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Atomic force microscopy (AFM) was employed to investigate the surface 
roughness of 5.0 nm thick Co films as a function of the annealing temperature.  Films 
were epitaxially grown on (110) sapphire via molecular beam epitaxy (MBE) and 
magnetron sputtering. Images were acquired in-situ at temperatures ranging between 
room temperature and 600 °C. Surface roughening starts at 425 °C and increases 
depending on the final annealing temperature and time. The films did not show a 
reversal of the roughening process upon sample cooling.  Also a sub-monolayer film of 
Co was grown on Al2O3 (0001) via MBE at room temperature. The film annealed at 
400 ºC revealed the formation of dots with an average diameter of 17.6 nm and a height 
of 0.3 nm.  Dots showed a superparamagnetic behavior with a blocking temperature of 
130 K and an enhancement of the atomic magnetic moment over the bulk of 
approximately 9%. 
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1. Introduction 

 

The creation and manipulation of magnetic structures with dimensions on the order of 

nanometers is very important from the technological point of view.  The information 

storage media industry needs such structures in order to create new devices capable of 

recording a higher density of information in order to stay competitive.  From a 

fundamental point of view, magnetic nanostructures are extremely interesting because 

quantum effects are enhanced and, furthermore, new magnetic structures can form 

because of the large importance of surface effects. Recently it has been possible to 

artificially reduce the size of magnetic films (two dimensions) down to one and zero 

dimensions (in nanowires and nanodots, respectively), hence providing the opportunity of 

observing new physical properties and quantum effects that cannot be noticed in bulk 

materials.  Usually small magnetic particles behave like single domains particles, leading 

to a superparamagnetic behavior.1  In the superparamagnetic state, the particles behave 

ferromagnetically below some transition temperature, known as the blocking 

temperature, and paramagnetically above it.  Another interesting phenomena in magnetic 

ultra-thin films is the enhancement of the magnetic moment per atom.  This behavior 

results from an increase in the spin and orbital moments of the atoms located at surfaces.2 

 
Cobalt is a ferromagnetic transition 

metal with a curie temperature of 1388 K and 

it undergoes a martensitic transition from the 

hcp to fcc structure at a temperature of 415 

ºC.3  Cobalt thin films have been extensively 

studied in different substrates.  In sapphire 

(110) it is well known that crystallinity and 

surface smoothness of cobalt films grown 

using sputtering reach their maximum at 300 

ºC.4  In recent years cobalt films deposited on 

sapphire have been examined using atomic 

Figure 1 

 
Figure 1 AFM image at room temperature 

of Cobalt over Al2O3 (110) annealed at 550 
oC.  Image size is 5×5 µm2. 
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force microscopy (AFM).  In one particular experiment performed by our group, it was 

found that thin Co films (thickness t < 20 nm) grown via sputtering undergo a sudden 

reentrant smoothening at 500 ºC that coincides with a recrystallization of the lattice from 

a fcc (111) orientation to a fcc (001) orientation.5,6  Also, the films showed the formation 

of rectangular pits with sides as small as 100nm when coinciding with the smoothening 

transition, as shown in Figure 1.  Higher annealing temperatures increase the roughness 

once again.  The physical origins of the pit formation and the smoothening transition are 

not well understood.  For this reason, the study of this process requires controlled 

experiments where we are able to grow the sample in an ultraclean environment and to 

observe the surface of our samples with spatial resolution of nanometers at high 

temperatures.  

 
In the present work, we grew cobalt over sapphire (110) in ultra high vacuum 

(UHV) using molecular beam epitaxy (MBE) to study the roughness transition.  The 

thickness of the samples ranged from 2 nm to 8 nm.  The morphology of the samples was 

analyzed using a non-contact atomic force microscope (NC-AFM) with the capability of 

imaging the surface at temperatures above room temperature.  In another experiment, we 

evaporated a sub-monolayer film of Cobalt on faceted Al2O3 (0001) using MBE.  We 

studied the magnetic properties of ultra-thin film of cobalt and its suitability to form 

structures with sizes at the nanometer scale.  We demonstrated that magnetic dots 

spontaneously form upon annealing single-monolayer Co films deposited at room 

temperature.   

1.1. Techniques for creating magnetic nanostructures 

 

Different techniques have been employed to produce magnetic nanostructures.  Using 

electron-beam lithography it is possible to obtain patterns in the nanometer scale and 

using scanning probe microscopy it has been feasible to go even further down to atomic 

scale features.7  Unfortunately these techniques produce patterns in small areas only and 

the time required to generate them is extremely long.  Alternative procedures consist of 

creating self-organized surfaces and then depositing magnetic materials on top of these 

surfaces.  In this case, the organization of the particles is determined by the structure of 
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the template under the right conditions8.  The first attempts at creating such structures 

were made using porous alumina templates, created by anodizing aluminum in acidic 

electrolytes.9  This produces cylindrical pores with diameters of 4 nm to 200 nm.  Fe, Ni 

and Co nanowires have been prepared inside these pores using electrochemical 

plating,10,11 which produces nanostructures with well controlled diameters.  Applying the 

same idea, other groups have used polycarbonate membrane pores to produce cobalt 

nanowires12, but the pore diameter obtained with this method is approximately 200 nm, 

much larger than the structures produced with porous alumina.  Other techniques include 

using Argon ion sputtering for milling the surface of thin films, for example to fabricate 

nanowires of Co deposited on Cu(001).13 

Another approach is to exploit the 

surface morphology of substrates prepared at 

high temperature. Fe nanostrips were 

prepared on stepped W (110) substrates14 (see 

Figure 2), and another group has fabricated 

Fe nano-stripes on highly faceted Al2O3 (100) 

by evaporating the metal at an angle of 5º 

with respect to the surface of the substrate.8  

 

In this work, we explored the 

possibility of preparing cobalt nanostructures 

on faceted Al2O3(001). Sapphire is an excellent substrate because, as an oxide, it is not 

sensitive to contamination, and is highly inert.  Sapphire has the corundum crystal 

structure shown in Figure 4.  The unit cell is composed of 18 layers, 6 layers of O atoms 

and 12 layers of Al atoms.  The c axis unit cell is 1.30 nm long.15 

 

 

Figure 2 Fe nanowires on top of W(110).  

Image from Ref. 14.   
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When Al2O3 is heated to above 1200˚C in air, 

the surface reconstructs creating long terraces 

~100 nm wide. The height of the terraces 

depends on the annealing temperature and 

orientation of the sapphire.  For sapphire 

(0001), the size of the monosteps are c/6 that 

correspond to 0.216 nm16,17.  This has been 

verified in our lab as shown in Figure 3.  If the 

temperature is higher than 1200˚C, the terraces 

increase in size and the monosteps coalesce 

with each other creating double or triple steps.  

It has also been found that the terraces do not 

correspond to any low crystallographic index 

direction of the sapphire lattice18.  A further 

advantage of using Al2O3 is that once the 

surface is annealed, it can be stored in air for 

several weeks without reacting chemically 

and maintaining the surface morphology.  

 
Once a clean and well-faceted surface 

is achieved,i the idea is to evaporate the 

equivalent of one monolayer or less of cobalt 

on the substrate.  As the atoms are randomly 

distributed, it is necessary to give some 

thermal energy to the particles in order to 

move them toward the step edges where they 

can find more lateral bonds, and hence more 

energetically-stable positions, creating the 

nanostripes along the step edges19 (see Figure 

5). This method is called step-flow growth and in principle the stripe width can be 

                                                           
i The process for obtaining clean and faceted surfaces on sapphire is given in Section 2. 

 

Figure 3 AFM image of the surface of 

sapphire (0001) after annealing in air at 

1400˚C for 1 hour. The bottom graph 

indicates the profile along the blue arrow on 

the image. 

 

Figure 4 Corundum structure.  The c-axis 

unit cell is 1.3 nm. 
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controlled by the coverage of the evaporated material, and the wire spacing determined 

by the miscut angle of the substrate or the terrace width of the template. 
 

1.2. Magnetic properties of cobalt ultra-thin films and nano-structures 

 

Ultra-thin magnetic films (thickness < 1nm) grown on oxide substrates have been 

investigated in limited cases only. Shiratsuchi et al.20 have studied ultra-thin films of Fe 

on Al2O3 (0001), reporting a superparamagnetic behavior of  the samples.   

 

Since cobalt is a ferromagnetic material, it is useful to present a general description of 

the ferromagnetism of bulk cobalt and then explain how those properties are changed in 

ultra-thin films.  The free energy of a ferromagnetic material in a magnetic field can be 

described as the contribution of various terms21: 

 

    (1) 

 

where FH is the magnetization energy of the material when a magnetic field H is applied, 

and can be expressed as: 

 

            (2) 

 

 

Figure 5 Step-flow growth.  Ideally the atoms would move to the step edges (right picture) after 

annealing the sample. 

EKDHT FFFFF +++=

∫ ⋅−= dVFH HM
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FD is the self-energy of the magnetization in its own magnetostatic field, Hs is the field of 

the surface that can be write down as: 

 

 

    (3) 

 

where Hs = -DM and D is the demagnetization coefficient.  

 

FK is the crystalline anisotropy of the material. For cobalt with hexagonal 

structure it is known that its easy axis lies along the c-axis. For an angle θ between the 

magnetization direction and the easy axis, the anisotropy energy can be described by the 

equation: 

 (4) 

 

 

K1 and K2 are the anisotropy constants. For cobalt the anisotropy constants are K1 = 

4.1×106 ergs/cm3 and K2 = 1.0×106 ergs/cm3. Finally the term FE is exchange interaction, 

responsible of the Weiss molecular field that explains the ferromagnetism, which can be 

expressed as: 

 

,        (5) 

 

Jij is the exchange interaction and Si and Sj are localized spins in the lattice. The 

interaction exchange Jij > 0 for ferromagnets and Jij < 0 for antiferromagnets. 

∫ ⋅−= dVFD sHM
2
1

θθ 4'
2

2'
1 sinsin KKFK +=

∑ ⋅−=
ij

jiijE JF SS
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[ ] [ ]( )22 sincos
2
1 αα MDMDF baD +=

It is well known that the demagnetization energy FD is minimized if the 

ferromagnetic material is composed of magnetic domains.21 In large samples, FD 

dominates over FE because FE acts primarily over nearest neighbors and FD, being a 

dipole interaction, decays much more slowly.  Generally magnetic domains are arranged 

in a random fashion and the net magnetization of the material might be zero.  If an 

external magnetic field is applied to the ferromagnet, the magnetization of each domain 

will tend to align in the direction of the field. When all the domains are aligned in the 

same direction we talk about the saturation of the material. Sometimes we can find 

materials behaving as single domains, this happens for example when a specimen was 

magnetized to saturation or when the material is composed of very small particles. Let us 

consider a cobalt single-domain ellipsoidal particle with the c-axis parallel to the mayor 

semi-axis as in Figure 6: 
 

We can calculate the energy of demagnetization per volume unit for the single domain 

ellipsoidal particle using equation (3): 

 

(6) 

 

Da and Db are the demagnetization coefficients along the a and b axis and M is the 

magnetization for the particle. After some algebra we obtain: 

 

 

 

 

 

 

 

 

Figure 6 Single domain ellipsoidal particle 

magnetized at an angle α with respect to the 

easy axis (c-axis for Cobalt). 
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α2sinVKF effT =

α222 sin)(
2
1

2
1

abaD DDMDMF −+=
(7) 

 

 

Therefore comparing eqs. (4) and (7) we can say that the energy of the particle of volume 

V having an angular dependence with α is21: 

 

     (8) 

 

where V is the volume of the particle and Keff = M2(Db - Da) for the demagnetization 

factor energy or Keff = 2K1 for the crystalline anysotropy. The energy will be a minimum 

for α = 0 or 180 degrees. Also the magnetization will remain stable along these directions 

unless energy is given to the system to overcome the potential barrier equal to Keff V for α 

= π/2. This might happen if the particle volume decreases or by increasing the 

temperature of the sample.  Under these conditions, the magnetization of the particles 

might switch spontaneously.  The critical temperature for this spontaneous switching of 

magnetization is called the blocking temperature (TB). Below TB, the particles behave 

ferromagnetically and above the temperature they behave as paramagnets.  If there are 

interactions between the particles, each particle acts as a single spin (composed of the 

total moment of all the magnetic atoms that make up each nanoparticle), and the entire 

system behaves as a paramagnet.  Particles that show this kind of behavior are called 

superparamagnetic. 

 

In a submonolayer thin film of cobalt, the formation of ferromagnetic islands is 

expected because not all the substrate surface is covered with cobalt atoms. Also in 

thicker films of cobalt on sapphire, the formation of islands is possible if the film is 

deposited on the substrate at a temperature higher than 300 °C.4 Those islands might 

behave as single domain particles if they are smaller than some critical size. This size can 

be calculated equating the energy of a single domain particle with the energy of a particle 

with two domains separated by a Bloch wall. The energy of the wall is obtained 

evaluating the exchange interaction of all pairs of spins in the transition region between 

the two domains given by the following equation21: 
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A
a
KJSF ex

wall ×⎟
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1

12π
 

(9) 

 

where S is the spin of the atoms, Jex is the exchange energy, K1 is the anysotropy 

constant, a is the lattice parameter and A the area separating both domains. The energy of 

the single domain particle can be calculated as the square of the saturation magnetization 

times the volume of the particle. For a spherical particle of cobalt with S = 0.86, a = 

0.3528 nm, Jex = 1.8×10-14 erg34, K1 = 4.1×106 erg/cm3 and Ms = 1400 Oe, the critical 

diameter of the particle is approximately 60 nm.  

 

The size of a particle in a superparamagnetic state can be estimated from experimental 

data by measuring magnetization vs. magnetic field above TB.  As discussed above, for T 

> TB the particles behave as a collective paramagnet.  Therefore, the magnetization as a 

function of magnetic field behaves like that of a paramagnetic material according to21: 

 

                             (10) 

  

M0 is the saturation of the magnetization for the paramagnetic particle given by: 

 

             (11) 

 

N is the number of paramagnetic atoms, g is the gyromagnetic ratio, J is the total angular 

momentum and B(y) is the Brillouin function: 

 

         (12) 

 

 

(13) 
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where µB is the Bohr magneton, µP the average magnetic moment per particle, H the 

magnetic field applied to the sample, k the Boltzmann constant, T the temperature of the 

particle and y the competition between the magnetic energy and the thermal energy in the 

material. If all orientations of the magnetic moments are allowed, this is equivalent to J→ 

∞, the Brillouin function becomes the Langevin function L(y) so that: 

 

           (14) 

 

By fitting the magnetization curves versus magnetic field to the Langevin function, and 

using the average magnetic moment per particle µP as a parameter,22 it is possible to 

determine the number of Bohr magnetons contained in each nanoparticle. 

2. Experimental Procedure 

2.1. Cleaning Sapphire 

 

Obtaining a clean substrate surface is essential for performing controlled growth 

experiments.  There are 2 methods for cleaning sapphire: surface etching using a mixture 

of acids and an anneal in air above 1100 ˚C. We used the first method to measure 

roughening as a function of temperature and the second one for the nanostructure 

experiments.  
 

The recipe for the wet etching is the following:23 

 

1. Degrease the sample using acetone, methanol, and deionized water.   

2. Make a solution of sulfuric acid and phosphoric acid 3:1 (H2SO4 : H3PO4) 

3. Heat up the mixture up to 160 ˚C 

4. Put the sapphire into the mixture for 10 minutes. 

5. Cool down the sapphire and rinse it in deionized water. 

 

The method of annealing only is much easier in principle.  The sapphire substrate is 

first degreased and then placed in an oven for annealing in air.  The substrates were 

)(1coth)( yL
y

yyB
J
J =−=

∞→
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annealed at 1400 ˚C for 1 hour inside an alumina tube and post annealed in UHV at 500 

˚C using a heating rate of 100 ˚C per hour.  During this process the pressure on the 

chamber was kept under 5 x 10-9 Torr using a titanium sublimation pump (TSP) in order 

to avoid contamination of the sapphire surface. 

2.2. Mounting of the Sample 

 

The substrates were mounted on an Omicron indirect heating plate, which allowed 

us to simultaneously scan the sample using a non-contact atomic force microscope (NC-

AFM) while increasing the temperature of the sapphire in UHV.  A current passing 

through a PBN (pyrolytic boron nitride) plate, placed approximately 3 mm behind the 

sample, allowed us to heat up the substrate indirectly.  

2.3. Cobalt Thin Film Growth 

 

The samples were grown in UHV with a base pressure of 2×10-9 Torr using a 

molecular beam epitaxy (MBE) system.  The e-beam source (MDC e-vap 4000) has a 

filament that generates a beam of electrons.  These electrons are focused on the source 

material target using a magnetic field.  It is necessary to sweep the beam around the 

material in order to heat up the target homogeneously.  We used a circular sweeping 

pattern for cobalt.  The evaporated material is then deposited on our substrate, which is 

rotating during growth to assure a uniform film.  We used different substrate 

temperatures during growth.  For thick cobalt samples we used a temperature of 315 ˚C 

because it is well known that at such growth temperatures the films are smoother.4 The 

thin cobalt samples used on nanostructures were grown at room temperature so as not to 

introduce any change in the surface before simultaneously annealing and imaging.  The 

growth rate and the thickness of the films were measured using a calibrated quartz crystal 

monitor.  The thickness of our samples ranged between 30 Å to 50 Å for the roughness 

studies, and was 2 Å (less than one monolayer) for the nanostructure experiments.  Once 

the samples are grown, they are transferred in vacuum to a distribution chamber and then 

to the AFM chamber, as shown in Figure 7. After the analysis, the samples are transferred 
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back to the MBE chamber to cover them with 20 Å of aluminum in order to avoid 

oxidation when exposed to air. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Configuration of the chambers for the experiments. 
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2.4. Non Contact Atomic Force Microscopy NC-AFM 

 

Atomic force microscopy has been 

used extensively since its 

development in the 90’s, but only 

recently it has been possible to obtain 

atomic resolution on Si (7*7)24 and 

insulators like sapphire.25  This result 

is important because in principle we 

could study insulators with atomic 

resolution, something that cannot be 

done with STM.  The sensor used in 

our AFM is called a needle sensor; 

which consists of a silicon cantilever 

glued to a quartz resonator with a 

resonance frequency of approximately 

1 MHz, as shown in Figure 8. When this tip is placed near the surface of a sample the 

sensor undergoes a change in its amplitude of oscillation26 and a phase shift.  This last 

parameter gives the highest sensitivity for force microscopy27.  By scanning the sample 

tip on the surface of our sample, the tip undergoes different phase shifts depending on 

how close or how far it is from the sample.  Making this phase shift constant, by 

adjusting the distance from the surface using feedback, causes the tip to move up and 

down during the scanning process.  Recording of the movement of the tip in three 

dimensions allows the AFM to image the surface of the sample. 

 

 

 

 

 

 

 

 

 

Figure 8 Scanning electron microscope image of the 

needle sensor tip.  The apex radius of the tip is < 30 

nm. 
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2.5. Temperature Calibration 

The measurement of the temperature during scanning is not simple because the 

Omicron microscope does not have a thermocouple near the sample in order to avoid 

vibrations that could affect the quality of the images.  In order to estimate the 

temperature, Omicron included a calibration of the sample temperature as a function of 

the power applied to the PBN plate.  However, during the experiments, we realized that 

we could use the resonance frequency of the needle sensor as an indicator of the 

temperature on the sample.  Figure 9 shows the resonance frequency of the sensor as a 

function of temperature for three different experiments using the same needle tip.  At 

temperatures below 300 °C, the frequency is quite constant, but as the temperature 

increases, the resonance frequency decreases.  At 600 °C the resonance frequency drops 

drastically and it is impossible to obtain a reliable image above that temperature.  This 

might be caused by a change of stiffness in the needle sensor; above 300 °C the quartz 

becomes softer and therefore the resonance frequency decreases.  This result is very 

important because there is no information about the behavior of the needle sensor as a 

function of the temperature in the literature and also because we can estimate the 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Resonance frequency of the needle sensor as a function of the 

annealing temperature of the sample for 3 different experiments. 
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temperature very precisely above 300 °C where morphology changes start to happen in 

cobalt films.  It also allowed us to determine when the sample had reached thermal 

equilibrium by monitoring when the frequency stopped changing.  It is important to note 

that although the normalized frequency change is very reproducible, the starting 

frequency value did vary less than 1% from run to run.  This means that slight 

irreversible changes in the tip occurred during each heating cycle.   

2.6. Annealing of Samples 

 

Once the cobalt is grown on the MBE chamber, the sample was transferred to the 

SPM in order to imaging the surface during annealing.  As the images were acquired at 

high temperature, some care needed to be taken with the needle sensor tip.  First, after the 

temperature was increased, the needle had to be at an imaging distance from the sample 

at all times, otherwise it would not reach thermal equilibrium and the images were noisy.  

Also, one had to wait one hour before scanning the surface after increasing the 

temperature, otherwise a lack of thermal equilibrium could produce a crash of the tip.  

Finally, the images had to be corrected for thermal drift in the piezos.  The AFM can be 

programmed to automatically shift the tip in the XY axes in a constant rate.  This was 

carried out entering the (X1, Y1) and (X2, Y2) position for the same pattern in 2 different 

images; with that information, the program computes the drift it must compensate for by 

moving the tip in order to track the same feature along different images. 

 

The annealing procedure is the following:  

 

1. Increase the temperature in steps of 50 °C. 

2. At each temperature take an image trying to track the same features if possible. 

3. Increase the temperature taking images up to 600 °C. 

4. Decrease the temperature down to room temperature following the same 

procedure. 
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For the 2 Å cobalt film, we annealed the sample up to 400 °C (below the temperature 

at which the roughening transition happens), heating at a rate of 100 °C per hour. 

 

2.7. Magnetic Measurements with the Superconducting Quantum Interference 

Device (SQUID) 

 

The SQUID is the heart of the Quantum 

Design Magnetic Properties 

Measurement System (MPMS) that 

allows us to measure the magnetization 

of a sample with high accuracy.  The 

system works as follows: a sample is 

placed at the center of a 

superconducting coil that produces a 

magnetic field and induces a 

magnetization in our sample. The 

sample already magnetized is moved up 

and down inside a superconducting pick up coil. The induced current in the coil is 

proportional to the magnetization of the sample. The pick up coil configuration is built as 

a second derivative array, which helps to eliminate uniform drifts from the 

superconducting magnet and other external magnetic field contributions, such as the 

Earth’s magnetic field.  The signal from the pick up coil is then inductively coupled to 

the SQUID detector through a signal coil attached to a superconducting rf isolation 

transformer.  The SQUID is based on the Josephson effect theoretically proposed in 1962 

by Josephson28 and experimentally detected in 1963 by Anderson and Rowell.29  The 

Josephson effect can be observed by placing an insulator in between of two 

superconductors as in Figure 10.  In the absence of any external voltage, a current flows 

across the insulator; this phenomenon is called the DC Josephson effect.  If a DC voltage 

is applied between the junction, then an oscillating current will flow across the insulator 

given by the equation:30 

 

 

 

 

 

 

Figure 10 Josephson junction. An insulator is 

placed in between of two superconductor 

materials. 
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where Jo is the maximum value of the current related with the thickness of the insulators, 

δo is the phase difference of the currents at both sides of the insulators and V is the 

voltage across the junction. 

 

This result is called AC Josephson effect.  The MPMS works with the AC Josephson 

effect, using a single junction into a closed loop supercontuctor coil.31  The SQUID is 

biased with a RF signal in order to overcome the zero voltage region of the Josephson 

junction as shown in Figure 11.  When a magnetic flux crosses the loop, an induced 

sinusoidal voltage is generated that is periodic in Φ0 the quantum flux (Φ0 = 2.03x10-15 

Wb).  However, the SQUID can detect a variation in flux δΦ much smaller than Φ0 using 

a flux-lock system.  A feedback circuit can measure a variation in the magnetic flux δΦ 

and it generates a flux –δΦ in order to keep the total flux of the SQUID constant.  This 

 

 

Figure 11 MPMS SQUID detector diagram.  The pick up coil is 

inductively coupled with the SQUID detector through the isolation 

transformer and the signal coil (from Quantum Design MPMS Hardware 

manual).  



 18

feedback signal has the information of the flux variation in the superconductor loop and 

therefore it allows the MPMS to compute the magnetization of the sample. 

 

Two types of measurements were carried out: magnetization versus temperature 

(M-T) and magnetization versus magnetic field (M-H), both of them with the magnetic 

field applied in the plane of the sample.  Because of the small signal from the cobalt ultra 

thin film, separate measurements of the mounting straw and substrate were necessary in 

order to subtract the background.  The general procedure for all the measurements was as 

follows: 

 

The sample was centered on the pick up coils in order to obtain the maximum signal 

from it.  We used two methods for centering: DC and RSO (Reciprocal Sample Option). 

For both methods an external magnetic field of 5 Tesla was applied to the sample in order 

to magnetize it.  For the DC method, the sample was moved in one direction to locate 

roughly its center with respect of the coils.  The RSO gives a more accurate measure of 

the center; where the sample is oscillated abound the center found with the DC scan at a 

fixed frequency, so that signal averaging is much more effective.  This signal is processed 

with an algorithm in order to measure the magnetic response.  The amplitude as well as 

the frequency of the oscillation in the RSO mode can be changed in order to maximize 

the signal and decrease the noise.  Before the start of the experiment, the sample was 

demagnetized.  This was carried out by alternating positive and negative magnetic fields 

to the sample at 350 K from 5000 Oe and decreasing the field intensity to zero.  Then the 

sample was zero–field cooled (ZFC) from 350 K to 2 K.  M-T measurements were carried 

out between 2 K and 350 K in a field of 1000 Oe.  Finally, the sample was field-cooled 

(FC) from 350 K to 2 K in a field of 1000 Oe.  M-T measurements were recorded during 

the process.  The sample was then heated to 300 K and M-H measurements were 

performed using a maximum magnetic field of +/- 7 Tesla. 

3. Results and Discussion 

3.1. Roughening of Cobalt Thin Films 
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Several experiments were carried out to measure the roughness of cobalt films whose 

thickness ranged between 3.0 nm and 8.0 nm, all of them deposited on of Al2O3 ( 0211 ).  

 

Here the results for one of the experiments with a cobalt film 5.0 nm thick are 

described.  Figure 12 shows an AFM image of the substrate surface after the wet etching 

procedure.  The surface depicts terraces with average widths of ~ 120 nm and heights of 

0.2 nm.  No multiple monoatomic steps are observed in the image because no annealing 

was performed to the substrate as observed previously.32 The out-of-plane roughness was 

measured to be ~ 0.10 nm; these parameters are a good indicator of a relatively clean 

surface.  After this, 5.0 nm of cobalt were deposited on top of the sapphire at a 

temperature of 300 oC.  AFM images of the film after growth are shown in Figure 13.  

Each image was obtained by heating the sample in-situ on the AFM sample stage.  For 

temperatures below 410 ˚C, the film is very smooth with a roughness of ~ 0.7 nm.  Above 

410 ˚C there is a sudden formation of islands.  At Ta = 504 ˚C, we can see that the 

diameter of the islands increases as a result of coalescence, which produces an increase in 

the roughness of the film to 6.8 nm.  

 

 

 

 

 

 

 

 

 

 

Figure 12 Wet etched sapphire ( 0211 ) before 

deposition of cobalt. Image size is 1 µm × 1 µm.  
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We did not observe the formation of rectangular pits as reported by Shi and 

Lederman5 in this film nor in thinner or thicker ones (3.0 nm < t < 8.0 nm) where similar 

experiments were carried out.  Therefore the mechanism for that pattern formation 

remains elusive. 

 

 

It is important to notice that the thermal equilibrium of the films was confirmed 

by a constant value of the resonance frequency for the needle sensor.  In another 

experiment a 5.0 nm cobalt thin film was annealed at 600 ºC and then cooled to room 

temperature to observe if there were any reversible processes in the roughening.  In the 

graph of Figure 14 the roughness as a function of the annealing temperature (TA) for that 

 

 

 

 

 

 

 

 

(a) T = 34 ˚C                              (b) T = 201 ˚C                          (c) T = 410 ˚C 

 

 

 

 

 

 

 

 

 

(d) T = 462 ˚C                           (e) T = 482 ˚C                            (f) T = 504 ˚C 

Figure 13 In-situ AFM images of cobalt (5.0 nm) grown on Al2O3 (110) at different annealing 

temperatures.  The color scale depicts the height of the islands in an axis perpendicular to the surface 

of the sample.  The size of the images is 1 µm × 1 µm. 
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experiment is shown.  The roughening of the film starts at approximately 425 ºC and 

continues to increase up to 5.5 nm at 600 ºC.  After that point, the sample was cooled 

down.   The roughness clearly continued increasing, despite decreasing the temperature.  

This gave us a clue that time might be an important variable in these types of 

experiments.  This effect can be appreciated in Figure 15 where the roughness is plotted 

for three different 5.0 nm cobalt films, where different heating rates were used to reach 

TA.  For TA = 475 ˚C (black squares) we observed a roughness of 1.21 nm for a rate of 

0.38 ˚C/min, and a roughness of 4.74 nm for a rate of 0.17 ˚C/min.  This means that for 

slower annealing rates the sample tends to be rougher than for faster annealing processes.  

The same behavior is observed at higher annealing temperatures of 500 ˚C and 525 ˚C.  

We believe keeping a sample at a higher temperature causes the cobalt atoms to have a 

longer time to diffuse over the sapphire, and perhaps over the cobalt islands themselves, 

in order to form larger islands. For this reason, it is extremely difficult to make 

comparisons of absolute values of roughening in films with the same thickness, and 

furthermore to establish comparisons between films with different thicknesses.  This is 

also problematic because time is a variable difficult to control when using large lateral 

scale AFM imaging, since in general the scan rates have to be slow for larger image sizes.  

Moreover imaging at high temperatures is difficult because occasionally the film 

morphology changes faster than the time it takes to scan a whole image.  
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Figure 14 Roughening of a cobalt film (5.0 nm) on sapphire 

(110).  The circles represent the roughness during heating 

and the dots during cooling.  

 

 

 

 

 

 

 

 

 

Figure 15 Roughness as a function of annealing rate for 3 

different 5.0 nm thick Co film samples with different heating 

rates used to reach the annealing temperature TA. 
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3.2. Cobalt ultra-thin film 

In-situ AFM images of the sapphire before and immediately after Co film growth, and 

after annealing were obtained.  All images were obtained in ultra high vacuum and they 

are not filtered unless otherwise noted.  A clean Al2O3 (001) surface can be observed in 

Figure 16.  Mono-atomic steps are well defined as a consequence of the annealing at 

1400 ˚C in air.  The RMS roughness along the axis perpendicular to the surface is ~0.12 

nm, and the atomic steps were measured to be approximately 0.2 nm, in agreement with 

the interatomic distance of the substrate along the (001) direction.16 Figure 17 shows the 

AFM image of sapphire after growing 0.2 nm of Co at room temperature.  The atomic 

steps of the substrate can still be observed in the image, which indicates that there is an 

ultra-thin film on top of the substrate.  The surface roughness increased to 0.21 nm.  

Figure 18 is an AFM image of the film after annealing at 400 ºC on the AFM sample 

plate.  It is possible to observe the formation of nanodots with an average diameter of 

17.6 ± 4.7 nm and an average height of 0.39 ± 0.15 nm.  The histogram in Figure 19 

reveals a wide distribution of diameters. It is not clear why the formation of nanodots was 

preferred to the formation of nanowires along the Al2O3 step-edges, as was previously  

 

 

 

 

 

 

 

 

 

 

 

Figure 16 AFM image of Al2O3 (0001) after 

annealing at 1400 ˚C × 1 hour in air.  The 

image size is 2µm × 2µm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 AFM image of  sapphire after 

growing 0.2 nm of cobalt at room temperature.  

Image size 2 µm × 2 µm. 
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Figure 18 AFM image of 0.2 nm of Cobalt over sapphire (001) after annealing in 

ultra high vacuum at 400 ˚C.  The image shows the formation of nanodots with an 

average diameter of 17.7 nm.  The image size is 2 µm × 2 µm. 

 

 

 

 

 

 

 

 

 

Figure 19 Histogram of the diameter of the 

nanodots obtained from the image in figure 

20. Statistics are based on measurement of 50 

nanodots. 

 

 

 

 

 

 

 

 

 

Figure 20 AFM image of cobalt nanodots. 

The image corresponds to the squared 

region of Figure 18.  Image size: 500 nm × 

500 nm.  Image is slightly filtered. 
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achieved in14 stepped W(110). Fe nanostripes were obtained in W(110) annealing the 

samples at 800 K. In our case it is possible that the thermal energy of the cobalt atoms 

was not high enough to make them to diffuse towards the step edges of the sapphire.  

Future experiments using higher annealing temperatures are planned to test this 

hypothesis. 

3.2.1.  Magnetic Properties of Ultra-Thin film 

 

The results for the magnetization of the ultra-thin film, after annealing, as a 

function of temperature with an external magnetic field applied parallel to the sample 

surface, are shown in Figure 21.  The hysteresis in temperature between the zero-field-

cooled (ZFC) curve and the field-cooled (FC) measurements is evidence of 

superparamagnetic behavior of the nanoparticles.  In theory, the ZFC curve should peak 

at the blocking temperature of the nano-particles ~ 130 K.  The broad ZFC curve is 

explained by the wide distribution in particle sizes.22 Previous experiments33 carried out 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Magnetization versus temperature for the cobalt 

ultra-thin film. The black dots represent the magnetization for 

the field cooled sample and in white dots the magnetization for 

zero field cooled. The measurement field was 1000 Oe. 
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on multilayers of Co/Al2O3 with tCo = 0.1, 0.3 and 0.7 nm, obtained with sequential 

sputtering of Co and Al2O3, also have shown superparamagnetic behavior of the films 

with a blocking temperature of ~ 7 K for an average diameter of particles equal to 1.4 nm.  

Our larger TB can be explained with the relaxation time21 

 

          (16) 

 

where τ is the average time for switching the magnetization of a nanoparticle with an 

anisotropy energy density Keff and a volume V.  The thermal switching of the 

magnetization occurs at the blocking temperature when τ (~ 10-10 to 10-13 sec. for 

temperatures above TB) is equal to the experimental time ~ 150 sec.  Notice that the 

magnitude of TB depends on the volume of the nanoparticles.  For larger nanoparticle 

volume a larger blocking temperature is expected.  In our case TB = 130 K for an average 

nanoparticle diameter of 17.6 nm. 

 

 
Figure 22 shows the magnetization versus magnetic field of the ultra-thin film 

above the blocking temperature (300 K) with H applied parallel to the sample surface.  

We fitted the Langevin function to the data, as explained in Chapter 1, using µp as a 

fitting parameter. The result was (1.60 ± 0.07)×104 µB for each nanodot.  Given this value 

the number of Bohr magnetons for each cobalt atom can be estimated.  Considering each 

nanoparticle as a cylinder with a diameter of 17.6 nm and an average height of 0.39 nm 

(determined from the AFM images), an average volume of 95.1 ± 63.5 nm3 is obtained.  

For the fcc cobalt with lattice parameter of 0.3528 nm34 (each containing 4 atoms) we 

should have a volume of 4.39×103 nm3 and therefore ~ 2.16×103 fcc unit cells in each 

nanoparticle, each nanoparticle containing ~ 8.65×103 atoms.  Dividing the number of 

Bohr magnetons per nanoparticle by the number of atoms per nanoparticle, an average 

magnetic moment of 1.85 ± 1.23 µB per cobalt atom is achieved.  In the literature the 

magnetic moment for the bulk cobalt is34 1.72 µB, which represents a difference of 8.8% 

with respect to our ultrathin film. 
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The larger magnetic moment of the cobalt atoms in the nanodots might be due to an 

underestimation in our calculation of the average volume for the nano-particles or to a 

real enhancement in the magnetic moment per atom.  This enlargement has been recently 

measured in submonolayer cobalt films grown on Pt(111) and measured using X-ray 

magnetic circular dichroism35 and in colloidal Co nanoparticles.36  The effect is explained 

by an increase in the orbital magnetic moment of cobalt atoms on the surface, leading to a 

larger total magnetic moment per atom.  A transition metal atom located on a surface has 

d-electrons that are more localized than in the bulk material because there are fewer 

nearest neighbors, and therefore its atomic-like behavior is enhanced.  This would 

decrease the quenching of orbital angular momentum effect observed in the bulk and also 

increase the density of states of the majority spins at the Fermi level.37 In our case we 

might expect that atoms located in the surface of the nano-particles would contribute with 

larger orbital magnetic moment, and also increase the net magnetization due to the higher 

density of states.  Experiments with smaller nanoparticle sizes and with samples with 

smaller size distributions are necessary to settle this issue.  In addition, measurements 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Magnetization as a function of magnetic field for 

the ultra-thin film taken at 300 K.  The line corresponds to the 

fitting of the Langevin function to the experimental data.  
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using magnetic x-ray circular dichroism, where the magnetic moment can be measured, 

would also be useful. 
 

4. Conclusions 
 

In the present work the roughening during annealing of 5.0 nm Co films grown on 

Al2O3 (110) was studied.  The films showed a roughening transition at a temperature of 

410 °C, at which the surface roughness increased rapidly with increasing annealing 

temperature.  The roughening is not reversible because the samples kept their roughening 

state after cooling them down.  Moreover the roughening process has a strong time 

dependence, which was observed using different annealing rates for the films.  In another 

set of experiments, a submonolayer cobalt film was deposited on the surface of stepped 

Al2O3 (001). The sample showed the formation of nanodots with an average diameter of 

17 nm after annealing at 400 °C. Magnetization as a function of temperature 

measurement showed that the sample was superparamagnetic.  The ZFC curve peaked at 

a temperature of 130 °C, which would correspond to the average blocking temperature of 

the particles.  The ZFC curve is very wide as a result a wide distribution in particles sizes, 

as confirmed by AFM images.  By fitting the Langevin function for MH curves at 300 K 

an average magnetic moment per nano-particle of 1.60×104 µB was calculated, which is 

equivalent to a magnetic moment per cobalt atom of 1.85 µB.  This value is 8.8% larger 

than for bulk HCP cobalt.  This enhancement may be the result of an increase of the 

orbital magnetic moment of the atoms located at the surface of the nanoparticles and an 

increase the density of states of the majority spins at the Fermi level as observed by other 

groups.  To determine whether this enhancement is real, it is necessary to decrease the 

size and distribution of the particles, which may be achieved by annealing at higher 

temperatures, and to perform x-ray dichroism absorption measurements. 
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