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Abstract

Ignition by Air Injection (CIBAI) for Controlled Auto-Ignition in a CFR Engine
Fernando Echavarria

Compression ignition by air injection (CIBAI) has been successfully achieved in a
modified single cylinder, four-stroke, spark ignition cooperative fuel research (CFR) engine. The
CIBAI cycle was invented by Professor John Loth and Professor Gary Morris, US patent No's:
6,994,057 Feb. 7, 2006 and 6,899,061 May 31, 2005. This new revolutionary combustion concept
has the potential to become an alternative to traditional (SI) spark ignited and compression ignited
(CI) diesel engines.

A CIBAI engine consists of two or more even numbers of adjacent cylinders that work in
synchronization. One cylinder normally contains a conventional air-fuel mixture at a compression
ratio limited by fuel auto-ignition properties while the second cylinder contains air-only at high
compression ratio. Only during the compression stroke are these cylinders separated with a closed
cylinder-connecting valve (CCV). The CCV valve normally opens near the top dead center
(TDC) to allow transfer of high-pressure air from the air-only cylinder into the air-fuel mixture
cylinder. Mixing air with pre-evaporated fuel with hot high-pressure air causes rapid two-step
pressure rise, first by air addition and second by combustion compression. Ignition by air
injection provides high ignition energy allowing very lean mixtures to be ignited for low
emissions. Expanding combustion gases in both cylinders results in increased expansion ratio and
thus thermal efficiency.

The objective of this dissertation was to demonstrate experimentally the viability of
achieving ignition by air injection (CIBAI) for controlled auto-ignition in a CFR engine. This
experimental work involved the development of an air injection model, and the design, assembly,
and testing of a highly specialized air injection and timing equipment. These experiments were
designed to substitute CIBAI ignition for one cycle in a spark ignition engine. The CIBAI engine
cycle analysis is included, followed by an analytical model of the air injection process. A
controller for the air injection and timing system had been designed, built and tested under
different operating conditions until a satisfactory experimental procedure was developed for
testing using the CIBAI concept. Based on the measured pressure-time history a numerical
modeling code was developed to analyze power and combustion parameters (indicated net work,
indicated mean effective pressure (IMEP), net heat release, net heat release rate, mass fraction
burned (MFB), temperature history, combustion duration, and ignition delay). Finally, a
parametric study was conducted to determine the effect of compression ratio, intake temperature,
air-fuel ratio, air preheated charging pressure, and air-injection timing on CIBAI combustion.

Experimental and numerical model results indicated that ignition is readily achieved by
air injection (CIBAI) in a CFR engine using the proper air injection system and proper air
injection timing strategy.
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f = Actual fuel-air ratio

F = Fuel-air ratio

FD-LI = Photon detonation laser ignition

FFT = Fast Fourier Transform

F.L = Fuel level

FS = Fuel sensitivity

f, = Stoichiometric fuel-air ratio

g = Conversion factor

GDI = Gasoline direct injection
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MAE = Mechanical and Aerospace Engineering
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Chapter 1: Introduction

Intensive research to increase engine fuel efficiency and reduce emissions is
driven by the increase in worldwide oil demand and stringent emissions control
regulations. As a result, a wide range of internal combustion (IC) engine cycle
modifications have being developed and implemented to achieve complete combustion of
lean fuel-air mixtures for low NOx, while maximizing combustion compression for high
thermal efficiency.

This research effort has resulted in the application of new emission control
techniques (i.e. exhaust gas recirculation (EGR), variable valve timing, and NO
dilution), the use of new alternative fuels in internal combustion engines (i.e. natural gas
(NG), alcohols, and hydrogen), the design of new power train configurations (i.e. fuel
cells technology and hybrid vehicles), and the use of new ignition and combustion
strategies (i.e. compression ignition by air injection (CIBAI), gasoline direct injection
(GDI), photon detonation laser ignition (FD-LI), controlled auto-ignition (CAI),
homogeneous charge compression ignition (HCCI), and stratified charge engines).

Internal combustion engines (IC) are primarily classified into spark ignition (SI)
and combustion ignition (CI) engines. SI engines start the combustion process by using a
high-voltage electrical discharge from a spark plug in each combustion cycle. CI engines
start the combustion process when the fuel-air mixture self-ignites due to high
temperature in the combustion chamber, caused by high compression. SI engines have
higher power density, but are less efficient at part load because of losses associated with

throttling [1]. CI engines avoid throttling and thus are more efficient at part load;



however CI engines usually produce high particulate matter and oxides of nitrogen (NOy)
emissions under high load.

Modern SI and CI engines have reached significant improvements in emissions
reduction, and performance. However, their indicated thermal efficiencies are still in the
range of 40% to 50% [2]. The thermal efficiency of spark ignition (SI) engines is limited
by compression ratio, fuel octane number (ON), and knock, while the thermal efficiency
of compression ignition (CI) engines is limited by fuel cetane number (CN), and exhaust
emissions. In addition, an important factor limiting the thermal efficiency is the low
flame speed associated with combustion, initiated by a spark or by a spray of diesel fuel
[3].

In recent years controlled auto-ignition (CAI) has been extensively studied as an
alternative to traditional spark ignition (SI) and compression ignition (CI) engines [4].
Controlled auto-ignition (CAI) is defined in the literature as a combustion process, which
involves the auto-ignition and simultaneous combustion of a homogeneous air-fuel
mixture. This ignition system allows burning very lean mixtures for more efficient
operation at reduced power levels. Some additional benefits of CAI ignition over SI and
CI ignition are: lower NOy emissions at part load, leaner mixture operation, reduced
cycle-to-cycle variation, and lower soot emissions. However, its application in a
production engine has been limited due to high peak pressures, high HC and CO
emissions, the difficulty in timing of the auto-ignition, and heat release rate over the
entire engine operational range.

Loth and Morris [3,5] patented a new thermodynamic cycle for piston type

internal combustion (IC) engines called “Compression Ignition by Air Injection



(CIBAI).” The CIBAI cycle offers an IC engine capable of an increased thermal
efficiency, operating over a wide range of fuels, rapid ignition of very lean fuel-air
mixtures, and reduced NOy. The researchers indicated that CIBAI cycle could be more
efficient than the Otto or Diesel cycle, and simpler, since it does not require high
maintenance items like spark plug ignition systems, or high pressure diesel type fuel
pump and fuel injectors.

Recently, researchers at the National Energy Technology Lab (NETL) reported
obtaining laser-spark ignition of an ultra lean mixture using a Ricardo Proteous, single-
cylinder, four-stroke, spark-ignited natural gas engine [6]. CIBAI and laser-spark ignition
offer an alternative to traditional spark and compression ignited engines with their above-
average ignition energy achieving faster combustion of lean fuel-air mixtures for low
NOy, while maximizing combustion compression for high thermal efficiency.

The objective of this dissertation was to demonstrate experimentally the viability
of achieving ignition by air injection (CIBAI) for controlled auto-ignition using a CFR
engine. This experimental work mainly involved the development of an air injection
model, the construction of specialized air injection and timing equipment, the collection
of experimental data, the implementation of a numerical modeling program code, and the
execution of a parametric study to determine the effect of operating parameters on CIBAI

combustion. The specific tasks accomplished during this dissertation are presented next.



Chapter 2: Objectives

The objective of this dissertation was to demonstrate experimentally the viability

of achieving ignition by air injection (CIBAI) for controlled auto-ignition in a CFR

engine. This concept was originally proposed by Professor Loth and Professor Gary

Morris [3,5] and is based on theoretical concepts related to combustion, auto-ignition,

and chemical kinetics. This objective was accomplished through the following tasks:

A literature review was conducted to determine the combustion characteristics
and engine operating parameters for controlled auto-ignition (CAI).

Existing auto-ignition modeling techniques were reviewed.

A simple, yet reliable, numerical model was developed and implemented to
theoretically predict the influence of air injection, design parameters and
operation variables in the compression ignition by air-injection (CIBAI)
combustion.

Multiple air-injection systems were designed, assembled, and tested to determine
the optimal air-injection strategy.

A microcontroller was designed, assembled, and tested to control the air-injection
timing and operate the CFR engine safely during the air injection. Specialized
control systems were needed to assure that the air injection occurred at the desired
crank angle and the desired amount of air was injected all at once without
additional air transfer after ignition occurred.

Several cylinder-connecting valves (CCV) were designed, built, and tested to

simulate the CIBAI combustion process using the CFR engine.



A suitable data acquisition system was assembled to be able to compare the CFR
engine performance with spark ignition and with air-injection ignition.

Multiple tests were carried out and recorded for different engine operating
conditions while the CFR was motored, fired, and operated under the CIBAI cycle
to determine experimentally the optimal operating conditions for CIBAI
combustion.

Experimental CIBAI combustion testing was performed to collect the empirical
input data necessary to complete the numerical, parametric study, and to evaluate
the effects of operating parameters on CIBAI combustion.

A parametric study was conducted to study the effect of compression ratio, intake
temperature, air-charged pressure, air-fuel ratio, and air-injection timing on
CIBAI combustion.

A computer code (Appendix A) was developed and integrated within a graphical
user interface (GUI) to analyze the CIBAI cycle, implement the numerical model,
and perform the parametric study.

Model results were compared with experimental data to validate the ability of the
numerical model to predict the effect of operating parameters on CIBAI
combustion.

Air-injection design recommendations, and conclusions were provided based on

the results obtained through CIBAI experimentation and modeling.



Chapter 3: Literature Review
Auto-Ignition

In ST engines auto-ignition is defined as the ignition of the air-fuel mixture during
the compression stroke before the spark plug fires. Auto-ignition increases the
combustion chamber temperature and under certain conditions leads to a knock or
detonation reducing the power output and efficiency. The knock appears as a spontaneous
and excessive pressure rise rate within the cylinder chamber. It has been found to be
related to octane number, degree of mixing, and compression ratio. Fuels with low octane
number have more propensity to the knock. SI Engines operating with high compression
ratios need to use high octane number fuel to prevent the knock.

The mechanisms of auto-ignition and subsequent knock phenomena have been the
subject of intensive research since the beginning of the automotive industry. Studies in
the auto-ignition of hydrocarbons are normally done using constant-volume bombs, rapid
compression machines, shock tubes, and cooperative fuel research CFR engines. Ricardo
[7] and Erren and Campbell [8] indicated the importance of detecting and eliminating
abnormal combustion phenomenon for a smooth operation of an IC engine. Experiments
carried out by King [9], and King and Rand [10] indicated that “hot spots,” such as spark
plugs, exhaust valves, and the formation of deposits in the combustion chamber as the
result of pyrolysis of lubricating oil could cause auto-ignition.

Obert [11] stated that the factors controlling auto-ignition or spontaneous
chemical reaction are: temperature, pressure, ignition delay (ID), air-fuel ratio, the
presence of inert gases, and in some cases turbulence. He used the auto-ignition model

illustrated in Figure 3.1 to explain the correlation among those factors. Line AB’C



represents a homogeneous air-fuel mixture with a particular condition of pressure,
temperature, and air-fuel ratio. This mixture has been rapidly compressed at a certain
compression ratio and held at high pressure and temperature, but has not been able to
self-ignite; it rather cooled down after a short period of time. Lines AB”C’D’ and
AB”’C”D” represent the same mixture, but compressed at a higher compression ratio.
This mixture is held at higher pressure and above its self-ignition temperature, reaching
self-ignition after a short induction time (ignition delay). The ignition delay is shown to

be shorter for mixtures compressed at higher temperature.
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Figure 3.1 Ignition delay and the self-ignition temperature [11]

Miller [12], and Haskell and Bame [13] have proposed a detonation wave as a
mechanism for auto-ignition. This shock wave is assumed to travel through the
combustion chamber at supersonic velocity, compressing the unburned mixture at

pressures and temperatures where auto-ignition occurs almost instantaneously [11].



Controlled Auto-Ignition (CAl)
Overview

Controlled auto-ignition (CAI) is defined in the literature as a combustion process
which involves the auto-ignition and simultaneous combustion of a homogeneous air-fuel
mixture [4]. This chemical kinetics process is characterized by the absence of flame
propagation, the near simultaneous oxidation of the entire cylinder charge, rapid heat
release rates, small cyclic pressure variations, and very low NOy emissions [14]. CAI
combustion combines features of both SI and CI combustion since the fuel is exposed to
conditions of compression heating suitable for auto-ignition, yet the air-fuel mixture is
homogeneous.

In recent years, CAI combustion has emerged as an alternative to SI and CI
combustion due to the decrease in exhaust emissions and improvement in fuel economy.
CAI produces extremely low NOy emissions and almost zero PM emissions due to the
absence of high temperature regions and nonexistence of localized fuel-rich regions [15].
Its fuel economy can approach the level of conventional diesel engines due to the fast
burning rate, lean combustion, absence of throttling, and the removal of knock tendency
[14].

However, its application in a production engine has been limited due to high-
peak pressures, high HC and CO emissions, and the difficulty in timing of the auto-
ignition and heat release rate over the entire engine operational range [16].

Researchers have given different names to controlled auto-ignition (CAI),
including: active thermo-atmosphere combustion (ATAC) [14], activated radical (AR)

combustion [17], injection assistee par air comprime (IAPAC) [18], homogeneous charge



compression ignition (HCCI) [19], compression-ignited homogeneous charge (CIHC)
combustion [20], premixed charge compression ignition (PCCI) [21], and compression by
air injection (CIBAI) [3,5]. The most relevant of those CAI combustion processes are
described next.
Earlier Research

One of the first reported works in CAI is attributed to Onishi et al. [14]. They
developed a new technique, called “Active Thermo-Atmosphere Combustion (ATAC).”
They studied lean combustion of two-stroke spark-ignition engines and found that
abnormal combustion and auto-ignition could be used effectively to control combustion
of lean mixtures without a need of an initial ignition source such as an electrical spark.
ATAC combustion ignites a homogeneous air-fuel mixture by controlled auto-ignition
relatively early in the compression stroke (30° CA bTDC - 70° CA bTDC), as compared
to conventional two-stroke engines (20° CA bTDC - 45° CA bTDC). They reported
significant reduction of NOy emissions, stable combustion using lean mixtures at part-
throttle operation, smooth combustion with a little cycle-to-cycle variation, and
improvement in thermal efficiency. Onishi et al. [14] stated that the conditions to achieve
stable auto-ignition include uniform air-fuel mixture from cycle to cycle, high-
combustion chamber temperature, and the proper ratio of a new mixture to residual gases.

Najt and Foster [20] from the University of Wisconsin-Madison conducted
extensive research in a CAI technique, termed “Compression Ignited Homogeneous
Charge (CIHC).” The objective of this research was to evaluate the impact of changes in
the operating parameters in the ignition and energy-release processes. The experiments

were conducted using a single-cylinder four-stroke cycle Waukesha CFR engine with a



pressurized fuel intake and exhaust systems. These systems allowed control of the intake
temperature and the mixing of fresh air and exhaust products. Their experimental results
indicated high-compression-ratios advanced ignition and drastically increased energy-
release rates. Satisfactory ignition and a smooth energy release were obtained with a
compression ratio of 7.5:1. They also observed that variations in the air-fuel ratio from
the fuel-lean limit to stoichiometric advanced the point of ignition and produced a rapid
increase in the energy-release rate. Suitable ignition and smooth-combustion operation
were obtained with an air-fuel ratio of 0.8. On the other hand, they stated that increase in
the engine speed reduces the time available for the low-temperature (below 1200 °F)
oxidation kinetics which lead to spontaneous ignition to occur, and thus ignition becomes
delayed or unattainable. Exhaust-gas recirculation (EGR) was used to increase the
temperature of the intake mixture, but it was found that the chemical species in the
exhaust gas did not have any significant role in the ignition process. This is due to the
increase in the mass of inert gases in the combustion chamber and the subsequent
decrease in the combustion temperature. Finally, the authors concluded that variations in
the type of the fuel used modifies the CIHC combustion process by changing the low-
temperature (below 1200 °F) oxidation kinetics, but it did not affect the high-temperature
(above 1300 °F) heat-release process since similar CO and H, oxidation reactions prevail
for all fuel types.
Fundamentals of CAl Combustion

Controlled auto-ignition (CAI) combustion is considered a pure, chemical-
kinetics process marked by a homogeneous oxidation of an air-fuel mixture and gas,

residual products. This statement has been supported by earlier research conducted by
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Onishi et al. [14], Najt and Foster [20], Haskell [22], and Noguchi et al. [23]. Flow
visualization techniques such as Schlieren photographs used on some of those
experiments have not shown any evidence of passing flame fronts, hot-spot ignition
sources or particle-induced ignition.

Most of the literature on chemical kinetics agreed to classify the reaction route for
alkene fuels into three distinct chain-branching regimes: low (<900 °F), intermediate
(1000-1200 °F), and high (>1300 °F). For the low regime, the leading fuel reactions are
chain-propagating steps, pertaining to oxygen molecules and producing a series of
complex partial oxidized species [24]. For the intermediate regime, the main fuel
reactions are still chain-propagating steps, pertaining to oxygen molecules, but producing
conjugate alkenes and HO; radicals [25]. For the high regime, the principal fuel reactions
included thermal decomposition by C-C bond-breakage, forming alkenes and smaller
radicals [26].

Similarly, Najt and Foster [20] indicated that CAI combustion is controlled by
two distinct kinetics mechanisms: a low-temperature (below 1200 °F) Kinetics
mechanism, which controls the first stage of ignition, and a high-temperature (above
1300 °F) mechanism, which controls the start of the main ignition and the energy-release
process. Their findings have been supported by numerous experimental studies including
the work of Westbrook [27,28], and Halstead and Kirsch Kelly [29].

This research focuses on producing an overall understanding of the basic
mechanisms involved in compression ignition by air injection (CIBAI) in a CFR engine
and does not concentrate on providing a detailed evaluation of the specific chemical

species and reactions involved.
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Modeling CAlI Combustion

Until recently, the majority of the studies on CAI combustion have been limited to
experimental work due to the complexity of the chemical reactions. However, with the
advent of high-speed computers and with a better understanding of the hydrocarbon
chemistry, new theoretical formulations have been presented to describe the CAI
combustion. CAI combustion models are mainly divided into single-zone models and
multi-zone models.

Single-zone models have been used by Fiveland and Assanis [30] to simulate a
four-stroke natural gas HCCI engine, Goldsborough and Van Blarigan [31] to model a
hydrogen HCCI engine, Xu et al. [32] to study the characteristics of HCCI combustion in
a four-stroke automotive engine, and by Dec [33] to investigate combustion emission in a
HCCI engine. These models can predict ignition timing, heat release rates, and exhaust
emissions.

In a multi-zone model the combustion chamber is divided into a specific number
of zones that have particular mixture composition and initial pressure and temperature
prescribed. Multi-zone models have been used by Najt and Foster [20] to evaluate the
response of a CIHC engine to changes in operating parameters, Aceves et al. [34] to
predict HCCI combustion and emissions, and by Easley et al. [35] to explore the effects
of temperature stratification, heat loss and crevice volume on the HCCI combustion
process and exhaust emissions.

Recent Research in CAl Combustion
During the last decade research in CAI Combustion has moved from research

institutes and universities to the automotive industry. This new research effort has been
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focused on achieving stable CAI combustion and controllable heat-release rate over the
entire engine operational range. This research has been primarily conducted in two areas:
variations in the thermo-chemical properties of the mixture and changes in the engine
operation parameters.

The first area of research includes modification of the reactivity of the air-fuel
mixture by altering its thermo-chemical properties. To this aim, several techniques have
been used. These include changes in the intake temperature, variation of the air-fuel
mixture, exhaust gas recirculation (EGR), and the use of additives and fuel modifications.
Aceves et al. [34], Griffiths et al. [36], and Curran et al. [37] have indicated that higher
intake temperature increases the heat release rate, advances the start of the first stage of
ignition, and reduces the ignition delay.

Christensen et al. [38] studied the characteristics of CAI combustion using
isooctane, ethanol, and natural gas (NG), and compared their results with SI operation.
Experiments were carried out using a 1.6 liter single cylinder engine with a fixed
compression ratio of 21:1 in CAI operation and 12:1 in SI operation. Stable CAI
combustion was achieved for all three fuels with the same compression ratio. CAI
combustion was obtained for isooctane ran unthrottled without heating. The intake
temperatures of 170 °F and 250 °F were required to achieve CAI combustion for Ethanol
and natural gas (NG) respectively.

Ishibashi [39], Christensen et al. [40,41], and Flowers et al. [42] have
demonstrated the influence of the mixture composition in the CAI timing. They reported

that rich mixtures tend to increase the ignition delay while lean mixtures tend to decrease
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the ignition delay. This may be explained by the changes in the specific heat ratios (y)
that directly affect the quantity of disposable compression heating in the charge [4].

Law and Allen [43] and Law et al. [44] investigated the effects of exhaust gas
recirculation (EGR) and/or trapped residuals in CAI combustion. They developed and
implemented a two-exhaust valve control strategy in a single cylinder four-stroke engine.
Their objective was to separate the thermal and chemical effect of EGR by injecting
nitrogen and oxygen as a substitution. Nitrogen was heated to the same temperature of
the exhaust residual gas and injected in the intake manifold. They found that nitrogen,
due to its chemical inert nature, has the ability to delay combustion and smooth the heat-
release rate. Oxygen injection was found to have a direct effect on the start of the ignition
for intake temperatures greater than 250 °F and produce unmanageably high pressures
similar to the knock phenomena. This was attributed to the oxygen’s chemical nature.

Fuel modifications and additives have been used to accelerate or reduce the start
of the ignition and control the heat-release rate. Flowers et al. [42] added dimethyl-ether
(DME) while conducting experiments with a CFR engine running with methane fuel.
They improved CAI combustion and heat-release rate by adding 15% DME (by volume).
Ryan III et al. [45], and Jeuland et al. [46] carried out experiments to determine the fuel
requirements for CAI combustion. They concluded that the fuel formulation plays a very
important role in determining the operation range of CAI combustion and engine
efficiency.

Water injection, a dilution technique normally used in hydrogen IC engines to

reduce backfire and pre-ignition problems, was used by Christensen et al. [47] to affect
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the start of the ignition and heat release rate. They observed an increase in the ignition
delay, a reduction of the heat-release rate, and an increase in HC and CO emissions.

The second area of research includes changes in the engine-operation parameters.
The objective of this approach is to control auto-ignition (CAI) and obtain smooth heat-
release rate by affecting the time-temperature history of the mixture, for several engine-
operation conditions. Changes in compression ratio, engine speed, variable valve timing
(VVT), and supercharging have been extensively studied.

The effect of compression ratio on CAI combustion has been widely discussed in
the literature. A higher compression ratio increases the thermal efficiency, and the
temperature of the air-fuel mixture, and thus advances the start of the ignition
[3,5,40,41,45,48,49,50]. Najt and Foster [20] earlier indicated that the engine speed did
not affect the CAI combustion.

Variable valve timing (VVT) technique has been implemented by Law and Allen
[43] and Law et al. [44]. They designed a special engine with a digitally-controlled,
electro-hydraulic variable train system, which allowed changes in the valves opening
profiles. Researchers indicated that this new technology has the potential for controlling
CAI combustion and reducing NOx emissions.

Kontarakis et al. [51] demonstrated the HCCI concept using a single cylinder
four-stroke SI engine with modified valve timing. They obtained stable CAI combustion
for a compression ratio of 10.3:1 by applying a late inlet opening, early exhaust valve,
closing valve-timing strategy.

Ogura et al. [52] used an intake and exhaust continuous variable valve timing

mechanism in a premixed gasoline engine to control HCCI combustion. They concluded
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that it is possible to control the temperature in the cylinder during ignition timing by
controlling early exhaust valve closing timing.

Supercharging has been used as a technique to increase the indicated mean
effective pressure (IMEP) by increasing the mixture intake pressure. Christensen et al.
[40,41] experimented with different compression ratios and boost pressures. They
reported an increase in the IMEP and a broader CAI combustion operation range.

Yap et al. [53] used hydrogen addition on a natural gas HCCI combustion engine
to lower the minimum intake temperature required for auto-ignition of natural gas.
Authors reported a significant reduction on the intake temperature at part load due to
hydrogen’s lower auto-ignition temperature and minimum ignition energy (MIE), and
wider flammability limits (4-75% by volume).

Recently, a number of studies have been done on controlled auto-ignition (CAI)
combustion of gasoline engines. Oakley et al. [54] experimented with a four-stroke
gasoline engine operating at 900 rpm with a compression ratio of 11.5:1 and using
unleaded gasoline with an anti knock index (AKI) of 90. They obtained stable CAI
combustion for an intake temperature of 600 °F, and air-fuel ratio in excess of 80:1 with a
maximum EGR rate of 60%. They obtained very low NOy emissions at full load, and
very high levels of HC and CO emissions at part load.

Zhao et al. [55] obtained stable CAI combustion at part load without intake charge
heating or increasing compression ratio in a production 1.7 Liter Zetec SE 16 valve four-
stroke, four-cylinder port fuel injection gasoline engine, with a compression ratio of
10.3:1. They used a mechanical variable camshaft timing (VCT) system as presented by

Lavy et al. [15]. They increased the amount of the residue through the extended valve
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overlap by a combination of the early intake valve opening (IVO) and the retarded
exhaust valve closing (EVC). They reported a reduction of almost 99% in NOy emissions
and a significant improvement in brake specific fuel consumption (BSFC) and CO
emissions.

Hiraya et al. [56] conducted studies on a gasoline-fueled, compression-ignition,
single-cylinder engine under various compression ratios, intake temperatures, and intake-
gas compositions. They found a strong correlation between the timing for the onset of
HCCI combustion and the intake-air temperature, and between the combustion duration
and the air-fuel mixture composition. For compression ratio of 15:1 and an engine speed
of 1200 rpm, researchers obtained stable and moderate CAI combustion for air-fuel ratios
between 40:1 to 80:1(by volume) and intake temperature between 350 and 550 °F.

Yamaoka et al. [57] studied the influence of fuel injection timing on the stability
of CAI combustion. Researchers experimented with a four-stroke, four-cylinder gasoline
engine with a compression ratio of 12:1 and an intake temperature of 90 °F. The engine
was equipped with a controller and an electric variable valve actuator to control the valve
events and timing, and with an in-cylinder direction system. They observed reduced
torque variance that occurred due to combustion instability, and significant reduction of
NOy and HC emissions.

CAI combustion has been demonstrated to achieve stable heat release rate and
reduced NOy emissions at part load. However, the main challenge remains to obtain
stable combustion and a smooth heat-release rate at full load. Olsson et al. [58] proposed
the use of turbo-charging or a mechanically-driven compressor to force more mass into

an HCCI engine to recover some of the power loss due to EGR dilution. Experiments
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were conducted using a modified six-cylinder, turbo-charged diesel engine. The fuel
selected for this study was a combination of heptane and ethanol because of the high
octane number of the ethanol. After multiple boosting strategies, authors concluded that it
is not possible to boost a HCCI engine to the maximum load of a present-day diesel
engine.

Zhao et al. [55] proposed to adopt a hybrid engine operation of SI and CAI
combustion in order to implement CAI technology in a production vehicle. They
suggested using CAI combustion at part load to obtain maximum benefit of low NOy
emissions and lean combustion, and using SI combustion at full load to sustain its
maximum power and torque output.

Leach et al. [59] carried out experiments intended to control CAI combustion
through injection timing in a gasoline direct injection (GDI) engine with an air-assisted
injector. These experiments were done using a four-stroke, single-cylinder, Ricardo-
research engine, with a compression ratio of 9:1. This engine operated under CAI
combustion by residual gas recirculation (EGR). Small quantities of compressed air were
injected together with the fuel at approximately 100 psig. Air was injected at exhaust
valve closure (EVC), intake valve opening (IVO) and BDC of the intake and compression
strokes. Unleaded gasoline with a research octane number (RON) of 95 was used for all
tests. The results of this study indicated that a proper air injection strategy has the
potential to increase the operability range of CAI combustion, improve the fuel

ignitability, advance the ignition timing, and reduce HC and CO emissions.
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Chapter 4: Compression Ignition by Air Injection (CIBAI)

Overview

Loth and Morris [3,5] patented a new thermodynamic cycle for piston type
internal combustion, which Loth named “Compression Ignition by Air Injection
(CIBAI).” The CIBAI cycle offers an IC engine capability to increase thermal efficiency,
operate with a wide range of fuels, ignite rapidly very lean, fuel-air mixtures, and reduce
NOy. They indicated that the CIBAI cycle can be more efficient than the Otto or Diesel
cycle, and be simpler as it does not require high maintenance items like spark-plug
ignition systems, or high-pressure, diesel-type fuel pump and fuel injectors. The CIBAI
cycle offers an alternative to spark- and compression-ignited engines, with auto-ignition
timing, controlled by a cylinder-connecting valve. When it opens, hot-high-pressure air is
injected into the adjacent cylinder, which contains pre-mixed air and fuel.
Earlier Research

In 1993, Loth et al. [60] patented a new IC combustion engine, called “Isolated
Combustion and Diluted Expansion (ICADE) piston engine. The ICADE engine is a
piston-cylinder assembly, used for the compression of air and expansion of diluted
combustion products. The authors indicate that improvement in thermal efficiency and
exhaust-pollution reduction can be obtained in the ICADE engine because the piston
motion is used as a valve to isolate a small-cylinder volume, in which fuel injection and
combustion are induced by auto-ignition.

In the ICADE engine combustion products are injected tangentially into a
doughnut-shaped chamber, formed by the piston-cylinder clearance. The vortex produced

in this compartment, induced by the combustion pressure, creates rapid mixing and fast
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cooling, preventing the NOy formation reactions, and the generation of vortex kinetic
energy reduces the combustion pressure peak acting on the piston surface. Other benefits
reported include the rapid burning of lean mixtures, allowing low octane fuel, and the
elimination of the engine throttle valve to control engine power output, which otherwise
reduces the compression ratio, and thereby thermal efficiency.

CIBAI Concept

Loth and Morris [3, 5] explained the CIBAI cycle concept as follows:

“The CIBAI cycle requires two or more adjacent cylinders to work in tandem.
Typically one of the cylinders contains a conventional fuel-air mixture, except with
double the usual fuel-air ratio and uses a conventional compression ratio in accordance
to the fuel octane rating. The adjacent cylinder compresses only air, but to a much higher
compression ratio, at least double, that in the air-fuel cylinder. At top dead center its
compression volume is less than half that of the adjacent air-fuel cylinder. Only during
the compression stroke are the two adjacent cylinder volumes separated from one-
another by a valve. Near top-dead center, when this valve opens, most of the high-
pressure air transfers into the other cylinder, thereby compressing, heating and
producing controlled auto-ignition in the leaned fuel-air mixture. This allows complete
combustion, even with very lean mixtures, while both pistons are near top dead center.
The cylinder-connecting valve (CCV) remains open during the entire power stroke to
equalize the pressure in both cylinders. The expansion ratio is then the mean value of the
compression ratio in both cylinder pair. Both the high combustion compression by auto-

ignition and high expansion ratio is what renders the CIBAI cycle more efficient than
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either the limited compression ratio spark ignition Otto cycle or the low combustion
compression of the Diesel cycle with its ignition delay by fuel injection.”

A four-stroke configuration of an engine operating on the CIBAI cycle is shown
in Figure 4.1. Its only additionally component is a cylinder-connecting valve (CCV),
required to first transfer hot, high-pressure air for ignition, and subsequently combustion
products in the other direction. Auto-ignition timing is controlled by the opening of the

CCV valve.

Cylinder-connecting valve (CCV)

Cylinder containing high

pressure ignition air Cylinder with air-fuel mixture

v

A

N
1Y MMM

Figure 4.1 Four-stroke engine operating on the CIBAI cycle [3,5]

CIBAI Benefits and Applications
In addition to the high thermal efficiency, and the elimination of the need for a
throttle valve, spark ignition, or high-pressure fuel injectors, Loth and Morris [3, 5]

indicate that the CIBAI cycle has the potential to decrease NOx emissions and exhaust
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pipe loss due to the overall increase in expansion ratio in both cylinders. They pointed out

five additional advantages of the CIBAI cycle:

1.

2.

Lower cost and increased reliability by reducing the components.

Avoiding the cold starting problem of the diesel engine because in CIBAI fuel-air
mixture is fully mixed and pre-evaporated just like in the Otto cycle.

Applicable to any size engine, ranging from large ship engines to small engines such
that of UAV’s and lawn mowers, unlike the diesel engine, which requires a minimum
displacement for accurate flow-metering during high-pressure fuel injection.

Capable of operating with low emissions in two-stroke engines by having two
different cylinders, one only for air and fuel intake, while the other is only used for air
intake and combustion product exhaust. This eliminates the possibility for unburned
fuel to escape out of the exhaust port.

Increased safety is realized in a hydrogen engine as one cylinder compresses only
hydrogen while the other only air, and these two gases only get to mix at the desired
time of ignition when the CCV valve opens. Thus producing shaft power with
hydrogen fuel in a CIBAI cycle is much safer than compressing a hydrogen-air
mixture in a spark ignition engine because of its flammability limit (4-75% volume).
Also the use of hydrogen is problematic in a fuel injected engine. Its low density
increases the time required to inject sufficient fuel and also requires significant power
to compress the hydrogen gas for cylinder injection.

In the second (CIBAI) patent Loth and Morris [5] listed the advantages of pre-

heating and pressurizing a solid-oxide fuel cell with a CIBAI cycle engine. This allows

extracting shaft power both during heating and pressurization, and also by using fuel cell
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exhaust gas which still contains up to 20% hydrogen. Figure 4.2 shows a schematic
diagram of the use of a CIBAI cycle engine in combination with a high temperature

solid-oxide fuel cell to boost the overall conversion efficiency.

Supply Engine Exhaust
Hydrogen Fuel Hydrogen-Rich
+ Preheated Air

—J Cylinder Pair i

- i High
Cylinder Engine
Temperature
Pawet Fuel Cell p—
st Cylinder Pair r—

Hydrogen-Free
Engine Exhaust Fuel Cell Exhaust
Used for Pre-heating Shaft Hydrogen Lean
Used for Pre-heating
Power Out

Figure 4.2 CIBAI engine in combination with a fuel cell [3,5]

Thermal Efficiencies Comparison

The cold-air standard thermodynamic theoretical efficiency for the three cycles:
Otto, Diesel, and CIBAI cycles are shown for comparison in both the equation and
graphical form (Figure 4.3)

Otto Cycle Thermal Efficiency:

1

Moo =1— (C.R)y_l (4.1)

Diesel Cycle Thermal Efficiency:

1*(B" -1)
M iesel = 1- k-1 % . % (42)
C.RY™ *y*(B-1)
CIBAI Cycle Thermal Efficiency:
(-1 (r-1)
Wou Fa -1+ (rva - 1) * M

Ncivai = L= (4.3)

-1 -1
Qin (rvaf vn + IFva(i/ L IFm)* IFc - 1)
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Thermal efficiency of the Otto cycle is only function of the compression ratio
(C.R). As the compression ratio goes up, the thermal efficiency goes up. Thermal
efficiency of the Diesel cycle is the function of the compression ratio (C.R) and cut-off
ratio (B). Cut-off ratio is defined as the change in volume that occurs during combustion.
Thermal efficiency of the CIBAI cycle is the function of the air compression ratio (ty,),
fuel air compression ratio (yaf), air-fuel mixture mass ratio (r,), and combustion induced
temperature ratio (r.). A complete derivation of the thermal efficiency of the CIBAI cycle
is presented in references [3,5]. Theoretically, CIBAI cycle has a higher thermal
efficiency than Otto and Diesel cycle due to its second stage compression, prior to auto-

ignition (Figure 4.3).

Compression Ignition By Air Injection (CIBAI cycle) efficiency comparison
with Otto and Diesel cycle, for volumetric:
Fvaf = 11, 14 <1y, < 22 . Cut-off ratio r.=2.5

0.66

CIBAI

]
0.64

=
o
8

Thermal efficiency

N/

0.58 -

0.56

14 16 18 20 22

I'a fOr two pistons with equal displacement and
polytropic process coefficientn=14

Figure 4.3 CIBAI cycle efficiency comparison with Otto and Diesel cycles [3,5]
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Cold Air Standard CIBAI Cycle Analysis

The cold air-standard CIBAI cycle is an ideal cycle, which assumes that heat addition
occurs instantaneously at constant volume while both pistons are at TDC. Such a CIBAI
cycle is shown on the pressure ratio (P/P;) and temperature ratio (T/T;) vs. crank-angle
diagrams of Figures 4.4 and 4.5 respectively. The following assumptions were made to
evaluate the cold air-standard CIBAI cycle.

e The fuel-air mixture and combustion product properties are the same as air for the

entire cycle.

e The combustion process was replaced with a heat addition term Qj, of equal

energy value.

e Compression strokes and expansion strokes were approximated by isentropic

processes (n=1.4).

e The exhaust process was replaced with a closed system heat rejection process Qqut

of equal energy value.

e The combustion process was idealized by a constant-volume process.

e Air was treated as an ideal gas.

The CIBAI cycle consists of five processes in series. Process 1 is an isentropic
compression process of the air as both pistons move from bottom dead center (BDC) to
TDC (compression stroke). Process 2 is a constant volume process (combustion) which
follows the opening of the cylinder-connecting valve (CCV). This valve allows the high-
pressure air to enter the-low-compression-ratio cylinder to compress heat, and ignite its

fuel-air mixture. This valve remains open during the power stroke.
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The wvertical line represents constant-volume heat addition indicating the
instantaneous auto-ignition of the fuel-air mixture at the top dead center (TDC). This is
followed by an isentropic expansion (power stroke). The cycle is completed by a
constant-volume process, in which heat is rejected from the air while the piston is at

BDC. The exhaust and intake strokes are represented by horizontal lines on scale P/P;=

1.0.

The set of equations for calculating the temperature and pressure ratios inside

both cylinders (air-fuel and air-only) at any position during the expansion stroke are

Figure 4.4 CIBAI cycle ideal pressure ratio (P/P;) vs. crank angle

presented in references [3, 5].
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Temperature Ratio [T/T1]

CIBAI Ideal Temperature Ratio [T/T1] vs. Crank Angle
rva=16:1, rvaf=8:1, and Vd=1
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Figure 4.5 CIBAI cycle temperature ratio (T/T;) vs. crank angle
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Chapter 5: The Analytical Model

Overview

The objective of the analytical model presented here is the theoretical prediction
of the influence of air-injection design parameters and operation variables in the
compression ignition by the air-injection process. A cold-air-injection model is presented
in chapter 6.

The thermodynamic cycle for controlled auto-ignition in a CFR engine is different
from the CIBAI cycle above. The cold air from a bottle is pre-heated inside a pipe, placed
inside the CFR engine exhaust. Its analytical model consists of two subsystems, a
variable volume CFR engine combustion chamber and a fixed volume, containing hot,
high-pressure air. These two compartments are normally isolated by a solenoid valve and
a ball check valve, with an equivalent orifice-type, cross-sectional area A,.

The combustion chamber and the air heater are modeled as separate
thermodynamic systems with the outflow from the one, equal to the inflow into the other.
This model is an extension of a model originally developed by El-Messiri [61], using a
mathematical model developed by Borman [62], and thermodynamic properties obtained
by Newhall and Starkman [63], using the data from the JANAF tables [64].

The solution to the model was used to generate the time histories of the air heater
and combustion chamber thermodynamic properties throughout the cycle. Special
attention is given to the combustion chamber pressure-time-volume history, which
represents useful work produced per cycle. The schematic diagrams of the generalized
thermodynamic model and the compression ignition by air injection model are shown in

Figures 5.1, and 5.2 respectively.
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Figure 5.1 Generalized thermodynamic model [61]
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Figure 5.2 The compression ignition by air-injection (CIBAI) model
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Assumptions
The ideal cycle analysis is based on the following assumptions:

1. The first stage of combustion is assumed to occur instantly at a constant volume,
leading to formation of equilibrated combustion products.

2. The high-temperature air flowing from the air heater into the combustion chamber
mixes instantly and completely with the contents of the combustion chamber (fuel-air
mixture).

3. Each subsystem is considered as a homogeneous system of uniform temperature,
pressure, and composition.

4. Combustion products are assumed to behave as the cold-air standard.

5. Heat transfer from the gases to cylinder walls is neglected.

Model Analysis and Governing Equations

The generalized model has been solved using the first law of thermodynamics
(conservation of energy), the equation of mass continuity (conservation of mass), and the
equation of state, together with the thermodynamic property equations relating
equilibrium combustion product properties to time dependent values of temperature (T),
pressure (P), and effective fuel-air ratio (F), as proposed by Borman [62]. The solution
obtained for the generalized model will be applied to the combustion chamber and air

heater systems.
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Governing Equations

For the generalized thermodynamic system presented in Figure 5.1, the first law
of thermodynamics (conservation of energy), the equation of mass continuity
(conservation of mass), the equation of state, and the equilibrium combustion product
equations are written as follows:

Conservation of Energy:

Mu=-PV+ Qi+ Y h M, (5.1)

Equation (5.1) is the time derivative version of the open-system energy balance.
The left-hand side is the rate of change of the total energy of the system with time. The
right-hand side consists of the work done due to the piston motion, the sum of the heat
transfer rates across the boundaries of the system, and the sum of all energy flowing in
and out of the system because of the mass transfer.

Conservation of Mass:

M=>M, (5. 2)

j

The Equation of State:

PV = MRT (5.3)

Equilibrium Combustion Products:

Borman [62] developed mathematical formulations to obtain the absolute internal
energy (u) and gas constant (R) as a function of pressure, temperature, and fuel-air ratio.
These formulations have the following forms:

u=u(,P,F) (5.4)

R=R(T,P,F) (5.5)
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Differential Equations for Temperature and Pressure:

The differential equations for temperature and pressure are obtained from
equations (5.1) to (5.5). The approach is to derive the equations in terms of the dependent
variables P, T, F, or related quantities that can be expressed in terms of these variables to
facilitate the numerical solution. Time, t, will be treated as the only independent variable.
The resulting differential equations are coupled and non-linear; therefore, a numerical
integration technique needs to be used to obtain a reasonable solution. The mathematical
procedure is described next.

Applying the product rule to the left-hand side of equation (5.1) gives

MU = M U+ UM (5.6)

Using the chain rule of differentiation for equation (5.4) yields

u=d—uT+d—uP+d—uF (5.7)
dT dP dF

Replacing (5.7) into (5.6), and the result equation into (5.1), and dividing equation (5.1)

by mass (M), the following differential equation is obtained:

d—u'l.'+d—ulz’+d—uIE+UM:—RT!+ZhjM (5.8)
dT dpP dF M V. 5 M

Equation (5.8) gives a relation between the pressure and temperature derivatives of the
system. All other derivatives in equation (5.8) can be obtained in terms of the
thermodynamic state variables, system geometry, and time. Another independent relation
between the pressure and temperature derivatives is obtained by differentiating the

equation of state (5.3) with respect to time as follows:

PV+V P =M RT +M RT +MRT (5.9)
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Dividing equation 5.9 by PV yields the following equation

v,pP_ M R T (5.10)
VP M R T

Using the chain rule of differentiation for equation (5.5) yields

R=d—RT+d—RP+d—RF (5.11)
dT dP dF

Replacing (5.11) into (5.10) and rearranging terms gives the following differential

equation

V M ld_RIE_T.(TdR lj I.D(PdR 1)
R dP

————— —— 1 |+—= 5.12
R dT P (5-12)

V M RdF T

Equation (5.12) gives a second relation between the pressure and temperature derivatives

of the system. All other values, different from Tand P in equation (5.12) can be
obtained in terms of the thermodynamic state variables, system geometry, and time (t).

Equations (5.8) and (5.12) form a system of two independent, simultaneous, linear
equations that can be solved together with the appropriate air-fuel ratio ( F ), mass flow

(M), and volume change (\} ) equations. The equilibrium thermodynamic properties of
the products of combustion of C,Hyy and air (u, and R and the six partial derivatives) can
be calculated as proposed by [62].

Differential Equation for Air-fuel ratio (F):

By definition the fuel-air ratio (F) is the ratio of the actual fuel-air ratio (f) to the
stoichiometric, or chemically correct, fuel-air ratio (f;). The total mass at time (t) is equal
to the sum of the mass of fuel (M) and the mass of air (M,). These relations are shown in

equations (5.13), (5.14), and (5.15) respectively.
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F=—o (5.13)
fS
f M; (5.14)
M ,
M=M,+M, (5.15)

where:

F=Fuel-air air-fuel ratio
f=Actual fuel-air ratio
f=Stoichiometric fuel-air ratio
M=Total mass

M =Mass of fuel

M,=Mass of air.

Since the air-fuel ratio of the combustion chamber will be continuously changing
during the air injection through the flow boundary j, an “effective” air-fuel ratio for the
mixture needs to be calculated. Following the same methodology presented by Borman,

[62] the differential equation for F was obtained.

MiF | M,

. 1 '\./Ij
F= - 5.16
M, Zj“1+fj M, Zj:1+fj (5.16)

Mass Flow Rate Through the Orifice:

Since the mass flow must enter through a restricted area, called here an orifice,

the conservation of mass can be written as
Mi=—M=-M: (5.17)

The mass flow rate, M , through the orifice connecting the combustion chamber
and the air heater system can be calculated from the quasi-steady compressible flow

equation as follows:
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M = Aepl[%i((rp ) - (r, )Clﬂz (5.18)

where:

P, .
r, = —(Instantaneous pressure ratio)
P

A, = Orifice Area

g. = Dimensional constant
y = Specific heat ratio.

During the initial stages of injection and/or expansion, the flow through the
orifice is likely to be the choked flow. In this case the pressure ratio (r,) in equation

(5.18) should be replaced by the critical pressure
=
o Loin {ﬁ] (5.19)
Therefore, for the calculation of the mass flow rate using equation (5.18), the

instantaneous pressure ratio (rp) needs to be compared to the critical pressure ratio

). If 1y is less than then the critical pressure ratio, then r, | _is used in
critical

(rp |critical
equation (5.17) since then the pressure ratio and the calculated mass flow rate correspond

to the choked flow.

The expression M/ M appearing in equations (5.8) and (5.12) can be replaced by

the following expression

I\./I_ Pl 2y g, 2ot %
(NAETN ARES
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Volume and Rate of Change of Volume for the Cylinder:

The volume (V) and the rate of change of volume (\} ) for the cylinder is given by

Lichty [65] in terms of engine geometry as follows:

V =VC +7B*X /4 (5.21)
in which X =r[l-cos@+(L/r)(1-2)] (5.22)
1
and Z =[1—(r/L)*sin” 6]2 (5.23)

V =Z B sin0+——sin26 |0 (5.24)
4 207

0 =27(N)/60 (5.25)

The only independent variable in the system of equations is time (t). Therefore, an
expression of 6 (in radians) in terms of time (t) is required for the derivation of the
differential equations of the system. This is obtained by integrating equation (5.25)

between t=0 and t to give

272(N)
0=0,+"t 5.26
o oo (5.26)

The expression \;/ V appearing in equations (5.8) and (5.12) can be obtained at
any instant of time (t) from equations (5.21) and (5.24).

Equations (5.8), (5.12), (5.16), (5.20), (5.21) and (5.24) completely characterize
the generalized thermodynamic model. These equations constitute a system of coupled
non-linear ordinary differential equations that need to be solved using numerical

methods.
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Application to the Air-Injection System

The equations derived in the previous section for the generalized thermodynamic
model are applied to each subsystem (combustion chamber and air heater) to theoretically
predict the influence of air-injection, design parameters and operation variables on the
process of compression ignition by air injection. Denoting the air heater by subscript 1
and the combustion chamber by subscript 2, the equations for each subsystem are
obtained as follows.
Air Heater

For the air-heater subsystem, the volume is constant. Therefore, the equations for

this subsystem are obtained from equations (5.8), and (5.12) by replacing

V.1 =0and IE1 =0. Equation (5.8) is reduced to the following normalized form by

dividing both sides by R;T;, making use of the equation of state (PV=MRT) and the

definition of enthalpy (h=u +PV)

L(d_“j LR [d_”j Pl (5.27)
RUdT) T ™M, |RT \dP), P

Equation (5.12) is reduced to:
R, \dT T, M, R, \ dP J, P,

Combustion Chamber

For this subsystem, the volume as well as the fuel-air ratio are changing. The

generalized equations (5.8), (5.12), (5.16), (5.20), (5.21), and (5.24) will be applied to
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this subsystem and the expressions

2 and F will be expressed in terms of My to
2 1

facilitate the solution by numerical methods.
From conservation of mass
M, +M, =M =Constant

differentiating both sides with respect to time (t)
I\./l 2 = I\./I 1

2 .
is expressed as

and in terms of % , the quantity

__ - (5.29)

Using equation (5.29) and dividing both sides of equation (5.8) by R, T, yields

1 (du) IT> [ P, (du) ]Ps 1 (du) |2 |u,—-u —RT, 1 M, V. (530)
—| = |=+ — + — | |Fa2+ * —1-_12
R,\dT ), |T, R,T,\dP ), | P, R,T,\dF J, R,T, 1 ( M ] M, Vv,

Applying equation (5.12) to the subsystem and by using equation (5.30), the following

expression is obtained

T_z(d_Rj IRLEM i(@j L i[ﬁ) For| — 1 M_Va g4y,
R,\dT ), |T, |R,\dP), |P, |R,\dF), 1_[|\/|le )

<|§

Finally, an expression for the air-fuel ratio F, and its time derivative F, is obtained from

equations (5.13) through (5.16) and equation (5.31) as follows
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l.:2 _ (FZ - Fl )Ml %* M 1 (5.32)
FfsM,+M-M, M,
In summary, equations (5.27) through (5.32) together with the properties given by

equations (5.4) and (5.5) completely describe the thermodynamics of the compression by

the air-injection model. The volume terms V, and V. are prescribed by the geometry and

operating speed of the engine mechanism and the mass flow term M 1 by the appropriate
fluid dynamic expressions. These equations constitute a system of coupled non-linear
ordinary differential equations that need to be solved using numerical methods. A cold-
air-injection model was used to determine the air-injection, initial conditions and the air-

heater design parameters (see chapter 6).
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Chapter 6: The-Cold-Air Injection and Thermodynamic Models

Overview

The cold-air-injection model proposed in this chapter uses thermodynamic
concepts and fuel properties to determine the ideal operating conditions needed to reach
auto-ignition by hot ,high-pressure air injection during one single CFR engine event.
High-pressure air injection into the CFR is modeled by using a fixed container, connected
by a solenoid valve and an injector ball-check valve to the cylinder-piston arrangement
shown in Figure 6.1. The fixed container delivers a precise, controlled amount of hot-
high-pressure air into the cylinder during one single engine cycle. The analysis of the

model is done by using the conservation of mass and energy principles, the ideal gas law,

and the CIBAI concept.
Solennid
Pressure Saritch
| Air Heater — Cyplinder
[ Boundary of control Vobnne A'I(
High Pressare Cylinder

Figure 6.1 Air injection schematic model
As mentioned earlier, the new thermodynamic cycle for IC engines, CIBAI cycle,
patented by Loth and Morris [3,5], indicates that it is possible to obtain a higher thermal
efficiency than with the Otto or Diesel cycle by simply injecting compressed air into an
air-fuel mixture cylinder. The higher thermal efficiency may be explained by the increase
in combustion compression due to the use of a high energy ignition source in the form of

hot-high-pressure air injection. However, this research is based on using a CFR engine
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and therefore differs significantly from the CIBAI cycle. The conservation of mass and
energy principles, and the ideal gas model are used to determine the final equilibrium
temperature and pressure of the air in the cylinder after all the injected air has entered
prior to auto-ignition. The second law of thermodynamics is used to determine the heat
rejection during the combustion process. The derivation of the CFR engine air-injection
process resulted in two models: the air-injection model, and the thermodynamic model.
These models are described next.
Air-Injection Model

The schematic diagram shown on Figure 6.1 is used to simulate the hot high-
pressure air injection into the CFR engine. High-pressure air from a compressed bottle is
injected into the air heater at a known temperature and pressure. The air heater is located
inside the flexible exhaust pipe of the CFR engine. Air is injected into the cylinder
through an injector ball-check valve in series with a normally closed solenoid valve. This
valve is operated by a microcontroller that receives and processes input signals from
sensors added to the engine. The solenoid valve is closed at the moment that the pressure
inside the heater reaches a pre-selected cut-off pressure. A detailed description of the
instrumentation, data acquisition system, and the control system is included in the
experimental set-up and procedure section of this paper (Chapter 8). The following
assumption are needed for the analysis of the air injection model
Assumptions
1. Air injection occurs at TDC.
2. The ideal gas model for air is applied.

3. The P and T of the injected air remain constant prior to entering the cylinder.
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4. The amount of air injected into the cylinder is limited to the actual displacement
volume, Vd,g.
Analysis
The analysis of this model involves the steps needed to calculate the amount of air
in the air heater and the amount of air injected into the CFR engine in one single cycle
event. An analysis of the air-injection model is shown below.
The displacement volume (V) at sea level can be represented as a function of the

engine bore (b) and stroke (s) values

*b**s
Vo=t 6.1)

The actual volume displacement, V4a, is a function of the CFR engine operating

conditions

(6.2)

dact —

:\Z|<-

where:

V = Volumetric air flow rate
N= Revolutions per minute (RPM)
n = Revolutions per engine cycle (Rev/cycle).
The associated volumetric efficiency (nyo) is given by
Mot =Vaaet Vg (6.3)
The required heater volume, Vieater, can be obtained from the conservation of mass

principle

m-m =m (6.4)
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where:
m.= Mass initially inside the heater at the maximum pressure and temperature
m,= Mass remaining in the heater after the cut-off pressure
m;= Mass injected into the cylinder.

Vheater and Poyofr are designed in such a way that m; equals the mass already present

inside the CFR engine cylinder, prior to injection. Substituting into Eq. 6.4

® *
Pmax *Vheater N Pcutoff Vheater _ Pref Vdact
% * *
R Tmax R Tmax R Tref
where:
Pmax = Maximum pressure at which gas is injected into the air heater
P.r = Pressure reference at sea level

Peouort = Cut-off pressure. This is the pressure value inside the air heater at which
the solenoid valve is closed.

R = (3as constant
Tmax = Maximum temperature air heater
Tier = Temperature reference at sea level.

and solving the equation for Ve results in:

P, *V,  *T

ref dact max

heater — %
[pmax - Pcutoff ] Tref

(6.5)

Finally, the hot, high-pressure air injected into the cylinder will have a volume at sea
level conditions Vj, as calculated from the ideal gas law equation
v o MR T

' P

ref

(6.6)
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Thermodynamic Model
The conservation of mass and energy principles is used to calculate the
temperature and pressure in the cylinder at TDC before and after air injection for several
compression ratios.
Derivation of the Temperature and Pressure Before Air Injection
The temperature and pressure inside the cylinder before the air injection are
calculated using the air-standard, Otto-cycle analysis introduced previously, under the
following assumptions.
Assumptions
1. The air in the piston-cylinder assembly is the closed system.
2. The compression and expansion processes are adiabatic.
3. All processes are internally reversible.
4. Air injection occurs at TDC.
5. The air-fuel mixture is modeled as an ideal gas.
6. Kinetic and potential energy effects are negligible.
7. Process 1-2 (adiabatic compression) of the air-standard Otto cycle is considered for
the calculation of the temperature and pressure at TDC before the air injection.
Analysis
For an isentropic process:
ka = Constant with k= c,/c,
For process 1-2

k k
pi1vi =p2v2 , m = constant
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Therefore, the pressure p, before the air injection at TDC is given by the following

equation:

v
=0
p, = p, *(C.R)" (6.7)
where C.R = Compression ratio.

In the similar manner, the temperature T before the air injection at TDC is obtained as

follows:

Since m = constant, then

k-1 k-1 K-1
T _ (ij _ [ﬁj _ (V_BDC j — (C.R)¥!
Tl V2 VZ VTDC
Thus, the temperature before the air injection in the cylinder at TDC is given by:
T, =T *(C.R"" (6.8)
Derivation of the Temperature and Pressure After Air Injection

The following assumptions are considered to determine the final temperature and

pressure after the air injection and prior to detonation.
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Assumptions

1. Injection occurs at TDC.

2. The state of the injected air remains constant until it enters the cylinder.

3. There is no heat transfer with the surrounding, ch =0, and all kinetic and
potential energy effects are ignored.
4. The ideal gas model applies assuming air.
Analysis
The control volume shown in Figure 6.1 has a single inlet and no exit. Therefore

the mass rate balance takes the form

om .
L =m; 6.9
dt (6
Similarly, the energy rate balance is
L] L] . 1 2
ajtw =Q,~W,,+mi*(h +\%+g*zi) (6.10)

With assumption 3, Q_, =W« =0, and all kinetic and potential energy effects can be

neglected. Thus

ou .
—% =m;*h 6.11
at i (6.11)

Combining the mass and energy rate balances give

Vo _py #9Mey (6.12)
dt dt

In accordance with assumption 2, the specific enthalpy of the air entering the control
volume is constant: hi = h(T;), where T; is the temperature of the air within the air heater.

Thus, on integration, the above equation becomes
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AU, =h(T)*Am, (6.13)
where AU, and Am_, denote, respectively, the changes in the internal energy and mass of

the control volume. The change in the mass contained within the control volume equals

the mass injected into the cylinder

Am,, =m, (6.14)
The change in internal energy is
AU, =(m, +m)*u(T)—m, *u(T,) (6.15)
where:
m = Mass of the air initially in the cylinder
mj = Mass of the air injected into the cylinder
Te = Temperature of the air initially in the cylinder at TDC
T = Final temperature of the air within the cylinder after the air injection and

prior to detonation
u(T,) = Specific internal energy as a function of T,
u(T) = Specific internal energy as a function of T.
Grouping equations (6.13), (6.14), and (6.15) and solving them gives the specific internal

energy at T temperature

m, *u(T,)+m, *h(T,)
m, +m,

u(M) =

(6.16)

Using the ideal gas properties of air tables from Moran and Shapiro [66], and
interpolating with the value of the specific internal energy obtained from equation (6.16),
the final temperature T of the air in the cylinder after the air injection and prior to auto-
ignition is obtained.

The final pressure P of the cylinder at TDC after the air injection and prior to auto-
ignition is found by using the ideal gas equation of state

P=(m, +m)*R*T/V (6.17)
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The volume (V) of the cylinder at TDC can be obtained from the ideal gas equation of
state, and it is equal to the clearance volume (V.). It can be calculated using equation
6.18.
V=V,

V=m*R*T,/P, (6.18)
where P, and T, are the pressure and temperature of the air initially in the cylinder before
the air injection. Combining equations 6.17 and 6.18 the final pressure p after the air

injection and prior to auto-ignition is found.

* R *
P:(mc+mi) R*T :pc*l* M + M, (6.19)
(m *R*T./P.) T, m

o

The air-injection model developed in this section was used to quantitatively
evaluate the benefits of ignition by hot, high-pressure air injection on a CFR engine
during one single engine cycle (Appendix B). The results of this analysis were used as the

primary design criteria for the design of the air-injection system presented in Chapter 8 of

this dissertation.
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Chapter 7: Preliminary Designs

Overview

The air-injection model developed in Chapter 6 was used to quantitatively

evaluate the benefits of ignition by hot, high-pressure air injection on a CFR engine

during one single engine cycle. The results of this analysis were used as the primary

design criteria for the design of the air-injection system. Safety considerations were also

important in the selection of materials, equipment, and operating procedures.

Based on the results obtained through the implementation of the air-injection

model presented in the previous chapter, and the CIBAI fundamentals proposed by Loth

[3], the following design criteria were chosen for the air-injection system:

1)
2)

3)

4)

5)

6)

7)

The amount of hot, high-pressure air injection was limited to 437 cc of standard air.

A maximum air-charge pressure of 1000 psig and minimum of 700 psig were chosen.
A maximum exhaust temperature of 1100 °F and a minimum of 600 °F were selected
to pre-heat the air charge prior to injection.

The injector ball type check valve, downstream of the solenoid valve was set to open
at 500 psig. This means that this valve would open for a charging pressure greater
than or equal to 500 psig.

A compression ratio (C.R) limit of 8:1 was selected for the initial CIBAI combustion
test. However, the system would allow working with higher compression ratios if
needed.

An intake mixture temperature of 70 °F was chosen for the first set of experiments.

A maximum air-injection time of 20 ms was chosen to assure that most of the air

injected would have entered the cylinder prior to reaching TDC.
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8) Test repeatability was determined to be paramount.

9) Digitalized data acquisition was chosen to store the large amount of data.

10) Synchronization between air-injection timing, data acquisition, and engine operation
was essential in the data acquisition phase.

In order to fulfill the design requirements presented above for the air-injection
system, several conceptual and physical designs were proposed, and analyzed during the
course of this research. These designs are discussed next.

Conceptual Designs

Conceptual designs are defined as those that were proposed, and evaluated, but
never built. However, they provided valuable information about the functionality and
feasibility of the CIBAI engine. Conceptual designs included 3D models of a four-stroke
and two-stroke CIBAI engines, a CIBAI combustion bomb, and an air-gun rapid-
compression machine.
3D Models

Two four-stroke CIBAI engines were modeled using a 3D software package. A
1000 cc two-cylinder engine (Figures 7.1) and a 2000 cc four-cylinder engine (Figure
7.2) were evaluated. The aim of this modeling was to gain understanding of the
challenges to implement the CIBAI concept in a commercial engine. It demonstrated the
importance of the correct location and size of the cylinder-connecting valve (CCV), as

described by Loth and Morris [3,5], to make an engine operate on the CIBAI cycle.
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Figure 7.1 Twin-cylinder CIBAI engine 3D model
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Isometric View

Figure 7.2 Four-stroke four-cylinder CIBAI engine 3D model
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The need for the modification of the crankshaft, cylinder head, and camshaft are clearly
evident in these 3D models. This is the reason why the concept of Compression Ignition
By Air Injection (CIBAI) was studied in an available CFR engine, which was easily
converted to ignition-by-air injection to prove the concept.

CIBAI Combustion Bomb

Most of the earlier studies done on auto-ignition were carried out using rapid
compression machines, pulse combustors, shock tubes, and combustion bombs.
Combustion bombs have been a very useful tool to understand the phenomena occurring
in the combustion chamber, and allowed advanced engine concepts to be explored in
search of higher efficiency, lower emissions, and greater fuel flexibility. This type of
device is relatively simple in concept, although, in order to reach auto-ignition
conditions, it is necessary to use high pressures and temperatures. A single-event,
constant-volume combustion bomb could have been used to simulate the CIBAI
combustion process, without the need of the moving parts of traditional reciprocating
engines.

The design of the CIBAI combustion bomb was completed with several major
objectives in mind. The design strategy for the CIBAI combustion bomb was to produce
a simple and flexible research apparatus that would be inexpensive to build and operate.
Therefore, off-the shelf components were proposed to be used. For example, a solenoid
activated valve could be used to simulate the cylinder-connecting valve (CCV), and the
container could be welded together using standard pipes and flanges. As a research
device, it was deemed necessary to make adequate provisions for the CIBAI combustion

bomb to be highly instrumented. Therefore, sensor ports, and optical observation
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windows would be needed in the bomb design. Additional design considerations would
be needed to assure the safe operation of the combustion bomb, due to the unique hazards
of this type of device. For example, a reliable pressure relief valve would be needed, and
test procedures would have to be specified. The bomb was designed for a temperature
and pressure before ignition of 500° F and 700 psig, respectively.

Figure 7.3 shows a cross-sectional diagram of the CIBAI combustion bomb
proposed for this study. It was designed particularly for gaseous fuel experiments, but
could be used for gasoline and diesel fuel combustion with minor changes in the fuel
supply system. The gaseous fuel and compressed air are supplied to the combustion bomb
from high-pressure cylinders through a system of control valves and meters.

The CIBAI combustion bomb consists of an outer casing, incorporates a 17
stainless steel ball valve (4000 psi 150° F) to simulate the cylinder-connecting valve
(CCV), two tubes of 1” diameter schedule 40 stainless steel pipe of 12” and 40” long
sections act as dual combustion chambers for the air and fuel respectively, a heating
element, insulation materials, two 17 quartz windows, different fittings for air and fuel
filling, a pressure transducer, a thermocouple probe, and exhaust and relief valves. The
outer casing consists of a 1” stainless steel box of a 10” x 10” x 4” with a 1" base plate of
10” x 6, and a 1” removable top cover. The volumes of the air and fuel chambers are 35

cc and 70 cc respectively for a volume ratio of 2.
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Figure 7.3 Cross-sectional diagram of the CIBAI combustion bomb

1. CIBAI Combustion bomb. 2. Pressure Transducer Port. 3. Cylinder-connecting valve
(CCV). 4. Thermocouple Port. 5. Valve Actuator. 6. Lateral Outer Casing. 7. Quartz
Observation Window. 8. Air Intake Port. 9. Insulation Blanket. 10. Electrical Resistance
Heater. 11. Bottom Outer Casing. 12. Concrete Pad. 13. Fuel Intake Port. 14. Stainless
Steel Pipe. 15. Observation Window Flange. 16. Top Outer Casing. 17. Relief Valve
(Back). 18. Exhaust Valve (Back). 19. Injector Port (Front — Optional). 20. Spark Plug
Port (Front- Optional).

Since the CIBAI combustion bomb has no moving parts, such as the piston of the
internal combustion engine, used to compress the inlet cold air and fuel to auto-ignition,
an electrical resistance heater located at the bottom of the chamber was proposed in order
to raise the temperature of the air and fuel to the required level. To achieve the pre-
ignition pressure conditions, the combustion chamber is pressurized with air and filled
with an air-fuel mixture fuel to theoretical pressures normally obtained during the
compression stroke in a reciprocating engine. To minimize the heat loss through the

walls, the combustion bomb and the outer casing are wrapped with ceramic fiber

blankets, which can withstand continuous usage at very high temperatures. The CIBAI
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combustion bomb design is fully instrumented and equipped with a trigger system to
provide the proper synchronization between the start of the combustion event, and the
beginning of the data acquisition.

Even though, a CIBAI combustion bomb as described here was never built, it
provided valuable insights in the design necessary to obtain auto-ignition under a
controllable environment.

Air-Gun Rapid Compression Machine

An air-gun rapid compression machine was proposed to simulate the CIBAI
combustion process in a single cylinder four-stroke CFR engine. The air gun consists of a
2" inside diameter glass tube with a Teflon piston, a 2000 psig 4” NPT carbon steel
check valve, a 2000 psig “4” NPT stainless steel three-way ball valve, and a 2000 psig
1/8” NPT 115VAC brass solenoid valve. Four hundred and thirty seven (437) cc of sea
level air at an average of 700 psig would be injected into the glass tube cylinder-piston
assembly from a 2000 psig compressed bottle. This air is injected into the CFR engine
through the normally closed solenoid valve at a mass flow rate of 0.0404 kg/s, for a
discharged time of 6.72 ms or 36 crank angle degree at 900 rpm.

This design indicated the importance of a rapid response mechanism to inject the
air into the CFR engine. This design did not provide a way to pre-heat the air before
injection into the CFR engine, which is a critical factor to obtain auto-ignition for the
CIBALI concept.

Physical Designs
The designs discussed in this section were built and tested under different

operating conditions. The objective at this stage was to build a simple air-injection
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system capable to simulate the combustion process in a CIBAI engine. Special attention
was given to the safety of the system and operator, time response of the system, accuracy
of the data, and repeatability of the results. In order to achieve these objectives a piston-
cylinder assembly, air injectors, and cylinder-connecting valves (CCV) were designed,
built, and extensively tested. In addition, some complementary components were built to
support some of the preliminary experiments. These designs are discussed next.

Piston-Cylinder Assembly Design

One of the objectives of this piston-cylinder assembly was to simulate the initial
conditions occurring in a CIBAI engine prior to combustion. Another objective was to
determine the time response of the solenoid valve to changes in the amount of air
injected, charged pressure, amplified pressure, and back pressure. Finally, the purpose
was to incorporate the piston-cylinder assembly in a more complex experimental set-up
to study the compression ignition by air injection (CIBAI) in a CFR engine for a single
cycle event as proposed by Loth and Morris [3,5].

The piston-cylinder assembly is shown in Figure 7.4. It consisted of a CFR
simulator, pressure amplifier, and a pressure charger. The CFR simulator resembled the
air-fuel cylinder of the CIBAI engine. Physically, it simulated a clearance volume of 77
cc of a 500 cc single-cylinder four stroke CFR engine with a compression ratio (C.R) of
8:1 at TDC in the compression stroke. Back pressure was adjusted by way of a pressure
regulator connected to either a 200 psig pressurized air tank or a 2000 psig compressed
air bottle (Appendix C). A 1000 psig Omega pressure transducer (Appendix D) installed
in the upper right side of the CFR simulator was used to obtain the time-pressure history

inside the clearance chamber.
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Figure 7.4 Piston-cylinder assembly

The pressure charger and pressure amplifier simulated the air-only cylinder
paralleled to the air-fuel cylinder of the CIBAI engine. The pressure charger controlled
the amount of air injected into the CFR simulator by isothermally compressing the air, at
38 psig into a volume of 140 cc, located in the piston-cylinder rod compartment, which is
equivalent to 500 cc of the standard air. By actuating the 1/8” brass 115 VAC solenoid
valve (Appendix E), located between the CFR simulator and piston-cylinder assembly,
the mass of air was then injected into the CFR simulator, at a pressure of 600 psig by the
action of the pressure amplifier. The solenoid valve simulated the cylinder-connecting
valve (CCV), which joins the air-fuel mixture cylinder together with the air only cylinder
at nearly constant volume at TDC in the CIBAI engine. Charging pressure was supplied

from a 200 psig pressurized air tank.
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The pressure amplifier consisted of a 2500 psig double acting tie-rod hydraulic
cylinder (Appendix F), an air pressure regulator, a bleed valve, a pressure gauge, and
plumbing. Pressure amplification up to 3.16 can be obtained from the area ratio between
the piston and the piston rod areas. Amplified pressure was supplied from either a 200
psig-pressurized air tank or a 2000 psig-compressed air bottle. To prevent damage to the
cylinder-piston assembly during air injection, a 1/8” rubber O-ring was installed to
cushion the impact of the piston with the plug at the end of the cylinder.

By injecting an additional 500 cc of standard air into the CFR engine, the in-
cylinder pressure is increased to an approximate value of 500 psig, which is equivalent to
polytropic compressed air (y=1.35) from an initial intake pressure of 12.2 psig at a
compression ratio (C.R) of 16:1. If auto-ignition conditions are met (temperature,
pressure, and air-fuel ratio), then suddenly doubling the CFR engine air mass will cause
the homogeneous air-fuel mixture to auto-ignite, or CIBAI combustion to occur, as
proposed by Loth and Morris [3,5].

The piston-cylinder assembly was tested over a wide range of pressures ranging
from 0 to 100 psig. Charging pressures ranged from 30 to 100 psig, and amplified
pressures ranged from 0 to 400 psig. The time-pressure history of the clearance chamber
and the corresponding volumetric values were collected and verified.

Several important findings were obtained from this experimental work. The
discharged time ranged between 40 ms for high pressure charged to 150 ms for low
pressure charged. The piston movement was slow due to friction and the cylinder-piston
assembly was considered unsuitable for experiments with ignition by air injection

(CIBAJ) in a CFR engine running at 900 rpm, and completing a thermodynamic cycle in
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133 ms. The low response time of the cylinder-piston assembly was attributed to high
friction between the cylinder and piston surface, and to large masses of the piston, and
solenoid valve actuator, which required a minimum of 20 ms to open fully.

Lower than expected pressures in the clearance chamber were observed for most
of the tests. This was attributed to additional plumbing volume outside the cylinder-
piston assembly, which could not be pressurized by the piston during air injection.

Finally, the pressure amplification was not consistent for most of the tests,
possibly because of leakages in the system.

Air-Injector Design

After the decision was made to use the CFR engine as the main apparatus for
experiments with controlled auto-ignition by air injection, the design of an air injector
was initiated taking under consideration the engine space constraints and the need for
access ports for the pressure transducer (PT), solenoid valve, and pressure relief valve.
The first design (Figure 7.5) was a multifunctional air injector that operated partially as a
CCV while air injection was controlled by a solenoid valve and pressure relief
configuration.

This design consisted of a two-piece element: a 7/8” OD diameter by 2-47/64”
long carbon steel rod with two 3/16” diameter holes and two 1/8” NPT ports for the
pressure transducer (PT), an air injection access port, and a 1-3/8” OD by 7/8” ID carbon
steel bushing by 7/8” long with two lateral 1/8” NTP ports 90 degrees apart to connect
the pressure-relief valve and the solenoid valve connections. The steel bushing had two

1/8” by 3/16” grooves for two high temperature rubber O-rings to prevent leakage from
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inside the combustion chamber. The air injector was flush-mounted on the cylinder head

in place of the original CFR engine 7/8” detonation pick-up.

Presm T'ﬂusducr (PT)

Solenoid and Pre-.ssr-e- -
Relief Valve Ports

Metalic Ring

Figure 7.5 Air injector assembly installed in the CFR engine

This configuration allowed minimum modification of the CFR engine while
providing secure and flexible access for air injection and data acquisition. This design
was tested with the CFR engine, motored and fired for compression ratios ranging from
5:1 to 16:1 and under different operating conditions. The results of these tests indicated
the need to incorporate a cooling system into the design of the air injector to prevent the
pressure transducer (PT), solenoid valve, and pressure-relief valve from overheating. The
air-injector design drawing is displayed in Appendix G.

The first air injector was modified (Figure 7.6) by adding a 1/8” copper water-

cooling system and removing the pressure transducer (PT), solenoid valve and pressure-
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relief valve NPT ports from the main body of the injector. This was accomplished by
eliminating the external steel bushing.

The solenoid and pressure-relief valve were installed in series, and the air was
discharged into the CFR combustion chamber through a 1/8”-1000 psig stainless steel tee
installed between the air injector and pressure transducer (PT). This new design increased
the engine clearance volume by 12 cc. The CFR engine was motored and fired under
different operation conditions using the new air injector and air injection system, but it
failed to produce auto-ignition. This was attributed to injecting cold compressed air from

a bottle instead of high- pressure air, heated by compression as in patent disclosures.

resssure Transducer (PT)

Figure 7.6 Modified air injector with cooling system
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Injector Ball-Check Valve

The injector ball-check valve is an important component in the air-injection
system. It prevents air from leaking into the cylinder after the air injection. This ball-
check valve operates in a difficult environment since it is exposed to extremely high
average temperatures (greater than 1000 °F) and high-pressure variations (0-1000 psig);
thus its design requirement is tolerate these conditions.

The ball-check valve consists of a 5/8” NF adjusting screw, a 1-1/8” diameter
steel rod of 4” long, a 9/16” OD by 1-5/32” long carbon steel helical spring of 5 windings
of 1/8” diameter wire, a 3/8” diameter steel ball, and a 7/8” ID x 1-1/8” OD brass bushing
of 3/8” long (Figure 7.7). The steel rod had a centered hole of 3/16” diameter to allow air
flow from the solenoid valve to the combustion chamber, and a 1/8” diameter hole
centered at 1/4" from the center, and with a 1/8” NPT connection located in its lateral
side for the assembly of the water-cooled pressure adapter. The relief-pressure setting can
be increased by turning the adjusting screw clockwise.

The adjusting screw has on one end a 1/8” NPT connection to attach the air-
injection system, and a machined steel seat to press the steel ball against the helical
spring on the other end. The adjusting screw has a 3/16” diameter hole to allow high-
pressure hot air to flow from the air heater into the combustion chamber through the steel
ball and helical spring when the solenoid has been actuated by the microcontroller, and
the opening pressure has been reached.

The function of the brass bushing is to prevent leakage from the combustion
chamber into the atmosphere and provide flexibility in assembling the air injection

system. The air injection ball-valve check was tested using cold-air injection, while the
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engine was motored and fired using different compression ratios. Minor leakage was
detected at a 500 psig relief-pressure setting, therefore this was increased to 600 psig at
which leakage was almost completely eliminated. The air injector ball-check valve met

all the operation requirements during the first set of experiments.
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Figure 7.7 Injector ball check valve drawing
Additional details about the design of the cylinder air-injection valve are
presented under the experimental set-up and procedures of this dissertation (Chapter 8).
Other mechanical designs done during the course of this research included a spark
adapter (Appendix H) used for cold-air-injection tests, and a water-cooled, pressure-
transducer adapter (Appendix I) to prevent the pressure transducer (PT) from

overheating.
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Chapter 8: Experimental Set-Up and Procedures

Overview

The main objective of the experimental work done during the course of this
research was to closely simulate a CIBAI engine working under different operation
conditions. After designing, building, and evaluating several air-injection systems as
presented in Chapter 7, the experimental set-up displayed in Figure 8.1 was selected, and
implemented for this study. The engine used for this research was a Cooperative Fuel
Research (CFR) engine equipped with a high-pressure air-injection system, and fully
instrumented for data acquisition purposes. The engine in-cylinder pressure history with
its corresponding crank angle position was recorded while the engine was motored, fired,
and operated under the CIBAI principle. The data collected is analyzed in Chapter 9 to
provide a better understanding of the CIBAI combustion process. A detailed description
of the experimental set-up and procedures are presented next.

Experimental Set-Up

The schematic diagram of the experimental set-up is illustrated in Figure 8.1. The
experimental set-up for this research is shown in Figure 8.2. It consisted of five
interrelated components: CFR engine, air-injection system, instrumentation, data
acquisition system, and microcontroller unit. Each of these components was either
modified, designed, built, or assembled during the course of this dissertation and are

explained in detail in the following section.
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Figure 8.1 Schematic diagram of the experimental set-up
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Figure 8.2 Experimental set-up

CER Engine

The engine used in this project is a standard four-stroke, single-cylinder CFR
F-2 (motor method octane rating unit) spark-ignition engine with variable compression
ratio, manufactured by Waukesha Motor Company in 1957. The engine flywheel was
connected by belt to a special power absorption motor. This motor starts the engine
(motoring), absorbs the power output of the engine when the combustion takes place
(firing), and maintains a constant engine speed of 900 +/-9 rpm. During firing the
absorption motor operates as an alternator and the energy generated is introduced to the

AC power system. The engine specifications are given in Table 8.1.
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Table 8.1 WVU CFR engine specifications

Specification English Units International Units
Model CFR-48 Crankcase CFR-48 Crankcase
Octane Method Rating Motor Motor
Type CFR F-2 Rating Unit CFR F-2 Rating Unit
Engine Speed 900 rpm 900 rpm
Bore 3.25” 82.55 mm
Stroke 4.5” 114.2 mm
Displacement 37.33 cubic inches 612.5 cm’
Compression Ratio (C.R.) 4:1t018:1 4:1t0 18:1
Ignition Timing Variable Variable

i

Figure 8.3 CFR engine main components
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The main components of the CFR engine are shown in Figure 8.3.




The CFR engine was equipped with a 1000 watt, 115 VAC, two-element mixture
heater that was installed between the carburetor and the engine intake port. The mixture
temperature was controlled through the CFR engine temperature controller.

The fuel supply system (Figure 8.4) consisted of three carburetor bowl/float
chamber assemblies, mounted on an adjustment screw to increase or reduce the fuel level
and thus change the air-fuel ratio. The carburetor assembly consisted of the carburetor
body, a 9/16” throat diameter venturi jet, fuel selector, and fuel level sight glasses. The
fuel used for all experiments was unleaded gasoline with an anti knock index (AKI) of

87.

Figure 8.4 Air intake and fuel systems
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The CFR cylinder cooling system was of the thermal-syphon, ebullient,
recirculating jacket-cooling type. It consisted of a condenser body, condensing coil,
coolant baffle, sight glass assembly, return pipe, cooling jacket, and coolant thermometer.
Boiling coolant recirculates through the cooling jacket, and when contacted with the
condensing coil, condensates and returns to the cylinder jacket creating a continuous
loop. During firing operations the cylinder jacket coolant temperature was maintained
around 212 °F.

Several modifications were made to the CFR engine to facilitate air injection into
the combustion chamber and allow recording the in-cylinder pressure history. An air
surge tank (Figure 8.4) was built using a standard 3” PVC pipe, installed upstream of the
carburetor to make the intake-flow rate, steady enough to allow the use of an air-flow
meter. The 7/8” diameter detonation pick-up transducer mounted on the top of the
cylinder was removed and replaced by a 7/8” diameter, carbon steel, ball-type check

valve as shown in Figure 8.5.
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Figure 8.5 Injector ball-check valve and detonation pick-up sensor
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Between the exhaust port and the flexible exhaust pipe an air heater was installed
to heat the air charge prior to air injection into the cylinder. The air heater was built with

a 1/4” by 1 ft long stainless steel schedule 40 pipe as illustrated in Figure 8.6.

Stamless Steel Air Heater

Figure 8.6 Air heater and flexible exhaust pipe

Air-Injection System

The objective of the air-injection system was to simulate the operating conditions
of the second parallel cylinder containing air only, which was needed to run the engine
under the CIBAI cycle as proposed by Loth and Morris [3,5]. In this research, the air-fuel
cylinder was simulated by the CFR engine single cylinder while the air only cylinder was
simulated by the air-injection system and its components.

The air-injection system consisted of the following main components: A 2000

psig compressed air bottle (Appendix C) that supplied the high pressure air into the air
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heater; A 1/4” by 1ft long stainless steel air heater which contained the correct amount of
air mass for injection at high pressure. A water-cooled 1/4”-115V brass solenoid valve
(Appendix E) allows high pressure and temperature air to enter the combustion chamber
when activated by a microcontroller. A 1/4"- 2500 psig stainless steel three (3) way ball
valve (Appendix J) directed the air between the compressed air supply, air heater, and
solenoid valve. A 1/8” copper pipe water-cooling system protected all three: ball valve,
solenoid valve, and pressure transducer from overheating. A 7/8” carbon steel injector
ball-check valve allowed the heated high pressure air to be injected into combustion
chamber. The solenoid valve opening timing was controlled by the microcontroller. It
was considered to add a 1/8” brass air-pressure-relief valve (Appendix K) with a pressure
range 235-450 psig to prevent excess air from entering later in the cycle into the
combustion chamber. The air-injection system is shown in Figure 8.7.

olenoid Valve

Pressme Transducer

\%

Cooling Systemn i —

Figure 8.7 Air-injection system
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Instrumentation

The CFR engine was fully instrumented so that the engine operating conditions
could be monitored, as well as in-cylinder pressure history and crank angle, before and
after air injection could be measured. It was essential during the experiments to have
repeatability of the engine operations from test to test. Calibration information from all
instruments was obtained either from the manufacturer of the particular instrument or
generated in the laboratory. Figure 8.8 illustrates the schematic diagram of CFR engine

instrumentation used in this research.

P3p4 | Airinjection No. | INSTRUMENTATION NAME
gy
PT P1 | Intake Pressure Gauge
P1,T1,Va VFf - I3 P2 | Oil Pressure Gauge
—— — T P3 | Pressure Regulator
Intake  p2 T2 T4  Exhaust P4 | Charge Pressure Gauge
e — PT | In-Cylinder Pressure Transducer
e CAS | Crank Angle Sensor
T1 | Intake Thermocouple
T2 | Oil Temperature Thermocouple
Crankshat T3 | Exhaust Temperature
Thermocouple
_ T4 | Coolant Temperature
CFR Engine Thermometer
Va | Air Flow Meter
Vf | Fuel Glass Meter

Figure 8.8 Schematic diagram CFR engine instrumentation

Pressure Transducer (PT)

The engine in-cylinder pressure data were obtained with a water-cooled Dytran
piezoelectric pressure transducer, mounted on the injector ball-check valve (Figure 8.5).
The transducer preparation and calibration procedures described by Lancaster et al.

(1975) were followed in this study. The pressure transducer (PT) required a 20 V

72



excitation, and output 0 V at 0 psig and 5 V at 1000 psig with a minimum rise time of
input pressure pulse of 2 microseconds. The pressure transducer (PT) datasheet and
calibration certificate are shown in Appendix L. The pressure signal was conditioned
using a Kistler Piezotron coupler charge amplifier (Appendix M). The pressure data were
acquired with a data acquisition system at a sampling rate of 10 KHz. Significant noise
was present in the acquired pressure data despite extensive effort to eliminate it. These
included battery power for all sensors, shielding wires, and metallic boxes for the data
acquisition unit and microcontroller. Post-processing activities included low pass filters,
smoothing techniques, and Fast Fourier Transform (FFT) spectral analysis.

Crank Angle Sensor (CAS)

The instantaneous volume of the cylinder as the piston moves from TDC to BDC was
determined with the crank angle data obtained from a S5VDC magnetic switch. The CAS
was installed on the left side of the CFR engine and above the ignition-timing shaft as
shown in Figure 8.9. The magnetic bar was located at 410 ° CA bTDC of the compression
stroke.

TDC was determined using a dial indicator to indicate the highest point the piston
traveled. This was verified with the TDC mark on the flywheel when the piston was at
the highest position. The CAS rotated together with the ignition timing shaft, and sent an
analog output to the data acquisition system by actuating the normally open (NO) contact
when passing in front of the magnetic switch. The CAS required a SVDC excitation and
delivered a square wave with a lower limit of 0 V and an upper limit of 5 V at a rate of 1

pulse per 720° CA degree of rotation. In addition, to determine the crank angle position
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with respect to the TDC, the output of the CAS was also used for triggering the data

acquisition system and microcontroller unit.

il _ll w v I%".-'- -| % -I !
| E | CFR Engme |i

-
ST

Figure 8.9 Crank angle sensor mounted on CFR engine

Intake Air Flow Rate, Pressure and Temperature

Intake air volumetric flow rate was monitored via a Dwyer float rotameter with a
range of 0-10 +/- 0.1 SCFM that was attached to the air surge tank (Figure 8.4). The
engine operated at a volumetric air flow rate of 7.0 SCFM. Simultaneously, the pressure
and the temperature of the intake were monitored to determine the actual mass flow rate
of the intake air using the ideal gas law equation of state.

Intake pressure was displayed on an analog USG vacuum with a range of 0-60
psig +/- 0.1 psig. Intake mixture temperature was monitored with a type K Omega
thermocouple with a range of —208 to 2552 °F +/- 1 °F. The temperature signal was

conditioned and displayed with an Omega 400B thermocouple reader.
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Fuel Flow Rate

The fuel flow was measured volumetrically by marking known volumes on the
sight glass located in the carburetor bowl (fuel tank). Time was measured using a
stopwatch for the consumption of the known volume of fuel. With the known time and
volume of the fuel, the volumetric flow rate was calculated.

Coolant and Exhaust Temperature

Exhaust temperature was monitored with a type K Omega thermocouple with a
range of —208 to 2552 °F +/- 1 °F. The Signal was conditioned and displayed with an
Omega 400B thermocouple reader. Cylinder jacket coolant temperature was monitored
with a 82F ASTM thermometer with a range of 0-220 °F +/- 3 °F. Coolant temperature
varied between 160 °F and 200 °F during the course of this research.

Oil Temperature and Pressure

Crankcase oil temperature and pressure were displayed on analog gauges mounted
on the front of the CFR engine console instrument panel. Crankcase oil temperature was
maintained at 135 °F through the engine temperature controller. Oil pressure was
observed at 30 psig during all tests.

Ignition Timing

Ignition timing was monitored using a 12VDC strobe timing light with an
inductive pick-up manufactured by Sears Roebuck and Co. The inductive pick-up was
wrapped around the spark plug and the strobe light, oriented in front of a scaled plate,
mounted on the top of the flywheel. The scaled plate was marked with crank angle

degrees with respect to the TDC, and thus the match between the strobe light and the
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scaled plate indicated the location of the spark timing when the spark plug was fired. The
spark timing varied with the compression ratio.

The basic setting for the CFR engine was 26° CA bTDC at a compression ratio of
5.0. A Champion D-16 spark plug with a 0.020” gap was used for gasoline and spark
plug test. The ignition timing of the engine running under normal conditions was
employed as a reference to determine the optimal air-injection timing while the engine
was running under the CIBAI mode.

Data Acquisition System

A data acquisition system was assembled to acquire and store the air-injection test
data. The data acquisition system consisted of hardware and software components. The
hardware components included the pressure transducer (PT) sensor, and the crank angle
sensor (CAS), the data acquisition (DAQ) unit, the laptop, and data acquisition card. The
software components included the DAQ-EZ Professional, V 1.17, and the Signal View, V
1.91 for data collection, and data post-processing techniques, such as signal filtering,
smoothing, and FFT spectral analysis. The electric diagram of the data acquisition, and
the data acquisition card datasheet are shown in Appendixes N and O respectively.

Microprocessor Unit

A microcontroller unit was developed in order to control the spark timing,
injection timing, and injection duration of the CIBAI operation. The schematic diagram
of the microcontroller unit is shown in Figure 8.10. The system consists of a Microchip
Pic16F72 chip (Appendix P), electric source circuit, the trigger circuit, the air-injection
circuit, and the circuit for controlling the spark ignition. The microcontroller unit

program (Appendix Q) was written using the PicBasic Pro language. The process in the
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microcontroller is described as follows: once the unit is triggered by a push button, it
reads the delay time and injection duration signals from a pair of potentiometers installed
within the unit and enters into a loop until the spark ignition signal is detected from a
normally open (NO) magnetic sensor mounted on the spark-ignition distributor shaft.
Having sensed the spark ignition, the microcontroller outputs the spark-ignition
control signal to actuate an external 110VAD/6VDC, normally open (NO) relay, installed
between the spark-ignition distributor contact points and ground wire. This relay, when
energized, grounds the spark to prevent the air-fuel mixture from igniting by spark
ignition. After a programmed time delay has passed, the microcontroller sends an output
signal to actuate a second external 110VAD/6VDC, normally open (NO) relay, to
energize the normally closed solenoid valve and proceed with the air injection. Once the
solenoid is energized, it remains open until the selected injection duration has expired.
After this period, the microcontroller outputs a signal to restore the spark ignition and

resets itself to wait for a new trigger signal to start the next air-injection cycle.

Trigger —» |, Spark Ignition Timing
" Microchip PIC16F72
Spark Ignition
Park fgnifion — Chip ——» Hot Air Solenoid Valve
L AL S L2 DS R e
System

Injection Duration —,

Figure 8.10 Schematic diagram of the microcontroller unit

The air injection strategy discuss above is shown in Figures 8.11, and 8.12.
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Figure 8.11 Air injection strategy controlled by a microcontroller unit
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Figure 8.12 Air injection timing crank angle diagram
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Engine Preparation

Before the start of the experimental work, the engine was given a complete
overhaul, including a thorough cleaning of the carburetor, cylinder head, intake and
exhaust manifolds, spark plug, etc. The pressure transducer (PT) and crank angle sensor
(CAS) were calibrated, and the TDC was determined following the steps outlined before.
A dial indicator was used to find the height between the piston and cylinder head for a
given compression ratio. The cylinder-connecting valve (CCV) and pressure transducer
(PT) were flush-mounted to the cylinder head (Figure 8.5). The flexible exhaust pipe was
removed, and the air heater was inserted between the engine exhaust manifold and the
exhaust flexible pipe (Figure 8.6). The solenoid valve, three-way ball valve, cooling
system, and their corresponding plumbing were assembled (Figure 8.7), and a hydraulic
test was taken to detect possible leakages. Liquid displacement was used to measure the
added clearance volume due to the cylinder-connecting valve and pressure-transducer
(PT) connection, and consequently the CFR engine variable compression ratio was
adjusted to include the new clearance volume.

To conclude the engine preparation, the engine was motored, the pressure
transducer (PT) was zeroed, and the in-cylinder pressure taken for compression ratios,
ranging between 4.56:1 and 16:1. The intake manifold pressure, specific heat ratio (y),
and P-V diagram were obtained from the motored data.

Experimental Procedures

The experimental procedure is outlined next and corresponds to the actual CIBAI

process while the engine was motored with a homogeneous air-fuel mixture. However,

extensive experimental work was done prior to it, in which procedures differed

79



significantly from those presented here. Initial experiments included: Piston-cylinder
assembly tests, knock tests, pressure tests without air injection while the engine was
motored and fired, cold-air-injection tests with zero back pressure, and cold-air-injection
tests while the engine was motored. These initial test results are discussed in the results
and discussion section of this paper (Chapter 10).

The experimental procedures for the CIBAI auto-ignition testing are outlined as
follows: after the engine preparation and instrumentation calibration were done, the
microcontroller unit had been programmed, and the data acquisition system had been
properly connected and tested, the CFR engine was motored and fired using the standard
procedures outlined by ASTM [67]. While the engine was motored, the compression ratio
(C.R) was adjusted to the one selected for the particular test. The carburetor bowl was
filled with regular unleaded gasoline with an average knock index (AKI) of 87. The
three-way valve was turned to allow regulated air to flow from the 2000 psig compressed
air bottle into the air heater. The injection air pre-heater was filled with high-pressure
cold air to a predetermined pressure.

The engine was fired by turning the ignition switch on and turning the fuel valve
selector to the on-position of the carburetor being used. The fuel sight glass was kept at
the level selected for the particular test, and the air flow rate was maintained at 7.0
SCFM. The engine was run at the operating conditions specified in Table 8.2 until the
exhaust temperature achieved a steady state.

At this point, the three-way valve was turned to allow pre-heated high-pressure air
to become connected to the solenoid valve. The ignition was then shut off and the

microcontroller unit and data acquisition triggered. At this moment, the microcontroller
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unit had complete control over the engine operation, data acquisition and air-injection
processes. With the engine motored with the same operating conditions, a predetermined
number of cycles of motored pressures were collected. The microcontroller then used the
input data processed from the set of potentiometers installed in its unit to determine the
ignition delay and air-injection timing, and proceeded to actuate the solenoid valve to

allow high-pressure hot air into the cylinder through the injector ball-check valve.

Table 8.2 CFR engine operating conditions under CIBAI combustion

Fuel Unleaded Gasoline AKI 87
Fuel Level (in) 0.5,1.0, 1.5+/- 0.1

Intake Temperature (°F) 70, 150,250 +/- 5

Oil Temperature (°F) 135+/-5

Oil Pressure (psia) 30+/-5

Coolant Temperature (°F) 180 +/- 10

Exhaust Temperature (°F) 600 +/- 15

Compression Ratio 7.0,7.5,8.0

RPM 900 +/- 9

Air Pre-heater Charging Pressure (psig) 700, 800, 900, 1000 +/- 20
Spark Plug Gap (in.) 0.020-0.025

Spark Timing (Fired) Variable

If the conditions for self-ignition (e.g. temperature, pressure, and air-fuel ratio,
turbulence, density) were met, the air-fuel mixture would auto-ignite, and CIBAI ignition
and combustion would take place. After, the auto-ignition was completed, spark ignition
was turned back on, and the engine continued to fire at the previous operation conditions.
Data from a predetermined number of cycles before and after auto-ignition were
collected. Finally, the standard stopping procedures suggested by ASTM [67] were
followed to stop the engine. After the experimental work was concluded, the digitized
pressure data were scaled, averaged, and analyzed.

This procedure was repeated for air-fuel mixture intake temperatures of 70 °F, and

250 °F, at compression ratios of 7.0:1, 7.5:1 and 8.0:1, fuel levels of 0.5 in, 1.0 in, and 1.5
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in, air pre-heater charging pressure varied from 700 psig to 900 psig, and air-injection
timing from 85°, 75°, and 65° CA bTDC. The experimental matrices for this study are

presented next.

Experimental Matrices

The experiments for this research were divided into five matrices. These matrices
described the experiments carried out to determine the effect of compression ratio, intake
temperature, air pre-heater charging pressure, equivalence ratio, and air-injection timing
with CIBAI combustion.
Matrix 1: The Effect of Compression Ratio on CIBAI Combustion

The effect of compression ratio on CIBAI combustion was experimentally studied
by increasing the compression ratio from 7.0:1 to 8.0:1 in increments of 0.5, while the
engine speed, intake temperature, exhaust temperature, equivalence ratio, air flow rate,
and air pre-heater charging pressure were maintained constant. In-cylinder pressure data
were recorded and analyzed for motored, fired, and CIBAI combustion. Matrix 1 is

shown in Table 8.3.

Matrix 2: The Effect of Intake Temperature on CIBAlI Combustion

The effect of intake temperature on CIBAI combustion was experimentally
studied by increasing the air-fuel mixture intake temperature from 70 to 250 °F, while the
engine speed, compression ratio, exhaust temperature, air flow rate, air pre-heater
charging pressure, equivalence ratio, and air-injection timing were maintained constant.
In-cylinder pressure data were recorded and analyzed for motored, fired, and CIBAI

combustion. Matrix 2 is shown in Table 8.4.
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Matrix 3: The Effect of Air Pre-heater Charging Pressure on CIBAI
Combustion

The effect of air pre-heater charging pressure on CIBAI combustion was
experimentally studied by varying the charging pressure from 700 to 900 psig in
increments of 100 psig, while the engine speed, compression ratio, intake temperature,
exhaust temperature, fuel level, air flow rate, equivalence ratio, and air-injection timing
were maintained constant. In-cylinder pressure data were recorded and analyzed for

motored, fired, and CIBAI combustion. Matrix 3 is shown in Table 8.5.

Matrix 4: The Effect of Equivalence Ratio on CIBAI Combustion

The effect of equivalence ratio on CIBAI combustion was experimentally studied
by changing the equivalence ratio (®) from 0.45 to 0.65 in increments of 0.15, while the
engine speed, compression ratio, intake temperature, exhaust temperature, air flow rate,
air pre-heater charging pressure, and air-injection timing were maintained constant. In-
cylinder pressure data were recorded and analyzed for motored, fired, and CIBAI
combustion. Matrix 4 is shown in Table 8.6. A sample calculation for air-fuel and

equivalence ratios is shown in Appendix R.

Matrix 5: The Effect of Air-Injection Timing on CIBAlI Combustion

The effect of air-injection timing on CIBAI combustion was experimentally
studied by changing the air-injection timing from 85 to 65° CA bTDC in decrements of
10°, while the engine speed, compression ratio, intake temperature, exhaust temperature,
air flow rate, air pre-heater charging pressure, equivalence ratio, and air-fuel ratio were

maintained constant. In-cylinder pressure data were recorded and analyzed for motored,

fired, and CIBAI combustion. Matrix 5 is shown in Table 8.7.
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Table 8.3 Experimental matrix 1: effect of compression ratio in CIBAI combustion

Testl Test2 Test3
Variable Parameter
Compression Ratio CR=7.0 CR =75 C.R.=8.0
Fixed Parameters
RPM 900 +/-9 900 +/- 9 900 +/- 9
Intake Temperature (°F) 70 +/- 5 70 +/-5 70 +/-5
Exhaust Temperature (°F) 600 +/- 15 600 +/- 15 600 +/- 15
Equivalence Ratio (D) 0.50 +/- 0.01 0.50 +/- 0.01 0.50 +/- 0.01
Air Flow Rate (SCFM) 7+/-0.1 7+/-0.1 7+/-0.1
Air Pre-heater Charging Pressure (psig) 800 +/- 10 800 +/- 10 800 +/- 10
Air Injection Timing 75 +/-0.5 75 +/-0.5 75+/-0.5
(°CADBTDC)

Table 8.4 Experimental matrix 2: effect of intake temperature in CIBAI combustion

Test4 TestS
Variable Parameter
Intake Temperature (°F) 70 +/- 5 150 +/-5
Fixed Parameters
RPM 900 +/- 9 900 +/- 9
Compression Ratio C.R =8 CR =8
Exhaust Temperature (°F) 600 +/- 15 600 +/- 15
Equivalence Ratio (P) 0.50 +/- 0.01 0.50 +/- 0.01
Air Flow Rate (SCFM) 7+/-0.1 7 +/- 0.1
Air Pre-heater Charging Pressure (psig) 800 +/- 10 800 +/- 10
Air Injection Timing 75 +/-0.5 75+/-0.5
(° CAbTDC)

Table 8.5 Experimental matrix 3: effect of air charged pressure in CIBAI combustion

Test 6 Test 7 Test 8
Variable Parameter
Air Pre-Heater Charging Pressure (psig) 700 +/- 10 800 +/- 10 900 +/- 10
Fixed Parameters
Compression Ratio C.R =8 CR =8 C.R =8
RPM 900 +/- 9 900 +/- 9 900 +/- 9
Intake Temperature (°F) 70 +/-5 70 +/- 5 70 +/-5
Exhaust Temperature (°F) 600 +/- 15 600 +/- 15 600 +/- 15
Equivalence Ratio (P) 0.50 +/- 0.01 0.50 +/- 0.01 0.50 +/- 0.01
Air Flow Rate (SCFM) 7+/-0.1 7+/-0.1 7+/-0.1
Air Injection Timing (° CA bTDC) 75 +/-0.5 75 +/-0.5 75 +/-0.5
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Table 8.6 Experimental matrix 4: effect of equivalence ratio in CIBAI combustion

Test9 Test 10 Test11
Variable Parameter
Equivalence Ratio (®) 0.65+/-0.01 0.50 +/- 0.01 0.45+/-0.01
Fixed Parameters
Compression Ratio CR =8 CR =8 CR=8
RPM 900 +/-9 900 +/- 9 900 +/- 9
Intake Temperature (°F) 70 +/-5 70 +/-5 70 +/-5
Exhaust Temperature (°F) 600 +/- 15 600 +/- 15 600 +/- 15
Air Pre-heater Charging Pressure (psig) 800 +/- 10 900 +/- 10 1000 +/- 10
Air Flow Rate (SCFM) 7+/-0.1 7+/-0.1 7+/-0.1
Air Injection Timing 75 +/-0.5 75 +/- 0.5 75+/-0.5
(° CAbTDC)

Table 8.7 Experimental matrix 5: effect of air injection timing in CIBAI combustion

Test 12 Test 13 Test 14
Variable Parameter
Air Injection Timing
(° CAbTDC) 85+/-1.0 75 +/-1.0 65 +/-1.0
Fixed Parameters
Compression Ratio CR =8 CR=8 CR =8
RPM 900 +/- 9 900 +/- 9 900 +/- 9
Intake Temperature (°F) 70 +/-5 70 +/-5 70 +/-5
Exhaust Temperature (°F) 600 +/- 15 600 +/- 15 600 +/- 15
Equivalence Ratio (D) 0.50 +/- 0.01 0.50 +/- 0.01 0.50 +/- 0.01
Air Flow Rate (SCFM) 7+/-0.1 7+/-0.1 7+/-0.1
Air Pre-Heater Charging Pressure (psig) 800 +/- 10 800 +/- 10 800 +/- 10
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Chapter 9: Data Analysis

Overview

Engine in-cylinder pressure and volume data in combination with thermodynamic
principles and ideal gas law are fundamental for a combustion study. In-cylinder pressure
data are used to study ignition, auto-ignition, knock phenomena, and cycle-to-cycle
variations among others. Pressure measurement data are also used to determine peak
pressure, indicated work, engine friction, pumping losses, and to compare experimental
pressures with the pressures calculated by combustion models.

In this study, the CFR engine in-cylinder pressure was used to calculate the
following parameters: indicated work, indicated mean effective pressure (IMEP),
temperature history, heat release rate, mass fraction burned (MFB), ignition delay (ID),
and combustion interval. A computer program was developed to carry out the necessary
calculations. This computer program used numerical integration methods,
thermodynamic principles, and the ideal gas law in order to compute these parameters.

The preparation and calibration of the piezoelectric system used in these
experiments were done using the procedure outlined by Lancaster et al. [68]. The
combustion characterization of engine pressure data was done using the heat release
model, developed by Gatowski et al. [69], and Woschni [70], and the mass fraction
burned (MFB) equation, presented by Rassweiler and Withrow [71].

In-Cylinder Pressure History

Most of the pressure data in this research were taken with a water-cooled Dytran

pressure transducer Model 2201V1 (Appendix L), and the signal was amplified using a

Kistler Piezotron charge amplifier (Appendix M). The correlation between the time-
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pressures history with the cylinder volumes was done using an electromagnetic crank-
angle sensor (Figure 8.10 ), as described in the experimental set-up section of this paper.
The total cylinder volume associated with each crank angle was calculated by adding the
volume, associated with the displacement of the piston, and the clearance volume,
associated with the selected compression ratio. The volume generated by the piston
motion was calculated from the physical dimensions of the engine, and the crank angle

was calculated using Equation 9.1 [72]

2 2
v :VC+£{E(I—COSQ)+I—W/IZ—S—sinzﬁ} 9.1)
4|2 4

where:

= Total volume inside the cylinder
c = Clearance volume

= Engine bore

= Engine stroke

= Connecting rod length

= Crank angle measured from TDC.

Prrnw<<<g

Work

In an internal combustion (IC) engine work is produced by the gas pressure in the
combustion chamber, acting on the face of the piston as the engine moves through the
entire cycle. The work produced by an IC engine is represented by the following

equation:
W = [Pdv (9.2)

where:

P= Pressure in combustion chamber
dV= Differential volume displaced by the piston.
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The net work done by the fluid on the piston (net indicated work) is greater than
the work done at the output shaft (brake work). This difference is due to the mechanical
friction and parasitic loads, which are not included in the calculation of the net indicated
work. The brake work is given by:

W, =Wi-W (9.3)
b f

where:

W, = Brake work

W; = Net indicated work

W = Work lost due to friction and parasitic load.

Figure 9.1 shows a typical P-V diagram for the Otto cycle. The upper loop
represents the gross indicated work, produced during the compression and expansion
strokes while the lower loop represents the pump work, absorbed from the engine during

the intake and exhaust strokes. The net indicated work is calculated as follows:

Wi=W,_ +W

— YYgross

9.4)

pumping
where:

W; = Net indicated work

Woross = Gross indicated work

Wpump = Pump work.

The pump work is positive when the intake pressure is greater than the exhaust
pressure (i.e. supercharged or turbocharged engines), and is negative when the intake
pressure is less than the exhaust pressure.

The net indicated work can be obtained through numerical integration using the

engine in-cylinder pressure data and its corresponding volume data given by the crank

angle during the piston motion.
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Figure 9.1 Otto cycle p-v diagram
For this study the numerical integration method proposed by Lancaster et al. [68]

was used.

By definition:
02 02 dV
Work = j PdV = j P—do (9.5)
o1 o1 d 9
Equation 9.5 can be closely approximated by:

92 dV
Work = > P(6); —(6),A0 (9.6)
01=01 dH

where:

P(O)I = Instantaneous pressure at a given crank angle (0)

dV(0)i/d(0) = Instantaneous differential volume with respect to
the crank angle (0)

AB = Crank angle sampling variation.
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Mean Effective Pressure

The mean effective pressure (MEP) is defined as the theoretical pressure needed
to produce a work equal to the type of work done by the gas pressure on the piston per
unit, volume per cycle. The MEP is independent of engine size and speed, and thus it is a
good parameter to compare engines of different size. The MEP is calculated by
integrating the pressure-volume curve inside the cylinder and dividing by the cylinder

volume displacement:

1
W= (9.8)

or
MEP =W /Vd (9.9)
where:

MEP = Mean effective pressure

W = Work of one cycle

vd = Volume displacement.

The mean effective pressure is calculated according to the work segment
considered. This gives indicated pumping, brake, and friction mean effective pressures
among others. The indicated mean effective pressure (IMEP) was of particular interest
for this study. The IMEP represents the net result between the work done by the gases on
the piston motion during the expansion stroke and the work absorbed during the
compression stroke. The IMEP can be calculated from the in-cylinder pressure data using
numerical integration and is given by:

i

IMEP = (P(8).., + P(O),)V ()., -V (8),) (9.10)

l\)l»—‘
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where:

i = Start at BDC before the compression stroke
] = End at BDC after the expansion stroke
P(0)i+1 = Instantaneous pressure at a crank angle (0);+
P(0); = Instantaneous pressure at a crank angle (0);
V(0)i:1 = Instantaneous volume at a crank angle (0);+;
V(0); = Instantaneous volume at a crank angle (0);.

Heat Release Rate

The heat release is defined in the literature as the amount of heat that would have
to be added to the cylinder contents to produce the measured pressure variations due to
combustion of the air-fuel mixture. The heat release rate provides a way to characterize
the combustion process within the engine combustion chamber. The heat release rate is
obtained using the in-cylinder pressure and crank angle data in combination with the
ideal law gas and thermodynamic principles.

The heat release rate is approximated by treating the combustion chamber as a
closed system of varying volume and neglecting heat transfer effects to the walls and
flows into and out of crevices volumes in the combustion chamber. These assumptions
provide significant margin of errors in the final calculation of the heat release rate, and
thus analysis based on these results has to be examined in that context. The heat-release
rate equation is developed as follows:

The change in pressure during the combustion process is assumed to be the sum
of the pressure change due to the piston motion and the pressure change due to the
combustion of the air-fuel mixture. This can be calculated using Equation 9.11.

AP = AP,, + AP, (9.11)
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where:

AP =Total change in pressure during the combustion process
AP, = Change in pressure due to the piston motion
AP, = Change in pressure due to the combustion process.

Assuming a constant specific heat ratio (y) as proposed by Gatowski et al. [69],
and using the polytropic process relations, the ideal gas law, the continuity equation, the
conservation of energy principle for a closed system, and the in-cylinder pressure and

crank angle data, the heat-release rate equation is obtained:

dQuz  V,+A0
do  (y-1A6

V y
P, — P g 9.12
(Py. 20 {VE, +AJ ) (9.12)

where:

dg_gn = The net heat release rate per crank angle degree (0)

P,.., = Pressure at crank angle (6+A0)
P, = Pressure at crank angle (0)
Vy.ae = Volume at crank angle (0+A0)
Vv, = Volume at crank angle (0)
Y = Specific heat ratio = 1.35 [69].

In this study, the beginning of combustion was set to the crank angle,
corresponding to the first negative or zero value for the heat release preceding the
maximum release rate. In the same way, the end of combustion was set to the crank angle
corresponding to the first negative or zero value for heat release following the maximum

heat release.
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Mass Fraction Burned (MFB)
The mass fraction burned (MFB) is a measurement of how fast the charge is
burned during the combustion process. MFB is obtained from the heat release data by
assuming that the heat added to the combustion chamber is proportional to the amount
burned. Numerically, it is calculated by integrating the heat release curve up to the point
of interest and dividing the result by the total heat release [71], and it is given by:
5%
mFB =y 49

3

i=BC

(9.13)

where:
BC = Beginning of combustion
EC = End combustion
P = Point of calculation of the MFB.

Typical values for MFB will range from 0% to 100%.
Ignition Delay (ID)

Normally, the ignition delay, ABp, for spark ignited (SI) engines is defined as the
time between the spark discharge and the time a 10% MFB. In compression ignited (CI)
engines the ignition delay, AOip, is defined as the time between the start of injection and
the onset of combustion. For CIBAI combustion, the ignition delay, ABip, has been
defined as the crank angle interval between the opening of the cylinder-connecting valve
(CCV) and 10% MFB.

Combustion Duration
The combustion duration is an important parameter for the operation of internal

combustion (IC) engines. The combustion duration, AB¢y, is defined as the crank angle
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required to burn the bulk of the engine charge, and it is usually taken as the difference
between crank angles corresponding to 10% MFB and 90% MFB [1]. The ignition delay

and combustion interval are also obtained from the heat release data.
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Chapter 10: Results and Discussion

Overview

Prior to the actual tests on ignition by air injection (CIBAI) using the CFR engine,
preliminary experiments were conducted to create a profile of the operating conditions of
the CFR engine, and determine the optimal design for the air-injection system. These
experiments were divided into four groups: knock, volumetric, cold-air injection, and
compression-pressure tests. These experiments were then followed by the actual ignition
by air-injection (CIBAI) tests, using the experimental set-up and procedures outlined in
Chapter 8.

After that, the digitized in-cylinder pressure and its corresponding cylinder
volume data were scaled to absolute level, and processed using spectral analytical tools.
The processed data were then input into a computer program (Appendix A) to be
integrated numerically to conduct a parametric study of the ignition by the air-injection
(CIBAI) process. The computer program calculated the indicated work, indicated mean
effective pressure (IMEP), net heat release, net-heat-release rate, mass fraction burned
(MFB), ignition delay (ID), and combustion interval. The results of this experimental
work are discussed next.

Experimental Results
Knock Data

The objective of these tests was to determine the onset of the knock to evaluate
the incidence of the compression ratio, intake temperature, and spark timing on the
appearance of the knock for a particular fuel type and air-fuel mixture. The onset of

knock was checked for the CFR engine running under different compression ratios and
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operating conditions. The fuel used was unleaded gasoline with an average knock index
(AKI) of 87. The engine was run at 900 rpm until the exhaust temperature reached steady
state (around 1000 °F). At that point, the compression ratio gradually increased until
audible knock was detected. Using an intake temperature of 120 °F and a spark timing of
5° CA bTDC, the audible knock was perceived for compression ratios greater than or
equal to 12.51:1. When the CFR engine was run with an intake temperature of 400 °F
(using the intake heater) and a spark timing of 15° CA bTDC, the audible knock was
detected at a compression ratio of 11:1.

The knock tests showed that increasing the temperature of the engine charge by
raising the compression ratio, raising the inlet air temperature, and advancing the spark
timing increased the possibility of the knock in the SI engine. The CFR engine operating

conditions used during the knock tests are summarized in Table 10.1.

Table 10.1 CFR engine operating conditions during knock testing

Engine Parameter Specification
Fuel Unleaded Gasoline AKI 87
Fuel Level (in) 1.0 +/- 0.1
Intake Temperature (°F) 70, 150, 250, 400 +/- 5
Oil Temperature (°F) 135+/-5
Qil Pressure (psia) 30+/-5
Coolant Temperature (°F) 180 +/- 10
Exhaust Temperature (°F) 900 +/- 15
Compression Ratio Variable from 7.0 t016.0 in increments of 0.5
RPM 900 +/- 15

Volumetric Data

Volumetric tests were conducted using the cylinder-piston arrangement
discussed in Chapter 7. The main objectives were to determine the discharged time of the
1/8” solenoid valve and evaluate the mass, injected into the CFR simulator for different

charged, amplified, and back pressures. The charged pressure was varied between 30 psig
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and 100 psig, and the back pressure from 0 to 150 psig, while the amplified pressure
value was kept constant. The amplified pressure was changed from 40 psig to 400 psig.
Several important findings were obtained from this experimental work. The maximum
pressures for high amplified pressures (200-400 psig) were obtained for a discharged time
lasting approximately 40 ms. For low amplified pressures (<200 psig), the maximum
pressures were obtained for a discharged time around 150 ms. The discharged time
reached with the cylinder-piston assembly was very slow, and thus the system was
considered unsuitable to be used as the simulated-air-only cylinder of the CIBAI engine.
During the ignition by air-injection (CIBAI) experiment, the CFR engine ran at 900 rpm,
and completed a thermodynamic cycle in 133 ms. Air injection was done around 75° CA
bTDC for an injection time of 15 ms to achieve maximum compression heating near
TDC, and therefore a fast air-injection system was required.

The low response time of the cylinder-piston assembly can be attributed to high
friction between the cylinder and piston surface, and/or the large masses of the piston,
and solenoid valve actuator.

The volumetric data also indicated the possibility of measuring and injecting a
particular amount of air for predetermined initial conditions without affecting the
integrity of the engine and/or operator. An average volume fluctuating between 500 and
600 cc of standard air was injected into the measured device for amplified pressures
ranging from 80 to 160 psig. These results closely agreed with the initial conditions

predicted for the CIBAI combustion test as calculated in Chapter 7.
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Cold Injection Data

Cold injection tests were conducted to verify the time response of the actual air-
injection system as explained in Chapter 8. For these tests, the spark plug was removed
and replaced by a spark plug adaptor (Appendix H), which was used to bleed air into the
atmosphere after each test. The compression ratio was then selected, and the air-injection
system pressurized for the predetermined air pre-heated charging pressure. After that, the
pressure transducer was zeroed and the data acquisition triggered as explained in the
experimental set-up (Chapter 8) of this dissertation.

Peak pressure after injection was obtained around 72 ms for all charged pressures
tested. This may indicate that the time to reach the maximum pressure does not depend
on the charging pressure, but on the response time of the solenoid valve. The information
obtained with the cold-injection experiments was fundamental to define the air-injection
strategy to control auto-ignition by air injection (CIBAI) using the CFR engine. The air-
injection strategy will be discussed later in this chapter.

Compression Pressure Data

In-cylinder pressure data were taken while the CFR engine was motored for
different compression ratios and operating conditions. The motored data were then used
to check for leakages, verify the calibration of all instruments, determine the intake
absolute pressure, estimate the polytropic exponent (n), and check the experimental
procedures. The pressure data were also used to verify the phasing of pressure with
respect to volume. This was done by verifying the curve pressure-crank near the peak
pressure. Normally, the peak pressure occurs near the TDC (1° or 2° CA bTDC) due to

irreversibilities mainly by heat transfer [68].
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No major leakages were observed during the compression tests. Minor leakages
were present in the air-injection system, but they were corrected before the actual air
injection. A polytropic exponent (n) between 1.23 and 1.35 was obtained using a
logarithmic P-V diagram with the same set of motored data. The numbers obtained
closely agreed with the data obtained by previous researchers [68,69]. For this work, a
polytropic exponent (n) corresponding to a specific heat ratio (y) of 1.35 was used for all
calculations.

The pressure data did not show a significant shifting with respect to the volume
data (<0.5° CA), which were assumed to be acceptable for the current experimental set-
up. The intake absolute pressure reading during the compression test was 10.1 psia for the
engine running with the flow meter and 11.1 psia without the flow meter. The pressure
drop can be attributed to friction and minor losses (pumping losses) due to the flow
meter, air surge tank, and intake pipe fittings.

Fired Data

The CFR engine in-cylinder pressure data were digitized and processed for a
number of cycles during CIBAI test. This was done in order to compare both, spark
ignition, and CIBAI ignition, combustion parameters for the same operating conditions,
and determine the net benefits of ignition by air-injection (CIBAI) combustion over
sparked ignited combustion. The CFR engine operating conditions used in these
experiments are summarized in Table 10.2.

During spark ignition (SI) testing, the CFR engine was fired using a Champion

D16 spark plug, and the CFR engine conventional ignition system. This system consisted
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of an ignition power supply, an ignition switch, ignition coil, a housing containing the
breaker, a spark plug, and high-tension spark wire.

Table 10.2 CFR engine operating conditions during firing testing

Engine Parameter Specification
Fuel Unleaded Gasoline AKI 87
Fuel Level (in) 0.5,1.0,1.54/-0.1
Intake Temperature (°F) 70, 150,250 +/- 5
Oil Temperature (°F) 135 +/-5
Qil Pressure (psia) 30 +/-5
Coolant Temperature (°F) 180 +/-10
Exhaust Temperature (°F) 600 +/-15
Compression Ratio 7.0t0 12.0
RPM 900 +/- 15
Spark Timing Variable

The spark timing was automatically adjusted as the compression ratio changed
from 4.54:1 to 16:1. The change in spark timing with compression ratio is shown in Table
10.3. These numbers were verified using a strobe light as described in the experimental
set-up section of this paper (Chapter 8)

Table 10.3 Change in spark timing with compression ratio

Compression Ratio Micrometer Reading Spark Timing
(Uncompensated) (0.000™) °CADbTDC
5.00 0.825 26
5.19 0.773 25
541 0.721 24
5.64 0.669 23
591 0.617 22
6.20 0.565 21
6.54 0.513 20
6.91 0.461 19
7.36 0.408 18
7.86 0.356 17
8.45 0.304 16
9.15 0.252 15
10.00 0.200 14

Using numerical integration techniques as presented in Chapter 9, the indicated

net work, indicated mean effective pressure (IMEP), and combustion parameters (net-
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heat release, net-heat-release rate, mass fraction burned (MFB), ignition delay (ID), and
combustion duration) were obtained from the in-cylinder pressure and crank angle data.
These results were then compared with the same parameters obtained during CIBAI
combustion to evaluate the benefits of ignition by air injection as a mechanism to control
auto-ignition (CAI) and achieve smooth heat release. CIBAI experimental results are
discussed next.
CIBAI Experimental Results

The general operating conditions of the CFR engine during the CIBAI
Combustion were presented in Table 8.4. The summary of the results for this
experimental work for motored, injected, fired, and CIBAI configurations while the CFR
engine was run with a compression ratio of 8:1 are summarized in Table 10.4. The air
injection strategy was defined in Chapter 8. The indicated net work, indicated mean
effective pressure (IMEP), and heat release data were obtained through numerical
integration of the pressure and volume data and its combination with thermodynamic

principles as detailed in Chapter 9.

Table 10.4 Experimental results summary table for a compression ratio of 8.0:1

Motored Injected Fired CIBAI
Indicated Net Work (J) -69.03 9.27 303.54 398.91
IMEP (psia) -16.37 2.20 71.96 94.58
Ignition Delay (ms) N/A N/A 5.00 5.68
Combustion Duration (ms) N/A N/A 5.30 4.40
Thermal Efficiency (%) N/A N/A 34.97 38.29
Start Combustion (°CA) N/A N/A 342.65 344.85
End Combustion (°CA) N/A N/A 405.90 403.15
Peak Pressure (psia) 130.49 189.36 291.17 367.66

In-Cylinder Pressure History

The in-cylinder pressure history for motored, cold injection, fired, and CIBAI

combustion for a compression ratio of 8.0:1 is plotted in Figure 10.1. Figure 10.1 shows
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that the peak pressure obtained through CIBAI combustion was higher than the one
obtained for spark ignition, and cold injection, and thus indicated that combustion
occurred during air injection. This conclusion is collaborated by the net indicated work,
IMEP, and heat release data, obtained through numerical integration as displayed in
Table 10.4. The peak pressure for CIBAI combustion was on average twenty six percent
higher than the one obtained for spark ignition.

Indicated Net Work, IMEP

The net gain in the indicated net work is calculated as the difference between the
curve obtained during CIBAI combustion and the air injected without gasoline, minus the
difference between the curve obtained during spark ignition and motored operation for
the same compression ratio. An average of 6% net gain in the indicated net work and
IMEP was obtained using CIBAI combustion as compared with spark ignition. This may
indicate the benefit of using CIBAI combustion as an alternative to conventional spark-
ignited (SI) and compression-ignited engines as proposed by Loth and Morris [3,5].
Further research needs to be done to determine the effect of CIBAI combustion on engine
power output at full load and the effect on exhaust emissions. Most of the research done
on controlled-auto-ignition indicates the need to expand the operational range in which
controlled auto-ignition occurs. This is due to difficulty in timing the onset of auto-
ignition and combustion duration, and controlling heat-release rate over the entire
operational range [56]. An example of an in-cylinder pressure-volume diagram for the
CIBAI and spark ignition (SI) engines is shown in Figure 10.2. It clearly illustrates the

gain in gross indicated work during CIBAI combustion as described above.
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Pressure [psi]

lgnition by Air Injection (CIBAI} in a CFR Engine, and Spark Ignition at
C.R=8.0 while using 87 Octane Gasoline
Pressure History Diagram
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Figure 10.1 Pressure history diagram for motored, cold injection, spark ignition, and CIBAI

combustion.
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Compression Ignition by Air Injection (CIBAI) in a CFR Engine, and
Spark Ignition at C.R=8.0 while using 87 Octane Gasoline
Pressure - Volume Diagram
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Figure 10.2 In-cylinder pressure-volume diagram for CIBAI and Spark Ignition

In-Cylinder Bulk Mean Temperature History

The in-cylinder bulk mean temperature history for the CIBAI and spark ignition
(SI) engines was calculated by combining experimental pressure data, engine geometry,
and thermodynamic principles. The air-fuel mixture in the cylinder was treated as air for
the entire cycle, and properties values of air were used in the analysis. Air was considered
an ideal gas so that the ideal gas relationships could be used to derive the instantaneous
in-cylinder bulk mean temperature at each crank angle. During the compression stroke
and prior to air injection, the bulk mean temperature (T) was calculated from the total
mass air plus fuel (M), using measured data during the stroke intake, the pressure (P)
from measured pressure transducer data, volume (V) from piston position. The mass in

the cylinder was assumed constant between the intake valve closing (IVC) and the start of
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hot-high-pressure air injection. Pressure and volume values are functions of time and
were obtained from the pressure and crank angle data, and engine geometry respectively.
During air injection the mass inside the cylinder was increased by adding to the initial
mass (M;) the amount of air injected. This is a function of the rate of air injection (dm/dt);

corresponding to each crank angle (CA) as follows:

M =M, + SZC:(Z—T)M (10.1)

n=SO

where:

M= Cylinder total mass

M;= Cylinder mass before injection

SC= Solenoid Close

SO= Solenoid Opening time

dm/dt= Rate of air injection.

The total mass injected was calculated as the difference between the initial mass
of preheated air inside the heat exchanger and the mass remaining after air injection. This
was presented in the air-injection model (Chapter 6). The rate of air injection was

modeled as a function of time assuming isothermal choked flow independent of the back

pressure inside the cylinder. Equation 10.2 was used to calculate the rate of air injection:

dm _ 0.0406*P* A’
dt VT

(Kg/sec) (10.2)

where:

A’= Effective choked flow area
P = Pressure in Pascal

T = Temperature in degree K
dm/dt= Rate of air injection

At = Injection duration
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The injection duration (At) was assumed equal to the programmed solenoid open
time. Initially, the effective orifice area (A*) was obtained from equation 10.2 by
assuming that the pressure (P) drops at steady rate with an average value between the air
pre-heater injection pressure and the pressure at which the injector ball-check valve
opens, allowing hot-pressure air to flow into the combustion chamber. The exhaust
temperature, total mass injected, and solenoid opening time were also used to calculate
the effective orifice area (A*). Finally, the in-cylinder temperature (T) was obtained from
equation 10.2 for each pressure reading, corresponding to the duration of the solenoid
opening time. The rate of air injection (dm/dt) was integrated numerically to verify that it
was equal to the total amount of the air injected into the cylinder. For the remaining part
of the power stroke, between the solenoid closing and exhaust valve opening (EVO), the
temperature was calculated using the equation of state for known values of pressure (P),
and volume (V). In this case the total mass (M) was equal to the initial mass in the
cylinder plus the preheated air mass injected. For the first part of the cycle, the
temperature (T) was assumed equal to the air inlet temperature. Similarly, the
temperature (T) for the last part of the cycle was assumed equal to the exhaust
temperature. The resulting in-cylinder bulk mean temperature history is shown in Figure
10.3.

Peak bulk mean temperatures of 1871° K and 2287° K were obtained for CIBAI
combustion and spark ignition (SI) respectively. The eighteen percent (18%) decline in
peak bulk mean temperature for CIBAI combustion is due to the mixture dilution by the
injected air. Lean air-fuel mixtures have lower adiabatic flame temperatures. NOy

formation is highly dependent on temperature and time. Significant amounts of NOyx
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emission are generated in the 2500-3000° K temperature range [2]. A high expansion
ratio produces fast expansion cooling, which also reduces the possibility of NOy
formation [3,5]. Further research needs to be done to be able to evaluate the effect of
CIBAI combustion on exhaust emissions. A sample calculation of the in-cylinder bulk
mean temperature for both CIBAI and spark ignition (SI) combustion is shown in

Appendix S.

Ignition by Air Injection (CIBAI) in a CFR Engine, and Spark Ignition at C.R=8.0
while using 87 Octane Gasoline
Calculated In-Cylinder Bulk Mean Temperature vs. Crank Angle Diagram
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Figure 10.3 Calculated in-cylinder bulk mean temperature history for CIBAI and spark ignition
combustion

Heat Release, MFB, Combustion Duration, lgnition Delay (ID)

The heat release data obtained from the methods discussed in Chapter 9 provided
a way to determine the heat release rate, mass fraction burned, combustion duration and

ignition delay (ID). The heat release is defined as the amount of heat that would have to
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be added to cylinder contents to produce the same pressure variations due to combustion
of the air-fuel mixture [69].

The net heat release rate curve (Figure 10.4) shows that CIBAI combustion
occurred at a faster rate than spark ignition (SI) combustion. This may be attributed to the
high temperature achieved at the end of the compression stroke as a result of pre-heating
the injected air, increasing the intake temperature, and doubling the compression ratio.
The faster heat release rate obtained for CIBAI combustion agreed with earlier
researchers who had indicated that auto-ignition occurs almost spontaneously without a
presence of flame propagation [14, 20, 23]. However, this result has to be taken in the
context of the assumptions involved in the calculation of the net heat release as explained
in Chapter 9.

The mass fraction burned (MFB) curves were obtained from the heat release data
as described in Chapter 9. Figure 10.5 shows the MFB for both, CIBAI and spark
ignition. The air-fuel mixture burned 17 % faster for CIBAI combustion than during
spark ignition. This may be attributed to the higher heat release rate after TDC.

Ignition delay and combustion duration data indicate how fast the combustion
process occurs. The average ignition delay (ID) obtained for CIBAI combustion was
approximately half millisecond longer than the values obtained for spark ignition (SI)
combustion. Conversely, the average combustion duration obtained for CIBAI was
approximately one millisecond faster than the values obtained for spark ignition. These
differences can be attributed to the lower response of the solenoid valve (~20 ms),
pressure and crank angle signal shift (<0.5° CA), spark noise in the pressure signal, and

higher net heat release rate during CIBAI combustion. Computational fluid dynamics
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(CFD) and flow visualization techniques may be helpful in a future CIBAI research to

verify or correct the values obtained in this research.

lgnition by Air Injection (CIBAI) in a CFR Engine, and Spark Ignition at
C.R=8.0 while using 87 Octane Gasoline

Net Heat Release Rate Diagram
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Figure 10.5 Net heat release rate comparison for CIBAI and spark ignition combustion
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Ignition by Air Injection (CIBAI) in a CFR Engine, and Spark Ignition at
C.R=8.0 while using 87 Octane Gasoline
Mass Fraction Burned (MFB) Diagram
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Figure 10.6 Mass fraction burned (MFB) for CIBAI and spark ignition combustion
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Chapter 11: Parametric Study

Overview

The objective of the parametric study discussed in this chapter was to determine
the effect of the CFR engine operating parameters on CIBAI combustion. The parameters
analyzed were the compression ratio, intake temperature, air preheat charging pressure,
equivalence ratio, and air-injection timing. To this aim, the analytical, the cold air
injection, and thermodynamic models presented in chapters 5 and 6 respectively were
incorporated into a computer program written in Matlab version 6.5 (Appendix A).

The computer code contains two main programs. The first subroutine named,
CIBAI cycle analysis program, performed a complete CIBAI cycle analysis for different
engine configurations. The second subroutine named, CIBAI numerical modeling
program, was used to conduct the parametric study for the selected engine parameters.
The numerical modeling used the mathematical derivations presented in the data analysis
section of this dissertation (Chapter 9). The computer program interacted with the user
through a graphical user interface (GUI).

The experimental study conducted during the course of this dissertation provided
the empirical data needed as inputs to the analytical model. Multiple experiments were
taken for each of the fourteen (14) tests proposed in Chapter 8. Tests producing
significant variations in results were repeated until a statistical analysis of their mean
performance was accurately established. The sources of error and the experimental

uncertainty are discussed at the end of this chapter.
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Parametric Matrix

The parametric study involved choosing a compression ratio, volume
displacement, air pre-heater charging pressure, equivalence ratio, air flow rate, intake
temperature, intake pressure, exhaust temperature, and air-injection timing combination,
which offers acceptable CIBAI combustion performance.

The outputs generated by the numerical modeling code included the in-cylinder
pressure, net heat release, net heat release rate, and mass fraction burned (MFB) history
graphs for a single CIBAI combustion event, and for a particular set the parameters as
stated in Chapter 8. In addition, the indicated net work, IMEP, ignition delay (ID),
combustion duration, thermal efficiency, and the start and end of combustion were
calculated for each simulation.

The parametric matrix for CIBAI combustion consisted of the following cases:

e Three (3) compression ratios: 7.0:1, 7.5:1, and 8.0:1

e Three (3) intake temperatures: 70 °F, 250 °F, and 450 °F

e Three (3) air charged pressures: 700, 800, and 900 psig

e Three (3) equivalence ratios (®): 0.45, 0.50, and 0.65

e Three (3) air injection timing;: 85°, 75°, and 65° CA bTDC

The results of the parametric study are discussed next.

Parametric Study Results

The objective of the parametric study was to determine the effect of compression
ratio, intake temperature, air pre-heated charging pressure, equivalence ratio, and air-
injection timing on CIBAI combustion. The understanding of the effect of these engine

parameters on the occurrence of CIBAI combustion is vital to specify a CIBAI engine
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configuration that would result in maximum power and efficiency. The parametric study
results are summarized as follows:
The Effect of Compression Ratio

For the set of initial conditions given in Table 8.3, changes in the compression
ratio altered the CIBAI combustion process by increasing the compression temperature.
Higher compression ratios and thus expansion ratios significantly increase the net heat
release rate, advancing the start of the ignition of the CIBAI combustion, all contributing
to increased thermal efficiency. The combustion duration was slightly affected by
changes in the compression ratio. The results of this simulation are summarized in Table

11.1, and illustrated in Figure 11.1.

Table 11.1 The effect of compression ratio on CIBAI combustion

RESULTS: Test 1(C.R=7.0) | Test 2 (C.R=7.5)| Test 3 (C.R=8.0)

Indicated Net Work (J) 283.98 307.55 39891
IMEP (psia) 67.33 72.92 94.58
Ignition Delay (ms) 6.79 6.69 5.68
Combustion Duration (ms) 4.10 3.90 4.40
Thermal Efficiency (%) 32.21 34.26 38.29
Start Combustion (°CA) 346.50 344.85 344.85
End Combustion (°CA) 402.05 399.85 403.15

The Effect of Intake Temperature

For the set of initial conditions given in Table 8.4, changes in the intake
temperature altered the CIBAI combustion process by changing the volumetric
efficiency. Higher intake temperature severely increased the net-heat-release rate,
considerably advanced the start of the ignition of the CIBAI combustion, significantly
reduced the IMEP, and contributed to lower thermal efficiency due to the lower
volumetric efficiency. The combustion duration were slightly affected by changes in the

intake temperature. The results of this simulation are summarized in Table 11.2, and
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illustrated in Figure 11.2. It should be noted that the simulation of the CIBAI combustion

using an intake temperature of 450 °F was not conducted due to significant presence of

audible knock during the actual experiment.

Table 11.2 The effect of intake temperature on CIBAI combustion

RESULTS: Test 4 (T=70 °F) | Test 5 (T=250 °F)
Indicated Net Work (J) 398.91 375.49
IMEP (psia) 94.58 89.02
Ignition Delay (ms) 5.68 6.29
Combustion Duration (ms) 4.40 3.80
Thermal Efficiency (%) 38.29 33.93
Start Combustion (°CA) 344.85 339.90
End Combustion (°CA) 403.15 397.65

The Effect of Air Pre-heater Charging Pressure

For the set of initial conditions given in Table 8.3, changes in the air pre-heater
charging pressure changed the CIBAI combustion process by changing the air-fuel ratio.
Higher pressures drastically retarded the start of the ignition of the CIBAI combustion,
significantly decreasing the net-heat-release rate, and considerably reducing the IMEP
and combustion duration. This can be attributed to the additional amount of mass of air
injected during high air pre-heated charging, which significantly leaned the air-fuel
mixture. The results of this simulation are summarized in Table 11.3, and illustrated in

Figure 11.3.

Table 11.3 The effect of air pre-heater charging pressure on CIBAI combustion

RESULTS: Test 6 (P=700 psig) | Test 7 (P=800 psig) | Test 8 (P=900 psig)
Indicated Net Work (J) 355.82 398.91 310.35
IMEP (psia) 84.36 94.58 73.58
Ignition Delay (ms) 3.68 5.68 4.88
Combustion Duration (ms) 5.90 4.40 3.30
Thermal Efficiency (%) 33.41 38.29 33.65
Start Combustion (°CA) 340.45 344.85 357.50
End Combustion (°CA) 404.25 403.15 391.05
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The Effect of Equivalence Ratio

For the set of initial conditions given in Table 8.4, changes in the equivalence
ratio altered the CIBAI combustion process by varying the amount of compression
heating in the charge. Enriching the mixture (©=0.65) considerably shortened the ignition
delay (ID), retarded the start of the ignition of the CIBAI combustion, and drastically
increased the net heat release rate. Leaning the mixture (®=0.45) greatly reduced the net
heat release, IMEP, and combustion duration. The results of this simulation are

summarized in Table 11.4, and illustrated in Figure 11.4.

Table 11.4 The effect of equivalence ratio on CIBAI combustion

RESULTS: Test 9 (E.R=0.65)| Test 10 (E.R=0.50)] Test 11 (E.R=0.45)
Indicated Net Work (J) 423.04 398.91 244.40
IMEP (psia) 100.30 94.58 57.94
Ignition Delay (ms) 5.38 5.68 4.78
Combustion Duration (ms) 3.10 4.40 3.60
Thermal Efficiency (%) 34.70 38.29 36.78
Start Combustion (°CA) 360.25 344.85 355.30
End Combustion (°CA) 392.70 403.15 393.80

The Effect of Air-Injection Timing

For the set of initial conditions given in Table 8.5, changes in the air-injection
timing altered the start of the CIBAI combustion process. Advancing the air-injection
timing drastically advanced the start of the combustion process, increased the ignition
delay (ID), and substantially, decreased the net-heat-release rate due to the lower
compression heating. Conversely, retarding the air-injection timing drastically delayed
the start of the combustion process, decreased the ignition delay (ID), increased the peak
pressure, reduced the combustion duration, and substantially increased the net-heat-
release rate due to the higher compression heating. The results of this simulation are

summarized in Table 11.5, and illustrated in Figure 11.5.
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Table 11.5 The effect of air injection timing on CIBAI combustion

RESULTS: Test 12 (100° CA bTDC) | Test 13 (75° CAbTDC) | Test 14 (50° CA bTDC)
Indicated Net Work (J) 418.31 398.91 278.40
IMEP (psia) 99.18 94.58 66.00
Ignition Delay (ms) 8.22 5.68 4.07
Combustion Duration (ms) 7.40 4.40 3.30
Thermal Efficiency (%) 35.66 38.29 33.84
Start Combustion (°CA) 338.25 344.85 356.95
End Combustion (°CA) 419.10 403.15 392.15

Pressure [psi]
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Parametric Study: The Effect of Intake Temperature on Compression Ignition by Air
Injection (CIBAI} Combustion
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Figure 11.2 Pressure history, net heat release rate, and mass fraction burned (MFB) diagrams for
intake temperatures of 70 °F, and 250 °F
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Parametric Study: The Effect of Air Pre-heated Charging Pressure on Compression Ignition
by Air Injection (CIBAI} Combustion

In-Cylinder Pressure vs. Crank Angle

500 :
400 -
~— 300
[ %]
&
£ 200
@
=
o 100
U [
-100 ' 5 ;
0 200 400 600 800
CA Degree
Net Heat Release Rate vs. Crank Angle Mass Fraction Burned (MFE) vs. Crank Angle
60 - - - 120 - - .
3 F 100}
o —
@ m
g L 80
o) =1
) g 60
2 a
3 S 40
2 3
o L
8 r 20
I a
- L]
2 = 2 _ :
-10 L : f =20 . ; L
340 380 380 400 420 340 360 380 400 420
CA Degree CA Degree
___P=T00 psig ....... P=800 psig _ _ _ P=900 psig

Figure 11.3 Pressure history, net heat release rate, and mass fraction burned (MFB) diagrams for air
pre-heated charging pressures of 700, 800, and 900 psig
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Parametric Study: The Effect of Equivalence Ratio (E.R) on Compression lgnition
by Air Injection (CIBAI) Combustion

In-Cylinder Pressure vs. Crank Angle

500
400} S — S |
2 300}
g
B BOBLm s oL T L AP ]
o L
100 -
o L L
0 200 400 500 800
CA Degree
Net Heat Release Rate vs. Crank Angle Mass Fraction Burned (MFE) vs. Crank Angle
50 . — : 120 : . .
A F 100}
f=2] —
g B
g s 80
o =1
& g 60
a @
8 S 40
K g
o
g = 20
T 0 g 4
= o 1
3 = Ofowmmue
-10 I i i -20 I i I
340 360 380 400 420 340 360 380 400 420
CA Degree CA Degree

—— _ER=0.45___E.R=050....... E.R=0.65
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Parametric Study: The Effect of Air Injection Timing on Compression Ignition by Air Injection
(CIBAI) Combustion

In-Cylinder Pressure vs. Crank Angle
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Sources of Error

Throughout the experimental work, every effort was made to reduce possible
sources of error, but as with any experimental procedure, there were some uncertainties
with experimental measurements. Possible sources of error and their relative magnitudes

are given in Table 11.6.

Table 11.6 Sources of error

Instrument Error
Intake Pressure Gauge +/- 0.1 psig
Oil Pressure Gauge +/- 5 psig
Pressure Regulator +/- 50 psig
Air Pre-heater Charging Pressure Gauge +/- 10 psig
In-Cylinder Pressure Transducer +/- 1 % full scale
Crank Angle Sensor +/-0.5° CA
Intake Thermocouple +/-1°F
Oil Temperature Thermocouple +/-5°F
Exhaust Temperature Thermocouple +/-1°F
Coolant Temperature Thermometer +/-1°F
Air Flow Meter +/- 0.1 SCFM
Fuel Glass Meter +/- 0.1 in
A/D Converter Data Acquisition Board +/-0.0024 V
Compression Ratio Micrometer +/-0.0001 in

The results of the numerical model were affected by the experimental data, which
were used as inputs into the analytical model. An evaluation of the sensitivity of the
numerical results to these errors indicated that the compression ratio, air-injection timing,
and scale factor were the mayor contributor to errors in the predicted results. The scale
factor is a number used by the numerical code to zero the in-cylinder pressure data to
obtain comparable absolute pressure data for multiple simulations. The effects of these
three errors in the numerical results are listed in Table 11.7. The ignition delay (ID) was

the output with the maximum margin of error (1.31 %).
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Table 11.7 Effects of input data on modeling results

Net Heat Release Ignition Delay ( ID)

[ Error (%) | [ms] Error (%)
Case Without Input Errors 844 0.00 6.89 0.00
Compression Ratio Error (+/- 0.1) 841 0.35 6.89 0.00
Air Injection Timing (+/- 0.5° CA) 844 0.00 6.98 1.31
Scale Factor (+/- 25 psig) 848 0.94 6.89 0.00

Uncertainty Analysis

For each experiment the indicated net work was calculated and averaged for a
certain number of cycles. The number of cycles used ranged from 20 to 50 depending on
the type of operation. This was done for each engine configuration (motored, fired, air
injected w/o gasoline, and CIBAI) in order to determine the net gain in the indicated net
work as a result of CIBAI combustion. The objective of the uncertainty analysis was to
determine the reliability of the average calculations, especially when the fluctuation
levels were significant.

Assuming the data were normally distributed, the uncertainty in the mean value
was calculated using the following equation [73].

Ax=t . -5 11.1

— tal/2v \/W

where the value t comes from the t-distribution with 1-o. confidence, N= number of

al2V

samples, v=N-1, and s is the standard deviation of the data. The true sample mean is then

1 = X AX with the specified level of confidence.

The uncertainty analysis was applied to the indicated net work value obtained
during CIBAI Combustion. The true mean value of the indicated net work calculated was

398.91 J +/- 2.14% with 95% confidence for the CFR engine using 87 octane gasoline at
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a compression ratio of 8:1, intake temperature of 70 °F, air preheated charging pressure

of 800 psig, equivalence ratio (®)=0.5, and air-injection timing of 75° CA bTDC.
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Chapter 12: Conclusions

The objective of this research was to demonstrate experimentally the viability of
achieving ignition by air injection (CIBAI) for controlled auto-ignition in a CFR engine.
Experimental work was done on a modified single cylinder, four-stroke, spark ignition
cooperative fuel research (CFR) engine, fully instrumented and equipped with a highly
specialized air injection and timing system to assure that air injection occurred at the
desired crank angle, and the desired amount of air was injected in one step, without
additional air entering after ignition started. An air injection model was developed, and a
parametric study was conducted to determine the effect of operating parameters on
CIBAI combustion. A numerical modeling code was developed and integrated into a
graphical user interface (GUI) to analyze the CIBAI combustion process and perform the
parametric study.

The following are the main conclusions of this experimental study, and the
recommendations for future research work:

e It has been experimentally proven that it is possible to achieve auto-ignition by air
injection (CIBAI) with controlled ignition time in a CFR engine by timing a solenoid
valve, which simulates the operation of a cylinder-connecting-valve (CCV) in the
CIBAI cycle.

e The numerical integration of the pressure- volume diagram of Figure 10.2 shows that
the indicated net work and IMEP increased by 31 % using CIBAI like combustion as
compared with spark ignition (SI). After subtracting the work done to compress the
bottle of air used to simulate CIBAI combustion, a net gain of 6 % in the indicated net

work was obtained.
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This parametric study indicated that CIBAI combustion was influenced primarily by
the compression ratio, intake temperature, and air-injection timing. Changes in the
compression ratio altered the CIBAI combustion process by increasing the
compression temperature. Figure 11.1 shows that higher compression ratios and thus
expansion ratios significantly increased the net heat release rate, advanced the start of
the ignition of the CIBAI combustion, and contributed to increase the indicated
thermal efficiency. Changes in the intake temperature altered the CIBAI combustion
process by changing the volumetric efficiency. Figure 11.2 shows that higher intake
temperature severely increased the net heat release rate, considerably advanced the
start of the ignition of the CIBAI combustion, significantly reduced the IMEP, and
contributed to lower thermal efficiency due to the lower volumetric efficiency.
Changes in the air-injection timing altered the start of the CIBAI combustion process.
Figure 11.5 shows that, injecting in a larger volume, drastically slowed the start of the
combustion process, increasing ignition delay (ID), and substantially, decreased the
net heat release rate due to the reduced compression heating.

CIBAI like combustion was obtained in a modified CFR engine using unleaded
gasoline with an anti knock index (AKI) of 87, compression ratio of 16:1, intake
temperature of 70 °F, air pre-heated charging pressure of 800 psig, equivalence ratio
(®)=0.5, and air-injection timing of 75° CA bTDC.

The use of an injector ball-check-valve in line with the solenoid valve and electronic
injection timing was important to achieve CIBAI cycle like ignition, inside a CFR

engine.
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Chapter 13: Recommendations for Future Work

The development of a commercial CIBAI engine will be facilitated by the
experimental work, numerical modeling, and parametric analysis presented in this
dissertation. Future work on CIBAI combustion should include the following activities:

e The development of a detailed chemical kinetics model in order to understand the
mechanism of auto-ignition during CIBAI combustion, and predict the
composition of CIBAI combustion products.

e The implementation of a computational fluid dynamics (CFD) code in order to
predict the effect of CIBAI combustion on NOx emissions.

e The use of flow visualization techniques such as laser pyrometry, schlieren and
shadowgraph photography, and laser Raleigh scattering in order to obtain flow
velocity distribution, and temperature and pressure profiles during air injection.
This information can be helpful to accurately predict combustion interval and
ignition (ID) during CIBAI combustion.

e The implementation and analysis of CIBAI combustion in a production engine.
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Appendixes

Appendix A: CIBAI Analytical and Numerical Modeling Program Code

CIBAI Cycle Analysis Code

%Name: CIBAI Numerical Model Code

%Institution: West Virginia University

%Developed by: Fernando Echavarria Hidalgo

%Date: February 14, 2006

%O0Objectives:

%Perform a complete thermodynamic analysis of the CIBAI
%cycle,and compare the results with the ones obtained for the Otto and
%Diesel cycles under comparable parameters.

% --- Executes on button press in clear.

function clear_Callback(hObject, eventdata, handles)

% hObject handle to clear (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.cibaieff,'string',"); % Empty fields
set(handles.ottoeff,'string',");%Empty fields
set(handles.dieseleft,'string',");%Empty fields

cla reset %resets the properties of the current axes.

% --- Executes on button press in plotpressure.

function plotpressure_Callback(hObject, eventdata, handles)

% hObject handle to plotpressure (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Variable definition

set(gcf, 'name','CIBAI Cycle');
grid; %add grids to current axes

rvastring=get(handles.rva,'string');%get rva string value from screen
rva=str2num(rvastring);%convert rva string value to numeric value

rvafstring=get(handles.rvaf,'string'); %get rvaf string value from screen
rvaf=str2num(rvafstring);%convert rvaf string value to numeric value

nstring=get(handles.n,'string"); %oconvert n string value to numeric value
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n=str2num(nstring); %convert n string value to numeric value

restring=get(handles.rc,'string'); %convert rc string value to numeric value
re=str2num(rcstring); %convert rc string value to numeric value

stob=1; %input('Stroke-to-Bore Ratio:');
vdo=1; %input('Volume Displacement:');
crtoca=5; %input('Connecting Rod Length to Crank Angle Offset Ratio:");

%lnitial Calculations

vcaftovdo=vdo/(rvaf-1);

%Volume clearance air fuel cylinder to volume displacement
vcatovdo=vdo/(rva-1);

%Volume clearance air only cylinder to volume displacement
bore=(vdo*4/(pi*stob))*(1/3);%Bore

stroke=bore*vdo; %Stroke

co=stroke/2; %Crank offset

crl=co*crtoca; %Connecting rod length
rm=(vdo+vcatovdo)/(vdo+vcaftovdo); %Mass ratio
taftl=rvaf"(n-1);%Taf/T1

tatl=rva™(n-1);%Taft/T1

t2tot1=(1/(1+rm))*(taft1+tatl *rm); %T2/T1

t3tot1=t2totl*rc; %T3/T1

p2afpl=rvaf*(n); %P2af/P1

p2apl=rva’(n); %P2a/P1

v2tovdo=vcaftovdo+vcatovdo; %V2/Vdo
p2p1=(t2totl)/(v2tovdo/(v2tovdo+2*vdo));%P2/P1
p3pl=p2pl*rc;%P3/P1

%0Overall Efficiency Comparison

wintomocvtl=rvaf*(n-1)-1+(rva’(n-1)-1)*rm; %Work in
wouttomocvtl=rc*(rvaf*(n-1)+rva”™(n-1)*rm)*(1-(v2tovdo/(v2tovdo+2))*(n-1));
%Work out

gintomocvtl=(rvaf*(n-1)+rva”™(n-1)*rm)*(rc-1);%Heat in
woutogin=wouttomocvtl/qintomocvtl; %Work out over heat in
wintoqin=wintomocvtl/qintomocvtl; %Work in over heat in
cibaieff=(woutoqin-wintoqin)*100; %CIBAI thermal efficiency
ottoeff=(1-1/rvat™(n-1))*100; %OTTO thermal efficiency
dieseleff=(1-1/rva”™(n-1)*(rc"n-1)/(n*(rc-1)))*100; %DIESEL thermal efficiency
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% Vector to store P/P1 ratio

paftop1=(0:720); %Instantaneous Taf/T1

patop1=(0:720); %Instantaneous Ta/T1

p4top1=(0:720); %Instantaneous T4/T1
detonationlinepressure=(0:720); %Detonation line temperature diagram

for i=1:length(ca)

cpdi=co*cos(ca(i)*pi/180)+(crl*2-co”2*sin(ca(i)*p1/180)*(2))"(1/2);
%Distance between crank axis and wrist pin axis
vdoi=((pi*bore”(2))/4)*(crl+co-cpdi);%Instantaneous volume displacement

if ca(i)>=0 & ca(1)<180

paftopl1(i)=1;

patopl(i)=1;

p4top1(1)=0;
detonationlinepressure(i)=0;

elseif ca(i)>=180 & ca(i)<359

paftop1(i)=(((vcaftovdo)/(vcaftovdo+vdoi))*(n))*rvat™(n);
patop1(i)=(((vcatovdo)/(vcatovdo+vdoi))*(n))*rva’™(n);
p4top1(1)=0;

detonationlinepressure(i)=0;

elseif ca(i)==359

detonationlinepressure(i)=(((vcaftovdo)/(vcaftovdo+vdoi))*(n))*rvat”(n);
paftop1(1)=0;

patop1(i)=0;

p4top1(1)=0;

elseif ca(i)==360

detonationlinepressure(i)=(p3p1)*((vcaftovdo+vcatovdo)/(vcaftovdo+vcatovdo+2*vdoi))
A(n);

paftop1(1)=0;

patop1(i)=0;

p4top1(1)=0;

elseif ca(i)>360 & ca(i)<=540

paftop1(1)=0;

patop1(i)=0;
p4top1(1)=(p3p1)*((vcaftovdo+vcatovdo)/(vcaftovdo+vcatovdo+2*vdoi))(n);
detonationlinepressure(i)=0;
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elseif ca(i)>540 & ca(i)<=720

paftop1(1)=0;

patop1(1)=0;

p4topl(i)=1;
detonationlinepressure(i)=0;

else
disp('Crank Angle is between 0 and 720 ca degree');
end
end

%PIlot pressure ratio diagram

handle10=plot(ca(1:359),paftop1(1:359),'g-");
set(handle10,'LineWidth',2);

hold on
handlel1=plot(ca(1:359),patop1(1:359),'k-");
set(handlel1,'LineWidth',2);

hold on
handle12=plot(ca(360:361),detonationlinepressure(360:361),'r-');
set(handle12,'LineWidth',2);

hold on
handle13=plot(ca(362:540),p4top1(362:540),'b-');
set(handle13,'LineWidth',2);

hold on
handle14=plot(ca(541:721),p4top1(541:721),'b-');
set(handle14,'LineWidth',2);

grid %draws a grid over the plot
set(gca,'FontWeight','bold");

title('P/P1 vs. Crank Angle');

xlabel('Crank Angle');

ylabel('P/P1");

legend('Paf/P1', 'Pa/P1', 'Denotation’, "Pprod/P1')

%Display results
set(handles.cibaieff,'string', cibaieff);  %Cibai efficiency

set(handles.ottoeft,'string', ottoeft); %0tto efficiency
set(handles.dieseleft,'string', dieseleff); %Diesel efficiency
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% --- Executes on button press in plottemperature.
function plottemperature_Callback(hObject, eventdata, handles)

% hObject handle to plottemperature (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Variable definition

set(gcf, 'name','CIBAI Cycle");
grid; %add grids to current axes

rvastring=get(handles.rva,'string'); %get rva string value from screen
rva=str2num(rvastring); %convert rva string value to numeric value

rvafstring=get(handles.rvaf,'string'); %get rvaf string value from screen
rvaf=str2num(rvafstring); %convert rvaf string value to numeric value

nstring=get(handles.n,'string'); %oconvert n string value to numeric value
n=str2num(nstring); %convert n string value to numeric value

restring=get(handles.rc,'string'); %convert rc string value to numeric value
re=str2num(rcstring); %oconvert rc string value to numeric value

stob=1; %input('Stroke-to-Bore Ratio:');
vdo=1; %input('Volume Displacement:');
crtoca=5; %input('Connecting Rod Length to Crank Angle Offset Ratio:");

%lnitial Calculations

vcaftovdo=vdo/(rvaf-1); %Volume clearance air fuel cylinder to volume displacement
vcatovdo=vdo/(rva-1); %Volume clearance air only cylinder to volume displacement

bore=(vdo*4/(pi*stob))*(1/3); %Bore
stroke=bore*vdo; %Stroke

co=stroke/2; %Crank offset

crl=co*crtoca; %Connecting rod length
rm=(vdo+vcatovdo)/(vdo+vcaftovdo); %Mass ratio
taftl=rvaf"(n-1); %Taf/T1

tatl=rva”™(n-1); %Taf/T1
t2tot1=(1/(1+rm))*(taft1+tat1*rm); %T2/T1
t3tot1=t2totl *rc; %T3/T1

p2afpl=rvaf"(n); %P2af/P1

p2apl=rva’®(n); %P2a/P1
v2tovdo=vcaftovdo+vcatovdo; %V2/Vdo
p2p1=(t2totl)/(v2tovdo/(v2tovdo+2*vdo));%P2/P1
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p3pl=p2pl*rc; %P3/P1
%~Overall Efficiency Comparison

wintomocvtl=rvaf*(n-1)-1+(rva™(n-1)-1)*rm; %Work in
wouttomocvtl=rc*(rvaf*(n-1)+rva”™(n-1)*rm)*(1-(v2tovdo/(v2tovdo+2))*(n-1));
%Work out

gintomocvtl=(rvaf’(n-1)+rva™(n-1)*rm)*(rc-1); %Heat in
woutoqin=wouttomocvtl/qintomocvtl; % Work out over heat in
wintoqin=wintomocvtl/qintomocvtl; %Work in over heat in
cibaieff=(woutoqin-wintoqin)*100; %CIBAI thermal efficiency
ottoeft=(1-1/rvaf™(n-1))*100; %OTTO thermal efficiency
dieseleff=(1-1/rva”™(n-1)*(rc"n-1)/(n*(rc-1)))*100; %DIESEL thermal efficiency

9% Vector to store T/T1 ratio

ca=(0:720); %Crank angle vector

length(ca); %Length crank angle vector

taftot1=(0:720); %Instantaneous Taf/T1

tatot1=(0:720); %Instantaneous Ta/T1

t4tot1=(0:720); %Instantaneous T4/T1

detonationlinetemperature=(0:720); %Detonation line temperature diagram

for i=1:length(ca)

cpdi=co*cos(ca(i)*pi/180)+(crl*2-co”2*sin(ca(i)*p1/180)*(2))"(1/2);
%Distance between crank axis and wrist pin axis
vdoi=((pi*bore”(2))/4)*(crl+co-cpdi);%Instantaneous volume displacement

if ca(i)>=0 & ca(i)<180
taftot1(i)=1;

tatot1(i)=1;

tdtot1(1)=0;
detonationlinetemperature(i)=0;

elseif ca(i)>=180 & ca(i)<359
taftot1(1)=(((vcaftovdo)/(vcaftovdo+vdoi))*(n-1))*rvaf*(n-1);
tatot1(i)=(((vcatovdo)/(vcatovdo+vdoi))(n-1))*rva™(n-1);
tdtot1(1)=0;

detonationlinetemperature(i)=0;

elseif ca(i)==359
detonationlinetemperature(i)=(((vcaftovdo)/(vcaftovdo+vdoi))*(n-1))*rvaf(n-1);

taftot1(i)=0;
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tatot1(i)=0;
t4tot1(1)=0;

detonationlinetemperature(i)=(t3tot1)*((vcaftovdo+vcatovdo)/(vcaftovdo+vcatovdo+2*v
doi))*(n-1);

taftot1(1)=0;

tatot1(1)=0;

t4tot1(1)=0;

elseif ca(1)>360 & ca(i)<=540

taftot1(1)=0;

tatot1(1)=0;
t4tot1(i)=(t3totl)*((vcaftovdo+vcatovdo)/(veaftovdo+vcatovdo+2*vdoi))™(n-1);
detonationlinetemperature(i)=0;

elseif ca(1)>540 & ca(i)<=720
taftot1(i)=0;

tatot1(1)=0;

t4tot1(1)=1;
detonationlinetemperature(i)=0;

else
disp('Crank Angle is between 0 and 720 ca degree');
end
end

%Plot Temperature ratio diagram

handle5=plot(ca(1:359),taftot1(1:359),'g-");
set(handle5,'LineWidth',2);

hold on
handle6=plot(ca(1:359),tatot1(1:359),’k-");
set(handle6,'LineWidth',2);

hold on
handle7=plot(ca(360:361),detonationlinetemperature(360:361),'r-');
set(handle7,'LineWidth',2);

hold on
handle8=plot(ca(362:540),t4tot1(362:540),'b-");
set(handle8,'LineWidth',2);

hold on
handle9=plot(ca(541:721),t4tot1(541:721),'b-");
set(handle9,'LineWidth',2);

grid %draws a grid over the plot
set(gca,'FontWeight','bold");

title("T/T1 vs. Crank Angle');
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xlabel('Crank Angle');
ylabel("T/T1");
legend('Taf/T1'", 'Ta/T1', 'Detonation’, "Tprod/T1")

%Display Results

set(handles.cibaieff,'string', cibaief¥); %Cibai efficiency
set(handles.ottoeft,'string', ottoeft); %0tto efficiency
set(handles.dieseleft,'string', dieseleff); %Diesel efficiency

%
function Analysis_Callback(hObject, eventdata, handles)

% hObject handle to Analysis (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

gui;%Call cycle analysis program

%
function Numerical_modeling_Callback(hObject, eventdata, handles)
% hObject handle to Numerical modeling (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

gui2;%Call numerical modeling program

%
function raw_data_Callback(hObject, eventdata, handles)

% hObject handle to raw_data (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

raw; %0Open raw data screen
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CIBAI Numerical Modeling Code

%Institution: West Virginia University

%Developed by: Fernando Echavarria Hidalgo

%Date: February 14, 2006

%0Objectives:

% 1)Perform numerical integration using in-cylinder pressure

%data to calculate engine power and combustion parameters such as, indicated net work,
%indicated mean effective pressure (IMEP),thermal efficiency, net heat release,

%heat release rate, mass fraction burned (MFB),ignition delay,and combustion duration.
%?2)Conduct a parametric study using experimental data as an input to

%predict the effect of compression ratio, air injection pressure, intake

%temperature, air-fuel ratio, and air injection timing on CIBAI combustion.

% --- Executes on button press in pushbuttonl.

function pushbuttonl Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(gcf, name','CIBAI Numerical Modeling');

%Create a get file box

[filename, pathname]=uigetfile('*.m;* xIs',...
'Open File');

if isequal(filename,0) | isequal(pathname,0)

else

set(gcf, name',filename);

%Download test data from excel

%filename=input('"Enter File Name: ','{l');%Enter file name
test=xlsread(filename); %Downloading in-cylinder pressure data
%lnput variables

crstring=get(handles.cr,'string');%get cr string value from screen
cr=str2num(crstring);%convert cr string value to numeric value

acpstring=get(handles.acp,'string');%get acp string value from screen
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acp=str2num(acpstring);%convert acp string value to numeric value

gammastring=get(handles.n,'string');%convert n string value to numeric value
gamma=str2num(gammastring);%convert n string value to numeric value

flstring=get(handles.fl,'string');%convert fl string value to numeric value
fl=str2num(flstring);%convert fl string value to numeric value

afrstring=get(handles.aft,'string');%convert aft string value to numeric value
afr=str2num(afrstring);%convert afr string value to numeric value
exhtempstring=get(handles.exhtemp,'string'); %convert exhtemp string value to numeric
value

exhtemp=str2num(exhtempstring);%convert exhtemp string value to numeric value

itempstring=get(handles.itemp,'string'); %oconvert itemp string value to numeric value
intemp=str2num(itempstring);%convert itemp string value to numeric value

ipresstring=get(handles.intpre,'string');%oconvert intpre string value to numeric value
inpres=str2num(ipresstring);%convert intpre string value to numeric value

%Calculate combustion duration and injection delay

intimstring=get(handles.intim,'string');

%convert air injection timing string value to numeric value
injection_delaystring=get(handles.injection_delay,'string');
%convert spark timing string value to numeric value

if get(handles.checkbox2,'Value"')==1
injtiming=360-str2num(injection_delaystring);
%convert spark timing string value to numeric value
else

injtiming=360-str2num(intimstring)+50;

%convert rc string value to numeric value

end

sfstring=get(handles.sf,'string');%oconvert sf string value to numeric value
scalefactor=str2num(sfstring);%convert sf string value to numeric value

%Fixed Variables

vd=612.5; %Volume displacement
stroke=4.5;%Stroke

bore=3.25;%Bore
crlength=10;%Connecting Rod Lenght(in)
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%lnitial Calculations

tcycle=0.1309;%Duration combustion cycle

disptft=3/12;%Distance pressure transducer

dtheta=0.55;%delta theta

vein=vd/(cr-1)/(2.54)"3;%Volume clearance in"3
coff=stroke/2;%Crank Offset

crlovercoff=crlength/coff;%Coonecting rod length to crank offset ratio
vdin=0.25*pi*bore”2*stroke;%Volume displacement in"3
vtotal=vcin+vdin;%Total volume

intempr=intemp+460;%lnitial temperature in Ranking
temp2=intempr*cr*((gamma-1)/gamma);%]Isentropic temperature 2
gasconst=1716;%Gas constant
speedsound=sqrt(gamma®*gasconst*temp2);%speed of sound
inprespsig=(inpres/29.92)*14.7;%intake pressure in psig
tlag=disptft/speedsound;%Time lag due to the distance to the PT as a function of speed of
sound

dthetadt=720/tcycle;% Variation of angle with respect time
rpm=dthetadt/6;%RMP

%Vector to store pressure and crank angle data
global ca2;

global abspressure;

global rawnheatrel;

global rawnheatrat;

ca2=(0:0.55:720);%Crank angle vector
length(ca2);%Length crank angle vector

count = 0;

%Adjusted in-cylinder pressure data

sigviewfactor=0.3062;%sigview factor 1 sigview unit=0.0003062 volts
ptsens=5;%pressure transducer sensitivity 5 mv = 1 psig
scaletest=test+scalefactor;%Scale pressure

abspressure= inprespsig + scaletest*sigviewfactor/ptsens;%In-cylinder absolute pressure

%Change color and line type for the plot

value color=get(handles.listbox1,'value');
value line=get(handles.listbox2,'value');

%Set graph color
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if value color==1
color str='k';

elseif value color==2
color str='g';

elseif value color==3
color str="1";

elseif value color==4
color str="b';

end

%Set line type

if value line==1
line str="-';

elseif value line==2
line str="";

elseif value line==3
line str="-.";

elseif value line==4
line str="--';

end

style=strcat(color_str,line_str);

if get(handles.checkbox1,'Value')==1 %Proceed for motored pressure graph analysis
for i=1:length(ca2)

ca2rad(i)=ca2(i).*pi/180; %Crank angle vector in radians
veinst(i)=vdin/(cr-1)+(vdin/2)*(1+crlovercoff-cos(ca2rad(i))-sqrt(crlovercoff*2-
(sin(ca2rad(i)))"2));%Instantaneous volume displacement
crinst(i)=t+(vcinst(i)+vdin)/vcinst(i); %Instantaneous compression ratio

end

for i=1:length(ca2)

if ca2rad(i)==0

dvinst(i)=0;%Instantaneous change in volume

workftlb(i1)=0;%Indicated work (ft-1b)

powerhp(i1)=0;%Power (hp)

else

p=i-1;
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dvinst(i)= vcinst(i)-vcinst(p);%Instantaneous change in volume
workftlb(i)=dvinst(i)*abspressure(i)/12;%Indicated work (ft-1b)

end
end

%PIlot in-cylinder pressure diagram

axes(handles.axes4);
set(handles.axes4,'xgrid','on','ygrid','on");
handlel=plot(ca2,abspressure, style);
set(handlel,'LineWidth',2);

hold on

grid on

%lndicated Net Work and IMEP Calculations

inetwork=sum(workftlb)*1.35582;%Indicated net work (J)
imep=(sum(workftlb)/vdin)*12; %IMEP(psi)

%Display Results

set(handles.inw,'string', inetwork);%Cibai efficiency
set(handles.imep,'string', imep);%Otto efficiency
set(handles.nhr,'string', 0);%Diesel efficiency
set(handles.id,'string', 0);%Cibai efficiency
set(handles.cd,'string', 0);%0tto efficiency
set(handles.eff,'string’, 0);%Diesel efficiency
set(handles.start combustion,'string', 0);%Otto efficiency
set(handles.end combustion,'string', 0);%Diesel efficiency

else

%Fill instantaneous vectors

for i=1:length(ca2)

ca2rad(i)=ca2(i).*pi/180; %Crank angle vector in radians
veinst(i)=vdin/(cr-1)+(vdin/2)*(1+crlovercoff-cos(ca2rad(i))-sqrt(crlovercoff"2-
(sin(ca2rad(i)))"2));%Instantaneous volume displacement

crinst(i)=t+(vcinst(i)+vdin)/vcinst(i); %Instantaneous compression ratio

end

for i=1:length(ca2)
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if ca2rad(i)==0

dvinst(1)=0;%Instantaneous change in volume
workftlb(i1)=0;%Indicated work (ft-1b)
powerhp(1)=0;%Power (hp)

else

p=i-1;

dvinst(i)= vcinst(i)-vcinst(p);%Instantaneous change in volume
workftlb(i)=dvinst(i)*abspressure(i)/12;%Indicated work (ft-1b)
powerhp(i)=workftlb(1)/0.055;%Power (hp)

rawnheatrat(i)=(((vcinst(i)+dtheta)* (abspressure(i)-
abspressure(p)*(veinst(p)/veinst(1))*gamma)/((gamma-1)*dtheta))/12)*1.35582; %Net
heat release rate (J/Degree)

rawnheatrel(1)=(((vcinst(i)*(abspressure(i)-
abspressure(p)*(veinst(p)/veinst(i))*gamma)/((gamma-1)*dtheta))/12)*1.35582)*dtheta;
%Heat release rate (J/Degree)

end
end

%Determine beginning and end of combustion
[maxnheatrel,locmaxnheatrel |=max(rawnheatrel);%Maximum point of heat release

startcomb=0;%Start combustion
endcomb=0;%End combustion
w=0;%Counter

for v=1:length(rawnheatrel)
w=locmaxnheatrel-v;

if w>0

if rawnheatrel(w)<=0

startcomb=w;%determine start combustion
break

end

end

end

for f=1:length(rawnheatrel)

if £>locmaxnheatrel
if rawnheatrel(f)<=0
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endcomb=f;%determine end combustion
break

end

end

end

9%Fill actual heat release and heat release rate vectors

sumheatrel=0; %Summation heat release

count1=0; %Counter for heat release vectors

for i=1:length(rawnheatrel)

if i>=startcomb & i<=endcomb

countl=countl+1; %Counter for heat release vectors
nheatrel(countl)=rawnheatrel(1);%Net heat release
nheatrat(countl)=rawnheatrat(i);%Net heat release
xheat(countl)=ca2(1);%X axis for heat release graph

sumheatrel= sumheatrel + nheatrel(count1);%Summation heat release scalar
sumheatrelvec(countl)=sumheatrel;%Summation heat release vector
end

end

%Calculation mass fraction burned (MFB)

for k=1:length(sumheatrelvec)

mfb(k)= (sumheatrelvec(k)/sumheatrel)*100;

end

% lndicated net work and IMEP
inetwork=sum(workftlb)*1.35582;%Indicated net work (J)
imep=(sum(workftlb)/vdin)*12; %IMEP(psi)
thermaleff=(inetwork/sumheatrel)*100;%Thermal efficiency
%Calculation ignition delay

ignitiondelay=0;

for g=1:length(mfb)

if mfb(g)>=10 %10 percent MFB
tenpercentmark=xheat(g);%Crank angle degree at 10 percent MFB

if ca2(startcomb)>injtiming
ignitiondelay= ((tcycle*(xheat(g)-injtiming))/720)*1000; %Ignition delay

else
disp("Warning: Review Spark-Injection Timing');
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disp('****************************************************')-
9
end

break

end

end
9 Calculation combustion duration

for g=1:length(mfb)

if mfb(g)>=90 %90 percent MFB
ninetypercentmark=xheat(g);%Crank angle degree at 10 percent MFB
break

end

end

combustionduration= ((tcycle*(ninetypercentmark-tenpercentmark))/720)*1000;
%Display Results

set(handles.inw,'string', inetwork); %Cibai efficiency
set(handles.imep,'string', imep); %Otto efficiency
set(handles.nhr,'string', sumheatrel);  %Diesel efficiency
set(handles.id,'string', ignitiondelay);  %Cibai efficiency
set(handles.cd,'string', combustionduration); %0tto efficiency
set(handles.eff,'string', thermaleff);  %Diesel efficiency
set(handles.start combustion,'string',ca2(startcomb));%Start combustion
set(handles.end combustion,'string',ca2(endcomb));%End combustion

%Plotting
global handlel handle2 handle3 handle4
%Plot in-cylinder pressure diagram

axes(handles.axes4);
set(handles.axes4,'xgrid','on','ygrid','on");
handle1=plot(ca2,abspressure, style);

hold on

grid on

set(handlel,'LineWidth',2);

title('In-Cylinder Pressure vs. Crank Angle');
xlabel('CA Degree');

ylabel('Pressure [psi]');
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%Plot net heat release

axes(handles.axes2);

handle2=plot(xheat, sumheatrelvec, style);
hold on

grid on

set(handle2,'LineWidth',2);

title('Net Heat Release vs. Crank Angle");
xlabel('CA Degree');

ylabel('Net Heat Release [J]');

%Plot net heat release rate

axes(handles.axes3);
handle3=plot(xheat,nheatrat, style);

hold on

grid on

set(handle3,'LineWidth',2);

title('Net Heat Release Rate vs. Crank Angle');
xlabel('CA Degree");

ylabel('Net Heat Release Rate[J/Degree]');

%Plot mass fraction burned

axes(handles.axesl);

handle4=plot(xheat,mfb, style);

hold on

grid on

set(handle4,'LineWidth',2);

title('Mass Fraction Burned (MFB) vs. Crank Angle');
xlabel('CA Degree');

ylabel('Mass Fraction Burned (MFB)[%]");

end
end

function pushbutton7_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global handlel

%Reset axes

reset(handles.axesl);
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set(handles.axes1,'xgrid','on','ygrid','on")
reset(handles.axes2);
set(handles.axes2,'xgrid','on','ygrid','on");
reset(handles.axes3);
set(handles.axes3,'xgrid','on','ygrid','on");
reset(handles.axes4);
set(handles.axes4,'xgrid','on','ygrid','on");
reset(gca);
set(gca,'xgrid','on','ygrid','on');

% --- Executes on button press in save.

function save Callback(hObject, eventdata, handles)

% hObject handle to save (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Save results into an excel file
global abspressure;
maxpressure=max(abspressure);

savedata(1)=str2num(get(handles.cr,'string'));%Compression ratio
savedata(2)=str2num(get(handles.acp,'string'));%Air injection pressure
savedata(3)=str2num(get(handles.n,'string'));%Polytropic index
savedata(4)=str2num(get(handles.fl,'string"));%Fuel level
savedata(5)=str2num(get(handles.aft,'string'));%Air fuel rate
savedata(6)=str2num(get(handles.exhtemp,'string'));%Exhaust temperature
savedata(7)=str2num(get(handles.itemp,'string"));%Intake temperature
savedata(8)=str2num(get(handles.intpre,'string'));%Intake pressure
savedata(9)=str2num(get(handles.intim,'string"));%Air injection timing
savedata(10)=str2num(get(handles.injection_delay,'string"));%Spark ignition
savedata(11)=str2num(get(handles.sf,'string"));%Scale factor
savedata(12)=str2num(get(handles.inw,'string"));%Indicated net work
savedata(13)=str2num(get(handles.imep,'string'));%Indicated mean effective pressure
savedata(14)=str2num(get(handles.nhr,'string"));%Net heat release
savedata(15)=str2num(get(handles.id,'string"));%Ignition delay
savedata(16)=str2num(get(handles.cd,'string"));%Combustion duration
savedata(17)=str2num(get(handles.eff,'string'));%Thermal efficiency
savedata(18)=str2num(get(handles.start combustion,'string'));

%Start combustion crank angle

savedata(19)=str2num(get(handles.end combustion,'string'));

%End combustion crank angle

savedata(20)=maxpressure;%Peak pressure

coldata= savedata'; %Convert row into column

%Create a save as box
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[filename, pathname] = uiputfile( ...

{"*.m;* fig;*.mat;*.mdl', 'All MATLAB Files (*.m, *.fig, *.mat, *.mdl)'; ...

" xls;*.wkl;*.csv',  'Spreadsheet Files(*.xls, *.wkl, *.csv)'...
kK 'All Files (*.*)'}, ...
'Save as');

if isequal(filename,0) | isequal(pathname,0)
else

f:v'v;
g="xlIs";

string=strcat(filename,f,g);
wk1write(string,coldata);%Save records into root directory
end

% --- Executes on button press in pushbutton10.

function pushbutton10_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global ca2;

global abspressure;
global rawnheatrel;
global rawnheatrat;
global records_plots;

if get(handles.checkbox1,'value')==0

a=ca2'";

b=abspressure;

c=rawnheatrel';

d=rawnheatrat';

records_plots=[a b ¢ d]; %Get records into a matrix

%0Open save dialog box

[filename, pathname] = uiputfile( ...

{"*.m;*.fig;* mat;*.mdl', 'All MATLAB Files (*.m, *.fig, *.mat, *.mdl)'; ...

" xls;*.wkl;*.csv',  'Spreadsheet Files(*.xls, *.wkl, *.csv)';...
kK 'All Files (*.%)'}, ...
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'Save as');
if isequal(filename,0) | isequal(pathname,0)

else
f:v.v;
g="xls";

string=strcat(filename,f,g);
wk1write(string,records_plots);%Save records into root directory

set(gcf, "PaperOrientation’, 'landscape');%Set landscape orientation
Print(gcft,'-djpeg',filename); % Print Figure with results table

end

else

a=cal';

b=abspressure;

records_plots=[a b]; %Get records into a matrix

%O0Open save dialog box

[filename, pathname] = uiputfile( ...
{"*.m;* fig;* . mat;*.mdl', 'All MATLAB Files (*.m, *.fig, *.mat, *.mdl)'; ...
" xls;*.wkl;*.csv', 'Spreadsheet Files(*.xls, *.wkl1, *.csv)'...
RO 'All Files (*.%)'}, ...
'Save as');

if isequal(filename,0) | isequal(pathname,0)

else

fzv.v;

g="xls';

string=strcat(filename,f,g);

wk Iwrite(string,records_plots);%Save records into root directory

set(gcf, "PaperOrientation’, 'landscape');%Set landscape orientation

Print(gcf,'-djpeg',filename); % Print Figure with results table

end
end
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% --- Executes on button press in print.

function print_Callback(hObject, eventdata, handles)

% hObject handle to print (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%pglobal handlel handle2 handle3 handle4

set(gcf, "PaperOrientation’, 'landscape');%Set landscape orientation
Print(gcf); % Print Figure
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Appendix B: Cold-Air-Injection-Model Calculations
Calculations
The main specification of the CFR engine used on this experiment is shown in
Table Al.1. A detailed description of the CFR engine and its main components will be

described in the experimental set-up section of this paper.

Table AL1.1 WVU CFR engine specifications

SPECIFICATION EMGLISH INTERM& TIOKL, L

Type CFR single cyinder, ourstroke  CFR single cyinder, four stroke
Bare 32507 2255 mm

Stroke 4 5" 114 2 mm
Lisplacemant 3733 cubicinches G12.5 cmd

Engine Spesd o0 oo
Compression ‘“Jarnable ‘“Warable

Fatio 4110 18:1 4:1 1o 181

The displacement volume at sea level of the WVU CFR single cylinder engine

can be obtained from equation (6.1) and using the data from Table A.1 as follows

k2 ok % 2eom2) *
vd=” l::1 s _m*(8.255 cn;) 1142 cm _ 6125 cc

Thus at sea level the maximum amount of air-fuel mixture entering is limited to
612.5 cc sea-level conditions (pair= 1.225 kg/m’).

The WVU CFR engine runs at 900 RPM with a volumetric air flow rate of 7
SCFM, thus using n=2 (a four-stroke engine takes 2 revolutions per cycle) the actual

displacement volume can be calculated with equation (6.2)

_7ft
900
2

=0.015 ft*> =439cc

dact —

::\Z|<-

The associated volumetric efficiency, (7v1), 1s given by equation (6.3)

Mot =Viae /Vg 439cC/612.5cC=71.67
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Based on the previous calculations, it was determined that the design of the "air
injection" equipment to limit the amount of hot, high-pressure air injection to 439 cc of
standard air. A compression ratio limit C.R=8 was selected to be below the design limit
of the CFR Engine (C.R=16). When 439 cc of air is injected, all the pressure inside the
cylinder is doubled like running with a compression ratio of 2x6=16.

The heater volume, Vhearer, can be obtained from equation (6.5) for a maximum
released pressure of 700 psig, a minimum temperature of 900 degree F, and a cut-off

pressure of 200 psig. Pref = 14.7 psi and Tref= 519 degree R at sea level

R e 14.7psia*439cc* (900 +460R  _ o0
e D Pt ¥ T [(700+14.7)— (200 +14.7)]psia* (519R)

The mass injected, m;, at sea level is

p ref * Vdact
"R,
ref

In SI units

- _ 101325Pa*0.000439m’
' (2873 /kg *K) * 288K

=0.00053 kg

The volume of hot pressure air injected into the cylinder at sea level conditions, Vj, can
be calculated from equation (6.6).

mi * R *Tref

p ref

In SI units

v, 0:00053kg * (2873 /kg * K) * 288K *100°

i =432.3 cc
101325Pa
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The temperature, T,, and pressure, Pz, in the cylinder at TDC before air injection are
calculated using equations (6.7) and (6.8) respectively,
where:
C.R=8
k=1.4
pi=14.7 psi
T,=298 K.
Thus, pz2is given by
p, = p, ¥r¥=14.7 psi * 8'*=270 psi
and T, by
T, =T, *rV=298 K* 8!+ D= 685 K
The final temperature, T, in the cylinder after injection can be obtained by interpolation

using the specific internal energy value, u(T), calculated from equation (6.16)

me *u(T,)+m; *h(T;)
m, +m;

u(M) =

where:
me = m; = 0.00053 kg
Tc.=T,=685K
Ti = Tmax = 756 K (900 degree F).

The specific internal energy, u(T¢), is obtained by interpolation as shown in Table A1.2

Table A1.2 Interpolation values for u(Tc)

T(K) u(kJ/kg)
680 496.62
685 X

690 504.45

u(To)= 500.54 k/kg
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The specific enthalpy, h(Ti), is obtained by interpolation as shown in Table A1.3

Table A1.3 Interpolation values for h(Ti)

T(K) h(kJ/kg)
750 767.29
756 X
760 778.18

h(Ti)= 773.82 kl/kg
Replacing the values of u(T¢), and h(T;) into equations (6.16) and solving for u(T)

0.00053kg * (500.54 + 773.82)u(T, )k / kg
2%0.00053Kg

u(m) =

Thus u(T) = 637.18 kl/kg.
By interpolation, using the specific internal energy value, u(T), the final temperature after

the air injection is obtained as shown in Table A1.4

Table Al.4 Interpolation values for u(T)

T(K) u(kl/kg)
840 624.95
X 637.18
860 641.4
T=85486K

The final temperature is calculated using 6.19 and the final temperature, T, calculated

above and is given by

oo pc*l*(mCerij
T mc

C

where:

Pc= P2
M = M
854.86K x9

=270psi *
P P 685K
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Thus, the final pressure, p, after the air injection is 674 psi.

The summary of the results is presented in Table A1.5.

Table A1.5 Summary of air-injection calculations

. Cylinder Before Air | Cylinder After Air
Air Heater . L

Injection Injection
Temperature 756 K (900 F) 685 K (773 F) 855 K (1079 F)
Pressure 714.7 psia 270 psia 674 psia
Volume Heater 33.82 cc Volume Displacement 612.5 cc

at Sea Level

Mass Injected at 0.00053 kg Volume Displacement 439 cc
Sea Level (actual)
Compression Ratio 8 Volumetric Efficiency 71.60%

The value obtained for the final temperature, T, after the air injection is well above the

auto-ignition temperature of natural, gasoline, and diesel fuels as illustrated in Table

Al.6.
Table A1.6 Fuels properties
Property Natural Gas |Gasoline| Diesel
Flammability Limits (volume % in air) 5.0-15 1.4-7.6 | 0.6-5.5
Autoignition Temperature (°F) 842 572 446
Minimum Ignition Energy in Air (10-6 BTU) 0.27 0.23 0.23
Peak Flame Temperature (°F) 3423 3591 3729

*Numbers in parentheses refer to References. Source: Properties of Alternative Fuels (Murphy, 1994)

158



Appendix C: Compressed Air Batch Analysis

T o - T T T T T iy i Ameriea

1 Duidggin Stroed

Charlisdtn, WV 23373

* (Rt} 3G ARATS e (304) JA%-M01

WML N

Certificate of Batch Analysis
Compressed Air, Breathing, Type 1, Grade D
Cylinder

LOT NUMBER

EU 00 S 298 BA
Cubic  Feet 311

LotNui =® P2 10/25/2010 Serial Number of Cylinder T'estedZé_- ‘j'? 925 o

Test ) " Specifications Lot Analysis -
Oxygen Contents 19.5-23.5% _/\) 9, ?é_ )

Moisture Contents (dew point -50 F) Max. 63 PPM 4 1} 1{9?_ o

Condensed Hydrocarbon Contents Max. 5 mg/m3 RawZ 2

Carbon Monoxide Content Max. 10 PPM <5 /_”{-;7 o

Odor no appreciable odor o€

Carbon Dioxide Content Max 1000PPM <& 300 /A4,

L

Tested per specifications of Type 1, Grade D according to CGA G~ 7.1 - 1989

Suppliers Signature Date /Q:ZEGS -

10-21-03
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Appendix D: Omega Pressure Transducer Datasheet

FAST RESPONSE VOLTAGE OUTPUT
PRESSURE TRANSDUGER

PRESSURE RANGES FROM 6 T0 2000 psi o~
_—l—u———-—-_l

gsxgg—s&ggﬂoﬁ?ﬁ 100 to 2k psi ranges 6 to 50 psl ranges
st 3
m
w
w
[ =
s
e . m
| Shown actual size. mﬁmﬂr E 2
e S5
5e
1~ Accuracy: £0.5% Typ 1 Operating Temperature  +»~ Rugged Temperature o
v Fully Calibrated Range -55 to 125°C Resistant Valox Case and B
and Temperature (-66 to 256°F) Connector
Compensated ermreann
+ Internal Voltage
Regulation
+ Interchangeable

Unit to Unit 1%«

v Computer Trimmed to
Insure Accuracy and
Repeatability

+» Long Term Stability +1%

SPECIFICATIONS
Excitation: 8 to 20 Vdc at 15 mA
Qutput: 1 to 6 Vde
Accuracy: +1% full scale maximum
Linearity: <50 psi +0.5%

=50 psi 20.2% FS

Hysteresis: £0.25% full scale - o -
Zero Balance: +1% full scale Typ. [ 1MOST POPULAR MODELS HIGHLIGHTED!

Frequency Response: 3 db ars ikl To Order (Specify Model Number)
0o 85°C (32 to 185°F) ge: RANGE psi MODEL NO. PRICE COMPATIBLE METERS
Thermal Zero Effect: +0.02% Rdg/°C 0o 6 psig PX105-006G5V | $335 | DP25-E, DP2000P4, DP3002-E
(£0.01% Rdg”°F) | scal Oto15psig | PX105-015G5V | 335 | DP25-E, DP2000PS, DP3002-E
Proof Pressure: 2 x full scale Oto25psig | PX105-025G5V 335 | DP25-E, DP2000P4, DP3002-E
Burst Pressure: 5 x full scale Minimum -
(6, 15, 25, psig = 20 x FS) 01050 psig | PX105-050G5V 335 | DP25-E, DP2000P4, DP3002-E
Gages: Piezoresistive 0to 200 psig | PX105-200G5V 335 DP25-E, DP2000P5, DP3002-E
Diaphragm/Port Material: N N |
200 Sengs 65 (Sivrar. Copper, 010 500 psig PX105-500G5V 335 | DP25-E, DP2000P4, DP3002-E
Nickel, Cadmium Brazed) 0 to 1000 psig | PX105-1KG5V 335 | DP25-E, DP2000P4, DP3002-E
Electrical Connection: CX106-4 0to 2000 psig | PX105-2KG5V 335 DP25-E, DP2000P5, DP3002-E
Weight: 114 g (4 02) Ordering Example: PX105-006G5V has a range of 0 to 6 psig, $335.

B-68
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Appendix E: Solenoid Valve Datasheet

Piston Pilot-Operated Solenoid Valves [}

For information about solenoid valves, see page 393. For pipe size information, see pages 2-3.

Brass Miniature Solenoid Valves
+ Normally Closed (valve opens when energized)
* Minimum Differential Pressure: 3 psi
+ Maximum Pressure: 150 psi
* Maximum Temperature: 200" F

The answer when vertical installation space is
limited. Valve body is brass; seat is stainless steel.
Use with air, water, light oil, and low pressure
steam tzsrsu max.). The enclosed Class F coil op-
erates on 120 VAC, 50/60 Hz, .125 amps. Mount in any position, keep-
ing coll on top. UL listed and CSA certified. Connections: NPT female.

Overall Cv w/18" Leads  w/DIN

Brass Cryogenic Solenoid Valves
+ Normally Closed (valve opens when energized)
* Minimum Differential Pressure: § psi

* Maximum Pressure: 300 psi

* Temperature Range: -420° to +356" F

Made for temperatures as low as =420 F, these
d carbon dioxide and

\ralves are for use wulh ligui

H in a NEMA 4/4X enclosure with " can
nection and 18 Ieads coil operates on 120 VAC, 60

Pipe
Size Length HL

Factor Each Each

3" 2%he"... 3%"..2.0...7862K38 $76.67 7862ZKS58... $80.52
N2t 2%e".. 3T 3.1, TBG2ZKA2. B4.75 TBGZKE2 BB.60
Yam 3T 4%eT. 5.0 .7862K44 116.63 7B62KE4 ... 12048
17BN AT B0 TBEZKST 159,12 7862KT1 162.96

Stainless Steel Solenoid
Valves for Steam

+ Normally Closed [valve opens when energized)
« Minimum Differential Pressure: 5 psi

+ Maximum Pressure: See table

* Maximum Temperature: 450" F

Great comosion resistance pl.ls the capabilit
handie steam and other hot, nonhazardous fl tu
450" F, is Type 316 stainless steel with Type 304
and 416 stainless steel internal parts. Seats are EPOM
for 5-50 psi valves and PTFE for 5-200 psi valves. Coil is Class Hin a
NEMA 1 enclosure with %" condun connection and 18” leads. Coil oper-
ates on 120 VAC, 60 Hz, .42 amps. Mount horizontally with coil on top
Connections: NPT female.

Min. Diff. psi: 8  Min. Difl. psi: §
Pipe Owverall Cv Max. psi: 50 Max. psi: 200
i Length Each E:

4671K71 . $347.87 4671KB81..$353.89

4671KT72. 34787 4671KB2 . 353.89

4671K73 .. 347.87 4671KE 353.89

4671K74 . 347.17 4671Ke4 . 32172

IS?IKTS. 42086 4671KB5. .. 396.89

LA6T1KT6.. 536.49 4671KB6.. 493.82

M671K77.. 91990 4671K87 .. 925.79

.. 46T1KT8.. 988.09 4671K 993.99

4BT1K79. 126520 4671K89.1271.09

Hz. Mount h with coil on top.
Connections: NPT female.

Pipe Overall g\r

Size L _ Each
258" 1 7902K31...$195.95

2% - S . 7902K32.... 195.95
LT 0.z . T902K33. .. 23181

Brass High-Pressure Solenoid Valves
* Normally Closed (valve opens when energized)
* Minimum Differential Pressure: 10 psi

* Maximum Pressure: 1200 psi
* Maximum Temperature: 200° F

Don’t worry about nugll pressure, these valves
handie up to 1200 psi. Valves have a brass body,
brass piston (unless noted), stainless steel seat,
and stainless steel sleeve, Coil is Class F in a junc-
tion box enclosure with 7* leads. Coil operates on
120 VAC, 60 Hz, .24 amps. Mount horizontally with
coil on top.
Connections: NPT female.

Pipe
Size

Overall Cv
Length Factor Di Each
49895K31. $108.37
AS895KI2x 122.96
48895K 44
49695K51
. 49B95KS52% 303.41

a0 &ngle
.. 90° Angle....

Type 304 Stainless Steel Solenoid Valves with Zero Min. Differential Pressure

* Normally Closed (valve opens when energized) + Minimum Differential Pressure: 0 psi » Maximum Pressure: See table
* Maximum Temperature: General Service: 400° F; Cryogenic: -320° to +400° F

No minimum pressure necessary—  Pipe  Max. Overall Cv General Service Cr)
these valves also have a wider tem- i i Each Each
perature range than most of our other B117K35..$359.09 B117K65.$386.92
solenoid valves and the corrosion re- 8117K36. 39140 B117KES. 42122
?;l:'lt%':‘fv‘g ?‘ ngﬁﬁé ;&::‘;esi:;!;ﬂj 8117K37. 53553 B117KB7.. 560.90
seal is PTFE. Coil is Class H in an en- JB11TK45. 43116 B117K75 .. 460.98
closure with a '2* conduil Connec- B117K46.. 547.96 BI1TK76.. 573.23
tion, integral junction box, and 18 B117K47 . 626.24 BI1TKT7.. 650.90
leads. Coil operates on 120 VAC, 60 B117K55.. 49577 B11TKBS . 525.59
Hz. Mount horizontally, coil on top. 1. 626.24 B117KB6.. 650.90

Connections: NPT femate. 1% 300, 684.64 B117KB7.. 708.83

Stainless Steel Solenoid Valves

+ Choose from Normally Closed (valve opens when energized) and Normally Open (valve closes when energized)
+ Maximum Pressure: See table

A Type 316 stainless steel valve body with Type 304 and 416 stainless steel internal parts provides excellent corrosion re-
valves with 5-150 psi pressure ra

* Minimum Differential Pressure: See lable

sistance. Use with conoswe Tuids.

+ Maximum Temperature: 220" F

have a Buna-N disc and seat screw;

valves with 20-1000 essure range have a PTFE seat. For normaily valves with a 5-150 psi pressure range, seats are
Buna-N and Viton; for the 10- G[?s. range Coil is Class F in @ NEMA 1 enclosure with 4" conduit connection and 18°
lead wires. Coil npuales on 120 VAC, 60 Hz. 5-150 psi valves and T\ psi valves draw .32 amps. 20-1000 psi valves draw
-60 amps. Maount he y, coil on top. G NPT female.

LY CLOSED 1 r NORMALLY OPEN ———
M.ln. Diff. psi: 5 Min. Diff. psi: 20 Min. Diff. psi: §  Min. Diff. psi: 10

Pipe Overall  Cv Max. psi: 150 Max. psi: 1000 Max. psi: 150 Max. psi: 300
Slza Length _ Factor Each Each Each Each
L ..4665K11..5347.39  4665K21. $365.40 4665K41..5374.27
21 4BB5K12 . 347.33 4665K22 . 36540 4665K42... 374.27
.2 ..4B665K13 . 347.39 4665K23 . 365.40 4665K43 . 374.27
.3 . 4665K14.. 347.38 46B5K24... 364.67 4665K44 .. 374.27
. B . ABB5K1S... 434.22 4665K25 .. 451.50 4665K45.. 461.10
114 .. A665K16._. 546.17 4665K26 . 562.49 SKA 573.05
.7, 4665K17... 95087 4665K2 965.18 4G65KAT . 974.44
5. 4665K18.. 1022 46 4665K28..1036.78 4665K48. 1046.04
X 4665K19. . 1313.42 4665K29 .1327.74 4665K39_ 1321.84 4665K49  1337.00

MORASTER-CARR
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MODEL 453P, 4535, 454P, 458F & 458P5 SOLENOID VALVE
MODEL 453P, ﬁﬁml’hﬁl' & 458PS IS:*ENO[D VALVE INSTALLATION INSTRUCTIONS
HIGH PRESSURE SOLENOID VALVES
MODELS 453P, 45:35, 454P, 458P, 458PS vo.| PART O, DESCRIPTRION - vu_v:u;nf.?;uf:uiﬁj
(DEE) @-cenonaL ; 3
ﬂ___\' T % *
| e il . 0 R
(| C/' i ! | 0 0 T
= 1 : 0 o
| i 41.7.2¢ Enclosirg Tube With O-Ring L D
e Ring, Buna- (1 X | 18 1116} .
ing. Buna-H {1116 X 1516 X 116} . s
[Exclosing Tube Locksut 0
[Eacloting Tube Lockst 0
[Enciosing Tube Screw (4 Regd) v
35 [Pien Ausy, 55 With Ring & Backep Sieing 0
4136 [istn Assy, Brass W Hing & Backup Spring .
S moveL asur ' LT Fhton Assy, Brass With Ring & Backep Spring .
. [41:5.5[Piton Assy, Brass With Ring & Backep Spring_ | .

B

REPAIR KIT- PART:

1876 Py dofd

- Pg2of4
1876 2 Rev.

Rev.
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Appendix F: Double Acting Tie-Rod Hydraulic Cylinder Datasheet

PARTS MANUAL / MANUAL DE PIEZAS / MANUEL DE PIECES DETACHEES

PRINCE MANUFACTURING CORP., N. SIOUX CITY, SD 57049

DOUBLE ACTING TIE ROD CYLINDERS / CILINDROSE DE VARILLA DE CONEXION DE
ACCIONAMIENTO DOBLE / CYLINDRES A TIGES DE LIAISON, A DOUBLE EFFET
MANUFACTURED BY: / FABRICADA POR: / FABRIQUEE PAR:

Parts List

Lista de piezas) (Liste de pieces detochees)

4HL38 4HL39 4HL40

4HL41

4HL42

4HL43

4HL44

4HL45 4HL46 4HL47

4HL48

SAE-32004 | SAE-32008

SAE-32020

SAE-32508

SAE-32512

SAE-33008

SAE-33016

SAE-33024 |SAE-33508A

SAE-33516A

SAE-33524A

010500470
200300040
051100006
141100024
081100177
071100157
220000208
100000423
170103081
190400001
220001504

010500472
200300040
051100008
141100024
081100177
071100157
220000208
100000423
170103121
190400001
220001504

14110002

Woe oL bR

17010324
19040000

ESTOS ARTICULOS ESTAN

PMCK-
32000

010500479
200300040
051100014

081100177
071100157
220000208
100000423

220001504

010600517
200300040
051300014
141300022
081300248
071300111
220000208
100000423
17020121
190400001
220001504

4

INCLUIDOS

CES PIECES SONT COMPRISES DANS

PMCK-
32500

THESE ITEMS ARE INCLUDED IN PACKING KIT.
EN EL JUEGO DEL PAQUETE.
LE JEU DE

PMCK-
32500

010600519
200300040
051300016
141300022
081300248
071300111
220000208
100000423
170201161
190400001
220001504

010700431
200300040
051500007
141500043
081500323
071500244
220000210
100000423
170201122
190400001
220001504

PIECES FO

PMCK~
33000

010700435
200300040
051500011
141500043
081500323
071500244
220000210
100000423
170201202
190400001
220001504

URNI DANS

PMCK-

010700438
200300040
051500014
141500043
081500323
071500244
220000210
100000423
170201282
190400001
220001504

010700682
200300040
051700009
141700023
081700255
071700174
220000210
100000577
170201123
190400004
220001504

010700686
200300040
051700013

081700255
071700174
220000210
100000577
170201203
190400004
220001504

L'EMBALLAGE.

PMCK~
33000

PMCK-
33500

PMCK-
33500

141700023

010700689
200300040
051700016
141700023
081700255
071700174
220000210
100000577
170201283
190400004
220001504

PMCK-

ORDER REPLACEMENT PARTS OR OBTAIN
SERVICE THROUGH DEALER FROM WHOM
PRODUCT WAS PURCHASED.

If decler connot supply, order from:
GRAINGER PARTS OPERATION

1657 Shermer Rd.

Northbrook, 1L 60062

TELEPHONE (800)323-0620

FAX (BOO)PCA-FAX1

Please provide the following information:
* Model number

* Seriol number (if ony)

* Ports description ond number as shown
in parts lisl.

PIDA PIEZAS DE REPUESTO U OBTENGA

SERVICIO POR MEDIO DEL COMERCIANTE A
QUIEN COMPRO EL PRODUCTO.

Si el comercionle no puede proveer el
pedido, dirijose o:

GRAINGER PARTS OPERATION

1657 Shermer R4.

Northbrook, IL 60062

TELEPHONE (B00)323-0620

FAX (BOO)PCA-FAX1

Por fovor, proveo lo siguiente informacion:
* Numero de modelo

* Numero de serie (si lo liene)

* Descripcion y numero de los piezos tol
como oparecen en lo listo de piezas.

Poro oblener repuestos en Mexico
llame ol lelefono 95-B00-527-2331.
En los EE.UU. llome ol telefono
1-800-323-0620

COMMANDER LES PIECES DE RECHANGE DU
DEMANDER LE SERVICE SOUS GARANTIE AU
REVENDEUR CHEZ QUI LE PRODUIT A ETE
ACHETE.

Si le revendeur ne peut pas fournir lo
commonde, s'odresser o:

GRAINGER PARTS OPERATION

1657 Shermer Rd.

Northbrook, IL 60062

TELEPHONE (B00)323-0620

FAX (BOD)PCA-FAX1

Veuillez fournir les renseignements suivonts:
* Numero de modele

* Numero de serie (le cos echeont)

* Descriplions el numeros de pieces lels
qu'indiques sur lo liste de pieces delochees.

groingertierod.dwg

7/31/03 Page 1 of 3
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Appendix G: First Air Injector Design Drawing

CFR Engine Air Injector Design May 8 05 by Loth
1/8"" NPT for pressure transducer

7'y ' H
35/64" ; : 5
x 1- 5/16" ' : :
wide head ' T
h 4 E y Y
E. two holes 3/1¢f" dia. are 537
1 |5/16" center toj center
E ¥4" mill cut
: X
1-7/16" i
long 7/8" i
shaft 5 2-3/16"
wl L ot
di ' ! - TOm
1a ! H grade 8
- ' ' 3/16" bolt, Mc M.
Y § 18" relief o : ‘7‘_-_-—}101& 91257A925
| ' ' ' 1-5/8"
3/8" high by 7/8" Pl N deep
dia. , copy of plug : l ' :
y with 18 threads/inch | i | i
Fy ' :
3/8" ’ :

3/16" deep and
high mill cuts

1-3/8" OD

1-3/8" add 2
1/32" thick
rings

t g §
/

Twol/8" O ring
grooves 3/16" high

5/8"

2 holes 1/8" NPT and 90
degree apart for pressure
relief valve Mc Master
4706K51 and ignition
air injection relief valve
Grainger 6X843 with
solenoid 49895K32
McMaster Carr

1-3/8" OD by 7/8" ID and 1-3/8" tall cut from 7/8"shaft coupling 6412K17
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Appendix H: Spark Plug Adapter Drawing

CFR SPARK PLUG ADAPTER
158" x 172 NPT for refief valve
748" x 916" Hex. Head h/
o H [y
1} L}
N i_.lT,;
'}
i | E &
Hole 332" dia. ___ | ;
— 1
N I
L :|E le—— |11506°| 318" Long
il Adapter (Mid
“ aE Steo)
i I E
[ L
— 15
+ [
181mm 1.5 Spark y 1=z
Phug thread L y
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Appendix I: Water Cooled Pressure Transducer Adapter Drawing

7HE" Hex
144" Deep

Pressure Transducer Adapter

I

S E-24 THD UNF-24

§

-

418" x 18"

equally space

cooling channels
—

142" Brass Rod

025

249

7
215

247

I~

0235 | 0950

Material Brass

O O 0[O [

b

— O o 1300
0
i

05

—_ ¥ ¥

b
i
\ 15" NPT Units in Inches

Drawing is not a scale

| = |
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Appendix J: Three (3) Way Ball Valve Datasheet

Type 316 Stainless Steel Ball Valves [J]

For information about ball valves, see page 350. For information about pipe size, see pages 2-3.

Panel-Mount Type 316 Stainless Steel Ball Valves with Yor-Lok Tube Fittings

+ Vacuum Rati
* Temperature

= Maximurn Pressure: W.0.G. (water, oil, ms}: 6000 psi @ 125" F
WS.P. (working steam pressure): Net r
i

28" Hy.
nge: —gm' to +280° F

» Ports: Standard Wt
Combine high corrosion resistance with high pressure rat- 2.
5. Valves include a hex nut lmpaneimmm ininstrumen- Straic

tmnrbopplmons Mounting holes are are *Wie” for The™%"
tube OD and 1% for %" tube OD. Use any port as inlet or out-
. ball, and stem are Type 316 stainless steel: seatsare  FOT
e|F seals and packing are PTFE, The tee handie is
made of nylon. 2-way vaives offer leak-tight, positive shutoff;
use -way valves fof diverting flow without full shutoff.
Connections: Yor-Lok double-ferrule cornprassnon tube
lok, Parker A-Lok,

rlltlngs Can be used with Swi g:lok
ittings. For Yor- Lok tube fit-

lok, Tylok, and Letlok tube fitti
tmgs see pages 131-133,

— 3 Way Diverting Flow Patterns —

o

=13

Py 4577T5KS6. 14.21

.. 457T5K55.$97.74 45165K29 $112.14
45165K31 .50
45165K32 11605
45165K33 14768
45165K34 210.50

7. 8274
90.89

2%a" . 45T75K25.236.88

Miniature 316 Stainless
Staal Ball Valves

’ "nﬂ’i‘:"‘c‘;’"m""‘m =) 500 p @ 200" F
ater, ofl, ine @
5.P. (working steam g:zssurej D:I'm rated
» Vacuum l?amga Not rated

. ;smperalum nge: 40" to 200" F

Great for small spmes nnd medium pmssurus. these valves have a
Type 3 eel body, ball, and stem.

Su(s and packing are PTFE The wing hend;e is made of plated car-
bon steel. NPSM (National Pipe Stralgh‘t Mechamcal} Ihleacls meet
SAE J516 fitting

'l)paa‘lssuinkss Steel Ball Valves
with Yor-Lok or BSPP Connections

. Maxlmum Pressure:

W.0.G. (water, cil, inert gas):

1000 psu & 158 F

W.S.P. [workmg aenm presstu] Not rated
* Vacuum Rm-rE
+ Temperature Range: —50' 10 +200° F
* Ports: Standard

. ball, ndbbw.n -proof stem are T

316 stainiess steel. Seat and packing are glays?-
filled PTFE. Lewrhandhs are made of Type 302
stainless steel \mlh a r;ad rip.

Tube Fittings

Connections: Yor -ferrule com-
pression tube \‘|lt| s or BSPP (British Stan-
Parallel) threaded ﬁtungs_

dard Pj
Bal Vaives with Yor-Lok Tube Fi
These are ideal for instrumentation applica-
ons. Can be used with Yor-Lok,
Parker A-Lok, Gyrolok, Bilok, and Letiok tube
n%s For Yor:Lok tube fitings, see pages
131

Femala
Female Threaded

Connections E:g'f_'; Each falves with BSPP Threads—ideal for confined areas where a
- e BSPP [=: ion is required,
T NPT Malex 7o NPT Miale - SOKTTSZTT o
" alex ] 42.11
3" NPT Malex " NPT II . Tube End-t0-
v NPT Mala %o+ NPT Mala . op Endlg Each
3* NPSM Malex %" NPT Male X Yor-Lok Tube Fittings
%" NPT Femalex %" NPT Female 4310K19.. 42.11 g
%+ NPT Femalex %" NPT Male. . 4310K23. 4211
3" NPT Femalex %5~ NPSM Male 4310K25. 4211
345* D Tube Stemx %’ NPSM Male 4310K27. 4211

3" ID Tube Stemx %" OD Tube Fitting.
¥ OD Tube Fitting= %" NPT Male...
%" OD Tube Fittingx %" NPSM Male

" OD Tube Fitting= %" NFSM Male 34"
%" OD Tube Fitting = %" OD Tube Fitting .. 33%"
High-Pressure Miniature Type 316
Stainless Steel Ball Valves
. Femalex
Famala

. Ma):mum ngsum W.OG. (water, oil, inert gas): 1000 psi @ 150° F
WS d;ressue] 150ps:9369‘l’
-\I‘acuum Rw

. Temporalm'ﬁangs -36" 1o +368* F
* Ports: %"« %” and "« 3" Full; %" x %" Reduced

Ideal for limited space and high pressure applications. Either port
can be used as inlet or outlet. Body, ball, and stem are Type 316 stain-
less steel, Seats and seals are PTFE. The wing handle is made of car-
bon steel. It can be locked in the closed position |.|s|r|?[;'_r jpadiock [nat
included) with shackle dia. up to %", Connections:

Type 316 Stainless Steel Ball Valves
with Ratchet-Hole Handle >

* Maximum Pressure: W.0.G. (water, ol inen gas)
1000 psi @ 100°F

WSP ing steam : 140 psi @ 360"
. ¥acuun1 Rating: 29 ;
+ Temperature Range: o +392°
* Ports: Full

A hole in the handle of these valves accommodates a ¥" squara
ratchet to provide easier access to tough-to-reach valves. . ball,

pro
and stem are Type 316 stainless steel. Seats andbrackmg are PTFE.
e using a padiock

The tever is Type 304 stainless steal and is lockal
i m Each  Ske Emly Lg. Each Wb shackle diametor up o She"
emal
Muie Fernale (Cont.)

A5395K101.$65.53 W P’ 45385K114 0269 Plpe End-to-

‘45395K103 . 66.24 Size End Lg
.. 92,33 Female  Fernale 1.
2" 45395K131. 6206 1

. 80.23 ".45395K133. 6288 1"

. 6164 2" 45395K135. 9310 2"

HGHMTER-CIRR
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Appendix K: Air Pressure Relief Valve Datasheet

get the job done

Hdﬁw
isit grainger.com

Relief & Control Valves

Hige

Mads
[
usa

HYDRAULIC SCHEMATIC

(Tank)
e

Adjustable Flow Control Valves

Varies speed smoothly over
the full range. Once speed is
set with the lever, it remains
constant regardless of load
variation. Comes with built-in

ball and spring relief valve
with cast-iron seat. Pressure
compensated adjustable flow
control.

PRINCE THREE-YEAR LIMITED
WARRANTY

Text is available upon request. See
“Manufacturers' Wamranties™ on
page opposile inside back cover.

I k- .
a6 41 29 W0 030 Yes  RDRS175-30 6XB42 $96.95 a0
No. X842 46 41 29 w0 06 No RD-150-16  SPPO6 76.75 18
. 6 41 29 W0 030 No RD-175-30  SPPO7 76.75 17
46 41 29 w0 096 ¥i RORS-150-16  SPPO8 96. a1
1/2" Adjustable Relief Valve
Compact 1/2" NPT, high Uses: For heavy-duty hydraulic PRINCE THREE-YEAR LIMITED
pressure relief valve is application. WARRANTY

HYDRAULIC SCHEMATIC

designed for full flow with low
pressure drop. High strength
steel bar stock body with

= Pressure adjustable from 1000
to 2500 psi

Text is available upon request. See
“Manufacturers’ Warranties” on
page opposite inside back cover.

replaceable heat treated seat, " 18 GFM max
For Repair Parts
g Call Your Branch or
o 1-800-323-0620 P pover
Dessription Model o, wa W
1Z Adjustable Reled Valve RDTBSOH 6XB43  $36.35
I ’_—’m Adjustable Relief Valves
) * Controls maximum pressure  directing flow from vent be teed off the pressure line
Jor fapair Ports within a hydraulic circuit. Two- connection to a separate with one of the inlet pressure
1-800-323-0620 “ stage, balanced piston design  pressure relief valve. Standard  connections plugged. 7/8" - 14

provides fast response and
minimizes pressure override.
Vent connection allows low
pressure venting of system to
tank. Remote pressure control
capability is achieved by

F3" seals provide multi-fluid
capability. Inlet and outlet
pressure connections may be
used interchangeably when
the valve is mounted in the
pressure line, or the valve may

UNF-2B thread inlet and
outlet connections - CS-03.
Max. pressure 3000 psi. 5.6L x
6.6Wx 2.1"H.

No. 4F560

5 = Shipped Directly fram Manufacturer

Adjustable Pressure Mazimum Wickers Stock Sﬁg
Range (psi) Fiow [GPM) Wodel No. Each :
125-1000 45 C5-03-850 4BA48 ~ $293.50 g9
500-2000 5 C5-03-C50 4BA49 ~ 293.50 9.
1500-3000 45 C5-03-F50 4BAS0 ~ 293.50 %0
Flow Dividers
Hydraulic flow dividers split Bath drive gears in 2.section  Integral differential relief
the flow from a single pum dividers are driven by valves for each circuit limit
source to a pair of matche common shaft, allowing flow  pressure intensification and
cylinders or fluid motors. Gear  equalization to occur ina permit cylinders to re-phase
type rotary flow dividers wide speed range. Speedsin  at the end of each stroke.
synchronize two parallel the range of 2000 to 4500 RPM  porranent mold cast-iron

motions hydraulically rather
than mechanically.

will improve overall efficiency.
Up to 4500 psi outer pressure.
ax speed up to 4500 RPM.

body. 11-tooth hardened steel
gears.

Inist Flow  Displacement i SAE Port 5l ) D i L) Bames Sock N
GPM Range Cu, In.[Rev. Protoe ) e O Lml“h’m Model Mo, e W
245 012 3000 ¥4 346 155 299 326 1weeors AFE60  $234.50 g9
510 0.258 2300 1@ V46 155 299 126 10200 4F661 + 23450 ae
10-20 0.581 2150 The MBI 985 425 400 1100042 4FG62 v 307.50 270

+'= Extended Warranty Available

% = New ltem

GRAINGER. | 1549
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RD-1850-H/6X843

TANK PORT

/.\ L~ IORIFICIO DEL TANQUE)

(OUYERTURE COTE RESERVOIRI

TWO PRESSURE PORTS FOR INLINE
MOUNTING

005 AGUJEROS DE PRESION PARA EL
MONTAJE EN LINEA)

{DEUX DUYERTURES SOUS PRESSION
POUR MONTAGE EN LIGNE)

TTEM ] PART N0,
- ARTICULD | CAWTIDAD | W* DE PIEZA
tee aré N* OE PIECE

DESCRIPTION/OESCRIPCION/DESCRIPTION

mﬁm
THROUGH DEALER FROM WHOM PRODUCT WAS PURCHASED.

Piussn provide Iellssrng nlomatue

VALVE BODY/CUERPO DE LA VALVULA/CORPS DE VANNE

230008014 | STEET'BALL/BOLA DE ACERO/BILLE D'ACIER

670300011 | SPRING/RESORTEMESSORT

§71900001 | ADJUSTING SCREWITORNILLO DE AJUSTENIS DE REGLAGE
671800010 | JAM NUT/TUERCA DE INMOVILIZACIONICONTRE£CROU
671500004 | WASHERIARANDELAJRONDELLE

671800002 | ACORN NUT/TUERCA CIEGATECROU BORGNE

* Model Wurier.
“Parti Duncripiion and Number 23 shwwen in Paris Lt

SERVICID DE
(GARANTIA POR MEDR) DEL COMERCIANTE A CUIEN
COMPRD EL PRODUCTO.

Por lowee, provwas 1n siguaseis inl somacibe:

T0 ADJUST RELIEF REMOYE ACORM MUT ITEM 7
LODSEN JAMNUT ITEM 5, TURN ADUUSTING SCREW

ATEM & CLOCKWISE T0 INCREASE PRESSURE,
COUNTERCLOCKWISE TO DECREASE PRESSURE. DO NOT
BACKOUT ADJUSTING SCREW TO THE POINT IT FALLS OUT.

PARA AJUSTAR LA DESCOMPRESION SAQUE LA TUERCA CIEBA
ARTICULD 7 AFLDJANDO LA TUERCA DE IRMOVILIZACION ARTICULO 5,
LUEG0 GIRE EL TORNILLD D€ AJUSTE AATICULD 4 HACIA LA DERECHA
PARA AUMENTAR LA PRESION, HACIA LA IZOUSERDA PARA

LA PRESION. NO GIRE EL TORMILLD OF AJUSTE HASTA EL PUNTD EN
QUE SE DESPRENDA.

POUR REGLER LA DECHARGE, DEMISSER L{CROU BORGNE, PIECE 7,
DESSERRER LE CONTRE £CRDU, PIECE S, TOURMER LA WIS DE
REGLAGE, PIECE 4, DANS LE SES DES IGUILLES D'HORLOSE POUR
AUGMENTER LA PRESSION ET EN SENS IMVERSE POUR DIMINUER LA
PRESSION. NE PAS DEVISSER LA V15 DE REGLAGE A FOND JUSOU'AY
POINT 0U ELLE POURRAIT TOMBER.

‘. WARNING: OVERPRESSURE BAY CAUSE SUDDEN AND UNEXPECTED
FARLURE OF A COMPONENT I THE HYDRAULIC STSTEM
RESULTING ¥ SERIQUS PERSOMAL INJURY. ALWATS USE A
GAUGE WIEEN ADJUSTING A RELIEF VALYE.

[ [
WESPERADD D€ EN EL SSTEMA 0

MANOME TR0 CUANDO AJUSTE UNA VALVULA DE DESAHOGO.

AVERTISSEMENT: TOUTE SURPRESSION RESOUE DE CAUSER LA

ET PEUT 1
GRAVES. i FAUT TOUJOURS UTILISER UN MANOMETRE POUR REGLER
UNE SOUPAPE DE SORETE.

DEFARLANCE SOUDATNE ET IMPREVUE 0'UN COMPOSANT DU SYSTEME

*Mimars de models
“Descripeidn ¥ mimars te Las peaias Lol come apaecen an 1y Lista de
Parss.

LE SERICE SOUS GARANTIE AU REVENDEUR CHEZ OUS
LE PRODUT A ETE achETE.

Wruller {oumi fos romsrgramants FevanLr:
“Warnes e sipille.

*Dascriptions of srvires de pabces bels gl s 5w G lsle de-
s i,

 Dealer Cannot Supply Order From:

Si ol comerciante o powde provesr ol pedido dwfiase a:
53 be revandewr ne peut pas foumnir la commande,
wadrezeer §

GRAINGER PARTS DPERATION
1657 SHERMER RO,
NORTHBROOK, R 60062
Telephona 1:800-373-0620
Fax 1-800-PCAFAX]




Appendix L: Dytran Piezoelectric Pressure Transducer Datasheet

. Dytran Instruments, Inc.
21592 Marilla St. Chatsworth, CA 91311 Ph: 818-700-7818 Fax 818-700-7880
P~ INSTRUMENTS, INC. www.dytran.com email: info@dytran.com page 10of 1

CALIBRATION CERTIFICATE
LIVM DYNAMIC PRESSURE SENSOR

CUSTOMER: WEST VIRGINIA UNIVERSITY [ TESTREPORT #: 1304 11/21/2005
PURCHASE ORDER #: M/C - J.LOTH [ SALES ORDER #: 121022 I PROCEDURE: TP2002
MODEL: 2011V SERIAL#: 1304 [TEMP ey 21 | HUMIDITY (%): 25
NEW UNIT ' X | RE-CALIBRATION [1] | AS RECEIVED CODE | | AS RETURNED CODE |
BIAS VOLTAGE (VDC): 86 JESCHARGE T.C. (sec): 34
CALIBRATION PERFORMED AT 30 Lb-in MOUNTING TORQUE

PRESSURE (psi) SENSITIVITY (mVipsi) PRESSURE (psi) SENSITIVITY (mVipsi)

1000 5.23

REMARKS: NONE

TEST EQUIPMENT LIST - CALIBRATION STATION # 5

DIl# | MANUFACTURER MODEL | SERIAL # DESCRIPTION CAL DATE | DUE DATE
256 KEITHLEY 179 22129 MULTIMETER 02/12/05 02/12/06
017 NICOLET 310 IAQ9406710 DIGITAL OSCILLOSCOPE 08/18/05 08/18/06
022 | AMETEK/MANSFIELD T-150 15010 DEAD WEIGHT TESTER 10/20/04 10/20/06

[1] AS RECEIVED / AS RETURNED CODES:

1=IN TOLERANCE, NO ADJUSTMENTS 4 = OUT OF TOLERANCE > 5% 7= UNIT NON-REPAIRABLE, RECOmENO REPLACEMENT
2 =IN TOLERANCE, BUT ADJUSTED 5= REPAIR REQUIRED 8= UNIT SERVICEABLE WITH CURRENT CALIBRATION DATA
3 =0UT OF TOLERANCE < 5% 6 = REPAIRED AND CALIBRATED

[2] THIS CALIBRATION WAS PERFORMED PER MIL-STD-45662A, ANSINCSL Z540-1-1994, 1ISO 10012-1 AND 15 TRACEAEBLE TO THE NIST THROUGH
TEST REPORT NUMBER: 23936 001,

ESTIMATED UNCERTAINTY OF CALIBRATION: 2%.

THIS CERTIFICATE SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN PERMISSION FROM DYTRAN INSTRUMENTS, INC

CALIBRATION TECHNICIAN: B TEST DATE: 11/21/05

RECALL DATE: 11/21/06
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SPECIFICATIONS MODELS 2011V & 2011V1
DYNAMIC PRESSURE SENSOR

SPECIFICATION VALUE UNITS
PHYSICAL (BOTH MODELS)

WEIGHT 13.0 GRAMS
SIZE (HEX X HEIGHT 375X 1.88 INCHES

MOUNTING PROVISION
CONNECTOR, AXIALLY MOUNTED AT TOP
BODY/CONNECTOR MATERIAL

DIAPHRAGM MATERIAL
PERFORMANCE

2011V
SENSITIVITY, NO 5
RANGE F 5. FOR 4 VOLTS OUT 1000
MAXIMUM PRESSURE 2000
MOUNTED RESONANT FREQUENCY, NOM. 130
MINIMUM RISE TIME OF INPUT PRESSURE PULSE 2
EQUIV. ELECTRICAL NOISE FLOOR (RESOLUTIO 009
NON-LINEARITY (ZERO BASED BEST FIT ST. LINE} m 1
ACCELERATION SENSITIVITY, AXIAL DIRECTION .02
DISCHARGE TIME CONSTANT 40
LOWER -3db FREQUENCY 04
ENVIRONMENTAL (BOTH MODELS)
MAXIMUM VIBRATION
MAXIMUM SHOCK

TEMPERATURE RANGE

MAXIMUM FLASH TRMPERATURE AT DIAPHRAGM
THERMAL COEFFICIENT OF SENSITIVITY
ENVIRONMENTAL SEAL

ELECTRICAL (BOTH MODELS)

EXCITATION (COMPLIANCE) VOLTAGE RANGE
EXCITATION CURRENT RANGE (2]

QUTPUT IMPEDANCE, NOM

OUTPUT BIAS VOLTAGE, NOM

OUTPUT SIGNAL POLARITY FOR INCREASING PRESSURE

SUPPLIED ACCESSORIES
MODEL €606 SEAL, BRASS, 2 SUPPLIED.

NOTES:

3/8-24 UNF-2A MALE THREAD
10-32 UNF-2A MICRO-COAXIAL
STAINLESS STEEL, HARDENED 17-4 PH

STAINLESS STEEL, ANNEALED 17-4 PH
20111
1.66 mV/Psi
3000 Psi
5000 Psi
130 kHz
2 SEC
.03 i
1 %F.S.
006 PsilG
4.0 SEC
.04 Hz
1000 G's AMS
3,000 G,'s PEAK
-100 TO +250 °F
+3000 °F
0.03 %l*F
HERMETIC WELDED/GLASS TO METAL
+18 TO +30 voc
27020 mA
100 Ohms
+10 voc
POSITIVE GOING

(1] PERCENT FULL SCALE, ZERO BASED BEST FIT STRAIGHT LINE METHOD.
[2] FROM CONSTANT CURRENT TYPE POWER UNIT ONLY. THESE SENSORS MUST NOT BE CONNECTED TO A

DC POWER SOURCE WITHCUT CURRENT LIMITING, 20 mA MAXIMURM
3 A CALIBRATION CERTIFICATE TRACEABLE TO NIST IS SUPPLIED WITH EACH INSTRUMENT,

(]
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Appendix M: Kistler Piezotron Coupler Charge Amplifier Datasheet

000-3312-05.03 (K12.5118)

Measure & Analyze - MCP

Piezotron™ Coupler

KISTLER

anaiyze. innovaie.

Type 5118B...

Versatile Voltage Mode Piezoelectric Sensor Power Supply/Coupler

A flexible, simple to use signal conditioner that provides exci-
tation power, signal tailoring and acts as an interface between
voltage mode piezoelectric sensors and measuring instru-
ments.

Single channel unit powered by internal AA batteries or an
AC/DC adaptor.

* Selectable gain and low pass, plug-in filters

* High pass filtering, panel selectable

* Monitor the condition of the sensors and cables
* Exclusive "Rapid Zero" feature

= AT, DT ur baliery puweicd

* Conforming to CE

Description

The signal conditioner provides the constant current excita-
tion required by low impedance, voltage mode sensors with
huilhin loctrntcs fi 2 Dlazotran  DiazaBeamtM, V.Shear™,
and Ceramic Shear) or for high impedance sensors with an
external impedance converter. Sensor power is supplied by
the same two-wire cable that provides the low impedance
OUTPUL SIgNAl. INe 511884 OBCOUpIEs tne L. Dias voltage
from the output signal and provides a 2mA constant current
source which can also be factory adjusted between 2 to 18
mA  Rias indiratare disnlav the ronditinn of the cencnr and
cable. Amplifier gains of 1x, 10x and 100x are selectable from
a front panel switch. High-pass filter cutoff frequencies (-3dB)
0.006 and 0.03 Hz are also selectable by a switch on the front
panei.

Plug-in, low pass filters are available to limit the frequency
response of the ampﬁf‘er These Iow pass filters can be used

bo athamiata

TquInTy I
noise ratio. Bias voltage is monitored an p!

front panel-mounted LEDs. Bias voltage in the range of 2 to
21V is normal and results in a green "OK" LED indication.
Bias voltage below 2V or above 21V results in a red "LOW"
or "HIGH" indication. A "LOW" generally indicates a short
circuit in the cable or sensor while "HIGH" means an open
wirenit

The coupler warns of a low battery audibly, with an intermit-
tent chirping sound. Battery lifetime is about 12 hours at a
sensor current of 2mA. Coupler power can be provided from
three sources: four AA 1.5 volt batteries, AC-operated from a
power line adaptor, or regulated DC source between 6 and
ZSVDC A unlque Rapid Zero™ feature, alluws the coupler to
0e ready Tor taRing WMEASUTEMIETS tWo 3EL0NA3 aVleT powEr
ing. When changing gain or filter settings, the 5118B2 is
ready to use in two seconds.
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SIDEVIEW T
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¥
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I
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L_\J | p— 1
-— TAB e e -—H

SIDEVIEW

Application

The primary use for the 5118B2 is to provide excitation
power and signal tailoring for low impedance, voltage mode
plezoelectne pressure, force and acceleration sensors, 1ts small
size and rugged construction provides an excellent portable
measurement system both in the laboratory or in the field.
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000-331a-05.0. (K12.5118

PIEZOTRON Coupler, Type 5118

o Units 5118
INPUT: '
Sensor Supply Current
_ Signal Voltage
Gain S S
Bandwidth:
High Pass (swich slectable) | I
Frequency =3db [ Hz 0.03, 0.006
N =5db  (Hz  ]0.10,002
TimeConstant s [525
Low Pass (no filter: @+ 5Vout) | |
Gain 1x -3db_ kHz |>100
S 1 B
Gain10x  -3db
5%
Gainn i00x =3db
-5%

Nolse-(;vi-igul low pass-filter):
~

phihd

Gain100x
Output [mpedance max.
Voltage Swine max.
Connectors input/output
Connector power

Internal Battery (4 each)

Temperature Range Operaﬁm,g

(alkaline batteries)
Storage (w/o batteries)
External Violtage Source ™
wveignt
{13 Semsor cusrent can be set at factory for any cument in the range of 2 . 18 mA
(2) Dptional AC adapter avadable

1 g+ 9.80668 m/¥, 1 inch = 25 4 mm, 1 gram = 0.03527 oz, 1 fbf-in = 0,139 Nm

KISTLER

measure. anaiyze, innovate,

L

The 51 13%2 is a single unit piezoelectric sensor power supply
and signal conditioner housed in a extruded aluminum case,
It is primanly intended for laboratory bench top use. For per-
manent installations, the unit can be panel mounted using
optional adapters

Ordering Information

e
Sensor Power SupplyConditionar
1
D ) I Fakia
o Readout
1 2 3 4 {not supplied)

sp = specify cable lengh in meters

i = sensur iuw inpedance, voilage mode

2- 1761Bsp sensor cable, 10-32 pos. to BNC pos.
3 - 511882 power/supply coupler

4- 151150 outout cable. BNC pos. to BNC pos.

Optional Accessories

5752 power adaptor, 115 VAC, 60 Hz

5757 power adaptor, 230 VAC, 50 Hz, CE
certified

RITRA Iﬁw-lna!.r. filtar riit-nff franiancu: in Hz
(10, 20, 50, 100, 200, or 500)

5327A... low-pass filter, cut-off frequency; in kHz
{1, 2,5, 10, 20)

S324A... nigh-pass filter, cut-off frequency; In Hz
(1, 10, 100

5702 panel mounting kit

704-2068-001  nower cahle (6ff) with mating nlug to

pigtails

FURE L1 L

Kistler ln;humeﬂt Corporation reserves the nght to discontmue or d'wlg;
specifications, designs or materials without notice consistent with sound
engineering principles and quality practices.

© 2003, Kistler Instrument Corporation , 75 John Glenn l)r Amherst NY 14228
Tel 716-691-5100, Fax 716-691-5226, sales.us@kistler.com, www lastlercom

173




Appendix N: Data Acquisition Unit Electric Diagram
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Appendix O: Omega Data Acquisition Card Datasheet

EENEE

S L B

DAQP-ZOB 12 Bit AD & nm
PCMCIA Data Acquisition Adaptor

»* 12-bit Resolution

v 8 Single Ended or
4 Differential A/D
Channels, Expandable
to 128

» Two Analog Output
Channels

+ Four Digital VO Channels

+* 16-bit Timer/Counter with
Auto-Reload and
Readout Latch

+* 100 kHz Sampling Rate

» Bipolar Input Range of
+10 Volts, with Standard
Programmable Gain of
1,24and 8

» 1, 10, 100, 1000 High
Gain Option

v 2K Data FIFO

» Programmable Scan
FIFO with 2048 Entries
» Compatible with
SignalPro Series Signal
Conditioning Modules
v Drivers Suppfied for
Dasylab and LabVIEW
+»* DAQDRIVE and DaqEZ
Software Included

The DAQP-208 is a Type il PCMCIA
data acquisition card 4 differential
or 8 single ended 12- bit A/D input
channels (expandable to 128), with
a maximum sampling rate of 100
kHz, and programmable gains of
1,2,4, or 8, which provide %es of
ﬁ:ghzsv 25V, :ﬁ}f tcﬂ?me
ain option is also availal
roviging gains of 1, 10, 100 or
1000, for ranges of £0.01V, £0.1V,
+1 V, to 10 V The DACP-208 is
also equipped with two 12-bit D/A
ut channets. The outputs can be
ted individuallalwhen writing to
the wespmda%enjk port, or
sim a
synchronization signal comes. The
DAQP-208 has a 2 K data FIFO
which will significantly reduce CPU
overhead, and a scan FIFO of 2048
entries, each of which can be
specified with an input channel
and its associated gain. Ithas a
selectable scan speed of 10 ps to

40 ps per channel. Data acquisition
may be initiated tz a trigger signal

or by using the DAQP-208's
pre-trigger capability.

The DAQP-208 has a 24-bit auto-
reload pacer clock which generates
accurate sammrates from
0.006 Hzto 1 z using an
internal or extemnal clock source.
The pacer clock is actually a 24-bit
auto-reload frequency divider. It
contains a 24-bit divisor register,
a 24-bit counter, and interal clock
pre-scaler and a clock source
multiplexer. The DAQP-208 also
has a 16-bit imer/counter with an
auto-reload and readout latch which
E{o\ndes independent timing for the
A channels, and operates with
internal or extemal clock source
and gate controls.

The DAQP-208 includes OMEGA's

DAQDRIVE software driver and

E.'iaqiE:Za user !ni'tarw\gly data acquisition
tion software package.

All necessary software

is included to install and configure

the DAQP-208 for use with

Windows 95/98/NT/2000.

D1-31

Signal
Conditioning/Expansion
mnAop-zong Lo ible with

the SignalPro line of signal
conditioners. These signal
conditioners allow the DAQP-208
to read most process sensors and

rovides channel expansion up to

56 |nputs See the H section of the
hand book for wtaned information on
the SignalPro line.

Software 0S rt:
Windows 95}9&/3#‘%0
DAQDRIVE software drivers
support numerous Windows
rogramming | uaﬁ}es. including
Rlicrmft C%:ngBo and C/C++
and Visual Basic 5.0 or higher (32 bit
version). As partof the D IVE
@ckage drivers are also included

third-party softw:
M% and Lab wﬁ

For implementing a fully i

data acquisition system, OM

DaqEZ user friendly applmtmn
software package is included free,

and will in many cases be all that

is needed
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Appendix P: Microchip Pic16F72 Chip Diagram

MICROCHIP

PIC16F72

28-Pin, 8-Bit CMOS FLASH MCU with A/D Converter

Device Included:
+ PIC16FT72

High Performance RISC CPU:

Only 35 single word instructions to learn
All single cycle instructions except for program
branches, which are two-Cycle
Operating speed: DC - 20 MHz clock input

DC - 200 ns instruction cycle
2K x 14 words of Program Memory,
128 x 8 bytes of Data Memory (RAM)
Pinout compatible to PIC16C72/72A and
PIC16F872

Interrupt capability
Eight-level desp hardware stack
Direct, Indirect and Relative Addressing modes

.

.

Peripheral Features:

High Sink/Source Current: 25 mA

Timer0: 8-bit timer/counter with 8-bit prescaler
Timer1: 16-bit timer/ with pr

can be incrememed during SLEEP via external
crystaliclock

Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and posiscaler

Capture, Compare, PWM (CCP) module

- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit

8-bit, 5-channel analog-to-digital converter
Synchronous Serial Port (SSP) with

SPI™ (Master/Slave) and I°C™ (Slave)
Brown-out detection circuitry for

Brown-out Reset (BOR)

CMOS Technology:

* Low power, high speed CMOS FLASH technology
* Fuily static design
* Wide operaling voltage range: 2.0V to 5.5V
* Industrial temperature range
* Low power consumplion:
- <0.6 mA typical @ 3V, 4 MHz
- 20 pAtypical @ AV, 32 kHz
- <1 pA typical standby current

.

.

Pin Diagrams

PDIP, SOIC, SSOP

MCLR/VPe — [+ 1 28] =—e RBTIPGD
RADVAND =—= (]2 27[]=—= RBEIPGC
RA1ANT =—=[]3 26[] == RB5
RAZANZ =—= []4 25[]) == RB4

RAIANIVAEF =—e |5 o] |- AB3
RAMTOCK =—= (06 O F|=—s RBZ
RAS/AN4/SS = 7 1 = RB1
vss—e (8 7] [ +—e RBOVINT
9 )

B - RCH
== RCS/SD0
[1=—= RCA/SDUSDA

QFN

RA3/ANINVREF =
RAAITOCK| e
RASIANASS =
OSCH/CLK| ==
OSCCLKD == 55 .
RN
$853588
=

Special Microcontroller Features:

.

.

1,000 erase/write cycle FLASH program memory
typical

Power-on Reset (POR), Power-up Timer (PWRT)
and Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own on-chip

RC oscillator for reliable operation
Programmable code protection

Power saving SLEEP mode

Selectable osdillator oplions

In-Circuit Serial Programming™ (ICSP™) via 2 pins
Processor read access to program memory

@ 2002 Microchip Technology Inc,

DS539597B-page 1




Appendix Q: Microcontroller Unit Program

C:\MyProjectspichcibail.bas
'Modified June 27, 2005

'Set up port A for ADC

DEFINE ADC_BITS 8 ‘Set the number of bits in result.
DEFINE ADC_CLOCK 3 'Set Clock Source (3=RC in ADC}
DEFINE ADC_SAMPLEUS 50 'Set sampling time in microseconds
AD VAR BYTE '‘Define AD varible as byte
TRISA=255 'Set all PORTA to input

ADCON1=0 '"PORTA is analog

"Define Variables

AZ2DDUMY VAR WORD "Define ADC Dummy variable.

DEL1 VAR WORD 'Define delay time in msec from ignition trigger

DEL2Z VAR WORD 'Define delay time in msec from ignition trigger

butloop VAR byte 'Define start button parameter variable
Starter:Low 3 'Oscilloscope trigger low

Low 4 '"Relay 1 off Ignition Coil power control

Low 5 'Relay 2 off Solencid to inject cold air.

Low & '"Relay 3 off Solencid to inject hot air.
Potleoop:

ADCIN 0, AZDDUMY 'Read in the potentiometer 1 setting.

DEL1=(255-AZDDUMY) /4

ADCIN 1,A2DDUMY 'Read in the potentiometer 2 setting.

DEL2= (255-AZDDUMY) /4

Butten 0,0,255,1,butloocp, 1, Iglcop

Gote Potloop
Igleocp: ADCIN 3,A2DDUMY 'Loop until ignition is sensed.

IF AZDDUMY<127 THEN Igloop

High 4 'Open ignition coil and hold when start trigger received and after an
ignition.

Pause DEL1 "Time delay until air injection,

High 3 "Trigger Oscilloscope

High 5 "Inject Cold Air

Pause DELZ '"Time to hold open air injection solenoid.

Low 5 “lose Cold Air Injection soclenoid

Pause 2000

Goto Starter

END
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Appendix R: Sample Calculations Air-Fuel and Equivalence Ratios

Intake Temperature= 70 °F

Intake Temperature= 250 °F

Fuel Level (F.L)

Fuel Level (F.L)

[Parameters 05in | 1in | 15in 05in | 1in [ 15in
Actual Pressure (in Hg) 30.46 30.46 30.46 30.46 30.46 30.46
Reference Pressure (psi) 14.7 14.7 14.7 14.7 14.7 14.7
Actual Temperature (70 °F) 70 70 70 70 70 70
Reference Temperature (°F) 59 59 59 59 59 59
Density Gasoline at 70 °F (Kg/L) 0.75 0.75 0.75 0.75 0.75 0.75
Volume Gasoline (mL) 50 50 50 50 50 50
Time Recorded Gasoline (sec) 106.34 139.8 155.4| 145.67| 188.23 210.45
Density Air at 70 F (Kg/m”"3) 1.205 1.205 1.205 0.88 0.88 0.88
Air Flow Rate (SCFM) 7 7 7 7 7 7
Time Recorded Air (sec) 60 60 60 60 60 60
[Calculations

Actual Pressure (psi) 14.97 14.97 14.97 14.97 14.97 14.97
Air Flow Rate (CFM) 6.99 6.99 6.99 6.99 6.99 6.99
Mass of Gasoline (Kg) 0.0375 0.0375 0.0375| 0.0375[ 0.0375 0.0375
Mass Flow Rate of Gasoline (Kg/hr) 1.27 0.97 0.87 0.93 0.72 0.64
Mass of Air (Kg) 0.24 0.24 0.24 0.17 0.17 0.17
Mass Flow Rate of Air (Kg/hr) 14.33 14.33 14.33 10.47 10.47 10.47
Actual Air-Fuel Ratio (A/F) 11.29 14.84 16.50 11.29 14.59 16.32
Stoichiometric Air-Fuel Ratio (A/F) 14.70 14.70 14.70 14.70 14.70 14.70
Equivalence Ratio 1.30 0.99 0.89 1.30 1.01 0.90
CIBAI Air-Fuel Ratio 23 30 33 23 29 33
CIBAI Equivalence Ratio 0.65 0.50 0.45 0.65 0.50 0.45
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Appendix S: Sample Estimated In-Cylinder Bulk Temperature

Engine Operating Conditions

Cycle Duration (sec) 0.131
Crank Angle Rate (dtheta/dt) 5496.18
RPM 916.03
Crank Angle Differential (dtheta CA) 0.55
Sampling Rate (Hertz) 10000
Air Flow Rate (SCFM) 7
Intake Temperature (K) 294
Air Gas Constant (KJ/kg-K) 0.287
Barometric Pressure (in Hg) 30.14
Barometric Pressure (psia) 14.81
Exhaust Temperature (K) 588.56
Engine Specifications

Displacement Volume (cc) 612.5
Clearance Volume (cc) 111.36
Plumbing Volume (cc) 3.00
Compression Ratio (C.R) 6.5
Adjusted Compression Ratio (C.R) 6.36
Stroke (in) 4.5
Crank Offset (in) 2.25
Bore (in) 3.25
Calculation Volumetric Efficiency

Displacement Volume (in3) 37.33
Total Volume (in"3) 44.31
Actual Volume Clearance (in"3) 6.98
Cylinder Mass Before Injection (Kg) 0.00052
Volumetric Efficiency 70.7%
Calculation Rate of Injection (dm/dt)

Air Heater Volume (cc) 33
Injector Ball Valve Check Cracking Pressure (psi) 514.7
Air Heater Pressure Before Injection (psi) 814.7
Average Pressure (pa) 4582974
Mass Heater Before Injection (kg) 0.0011
Mass Heater Left After Injection (kg) 0.0007
Mass Injected (kg) 0.0004
Delta t Injected (sec) 0.012
A* (sq. m) 0.00000441
D* (mm) 2.37
dm/dt (kg/s) 3.367E-06
Estimated In-Cylinder Temperature

Start Injection (CA) 340.45
Selected Crank Angle (CA) 400.95
Pressure at CA (Psia) 342.47
Volume at CA (in"3) 12.45
Mass Injected (Kg) 3.703E-04
Cylinder Mass After Injection at CA (Kg) 0.0009
Estimated In-Cylinder Temperature (K) 1866.9
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