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Abstract	
	

The	investigation	of	motor	primitives	during	human	reaching	movements	and	
the	quantification	of	

	post-stroke	motor	impairment.	
	

Erienne	Virginia	Olesh	

	 Movement	is	a	complex	task,	requiring	precise	and	coordinated	muscle	
contractions.		The	forces	and	torques	produced	during	multi-segmental	movement	
of	the	upper	limbs	in	humans,	must	be	controlled,	in	order	for	movement	to	be	
achieved	successfully.		Although	a	critical	aspect	of	everyday	life,	there	remain	
questions	regarding	the	specific	controller	used	by	the	central	nervous	system	to	
govern	movement.		Furthermore,	how	this	system	is	affected	by	neurological	
injuries	such	as	stroke	also	remains	in	question.		It	was	the	goal	of	this	thesis	to	
examine	the	neurological	control	of	movement	in	healthy	individuals	and	apply	
these	findings	to	the	further	investigation	of	chronically	motor	impaired	stroke	
patients.		Additionally,	this	work	aimed	at	providing	clinicians	with	a	more	reliable,	
easy	to	use,	and	inexpensive	approach	to	quantify	post-stroke	motor	impairment.		
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Chapter	1	

Introduction	and	Literature	Review	
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Introduction		

	 We	often	take	for	granted	the	ease	in	which	we	are	able	to	move	through	our	
environment.		The	complexity	of	producing	well-controlled	movement	results	from	
the	careful	control	of	our	intricate,	multi-joint	musculoskeletal	system.		Included	in	
this	framework	are	230	joints	and	630	muscles,	all	of	which	must	be	coordinated	in	
harmony	during	movement	(Hollerbach	and	Flash,	1982).		How	our	nervous	system	
accounts	for	the	various	internal	and	external	factors	associated	with	movement	is	a	
complex	question,	and	decades	have	been	spent	trying	to	provide	answers.		The	
anatomical	location	of	motor	control	has	also	been	a	focus	for	researchers,	who	aim	
to	better	understand	this	complex	system.			The	intertwining	contributions	to	motor	
control	from	the	cortex,	cerebellum,	and	spinal	cord	all	play	critical	roles	and	when	
one	or	multiple	of	these	areas	are	damaged,	movement	can	be	greatly	affected.		
Motor	control	research	has	employed	a	broad	range	of	methodology	including	
human	biomechanical	experiments	to	single	unit	recordings	in	primates	and	
computational	modeling	of	neurons.		Despite	these	mountainous	efforts,	the	
controller	responsible	for	our	movement	remains	shrouded	in	uncertainty.	
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Review	of	Literature		

	 To	appreciate	the	complexity	of	motor	control,	one	must	understand	two	
distinct,	but	related	aspects	of	motion:	kinematics	and	dynamics.		Kinematics	refers	
to	an	objects	motion,	primarily	its	velocity	and	trajectory	(Winter,	1990;	An	and	
Chao,	1985).		Motion-capture	technology	and	accelerometers	are	commonly	used	
technologies,	which	allows	for	the	recording	of	kinematic	parameters	such	as	
position,	velocity,	and	acceleration.			This	data	can	provide	beneficial	information	
regarding	an	individual’s	range	of	motion	for	specific	joints	or	the	overall	
biomechanical	ability	of	a	limb.		In	recent	years,	this	type	of	analysis	has	greatly	
improved	functional	ability	measurements	in	patients	recovering	from	neurological	
injuries	(Tura	et	al.,	2012;	Patel	et	al.,	2009;	Mathie	et	al.,	2004).		Although	valuable	
for	quantitative	measurement	purposes,	it	is	somewhat	arduous	to	infer	control	
mechanisms	from	kinematics	(Gribble	and	Ostry,	1999).			This	is	because,	by	
definition,	kinematics	does	not	include	the	forces	that	produce	motion.			In	order	to	
truly	grasp	the	complexity	of	motor	control	and	understand	how	our	nervous	
system	produces	meaningful	movements,	we	must	also	examine	the	dynamic	
properties	(forces)	that	are	both	produced	by	and	impact	the	human	
musculoskeletal	system.	
	 Unlike	kinematics,	dynamics	includes	the	forces	applied	to	an	object,	which	
in	turn	produce	motion	(Schneider	et	al.,	1989).		In	regards	to	human	movement,	
the	term	limb	dynamics,	encompass	forces	generated	by	our	muscles,	tendons	and	
ligaments,	as	well	as	the	interaction	of	forces	between	joints	(Sainburg	et	al.,	1999;	
Gribble	and	Ostry,	1999).		The	interaction	of	forces	between	joints,	referred	to	as	
interaction	torques,	are	a	result	of	forces	produced	at	one	joint	that	passively	affect	
movement	at	other	joints	(Hollerbach	and	Flash,	1982;	Gribble	and	Ostry,	1999).		
These	forces	greatly	increase	the	complexity	of	motor	control	by	adding	variables	
that	fluctuate	during	movement	(Hollerbach	and	Flash,	1982).	
	
Background	of	motor	control	research		
	 Prior	to	1982,	it	was	not	well	understood	how	the	dynamic	properties	of	the	
limb	impacted	human	movement.		Early	research	into	human	motor	control	had	
relied	on	extrapolating	robotic	and	mechanical	engineering	principles	in	an	attempt	
to	explain	human	movement	(Bizzi	2001;	Hollerbach	and	Flash,	1981;	Raibert,	
1977).		These	early	theories	of	motor	control	inferred	that	human	motion	was	
accomplished	through	mechanisms	similar	to	the	programming	of	movement	in	
robotic	systems	(Raibert,	1977).			However,	these	theories	were	lacking	in	their	
ability	to	account	for	sudden	changes	in	the	environment	and	provided	no	solution	
for	online	corrections	or	error	feedback.			The	limitation	of	these	theories	was	likely	
a	result	of	experiments	that	relied	heavily	on	the	use	of	single-joint	systems	
(Schneider	et	al.,	1989).		Single-joint	experiments	simplified	the	study	of	motor	
control	by	limiting	the	number	of	degrees	of	freedom	but	in	turn,	ignored	the	
important	dynamic	aspects	of	motion	(Gribble	and	Ostry,	1999;	Hollerbach	and	
Flash,	1982).		With	the	emergence	of	multi-joint	experiments	came	the	increased	
understanding	of	the	dynamical	properties	of	limbs,	and	how	these	dynamic	
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variables	impacted	motion	(Hollerbach	and	Flash,	1982;	Morasso	1982;	Abend	et	al.,	
1982;	Soechting	and	Lacquaniti	1981).	
	 It	became	additionally	apparent	that	the	type	of	movement	being	performed,	
whether	ballistic,	accuracy	dependent,	or	load	bearing,	also	contributed	to	the	
overall	impact	of	limb	dynamics	on	the	motion.		During	a	ballistic	movement,	our	
upper	extremities	act	much	like	a	whip,	causing	the	most	distal	point	in	the	chain	to	
move	faster	then	the	most	proximal	point	(Bizzi	2001;	Hollerbach	and	Flash,	1982).	
In	respect	to	human	movement,	the	shoulder	represents	the	most	proximal	point,	
and	our	fingers	the	most	distal	point.		During	movement,	forces	produced	at	the	
shoulder	propagate	distally	along	the	limb.	These	forces	must	be	controlled	for	in	
order	to	properly	stabilize	the	limb	(Sergio	and	Kalaska,	1997).		This	can	be	easily	
demonstrated	in	the	pitching	motion	of	a	baseball	player.		The	torques,	which	
originate	from	the	shoulder	girdle,	travel	along	the	limb	and	are	conversely	
translated	to	the	ball	(Hamill	and	Knutzen,	2009).		In	expert	baseball	pitchers	these	
forces	are	used	to	the	pitchers	advantage,	allowing	for	high	speed	but	controlled	
motion	of	the	baseball	(Hirashima	et	al.,	2007).		Even	during	small	movements	that	
require	fine	motor	skills,	interaction	torques	must	still	be	accounted	for	in	order	to	
accomplish	movement	with	accuracy	(Hollerbach	and	Flash,	1982).	
	 Despite	the	range	in	forces	and	torques	that	can	arise	during	multi-segmental	
movements	such	as	reaching,	the	underlying	characteristics	of	those	movements	
share	important	common	features.			Early	experiments	investigating	the	interaction	
of	forces	provided	some	of	the	first	evidence	suggesting	the	importance	of	
accounting	for	kinematic	and	dynamic	variables	during	motion.			From	these	
experiments	two	consistent	findings	became	apparent;	the	linear	trajectory	of	the	
hand	and	the	associated	bell	shaped	velocity	profile	(Morasso	1982;	Abend	et	al.,	
1982;	Soechting	and	Lacquaniti	1981;	Atkenson	and	Hollerbach,	1985).		Although	
these	results	may	not	be	surprising	they	were	significant	for	two	reasons:	1)	
straight	lines	represent	the	shortest	distance	between	two	points	and	therefore	are	
energetically	favorable	and	2)	the	linear	path	creates	the	smallest	propagation	of	
forces	from	the	arm	to	the	object	being	reached	for	(Hollerbach	and	Flash,	1982).			
Hollerbach	and	Flash	argued	that	the	only	way	the	observed	linearity	in	movement	
could	be	maintained	was	if	forces	and	torques	were	properly	compensated	for	
during	movement.			These	findings	strongly	argued	for	a	control	system	that	could	
account	and	predict	both	the	kinematic	and	dynamic	variables	of	movement.			
	 Over	the	subsequent	decades,	numerous	theories	have	been	proposed	that	
aim	to	provide	a	coherent	explanation	of	how	our	central	nervous	system	predicts,	
plans,	and	executes	movement.		As	any	debated	topic,	each	theory	has	been	
supported	through	a	variety	of	experimental	procedures.			The	difficulty	in	
comparing	these	theories	and	their	accompanying	research	lies	in	the	variability	of	
human	movement.			Some	theories	may	be	better	supported	in	the	context	of	
rhythmic	movement	such	as	walking;	where	as	other	theories	have	built	their	case	
using	complex	tasks	such	as	reaching	or	the	interaction	between	limbs	and	objects.			
One	theory	of	motor	control,	which	has	received	a	great	deal	of	attention	and	
research,	is	that	of	motor	primitives.		In	the	next	section	we	will	discuss	this	theory	
and	its	application	to	studying	motor	impaired	individuals.					
	 	



5	
	

	
Motor	control	described	through	motor	primitives	
	 	As	mentioned	previously,	our	nervous	system	must	account	for	not	only	the	
bones,	joints,	and	muscles	in	our	body,	but	the	resulting	forces	of	these	parts	acting	
on	each	other.		Understanding	how	our	nervous	system	accounts	for	this	wide	array	
of	variables,	often	referred	to	as	the	“degrees	of	freedom	problem”	or	the	problem	of	
“motor	abundance”	has	been	central	to	motor	control	research.			The	notion	that	the	
central	nervous	system	may	reduce	the	complexity	of	the	musculoskeletal	system	
through	discrete	modules	dates	back	to	work	from	the	early	1900’s	(Sherrington,	
1910).			Refining	upon	these	early	ideas,	Nikoli	Bernstein	developed	the	theory	of	
muscle	synergies,	which	suggested	that	pre-set	patterns	of	muscle	activity	can	be	
actively	combined	to	produce	a	variety	of	movement	(Bernstein,	1967;	Tresch	and	
Bizzi,	1999).			By	having	discreet	sets	of	muscle	activation	patterns,	the	central	
nervous	system	would	have	a	greatly	reduced	number	of	parameters	to	control,	
allowing	for	easier	planning	and	execution	of	motion	(Bizzi	and	Cheung,	2013;	Bizzi	
1991).			
	 In	the	time	since	the	conception	of	the	muscle	synergy	theory,	a	great	deal	of	
research	has	investigated	how	these	synergies	are	organized,	and	where	
anatomically,	they	may	reside.			Some	of	the	evidence	supporting	the	theory	of	
muscle	synergies	comes	from	experiments	of	spinal	stimulation	in	rats,	frogs	and	
cats	demonstrating	reproducible	patterns	of	muscle	activation	when	stimulating	the	
same	spinal	loci	(Bizzi	et	al.,	1991;	Tresch	and	Bizzi,	1999;	Lemay	and	Grill,	2004).		
As	the	stimulating	electrodes	are	moved	to	different	locations	in	the	lumbar	spinal	
cord,	different	patterns	of	muscle	activation	can	be	visualized	(Bizzi	et	al.,	1991,	
Tresch	et	al.,	2002).		These	patterns	of	muscle	activation	were	found	to	be	not	only	
repeatable,	but	also	produced	meaningful	movements	such	as	swimming	patterns	in	
the	frog	and	gait	in	the	cat.		Together,	these	experiments	gave	credence	to	the	
existence	of	muscle	synergies	in	the	spinal	cord,	and	that	perhaps,	some	aspects	of	
limb	dynamic	control	may	be	incorporated	into	the	synergies	(Bizzi	and	Cheung,	
2013;	Tresch	et	al.,	2002;	Tresch	et	al.,	2006).				
	 The	identification	of	muscle	synergies	relies	on	finding	co-variant	patterns	of	
muscle	activation.			This	is	most	commonly	done	through	applied	algorithm	
procedures	such	as	principal	component	analysis	(PCA),	non-negative	matrix	
factorization	(NMF),	and	independent	component	analysis	(ICA)	(Tresch,	2006).			
These	methods	have	demonstrated	accuracy	in	finding	muscles	that	share	common	
patterns	of	activation	in	both	biological	and	artificial	data	sets	(Steele	et	al.,	2013).			
These	“low-dimensional”	subsets	of	muscle	groupings	are	then	termed	a	synergy,	as	
they	constitute	specific	patterns	of	muscle	activation.			The	synergy	itself,	as	defined	
by	the	algorithm	used	to	identify	them,	has	two	discrete	aspects;	the	weighted	
coefficients,	and	the	temporal	profile.			The	weighted	coefficients	are	specific	to	each	
muscle	within	a	given	synergy	and	represent	the	relative	strength	in	muscle	
activation	for	a	given	movement.			The	temporal	profiles,	on	the	other	hand,	are	
common	to	all	muscles	in	the	synergy	but	are	scaled	for	each	muscle	based	on	that	
muscles	weighted	coefficient.			This	creates	a	temporal	profile	that	represents	the	
increase	or	decrease	of	activation	of	the	synergy,	while	allowing	for	variations	in	
specific	muscle	activity	to	accommodate	the	needs	of	different	tasks.					
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	 Interestingly,	it	appears	that	as	research	into	muscle	synergies	has	
progressed,	there	has	become	perhaps	a	less	concise	view	of	what	exactly	defines	a	
synergy.			For	instance,	there	have	been	examples	of	both	time	and	time	varying	
synergies		(d’Avella	et	al.,	2008;	d’Avella	et	al.,	2013).			For	the	time	invariant	
synergies	there	is	no	temporal	delay	in	the	activation	of	different	muscles	from	one	
synergy.			For	time	varying	synergies	however,	there	exists	both	a	spatial	and	
temporal	component;	the	spatial	component,	constituting	the	pattern	of	activation	
across	the	muscles	of	the	synergy	and	the	temporal	component,	which	drives	the	
timing	of	the	activations.				
	 Uncertainty	also	exists	in	how	the	central	nervous	system	“deploys”	each	
synergy	and	how	descending	commands	are	organized	to	activate	multiple	
synergies.		Work	by	Ting	and	colleagues	have	suggested	that	multiple	synergies	may	
be	co-activated	in	specifically	weighted	schemes	to	achieve	task	specific	goals.			The	
identification	of	synergies	during	these	specific	tasks,	such	as	maintaining	posture	
during	a	balance	task,	suggests	that	the	groupings	of	muscles	that	make	up	a	
synergy	are	intentional	to	compensate	for	the	biomechanical	features	of	the	body	
(Ting,	2007;	Safavynia	and	Ting,	2012;	Perreault	et	al.,	2008;	Torres-Oviedo	and	
Ting,	2007).			Other	research	has	described	the	flexible	scaling	of	the	spatial	and	
temporal	components	of	synergies,	allowing	for	a	wide	variety	of	movements	to	be	
performed	(d’Avella	and	Lacquaniti,	2013).				
	 Given	the	discourse	over	the	specific	purpose	and	location	of	muscle	
synergies,	it	seems	appropriate	that	they	are	now,	perhaps,	more	commonly	
referred	to	as	motor	primitives.		In	this	context,	a	motor	primitive	is	defined	as	a	
building	block	of	the	central	nervous	system	which	can	be	temporally,	or	spatially	
combined	with	other	building	blocks	to	produce	meaningful	and	well	controlled	
motion	(Giszter,	2015).			Exchanging	the	term	motor	primitive	for	muscle	synergy	
also	removes	the	exclusivity	of	only	including	muscles	into	these	“building	blocks”.		
Motor	primitives,	as	defined	here,	can	be	comprised	of	kinematic	or	dynamic	
variables	(Grinyagin	et	al.,	2005;	Forner-Cordero	et	al.,	2005)	or	potentially	
represent	whole	movement	parameters	(Bockemuhl	et	al.,	2010).			This	broadened	
definition	allows	for	greater	investigation	into	the	structure	and	function	of	these	
components	and	how	they	relate	to	the	activation	of	muscle	activity	and	motion	as	a	
whole.			Not	only	has	the	investigation	of	motor	primitives	helped	improve	our	
understanding	of	motor	control	in	healthy	individuals,	it	has	also	allowed	for	the	
advancement	of	our	knowledge	regarding	post	stroke	motor	impairment.			
	
Motor	Primitives	after	Stroke	 	
	 The	investigation	of	changes	in	movement	capabilities	after	a	stroke	has	
stemmed	far	beyond	the	world	of	physical	therapists	and	clinicians	and	is	now	a	
commonly	studied	topic	by	motor	control	experts.			One	method	of	studying	motor	
control	changes	in	stroke	patients	has	been	through	the	quantification	and	
exploration	of	motor	primitives	in	patient	populations.			Although	much	of	this	work	
has	referred	to	these	primitives	as	muscle	synergies,	it	again	seems	more	
appropriate	to	use	the	term	motor	primitives	in	lieu	of	muscle	synergies.			To	
clinicians,	the	term	synergy	is	often	seen	in	a	negative	light,	as	it	implies	improper	
movement	of	the	limb	caused	by	a	lack	in	independent	joint	control	(Dipietro	et	al.,	
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2006;	Krakauer,	2005;	Neckel	et	al.,	2006).			This	loss	of	coordinated	limb	movement	
and	subsequent	inability	to	perform	every	day	living	tasks	is	the	primary	focus	of	
rehabilitation	experts	when	working	with	chronic	motor	impaired	individuals.				
Regardless	of	the	terminology	used,	the	investigation	of	motor	primitives	in	stroke	
patients	has	provided	some	beneficial	insight	into	the	underlying	changes	in	muscle	
activities,	which	arise	as	a	result	of	a	stroke.			
	 Clinically	focused	studies	of	stroke	patients	have	often	revolved	around	a	
patient’s	ability	to	perform	sets	of	standardized	movements.			Although	informative	
regarding	a	patients	ability	to	perform	activities	of	daily	living	(ADL’s),	these	studies	
often	overlook	the	mechanistic	breakdown	in	the	neural	control	of	movement	that	
leads	to	long-term	movement	dysfunction.			Furthermore,	it	is	often	difficult	to	gage	
a	patient’s	true	muscular	capability	purely	from	kinematic	parameters,	such	as	joint	
angles	or	speed	of	movement,	as	neural	deficits	may	be	disguised	by	compensatory	
mechanisms	of	muscle	activation	(Safavynia	et	al.,	2011).			To	navigate	these	issues,	
neuroscientists,	often	in	collaboration	with	rehabilitation	experts,	have	taken	to	
studying	the	muscle	activity	patterns	of	stroke	patients	in	an	attempt	to	better	
understand	the	etiology	of	long-term	motor	impairment.			
	 Studies	investigating	potential	alterations	to	motor	primitives	in	stroke	
patients	have	identified	changes	across	mild,	moderate	and	severely	affected	stroke	
patients	(Cheung	et	al.,	2009;	Clark	et	al.,	2010;	Cheung	et	al.,	2012;	Roh	et	al.,	2013;	
Roh	et	al.,	2015).			These	observed	changes	have	ranged	from	altered	recruitment	of	
motor	primitives	in	mildly	affected	patients	(Cheung	et	al.,	2009)	to	the	merging	and	
fractionation	of	motor	primitives	in	more	severely	affected	patients	(Cheung	et	al.,	
2012).			Other	researchers	have	likewise	found	that	fewer	motor	primitives	are	
required	to	produce	movement	on	the	more	impaired	side	of	the	body	when	
compared	to	the	less	impaired	limb	(Clark	et	al.,	2010).			Although	dynamic	reaching	
and	locomotor	tasks	are	more	commonly	used	to	study	changes	to	primitive	
structure	in	stroke	patients,	alterations	of	primitive	structure	have	also	been	
captured	during	isometric	tasks	(Roh	et	al.,	2013;	Roh	et	al.,	2015).			By	using	
changes	in	motor	primitives	as	a	descriptor	of	post	stroke	movement	impairment,	
new	insight	into	the	underlying	alterations	of	muscle	activity	has	been	provided,	
offering	critical	information	about	this	vulnerable	patient	population.		
	
Quantification	of	post	stroke	Movement	Impairment	
	 A	great	deal	of	research	regarding	the	care	and	well	being	of	stroke	patients	
has	focused	on	rehabilitation	schemes	and	methods	by	which	to	quantify	the	
effectiveness	of	those	schemes	in	treating	post	stroke	motor	impairment.			Typically,	
quantification	of	post	stroke	motor	impairment	has	relied	on	measuring	a	patient’s	
ability	to	perform	an	activity	of	daily	living	(ADL).			These	movements,	such	as	
brushing	ones	teeth,	combing	ones	hair,	or	drinking	from	a	cup,	are	often	measured	
in	terms	of	accuracy	or	time	to	complete.			Tests	that	incorporate	these	movements	
such	as	the	Fugl	Meyer,	the	Action	Research	Arm	Test,	or	the	Wolf	Motor	Function	
Test,	aim	to	provide	a	score	of	impairment	for	stroke	patients	that	could	be	used	by	
clinicians	and	physical	therapists	to	guide	rehabilitation	efforts	or	predict	the	long-
term	outcome	of	movement	ability.										
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	 Unfortunately,	these	tests	are	often	unused	or	disregarded	as	important	
clinical	practices.			Several	shortcomings	of	these	tests	limit	the	practicality	of	use	in	
a	clinical	setting.			First,	these	tests	often	require	specialized	equipment	and	trained	
professionals	to	administer	and	score	the	test	successfully.			Second,	these	tests	
often	require	significant	amounts	of	time	to	complete.			Physical	therapy	sessions	for	
chronic	motor	impaired	patients	are	often	limited	by	insurance	standards	to	half	or	
one	hour	sessions,	therefor	prohibiting	the	implementation	of	a	test	that	could	
easily	encompass	the	entire	appointment	time.			Third	and	perhaps	most	
importantly,	these	tests	provide	little	information	regarding	the	underlying	causes	
of	movement	impairment.			Motor	impaired	stroke	patients	often	learn	mechanisms	
of	compensation,	creating	altered	muscle	strategies	that	allow	them	to	perform	a	
task	in	a	manner	that	is	similar	to	their	pre-stroke	capabilities.			This	could	cause	a	
stroke	patient	to	receive	a	score	indicating	less	impairment	then	is	actually	present.			
	 One	method	to	combat	these	issues	is	to	provide	rehabilitation	specialists	
with	true	quantitative	measures	of	motor	impairment.			This	task	has	been	recently	
taken	up	by	motor	control	and	biomechanical	researchers.			As	mentioned	
previously,	motor	primitives	have	become	a	commonly	implemented	method	to	
study	and	describe	post	stroke	motor	impairment.			Other	research	however	has	
focused	on	providing	descriptive	analysis	of	post	stroke	motor	impairment	in	terms	
of	kinematic	and	dynamic	variables	of	movement	(Levin,	1996;	Beer	et	al.,	2000;	
Dewald	et	al.,	1995).			Additionally,	the	novel	application	of	biomechanical	recording	
equipment	such	as	accelerometers	(Thies	et	al.,	2009;	Knorr	et	al.,	2005)	and	motion	
capture	equipment	(Subramanian	et	al.,	2010)	has	also	been	used	in	an	attempt	to	
study	and	quantify	post	stroke	motor	impairment.			Yet,	a	convenient	overlap	
between	a	description	of	the	underlying	motor	impairment	and	an	easy	to	use	and	
understand	score	is	still	lacking.				
	 The	ability	for	rehabilitation	specialists	and	clinicians	to	accurately	quantify	
post	stroke	motor	impairment	is	critical	to	the	improvement	of	post	stroke	care.			
Without	these	defining	measures,	it	is	difficult	to	gage	a	patient’s	progress	or	
response	to	specific	treatments.			These	methods	must	be	easy	to	use	and	clinically	
relevant	while	providing	an	encompassing	view	of	each	patient’s	motor	ability.			The	
ability	to	provide	these	measures,	however,	also	relies	on	our	ability	to	better	
understand	the	intricacies	involved	in	movement	and	how	the	muscles	of	the	body	
adapt	to	changing	dynamic	loads	present	through	a	range	of	kinematic	tasks.			This	
knowledge	can	then	be	applied	to	the	study	of	stroke	patients,	which	will	hopefully	
lead	to	a	better	grasp	on	post	stroke	alterations	to	motor	control	that	lead	to	chronic	
motor	impairment.			It	was	therefor	the	goal	of	this	thesis	work	to	not	only	
investigate	further	into	the	structure	and	function	of	motor	primitives	and	the	
underlying	cause	of	post	stroke	motor	impairment	but	also	to	provide	a	more	
quantitative	approach	for	describing	the	motor	function	of	stroke	patients.				
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Abstract	
	 Current	diagnosis	and	treatment	of	movement	impairment	post-stroke	is	
based	on	the	subjective	assessment	of	select	movements	by	a	trained	clinical	
specialist.	However,	modern	low-cost	motion	capture	technology	allows	for	the	
development	of	automated	quantitative	assessment	of	motor	impairment.	Such	
outcome	measures	are	crucial	for	advancing	post-stroke	treatment	methods.	We	
sought	to	develop	an	automated	method	of	measuring	the	quality	of	movement	in	
clinically-relevant	terms	from	low-cost	motion	capture.	Unconstrained	movements	
of	upper	extremity	were	performed	by	people	with	chronic	hemiparesis	and	
recorded	by	standard	and	low-cost	motion	capture	systems.	Quantitative	scores	
derived	from	motion	capture	were	compared	to	qualitative	clinical	scores	produced	
by	trained	human	raters.	A	strong	linear	relationship	was	found	between	qualitative	
scores	and	quantitative	scores	derived	from	both	standard	and	low-cost	motion	
capture.	Performance	of	the	automated	scoring	algorithm	was	matched	by	averaged	
qualitative	scores	of	three	human	raters.	We	conclude	that	low-cost	motion	capture	
combined	with	an	automated	scoring	algorithm	is	a	feasible	method	to	assess	
objectively	upper-arm	impairment	post	stroke.	The	application	of	this	technology	
may	not	only	reduce	the	cost	of	assessment	of	post-stroke	movement	impairment,	
but	also	promote	the	acceptance	of	objective	impairment	measures	into	routine	
medical	practice. 	
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Introduction	
	 Fifty	percent	of	stroke	survivors	suffer	from	an	impairment	of	motor	function	
that	requires	prolonged	rehabilitation	[1,2].	Because	the	impairment	of	upper	limb	
function	is	a	predictor	of	long-term	participation	in	activities	of	daily	life	[3]	and	
quality	of	life	post	stroke	[4],	reduction	of	arm	impairment	is	an	important	aspect	of	
rehabilitation	[5-7].	Rehabilitation	programs	for	upper	extremity	are	designed	and	
delivered	by	physical	or	occupational	therapists,	based	on	their	assessment	of	
movement	impairment.	The	success	of	this	approach	depends	on	the	amount	of	
experience	and	skillfulness	of	the	therapist,	and	on	the	duration	of	treatment.	
However,	there	is	no	standard	procedure	for	the	assessment	and	treatment	of	the	
impairment	in	arm	movement.	This	leads	to	the	variability	in	the	effectiveness	of	
therapy	and	to	the	inability	to	compare	interventions	across	practitioners	and	
clinics.	Furthermore,	current	consensus	is	that	physical	therapy	continues	to	be	
effective	months	and	years	after	a	neurological	damage,	such	as	stroke	[8-10].	
However,	with	the	current	one-on-one	hospital	session	approach,	prolonged	
treatment	is	extremely	expensive	and	usually	does	not	last	beyond	the	first	month	
following	a	stroke.	These	limitations	of	current	medical	care	create	a	strong	
motivation	to	deliver	therapy	at	home	[11].	Multiple	home-based	therapy	systems	
are	currently	being	developed	world-wide	[12-21].		
	 To	enable	cross-evaluation	of	home-based	treatments	and	help	them	move	
out	of	research	realm	into	clinical	practice,	it	is	important	to	develop	standard	
quantitative	outcome	measures	that	draw	on	the	accumulated	clinical	experience	of	
impairment	assessment.	The	current	state-of-the-art	in	clinical	assessment	of	
movement	impairment	is	based	on	the	subjective	scoring	of	select	movements	by	a	
trained	clinical	specialist.	Several	standard	tests	exist	to	assess	the	impairment	of	
arm	function,	such	as	Fugl-Meyer	Assessment	(FMA)[22]	and	Action	Research	Arm	
Test	(ARAT)[23]	to	name	a	few.	These	tests	have	established	reliability,	validity,	and	
responsiveness	values	[24-29].	We	propose	to	use	validated	clinical	tests	of	
movement	impairment	to	develop	an	automated	quantitative	assessment	of	
impairment.	This	will	allow	to	not	only	standardize	clinical	impairment	assessment,	
but	also	include	it	into	home-based	therapies	and	promote	their	cross-validation.		
	 Recent	technological	improvements	have	resulted	in	low	cost	3D	motion	
capture	systems	such	as	Kinect	Sensor	(Microsoft).	Such	technology	holds	the	
potential	of	significantly	advancing	impairment	assessment	by	providing	objective	
kinematic	data	with	which	to	guide	the	development	of	novel	therapies	(for	review	
see	[30]).	Recent	studies	have	shown	that	Kinect	Sensor	can	be	used	to	quantify	
clinically-relevant	parameters	of	gait	[31,32]	and	posture	[33,34].	Kinect-based	
virtual	stepping	therapy	has	been	shown	to	be	effective	for	post-stroke	
rehabilitation	of	gait	[35].	Several	recent	pilot	studies	have	also	demonstrated	that	
Kinect-based	motion	capture	helps	motivate	neurological	patients	to	participate	in	
physical	therapy	[36],	and	that	such	therapy	is	well	received	by	both	patients	and	
therapists	[37,38].	However,	quantitative	assessment	of	arm	impairment	continues	
to	be	a	challenge.	To	meet	this	challenge,	we	have	developed	the	algorithm	of	
automated	clinical	scoring	for	quantifying	arm	impairment.	In	this	study	we	have	
tested	this	algorithm	in	its	ability	to	quantify	post-stroke	upper	extremity	



12	
	

impairment	from	low-cost	motion	capture,	and	we	compared	its	performance	to	
that	of	trained	human	raters.	
	
Materials	and	Methods	
	 West	Virginia	University	Institutional	Review	Board	approved	the	protocol	
entitled	A	New	Quantitative	Biomechanical	Method	for	Motor	Assessment	of	
Disability	number	1311129283.	Prior	to	experiment,	participants	signed	informed	
consent	approved	by	the	Institutional	Review	Board.	
Participants	
	 Study	participants	were	adults	with	chronic	hemiparesis	with	the	following	
characteristics:	4	female,	5	male,	58	±	21	years	old,	5	±	6	years	post-stroke	
(standard	deviation,	s.d.,	is	stated	after	±	here	and	in	the	rest	of	the	manuscript).	
They	were	medically	stable	and	could	comprehend	simple	instructions.	Infarct	
locations	were	identified	from	MRI	scans	by	the	participant’s	care	providers	(Table	
1).	One	subject	was	excluded	from	data	analysis,	because	her	self-report	of	stroke	
was	not	confirmed	by	her	hospital	chart.	
	
Procedures	
	 The	participants	performed	10	different	arm	movements	(Fig.	1A)	that	are	
part	of	FMA[22]	and	ARAT[23].	The	participants	repeated	each	movement	between	
5	and	28	times	after	a	demonstration	by	the	experimenter.	The	movements	were	
captured	simultaneously	by	a	standard	motion	capture	system	Impulse	(Phase	
Space),	the	low-cost	motion	capture	device	Kinect	Sensor	(Microsoft),	and	recorded	
with	a	high-definition	video	camera	(Samsung)	for	scoring	by	human	raters.	
Movement	selection	was	based	on	current	capabilities	of	Kinect	Sensor	to	track	
position	of	large	arm	segments,	but	not	individual	fingers.	
	 Data	were	processed	in	Matlab	(MathWorks,	Inc.).	The	coordinates	of	
multiple	tracked	skeletal	landmarks	were	captured	at	480	Hz	by	the	standard	
system	and	at	30	Hz	by	the	low-cost	system	(Fig.	1).	These	data	were	filtered	using	a	
second	order	Butterworth	low-pass	filter	(cut-off	at	6	Hz).	Next,	we	calculated	four	
joint	angles	(shoulder	flexion/extension,	shoulder	abduction/adduction,	elbow	
flexion/extension,	and	wrist	flexion/extension;	termed	kinematics)	from	motion	
capture	data	recorded	by	both	systems	during	a	single	repetition	of	each	of	the	10	
movements	performed	by	the	non-paretic	and	paretic	limbs.	Joint	angles	reflect	
independent	degrees	of	freedom	of	the	arm	and,	thus,	encompass	complex	
information	about	movement	limitations	of	people	post-stroke.	
	 The	temporal	alignment	of	the	corresponding	movements	for	paretic	and	
non-paretic	arms	was	accomplished	in	three	steps.	Firstly,	movement	start	and	end	
was	manually	identified	in	a	subset	of	data.	Secondly,	kinematic	data	aligned	on	
these	onsets	were	averaged	per	joint	angle	to	create	a	mean	trace,	termed	wavelet,	
for	each	movement	kind.	Lastly,	the	multiple	movements	per	trial	were	identified	
using	peaks	in	the	correlation	coefficient	profile	for	different	delays	between	joint	
angles	and	the	wavelet.	The	time	of	peaks	were	further	used	to	align	movement	
repetitions	within	and	across	trials.	Manual	creation	of	the	wavelet	can	be	omitted	
in	a	fully	automated	version	of	this	analysis,	if	a	single	movement	is	recorded	per	
trial.	
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Estimating	minimal	number	of	movement	repetitions	for	low-cost	assessment	
	 We	have	used	kinematics	recorded	by	both	systems	to	estimate	the	minimal	
number	of	movement	repetitions	required	for	sufficiently	precise	motion	capture	
with	the	low-cost	system.	To	accomplish	this	estimation	we	bootstrapped	the	data	
in	several	steps	to	estimate	errors	of	averaging	one,	two,	three,	etc	repetitions	of	the	
same	movement.	The	errors	were	absolute	differences	between	the	maximal	
amplitude	of	angular	motion	in	a	single	trial	and	the	maximal	amplitude	of	average	
angular	motion	across	all	corresponding	trails.	The	following	steps	were	carried	out	
to	bootstrap	these	errors:	1)	To	estimated	the	error	from	1	repetition	of	the	same	
movement,	single-trial	errors	were	drawn	repeatedly	and	randomly	with	
replacement	from	the	dataset	for	each	movement	type	and	each	participant.	The	
average	squared	differences	between	the	mean	error	and	each	of	the	single-trial	
errors	was	the	estimate	of	error	of	low-cost	motion	capture	during	a	single	
movement.	2)	To	estimate	the	error	from	2	repetitions	of	the	same	movement,	two	
single-trial	error	values	were	drawn	repeatedly	and	randomly	with	replacement	
from	the	dataset	for	each	movement	type	and	each	participant.	The	average	squared	
differences	between	the	overall	mean	error	and	the	mean	of	two	single-trial	errors	
was	the	estimate	of	error	of	low-cost	motion	capture	after	two	repetitions	of	a	
movement.	3)	-	20)	This	bootstrapping	was	repeated	with	increasing	number	of	
trials	(samples	drawn	from	the	population),	until	the	maximal	number	of	repetitions	
was	reached	for	a	particular	movement	and	participant.		
	 Lastly,	we	determined	the	first	bootstrapped	error	value	that	fell	below	the	
95%	confidence	interval	of	the	mean	error	for	each	movement	and	participant.	The	
corresponding	number	of	trials	used	to	calculate	this	value	of	error	indicated	the	
minimal	number	of	repetitions	of	the	same	movement	needed	for	accurate	motion	
capture	by	the	low-cost	system.	
	
Principle	Component	Analysis	(PCA)	for	automated	scoring	of	impairment	
	 Joint	angles	of	the	non-paretic	arm	of	each	subject	were	averaged	across	
repetitions	of	the	same	movement,	and	principal	components	were	derived	from	the	
averaged	temporal	profiles	across	the	four	joint	angles	using	eigenvalue	
decomposition	of	the	covariance	matrix.	Then,	individual	temporal	profiles	of	the	
joint	angles	of	paretic	arm	recorded	during	each	repetition	of	each	movement	were	
reconstructed	with	the	basis	of	the	principal	components	derived	from	the	averaged	
profiles	of	non-paretic	arm.	The	number	of	principal	components	chosen	for	the	
reconstruction	were	sufficient	to	explain	≧	95%	of	variance	in	the	kinematics.	The	
reconstructed	joint	angle	profiles	were	compared	to	the	original	paretic	profiles	
using	coefficient	of	determination	(R2),	which	indicated	how	closely	non-paretic	
principal	components	represent	the	movement	of	paretic	arm.	Thus,	this	measure	
constitutes	a	quantitative	score	of	impairment	(WVU	©2012).	The	same	
decomposition	was	done	on	non-paretic	data	from	individual	trials	using	the	
principal	components	derived	from	the	averaged	non-paretic	data.	This	measure	
showed	the	inherent	variability	of	scoring	using	this	method.	The	resulting	R2	values	
for	both	of	these	analyses	are	plotted	in	Figure	2.	
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	 The	principal	components	were	extracted	from	the	demeaned	joint	angle	
profiles.	The	process	of	demeaning	the	data	served	to	improve	the	quality	of	
impairment	assessment	by	removing	inaccurate	biases	in	the	low-cost	motion	
capture.	Furthermore,	the	reduction	of	data	dimensionality	using	principal	
component	analysis	also	reduced	the	sensitivity	of	impairment	assessment	to	noise	
in	the	low-cost	motion	capture	data.		
	
Clinical	scoring	of	impairment	
	 Thirty	graduate	students	in	the	last	year	of	their	Degree	of	Physical	Therapy	
generated	standard	qualitative	scores	by	rating	5	repetitions	of	each	movement	
from	video	recordings	of	study	participants.	Movements	were	rated	on	the	Fugl-
Meyer	scale,	0	indicating	no	movement	at	all,	1	indicating	slow	and/or	abnormal	
movement,	and	2	indicating	normal	movement	[22].	Students	were	instructed	to	
follow	this	scale	to	the	best	of	their	ability.	Intraclass	correlation	coefficient	for	the	
relationship	between	the	mean	group	scores	and	each	rater’s	scores	was	used	to	
establish	inter-rater	reliability	[39].	
	 The	strength	of	the	relationship	between	the	quantitative	scores	derived	
from	standard	and	low-cost	motion	capture	and	between	the	quantitative	and	
qualitative	scores	was	determined	using	linear	regression.	The	power	of	the	
Pearson	correlation	coefficient	(β)	was	determined	from	a	statistical	table	[40].	
Regression	was	also	used	to	define	the	linear	decoding	model.	The	decoding	
performance	of	this	linear	model	was	evaluated	by	fitting	regressions	into	data	for	
all	but	one	subject	and	then	using	this	regression	to	predict	the	qualitative	score	of	
the	subject	that	was	left	out.	This	was	repeated	for	all	8	subjects.	
	
The	number	of	raters	that	match	performance	of	automated	scoring	
	 To	estimate	how	many	human	rates	it	would	take	to	match	automated	
scoring	performance,	we	bootstrapped	the	qualitative	scores	in	several	steps	
similarly	to	the	procedure	described	above.	The	qualitative	scores	of	30	human	
raters	and	quantitative	scores	from	low-cost	motion	capture	were	used	for	this	
analysis.	The	mean	qualitative	score	averaged	across	all	raters	represents	the	most	
accurate	clinical	measure	of	a	participant’s	impairment.	The	average	squared	
differences	between	the	mean	qualitative	scores	and	the	qualitative	scores	of	each	
rater	was	the	estimate	of	error	of	individual	human	raters.	The	rest	of	the	
qualitative	scores	were	bootstrapped	using	the	following	approach.	To	compare	the	
error	of	2	human	raters	to	the	automated	performance,	qualitative	scores	produced	
by	2	human	raters	were	drawn	repeatedly	and	randomly	with	replacement	from	the	
dataset	of	qualitative	scores	for	each	movement	type	and	each	participant.	The	
drawn	values	were	averaged,	subtracted	from	the	overall	mean	qualitative	scores	
and	squared.	The	resulting	population	of	qualitative	score	errors	represented	the	
estimate	of	errors	of	2	human	raters.	This	bootstrapping	was	repeated	with	
increasing	number	of	raters	(samples	drawn	from	the	population),	until	the	
maximal	number	of	30	raters	was	reached	for	a	particular	movement	and	
participant.	
	 Lastly,	we	determined	the	first	bootstrapped	qualitative	score	error	value	
that	fell	below	the	model	performance	error	for	each	movement	and	participant.	
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The	corresponding	number	of	raters	used	to	calculate	the	value	of	qualitative	score	
error	indicated	the	minimal	number	of	human	raters	it	would	take	to	surpass	
performance	of	the	automated	scoring	algorithm.	
	
Results	
Quality	of	movement	assessment	using	low-cost	system	
	 The	quality	of	unconstrained	3D	movements	performed	by	each	subject	with	
paretic	and	non-paretic	arm	was	automatically	scored	from	kinematics.	There	was	a	
strong	linear	relationship	between	the	quantitative	scores	derived	from	both	
motion	capture	systems	(p	<	0.001;		R2	=	0.64;	Fig.	3A),	indicating	that	they	are	
analogous.	
	 The	standard	clinical	tests	usually	evaluate	performance	of	single	repetitions	
of	different	movements.	To	test	the	feasibility	of	using	low-cost	motion	capture	for	
clinical	testing,	we	have	estimated	how	many	repetitions	of	the	same	movements	it	
would	take	to	achieve	accurate	kinematic	data	from	the	low-cost	system.	The	
number	of	repetitions	of	the	same	movement	needed	to	obtain	a	mean	estimate	that	
falls	within	the	95%	confidence	interval	was	1.98	±	0.50	trials	for	shoulder	
abduction/adduction;	1.97	±	0.44	trials	for	shoulder	flexion/extension;	1.88	±	0.34	
trials	for	elbow	flexion/extension;	1.85	±	0.48	trials	for	wrist	flexion/extension.	This	
makes	it	feasible	to	use	low-cost	motion	capture	for	fast	automated	testing.	
	
Qualitative	scores	vs.	quantitative	scores	
	 To	score	subject	movements	in	clinically-relevant	terms,	we	analyzed	the	
motion	capture	data	by	converting	it	into	physiological	joint	angles	and	applying	
PCA.	More	than	95%	of	variance	across	joint	angles	during	the	average	movement	of	
the	non-paretic	arm	was	represented	by	two	principal	components	in	all	but	one	
movement.	These	principal	components	could	be	used	to	reconstruct	individual	
movements	performed	by	both	non-paretic	and	paretic	arms	with	explained	
variances	equal	to	88.24	±	2.60	%	and	78.90	±	5.98	%	respectively.		The	quantitative	
scores	based	on	the	explained	variances	of	paretic	movements	were	linearly	related	
to	the	qualitative	scores	(p	=	0.001;	β	=	0.97)	with	R2	=	0.868	(Fig.	3B).		The	
decoding	performance	of	this	linear	model	was	characterized	by	the	mean	error	of	
predicted	scores	being	7.68	±	7.52	%	of	the	maximal	score	(Fig.	4A).	Regression	
offsets	ranged	from	-1.94	to	-1.24,	slopes	ranged	from	3.58	to	4.46,	and	R2	ranged	
from	0.78	to	0.93	when	individual	participants	were	taken	out	of	the	dataset	(Fig.	
4B).	This	shows	that	it	is	feasible	to	automatically	score	movement	impairment	
using	low-cost	motion	capture.	
	
Consistency	of	human	raters	compared	to	quantitative	scores		
	 We	have	used	the	average	scores	of	human	raters	as	the	gold	standard	
against	which	to	compare	our	automatic	scoring	algorithm.	However,	the	accuracy	
of	human	raters	varies	due	to	the	subjective	nature	of	this	approach.	The	proposed	
quantitative	analysis	offers	an	accurate	and	unsupervised	alternative	to	the	
subjective	and	time-consuming	measures.	The	tuned	scoring	model	has	a	
comparative	reliability	of	combined	scores	from	30	human	raters	in	our	study	(Fig.	
4C).	The	algorithm	used	in	this	study	performs	as	well	as	3.42	±	1.78	human	raters	
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(s.d.	is	across	movements;	Fig.	4D).	This	further	supports	the	feasibility	of	using	
motion	capture	for	automated	scoring	of	movement	impairment.	
	
Variability	of	scoring	across	different	test	movements	
	 PCA	has	shown	that	different	movements	typically	included	in	clinical	tests	
have	different	inter-trial	variability.	This	is	illustrated	by	the	changes	in	the	
explained	variance	of	decomposition	based	on	mean	principal	components	between	
different	recorded	movements	(Fig.	2,	top	plot).	This	variability	translates	into	
variability	of	the	relationship	between	qualitative	and	quantitative	scores	for	each	
movement	(Fig.	5).	This	suggests	that	some	of	the	movements	included	in	clinical	
tests	may	provide	less	reliable	information	about	movement	impairment	because	of	
their	high	inter-trial	variability.	Nevertheless,	all	relationships	between	quantitative	
and	qualitative	scores	had	positive	slopes.	This	further	supports	our	conclusion	that	
using	low-cost	motion	capture	for	automated	scoring	of	movement	impairment	is	
feasible.	
	
Accuracy	of	low-cost	motion	capture	
	 The	standard	motion	capture	system	was	used	as	the	gold	standard	to	assess	
the	kinematic	accuracy	of	the	low-end	system.	To	compare	the	two	systems	we	
calculated	the	root	mean	squared	(RMS)	errors	between	them	with	single	trials	
aligned	on	movement	onset	as	described	above.	RMS	errors	were	averaged	across	
the	duration	of	each	movement	and	across	the	two	limbs	for	each	of	the	four	
physiological	angles.	In	addition	to	the	RMS	errors,	we	have	also	calculated	the	
absolute	difference	between	maximal	joint	excursions	for	each	movement	captured	
by	each	of	the	systems.	The	mean	errors	of	joint	angles	recorded	by	the	low-cost	
motion	capture	system	were	considerable	(Table	2).	These	errors	are	primarily	due	
to	biases,	i.e.	consistent	over-	or	under-estimation	of	joint	angles	by	the	Kinect	
sensor	due	to	inaccurate	identification	of	tracked	points	on	the	body.	Despite	such	
large	errors,	quantitative	assessment	with	PCA	was	successful	in	reproducing	
clinical	assessment	as	shown	above.	This	is	because	PCA	is	less	sensitive	to	biases	
and	noise	in	the	motion	capture	data	compared	to	RMS	or	movement	excursion	
measures	for	reasons	described	above	in	the	Methods	section.	
	
Discussion	
	 The	study	results	have	shown	that	using	low-cost	motion	capture	with	an	
automated	scoring	algorithm	is	a	feasible	method	to	assess	objectively	upper-arm	
impairment	post	stroke.	Several	recent	studies	have	demonstrated	the	usefulness	of	
whole-body	kinematics	in	the	assessment	of	improvements	in	post-stroke	
locomotion	[41],	arm-trunk	coordination	[42],	and	reaching	movements	[43].	
Furthermore,	motion	capture	was	used	to	assess	upper	extremity	motor	function	
after	constraint-induced	movement	therapy	and	was	reported	to	have	higher	inter-
rater	reliability	than	possible	with	traditional	clinical	measures	[44,45].	However,	
some	major	limitations	of	using	motion	capture	for	clinical	needs	is	the	cost,	
complexity,	and	lack	of	portability	of	traditional	full	body	motion	capture	systems,	
which	require	several	cameras	and	markers	placed	on	subject’s	body.	With	the	
development	of	low-cost	markerless	3D	motion	capture	systems,	such	as	the	Kinect	
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Sensor	used	in	this	study,	out-of-the-lab	movement	kinematics	with	sufficient	
accuracy	is	now	available	for	general	use.	The	potential	cost	savings	for	clinics	using	
the	new	low-cost	motion	capture	technology	are	substantial,	e.g.	Kinect	Sensor	costs	
about	$200,	while	lab-based	motion	capture	systems	cost	tens	of	thousands	of	
dollars.	However,	the	complexity	of	kinematic	data	is	still	a	barrier	to	the	
widespread	acceptance	of	it	in	clinical	practice.	Results	of	the	current	study	aim	to	
overcome	this	barrier	by	demonstrating	the	effectiveness	of	an	automated	
algorithm	to	clinically	assess	arm	impairment	from	kinematics.	This	allows	for	the	
automation	of	impairment	assessment,	which	enables	the	inclusion	of	quantitative	
outcome	measures	in	routine	medical	practice.	Clinical	automated	assessments	are	
already	a	reality	for	quantitative	measures	of	gait	and	balance	impairment	using	
GAITRite	(CIR	Systems	Inc)	and	SMART	Balance	Master	(NeuroCom)	respectively.	
The	current	study	is	the	first	to	show	that	clinical	assessment	of	arm	motor	
impairment	can	be	automated.	The	application	of	this	technology	may	not	only	
reduce	the	cost	of	assessment	of	post-stroke	movement	impairment,	but	also	
promote	the	acceptance	of	objective	impairment	measures	into	routine	medical	
practice.	
	 Results	of	our	study	have	shown	that	automated	quantitative	assessment	of	
movement	impairment	was	as	reliable	as	clinical	assessment	by	thirty	senior	DPT	
students.	This	is	consistent	with	previous	studies	showing	that	using	motion	
capture	for	clinical	assessment	results	in	increased	inter-rater	reliability	[44,45].	
While	inter-rater	reliability	between	highly	experienced	therapist	is	likely	to	be	
higher,	we	believe	that	it	is	valid	to	compare	automated	performance	against	raters	
with	variable	levels	of	experience.	This	is	because	including	raters	with	variable	
abilities	is	a	more	accurate	representation	of	variance	in	skill	in	clinical	practice.	
Overall,	our	results	shows	that	automated	scoring	of	motor	impairment	can	increase	
the	accuracy	of	clinical	assessment.	Furthermore,	using	a	consistent	algorithm	for	
the	analysis	of	kinematic	data	can	help	standardize	outcome	measures	across	
medical	specialists	and	across	facilities.	
	 Traditionally,	clinical	tests	consist	of	different	movements	that	are	
performed	once	by	the	patient.		A	single	repetition	of	each	movement	is	done	to	
reduce	the	time	it	takes	to	perform	the	test,	and	thus	reduce	the	time	spent	by	a	
medical	specialist	on	motor	assessment.	We	have	shown	that	to	obtain	reliable	
kinematics	from	Kinect	Sensor,	each	movement	has	to	be	repeated	three	times.	
While	this	increases	the	time	it	takes	for	the	patient	to	perform	the	test,	averaging	
across	repetitions	of	the	same	movements	contributes	to	the	increased	reliability	of	
motor	assessment.	Furthermore,	the	medical	specialist	will	not	need	to	be	present	
during	the	test	administration,	thus	his/her	time	spent	on	the	assessment	will	be	
reduced.	Therefore,	we	believe	that	it	is	feasible	to	implement	the	automated	motor	
assessment	in	a	clinical	setting.		
	 A	limitation	of	the	current	study	is	that	we	employed	a	very	coarse,	although	
robust,	3-point	clinical	scale	for	the	assessment	of	movement	quality.	Such	scale	has	
the	resolution	of	1/3	or	33%	of	maximal	range	of	motion.	Therefore	our	data	show	
that	while	the	low-cost	motion	capture	system	is	less	accurate	than	the	laboratory	
standard,	it	is	more	accurate	than	the	3-point	clinical	scale	(Table	2).	Future	studies	
are	needed	to	test	the	effectiveness	of	the	PCA-based	quantitative	assessment	in	
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presence	of	biases	and	noise	in	the	low-cost	motion	capture	for	scales	with	higher	
resolution	and	for	more	complex	movements	involving	the	hand.	
	 Assessment	of	motor	impairment	using	the	FMA	is	useful	for	understanding	
the	limitations	in	motion	of	individual	joints	and	basic	synergy	patterns.	However,	
to	evaluate	the	effectiveness	of	rehabilitation	in	enabling	people	to	return	to	their	
normal	lives	different	kinds	of	movements	prove	more	useful.	For	example,	clinical	
tests	of	functional	abilities	such	as	Wolf	Motor	Function	Test	[46],	rely	on	
movements	that	mimic	goal-directed	tasks	of	daily	living,	e.g.	picking	up	or	
manipulating	household	objects.	Therefore,	the	next	logical	step	for	the	
development	of	quantitative	assessment	based	on	low-cost	motion	capture	is	to	
evaluate	its	effectiveness	to	extract	information	about	the	individual’s	function	from	
such	goal-directed	movement.	
	
	
Figures	
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Figure 2. Results of principle component analysis. Cumulative explained variance and the 
number of principal components are shown for each movement type across participants 
(top plot) and for each participant across movement types (bottom plot). Grey dotted lines 
show results of decomposition of movement of the non-paretic arm, while black solid lines
shows results of decomposition of movement of the paretic arm. The principal components 
were derived from mean data and used to reconstruct data from individual movements.
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Tables		
	
Table	1:	Summary	of	participant	characteristics.	

 
 

Participant	 Age	 Sex	 Years	
post	
stroke	

Dominant	
Hemisphere	

Stroke	
Hemisphere	

Stroke	Location	

1 50 Male 5 Right Right Caudal medulla 

2 76 Male 2 Left Right Posterior globus 
pallidus and internal 
capsule 

3 20 Female 20 Right Right Middle Cerebral 
Artery distribution 
involving portions of 
frontal and temporal 
lobes 

4 80 Female 1 Right Left Posterior Limb of 
Internal Capsule 

5 62 Male 2 Right Right Frontal 
intraparenchymal 
hemorrhage 

6 39 Female 1 Right Right Middle Cerebral 
Artery distribution 
involving portions of 
frontal and parietal 
lobes, putamen, and 
globus pallidus 

7 76 Male 4 Right Left Anterior temporal 
lobe and posterior 
left putamen 

8 64 Male 4 Right Left Middle Cerebral 
Artery distribution 
involving portions of 
frontal lobe 
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Table	2.	Angular	errors	of	low-cost	motion	capture	relative	to	the	standard	
system.	
	 shoulder 

abduction/ 
adduction angle 

shoulder  
flexion/ 
extension angle 

elbow 
flexion/ 
extension angle 

wrist 
flexion/ 
extension angle 

Mean RMS 
errors, 
degrees 

22.03 ± 9.55 25.81 ± 10.57 22.88 ± 8.15 15.99 ± 7.41 

Mean RMS 
errors, % of 
max. 

12 ± 5 14 ± 6 14 ± 5 18 ± 8 

Mean 
maximal 
joint 
excursion 
error, 
degrees 

22.08 ± 23.65 26.31 ± 14.54 3.76 ± 16.05 6.27 ± 14.77 

Mean 
maximal 
joint 
excursion 
error, % of 
max. 

12 ± 13 14 ± 8 2 ± 10 7 ± 16 

	
	
Table	contains	mean	values	±	standard	deviations	across	participants	and	
movements.	Max.	stands	for	maximal	range	of	motion.		
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Introduction	
Annually,	800,000	individuals	in	the	United	States	will	suffer	from	a	stroke.	

Of	those,	nearly	half	will	have	long-term	motor	impairment,	causing	stroke	to	be	the	
leading	contributor	to	adult	disability	in	the	U.S.	and	unfortunately,	this	number	is	
projected	to	rise	(American	Heart	Association,	2016).	Recent	advances	in	the	acute	
treatment	of	stroke,	such	as	clot	dissolving	drugs	and	mechanical	removal	
procedures,	have	fortunately	increased	the	survival	rate	from	stroke.	However,	only	
a	small	percentage	of	patients	are	able	to	reach	a	medical	facility	within	the	4-6	hour	
time	window	after	symptom	onset	that	would	allow	for	these	treatments	to	be	
beneficial	(American	heart	Association,	2007;	Wahl	and	Schwab,	2014).		Once	
outside	of	this	brief	window,	the	only	therapy	that	can	alter	the	long-term	outcome	
of	the	patient	is	rehabilitation.		

Spontaneous	recovery	of	motor	function	in	stroke	patients	is	heterogeneous,	
and	is	likely	impacted	by	the	size	and	location	of	the	infarct	(Dobkin,	2005).		
Roughly	80	percent	of	stroke	patients	will	see	the	majority	of	recovery	within	their	
first	30	days	after	a	stroke	(Nakayama	et	al.,	1994).		During	this	time	period,	the	
tissue	surrounding	the	stroke	core,	also	referred	to	as	the	penumbra,	can	increase	or	
decrease	in	size,	affecting	which	tissue	is	converted	to	core	infarct	area,	and	which	
tissue	will	be	salvaged	(Stinear	et	al.,	2013;	Krakauer	et	al.,	2012).	Studies	by	
Duncan	and	colleagues	have	shown	that	a	patient’s	recovery	at	6	months	can	be	
predicted	from	their	functional	ability	at	30	days	post	stroke.		Additionally,	the	30	
day	prediction	was	shown	to	be	a	better	correlate	of	long	term	movement	recovery	
then	a	5	day	post	stroke	comparison	(Duncan	et	al.,	1992).	Rehabilitation	studies	
have	also	shown	that	aggressive	therapy	during	the	acute	phase	after	a	stroke	can	
provide	the	best	long-term	outcomes	for	a	patient	(Feys	et	al.,	1998).	Given	this,	it	is	
therefor	likely	that	the	initial	month	post	stroke	is	the	best	window	for	the	most	
aggressive	forms	of	rehabilitation	to	take	place.	However,	to	determine	which	type	
of	rehabilitation	is	providing	the	most	benefit	to	the	patient	during	this	narrow	
window,	there	must	be	a	reliable	and	descriptive	way	to	assess	a	patient’s	motor	
impairment.		

Physicians	often	gage	a	patient’s	motor	ability	on	the	individual’s	ability	to	
perform	activities	of	daily	living	(ADL).	This	categorization	of	motor	function	
however,	can	be	a	misleading	representation	of	a	patient’s	ability	as	compensatory	
mechanisms	are	often	quickly	learned,	allowing	them	to	still	function	in	their	day	to	
day	life.	For	instance,	a	patient	may	re-learn	to	brush	their	teeth	despite	partial	arm	
paresis	by	developing	alternative	movement	strategies	that	accomplish	the	same	
task	but	in	a	manner	that	does	not	match	typical	movement.	A	physician	may	see	the	
ability	of	their	patient	to	brush	their	teeth	and	assign	them	a	higher	score	on	an	ADL	
test,	despite	the	fact	that	they	are	clearly	impaired.	To	combat	this,	physical	
therapists	and	researchers	have	devised	tests	that	measure	overall	movement	
impairment	of	a	patient,	rather	than	their	ability	to	complete	a	given	task.	These	
tests,	such	as	the	Fugl-Meyer	(Fugl-Meyer,	1975)	and	the	Wolf	Motor	Function	test	
(Wolf	et	al.,	2001)	provide	a	better	picture	of	a	patient’s	overall	functional	ability,	
rather	than	their	ability	to	perform	discrete	tasks.	Despite	this	improvement	in	post	
stroke	movement	assessment,	these	tests	are	timely	to	complete,	require	specialized	
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equipment	and	must	be	administered	by	specifically	trained	individuals.	Due	to	
these	constraints,	such	assessments	are	not	often	used	in	clinical	practice.		

A	solution	to	this	lack	in	quantitative	measures	could	be	the	incorporation	of	
motion	capture	into	clinical	assessments	of	movement	impairment.	By	using	motion	
capture	in	the	clinical	evaluation	of	a	patient,	information	such	as	maximum	range	
of	motion,	speed	of	movement,	reachable	workspace	volume	and	other	direct	
metrics	of	movement	ability	could	be	captured.	This	information	would	provide	a	
more	complete	picture	of	movement	capability	and	therefor	could	be	used	to	track	a	
patient’s	response	to	a	given	therapy	program.		

Improvements	in	motion	capture	technology	are	making	the	incorporation	of	
motion	capture	technology	into	clinical	practice	a	reality.	Until	recent	years,	the	use	
of	motion	capture	for	clinical	purposes	was	prohibitively	expensive	and	required	a	
skilled	technician	trained	in	motion	capture	equipment	and	analysis.	However,	new	
video	game	technology,	such	as	the	Microsoft	Kinect,	has	alleviated	the	burden	of	
costly	motion	capture	by	providing	a	low	cost	alternative.	This	technology	has	the	
ability	to	bring	full	body	three	dimensional	motion	capture	into	the	clinical	setting,	
allowing	clinicians	to	truly	measure	their	patients’	motor	function.	The	Kinect	
system	is	inexpensive,	easy	to	use,	and	can	be	set	up	in	a	clinic,	hospital,	or	home.	
Already,	these	systems	have	demonstrated	usefulness	in	the	assessment	of	balance	
deficits,	the	ability	to	automatically	assess	different	parameters	of	gait,	and	have	
been	successfully	incorporated	into	multiple	types	of	rehabilitation	programs	
(Lange	et	al.,	2011;	Stone	et	al.,	2011;	Chang	et	al.,	2011;).						

To	further	test	the	capabilities	of	low	cost	motion	capture	and	to	address	the	
need	for	a	quantitative	measure	of	post	stroke	movement	ability,	we	proposed	the	
development	of	a	quantitative	assessment	of	motor	impairment	that	combines	a	low	
cost	motion	capture	system	and	a	computer	algorithm.	Together,	this	system	would	
record	a	patient’s	movement,	quantify	their	impairment	and	provide	clinicians	with	
a	measure	of	motor	function.		

Previous	research	from	our	lab	has	demonstrated	the	feasibility	of	this	
system	by	comparing	the	quality	of	motion	capture	from	a	low	cost	system	(the	
Microsoft	Kinect)	to	an	expensive	state	of	the	art	system	(PhaseSpace).	We	
demonstrated	that	not	only	was	the	quality	of	the	low-cost	system	comparable	to	
the	high-cost	system,	but	that	the	assessment	of	a	stroke	patients	movement	was	
better	than	the	reliability	of	several	Doctoral	of	Physical	Therapy	students.	During	
this	initial	experiment,	stroke	patients	were	asked	to	perform	a	range	of	motion	
tasks	that	mimicked	clinical	tests	of	movement	impairment	including	the	Fugl-Myer	
Assessment	(FMA)	and	the	Action	Research	Arm	Test	(ARAT).	While	patients	
performed	these	movements,	simultaneously	recordings	from	the	PhaseSpace	and	
Kinect	systems	tracked	the	each	patient’s	movement	(for	further	details	see	chapter	
2,	Automated	Assessment	of	Movement	Impairment	Due	to	Stroke).		

To	elaborate	on	these	initial	findings,	we	choose	to	investigate	whether	the	
same	automated	system	as	tested	in	our	previous	experiment	could	accurately	
assess	a	stroke	patient	performing	the	Wolf	Motor	Function	Test	(WMFT).	This	test	
includes	both	complex	and	fine	motor	tasks,	such	as	moving	a	basket,	picking	up	
paper	clips,	and	lifting	a	can.	These	movements	were	more	complex	then	the	tasks	
previously	studied	and	also	involved	patient	interaction	with	objects.	It	was	therefor	
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our	intent	to	determine	how	well	the	Microsoft	Kinect	could	capture	the	complexity	
of	movement	and	the	interaction	between	patients	and	objects	encompassed	in	the	
WMFT.	Additionally,	we	aimed	to	compare	the	motion-capture	based	scores	to	
scores	assigned	to	movement	by	physical	therapy	doctoral	students.				
	
Methods	

Eight	chronic	motor	impaired	stroke	patients	(defined	as	having	movement	
impairment	3	months	or	more	post	stroke)	were	recruited	from	Ruby	Memorial	
Hospital.	Subjects	were	included	in	the	study	if	they	had	suffered	from	an	ischemic	
stroke	and	could	produce	voluntary	movement	of	their	more	impaired	limb.	
Patients	were	excluded	if	they	suffered	from	any	additional	diseases	or	injuries	that	
would	affect	movement	ability	(including	but	not	limited	to	Multiple	Sclerosis,	
Cerebral	Palsy,	shoulder	repair	or	replacement	surgery).		Additionally,	only	patients	
that	could	independently	sign	informed	consent	were	included.	Stroke	location	was	
determined	by	MRI	scan,	read	and	confirmed	by	a	clinical	neurologist	from	Ruby	
Memorial	Hospital.	

To	begin	the	test,	each	patient	watched	a	pre-recorded	video	demonstrating	
one	movement	from	the	WMFT.	The	patient	was	then	instructed	to	repeat	the	
movement	with	either	their	unimpaired	or	impaired	limb.	This	was	repeated	for	all	
fifteen	movements	that	make	up	the	WMFT	and	limb	order	was	randomized.	Each	
task	was	performed	only	once	as	instructed	by	the	WMFT.	The	Kinect	sensor	was	
placed	two	meters	directly	in	front	of	the	subject	to	optimize	viewing	capabilities.	
Video	recordings	of	each	movement	were	de-identified	and	given	to	four	Physical	
Therapy	Doctoral	students	at	West	Virginia	University	to	score	on	the	WMFT	
scale	of	0-5	(0	=	no	movement,	5	=	perfect	movement).			

Motion	capture	recorded	by	the	Kinect	consisted	of	three-dimensional	
coordinate	data	from	ten	tracked	points	on	the	upper-extremities	and	trunk.	These	
data	were	imported	into	Matlab	(MathWorks)	and	used	to	calculate	the	following	
joint	angles:	shoulder	flexion/extension,	shoulder	abduction/adduction,	shoulder	
pronation/supination,	elbow	flexion/	extension,	wrist	flexion/extension,	and	wrist	
pronation/supination.	From	those	joint	angles,	quantitative	scores	were	calculated	
using	the	same	method	as	described	in	Olesh	et	al.,	2013.	In	brief,	Principal	
Component	Analysis	(PCA)	was	applied	to	the	data	set	recorded	for	each	movement	
performed	by	the	less	impaired	limb	of	each	patient.	The	extracted	components	
were	then	used	to	reconstruct	data	for	both	the	less	and	more	impaired	limb.	
Movements	reconstructed	for	the	more	impaired	limb	were	then	compared	to	the	
original	data	from	the	more	impaired	limb	using	the	square	of	the	Pearson’s	
Correlation	Coefficient.	This	calculated	R2	value	was	deemed	as	the	quantitative	
score,	assigned	by	the	algorithm.		By	comparing	the	original	data	from	the	more	
impaired	limb	to	the	reconstructed	data	we	were	able	to	quantify	the	difference	in	
movement	capabilities	of	the	two	limbs.				
	
Results	and	Conclusions	

Mean	quantitative	scores,	for	each	subject	obtained	from	the	algorithm,	were	
compared	to	the	mean	qualitative	scores	assigned	by	the	human	raters	(Fig.	1).	
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Despite	our	previous	success	with	this	algorithm,	results	from	this	study	did	not	
reach	statistical	significance.	

We	have	speculated	several	reasons	for	why	the	automated	scoring	system	
did	not	perform	to	an	adequate	standard	in	this	experiment.	First,	the	movements	
that	make	up	the	WMFT	include	several	fine	motor	tasks	(flipping	cards,	stacking	
checkers,	picking	up	a	paper	clip,	etc.)	which	are	likely	difficult	for	the	Kinect	to	
track.	The	version	of	the	Kinect	sensor	used	during	this	project	has	only	a	single	
point	to	represent	the	orientation	of	the	hand.	For	proper	biomechanical	
reconstruction	of	movement,	three	points	on	a	plane	are	needed.		

Second,	the	WMFT	requires	patients	to	be	seated	at	a	table	for	almost	all	of	
the	movements,	which	restricts	the	Kinect	sensors	viewing	angle.	This	could	have	
also	contributed	to	poor	kinematic	data	quality	as	the	Kinect	sensor	was	initially	
designed	to	recognize	standing,	not	seated,	postures.	Although	the	Kinect	sensor	
and	automated	scoring	method	did	not	produce	reliable	results	in	this	experiment,	it	
should	not	be	disregarded	as	a	possible	rehabilitation	tool.	A	new	version	of	the	
Kinect	sensor	was	released	in	2014	that	demonstrates	improved	kinematics	as	well	
as	increased	detail	of	hand	posture.	This	constantly	developing	technology	will	
likely	provide	the	much	needed	improvements	to	standard	clinical	rehabilitation	in	
the	future.	
	

Figure	1.	Comparison	of	quantitative	to	qualitative	scores.		Movements	were	
scored	on	a	0	to	5	scale,	as	directed	by	the	WMFT.	Qualitative	scores	were	calculated	
as	the	average	score	assigned	by	the	eight	physical	therapy	students.	Quantitative	
scores	were	calculated	from	the	PCA	based	scoring	algorithm	(see	methods).	Scores	
were	compared	using	regression	analysis.			
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Abstract	
Human	reaching	movements	require	complex	muscle	activations	to	produce	the	
forces	necessary	to	move	the	limb	in	a	controlled	manner.	How	the	complex	kinetic	
properties	of	the	limb	and	gravity	contribute	to	the	generation	of	the	muscle	
activation	pattern	by	the	central	nervous	system	(CNS)	is	a	long-standing	question	
in	neuroscience.	One	common	theory	is	that	the	CNS	reduces	the	redundancies	and	
complexities	of	the	musculoskeletal	system	using	motor	primitives.	These	
primitives	are	often	obtained	using	decomposition	methods	based	on	shared	
variance	across	multiple	signals.	A	critique	of	this	technique	is	that	the	
dependencies	that	exist	due	to	the	causal	relationship	between	muscle	activations	
and	the	resulting	movement	are	difficult	to	disambiguate	from	neural	primitives	
inherent	in	control	signals.	In	the	present	study	addressed	this	critique	by	
examining	the	relationships	between	motor	primitives	extracted	from	muscle	
activity,	muscle	torques,	and	other	motion	signals.	We	hypothesized	that	the	
primitives	obtained	from	muscle	activity	are	more	similar	to	kinetic	primitives	
obtained	from	joint	torques,	than	kinematic	primitives	obtained	from	joint	angles	
and	angular	velocity	signals.	Eight	healthy	subjects	pointed	in	virtual	reality	to	
visual	targets	arranged	to	create	a	standard	center-out	reaching	task	in	three	
dimensions.	Muscle	activity	and	motion	capture	data	were	synchronously	collected	
during	the	movements.	Non-negative	matrix	factorization	was	then	applied	to	
muscle	activity,	muscle	torques,	and	other	motion	signals	(joint	angles,	angular	
velocities,	gravitational	torques,	and	other	inertial	torques)	separately	to	reduce	the	
dimensionality	of	data.	Results	show	that	the	activation	profiles	of	all	NMF	
components	were	organized	sequentially	and	correlated	highly.	The	scaling	of	NMF	
components	obtained	from	EMG	and	kinetic	and	kinematic	signals	correlated	across	
multiple	signal	types.	We	found	closer	correspondence	between	NMF	components	
obtained	from	EMG	and	gravitational	torques,	than	those	obtained	from	other	
torque	signals	or	kinematic	signals.	Altogether,	these	results	reject	our	hypothesis,	
suggesting	that	motor	primitives	do	not	consist	of	signals	of	a	single	modality.	Our	
results	also	identify	the	kinetic	signals	for	gravity	compensation	as	the	potential	
contributor	to	neural	motor	primitives	that	may	be	responsible	for	controlled	
transitions	between	arm	postures	during	movement.	

1. Introduction	
The	musculoskeletal	anatomy	of	the	body	constitutes	a	complex	dynamical	system	
that	is	a	challenge	to	control	for	the	central	nervous	system	(CNS).	Some	of	the	
complexity	is	due	to	muscle	redundancy	that	allows	humans	to	perform	complex	
tasks.	Additional	complexity	is	due	to	the	forces	associated	with	the	inertia	of	the	
multi-joint	limb,	termed	limb	dynamics,	which	must	also	be	accounted	for	by	the	
CNS.	Limb	dynamics	is	commonly	investigated	through	joint	torques,	or	rotational	
forces,	that	arise	during	motion	of	the	limb	(Sainburg	et	al.,	1995;	1999;	Shabbott	
and	Sainburg,	2008).	This	motion,	commonly	expressed	as	angular	kinematics	
(position	and	velocity),	can	be	used	to	derive	joint	torques	for	each	independent	
direction	of	motion	termed	degree	of	freedom	(DOF)	using	equations	of	motion.	The	
goal	is	to	derive	the	active	torques	that	are	generated	because	of	muscle	
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contractions	in	the	presence	of	passive	forces,	such	as	those	due	to	gravity	or	the	
interaction	between	connected	segments	(Dounskaia	and	Wang,	2014;	Gentili	et	al.,	
2007;	Le	Seac'h	and	McIntyre,	2007;	Papaxanthis	et	al.,	2005).	The	latter	passive	
interaction	torques	comprise	a	sizable	amount	of	the	overall	torques	experienced	
during	arm	movement	(Hollerbach	and	Flash,	1982).	The	compensation	for	
interaction	torques	appears	to	be	an	important	factor	for	the	neural	control	of	goal-
directed	movement	(Debicki	and	Gribble,	2005;	Gribble	and	Ostry,	1999;	Gritsenko	
et	al.,	2009;	2011;	Pigeon	et	al.,	2003).	Other	passive	torques	arise	due	to	gravity;	
these	gravitational	torques	depend	on	the	orientation	of	limb	segments	in	space	
(Bastian	et	al.,	1996).	The	compensation	for	gravitational	torques	is	also	important	
for	motor	control,	as	evidenced	by	altered	patterns	of	movement	errors	and	muscle	
activity	of	people	moving	in	micro-gravity	environments	(Fisk	et	al.,	1993;	
Papaxanthis	et	al.,	1998;	2005;	Pozzo	et	al.,	1998).	Altogether,	the	action	of	the	CNS	
to	control	these	passive	torques	can	be	observed	at	least	partially	through	analysis	
of	active	muscle	torques,	which	are	the	summed	result	of	muscle	contraction.	Thus,	
muscle	torques	are	a	window	into	the	interaction	between	the	CNS	and	the	
musculoskeletal	anatomy	of	the	limb.	
A	prevalent	explanation	of	how	the	CNS	resolves	the	complexity	of	limb	motor	
control	is	based	on	the	idea	of	motor	primitives,	i.e.	groups	of	muscles	sharing	the	
same	common	source	of	neural	activation	(Mussa	Ivaldi,	1999;	Mussa	Ivaldi	and	
Bizzi,	2000).	These	are	usually	extracted	using	decomposition	methods,	such	as	
principle	component	analysis	(PCA),	or	non-negative	matrix	factorization	(NMF)	
(Ting,	2007;	Tresch	et	al.,	2006).	These	motor	primitives	have	been	shown	to	be	
most	active	for	movements	and	in	response	to	perturbations	in	specific	directions,	
i.e.	directionally	tuned	(d'Avella	et	al.,	2006;	Torres-Oviedo	and	Ting,	2007).	They	
can	also	be	scaled	in	both	time	and	amplitude	to	adjust	for	changing	speeds	and	
distances	during	movement	(d'Avella	et	al.,	2008).	It	has	also	been	suggested	that	
motor	primitives	may	be	structured	in	such	a	way	as	to	compensate	for	task-specific	
limb	dynamics	(Chvatal	et	al.,	2011).	Central	to	this	concept	is	the	idea	that	motor	
primitives	can	reduce	the	complexity	of	neural	control	signals	by	enabling	the	
production	of	any	movement	from	a	smaller	selection	of	control	actions	(Bizzi	et	al.,	
1991;	Giszter	et	al.,	1993)	for	a	review	see	(d'Avella	and	Lacquaniti,	2013).	
However,	the	method	of	obtaining	motor	primitives	using	decomposition	analyses	
has	recently	come	under	increased	scrutiny	due	to	the	indivisible	interaction	and	
mutual	dependencies	between	the	neural	control	of	muscular	activations	and	the	
biomechanics	of	the	resulting	movement	(Santello	et	al.,	2013;	Tresch	and	Jarc,	
2009).	For	example,	multiple	independent	DOFs	of	hand	joints	are	known	to	be	
mechanically	coupled	through	tendons	that	span	several	joints	of	a	finger	and	the	
wrist.	This	reduces	the	overall	range	of	possible	motions	to	a	much	smaller	subset	of	
kinematic	primitives,	which	could	contribute	to	the	motor	primitives	identified	in	
muscle	activations	using	decomposition	methods	(Valero-Cuevas	et	al.,	2015).	
Furthermore,	primitives	obtained	from	joint	kinematics	and	muscle	activations	
were	found	to	be	mutually	dependent	(Kutch	and	Valero-Cuevas,	2012;	Tagliabue	et	
al.,	2015).	The	latter	study	also	shows	that	kinematic	constraints	can	create	the	
appearance	of	muscle	primitives	in	simulated	data,	in	which	no	neural	primitives	
are	expected	a-priori.		
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In	the	current	study,	we	further	examine	the	transformation	from	muscle	activation	
to	movement	to	establish	the	role	that	motion	kinematics	and	limb	dynamics	play	in	
the	generation	of	neural	motor	commands	to	muscles.	The	rationale	for	our	
approach	is	based	on	the	examination	of	shared	variance	with	NMF	decomposition	
method	across	different	types	of	motion-related	signals.	Among	kinematic	and	
kinetic	signals,	muscle	activations	are	most	closely	related	to	kinetic	signals	such	as	
active	muscle	torques	described	above.	The	muscle	torques	can	in	turn	be	split	into	
two	components,	1)	gravitational	torques	that	only	arise	in	the	presence	of	gravity	
and	2)	other	inertial	torques,	including	interaction	torques,	that	are	responsible	for	
inter-joint	coordination.	Each	of	these	components	can	be	calculated	for	each	joint	
DOF.	However,	across	multiple	joint	DOFs,	signals	for	each	of	these	components	are	
coupled	through	the	kinematic	chain	of	the	limb.	This	coupling	can	be	quantified	
using	NMF	to	obtain	kinetic	primitives,	which	can	then	be	compared	to	the	
primitives	obtained	from	muscle	activations.	We	hypothesize	that	primitives	
obtained	from	muscle	activations	are	more	similar	to	kinetic	primitives	obtained	
from	torque	components,	than	kinematic	primitives	obtained	from	joint	angles	and	
angular	velocity	signals.	Support	for	this	hypothesis	would	suggest	that	kinetic	
signals	for	gravity	compensation	and	inter-joint	coordination	may	comprise	neural	
motor	primitives.	

2. Material	and	Methods	
Eight	healthy	individuals	(5	males,	3	females)	with	an	average	age	of	24.8	±	0.71	
years	old	were	recruited	to	perform	a	reaching	“center-out”	task.	This	study	was	
carried	out	in	accordance	with	the	recommendations	the	Institutional	Review	Board	
of	West	Virginia	University	with	written	informed	consent	from	all	subjects.	All	
subjects	gave	written	informed	consent	in	accordance	with	the	Declaration	of	
Helsinki.	The	protocol	was	approved	by	the	Institutional	Review	Board	of	West	
Virginia	University	(Protocol	#	1311129283).	All	subjects	were	right-hand	
dominant	and	reported	no	movement	disorders	and	no	major	injuries	to	their	right	
arm.	Height,	weight,	and	arm	segment	lengths	were	measured	for	each	subject	and	
used	to	adjust	model	parameters	to	create	subject-specific	dynamic	models	(see	
below).	
Movements	were	instrumented	using	a	virtual	reality	software	(Vizard	by	Wolrdviz)	
and	head	set	(Oculus	Rift),	which	displayed	14	targets	arranged	in	two	
perpendicular	planes:	the	horizontal	transverse	plane	and	the	vertical	coronal	plane	
(Fig.	1A).	To	reduce	inter-subject	variability	in	kinematic	data,	the	target	locations	
were	adjusted	for	each	subject	based	on	the	lengths	of	their	arm	segments,	which	
ensured	the	same	initial	and	final	joint	angles	across	all	movement	directions.	The	
center	target	was	placed	so	that	initial	arm	posture	was	at	0-degree	shoulder	
flexion,	90-degree	elbow	flexion,	and	a	0-degree	wrist	flexion.	The	distance	from	the	
center	target	to	the	peripheral	targets	was	scaled	to	30	percent	of	each	subject’s	
total	arm	length	(from	anterior	acromial	point	to	the	distal	end	of	the	index	finger).	
Each	movement	began	with	the	subject	starting	at	the	center	target	and	then	
moving	to	another	visible	target	cued	by	target	color	change.	Subjects	were	
instructed	to	keep	their	wrist	pronated	and	straight	and	move	as	quickly	and	
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accurately	as	possible.	Movements	to	each	target	location	were	repeated	15	times	
and	performed	in	a	randomized	order.		
	
Fig.	1	near	here	
	
Arm	and	trunk	movements	were	recorded	with	an	active	motion	capture	system	
(PhaseSpace,	Impulse)	at	480	frames	per	second.	The	light	emitting	diodes	of	the	
motion	capture	system	were	placed	on	anatomical	landmarks	according	to	best	
practice	guidelines	(Robertson	et	al.,	2004).	Electromyography	(EMG)	was	recorded	
from	twelve	arm	muscles	at	a	rate	of	2000	Hz	(MA400-28	MotionLab	Systems).	
Muscles	recorded	during	the	experiment	included	the	pectoralis	major	(Pec),	teres	
major	(TrM),	anterior	deltoid	(AD),	posterior	deltoid	(PD),	long	and	short	heads	of	
the	biceps	(BiL	and	BiS	respectively),	lateral	and	long	heads	of	the	triceps	(TrLa	and	
TrLo	respectively),	brachioradialis	(Br),	flexor	carpi	ulnaris	(FCU),	flexor	carpi	
radialis	(FCR),	and	extensor	carpi	radialis	(ECR).	Motion	capture	and	
electromyography	were	synchronized	using	a	custom	circuit	and	triggering	
mechanism	(Talkington	et	al.,	2015).	Motion	capture	and	EMG	data	were	imported	
into	Matlab	and	processed	as	follows	using	custom	scripts.			
EMG	data	were	high	pass	filtered	at	40	Hz,	bandpass	filtered	between	59	and	61	Hz	
to	remove	electrical	background	noise,	rectified,	and	low	pass	filtered	at	20	Hz.	
Motion	capture	data	were	low	pass	filtered	at	10	Hz	and	interpolated	with	a	cubic-
spline.	The	maximum	interpolated	gap	was	0.2	seconds.	The	onset	and	offset	of	
movement	was	found	based	on	the	velocity	of	three	hand	LEDs	changing	by	five	
percent	of	the	maximum	velocity	for	a	given	movement.	Arm	kinematics	were	
obtained	from	motion	capture	by	calculating	Euler	angles	and	angular	velocity	for	
five	joint	DOFs	including	shoulder	(flexion/extension,	abduction/adduction,	
pronation/supination),	elbow	(flexion/extension),	and	wrist	(flexion/extension).		
	

2.1.Limb dynamics 
To	calculate	joint	torques,	an	inverse	dynamic	model	of	the	subject’s	arm	was	
constructed	in	Simulink	(MathWorks).	The	model	comprised	5	DOFs	as	described	
above	and	three	segments	approximating	inertial	properties	of	the	arm,	forearm,	
and	hand.	Inertia	of	the	segments	was	approximated	with	a	cylinder	of	the	length	
equal	to	that	of	the	corresponding	segment	and	a	3-cm	radius.	The	masses	and	
centers	of	mass	for	each	segment	were	determined	by	their	anthropometric	ratios	
to	the	subjects’	segment	lengths	and	weight	(Winter,	2009).		
Angular	kinematics	averaged	per	movement	direction	and	per	subject	was	used	in	
the	subject-specific	inverse	model	to	calculate	joint	torques	(Fig.	1B).	These	
computed	torques	are	proportional	to	the	sum	of	all	moments	generated	by	muscles	
spanning	the	joints,	so	these	torques	are	referred	to	as	muscle	torques	in	the	rest	of	
the	manuscript.	The	numerical	quality	of	inverse	dynamic	simulations	was	checked	
by	running	the	same	model	in	forward	dynamics	mode	using	the	calculated	torques	
as	inputs	and	simulated	angular	kinematics	as	outputs.	The	simulated	and	
experimental	joint	kinematics	was	compared,	and	the	mean	±	standard	deviation	of	
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the	root-mean-squared	differences	between	them	was	0.05	±	0.02	radians	across	all	
DOFs.	
	To	test	the	main	hypothesis,	the	muscle	torques	obtained	using	the	inverse	model	
were	separated	into	two	components.	To	estimate	the	component	of	muscle	torques	
responsible	for	inter-joint	coordination	without	gravity,	the	inverse	model	was	run	
without	simulating	external	gravitational	force.	This	resulted	in	muscle	torques	that	
would	produce	the	same	motion	without	gravity	as	that	recorded	in	presence	of	
gravity.	Example	of	such	torques	would	be	the	sum	of	muscle	moments	produced	
during	motion	in	microgravity	environment.	Then	the	component	of	muscle	torque	
that	is	needed	to	compensate	for	gravity	was	estimated	as	the	difference	between	
muscle	torques	with	and	without	gravity	as	follows:	
	
𝜏!" = 𝜏! − 𝜏!"!	 	 	 	 	 	 												 																 	
	          (1) 

	
where	τG	is	a	vector	of	torques	that	only	arise	in	the	presence	of	gravity;	τM	is	a	vector	
of	muscle	torques	around	each	DOF	during	simulations	with	gravity;	τMG0	is	a	vector	
of	computed	torques	around	each	DOF	during	simulations	without	gravity.	If	we	
assume	that	the	torques	produced	without	gravity	are	equal	to	the			component	of	
the	motor	command	that	is	responsible	for	inter-joint	coordination	only,	without	
gravity,	then	formula	(1)	can	be	rearranged	as	follows:		
	
𝜏!" = 𝜏! − 𝜏!" , or      
𝜏! = 𝜏!" + 𝜏!"        (2) 
	
	where	τMN	is	the	component	of	muscle	torque	responsible	for	inter-joint	
coordination,	i.e.	interaction	torques	and	other	inertial	torques	excluding	gravity,	
and	τMG	is	the	component	of	muscle	torque	responsible	for	the	compensation	for	all	
torques	due	to	gravity.	Below,	the	former	is	referred	to	as	MN	torque,	while	the	
latter	is	referred	to	MG	torque	for	simplicity.	
 

2.2.Motor Primitive Decomposition 
Motor	primitives	were	extracted	for	each	subject	from	EMG,	kinematic	and	dynamic	
data	separately	using	NMF	(Berniker	et	al.,	2009;	Torres-Oviedo	et	al.,	2006).	To	
extract	EMG	primitives	(NMF1	in	Fig.	1B),	rectified	EMG	signals	were	normalized	to	
movement	duration,	averaged	per	movement	direction,	and	low	pass	filtered	at	10	
Hz.	To	ensure	muscle	activations	were	unitless,	maximum	contraction	values	were	
calculated	for	each	muscle	across	all	movement	directions	and	used	to	divide	mean	
EMG	for	each	movement	direction.	The	resulting	data	matrix	was	comprised	of	336	
columns	(12	EMG	signals	for	14	movements	toward	each	virtual	target	and	14	
return	movements).	Using	the	NMF	algorithm	described	in	Tresch	et	al.	(Tresch	et	
al.,	1999),	EMG	primitives	were	extracted	for	each	subject.	
	
𝑚 𝑡 = 𝐶!!

!!!  𝑊! 𝑡              (3) 
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where	m(t)	is	the	EMG	matrix	of	average	activity	of	all	muscles	during	all	
movements	at	time	t	;	N	is	the	number	of	primitives;	Ci	is	the	array	of	weights	for	
primitive	i	for	each	muscle	and	movement;	and	Wi(t)	is	the	activation	of	primitive	i	
at	time	t	(Fig.	2).	The	number	of	EMG	primitives	was	increased	until	the	variance	
accounted	for	(VAF)	in	EMG	reached	95%.		
	
Fig.	2	near	here	
	
To	extract	muscle-torque	primitives,	a	data	matrix	was	constructed	for	each	subject	
that	included	muscle	torques	for	each	DOF	and	each	movement	direction	(NMF2	in	
Fig.	1B).	The	signals	were	rectified	then	normalized	to	the	largest	value	of	the	signal	
for	each	DOF	across	all	movement	directions.	The	resulting	data	matrix	was	
comprised	of	120	columns	(5	muscle	torque	signals	for	the	28	movement	
directions).	NMF	was	applied	to	this	data	with	the	same	criteria	described	above.	
	
𝜏! 𝑡 = 𝐴!!

!!!  𝑌! 𝑡         (4) 
	
where	τM(t)	is	the	muscle	torque	matrix	for	all	signals	per	DOF	per	movement	
direction;	N	is	the	number	of	primitives;	Ai	is	the	weight	matrix	for	primitive	i	for	
each	DOF	and	movement;	and	Yi(t)	is	the	activation	profile	of	the	corresponding	
primitive	i.		
To	extract	mechanical	primitives,	a	data	matrix	was	constructed	that	included	joint	
angles,	angular	velocity,	MG	torque	and	MN	torque	for	each	DOF	(NMF3	in	Fig.	1B).	
The	signals	were	averaged	across	the	fifteen	repetitions	of	each	movement	
direction.	The	same	rectification,	and	normalization	procedures	were	applied	to	the	
signals	as	described	above	for	muscle	torques.	This	ensured	the	same	scale	and	unit	
independence	across	all	signals.	The	data	matrix	comprised	560	columns	(20	
kinematic	and	kinetic	signals	for	the	28	movement	directions).	NMF	was	applied	to	
this	data	with	the	same	criteria	described	above.	
	
𝑑 𝑡 = 𝐵!!

!!!  𝑋! 𝑡          (5) 
	
where	d(t)	is	the	matrix	of	average	profiles	for	all	signals;	N	is	the	number	of	
primitives;	Bi	is	the	weight	matrix	for	primitive	i	for	each	signal; and	Xi(t)	is	the	
activation	profile	of	the	corresponding	primitive	i.		
The	rectification	procedure	changed	the	profiles	of	the	muscle	and	inertial	torques,	
which	could	affect	the	comparison	between	motor	primitives	based	on	these	signals	
and	EMG.	Rectification	of	inertial	torques	poses	less	of	a	problem,	because	these	
signals	contain	two	readily	identifiable	phases	of	acceleration	and	deceleration	that	
match	the	actions	of	individual	muscles.	Rectification	of	these	signals	results	in	
profiles	with	two	burst-like	shapes	that	correspond	to	the	timing	of	the	two	phases.	
However,	rectification	of	muscle	torques	results	in	more	variable	changes	in	their	
profiles	that	are	not	easily	linked	to	specific	movement	phases.	To	address	this	
concern,	we	tested	the	validity	of	NMF	on	the	rectified	torque	signals	to	accurately	
capture	the	relationship	between	signals.	For	this	we	substituted	equations	(4)	and	
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(5)	into	equation	(2).	Given	that	our	analysis,	described	below,	found	highly	
correlated	NMF	temporal	profiles	across	signals	(Fig.	4),	the	resulting	equation	can	
be	reduced	as	follows:	
	
𝐴! =  𝐵!! +  𝐵!!        (6) 
	
where	for	primitive	i, NMF	weight	A	for	each	muscle	torque	signal	is	the	sum	of	NMF	
weights	B1	and	B2	for	MN	and	MG	torques	respectively	for	corresponding	DOFs.	The	
NMF	weights	calculated	from	rectified	muscle	torques	differed	from	those	
calculated	using	equation	(6)	between	1	±	4	%	and	3	±	6	%	across	subjects.	The	
threshold	for	VAF	was	95%,	which	puts	the	differences	in	weights	between	the	two	
methods	below	this	threshold.	This	shows	that	NMF	on	rectified	muscle	torque	
signals	captures	accurately	the	linear	relationships	between	those	and	other	signals. 
Resulting	activations	Wi(t),	Xi(t),	and,	Yi(t)	were	normalized	from	zero	to	one	for	
each	subject.	Normalization	values	were	obtained	by	calculating	the	peak	value	from	
each	subject’s	activation.	For	comparisons	across	signal	types	and	across	subjects,	
activations	Wi(t),	Xi(t),	and,	Yi(t)	were	sorted	per	the	relative	timing	of	their	maximal	
peak	and	assigned	a	letter	in	alphabetical	order	(Fig.	2A).	
To	maintain	the	relative	relationship	between	the	weights	and	activations,	NMF	
weights,	Ci,	Ai,	and	Bi	were	multiplied	by	the	normalization	value	of	the	
corresponding	activation.	This	ensured	that	the	variance	for	each	movement	
direction	was	now	captured	by	the	NMF	weights,	not	activations.	Thus,	NMF	weights	
were	then	used	to	compare	directional	tuning	between	EMG,	muscle-torque,	and	
mechanical	primitives.	Coefficient	of	determination	(r2)	was	used	as	measures	of	
similarity	between	the	NMF	weights	obtained	from	different	signals,	NMF1,	NMF2,	
and	NMF3.	Note	that	signals	used	for	all	NMF	analyses	were	unitless.	Correlation	
matrices	were	calculated	between	NMF	weights	Ci	and	Ai,	and	between	NMF	weights	
Ci	and	Bi	across	corresponding	directions	of	movement	for	first	and	last	primitive	
only.	
	
2.3.Statistical analysis 
The	statistical	analysis	of	r2	values	was	done	using	repeated	measures	analysis	of	
variance	(rANOVA)	in	MATLAB.	Separate	rANOVA	tests	were	applied	to	r2	values	
calculated	between	EMG	and	muscle-torque	primitives	(rANOVA1:	weights	from	
NMF1	vs.	NMF2)	and	between	EMG	and	mechanical	primitives	(rANOVA2:	weights	
from	NMF1	vs.	NMF3).	rANOVA1	included	2	factors,	Joint	and	Primitive	factor.	The	
Joint	factor	grouped	r2	values	based	on	the	joint	the	signals	spanned,	comprising	3	
levels	for	shoulder,	elbow,	and	wrist.	The	Primitive	factor	grouped	r2	values	based	
on	the	timing	of	the	activation	profile	of	each	primitive,	comprising	2	levels	for	the	
first	primitive	A	and	the	last	primitive	C	or	E	(Fig.	4).	rANOVA2	included	3	factors,	
Joint	and	Primitive	factors	as	in	rANOVA1	and	a	Signal	factor.	The	Signal	factor	
grouped	r2	values	based	on	the	types	of	signals	used	in	NMF3,	comprising	4	levels	
for	joint	angles,	angular	velocity,	MG	torque,	and	MN	torque.	Post-hoc	multiple	
comparisons	were	used	to	further	examine	significant	interactions.		
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Cross-correlation	analysis	was	used	to	compare	activations	Wi(t),	Xi(t),	and,	Yi(t).	
The	temporal	shifts	that	produced	the	highest	correlations	between	each	pair	of	
activations	were	converted	into	the	time	domain	from	the	normalized	number	of	
samples	by	using	the	mean	duration	of	movement	per	subject.	Positive	lag	times	
indicate	that	the	second	signal	follows	the	first	in	each	pair.	A	negative	lag	time	
indicates	that	the	second	signal	precedes	the	first. 
The relationships between peaks	of	activation	for	subsequent	primitives	obtained	
with	NMF1,	and	between	peaks	of	activation	for	corresponding	primitives	obtained	
with	NMF1	vs.	NMF2	and	NMF3	were	quantified	using	a	linear	regression.	The	same	
peaks	of	each	activation	used	for	the	classification	of	the	primitives	(Fig.	2A)	were	
used	in	this	regression	analysis.	

3. Results	
The	angular	kinematics	of	pointing	to	targets	in	virtual	reality	was	highly	consistent,	
as	demonstrated	by	the	low	standard	deviations	of	angular	kinematics	across	the	
fifteen	repetitions	of	each	movement	(Fig.	3A).	The	peak	velocity	of	these	
movements	ranged	from	1.2	to	3.3	meters	per	second,	which	illustrates	subjects’	
preferred	speeds	in	response	to	instructions	to	point	as	quickly	and	accurately	as	
possible	(Fig.	3B).	The	consistent	kinematics	are	attributed	to	the	very	consistent	
muscle	torques,	whose	temporal	profiles	varied	little	across	subjects	(Fig.	3C).	
However,	muscle	activity	was	highly	consistent	within	subjects	(Fig.	3F),	but	varied	
between	subjects.	
	
Fig.	3	near	here.	
	
Muscle	torques	were	divided	into	gravitational	and	other	inertial	torques	(termed	
MG	and	MN	torques)	as	described	above.	Gravitational	torques	were	consistent	
within	and	across	subjects	and	showed	similar	temporal	profiles	to	joint	angles	(Fig.	
3D).	Inertial	torques	were	also	consistent	within	and	across	subjects.	MN	torques	
had	activation	profiles	that	were	distinct	from	MG	torque	profiles	(Fig.	3E)	and	
similar	to	acceleration	profiles	derived	from	angular	kinematics.	In	a	given	
movement,	MG	torques	tended	to	vary	in	a	single	direction	increasing	or	decreasing	
in	amplitude,	while	the	MN	torques	usually	comprised	acceleration	and	deceleration	
phases	characteristic	of	a	bell-shaped	velocity	profile.	For	multiple	movements,	
torques	of	the	same	type	were	coupled	across	DOFs	(Figs	3D	and	3E).	
NMF1	on	EMGs	showed	that	between	2	and	5	EMG	primitives	were	necessary	to	
reach	a	VAF	=	96.6	±	0.9	%.	The	primitives	were	labeled	A	through	E,	corresponding	
to	the	order	in	which	the	peak	of	the	activation	profile	occurred.	The	activation	
profile	of	primitive	A	peaked	at	1.0	±	2.1	%	of	the	average	movement	duration,	
followed	by	primitive	B	at	16.7	±	14.0	%,	primitive	C	at	18.5	±	19.8	%,	primitive	D	at	
28.6	±	13.6	%,	and	primitive	E	at	89.0	±	11.0	%	(Fig.	4,	red	lines).		
	
Fig.	4	near	here	
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NMF2	on	muscle	torques	showed	that,	unlike	NMF1,	only	3	muscle-torque	
primitives	were	required	to	reach	a	VAF	=	96.4	±	0.0	%	across	subjects.	Primitives	
were	labeled	as	A	through	C	based	on	their	temporal	sequence	as	described	above.	
Activation	profiles	of	primitive	A	peaked	at	2.1	±	4.5	%	of	the	average	movement	
duration,	followed	by	primitive	B	at	35.7	±	15.7	%,	and	primitive	C	at	99.7	±	1.0	%	
(Fig.	4,	blue	lines).		
NMF3	on	mechanical	signals	showed	that	3	mechanical	primitives	were	required	to	
reach	a	VAF	=	96.8	±	0.3%	across	subjects,	same	as	the	number	derived	by	NMF2.	
Mechanical	primitives	were	labeled	as	described	above;	the	activation	of	primitive	A	
peaked	at	0.3	±	0.0	%	of	the	average	movement	duration,	followed	by	primitive	B	at	
42.2	±	17.3	%,	and	primitive	C	at	98.5	±	3.3	%	(Fig.	4,	black	lines).		
The	activation	profiles	obtained	with	NFM	represent	the	amount	of	recruitment	of	a	
given	primitive	and	may	be	more	closely	related	to	the	temporal	evolution	of	neural	
commands.	The	activation	profiles	were	very	similar	not	only	across	subjects,	but	
also	across	signal	types.	The	activation	of	sequential	EMG	primitives	was	highly	
correlated	with	peak	correlation	coefficients	across	subjects	ranging	from	0.84	±	
0.07	between	the	first	and	second	EMG	primitive	to	0.56	±	0.11	between	the	first	
and	last	EMG	primitive.	These	peak	correlations	occurred	at	lag	times	that	were	
increasing	on	average	at	170	ms	intervals	(Fig.	5A).	The	activation	profiles	of	EMG	
primitives	peaked	at	times	that	were	linearly	increasing	(r2	=	0.94;	Fig.	5B).	
Furthermore,	the	activations	of	overlapping	EMG	and	muscle-torque	primitives	
were	highly	correlated	with	peak	correlation	coefficients	across	subjects	ranging	
from	0.94	±	0.03	between	the	first	EMG	and	first	muscle-torque		primitive	to	0.53	±	
0.05	between	the	first	EMG	and	last	muscle-torque	primitive.	These	peak	
correlations	occurred	at	incremental	lag	times	(Fig.	5C).	The	activation	profiles	of	
EMG	primitives	peaked	at	times	that	were	linearly	related	to	the	peaks	in	the	
corresponding	activations	of	muscle-torque	primitives	(r2	=	0.97;	Fig.	5D).	Similar	
relationships	were	observed	between	the	activations	of	EMG	and	mechanical	
primitives	(Figs	5E	and	5F;	r2	=	0.96).	This	shows	that	the	activation	profiles	of	all	
primitives	were	organized	sequentially	and	correlated	highly.	
	
Fig.	5	near	here	
	
3.1.The overlap in directional tuning between different types of primitives 
	To	determine	if	EMG	primitives	have	the	same	directional	tuning	as	muscle-torque	
primitives,	shared	variance	(r2)	between	weights	from	NMF1	and	NMF2	across	all	
movement	directions	was	calculated	for	the	first	and	last	primitive	for	each	subject.	
Separate	comparison	for	each	primitive	ensured	that			the	temporal	distribution	of	
the	primitives	obtained	from	EMG	and	muscle-torques	were	matched	(Fig.	4).	The	r2	
values	between	NMF	weights	were	small	for	most	signal	combinations,	which	
indicates	little	overlap	between	directional	tunings	of	EMG	primitives	and	muscle-
torque	primitives	(Fig.	6).	There	were	some	differences	in	r2	values	of	both	
primitives	for	signals	originating	from	the	different	joints,	but	post-hoc	comparisons	
revealed	no	consistent	effects	(Table	1).	
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Fig.	6	and	Table	2	near	here	
	
To	determine	if	EMG	primitives	have	the	same	directional	tuning	as	mechanical	
primitives,	shared	variance	(r2)	between	weights	from	NMF1	and	NMF3	across	all	
movement	directions	was	calculated	for	the	first	and	last	primitive	for	each	subject.	
Separate	comparison	for	each	primitive	ensured	that			the	temporal	distribution	of	
the	primitives	obtained	from	EMG	and	kinematic	and	kinetic	signals	are	matched	
(Fig.	4).	The	r2	values	between	NMF	weights	were	larger	than	in	previous	analysis	
for	many	signal	combinations	(Fig.	7).	In	the	beginning	of	movement,	the	mean	r2	for	
MG	and	MN	torque	signals	was	larger	than	the	mean	r2	for	velocity	and	angle	signals	
for	corresponding	DOFs	in	9	(out	of	12)	muscles,	while	the	opposite	was	true	for	1	
muscle	(TrLa)	and	no	change	was	observed	in	2	muscles	(BiS	and	TrLo;	Fig.	7,	
Primitive	A).	At	the	end	of	movement,	the	mean	r2	for	MG	and	MN	torque	signals	
was	larger	than	the	mean	r2	for	velocity	and	angle	signals	for	corresponding	DOFs	in	
only	5	muscles	(FCU,	BiL,	BiS,	TriLA,	and	AD),	while	the	opposite	was	true	in	5	other	
muscles	(FCR,	ECR,	Br,	TrLo,	and	Pec)	and	no	change	was	observed	in	2	muscles	
(TrM	and	PD;	Fig.	7,	Primitive	C/E).	Larger	r2	values	were	observed	between	NMF	
weights	from	EMG	signals	and	MG	torques	compared	to	those	from	EMG	signals	and	
MN	torques	and	from	EMG	signals	and	joint	velocity,	but	only	for	the	last	primitive	
(Fig.	7A,	Table	2).	
	
Fig.	7	and	Table	2	near	here	
	
Some	of	the	observed	differences	between	the	directional	tuning	of	muscle-torque,	
mechanical,	and	EMG	primitives	may	be	due	to	the	different	number	of	primitives	
obtained	from	noisier	EMG	signals.	To	address	this	issue,	we	have	compared	NMF	
weights	from	subjects	with	the	number	of	EMG	primitives	matching	the	number	of	
muscle-torque	and	mechanical	primitives,	to	the	NMF	weights	from	the	rest	of	the	
subjects	with	unmatched	number	of	EMG	primitives.	The	mean	difference	±	
confidence	interval	between	the	NMF	weights	from	3	subjects	with	three	EMG	
primitives	and	5	subjects	with	other	numbers	of	EMG	primitives	(2,	4,	and	5)	was	-
0.005	±	0.025,	which	was	not	significant	(p	=	0.65).	This	shows	that	the	difference	
between	muscle-torque,	mechanical,	and	EMG	primitives	is	not	due	to	the	larger	
noise	in	EMG	signals.	

4. Discussion	 	
The	hypothesis	of	our	study	was	that	primitives	obtained	from	muscle	contractions	
are	more	similar	to	kinetic	primitives	obtained	from	joint	torques,	than	kinematic	
primitives	obtained	from	joint	angles	and	angular	velocity	signals.	We	found	that	
when	controlling	for	temporal	evolution	of	primitives,	the	spatial	distribution	of	
EMG	and	MG	primitives	overlapped	more	than	that	of	EMG	and	joint	velocity	
primitives.	However,	no	other	statistical	differences	between	the	spatial	
distributions	of	kinetic	and	kinematic	signals	were	observed.	These	results	led	us	to	
reject	the	main	hypothesis.	Instead,	our	results	suggest	that	motor	primitives	do	not	
consist	of	signals	of	a	single	modality,	but	rather	combine	both	kinetic	and	
kinematic	signals.	
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The	transformation	from	muscle	activation	to	motion	is	non-linear	and	includes	
second	order	differential	dynamics.	Here,	we	have	defined	motor	primitives	as	
functional	components	of	joint	torques	that	are	related	to	either	gravity	or	inter-
joint	coordination.	Deriving	primitives	from	dynamical	signals	like	joint	torques	
should	result	in	a	more	linear	relationship	with	neural	control	signals,	if	those	
primitives	capture	accurately	the	dynamics	of	neural	signals.	Indeed,	we	have	found	
more	shared	variance	between	mechanical	primitives	and	EMG	primitives	than	
between	muscle-torque	and	EMG	primitives.	In	particular,	the	primitive	at	the	end	
of	movement	derived	from	the	gravity	torque	component	shared	the	most	variance	
with	the	corresponding	EMG	primitive.	In	contrast,	the	primitive	derived	from	joint	
velocity	shared	the	least	variance	with	the	corresponding	EMG	primitive.	This	
provides	further	supporting	evidence	for	the	dynamical,	rather	than	kinematic,	
nature	of	neural	motor	commands	(Caminiti	et	al.,	1990;	1991;	Scott,	1997;	Scott	
and	Kalaska,	1997).	Neural	commands	may	comprise	both	phasic	and	tonic	
components,	similar	to	those	identified	in	EMG	during	3D	pointing	movements	
(d'Avella	et	al.,	2008;	Flanders,	1991).	The	required	scaling	of	a	hypothetical	tonic	
command	for	different	movement	directions	could	reflect	the	corresponding	
changes	in	gravitational	load	on	the	arm,	i.e.	as	predicted	by	the	MG	torque	
components	in	our	study.	Thus,	the	hypothetical	tonic	command	compensating	for	
gravity	may	constitute	an	anticipatory	postural	adjustment	that	accompanies	
movement	(Massion,	1992).	Alternatively,	the	hypothetical	tonic	command	may	be	a	
spinal	feedback	response	to	changing	gravitational	load	signaled	by	proprioceptors.	
Our	results	support	the	latter	by	indicating	more	robust	differences	in	the	shared	
variance	at	the	end	of	movement	(Fig.	7	and	Table	2).	The	mechanism	responsible	
for	a	feedback	compensation	for	gravity	may	be	akin	to	positive	force	feedback	
during	locomotion	based	on	afferent	feedback	from	Golgi	tendon	organs	to	maintain	
load	bearing	(Pearson	and	Collins,	1993;	Prochazka	et	al.,	1997).	
Deriving	motor	primitives	with	decomposition	methods	is	confounded	by	the	
indivisible	interactions	between	muscle	activations	and	the	resulting	movement	
(Santello	et	al.,	2013;	Tresch	and	Jarc,	2009).	In	other	words,	it	is	difficult	to	
determine	whether	correlations	between	muscle	activations	cause	correlations	
between	motion-related	signals,	or	it	is	the	other	way	around.	We	too	have	observed	
the	high	degree	of	shared	variance	within	all	motion-related	signals	as	evidenced	by	
only	three	primitives	present	in	both	the	kinematic	and	dynamic	signals,	consistent	
with	results	reported	previously	for	reaching	movements	(Chiovetto	et	al.,	2013).	
However,	we	have	also	shown	that	NMF	weights,	while	being	directionally	tuned	as	
reported	previously	(Chiovetto	et	al.,	2010;	2013;	d'Avella	et	al.,	2006;	Torres-
Oviedo	and	Ting,	2007),	were	tuned	very	differently	when	obtained	from	kinematic,	
or	kinetic,	or	EMG	signals	(Fig.	3).	We	observed	a	rather	small	subset	of	pairs	of	
signals	with	more	than	10%	shared	variance,	many	of	which	did	not	come	from	the	
same	joint	(Fig.	7).	This	suggests	that	the	method	of	examining	the	overlap	in	
directional	tuning	while	controlling	for	common	temporal	dynamics	may	offer	a	way	
to	identify	the	modality	of	control	signals	and	to	disambiguate	it	from	inherent	
relationships	across	multiple	types	of	motion-related	signals.	
The	CNS	is	a	hierarchal	dynamical	system	with	recurrent	feedback	loops	(Prochazka	
and	Yakovenko,	2007;	Shenoy	et	al.,	2013).	The	output	of	this	system	has	been	
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observed	in	electrophysiological	studies	in	animals	as	sequential	neural	primitives	
that	are	recruited	during	a	reaching	motion	and	correspond	to	the	different	phases	
of	movement	(Yakovenko	et	al.,	2011).	Similarly,	we	have	observed	highly	
correlated	activations	of	sequential	EMG	primitives	(Fig.	4).	These	activations	were	
shifted	in	time	at	physiological	delays	(Fig.	5),	which	are	consistent	with	
transcortical	feedback	loops	(Lee	et	al.,	1983).	These	results	suggest	that	the	timing	
of	the	activations	of	the	NMF	primitives	may	indicate	the	timing	of	feedback	
processing	within	the	motor	system.	The	predictable	sequence	of	peaks	in	the	
activation	of	primitives	may	be	a	useful	tool	for	diagnosing	neural	dysfunction	
(Olesh	and	Gritsenko,	2017).	
Our	results	are	also	consistent	with	the	idea	that	there	are	no	“true”	muscle	
primitives.	This	argument	is	illustrated	by	a	recent	study,	which	found	that	muscles	
are	recruited	flexibly	without	a	consistent	pattern	of	groupings	across	movements	
(Kutch	et	al.,	2008).	In	our	results	these	flexible	muscle	groupings	may	appear	as	
highly	variable	NMF	weights,	which	vary	in	directional	tuning	between	movement	
planes	and	forward	and	backward	directions.	Such	flexible	recruitment	may	be	
enabled	by	the	dynamical	nature	of	the	nervous	system,	which	could	fully	imbed	the	
complex	limb	dynamics	and	its	interaction	with	the	external	world	in	dedicated	
neural	modules	called	internal	models	(Gomi	and	Kawato,	1997;	Lackner	and	Dizio,	
1994;	Sabes,	2000;	Shadmehr	and	Mussa	Ivaldi,	1994;	Wolpert	and	Kawato,	1998).	
These	internal	models	or	embodied	neural	dynamical	systems	would	calculate	the	
required	muscle	activation	patterns	specifically	for	a	given	class	of	similar	
movements,	which	may	represent	a	learned	task	or	a	unit	of	motor	memory	
(Haruno	et	al.,	2001;	Wolpert	and	Kawato,	1998).	
4.1.Conclusions 
In	conclusion,	our	results	have	shown	that	when	controlling	for	the	temporal	
evolution	of	primitives,	the	primitives	obtained	from	muscle	activity	and	
gravitational	torques	shared	the	most	variance.	This	suggests	that	motor	primitives	
do	not	consist	of	signals	of	a	single	modality,	but	rather	combine	both	kinetic	and	
kinematic	signals.	
	

Conflict	of	Interest	Statement	
The	authors	declare	no	conflicts	of	interest.	

Authors	and	Contributors	
EO	contributed	to	the	design	of	the	study,	subject	recruitment,	data	collection,	data	
analysis,	and	writing	of	the	manuscript.	BP	contributed	to	the	data	collection	and	
analysis,	and	to	writing	of	the	manuscript.	VG	contributed	to	the	design	of	the	study,	
analysis	of	data,	and	writing	of	the	manuscript.	



48	
	

Funding	
This	research	was	sponsored	by	NIH/NIGMS	U54GM104942	(EO)	providing	student	
fellowship,	NIH	P20GM109098	providing	salary	support	(VG,	BP)	and	supplies,	NIH	
P30GM103503	providing	equipment	support.	The	content	is	solely	the	
responsibility	of	the	authors	and	does	not	necessarily	represent	the	official	views	of	
the	NIH.	

Acknowledgments	
The	authors	wish	to	thank	Dr.	Sergiy	Yakovenko	for	his	contribution	to	the	
discussion	of	analysis	in	this	study	and	Dr.	Robert	L.	Goodman	and	Dr.	Amy	J.	
Bastian	for	their	critical	review	of	this	manuscript.	

References	
Bastian,	A.	J.,	Martin,	T.	A.,	Keating,	J.	G.,	and	Thach,	W.	T.	(1996).	Cerebellar	ataxia:	

abnormal	control	of	interaction	torques	across	multiple	joints.	J	Neurophysiol	
76,	492–509.	

Berniker,	M.,	Jarc,	A.,	Bizzi,	E.,	and	Tresch,	M.	C.	(2009).	Simplified	and	effective	
motor	control	based	on	muscle	synergies	to	exploit	musculoskeletal	
dynamics.	PNAS	106,	7601–7606.	doi:10.1073/pnas.0901512106.	

Bizzi,	E.,	Mussa	Ivaldi,	F.,	and	Giszter,	S.	(1991).	Computations	underlying	the	
execution	of	movement:	a	biological	perspective.	Science	253,	287–291.	

Caminiti,	R.,	Johnson,	P.	B.,	and	Urbano,	A.	(1990).	Making	arm	movements	within	
different	parts	of	space:	dynamic	aspects	in	the	primate	motor	cortex.	J	
Neurosci	10,	2039–2058.	

Caminiti,	R.,	Johnson,	P.,	Galli,	C.,	Ferraina,	S.,	and	Burnod,	Y.	(1991).	Making	arm	
movements	within	different	parts	of	space:	the	premotor	and	motor	cortical	
representation	of	a	coordinate	system	for	reaching	to	visual	targets.	J	
Neurosci	11,	1182–1197.	

Chiovetto,	E.,	Berret,	B.,	and	Pozzo,	T.	(2010).	Tri-dimensional	and	triphasic	muscle	
organization	of	whole-body	pointing	movements.	Neurosci	170,	1223–1238.	
doi:10.1016/j.neuroscience.2010.07.006.	

Chiovetto,	E.,	Berret,	B.,	Delis,	I.,	Panzeri,	S.,	and	Pozzo,	T.	(2013).	Investigating	
reduction	of	dimensionality	during	single-joint	elbow	movements:	a	case	
study	on	muscle	synergies.	Front	Comput	Neurosci	7,	1:12.	
doi:10.3389/fncom.2013.00011.	

Chvatal,	S.	A.,	Torres-Oviedo,	G.,	Safavynia,	S.	A.,	and	Ting,	L.	H.	(2011).	Common	
muscle	synergies	for	control	of	center	of	mass	and	force	in	nonstepping	and	



49	
	

stepping	postural	behaviors.	J	Neurophysiol	106,	999–1015.	
doi:10.1152/jn.00549.2010.	

d'Avella,	A.,	and	Lacquaniti,	F.	(2013).	Control	of	reaching	movements	by	muscle	
synergy	combinations.	Front	Comput	Neurosci	7,	42.	
doi:10.3389/fncom.2013.00042.	

d'Avella,	A.,	Fernandez,	L.,	Portone,	A.,	and	Lacquaniti,	F.	(2008).	Modulation	of	
phasic	and	tonic	muscle	synergies	with	reaching	direction	and	speed.	J	
Neurophysiol	100,	1433–1454.	doi:10.1152/jn.01377.2007.	

d'Avella,	A.,	Portone,	A.,	Fernandez,	L.,	and	Lacquaniti,	F.	(2006).	Control	of	fast-
reaching	movements	by	muscle	synergy	combinations.	Journal	of	
Neuroscience	26,	7791–7810.	doi:10.1523/JNEUROSCI.0830-06.2006.	

Debicki,	D.	B.,	and	Gribble,	P.	L.	(2005).	Persistence	of	inter-joint	coupling	during	
single-joint	elbow	flexions	after	shoulder	fixation.	Experimental	brain	
research	163,	252–257.	

Dounskaia,	N.	V.,	and	Wang,	W.	(2014).	A	preferred	pattern	of	joint	coordination	
during	arm	movements	with	redundant	degrees	of	freedom.	J	Neurophysiol	
112,	1040–1053.	doi:10.1152/jn.00082.2014.	

Fisk,	J.,	Lackner,	J.	R.,	and	Dizio,	P.	(1993).	Gravitoinertial	force	level	influences	arm	
movement	control.	J	Neurophysiol	69,	504–511.	

Flanders,	M.	(1991).	Temporal	patterns	of	muscle	activation	for	arm	movements	in	
three-dimensional	space.	J	Neurosci	11,	2680–2693.	

Gentili,	R.,	Cahouet,	V.,	and	Papaxanthis,	C.	(2007).	Motor	planning	of	arm	
movements	is	direction-dependent	in	the	gravity	field.	Neurosci	145,	20–32.	
doi:10.1016/j.neuroscience.2006.11.035.	

Giszter,	S.	F.,	Mussa-Ivaldi,	F.	A.,	and	Bizzi,	E.	(1993).	Convergent	force	fields	
organized	in	the	frog's	spinal	cord.	J	Neurosci	13,	467–491.	

Gomi,	H.,	and	Kawato,	M.	(1997).	Human	arm	stiffness	and	equilibrium-point	
trajectory	during	multi-joint	movement.	Biol	Cybern	76,	163–171.	

Gribble,	P.	L.,	and	Ostry,	D.	J.	(1999).	Compensation	for	Interaction	Torques	During	
Single-	and	Multijoint	Limb	Movement.	J	Neurophysiol	82,	2310–2326.	

Gritsenko,	V.,	Kalaska,	J.	F.,	and	Cisek,	P.	(2011).	Descending	corticospinal	control	of	
intersegmental	dynamics.	J	Neurosci	31,	11968–11979.	
doi:10.1523/JNEUROSCI.0132-11.2011.	



50	
	

Gritsenko,	V.,	Yakovenko,	S.,	and	Kalaska,	J.	F.	(2009).	Integration	of	predictive	
feedforward	and	sensory	feedback	signals	for	online	control	of	visually	
guided	movement.	J	Neurophysiol	102,	914–930.	doi:10.1152/jn.91324.2008.	

Haruno,	M.,	Wolpert,	D.	M.,	and	Kawato,	M.	(2001).	Mosaic	model	for	sensorimotor	
learning	and	control.	Neural	Comput	13,	2201–2220.	
doi:10.1162/089976601750541778.	

Hollerbach,	J.	M.,	and	Flash,	T.	(1982).	Dynamic	interactions	between	limb	segments	
during	planar	arm	movement.	Biol	Cybern	44,	67–77.	

Kutch,	J.	J.,	and	Valero-Cuevas,	F.	J.	(2012).	Challenges	and	new	approaches	to	
proving	the	existence	of	muscle	synergies	of	neural	origin.	PLoS	Comput.	Biol.	
8,	e1002434.	doi:10.1371/journal.pcbi.1002434.	

Kutch,	J.	J.,	Kuo,	A.	D.,	Bloch,	A.	M.,	and	Rymer,	W.	Z.	(2008).	Endpoint	force	
fluctuations	reveal	flexible	rather	than	synergistic	patterns	of	muscle	
cooperation.	J	Neurophysiol	100,	2455–2471.	doi:10.1152/jn.90274.2008.	

Lackner,	J.	R.,	and	Dizio,	P.	(1994).	Rapid	adaptation	to	Coriolis	force	perturbations	
of	arm	trajectory.	J	Neurophysiol	72,	299–313.	

Le	Seac'h,	A.	B.,	and	McIntyre,	J.	(2007).	Multimodal	reference	frame	for	the	planning	
of	vertical	arms	movements.	Neurosci	Lett	423,	211–215.	
doi:10.1016/j.neulet.2007.07.034.	

Lee,	R.	G.,	Murphy,	J.	T.,	and	Tatton,	W.	G.	(1983).	Long-latency	myotatic	reflexes	in	
man:	mechanisms,	functional	significance,	and	changes	in	patients	with	
Parkinson's	disease	or	hemiplegia.	Adv	Neurol	39,	489–508.	

Massion,	J.	(1992).	Movement,	posture	and	equilibrium:	interaction	and	
coordination.	Prog	Neurobiol	38,	35–56.	

Mussa	Ivaldi,	F.	(1999).	Modular	features	of	motor	control	and	learning.	Curr	Opin	
Neurobiol	9,	713–717.	

Mussa	Ivaldi,	F.,	and	Bizzi,	E.	(2000).	Motor	learning	through	the	combination	of	
primitives.	Philos	Trans	R	Soc	Lond	B	355,	1755–1769.	

Olesh,	E.	V.,	and	Gritsenko,	V.	(2017).	Linking	post-stroke	movement	impairment	to	
mechanistic	changes	in	the	neural	control	of	movement.	In:	Combined	
Sections	Meeting;	2017	Feb	15-18;	San	Antonio,	TX.	p.	1280.	

Papaxanthis,	C.,	Pozzo,	T.,	and	McIntyre,	J.	(2005).	Kinematic	and	dynamic	processes	
for	the	control	of	pointing	movements	in	humans	revealed	by	short-term	
exposure	to	microgravity.	Neurosci	135,	371–383.	
doi:10.1016/j.neuroscience.2005.06.063.	



51	
	

Papaxanthis,	C.,	Pozzo,	T.,	Popov,	K.	E.,	and	McIntyre,	J.	(1998).	Hand	trajectories	of	
vertical	arm	movements	in	one-G	and	zero-G	environments.	Evidence	for	a	
central	representation	of	gravitational	force.	Experimental	brain	research	
120,	496–502.	

Pearson,	K.	G.,	and	Collins,	D.	F.	(1993).	Reversal	of	the	influence	of	group	Ib	
afferents	from	plantaris	on	activity	in	medial	gastrocnemius	muscle	during	
locomotor	activity.	J	Neurophysiol	70,	1009–1017.	

Pigeon,	P.,	Bortolami,	S.,	Dizio,	P.,	and	Lackner,	J.	R.	(2003).	Coordinated	turn-and-
reach	movements.	I.	Anticipatory	compensation	for	self-generated	Coriolis	
and	interaction	torques.	J	Neurophysiol	89,	276–289.	
doi:10.1152/jn.00159.2001.	

Pozzo,	T.,	Papaxanthis,	C.,	Stapley,	P.,	and	Berthoz,	A.	(1998).	The	sensorimotor	and	
cognitive	integration	of	gravity.	Brain	Res	Brain	Res	Rev	28,	92–101.	

Prochazka,	A.,	and	Yakovenko,	S.	(2007).	The	neuromechanical	tuning	hypothesis.	
Prog	Brain	Res	165,	255–265.	doi:10.1016/S0079-6123(06)65016-4.	

Prochazka,	A.,	Gillard,	D.	M.,	and	Bennett,	D.	J.	(1997).	Positive	force	feedback	
control	of	muscles.	J	Neurophysiol	77,	3226–3236.	

Sabes,	P.	N.	(2000).	The	planning	and	control	of	reaching	movements.	Curr	Opin	
Neurobiol	10,	740–746.	

Sainburg,	R.	L.,	Ghez,	C.,	and	Kalakanis,	D.	(1999).	Intersegmental	Dynamics	Are	
Controlled	by	Sequential	Anticipatory,	Error	Correction,	and	Postural	
Mechanisms.	J	Neurophysiol	81,	1045–1056.	

Sainburg,	R.	L.,	Ghilardi,	M.,	Poizner,	H.,	and	Ghez,	C.	(1995).	Control	of	limb	
dynamics	in	normal	subjects	and	patients	without	proprioception.	J	
Neurophysiol	73,	820–835.	

Santello,	M.,	Baud-Bovy,	G.,	and	Jörntell,	H.	(2013).	Neural	bases	of	hand	synergies.	
Front	Comput	Neurosci	7,	23.	doi:10.3389/fncom.2013.00023.	

Scott,	S.	H.	(1997).	Comparison	of	onset	time	and	magnitude	of	activity	for	proximal	
arm	muscles	and	motor	cortical	cells	before	reaching	movements.	J	
Neurophysiol	77,	1016–1022.	

Scott,	S.	H.,	and	Kalaska,	J.	F.	(1997).	Reaching	movements	with	similar	hand	paths	
but	different	arm	orientations.	I.	Activity	of	individual	cells	in	motor	cortex.	J	
Neurophysiol	77,	826–852.	



52	
	

Shabbott,	B.	A.,	and	Sainburg,	R.	L.	(2008).	Differentiating	between	two	models	of	
motor	lateralization.	J	Neurophysiol	100,	565–575.	
doi:10.1152/jn.90349.2008.	

Shadmehr,	R.,	and	Mussa	Ivaldi,	F.	(1994).	Adaptive	representation	of	dynamics	
during	learning	of	a	motor	task.	J	Neurosci	14,	3208–3224.	

Shenoy,	K.	V.,	Sahani,	M.,	and	Churchland,	M.	M.	(2013).	Cortical	control	of	arm	
movements:	a	dynamical	systems	perspective.	Annu	Rev	Neurosci	36,	337–
359.	doi:10.1146/annurev-neuro-062111-150509.	

Tagliabue,	M.,	Ciancio,	A.	L.,	Brochier,	T.,	Eskiizmirliler,	S.,	and	Maier,	M.	A.	(2015).	
Differences	between	kinematic	synergies	and	muscle	synergies	during	two-
digit	grasping.	Front	Hum	Neurosci	9,	1–17.	doi:10.3389/fnhum.2015.00165.	

Talkington,	W.	J.,	Pollard,	B.	S.,	Olesh,	E.	V.,	and	Gritsenko,	V.	(2015).	Multifunctional	
Setup	for	Studying	Human	Motor	Control	Using	Transcranial	Magnetic	
Stimulation,	Electromyography,	Motion	Capture,	and	Virtual	Reality.	J	Vis	Exp,	
e52906–e52906.	doi:10.3791/52906.	

Ting,	L.	H.	(2007).	Dimensional	reduction	in	sensorimotor	systems:	a	framework	for	
understanding	muscle	coordination	of	posture.	Prog	Brain	Res	165,	299–321.	
doi:10.1016/S0079-6123(06)65019-X.	

Torres-Oviedo,	G.,	and	Ting,	L.	H.	(2007).	Muscle	synergies	characterizing	human	
postural	responses.	J	Neurophysiol	98,	2144–2156.	
doi:10.1152/jn.01360.2006.	

Torres-Oviedo,	G.,	Macpherson,	J.	M.,	and	Ting,	L.	H.	(2006).	Muscle	synergy	
organization	is	robust	across	a	variety	of	postural	perturbations.	J	
Neurophysiol	96,	1530–1546.	doi:10.1152/jn.00810.2005.	

Tresch,	M.	C.,	and	Jarc,	A.	(2009).	The	case	for	and	against	muscle	synergies.	Curr	
Opin	Neurobiol	19,	601–607.	doi:10.1016/j.conb.2009.09.002.	

Tresch,	M.	C.,	Cheung,	V.	C.	K.,	and	d'Avella,	A.	(2006).	Matrix	factorization	
algorithms	for	the	identification	of	muscle	synergies:	evaluation	on	simulated	
and	experimental	data	sets.	J	Neurophysiol	95,	2199–2212.	
doi:10.1152/jn.00222.2005.	

Tresch,	M.	C.,	Saltiel,	P.,	and	Bizzi,	E.	(1999).	The	construction	of	movement	by	the	
spinal	cord.	Nat	Neurosci	2,	162–167.	doi:10.1038/5721.	

Valero-Cuevas,	F.	J.,	Cohn,	B.	A.,	Yngvason,	H.	F.,	and	Lawrence,	E.	L.	(2015).	
Exploring	the	high-dimensional	structure	of	muscle	redundancy	via	subject-
specific	and	generic	musculoskeletal	models.	J	Biomech	48,	2887–2896.	
doi:10.1016/j.jbiomech.2015.04.026.	



53	
	

Winter,	D.	A.	(2009).	Biomechanics	and	Motor	Control	of	Human	Movement.	4	ed.	
Hoboken,	New	Jersey:	John	Wiley	&	Sons.	

Wolpert,	D.	M.,	and	Kawato,	M.	(1998).	Multiple	paired	forward	and	inverse	models	
for	motor	control.	Neural	Netw	11,	1317–1329.	

Yakovenko,	S.,	Krouchev,	N.	I.,	and	Drew,	T.	(2011).	Sequential	activation	of	motor	
cortical	neurons	contributes	to	intralimb	coordination	during	reaching	in	the	
cat	by	modulating	muscle	synergies.	J	Neurophysiol	105,	388–409.	
doi:10.1152/jn.00469.2010.	

Figure	and	Table	Legends	
Figure	1.	Experimental	setup	and	analysis	flow.	(A)	Illustration	showing	the	
locations	of	reaching	targets,	arranged	in	a	semi-spherical	pattern	in	VR,	relative	to	
the	physical	location	of	the	subject.	The	central	target	is	shown	in	red	and	one	of	the	
goal	targets	is	shown	in	green.	(B)	Schematic	representation	of	analysis	flow.	IDM	
stands	for	inverse	dynamic	model.	NMF1,	NMF2,	and	MNF3	indicate	separate	
analyses	applied	to	EMG,	muscle	torque,	and	other	kinetic	and	kinematic	data	
respectively.	Mathematical	symbols	match	those	used	in	formulae	in	Methods.		
	
Figure	2.	Examples	of	NMF	analysis	of	EMG.	(A)	Average	muscle	activation	(solid	
lines)	from	two	muscles	during	one	movement	for	one	subject	(plotted	with	
standard	deviation	from	15	repetitions	of	the	same	movement).	The	subject	shown	
here	required	4	primitives	for	EMG	VAF	>	95%.	The	activation	profiles	from	these	
primitives	were	categorized	as	A,	B,	D	and	E	based	on	the	order	of	their	peaks	(see	
Methods).	(B)	Illustration	of	weights	across	movements	for	the	two	EMG	signals.	
The	NMF	weights	for	each	primitive	and	each	movement	direction	is	the	distance	in	
the	polar	coordinates,	the	angle	is	based	on	the	direction	of	motion	in	one	plane,	or	
the	reaching	target	location	relative	to	the	starting	target.	
	
Figure	3.	Example	motion	signals,	muscle	activity,	and	corresponding	NMF	
weights	for	a	single	subject.	The	central	polar	plots	show	normalized	weights	for	
the	first	NMF	primitive	plotted	as	in	Fig.	2B.	The	temporal	profiles	of	signals	from	
which	the	NMF	weights	were	obtained	are	shown	around	the	polar	plots	in	
matching	colors.	All	signals	are	normalized	in	time	and	amplitude	as	described	in	
Methods	for	NMF	analysis.	(A)	Joint	angles	in	time	and	corresponding	weights	from	
NMF3.	Averages	(solid	lines)	and	standard	deviations	(shaded	areas)	are	across	
movement	repetitions.	(B)	Angular	velocity	in	time	and	corresponding	weights	from	
NMF3,	formatted	as	in	(A).	(C)	Muscle	torques	in	time	and	corresponding	weights	
from	NMF2,	formatted	as	in	(A).	(D)	MG	torque	in	time	and	corresponding	weights	
from	NMF3,	formatted	as	in	(A).	(E)	MN	torque	in	time	and	corresponding	weights	
from	NMF3,	formatted	as	in	(A).	(F)	EMG	signals	in	time	and	corresponding	weights	
from	NMF1.	Averages	(solid	lines)	and	standard	errors	of	the	mean	(shaded	areas)	
are	across	movement	repetitions.	Muscle	abbreviations	are	as	described	in	Methods.	
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Figure	4.	Temporal	activation	profiles	of	EMG,	muscle-torque,	and	mechanical	
primitives.	Average	normalized	activation	profiles	(solid	lines)	and	standard	
deviations	(shaded	area)	across	all	eight	subjects	are	plotted	for	each	activation.	The	
activation	profiles	were	arranged	based	on	the	occurrence	of	the	first	peak	and	
labeled	A	through	C	for	muscle-torque	(blue)	and	mechanical	(black)	primitives.	
EMG	activation	profiles	were	labeled	A	through	C	(red).	Titles	show	the	labels	for	
activation	profiles	from	each	type	of	primitive	that	are	plotted	on	the	same	plot.	
Both	temporal	and	amplitude	values	for	all	activation	profiles	were	normalized	as	
described	in	Methods.	
	
Figure	5.	Cross-correlation	lag	times	and	peaks	of	NMF	activation	profiles.	(A)	
Lag	times	that	correspond	to	maximal	correlations	between	activation	profiles	of	
EMG	primitives.	Red	lines	indicate	the	median	value	across	subjects	with	the	25th	
and	75th	percentiles	marked	by	the	edges	of	each	box.	(B)	Peak	times	of	each	
activation	profile	of	EMG	primitive	per	subject.	(C)	Lag	times	that	correspond	to	
maximal	correlations	between	activation	profiles	of	EMG	and	muscle-torque	
primitives.	Plot	is	formatted	as	in	A.	(D)	Peak	times	of	activation	profiles	of	EMG	
primitives	and	the	corresponding	muscle-torque	primitives	per	subject.	(E)	Lag	
times	that	correspond	to	maximal	correlations	between	activation	profiles	of	EMG	
primitives	and	mechanical	primitives.	Plot	is	formatted	as	in	A.	(F)	Peak	times	of	
activation	profiles	of	EMG	primitives	and	the	corresponding	mechanical	primitives	
per	subject.	
	
Figure	6.	Shared	variance	between	weights	from	NMF1	on	EMG	and	NMF2	on	
muscle	torques.	The	colors	of	circles	indicate	r2	values	between	weights	for	
corresponding	signals	across	all	movements	averaged	across	subjects.	Muscle	
abbreviations	are	as	described	in	Methods.	F/E	stands	for	flexion/extension;	Ab/Ad	
stands	for	abduction/adduction;	Pro/Sup	stands	for	pronation/supination.	
	
Figure	7.	Shared	variance	between	weights	from	NMF1	on	EMG	and	NMF3	on	
kinematic	and	kinetic	signals.	The	colors	of	circles	indicate	r2	values	between	
weights	for	corresponding	signals	across	all	movements	averaged	across	subjects.	
Muscle	abbreviations	are	as	described	in	Methods.	F/E	stands	for	flexion/extension;	
Ab/Ad	stands	for	abduction/adduction;	Pro/Sup	stands	for	pronation/supination.	
	

Tables	
Table	1.	rANOVA1	on	shared	variance	between	weights	of	NMF	1	on	EMG	and	
weights	of	NMF2	on	muscle	torques.		
rANOVA Degrees of Freedom F 

 
p 

Factors 119 3.58 0.01 

Gender x Factors 119 0.84 0.53 
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rANOVA Degrees of Freedom F 
 

p 

Multiple comparisons 	 Difference p 

Factor Primitive  A - C/E -0.02 0.09 

Factor Joint across - within 0.002 0.65 

	
	
Table	2.	rANOVA2	on	shared	variance	between	weights	of	NMF	1	on	EMG	and	
weights	of	NMF3	on	kinematic	and	kinetic	signals.		
rANOVA Degrees of Freedom F 

 
p 

Factors 479 3.32 0.02 

Gender x Factors 479 0.88 0.51 

Multiple comparisons 	 Difference p 

Primitive A velocity - angle -0.023 0.15 

Primitive A velocity - MG torque -0.003 0.93 

Primitive A velocity - MN torque 0.013 0.64 

Primitive A angle - MG torque 0.019 0.07 

Primitive A angle - MN torque 0.036 0.18 

Primitive A MG torque - MN torque 0.017 0.45 

Primitive C/E velocity - angle -0.012 0.47 

Primitive C/E velocity - MG torque -0.033 0.01 

Primitive C/E velocity - MN torque 0.024 0.1 

Primitive C/E angle - MG torque -0.021 0.16 

Primitive C/E angle - MN torque 0.036 0.05 

Primitive C/E MG torque - MN torque 0.056 0.02 
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Figure	1	
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Figure	2	
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Figure	3
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Figure	4	
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Figure	5	
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Figure	6	
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Figure	7	
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Chapter	5	

Linking	post-stroke	movement	impairment	to	mechanistic	changes	in	the	

neural	control	of	movement	
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Introduction	
The	effect	a	stroke	can	have	on	an	individual	is	widely	variable,	ranging	from	

verbal	and	visual	deficits,	to	cognitive	and	motor	impairment.		Perhaps	the	most	
noted,	and	often-studied	impairment	resulting	from	a	stroke	is	movement	
dysfunction	(Wade,	1992).		Eighty	percent	of	stroke	survivors	are	diagnosed	with	
motor	impairment	after	a	stroke	and	of	those,	over	fifty	percent	will	retain	some	
form	of	long-term	motor	impairment	(Langhorne	et	al.,	2009;	Wahl	and	Schwab,	
2014).			

Motor	impairment,	in	the	context	of	a	stroke,	is	a	consequence	of	damage	
caused	by	infarct	to	the	motor	or	premotor	cortex,	motor	tracts,	or	pathways	
associated	with	movement	production	or	regulation.			The	ensuing	impairment	can	
be	defined	as	the	loss	or	limitation	of	muscle	control,	movement,	or	mobility	and	
most	often	affects	the	face,	arm,	leg,	or	any	combination	of	these,	on	the	
contralateral	side	of	the	body	from	the	stroke	(Warlow	et	al,	2008).		These	deficits	
can	greatly	decrease	an	individual’s	ability	to	care	for	their	self,	leading	to	the	need	
for	long	term	assistance.		Even	for	individuals	who	require	little	assistance	after	a	
stroke,	the	disruption	of	normal	movement	can	be	frustrating	and	limit	their	
involvement	in	social	activities	they	previously	enjoyed.			

Numerous	rehabilitation	methods	have	been	proposed	and	studied	for	their	
efficacy	in	ameliorating	post	stroke	motor	deficits.		However,	a	great	number	of	
these	efforts	have	focused	on	the	training	of	compensatory	strategies.		Although	this	
strategy	allows	a	patient	to	potentially	regain	some	independence,	it	does	not	aim	to	
improve	the	underlying	muscle	impairment.		This	can	have	adverse	effects	and	limit	
the	long-term	rehabilitation	potential	of	those	individuals	by	creating	aberrant	
patterns	of	muscle	activity	(Takeuchi	and	Izumi,	2012;	Lough	et	al.,	1984).		In	an	
attempt	to	improve	rehabilitation	strategies	and	gain	a	better	understanding	of	the	
changes	that	occur	to	the	control	of	movement	in	stroke	patients,	neuroscience	and	
motor	control	research	has	expanded	to	investigate	the	underlying	causes	that	may	
lead	to	chronic	motor	impairment.						

Recent	studies	of	stroke	patients	have	suggested	that	long-term	motor	
impairment	may	result	from	altered	motor	primitive	composition	(Cheung	et	al.,	
2012; Roh	et	al.,	2015;	Clark	et	al.,	2010;	Cruz	and	Dhaher,	2008).		Motor	primitives,	
sometimes	also	referred	to	as	muscle	synergies,	can	be	described	as	a	group	of	
muscles	or	movement	parameter	with	shared	variance	that	co-activate	in	a	manner	
capable	of	producing	coordinated	movement.		These	primitives	have	been	suggested	
as	a	method	by	which	the	central	nervous	system	reduces	the	complexity	of	the	
musculoskeletal	system	(Bizzi	et	al.,	1991;	Tresch	et	al.,	2002;	Ting,	2007).		Results	
from	Cheung	and	colleagues	describe	two	general	patterns	of	primitive	
reorganization	they	observed	in	motor	impaired	stroke	patients.		These	patterns	
included	1.)	fractionation,	where	one	primitive	is	split	into	several	new	primitives,	
and	2.)	merging,	where	several	primitives	blend	into	one	large,	less	specific	
primitive	(Cheung	et	al.,	2012).		It	has	also	been	demonstrated	that	intensive	
rehabilitation	programs	can	alter	the	structure	of	motor	primitives	in	stroke	
patients	and	that	these	changes	correlate	with	improved	performance	on	motor	
tasks	(Tropea	et	al.,	2013).			
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	 Although	potentially	insightful,	studying	a	stroke	patient’s	recovery	in	
regards	to	motor	primitives	has	pitfalls.		The	theory	of	motor	primitives	has	become	
less	favorable	as	a	mechanism	of	linking	motion	to	muscle	activity	due	to	the	
inherent	limitations	of	the	methods	used	in	identifying	primitives.		Previously,	our	
lab	has	tested	non-negative	matrix	factorization	(NMF),	one	of	the	most	common	
methods	used	to	extract	motor	primitives	to	determine	its	usefulness	in	comparing	
muscle	activity	to	resulting	motion	(see	chapter	4	for	more	details).		In	this	
experiment,	primitives	extracted	from	muscle,	motion	and	dynamic	data	were	
compared,	and	no	consistent	overlap	in	the	directional	tuning	between	these	signals	
was	found.		These	results	suggest	that	although	decomposition	methods,	such	as	
NMF,	may	group	signals	with	similar	shared	variance	from	one	data	type	(EMG	for	
instance)	into	primitives,	that	this	relationship	is	not	necessarily	maintained	across	
other	biomechanical	signals.		It	is	therefor	problematic	to	infer	levels	of	movement	
impairment	based	on	the	composition	of	motor	primitives,	as	this	may	not	be	truly	
reflective	of	an	individual’s	capability.			
	 Other	research	into	the	changes	that	arise	in	the	neural	control	of	movement	
post	stroke	have	suggested	that	movement	dysfunction	is	a	result	of	anatomical	
changes.		Alterations	to	descending	motor	pathways	and	increased	ipsilateral	
projections	have	been	suggested	to	increase	improper	muscle	co-contractions	and	
joint	stiffness	leading	to	improper	movement	production	(Levin,	1996;	Gowland	et	
al.,	1992;	Trombly,	1992).			Yet	other	researchers	have	suggested	that	the	
anatomical	changes	may	be	more	linked	to	an	increase	in	devoted	cortex	space	to	
the	less	impaired	limb.			Work	by	Kim	and	colleagues	demonstrated	that	post	stroke	
rats	that	were	trained	to	have	movement	preference	with	their	less	impaired	limb	
had	an	increase	in	cortical	area	devoted	to	that	limb	(Kim	et	al.,	2015).		Although	
these	results	are	not	necessarily	surprising,	this	study	highlights	the	importance	of	
stroke	patients	becoming	reliant	on	their	less	impaired	limb	and	the	negative	
consequences	this	can	have	on	the	individual’s	long-term	rehabilitation	outcome.				
	 	It	remains	critical	to	the	progression	towards	better	rehabilitation	programs	
that	the	link	between	underlying	muscle	deficits	and	the	resulting	movement	is	
understood	(Lough	et	al.,	1984).		It	is	particularly	important	to	improve	our	
understanding	of	the	altered	patterns	of	muscle	activity	that	arise	in	response	to	
movements	with	varying	levels	of	forces	and	torques.		As	our	limbs	move	through	
space,	they	encounter	different	forces	and	torques,	which	create	specific	needs	that	
must	be	compensated	for	by	changes	in	muscle	activity.		The	lack	of	ability	to	
compensate	for	these	forces	may	play	a	role	in	the	long-term	motor	impairment	we	
see	in	a	significant	number	of	stroke	survivors.		It	was	therefor	the	aim	of	this	
project	to	investigate	the	relationship	between	muscle	activity	of	motor	impaired	
stroke	patients	and	the	dynamic	needs	of	different	movement	types.		It	is	our	hope	
that	this	work	will	allow	for	better-informed	rehabilitation	services	that	focus	on	
retraining	the	underlying	muscular	changes	that	lead	to	post	stroke	motor	
impairment.										
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Methods		
Experimental	Design	

To	better	understand	the	connection	between	muscle	activity	and	the	
resulting	motion	in	stroke	patients,	we	recruited	eight	chronically	motor	impaired	
stroke	survivors	to	perform	fourteen	center	out	reaching	task.		Patients	were	
included	if	they	had	suffered	from	one	unilateral	stroke	and	had	no	other	
confounding	injuries	or	diseases	that	would	impact	movement	performance.		Stroke	
location	was	confirmed	by	either	magnetic	resonance	imagining	or	computerized	
tomography	as	read	and	assessed	by	a	physician.		Patients	were	excluded	if	they	
could	not	produce	visible	movement	with	their	shoulder	and	elbow,	or	if	they	were	
unable	to	provide	written	consent	to	participate.		Age	match	control	subjects	were	
also	recruited	from	West	Virginia	University	and	the	surrounding	area.		Control	
subjects	were	excluded	if	they	had	any	significant	health	conditions,	had	ever	
suffered	from	a	stroke,	or	had	any	sever	injuries	to	their	upper	extremities	that	

would	affect	their	movement	
capability.			

Reaching	tasks	were	
directed	through	the	use	of	a	virtual	
reality	system	that	randomly	
displayed	a	single	target	at	a	time		
(Oculus	Rift	head	set	and	Vizard	
virtual	environment).		Targets	were	
arranged	in	a	semi-spherical	
pattern	around	a	central	starting	
location	that	was	adjusted	to	each	
individual	such	that	the	initial	
posture	of	the	arm	was	in	the	
following	confirmation:	zero	
degrees	shoulder	flexion,	ninety	
degrees	elbow	flexion,	zero	degrees	
flexion	of	the	wrist	(Fig.	1).		The	
distance	between	the	central	target	

Electromyography 

was recorded for 

twelve muscles 

of the arm and 

shoulder.

Oculus Rift virtual real-

ity helmet was used 

to display targets.

PhaseSpace 

motion capture system 

was used to track motion 

of the arm and trunk.

Figure	1:	Experimental	Set	up	
Electromyography	was	recorded	from	
twelve	muscles	of	the	arm	and	shoulder.		
Motion	capture	data	was	recorded	using	
the	PhaseSpace	motion	capture	system.	
Light	emitting	diodes	were	placed	on	
anatomical	landmarks	of	the	arm,	
shoulder,	and	trunk.		The	Oculus	Rift	
virtual	reality	head	set	was	used	to	
project	targets	to	the	patient	in	a	
randomized	order.	Targets	were	
arranged	in	a	semi-spherical	pattern	
around	a	central	starting	target.		Targets	
were	illuminated	in	green	to	indicate	
movement	to	that	target.		
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and	all	exterior	targets	was	scaled	to	be	equal	to	thirty	percent	of	each	patients	total	
arm	length	as	measured	from	the	anterior	acromial	point	of	the	shoulder	to	the	
distal	end	of	the	index	finger.			

	Patients	were	instructed	to	reach	to	the	peripheral	target	when	the	target	
appeared	green	and	to	return	to	the	central	target	once	the	peripheral	target	turned	
red,	indicating	a	successful	movement.			Patients	were	instructed	to	move	as	quickly	
but	as	accurately	as	possible.		Fifteen	repetitions	of	each	movement	were	performed	
in	a	randomized	order.		Movements	were	performed	with	both	the	more	and	less	
impaired	limb	for	comparison.		Motion	of	the	trunk,	arm,	forearm,	wrist	and	index	
fingertip	were	recorded	using	a	three	dimensional	active	marker	motion	capture	
system	which	recorded	movement	at	a	rate	of	480	frames	per	second	(Impulse	by	
Phasespace).		Motion	capture	markers	were	placed	on	anatomical	landmarks	of	the	
shoulder,	elbow,	and	wrist,	in	a	manner	that	allowed	for	proper	post	
experimentation	calculation	of	joint	angles	(Robertson	et	al.,	2004).			

Muscle	activity	(EMG)	was	recorded	by	a	MA-300	EMG	system	(Motion	Lab	
Systems)	using	surface	electrodes	placed	over	the	following	twelve	muscles:	lateral	
and	medial	heads	of	the	Triceps	Brachii	(shoulder	extension/	scapular	depression),	
long	and	short	heads	of	the	Biceps	Brachii	(shoulder	flexion/	scapular	elevation,	
elbow	flexion,	supination),	Anterior	and	Posterior	Deltoid	(shoulder	flexion,	
extension	and	abduction),		Pectoralis	major	(shoulder	flexion,	extension,	adduction	
and	medial	rotation),	Teres	Major	(shoulder	internal	rotation),	Brachioradialis	
(elbow	flexion),	Flexor	Carpi	Radialis	(elbow	and	wrist	flexion),	Extensor	Carpi	
Ulnaris	(wrist	extension),	and	the	Flexor	Carpi	Ulnaris	(wrist	flexion)(Winters,	
1990).			Motion	capture	and	EMG	data	were	recorded	simultaneously	using	a	
customized	circuit	and	triggering	system	(Talkington	et	al.,	2015).	
	
Data	Analysis	

Recorded	data	was	imported	into	Matlab	and	analyzed	using	custom	scripts.		
Movement	onset	and	offset	was	identified	using	a	semi-automated	approach.			The	
criteria	used	to	determine	movement	start	and	stop	was	an	increase	or	decrease	in	
velocity	of	greater	than	five	percent	of	the	maximum	velocity	for	that	movement.		
Any	errors	in	the	criteria	due	to	inadvertent	movement	by	patients	were	corrected	
by	a	researcher.			Joint	angles	and	angular	velocity	were	calculated	from	the	motion	
capture	data	for	five	degrees	of	freedom	including	shoulder	flexion/extension,	
shoulder	abduction/adduction,	shoulder	pronation/supination,	elbow	
flexion/extension,	and	wrist	flexion/extension.		This	kinematic	data	was	then	used	
to	calculate	limb	dynamics	using	a	Simulink	model	(MathWorks)	run	in	an	inverse	
dynamic	mode	(for	additional	description	see	“Limb	Dynamics”,	chapter	4).			

Muscle	activity	was	high	pass	filtered	(40	Hz),	bandpass	filtered	to	remove	
electrical	background	noise	(59	to	61	Hz),	rectified,	and	low	pass	filtered	(20	Hz).		
Average	EMG	was	then	obtained	by	calculating	the	mean	activity	for	each	muscle	
across	the	fifteen	repetitions	of	each	movement.			Muscle	activity	was	normalized	
per	muscle	to	the	maximum	average	contraction	observed	across	movement	types.	 	
	
Correlation	Analysis	
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	 To	examine	changes	in	the	muscle	activity	of	chronically	impaired	stroke	
patients,	we	compared	muscle	activity	recorded	from	the	more	impaired	limb	of	
stroke	patients	to	the	average	muscle	activity	recorded	from	age	match	controlled	
subjects.		For	this	comparison,	average	muscle	activity	was	obtained	from	the	age	
match	control	subjects	for	each	muscle	for	both	the	right	and	left	limbs.		This	data	
was	then	compared	to	muscle	activity	from	both	the	more	and	less	impaired	limb	of	
each	stroke	patient	using	a	regression	analysis	(Fig.	2).		Resulting	Pearson’s	
correlation	coefficient	values	(R-values)	from	the	correlation	between	the	right	and	
left	limbs	of	the	control	subjects	were	compared	to	R-values	obtained	from	the	
correlation	between	the	more	impaired	limb	of	each	stroke	patient	and	the	
corresponding	limb	of	the	age	match	control	patients.		This	analysis	was	repeated	
for	each	movement	type	and	each	stroke	patient.			
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Figure	2:	Correlation	coefficient	plot	
Pearson’s	correlation	coefficient	was	used	to	compare	muscle	activity	data	from	the	right	and	left	
limb	of	one	example	subject	to	average	muscle	activity	from	the	right	and	left	limb	of	the	age	
match	control	subjects	for	one	movement.		Darker	colors	indicate	negative	correlations,	where	as	
yellow	colors	indicate	a	greater	positive	correlation.		
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Results	
	
Kinematic	and	Dynamic	signals	
	 Small	standard	deviations	of	kinematic	signal	types	were	observed	across	the	
age	match	control	subjects,	suggesting	strong	similarities	in	movement	(Fig.	3	A	
third	column,	B	third	column).		Movements	made	by	the	less	impaired	limb	of	stroke	
patients	also	showed	similar	kinematics	compared	to	averages	from	the	age	match	
control	group	(Fig.	3	A	first	column,	B	first	column).		However,	movements	made	by	
the	more	impaired	limb	of	the	stroke	patients	showed	significant	differences	in	joint	
angles	and	angular	velocity	when	compared	to	the	age	match	control	subjects	and	
the	less	impaired	limb	(Fig.	3	A	second	column,	B	second	column).				
	 Muscle	activity	across	the	age	match	control	subjects	was	also	similar,	shown	
by	small	standard	error	values	(Fig.	3	C	third	column).		Patterns	of	muscle	activation	
were	also	similar	between	the	age	match	control	subjects	and	the	less	impaired	limb	
of	the	stroke	patients	(Fig.	3	C	first	column).		Similar	to	the	kinematic	signals,	EMG	
from	the	more	impaired	limb	of	the	stroke	patients	showed	significant	differences	
when	compared	to	the	less	impaired	limb	and	the	age	matched	control	subjects	(Fig.	
3	C	second	column).		As	a	result	of	the	difference	in	muscle	activity,	differences	in	
muscle	torques	from	the	more	impaired	limb	of	the	stroke	patients	(Fig.	3	D	second	
column)	were	also	observed	compared	to	the	age	matched	controls	and	the	less	
impaired	limb	of	the	stroke	patients	who	had	muscle	torques	similar	to	each	other	
(Fig.	3	D	first	and	third	columns).				
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Regression	analysis	
	 Regression	analysis	comparing	the	right	and	left	limb	of	the	age	match	
controls	across	movement	types	showed	high	numbers	of	small	correlation	values,	
with	decreasing	occurrence	as	correlation	values	increased	(Fig.	4	gray	bars).		When	
compared	to	the	more	impaired	limb	of	stroke	patients,	two	patients	showed	less	
agreement	between	their	more	impaired	limb	and	the	matching	limb	from	the	age	

Figure	3:	Example	kinematic,	dynamic,	and	muscle	activity	recordings	from	stroke	patients	
and	controls	
Data	from	the	more	and	less	impaired	limb	of	one	example	patient	and	average	data	from	the	age	
match	control	subjects	for	a	single	movement.		(A)	Joint	angles,	and	(B)	angular	velocity,	for	shoulder	
abduction/	adduction	and	flexion/extension.	(C)	muscle	activity	recorded	from	the	pectoralis,	
anterior	deltoid,	and	posterior	deltoid.	(D)	calculated	muscle	torques,	(E)	interaction	torques,	and	
(F)	gravitational	torques	from	custom	dynamic	model	(see	methods	for	more	details).		
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match	control	group	(Fig.	4,	patients	6,	7).		This	resulted	in	a	shift	of	R2	values	that	
clustered	closer	to	0,	compared	to	the	spread	of	R2	values	seen	in	the	other	subjects.			
			

	

	
	 Higher	levels	of	agreement	in	muscle	activity	between	the	limbs	of	the	
control	subjects	were	seen	for	several	movement	types	when	compared	to	the	more	
impaired	limb	of	the	patients	(Fig.	5	A).		For	six	out	of	the	eight	patients	(patients	1,	
2,	4,	6,	7,	8)	movement	type	one,	had	a	higher	average	R2	value	for	the	comparison	
between	the	right	and	left	limb	of	control	subjects	than	the	average	R2	value	for	the	
comparison	between	the	more	impaired	limb	of	a	stroke	patient	and	the	
corresponding	limb	of	the	control	subjects.		Movement	type	three	showed	average	
lower	R2	values	for	all	eight	patients	when	compared	to	the	correlation	between	the	
right	and	left	limbs	of	the	control	subjects.		For	five	out	of	the	eight	subjects	
(patients	1,	2,	4,	6,	7),	average	R2	values	from	the	patient	to	control	comparison	
were	lower	for	movement	four,	compared	to	the	inter	limb	comparison	of	control	
subjects.		Movement	six	also	had	lower	average	R2	values	from	the	patient	to	control	

Figure	4:	Comparison	of	R2	values	between	patients	and	age	match	control	subjects.		
Results	from	the	comparison	of	R-values	across	all	movements	for	each	muscle	between	patients	
and	age	match	control	averages.		Red	bars	indicate	the	correlation	between	the	more	impaired	
limb	of	each	stroke	patient	and	the	corresponding	limb	from	the	age	match	control	subjects.	Gray	
bars	indicate	the	correlation	values	calculated	from	the	comparison	between	the	right	and	left	
limb	of	the	age	match	controls.		
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comparison	(patients	1,	2,	3,	5,	6,	7);	as	did	movement	thirteen	(patients	2,	4,	6,	7,	
8).	

	

Figure	5:	Average	R2	values	across	movement	
types		
(A)	Average	R2	values	for	each	movement	type	
were	calculated	from	the	Pearson’s	correlation	
coefficients.	Average	values	(solid	lines)	for	the	
comparison	between	the	more	affected	limb	of	
each	stroke	patient	and	corresponding	limb	of	
the	age	match	controls	are	displayed	in	blue	with	
standard	deviation	(shaded	area).		Average	
squared	correlation	values	(solid	lines)	for	the	
comparison	between	the	right	and	left	limb	in	the	
age	match	control	groups	are	indicated	in	gray	
with	the	shaded	area	indicating	standard	
deviations.		(B)	Arrows	indicate	the	movement	
directions	that	showed	greater	differences	in	
muscle	activity	between	the	more	impaired	limb	
of	stroke	patients	and	the	corresponding	limb	of	
control	subjects.		
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Discussion	
	 Here	we	aimed	to	examine	the	relationship	between	muscle	activity	and	
resulting	motion	in	stroke	patients	who	suffer	from	chronic	motor	impairment.		To	
closely	explore	this	relationship	we	had	eight	stroke	survivors	perform	center	out	
reaching	tasks	while	their	motion	and	muscle	activity	was	recorded.		The	functional	
ability	of	both	limbs	of	the	stroke	patients	was	examined	and	compared	to	the	right	
and	left	limb	of	age	match	control	subjects.		This	allowed	us	to	examine	potential	
changes	or	compensatory	strategies	to	the	neural	control	of	movement	in	both	the	
more	and	less	affected	limb	of	the	patients.				
	 As	in	our	previous	work,	we	observed	strong	similarities	in	joint	angles	and	
angular	velocity	amongst	our	control	subject	group.		This	consistency	in	the	control	
subjects	was	also	present	in	muscle	activity	and	dynamic	signals.		Movement	
recorded	from	the	less	impaired	limb	of	stroke	patients	also	resembled	that	of	the	
control	subjects.		This	suggests	that	despite	changes	to	the	control	of	movement	for	
the	more	impaired	limb,	normal,	or	nearly	normal,	motor	control	may	be	preserved	
for	the	less	impaired	limb.			
	 Stark	differences	were	however	observed	in	the	more	affected	limb	for	
several	stroke	patients.		In	two	out	of	the	eight	patients	(patients	6	and	7)	there	was	
a	noticeable	decrease	in	the	correlation	between	muscles	of	the	more	affected	limb	
and	average	muscle	activity	from	the	corresponding	limb	of	the	control	subjects.			
Interestingly,	only	one	of	these	patients,	patient	6,	showed	a	significantly	slower	
average	movement	time	on	their	impaired	limb	(4.4	seconds,	compared	to	1.7	
seconds	on	the	less	impaired	limb),	where	as	patient	7	had	movement	times	that	
were	roughly	equivalent	for	both	limbs	(1.8	and	1.7	seconds)	(Table	1).			This	
finding	suggests	that	speed	of	movement,	which	is	often	used	as	a	measure	of	motor	
impairment	in	post	stroke	assessments,	may	not	be	a	good	predictor	for	the	quality	
of	underlying	muscle	activity.		Additionally,	patient	8	showed	significantly	different	
speeds	of	movement	(9.8	seconds	for	the	more	impaired	limb	and	3.8	seconds	for	
the	less	impaired	limb)	but	had	muscle	activity	that	was	similar	to	that	of	the	age	
matched	control	subjects.			
	 We	also	observed	several	movement	types	that	had	lower	average	R2	values	
across	the	patient	to	subject	comparison.		Four	of	these	movements	were	performed	
in	the	horizontal	plane	and	one	in	the	vertical	plane	(see	figure	5	B).		Movements	
three	and	four	require	both	shoulder	extension	and	elbow	flexion.		Movements	in	
this	direction	create	assistive	interaction	torques	at	the	elbow,	which	cause	passive	
flexion	of	the	elbow.		In	this	regard,	there	should	be	less	required	muscle	activity	at	
the	elbow	to	achieve	the	desired	movement.			Movements	six	and	thirteen	also	
create	passive	interaction	torques	at	the	elbow	with	the	extension	of	the	shoulder	
assisting	in	the	flexion	of	the	elbow.	
	 One	could	speculate	that	movements	with	assistive	interaction	torques	
should	be	easier	to	complete	by	individuals	with	motor	impairment	due	to	the	
passive	assistance	and	thus	less	required	muscle	activation.		However,	it	appears	
that	these	movements	showed	the	greatest	difference	in	muscle	activity	between	
the	age	match	controls	and	stroke	patients.			
	 Previous	research	into	the	physiological	changes	that	lead	to	chronic	motor	
impairment	have	suggested	that	ipsilateral	motor	projections	to	the	paretic	side	
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may	increase	during	the	recovery	period	of	a	stroke	patient	(Turton	et	al.,	1996).		
These	anatomical	changes,	which	arise	from	plasticity	in	the	central	nervous	system,	
have	been	show	to	increase	abnormal	inter	joint	movement	and	may	be	detrimental	
to	movement	abilities	(Werhahn et al., 2003; Sukal, 2007).		This	has	also	been	
demonstrated	as	an	increase	in	co-contractions	between	muscles,	causing	an	
increased	stiffness	to	stabilize	the	limb	(Schwerin et al., 2008;).		It	is	possible	that	
those	movements,	which	showed	the	greatest	difference	in	muscle	activity	between	
the	age	match	controls	and	the	stroke	patients,	may	be	highlighting	the	underlying	
physiological	changes	that	have	arisen	in	the	time	since	the	stroke.		It	is	also	of	
interest	to	note	that	two	out	of	the	eight	patients	we	examined	were	less	than	one-
year	post	stroke	(patient	3	who	was	6	months	post	stroke	and	patient	5	who	was	3	
months	post	stroke).		Those	two	patients	only	showed	lower	average	correlation	
values	for	the	patient	to	control	comparison	for	one	movement	type	(movement	
type	6).		It	is	possible	that	these	two	patients	are	still	within	an	early	enough	time	
window	since	their	stroke	that	the	aberrant	inter-joint	coupling	has	yet	to	establish.			
	 Although	early,	the	initial	results	from	this	experiment	suggest	that	it	may	be	
possible	to	identify	specific	movements	that	are	capable	of	highlighting	the	altered	
patterns	of	muscle	activity	present	in	stroke	patients.		If	true,	this	information	
would	be	valuable	in	helping	develop	better	rehabilitation	strategies	that	focus	on	
the	underlying	causes	of	long	term	motor	impairment.				
	 	
Future	directions	
	 In	order	to	further	investigate	the	changes	in	motor	control	that	arise	after	a	
stroke,	several	other	aspects	could	be	examined	within	the	context	of	this	study.		
First,	it	would	be	of	interest	to	develop	a	torque	metric	that	could	be	used	to	classify	
movements	based	on	the	overall	torque	load	placed	on	the	limb	during	a	movement.		
This	would	allow	for	the	comparison	between	differences	in	muscle	activity	to	
varying	levels	of	overall	limb	torque.		Results	from	this	would	provide	insight	as	to	
how	well	joint	torques	are	compensated	for	in	stroke	patients	or	if	there	is	a	
correlation	between	severity	in	movement	impairment	and	ability	to	compensate	
for	different	levels	of	torque.				
	 Another	aspect	that	could	provide	more	information	regarding	the	origin	of	
movement	impairment	in	stroke	patients	is	that	of	muscle	coupling.		Particularly,	it	
would	be	interesting	to	look	at	specific	muscle	couplings	that	arise	during	different	
movements	and	determine	to	what	extent	this	coupling	is	altered	in	stroke	patients.		
As	mentioned	before,	stroke	patients	often	exhibit	higher	levels	of	inter-joint	
coupling	and	increased	co-contractions.		It	would	be	notable	to	examine	this	effect	
in	relation	to	different	movement	types.		If	specific	movements	were	identified	that	
showed	higher	levels	of	improper	muscle	coupling	then	that	information	would	be	
relevant	to	developing	rehabilitation	strategies	focused	on	breaking	those	deviant	
co-activations.			
	 The	information	gained	from	studies,	such	as	this	one,	is	critical	to	the	
progression	of	scientifically	based	rehabilitation	practices.		With	added	knowledge	
regarding	the	changes	that	arise	in	muscle	activation	and	the	dynamic	control	of	
movement	in	stroke	patients,	rehabilitation	experts	can	devise	better	strategies	that	
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focus	on	improving	the	muscle	control	required	to	produce	correctly	executed	
movements.		It	is	important	that	researchers	and	clinicians	continue	to	work	
towards	improving	our	state	of	knowledge	so	that	we	can	provide	the	best	possible	
long-term	outcome	for	stroke	survivors.					
	
Tables	
	

	
Table	1:	Stroke	patient	demographics	and	information		
Eight	chronically	motor	impaired	stroke	patients	were	recruited	from	Ruby	
Memorial	Hospital.	Stroke	location	was	identified	from	imaging	reports	(MRI	or	CT)	
and	confirmed	by	the	treating	physician.	Average	movement	time	was	calculated	
from	kinematics	recorded	during	the	fifteen	repetitions	of	the	fourteen	movements.		
	
	
	
	
	

	

	

	

	

	

	

Subject 

ID

Gender Infarct

Hemisphere

Infarct description and location Years post 

Stroke

Average movement 

time in seconds

(R arm/L arm) 

1 M

M

Right lateral medullary infarction 

with occluded right vertebral artery

Left caudate lenticular nuclei and 

external horn of the left ventricle 

Right dorsal pontine-medullary 

lacunar infarction

Left middle cerebral artery 

Lacunar infarct involving 

posterior right putamen and 

border of right internal capsule

2

3

4

5

F

M

M

8

5

6 months

3

3 months

Right

Left

Right

Left

Right

2.4 / 4.1

1.9/1.5

2.4/2.4

1.9/1.8

1.5/1.5

6

7

8

M

M

M

Right

Right

Right

Right middle cerebral artery 11

6

7

4.4/2.5

1.8/1.7

3.8/9.8Right middle cerebral artery, 

extending posteriorly.

Right middle cerebral artery
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Chapter	6	

Summary	and	recommendations	for	future	research	

	

	

	

	

	

	

	

	

	

	

	

	
	
	



77	
	

	 Despite	its	necessity	to	everyday	life,	there	remains	much	unknown	
regarding	the	control	of	movement.			This	gap	in	knowledge	is	continually	studied	in	
the	ever-expanding	field	of	motor	control	research,	leading	to	the	development	of	
new	methods	and	theories	that	aim	to	explain	the	control	of	our	vastly	complex	
musculoskeletal	system.			The	application	of	this	growing	body	of	knowledge	ranges	
from	the	improved	understanding	of	neural	networks	to	the	development	of	new	
therapies	for	motor	impaired	individuals.			And	yet,	despite	our	vast	improvement	in	
what	is	known	about	the	motor	control	of	humans,	there	still	remain	many	
unanswered	questions	and	areas	of	contention.	
	 		A	reasonable	answer	to	why	so	many	different	theories	of	motor	control	are	
still	hotly	debated	lies	within	the	complexity	of	the	system	being	studied.			Human	
bodies	are	intricately	developed	systems,	with	dependencies	between	the	bones,	
which	form	our	main	structure,	and	the	muscles	that	drive	the	motion	of	those	
bones.			Because	of	these	mutually	contingent	parts,	it	becomes	difficult	to	separate	
out	what	aspects	of	movement	are	planned	verses	which	aspects	of	movement	occur	
as	a	result	from	our	biomechanical	framework.			This	embedded	artifact	of	human	
motion	creates	a	difficult	system	to	study.			Adding	to	this	difficulty	is	the	wide	
variety	of	movements	humans	can	perform.			Just	a	simple	reaching	movement	can	
involve	greater	than	five	degrees	of	freedom,	tens	of	muscles,	bones,	and	
accompanying	joints.			Add	to	this,	differences	in	speed,	accuracy,	and	distances	and	
the	number	of	possible	tasks	that	can	be	tested	seems	endless.				
	 The	methods	used	to	study	the	human	motor	control	system	also	create	a	
confounding	influence	on	the	answers	that	arise	from	experiments.			Experiments	
that	focus	on	measurements	of	muscle	activity	provide	answers	regarding	the	
coordination	of	muscles	necessary	to	drive	the	joints	and	bones	in	the	appropriate	
manner.			Yet,	these	studies	can	overlook	the	interplay	between	muscles,	dynamics	
and	the	resulting	kinematics.			Conversely,	studies	that	examine	kinematics	are	
shortsighted	in	observing	only	the	resulting	movement	and	not	the	underlying	
forces	that	produced	that	movement.			This	limitation	lead	us	to	develop	an	
experiment	where	both	muscle	activity	and	the	accompanying	kinematics	and	
dynamics	could	be	studied.			The	goal	of	this	work,	described	in	chapter	four,	was	to	
determine	if	motor	primitives	derived	from	muscle	activity	matched	motor	
primitives	from	movement	kinematics	and	dynamics.			Our	primary	metric	of	
comparing	muscle	motor	primitives	to	kinematic	and	dynamic	based	primitives	was	
the	comparison	of	how	the	weights	associated	with	each	primitive	type	were	
distributed	across	movement	types.			Prior	work	in	this	field	has	shown	that	
primitive	weights	are	spatially	tuned	in	specific	ways.			We	therefor	hypothesized	
that	if	kinematic	and	dynamic	information	affects	the	structure	of	muscle	based	
primitives	then	the	tuning	of	these	different	primitive	types	should	be	equivalent.			
Interestingly,	we	found	that	there	was	in	fact	no	significant	overlap	between	
kinematic,	dynamic,	and	muscle	based	primitives.			These	findings	lead	to	the	
rejection	of	our	main	hypothesis.			This	is	not	to	say	that	there	is	a	devisable	
relationship	between	muscle	activity,	dynamics,	and	kinematics.			It	is	however	
possible	that	this	relationship	may	not	be	fully	captured	from	the	procedures	of	
dimensional	data	deconstruction	often	used	to	classify	primitives.			For	the	future	of	
motor	primitive	research,	it	would	be	imperative	to	find	a	method	of	primitive	
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classification	that	accounts	for	the	relationship	between	kinematics,	dynamics,	and	
muscle	activity.				
	 Improved	methodology	for	investigating	this	relationship	would	also	be	
greatly	beneficial	to	the	application	of	studying	chronic	motor	impairment	in	stroke	
patients.			A	great	deal	of	effort	has	focused	on	creating	a	more	complete	and	easy	to	
apply	metric	for	quantifying	post	stroke	motor	impairment.			However,	significant	
limitations	have	derailed	these	efforts.			These	limitations	can	be	broken	down	into	
two	categories:	method	of	observation	and	data	collected.			First,	the	method	of	
observing	motor	impairment	in	stroke	patients	has	been	previously	limited	to	the	
ability	of	a	trained	physical	therapist	to	visually	score	movement.			This	provides	a	
qualitative	measure	of	motor	impairment	but	does	not	provide	a	quantitative	score.			
Additionally,	the	use	of	these	tests	and	the	quality	of	a	report	generated	from	these	
tests	is	reliant	on	the	expertise	of	the	administering	clinician.			To	combat	this	issue,	
research,	research	over	the	last	decade	has	aimed	to	quantify	movement	
impairment	by	using	state	of	the	art	technology	such	as	motion	capture	equipment.			
Although	solving	the	issue	of	providing	a	quantitative	measure,	this	equipment	is	
expensive	and	difficult	to	use	by	an	untrained	individual,	making	it	irrelevant	in	the	
clinical	setting.			As	an	alternative	to	this	approach,	we	have	tested	the	use	of	low	
cost	motion	capture	equipment	that	provides	a	“plug	and	play”	easy	to	use	set	up.			
This	set	up	works	well	for	movements	in	the	frontal	plane	but	was	found	to	be	not	
as	well	suited	for	movements	that	crossed	multiple	planes	or	incorporated	fine	
motor	movements,	such	as	picking	up	paper	clips.			However,	this	approach	of	
applying	low	cost	motion	capture	to	the	quantification	of	motor	impairment	should	
not	be	abandoned	by	these	shortcomings.			The	speed	with	which	this	technology	is	
advancing	is	very	promising	and	it	is	likely	that	this	technology	will	be	clinically	
adaptable	within	the	next	ten	years.	
	 This	technology,	however,	will	need	to	address	the	other	limitation	currently	
imposed	on	clinical	measures	of	motor	impairment,	which	is	the	type	of	data	
currently	used	to	describe	post	stroke	movement.			Kinematic	data,	such	as	joint	
angles,	velocity,	and	acceleration	are	important	metrics	but	fall	short	in	capturing	all	
aspects	of	movement	impairment.			For	clinicians	to	have	a	full	description	of	motor	
impairment,	it	is	important	for	muscle	activity	to	be	accounted	for	as	well.			This	
however	is	a	difficult	request	to	accommodate.			Recording	muscle	activity	requires	
the	use	of	EMG,	and	although	this	technology	is	becoming	cheaper	and	easier	to	use,	
its	application	and	analysis	still	requires	a	trained	individual.			The	best	solution	to	
this	would	be	to	provide	clinicians	with	a	tool	that	could	predict	muscle	activity	
from	kinematic	data.			Programs	such	as	OpenSim,	created	by	researchers	at	
Stanford,	are	the	early	stages	of	what	could	be	a	clinically	relevant	tool.				Research	
being	conducted	at	Microsoft	has	also	produced	an	early	stage	model	of	predicting	
muscle	activity	from	movement,	but	there	remains	considerable	work	to	create	a	
model	that	is	adaptable	to	patients	with	movement	impairment.				
	 The	work	completed	during	the	tenure	of	this	dissertation	aimed	to	address	
some	of	the	critical	gaps	in	our	knowledge	regarding	motor	control	and	its	
application	to	studying	post	stroke	motor	deficits.			Additionally,	this	work	intended	
to	push	the	boundaries	of	clinically	relevant	tools	that	would	provide	clinicians	a	
more	comprehensive	mechanism	for	quantifying	post	stroke	movement	
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impairment.			For	the	future	care	of	stroke	patients	it	is	crucial	that	these	topics	
continue	to	be	investigated.			Equally	important	is	that	the	dialogue	between	
researchers	and	clinicians	remain	open	and	effective.			This	will	encourage	the	
transfer	of	research	findings	into	clinically	relevant	tools,	which	is	the	only	way	to	
provide	improved	care	to	this	important	and	growing	patient	population.				
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