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ABSTRACT 
 

Transport and Utilization of Arginine and Arginine-
Containing Peptides by Rat Alveolar Macrophages 

 
Xiaodong Yang 

 
Purpose. To demonstrate that alveolar macrophages (AM) from 
rats exhibit pepT1-like transporter for the uptake of small 
arginine-containing peptides (ACPs) and utilized these 
peptides as direct substrates for nitric oxide (NO) 
production.  
 
Method. A HPLC assay was developed for quantitative 
measurement of Arg and ACPs in rat plasma and 
bronchoalveolar lavage (BAL) fluid. The uptake of small 
peptides by rat AM was evaluated using fluorescein 
isothiocynate (FITC)-labeled (*) peptides (Arg-Lys*, β-Ala-
Lys*, and Gly-Sar-Lys*), HPLC analysis of potential peptide 
degradation, and known inhibitors on arginine (Arg) and 
PepT1 transport. NO production by AM through Arg and ACPs 
was studied with and without inhibition by transport 
inhibitors. The presence of PepT1-like transporter on AM 
was evaluated using antipepT1 antisera and Western blot 
analysis. The substrate specificity of Arg-Gly and Arg-Gly-
Asp was determined using purified inducible nitric oxide 
synthase (iNOS). The availability of ACPs in the lung was 
determined by the HPLC analysis of plasma and (BAL) fluid. 
 
Results. The FITC-labeled peptides were internalized by AM 

without degradation. Uptake of Arg-Lys*, β-Ala-Lys*, and 
Gly-Sar* was blocked (~50%) by cephradine, but not by Lys 
(an inhibitor on CAT-2B for arginine transport). The NO 
production by AM through ACPs was significantly blocked by 
PepT1 inhibitors and by an antiPepT1 antibody in a dose-
dependent manner. These inhibitors had no effect on AM 
production of NO using Arg as a substrate. Arg-Gly and Arg-
Gly-Asp were found to be direct substrates for iNOS with 
similar Km and Vmax values to those of Arg. But the 
production of NO by AM using ACPs as substrate was 2-fold 
higher than using Arg as a substrate. Both Arg-Gly and Arg-
Gly-Asp were found in rat plasma and BAL fluid. The 
presence of a PepT1-like transporter on AM was confirmed by 
Western blot. 



 
Conclusion. This study shows that AM exhibits PepT1-like 
transporter for small peptide uptake. ACPs, through PepT1-
like transporter, can serve as direct substrates for AM 
production of NO, an important mediator on both protection 
the lung from bacteria infection and augments inflammation 
lung injury. 
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Chapter I 

 

Statement of Question, Hypothesis, and Specific Aims of This 

Study 

 

Peptide transporters play a pivotal role in efficient 

absorption of protein digestion products (mainly di- or 

tri-peptides) through plasma membranes in the small 

intestine.  As a result of the transport of these small 

peptides, up to 78% of the amino acids in the plasma are in 

the form of di- or tri-peptide in experimental animals 

(Seal and Parker 1991).  Removal of such large amounts of 

small peptides from the plasma into an organ could be the 

result of dipeptide hydrolysis in plasma or of actual 

utilization of peptides by the organ.  Lochs et al. (1988) 

showed that the hydrolysis in plasma was not a major 

mechanism for the disappearance of dipeptides from 

circulation.  This suggests that direct utilization of 

these peptides could occur in various tissues.   

 

Indeed, direct utilization of small peptides by 

different tissues has been reported (Krzysik and Adibi, 

1977; McCormick and Webb, 1982).  Fei et al. (1994) 

reported that small peptides might be directly used by the 

liver, kidney, brain and placenta.  More recently, Wang et 

al (1996), for example, reported that di- or tri-

methionine-containing peptides were more efficiently 

utilized than free methionine in the synthesis of mammary 

tissue proteins secreted from lactating mice.  The 
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utilization of small peptides in anabolic process in other 

tissues, including the lung remains unclear. 

 

In pulmonary host defense, nitric oxide (NO) is 

produced in particularly large amounts by alveolar 

macrophages (AM) to provide cytostatic/cytotoxic effects 

against invading bacteria.  Induction of NO production by 

AM and agents such as lipopolysaccharide (LPS), depends not 

only on the activity of the inducible nitric oxide synthase 

(iNOS), but also on the availability of the substrate 

arginine.  Recent studies have shown that arginine is taken 

up by AM through the cationic amino acid transporter 2B 

(CAT-2B) (Caivano, 1998).  LPS, which stimulates the 

production of iNOS, also facilitates AM uptake of arginine 

(Kakuda et al., 1999).   

 

The substrate for NO synthesis may not be necessarily 

restricted to arginine.  Thiemermann et al. (1991) reported 

that in endothelial cells, arginine-containing dipeptides 

fit the active site of NO synthase than arginine in 

endothelial cells.  In addition, Meredith and Boyd (1995) 

reported the presence of a peptide transport protein in the 

pulmonary type II cells and suggested that this transporter 

may play a role in lung peptide homeostasis.  Recently 

Groneberg et al. (2001) demonstrated the presence of a 

peptide transporter in alveolar type II pneumocytes, 

bronchial epithelium, and endothelium of small vessels of 

mammalian lungs.  Due to the availability of small peptides 

in plasma and the presence of peptide transporter in the 
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alveolar epithelium and endothelium, direct utilization of 

these small peptides is therefore feasible. 

 

The hypothesis of this study was that alveolar 

macrophages can take up arginine-containing peptides and 

directly utilize them as substrates for NO production, and 

that this process is regulated by a peptide transporter. 

 

A number of transporters including PepT1 and PepT2 

located in the intestinal and kidney epithelial cells, 

respectively, have been identified for di- or tri-peptide 

transport (Fei et al., 1994, Saito et al. 1996).  It is 

reasonable to suggest that in various organ systems, where 

transport or absorption of small peptide is necessary, 

there are similar peptide transporters. 

 

In order to characterize the potential presence of a 

peptide transporter on AM, this research used the structure 

of PepT1 (Figure 1) as a model to test the underlying 

hypothesis.  In this approach, two peptide segments, 

peptide I and peptide II (figure 1-3), while exhibit high 

homology in amino acid sequence among rat, rabbit, and 

human PepT1, were chosen to produce the anti-PepT1 

antisera, and used as proteins for the detection of a 

peptide transporter on AM. 

 

The specific aims of this study were: 

(1) To develop a reliable method for the analysis of 

arginine and arginine-containing peptides in the 

biological system, 
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(2) To establish that appreciable amount of arginine-

containing small peptides are present in the lungs  

(3) To demonstrate the presence of a peptide transporter 

in alveolar macrophages (AM) and the uptake of 

arginine-containing peptides through this transporter, 

and 

(4) To determine the arginine-containing peptides are 

direct substrates for the inducible nitric oxide 

synthase (iNOS) in AM for NO production. 

 

The outcome of this research should provide a 

plausible mechanism for the role of arginine-containing 

peptides in vivo NO production. 
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Chapter II 

 

Review of Literature 

 

1. Peptide Transporters 

 

The existence of a peptide transporter in human small 

intestine was hypothesized more than 25 years ago (Matthews 

and Adibi, 1976).  Due to the technical difficulty, this 

transporter protein was not identified until recent years.  

The first peptide transporter, called (PepT1) was cloned by 

Fei et al. (1994) from rabbit small intestine.  The second 

one, called PepT2, was cloned from absorptive cells of the 

renal proximal tubule (Saito et al., 1996).  The discovery 

of peptide transporters not only supported the hypothesis 

but also provided a useful tool for studying the 

utilization of peptides by various tissues. 

 

1.1. Physiological Importance 

 

1.1.1. Peptide Transporter in the Small Intestine  

 

The physiological importance of a small peptide 

transporter became apparent with the observation of small 

peptides in the gut lumen, then their disappearance from 

small intestine, and reappearance in portal vein after a 

protein meal.  Adibi et al. (1971 and 1981) investigated 

whether intact absorption played a role in the small 

peptide disappearance.  A series of small peptides were 

infused directly into the upper small intestine of human 
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volunteers and their fates were determined.  The results of 

these studies suggested the absorption of large amount 

dipeptides and tripeptides in an intact form.   

 

This observation challenged the traditional idea that 

dietary proteins must be broken down to amino acids in the 

gut lumen before absorption could occur.  The importance of 

peptide transporter was further confirmed by the fact of 

patients with genetic impairments of amino acid absorption 

(Cystinuria and Hartnup diseases).  These impaired 

individuals do not experience protein malnutrition.  

 

Cystinuria patients lack the basic amino acid 

transporter and can not absorb arginine from their 

intestine.  However, the dipeptide Arg-Leu is well absorbed 

in these patients.  Hartnup disease is a hereditary 

condition in which the active transport of several neutral 

amino aids is deficient from both renal tubules and the 

small intestine.  It exhibits a pellagra-like syndrome, but 

is benign, and patients fare quite well nutritionally by 

absorbing small peptides.  This would not have been 

expected if the amino acid transporters, instead of the 

peptide transporters, were mainly responsible for 

absorption of protein digestion products. 

 

1.1.2. Peptide Transporter in Kidney 

 

In addition to the PepT1 in small intestine, a peptide 

transporter (PepT2), is also present in absorptive cells of 

the renal proximal tubule (Saito et al., 1996).  This 
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transporter via the active transport process plays a 

significant role in conserving peptide bound amino nitrogen 

which might otherwise be lost in the urine.   

 

Such a physiologically significant role, however, was 

not readily accepted because it was generally assumed that 

the concentrations of small peptides in the circulation 

were very low.  However, recent studies (Gardner, 1994, 

Matthews 1994, Schlagheck and Webb, 1984, Seal and Parker, 

1991) have provided clear evidence that up to 70% of the 

plasma amino acid pool is in the peptide-bound form.  

 

1.2. Regulation of Peptide Transporter 

 

The knowledge on the regulation of peptide 

transporters is limited.  The ability of the intestine to 

absorb intact peptides varies with age.  In several animal 

species including man, the peptide transport system is 

established in the small intestine prior to birth 

(Guandalini and Rubino, 1982, Himukai et al., 1980, Sagawa 

et al., 1979).  The peptide absorptive capacity is maximal 

at birth and then decreases with age to reach adult levels.  

 

The intestinal peptide transport system is also 

regulated by diet. A high-protein diet enhances the ability 

of the intestine to absorb peptides. A switch from a low- 

to a high-protein diet resulted in a 1.5-2 fold increase in 

the pepT1 mRNA level in rat intestine (Ferraris et al., 

1988).  Vazquez et al. (1985) showed that metabolic 

perturbations, such as starvation, alter peptide transport 
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in the jejunum of human volunteers. Short-term restriction 

of diet, for example, increases the intestinal peptide 

transport activity.  However, the mechanism that might 

regulate this transporter was not studied. 

 

Our present knowledge of the regulation of the 

intestinal peptide transport system by hormones is limited.  

Little is known about the regulation of the peptide 

transport in the kidney.  The principal peptide transporter 

expressed in the kidney through the action of hormones 

and/or second messengers has not been studied. 

 

1.3. Therapeutic Application 

 

1.3.1. Pharmacological Importance 

 
The peptide transport systems present in the small 

intestine and the kidney also have pharmacological 

relevance.  Many orally active peptide-like drugs possess 

structural features similar to those of the physiologic 

substrates of the peptide transport system.  The intestinal 

peptide transport system recognizes these peptide-like 

drugs (e.g. β-lactam antibiotics) as substrates and acts as 

a vehicle for their effective absorption (Okano et al., 

1986).   

 

The peptide transport system in the kidney is 

responsible for active reabsorption of these antibiotics 

from the glomerular filtrate and, hence, increases their 

half-life in the circulation.  Thus, the intestinal and 
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renal peptide transport systems play an important 

pharmacologic role in determining the efficiency of these 

antibiotics.   

 

It is obvious that the peptide antibiotics are not the 

only pharmacologically relevant compounds that use the 

peptide transport system as a vehicle for cellular uptake.  

The transport system also participates in the transport of 

many other therapeutically and biologically active 

peptides, such as angiotensin-converting enzyme inhibitors, 

renin inhibitors, and anticancer drugs (Inui et al., 1992).   

 

1.3.2. Clinical Importance 

 

The peptide transport system in the small intestine 

and the kidney has received increasing attention in recent 

years.  In current clinical practice, short-chain peptides 

are being seriously considered as viable substitutes for 

free amino acids in enteral and parenteral solutions.  The 

reason for that is that since the transport of peptides in 

the small intestine is the primary mode of nitrogen 

absorption, it is logical to employ all peptides instead of 

free amino acids as the source of nitrogen in enteral 

solutions for patients.   

 

Available evidence in laboratory animals and in man 

strongly suggests that enteral solutions containing small 

peptides may provide an absorptive advantage to patients 

with severely reduced intestinal absorptive area and to 

patients who are acutely cachectic (trauma, sepsis, and 
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burns).  Moreover, synthetic di- and tri-peptides offer an 

effective alternative means of amino acid delivery using 

enteral solutions for those amino acids that are unstable 

or sparingly soluble in free form (e.g. tyrosine, cystine, 

glutamine). 

 

Expanded knowledge about extraintestinal peptide 

assimilation in animals, especially the extraordinary 

ability of the mammalian kidney to extract small peptides, 

is supporting the view that small peptides can be 

substitute for free amino acids, not only in enteral 

solutions, but also in parenteral solutions.  Recent 

studies have shown that it is possible to supply daily 

nitrogen requirements, intravenously, in the form of small 

peptides to animals and man (Grimble et al., 1988, 

Steinhardt et al., 1984).   

 

The low osmolality of peptide-based parenteral 

solutions is another advantage, especially in patients with 

severe fluid restriction.  Furthermore, some free amino 

acids, e.g. glutamine, are relatively unstable in solution 

and during heat sterilization.  However, when included in 

the form of a dipeptide, alanyl-glutamine (Ala-Gln), for 

intravenous solutions, unlike free glutamine, is stable.  

Human studies have shown that utilization of alanyl-

glutamine is highly efficient and that the supplementation 

of the parenteral solutions with this peptide significantly 

reduces postoperative nitrogen losses and prevents the 

post-operative reduction in muscle glutamine content 

(Stehle et al., 1989).   
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Thus, the peptide-based parenteral solutions may offer 

a variety of advantages in a clinical setting, and the 

basis for the clinical efficacy of these solutions is the 

ability of extraintestinal tissues, primarily the kidneys, 

to utilize peptides via the peptide transport. 

 

In addition, the water solubility of some amino acids, 

particularly tyrosine, is limited.  Water solubility of 

tyrosine can be greatly increased by attachment of this 

amino acid to a water-soluble amino acid in dipeptide form.   

Therefore, mixtures of small peptides are used widely as 

the nitrogen source for nutrition. 

 

1.4. Tissue Distribution, Amino Acid Sequence, Antibody to 

Peptide Transporters 

 

PepT1 is expressed predominantly in epithelial cells 

of the small intestine.  Rat PepT1 is a 710 amino acid 

protein (rat) and is a highly conserved between species, 

77% and 83%, with that of rabbit and human, respectively 

(Miyamoto et al., 1996).  mRNA of PepT1 has been found in 

other tissues including kidney, liver, brain, and pancreas 

(Fei et al., 1994; Liang et al., 1995). 

 

PepT2 is expressed predominantly in the kidney, and to 

a small extent in the central nerve system and spleen.  It 

is a 729 amino acid protein and showed 60-80%, and 83% 

amino acid sequence identity with that of rabbit and human, 

respectively.   
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Both PepT1 and PepT2 share three common structural 

features: (1) twelve α-helical transmembrane domains; (2) 

one large extracellular loop that is positioned between 

transmembrane domain 9 and 10; (3) intracellular location 

of both N- and C- terminus amino acid.  Overall amino acid 

identity is 48% between PepT1 and PepT2 in the rat.  

Giacomini (1999) suggested that the extracellular loop 

might play an important role in the interaction between 

substrates and transporter. 

 

Anti-peptide antibodies to transporters have been used 

to identify and localize transporter protein (Saito et al., 

1995; Sai et al., 1996).  These anti-PepT1 antibodies 

against synthetic peptides corresponding to the C-terminal 

13-15 amino acids of the transporter were used in 

immunoblotting and immunohistochemistry studies.   

 

1.5. Peptide Transporter in Lung 

 

The evidences for the presence of a peptide 

transporter in lungs have increased.  Morimoto et al. 

(1993) reported that dipeptides could be transported across 

the alveolar epithelial cell monolayers.  Transport of 

tripeptides in the lung has been investigated in detail 

(Helliwell et al., 1994).  Meredith and Boyd (1995) 

suggested that a proton-coupled peptide transport protein 

is present in the apical surface of the pulmonary type II 

cells, and that this transporter may play a role in lung 

peptide homeostasis. 



  Chapter II Review of Literature 

 13 

 

Recently, a peptide transporter was reported to be 

present in mammal lung cells, including alveolar type II 

pneumocytes, bronchial epithelium, and endothelium of small 

vessels (Groneberg et al., 2001).  The presence of the 

peptide transporter in various cell types suggested that 

direct utilization of peptides could occur also in the 

lung. 

 

2. Arginine and Arginine-Containing Peptides in Plasma and 

Bronchoalveolar Lavage (BAL) Fluid  

 

In our classical understanding of protein absorption, 

we believe that dietary proteins are completely hydrolyzed 

to free amino acids in the gut and that only free amino 

acids can be transported by intestinal mucosa into the 

circulation.  There is now substantial evidence that this 

concept is not valid.  In fact, after a protein meal, most 

amino acid constituents of proteins are not absorbed as 

free amino acids but as dipeptides and tripeptides (Adibi 

and Kim, 1981).   

 

Webb (1986) reported that when comparing the 

appearance of amino acids in portal plasma after a meal, 

more than 70% were associated with the peptide amino acid 

in experimental calves.  If these peptide amino acids are 

of dietary origin, then this large contribution will be 

significant.  Even if these peptide amino acids are not of 

dietary protein origin, they present a large quantity of 

amino acids with which other tissues in the animal must 
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deal.  There is excellent agreement between Seal and Parker 

(1991) and Gardner (1982, 1983) who reported that about 50% 

peptide amino acids in rat and 65-78% in steer and sheep.   

 

The distribution of the free amino acids arginine in 

rat plasma and tissues has been reported (Barbul, 1990).  

The concentration of arginine is 79-124 µM in plasma and 

0.03-0.28 µmol/g in different tissues.  However, no 

information is available about the distribution of 

arginine-containing di- or tri-peptides in plasma and BAL 

fluid. 

 

3. Nitric Oxide, Arginine, and Arginine-Containing Peptides 

 
Nitric oxide (NO) is an important signal transduction 

mediator in a variety of physiological systems (reviewed in 

Schmidt and Walter, 1994).  In pulmonary host defense, NO 

is produced by alveolar macrophages (AM) in response to 

inflammatory stimulation to provide cytotoxic effects 

against invading bacteria (Beckerman et al. 1993), or to 

regulate cellular cytokine secretion and cyclooxygenase 

activity (Raso et al. 2001).  The induction of NO 

production from AM, such as by lipopolysaccharide endotoxin 

(LPS), depends not only on the activity of the inducible 

nitric oxide synthase (iNOS), but also on the availability 

of the substrate arginine.   

 

NO synthesis from arginine is a reaction, which 

involves two separate mono-oxygenation steps (Stuehr et 

al., 1991).  Nω-Hydroxyarginine is an intermediate species 
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formed by a reaction requiring one O2 and one NADPH and the 

presence of tetrahydrobiopterin (BH4).  This reaction 

appears to be similar to those carried out by the aromatic 

amino acid hydroxylases, which also require BH4.  The second 

step in the NO synthase reaction results in the oxidation 

of Nω-Hydroxyarginine to form citrulline and NO.  Briefly 

the production of NO can be described by following 

formulae: 

 

Arg + NADPH + H+ + O2 → HydroxyArg + NADP+ + H2O 

HydroxyArg + 1/2 (NADPH + H2) + O2 → Cit + NO + H2O 

 

Arginine as substrate for NO production has been 

studied in detail (Barbul, 1990).  However, little is known 

whether or not arginine is the only substrate.  Thiemermann 

et al. (1991) showed that Arg-Phe fits the active site of 

endothelial cell NOS than arginine and that this peptide is 

not degraded to free amino acid during the reaction.  This 

suggested that the substrate specificity of the NOS in 

endothelial cells is not necessarily restricted to L-Arg.   

 

4. Uptake of Arginine, Arginine-Containing Peptides by 

Alveolar Macrophages for NO Production 

 

System y+ is widely believed to be the major carrier of 

cationic amino acids in adult tissues (Malandro and 

killberg, 1996).  Arginine is transported across cell 

membranes by system y+ which is Na+ independent and pH 

insensitive (White et al., 1982). 
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Three cationic amino acid transporters have been 

identified termed CAT-1, CAT-2, and CAT-2B.  CAT-1 and CAT-

2B are present in macrophages and monocytes.  In RAW264 

macrophages, CAT-1 is accounted for the basal rate of 

arginine uptake, while CAT-2B, induced by the 

lipopolysaccharide (LPS), a component of the bacterial cell 

wall, is responsible for the increased rate of arginine 

uptake.  The uptake of arginine can be competitively 

blocked by cationic amino acid e.g. lysine (Bogle et al. 

1992).   

 

The importance of CAT transporters and arginine uptake 

for the production of NO in AM is well documented, however, 

whether arginine-containing peptides can be taken up as 

direct substrates for NO production remains to be 

determined.   

 

5. Nitric Oxide Synthases (NOS) 

 

Nitric oxide is produced from arginine by nitric oxide 

synthase (NOS).  NOS was first described in 1989 (Knowles 

et al., 1989), first purified in 1990 (Bredt and Snyder, 

1990), and first cloned in 1991 (Bredt et al., 1991).  

There are three NOS isoforms have been identified in 

mammalian cells to date.  Type I NOS (nNOS, originally 

identified as a constitutive protein in neuronal tissue) 

and type III NOS (eNOS, originally identified as 

constitutive in vascular endothelial cells) are calcium-

dependent enzymes that are expressed in a cell-specific 



  Chapter II Review of Literature 

 17 

manner and their activation produces the NO that mediates 

most of the cGMP messenger functions of this molecule.  In 

contrast, type II NOS (iNOS, originally identified as being 

inducible by cytokines in macrophages and hepatocytes) has 

an ubiquitous tissue distribution and is only expressed 

during cell-mediated immune responses.  For this reason it 

is usually referred to as inducible NOS (iNOS).  The iNOS 

in macrophages is only found to be expressed after 

induction with LPS or cytokines.  The half-saturating 

concentration (Km) of the substrate L-arginine measured in 

vitro for iNOS is about 30 µM (Closs et al., 2000).   

 

6. Measurement of NO 

 

In general,  two techniques have been commonly used as 

the basis for the measurement of NO, the oxidation of 

hemoglobin and the formation of NO2
- + NO3

-. 

 

NO rapidly reacts with oxyhemoglobin to form NO3
- and 

met-hemoglobin.  The resulting spectral changes have been 

used as the basis of a spectrophotometric assay of NO 

synthase (Knowles et al., 1990).  With dual wavelength 

measurement at 401 and 421 nm this method has a sensitivity 

of less than 20nM. 

 

Formation of NO2
- + NO3

-, the oxygenation products of NO 

can be measured by a variety of techniques.  One of them 

uses reduction of NO3
- to NO2

- by nitrate reductase or 

metallic catalysts followed by the colorimetric Griess 

reaction (Stuehr et al., 1989).   
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7. Inhibition of NO Synthase 

 

The study of NO synthesis in mammalian systems has been 

greatly facilitated by the identification of competitive 

inhibitors of NO synthase.  N-Monomethyl-L-arginine (L-NMMA) 

is one of the most commonly used.  L-NMMA has been shown to 

be a competitive inhibitor (competitive with L-arginine) of 

all the form of NOS so far examined, with an IC50 of ~7.4 µM 

for iNOS (Stuehr et al. 1989).  A range of arginine analogs 

has been found to inhibit NO synthases.  Like L-NMMA, these 

compounds are competitive inhibitors.   

 

Another way of inhibiting NO synthase in biological 

systems is to limit the supply of one of its substrates or 

cofactors.  This type of indirect inhibition has been 

demonstrated using inhibitors (N-acetyl-5-hydroxytryptamine) 

of tetrahydrobiopterin (BH4) synthesis.  Because of the 

turnover of BH4 in intact cells and tissues, inhibition of 

its synthesis eventually results in deletion of BH4 to 

concentrations that limit NO synthesis.   

 

NOS has been demonstrated to be subject to feedback 

inhibition by NO: two forms of NOS, brain constitutive nNOS 

and macrophage inducible iNOS were shown to be inhibited by 

NO either produced by the enzyme itself or generated from 

chemical NO donors (Stuehr and Griffith, 1992).  It is 

likely that this inhibition results form interaction with 

the heme of NO synthase.   
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8. Remaining Questions about the Peptide Transporters 

 

A number of issues regarding the peptide transporters 

still remain to be investigated.   

(1) Are there additional H+/peptide transporters other 

than PepT1 and PepT2? What is the functional relationship, 

if any, between these transporters?   

(2) Is the H+/peptide cotransporter system is expressed 

in the plasma membrane of mammalian tissues other than the 

intestine and kidney?   

 

Northern blot analysis reveals the presence of mRNA 

transcripts that hybridize to the PepT1 cDNA probe in 

liver, brain, and pancreas.  However, no information is 

available on H+-couple peptide transport in these organs, 

whether the mRNA transcripts code for peptide transporters 

or for different transporters with homology to the peptide 

transporters remains to been investigated. 
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Chapter III 

 

Materials and Methods 

 

 1. Materials  

 

Male Sprague-Dawley rats weighing 200-250 g (Hilltop 

Labs.  Scottsdale, PA) were used as a source for alveolar 

macrophages (AM) throughout this studies.  E.Coli 

lipopolysaccharide (LPS), arginine (Arg), Arg-Sar, Arg-Gly, 

Arg-Lys, Arg-Gly-Asp, cephradine, and cephalexin were 

obtained from Sigma Co (St. Louis, MO).  Fluorescein 

isothiocynate (FITC)-labeled lysine (Lys*) and lysine-

containing peptides (β-Ala-Lys*, Arg-Lys*, and Gly-Sar-Lys*) 

were purchased from Genemed Synthesis, Inc (San Francisco, 

CA).  In order to probe the presence of pepT1-like 

transporter on AM, two peptide segments (Peptide I and 

Peptide II) corresponding to P457-471 (PGHRHTLLVWGPNLY) and 

P480-494 (QKPEKGENGIRFVST) of the extracellular domain of 

rat pepT1 (Miyamoto, 1996) were synthesized and their anti-

rabbit anti-sera [anti-p457-471 antiserum (antiserum I) and 

anti-p480-494 antiserum (antiserum II)] were developed 

commercially by Genemed Synthesis, Inc.  Peptides I and II 

represent two sections of the extracellular domain that 

show the highest degree of amino acid sequence homologous 

among rat, rabbit, and human pepT1.  Peptide II exhibits 

relatively higher hydrophilicity than Peptide I due to the 

presence of more charged amino acid residues (K, lysine; R, 

arginine; E glutamate).  Purified iNOs was obtained from 

CalbioChem (San Francisco, CA). Rat pepT1 protein was 
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kindly received from Dr. You-jun Fei (Department of 

Biochemistry, University of Georgia) as a gift.  All other 

reagents were purchased from Sigma Co. (St. Louis, MO). 

 

2. Methods 

 

2.1. Plasma Sample Preparation  

 

Male Sprague-Dawley rats (~ 250 g) were anesthetized 

with sodium pentobarbital (0.2 g/kg body weight).  seven ml 

of blood was collected from the abdominal aorta and kept in 

the heparinized ice-cold tubes. The blood samples were 

spiked with 1 mM Arg-Sar as an internal standard for 

subsequent HPLC analysis, centrifuged at 1500 x g at 4 0C 

for 10 min, and the plasma samples were collected.  Two and 

half ml of plasma were taken and boiled for 15 min 

(deproteinization).  The treated plasma was centrifuged at 

2000 x g at 40C for 30 min.  

 

The supernatant was loaded on to a C18 cartridge (Vac 

20, Waters) and the column was eluted with 30ml of 0.1% TFA 

in methanol/water (95:1, pH2.4), then 30 ml of water 

containing 30% methanol (pH 2.4), and 10 ml of deionized 

water (pH 8).  The third fraction was collected and 

lyophilized.  The freeze-dried fraction was re-dissolved in 

250 ul water.  50 ul of aliquots were stored at –800C until 

it was analyzed for ACPs measurement. 
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2.2. Bronchoalveolar Lavage Fluid Sample Preparation 

 

The bronchoalveolar lavage fluids were obtained by 

pulmonary lavage.  Briefly, rats were lavaged with 2 ml of 

the phosphate buffered medium as described above. The 

recovered BAL fluid (~ 1 ml) for each rat was centrifuged 

at 500 x g for 5 minutes.  The supernatant for each sample 

was mixed with an equal volume of 6% sulfosalicylic acid.  

The treated fluid was centrifuged at 2000 x g at 4 0C for 20 

min, and loaded into a C18 cartridge (Vac 6, Waters).  The 

column was eluted in succession with 15 ml of water-

saturated ethyl acetate (pH 2.4), 15 ml of 30% methanol in 

water (pH 2.4), and 3 ml of deionized water (pH 8.0).  The 

last fraction was collected and lyophilized.  The freeze-

dried fraction was re-dissolved in 100 µl water.  Aliqots of 

20 µl samples were stored at –800C until time for analysis.  

 

 

2.3. Separation of Arginine and Arginine-Containing 

Peptides by HPLC 

 

The separation of arginine and arginine-containing 

peptides was achieved by using high performance liquid 

chromatography (HLPC).  The HPLC system consisted a Waters 

600E system controller, Waters WISP 701B autosampler, 

Waters 486 tunable absorbance detector, and Waters 746 data 

module (Waters Corp., Milford, MA).  The HPLC separation 

method was developed by using a C18 reversed-phase column 

(Keystone Scientific, 150 x 4.6 mm, 3 um) and a mobile 
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phase consisting of 0.1% trifluoroacetic acid (TFA, pH 2.4) 

in water as solvent A and 0.1% TFA in CH3CN as solvent B.  

The flow rate was 1 ml/min with 90% of solvent A and 10% 

solvent B.  Elutes were detected by UV detection at 215 nm.  

Commercially available L-arginine, Arg-Gly, and Arg-Gly-Asp 

were chosen as standards and Arg-Sar as an internal 

standard.   

 

2.4. Quantitative Determination of Arginine and Arginine-

Containing Peptides 

 

Standard samples for each compound of analysis was 

prepared by spiking known concentrations of the compound in 

the appropriate fluid, followed by the extraction 

procedures described above.  Following HPLC analysis, a 

standard curve was generated by plotting the peak area 

ratio of compound/internal standard against the 

concentration ratio of the compound /internal standard.  

Linear regression analysis was made, and the standard curve 

was used to determine the concentration of the compound. 

 

2.5. Accuracy and Precision 

 

 Plasma samples were repeatedly measured by HPLC 

according to the method described above at different times 

within a day, or different days.  The samples were kept in 

ice (within a day) or frozen at –80 0C (different days). 

Precision values of the within-day (interassay) and 

between-day (intraassay) were determined in six replicates 

at each concentration of 0.2, 1.0, and 2.0 ug/ul for Arg; 
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0.05, 0.1, and 1.0 ug/ul for Arg-Gly; 0.01, 0.1, and 0.2 

ug/ul for Arg-Gly-Asp in plasma and bronchoalveolar lavage 

fluid.  The mean concentrations and the coefficients of 

variation were calculated.  The accuracy of the assay was 

determined by comparing the nominal concentrations with the 

corresponding concentrations via linear regression.   

 

2.6. Sample Recovery Experiment 

 

 A standard curve for the internal standard, Arg-Sar, 

was first generated by the plot of a series of Arg-Sar 

standard solutions (0.2, 0.5, 1.0, 1.5, and 2.0 mM) against 

the corresponded peak area.  Arg-Sar was added into 10 ml 

blood sample or 1 ml lavage fluid (20 uM final 

concentration).  The sample was then processed as described 

in 2.1. or 2.2.  The amount of Arg-Sar recovered from the 

plasma or lavage fluid was determined according to the 

method described in 2.4.  The recovery rate was calculated 

using following formula: 

(amount measured / amount added) X 100% 

 

20 uM of arginine and arginine-containing peptides 

were added into 10 ml blood or 1 ml lavage fluid, 

respectively.  10 ml blood and 1 ml lavage fluid without 

arginine and arginine-containing peptides addition were 

used as controls.  After following the same procedure as 

Arg-Sar described above, the recover ratios for Arg, Arg-

Gly, Arg-Gly-Asp were determined by using a similar method 

except for the subtraction of the corresponding amounts of 

Arg, Arg-Gly, Arg-Gly-Asp in the blood.  
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[(amount measured – amount in control) / amount added] X 

100% 

 

2.7. Arginine-Containing Peptides Uptake and Utilization by 

Alveolar Macrophages 

 

2.7.1. Isolation of Alveolar Macrophages 

 

Male Sprague-Dawley rats (~ 250 g) were anesthetized 

with sodium pentobarbital (0.2 g/kg body weight) and 

exsanguinated by cutting the renal artery. Alveolar 

macrophages were obtained by pulmonary lavage with a Ca2+, 

Mg2+-free phosphate-buffered medium (145 mM NaCl, 5mM KCl, 

1.9 mM NaH2PO4, 9.35 mM Na2HPO4, and 5.5 mM glucose, pH 7.4). 

Lavaged cells were centrifuged at a 500 x g for 5 minutes, 

washed, and resuspended in the same phosphate-buffered 

medium. Cell counts and purity was measured using an 

electronic cell counter equipped with a cell sizing 

attachment (Coulter Electronics, Hialeah, FL). 

 

2.7.2. Intracellular Fluorescence Uptake by Alveolar 

Macrophages 

 

Isolated AM were dispersed into 24 well culture plates 

at 106 cells/well and was incubated with 5 uM of FITC, Lys*, 

β-Ala-Lys*, Arg-Lys*, or Gly-Sar-Lys* with/without 100 uM 

inhibitors (lysine and cephradine) in Earle’s salt solution 

for 2 hours at final volume of 1 ml.  The uptake was 

terminated by discarding the supernatant and adding ice-

cold Earle’s balanced salt solution.  The cells, were 
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washed 4 times with ice-cold Earle’s salt solution and were 

sonicated (MSE sonicator, Fisher, Pittsburgh, PA) for 15 

minutes.  After a 5 minutes centrifugation, the supernatant 

was collected and measured for relative fluorescence 

intensity at λex = 494 nm, λem = 519 nm.  

 

2.7.3. Utilization of Arginine-Containing Peptides by 

Alveolar Macrophages for Nitric Oxide (NO) Production 

 

Isolated AM were cultured at 1x106 AM/ml in arginine-

free Earle’s salt solution containing 2mM of glutamine and 

5% of fetal bovine serum with/without LPS (1ug/ml)(Thomas 

et al. 1993).  200uM of arginine or arginine-containing 

peptides (Arg-Gly, Arg-Gly-Asp) were added and incubated at 

37oC for 24 hours.  The AM-conditioned media were collected.  

NO production was determined by measuring the accumulation 

of nitrite using Greiss assay (Smith, et al. 1975).   

 

2.7.4. Inhibitory Effects of Anti-Rat PepT1 Antiserums on 

NO Production in AM  

 

 The cells were co-incubated with different 

concentrations of two rabbit anti-rat PepT1 antiserums 

(I,II) and arginine-containing peptides.  The inhibitory 

effects of inhibitors or antiserums on NO production by 

LPS-activated alveolar macrophages were determined 

according to the procedure described above. 
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2.7.5. Lactate Dehydrogenase (LDH) Determination 

 

Cell viability was determined by measuring the lactate 

dehydrogenase (LDH) from release of AM into the 

extracellular medium in various AM incubation mixtures 

using an automated Cobas FARA II (Rosh, San Francisco, CA).  

LDH activity was monitored spectrophotometrically at 340 nm 

as it reductated pyruvate and oxidated coupled with the 

oxidation of NADH. 

 

2.8. Presence of Peptide Transporter in Alveolar 

Macrophages 

 

2.8.1. Sample Preparation 

 

Isolated AM were seeded and cultured with or without 

LPS (1 ug/ml) in Earle’s salt culture medium for 24 hours.  

Cells were collected, washed with ice-cold PBS buffer, and 

centrifuged.  AM were suspended in homogenizing buffer (20% 

glycerol, 0.1 M Tris·HCl, and 10 mM EDTA, pH 7.4) containing 

various protease inhibitors (1 mM dithiothreitol, 1 mM 

phenylmethylsulfonyl fluoride, 1 mM benzamidine, and 100 

µg/ml aprotinin).  The cell suspension was homogenized with 

a glass tissue grinder and sonicated for 10 second on ice. 

Homogenates were then centrifuged at 5,000 x g for 10 min. 

and the pellet (the nuclear fraction) was discarded.  The 

supernatant fluid was centrifuged at 50,000 x g for 2 hours 

and resulting pellet (cell membrane fraction) was 

resuspended in homogenizing buffer.  Protein concentration 

of the membrane fraction was determined by Lowry’s assay.  
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50 ml aliquots of the membrane preparations were stored at 

–80 0C.  

 

2.8.2. Western Blot 

 

  A membrane fraction containing 80 ug protein was 

loaded on 7% of SDS-PAGE and then transferred to a 

nitrocellulose membrane.  The membrane was incubated for 1 

hour with polyclonal rabbit antibodies specific to rat 

PepT1.  After washing, the blot was incubated sequentially 

with secondary antibody labeled with horseradish 

peroxidase-conjugated goat anti-rabbit IgG (Pierce, 

Rockford, IL) and detected by enhanced chemiluminescence.  

The signal densities of the protein bands were measured 

using a Fluochem 8000 densitometer (Alpha Innotech Corp., 

Alexandria, VA). 

 

2.9. Substrate Specificity Studies 

 

2.9.1. Utilization of Arginine-Containing Peptides by iNOS 

in vitro for NO Production  

 

Arginine-containing peptides were incubated with iNOS 

and NO production measured using a modified method of 

Stuehr et al. (1992).  Briefly, 0.1mg of iNOS was incubated 

with 200 uM of arginine, arginine-containing peptides (Arg-

Gly, Arg-Gly-Asp), 4 uM of H4biopterin, 4 uM of FAD, 3mM of 

dithiothreitol (DTT), 2mM of NADPH, and 40 mM of Tris HCl 

buffer (pH 7.9 total volume of 1 ml).  NO production was 

determined by Greiss assay.  The production of NO by 
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arginine-containing peptides was compared with that by 

arginine. 

 

2.9.2. Enzyme Kinetic Studies of Arginine-Containing 

Peptides for NO Production 

 

 Arginine, and arginine-containing peptides including 

Arg-Gly and Arg-Gly-Asp at the concentration of 15, 20, 30, 

60, 120,180, 240uM were incubated with iNOS, and Km and 

Vmax were determined using the Michaelis-Menten equation.  

For inhibition studies, NG-monomethyl-L-arginine (L-NMMA) 

was added to the reaction mixtures at concentration of 0, 

1, 4, 8, 12, 16, 20, 24, and 28 uM.  The IC50 was calculated 

by using the Winnonlin Nonlinear Estimation Program 

(V03.0A).   

 

3. Statistical Analysis 

 

Data are presented as mean ± standard deviations of at 

lease six measurements from different animals in all 

experiments.  Statistical analysis was conducted using a 

one-way analysis of variance (ANOVA) with a Tukey multiple 

comparison procedure with significance set at p< 0.05.  
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Chapter IV 

Results and Discussion 

 

1. Separation of arginine and arginine-containing peptides 

by HPLC 

 

Arg-Gly and Arg-Gly-Asp are chosen as representative 

of the arginine-containing di-and tri-peptides.  Arg-Sar, 

which contains the N-monomethylglycine residue, is not 

found in biological samples.  Due to its structural 

similarity to ACPs, stable and resistant to peptidase 

degradation, Arg-Sar was chosen as internal standard for 

the HPLC quantitative assay.   

 

Chromatographs of base line separation of arginine 

(Arg, R), arginine-containing peptides (Arg-Gly, RG; Arg-

Gly-Asp, RGD), and internal standard (Arg-Sar, RS) were 

shown in Figure 4.  The retention time was 5.8 min (Arg), 

7.5 min (Arg-Gly), 12.6 min (Arg-Gly-Asp), and 16.8 min 

(Arg-Sar) in rat plasma, respectively.  The similar results 

were in rat BAL fluid (Figure 5). 

 

2. Standard Curves 

 

Standard curves were generated for arginine or 

arginine-containing peptides by plotting the peak area 

ratio of compound/internal standard against the 

concentration ratio of the compound /internal standard.  

The standard curves were obtained in the concentration 

range of 0.2 – 2.0 µg/µl for Arg, 0.05 – 1.0 µg/µl for Arg-
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Gly, and 0.01 – 0.2 µg/µl.  The limit of quantitation (LOQ) 

was set at 0.2 µg/µl for Arg, 0.05 µg/µl for Arg-Gly, and 

0.01 µg/µl for Arg-Gly-Asp in both plasma and BAL fluid. 

 

3. Sample Recovery Experiment 

 

six samples of plasma and lavage fluid, with or 

without the addition of standard arginine and arginine-

containing peptides, were processed and analyzed as 

described in the method section.  Recovery rates of Arg, 

and arginine-containing peptides from rat plasma and BAL 

fluid were calculated and shown in table I.  

 

Table I shows the % recovery of arginine and the 

peptides in plasma and in BAL fluid samples for the 

developed HPLC method.  The sample preparation procedure 

resulted in a ~15 % loss of added concentration in plasma 

and less then 10 % loss of concentrations in BAL fluid.  

These results are within acceptable ranges for biological 

samples.  In addition, the recovery rate for all testing 

compounds is about the same, suggesting that this method 

should be very consistent for the analysis of the 

individual and relative quantities of arginine and the 

arginine-containing peptides.   

 

4. Accuracy and Precision 

 

The accuracy and precision for quantitative assay of 

Arg and ACPs from plasma and BAL fluid were processed as 
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described in method section and the results were shown in 

Table II-IV.   

 

The within-day precision expressed as the coefficients 

of variation (% C.V.).  As shown in these tables, in 

plasam, the values for Arg ranged from 7.9 to 11.8%.  For 

Arg-Gly, the value ranged from 7.9 to 13.  For Arg-Gly-Asp, 

the value ranged from 4.3 to 14.1. 

 

The accuracy of the assay in plasma varied in the 

range from 99.4 to 105.2% for Arg; from 102.5 to 104 for 

Arg-Gly; and from 101.3 to 102.2% for Arg-Gly-Asp. 

 

The similar CV % and accuracy results were obtained in 

BAL fluids.  CV% value for Arg ranged from 8.3 to 11.4%; 

for Arg-Gly from 5.2 to 11.3%; for Arg-Gly-Asp from 5.7 to 

11.6 (table not shown).  For accuracy, Arg from 99.1 to 

100.8%; Arg-Gly from 98.9 to 100.4%; and Arg-Gly-Asp from 

100.1 to 101.3%. 

 

According to FDA “Specific Recommendation for Method 

Validation”, the acceptance criteria are not more than 15% 

CV for precision and not more than 15% deviation for the 

nominal value for accuracy.  The method for quantitative 

assay for Arg and ACPs reached the FDA requirement, 

suggesting the HPLC method for quantitative assay for Arg 

and ACPs are reliable. 
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5. Determination of Arginine and Arginine-Containing 

Peptides in Plasma and Bronchoalveolar Lavage Fluid. 

 

 The concentrations of arginine and arginine-containing 

peptides in plasma and bronchoalveolar lavage fluid are 

shown in table V.  The concentration of arginine in rat 

plasma was 81 uM, which is similar to that previously 

reported by Barbul (1990).  The plasma concentration of 

Arg-Gly, and Arg-Gly-Asp was 19.7 uM and 8.8 um, 

respectively.  These results demonstrate for the first time 

the presence of arginine-containing peptides in rat plasma. 

 

Considering the possible different combinations of 

arginine and other amino acids, the total concentration of 

arginine-containing peptides in plasma is high.  This 

suggests that such as a large quantity of arginine-

containing peptides may be utilized by different tissues.  

Notably, the similarly high concentration of arginine-

containing peptides in bronchoalveolar lavage fluid 

suggests that these small peptides may also be directly 

utilized by the lung tissues.   

 

6. Intracellular Fluorescence Uptake by AM 

 

To test the whether the small peptides can be directly 

utilized by the lung, the uptake of fluorescently 

conjugated peptides by AM was compared to that of 

fluorescently conjugated amino acid and fluorescent probe 

(FITC) only.  As shown in Fig 3, the uptake of FITC by AM 

was minimal.  In contrast FITC-labeled Lys (Lys*) and small 
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peptides (β-Ala-Lys*, Arg-Lys*, and Gly-Sar-Lys*) showed 

enhanced intracellular accumulation, suggesting active 

transport-mediated uptake of the compounds.  The uptake of 

Lys* by AM was completely blocked by non-labeled lysine but 

was not inhibited by cephradine, a reported substrate for 

PepT1 transporter.  The uptake of the small peptides was 

consistently inhibited by cephradine but not by lysine.  

These results suggested that the small peptides were 

transported through a membrane transporter that is 

different from the lysine transporter, and were 

internalized by AM without prior degradation.  

 

7. Utilization of Arginine-Containing Peptides by Alveolar 

Macrophages for Nitric Oxide (NO) Production 

 

 To determine if AM can directly utilize the small 

peptides for NO production, NO production of these peptides 

in LPS-activated AM was measured and compared with that by 

arginine.  Table VI shows the production of NO by non-

stimulated and LPS-stimulated AM in the presence of 200 µM 

arginine or arginine-containing di- and tri-peptides.  

While both arginine and the small peptides were utilized by 

AM to produce NO, the production of nitrite through the 

peptides was consistently higher (~ 2-fold) than that of 

the arginine system, in LPS-primed cells.   

 

Figure 7 shows the effect of various inhibitors of membrane 

transport on NO production in LPS-stimulated AM.   

Lysophosphatidylcholine (LPC) has been identified as a 

potent inhibitor of CAT-2B-mediated amino acid transport.  
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Our results showed that LPC at 5 µM, significantly inhibited 

NO production through arginine but had little or no effect 

on AM production of NO through arginine-containing 

peptides.  In addition, lysine (1 mM) markedly inhibited NO 

generation through the arginine system, but failed to block 

NO production generated through Arg-Gly or Arg-Gly-Asp.   

Interestingly, lysine also blocked AM production of NO 

through the use of Arg-Lys as a substrate.  This was not 

expected, but presumably due to the fact that both the 

arginine and lysine moieties are cationic, thus allowing 

this small peptide to be transported by both the amino acid 

and peptide transporters.  Figure 2 further shows that the 

PepT1 inhibitors, cephalexin and cephradine, selectively 

inhibited NO production through the arginine-containing 

peptides, but had little effect on the arginine system.  

 

The above results clearly show that LPS-induced iNOS 

activity in AM for NO synthesis is largely dependent upon 

the transport or uptake of the substrate(s).  While 

arginine is transported through CAT-2B, the arginine-

containing peptides are internalized through a peptide 

transporter. This finding is different from that of an 

earlier study on chicken macrophages, which suggested that 

arginine-containing dipeptides were hydrolyzed to produce 

arginine before cellular uptake (Su and Austic, 1998).  The 

fact that these peptides resulted in increased production 

of NO, 2-fold to that produced through arginine, suggests 

that these small peptides are more efficiently taken up by 

the cells or they may serve as direct and better substrates 

for iNOS. 



  Chapter IV Results and Discussion 

 36 
 

 

8. Inhibitory Effects of Anti-Rat PepT1 Antiserums on 

Utilization of Arginine-Containing Peptides for NO 

Production in AM  

 

A number of transporters including PepT1 and PepT2 

have been identified for di- and tri-peptide transport (Fei 

et al., 1994; Saito et al., 1996).  It is reasonable to 

suggest that in various organ systems, where transport or 

absorption of small peptides is necessary, there are 

similar peptide transporters.  In the lung, it is already 

reported that peptide transporter(s) is present in Type II 

cells, the broncho epithelium, and the small vessel 

endothelium (Groneberg et al., 2001).  We hypothesize that 

a PepT1-like transporter is responsible for the uptake of 

arginine-containing di- and tri-peptides in AM.  For this 

reason, two peptide segments of the extracellular domain of 

rat pepT1 were chosen for antibody production.  These 

peptide segments represent regions of the extracellular 

domain that have the highest degree of amino acid sequence 

homologous among rat, rabbit, and human PepT1 proteins, 

which makes it possible that these regions may be involved 

in the binding of small peptides.  Figure 8 shows the 

effects of anti-pepT1 anti-serum I and anti-pepT1 anti-

serum II on NO production by LPS-stimulated AM using 

arginine or arginine-containing peptides as a substrate.  

Anti-serum I had no effect on NO synthesis in any of the 

systems.  But the production of NO was significantly 

blocked by anti-serum II.  Neither antibody affected the NO 

production using arginine as the substrate.  The inhibitory 
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effect of antipepT1 antiserum II on AM utilization of 

arginine-containing peptides for NO production was dose-

dependent (Figure 9).  In comparison, antiserum I in the 

same concentration range did not inhibit the production of 

NO by AM (Figure 10).  It is interesting to point out that 

the inhibitory effect of anti-serum II on Arg-lys is 

considerably weaker than its inhibition on other peptides.  

This again suggests that Arg-lys may be transported through 

both the peptide and the cationic amino acid transporters.  

 

Antiserum II is derived from the peptide segment of 

pepT1 that contains more charged amino acid residues than 

peptide I, the corresponding peptide segment for antiserum 

I.  This makes peptide II a more likely segment to be 

involved in the proton-coupled small peptide transport 

process.  The fact that antiserum II inhibits AM 

utilization of the arginine-containing peptides indicate 

that AM indeed exhibit a pepT1-like transporter, and that 

antiserum II was able to bind and inactivate the 

extracellular binding site of the transporter that is 

crucial to the peptide transport process.   

 

9. Lactate Dehydrogenase (LDH) Determination 

 

 The LDH level was determined in control groups 

(without LPS stimulation or any compounds added) and 

treatment groups (stimulated with LPS or compounds added).  

No statistically significant difference between the two 

groups was found, suggesting that no significant cytotoxic 

effects occurred during experiments.  
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10. Detection of PepT1-like Transporter Protein in Cell 

Membrane of AM 

 

Figure 11 shows the Western blotting analysis of the 

presence of a PepT1-like transporter protein in the cell 

membrane of AM.  In compared to the purified rat PepT1 

protein, a 120 kD band, was detected in the membrane 

fraction of both LPS-activated and non-activated AM, using 

antiserum II.  This protein band was not observed in 

antiserum I-treated membrane fractions, suggesting that the 

corresponding peptide I segment is probably not present in 

the peptide transporter in alveolar macrophages.  

 

Interestingly, when the amino acid sequences of 

peptide I (P457-471) and peptide II (P480-494) from rat 

pepT1 are compared to those of rat pepT2, there is only 13 

% homology for peptide I, but 50 % for peptide II.  This 

supports our data that peptide II is involved in the 

process of small peptide transport.  The density of the 

protein band from LPS-activated AM was significantly higher 

(by 2.3-folds) than that of the non-activated AM, 

suggesting that LPS, which is known to induce iNOS, also 

enhance AM uptake of small peptides through the pepT1-like 

transporter.  These results further confirm the presence of 

PepT1-like transporter in AM and suggest a role for AM in 

regulating lung peptide homeostasis.  
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11. Substrate Specificity Studies 

 

 Arginine-containing peptides were incubated with iNOS 

in vitro to investigate whether the small peptides can be 

used as direct substrates for iNOS in NO production.  The 

results show that these compounds can be used as direct 

substrates for NO production and that these peptides or 

amino acid produced a similar amount of NO at certain time 

(Fig 9, 10, 11).  Kinetic studies showed that Arginine and 

arginine-containing peptides shared similar Km and Vmax 

(Fig 12; Table IV), suggesting that the efficiency for NO 

production is similar among these compounds.  The NO 

production can be blocked by NG-monomethyl-L-arginine (L-

NMMA) with a similar IC50 value (Table VII).  This finding 

suggested that these compounds might share a similar active 

site of iNOS.   

 

This result appeared to be contradictory to the 

observation that arginine-containing peptides resulted in 

more NO production by AM than using arginine as a 

substrate.  One possible explanation is that the CAT-2B 

transporter, which transports cationic amino acids, may be 

blocked by biological compounds such as other amino acids, 

LPC, etc, whereas the PepT1-like transporter in the 

membrane of AM is more selective in transporting peptide 

molecules. 



  Chapter IV Results and Discussion 

 40 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Structure of PepT1 (Fei et al., 1994) and 
location of two chosen peptide segments for anti-PepT1 
antibody development. 
 

PepT1 protein has 12 transcellular domains.  Both N-
terminal and C-terminal locate intracellularly.  It has a 
big extracellular loop which is believed as a important 
part for its transport functioning.  Two peptide segments 
(peptide I and peptide II) were chosen from the loop for 
the development of anti-PepT1 antibody development. 
 

CO

       + + + 
Peptide I  (P457-471):  PGHRHTLLVWGPNLY 

    +    - +     -        + 
Peptide II (P480-494):  QKPEKGENGIRFVST 

+

_ _++

++

P457-471 P480-494 

COOH 
NH2 
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MGMSKSLSCFGYPLSIFFIVVNEFCERFSYYGMRALLILYFRNFIGWDDNL 
         1 
STVIYHTFVALCYLTPILGALIADAWLGKFKTIVWLSIVYTIGQAVTSLSSV 

2            3 
NELTDNNHDGTPDSLPVHVAVCMIGLLLIALGTGGIKPCVSAFGGDQFEEG 
              4 
QEKQRNRFFSIFYLAINAGSLLSTIITPMVRVQQCGIHVKQACYPLAFGIPAI 

5 
LMAVSLIVFIIGSGMYKKFKPQGNILSKVVKCICFAIKNRFRHRSKQFPKRA 
6 
HWLDWAKEKYDERLIAQIKMVTRVLFLYIPLPMFWALFDQQGSRWTLQA 

7 
TTMSGRIGILEIQPDQMQTVNTILIIILVPIMDAVVYPLIAKCGLNFTSLKKM 

8 
TIGMFLSAMAFVAAAILQVEIDKTLPVFPKANEVQIKVLNVGSENMIISLPG 

9 
QTVTLNQMSQTNEFMTFNEDTLTSINITSGSQVTMITPSLEPGHRHTLLV 
 
WGPNLYRVVNDGLTQKPEKGENGIRFVSTYSQPINVTMSGKVYEHIASY 
 
NASEYQFFTSGVKGFTVSSAGISEQCDFESPYLEFGSAYTYLITSQATGCPQ 
 
VTEFEDIPPNTMNMAWQIPQYFLITSGEVVFSITGLEFSYSQAPSNMKSVL 

10 
QAGWLLTVAVGNIIVLIVAGAGQINKQWAEYILFAALLLVVCVIFAIMARF 

11       12 
YTYVNPAEIEAQFEEDEKKKNPEKNDLYPSLAPVSQTQ 

 
 
Figure 2.  Amino acid sequence of PepT1 in rat intestinal 
epithelial cell (Miyamoto et al., 1996).   
 

The numbers of 1 - 12 represent 12 transcellular 
domains.  The extracellular loop is shown as black color 
and the peptide I and II is shown as red color. 
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Peptide I segment  
 
Rat:  PGHRHTLLVWGPNLY 
Rabbit : A**Q***A*****N* 
Human:  Q**Q***A*****H* 
 

Peptide II segment 
 

Rat:  QKPEKGENGIRFVST 
Rabbit : **SD*********N* 
Human:  *************N* 

 
Figure 3.  Comparison of amino acid sequence identity of 
peptide I and peptide II segments chosen as anti-pepT1 
antibody development in different species. 
 

Peptide I segment shares 73% of amino acid identities 
among rat, rabbit, and human, respectively.  In comparison 
to peptide I, peptide II not only shares higher identity 
(80%) between rat and rabbit but also shares the highest 
identity between rat and human (93%).   
* represents the identical amino acid. 
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Figure 4. Chromatogram of HPLC Separation of Arginine and 

Arginine-Containing Peptides in Plasma Sample.  The elutes 

were Arg (R), Arg-Gly (RG), Arg-Gly-Asp (RGD), and Arg-Sar 

(RS).   

 
 
 
 
 
 
 
 
 

R

RG 

RGD 

RS 
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Figure 5. Chromatogram of HPLC Separation of Arginine 

and Arginine-Containing Peptides in Bronchoalveolar lavage 

fluid Sample.  The elutes were Arg (R), Arg-Gly (RG), Arg-

Gly-Asp (RGD), and Arg-Sar (RS). 
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Table I. Recovery Rate of Arginine and Arginine-
Containing Peptides from Blood and Bronchoalveolar 
Lavage Fluid 

 
 

 
Recovery rate (%) 

 

Blood Lavage Fluid 

Arg 83.74 ± 1.24 90.32 ± 2.34 

Arg-Gly 86.65 ± 2.34 91.46 ± 1.86 

Arg-Gly-Asp 87.32 ± 2.06 90.47 ± 2.41 

N=5, data are expressed as Mean ± standard deviation 
(SD). 
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Table II. Evaluation of accuracy and precision for the assay 
of arginine in plasma sample 

 
 

 

Arginine (µg/µl)  

0.2 1.0 2.0 

Within-day 
Calculated 
 
 
 
 
 
Average ± S.D. 
C.V. (%) 
Accuracy 
 
Between-day 
Day 1 
Day 2 
Day 3 
Day 4 
Day 5 
Day 6 
Average ± S.D. 
C.V. (%) 

 
0.20 
0.22 
0.185 
0.171 
0.20 
0.21 
0.20 ± 0.02 
11.8 
101.1 
 
 
0.23 
0.197 
0.188 
0.25 
0.21 
0.22 
0.22 ± 0.02 
10.5 

 
1.08 
0.99 
1.16 
1.10 
0.96 
0.94 
1.04 ± 0.09 
8.4 
105.2 
 
 
0.87 
1.03 
1.12 
0.99 
0.97 
1.05 
1.00 ± 0.08 
8.4 

 
2.13 
2.00 
1.89 
1.96 
2.21 
1.78 
2.00 ± 0.16 
7.9  
99.4 
 
 
2.16 
2.04 
1.97 
1.85 
2.00 
2.07 
2.01 ± 0.10 
5.2 
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Table III. Evaluation of accuracy and precision for the assay 
of Arg-Gly in plasma sample 

 
 

 
Arg-Gly (µg/µl)  

0.05 0.1 1.0 

Within-day 
Calculated 
 
 
 
 
 
Average ± S.D. 
C.V. (%) 
Accuracy 
 
Between-day 
Day 1 
Day 2 
Day 3 
Day 4 
Day 5 
Day 6 
Average ± S.D. 
C.V. (%) 

 
0.05 
0.046 
0.060 
0.061 
0.063 
0.05 
0.055 ± 0.01 
13.0 
103 
 
 
0.047 
0.05 
0.064 
0.046 
0.052 
0.061 
0.05 ± 0.01 
14.0 

 
0.13 
0.12 
0.09 
0.11 
0.12 
0.118 
0.11 ± 0.01 
11.9 
102.5 
 
 
0.086 
0.09 
0.12 
0.11 
0.10 
0.97 
0.10 ± 0.01 
12.6 

 
0.98 
1.07 
1.03 
0.89 
1.12 
1.06 
1.02 ± 0.08 
7.9 
104 
 
 
0.98 
1.05 
1.11 
1.00 
0.99 
1.07 
1.03 ± 0.05 
5.0 
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Table IV. Evaluation of accuracy and precision for the assay 
of Arg-Gly-Asp in plasma sample 

 
Arg-Gly-Asp (µg/µl)  

0.01 0.1 0.2 

Within-day 
Calculated 
 
 
 
 
 
Average ± S.D. 
C.V. (%) 
Accuracy 
 
Between-day 
Day 1 
Day 2 
Day 3 
Day 4 
Day 5 
Day 6 
Average ± S.D. 
C.V. (%) 

 
0.01 
0.012 
0.013 
0.01 
0.009 
0.01 
0.01 ± 0.01 
14.1 
101.3 
 
 
0.047 
0.05 
0.064 
0.046 
0.052 
0.061 
0.05 ± 0.01 
14.0 

 
0.09 
0.12 
0.113 
0.09 
0.12 
0.118 
0.11 ± 0.01 
13.4 
102.2 
 
 
0.11 
0.12 
0.09 
0.08 
0.10 
0.09 
0.10 ± 0.02 
15.0 

 
0.21 
0.20 
0.196 
0.206 
0.189 
0.19 
0.20 ± 0.01 
4.3 
101.4 
 
 
0.19 
0.23 
0.18 
0.20 
0.19 
0.18 
0.20 ± 0.02 
9.6 
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Table V. Concentrations of Arginine and Arginine-
Containing Peptides in rat Plasma and Bronchoalveolar 
Lavage Fluid. 

 
 

 
Concentration (uM) 

 

Blood BAL Fluid 

Arg 81.45 ± 3.28 82.61 ± 4.16 

Arg-Gly 19.65 ± 2.41 11.37 ± 2.46 

Arg-Gly-Asp 8.77 ± 1.03 7.62 ± 1.61 

N=6, data are expressed as Mean ± standard deviation 
(SD). 
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Figure 6. Transporter-mediated uptake of 5 µM FITC-
labeled lysine (Lys*) and small peptides (Arg-Lys*, 
β-Ala-Lys*, Gly-Sar-Lys*) by alveolar macrophages 
(106 Cells).  Lys (1 mM) and cephradine (1mM) was 
used as inhibitors for CAT-2B and PepT1 transporters, 
respectively.  * Significant difference from control 
at P < 0.05, n = 6. 
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Table VI. Production of NO by non-stimulated and LPS-
stimulated AM in the presence of arginine and arginine-
containing peptides 
 
 

 
Nitrite (µM) 

 

 
 
 

Substrate -LPS 
 

+LPS 
 

      Cells only 1.4 ± 0.2 
 

2.5 ± 0.3 

       Arg 
 

2.1 ± 0.4 21.5 ± 3.5 

       Arg-Lys 
 

7.2 ± 1.3 39.2 ± 5.1* 

       Arg-Gly 
 

5.1 ± 0.3 41.9 ± 3.6* 

       Arg-Gly-Asp 
 

3.7 ± 1.0 38.4 ± 2.1* 

 
 
At equal molar concentration (200uM) of Arg and ACPs, NO 
production from 106 AM with/without LPS stimulation was 
measured following 24-hour incubation and expressed as 
nitrite (uM).  Each value represents the mean ± SD of six 
separation experiments.  
* indicates significant difference from AM + Arg, p < 0.05 
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Figure 7.  Inhibitory effects of CAT and PepT1 transporter 
inhibitors on NO production by LPS-stimulated AM. 1mM of 
Lys, cephradine, and cephalexin; 5uM of LPC were used as 
inhibitors. * indicates significant difference from control 
at P < 0.05; n = 6. 
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Figure 8. Effects of anti-PepT1 antiserum I (1:10) and 

anti-PepT1 antiserum II (1:10) on AM production of NO 

using arginine and arginine-containing peptides as 

substrates.  

* indicates significant difference from the control 

(Arg). P < 0.05, n = 6. 
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Figure 9. The dose-dependent effects of anti-PepT1 
antiserum II on NO production by LPS-stimulated AM using 
arginine or arginine-containing peptides as the substrates.   
 
The antiserum dilutions were 1:100, 1:20, 1:10, 1:2. 
Antiserum II significantly block the NO production by Arg-
Lys, Arg-Gly-Asp in a dose dependent manner. N=6, P < 0.05. 
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Figure 10. The dose-dependent effects of anti-PepT1 
antiserum I on NO production by LPS-stimulated AM using 
arginine or ACPs as the substrates.  The antiserum 
dilutions were 1:100, 1:20, 1:10, 1:2. N=6, P < 0.05. 
Unlike to the antiserum II, no dose-dependent effects of 
the antiserum I on NO production by LPS-stimulated AM were 
observed.  
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Figure 11. Western Blot of PepT1-like Transporter on the 

membrane fraction of AM. 

A 120 kD bands were detected in membrane fraction of 

both LPS-stimulated and non-stimulated AM using anti-

PepT1 antiserum II. Western Blot of AM membrane proteins 

using anti-p480-494 antiserum (antiserum II).  The signal 

densities of corresponding bands were measured. 

A: Molecular weight marker;  B: Preimmune serum;  C: 

PepT1 standard protein;  D: LPS-stimulated AM;  E: Non-

stimulated AM.  
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Figure 12. Michaelis-Menten Saturation Curve of Arginine.  
n = 5.  The Kinetics was carried out by incubation of 0.1 
mg iNOS with arginine as substrates at concentration of 15, 
20, 30, 60, 120, 180, and 240 µM for 4 min.  The initial 
rates of NO synthesis were measured spectrophotometrically 
using the Greiss assay. 
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Figure 13. Michaelis-Menten Saturation Curve of Arg-Gly.  
n = 6.  The Kinetics was carried out by incubation of 0.1 
mg iNOS with Arg-Gly as substrates at concentration of 15, 
20, 30, 60, 120, 180, and 240 µM for 4 min.  The initial 
rates of NO synthesis were measured spectrophotometrically 
using the Greiss assay. 
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Figure 14. Michaelis-Menten Saturation Curve of Arg-Gly-
Asp.  
n = 5.  The Kinetics was carried out by incubation of 0.1 
mg iNOS with Arg-Gly-Asp as substrates at concentration of 
15, 20, 30, 60, 120, 180, and 240 µM for 4 min.  The 
initial rates of NO synthesis were measured 
spectrophotometrically using the Greiss assay. 
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Figure 15. Lineweaver-Burk plots for iNOS activity using 
Arg, Arg-Gly, and Arg-Gly-Asp as substrate (n=5).   
 

The enzyme reactions were carried out by incubation 
0.1 mg iNOS with arginine or arginine-containing peptides 
at concentrations of 15, 20, 30, 60, 120, 180, and 240 µM 
for 4 min. The initial rates of NO synthesis were measured 
spectrophotometrically using the Greiss assay. 
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Table VII.  Km, Vmax, and IC50 values for the enzyme kinetics 
of iNOS using Arg, Arg-Gly, and Arg-Gly-Asp as substrates 
and L-NMMA as a competitive NO inhibitor. 
 
 
Substrate Km  

(µµµµM) 
Vmax 

(µµµµmol/min/mg protein) 

IC50 (L-NMMA) 
(µµµµM) 

Arg 59.3 ±±±± 2.1 6.6 ±±±± 0.7 14.2 ±±±± 1.1 

Arg-Gly 56.0 ±±±± 1.8 8.4 ±±±± 1.2 12.8 ±±±± 0.8 

Arg-Gly-Asp 60.1 ±±±± 2.2 6.8 ±±±± 1.3 14.0 ±±±± 0.6 

Each value represents the mean ± SD of six separation 

experiments. 
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Chapter V 

Summary and Conclusion 

 

A HPLC method to analyze arginine and arginine-

containing peptides from blood and bronchoalveolar lavage 

fluid has been established.  The accuracy and precision of 

assay is within 15% deviation and 15% C.V., respectively, 

which reach the FDA requirement for analytical method 

validation guide.  The limit of quantitation (LOQ) was in 

nano-range without derivatization, 0.2 µg/µl for Arginine, 

0.05 µg/µl for Arg-Gly, and 0.01 µg/µl for Arg-Gly-Asp in 

both plasma and BAL fluid. So the method is simple, 

accuracy and reliable. 

 

This project also demonstrates that arginine-

containing di- and tri-peptides are direct substrates to 

the inducible nitric oxide synthase.  Arginine-containing 

peptides such as Arg-Gly and Arg-Gly-Asp, which are present 

in significant concentrations in plasma and the lungs, can 

be readily internalized through a peptide transport process 

and utilized for NO synthesis by a variety of cell types.  

This notion is in agreement with several reports that many 

di- and tri-peptides in plasma are directly absorbed by 

various organs without hydrolytic degradation (Lochs et 

al., 1988; Fei et al., 1994).  In the pulmonary system, 

where NO production on one hand protects the lung from 

bacteria infection (Boockvar et al., 1994) and on the other 

hand exacerbates inflammatory lung injury, AM are shown to 

exhibit PepT1-like transporter and produce high levels of 

NO by directly using arginine-containing peptides as 
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substrates. This study suggests a plausible mechanism 

through which a significant portion of the NO production by 

AM may be generated.  

 

The transport and utilization of arginine-containing 

peptides by AM may have a broader implication on the 

regulatory role of peptide transporters in various 

biological systems.  Studies have shown that renal-impaired 

patients may develop hypertension due to reduced production 

of NO by endothelial cells.  The reason for the reduction 

of NO synthesis has been attributed to a blockage of 

arginine transport through the CAT-2B transporter by 

compounds such as LPC, a natural CAT-2B inhibitor (Kikuta 

et al., 1998; Caivano, 1998).  Our studies showed that LPC 

indeed blocked AM production of NO through arginine uptake 

but had no effect on the cellular uptake and utilization of 

the arginine-containing peptides.  This suggests that 

arginine-containing peptides, which are internalized 

through a peptide transporter, may be considered as an 

alternative source of substrates for NO synthesis.  
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