFC for the case studies Colleague States and Job Application

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 90

M P C M e t r ic

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

For
m

Suc
ce

ss

Jo
bA

pp
lic

an
tF

or
m

Jo
bA

pp
lic

an
tT

es
tC

lie
nt

C
ol
le
ag

ue
IF

C
on

cr
et

eC
ol
le
ag

ue
1

C
on

cr
et

eC
ol
le
ag

ue
2

C
on

cr
et

eC
ol
le
ag

ue
3

C
ol
le
ag

ue
 S

ta
te C o m p o n e n t s

M
P

C

B e f o r e P a t t e r n

A f t e r P a t t e r n

B e f o r e P a t t e r n

A f t e r P a t t e r n

Figure 49 MPC for the case studies on Job Application and Colleague States

6.7 Size of change

The size of change SC=[sc
ij
] is defined as the ratio between the number of affected methods of the

receiving component caused by the changes in the interface elements of the providing components and

the total number of methods in the receiving component. For every component Cj, we associate the set Mj

of the methods of component Cj , as shown in Figure 50. We determine the effect coefficient value
ij

mµ for

every method m in component Cj, j≠i. They take binary values:

• ij

mµ =1, if the method m is affected by any interface element ν∈Vi provided by Ci

• ij

mµ =0, otherwise.

The size of change scij can be estimated:

scij = ∑
∈ jMm

ij

m

jM
µ

||

1

(4.6)

where Mj  is the cardinality of the methods set of component Cj.

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 91

Figure 50 Size of change estimation

6.8 Change Propagation Probabilities and Size of Change for the Case

Studies

In the next chapter we assess maintainability- based risk factors for the components of the system.

Therefore, we need to estimate change propagation probabilities and size of change for the case studies

under investigation. Using the software architecture artifacts of the pace maker, CM1 and the command

and control system case studies, we estimate the change propagation probabilities and the size of change

for each case study. Figure 51 and Figure 52 show the change propagation probabilities and the size of

change of the pace maker. The change propagation probabilities and the size of change for the CM1 case

study are shown in Figure 53 and Figure 54. While Figure 55 and Figure 56 give the change propagation

probabilities and the size of change of the command and control case study.

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 92

Figure 51 Change propagation probabilities for Pace Maker case study

Figure 52 Size of change for Pace Maker case study

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 93

Figure 53 Change propagation probabilities for CM1 case study

Figure 54 Size of change for CM1case study

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 94

Figure 55 Change propagation probabilities for command and control case study

Figure 56 Size of change for command and control case study

6. Change Propagation Metrics

Model Based Risk Assessment Ph.D. Dissertation 95

6.9 Summary and Discussion

In this chapter, we proposed a set of simple, automatable formulas to quantify and assess change

propagation probabilities through software architecture. For the purpose of validation of the analytical

estimates, we conducted empirical experiment of “mutation operators”. We found a correlation between

the two results for single-step change propagation probabilities of at least 0.85. To be certain that we

didn’t obtain these correlations by chance, we computed the t statistic to examine the statistical

significance for these correlations. We got p-values < 0.05 which shows that the correlation between

experimental and analytical error propagation matrices is statistically significant.

The proposed formulas are used to determine the impact of a change in a given component as a ripple,

a wave, or an avalanche impact. The ripple change has minimal impact, a wave change has more impact

but still controllable, and an avalanche change which is uncontrollable. We derived easy to compute

upper bounds for n-step change propagation and cumulative change propagation, which can be used to

measure the global impact of local changes.

In the following chapter, we will examine maintainability-based risk in perfective maintenance

context. Refactoring the software using design patterns is a technique of conducting perfective

maintenance. According to [Kerievsky 2004], there are practical situations where patterns improve the

quality of the design. We conducted an experiment to assess to what extent the object-oriented metrics on

one hand and the change propagation probability matrices on the other hand are good predictors of quality

attributes. The experiment compared two candidate architectures: one that is based on design patterns and

one that is design ad-hoc, using object-oriented metrics and change propagation matrices. Change

propagation probabilities showed better ability to capture improvements in the design.

Also, we introduced the concept of size of change, which tries to capture the maintenance impact on a

certain component given that other components coupled to it changes their interfaces. To check the

validity of the proposed estimate for the size of change metric, we plan to conduct empirical experiment

on several case studies noting that these kinds of empirical studies are effort and time consuming.

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 96

7 Maintainability-Based Risk Assessment

Software maintenance accounts for a large part of the life cycle software cost. Systems with good

maintainability can be easily modified to fix faults or to adapt to changing environments. In this Chapter,

we are concerned with maintainability-based risk that assesses how difficult it is to maintain the system in

the future because of current maintenance tasks. We estimate maintainability-based risk of system

components taking into consideration different types of maintenance: corrective, adaptive or perfective.

7.1 Maintainability-based Risk

In accordance with NASA-STD-8719 standard [NASA 1997], we define maintainability base risk is as

a combination of two factors: the probability performing maintenance tasks and the impact of performing

these tasks [Abdelmoez+ 2005B]. Accordingly, Maintainability-based Risk for a component is defined as:

Probability of changing the component* Maintenance impact of changing the component.

Maintainability-based risk assessment helps in managing software maintenance process. It can be

used to identify the most risky parts of the system.

7.2 Estimation Methodology of Maintainability-based Risk

The proposed methodology for estimating maintainability-based risk depends on architectural artifacts

such as system requirements and system design and their evolution through the life cycle of the system, as

shown in Figure 57. First, we estimate initial change probabilities of the components according to the

maintenance type and available data. Using the initial change probabilities of the components and change

propagation probabilities between them, we get the unconditional probability of change of the

components of the system. To get the impact of the maintenance tasks, we use the size of change between

the components of the system. Finally, the maintainability-based component risk factor is the product of

unconditional change probability and the maintenance impact. The detailed steps of the proposed

methodology in the following subsections are presented using UML models [UML 2005].

7.2.1 Estimating Initial Change Probabilities

The maintenance effort can be due to corrective, perfective or adaptive maintenance. According to the

type of effort considered, we estimate the initial change probabilities ICP of the system components. We

use error reports, change reports, system requirement enhancements or requirements stability indexes to

estimate ICP depending on the type of maintenance and the data available.

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 97

7.2.2 Estimating Change Propagation Probabilities

Change propagation probability CP= [cpi/j] is the conditional probability that a change originating in

one component of the architecture requires changes to be made to other components. To account for the

dependency among the components of the system, we multiply the initial change probabilities vector of

the components by the conditional change propagation probabilities obtained from the system

architecture.

Figure 57 Maintainability-based risk estimation methodology

7.2.3 Estimating Size of Change

To get the impact of the maintenance task, we use the size of change between pairs of the system

components. We define the size of change SC=[sc
i/j

] as the ratio between the number of affected methods

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 98

of the receiving component caused by the changes in the interface of the providing components and the

total number of methods in the receiving component.

7.2.4 Estimating Components Maintainability-based Risk

For estimating the maintainability, we try to capture the maintenance change propagation shown in

Figure 58 and Figure 59. If we consider change propagation through component Ci , the initial change in

other components Cj are propagated to component Ci with change propagation probability cpi/j and size of

change sci/j , as shown in Figure 58. Furthermore, the initial change in component Ci and the changes

propagated from other components to component Ci propagate once again to other components Cj with

change propagation probability cpj/i and size of change scj/i, as depicted in Figure 59. Thus, the

maintainability-based risk MR is given by

[] 



















== ∑∑

≠ ij

ijij

j

jijiji sccpsccpicpmrMR //// (7.1)

Hence, the methodology provides the maintainer with an estimate of the maintainability risk of the

components.

Figure 58 Incoming maintenance change propagation through component Ci

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 99

Figure 59 Outgoing maintenance change propagation through component Ci

7.3 Maintainability-Based Risk Assessment in Adaptive Maintenance Context

In this section, we limit our scope of maintenance effort to adaptive maintenance [Abdelmoez+

2006B]. Thus, we alter the methodology for estimating the maintainability-based risk of software

components as follows. Basically, we make use of adaptive maintenance reports of changes to estimate

the initial change probabilities ICP=[icpi]. First, we evaluate the rate of occurrence of changes in each

component Ci of the system. Then, we estimate the initial probability of change for each component by

normalizing the rate of occurrence for each component by the total number of change reports. Hence, the

estimation methodology of maintainability-based risk is tailored for adaptive maintenance.

To take into consideration the dependency between the components of the system, we estimate the

conditional change propagation probabilities matrix CP and the size of change SC from the system

architecture. Finally, the maintainability-based risk of a component Ci due to adaptive maintenance

changes mri is estimated using equation (7.1). We propose to use the maintainability-based risk of the

system components to order the adaptive maintenance tasks for a certain project.

7.3.1 CM1 Maintainability-Based Risk in Adaptive Maintenance Context

The maintenance data of the CM1 case study contain 31 change reports. (See the details of the case

study in Appendix I.C). We want to prioritize the tasks of the adaptive maintenance effort. First, we

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 100

calculate the frequency of requested change occurrences in the components of the system. Second, we

estimate the initial change probability ICP of the components of CM1 by normalizing the frequency of

change occurrences by the total number of change reports. The estimated initial change probabilities ICP

for CM1 components are shown in Figure 60.

Figure 60 Initial change probabilities for CM1 components

Then using the software architecture artifacts of CM1, we estimate the change propagation

probabilities and size of change, as shown in Figure 53 and Figure 54. Using equation (7.1), the

maintainability-based component risk factor for each CM1 component is estimated. The results are shown

in Figure 61.

Figure 61 Maintainability-based risk for CM1 components in adaptive maintenance context

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 101

The most risky component with respect to adaptive maintenance is CCM. This is a result of CMM

having the highest initial change probability. Moreover, CCM is coupled to most of the components, so it

is likely to be affected by the changes introduced in these components (CP values are high). Furthermore,

CMM has a high maintenance impact on the rest of CM1 components (Σscij is large). As it is coupled to

other components in the system, the change is likely to propagate further.

On the other hand, even though component 1553 has a relatively high initial change probability value,

but it is coupled to a limited number of components in CM1 (CP values are low). Moreover, it has a

limited maintenance impact (Σscij is small) and it is less risky in terms of maintainability. On the contrary,

component EDAC has a relatively low initial change probability value. But due to change propagation

(CP values are relatively high) and maintenance impact (Σscij is not small), it is more risky in terms of

maintainability

7.4 Maintainability-Based Risk due to Requirements Changes

In this subsection, we are addressing changes in the system requirements [Abdelmoez+ 2006A]. We

propose an estimation methodology for the maintainability-based risk using UML models, which are

becoming a de facto standard for modeling software systems. The detailed steps of the maintainabilitiy-

based risk methodology are adapted to fit the adaptive maintenance context. First, we estimate the

requirement maturity by analyzing their evolution across the versions of the system. A software system is

developed according to a set of requirements

RQ = {rq1, rq2,……… rqp} (7.2)

where rqi is a functional requirement. In UML, requirements are mapped into a set of use cases:

RQ(UML) = {uc1, uc2,……… ucp} (7.3)

Use cases describe the functional behavior of the system. Each use case is realized through one or

more sequence diagrams. Sequence diagrams describe the interactions among the components to fulfill

certain requirement. Since it is not possible to account for all possible maintenance tasks, we only

consider a maintenance profile MP [Bosch+ 2001] consisting of likely change scenarios

MP = {cs1, cs2,……… css} (7.4)

A change scenario is defined by a set of requirement changes

csi = {rq1c, rq2c,……… rqtc} (7.5)

where rqic is an addition, deletion or modification of use case uci.

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 102

The IEEE 982 standard [IEEE Std 982.1] suggests Software Maturity Index to quantify properties of

requirements evolution. In [Anderson+ 2002], The Software Maturity Index is adapted to Requirements

Maturity Index (RMI) to measure the requirements stability. We adapt the metric to Use Case Maturity

Index (UCMI) and use function points as a size measure for the use cases [Cantone+ 2004]. Thus, the

UCMI of the use case uci is given by

T

CT

U

UU
UCMI

−
= (7.6)

where UT is the function point size of the use case uci in the current release; UC is the function point size

of the change in the use case uci in the current release from the previous due to requirement change rqic of

change scenario csm.

In order to get the probability of change due to a maintenance task, we use the sequence diagrams to

get the set of components that contribute to each use case. Then, we can map the use case stability into

components stability, which reflects on the likelihood of making changes to the components due to

changes in the requirements. Consequently, we estimate Initial Change Probabilities ICP of the system

components. For components that are part of multiple scenarios, we consider the maximum ICP as it

accounts for the worst-case scenario.

To account for the dependency among the components of the system, we multiply the initial change

probabilities vector ICP of the components by the conditional change propagation probabilities matrix CP

obtained from the system architecture. To get the impact of the maintenance task, we estimate the size of

change SC=[sc
ij
] between pairs of the components of the system based on the architecture artifacts.

Finally, the components maintainability-based risk MR = [mri] can be estimated using equation (7.1),

where mri is maintainability-based risk of a component Ci due to requirement changes. Hence, the

methodology provides the maintainer with an estimate of the maintainability risk of the components for

different change scenarios of the maintenance profile.

7.4.1 CM1 Maintainability-Based Risk due to Requirements Changes

We illustrate our risk assessment methodologies on CM1 case study from the Metrics Data Program

[NASA MDP]. The details of the case study are in Appendix I.C. From the use case model in Figure 96,

we identify the set of functional requirement RQ as:

RQ(CM1) = {Transfer, RecvCmd, ChBound, CalcOrbitDrift, HeartBeat,

HouseKeeping, TimeSync} (7.7)

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 103

We estimate the requirement maturity by analyzing their evolution across the versions of the system.

As, it is not possible to account for all possible maintenance tasks; we only consider a maintenance profile

MP. To make it easier to follow the steps of the methodology, we consider only a maintenance profile that

has only one change scenario.

MP = {cs1} (7.8)

The change scenario that we picked is adding a new transfer sequence, shown in Figure 98, to the

Transfer use case:

cs1 = { Transferc } (7.9)

We measure the function point size of the use case Transfer in the current release; and the function

point size of the changes in the use case Transfer in the current release from the previous due to change

Transferc of change scenario cs1. We follow the rules presented in [Cantone+ 2004] to estimate the

function point size of the Transfer use case and the change in it. Then, we estimate the use case maturity

index, according to equation (7.6). We find UCMI(Transfer)=0.702.

We map the use case maturity index into components stability using the sequence diagram Transferc.

We determine how each component stability been affected according to its amount of contribution in the

added sequence diagram Transferc. Then, we estimate initial change probabilities of the components. The

results are shown in Figure 62.

We estimate the initial change probabilities of the components and change propagation probabilities

between them the components of CM1. Then, we estimate the size of change between the components to

account for the maintenance impact. Using equation (7.1), The maintainability-based component risk

factor for CM1 is estimated. The results are shown in Figure 63. The most risky components are DPA and

DCX as they have the highest initial change probability value when considering the change scenario cs1.

It worth noting that component as CCM has a significant level of risk factor even though it is not in

the set of components of the initial change. This is due to the fact that CCM is coupled to all of the

components of the initial change set, so it is likely to be affected by the changes introduced in these

components. Furthermore, CMM has a high maintenance impact on the rest of CM1 components. As it is

coupled to other components in the system other than the components of the initial change set, the change

is likely to propagate further.

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 104

Figure 62 Initial change probabilities resulted from Transferc for CM1 components

Figure 63 Components maintainability- based risk resulted from Transferc for CM1 components

7.5 Maintainability-Based Risk Assessment in Corrective Maintenance

Context

In this section, we limit our consideration of maintenance effort to corrective maintenance

[Abdelmoez+ 2006C]. Therefore, we use error reports of errors that have not been yet fixed. To estimate

the initial change probabilities ICP=[icpi], we first evaluate the frequency of occurrence of errors in each

component Ci of the system. Then, we estimate the initial probability of change for each component by

normalizing the frequency of occurrence for each component by the total number of error reports. Hence,

the estimation methodology of maintainability-based risk is adapted for corrective maintenance.

To order the corrective maintenance tasks for a certain project according to the importance of each

task, we propose using the maintainability-based risk of the components that need to be fixed. Also, we

propose to consider the severity-level of failures that may be manifested from the errors in these

components. For maintenance tasks of components with critical or catastrophic severity-levels, the

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 105

maintainability-based risk should not be of concern because of the consequences of such potential failures

on the system. Such tasks should be of high priority in the maintenance plan. On the other hand for

maintenance tasks of components that have severity-levels of minor or major, we should examine the

components maintainability-based risk. So, maintenance tasks of low severity-level and high

maintainability-based risk should be avoided or delayed in the maintenance plan. But if the priority is to

have a system with low maintainability risk, we start with the components with the high level of

maintainability-based risk and fix them into more maintainable components. Thus, we can prioritize the

maintenance tasks accordingly.

7.5.1 CM1 Maintainability-Based Risk Results

In the following, we present the results of the severity analysis and the maintainability-based risk for

the CM1 case study. Then, we discuss the results and how to prioritize corrective maintenance tasks based

on both of severity level and maintainability-based risk. The CM1 case study has 98 error reports of

components bugs. Assuming that these errors have not been yet fixed, we want to prioritize the tasks of

the corrective maintenance effort. First, we calculate the frequency of errors occurrences in the

components of the system, as shown in Table 12. Second, we estimate the initial change probability ICP

of the components of CM1 by normalizing the frequency of error occurrences by the total number of error

reports. The estimated initial change probabilities ICP for CM1 components are shown in Figure 64. Then

using the software architecture artifacts of CM1, we estimate the change propagation probabilities and the

size of change, as shown in Figure 53 and Figure 54.

Table 12 Components error reports of the CM1 case study

 Components

 BIT CCM DCI DCX DPA EDAC ICUI 1553 SCUI SSI TIS TMALI

Errors 0 15 11 0 5 5 6 4 13 14 4 21

Using equation (7.1), the maintainability-based component risk factor for each CM1 component is

estimated. The assignment of component severity level of each component is based on the hazard analysis

conducted by domain experts knowledgeable about the case study (See Section 4.5.2). The results are

shown in Figure 65.

For planning corrective maintenance of this system, we should think about components

maintainability-based risk. Also, we should take into consideration the severity level of potential failures

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 106

that could be caused by errors in components needed to be fixed. CMM, DCI, 1553 and SSI components

with catastrophic severity-levels and DPA, EDAC and TMALI components with critical severity-levels,

they should be fixed regardless of their corresponding maintainability-based risk because of the

consequences of such potential failures on the system. On the other hand for maintenance tasks of the rest

of the components having low severity-levels, we should examine the components maintainability-based

risk.

Figure 64 Initial change probabilities for components of CM1 case study

 Components

 BIT CCM DCI DCX DPA EDAC ICUI 1553 SCUI SSI TIS TMALI

Severity

Level
Minor Cat. Cat. Minor Major Major Critical Cat. Critical Cat Major Critical

Figure 65 Maintainability- based risk and severity levels for CM1 components

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 107

7.5.2 Pace Maker Maintainability-Based Risk Results

As we don’t have error reports for the pace maker, we estimate the initial change probability ICP of

the components by normalizing the components cyclomatic complexity by the total sum. The estimated

initial change probabilities ICP for pace maker components are shown in Figure 66. Then using the

software architecture artifacts of pacemaker, we estimate the change propagation probabilities and the

size of change, as shown in Figure 51 and Figure 52.

Using equation (7.1), the maintainability-based component risk factor for each pace maker

component is estimated. The assignment of component severity level of each component is based on the

hazard analysis conducted by domain experts knowledgeable about the case study (See Section 4.5.1).

The results are shown in Figure 67.

Figure 66 Initial change probabilities for components of PM case study

 Components

 RS CD CG AR VT

Severity Level Minor Minor. Major. Catastrophic Catastrophic

Figure 67 Maintainability- based risk and severity levels for pace maker components

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 108

For prioritizing maintenance tasks for this pace maker in corrective maintenance context, we should

consider the followin:.

• AR and VT components with catastrophic severity-levels, they should be fixed regardless of

their corresponding maintainability-based risk because of the consequences of such potential

failures on the system.

• On the other hand for maintenance tasks of the RS and CD components having minor

severity-levels and CG component with major severity-level, we should examine the

components maintainability-based risk.

7.5.3 Command and Control System Maintainability-Based Risk Results

For the command and control system case study, we also don’t have error reports. So, we estimate the

initial change probability ICP of the components by normalizing the cyclomatic complexity of the system

components by their total sum. The estimated initial change probabilities ICP for command and control

system components are shown in Figure 68. Using the software architecture artifacts of command and

control system, we estimate the change propagation probabilities and the size of change, as shown in

Figure 55 and Figure 56.

Using equation (7.1), the maintainability-based component risk factor for each command and control

system component is estimated. The assignment of component severity level of each component is based

on the hazard analysis conducted by domain experts knowledgeable about the case study (See Section

4.5.3). The results are shown in Figure 69. We can recognize that other than components C1 and C2, the

maintainability-based risk factors are quite small. That is because these components haves mall values of

change propagation probabilities. Furthermore, they are not highly coupled with each other. They are

mainly coupled to component C1 or/and C2. Thus, all change propagation of maintenance tasks will

affect components C1 and C2.

For prioritizing maintenance tasks for this system in corrective maintenance context, we should

consider the following. First, C1 and C2 components have catastrophic severity-levels and C3, C4 and C7

component have critical severity-level. They should be fixed regardless of their corresponding

maintainability-based risk because of the consequences of such potential failures on the system. On the

other hand for maintenance tasks of the rest of the components having low severity-levels, we should

examine the components maintainability-based risk.

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 109

Figure 68 Initial change probabilities for components of command and control case study

 Components

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Severity

Level
Cat. Cat. Critical Critical Major Major Critical Minor Major Minor

Figure 69 Maintainability- based risk and severity levels for command and control components

7.6 Maintainability Based Risk in Perfective Maintenance Context

In this subsection, we focus on perfective maintenance and refactoring activities in particular.

Refactoring is defined as a change made to the internal structure of software to make it easier to

understand and cheaper to modify without changing its observable behaviors. Refactoring to improve the

design of the system requires knowing which parts of the system need to be improved. In [Fowler+ 1999],

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 110

Fowler and Beck presented a list of bad smells that help to identify where refactoring is needed. Examples

of bad smells include large class, lazy class, data class and switch statements. Considering the

architectural level, not all of the smells can be identified.

One way to refactor the software is to use design patterns. According to [Kerievsky 2004], there are

practice situations where patterns help to improve the quality of the design. We improve maintainability

by:

• reducing or removing duplication,

• simplifying what is complicated and

• making the design better at communicating its intent.

We use bad smells of the architecture to estimate components’ maintainability-based risk. In

particular, we consider two smells: divergent change and shotgun surgery.

Divergent change is when one component is commonly changed in different ways for different

reasons [Fowler+ 1999]. For example, we have to modify the same component whenever we change the

database or add a new calculation formula. To estimate divergent change smell using the CP matrix, we

examine if we have high values in a column corresponding to a component Ci. Such a component is likely

to undergo frequent changes in the maintenance phase due to changes in other components.

Shotgun surgery is when every time a change is made to a component; lots of little changes need to be

made to a lot of different components [Fowler+ 1999]. For example, whenever we change a database we

must change several components. To estimate shotgun smell using the CP matrix, we examine if we have

high values in a row corresponding to a component Ci. Changes to such a component need to be avoided

because they propagate throughout the system.

We use equation (7.1) to estimate components’ maintainability risk of the original system and the

refactored system after applying design pattern. We want to show that the maintainability based risk

estimated based on the change propagation probabilities can capture improvements in the maintainability

of the system components as result of introducing these design pattern. We use Strategy pattern and MVC

pattern in our case studies.

The first case study is a simple application where an employer is seeking applications for the various

jobs available. There are two versions; one version is a simple switch case whereas the other version is

implemented using the strategy pattern. (The details of the case study are in Appendix I.D.3). We restrict

the analysis to the components that exist before and after the application of the pattern. Figure 70 shows

Components maintainability-based risk for the case study before and after applying the pattern. We see

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 111

that there are improvements in Components maintainability-based risk. The addition of the strategy

pattern results in decoupling the FormSuccess and JobApplicantForm components. That causes the

maintainability-based risk of these components to improve. These improvements in these components are

associated with the cost of adding new components to the system.

The second case study is an open source calendar and task tracking software written in Java [Borg].

(The details of the case study are in Appendix I.D.4). Figure 71 shows components maintainability-based

risk for the case study before and after implementing the controller of the MVC pattern. We can identify

that errmsg is the most risky component. This component is responsible of showing an error message

whenever an exception occurs. The risk factor of this component didn’t change before and after adding

the controller class of the MVC pattern because this modification does not address the errmsg component.

There are improvements in some components’ maintainability-based risk. On the other hand, there is

deterioration in others. We restrict the analysis to the components that existed before adding the controller

to the MVC pattern. The biggest improvement in maintainability risk factor is in borg component. This is

a result of adding the controller class, as it causes the coupling of the borg component to decrease because

it is redirected to the added controller class. Also, this modification causes other components to be more

coupled like taskmodel and taskgui because they need to interact with the added controller class. Thus, it

increases the maintainability risk factor of these components.

Figure 70 Components maintainability-based risk for job application case study.

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 112

Figure 71 Components maintainability-based risk for the case study.

7.7 Worst Case Maintainability-Based Risk Estimate

It is helpful to conduct worst case analysis, for maintainability-based risk this corresponds to

the case when the initial change probability equals to one for all the components of the system.

This is the case when the system is totally unstable. Thus, we are certain that there will be

maintenance changes to all of the components of the system. Figure 72, Figure 73 and Figure 74

show the worst case components maintainability-based risk for the pace maker, command and

control system and CM1 case studies. Using the software architecture artifacts of the case

studies, we estimate the change propagation probabilities and the size of change Then we use

equation (7.1) for estimating the worst case components maintainability-based risk by

substituting for ICP=[icpi] with ones.

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 113

Figure 72 Worst-case Maintainability- based risk estimate for PM case study

Figure 73 Worst-case Maintainability- based risk estimate for command and control case study

Figure 74 Worst-case Maintainability- based risk estimate for CM1 case study

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 114

7.8 Using Non-Homogeneous Poisson Process to Estimate Maintainability-

Based Risk

Unlike the previous maintainability-based risk models, Non Homogeneous Poisson Process NHPP

provide us with an estimate which is a function of time when considering adaptive and perfective

maintenance (See section 3.3.3). The NHPP model captures the nature of maintenance request arrivals

[Tan+ 2005]. Furthermore, the estimation procedure is more flexible as it relies on a statistical model to

estimate initial change probability ICP at different points of time. As the system gains more stability

through the development or the maintenance effort, we are able to acquire better estimates for the

parameters of the NHPP statistical model. Thus, we can have a better predication of the maintainability

level of the system under consideration

We simulate the random arrival rate of the maintenance request rates based on the model proposed by

[Tan+ 2005]. We use the arrival rates to get an estimate of the initial change probability as a function of

time according to the assumed adaptive maintenance for the system components and the perfective

maintenance of the system features (i.e. modifying use cases of the model in context of perfective

manitnenance). We estimate the initial change probabilities of the components of the CM1 case study. We

consider adaptive maintenance and perfective maintenance modeled by a maintenance profile that has

three change scenarios.

MP = {cs1 , cs2 , cs3 } (7.10)

We assume that these change scenarios consist of cs1 for modifying the initial system features, cs2 for

modifying the transfer sequence Transferc, shown in Figure 98, and cs3 for modifying HeartBeat shown

in Figure 99:

cs2 = { HeartBeat}, cs3 = { Transferc } (7.11)

These simulation settings are shown in Figure 75. We assume that change request for each change

scenario is distributed among the contributing components in a uniform fashion. For example, the change

scenario cs2 for the HeartBeat use case have the following contributing components CCM, ICUI and SSI.

Thus in the simulation setting for the maintenance request that is generated by the inhomogeneous

Poisson process for the change scenario cs2 are distributed uniformly among these components. For each

component at any instance of the simulation time, we accumulate the generated request rate from all the

sources of maintenance (adaptive maintenance and perfective maintenance for each feature introduced

into the system).

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 115

Figure 75 Simulation settings for perfective and adaptive maintenance for CM1

Figure 76 shows the estimated mean request arrivals rate for maintenance simulation of CM1

generated from the simulation following the mentioned settings. The estimated maintenance requests per

component using the simulation are shown in Figure 77. To get an estimate for the initial change

probability shown in Figure 78, we normalize these estimated maintenance requests per component by the

max sum of generated request at any time.

=

Total Mean Request Rate

Figure 76 Estimated mean request arrivals rate for maintenance simulation of CM1

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 116

Figure 77 Estimated maintenance requests per component using the simulation

Figure 78 Initial change probabilities for CM1 components

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 117

The change propagation probabilities and the size of change for the CM1 case study are given in

Figure 53 and Figure 54. Using equation (7.1), the maintainability-based component risk factor for each

CM1 component is estimated as a function of time. The components maintainability- based risk for CM1

case study is shown in Figure 79. Across the time of the simulation, we found that the most risky

component is CCM. This is due to the fact that CCM is coupled to most of the components of the system,

so it is likely to be affected by the changes introduced in these components. Furthermore, CMM has a

high maintenance impact on the rest of CM1 components. As it is coupled to other components in the

system other than the components of the initial change set, the change is likely to propagate further. Other

risky components are ICUI and SCUI. Note that we can locate peaks in the function of the risk level of

these risky components as a result of introducing new features into the system.

On the other hand, components like DCX, SSI and TMALI even though they are part of the

components affected by the assumed change scenarios; they have low level of maintainability risk

because they are coupled to a limited number of components in CM1 case study. Therefore, they have a

limited maintenance impact and they are less risky in terms of maintainability.

Figure 79 Components maintainability-based risk for CM1 components

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 118

7.9 Validation Prospects for Maintainability Based Risk Estimation

In order to demonstrate the value of applying the maintainability-based risk assessment, an

experiment design should incorporate monitoring several maintenance projects with different size and try

to accomplish the following:

• In a bottom-up approach, we should investigate the validity of the metrics used in the estimation

methodology. We need to ensure that the initial change probabilities are predicted correctly. We have

to validate that change propagation is accurately estimated and is reflecting on the conditional

probability that a change in a component might cause propagation of changes into other components

of the system (See section 6.3 and section 6.4). Also, the size of change metrics should be examined

to make sure that it correlates with the maintenance impact of the change under consideration.

• For each project, we should conduct an analysis of the system components changes history to

evaluate the change impact for each maintenance task and the frequency of changes to estimate the

probability of change for the system components.

• In the monitoring process, we should continuously evaluate the maintainability-based risk of the

system components and keep track of it and compare it with the subjective assessment of the

components maintainability risk by the maintenance engineers with in-depth knowledge of the

maintained systems.

In order to validate the methodology, we carried out some pilot exploratory studies:

• We used the architectural artifacts and maintenance data for the CM1 case study from NASA

Metrics Data Program MDP. We applied the estimation methodology for the maintainability-

based risk assessment on the system for different type of software maintenance (See section 7.3.1,

section 7.4.1, section 7.5.1 and section 7.8). As future validation work we intend to contact a

domain expert for the CM1 case study and use their subjective judgment to assess our results and

check whether they reflect the level of maintainability risk of the system components.

• We executed controlled experiment on three case studies: Job Application, Colleague states and

Borg (See section 6.6 and section 7.6). We performed pre/post analysis of software systems for

different types of maintenance activities in a controlled and managed environment, i.e. we know

the set of changes that will be applied and the objective of making the change (e.g. refactoring

part of the system or applying some design patterns to improve the architecture of the system).

Then, we examined the components maintainability risk to see if the changes in their risk level

7. Maintainability-Based Risk Assessment

Model Based Risk Assessment Ph.D. Dissertation 119

can be explained in accordance with the maintenance objective, i.e. they reflect the objectives and

the intentions required from the maintenance task.

7.10 Summary and Discussion

In this chapter, we defined maintainability-based risk as a product of two factors: the probability of

performing maintenance tasks and the impact of performing these tasks. We presented a generic

methodology for assessing maintainability-based risk to account for changes in the system components in

the context of corrective, adaptive and perfective maintenance. The proposed methodology depends on

the architectural artifacts and their evolution through the life cycle of the system. We illustrated the

methodology on three case studies using UML models. One of these cases studies is an industrial real

software system; we plan to validate our results obtained with subjective assessment of the system from

its developers and maintainers.

In order to validate the maintainability-based risk assessment methodology, we need to track a system

form the early life-cycle stages and continuously assess the components maintainability-based risk

through the development stages. Finally, we asses the maintainability of the software product and

compare it with the earlier results. We need to notice that beside the resources and time span required for

such a research, there is a risk that the system developed early in the life-cycle will deviate significantly

forms the original models that we based our estimates upon. We would end up with comparing two

different systems. This would result form many factors that you can not control.

Even though, it is important to notice that the modular approach of our maintainability-based risk

assessment allow flexible improvements and validation of specific modules in our proposed methodology.

Thus, we can easily modify the risk estimation according to the finding of the empirical maintenance data

in order to have a better assessment for the component maintainability risk. Furthermore, the modular

facilitates validation of parts of the methodology. As we validated the estimation of change propagation

probabilities, we plan to validate the other modules in the approach.

For example, we used the size of change as way to predict the maintenance impact. We need to refine

this module in the methodology to capture not only the size of changes introduced in the component but

also to take into account the effort of finding these changes and conducting these changes. For example,

we can use the cyclomatic complexity of the component combined with the size of change. In this case,

we assume that the more complex a component is, more effort is required to find where to introduce the

changes and more difficult to carry out these changes. Such enhancements will affect only some module

in the methodology without altering the whole structure.

8. Software Architecture Risk Assessment (SARA) Tool

Model Based Risk Assessment Ph.D. Dissertation 120

8 Software Architecture Risk Assessment (SARA) Tool

In this chapter, we describe the Software Architecture Risk Assessment (SARA) tool that support

architectural level model-based risk assessment [Sheik 2006]. The SARA tool provides estimates for

reliability-based risk, requirements-based risk and maintainability-based risk. The tool extends our earlier

Architectural-level Risk Assessment Tool [Wang+ 2003] by providing support for more architectural

models and different perspective of risk assessment other than reliability-based risk.

8.1 Structural Description

The architecture of SARA tool is shown in Figure 80. It accepts different input formats, such as Rose

RealTime [Rational Rose RT] models, StarUML [StarUML] models and Java Understand

[JavaUnderstand] static analysis files.

First, we extract the required architectural –level information from the examination of these inputs

and store it in the software architecture artifacts repository for further analysis. According to the type of

risk assessment to be performed, the tool evaluates the metrics required such as cyclomatic complexity,

dynamic coupling, change propagation probabilities, size of change and error propagation probabilities

using the stored artifacts in the repository.

Then, the tool admits the analyst to provide the severity analysis corresponding to the considered type

of risk. Finally, the tool provides the analyst with the risk estimates for the components of the system.

8.2 Functional Description

In our functional description of the SARA tool, we concentrate on the maintainability-based risk

assessment part of the tool. For the details of the functional description for the other functionalities check

[Wang 2003]. The tool enables automatic assessment of the risk and hence makes it possible for the

analyst to identify critical components. The tool automates the steps of the estimation methodology for

the maintainability-based risk. The tool estimates change propagation probabilities, and size of change

metrics collected from architectural information of the system. The output of the tool can help in the

allocation and management of the maintenance effort.

8. Software Architecture Risk Assessment (SARA) Tool

Model Based Risk Assessment Ph.D. Dissertation

121

Figure 80 The architecture of the Software Architecture Risk Assessment (SARA) Tool

8. Software Architecture Risk Assessment (SARA) Tool

Model Based Risk Assessment Ph.D. Dissertation 122

Our methodology for estimating maintainability-based risk depends on architectural artifacts

collected by static analysis of the source code files of the system. First, we estimate the initial change

probabilities using metrics reflecting the bad smells of the components of the software architecture. Using

the initial change probabilities of components and change propagation probabilities between them, we get

the unconditional probability of change of the components of the system. To get the impact of the

maintenance tasks, we use the size of change between the components of the system. Finally, the

maintainability-based component risk factor is estimated using equation (7.1). In Figure 81, a UML use

case model of the tool is shown.

Java_Source_Code

Repository

Retrieve_Analysis_Information

Analyst
Estimate_Initial_Change_Probability

<<use>><<use>>

Estimate_Change_Propagation_Probability

<<use>><<use>>

Estimate_Component_Maintainability_Risk

<<use>><<use>>

<<use>><<use>>

Estimate_Size_of_Change

<<use>><<use>>
<<use>><<use>>

Perform_Static_Analysis

Figure 81 Use case diagram of maintainability-based risk functionality of the SARA tool

In Figure 82, a snap shot of the tool is showing the results of change propagation probabilities

obtained from a StarUML model. In Figure 83, a snap shot of the tool showing the results of the

maintainability-based risk for corrective maintenance of the same case study.

8. Software Architecture Risk Assessment (SARA) Tool

Model Based Risk Assessment Ph.D. Dissertation 123

Figure 82 Change propagation probabilities for StarUML model

Figure 83 Maintainability based risk for corrective maintenance

9. Conclusion and Future Work

Model Based Risk Assessment Ph.D. Dissertation 124

9 Conclusions and Future Work

In this dissertation, we present risk assessment estimation methodologies based on the architectural

models of the software system. These methodologies rely on quantitative assessment of non-functional

quality attributes rather that subjective predicators based on domain expert knowledge. These subjective

predictors are human intensive and error prone only. Moreover, there is a need to shift the emphasis of

metrics from design and code artifacts into new metrics that address the risk of making requirement

changes and improvements of the system. It is not easy to deal with these kinds of artifacts that relate to

requirements changes and perfective maintenance. Even though, it is beneficial to have early indicator of

future software problems. The deliverables of this dissertation as new contributions can be arranged into:

1. Reliability-based risk assessment:

• Used Error Propagation Probability in the reliability-based risk assessment to account for the

dependency among the system components. We conducted an analytical and an experimental

analysis of error propagation probabilities for a command and control system case study. Also,

we correlated the analytical and empirical results. Furthermore, we addressed the generalization

for the assumption of error occurrence independence in the components of the system by

accounting for error propagation among the components of the system on a number of case

studies.

• Generalized the reliability-based risk assessment to account for functional dependencies. In the

context of object-oriented Unified Modeling Language UML, we handled risk assessment with

use-case relationships. We first proposed a method which is used to estimate the risk factor of a

non-primitive use case related to a primitive use case by either <<extend>> or <<include>>

relationship. Then, we proposed an algorithm that allows us to estimate the use cases and system

risk factors from a general use case diagram that may include many different <<extend>> and

<<include>> relationships among use cases. Finally, we applied the generalized reliability-based

risk assessment methodology on an industrial case study. It should be emphasized that although

many papers used use cases for different type of quantitative analysis, to the best of our

knowledge, this is the first work which accounts for relationships between use cases.

2. Maintainability-based risk assessment:

• Introduced and defined maintainability-based risk, which assesses how difficult it is to maintain

the system in the future because of possible maintenance task, as a product of two factors: the

9. Conclusion and Future Work

Model Based Risk Assessment Ph.D. Dissertation 125

probability of performing maintenance tasks and the impact of performing these tasks. We

investigated the maintainability risk of the system components, and the effect of performing the

maintenance tasks.

• Developed a general methodology for estimating the maintainability-based risk when considering

different types of maintenance that the software undergoes such as adaptive, corrective and

perfective maintenance. The proposed methodology depends on the architectural artifacts and

their evolution through the life cycle of the system. We applied the proposed methodology on

several case studies.

• Automated the estimation of the maintainability-based risk assessment methodology. We

presented the architecture of the Software Architecture Risk Assessment (SARA) tool. We

extended the functionality of the by providing support for more architectural models and different

perspective of risk assessment other than reliability-based risk, specifically maintainability based

risk assessment

The future work has the following aspects:

1. We plan to apply the generalized reliability-based risk assessment methodology presented in this

dissertation on other case studies.

2. To validate the maintainability-based risk assessment estimation methodology, we also intend to

apply methodology on other case studies/system architectures such as product lines and evaluate

the estimated risk against actual maintenance records.

a. We intend to mine history repositories of the open-source projects to analyze its change

data and use it to give insights about the maintainability risk of the systems. Then, we can

compare it with our estimation procedure results. Moreover, we can contact the

administrators of such projects to get a subjective assessment of the maintainability of the

components of the system.

b. We will execute additional controlled experiments and perform pre/post analysis of

software systems for different types of maintenance activities in a controlled and

managed environment.

c. We intend to further refine the model by using better estimators for the parameters. For

example to better estimate the maintenance impact, size of change parameter could be

weighted by the complexity of the component to capture the difficulty of finding and

9. Conclusion and Future Work

Model Based Risk Assessment Ph.D. Dissertation 126

making changes. In that case, we assume that it is more difficult to find where changes

needed to be conducted and to perform these changes in a more complex component than

the case in a less complex one. Also, incorporating multi-step change propagation in the

model would get a better estimate for components maintainability-based risk.

3. In our risk assessment methodology, we used the structure of the system as an equivalent to the

architecture without considering the different architecture styles that could be adopted. For the

purpose of our analysis, we only need the control flow and component interactions. We need to

refine our methodologies to take into consideration the different styles of the software

architecture and how they would affect the risk factors estimation.

4. We aim to extend the Software Architecture Risk Assessment (SARA) tool so that it can account

for the changes in the system requirements and to support the generalized reliability-based risk

assessment methodology to account for the use-case relationships.

I. Glossary

Model Based Risk Assessment Ph.D. Dissertation 127

I. Glossary
Abstraction: A model that summarizes the details of the subject it is representing.

Actor: External entities interacting with the design

Adaptive Change: A change made in order to adapt the system to changes in its data environment or

processing environment.

Change: The act, process, or result of being made different in some particular.

Class Associations: Relationships between classes, which can be aggregation, composition,

generalization, and dependency as specified in UML

Corrective Change: A change made in order to correct processing, performance, or implementation

failures of the system.

Dependency: In general, a dependency implies that the complete functioning of an element requires the

presence of another, which exists in the same level of abstraction or realization (i.e. pattern,

class, or subsystem level of abstraction).

Design Pattern: A design component composed of collaborating classes that are customized to solve a

general frequent-recurring design problem in a particular context.

Empirical: Capable of being verified or disproved by observation or experiment.

Environment: The totality of conditions and influences which act from outside upon an entity.

Evolution: A process of continuous change from a lower, simpler, or worse to a higher, more complex, or

better state.

Forward Engineering: The traditional software engineering approach starting with requirements analysis

and progressing to implementation of a system.

Framework: A set of ideas, conditions, or assumptions that determine how something will be

approached, perceived, or understood.

Impact Analysis: The determination of the major effects of a proposed project or change.

Maintainability: The ease with which maintenance can be carried out.

Maintenance Personnel: The individuals involved in maintaining a software product.

Maintenance Process: Any activity carried out, or action taken, either by a machine or maintenance

personnel during software maintenance.

Maintenance: The act of keeping an entity in an existing state of repair efficiency, or validity; to preserve

from failure or decline

I. Glossary

Model Based Risk Assessment Ph.D. Dissertation 128

Measurement: The process of empirical, objective encoding of some property of a selected class of

entities in a formal system of symbols so as to describe them.

Methodology: is a collection of methods applied across the software development life cycle and unified

by some general philosophical approach.

Metric: A criterion to determine the difference or distance between two entities, like the distance of a

query and a document in information system Retrieval systems.

Object Oriented Programming: computer programming in which code and data pertaining to a single

entity (object) are encapsulated, and communicate with the rest of the system via messages.

Operating Environment: All software and hardware systems that influence or act upon a software

product in any way.

Perfective Change: A change made in order to perfect the system in terms of its performance, processing

efficiency, or maintainability.

Preventive Change: A change made in order to prevent system problems before they occur.

Product: a concrete documentation or artifact created during a software project.

Program: Code components, at the source and object code level, such as modules, packages, procedures,

functions, routines, etc. Also commercial packages such as spreadsheets and databases.

Quality Assurance: The systematic monitoring and evaluation of aspects of a project, service or facility

to ensure that necessary standards of excellence are being met.

Reengineering: The process of examination and alteration whereby a system is altered by first reverse

engineering and then forward engineering

Restructuring: The transformation of a system from one representational from to another.

Reverse Engineering: The process of analyzing a subject system to:

- Identifying the system’s components and their interrelationships and

- Create representations of the system in another form or at higher levels of abstraction

Ripple Effect: Consequences of a action in one place, occurring elsewhere e.g. a stone dropped in a pond

resulting in waves/ ripples far from the point of impact.

Safety-Critical: A system where failure could result in death, injury or illness, major economics loss,

environmental or property damage.

Software Architecture of a program or computing system is the structure or structures of the system,

which comprise software elements the externally visible qualities of those elements, and the

relationships among them

Software Evolution: The tendency of software to change over time.

I. Glossary

Model Based Risk Assessment Ph.D. Dissertation 129

Software Maintenance Framework: The context and environment in which software maintenance

activities are carried out.

Software Maintenance Tool: An artifact used to carry out automatically a function relevant to software

change.

Software: The programs, documentation and operating procedures by which computers can be made

useful to man.

Tool: Implement or device used to carry out functions automatically or manually.

UML: The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a software-intensive system. The UML offers a

standard way to write a system's blueprints, including conceptual things such as business

processes and system functions as well as concrete things such as programming language

statements, database schemas, and reusable software components.

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 130

II. Bibliography

[Abdelmoez+ 2003] W. Abdelmoez, A. Hassan, A. Guedem, K. Goseva-Popstojanova, H. Ammar,

“Considering Use Case Dependencies in Architectural-Level Risk Analysis Based on UML

Specifications” Suppl. Proc. 14th International Symposium on Software Reliability Engineering

(ISSRE'03), November 17 - 20, 2003 Denver CO., pp. 323-324.

[Abdelmoez+ 2004A] W. Abdelmoez, D.M. Nassar, M. Shereshevsky, N. Gradetsky, R. Gunnalan, H.H.

Ammar, Bo Yu, A. Mili, “Error Propagation In Software Architectures”, Proc. 10th IEEE

International Software Metrics Symposium (METRICS 2004), Chicago, IL, September 2004.

[Abdelmoez+ 2004B] W. Abdelmoez, R. Gunnalan, M. Shereshevsky, H.H. Ammar, Bo Yu, M.

Korkmaz, A. Mili, “Software Architectures Change Propagation Tool (SACPT)”, Proc. 20th

IEEE International Conference on Software Maintenance (ICSM 2004), Chicago, IL, September

2004.

[Abdelmoez+ 2005A] W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H.H. Ammar, Bo Yu, S. Bogazzi,

M. Korkmaz, A. Mili, “Quantifying Software Architectures: An Analysis of Change Propagation

Probabilities”, ACS/IEEE International Conference on Computer Systems and Applications

(AICCSA 05), Cairo, Egypt, January 3-6, 2005.

[Abdelmoez+ 2005B] W. AbdelMoez, I. Shaik, R. Gunnalan, M. Shereshevsky, K. Goseva-Popstojanova,

H.H. Ammar, A. Mili, C. Fuhrman, “Architectural level Maintainability Based Risk Assessment”,

Proc. of poster papers in IEEE International Conference on Software Maintenance (ICSM 2005),

Budapest, Hungray, September 25-30,2005.

[Abdelmoez+ 2006A] W. Abdelmoez, K. Goseva-Popstojanova, H.H. Ammar,” Methodology for

Maintainability-Based Risk Assessment”, Proc. of the 52nd Annual Reliability & Maintainability

Symposium (RAMS 2006), Newport Beach, Ca., January 23-26, 2006.

[Abdelmoez+ 2006B] W AbdelMoez, K. Goseva-Popstojanova, H.H. Ammar, “Maintainability-Based

Risk Assessment in Adaptive Maintenance Context”, Proc. of the 2nd PRedictOr Models In

Software Engineering (PROMISE 2006) workshop, Philadelphia, Pa. USA, September 24, 2006.

[Abdelmoez+ 2006C] W. AbdelMoez, K. Goseva-Popstojanova, H. Ammar, “Using Maintainability

Based Risk Assessment and Severity Analysis in Prioritizing Corrective Maintenance Tasks”,

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 131

Suppl. Proc. 17th International Symposium on Software Reliability Engineering (ISSRE'06),

Raleigh, NC., November 7-10, 2006.

[Alexander 1979] Alexander, C., "The Timeless Way of Building", Oxford University Press, 1979.

[Alexander+ 1977] Alexander, C., S. Inshikawa, M. Silverstiein, M. Jacobson, I. Fiksdahl-king, and S.

Angel. “A Pattern Language”, Oxford University Press, New York, 1977.

[Ammar+ 2001] H. Ammar, S. M. Yacoub, A. Ibrahim, “A Fault Model for Fault Injection Analysis of

Dynamic UML Specifications,” International Symposium on Software Reliability Engineering,

IEEE Computer Society, November 2001.

[Anderson+ 2002] S. Anderson, M. Felici, “Quantitative Aspects of Requirements Evolution”. In

Proceedings of the 26th Annual International Conference on Computer Software and

Applications Conference, COMPSAC 2002, Oxford, England, 26-29th August 2002, IEEE

Computer Society, pp. 27-32.

[Armour+ 2001] F. Armour and G. Miller, Advanced Use Case Modeling, Addison-Wesley, 2001.

[Baude 2003] E. Baude, “Software Design: From Programming to Architecture”, Wiley, 2003.

[Beck+ 1994] Beck, K., R. Johnson, "Patterns Generate Architectures" ECOOP'94, LNCS 821, pp139-

149.

[Beck+ 1996] Kent Beck, James Coplien, Ron Crocker, Lutz Dominick, Gerard Meszaros, Frances

Paulisch, John M. Vlissides: Industrial Experience with Design Patterns. ICSE 1996: 103-11

[Bohner+ 1996] Bohner, S.A., Arnold, R.S. Software Change Impact Analysis. IEEE Computer Society

Press, Los Alamitos, CA, 1996.

[Booch+1999] Grady Booch, Jim Rumbaugh, and Ivar Jacobson, "The Unified Modeling Language User

Guide", ISBN: 0-201-57168-4, Addison Wesley, est. publication December 1997.

[Borg] Source Forge Project: BORG Calendar http://sourceforge.net/projects/borg-calendar/

[Bosch+ 2001] J. Bosch and P. Bengtsson, “Assessing Optimal Software Architecture Maintainability”,

Proc. of fifth European Conference on Software Maintenance and Reengineering, Lisbon,

Portugal, March 2001.

[Bowles 1998] J. Bowles, “The New SEA FMECA Standard”, Proc.1998 Annual Reliability and

Maintainability Symp. (RAMS 1998), Anaheim, California, 1998, pp. 48-53.

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 132

[Briand+ 1999A] Briand L., Wust J, Ikonomomovski S. and Lounis H, “Investigating Quality Factors in

Object Oriented Designs: An Industrial Case Study,” Proc. of the 1999 International Conference

on Software Engineering, Los Angeles, May 16-22, 1999,pp 345-354.

[Briand+ 1999B] Briand L., J. Wuest, H. Lounis, "Using Coupling Measurement for Impact Analysis in

Object-Oriented System", IEEE International Conference on Software Maintenance (ICSM),

1999, Oxford, UK.

[Briand+ 2003] Briand L., Labiche Y., O'Sullivan, “Impact Analysis and Change Management of UML

Models”, IEEE International Conference on Software Maintenance (ICSM) 2003.

[Burch+ 1997] Burch E. and H. Kung, “Modeling Software Maintenance Requests: A Case Study,” Proc.

IEEE Int’l Conf. Software Maintenance, pp. 40-47, 1997

[Buschmann+ 1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal, "Pattern-Oriented Software Architecture - A Pattern System", Addison-Wesley, 1996.

[Canning 1972] Canning RG, “That maintenance iceberg”, EDP Analyzer 1972,(10):1–14.

[Cantone+ 2004] G. Cantone, D. Pace, G. Calavaro, “Applying Function Point to Unified Modeling

Language: Conversion Model and Pilot Study”, Proc. of 10th International Symposium on

(METRICS'04), September 11 - 17, 2004, Chicago, Illinois, pp.280-291.

[Card+ 1990] Card, D.N. and Glass R.L., Measuring Software Design Quality, Prentice Hall, Englewood

Cliffs, New Jersey,1990.

[Chapin 2000] Chapin N., “Do we know what preventive maintenance is?”, In Proceedings International

Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA, 2000.

[Cheung 1980] Cheung R. C., “A User-Oriented Software Reliability Model”, IEEE Transactions on

Software Engineering, Vol.6, No.2, 1980, pp. 118-125.

[Chidamber+ 1994] Chidamber S.M and Kemerer C.F, “A Metrics Suite for Object Oriented Design,”

IEEE Transactions on Software Engineering, Jun 1994, pp 476-493.

[Clarkson+ 2000] Clarkson, P.J., Simons, C. and Eckert, C.M., “Change propagation in the design of

complex products”, in Engineering Design Conference (EDC2000), Brunel University,

Uxbridge,2000, 563-570

[Clarkson+ 2001] Clarkson, P.J., Simons, C. and Eckert, C.M., “Predicting change propagation in

complex design”, Proceedings 13th International Conference on Design Theory and Methodology

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 133

(DETC'01), ASME Design Engineering Technical Conferences and Computers and Information

in Engineering Conference, Pittsburgh, Pennsylvania, USA, 2001.

[Cohen+ 2000] Cohen T., Navthe, S. and Fulton, R. E.,“C-FAR, change favorable representation”,

Computer-Aided Design 32: 321-38, 2000.

[Costello 2005] Costello K., Software Integrity Level Assessment Process (SILAP), NASA IV&V

Facility, 2005.

[Cunningham 1994] Cunningham, W., "The CHECKS Pattern Language of Information Integrity", in

Proceedings of Pattern Languages of Program PLoP'94

[Douglass 1998] Douglass B., Real-Time UML: Developing Efficient Objects for Embedded Systems,

Addison-Wesley, 1998.

[Eppinger+ 1994] Eppinger, S. D., Whitney, D. E., Smith, R. P. and Gebala, D. A.,“A Model-based

Method for Organizing Tasks in Product Development”, Research in Engineering Design 6(1):1-

13,1994.

[Fanta+ 1998] Fanta, R., Rajlich, V. Reengineering an Object Oriented Code. In Proceedings of IEEE

International Conference on Software Maintenance,1998, IEEE Computer Society Press, 238-246

[Fenton+ 1996] Fenton, N.E. and Pfleeger, S.L., Software Metrics, 2
nd

 edition, Thomson Publishing Inc.,

1996.

[Fenton+ 2000] Fenton, N.E. and Ohlsson, N., “ Quantitative Analysis of Faults and Failures in a

Complex Software System”, IEEE Trans Software Engineering, Vol. 26, No. 8, pp. 797-814.

[Fowler+ 1999] Fowler M. and Beck K, Refactoring: Improving the Design of Existing Code, Addison-

Wesley, 1999.

[Gamma 1991] E. Gamma, "Objectorientierte Software-Entwicklung am Beispiel von ET++"

Klassenbibliothek, Werkseuge, Design, Dissertation, Universitat Zurich, 1991 (Translated as

"Object-oriented software development with examples from ET++: class library, tool, and

design").

[Gamma+ 1995] E. Gamma, R. Helm, R. Johnson and J. Vlissides, "Design Patterns: Elements of

Object-Oriented Software", Addison-Wesley, 1995.

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 134

[Gefen+ 1996] Gefen D. and S.L. Scheberger, “The NonHomogeneous Maintenance Periods: A Case

Study of Software Modifications,” Proc. 1996 Int’l Conf. Software Maintenance (ICSM ’96), pp.

134-141, 1996.

[Gill+ 1991] G.K. Gill, C.F. Kemerer, “Cyclomatic Complexity Density and Software Maintenance

Productivity,” IEEE Trans. Software Eng., Vol.17,No. 12, pp. 1284-1288, 1991.

[Goseva-Popstojanova+2001] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture Based Approach

to Reliability Assessment of Software Systems”, Performance Evaluation, Vol. 45, No. 2-3, 2001,

pp. 179-204.

[Goseva-Popstojanova+2003] K. Goseva-Popstojanova , A. Hassan, A. Guedem, W. Abdelmoez, D.

Nassar, H. Ammar, A. Mili, “Architectural-Level Risk Analysis using UML”, IEEE Trans.

Software Engineering, Vol. 29, No.10, October 2003, pp. 946-960 .

[Grady 1994]. R.B. Grady, “Successfully Applying Software Metrics,” IEEE Computer, Vol. 27, No. 9,

September 1994, pp. 18 - 25.

[Grady+ 1987] R.B. Grady and D.L. Caswell, Software Metrics: Establishing a Company-Wide Program,

Prentice Hall, Englewood Cliffs, New Jersey, 1987.

[Guedem 2004] Guedem A. R., “Software Architectural Risk Assessment”, Master's Thesis, West

Virginia University, 2004.

[Halstead 1977] Halstead, Maurice H., “Elements of Software Science”, Operating, and Programming

Systems Series, Volume 7. New York, NY: Elsevier, 1977.

[Harel88] David Harel, "On Visual Formalism", Communications of the ACM, Vol 31, No 5, May 1988

[Hassan 2004] A. Hassan, “Architectural Level Risk Assessment”, Dissertation, West Virginia

University, 2004.

[Hassan+ 2001] A. Hassan, W. Abdelmoez, R. Elnaggar, and H. Ammar, “An Approach to Measure the

Quality of Software Designs from UML Specifications”, Proc. 5th World Multi-Conference on

Systems, Cybernetics and Informatics and the 7th Int’l Conf. Information Systems, Analysis and

Synthesis, July. 2001, Vol. IV, pp 559-564.

[Hassan+ 2004] A. Hassan and Richard C. Holt, “Predicting Change Propagation in Software Systems”,

in proceedings of International Conference on Software Maintenance (ICSM) 2004, Chicago,

Illinois, USA, September 11-17, 2004

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 135

[Hawkins+ 2002] R. D. Hawkins and J. A. McDermid. “Performing Hazard and Safety Analysis of

Object Oriented Systems”, Proc. 20th International System Safety Conference (ISSC),

2002,Denver, CO.

[Hiller+ 2001] M. Hiller, A. Jhumka, and N. Suri, “An Approach for Analyzing the Propagation of Data

Errors in Software,” Dependable Systems and Networks, pp. 161 -170, 2001.

[Houmb+ 2002] S. Houmb, F. den Braber, M. S. Lund and K. Stolen, “Towards a UML Profile for

Model-based Risk Assessment”, Proc. UML'2002, Satellite Workshop on Critical Systems

Development with UML, September 30 - October 4, 2002, Dresden, Germany, pp.79-92.

[IEEE 1990] IEEE Standard Glossary of Software Engineering Terminology, The Institute of Electrical

and Electronics Engineers, Inc., New York, 1990.

[IEEE 1998] IEEE Standard for Software Maintenance, The Institute of Electrical and Electronics

Engineers, Inc., New York, 1998.

[IEEE Std 982.1] IEEE Std 982.1- IEEE Standard Dictionary of Measures to Produce Reliable Software.

[Jacobson+ 1992] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G., "Object Oriented

Software Engineering", Workingham, England: Addison-Wesley 1992.

[JavaUnderstand] Java Understand http://www.scitools.com/uj.html

[Johannessen+ 2001] Johannessen P., Grante C., Alminger A. and Torin U. E. J., “Hazard Analysis in

Object Oriented Design of Dependable Systems”, Proceeding of the 2001 Int’l Conference on

Dependable Systems and Networks, Goteborg, Sweden, July 2001, pp 507-512.

[Kafura+ 1987] Kafura, D.; Reddy, G.R., “The Use of Software Complexity Metrics in Software

Maintenance”, IEEE Transactions on Software Engineering, Vol. 13, No. 3, 1987, pp. 335-343

[Kerievsky 2004] Kerievsky J., Refactoring to Patterns, Addison-Wesley, 2004.

[Lazowska 1984] Lazowska E., Quantitative System Performance: Computer System Analysis Using

Queuing Network Models, Prentice Hall, 1984.

[Lientz+ 1980] Lientz BP and Swanson EB, “Software Maintenance Management”, Addison-Wesley

Publishing Co.: Reading MA, 1980; 214 pp.

[McCabe 1976] T. J. McCabe, "A complexity measure," IEEE Trans. Software Eng., vol. SE-2, pp. 308-

320, 1976.

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 136

[Menzies+ 2000] Menzies T. and Cukic B., “Maintaining maintainability = recognizing reachability”, In

International Workshop on Empirical Studies of Software Maintenance (WESS 2000), October

14, San Jose CA, 2000.

[Michael+1997] Michael C. C., and Jones R. C., "On the Uniformity of Error Propagation in Software,"

Proc. of the 12th Annual Conference on Computer Assurance (COMPASS'97), pp. 68-76, 1997.

[MIL_STD_1629A] Procedures for Performing Failure Mode Effects and Criticality Analysis, US

MIL_STD_1629 Nov. 1974, US MIL_STD_1629A Nov. 1980, US MIL_STD_1629A/Notice 2,

Nov. 1984.

[Mira 2001] Mira Kajko-Mattsson, “Can We Learn Anything from Hardware Preventive Maintenance?”,

Proceedings of the Seventh International Conference on Engineering of Complex Computer

Systems (ICECCS’01), 2001.

[Moore+ 2003] D.S. Moore and G.P.McCabe, “Introduction to the practice of statistics”, W.H. Freeman

and Company, 4th edition ,2003.

[Munson+ 1996] J. Munson and T. Khoshgoftaar, “Sotware Metrics for Reliability Assessment,”

Handbook of Software Reliability Eng., M. Lyu, ed., 1996, pp. 493-529

[NASA 1997] NASA-STD-8719.13A,“Software Safety NASA Technical Standard”, 1997.

http://satc.gsfc.nasa.gov/assure/nss8719_13.html

[NASA MDP] Metrics Data Program, NASA IV&V Facility http://mdp.ivv.nasa.gov/

[Oman 1991] Oman, P. HP-MAS: A Tool for Software Maintainability, Software Engineering (#91-08-

TR). Moscow, ID: Test Laboratory, University of Idaho, 1991.

[Oman+ 1992] Oman, P. & Hagemeister, J. Construction and Validation of Polynomials for Predicting

Software Maintainability (92-01TR). Moscow, ID: Software Engineering Test Lab, University of

Idaho, 1992.

[Oman+ 1994] P. Oman, J. Hagemeister, "Constructing and Testing of Polynomials Predicting Software

Maintainability", Journal of Systems and Software 24, 3 (March 1994), pp. 251-266.

[OMG 2001] Revision Task Force. OMG Unified Modeling Language Specification, Version 1.4.

Technical report, Object Management Group (OMG), 2001. OMG document formal/01-09-67.

http://www.uml.org/

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 137

[OMG 2005] Object Management Group (OMG), “Unified Modeling Language: Superstructure, version

2.0- Final Adopted Specification”, OMG document formal/ 05-07-04, Available at:

http://www.omg.org/cgi-bin/doc?formal/05-07-04. August 2005.

[OMG UML Profile] UML Profile for Schedulability, Performance, and Time, ptc/02-03-02, OMG

Adopted Specification, http://www.omg.org.

[Päivi+ 2002] Päivi Kallio and Tuomas Ihme, “Evolution of the Use and Risks of Commercial Software

Components”, Proceedings of the 28
th
 Euromicro Conference (EUROMICRO’02), 2002.

[Papadopoulos+ 1999] Papadopoulos Y. and McDermid J. A., “Hierarchically Performed Hazard Origin

and Propagation Studies”, Proceedings of SAFECOMP ’99, 18th International Conference on

Computer Safety, Reliability and Security, Toulouse France, Lecture Notes in Computer Science,

1698, Springer Verlag, 1999, pp.139-152.

[Papapanagiotakis +1994] Papapanagiotakis G. and Breuer P., “A software maintenance management

model based on queueing networks”, Journal of Software Maintenance - Research and Practice,

vol. 6, no. 1, pp. 73-97, 1994.

[Pelànek 2004] Pelànek R., “Typical Structural Properties of State Spaces”, in Proc. of 11th International

SPIN Workshop on Model Checking of Softwar, April 1-3, Barcelona, Spain, 2004.

[Pigoski 1996] T.M. Pigoski, Practical Software Maintenance: Best Practices for Managing Your

Software Investment, John Wiley & sons, 1996.

[Popic+ 2005] Popic, P. Desovski, D. Abdelmoez, W. Cukic, B., “Error Propagation in the Reliability

Analysis of Component Based Systems”, Proc. of 16th IEEE International Symposium on

Software Reliability Engineering ISSRE 2005, Chicago, Illinois., 8-11 Nov.,2005,pp. 53-62

[Pumfrey 1999] Pumfrey D. J., “The Principled Design of Computer System Safety Analyses”, PhD

thesis, University of York, Department of Computer Science, September 1999.

[Rajlich 2000] Rajlich, V., “Modeling software evolution by evolving interoperation graphs”, Annals of

Software Engineering 9: 235-248,2000.

[Rajlich+ 2000] Rajlich, V.T., Bennett, K.H. The staged model of the software lifecycle. IEEE Computer,

July 2000, 66-71.

[Rajlich+ 2002] Rajlich, V., Prashant G., A Case Study of Unanticipated Incremental Change, In

Proceedings of IEEE International Conference on Software Maintenance, 2002, IEEE Computer

Society, 2002, 442 – 451.

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 138

[Rajlich+ 2004] Rajlich, V., Prashant G., “Incremental Change in Object-Oriented Programming ” IEEE

Software, July/August 2004, Vol. 21, No. 4, pp.62-69

[Rational Rose RT] Rational Rose Real-Time.

http://www.rational.com/products/rosert/index.jtmpl

[Rombach 1987] Rombach, H.D., “A Controlled Experiment on the Impact of Software Structure on

Maintainability”, IEEE Transactions on Software Engineering, Vol. 13, No.3, 1987, pp. 344-354.

[Rumbaugh+ 1997] Jim Rumbaugh, Ivar Jacobson, and Grady Booch, "Unified Modeling Language

Reference Manual", ISBN: 0-201-30998-X, Addison Wesley, est. publication December 1997.

[Schach+ 2000] Schach, S. R. and Tomer, A.,“A maintenance-oriented approach to software

construction”, Journal of Software Maintenance-Research and Practice 12(1): 25-45,2000.

[SEI 2005] http://www.sei.cmu.edu/architecture/sw_architecture.html Software Architecture for

Software-Intensive Systems (last visited November 2005)

[Shaik 2006] I. Shaik , W. AbdelMoez, R. Gunnalan, M. Shereshevsky, A. Zeid, H.H. Ammar, A. Mili,

C. Fuhrman, “Using Change Propagation Probabilities to Assess Quality Attributes of Software

Architectures” , Proc. of The 4th ACS/IEEE International Conference on Computer Systems and

Applications (AICCSA-06), Dubai/Sharjah, UAE, March 8-11, 2006.

[Shaw 1995] Shaw M., “Architectural issues in software reuse: It's not just the functionality, it's the

packaging”, In Proceedings Symposium on Software Reusability, Seattle, WA, April 1995.

Association for Computing Machinery.

[Sheik 2006] Sheik K, AbdelMoez W., Ammar H., “Software Architecture Risk Assessment (SARA)

Tool”, Suppl. Proc. 17th International Symposium on Software Reliability Engineering

(ISSRE'06), Raleigh, NC., November 7-10, 2006

[Sherer 1997] Sherer S., “Using Risk Analysis to Manage Software Maintenance,” Software

Maintenance: Research and Practice, Vol. 9, 345-364, 1997.

[Singh+ 2001] H. Singh, V. Cortellessa, B. Cukic, E. Gunel and V. Bharadwaj, “A Bayesian Approach to

Reliability Prediction and Assessment of Component Based Systems”, Proc. 12th International

Symposium on Software Reliability Engineering (ISSRE'01), 2001, Hong Kong, China, pp. 12-21.

[Smith 1990] Smith, C.U. , Performance Engineering of Software Systems, SEI Series in Software

Engineering, Addison-Wesley, Readings, Mass. 1990.

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 139

[Smith+ 2002] Smith, C.U. and Williams L.G., Performance Solutions: A Practical Guide To Creating

Responsive, Scalable Software, Addison-Wesley, 2002.

[Stark+ 1994] Stark G.E., Kern L.C., and C.V. Vowell, “A Software Metric Set for Program Maintenance

Management”, Journal of Systems and Software, 1994, pp. 239-249.

[StarUML] StarUML - The Open Source UML/MDA Platform http://staruml.sourceforge.net/en/

[Steward 1981] Steward, D. V., “The Design Structure System: A Method for Managing the Design of

Complex Systems”, IEEE Transactions on Engineering Management, EM-28 (3),1981.

[Sundararajan 1991] C. Sundararajan, Guide to Reliability Engineering, Data, Analysis, Applications,

Implementation, and Management, Van Nostrand Reinhold, New York, 1991.

[Swanson 1976] Swanson EB, “The dimensions of maintenance”, In Proceedings 2nd International

Conference on Software Engineering. IEEE Computer Society Press: Long Beach CA, 1976;

492–497.

[Tan+ 2005] Tan Y. and V. S. Mookerjee, “Comparing Uniform and Flexible Policies for Software

Maintenance and Replacement”, IEEE Trans. Software Eng, Vol. 31, No. 3, 2005, pp. 238 - 255.

[Trivedi 2002] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science

Applications, 2nd ed., John Wiley & Sons, 2002.

[Tsantalis+ 2005] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, "Predicting the Probability of Change

in Object-Oriented Systems," IEEE Transactions on Software Engineering, vol. 31, no. 7, pp.

601-614, Jul., 2005.

[UML 2005] Unified Modeling Language OMG Resource Page http://www.uml.org/ (last visited

November 2005)

[Voas 1997] J. Voas, “Error propagation analysis for COTS system,” Journal of Computing & Control

Engineering, vol. 8, no. 6, pp. 269 –272, Dec. 1997.

[Wang 2003] Wang T., “Architecture-level Risk Assessment Tool Based on UML Specification”,

Master's Thesis, West Virginia University, 2003.

[Wang+ 2003] T. Wang, A. Hassan, A. Guedem, W. Abdelmoez, K. Goseva-Popstojanova, H. Ammar,

“Architectural Level Risk Assessment Tool Based on UML Specifications”, 25th International

Conference on Software Engineering, Portland, Oregon, 2003.

II. Bibliography

Model Based Risk Assessment Ph.D. Dissertation 140

[Welker+ 1995] Welker, Kurt D. & Oman, Paul W. "Software Maintainability Metrics Models in

Practice." Crosstalk, Journal of Defense Software Engineering 8, 11 (November/December 1995):

19-23.

[William+ 2002] William C. Chu, Chih-Wei Lu, Chih-Hung Chang, Yeh-Ching Chung, Yueh-Min Huang

and Baowen Xu, “Software Maintainability Improvement: Integrating Standards and Models”,

Proceedings of the 26
th
 Annual International Computer Software and Applications Conference

(COMPSAC’02), Oxford, England, 26-29 August 2002.

[Yacoub 1999] Yacoub S., “Pattern-Oriented Analysis and Design (POAD): A Methodology for Software

Development”, Dissertation, West Virginia University, 1999.

[Yacoub+ 1999] S. Yacoub, H. Ammar, and T. Robinson, “Dynamic Metrics for Object-Oriented

Designs”, Proc. 6th Int’l Symp. Software Metrics (Metrics’99), Boca Raton, Florida, 1999, pp 50-

61.

[Yacoub+ 2000] S. Yacoub, T. Robinson, and H. Ammar, “A Matrix-Based Approach to Measure

Coupling in Object-Oriented Designs", Journal of Object Oriented Programming, vol. 13, no. 7,

Nov. 2000, pp. 8-19.

[Yacoub+ 2002] S. Yacoub and H. Ammar, “A Methodology for Architectural-Level Reliability Risk

Analysis,” IEEE Trans. Software Eng, Vol. 28, No. 6, June 2002, pp. 529-547.

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 141

III. Appendix I : Case Studies

A. Command and Control System Case Study

This case study is a command and control system used in a mission-critical application. We present

only the analysis of the Internal Thermal Control subsystem. This subsystem is responsible for providing

overall management of pumps, as well as performing the necessary monitoring and responding to sensors

data. Also, it is responsible for performing automated startup, and controlling the Internal Thermal

Control subsystem reconfigurations. During each execution cycle, incoming commands are checked and

validated. A failure recovery system detects failure conditions, such as combinations of Pump failures and

Shutoff Valve failures, and performs recovery operations in response to detected failures.

The software architecture of this system is shown in Figure 84. The use case diagram of the Internal

Thermal Control subsystem is shown in Figure 85. It consists of 5 actors and 11 use cases. Five use cases

are named for mode setting (Setting_1, Setting_2, Setting_3, Setting_4, and

Setting_5) and three use cases are named for pump activation retry (Pump_1_Retry,

Pump_2_Retry, and Retry_Both_Pumps). These use cases are examples of primitive use

cases. The Failure_Recovery, Monitoring, and Mode_setting use cases are examples of non-

primitive use cases. Monitoring and Mode_setting use cases are also terminal use cases since they

are connected directly to actors. Figure 86 to Figure 93 show hierarchal state diagrams for the

components of the system. Further details about the system are given in [Hassan 2004].

 / C 9
 / C 7

 / C 10

 / C 5

 / C 6

 / C 8

 / C 9
 / C 7

 / C 10

 / C 5

 / C 6

 / C 8
 / C 2 / C 2

 / C 3 / C 3

 / C 1 / C 1

 / C 4 / C 4

Figure 84 Software architecture of the system.

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 142

Setting_1

Setting_2

Setting_4

Setting_3

Setting_5
Pump_1_Retry

Pump_2_Retry

Retry_Both_Pumps

Valve_2 Valve_1 Pump_2

Operator

0.05

Mode_setting
<<extend>> <<extend>>

<<extend>> <<extend>>

<<extend>> <<extend>>

<<extend>> <<extend>>

<<extend>> <<extend>>

Pump_1

Failure_Recovery

<<extend>> <<extend>>
<<extend>> <<extend>>

<<extend>> <<extend>>
<<extend>> <<extend>>

<<extend>> <<extend>> <<extend>> <<extend>>

<<extend>> <<extend>>

<<extend>> <<extend>>

0.95

Monitoring

<<extend>> <<extend>>

Figure 85 Use case diagram of the Internal Thermal Control subsystem

Operating

Failure
Reconfiguring

Idle

initial

Reconfigure_Dual

Set_to_Idle

MT

Reconfigure_Single
Dual_LT_Failed

Dual

LT

Operational

Dual_MT_Failed

Initial

initialize

Check_for_Command

Check_for_Command

Cycling_Pump_Power

Retry_Sucess

configure_failed

Retry_Failed

Reconfigure_Dual

Set_to_Idle

MT

Reconfigure_Single
Dual_LT_Failed

Dual

LT

Operational

Dual_MT_Failed

Initial

initialize

Check_for_Command

Check_for_Command

Cycling_Pump_Power

Retry_Sucess

configure_failed

Retry_Failed

Figure 86 Top-level state diagram of Component C1

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 143

Dual _Tans

Single_Trans

Check_command

Operational

configure_failed

Dual_MT_Failed

Dual_LT_Failed

Dual

MT LT

Reconfigure_Single

Reconfigure_Dual

Check_for_Command Check_for_Command

Configure_Single configure_failed

configure_fai led

Dual_MT_Failed

Dual

Dual_LT_Failed
Initial

MT LT

Reconfi gure_Dual

Reconfigure_Single

Configure_Dual

OperationalOperational

configure_failedconfigure_failed

Dual_MT_FailedDual_MT_Failed

Dual_LT_FailedDual_LT_Failed

DualDual

MTMT LTLT

Reconfigure_SingleReconfigure_Single

Reconfigure_DualReconfigure_Dual

Check_for_CommandCheck_for_Command Check_for_CommandCheck_for_Command

Configure_Single configure_failed

configure_fai led

Dual_MT_Failed

Dual

Dual_LT_Failed
Initial

MT LT

Reconfi gure_Dual

Reconfigure_Single

Configure_Dual

Dual_Mode Single_Mode

Dual_MT_FailedDual Dual_LT_Failed MT LT

Reconfigure_Single
Reconfigure_Dual

Set_to_Idle

Check_for_Command

Check_for_Command

Dual

LTMT

Reconfigure_Dual

Reconfigure_Single

Reconfigure_Single

Reconfigure_Dual

Dual_LT_Failed

Dual_MT_Fail ed

Dual_MT_FailedDual_MT_FailedDualDual Dual_LT_FailedDual_LT_Failed MTMT LTLT

Reconfigure_SingleReconfigure_Single
Reconfigure_DualReconfigure_Dual

Set_to_IdleSet_to_Idle

Check_for_CommandCheck_for_Command

Check_for_CommandCheck_for_Command

Dual

LTMT

Reconfigure_Dual

Reconfigure_Single

Reconfigure_Single

Reconfigure_Dual

Dual_LT_Failed

Dual_MT_Fail ed

Figure 87 First-level state diagrams of Component C1

check

Trans_Single_LT

Trans_Single_Mt

LT

Configure_Single

configure_failed

MT

Reconfigure_Single
Trans_MT

Initial

initial_single

t2

LT

MT

Reconfigure_Single

Pump_Setup

SFCAMT_Open_PPAMT_Startup

SFCA_Clear_Inhibit

Successful_Parameters_Setti ngs

Retry

t2

Pump_Setup

SFCAMT_Close

SFCALT_Close

SFCALT_Open_PPALT_Startup

SFCA_Clear_Inhibit

Successful_Parameters_Settings

Retry

Trans_LT

LTLT

Configure_SingleConfigure_Single

configure_failedconfigure_failed

MTMT

Reconfigure_SingleReconfigure_Single
Trans_MT

Initial

initial_single

t2

LT

MT

Reconfigure_Single

Pump_Setup

SFCAMT_Open_PPAMT_Startup

SFCA_Clear_Inhibit

Successful_Parameters_Setti ngs

Retry

t2

Pump_Setup

SFCAMT_Close

SFCALT_Close

SFCALT_Open_PPALT_Startup

SFCA_Clear_Inhibit

Successful_Parameters_Settings

Retry

Trans_LT

check

Trans_to_Dual_MT_Failed

Trans_TO_Dual

Trans_to_Dual_LT_Failed

Dual

Configure_Dual

configure_fai led

Dual_MT_Failed

Dual_LT_Failed

Reconfigure_Dual

t1

t2

t3

Initial_dual

t1

t1

t2

Reconfigure_Dual

Initial

t2

SFCAMT_Open MT_FullSFCALT_Open LT_Full Successful_Parameters_Settings

Pump_OK

Retry

Pump_Setup

SFCALT_Open Pump_Setting SFCAMT_Close LT_Full Successful_Parameters_Settings

Retry

Retry

SFCAMT_Open Pump_Setting SFCALT_Close MT_Full Successful_Parameters_Settings

t2

t1
DualDual

Configure_DualConfigure_Dual

configure_fai ledconfigure_fai led

Dual_MT_FailedDual_MT_Failed

Dual_LT_FailedDual_LT_Failed

Reconfigure_DualReconfigure_Dual

t1

t2

t3

Initial_dual

t1

t1

t2

Reconfigure_Dual

Initial

t2

SFCAMT_Open MT_FullSFCALT_Open LT_Full Successful_Parameters_Settings

Pump_OK

Retry

Pump_Setup

SFCALT_Open Pump_Setting SFCAMT_Close LT_Full Successful_Parameters_Settings

Retry

Retry

SFCAMT_Open Pump_Setting SFCALT_Close MT_Full Successful_Parameters_Settings

t2

t1

Dual_MT_Failed

Dual

Dual_LT_Failed

Reconfigure_Single

Dual

Reconfigure_Dual

Dual_MT_Failed

Dual_LT_Failed

t1

t1

t2

t2

t2

t1

MT

Dual

LT

Reconfigure_SingleReconfigure_Single

DualDual

Reconfigure_DualReconfigure_Dual

Dual_MT_FailedDual_MT_Failed

Dual_LT_FailedDual_LT_Failed

t1

t1

t2

t2

t2

t1

MT

Dual

LT

Single_MT

Single_LT

Reconfigure_Dual

LT

Reconfigure_SingleMT

t1

t1

t2

MT

LT

t2

Reconfigure_DualReconfigure_Dual

LTLT

Reconfigure_SingleReconfigure_SingleMTMT

t1

t1

t2

MT

LT

t2

Figure 88 Second-level state diagrams of Component C1

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 144

Single_Mode

Dual_Mode

LT_and_MT_Failed_PUMP_RETRYStandBy

T otal_Fai lure

Trans_Dual

Fai lure_Recovered_Single

Initial

Ini tial_Single

Initial_Dual

Failure_Persist

Both_Valves_Failed

Checking_Status

MT_and_SFCALT_Failed

LT_a nd_M T_Failed

MT _and_SFCALT_Failed

Both_Valves_Failed

LT_and_SFCAMT_Fai led

LT_and_SFCAMT_Failed

LT_and_MT_Failed

SFCA_LT_F SFCA_LT_R

SFCA_ MT _R

StandBy1

StandBy2

LT_F

LT_R

MT_F

MT_R

Sta ndBy3

Change

Tra ns_ Sin gle

Retry_Success

Retry_Failure

Fai lure_Recovered_Dual

SFCA_MT_F

Change

Trans_Dual

Fai lure_Recovered_Single

Initial

Ini tial_Single

Initial_Dual

Failure_Persist

Both_Valves_Failed

Checking_Status

MT_and_SFCALT_Failed

LT_a nd_M T_Failed

MT _and_SFCALT_Failed

Both_Valves_Failed

LT_and_SFCAMT_Fai led

LT_and_SFCAMT_Failed

LT_and_MT_Failed

SFCA_LT_F SFCA_LT_R

SFCA_ MT _R

StandBy1

StandBy2

LT_F

LT_R

MT_F

MT_R

Sta ndBy3

Change

Tra ns_ Sin gle

Retry_Success

Retry_Failure

Fai lure_Recovered_Dual

SFCA_MT_F

Change

Figure 89 Top-level state diagram of Component C2

PPALT_F_SFCAMT_F_SFCALT_O

PPAMT_F_SFCAMT_O_SFCALT_F

PPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O

LT_and_MT_Failed

Failure_Recovered_Single

Failure_Recovered_Dual
LT_and_MT_Failed

Failure_Persist

MT_and_SFCALT_Failed

MT_and_SFCALT_Failed

LT_and_SFCAMT_Failed

LT_and_SFCAMT_Failed

StandBy3

LT_Recovered_Dual

MT_Recovered_Single

LT_Recovered_Single

MT_Recovered_Dual

MT_and_SFCALT_Failed_Single

MT_and_SFCALT_Failed_Dual

LT_and_SFCAMT_Failed_Single

LT_and_SFCAMT_Failed_Dual

Fail

Fail

Fail

MT_Recovered_Single

MT_Recovered_Dual

LT_Recovered_Dual

LT_Recovered_Single

LT_Pump_RetryClose_SwitchOpen_Switch Retry

Close_Switch MT_Pump_Retry Retry

Close_Switch1 MT_Retry Open_Switch2 Close_Switch2Open_Switch1 Retry

LT_and_MT_Failed_Dual

LT_Retry

LT_and_MT_Failed_Single

Open_Switch

LT_and_MT_FailedLT_and_MT_Failed

Failure_Recovered_SingleFailure_Recovered_Single

Failure_Recovered_DualFailure_Recovered_Dual
LT_and_MT_FailedLT_and_MT_Failed

Failure_PersistFailure_Persist

MT_and_SFCALT_FailedMT_and_SFCALT_Failed

MT_and_SFCALT_FailedMT_and_SFCALT_Failed

LT_and_SFCAMT_FailedLT_and_SFCAMT_Failed

LT_and_SFCAMT_FailedLT_and_SFCAMT_Failed

StandBy3StandBy3

LT_Recovered_Dual

MT_Recovered_Single

LT_Recovered_Single

MT_Recovered_Dual

MT_and_SFCALT_Failed_Single

MT_and_SFCALT_Failed_Dual

LT_and_SFCAMT_Failed_Single

LT_and_SFCAMT_Failed_Dual

Fail

Fail

Fail

MT_Recovered_Single

MT_Recovered_Dual

LT_Recovered_Dual

LT_Recovered_Single

LT_Pump_RetryClose_SwitchOpen_Switch Retry

Close_Switch MT_Pump_Retry Retry

Close_Switch1 MT_Retry Open_Switch2 Close_Switch2Open_Switch1 Retry

LT_and_MT_Failed_Dual

LT_Retry

LT_and_MT_Failed_Single

Open_Switch

SFCAMT_F_SFCSLT_F

Pump_Retry_Failed

Failure_Persist

Both_Valves_Failed

Both_Valves_Failed

Failure_Persist

Both_Valves_Failed_Single

Both_Valves_Failed_Dual

Failure_PersistFailure_Persist

Both_Valves_FailedBoth_Valves_Failed

Both_Valves_FailedBoth_Valves_Failed

Failure_Persist

Both_Valves_Failed_Single

Both_Valves_Failed_Dual

Figure 90 First-level state diagrams of Component C2

Operating

Shutdown

Initial

Shutd ownStartup

New_Motor_Spee d

Initial

Shutd ownStartup

New_Motor_Spee d

Operational

Fai led

Pump_Re try

Ini tial

ShutdownStartup

Retry_Pump

Fail

Success

Initial_0

Initial

Failure

Ini tialIni tial

ShutdownShutdownStartupStartup

Retry_Pump

Fail

Success

Initial_0

Initial

Failure

Figure 91 State diagrams of Components C3 and C4

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 145

O p e ra tio n a l

F a il u re

Fa i lO p e ra te

In h i b i t

O p e n _ S h u to ff_ V a l ve A rm _ Cl o se _ S h u to ff_ V a l ve

Cle a r_ In h ib i t

Co n fi rm _ Cl o se _ S h u to ff_ V a lve

In i t ia l

Fa i lO p e ra te

In h i b i t

O p e n _ S h u to ff_ V a l ve A rm _ Cl o se _ S h u to ff_ V a l ve

Cle a r_ In h ib i t

Co n fi rm _ Cl o se _ S h u to ff_ V a lve

In i t ia l

Figure 92 State diagrams of Components C5 and C6

ITCS_Command_in_Q

No n_ITCS_Command_ in_ Q

InitialIni tial

t1t1t1t1

Switch_Close

Switch_Open

t1t1

Initial

t1t1

Initial

a) Component C7 b) Component C8

Processing_Cycle

In i ti a l

_1HZ_Processing

In i ti a l

_1HZ_Processing

Idle_Standby

Operational

Waiting

Initialize

Ini tial

StandbyOperate

Initialize

Ini tial

StandbyOperate

a) Component C9 b) Component C10

Figure 93 State diagrams of Components C7, C8, C9 and C10

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 146

B. Pace Maker Case Study

A cardiac pacemaker [Douglass 1998] is an implanted device that assists cardiac functions when the

underlying pathologies make the intrinsic heartbeats low. An error in the software operation of the device

can cause loss of a patient’s life. This is an example of a critical real-time application. We use the UML

real-time notion to model the pacemaker. Figure 94 shows the components and connectors of the

pacemaker in the capsule diagram. The figure also shows the input/output port to the Heart as an external

component, as well as the two input ports to the Reed Switch and the Coil Driver components. A

pacemaker can be programmed to operate in one of the five operational modes depending on which part

of the heart is to be sensed and which part is to be paced. Next, we briefly describe the components of the

pacemaker system.

1 Reed_Switch (RS): A magnetically activated switch that must be closed before programming the

device. The switch is used to avoid accidental programming by electric noise.

2 Coil_Driver (CD): Receives/sends pulses from/to the programmer. These pulses are counted and then

interpreted as a bit of value zero or one. The bits are then grouped into bytes and sent to the

Communication Gnome. Positive and negative acknowledgments, as well as programming bits, are

sent back to the programmer to confirm whether the device has been correctly programmed and the

commands are validated.

Figure 94 The architecture of the pacemaker example

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 147

3 Communication_Gnome (CG): Receives bytes from the Coil Driver, verifies these bytes as

commands, and sends the commands to the Ventricular and Atrial models. It sends the positive and

negative acknowledgments to the Coil Driver to verify command processing.

4 Ventricular_Model (VT) and Atrial_Model (AR): These two components are similar in operation.

They both could pace the heart and/or sense the heartbeats. Once the pacemaker is programmed the

magnet is removed from the RS. The AR and VT communicate together without further intervention.

Only battery decay or some medical maintenance reasons may force reprogramming.

The pacemaker runs in either a programming mode or in one of five operational modes. During

programming, the programmer specifies the operation mode in which the device will work. The operation

mode depends on whether the atrial, ventricular, or both are being monitored or paced. The programmer

also specifies whether the pacing is inhibited, triggered, or dual. For example, in the AVI operation mode,

the atrial portion of the heart is paced (shocked), the ventricular portion of the heart is sensed (monitored),

and the atrial is only paced when a ventricular sense does not occur (inhibited mode).

The use case diagram of the pacemaker application is given in Figure 95. It presents the six use cases

and the two actors: doctor programmer and patient’s heart. Each use case in Figure 95 is realized by at

least one sequence diagram (i.e., scenario). For the pacemaker example, according to [Douglass 1998] the

inhibit modes are more frequently used than the triggered mode. Also, the programming mode is executed

significantly less frequently than the regular usage of the pacemaker in any of its operational modes. For

further details about the case study check [Yacoub 1999] and [Hassan 2004].

Programming

M ode

Operational
M odes

DoctorsProgramer

Operating_in_AV I Operating_in_ AAT Operating_in_ VVI Operating_in_ VVT

PatientsHeart

Operating_in_ AAI

Programming

Figure 95 Use case diagram of the pacemaker

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 148

C. CM1 Case Study

CM1 is a case study from the Metrics Data Program [NASA MDP]. The CM1 is a software

component of a data processing unit used in an instrument, which exploits data to probe the early

universe. Rajesh, Tom and Nathan constructed this UML model [UML 2005] for the case study from the

artifacts provided. The functional requirements of CM1 are captured in the use case model, as shown in

Figure 96. The structure diagram of CM1 is shown in Figure 97. Sample sequence diagrams of data

transferring with compression and of heart beat are shown in Figure 98 and Figure 99. Figure 100 To

Figure 111 show hierarchal state diagrams for CM1 components.

Figure 96 Use case diagram for CM1

Figure 97 Structure diagram for CM1

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 149

Figure 98 Sequence diagram Transferc

Figure 99 Sequence diagram Heart Beat

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 150

D e te rm ine S c en a riou n in itia lize d

H k

in itia lize

n o tN e e d e d

in itH k

In itia l

in itia lize

n o tN e e d e d

in itH k

In itia l

R eady

initH k

sendH k

initH k

initH kinitH k

sendH k

initH k

a) Top-level b) First-level

Figure 100 State diagrams of BIT Component

u n in itia lize d D e te rm in e S c e n a rio

H b

C m d

C h B o u n d

H k

In itia l

in itia liz e

n o tN e e d e d

in itH b

in itC m d

in itC h B o u n d

in itH k

In itia l

in itia liz e

n o tN e e d e d

in itH b

in itC m d

in itC h B o u n d

in itH k

a) Top-level

R e a dy

in itC m d

in itC m d

in itC m din itC m d

in itC m d

d isp a tc hd isp a tc h

W a it

R e a d y

in itH k

c m d D e q u e u e

d c x G o t

d p a G o t

ic u iG o t
s c u iG o t

tisG o t

tm a liG o t

b itG o t

e d a c G o t

in itH kin itH k

c m d D e q u e u e

d c x G o t

d p a G o t

ic u iG o t
s c u iG o t

tisG o t

tm a liG o t

b itG o t

e d a c G o t

R e a d y

in itC hB o u n d

in itC h B o u n d

d isp a tc h

in itC hB o u n din itC hB o u n d

in itC h B o u n d

d isp a tc h
R e a d y

in it H b

in it H b

in it H bin it H b

in it H b

b) First-level

Figure 101 State diagrams of CCM Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 151

U n initializ ed R e ady

m o reE v en ts

in itia lize

F a lsese nd E ve n ts

T rue

In itia l

g e tE v en ts

m o reE v en ts

in itia lize

F a lsese nd E ve n ts

T rue

In itia l

g e tE v en ts

Figure 102 State diagrams of DCI Component

u n in itia lize d

T ra n sfe r H k

D e te rm ine S c en a rio

In itia l

in itT ra nsfe r in itH k

n o tN e e d e d

in itia lize

In itia l

in itT ra nsfe r in itH k

n o tN e e d e d

in itia lize

a) Top-level

R eady R ecving

Com pressing

em ptyQ

initTransfer

initialize

recv

recv

com press

send

True

False

initTransferinitTransfer

em ptyQ

initialize

recv

recv

com press

send

True

False

Ready

initHk

sendHk

initHk

initHkinitHk

sendHk

initHk

b) First-level

Figure 103 State diagrams of DCX Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 152

U ninitialized

T ransfer

D eterm ineS cenario

D um m yS tate
C m d

C hB ound H k

Initial

initialize

initT ransfe r

D um m y
initC m d

initC hB ound

initH k

Initial

initialize

initT ransfe r

D um m y
initC m d

initC hB ound

initH k

a) Top-level

R e a d y

R e c v

C o m p re ssio n

S c u iS e n d in g

E n q W a it

c o m p re ss

in itT ra ns fe r

c o n fig D c i

in itia lize

re a d y

c o m p re ssD o n e

sen d E v en ts

d o n e R e c v

T ru e

F a lse

in itT ra ns fe rin itT ra ns fe r

c o m p re ss

c o n fig D c i

in itia lize

re a d y

c o m p re ssD o n e

sen d E v en ts

d o n e R e c v

T ru e

F a lse

R eady

initCm d

initCm d

changeM ode

initCm dinitCm d

initCm d

changeM ode

R eady

initC hBound

initC hBound

changeM ode

initC hBoundinitC hBound

initC hBound

changeM ode

R eady

initH k

sendH k

initH k

initH kinitH k

sendH k

initH k

b) First-level

Figure 104 State diagrams of DPA Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 153

S e n dT o S c ui

e m p tyQ ue

co m p re ss

se n dE v e n ts

rea d y

se n d

F a lse

T rue

c o m press D one

F a lse

T ru e

se n dE v e n tsse n dE v e n ts

rea d yrea d y

e m p tyQ ue

co m p re ss

se n d

F a lse

T rue

c o m press D one

F a lse

T ru e

SendT oD cx

em ptyQ

com pressD one

T rue

send

False

True

True

com pressD onecom pressD one

T rueT rue

em ptyQ

send

False

True

True

D c iC o nfig W a itin g

R e c v in g

c h kN u m L e ft

c o nfig D ci

d o n e R e c v

c o nfig D on e

c o nfig D c i

g e tN u m E v e n ts

g e tE v en t

F a lse

T ru e

c o nfig D cic o nfig D ci

d o n e R e c vd o n e R e c v

c h kN u m L e ft

c o nfig D on e

c o nfig D c i

g e tN u m E v e n ts

g e tE v en t

F a lse

T ru e

C) Second-level

Figure 104 (continued) State diagrams of DPA Component

D eterm ineScenariouninitialized

H k

initialize

notN eeded

initH k

Initial

initialize

notN eeded

initH k

Initial

Ready

initHk

sendHk

initHk

initHkinitHk

sendHk

initHk

a) Top-level b)First-level

Figure 105 State diagrams of EDAC Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 154

U ninitialized
D eterm ineS cenario

T ransfe r

H b

C m d

C hB ound

H k

Initial

initialize

initT ransfer

notN eeded

initH b

in itC m d

initC hB ound

initH k

Initial

initialize

initT ransfer

notN eeded

initH b

in itC m d

initC hB ound

initH k

a) Top-level

W ait Ready

initCmd

initCmd

enqueue

initCmdinitCmd

initCmd

enqueue
Ready

W ait

initChBound

enqueue

read

write

initChBoundinitChBound

enqueue

read

write

R e a d y

E n q u e u in g

in itT ra n sfe r

m o d e R e a d y

in itia lize

e n q u e u ed o n e

in itT ra n sfe rin itT ra n sfe r

m o d e R e a d y

in itia lize

e n q u e u ed o n e
Ready

initHb

initHb

sendHb

initHbinitHb

initHb

sendHb

Ready

initHk

sendHk

initHk

initHkinitHk

sendHk

initHk

b) First-level

Figure 106 State diagrams of ICUI Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 155

U n in itialized

T ra n sfe r

H k

D e te rm in e S c e n a rio

In itia l

in itT ra n sfe r

in itia lize

n o tN e e d e d

in itH k

In itia l

in itT ra n sfe r

in itia lize

n o tN e e d e d

in itH k

a) Top-level

R eady G ettingEvents

W riting

initTransfer

initTransfer

eventsIn

enqueueD cx

enqueueD pa

enqueD oneready

initTransferinitTransfer

initTransfer

eventsIn

enqueueD cx

enqueueD pa

enqueD oneready

Ready

initHk

sendHk

initHk

enqueue

initHkinitHk

sendHk

initHk

enqueue

W riting

e m p tyQ

e n q u e D o n e

re a d y

w rite

w riteF a lse

T ru e

e n q u e D o n ee n q u e D o n e

re a d yre a d y

e m p tyQ

w rite

w riteF a lse

T ru e

b) First-level

Figure 107 State diagrams of SCUI Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 156

D e te rm in e S c e n a riou n in itia liz e d

H k T im e S y n c

T ra n s fe r

in itia liz e

In itia l

n o tN e e d e d

in itH k

in itT im e S y n c

in itT ra n s fe r

in itia liz e

In itia l

n o tN e e d e d

in itH k

in itT im e S y n c

in itT ra n s fe r

a) Top-level

R e a d y

in itT ra n s fe r

in itT ra n s fe r

w rite

w rite A ll

in itT ra n s fe rin itT ra n s fe r

in itT ra n s fe r

w rite

w rite A ll

R e a d y

in itH k

in itH k

in itH kin itH k

in itH k

w ritew rite

R e a d y

in itT im e S y n c

m ils td 1 P P S

in itT im e S y n cin itT im e S y n c

m ils td 1 P P S

b) First-level

Figure 108 State diagrams of MIL 1553 Component

u n in itia liz e d D e te rm in e S c e n a rio

H bC m d

C h B o u n d

In itia l

in itia liz e

n o n N e e d e d

in itH b
in itC m d

in itC h B o u n d

In itia l

in itia liz e

n o n N e e d e d

in itH b
in itC m d

in itC h B o u n d

a) Top-level

R e a d y

in itC m d

in itC m d

re a d

in itC m din itC m d

in itC m d

re a d

R e a d y

in it C h B o u n d

in itC m d

re a d

w rite

in it C h B o u n din it C h B o u n d

in itC m d

re a d

w rite
R e a d y

in itH b

in itH b

w rite

in itH bin itH b

in itH b

w rite

b) First-level

Figure 109 State diagrams of SSI Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 157

D e te rm in e S c e n a riou n in itia liz e d

H k

T im e S y n c

in itia liz e

n o tN e e d e d

in itH k

In itia l

in itT im e S y n c

in itia liz e

n o tN e e d e d

in itH k

In itia l

in itT im e S y n c

a) Top-level

R e a d y

in it H k

s e n d H k

in it H k

in it H kin it H k

s e n d H k

in it H k

R e a d y

in itT im e S y n c

tim e S y n c

in itT im e S y n c

in itT im e S y n cin itT im e S y n c

tim e S y n c

in itT im e S y n c

b) First-level

Figure 110 State diagrams of TIS Component

U n in itia liz e d

T ra n s fe r

D e te rm in e S c e n a rio

C m d
H k

In itia l

in itia liz e

in itT ra n s fe r

in itC m d

n o n N e e d e d

in itH k

In itia l

in itia liz e

in itT ra n s fe r

in itC m d

n o n N e e d e d

in itH k

a) Top-level

R e a d y

W a itin g

in itT ra n s fe r

tra n s m it

w a itF o rE v e n ts

re c e iv e

n o M o re E v e n ts

in itia liz e

in itT ra n s fe rin itT ra n s fe r

tra n s m it

w a itF o rE v e n ts

re c e iv e

n o M o re E v e n ts

in itia liz e

Ready

initCmd

initCmd

setTimeout

initCmdinitCmd

initCmd

setTimeout

Ready

initH k

sendH k

initHk

initH kinitH k

sendH k

initHk

b) First-level

Figure 111 State diagrams of TMALI Component

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 158

D. JAVA Case studies

1. Sharp Tools

The Sharp Tools case study is a spreadsheet application written in Java. It features full formula support

(nested functions, auto-updating, and relative/absolute addressing), a file format compatible with other

spreadsheets, printing support, undo/redo, a clipboard, sorting, data exchange with Excel, histogram

generation, and a built-in help system. We are considering each java file as an architectural component.

The interface of the components is defined by function parameters and public variables. The application

was reverse-engineered to get a better understanding of the system (Figure 112).

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 159

java

sun

CellPoint

CellRange
CellRange()
CellRange()
CellRange()
getStartRow()
getEndRow()
getStartCol()
getEndCol()
getWidth()
getHeight()
getminCorner()
getmaxCorner()
toString()

minCorner maxCorner

Debug
debug : boolean = false
setDebug()
isDebug()
println()

FunctionAbs

evaluate()
getUsage()
getDescription()

FunctionAcos
evaluate()
getUsage()
getDescription()

FunctionAsin
evaluate()
getUsage()
getDescription()

FunctionAtan
evaluate()
getUsage()
getDescription()

FunctionAverage

evaluate()
getUsage()
getDescription()

FunctionE
evaluate()
getUsage()
getDescription()
requireParams()

FunctionInt

evaluate()
getUsage()
getDescription()

FunctionLog

evaluate()
getUsage()
getDescription()

FunctionMax

evaluate()
getUsage()
getDescription()

FunctionMeandev

evaluate()
getUsage()
getDescription()

FunctionMedian
evaluate()
getUsage()
getDescription()

ParserException

Function

isRange()
getFirst()
checkParamsExist()
getSingleParameter()
evaluate()
getUsage()
getDescription()
requireParams()

-$exception

SharpOptionPane
showInputDialog()
showIntegerInputDialog()
showInputDialog()
showMessageDialog()
showMessageDialog()
showMessageDialog()
showOptionDialog()
showOptionDialog()

Figure 112 Part of the reversed-engineered class diagram of Sharp tool

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 160

2. Job Application

Job Application is a simple application where an employer is seeking applications for the various jobs

available. There are two versions; one version is a simple switch case whereas the other version is

implemented using the strategy pattern. Strategy design pattern comes into play when there are different

implementations of an algorithm. The subclasses of the abstract class define the algorithm and define the

implementations according to their needs. More flexibility is introduced when applying the pattern, if

there are new positions to be filled rather than modifying the switch cases we just add another subclass to

the abstract class that fulfills the new criteria. Figure 113 shows the reversed engineered class diagram of

the case study when using switch cases. Figure 114 shows the reversed engineered class diagram of the

case study after applying the strategy design pattern.

FormSuccess

success : boolean = false
resultMessage : String = null

FormSuccess()
isSuccess()

setSuccess()
getResultMessage()
setResultMessage()

(from common)

JobApplicantForm

JOB_MANAGER : int = 1
JOB_WAIT_STAFF : int = 2
JOB_BUSSER : int = 3
position : int

name : String
phone : String
email : String
yearsExp : Double
reference1 : String
reference2 : String

reference3 : String

getPosition()
setPosition()
getName()
setName()

getPhone()
setPhone()
getEmail()
setEmail()
getYearsExp()
setYearsExp()

getReference1()
setReference1()
getReference2()
setReference2()
getReference3()
setReference3()

validate()
isEmpty()

(from procedural)

JobApplicantTestClient

main()
runTest()

(from common)

Figure 113 Class diagram of Job Application case study before applying strategy pattern.

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 161

HostValidator

validate()

(from patterns)

ManagerValidator

validate()

(from patterns)

WaitStaffValidator

validate()

(from patterns)

BartenderValidator

validate()

(from patterns)

BusValidator

validate()

(from patterns)

JobApplicantClient

main()

runTest()

(from common)

ApplicantRuleFactory

getApplicantValidationRule()

(from patterns)

JobApplicantForm

JOB_MANAGER : int = 1

JOB_WAIT_STAFF : int = 2

JOB_BUSSER : int = 3

JOB_BARTENDER : int = 4

JOB_HOSTER : int = 5

position : int

name : String

phone : String

email : String

yearsExp : Double

reference1 : String

reference2 : String

reference3 : String

legal : boolean = false

isLegal()

setLegal()

getPosition()

setPosition()

getName()

setName()

getPhone()

setPhone()

getEmail()

setEmail ()

getYearsExp()

setYearsExp()

getReference1()

setReference1()

getReference2()

setReference2()

getReference3()

setReference3()

validate()

(from patterns)

FormValidator

successMessage : String = "\nThank you for submitting your job application."

isEmpty()

validate()

basicVal idation()

(from patterns)

FormSuccess

success : boolean = false

resultMessage : String = null

FormSuccess()

isSuccess()

setSuccess()

getResultMessage()

setResultMessage()

(from common)

Figure 114 Class diagram of Job Application case study after applying strategy pattern.

3. Colleague States

Colleague states case study is an application that tracks the states of colleague components. Each

colleague will update its state according to its current state and the changes to the states of the other

colleagues. We have reverse engineered the architecture of the case study. Figure 115 shows the class

diagram of the initial design with the colleague components directly coupled to each other. In Figure 116,

the mediator pattern [Baude 2003] is used to let the interactions of the colleagues be more independent

with respect to each other and facilitate the addition of new colleagues to the architecture. Generally, the

mediator pattern provides a mean of encapsulating the various interactions of the other objects.

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 162

ColleagueIF

ConcreteColleague3

state : boolean

ConcreteColleague3()
setState()
changeState()
toString()
state3Changed()
state3Changed()

ConcreteColleague2

state : String = "false"

ConcreteColleague2()
setState()
changeState()
toString()
state2Changed()
state2Changed()

Colleague State

main()

ConcreteColleague1

state : boolean

ConcreteColleague1()
setState()
changeState()
toString()
state1Changed()
state1Changed()

Figure 115 Class diagram of an initial design of colleague states case study

ConcreteMediator

registerColleague1()
registerColleague2()
registerColleague3()
state1Changed()
state2Changed()
state3Changed()

ColleagueIF

colleague1

colleague2
colleague3

MediatorIF

registerColleague1()
registerColleague2()
registerColleague3()

state1Changed()
state2Changed()
state3Changed()

ConcreteColleague1

state : boolean

ConcreteColleague1()
setState()
changeState()
toString()

-mediator

ConcreteColleague2

state : String = "false"

ConcreteColleague2()
setState()
changeState()
toString()

-mediator

Colleague State

main()

ConcreteColleague3

state : boolean

ConcreteColleague3()
setState()
changeState()
toString()

-mediator

Figure 116 Class diagram of a design that uses mediator design pattern in colleague states case study

4. Borg Calender

This case study is an open source calendar and task tracking software written in Java [Borg]. The

design of the calendar depends on MVC (Model view controller) design pattern. We studied two versions

of the calendar. The first version implements only the view and the model of the MVC design pattern, as

shown in Figure 117. The second version incorporates the controller, Figure 118.

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 163

BaseModel

views : java.uti l.ArrayList

BaseModel()

refresh()

register()

banner

banner()

setText()

initComponents()

exitForm()

taskgui

T_CLONE : int = 1

T_ADD : int = 2

T_CHANGE : int = 3

taskgui()

refresh()

initComponents()

jButton1ActionPerformed()

updateUT()

jMenuItem1ActionPerformed()

disact()

showtask()

View

refresh()

helpscrn

helpscrn()

initComponents()

exitForm()

taskmodel

task_types_ : java.util .Vector

taskmodel()

first()

next()

open_db()

resetStates()

delete()

savetask()

newMR()

getMR()

close()

checkBoxes()

nextStates()

export()

setLogging()

exportStates()

importStates()

getTaskTypes()

-taskmod_

srchgui

s_ : String

refresh()

srchgui()

load()

initComponents()

exitMenuItemActionPerformed()

exitForm()

borg

version_ : String = null

borg()

main()

init()

getVersion()

should_auto_start()

chooseDbDir()

tdcommon()

daybuttonpress()

export()

task_clone()

task_change()

task_add()

version_chk()

reminder()

load_bt()

run_bt()

search()

timerstart()

setLogging()

isLogging()

getPref()

putPref()

getPref()

putPref()

-$ban_

-taskgui_

borg_

-taskmod_

btgui

btgui()

addRow()

deleteAll()

defsort()

resize()

fi l ter()

which()

initComponents()

resetstActionPerformed()

impstActionPerformed()

expstActionPerformed()

printitActionPerformed()

closeActionPerformed()

jRadioButton1ActionPerformed()

deleteActionPerformed()

jButton21ActionPerformed()

mouseClick()

changeActionPerformed()

cloneActionPerformed()

addActionPerformed()

jRadioButton9ActionPerformed()

jRadioButton8ActionPerformed()

jRadioButton7ActionPerformed()

exitMenuItemActionPerformed()

exitForm()

refresh()

-bt_

-borg_

$win

-taskmod_

propgui

propgui()

initComponents()

miltimeActionPerformed()

mondaycbActionPerformed()

versioncheckActionPerformed()

autoupdateActionPerformed()

holiday1ActionPerformed()

loggingActionPerformed()

jButton5ActionPerformed()

incfontActionPerformed()

decfontActionPerformed()

privboxActionPerformed()

pubboxActionPerformed()

colorprintActionPerformed()

jButton2ActionPerformed()

jCheckBox1ActionPerformed()

exitForm()

-borg_

calmodel

F_RPT : int = 0x01

F_TODO : int = 0x02

F_PRIV : int = 0x04

map_ : java.uti l .HashMap

btmap_ : java.util .HashMap

mrs_ : java.uti l .Vector = new Vector ()

calmodel()

dkey()

newAppt()

delAppt()

delOneOnly()

saveAppt()

getAppt()

getDayInfo()

getDayInfo()

nthdom()

get_srch()

do_todo()

getAppts()

getTasks()

get_todos()

haveTodos()

open_db()

buildMap()

get_mrs()

load_bt()

export()

setLogging()

isLogging()

isNote()

getTimeFormat()

-calmod_

-borg_

cal_

calgui

year_ : int

month_ : int

pops : java.util .HashMap = new HashMap ()

calgui()

initGUI()

today()

initStyles()

updStyles()

addString()

setDayLabels()

refresh()

initComponents()

printprevActionPerformed()

exportMIActionPerformed()

jMenuItem1ActionPerformed()

l icsendActionPerformed()

helpMIActionPerformed()

TaskTrackMIActionPerformed()

AboutMIActionPerformed()

SearchMIActionPerformed()

PrintMonthMIActionPerformed()

ToDoMenuActionPerformed()

GotoActionPerformed()

today()

PrevActionPerformed()

NextActionPerformed()

exitMenuItemActionPerformed()

exitForm()

popup_chk()

borg_

calmod_

-cg_

apptgui

-ag

Errmsg

console_ : boolean = false

console()

notice()

errmsg()

tdgui

tds_ : java.uti l .Vector

tdgui()

refresh()

initComponents()

printListActionPerformed()

jMenuItem2ActionPerformed()

jMenuItem1ActionPerformed()

dtcommon()

exitMenuItemActionPerformed()

exitForm()

-tg

borg_

calmod_

Figure 117 Class diagram of Borg case study before implementing the controller of the MVC pattern.

III. Appendix I: Case Studies

Model Based Risk Assessment Ph.D. Dissertation 164

Controller

models : java.util.ArrayList...

Controller()

...

Model

views : java.util.ArrayList...

refreshViews()

destroyViews()

destroy()

...

propgui

initComponents()

destroy()

refresh()

propgui()

wkendhrActionPerformed()

wkstarthrActionPerformed()
miltimeActionPerformed()

mondaycbActionPerformed()

versioncheckActionPerformed()...

autoupdateActionPerformed()

holiday1ActionPerformed()

loggingActionPerformed()

jButton5ActionPerformed()

incfontActionPerformed()

decfontActionPerformed()

privboxActionPerformed()

...banner

banner()

setText()

...

View

refresh()

destroy()

...

helpscrn

helpscrn()

...

calgui

year_ : int

month_ : int

pops : java.util.HashMap = new HashMap ()...

calgui()

init()

destroy()

today()

initStyles()

updStyles()

addString()

setDayLabels()

refresh()

initComponents()

popup_chk()

jButton5ActionPerformed()

jButton4ActionPerformed()

jButton3ActionPerformed()

jButton2ActionPerformed()

jButton1ActionPerformed()

printprevActionPerformed()

exportMIActionPerformed()

jMenuItem1ActionPerformed()

licsendActionPerformed()
helpMIActionPerformed()

TaskTrackMIActionPerformed()

...

-cg_

btgui

getReference()

btgui()

destroy()

deleteAll()

defsort()

resize()

filter()

which()

initComponents()

refresh()

task_clone()

task_change()

task_add()

addRow()

resetstActionPerformed()

impstActionPerformed()

expstActionPerformed()

printitActionPerformed()

closeActionPerformed()

jRadioButton1ActionPerformed()

deleteActionPerformed()

jButton21ActionPerformed()

mouseClick()

changeActionPerformed()

cloneActionPerformed()

...

-$singleton

borg

version_ : String = null...

getReference()

main()

borg()

restart()

init()

getVersion()

should_auto_start()

chooseDbDir()

startTodoView()

export()

version_chk()

reminder()

timerstart()

setLogging()

isLogging()

getPref()

putPref()

...

-$ban_

-$self_

taskmodel

task_types_ : java.util.Vector...

btmap_ : java.util.HashMap...

allmap_ : java.util.Vector

get_tasks()

get_tasks()

getReference()

destroy()

load_map()

open_db()

resetStates()

delete()

close()

checkBoxes()

nextStates()

export()

setLogging()

exportS tates()

importS tates()

getTaskTypes()
...

-$self_
-taskmod_

calmodel

F_RPT : int = 0x01

F_TODO : int = 0x02

F_PRIV : int = 0x04

map_ : java.util.HashMap...

getReference()

destroy()

dkey()

delAppt()

delOneOnly()

get_srch()

do_todo()

getAppts()

get_todos()

haveTodos()

open_db()

buildMap()

export()

setLogging()

isLogging()

getTimeFormat()

calmodel()

... -$self_

-borg_-calmod_

taskgui

T_CLONE : int = 1

T_ADD : int = 2

T_CHANGE : int = 3

destroy()

refresh()

initComponents()

getReference()

taskgui()

jButton1ActionPerformed()

updateUT()

...

-$singleton

srchgui

s_ : String

refresh()

destroy()

srchgui()

load()

...

Errmsg

console_ : boolean = false...

console()
...

tdgui

tds_ : java.util.Vector

getReference()

tdgui()

destroy()

refresh()
initComponents()

dtcommon()

printListActionPerformed()

jMenuItem2ActionPerformed()

...

-$singleton

Figure 118 Class diagram of Borg case study after implementing the controller of the MVC pattern.

IV. Appendix II: Analytical Formula of Error Propagation

Model Based Risk Assessment Ph.D. Dissertation 165

IV. Appendix II Analytical Formula of Estimating Error
Propagation Probabilities

Consider two architectural components, say A and B communicating through some sort of connector.

Every act of A-to-B communication consists of passing from A to B a message selected from certain

vocabulary VA→B. Let SA be the set of states of component A, and SB be the set of states of component B.

When component A transmits to component B a message v∈ VA→B , it in general results in B changing its

state, thus defining the state transition mapping F : SB ×VA→B → SB.

Assuming that the system in question operates deterministically, F(x, v) represents the state of

component B after receiving message from A if the state of B before the transmission occurred was x. For

the sake of convenience, we will write F(x, v) as a function of one variable v only, i.e. as Fx(v), assuming

the pre-transmission state x to be fixed. Now suppose an error occurs in A and instead of transmitting v to

B it sends v’. The error propagates into B if the (post-transmission) state of B resulting from receiving the

corrupted message v’ differs from the state which would result from receiving the correct message v, i.e.

if Fx(v) ≠ Fx(v’).

The error propagation can be defined as the probability that a random error in the data transmitted

from A to B results in an erroneous state of B (assuming the pre-transmission state to be random as well),

i.e.

EP(A→B) = Prob(Fx(v) ≠ Fx(v’)| x∈ SB ; v, v’∈ VA→B , v' ≠ v) (AII.1)

EP(A→B) =
}'|)',,{(Prob

)}'()(|)',,{(Prob

vvVVSvvx

vFvFVVSvvx

BABAB

xxBABAB

≠××∈
≠××∈

→→

→→
,

by virtue of the definition of conditional probability and of the fact that Fx(v) ≠ Fx(v’) implies v' ≠ v for

any x. The last fraction can be further rewritten in terms of probabilities of individual messages and states:

}'|)',,{(Prob 1

)}'()(|)',,{(Prob 1

vvVVSvvx-

vFvFVVSvvx-

BABAB

xxBABAB

=××∈
=××∈

→→

→→ =

∑

∑∑

→∈
→

∈

−
→

∈

BA

BB

Vv

BA

Sy

xBA

Sx

B

vP-

yFPxP-

2

21

][1

)]([)(1

.

Thus, we have

IV. Appendix II: Analytical Formula of Error Propagation

Model Based Risk Assessment Ph.D. Dissertation 166

EP(A→B) =

∑

∑∑

→∈
→

∈

−
→

∈

BA

BB

Vv

BA

Sy

xBA

Sx

B

vP-

yFPxP-

2

21

][1

)]([)(1

 (AII.2)

where Fx
-1

(y) = { v∈ VA→B | Fx(v) = y}, and we assume a probability distribution PB on the set of states SB

and a probability distribution PA→B on the data vocabulary VA→B.

As we can see from the above formula, the value of EP(A→B) depends on two expressions.

• The expression that appears in the denominator of the error propagation formula

ξ(A,B) := ∑
→∈

→

BAVv

BA vP 2][

It is easy to see that 1/|VA→B| ≤ ξ(A,B) ≤ 1.

• The expression that appears in the numerator of the error propagation formula,

η(A,B) := ∑∑
∈

−
→

∈ BB Sy

xBA

Sx

B yFPxP
21

)]([][

Assume, for the sake of simplicity, that all states x∈ SB of component B are equi-probable (with

probabilities PB(x) =
||

1

BS
), and all messages v∈ VA→B sent by A to B are also equi-probable probable

(with probabilities P A→B (v) =
||

1

BAV →

). In this case the expression for η(A,B) is reduced to:

∑∑
∈ ∈

−

→ B BSx Sy

x

BAB

yF
VS

21

2
|)(|

||||

1
,

where |Fx
-1

(y)| is calculated simply by counting the number of messages B receives from A that trigger the

state transition from x to y. Also, when all the messages are equally probable, the expression ξ(A,B)

reaches its minimum value
||

1

BAV →

. Thus, under the equi-probability assumption (stated above), the

formula for the error propagation from A to B gets simplified as follows:

EP(A→B) =

||

1
 1

|)(|
||||

1
 1 21

2

BA

Sx Sy

x

BAB

V
-

yF
VS

-
B B

→

∈ ∈

−

→
∑∑

 (AII.3)

	Model-based risk assessment
	Recommended Citation

	Model-based Risk Assessment

		2010-01-14T13:19:26-0500
	John H. Hagen

