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ABSTRACT 

Scenario-based Verification and Validation of UML Dynamic 

Specifications 
 

Alaa E. Ibrahim 

 

The Unified Modeling Language (UML) is the result of the unification process of earlier object 

oriented models and notations. Verification and validation (V&V) tasks, as applied to UML 

specifications, enable early detection of analysis and design flaws prior to implementation. In this 

work, we address four V&V analysis methods for UML dynamic specifications, namely: Timing 

analysis and automatic V&V of timing constraints, automated Architectural-level Risk 

assessment, Performance Modeling and Fault Injection analysis. For each we present: approaches, 

methods and/or automated techniques. We use two case studies: a Cardiac Pacemaker and a 

simplified Automatic Teller Machine (ATM) banking subsystem, for illustrating the developed 

techniques.        
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CHAPTER 1:   INTRODUCTION 

The Unified Modeling Language (UML) is becoming a widely accepted standard notation for 

modeling software systems. The software development industry is embracing this modeling 

language for requirement analysis and the subsequent phases of software development lifecycle. 

Its success mostly relies on few elementary characteristics: different diagrams are provided (in an 

integrated framework) to represent the software model from different viewpoints, so explicitly 

specifying software aspects elsewhere hidden; the language is supported by a graphical 

representation, easy to use, that is not far from the classical diagrams used before introducing 

UML (e.g., State Diagrams, Class Diagrams, Sequence Diagrams); no standard software 

development process is coupled to the notation, thus software designers may decide to use 

whatever subset of diagrams that can better fit their application requirements, and organize an 

application oriented software process. As a result of the rapid success, Verification and Validation 

(V&V) teams need to devise methods for evaluating UML artifacts. V&V analysis can be 

categorized as static or dynamic. Static analysis helps V&V teams in reviewing the structure of 

UML models and generating metrics such as class size, the size of the hierarchy and static 

complexity measures. The complex dynamic behavior of many applications, especially real-time 

applications, motivates a shift in interest from traditional static analysis to dynamic analysis. 

Dynamic analysis is performed to analyze the behavior of objects as expected at run time.  

1.1 Background  

UML was explicitly born as an “open” project [17], with the potential of embedding additional 

notations and tools to satisfy specific design requisites. Along this trace, Rational Software 

[21](the UML originator) and ObjecTime Limited [16](the Real-Time Object Oriented Modeling 

“ROOM” originator) collaborated in defining UML for Real-Time [11,25] (UML-RT), an 

extension of UML optimized for real-time embedded software development. ROOM was 

introduced to study the dynamic aspects of applications modeled as concurrently executing objects 

with complex dynamic behavior. ROOM models are intended for simulating the application 

execution scenarios and complex object behavior. UML specification provides a State Machine 

package as a sub package of the behavioral elements package. UML state machines formalism is a 
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variant of Harel Statecharts and it incorporates several ROOMcharts concepts and ROOMcharts 

are a valiant of ROOM modeling language [30]. Dynamic analysis can be conducted on 

executable design models using several tools, such as Rational Rose Real-Time (RRT) from 

Rational Software Inc. and ObjecTime Developer from ObjecTime Inc., and hence the dynamic 

behavior of applications can be verified and assessed.  

1.2 Problem Statement  

V&V can be conducted at various development phases. Early V&V of software specification and 

analysis artifacts is encouraged before large investment is made in development. V&V of UML 

specifications can be done at an early development phase - prior to implementation - using 

scenarios, requirements and simulation models. Although UML is a rich analysis and design 

modeling language, it does not define how to study the dynamic aspects of the models through 

simulation, a capability that is required to monitor and assess the expected run-time behavior of 

software systems. V&V teams being much smaller than development teams must use efficient 

techniques to perform their analysis. At present mostly manual methods are being used to analyze 

UML models. Given the size and complexity of the large software systems, the manual efforts are 

time-consuming, tedious and error prone. Therefore automated techniques for V&V of UML 

models need to be developed. 

1.3 Research Objectives 

In this work, techniques are developed to help V&V teams in performing there task in the early 

development stages of UML dynamic specifications. We develop methods and approaches. We 

extend tool support for fast and automatic deployment of the developed techniques. Four areas are 

investigated in this thesis: 

1. Developing automated techniques and methods for the V&V of the temporal 

characteristics of software systems (more importantly Real-Time software systems). 

Temporal V&V and timing analysis are not part of UML specifications, thus studying the 

conformance of the UML model with the timing constraints specified in the requirements 

is needed.  
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2. The automated generation of software metrics for ordering the components, connectors 

and subsystems, based on well defined metrics is needed. This will help in allocating the 

resources during the next development phases and in assessing the software quality.  

Dynamic component complexity and connector coupling metrics developed in [35] and 

the Architectural-Risk assessment methodology developed in [33] are selected for this 

purpose.  

3. Optimizing the number test-case scenarios required for software testing, and assessing 

component severity are the motives behind the third area of investigation where we 

develop and assess a fault model for fault injection analysis. 

4. Studying the performance of software systems, where queuing networks that model the 

performance characteristics of software systems have been well investigated. Interest in 

performance modeling for UML specifications has gained an increasing acceptance in 

industry standard. In [2] UML sequence diagrams where used as the starting point for 

performance model generation. In this study we aim to utilize the simulation capabilities 

in studying the performance characteristics of UML-RT models through resource 

modeling. 

1.4 Thesis Structure 

Considering the four areas of investigation mentioned above and two case studies, we structure 

this thesis as follows (figure 1.4). Chapter 2 introduces our simulation environment and the tool 

extensions developed and chapter 3 presents the first case study: the software model of a Cardiac 

Pacemaker device. Chapter 4 discusses automated temporal V&V techniques. Chapter 5 discusses 

the automatic extraction of dynamic metrics and architectural-level risk. Chapter 6 presents 

techniques for fault injection analysis. Chapter 7 discusses performance modeling based on UML 

dynamic specifications in simulation environments (the fourth area of investigation) and we use a 

simple abstraction of the software of the Automatic Teller Machine (ATM) banking subsystem. 

Finally we conclude and discuss potential areas for future work.  
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Figure 1.1  Flow chart of the thesis chapters 
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CHAPTER 2:   SIMULATION ENVIRONMENT  

Our general approach for V&V of UML models is based on simulating the dynamic 

specifications. Figure 2.4 shows an overall view of our environment in which we developed 

methods and techniques to perform the required tasks. The simulation settings for a particular 

scenario are adjusted by the analyst and the UML model is executed in a given simulation 

environment to produce simulation logs for that particular scenario. We generate the timing 

diagram from processing the simulation log files. The generated timing diagrams are inspected 

visually to determine and assess the correctness of the developed methods and techniques, and to 

analyze the logic behind our findings. Elements in our environment are: 

1. Rational Rose Real-Time 6.0 [22] RRT as the modeling and simulation tool. 

2. Simulation log files and the log analysis tool that is composed of Microsoft Excel and 

Visual Basic Scripts that were develop. 

3. The timing diagrams are charts showing each object as a series of changes in its states 

versus time. 

2.1 UML-RT modeling and simulation tool 

In [25] the derivation of the set of architectural constructs that integrate ROOM notation in UML 

were presented. These architectural constructs are derived from general UML modeling concepts 

using UML extensibility mechanisms. Table 2.1 provides a summary for these extensions, as a 

brief description of the basic constructs used in modeling the system structure and component 

behavior. Three principal constructs; Capsules, Ports and Connectors, are used to explicitly 

describe the system structure. In a Capsule collaboration diagram, Capsules and Ports are 

stereotype roles, and Connectors are association roles. Behavior is modeled using Protocols and 

state machines. A Protocol specifies the desired behavior over a connector and compromises a set 

of participants, each participant plays a specific ProtocolRole. A Protocol state machine specifies 

valid communication sequence and is the standard UML state machine. Capsule behavior is 

defined in UML state machine where the stereotype (ChainState) is a state that is used in case of 
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transitions that are split into a transition that terminates on the boundary of the state and a 

transition that propagated into the state (in case of hierarchical state machines).   

 

 Metamodel Class Stereotype 

Collaboration Protocol 

ClassifierRole ProtocolRole 

Class Port 

Class Capsule 

State ChainState 

Table 2.1 Summary of UML Extensions for ROOM, source [25] 

Figure 2.1 shows a Capsule named Top_Level_Capsule and its Structure Diagram. The Structure 

Diagram of Top_Level_Capsule contains two Capsules: First_Capsule and Second_Capsule, each 

with one port named Port_1. Port_1 in First_Capsule is assigned a ProtocolRole Protocol_1 and 

Port_1 in Second_Capsule  is assigned a ProtocolRole Protocol_1~, which is the conjugate of 

Protocol_1. As mentioned earlier a Protocol defines the flow of messages between ports. 

Messages are categorized into incoming and outgoing messages. In a conjugated Port the 

messages defined in the Protocol as incoming messages are defined as outgoing in the 

ProtocolRole assigned to the Port, and like wise the outgoing messages are defined as incoming 

messages in the ProtocolRole assigned to the Port. A connector connects the two ports and works 

as a media for message delivery.  

Figure 2.2 shows the State Diagram of Second_Capsule. Second_Capsule has two states S_1 and 

S_2, and two transition; t_top and the initial transition that defines the initial state. S_1 is a macro 

state that can be expanded into another State Diagram shown in figure 2.3. S_1 has two states and 

three transition, t_1, t_2 and the initial transition. t_2 is a transition top a ChainState. Each 

transition is configured with a message that defines its firing conditions, except transitions from 

ChainStates like t_top. 
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Figure 2.1  A Capsule (Top_Level_Capsule) and its Structure Diagram 
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Figure 2.2  State Diagram of First_Capsule (top level) 

 

Figure 2.3  State Diagram of the macro state S_1 

A typical early model of a software product is known as the software architecture, that is 

essentially a graph whose nodes represent software components and arcs represent software 

connectors. In order to provide to a software architecture the potential to represent the same 

software at different levels of detail, it can be hierarchically structured. In other words, a 

component can be detailed by describing its internal structure of subcomponents and connectors, 

while unvarying its external structure consisting of connectors with other components.  

S_1
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Initial

t_top

Initial

t_top

S1_1 S1_2 
Initial 

t_1 t_2 Initial Initial 
t_1 t_2 

ChainSate 

t_top
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UML notation does not explicitly provide a diagram to describe a software architecture, which is 

in fact not necessary. The RRT tool allows building a diagram of components and connectors, 

where each component is represented by a Capsule and its Ports as interfaces to which Connectors 

are associated to exchange messages with other Capsules. The suitable hierarchical structure that 

such a software architecture should have is also provided, by allowing to detail the internal 

structure of a Capsule with other Capsules and Connectors. 

Figure 2.4  Environmental overall view 

The simulative nature of this tool requires as a minimum, in order to run such a scheme, a 

dynamic description of the behavior of each Capsule belonging to the lowest levels of the 

hierarchy, that is each Capsule that does not contain other Capsules. This dynamic (behavioral) 

description is represented in the Capsules State Diagrams as part of the UML specifications. 

Figure 2.4 shows an overview of our simulation environment, RRT as the main tool and Visual 

Basic Scripts running from within Microsoft Excel as tool extensions. 
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2.2 Log files 

The log files are two text files. The first (state log file) contains an entry for each state change in 

each component during a simulation run, where each entry is composed of: the simulation time of 

the entry, the object and the new state. The second (message log file) contains an entry for each 

message sent in the system during a simulation run, where each entry is composed of: the send 

time of the message, the source object, the destination object and the message name. 

2.3 Timing Diagrams 

Figure 2.4 shows a sample-timing diagram from the Cardiac Pacemaker case study that will be 

presented later in chapter 3. The x-axis is a time series of 1 milisec with labels every 100 milisec 

and on the y-axis are the states of three objects. The first object named “Heart” has two states: 

Pulse and Waiting, the second and third objects named “Ventricle” and “Atrial” respectively each 

has three states: Pacing, Waiting and Refractory. For each object a series of the state changes is 

plotted on the timing diagram. The fields “Graph Start” and “Graph End” are used by the viewing 

macro to define the starting and ending values of the x-axis, which corresponds to the window of 

time, in a single simulation run, to be displayed.  

For automatic generation of timing diagrams from simulation logs, two Visual Basic macros were 

developed, Processing macro and Viewing macro, within Microsoft Excel environment. First, the 

processing macro, which recognizes all executed objects and all their involved states, generates 

numeric distinct codes for all involved states in each object, adjusts values to enforce continuous 

vertical and horizontal line representation of state changes, configures x-axis as a time series of  

milliseconds, y-axis as state codes, and each object as a series, and automatically generates an 

Excel chart for each simulation run. Appendix A shows the Processing macro as a subroutine 

named “Processing_Macro()” in Visual Basic Script. Bellow we show the steps followed by the 

Processing macro in processing the log file.  

1. Extract all the Capsules “Objects” in the log file. 

2. Extract the Object names and their states coded in continuous numeric state codes. i.e. For 

each Object: extract all states and generate a consecutive state code for each 

3. For each Object: use the state codes to generate an eleven columns log table with time as the 

first column and the rest as the states in state code. 
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4. Create continuous lines (horizontal and vertical) from the ten fragmented series representing 

the state changes (in state codes) of the ten Objects.  

5. Size the chart and force the start to be 0 milisec and the end to be 20000 milisec. 

The second macro is the viewing macro, which enables the analyst to zoom in and out of the 

timing diagram and adjust the window of time to be viewed. Appendix A shows the Viewing 

macro as a subroutine named “Viewing_Macro()” in Visual Basic Script. The basic function is to 

resize the chart (figure 2.5) based on the start, end and step fields. 



-  12  - 

 

Figure 2.5  A sample-timing diagram
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CHAPTER 3:   THE CARDIAC PACEMAKER CASE STUDY  

We have selected as a case study a cardiac pacemaker (Pacemaker) device [4, pp177] to discuss 

the applicability of the proposed approaches and methods. The pacemaker is a critical real-time 

application. An error in the software operation of the device can cause loss of the patient’s life. 

Therefore, it is necessary to model its design in an executable form to validate its temporal 

behavior. We have used RRT simulation environment [22] and dynamic UML specifications [30] 

to model and gather simulation statistics. 

A cardiac pacemaker is an implanted device that assists cardiac functions when the underlying 

pathologies make the intrinsic heartbeats low. The pacemaker runs in either a programming mode 

or in one of operational modes. During programming, the programmer specifies the type of the 

operation mode in which the device will work.  The operation mode depends on whether the 

Atrium, Ventricle, or both are being monitored or paced. The programmer also specifies whether 

the pacing is inhibited (I) or triggered (T).  For the purpose of this paper, we limit our discussion 

to the AVI operation mode. In this mode, the Atrial portion of the heart is paced (shocked), the 

Ventricular portion of the heart is sensed (monitored), and the Atrium is only paced when a 

Ventricular sense does not occur; i.e., inhibited (I). Figure 3.1 shows (a) the system structure 

diagram of the external components and the pacemaker design model. The external components 

are modeled for simulation purposes. In the pacemaker example the Programming device 

(DoctorsProgrammer) is used to configure the pacemaker’s operational mode. Therefore it 

appears as one of the components interacting with the pacemaker components in the Programming 

scenario only, whereas the heart is represented by the PatientsHeart component and is interacting 

with the pacemaker in all the operational modes. The Observer component shown in figure 3.1 (a) 

is the external monitoring component that we discuss in chapter 4. The pacemaker consists of the 

following components: (shown in figure 3.1 (b))  

Reed_Switch: A magnetically activated switch that must be closed before programming the 

device. The switch is used to avoid accidental programming by electric noise. 
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Figure 3.1  Structure diagram for the Pacemaker. 

(a) Pacemaker and all external Capsules (context level).  

(b) Pacemaker internal Structure Diagram 
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and then interpreted as a bit of value zero or one. These bits are then grouped into bytes and sent 

to the communication gnome. Positive and negative acknowledgments as well as programming 

bits are sent back to the programmer to confirm whether the device has been correctly 

programmed and the commands are validated. 
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acknowledgments to the coil driver to verify command processing. 
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pace the heart and/or sense heartbeats. The AVI mode is a complicated mode, as it requires 

coordination between the Atrial and Ventricular models. Once the Pacemaker is programmed the 

magnet is removed from the Reed_Switch. The Atrial_Model and Ventricular_Model 
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A hierarchical UML state machine models the behavior of each component. As mentioned earlier, 

a pacemaker can be programmed to operate in one of several modes depending on which part of 

the heart is to be sensed and which part is to be paced. The analysis of the device operation 

defines six scenarios. Figure 3.2 show the main Use Case diagram and all the relationships among 

the six Use Cases and the two actors, DoctorsProgrammer and PatientsHeart. Each scenario, in the 

pacemaker, maps to a Use Case, one for the programming scenario and five for the operational 

modes. The AAI operational scenario: in which the Ventricular_Model is Idle and the 

Atrial_Model is sensing and pacing the heart when a heartbeat is not sensed. The AAT operational 

scenario: in which the Ventricular_Model is Idle and the Atrial_Model is sensing and pacing the 

heart when a heartbeat is not sensed. The VVI operational scenario: in which the Atrial_Model is 

Idle and the Ventricular_Model is sensing and pacing the heart when a heartbeat is not sensed. 

The VVT operational scenario: in which the Atrial_Model is Idle and the Ventricular_Model is 

sensing and pacing the heart when a heartbeat is sensed or not. We only use the AVI Operational 

scenario: in which the Ventricular_Model senses the heart and the Atrial_Model paces the heart 

when a heart beat is not sensed. In all scenarios a refractory period is then in effect after every 

pace. 

Currently UML representation of timing constraints [30] is limited to construction marks on 

sequence diagrams (common in blueprints), labels, and message transmission and reception on 

sequence diagrams. We compose the AVI timing constraints from: elements representing the time 

of a message transmission and reception; elements mapping to the time of entry of a state are 

represented by the reception of the message that fired the transition. We applied our approaches in 

chapter 4 to the following two timing constraints of the AVI operational scenario.  

The first timing constraint is on the paces generated by the pacemaker in response to unsensed 

heart pulses. The time to each pace corresponding to an unsensed pulse should be less than 350 

milisec.  

 

∀si ∃ pj  T(pj)-T(si) < ε  and si ∈ S and pj ∈ P 
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where S is the set of all unsensed heart beats observed during a simulation run, S={s1, s2, .., sn}, 

P is the set of all paces generated by the pacemaker to the heart during a simulation run,  P={p1, 

p2, .. , pm} and ε is the maximum permissible delay of pacing after a heart beat is not sensed and 

is equal to 350milisec. Figure 3.3 shows two cases: in the first ε was not exceeded, while in the 

second it was exceeded and the result was Pacing the patients heart while a pulse is naturally in 

place. 

The second timing constraint is on the refractory period, the time in which the pacemaker stays 

idle after every pace. The Atrial_Model refractory time represents this period and is controlled by 

the Ventricular_Model refractory state which intern is controlled by the Ventricular_Model 

refractory timer. The Atrial_Model refractory time should be less than 350milisec. 

∀ii ∃ oj  T(oj)-T(ii) < ε  and ii ∈ I and o j ∈ O 

where I is the set of all transitions from the Pace state to the Refractory state in the Atrial_Model,  

I = {i1, i2, .., in}, O is the set of all transitions from the Refractory state to the Waiting state in the 

Atrial_Model,  O = {o1, o2, .. , om}, and ε is the maximum permissible refractory time for the 

Atrial_Model and is equal to 350milisec. 
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Figure 3.2  Main Use Case Diagram 
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Figure 3.3  A sample-timing diagram illustrating the timing constraints
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CHAPTER 4:   TEMPORAL V&V 

Capitalizing on the simulation environment (commercial tool “RRT, Microsoft Excel and Visual 

Basic Scripts” and the tool extensions “logging and automatic generated Timing Diagrams”) 

described in chapter 2, the V&V analyst can inspect the timing diagrams to verify that the timing 

constraints are met. Moreover, two approaches for automatic V&V of timing constraints [8] are 

presented in this chapter, together with the results and the lessons learned, using the Pacemaker 

case study presented in chapter 3. As well as four timing analysis methods, and their deployment 

procedure to UML artifacts [34] are presented, together with samples of the results from the 

Pacemaker example.  

4.1 Automated V&V of Timing Constraints 

The first approach is based of processing the simulation log files in search of constraint violations. 

While the second approach is based on an Observer component, modeled as an external entity to 

the modeled system and acting as a monitoring device. Hence two methods for modeling the 

timing constraints in the Observer Component, namely: Constraint driven and Use Case driven, 

are developed. The output in both approaches is a violation table, table 4.1 is a sample of a 

violation table. Figure 4.1 shows a high level view (process/product view) of the Automated 

Timing Constraints V&V process.  

4.1.1 The first approach for Automatic timing constraints verification 

In this approach the violation algorithm shown below processes the message log file. The product 

is the violation table which is a list of violations and their time of occurrence in the simulation run. 

The violation algorithm consumes the message log file and the timing constraints. Each entry in 

the message log file contains the time of message occurrence, the message name, and the type of 
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Figure 4.1  High level view of the Automated Timing Constrains V&V process 

occurrence (receive_by or send_by). The timing constraints are in the form of Boolean 

expressions containing elements that correspond to the time of the transmission or reception of a 

message and a constant to which the evaluated expression is compared. The timing constraints are 

coded in the algorithm in the form of a two dimensional array where each row represents one 

timing constraint and contains: the constant time value to which the expression is compared, the 

total number of elements in the expression, the set of elements which represent the time of a 

message occurrence ordered by their expected occurrence, the set of corresponding occurrence 

types (transmission or reception), and the set of operators acting on the corresponding element 

including the Boolean operator as the last operator. Examples are shown below. 

For each constraint the algorithm scans the message log file and searches for the elements in 

order. For each element detected, the corresponding operator is applied on the temporary variable 

temp_time and the element. The Boolean expression is evaluated after the last element is detected 
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and processed, and if it evaluates to false, an entry in the violation table is recorded in the form of 

the time and type of the violation.  

 

Algorithm 

Procedure Violation 

Parameters 

  Consumes:  log_file_ entryi(time, message, occurrence), where   0 < i < end_of_log_file  

                             timing_constraink(constant, no_of_elements, elementh, occurrenceh, 

operatorsh(first_operand, second_operand)), where  0 < k <= 

total_no_of_timing_constrains and  0 < h <= no_of_elements 

       Produces:  Violation_Table(Stack[time,constrainID]) 

Initialization: 

   i = k  = h = 1  

   temp_time = 0 

Algorithm 

   while k <= total_no_of_timing_constrains do 

      i =  h = j = 1 

      while h < no_of_elements do 

         i = j 

         while i < end_of_log_file  do 

            if  log_file_entryi.message = timing_constraintk.elementh  AND 

                                                               log_file_entryi.occurrence = timing_constraintk.occurrence 

               timing_constraintk.operatorh(temp_time, log_file_entryi.time) 

                j = i 

               next h 

            end if 

            if  h = no_of_elements AND timing_constraintk.operatorh(temp_time, log_file_entryi.time)  

                                                             = False 

                push (log_file_entryi.time, k) 

            end if 
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            next i 

         end while 

      end while 

      next k 

   end while 

end Procedure Violation 

 

The pacemaker constraints were composed and fed to the above algorithm and the log file, 

generated for a faulty simulation run in which the waiting time was increased by 50 milisec to be 

1050 milisec, was processed. The parameters consumed by the algorithm are:  

The two timing constraints:  

- timing_constrain1(constant = 350 milisec, no_of_elements = 2,  

[element1  = Pace,  element2 = Unsensed] ,  

[occurrence1 = Receive_heart,  occurrence2 = Send_heart],  

[operators1(first_operand, second_operand) =  “-“, operators2(first_operand, second_operand) = 

“<”]) 

- timing_constrain2(constant = 350 milisec, no_of_elements = 2,  

[element1  = APaceDone,  element2 = VRefractDone], 

[occurrence1 = Receive_Atrial,  occurrence2 = Receive_Atrial],  

[operators1(first_operand, second_operand) =  “-“, operators2(first_operand, second_operand) = 

“<”]) 

Sample of the log file:      

 

log_file_ entry124 (time = 22152, message = APaceDone, occurrence  = Send_Venticular) 

log_file_ entry125 (time = 22152, message = APaceDone, occurrence  = Receive_Atrial) 

log_file_ entry126 (time = 22653, message = unsensed, occurrence  = Send_heart) 

log_file_ entry127 (time = 23004, message = Pace, occurrence  = Send_ Atrial) 

log_file_ entry128 (time = 23004, message = Pace, occurrence  = Receive_Venticular) 
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log_file_ entry129 (time = 23007, message = Pace, occurrence  = Send_Venticular) 

log_file_ entry130 (time = 23007, message = Pace, occurrence  = Receive_heart) 

 

Results showed several violations in the first constraint: 

Delayed Pace at: 10015 

Delayed Pace at: 22653 

Delayed Pace at: 23554 
Delayed Pace at: 33469 

Delayed Pace at: 34370 

Delayed Pace at: 35271 
Delayed Pace at: 45185 

Delayed Pace at: 46087 

Delayed Pace at: 58705 
 

The drawbacks of this approach is in the fact that it resembles an open loop process, i.e. we can 

not stop the simulation nor change the simulation settings in response to a violation as it occurs, 

only when the whole simulation run is performed and the logs are available we can detect the 

violations and start understanding the logic behind them. This fact makes the approach less 

valuable to the purposes of timing analysis and the sensitivity analysis to a specific variable, delay 

or operation. This drawback is handled in the second approach discussed next.  

4.1.2 The second approach for timing constraints verification 

In this approach we designed the Observer component (figure 4.2) to act as an external monitoring 

object that monitors the timing constraints in the modeled system, and detects and reports all the 

violations as they occur. The Observer component is not part of the UML specifications nor of the 

tool used; it is aimed to automate the detection of timing constraints violations as they occur. The 

Observer responsibilities are: 1) Setting and initiating consecutive simulation runs 2) Detection of 

timing constraint violations 3) Production of the violation report. These violations represent 

detected deadline failures during the simulation run. The observer is modeled using UML 

hierarchical state machine based on timing constraints, use cases, sequence diagrams and the 
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methods presented in this section. One connector delivers the messages between the modeled 

system and the Observer. Messages from the system represent all the instances addressed in the 

timing constraints. There exist no messages from the Observer directly to the system. Several 

connectors can exist between the Observer and the modeled external systems. Messages from the 

Observer to the modeled external systems are control messages to initiate and terminate subruns. 

In [5], requirement verification for timed UML sequence diagrams and timed automata design 

representation (UML models have to be converted to timed automata), were accomplished by an 

Observer model within UPPAAL tool that was designed to verify timed automata requirements. 

The modeled observer branched to a state indicating a specific traceable timing failure, while in 

our model for the Observer, the reaction to a timing violation is configurable (the sub run can be 

forced to stop and the next can be consequently configured and started). 

 

 

Figure 4.2  The Observer as an external object 
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4.1.2.1 Constraint driven Observer modeling 

Our first proposal for Observer modeling is strictly based on timing constraints. Each constraint is 

modeled using a UML hierarchical State Machine representing the behavior of a subcomponent in 

the Observer component. The Observer component encapsulates all constraint components as well 

as an Observer controller component. The controller component is responsible for setting, 

initiating, terminating sub runs and controlling which set of constraint components is active at 

each specific time instance. The highest level of the constraint hierarchical State Machine consists 

of two states; on and off, and is controlled by the Observer controller component.  

We modeled an Observer for the pacemaker based on the constraint driven Observer modeling 

and we confirmed the results with the timing diagrams. In this case the two pacemaker timing 

constraints mentioned in chapter 3 are modeled each in a separate component, namely: 

Constraint_1, Constraint_2. Figure 4.3 shows: (a) Observer component structure diagram for the 

pacemaker. (b) The state diagram representing the behavior of the Observer Controller 

(MicroObserverController in figure 4.3 (a)). (c,d) The first level of the state chart representing the 

behavior of constraint 2 and constraint 1 respectively. Two states are shown “Off” which is 

equivalent to idle and “On” which is expanded to a second level state machine, shown in (e,f), to 

represent the constraints.  

One of the benefits of Modeling constraints in this manner is the ability to report a categorized 

violation of a constraint instead of just reporting the violation. This is obvious in the lower state 

diagram of the first constraint (figure 4.3). The violation of this constraint can imply one of two 

behavioral errors: a delayed pace or a skipped pace. Modeling the constraint as well as the types 

of violations, speeds up the analysis process performed by the analyst. 

 The drawbacks of the constraint driven Observer Modeling is the fact that the amount of effort 

spent by the analyst is directly proportional to the number of constraints modeled. This fact makes 

this method limited by the number of constraints to be studied. Our experience with the tool used 

in this work suggests that this method should only be used for a small number of timing 

constraints. Thus the number of components in the Observer Capsule is relatively small. This 

limitation is relaxed in the Use Case driven Observer modeling presented in the next subsection.   
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Figure 4.3  Constraint Driven Observer Modeling. 
(a) Observer Structure Diagram. (b) Observer Controller State Diagram. 

(c,d) First level State Diagram for Constrain 2 and Constraint 1 respectively. 
(e,f) Second level State Diagram for constraint 2 and constraint 1 

respectively 
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4.1.2.2 Use Case driven Observer modeling  

Our second method for Observer modeling is based on timing constraints, use cases and sequence 

diagrams. In this method an adaptation of the structured sequence diagrams in [12], in which each 

scenario is represented as a Use Case composed of a set of Sequence Diagrams such that no loops 

or conditions exist within a sequence diagram, is used. This adaptation serves in mapping the 

sequence diagrams to state machines. In this representation the decision of the next sequence 

diagram is made based on the first message in the next sequence diagram. In this representation 

each Use Case has a set of Sequence Diagrams. For the purpose of timing constraints verification 

only the messages of the sequence diagram that affect one or more variables in the constraints to 

be verified as well as the messages on the edges of the Sequence Diagram, are mapped. Modeling 

the messages on the edge of the sequence diagrams is intended for modeling the messages on 

which the choice of the next sequence diagram is selected. Bellow we define FUC as a set of Use 

Cases, subset (filtered from UC) of the set of all use cases in the specification, FSD as a set of 

Sequence Diagrams, subset (filtered from SD) of the set of Sequence Diagrams in a Use Case that 

belongs to FUC and FM as the set of messages, subset (filtered from M) to the set of all messages 

in a sequence Diagram that belongs to FSD. In the following subsection we present the definitions 

of the sets mentioned above, how the filtration is performed and steps for the modeling process. 

4.1.2.2.1 Definitions 

The system requirements are expressed in a set of Use Cases named “UC” and each Use Case is 

named “UCi” and contains a set of Sequence Diagrams named “SD i”. Each Sequence Diagram 

belonging to Use Case UCi is named “SDij” and contains of a set of messages named Mij. The set 

T is the set of timing constraints, each timing constraint is named tl is composed of  three sets: a 

set of messages named E l , a set of operators named opl and a set of constants named C l .  The sets 

UC , SD , M and T are presented below 

T = { tl |1 ≤ l ≤ n }   =    {t1,t2,….,tl,……,tn}  where   1 ≤ l ≤ n  

n is the total number of timing constraints  

tl = < Opl , El , Cl > 
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UC = { uci |1 ≤ i ≤ m }   = { uc1, uc2,…., uc i,……, ucm}  where   1 ≤ i ≤ m  

m is the total number of Use Cases  

SDi = { sdij |1 ≤ j ≤ pi }      SD =  i=1∪m SDi 

pi is the total number of Sequence Diagrams in Use Case number i 

Mij = { µijk |1 ≤ k ≤ qij }      M =  i=1∪m  
j=1∪pi Mij 

qij is the total number of messages in Sequence Diagram ij 

The set FMij is the subset of Mij that contains the messages that are required for the timing 

constraints, and if any then, the edge messages in the Sequence Diagram SDij are included 

as well. 

TMij = { µijk |  ∃ l (1 ≤ l ≤ n)  : µijk  ∈ El } 

If ( TMij = ∅ ) then  FMij = ∅ Else FMij = TMij ∪  µij1, µijqij}         

FM =  i=1∪m  
j=1∪pi FMij  

The set FSDi is the subset of SDi that contains the set of Sequence Diagrams that have 

messages in FM  

FSDi =  { sdij |1 ≤ j ≤ pi  , FMij  ≠  ∅ }          FSD =  i=1∪m  FSDi 

The set FUC is the subset of UC that contains the set of Use Cases that have Sequence 

Diagrams in FSD 

FUC =  { uci |1 ≤ i ≤ mi  , FSDi  ≠  ∅ }           

4.1.2.2.2 Step 1  

Construct the top level/levels of the Observer state chart from the logical relationships and 

structure between all the Use Cases in FUC such that: 

A- Each Use Case maps to a Macro state: where the Micro states of that state are constructed 

later in step 2 and each represent a Sequence Diagram.  



-      - 29 

B- If a Use Case is contained in another Use Case it is mapped to a Micro State inside the 

corresponding Macro State representing the containing Use Case. 

C- Each relationship between two Use Cases in FUC is mapped to a transition triggered by the 

occurrence of a message from the corresponding sequence diagrams.  

4.1.2.2.3 Step 2 

For each element in FUC construct the state diagram that represents the logical relationships and 

structure between all elements in FSD such that: 

A- Each Sequence Diagram in FSD maps to a Micro state in the corresponding Use Case 

Macro State in FUC.  

B- Each relationship between two Sequence Diagrams in FSD (consecutive conditional or 

unconditional execution) is mapped to a transition triggered by the occurrence of the first 

message in following Sequence Diagram. 

C- Each Use Case in FUC has a “Start_Use_Case” state representing its initial starting point 

from which the selection of the first Sequence Diagram to be executed, is made.  

D- Selection is based on transitions triggered by the occurrence of the first message in the 

corresponding Sequence Diagrams causing the transition to their corresponding Macro 

States.  

4.1.2.2.4 Step 3  

For each Sequence Diagram in FSD construct the state diagram that maps all messages in FM into 

transitions triggered by the occurrences of messages in the observed system such that: 

A- States are named by the message name “Received_messagename” and are triggered the 

message reception at the destination Capsule  

B- Mapping is done for messages in FM only: The set FM as defined above does not contain 

all the messages in each Sequence Diagram in FSD. Only the messages that are related to 

elements of the timing constraints and the messages on the edge of the Sequence Diagrams 

are modeled. 
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C- Time stamps of messages involved in all concerned timing constraints are collected in 

variables “RTTimespec” using the system method 

“RTTimespec::getclock(Variable_Name)” , as they occur. 

D- Each constraint Boolean expression is evaluated immediately after the collection of the last 

element (occurrence of the last message related to the constraint). Then the check is 

performed and the violation (if any) is logged.  

4.1.2.2.5 Observer Model for the cardiac pacemaker case study 

We modeled an Observer for the pacemaker based on the Use Case driven Observer modeling 

methodology. The two timing constraints for the AVI operational mode were used to construct the 

FUC, FSD and FM. Figure 4.4 shows the three level hierarchical state machine of the modeled 

Observer and the messages mapped from the sequence diagrams, based on the definitions and 

steps of the Use Case driven Observer modeling. The Programming Use Case and the AVI Use 

Case formed FUC. The mapping of FUC based on step 1 is shown in figure 4.4 (a). The three 

sequence diagrams; Refractory, Unsensed and Sensed formed FSD. The mapping of FSD based 

on step 2 is shown in figure 4.4 (b). Figure 4.4 (c,d) show the State Diagram of the “Unsensed” 

and “Refractory” Sequence Diagrams (figure 4.4 (e,f)) respectively. The timing constraints span 

two sequence diagrams only; Refractory and Unsensed. For this reason, the Sensed sequence 

diagram is modeled. In modeling the Unsensed sequence diagram, the messages “A Pace Start” 

and “Pace Timeout” are not elements of any of the two timing constraints and hence the are not 

mapped. While in the Refractory sequence diagram the message “RefTimeOut” is mapped 

because of being an edge message and the message “VrefractDone” is mapped because of being 

part of the second constraint. 

One of the benefits of Modeling constrains in this manner is the ability to verify sequence 

diagrams, in a manner that is proportional to the amount of details modeled in the Observer.  
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Figure 4.4  Use Case Driven Observer Modeling 
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4.1.3  Results and lessons learned 

In this section we show our results, from applying the approaches and methods above, and 

confirming with visual inspection of the timing diagrams, to the AVI scenario of the pacemaker 

model. We injected timing faults in the pacemaker model in order to force the occurrence of 

violations based on the analysis methods described later in this chapter and in [34]. The timing 

diagrams described earlier in chapter 2 were generated and used to verify the expected logics 

behind the detected violations. The sample that we show below is a Time-out based timing 

analysis in which we study the effect of the time set for the Ventricular_Model Refractory timer 

(timer controlling the time spent in the Refractory state by the Ventricular_Model and the exiting 

transition to the waiting state) on the timing constraints, when increased by 50 milisec to be 350 

milisec. We know that the Atrial_Model Refractory time (time spent in the Refractory state by the 

Atrial_Model) is directly controlled by the Ventricular_Model Refractory time through the 

messages: ApaceDone and VrefractDone from the Venticular_Model to the Atrial_Model. Thus 

we expect the periodic violation of the second constraint. The increase in the Atrial_Model 

Refractory time, being part of the cycle time, causes an increase in the delay between each 

generated pace and each unsensed pulse. The increase in the accumulated delay becomes 

significant to the first timing constraint starting from the third consecutive unsensed heart beet. 

We tested the presented approaches and methods and proved their correctness when the violation 

tables generated for the same faulty simulation run were identical. An increase in the 

Ventricular_Model Refractory time from 300 milisec to 350 milisec was the selected fault. Table 

4.1 shows a sample of the violations from the three simulation runs where the temporal V&V was 

performed using the presented approaches and methods: the violation algorithm (first approach), 

constraint driven Observer modeling (first method in the second approach) and Use Case driven 

Observer modeling (second method in the second approach).  
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Table 4.1 Sample of the violation table from simulation with 350milisec 

Ventricular_Model Refractory time 

We argue that the three directions for automated verification of timing constraints presented above 

are independent, yet selecting the most suited direction is specific to the specification to verify and 

the V&V objectives. The first approach will be the most effective and efficient when the 

verification objectives do not require any response within a single simulation run. Which we 

described as an open loop analysis where there is no intention for stopping the simulation nor 

changing the simulation settings in response to a violation as it occurs. In this case the first 

approach is the most efficient and we perceive it to be the most scalable. This limitation is handled 

in using the second approach, in which a selection of the Observer modeling method should be 

performed. In the constraint driven Observer Modeling, the amount of effort spent by the analyst 

in modeling the Observer and the complexity of the Observer model is directly proportional to the 

 22612 Constraint 2 Violated: Refractory problem 
23664 Constraint 2 Violated: Refractory problem 
24165 Constraint 1 Violated: Delayed Pacing problem 
24715 Constraint 2 Violated: Refractory problem 
25216 Constraint 1 Violated: Delayed Pacing problem 
25767 Constraint 2 Violated: Refractory problem 
26268 Constraint 1 Violated: Delayed Pacing problem 
26818 Constraint 2 Violated: Refractory problem 
27319 Constraint 1 Violated: Delayed Pacing problem 
27870 Constraint 2 Violated: Refractory problem 
34339 Constraint 2 Violated: Refractory problem 
35391 Constraint 2 Violated: Refractory problem 
35891 Constraint 1 Violated: Delayed Pacing problem 
36442 Constraint 2 Violated: Refractory problem 
36943 Constraint 1 Violated: Delayed Pacing problem 
37494 Constraint 2 Violated: Refractory problem 
37994 Constraint 1 Violated: Delayed Pacing problem 
38545 Constraint 2 Violated: Refractory problem 
39046 Constraint 1 Violated: Delayed Pacing problem 
39597 Constraint 2 Violated: Refractory problem 
46056 Constraint 2 Violated: Refractory problem 
47108 Constraint 2 Violated: Refractory problem 
47608 Constraint 1 Violated: Delayed Pacing problem 
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number of constraints modeled. This fact makes this method limited by the number of constraints 

to be studied, thus introducing the limitation on the use of the method in cases where more than 

four timing constrains are being verified. This limitation is eliminated when using the Use Case 

Observer modeling, yet the trade off when selecting the constraint driven Observer modeling over 

the Use Case driven Observer modeling in case of four constraints or less is in the amount of 

effort spent in modeling the Observer versus the inability (if required) to verify sequence diagrams 

nor to gather statistics that can be used in other analysis.  

4.2 The Four Timing Analysis Methods 

4.2.1 Methods  

Using the automatic  generation of timing diagrams described in chapter 2, the analyst can inspect 

the timing diagrams to verify that timing constraints are met. Moreover, the analyst can deploy 

several timing analysis methods to study the effect of delays in transmission or processing of 

messages. Table 4.2 summarizes four timing analysis methods that we developed to analyze UML 

specifications. We discuss each of the proposed methods using a Focus/Purpose/Method template. 

Timing Analysis Method Focus Purpose 

Concurrency-based Links between 

objects 

(components) 

Study the effect of delays of delivering 

messages between objects 

Performance-based Objects 

(components) 

Study the effect of implementation efficiency 

Timeouts-based Objects 

(components) 

Study effect of various timeout  values. 

Environment-Interactions External 

Environment 

Study effect of delays in recognizing 

hardware events 

Table 4.2 Summary of Timing Analysis Methods 
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4.2.1.1 Concurrency-based Timing Analysis: 

Focus: Architecture connectors (links between objects) 

Purpose: Analyze the effect of delays in delivering messages from one component (object) to 

another. 

Method: 

• Augment the model with delays over connectors involved in each scenario. 

• Generate timing diagrams for each simulation run. 

• Inspect timing diagrams to study the effects of these delays on model behavior and 

required deadlines. 

4.2.1.2 Performance-based Timing Analysis 

Focus: Architecture components (objects) 

Purpose: Analyze the effect of inefficient implementation of state activities and actions. 

Method: 

• Augment the model with delays in the execution of entry, exit, and activity code segments 

of all states involved in each scenario. 

• Generate timing diagrams for each simulation run. 

• Inspect timing diagrams to study the effect of these delays on model behavior and 

required deadlines. 

4.2.1.3 Timeouts-based Timing Analysis 

Focus: Architecture components (objects) 

Purpose: Analyze the effect of timeout values of all user defined timers in the model. 

Method: 

• Vary the values of timers used in each scenario. 

• Generate timing diagrams for each simulation run. 
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• Inspect timing diagrams to study the effect of these variations on model behavior and 

required deadlines. 

4.2.1.4 Environmental-Interactions Timing Analysis 

Focus: Interactions with the environment including hardware devices and sensors. 

Purpose: Analyze the effect of delay in sensing environmental events, caused by external systems 

and/or event recognition software (outside system boundaries). 

Method: 

• Augment the model with delays in sensing hardware events. 

• Produce timing diagrams for each simulation run. 

• Inspect timing diagrams to study the effect of these delays on model behavior and 

required deadlines. 

Later in chapter 6 the above methods are used in Fault Injections analysis. 

4.2.2 The Cardiac Pacemaker Example  

4.2.2.1 Concurrency-based Timing Analysis 

Focus: Delay all messages on the connector between the Atrial  and Ventricular components. (10 

epochs is shown in Figure 4.5)  

Result: Figure 4.5 shows a sample of the Concurrency-based analysis for a Cardiac Pacemaker in 

the AVI operational mode where all messages between the Atrial and the Ventricular models are 

delayed by 10 epochs (100 milliseconds). In case of more than one unsensed consecutive heart 

beats, the next heart beat overlaps with the generated paces. 

Reason: Due to message delay, the refractory time for the Atrial increased by at least 20 epochs 

and the Pacing is delayed from expected by 10 epochs, thus the start of the waiting state was 

delayed by at least 30 epochs.  

Note: We observed that Queuing of messages occurs for delays larger than 20 epochs. 
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4.2.2.2 Performance-based Timing Analysis 

Focus: Insert delays in the execution of actions in the refractory state of the Atrial component. (10 

epochs is shown) 

Result: : Figure 4.6 shows a sample of the Performance-based analysis for a Cardiac Pacemaker 

in the AVI operational mode where the entry actions of the Atrial Refractory state is delayed by 

10 epochs (100 milliseconds).In Case of 2 consecutive unsensed heart beats, the second heart 

pulse overlaps with the second pace. 

Reason: The inserted delay added to the refractory period of the Atrial, thus causing the start of 

the waiting state to be delayed. 

4.2.2.3 Timeout-based Timing Analysis 

Focus: Increase the timeout value of the Ventricular refractory (Vrefract) timer. (5 epochs is 

shown) 

Result: Figure 4.7 shows a sample of the Timeout-based analysis for a Cardiac Pacemaker in the 

AVI operational mode where the Venticular Refractory timer is increased by 5 epochs (50 

milliseconds) to be 35 epochs (350 milliseconds).In Case of 2 consecutive unsensed heart beats, 

the 2nd heart pulse intersects with the 2nd pace. 

Reason: The Refractory time-out in the Ventricular triggers the change of state to waiting in the 

Atrial, thus the increase in its value causes a delayed sensation period which accumulates in the in 

case of consecutive unsensed heart beats. 

4.2.2.4 Environmental-based Timing Analysis 

Focus: Delay the sensation of the heart pulses in the Ventricular component. (30 epoch is shown) 

Result: Figure 4.8 shows a sample of the Environmental-based analysis for a Cardiac Pacemaker 

in the AVI operational mode where the sensation messages are delayed by 30 epochs (300 

milliseconds). After pulse A two pulses were not sensed from the heart, thus two paces were 

generated but delayed by 30 epochs, this made pulse B to fall between the two paces.  

Reason: The delay causes a shift in the sensed Heart beats series, thus increasing the chance for 

pacing while pulsing. The effect is more clear in pulse C where one pace was generated and pulse 

C fallen in the refractory state. 
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Figure 4.5  Sample of Concurrency-based Timing Analysis for a Cardiac Pacemaker in the AVI operational mode 
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Figure 4.6  Sample of the Performance-based analysis for a Cardiac Pacemaker in the AVI operational mode 
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Figure 4.7  Sample of the Timeout-based analysis for a Cardiac Pacemaker in the AVI operational mode  

Graph Star t : 4500 G r a p h  E n d : 9 0 0 0 X  a x i s  l a b e l  S t e p : 100
G r a p h  N a m e : Time-out  based analys is .  Vent r icu lar  re f ractory  t imer  i nc reased  by  5  epochs  t o  b e  3 5  e p o c h s
Ser ies 1: h e H e a r t Ser i es  2 : V E N T R I C U L A R _ M O D E L Ser ies 3: A T R I A L _ M O D E L

C o m m e n t s : In  Case o f  2  consecut ive  unsensed hear t  beets ,  the 2nd hear t  pu lse  in te rsec ts  wi th  the 2nd pace.

P a c i n g

Wa i t i ng

Refract ing

P a c i n g

Wa i t i ng

Refract ing

P u l s e

Wa i t i ng

T ime  i n  epochs

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

45
00

46
00

47
00

48
00

49
00

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

59
00

60
00

61
00

62
00

63
00

64
00

65
00

66
00

67
00

68
00

69
00

70
00

71
00

72
00

73
00

74
00

75
00

76
00

77
00

78
00

79
00

80
00

81
00

82
00

83
00

84
00

85
00

86
00

87
00

88
00

89
00

90
00

Heart

Ventrical

Atrial



 

-  41  - 

 
Figure 4.8  Sample of the Environmental-based analysis for a Cardiac Pacemaker in the AVI operational mode 
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CHAPTER 5:   AUTOMATED RISK ASSESSMENT 

5.1 Introduction 

Risk assessment is an important process in managing software development. Performing risk 

assessment in the early development phases enhances the resource allocation decisions [33]. 

Several methodologies for risk assessment were developed, mostly based on subjective judgment. 

In this chapter we present how the methodology presented in [33] is automated. The methodology 

is based on:  

1. Dynamic metrics: presented in [35] where component complexity and connector coupling 

factors are derived from simulating all scenarios based on the system scenario profile. A 

brief description is presented in section 5.1.1 of this chapter.  

2. Component Dependency Graphs (CDG): introduced in [36] and adapted in [33] where a 

CDG Risk traversal algorithm is presented. A brief description of the CDG and the risk 

aggregation algorithm is presented in section 5.1.2 of this chapter. 

3. Severity analysis: Based on MIL_STD_1629A where the worst case consequence of a 

failure is considered, and the severity is determined by the degree of injury, property 

damage, system damage, and mission loss that can occur. The Failure Mode and Effect 

Analysis (FMEA) technique is a systematic approach that details all possible failure 

modes and identifies their resulting effect on the system [24]. In [33] severity indices 

(svrty i) of 0.25, 0.50, 0.75, and 0.95 were assigned to minor, marginal, critical, and 

catastrophic severity classes respectively. 

The UML-RT model is built and simulated using RRT, from which log files are made available 

for extracting the required parameters. We use Microsoft Excel sheets and Macros in the 

development of the automated environment together with RRT tool. The methodology derives 

heuristic risk factors for components and connectors from dynamic metrics and severity analysis 

(equation 5.1), and the system/subsystem overall risk factor is obtained from the traversal of the 

CDG.  

hrf i = cpxi x svrty i                     Eq. 5.1 (source [33]) 
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where 0 <= cpxi <= 1, and 0<= svrty i < 1 are the normalized complexity level (dynamic 

complexity for components or dynamic coupling for connectors) and severity level for the 

architecture element respectively (source [33]). The first step in the Risk assessment methodology 

for dynamic specifications is to derive the complexity factors (component complexity and 

connector coupling) using simulation and Dynamic Metrics [35]. The next step is to derive 

severity factors for components and connectors using FMEA and simulation. Developing heuristic 

risk factors for components and connectors by using equation 5.1 is the third step. Constructing a 

CDGs for risk assessment purposes and traversing the graph using the risk aggregation algorithm, 

presented later in this chapter, is the final step where the product is the system/subsystem overall 

risk factor. 

5.1.1 Dynamic Metrics 

The complex dynamic behavior of many real-time applications motivates a shift in interest from 

traditional static metrics to dynamic metrics. Active components are sources of errors because 

they execute more frequent and experience numerous state changes. Therefore there is a higher 

probability that if a fault exists in an active component, it will easily manifest itself into a failure. 

For risk analysis at the architecture level, the risks of a failure are the interest. Hence, the motive 

to assess the complexity of components and connectors as expected at run-time using dynamic 

metrics. 

In the risk analysis, the dynamic metrics defined in [35] are used to obtain complexity factors for 

each architecture element. A complexity factor for each component is obtained using the dynamic 

complexity metric for the statechart specification of that component. A complexity factor for each 

connector is obtained using the dynamic coupling metric for the messaging protocol of that 

connector. 

5.1.2 Component Dependency Graphs  

Component Dependency Graphs (CDGs) are introduced in [36] as probabilistic models for the 

purpose of reliability analysis at the architecture level. CDGs are directed graphs that represent 

components, component reliabilities, link and interface reliabilities, transitions, and transition 

probabilities. CDGs are developed from scenarios. One way to model scenarios is using UML 
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sequence diagrams . By using sequence diagrams, we are able to collect statistics required for 

building CDGs, such as the average execution time of a component in a scenario, the average 

execution time of a scenario, and possible interactions among components. Figure 5.1 illustrates a 

simple CDG example consisting of four components, C1, C2, C3, and C4. 

 Figure 5.1  A Sample CDG 1 (source [33]) 

A CDG is defined as follows: 

CDG=<N,E,s,t>; where N is set of nodes, E is set of edges, and s and t are the start and 

termination nodes, i.e. N = {n}, E ={e}, 

n = < Ci, RCi, ECi >; where Ci is the name of the ith component, RCi is component reliability, 

and ECi is average execution time of a component Ci 

<C1,RC1=0.2, EC1=3>

<T12,RT12=1,PT12=0.8>

<C3,RC3=0.7,EC3=6><C2,RC2=0.4,EC2=4>

<C4,RC4=0.8, EC4=3>

<T13 ,RT13=1,PT13= 0.2>

<T24,RT24=1,PT24=1>
<T34 ,RT34=0.9,PT34=1>

s

<T43 ,RT43=1,PT43=0.7>

t

PT4,t=0.3
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e = <Tij, RTij, PTij>, where Tij is transition from node ni to nj in the graph, RTij is transition 

reliability, PTij is transition probability. 

5.1.3 The Risk Analysis Algorithm 

The architecture risk factor is obtained from aggregating the risk factors of individual components 

and connectors. Assuming that a sequence of components are executed, then the risk factor for 

that sequence of execution is given by: 

                                                HRF = 1 - π i(1-hrf i) 

Where π i is the CDG traversal operation defined by the “while loop” in the algorithm shown in 

figure 5.2.  

After constructing the CDG model, the risk of the application can be analyzed as the function of 

risk factors of components and connectors using the following risk assessment algorithm.  

 

Figure 5.2  Risk Aggregation Algorithm (source [33]) 

Eq. 5.2(source [33])

Algorithm 
Procedure AssessRisk 
Parameters 
 consumes  CDG, AEappl,(average execution time for the application) 
 produces  Riskappl 
Initialization: 

Rappl = Rtemp = 1 (temporary variables for (1-RiskFactor) ) 
Time = 0 

Algorithm 
push tuple <C1, hrf1, EC1 >, Time, Rtemp 
while Stack not EMPTY do 
 pop < Ci, hrfi , ECi >, Time, Rtemp 
 if Time > AEappl  or Ci = t; (terminating node) 
  Rappl += Rtemp  ;(an OR path) 
 else  
 ∀ < Cj ,hrfj , ECj > ∈ children(Ci) 

push (<Cj, hrfj  ,ECj>, Time += ECi , R temp =  
Rtemp*(1-hrfi)*(1-hrfij )*PTij )  ( AND path)  

 end 
end while 

Riskappl = 1- Rappl 
end Procedure AssessRisk 
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The algorithm expands all branches of the CDG starting from the start node. The breadth 

expansions of the tree represent logical "OR" paths and are hence translated as the summation of 

aggregated risk factors weighted by the transition probability along each path.  The depth of each 

path represents the sequential execution of components, the logical "AND", and is hence 

translated to multiplication of risk factors (in the form of (1-hrf i)). The "AND" paths take into 

consideration the connector risk factors (hrf ij). The depth expansion of a path terminates when the 

summation of execution time of that thread sums to the average execution time of a scenario or 

when the next node is a terminating node. 

5.2 The Automated Environment 

Figure 5.1 shows a block diagram of the products and processes in the proposed environment for 

automated risk assessment. Circles and ovals denote inputs/outputs to be processed/produced by 

the processes and activities shown.  

Architecture modeling is performed using the UML simulation environment provided by RRT. 

The UML simulation environment consists of an Observer Capsule defined as an external 

observing entity. The Observer component is not part of the RRT tool; we defined this component 

in order to facilitate the automation process. These violations represent detected failures during the 

simulations. The observer is modeled using state charts based on the expected dynamic behavior 

of the components as depicted in the sequence diagrams. 

The analyst provides simulation settings at the start of the simulation. These settings consist of 

variations for variables that represent timer and delay value for real-time activities on successive 

runs managed by the observer. They also capture the different settings for the input stimuli that 

simulate sequences of scenarios. The simulation Log and the violation report produced from the 

simulation are fed to the analysis tool (MS Excel Macro). The MS Excel Processing Macro 

analyzes the log file and produces timing diagrams and a violation table. The violation table 

consists of detected violations or failures and their occurrence time. The timing diagrams are 

provided to help the analyst identify the severity level of the detected failure in terms of meeting 

deadlines. The Excel Processing Macro also produces an Excel sheet for normalized component 

complexity for each component, an Excel sheet for normalized connector complexity for each 

connector, and an Excel sheet for the CDG. The values hrf i and hrf ij are identified in a later stage 
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during the execution of the Risk Macro. Severity Ranking is obtained from the severity analysis 

performed by the analyst using the violation table and timing diagrams as diagnostics for effect 

analysis and the simulation settings. Feeding the Severity ranking, complexity factors and CDG to 

the analysis tool, Risk factors for each component and connector are obtained and the CDG is 

traversed to obtain the system/subsystem overall risk factor HRF. Appendix B shows the MS 

Excel Risk Macro and Risk Traversal Macro, where in the Risk Macro the construction of the 

CDG is achieved and equation 5.1 is utilized while in the Risk Traversal Marco the CDG traversal 

algorithm (figure 5.2) is implemented and the product is the overall system/subsystem Risk factor 

based on equation 5.2. 

 

 

Figure 5.3  The Automation process-product diagram 
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5.3 Conclusion and Future Work 

The methodology presented in [33] has the following benefits: it is applicable early at the 

architectural-level and hence it is possible to identify critical components and connectors early in 

the lifecycle. The methodology uses dynamic metrics, that covers the fact that a fault in a 

frequently executed component will frequently manifest itself into a failure. The methodology is 

based on simulation of UML-RT models. Simulation helps in: performing FMEA procedures and 

observing the timing diagrams. The presented automation environment shows how RRT tool can 

be used in fast and efficient deployment of the methodology. 

The above methodology and its automation were applied to the Cardiac Pacemaker case study 

(presented in chapter 3). Yet future research could experiment with applying the methodology to 

larger case studies with multiple subsystems to compare the aggregated risk factors of individual 

subsystems. A Static Architectural-Level Risk Assessment methodology based on McCabe's 

Cyclomatic Complexity can be derived following the same fashion of the dynamic Architectural-

Level Risk Assessment methodology. Tool support can be provided by Rose Extensibility  

Interface where simulation is not required. Comparing Static Risk and Dynamic Risk is required 

to assess the effort and time spent in applying both methods 
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CHAPTER 6:   FAULT INJECTION ANALYSIS 

Failures can occur when a software component fails, a hardware component fails, bad or corrupted 

input is provided to the system or/and Executing an unlikely software/hardware error (design or 

implementation). Fault injection is a technique for analysis and verification of systems behavior 

(responses) to these failures before deployment. Fault injection studies can be categorized into 

three types: Hardware fault injection, Software Implemented Fault Injection (SWIFI) and software 

simulation fault injection, which intern was studied versus SWIFI in [28]. Several studies on Fault 

Injection analysis were conducted, mostly on code level in case of SWIFI, on hardware prototypes 

in case of hardware fault injection and on simulation models in case of software simulation fault 

injection. Several tools were developed for fault injection analysis [9,6,7]. Software simulation are 

typically high level abstraction of a system, characterized by protocols, interfaces, components 

and function, where the typically injected faults are: miss-timings, missing or corrupted massages, 

and missing or corrupted message replays. Software simulation fault injection help flush out 

design level flaws (specially in fault tolerant systems). In this chapter we present a fault model, for 

conducting software simulation fault injection analysis, that we derived to be specific and 

optimized for UML-RT design models. 

6.1 Motivations 

It is our concern for this work to provide a fault model for UML-RT models in order to use it in 

conducting fault injection analysis. Three motives derive our study in fault injection analysis: 

1. Severity Analyses: where a severity factor based on MIL_STD 1629A [24] for each 

component in a UML-RT model is derived. Severity factors were required in 

Architectural-level Risk assessment in [33]. 

2. Test Cases Optimization: In [1] a method for building trusted components where a 

component is seen as a set of: specifications, a given implementation and its embedded 

test cases. Later in section 5 we demonstrate the use of our fault model in optimizing the 

number of test cases needed. 
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3. Verification of Fault Tolerant software and systems.  In [31] and [32] fault injection is 

viewed as a testing and verification tool, rather than a debugging tool. 

6.2 UML-RT Model elements 

The UML-RT model can be covered from two general types of elements: the Structural related 

elements and the Behavioral related elements. The Structural elements describe the software 

architecture of the model. UML-RT defines Capsules that decompose into several Capsules in a 

layered fashion. RRT Structure Diagram is used to view the Capsule structure. Ports and 

Connectors are used to connect these Capsules. Capsules are the equivalent of components in a 

Software Architecture while Ports and Connectors resemble the connectors. The Behavioral 

elements are used to describe the time related and/or dependent requirements, in essence the 

dynamic behavior of Components. UML-RT (and therefore RRT) defines State Charts to describe 

the dynamic behavior of a Component. The State Diagrams are composed from: States (Marco  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1  UML-RT model elements 
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and Micro States), Messages, Transitions (responding to the reception of a Message), Code (used 

in sending Messages), Timers and Variables. In [10], a full analysis for the major testing problems 

and their resolutions in testing state machine based models were presented. States were 

categorized into three types of states: Initial State, Final State and Intermediate State. The 

Behavioral and Structural elements are linked by the definition of Protocols that define the flow 

(time dependent behavior) of Messages (a behavioral element) on a Connector. Figure 8.1 

summarizes the UML-RT model elements described. 

6.3 Domain of faults in UML-RT Models 

In this section we derive possible faults that can take place in the dynamic specification model. 

Based on the model elements presented above and following the Structural and Behavioral 

categorization, we derive faults that can exist from miss implementations. 

6.3.1 Structural Faults 

1. Components (that are part of the defined Software Architecture of the model):  

a. A missing component: A component that was not modeled. This makes the 

specification incomplete. 

b. Component class mismatch: In UML-RT Components are Capsules that are 

based on a Capsule Class. The Capsule should match the Capsule Class it is 

based on (instantiated from). 

2. Connectors/ports:  

a. Misconnected ports: The connection between ports is established in the graphical 

interface, thus it is possible to swap (misconnect) connectors while connecting 

ports causing incorrect delivery of messages. 

b. Unconnected ports: A missing connectors causes two or more ports to be 

unconnected. This causes messages not to be received. 
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3. Protocol:  

a. Missing messages: An incomplete Protocol definition causes an incomplete 

specification. 

b. Incorrect directional configuration: For each Protocol two sets of messages are 

defined, incoming & outgoing, misplacement of messages between those sets can 

occur. 

6.3.2 Behavioral Faults 

1. State Diagrams:  

a. A missing State Diagram: A component without a State Diagram is a component 

without any behavioral representation. 

b. Interchanged diagrams: Two components with interchanged state diagrams are 

two components with interchanged behavioral representations.  

2. States:  

a. Incorrect initial state: Default initial state is miss configured, thus causing the 

components Statechart to start executing from an incorrect state. 

b. Incorrect final state: In a macro state of a component with more than one 

ChainState , the transition leading to the transition exiting from the grand state 

(through ChainState) is miss configured. Thus leading to incorrect exit conditions 

from the macro state. 

c. Interchanged states: The transitions from and into a state and the entry and exit 

actions define the state. Interchanged states cause the state entry and exit actions 

to be swapped. 

d. Missing states: Incomplete description of the dynamic behavior of a component. 
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3. Transitions:  

a. Incorrect trigger: Incorrect transition configuration, i.e. incorrect triggering 

message configured. 

b. Interchanged transitions: the transitions triggering message and actions are 

interchanged with equivalent in another transition. 

c. Missing transitions: Incomplete description of the dynamic behavior of a 

component. 

4. Messages:  

a. Missing sends: A message command “in code” responsible for triggering a 

transition in a remote component resulting in an incomplete description of the 

dynamic behavior of both components. 

b. Corrupted message attributes: Corrupted data carried in a message. 

5. Variables:  

a. Corrupted initial value: Incorrect initial value. 

b. Corrupted dynamic value: Incorrect handling of variable value during run time. 

6. Time: We refer to four timing analysis methods developed in [34] as the types of time 

related faults.  

6.4 The Fault Model  

In this section we present the set of faults derived from the domain of faults in UML-RT Models 

presented earlier and their deployment procedure. We claim that the selected set is generally 

representing the dynamic part of the domain and we assess our claim by applying the selected 

Fault Model to the Pacemaker case study described in chapter 3.  

The Proposed Fault Model is based on the basic behavioral element in UML-RT models; the 

micro State, and is defined by the following four subsections. 
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6.4.1 State Selection Process 

Five steps describe our process for Fault Injection analysis for UML-RT models. The first two 

steps are not required for Severity analysis since the severity level of each component has to be 

deduced. While for test case optimization all steps are required. 

1. Order Components based on dynamic complexity: Our process for Fault Injection 

analysis for UML-RT model starts by the selection of a set of components to be analyzed 

based on their dynamic complexity factors (refer to [35] for details on dynamic 

complexity).  

2. Select the set of components to be injected with faults based on highest complexities: The 

number of the selected components depends on the complexity threshold specified by the 

analyst. 

3. Order states in each component based on contribution to the component complexity: 

Order the microstates of each component based on the degree of contribution to the 

dynamic complexity factor of the component. The first having the highest share in the 

components dynamic complexity.        

4. Select the set of states and macro states to be injected with faults based on the highest 

contribution to the component’s complexity: The number of selected states is proportional 

to the inverse of the quality level of the analysis and to the time spent in the whole 

process, which is again up to the analyst to decide.  

5. Inject the three sets of faults indicated bellow for each of the selected states. 

6.4.2 State faults 

1. Swap the selected state with the state next in order (State Swap): Interchange the entry 

and exit action code of the selected state with equivalents in the state next in order of 

contribution to dynamic complexity. 

2. Swap transitions out of the selected state (Transition Swap): If and only if the selected 

state has more than one outgoing transitions, interchange each two transitions, i.e. swap 

destination, trigger and actions. 
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3. If an initial state exists, force the selected state to be the initial state (Initial State Swap): 

The tool provides the ability to specify the initial state in a state diagram, and hence forces 

the selected state to be the initial state if it is not.  

4. If a final state exists, force the selected state to be the final state: The tool provides the 

ability to specify the final state (or states in case of more than one exit transition from the 

containing macro state) in a state diagram, and hence forces the selected state to be the 

final state (or any of them if more than one exists). 

6.4.3 State transition faults 

1. Disable the transition (Null Trigger): Remove the triggering message (equivalent to the 

transition being configured to a null message).  

2. Interchange trigger message with another randomly selected message (Trigger Swap): 

Change the triggering message to any other message from the same protocol.  

6.4.4 Timing Faults 

Listed bellow are the four timing analysis methods described in chapter 3 and summarized in 

table 4.2: 

1. Timeouts-based 

2. Concurrency-based 

3. Performance-based 

4. Environmental-interactions 

6.5 Pacemaker case study Experimentation 

We injected faults in the Pacemaker model, presented in chapter 3, based on the fault model 

presented above. First we conduct the dynamic complexity ordering of components [33], and we 

arrive to the fact that the Atrial_Model and the Ventricular_Model have the highest factors. For 

the purpose of this work we show results from analyzing the Atrial_Model. Second we analyzed 

the Atrial_Model microstates and the Waiting state of the AVI scenario had the highest 

contribution to the components dynamic complexity, followed by the Pacing state. We use two 
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sequences of heart pulses as test cases for the V&V of the AVI mode, each is a different set of 

heart pulses, one with three skipped pulses and the other with one skipped pulse. We use Timing 

Diagrams to show our results. Each fault is injected in two simulation runs with the two heart 

sequences as two different inputs to the system. Figure 6.2 and figure 6.3 show the expected 

behavior of the Pacemaker in the AVI operational mode, in case of the heart skipping three pulses 

consecutively (figure 6.2) and in case of the heart skipping one pulse (figure 6.3). The Timing 

Diagrams for the three heart pulses skipped and the one heart pulse skipped are shown for each 

fault. The six Timing Diagrams next to figure 6.3 are the results of applying the State Faults of the 

fault model while the last four are the results from applying the State Transition Faults. Below we 

describe the application of the fault model in Fault – Result fashion: 

1. State Faults: 

a. State Swap (figure 6.4 & figure 6.5):  

i. Fault: Swap the Waiting and Pacing states of the Atrial_Model AVI 

macro state.  

ii. Result: Faulty behavior in which the Atrial_Model is pacing the heart 

periodically regardless of the existence of the pulse from the heart. This 

violates the AVI operational mode requirements. 

b. Transition Swap (figure 6.6 & figure 6.7): 

i. Fault: Swap the transitions “GotVSense” with “Time-Out” of the 

Waiting state.  

ii. Result: Atrial_Model and Ventricular_Model went out of 

synchronization. Thus causing the Atrial_Model to be stuck at the 

Refractory state and the Ventricular_Model to be stuck at the waiting 

state. 

c. Initial Sate Swap (figure 6.8 & figure 6.9): 

i. Fault: The waiting state is forced to be the initial state instead of the 

refractory state.  

ii. Results were deferent in each heart sequence: 

1. Three skipped pulses: Failure to meet the timing constrains in 

the first 15 seconds of operation in case of three skipped pulses  
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2. One skipped pulse: Successful operation in case of one skipped 

pulse. 

2. State Transition Faults: 

a. Null Trigger (figure 6.10 & figure 6.11): 

i. Fault: The trigger of the Time-Out transition is removed.  

ii. Result: Both Atrial_Model and Ventricular_Model were stuck at the 

Waiting states, Pacing state never visited and the Heart was never paced. 

b. Trigger Swap (figure 6.12 & figure 6.13): 

i. Fault: The trigger of the Time-Out transition changed to be the Sense 

message from the Ventricular_Model and the trigger of the GotVSense 

transition changed to the timer’s time-out message. 

ii. Result: Pacing the heart when not required while not pacing when 

required. Thus violating the AVI operation mode requirements. 

 

Assuming the motive of studying the Severity of the Atrial Model, we conclude that since one or 

more of the faults lead to a faulty behavior that will cause the death of the patient, then its severity 

level is “Catastrophic”, even that one of the faults “Initial state swap” did lead to a faulty initial 

behavior that would not cause patients death. 

Assuming the motive of optimizing the number of test cases required for the testing the Atrial 

component, we observe that the second sequence of heart pulses with one skipped pulse does not 

cause the fault “Initial State Swap” to manifest into a failure, while the first sequence uncovers all 

the injected faults. Thus we can eliminate the second sequence from our testing process. We note 

that only two test cases we used demonstrate the use of our fault model in test case optimization. 

6.6 Conclusions & Future Work  

The proposed Fault Model is acknowledged for its applicability in early development stages and 

scalability. Yet further experiments should be conducted on several case studies for better 

assessment and enhancement. Enhancements are required in several areas: 
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1. In the process of component selection, the number of components selected is decided by 

the analyst based on the available resources (mainly time). Better criteria for this selection 

is required to guarantee the best results when using the fault model in test case 

optimization. 

2. The presented model focuses on microstates, while it is applicable to Marco states as well. 

Thus experiments for assessing the level of effectiveness of the fault model at the macro 

state level.  

3. In the process of state selection, the number of sates selected is decided by the analyst 

based on the available resources (mainly time). But the tradeoff is in the quality of the 

analysis, thus a criteria for this selection is required.  

4. The selection of the second message to swap with in a Trigger Swap is random. We 

perceive that a selection criteria is required for better results.  

Finally we stress on the fact of future work and experiments conducted on several case studies to 

assess and enhance the proposed model, before it is ready for industrial use. 
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  Figure 6.2  Pacemaker Expected Behavior (three pulses skipped) 
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Figure 6.3  Pacemaker Expected Behavior (one pulse skipped) 
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Figure 6.4  State Swap (three pulses skipped) 
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Figure 6.5  State Swap (one pulse skipped) 
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Figure 6.6  Transition Swap  (three pulses skipped) 
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Figure 6.7  Transition Swap (one pulse skipped) 
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Figure 6.8  Initial Sate Swap (three pulses skipped) 
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Figure 6.9  Initial Sate Swap (one pulse skipped) 
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Figure 6.10  Null Trigger (three pulses skipped) 
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Figure 6.11  Null Trigger (one pulse skipped) 
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Figure 6.12  Trigger Swap (three pulses skipped) 
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Figure 6.13  Trigger Swap (one pulse skipped) 
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CHAPTER 7:   PERFORMANCE MODELING 

7.1 Introduction  

The importance of early performance assessment grows as software systems increase in terms of 

size, logical distribution and interaction complexity. Lack of time from the side of software 

developers, as well as distance among software model notations and performance model 

representation do not help to build an integrated software process that takes into account, from the 

early phases of the lifecycle, non functional requirement. From performance viewpoint, the 

validation of non functional requirements early in the lifecycle is an important and difficult task to 

accomplish. Early performance assessment allows us to build software that better fulfills 

performance requirements. This helps to reduce the risk of late detection of poor performance that 

would be hard to manage. Thus the necessity to provide a standard representation of information 

related to the performance (e.g., resource demand) in the UML framework is therefore ever more 

clear [17]. As a consequent step, this makes it easier to transfer UML models from design to 

performance analysis tools [27]. Several approaches for extending the UML notation to embed 

performance related information have been introduced  

Tailoring the derivation of a performance model on a specific application domain, such as Client-

Server systems, is the goal of [15], where a methodology is introduced (based on a performance 

engineering language developed by the authors) to make the distance between software 

developers and performance analysts shorter. A compiler of the language generates an analytic 

performance model. The derivation of performance models, based on Layered Queuing Networks 

(LQN), using graph transformation is presented in [18,19,20]. Specifically, the LQN model 

structure is derived from the software architecture description based both on informal description 

[20] and on UML Collaboration diagrams [19,18]. The generation of LQN model parameters is 

dealt with in [19] where Activity Diagrams are generated (by graph transformation) from 

Sequence Diagrams. 
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7.2 Our approach for performance modeling of Client-Server systems using the UML-RT 

notation 

Most of above introduced approaches aim at extending the UML notation to easily translate UML 

models into well assessed performance tool notations. In this work we aim at filling the gap 

between UML model notation and performance model representation, by extending the 

capabilities of the environment described in chapter 2 (based on UML models), in essence we 

introduce an opposite process. We introduce new stereotypes representing performance related 

items, such as resource types and job dispatchers. They allow the software designers to 

homogeneously represent a software architecture integrated with a running platform, and 

parameterized with the resource demand that the components require. As an application example 

the simplified ATM banking subsystem has been considered for studying our approach. This is to 

prove the effectiveness in building, and simulating, software performance models. We use the 

simulative potential of the RRT tool to run software models that include items and parameters 

related to the performance of the model, so overcoming problems concerning analytical solutions 

of performance models. The visual notation underlying the RRT tool, that is UML-RT, has been 

therefore used to extend the set of stereotypes that the tool provides. The extension provides (a 

library of) new stereotypes that allow the representation of resource related items (such as CPUs, 

disks, etc.), in order to integrate in the same scheme the software structure and the resource 

requests of a software product. Thereafter a systematic approach has been sketched (using this 

additional library) to model software/hardware systems, in order to readily get insights on their 

performance profiles.  

7.2.1 A layered software architecture  

In [23] it is shown how the software architecture of a client-server application can be structured as 

a layered model. Components on the topmost level of the model are pure clients, the ones on the 

bottom are pure servers, all the other components are clients with respect to the lower level ones 

and server of the upper level ones. In figure 7.1 such a model is shown, where square boxes 

represent software components (namely tasks), with entry points, and round blocks represent 

resources.  
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Figure 7.1  Transparent diagram of Capsules and embedded Capsules 

In an UML-RT perspective such a layered structure can be obtained by merging together all the 

lowest level Capsules in the same diagram, that is from breaking down all the components that 

contain subcomponents. The resultant Capsule diagram represents the most detailed software 

architecture of the whole system. However a Capsule diagram presents two significant differences 

with respect to a layered model, that we discuss in the following: 

1. The layered model is specifically designed for performance analysis and evaluation, so it 

contains also blocks that represent the resources. To every component a set of resources 

can be attached in order to represent the resource that the component requires (see figure 

7.1). This is missing in a Capsule diagram, that looses the possibility to be used (as it is) 

for performance goals. 
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2. A Capsule diagram is supported by a set of State Diagrams, each describing the dynamic 

behavior of the component represented by a Capsule. This is missing in a layered model, 

that looses the possibility to simulate the dynamic internal behavior of its components. 

The basic idea of our approach is providing a set of new stereotypes, based on the UML-RT 

notation, that can be used to represent resources in a Capsule diagram (e.g., CPUs, LANs, etc.). 

By embedding the appropriate set of resource instances into a Capsule diagram, the gap with a 

layered model is removed, and the additional value of a naturally simulative environment can be 

exploited to solve the performance model and get performance index insights. 

7.2.2 Representing the extended software architecture  

In order to represent in the same Capsule diagram the software architecture and the resources that 

the software components require, the diagram is conceptually split in two sides: the Software side 

and the Resource side (see figure 7.2). Capsules are in both sides, but while the ones in the 

software side represent software components, the resource side Capsules represent the resource 

that the considered architecture may need. 

Upon the extension of the software architecture illustrated by the scheme in figure 7.2, a properly 

parameterized simulation of such scheme allows to evaluate the performance of the combined 

software architecture/resource system. 

Three main issues have to be addressed to achieve this objective (and they are discussed in the 

following):  

1. Building a basic structure of the resource side of the scheme. 

2. Providing standard Capsule stereotypes to be used in the resource side. 

3. Providing standard criteria to introduce the resource requests as additional items to the 

software side, without modifying the software architecture. 
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Figure 7.2  Generic two-sides Capsule diagram 

In the upper side of figure 7.3 the Capsule diagram of the basic structure that we propose for the 

resource side of the scheme has been drawn. This basic structure is intended to be used, as it is, 

wherever a resource side is necessarily to be coupled to a software side. So, for example, the 

Capsule diagram represents the internal structure of both resource sides of figure 7.2, namely 

Resource_1 and Resource_2. It is basically composed by a Main Dispatcher and a set of resource 

types.  
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Figure 7.3 Basic structure (Capsule and State Diagrams) of the resource side.  
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The dispatcher is the Capsule in charge of receiving resource requests from the software side. We 

suppose (like in a Software Performance Engineering approach [29]) that every resource request 

has been produced by a software block (that is a set of operational steps), and includes the amount 

of every resource type needed to execute that software block (e.g., number of CPU instructions, 

number of disk blocks, bytes to be transferred on a network, etc.). Upon receiving a request, the 

dispatcher schedules, in a given order (where the order of resource consumption is here supposed 

do not affecting, in average, the final performance measures; however the dispatcher can be 

modified to take into account a specific ordering), the visits to the resource types needed. The 

Resource_Interface port in figure 7.3 is a multiport, that is a port with a given multiplicity. This 

contributes to the generality of our scheme with regard to the number of resource types that can be 

considered. Labels in figure 7.3 indicate the type of resources considered, but the implementation 

of this scheme allows to add (delete) a resource type by simply introducing (eliminating) a new 

Capsule and modifying the Resource_Interface multiplicity.  

The internal structure of any resource type Capsule is quite standard as well. As shown in figure 

7.3, where the CPU_Resources has been graphically expanded, every resource type Capsule 

contains an Internal Dispatcher and a set of actual resource instances. In the figure we show, as an 

example, the case of four CPUs, where four is the multiplicity given to the CPU Capsule (i.e., the 

number of resource instances) and the multiport connecting them to the Internal Dispatcher. Upon 

this “low level” dispatcher receiving a request of a specific amount of resource type it manages, 

basing on prior knowledge (e.g., speeds of different resource instances, queue lengths, previous 

request distribution) it schedules a job for a resource instance and notifies it by sending a message 

to the latter. When the requested amount has been consumed in the resource, the notification is 

sent back to the Internal Dispatcher and then forwarded to the Main Dispatcher; the latter checks 

whether the complete resource request of the software side has been satisfied or other resource 

types remain to be consumed. In the next section we show how to originate a resource request 

from the software side. 
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Basically in figure 7.3 have been introduced three new stereotypes (as Capsules): a high level 

dispatcher Main Dispatcher, a low level dispatcher Internal Dispatcher, and a CPU resource. In 

the lower side of the figure the State Diagrams of these stereotypes are shown.  

For sake of conciseness and readability, we do not discuss the details of the dispatchers' State 

Diagrams, rather we focus on the CPU one. The CPU is modeled as a queued service center that 

extracts jobs from the queue following a quantum based round-robin strategy [14,13]. In the “idle” 

state the queue is supposed to be empty and no job is being served. Upon the arrival of a job, the 

CPU becomes “busy” and it returns to the idle state in any moment the queue is idle and no job is 

being served. Two state transitions originate from the busy state. In case of a new job arrival the 

corresponding transition only serves as update of the queue length and contents. In case of a job 

departure from the service center (either due to the quantum expiration or due to the end of service 

requested) there are two conditions to be orderly checked, namely CP1 and CP2. First the residual 

amount of resource requested is read: if zero then the job has been completely processed and it can 

leave the CPU, else it has to be queued again (i.e., round-robin strategy) in order to be served later 

for at least one more quantum. In case of job processed an additional check is needed: if there is at 

least one job waiting into the queue then the first job is extracted and processed (i.e., the CPU 

goes again in a busy state), else the CPU returns to the idle state. 

In a similar way a Capsule stereotype can be introduced for any type of resource type that 

contributes to build up a (possibly distributed) modern hardware platform (e.g., mass storage, 

wired network, etc.), provided that the corresponding State Diagram is also given. In any case the 

resource side of our scheme is open to represent whatever number of resource types with whatever 

number of instances, the only bound being the actual scalability of the modeled software/resources 

system.  

Issue 3. aims at keeping “non-invasive” our technique, in the sense that the validation task of non 

functional performance requirements must be conceivable on whatever (existing or under design) 

software architecture, without affecting its generation process and its final structure. This means 

that the information related to the performance evaluation has to be fully additional to the software 

architecture, and therefore criteria have to be introduced to rule the addition of such information. 

We have described in this section how a resource request is handled from the resource side. A 
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resource request from the software side viewpoint is basically a message that leaves the software 

side and reaches the appropriate set of resources in the resource side. In the next section we show 

the criteria that we use to build and send such message from the software side, and to manage the 

associated reply.  

7.3 Example: Simplified Automatic Teller Machine (ATM) banking subsystem 

The application example that we have considered is a simplified ATM banking subsystem. The 

ATN a bank-card and requires a password for user authentication. Users can perform two 

transactions at the ATM: cash withdrawal, balance check. The ATM communicates with a 

computer server at the host bank that verifies the account and processes the transaction. At the end 

of the transaction some final operations are executed and user's card is returned.  

7.3.1 ATM Architecture  

We consider a simplified Automatic Teller Machine (ATM) banking subsystem for 

experimentation purposes. In figure 7.4 a nested view of modeled subsystem is shown. The 

topmost bold box represents the whole system built up by three types of components (i.e., the gray 

boxes). The first component ServerSoftware representing the central processing unit, at the host 

bank, of the subsystem and the second type of components is the ATM representing the remote 

terminal client each include the ATM_Software which is a UML model of the software running in 

the ATM and ATM_Peripherals representing the ATM hardware and the current user. This is 

more clear when viewing figure 7.4 as a two levels of nesting, where the ATM is shown to be built 

up by two components, to the left is the emulation of ATM Peripherals and users (ATM 

Peripherals) and the to the write, the ATM_software. The latter, in turn, contains three basic 

components: BalanceTransaction, Authenticator and WithdrawalTransaction 
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Figure 7.4 ATM software Architecture (3 level nested 
view) 

A T M  

1 0  

S e r v e r S o f t w a r e   O b s e r v e r  

 S e r v e r I O R e c o r d  

T r i g g e r N e w U s e r  

S e r v e r I O R e c o r d  

 O b s e r v a t i o n s   O b s e r v a t i o n s  

T r i g g e r

1 0  

Authenticator BalanceTransaction  WithdrawalTransaction 

User 
information 

User
information

 Userinformation  Userinformation 

ServerIO 
Record 

 IORecord 

ServerIO 
Record  

ServerIO 
Record 

 IORecord  IORecord 

 

ATM_Software 
ATM_Peripherals 

 IORecord 

ServerIORecord 

IORecord TriggerNewUser 



 

- .    - 81

 
All the accounts information and transactions are maintained and processed at the ServerSoftware  

which is modeled as an emulation (sending messages in respond to the received messages and 

according to the Sequence Diagrams). The basic behavior is as follows: the ATM accepts a bank-

card and requires a password for user authentication. Users can perform two transactions at the 

ATM: cash withdrawal, balance inquiry. The ATM communicates with the ServerSoftware to 

validate the users and process the required transaction. At the end of the transaction some final 

operations are executed and user's card is returned. The ATM_Software is the component that 

directly interacts with the user represented as part of  the ATM_Peripheral. Several ATM are 

instantiated using the multiplicity factor of the tool. The ATM has a multiplicity of ten in this case 

(figure 7.4 top level), meaning that ten instances of the same type of components are allocated. 

These components interact with the ServerSoftware component whenever a transaction requires 

access to data residing on the host bank.. On the other hand, there is a unique instance of 

ServerSoftware, meaning that all requests of service (coming from whatever ATM instance) are 

processed by one ServerSoftware component, where therefore contention can be high and 

performance problems are to be investigated (chapter 7). 

This simple architecture allows studying the scalability of such a scheme by directly increasing 

the number of ATM instances. The Observer component is not part of the ATM subsystem, but it 

performs the standard function (described in chapter 4) of starting and setting simulation sub runs, 

as well as generating the users and the collecting the simulation statistics. It generates users in the 

form of trigger messages containing the user type and basing on stochastic distributions. 

7.3.2 Sequence Diagrams  

The ATM software architecture represents the static behavior of the system, by showing 

components and connectors. In order to describe the dynamic behavior of the system classical 

UML diagrams were built, such as Sequence and State Diagrams. Five Sequence Diagrams were 

derived from two scenarios: The balance scenario and the withdrawal scenario. The Five sequence 

diagrams are: 

1. Use_Denied: (Appendix C, figure 1) 

2. Balance: (Appendix C, figure 2) 
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3. Balance_Print: (Appendix C, figure 3) 

4. Withdrawal: (Appendix C, figure 4) 

5. Withdrawal_Print: (Appendix C, figure 5) 

6. Withdrawal_Denied: (Appendix C, figure 6) 

7.3.3 State Diagrams  

It is required for the RRT tool (for simulation purposes) to have at least State Diagrams modeling 

the internal behavior of the lowest level components. Thus we present bellow the state diagrams 

of the Authenticator (figure 7.5), BalanceTransaction (figure 7.6) and WithdrawalTransaction 

(figure 7.7) components. 

The lower side of figure 7.8 shows the State Diagrams of Authenticator and 

WithdrawalTransaction components. The upper side shows two out of the five Sequence 

Diagrams of the ATM subsystem. They represent a successful and an unsuccessful (without 

statement printing) withdrawal transaction (including and after the authentication operations). 

Note that the components acting in these diagrams correspond to lowest level Capsules in the 

ATM software architecture of figure 7.4. It is perceived (in general and applied to the ATM State 

Diagrams) that the overall behavior of a component can be obtained by merging the behaviors of 

the component in all the different Sequence Diagrams it is involved. Figure 7.8 is not complete 

(refer to [3] for further details), but it gives an idea on how the translation from a set of Sequence 

Diagrams to a set of State Diagrams describing the behaviors of the components involved.  

 

 

 

 

Figure 7.5 Authenticator Component State Diagram 
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Figure 7.6  BalanceTransaction Component State 

Diagram 

 

Figure 7.7  WithdrawalTransaction Component State 

Diagram 
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Figure 7.8  Sample of Sequence Diagram to State Diagram translation 
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7.3.4 Performance Modeling for the ATM Example  

Applying our approach to the ATM banking subsystem adds two types of Capsules: 

ServerResources and ATMResources to the software Architecture (3 level nested view) presented 

in figure 7.4, as shown in figure 7.9. These two components are the resource side (left hand side in 

figure 7.2 is added to figure 7.4). The ServerResources are the model representing the resources 

required/consumed during the activities of the Serversoftware based on the messages sent from 

the ATMs across the bank network where ATMResources are the model representing the local 

resources required/consumed during the activities of the ATM_Software based on the messages 

sent from the ATM_Peripherals. 

We describe how a resource request is generated in the software side and how the associated reply 

(from the resource side) is handled. Let us associate each resource request to a software block. 

Independently of the level of detail used, in a Sequence Diagram (such as the ones in figure 7.8) a 

software block is the set of operations that a component performs to process an incoming 

interaction. From a graphical viewpoint a software block is the segment of a component lifeline 

that starts with an interaction entering the component and ends with the next interaction exiting 

the component (We are here assuming that a “service request” to a software component is always 

followed by either a reply to the request or a further request produced by the serving component, 

but this is not true in general.). In figure 7.8 all the software blocks start with a small shaded 

square box. In order to accomplish to the task required by an entering interaction, the component 

has to perform several steps, that can require the use of different resource types (e.g., CPU, disk, 

etc.). The resource request that corresponds to a software block is indeed a vector with each cell 

containing the amount of a resource type requested. This vector is built, as soon as the software 

block is entered, basing on prior knowledge of the designer. How many CPU instructions 

constitute a software block, or how many accesses to disk it needs, is a know-how that the 

software designer must have (at least in average) in order to fill the resource request vector. 

Instead, if performance of an existing software is being evaluated then the average amount of 

resources requested by every software block can be off-line measured. After the vector building, 

the request must be addressed to the appropriate component in the resource side, and this is done 

with a message sending. Therefore in figure 7.8, for example, the software blocks belonging to  
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Figure 7.9  ATM software Architecture (3 level nested view).with the Resource side components  
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the  Authenticator component address their requests to the corresponding ATMResources instance 

of figure 7.9, while the ones belonging to the ServerSoftware component address them to the 

ServerResources of figure 7.9.  

In figure 7.9 an extended partial Sequence Diagram is drawn, in order to show the dynamics of a 

resource request. The five initial common steps of the Sequence Diagrams in figure 7.8 have been 

considered, and we have focused on the resource request originated by the software block 

delimited by steps 4 and 5 in the ServerSoftware component. Lifelines of Capsules belonging to 

the resource side have been appended and the sequence of interactions due to the resource request 

has been explicitly drawn. The remaining of the figure is self-explaining. 

Given the close correspondence between Sequence Diagrams and State Diagrams (as shown in 

figure 7.8), it is straightforward that, in order to build and deliver a resource request vector (in the 

software side) only modifications to the State Diagrams of Capsules are necessary. In particular no 

additional states or transitions must be introduced, rather additional code (building and sending 

the vector) must be wrapped up into State Diagrams in order to fire a remote transition in the 

resource side that receives the request. Analogously, the termination of the request processing 

from the resource side originates a message that enables the requiring software Capsule to perform 

the next operations/interactions.  

We now explore a systematic criteria to embed into a State Diagram the code corresponding to a 

resource request vector, building and delivery. For example, let us consider the software block, 

shown in both Sequence Diagrams of figure 7.8, along the WithdrawalTransaction component, 

that starts with the incoming transition labeled 8:UserInfo and terminates with the outgoing 

transition labeled 9:Withdrawal Transaction Request. In the WithdrawalTransaction State 

Diagram this software block corresponds to the actions performed while entering the 

WaitingServerReplay state. It is intuitive that code must be added to the entry point of this state 

aimed at building and sending the request resource vector of this software block. 

The fact that above considerations imply that, as claimed in the issue 3. of section 7.2.2, no 

modification of the software architecture at all is required in our approach to embed information 

related to the performance analysis.         
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7.4 Experiments 

The scenario used for our preliminary experimentations of the proposed performance modeling 

approach, is for a user entering an incorrect password. The User denied Sequence Diagram 

(Appendix C Figure 1) describes the interactions in this scenario. The ATMSoftware interacts with 

the ServerSoftware one time in this scenario. The message AuthenticateUserInfo and the replay 

UserDenied define this interaction. In the ServerSoftware a resource consumption Job is created 

upon the arrival of every AuthenticateUserInfo message. The Job is sent to the Resource side, 

processed (resource consumption emulated) and sent back to the ServerSoftware. Upon the 

reception of the processed Job the replay is generated and sent back to the ATMSoftware. The 

system is assumed to be configured with one CPU, hence one RoundRobin CPU is configured in 

the ServerResources. The speed of the CPU is configured through two parameters: the quantum 

time, set at 1 milisec and in each quantum 2000 instructions are processed. The State Diagram of 

the Observer shown in Figure 7.10 illustrates the start of the simulation as soon as the 

configuration stage finishes. The ATM_Peripherals generated the initial user as soon as the 

simulations time starts and a new User as soon as the current user finishes, Hence the user inter 

arrival time is 0 and the total number of Users in the system at any given point in the simulation 

time is equal to the number of ATMs. The simulation time is controlled by a timer that is initiated 

as the state Running is entered. In our experiments the simulation time is set to 180 seconds.  

Figure 7.10  Observer State Diagram 
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In the first experiment we configured the number of instructions for each Job to be 100,000 

instructions and the total user thinking time (while entering the password) to be 30 milisec.  

Figure 7.11  Average CPU Queue Length (first experiment) 

 

Figure 7.12  CPU Throughput (first experiment) 
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Figure 7.13  Average User Inter-departure time (first experiment) 

In the second experiment we configured the number of instructions for each Job to be 20,000 
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Figure 7.14  Average CPU Queue Length (second experiment) 
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Figure 7.15  CPU Throughput (second experiment) 

Figure 7.16  Average User Inter-departure time (second experiment) 
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7.5 Conclusion 

We have introduced a new approach to the performance analysis and evaluation of UML based 

systems. The UML-RT notation has been used to build a library of stereotypes that represent 

resources. A software architecture modeled in UML-RT notation can thus be extended by adding 

a “resource side”, that is the representation of a generic platform the software is supposed to run 

on. This uniform representation of software and resources, supported by the capability of the RRT 

tool (that simulates an UML-RT based model), allows to gain performance insights at the time of 

software architectural design. This is a preliminary study towards this approach, but we have here 

shown the potential scalability of our resource representation that, together with its generality, 

make this scheme flexible and portable.  

Of the future areas of work: the automated collection of statistics using the Observer and 

Microsoft Excel, as well as modeling the Disk Resources and studying the effect of Database size 

(CPU and Disk Resources being affected simultaneously) on the overall system performance. 
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CHAPTER 8:   CONCLUSIONS AND FUTURE WORK 

Earlier we mentioned that V&V can be conducted at various development phases and that early 

V&V of software specification and analysis artifacts is encouraged before large investment is 

made in development. V&V of UML specifications can be done at an early development phase - 

prior to implementation - using scenarios, requirements and simulation models. Although UML is 

a rich analysis and design modeling language, it does not define how to study the dynamic aspects 

of the models through simulation; a capability that is required to monitor and asses the expected 

run-time behavior of software systems. V&V teams being much smaller than development teams 

must use efficient techniques to perform their analysis. At present mostly manual methods are 

being used to analyze UML models. Given the size and complexity of the large software systems, 

the manual efforts are time-consuming, tedious and error prone. Therefore automatable means 

(approaches and/or methods) for V&V of UML models need to be derived. In this work, we aim 

at helping and assessing V&V teams in performing there task in the early development stages of 

UML specifications through developing methods, approaches and extending there tool support for 

fast and automatic deployment of the developed means. We presented our efforts in four areas: 

8.1 Temporal V&V  

We discussed the automatic generation of timing violation tables from simulating UML 

specifications. We presented two approaches; in the first approach each simulation log is 

processed in search for constraint violations. In the second approach, an Observer component, 

acting as a monitoring object, is added as an external entity to the modeled system. We 

presented two methods for modeling the timing constraints in the Observer Component, 

namely: Constraint driven and Use Case driven. We showed results from applying the proposed 

approaches to the UML specifications of a cardiac pacemaker. As well we described four 

methods for timing analysis for assessing the degree of conformance to the timing constrains 

under abnormal conditions is the first area of investigation. We perceive that developing a 

technique for selecting scenarios, components, and connectors to which we apply the proposed 

timing analysis approach is a potential research area.  
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8.2 Automated Architectural-Risk assessment 

We selected the methodology presented in [33] for automated Architectural-level risk assessment, 

because it has the following benefits: it is applicable early at the architectural-level and hence it is 

used to identify critical components and connectors early in the lifecycle. The methodology uses 

dynamic metrics, that covers the fact that a fault in a frequently executed component will 

frequently manifest itself into a failure. The methodology is based on simulation of UML-RT 

models. Simulation helps in: performing FMEA procedures and observing the timing diagrams. 

The presented automation environment shows how RRT tool can be used in fast and efficient 

deployment of the methodology. Future research could experiment with applying the 

methodology to larger case studies with multiple subsystems to compare the aggregated risk 

factors of individual subsystems.  

8.3 Fault Injection analysis 

We proposed a Fault Model, in chapter 6, that is acknowledged for its applicability in early 

development stages and scalability. Yet further experiments should be conducted on several case 

studies for better assessment and enhancement. Enhancements are required in several areas: 

1. In the process of component selection, the number of components selected is decided by 

the analyst based on the available resources (mainly time). Better criteria for this selection 

is required to guarantee the best results when using the fault model in test case 

optimization. 

2. The presented model focuses on microstates, while it is applicable to Marco states as well. 

Thus experiments for assessing the level of effectiveness of the fault model at the macro 

state level.  

3. In the process of state selection, the number of sates selected is decided by the analyst 

based on the available resources (mainly time). But the tradeoff is in the quality of the 

analysis, thus a criteria for this selection is required.  

4. The selection of the second message to swap with in a Trigger Swap is random. We 

perceive that a selection criteria is required for better results.  
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8.4 Performance Modeling  

In chapter 7 we discussed how the importance of early performance assessment grows as software 

systems increase in terms of size, logical distribution and interaction complexity. Lack of time 

from the side of software developers, as well as distance among software model notations and 

performance model representation do not help to build an integrated software process that takes 

into account, from the early phases of the lifecycle, non functional requirement. In this work we 

aimed at filling this gap by extending the capabilities of a simulative environment developed for 

the UML notation. We introduced new stereotypes representing performance related items, such 

as resource types and job dispatchers. They allow the software designers to homogeneously 

represent a software architecture integrated with a running platform, and parameterized with the 

resource demand that the components require. As an application example a simplified Automated 

Teller Machine has been considered, and it has been designed also using the new stereotypes. This 

is to prove the effectiveness of our approach in building, and simulating, software performance 

models. We presented the preliminary insights gained from our study, in addition we make some 

considerations on the scalability of our approach. For shifting this work from research level to 

industrial level (being embedded in an tool and utilized by developers), more efforts in the 

creation of all stereotypes that covers the performance analysis needs, are required.      



 

- .    - 96

 BIBLIOGRAPHY 

[1]  Baudry, B. Hanh, V.L., Jezequel J. and Traon, Y.L. “Building Trusted OO Components 

Using Genetic Analogy”, Proc. of the 11th International Symposium on Software 

Reliability Engineering, ISSRE'00, IEEE Comp. Soc., October, 2000 

[2]  Cortellessa, V. and Mirandola R. “Deriving a Queueing Network based Performance 

Model from UML Diagrams”, Proc. of Second International Workshop on Software 

and Performance, WOSP2000, September 2000, Ottawa, Canada, 2000. 

[3]  Cortellessa, V., Iazeolla, G. and Mirandola R. “Early Performance Validation for 

Object-Oriented Systems based on OMT methodology”, IEE-Proceedings on Software, 

vol.147, issue 3, October 2000. 

[4]  Douglass, B. "Real-Time UML : Developing Efficient Objects for Embedded Systems", 

Addison-Wesley, 1998 

[5]  Firley, T., Huhn, M., Diethers, K., Gehrke, T. and Goltz, U., “Timed Sequence Diagrams 

and Tool-Based Analysis - A Case Study”, The Second International Conference on The 

Unified Modeling Language, Beyond the Standard (UML'99), Lecture Notes in 

Computer Science, volume 1723, pp. 645-660, Springer-Verlag, October 1999. 

[6]  Goswami, K., Iyer, R. and Young, L. “DEPEND: A simulation-based environment for 

system level dependability analysis”, IEEE Trans. on Computers, vol. 46, no. 1, pp. 60-

74, 1997. 

[7]  Han, S., Shin, K. and Rosenberg, H. “DOCTOR: An integrated software fault injection 

environment for distributed real-time systems", in IEEE International Computer 

Performance and Dependability Symposium (IPDS'95), pp.204-213, March 1995. 

[8]  Ibrahim, A., Ammar, H., Yacoub, S., Dabney J. B, and Lateef, K. “Automated 

Verification of Timing Constraints in UML Dynamic Specifications”, Submitted to 

Real-Time Technology and Applications Symposium RTAS’01, Taipei, Taiwan, May, 

2001. 

[9]  Kao, W. and Iyer, R. “DEFINE: A distributed fault injection and monitoring 

environment”, IEEE Workshop on Fault-Tolerant Parallel and Distributed System, June 

1994. 



 

- .    - 97

[10]  Lee, D. and Yannakakis, M. “Principles and methods of testing finite state machines - a 

survey”, The IEEE, Vol. 84, No. 8, pp. 1090-1123, August 1996. 

[11]  Lyons, A. “UML for Real-Time Overview”, ObjecTime, Ltd.,White Paper. 

http://www.ObjecTime.com/otl/technical/umlrt.html 

[12]  Li, X. and Lilius J. “Timing analysis of UML sequence diagrams”, The Second 

International Conference on The Unified Modeling Language, Beyond the Standard 

(UML'99), Lecture Notes in Computer Science, volume 1723, pages 661-674, Springer-

Verlag, October 1999. 

[13]  Lazowska, E.D., Zahorjan, J., Graham, G.S. and Sevcik K.C., “Quantitative system 

performance : computer system analysis using queueing network models”, Englewood 

Cliffs, N.J., Prentice-Hall, 1984.  

[14]  Lavenberg, S.S. “Computer Performance Modeling Handbook”, Academic Press, New 

York, 1983.  

[15]  Menasce’, D.A. and Gomaa, H. “A method for design and performance modeling of 

client/server systems”, IEEE Transactions on Software Engineering, vol.26, no.11, 

November 2000. 

[16]  ObjecTime Ltd., Kanata, Ontario, Canada, http://www.ObjecTime.com 

[17]  Object Management Group, Inc., Needham, MA, USA. http://www.omg.org. 

[18]  Petriu, D. Shousha, C. and Jalnapurkar, A. “Architecture based Performance Analysis 

Applied to a Telecommunica-tion System”, IEEE Transaction on Software 

Engineering, November 2000. 

[19]  Petriu, D. “Deriving Performance Models from UML Models by Graph 

Transformations”, Tutorials, Second International Workshop on Software and 

Performance, WOSP2000, September 2000, Ottawa, Canada, 2000.  

[20]  Petriu, D. and Wang, X. “Deriving Software Performance Models from Architectural 

Patterns by Graph Transfor-mations”, Proc. of Theory and Applications of Graph 

transformations, TAGT’98, LNCS 1764, Springer Verlag, 1998. 

[21]  Rational Software Corporation, Cupertino, CA, USA. http://www.rational.com 

[22]  Rational Software Corporation, Rational Rose RealTime. 

http://www.rational.com/products/rosert/index.jsp 



 

- .    - 98

[23]  Rolia, J.A. and Sevcik, K.C. “The method of Layers”, IEEE Transactions on Software 

Engineering, vol.21, no.8, August 1995. 

[24]  Software Safety, Nasa Technical Standard. NASA-STD-8719.13A, September 15, 1997 

http://satc.gsfc.nasa.gov/assure/nss8719_13.html 

[25]  Selic, B. and Rumbaugh, J. “Using UML for modeling complex Real-Time systems”, 

ObjecTime, Ltd.,White Paper. http://www.ObjecTime.com/otl/technical/umlrt.html 

[26]  Selic, B., Gullekson, G. and Ward, P. “Real-Time Object Oriented Modeling”, John 

Wiley & Sons, Inc.. 

[27]  Selic, B. “A generic framework for modeling resources with UML”, IEEE Computer, 

June 2000. 

[28]  Scott, D.T.; Ries, G.; Hsueh, Mei-Chen; Iyer, R.K. "Dependability analysis of a high-

speed network using software-implemented fault injection and simulated fault injection."  

Proc. of the Twenty-Seventh Fault Tolerant Computing Symposium.  IEEE, 1997.  p. 

108-119 

[29]  Smith, C.U. “Performance Engineering of Software Systems”, Addison-Wesley, 

Reading, MA, 1990. 

[30]  The Unified Modeling Language v1.3. 

http://www.rational.com/uml/resources/documentation/index.jsp 

[31]  Voas, Jeffrey M.; Miller, Keith W. "Using Fault Injection to Assess Software 

Engineering Standards", 1995 International Software Engineering Standards 

Symposium. IEEE, 1995. p. 139-145  

[32]  Voas, Jeffrey M.; Miller, Keith W. "Examining Fault-Tolerance Using Unlikely Inputs:  

Turning the Test Distribution Up-Side Down."  Tenth Annual Conference on Computer 

Assurance.  IEEE, 1993.  p. 3-11. 

[33]  Yacoub, S., Ammar, H. “A Methodology for Architectural-Level Risk Assessment 

using Dynamic Metrics”, Proc. of the 11th International Symposium on Software 

Reliability Engineering, ISSRE’00, IEEE Comp. Soc., October, 2000. 

[34]  Yacoub, S., Ibrahim, A., Ammar, H., and Lateef, K. “Verification of UML Dynamic 

Specifications using Simulation-based Timing Analysis”, Proc. of 6th International 



 

- .    - 99

Conference on Reliability and Quality in Design, ISSAT, Orlando, Fl, August, 2000, 

pp.65-69. 

[35]  Yacoub, S., Ammar, H. and Robinson, T. “Dynamic Metrics for Object Oriented 

Designs”, Proc. of the Sixth International Symposium on Software Metrics, 

Metrics’99, Boca Raton, Florida USA, November 4-6 1999, pp.50-61. 

[36]  Yacoub, S., Cukic, B. and Ammar, H. “Scenario-based Reliability Analysis of 

Component-Based Software”, Proc. of the Tenth International Symposium on Software 

Reliability Engineering, ISSRE’99, Boca Raton, Florida USA, November 1-4 1999, 

pp.22-31. 



 

- .    - 100

APPENDIX A  VISUAL BASIC MACROS 

Sub Processing_Macro() 

 

' Activation:  ctr g 

Sheets("Process_ctrl-g").Select 

totalcolumns = 200000 

' Extract all the Capsules “Objects” in the log file 

 

i = 1 

Objects = 1   'no of objects 

While i < totalcolumns 

    colB1 = "B" & i 

    Oldobject = False 

    j = 1 

    For j = 1 To Objects Step 1     ' Set up 10 repetitions. 

        colE1 = "E" & j 

        If Range(colB1).Text = Range(colE1).Text Then 

            Oldobject = True 

        End If 

    Next j 

    If Oldobject = False Then 

        Objects = Objects + 1 

        colE1 = "E" & Objects 

        Range(colE1).Value = Range(colB1).Text 

    End If 

    i = i + 1 

Wend 
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‘Dedicate columns  E to Y for Object names and their states “in the form of state codes” 

 

Range("E" & 1).Select 

Selection.Delete Shift:=xlUp 

Range("F1").Value = Range("E1").Text & " (Series 1 States)" 

Range("G1").Value = "State code" 

Range("H1").Value = Range("E2").Text & " (Series 2 States)" 

Range("I1").Value = "State code" 

Range("J1").Value = Range("E3").Text & " (Series 3 States)" 

Range("K1").Value = "State code" 

Range("L1").Value = Range("E4").Text & " (Series 4 States)" 

Range("M1").Value = "State code" 

Range("N1").Value = Range("E5").Text & " (Series 5 States)" 

Range("O1").Value = "State code" 

Range("P1").Value = Range("E6").Text & " (Series 6 States)" 

Range("Q1").Value = "State code" 

Range("R1").Value = Range("E7").Text & " (Series 7 States)" 

Range("S1").Value = "State code" 

Range("T1").Value = Range("E8").Text & " (Series 8 States)" 

Range("U1").Value = "State code" 

Range("V1").Value = Range("E9").Text & " (Series 9 States)" 

Range("W1").Value = "State code" 

Range("X1").Value = Range("E10").Text & " (Series 10 States)" 

Range("Y1").Value = "State code" 
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‘For each Object: extract all states and generate a consecutive sate code for each 

 

i = 1 

s = 1 

If Not Range("E1").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "F" & s 

        colstateval = "g" & s 

        If Range(colB1).Text = Range("E1").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "F" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s 

                Name = Range(colstate).Value 

                Object = Range("E1").Text 

                Value = Range(colstateval).Value 

                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("B4").Value = Object 
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                Sheets("Process_ctrl-g").Select 

                s = s + 1 

            End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s - 1 

nostatesseries1 = s - 1 

i = 1 

s = 1 

If Not Range("E2").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "H" & s 

        colstateval = "I" & s 

        If Range(colB1).Text = Range("E2").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "H" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

               Range(colstate).Value = Range(colC1).Text 

               Range(colstateval).Value = s + NextValue 
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               Name = Range(colstate).Value 

               Value = Range(colstateval).Value 

               Object = Range("E2").Text 

               Sheets("Graph_ctrl-s").Select 

               Graphlable = "A" & 20 - Value 

               Range(Graphlable).Value = Name 

               Range("D4").Value = Object 

               Sheets("Process_ctrl-g").Select 

               s = s + 1 

           End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesseries2 = s – 1 

i = 1 

s = 1 

If Not Range("E3").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "J" & s 

        colstateval = "K" & s 

        If Range(colB1).Text = Range("E3").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "J" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 
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                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

                    Range(colstate).Value = Range(colC1).Text 

                    Range(colstateval).Value = s + NextValue 

                    Name = Range(colstate).Value 

                    Value = Range(colstateval).Value 

                    Object = Range("E3").Text 

                    Sheets("Graph_ctrl-s").Select 

                    Graphlable = "A" & 20 - Value 

                    Range(Graphlable).Value = Name 

                    Range("F4").Value = Object 

                    Sheets("Process_ctrl-g").Select 

                    s = s + 1 

            End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesseries3 = s - 1 

i = 1 

s = 1 

If Not Range("E4").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "L" & s 
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        colstateval = "M" & s 

        If Range(colB1).Text = Range("E4").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "L" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s + NextValue 

                Name = Range(colstate).Value 

                Object = Range("E4").Text 

                Value = Range(colstateval).Value 

                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("H4").Value = Object 

                Sheets("Process_ctrl-g").Select 

                s = s + 1 

            End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesseries4 = s – 1 
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i = 1 

s = 1 

If Not Range("E5").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "N" & s 

        colstateval = "O" & s 

        If Range(colB1).Text = Range("E5").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "N" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s + NextValue 

                Name = Range(colstate).Value 

                Object = Range("E5").Text 

                Value = Range(colstateval).Value 

                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("B5").Value = Object 

                Sheets("Process_ctrl-g").Select 

                s = s + 1 
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            End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesseries5 = s - 1 

i = 1 

s = 1 

If Not Range("E6").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "P" & s 

        colstateval = "Q" & s 

        If Range(colB1).Text = Range("E6").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "P" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s + NextValue 

                Name = Range(colstate).Value 

                Object = Range("E6").Text 
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                Value = Range(colstateval).Value 

                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("D5").Value = Object 

                Sheets("Process_ctrl-g").Select 

                s = s + 1 

            End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesseries6 = s - 1 

i = 1 

s = 1 

If Not Range("E7").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "R" & s 

        colstateval = "S" & s 

        If Range(colB1).Text = Range("E7").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "R" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 
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                End If 

           Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s + NextValue 

                Name = Range(colstate).Value 

                Object = Range("E7").Text 

                Value = Range(colstateval).Value 

                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("F5").Value = Object 

                Sheets("Process_ctrl-g").Select 

                s = s + 1 

            End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesserie s7 = s - 1 

i = 1 

s = 1 

If Not Range("E8").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "T" & s 

        colstateval = "U" & s 

        If Range(colB1).Text = Range("E8").Text Then 
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            j = 1 

            While j < s 

                jcolC1 = "T" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s + NextValue 

                Name = Range(colstate).Value 

                Object = Range("E8").Text 

                Value = Range(colstateval).Value 

                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("H5").Value = Object 

                Sheets("Process_ctrl-g").Select 

                s = s + 1 

            End If 

        End If 

        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesseries8 = s - 1 

i = 1 

s = 1 



 

- .    - 112

If Not Range("E9").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "V" & s 

        colstateval = "W" & s 

        If Range(colB1).Text = Range("E9").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "V" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                   j = s + 2 

                Else 

                   j = j + 1 

                End If 

            Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s + NextValue 

                Name = Range(colstate).Value 

                Object = Range("E9").Text 

                Value = Range(colstateval).Value 

                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("B6").Value = Object 

                Sheets("Process_ctrl-g").Select 

                s = s + 1 

            End If 

        End If 
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        i = i + 1 

    Wend 

End If 

NextValue = s + NextValue - 1 

nostatesseries9 = s - 1 

‘Next Object  

i = 1 

s = 1 

If Not Range("E10").Text = "" Then 

    While i < totalcolumns 

        colB1 = "B" & i 

        colC1 = "C" & i 

        colstate = "X" & s 

        colstateval = "Y" & s 

        If Range(colB1).Text = Range("E10").Text Then 

            j = 1 

            While j < s 

                jcolC1 = "X" & j 

                If Range(colC1).Value = Range(jcolC1).Text Then 

                    j = s + 2 

                Else 

                    j = j + 1 

                End If 

            Wend 

            If j = s Then 

                Range(colstate).Value = Range(colC1).Text 

                Range(colstateval).Value = s + NextValue 

                Name = Range(colstate).Value 

                Object = Range("E10").Text 

                Value = Range(colstateval).Value 
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                Sheets("Graph_ctrl-s").Select 

                Graphlable = "A" & 20 - Value 

                Range(Graphlable).Value = Name 

                Range("D6").Value = Object 

                Sheets("Process_ctrl-g").Select 

                s = s + 1 

            End If 

        End If 

        i = i + 1 

    Wend 

End If 

 

‘For each Object and in columns AA though AI: use the state codes to generate an eleven 

columns log file without time as the first column “A” and the rest as the states in state 

code 

nostatesseries10 = s - 1 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 

  colAA1 = "AA" & i 

  If Range(colB1).Text = Range("E1").Text Then 

     j = 1 

     While j <= nostatesseries1 

      jcolS1 = "F" & j 

      jcolV1 = "G" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries1 + 2 

     Else 
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        j = j + 1 

     End If 

   Wend 

 End If 

 i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 

  colAA1 = "AB" & i 

  If Range(colB1).Text = Range("E2").Text Then 

     j = 1 

     While j <= nostatesseries2 

      jcolS1 = "H" & j 

      jcolV1 = "I" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

       Range(colAA1).Value = Range(jcolV1).Text 

       j = nostatesseries2 + 2 

     Else 

       j = j + 1 

     End If 

    Wend 

  End If 

  i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 
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  colAA1 = "AC" & i 

  If Range(colB1).Text = Range("E3").Text Then 

     j = 1 

     While j <= nostatesseries3 

       jcolS1 = "J" & j 

       jcolV1 = "K" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries3 + 2 

     Else 

        j = j + 1 

     End If 

   Wend 

  End If 

i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 

  colAA1 = "AD" & i 

  If Range(colB1).Text = Range("E4").Text Then 

     j = 1 

     While j <= nostatesseries4 

     jcolS1 = "L" & j 

     jcolV1 = "M" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries4 + 2 

     Else 
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        j = j + 1 

     End If 

   Wend 

  End If 

  i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 

  colAA1 = "AE" & i 

  If Range(colB1).Text = Range("E5").Text Then 

     j = 1 

     While j <= nostatesseries5 

     jcolS1 = "N" & j 

     jcolV1 = "o" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries5 + 2 

     Else 

        j = j + 1 

     End If 

    Wend 

  End If 

  i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 
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  colAA1 = "AF" & i 

  If Range(colB1).Text = Range("E6").Text Then 

     j = 1 

     While j <= nostatesseries6 

       jcolS1 = "P" & j 

       jcolV1 = "Q" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

       Range(colAA1).Value = Range(jcolV1).Text 

       j = nostatesseries6 + 2 

     Else 

       j = j + 1 

     End If 

   Wend 

  End If 

  i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 

  colAA1 = "AG" & i 

  If Range(colB1).Text = Range("E7").Text Then 

     j = 1 

     While j <= nostatesseries7 

       jcolS1 = "R" & j 

       jcolV1 = "S" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries7 + 2 

     Else 
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        j = j + 1 

     End If 

   Wend 

  End If 

  i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 

  colAA1 = "AH" & i 

  If Range(colB1).Text = Range("E8").Text Then 

     j = 1 

     While j <= nostatesseries8 

       jcolS1 = "T" & j 

       jcolV1 = "U" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries8 + 2 

     Else 

       j = j + 1 

     End If 

   Wend 

  End If 

  i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 
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  colAA1 = "AI" & i 

  If Range(colB1).Text = Range("E9").Text Then 

     j = 1 

     While j <= nostatesseries9 

      jcolS1 = "V" & j 

      jcolV1 = "W" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries9 + 2 

     Else 

        j = j + 1 

     End If 

    Wend 

  End If 

  i = i + 1 

Wend 

i = 1 

While i < totalcolumns 

  colB1 = "B" & i  'actor 

  colC1 = "C" & i  ' state 

  colAA1 = "AJ" & i 

  If Range(colB1).Text = Range("E10").Text Then 

     j = 1 

     While j <= nostatesseries10 

       jcolS1 = "X" & j 

       jcolV1 = "Y" & j 

      If Range(colC1).Value = Range(jcolS1).Text Then 

        Range(colAA1).Value = Range(jcolV1).Text 

        j = nostatesseries10 + 2 

     Else 
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        j = j + 1 

     End If 

   Wend 

  End If 

  i = i + 1 

Wend 

 

'Create continuous lines (horizontal and vertical) from the ten fragmented serises 

representing the state changes (in state codes) of the ten Objects 

‘Use 2 D array for better speed 

ReDim tiarray(11, totalcolumns) As Variant 

ReDim tfarray(11, 2 * totalcolumns) As Variant 

Dim lastVarray(10) As Variant 

i = 1 

 

‘reed from sheet into array 

 

While i < totalcolumns 

tiarray(1, i) = Range("A" & i).Text 

tiarray(2, i) = Range("AA" & i).Text 

tiarray(3, i) = Range("AB" & i).Text 

tiarray(4, i) = Range("AC" & i).Text 

tiarray(5, i) = Range("AD" & i).Text 

tiarray(6, i) = Range("AE" & i).Text 

tiarray(7, i) = Range("AF" & i).Text 

tiarray(8, i) = Range("AG" & i).Text 

tiarray(9, i) = Range("AH" & i).Text 

tiarray(10, i) = Range("AI" & i).Text 

tiarray(11, i) = Range("AJ" & i).Text 

i = i + 1 
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Wend 

 

i = 1 

j = 1 

While i < totalcolumns 

    For x = 1 To 11 Step 1 

      tfarray(x, j) = tiarray(x, i) 

      If x > 1 Then tfarray(x, j) = lastVarray(x - 1) 

      j = j + 1 

      tfarray(x, j) = tiarray(x, i) 

      If x > 1 Then 

        If tfarray(x, j) = "" Then 

            tfarray(x, j) = lastVarray(x - 1) 

        Else 

            lastVarray(x - 1) = tfarray(x, j) 

        End If 

      End If 

      j = j - 1 

    Next x 

    i = i + 1 

    j = j + 2 

Wend 

j = 1 

‘Read from array into sheet 

While j < totalcolumns 

Range("A" & j).Value = tfarray(1, j) 

Range("AA" & j).Value = tfarray(2, j) 

Range("AB" & j).Value = tfarray(3, j) 

Range("AC" & j).Value = tfarray(4, j) 

Range("AD" & j).Value = tfarray(5, j) 
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Range("AE" & j).Value = tfarray(6, j) 

Range("AF" & j).Value = tfarray(7, j) 

Range("AG" & j).Value = tfarray(8, j) 

Range("AH" & j).Value = tfarray(9, j) 

Range("AI" & j).Value = tfarray(10, j) 

Range("AJ" & j).Value = tfarray(11, j) 

j = j + 1 

Wend 

 

‘Size the chart and force to start from 0 milisec and end at 20000 milisec 

 

    Sheets("Graph_ctrl-s").Select 

    ActiveSheet.ChartObjects("Chart 1").Activate 

    ActiveChart.Axes(xlValue).Select 

    y = ActiveChart.Axes(xlValue).MaximumScale  

    ActiveChart.PlotArea.Select 

    x = Selection.Height 

    ActiveSheet.Range("A1").Activate 

    Rows("8:50").Select 

    Range("A1").Select 

    xstart = 0 

    Range("B2").Value = xstart 

    xend = 20000 

    Range("D2").Value = xend 

    xstep = 500 

    Range("F2").Value = xstep 

    ActiveSheet.ChartObjects("Chart 1").Activate 

    ActiveChart.Axes(xlCategory).Select 

    With ActiveChart.Axes(xlCategory) 

        .MinimumScale = xstart 
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        .MaximumScale = xend 

        .BaseUnitIsAuto = True 

        .MajorUnit = xstep 

        .MajorUnitScale = xlDays 

        .MinorUnit = 34 

        .MinorUnitScale = xlDays 

        .Crosses = xlAutomatic  

        .AxisBetweenCategories = True 

        .ReversePlotOrder = False 

    End With 

End Sub ‘end of processing macro 
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Sub Viewing_Macro() 

‘Resize chart based on the start, end and step in the Graph_ctrl-s 

'Activation ctr s 

Sheets("Graph_ctrl-s").Select 

   xstart = Range("B2").Value 

    xend = Range("D2").Value 

    xstep = Range("F2").Value 

    ActiveSheet.ChartObjects("Chart 1").Activate 

    ActiveChart.Axes(xlCategory).Select 

    With ActiveChart.Axes(xlCategory) 

        .MinimumScale = xstart 

        .MaximumScale = xend 

        .BaseUnitIsAuto = True 

        .MajorUnit = xstep 

        .MajorUnitScale = xlDays 

        .MinorUnit = 34 

        .MinorUnitScale = xlDays 

        .Crosses = xlAutomatic  

        .AxisBetweenCategories = True 

        .ReversePlotOrder = False 

    End With 

End Sub 
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APPENDIX B  RISK MACRO 

Sub Risk_Macro() 

' Keyboard Shortcut: Ctrl+r 

totalcolumns = 6950       'changeble by user 

noofcomponents = 1 

Dim Componentchildarray(101, 1000) As Variant 

mainloop = 1 

'column 1 is for component names 

'column 2 is for component no of children 

'column 3 is for total no of messages out of component 

Componentchildarray(1, 1) = Range("A1").Text 

For initnoofchildren = 0 To (UBound(Componentchildarray, 1) - 1) Step 1 

    Componentchildarray(initnoofchildren, 2) = 0 

    Componentchildarray(initnoofchildren, 3) = 0 

Next initnoofchildren  ' Increment counter 

    

While mainloop < totalcolumns 

    j = 1 

    While j <= noofcomponents 

        If Range("A" & mainloop).Text = Componentchildarray(j, 1) Then 

            'listed 

            ' is it a new child for that component 

            H = 0 

            While H <= Componentchildarray(j, 2) 

                If Range("B" & mainloop).Text = Componentchildarray(j, 11 + (H * 10)) Then 

                    Componentchildarray(j, 13 + (H * 10)) = Componentchildarray(j, 13 + (H * 10)) + 1 

                    Componentchildarray(j, 3) = Componentchildarray(j, 3) + 1 

                    H = Componentchildarray(j, 2)      'listed 
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                Else 

                   If H = Componentchildarray(j, 2) Then 

                        ' a new child 

                        Componentchildarray(j, 2) = Componentchildarray(j, 2) + 1 

                        Componentchildarray(j, 11 + (H * 10)) = Range("B" & mainloop).Text 

                        Componentchildarray(j, 13 + (H * 10)) = Componentchildarray(j, 13 + (H * 10)) + 

1 

                        Componentchildarray(j, 3) = Componentchildarray(j, 3) + 1 

                        H = H + 1   ' h starts at 0 while j starts at 1 

                   End If 

                End If 

                H = H + 1 

            Wend 

            j = noofcomponents      'listed 

        Else 

            If j = noofcomponents Then 

                ' a new component 

                noofcomponents = noofcomponents + 1 

                Componentchildarray(j + 1, 1) = Range("A" & mainloop).Text 

            End If 

        End If 

        j = j + 1 

    Wend 

    mainloop = mainloop + 1 

Wend 

'calculate the probabilityies & child index 

For calprob = 1 To noofcomponents Step 1 

    For calchildprob = 1 To Componentchildarray(calprob, 2) Step 1 

        Componentchildarray(calprob, 2 + (calchildprob * 10)) = Componentchildarray(calprob, 3 + 

(calchildprob * 10)) / Componentchildarray(calprob, 3) 
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        Componentchildarray(calprob, 4 + (calchildprob * 10)) = Componentchildarray(calprob, 3 + 

(calchildprob * 10)) / totalcolumns 

        'child index 

        For childindex = 1 To noofcomponents Step 1 

            If Componentchildarray(calprob, 1 + (calchildprob * 10)) = 

Componentchildarray(childindex, 1) Then 

                Componentchildarray(calprob, 0 + (calchildprob * 10)) = childindex 

                childindex = noofcomponents + 1 

            End If 

        Next childindex 

    Next calchildprob  ' Increment counter 

Next calprob  ' Increment counter 

 

'dispaly ,write to file, input complexity, severity, ET 

Columns("G:R").Select 

Selection.ColumnWidth = 20 

Range("F1") = noofcomponents 

Range("G1").Value = "Component_Index" 

Range("H1").Value = "Component_Name" 

Range("I1").Value = "No._of_Children" 

Range("J1").Value = "Total_No._Messages" 

Range("k1").Value = "Component_Complexity" 

Range("L1").Value = "Component_Severity" 

Range("M1").Value = "Component_Execution_Time" 

Range("N1").Value = "Component_Risk" 

bias = noofcomponents + 4 

Range("H" & bias).Value = "Index_of_Child" 

Range("I" & bias).Value = "Child_Name" 

Range("J" & bias).Value = "Probability_of_Transition" 

Range("K" & bias).Value = "No_Of_Messages" 
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Range("L" & bias).Value = "Connector_Complexity" 

Range("M" & bias).Value = "Connector_Severity" 

Range("N" & bias).Value = "Connector_Risk" 

For displayrows = 1 To noofcomponents Step 1 

    'find match 

    For Match = 1 To noofcomponents Step 1 

        If (Componentchildarray(displayrows, 1) = Range("D" & Match).Value) Then 

           matchedindex = Match 

        End If 

    Next Match 

    Componentchildarray(displayrows, 4) = Range("e" & matchedindex + noofcomponents + 

4).Value 

    Componentchildarray(displayrows, 6) = Range("d" & matchedindex + noofcomponents + 

4).Value 

    Componentchildarray(displayrows, 5) = Range("L" & displayrows + 1).Value 

    Componentchildarray(displayrows, 7) = Componentchildarray(displayrows, 4) * 

Componentchildarray(displayrows, 5) 

    Range("G" & displayrows + 1).Value = displayrows 

    Range("H" & displayrows + 1).Value = Componentchildarray(displayrows, 1) 

    Range("I" & displayrows + 1).Value = Componentchildarray(displayrows, 2) 

    Range("J" & displayrows + 1).Value = Componentchildarray(displayrows, 3) 

    Range("k" & displayrows + 1).Value = Componentchildarray(displayrows, 4) 

    Range("N" & displayrows + 1).Value = Componentchildarray(displayrows, 7) 

    Range("M" & displayrows + 1).Value = Componentchildarray(displayrows, 6) 

    childrendisplay = Componentchildarray(displayrows, 2) 

    bias = bias + Componentchildarray(displayrows - 1, 2) 

    While childrendisplay > 0 

        Componentchildarray(displayrows, 6 + childrendisplay * 10) = 

Componentchildarray(displayrows, 5 + childrendisplay * 10) * 

Componentchildarray(displayrows, 4 + childrendisplay * 10) 
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        Range("H" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 0 + childrendisplay * 10) 

        Range("I" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 1 + childrendisplay * 10) 

        Range("J" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 2 + childrendisplay * 10) 

        Range("K" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 3 + childrendisplay * 10) 

        Range("L" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 4 + childrendisplay * 10) 

        Range("M" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 5 + childrendisplay * 10) 

        Range("N" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 6 + childrendisplay * 10) 

        childrendisplay = childrendisplay - 1 

     Wend 

Next displayrows  ' Increment counter 

End Sub 

 

Sub Risk_CDG_Traversal() 

'read from display 

' Macro  CDG  Traversal 

 

totalcolumns = 6950              'changeble by user 

Start_Component = 1       'changeble by user 

noofcomponents = 1 

Dim Componentchildarray(101, 1000) As Variant 

'get from display 

noofcomponents = Range("F1") 

bias = noofcomponents + 4 
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For displayrows = 1 To noofcomponents Step 1 

    Componentchildarray(displayrows, 1) = Range("H" & displayrows + 1).Value 

    Componentchildarray(displayrows, 2) = Range("I" & displayrows + 1).Value 

    Componentchildarray(displayrows, 3) = Range("J" & displayrows + 1).Value 

    Componentchildarray(displayrows, 4) = Range("k" & displayrows + 1).Value 

    Componentchildarray(displayrows, 5) = Range("L" & displayrows + 1).Value 

    Componentchildarray(displayrows, 6) = Range("M" & displayrows + 1).Value 

    Componentchildarray(displayrows, 7) = Componentchildarray(displayrows, 4) * 

Componentchildarray(displayrows, 5) 

    Range("N" & displayrows + 1).Value = Componentchildarray(displayrows, 7) 

    childrendisplay = Componentchildarray(displayrows, 2) 

    bias = bias + Componentchildarray(displayrows - 1, 2) 

    While childrendisplay > 0 

        Componentchildarray(displayrows, 0 + childrendisplay * 10) = Range("H" & displayrows * 

2 + bias + childrendisplay).Value 

        Componentchildarray(displayrows, 1 + childrendisplay * 10) = Range("I" & displayrows * 2 

+ bias + childrendisplay).Value 

        Componentchildarray(displayrows, 2 + childrendisplay * 10) = Range("J" & displayrows * 2 

+ bias + childrendisplay).Value 

        Componentchildarray(displayrows, 3 + childrendisplay * 10) = Range("K" & displayrows * 

2 + bias + childrendisplay).Value 

        Componentchildarray(displayrows, 4 + childrendisplay * 10) = Range("L" & displayrows * 2 

+ bias + childrendisplay).Value 

        Componentchildarray(displayrows, 5 + childrendisplay * 10) = Range("M" & displayrows * 

2 + bias + childrendisplay).Value 

        Componentchildarray(displayrows, 6 + childrendisplay * 10) = 

Componentchildarray(displayrows, 4 + childrendisplay * 10) * 

Componentchildarray(displayrows, 5 + childrendisplay * 10) 

        Range("N" & displayrows * 2 + bias + childrendisplay).Value = 

Componentchildarray(displayrows, 6 + childrendisplay * 10) 
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        childrendisplay = childrendisplay - 1 

    Wend 

Next displayrows  ' Increment counter 

'CDG Traversal 

Dim R_appl As Double  

R_appl = 0 

Dim SegmaTime As Double  

SegmaTime = 0 

Dim R_Temp As Double  

R_Temp = 1 

Dim AE_appl As Double  

AE_appl = Range("d" & noofcomponents + 2).Value 

Dim Stackindex As Integer 

Stackindex = 1 

Dim Currentcomponent As Integer 

Currentcomponent = 0 

Dim Traversalstack(100000, 3) As Double  

'first push 

Traversalstack(Stackindex, 1) = Start_Component 

Traversalstack(Stackindex, 2) = SegmaTime 

Traversalstack(Stackindex, 3) = R_Temp 

Stackindex = Stackindex + 1 

While Stackindex > 0 

    Currentcomponent = Traversalstack(Stackindex, 1) 

    SegmaTime = Traversalstack(Stackindex, 2) 

    R_Temp = Traversalstack(Stackindex, 3) 

    Stackindex = Stackindex - 1 

    If (SegmaTime >= AE_appl) Or (Componentchildarray(Currentcomponent, 2) = 0) Then  

'refer to terminal node  

        R_appl = R_appl + R_Temp 
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    Else 

        For x = 0 To (Componentchildarray(Currentcomponent, 2) - 1) Step 1 

            Stackindex = Stackindex + 1 

            Traversalstack(Stackindex, 1) = Componentchildarray(Currentcomponent, 10 + x * 10) 

            Traversalstack(Stackindex, 2) = SegmaTime + Componentchildarray(Currentcomponent, 

6) 

            Traversalstack(Stackindex, 3) = R_Temp * (1 - Componentchildarray(Currentcomponent, 

7)) * Componentchildarray(Currentcomponent, 12 + x * 10) * (1 - 

Componentchildarray(Currentcomponent, 16 + x * 10)) 

       Next x  ' Increment counter 

    End If 

Wend 

Range("f3").Value = "System Risk" 

Range("f4").Value = 1 - R_appl 

End Sub 
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APPENDIX C  ATM SEQUENCE DIAGRAMS 

1. Use_Denied: (figure 1) 

2. Balance: (figure 2) 

3. Balance_Print: (figure 3) 

4. Withdrawal: (figure 4) 

5. Withdrawal_Print: (figure 5) 

6. Withdrawal_Denied: (figure 6) 

 

 

Figure 1  Use_Denied: Sequence Diagram for failed Authentication 
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Figure 2  Balance: Sequence Diagram for balance inquiry 

transaction without statement printing 
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Figure 3  Balance_Print : Sequence Diagram for balance 

inquiry transaction with statement printing 
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Figure 4  Withdrawal : Sequence Diagram for successful 

withdrawal transaction without statement printing 
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Figure 5  Withdrawal_Print : Sequence Diagram for 

successful withdrawal transaction with statement printing 
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Figure 6  Withdrawal_Denied : Sequence Diagram for 

unsuccessful withdrawal transaction without statement 

printing 
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Alaa Ibrahim 

Email: ibrahim@csee.wvu.edu 
Department of Computer Science & Electrical Engineering, 

West Virginia University. PO Box 6104 
Morgantown, WV  26506-6104 

Objective 

Seeking a position in the design and development of real-time embedded software/systems where 

graduate education and 6 years of varied experiences will add great value to the organization. 

Experience  

2000 – Present      West Virginia University     

Graduate Research Assistant 

Thesis: Scenario based Verification and Validation of UML Specifications. Project funded by 

AverStar Inc., Fairmont, WV, through the Software Engineering Research Center (SERC) 

Publications: 

1. Yacoub, S., Ibrahim, A., Ammar, H., and Lateef, K. “Verification of UML Dynamic 

Specifications using Simulation-based Timing Analysis”, Proc. of 6th International 

Conference on Reliability and Quality in Design, ISSAT, Orlando, Fl, August, 2000, 

pp.65-69. 

2. Ibrahim, A., Yacoub, S., Ammar, H., Dabney, J and Lateef, K. “Automated Verification 

of Timing Constraints in UML Dynamic Specifications ”, submitted to Real-Time 

Technology and Applications Symposium, RTAS’2001, Taipei, Taiwan, ROC, May 29-

June 1, 2001.  

3. Ibrahim, A., Yacoub, S., Ammar, H., Dabney, J and Lateef, K. “Automated Verification 

of Timing Constraints in UML Dynamic Specifications ”, Submitted to the Journal of 

Automated Software Engineering. 

4. Ibrahim, A., Yacoub, S., Ammar, H. “Automated Architectural-Level Risk Analysis 

for UML Dynamic Specifications ”, submitted to Software Quality Management 2001, 

SQM 2001, Loughborough , UK, April 18 -20, 2001.  
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5. Ibrahim, A., Ammar, H. “A Fault Model for Fault Injection analysis of Dynamic 

UML Specifications”, submitted to 12th International Symposium on Software 

Reliability Engineering, ISSRE 2001, Hong Kong, Nov 28- Dec 1, 2001. 

6. Ammar, H., Cortellessa, V., Ibrahim, A. “Modeling resources in a UML-based 

simulative environment”, Accepted by ACS/IEEE International Conference on 

Computer Systems and Applications, AICCSA 2001, Beirut, Lebanon, June 26-29, 2001. 

1998 – 2000      GlobalOne Egypt Network  

Operations Manager 

1. Responsible for software and hardware maintenance of ALCATEL Telnet Processors 

“TPs for Frame Relay and X.25 Switching”, MUXs “IDNX 70 from NET and 

DataSMART from Kentrox” and DSL modems “Paradyne and Nokia”. 

2. Commissioning, startup and troubleshooting “connectivity and BERT, Bit Error Rate 

Testing” of intentional Frame Relay & X.25 links in coordination with Egypt Telecomm, 

customers and GlobalOne’s remote POP.  

3. Analysis and breakdown of settlement, revenue and cost of backbone and services. 

4. Provided sales technical support for Frame Relay & X.25 international services. 

1995 – 1998      NCR Corporation Egypt Branch 

System Engineer, CSS Customer Support Services  

1. Installed and supported integrated information solutions for different classes of customers 

with Windows NT and AT&T UNIX over varied NCR server platforms, TCP/IP on Cisco 

routers and LANVIEW “Cabletron Systems Inc.”  Network Management software. 

2. Awarded Employee of the Month July 1996 for the outstanding achievements in 

installing amazing variety of products “S10, S40, LAN Switches and Cisco Routers” and 

Operating Systems “Windows NT and Novel”, for a large new pharmaceutical factory. 

3. Launched the 23 site WAN of Monofia University, “Paradyne Modems, Cisco Routers 

and SCOUNIX operating system”. 



 

- .    - 142

1994 – 1995      Siemens  

Industrial Automation Engineer 

1. Preformed Maintenance and troubleshooting of Siemens S5 PLC controlled machines in 

several factories. 

2. Replaced the obsolete PLC control unit of a cement crusher plant for the National Cement 

company with SIMATIC S5 115U and rewrote and tested the software in STEP 5 

language. 

3. Engineered the software for Hans duplex elevator control unit, “SIMATIC S5  100U”. 

4. Conducted Step 5 introductory training courses. 

Education  

2000 – Present   West Virginia University, West Virginia, USA 

Masters of Science in Electrical Engineering         URL: www.csee.wvu.edu     

Major: Software Engineering   Minor: Control Systems    Expected GPA: 3.89 

Thesis: Scenario-based Verification & Validation of Dynamic UML SpecificationsDeveloped 

Methodologies for dynamic UML specifications on Timing Analysis, Early verification of timing 

constraints, Architectural – Level risk assessment and Performance analysis. 

1997 – 1999      Maastricht School of Management, MSM, Maastricht, Netherlands  

Masters of Business Administration                                URL: www.msm.nl     

Major: International Business  

Project: Competing Through Manufacturing.Studied El-Nile Clothing company’s competitive 

edge through planning its manufacturing strategy based on John Miltenburg’s framework.  

1997                  Microsoft Certified System Engineer                  

Windows NT 4.0  MCSE 
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1989 – 1994      Cairo University  

Bachelor of Science in Electrical Engineering 

Major: Computer & Control   Minor : Electronics & Communication    Top 10% of class     

Graduation Project: Deadlock Problem in Distributed DatabasesImplemented a distributed 

database system and applied a deadlock prediction then detection algorithm developed at Cairo 

University in 1986. 

Further Information 

Some Tools: 

Rational Rose RealTime 6.1  “UML modeling and simulation of real-time models” 

ObjecTime Developer 5.2 “ROOM modeling and simulation” 

Software Through Pictures  STP  “Computer-Aided Software Engineering (CASE) tool”  

Microsoft Visual C++ and J++  

Visual Basic, VB Script. 

Some Courses: 

CPE391, Real-Time Software Engineering, WVU.§CPE391, Object-Oriented Programming in C++, WVU. 

CPE391, Fundamentals of  Object-Oriented Concurrent Programming in Java, WVU. 

IMSE277, Engineering Economy, WVU. 
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