
Graduate Theses, Dissertations, and Problem Reports

2001

Scenario-based verification and validation of dynamic UML Scenario-based verification and validation of dynamic UML

specifications specifications

Alaa El-Sayed Ibrahim
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Ibrahim, Alaa El-Sayed, "Scenario-based verification and validation of dynamic UML specifications" (2001).
Graduate Theses, Dissertations, and Problem Reports. 1114.
https://researchrepository.wvu.edu/etd/1114

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230476547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1114?utm_source=researchrepository.wvu.edu%2Fetd%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Scenario-based Verification and Validation of Dynamic UML

Specifications

Alaa E. Ibrahim

Thesis Submitted to the College of Engineering and Mineral Resources
at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

Hany H. Ammar, Ph.D., Chair
Ali Mili, Ph.D.

Vittorio Cortellessa, Ph.D.

Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2001

Keywords: Verification and Validation, UML, Simulation, Automated, Timing

Analysis, Timing Constraints, Risk assessment, Performance Modeling, Fault

Injection

Copyright 2001 Alaa E. Ibrahim

ABSTRACT

Scenario-based Verification and Validation of UML Dynamic

Specifications

Alaa E. Ibrahim

The Unified Modeling Language (UML) is the result of the unification process of earlier object

oriented models and notations. Verification and validation (V&V) tasks, as applied to UML

specifications, enable early detection of analysis and design flaws prior to implementation. In this

work, we address four V&V analysis methods for UML dynamic specifications, namely: Timing

analysis and automatic V&V of timing constraints, automated Architectural-level Risk

assessment, Performance Modeling and Fault Injection analysis. For each we present: approaches,

methods and/or automated techniques. We use two case studies: a Cardiac Pacemaker and a

simplified Automatic Teller Machine (ATM) banking subsystem, for illustrating the developed

techniques.

- - iii

ACKNOWLEDGMENTS

I wish to express my deep gratitude to my research advisor, Dr. Hany Ammar for helping me

define my research goals and for providing valuable guidance during this research.

I would also like to thank the members of my committee, Dr. Ali Mili and Dr. Vittorio Cortellessa

for their support and review and for their time in serving on my committee.

I would like also to express gratitude to the project team at Averstar Group, especially to Dr. Jim

Dabney and Dr. Khalid Lateef for their directions, support and encouragement.

Many thanks to Dr. Sherif Yacoub, who invested from his time, knowledge and effort in this

work. He has been an unfailing source of support and encouragement to me during all the research

period.

Special thanks to Dr. Vittorio Cortellessa, for his patience, teaching and efforts in sharing his wide

knowledge in Performance Modeling.

I also thank my parents for always motivating me to pursue higher education and to expand my

scientific knowledge. I offer my sisters and friends heartfelt thanks for their invaluable

consideration and moral support.

I am also grateful to all my colleagues in the research lab. Thank you for your help and for

creating a very positive atmosphere that makes it easier to withstand the difficulties that

sometimes arise.

This work was funded by the Averstar Group research grant to West Virginia University through

the Software Engineering Research Center (SERC).

- - iv

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ...1

1.1 BACKGROUND... 1

1.2 PROBLEM STATEMENT ... 2

1.3 RESEARCH OBJECTIVES.. 2

1.4 THESIS STRUCTURE .. 3

CHAPTER 2: SIMULATION ENVIRONMENT...5

2.1 UML-RT MODELING AND SIMULATION TOOL... 5

2.2 LOG FILES... 10

2.3 TIMING DIAGRAMS... 10

CHAPTER 3: THE CARDIAC PACEMAKER CASE STUDY...13

CHAPTER 4: TEMPORAL V&V..19

4.1 AUTOMATED V&V OF TIMING CONSTRAINTS.. 19

4.1.1 The first approach for Automatic timing constraints verification..19

4.1.2 The second approach for timing constraints verification..23

4.1.3 Results and lessons learned...32

4.2 THE FOUR TIMING ANALYSIS METHODS... 34

4.2.1 Methods..34

4.2.2 The Cardiac Pacemaker Example..36

CHAPTER 5: AUTOMATED RISK ASSES SMENT..42

5.1 INTRODUCTION.. 42

5.1.1 Dynamic Metrics...43

5.1.2 Component Dependency Graphs..43

- - v

5.1.3 The Risk Analysis Algorithm...45

5.2 THE AUTOMATED ENVIRONMENT .. 46

5.3 CONCLUSION AND FUTURE WORK.. 48

CHAPTER 6: FAULT INJECTION ANALYSIS ...49

6.1 MOTIVATIONS... 49

6.2 UML-RT MODEL ELEMENTS.. 50

6.3 DOMAIN OF FAULTS IN UML-RT MODELS.. 51

6.3.1 Structural Faults...51

6.3.2 Behavioral Faults..52

6.4 THE FAULT MODEL .. 53

6.4.1 State Selection Process...54

6.4.2 State faults..54

6.4.3 State transition faults..55

6.4.4 Timing Faults...55

6.5 PACEMAKER CASE STUDY EXPERIMENTATION.. 55

6.6 CONCLUSIONS & FUTURE WORK.. 57

CHAPTER 7: PERFORMANCE MODELING..71

7.1 INTRODUCTION.. 71

7.2 OUR APPROACH FOR PERFORMANCE MODELING OF CLIENT-SERVER SYSTEMS USING THE UML-

RT NOTATION.. 72

7.2.1 A layered software architecture..72

7.2.2 Representing the extended software architecture...74

7.3 EXAMPLE: SIMPLIFIED AUTOMATIC TELLER MACHINE (ATM) BANKING SUBSYSTEM................. 79

7.3.1 ATM Architecture...79

- - vi

7.3.2 Sequence Diagrams..81

7.3.3 State Diagrams..82

7.3.4 Performance Modeling for the ATM Example..85

7.4 EXPERIMENTS.. 88

7.5 CONCLUSION ... 92

CHAPTER 8: CONCLUSIONS AND FUTURE WORK...93

8.1 TEMPORAL V&V.. 93

8.2 AUTOMATED ARCHITECTURAL-RISK ASSESSMENT.. 94

8.3 FAULT INJECTION ANALYSIS.. 94

8.4 PERFORMANCE MODELING.. 95

BIBLIOGRAPHY ...96

APPENDIX A VISUAL BASIC MACROS .. 100

APPENDIX B RISK MACRO .. 126

APPENDIX C ATM SEQUENCE DIAGRAMS .. 134

- - vii

LIST OF FIGURES

Figure 1.1 Flow chart of the thesis chapters...4

Figure 2.1 A Capsule (Top_Level_Capsule) and its Structure Diagram..7

Figure 2.2 State Diagram of First_Capsule (top level) ...8

Figure 2.3 State Diagram of the macro state S_1..8

Figure 2.4 Environmental overall view...9

Figure 2.5 A sample-timing diagram.. 12

Figure 3.1 Structure diagram for the Pacemaker. ... 14

Figure 3.2 Main Use Case Diagram.. 17

Figure 3.3 A sample-timing diagram illustrating the timing constraints...................................... 18

Figure 4.1 High level view of the Automated Timing Constrains V&V process.......................... 20

Figure 4.3 Constraint Driven Observer Modeling. ... 26

Figure 4.4 Use Case Driven Observer Modeling .. 31

Figure 4.5 Sample of Concurrency-based Timing Analysis for a Cardiac Pacemaker in the AVI

operational mode... 38

Figure 4.6 Sample of the Performance-based analysis for a Cardiac Pacemaker in the AVI

operational mode... 39

Figure 4.7 Sample of the Timeout-based analysis for a Cardiac Pacemaker in the AVI operational

mode.. 40

 Figure 5.1 A Sample CDG 1 (source [33]).. 44

Figure 5.2 Risk Aggregation Algorithm (source [33]) .. 45

Figure 6.1 UML-RT model elements.. 50

Figure 6.2 Pacemaker Expected Behavior (three pulses skipped)... 59

Figure 6.3 Pacemaker Expected Behavior (one pulse skipped) .. 60

- - viii

Figure 6.4 State Swap (three pulses skipped)... 61

Figure 6.5 State Swap (one pulse skipped) .. 62

Figure 6.6 Transition Swap (three pulses skipped) .. 63

Figure 6.7 Transition Swap (one pulse skipped) .. 64

Figure 6.8 Initial Sate Swap (three pulses skipped) .. 65

Figure 6.9 Initial Sate Swap (one pulse skipped).. 66

Figure 6.10 Null Trigger (three pulses skipped) ... 67

Figure 6.11 Null Trigger (one pulse skipped) .. 68

Figure 6.12 Trigger Swap (three pulses skipped) ... 69

Figure 6.13 Trigger Swap (one pulse skipped)... 70

Figure 7.1 Transparent diagram of Capsules and embedded Capsules.. 73

Figure 7.2 Generic two-sides Capsule diagram.. 75

Figure 7.3 Basic structure (Capsule and State Diagrams) of the resource side.............................. 76

Figure 7.4 ATM software Architecture (3 level nested view) ... 80

Figure 7.5 Authenticator Component State Diagram... 82

Figure 7.6 BalanceTransaction Component State Diagram... 83

Figure 7.7 WithdrawalTransaction Component State Diagram.. 83

Figure 7.8 Sample of Sequence Diagram to State Diagram translation 84

Figure 7.10 Observer State Diagram... 88

Figure 7.11 Average CPU Queue Length (first experiment).. 89

Figure 7.12 CPU Throughput (first experiment) .. 89

Figure 7.13 Average User Inter-departure time (first experiment).. 90

Figure 7.14 Average CPU Queue Length (second experiment).. 90

- - ix

Figure 7.15 CPU Throughput (second experiment).. 91

Figure 7.16 Average User Inter-departure time (second experiment) ... 91

Appendix C Figure 1 Use_Denied: Sequence Diagram for failed Authentication 134

Appendix C Figure 2 Balance: Sequence Diagram for balance inquiry transaction without

statement printing.. 135

Appendix C Figure 3 Balance_Print : Sequence Diagram for balance inquiry transaction with

statement printing.. 136

Appendix C Figure 4 Withdrawal : Sequence Diagram for successful withdrawal transaction

without statement printing .. 137

Appendix C Figure 5 Withdrawal_Print : Sequence Diagram for successful withdrawal

transaction with statement printing .. 138

Appendix C Figure 6 Withdrawal_Denied : Sequence Diagram for unsuccessful withdrawal

transaction without statement printing ... 139

- - x

LIST OF TABLES

Table 2.1 Summary of UML Extensions for ROOM, source [25]...6

Table 4.1 Sample of the violation table from simulation with 350milisec Ventricular_Model

Refractory time... 33

Table 4.2 Summery of Timing Analysis Methods... 34

- - 1

CHAPTER 1: INTRODUCTION

The Unified Modeling Language (UML) is becoming a widely accepted standard notation for

modeling software systems. The software development industry is embracing this modeling

language for requirement analysis and the subsequent phases of software development lifecycle.

Its success mostly relies on few elementary characteristics: different diagrams are provided (in an

integrated framework) to represent the software model from different viewpoints, so explicitly

specifying software aspects elsewhere hidden; the language is supported by a graphical

representation, easy to use, that is not far from the classical diagrams used before introducing

UML (e.g., State Diagrams, Class Diagrams, Sequence Diagrams); no standard software

development process is coupled to the notation, thus software designers may decide to use

whatever subset of diagrams that can better fit their application requirements, and organize an

application oriented software process. As a result of the rapid success, Verification and Validation

(V&V) teams need to devise methods for evaluating UML artifacts. V&V analysis can be

categorized as static or dynamic. Static analysis helps V&V teams in reviewing the structure of

UML models and generating metrics such as class size, the size of the hierarchy and static

complexity measures. The complex dynamic behavior of many applications, especially real-time

applications, motivates a shift in interest from traditional static analysis to dynamic analysis.

Dynamic analysis is performed to analyze the behavior of objects as expected at run time.

1.1 Background

UML was explicitly born as an “open” project [17], with the potential of embedding additional

notations and tools to satisfy specific design requisites. Along this trace, Rational Software

[21](the UML originator) and ObjecTime Limited [16](the Real-Time Object Oriented Modeling

“ROOM” originator) collaborated in defining UML for Real-Time [11,25] (UML-RT), an

extension of UML optimized for real-time embedded software development. ROOM was

introduced to study the dynamic aspects of applications modeled as concurrently executing objects

with complex dynamic behavior. ROOM models are intended for simulating the application

execution scenarios and complex object behavior. UML specification provides a State Machine

package as a sub package of the behavioral elements package. UML state machines formalism is a

- - 2

variant of Harel Statecharts and it incorporates several ROOMcharts concepts and ROOMcharts

are a valiant of ROOM modeling language [30]. Dynamic analysis can be conducted on

executable design models using several tools, such as Rational Rose Real-Time (RRT) from

Rational Software Inc. and ObjecTime Developer from ObjecTime Inc., and hence the dynamic

behavior of applications can be verified and assessed.

1.2 Problem Statement

V&V can be conducted at various development phases. Early V&V of software specification and

analysis artifacts is encouraged before large investment is made in development. V&V of UML

specifications can be done at an early development phase - prior to implementation - using

scenarios, requirements and simulation models. Although UML is a rich analysis and design

modeling language, it does not define how to study the dynamic aspects of the models through

simulation, a capability that is required to monitor and assess the expected run-time behavior of

software systems. V&V teams being much smaller than development teams must use efficient

techniques to perform their analysis. At present mostly manual methods are being used to analyze

UML models. Given the size and complexity of the large software systems, the manual efforts are

time-consuming, tedious and error prone. Therefore automated techniques for V&V of UML

models need to be developed.

1.3 Research Objectives

In this work, techniques are developed to help V&V teams in performing there task in the early

development stages of UML dynamic specifications. We develop methods and approaches. We

extend tool support for fast and automatic deployment of the developed techniques. Four areas are

investigated in this thesis:

1. Developing automated techniques and methods for the V&V of the temporal

characteristics of software systems (more importantly Real-Time software systems).

Temporal V&V and timing analysis are not part of UML specifications, thus studying the

conformance of the UML model with the timing constraints specified in the requirements

is needed.

- - 3

2. The automated generation of software metrics for ordering the components, connectors

and subsystems, based on well defined metrics is needed. This will help in allocating the

resources during the next development phases and in assessing the software quality.

Dynamic component complexity and connector coupling metrics developed in [35] and

the Architectural-Risk assessment methodology developed in [33] are selected for this

purpose.

3. Optimizing the number test-case scenarios required for software testing, and assessing

component severity are the motives behind the third area of investigation where we

develop and assess a fault model for fault injection analysis.

4. Studying the performance of software systems, where queuing networks that model the

performance characteristics of software systems have been well investigated. Interest in

performance modeling for UML specifications has gained an increasing acceptance in

industry standard. In [2] UML sequence diagrams where used as the starting point for

performance model generation. In this study we aim to utilize the simulation capabilities

in studying the performance characteristics of UML-RT models through resource

modeling.

1.4 Thesis Structure

Considering the four areas of investigation mentioned above and two case studies, we structure

this thesis as follows (figure 1.4). Chapter 2 introduces our simulation environment and the tool

extensions developed and chapter 3 presents the first case study: the software model of a Cardiac

Pacemaker device. Chapter 4 discusses automated temporal V&V techniques. Chapter 5 discusses

the automatic extraction of dynamic metrics and architectural-level risk. Chapter 6 presents

techniques for fault injection analysis. Chapter 7 discusses performance modeling based on UML

dynamic specifications in simulation environments (the fourth area of investigation) and we use a

simple abstraction of the software of the Automatic Teller Machine (ATM) banking subsystem.

Finally we conclude and discuss potential areas for future work.

- - 4

Figure 1.1 Flow chart of the thesis chapters

Chapter 1: Introduction

Chapter 2: Simulation Environment

Chapter 8: Conclusions and Future work

Chapter 3: Pacemaker Case Study Chapter 7: Performance Modeling

Chapter 6: Fault Injection Analysis

Chapter 4: Temporal V&V

Chapter 5: Automated Risk Assessment

- - 5

CHAPTER 2: SIMULATION ENVIRONMENT

Our general approach for V&V of UML models is based on simulating the dynamic

specifications. Figure 2.4 shows an overall view of our environment in which we developed

methods and techniques to perform the required tasks. The simulation settings for a particular

scenario are adjusted by the analyst and the UML model is executed in a given simulation

environment to produce simulation logs for that particular scenario. We generate the timing

diagram from processing the simulation log files. The generated timing diagrams are inspected

visually to determine and assess the correctness of the developed methods and techniques, and to

analyze the logic behind our findings. Elements in our environment are:

1. Rational Rose Real-Time 6.0 [22] RRT as the modeling and simulation tool.

2. Simulation log files and the log analysis tool that is composed of Microsoft Excel and

Visual Basic Scripts that were develop.

3. The timing diagrams are charts showing each object as a series of changes in its states

versus time.

2.1 UML-RT modeling and simulation tool

In [25] the derivation of the set of architectural constructs that integrate ROOM notation in UML

were presented. These architectural constructs are derived from general UML modeling concepts

using UML extensibility mechanisms. Table 2.1 provides a summary for these extensions, as a

brief description of the basic constructs used in modeling the system structure and component

behavior. Three principal constructs; Capsules, Ports and Connectors, are used to explicitly

describe the system structure. In a Capsule collaboration diagram, Capsules and Ports are

stereotype roles, and Connectors are association roles. Behavior is modeled using Protocols and

state machines. A Protocol specifies the desired behavior over a connector and compromises a set

of participants, each participant plays a specific ProtocolRole. A Protocol state machine specifies

valid communication sequence and is the standard UML state machine. Capsule behavior is

defined in UML state machine where the stereotype (ChainState) is a state that is used in case of

- - 6

transitions that are split into a transition that terminates on the boundary of the state and a

transition that propagated into the state (in case of hierarchical state machines).

 Metamodel Class Stereotype

Collaboration Protocol

ClassifierRole ProtocolRole

Class Port

Class Capsule

State ChainState

Table 2.1 Summary of UML Extensions for ROOM, source [25]

Figure 2.1 shows a Capsule named Top_Level_Capsule and its Structure Diagram. The Structure

Diagram of Top_Level_Capsule contains two Capsules: First_Capsule and Second_Capsule, each

with one port named Port_1. Port_1 in First_Capsule is assigned a ProtocolRole Protocol_1 and

Port_1 in Second_Capsule is assigned a ProtocolRole Protocol_1~, which is the conjugate of

Protocol_1. As mentioned earlier a Protocol defines the flow of messages between ports.

Messages are categorized into incoming and outgoing messages. In a conjugated Port the

messages defined in the Protocol as incoming messages are defined as outgoing in the

ProtocolRole assigned to the Port, and like wise the outgoing messages are defined as incoming

messages in the ProtocolRole assigned to the Port. A connector connects the two ports and works

as a media for message delivery.

Figure 2.2 shows the State Diagram of Second_Capsule. Second_Capsule has two states S_1 and

S_2, and two transition; t_top and the initial transition that defines the initial state. S_1 is a macro

state that can be expanded into another State Diagram shown in figure 2.3. S_1 has two states and

three transition, t_1, t_2 and the initial transition. t_2 is a transition top a ChainState. Each

transition is configured with a message that defines its firing conditions, except transitions from

ChainStates like t_top.

- - 7

Figure 2.1 A Capsule (Top_Level_Capsule) and its Structure Diagram

Top_Level_Capsule

First_Capsule Second_Capsule

 Port_1
Protocol_1

 Port_1
 Protocol_1~

Top_Level_Capsule Structure Diagram

Port

Conjugated Port

Connector

- - 8

Figure 2.2 State Diagram of First_Capsule (top level)

Figure 2.3 State Diagram of the macro state S_1

A typical early model of a software product is known as the software architecture, that is

essentially a graph whose nodes represent software components and arcs represent software

connectors. In order to provide to a software architecture the potential to represent the same

software at different levels of detail, it can be hierarchically structured. In other words, a

component can be detailed by describing its internal structure of subcomponents and connectors,

while unvarying its external structure consisting of connectors with other components.

S_1

S_2

Initial

t_top

Initial

t_top

S1_1 S1_2
Initial

t_1 t_2 Initial Initial
t_1 t_2

ChainSate

t_top

- - 9

UML notation does not explicitly provide a diagram to describe a software architecture, which is

in fact not necessary. The RRT tool allows building a diagram of components and connectors,

where each component is represented by a Capsule and its Ports as interfaces to which Connectors

are associated to exchange messages with other Capsules. The suitable hierarchical structure that

such a software architecture should have is also provided, by allowing to detail the internal

structure of a Capsule with other Capsules and Connectors.

Figure 2.4 Environmental overall view

The simulative nature of this tool requires as a minimum, in order to run such a scheme, a

dynamic description of the behavior of each Capsule belonging to the lowest levels of the

hierarchy, that is each Capsule that does not contain other Capsules. This dynamic (behavioral)

description is represented in the Capsules State Diagrams as part of the UML specifications.

Figure 2.4 shows an overview of our simulation environment, RRT as the main tool and Visual

Basic Scripts running from within Microsoft Excel as tool extensions.

• Formatted
Excel charts

UML Simulation Environment

Simulation
Settings

Simulation
Logs

Analysis
Tool

Timing
Diagram

Analyst

• Rose Real Time tool
• Text Files

• MS Excel
• Processing
Macro

Visual Inspection
Viewing Macro

UML Model

Observer

Sub Run
Settings

•
•

- - 10

2.2 Log files

The log files are two text files. The first (state log file) contains an entry for each state change in

each component during a simulation run, where each entry is composed of: the simulation time of

the entry, the object and the new state. The second (message log file) contains an entry for each

message sent in the system during a simulation run, where each entry is composed of: the send

time of the message, the source object, the destination object and the message name.

2.3 Timing Diagrams

Figure 2.4 shows a sample-timing diagram from the Cardiac Pacemaker case study that will be

presented later in chapter 3. The x-axis is a time series of 1 milisec with labels every 100 milisec

and on the y-axis are the states of three objects. The first object named “Heart” has two states:

Pulse and Waiting, the second and third objects named “Ventricle” and “Atrial” respectively each

has three states: Pacing, Waiting and Refractory. For each object a series of the state changes is

plotted on the timing diagram. The fields “Graph Start” and “Graph End” are used by the viewing

macro to define the starting and ending values of the x-axis, which corresponds to the window of

time, in a single simulation run, to be displayed.

For automatic generation of timing diagrams from simulation logs, two Visual Basic macros were

developed, Processing macro and Viewing macro, within Microsoft Excel environment. First, the

processing macro, which recognizes all executed objects and all their involved states, generates

numeric distinct codes for all involved states in each object, adjusts values to enforce continuous

vertical and horizontal line representation of state changes, configures x-axis as a time series of

milliseconds, y-axis as state codes, and each object as a series, and automatically generates an

Excel chart for each simulation run. Appendix A shows the Processing macro as a subroutine

named “Processing_Macro()” in Visual Basic Script. Bellow we show the steps followed by the

Processing macro in processing the log file.

1. Extract all the Capsules “Objects” in the log file.

2. Extract the Object names and their states coded in continuous numeric state codes. i.e. For

each Object: extract all states and generate a consecutive state code for each

3. For each Object: use the state codes to generate an eleven columns log table with time as the

first column and the rest as the states in state code.

- - 11

4. Create continuous lines (horizontal and vertical) from the ten fragmented series representing

the state changes (in state codes) of the ten Objects.

5. Size the chart and force the start to be 0 milisec and the end to be 20000 milisec.

The second macro is the viewing macro, which enables the analyst to zoom in and out of the

timing diagram and adjust the window of time to be viewed. Appendix A shows the Viewing

macro as a subroutine named “Viewing_Macro()” in Visual Basic Script. The basic function is to

resize the chart (figure 2.5) based on the start, end and step fields.

- 12 -

Figure 2.5 A sample-timing diagram

Graph S ta r t : 5 0 0 0 G r a p h E n d : 7 5 0 0 X a x i s l a b e l S t e p : 1 0 0

G r a p h N a m e : C o n c u r r e n c y b a s e d a n a l y s i s . A l l m e s s a g e s b e t w e e n t h e A t r i a l a n d t h e V e n t r i c u l a r m o d e l s a r e d e l a y e d b y 1 0 e p o c h s
Se r i es 1 : h e H e a r t S e r i e s 2 : V E N T R I C U L A R _ M O D E L S e r i e s 3 : A T R I A L _ M O D E L

C o m m e n t s :

P a c i n g

W a i t i n g

R e f r a c t i n g

P a c i n g

W a i t i n g

R e f r a c t i n g

P u l s e

W a i t i n g

T i m e i n e p o c h s

I n c a s e o f m o r e t h a n o n e u n s e n s e d c o n s e c u t i v e h e a r t b e e t s , t h e n e x t h e a r t b e e t o v e r l a p s w i t h t h e g e n e r a t e d p a c e s . T h e P a c i n g , P a c i n g
t i m e o u t a n d t h e R e f r a c t o r y t i m e o u t m e s s a g e s a r e e a c h d e l a y e d f r o m e x p e c t e d b y 1 0 e p o c h s t h u s t h e w a i t i n g s t a t e s t a r t s d e l a y e d b y a t l e a s t

3 0 e p o c h s . A s w e l l i t w a s n o t i c e d i n o t h e r d e l a y v a l u e s t h a t q u e u i n g o f m e s s a g e s o c c u r s f o r d e l a y s l a r g e r t h a n 2 0 e p o c h s .

0

1

2

3

4

5

6

7

8

9

10

11

12

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

59
00

60
00

61
00

62
00

63
00

64
00

65
00

66
00

67
00

68
00

69
00

70
00

71
00

72
00

73
00

74
00

75
00

Heart

Ventrical

Atrial

- 13 -

CHAPTER 3: THE CARDIAC PACEMAKER CASE STUDY

We have selected as a case study a cardiac pacemaker (Pacemaker) device [4, pp177] to discuss

the applicability of the proposed approaches and methods. The pacemaker is a critical real-time

application. An error in the software operation of the device can cause loss of the patient’s life.

Therefore, it is necessary to model its design in an executable form to validate its temporal

behavior. We have used RRT simulation environment [22] and dynamic UML specifications [30]

to model and gather simulation statistics.

A cardiac pacemaker is an implanted device that assists cardiac functions when the underlying

pathologies make the intrinsic heartbeats low. The pacemaker runs in either a programming mode

or in one of operational modes. During programming, the programmer specifies the type of the

operation mode in which the device will work. The operation mode depends on whether the

Atrium, Ventricle, or both are being monitored or paced. The programmer also specifies whether

the pacing is inhibited (I) or triggered (T). For the purpose of this paper, we limit our discussion

to the AVI operation mode. In this mode, the Atrial portion of the heart is paced (shocked), the

Ventricular portion of the heart is sensed (monitored), and the Atrium is only paced when a

Ventricular sense does not occur; i.e., inhibited (I). Figure 3.1 shows (a) the system structure

diagram of the external components and the pacemaker design model. The external components

are modeled for simulation purposes. In the pacemaker example the Programming device

(DoctorsProgrammer) is used to configure the pacemaker’s operational mode. Therefore it

appears as one of the components interacting with the pacemaker components in the Programming

scenario only, whereas the heart is represented by the PatientsHeart component and is interacting

with the pacemaker in all the operational modes. The Observer component shown in figure 3.1 (a)

is the external monitoring component that we discuss in chapter 4. The pacemaker consists of the

following components: (shown in figure 3.1 (b))

Reed_Switch: A magnetically activated switch that must be closed before programming the

device. The switch is used to avoid accidental programming by electric noise.

- 14 -

Figure 3.1 Structure diagram for the Pacemaker.

(a) Pacemaker and all external Capsules (context level).

(b) Pacemaker internal Structure Diagram

Coil_Driver: Receives/sends pulses from/to the DoctorsProgrammer. These pulses are counted

and then interpreted as a bit of value zero or one. These bits are then grouped into bytes and sent

to the communication gnome. Positive and negative acknowledgments as well as programming

bits are sent back to the programmer to confirm whether the device has been correctly

programmed and the commands are validated.

Communication_Gnome: Receives bytes from the coil driver, verifies these bytes as commands,

and sends the commands to the Ventricular and Atrial models. It sends the positive and negative

acknowledgments to the coil driver to verify command processing.

Ventricular_Model and Atrial_Model: These two actors are similar in operation. They both could

pace the heart and/or sense heartbeats. The AVI mode is a complicated mode, as it requires

coordination between the Atrial and Ventricular models. Once the Pacemaker is programmed the

magnet is removed from the Reed_Switch. The Atrial_Model and Ventricular_Model

communicate together without further intervention. Only battery decay or some medical

maintenance reasons force reprogramming.

 / PatientsHeart

 / DoctorsProgrammer

 / Observer

+ / heart2

+ / magnet+ / programming

+ / heart~ + / observation~

+ / programming~

+ / tProgram

+ / magnet~

+ / Prob

+ / ObservePaceMaker

 / PatientsHeart

+ / heart2

+ / magnet

 / DoctorsProgrammer

+ / ObservePaceMaker

 / PaceMaker

 / REED_SWITCH / COMMUNICATION_GNOME

 / COIL_DRIVER

 / ATRIAL_MODEL / VENTRICULAR

+ / magnet

+ / programming

+ / magnet
+ / commEnable_G

+ / commEnableCoil

+ / commEnable_G~

+ / coilComm~ + / commChamber_V+ / commChamber_A

+ / commEnableCoil~

+ / programming
+ / coilComm

+ / AtrialcommChamber~

+ / atrialVentricular

+ / heart~+ / ObserveAtr~

+ / VencommChamber~

+ / atrialVentricular~

+ / heart~+ / ObserveVen~

+ / magnet

+ / programming

+ / heart~+ / observation~

 / REED_SWITCH

+ / magnet
+ / commEnable_G

+ / commEnableCoil

 / COMMUNICATION_GNOME
+ / commEnable_G~

+ / coilComm~ + / commChamber_V+ / commChamber_A

 / COIL_DRIVER

+ / commEnableCoil~

+ / programming
+ / coilComm

 / ATRIAL_MODEL

+ / AtrialcommChamber~

+ / atrialVentricular

+ / heart~+ / ObserveAtr~

 / VENTRICULAR

+ / VencommChamber~

+ / atrialVentricular~

+ / heart~+ / ObserveVen~

+ / heart~+ / observation~

(a)
(b)

- 15 -

A hierarchical UML state machine models the behavior of each component. As mentioned earlier,

a pacemaker can be programmed to operate in one of several modes depending on which part of

the heart is to be sensed and which part is to be paced. The analysis of the device operation

defines six scenarios. Figure 3.2 show the main Use Case diagram and all the relationships among

the six Use Cases and the two actors, DoctorsProgrammer and PatientsHeart. Each scenario, in the

pacemaker, maps to a Use Case, one for the programming scenario and five for the operational

modes. The AAI operational scenario: in which the Ventricular_Model is Idle and the

Atrial_Model is sensing and pacing the heart when a heartbeat is not sensed. The AAT operational

scenario: in which the Ventricular_Model is Idle and the Atrial_Model is sensing and pacing the

heart when a heartbeat is not sensed. The VVI operational scenario: in which the Atrial_Model is

Idle and the Ventricular_Model is sensing and pacing the heart when a heartbeat is not sensed.

The VVT operational scenario: in which the Atrial_Model is Idle and the Ventricular_Model is

sensing and pacing the heart when a heartbeat is sensed or not. We only use the AVI Operational

scenario: in which the Ventricular_Model senses the heart and the Atrial_Model paces the heart

when a heart beat is not sensed. In all scenarios a refractory period is then in effect after every

pace.

Currently UML representation of timing constraints [30] is limited to construction marks on

sequence diagrams (common in blueprints), labels, and message transmission and reception on

sequence diagrams. We compose the AVI timing constraints from: elements representing the time

of a message transmission and reception; elements mapping to the time of entry of a state are

represented by the reception of the message that fired the transition. We applied our approaches in

chapter 4 to the following two timing constraints of the AVI operational scenario.

The first timing constraint is on the paces generated by the pacemaker in response to unsensed

heart pulses. The time to each pace corresponding to an unsensed pulse should be less than 350

milisec.

∀si ∃ pj T(pj)-T(si) < ε and si ∈ S and pj ∈ P

- 16 -

where S is the set of all unsensed heart beats observed during a simulation run, S={s1, s2, .., sn},

P is the set of all paces generated by the pacemaker to the heart during a simulation run, P={p1,

p2, .. , pm} and ε is the maximum permissible delay of pacing after a heart beat is not sensed and

is equal to 350milisec. Figure 3.3 shows two cases: in the first ε was not exceeded, while in the

second it was exceeded and the result was Pacing the patients heart while a pulse is naturally in

place.

The second timing constraint is on the refractory period, the time in which the pacemaker stays

idle after every pace. The Atrial_Model refractory time represents this period and is controlled by

the Ventricular_Model refractory state which intern is controlled by the Ventricular_Model

refractory timer. The Atrial_Model refractory time should be less than 350milisec.

∀ii ∃ oj T(oj)-T(ii) < ε and ii ∈ I and o j ∈ O

where I is the set of all transitions from the Pace state to the Refractory state in the Atrial_Model,

I = {i1, i2, .., in}, O is the set of all transitions from the Refractory state to the Waiting state in the

Atrial_Model, O = {o1, o2, .. , om}, and ε is the maximum permissible refractory time for the

Atrial_Model and is equal to 350milisec.

- 17 -

Programming
Mode

Operational
Modes

DoctorsProgramer

Operating_in_AVI
Operating_in_ AAT

Operating_in_ VVI
Operating_in_ VVT

PatientsHeart

1

1

1 1

1

1

1

1

1

1
11

1

Operating_in_ AAI

1

1

1

1

Programming

1

1

1

1

«extend»«extend»
«extend»«extend»

«extend»«extend»«extend»«extend»
«extend»«extend»

Figure 3.2 Main Use Case Diagram

- 18 -

Figure 3.3 A sample-timing diagram illustrating the timing constraints

- - 19

CHAPTER 4: TEMPORAL V&V

Capitalizing on the simulation environment (commercial tool “RRT, Microsoft Excel and Visual

Basic Scripts” and the tool extensions “logging and automatic generated Timing Diagrams”)

described in chapter 2, the V&V analyst can inspect the timing diagrams to verify that the timing

constraints are met. Moreover, two approaches for automatic V&V of timing constraints [8] are

presented in this chapter, together with the results and the lessons learned, using the Pacemaker

case study presented in chapter 3. As well as four timing analysis methods, and their deployment

procedure to UML artifacts [34] are presented, together with samples of the results from the

Pacemaker example.

4.1 Automated V&V of Timing Constraints

The first approach is based of processing the simulation log files in search of constraint violations.

While the second approach is based on an Observer component, modeled as an external entity to

the modeled system and acting as a monitoring device. Hence two methods for modeling the

timing constraints in the Observer Component, namely: Constraint driven and Use Case driven,

are developed. The output in both approaches is a violation table, table 4.1 is a sample of a

violation table. Figure 4.1 shows a high level view (process/product view) of the Automated

Timing Constraints V&V process.

4.1.1 The first approach for Automatic timing constraints verification

In this approach the violation algorithm shown below processes the message log file. The product

is the violation table which is a list of violations and their time of occurrence in the simulation run.

The violation algorithm consumes the message log file and the timing constraints. Each entry in

the message log file contains the time of message occurrence, the message name, and the type of

- - 20

Figure 4.1 High level view of the Automated Timing Constrains V&V process

occurrence (receive_by or send_by). The timing constraints are in the form of Boolean

expressions containing elements that correspond to the time of the transmission or reception of a

message and a constant to which the evaluated expression is compared. The timing constraints are

coded in the algorithm in the form of a two dimensional array where each row represents one

timing constraint and contains: the constant time value to which the expression is compared, the

total number of elements in the expression, the set of elements which represent the time of a

message occurrence ordered by their expected occurrence, the set of corresponding occurrence

types (transmission or reception), and the set of operators acting on the corresponding element

including the Boolean operator as the last operator. Examples are shown below.

For each constraint the algorithm scans the message log file and searches for the elements in

order. For each element detected, the corresponding operator is applied on the temporary variable

temp_time and the element. The Boolean expression is evaluated after the last element is detected

• Formatted
Excel chart

• Violation
Table

UML Simulation Environment

Simulation
Settings

Simulation
Log and
Violation
Report

Analysis
Tool

Timing
Diagram

and
Violation

Table

Analyst

•Rose Real Time tool
•Text Files

•MS Excel
•Processing
Macro
•Constraint
Macro

Inspection
Viewing Macro

UML Model

Observer

Sub Run
Settings

- - 21

and processed, and if it evaluates to false, an entry in the violation table is recorded in the form of

the time and type of the violation.

Algorithm

Procedure Violation

Parameters

 Consumes: log_file_ entryi(time, message, occurrence), where 0 < i < end_of_log_file

 timing_constraink(constant, no_of_elements, elementh, occurrenceh,

operatorsh(first_operand, second_operand)), where 0 < k <=

total_no_of_timing_constrains and 0 < h <= no_of_elements

 Produces: Violation_Table(Stack[time,constrainID])

Initialization:

 i = k = h = 1

 temp_time = 0

Algorithm

 while k <= total_no_of_timing_constrains do

 i = h = j = 1

 while h < no_of_elements do

 i = j

 while i < end_of_log_file do

 if log_file_entryi.message = timing_constraintk.elementh AND

 log_file_entryi.occurrence = timing_constraintk.occurrence

 timing_constraintk.operatorh(temp_time, log_file_entryi.time)

 j = i

 next h

 end if

 if h = no_of_elements AND timing_constraintk.operatorh(temp_time, log_file_entryi.time)

 = False

 push (log_file_entryi.time, k)

 end if

- - 22

 next i

 end while

 end while

 next k

 end while

end Procedure Violation

The pacemaker constraints were composed and fed to the above algorithm and the log file,

generated for a faulty simulation run in which the waiting time was increased by 50 milisec to be

1050 milisec, was processed. The parameters consumed by the algorithm are:

The two timing constraints:

- timing_constrain1(constant = 350 milisec, no_of_elements = 2,

[element1 = Pace, element2 = Unsensed] ,

[occurrence1 = Receive_heart, occurrence2 = Send_heart],

[operators1(first_operand, second_operand) = “-“, operators2(first_operand, second_operand) =

“<”])

- timing_constrain2(constant = 350 milisec, no_of_elements = 2,

[element1 = APaceDone, element2 = VRefractDone],

[occurrence1 = Receive_Atrial, occurrence2 = Receive_Atrial],

[operators1(first_operand, second_operand) = “-“, operators2(first_operand, second_operand) =

“<”])

Sample of the log file:

log_file_ entry124 (time = 22152, message = APaceDone, occurrence = Send_Venticular)

log_file_ entry125 (time = 22152, message = APaceDone, occurrence = Receive_Atrial)

log_file_ entry126 (time = 22653, message = unsensed, occurrence = Send_heart)

log_file_ entry127 (time = 23004, message = Pace, occurrence = Send_ Atrial)

log_file_ entry128 (time = 23004, message = Pace, occurrence = Receive_Venticular)

- - 23

log_file_ entry129 (time = 23007, message = Pace, occurrence = Send_Venticular)

log_file_ entry130 (time = 23007, message = Pace, occurrence = Receive_heart)

Results showed several violations in the first constraint:

Delayed Pace at: 10015

Delayed Pace at: 22653

Delayed Pace at: 23554
Delayed Pace at: 33469

Delayed Pace at: 34370

Delayed Pace at: 35271
Delayed Pace at: 45185

Delayed Pace at: 46087

Delayed Pace at: 58705

The drawbacks of this approach is in the fact that it resembles an open loop process, i.e. we can

not stop the simulation nor change the simulation settings in response to a violation as it occurs,

only when the whole simulation run is performed and the logs are available we can detect the

violations and start understanding the logic behind them. This fact makes the approach less

valuable to the purposes of timing analysis and the sensitivity analysis to a specific variable, delay

or operation. This drawback is handled in the second approach discussed next.

4.1.2 The second approach for timing constraints verification

In this approach we designed the Observer component (figure 4.2) to act as an external monitoring

object that monitors the timing constraints in the modeled system, and detects and reports all the

violations as they occur. The Observer component is not part of the UML specifications nor of the

tool used; it is aimed to automate the detection of timing constraints violations as they occur. The

Observer responsibilities are: 1) Setting and initiating consecutive simulation runs 2) Detection of

timing constraint violations 3) Production of the violation report. These violations represent

detected deadline failures during the simulation run. The observer is modeled using UML

hierarchical state machine based on timing constraints, use cases, sequence diagrams and the

- - 24

methods presented in this section. One connector delivers the messages between the modeled

system and the Observer. Messages from the system represent all the instances addressed in the

timing constraints. There exist no messages from the Observer directly to the system. Several

connectors can exist between the Observer and the modeled external systems. Messages from the

Observer to the modeled external systems are control messages to initiate and terminate subruns.

In [5], requirement verification for timed UML sequence diagrams and timed automata design

representation (UML models have to be converted to timed automata), were accomplished by an

Observer model within UPPAAL tool that was designed to verify timed automata requirements.

The modeled observer branched to a state indicating a specific traceable timing failure, while in

our model for the Observer, the reaction to a timing violation is configurable (the sub run can be

forced to stop and the next can be consequently configured and started).

Figure 4.2 The Observer as an external object

 / PatientsHeart

 / DoctorsProgrammer

 / Observer

+ / heart2

+ / magnet+ / programming

+ / heart~ + / observation~

+ / programming~

+ / tProgram

+ / magnet~

+ / Prob

+ / ObservePaceMaker

 / PatientsHeart

+ / heart2

+ / magnet

 / DoctorsProgrammer

+ / ObservePaceMaker

 / PaceMaker

- - 25

4.1.2.1 Constraint driven Observer modeling

Our first proposal for Observer modeling is strictly based on timing constraints. Each constraint is

modeled using a UML hierarchical State Machine representing the behavior of a subcomponent in

the Observer component. The Observer component encapsulates all constraint components as well

as an Observer controller component. The controller component is responsible for setting,

initiating, terminating sub runs and controlling which set of constraint components is active at

each specific time instance. The highest level of the constraint hierarchical State Machine consists

of two states; on and off, and is controlled by the Observer controller component.

We modeled an Observer for the pacemaker based on the constraint driven Observer modeling

and we confirmed the results with the timing diagrams. In this case the two pacemaker timing

constraints mentioned in chapter 3 are modeled each in a separate component, namely:

Constraint_1, Constraint_2. Figure 4.3 shows: (a) Observer component structure diagram for the

pacemaker. (b) The state diagram representing the behavior of the Observer Controller

(MicroObserverController in figure 4.3 (a)). (c,d) The first level of the state chart representing the

behavior of constraint 2 and constraint 1 respectively. Two states are shown “Off” which is

equivalent to idle and “On” which is expanded to a second level state machine, shown in (e,f), to

represent the constraints.

One of the benefits of Modeling constraints in this manner is the ability to report a categorized

violation of a constraint instead of just reporting the violation. This is obvious in the lower state

diagram of the first constraint (figure 4.3). The violation of this constraint can imply one of two

behavioral errors: a delayed pace or a skipped pace. Modeling the constraint as well as the types

of violations, speeds up the analysis process performed by the analyst.

 The drawbacks of the constraint driven Observer Modeling is the fact that the amount of effort

spent by the analyst is directly proportional to the number of constraints modeled. This fact makes

this method limited by the number of constraints to be studied. Our experience with the tool used

in this work suggests that this method should only be used for a small number of timing

constraints. Thus the number of components in the Observer Capsule is relatively small. This

limitation is relaxed in the Use Case driven Observer modeling presented in the next subsection.

- - 26

Figure 4.3 Constraint Driven Observer Modeling.
(a) Observer Structure Diagram. (b) Observer Controller State Diagram.

(c,d) First level State Diagram for Constrain 2 and Constraint 1 respectively.
(e,f) Second level State Diagram for constraint 2 and constraint 1

respectively

 / microObservercontroller1 : MicroObservercontroller

 / Constraint_1
 : constraint_1

 / Constraint_2
 : constraint_2

+ / Prob
ObserverProb + / ControlProgrammer

 : Program

+ / HeartOb
 : ObserveHeart~

+ / Observation
 : Observe

+ / ONOFF
 : ConstraintOnOFF~

+ / Time
 : Program

+ / Prob
 : ObserverProb

+ / HeartOb
 : ObserveHeart~

+ / OnOff
 : ConstraintOnOFF

+ / OnOff
 : ConstraintOnOFF

+ / observation
 : Observe

+ / HeartOb
 : ObserveHeart~

+ / Observation
 : Observe

 / microObservercontroller1 : MicroObservercontroller

+ / ONOFF
 : ConstraintOnOFF~

+ / Time
 : Program

+ / Prob
 : ObserverProb

 / Constraint_1
 : constraint_1

+ / HeartOb
 : ObserveHeart~

+ / OnOff
 : ConstraintOnOFF

 / Constraint_2
 : constraint_2

+ / OnOff
 : ConstraintOnOFF

+ / observation
 : Observe

SetSubrun RunUnderConstraintStartSubRun

Initial

EndSubRun

StartSubRun

Initial

EndSubRun

Off On

ToOn

ToOff
Initial

ToOn

Initial

Off On

ToOn

ToOff
Initial

ToOn

Initial

InRefractoryNotInRefractory

ErrorDetected

Intorefractory

OutOfrefractory

timeoutintoreractory

ToOn

ToOnToOn

ToOffToOff

Intorefractory

OutOfrefractory

ToOn

AwaitingUnsensedHeartBeat

ErrorDetection

AwaitingPace
UnsensedPulse

Pace

TimeOutPace Pulse UnsensedPulse

ToOnToOn

ToOffToOff

UnsensedPulse

Pace

TimeOut UnsensedPulse
Detection of a
skipped Pace

Detection of a
skipped Pace

Detection of a
delayed Pace

ToOnToOn

First level state
diagram for
Constraint2

First level
state diagram
for
Constraint1

Second level state
diagram for
Constraint2

Second level
state diagram for
Constraint1

Observer
Controller
state
diagram

Observer
Structure
diagram

(a)

(b)

(c) (d)

(e) (f)

- - 27

4.1.2.2 Use Case driven Observer modeling

Our second method for Observer modeling is based on timing constraints, use cases and sequence

diagrams. In this method an adaptation of the structured sequence diagrams in [12], in which each

scenario is represented as a Use Case composed of a set of Sequence Diagrams such that no loops

or conditions exist within a sequence diagram, is used. This adaptation serves in mapping the

sequence diagrams to state machines. In this representation the decision of the next sequence

diagram is made based on the first message in the next sequence diagram. In this representation

each Use Case has a set of Sequence Diagrams. For the purpose of timing constraints verification

only the messages of the sequence diagram that affect one or more variables in the constraints to

be verified as well as the messages on the edges of the Sequence Diagram, are mapped. Modeling

the messages on the edge of the sequence diagrams is intended for modeling the messages on

which the choice of the next sequence diagram is selected. Bellow we define FUC as a set of Use

Cases, subset (filtered from UC) of the set of all use cases in the specification, FSD as a set of

Sequence Diagrams, subset (filtered from SD) of the set of Sequence Diagrams in a Use Case that

belongs to FUC and FM as the set of messages, subset (filtered from M) to the set of all messages

in a sequence Diagram that belongs to FSD. In the following subsection we present the definitions

of the sets mentioned above, how the filtration is performed and steps for the modeling process.

4.1.2.2.1 Definitions

The system requirements are expressed in a set of Use Cases named “UC” and each Use Case is

named “UCi” and contains a set of Sequence Diagrams named “SD i”. Each Sequence Diagram

belonging to Use Case UCi is named “SDij” and contains of a set of messages named Mij. The set

T is the set of timing constraints, each timing constraint is named tl is composed of three sets: a

set of messages named E l , a set of operators named opl and a set of constants named C l . The sets

UC , SD , M and T are presented below

T = { tl |1 ≤ l ≤ n } = {t1,t2,….,tl,……,tn} where 1 ≤ l ≤ n

n is the total number of timing constraints

tl = < Opl , El , Cl >

- - 28

UC = { uci |1 ≤ i ≤ m } = { uc1, uc2,…., uc i,……, ucm} where 1 ≤ i ≤ m

m is the total number of Use Cases

SDi = { sdij |1 ≤ j ≤ pi } SD = i=1∪m SDi

pi is the total number of Sequence Diagrams in Use Case number i

Mij = { µijk |1 ≤ k ≤ qij } M = i=1∪m
j=1∪pi Mij

qij is the total number of messages in Sequence Diagram ij

The set FMij is the subset of Mij that contains the messages that are required for the timing

constraints, and if any then, the edge messages in the Sequence Diagram SDij are included

as well.

TMij = { µijk | ∃ l (1 ≤ l ≤ n) : µijk ∈ El }

If (TMij = ∅) then FMij = ∅ Else FMij = TMij ∪ µij1, µijqij}

FM = i=1∪m
j=1∪pi FMij

The set FSDi is the subset of SDi that contains the set of Sequence Diagrams that have

messages in FM

FSDi = { sdij |1 ≤ j ≤ pi , FMij ≠ ∅ } FSD = i=1∪m FSDi

The set FUC is the subset of UC that contains the set of Use Cases that have Sequence

Diagrams in FSD

FUC = { uci |1 ≤ i ≤ mi , FSDi ≠ ∅ }

4.1.2.2.2 Step 1

Construct the top level/levels of the Observer state chart from the logical relationships and

structure between all the Use Cases in FUC such that:

A- Each Use Case maps to a Macro state: where the Micro states of that state are constructed

later in step 2 and each represent a Sequence Diagram.

- - 29

B- If a Use Case is contained in another Use Case it is mapped to a Micro State inside the

corresponding Macro State representing the containing Use Case.

C- Each relationship between two Use Cases in FUC is mapped to a transition triggered by the

occurrence of a message from the corresponding sequence diagrams.

4.1.2.2.3 Step 2

For each element in FUC construct the state diagram that represents the logical relationships and

structure between all elements in FSD such that:

A- Each Sequence Diagram in FSD maps to a Micro state in the corresponding Use Case

Macro State in FUC.

B- Each relationship between two Sequence Diagrams in FSD (consecutive conditional or

unconditional execution) is mapped to a transition triggered by the occurrence of the first

message in following Sequence Diagram.

C- Each Use Case in FUC has a “Start_Use_Case” state representing its initial starting point

from which the selection of the first Sequence Diagram to be executed, is made.

D- Selection is based on transitions triggered by the occurrence of the first message in the

corresponding Sequence Diagrams causing the transition to their corresponding Macro

States.

4.1.2.2.4 Step 3

For each Sequence Diagram in FSD construct the state diagram that maps all messages in FM into

transitions triggered by the occurrences of messages in the observed system such that:

A- States are named by the message name “Received_messagename” and are triggered the

message reception at the destination Capsule

B- Mapping is done for messages in FM only: The set FM as defined above does not contain

all the messages in each Sequence Diagram in FSD. Only the messages that are related to

elements of the timing constraints and the messages on the edge of the Sequence Diagrams

are modeled.

- - 30

C- Time stamps of messages involved in all concerned timing constraints are collected in

variables “RTTimespec” using the system method

“RTTimespec::getclock(Variable_Name)” , as they occur.

D- Each constraint Boolean expression is evaluated immediately after the collection of the last

element (occurrence of the last message related to the constraint). Then the check is

performed and the violation (if any) is logged.

4.1.2.2.5 Observer Model for the cardiac pacemaker case study

We modeled an Observer for the pacemaker based on the Use Case driven Observer modeling

methodology. The two timing constraints for the AVI operational mode were used to construct the

FUC, FSD and FM. Figure 4.4 shows the three level hierarchical state machine of the modeled

Observer and the messages mapped from the sequence diagrams, based on the definitions and

steps of the Use Case driven Observer modeling. The Programming Use Case and the AVI Use

Case formed FUC. The mapping of FUC based on step 1 is shown in figure 4.4 (a). The three

sequence diagrams; Refractory, Unsensed and Sensed formed FSD. The mapping of FSD based

on step 2 is shown in figure 4.4 (b). Figure 4.4 (c,d) show the State Diagram of the “Unsensed”

and “Refractory” Sequence Diagrams (figure 4.4 (e,f)) respectively. The timing constraints span

two sequence diagrams only; Refractory and Unsensed. For this reason, the Sensed sequence

diagram is modeled. In modeling the Unsensed sequence diagram, the messages “A Pace Start”

and “Pace Timeout” are not elements of any of the two timing constraints and hence the are not

mapped. While in the Refractory sequence diagram the message “RefTimeOut” is mapped

because of being an edge message and the message “VrefractDone” is mapped because of being

part of the second constraint.

One of the benefits of Modeling constrains in this manner is the ability to verify sequence

diagrams, in a manner that is proportional to the amount of details modeled in the Observer.

- - 31

Figure 4.4 Use Case Driven Observer Modeling

Programming_Use_Case

AVI_Use_Case

StartSubRun

EndSubRun StartSubRun

ToAVI

ToOff

StartSubRunStartSubRun

EndSubRunEndSubRun StartSubRun

ToAVI

ToOff

Refractory
_Sequence_Diagram

Unsensed
_Sequence_Diagram

Sensed
_Sequence_Diagram

Start
_Use_CaseToOff

SenseTimeOut

Vsense

RefTimeOut

ToAVI

RefTimeout

ToAVI

ToOffToOff

VSenseSenseTimeOut

Received
_RefTimeOut

Received
_VrefractDone

VSenseSenseTimeOut

RefTimeOut RefTimeout

VrefractDone

SenseTimeOut VSense

RefTimeOut RefTimeout

VrefractDone

VSenseVSense

SenseTimeOut VSense

RefTimeOut

RefTimeoutRefTimeout

RefTimeoutReceived
_SenseTimeOut

Received

_Pace

Received
_APaceDone

SenseTimeOutSenseTimeOut

RefTimeOut

SenseTimeOut SenseTimeout

Pace

APaceDone

RefTimeUut

Atria Ventricular

RefractoryRefracory
1: RefTimeOut

1.1: VrefractDone

Waiting Waiting

Atrial Ventricular Heart

Waiting Waiting

1: SenseTimeOut1: SenseTimeOut

1.1: APaceStart1.1: APaceStart

PacingPacing

2: Pace2: Pace

3 : PaceTimeOut'3 : PaceTimeOut'

3.1: APaceDone3.1: APaceDone

RefractoryRefractory

(a)
Step 1
FUC mapped in
the first level
state diagram

(b)
Step 2
FSD of the AVI
Use Case mapped
in a second level
state diagram

Step 3b
FM of the
Refractory
sequence diagram
mapped in a
third level state
diagram

Step 3a
FM of the
Unsensed
sequence
diagram
mapped in a
third level state
diagram

(e) Unsensed Sequence diagram

(f) Refractory Sequence diagram

(c)
(d)

The two
Sequence
Diagrams used
in Step 3 to
derive the
corresponding
state charts

- - 32

4.1.3 Results and lessons learned

In this section we show our results, from applying the approaches and methods above, and

confirming with visual inspection of the timing diagrams, to the AVI scenario of the pacemaker

model. We injected timing faults in the pacemaker model in order to force the occurrence of

violations based on the analysis methods described later in this chapter and in [34]. The timing

diagrams described earlier in chapter 2 were generated and used to verify the expected logics

behind the detected violations. The sample that we show below is a Time-out based timing

analysis in which we study the effect of the time set for the Ventricular_Model Refractory timer

(timer controlling the time spent in the Refractory state by the Ventricular_Model and the exiting

transition to the waiting state) on the timing constraints, when increased by 50 milisec to be 350

milisec. We know that the Atrial_Model Refractory time (time spent in the Refractory state by the

Atrial_Model) is directly controlled by the Ventricular_Model Refractory time through the

messages: ApaceDone and VrefractDone from the Venticular_Model to the Atrial_Model. Thus

we expect the periodic violation of the second constraint. The increase in the Atrial_Model

Refractory time, being part of the cycle time, causes an increase in the delay between each

generated pace and each unsensed pulse. The increase in the accumulated delay becomes

significant to the first timing constraint starting from the third consecutive unsensed heart beet.

We tested the presented approaches and methods and proved their correctness when the violation

tables generated for the same faulty simulation run were identical. An increase in the

Ventricular_Model Refractory time from 300 milisec to 350 milisec was the selected fault. Table

4.1 shows a sample of the violations from the three simulation runs where the temporal V&V was

performed using the presented approaches and methods: the violation algorithm (first approach),

constraint driven Observer modeling (first method in the second approach) and Use Case driven

Observer modeling (second method in the second approach).

- - 33

Table 4.1 Sample of the violation table from simulation with 350milisec

Ventricular_Model Refractory time

We argue that the three directions for automated verification of timing constraints presented above

are independent, yet selecting the most suited direction is specific to the specification to verify and

the V&V objectives. The first approach will be the most effective and efficient when the

verification objectives do not require any response within a single simulation run. Which we

described as an open loop analysis where there is no intention for stopping the simulation nor

changing the simulation settings in response to a violation as it occurs. In this case the first

approach is the most efficient and we perceive it to be the most scalable. This limitation is handled

in using the second approach, in which a selection of the Observer modeling method should be

performed. In the constraint driven Observer Modeling, the amount of effort spent by the analyst

in modeling the Observer and the complexity of the Observer model is directly proportional to the

 22612 Constraint 2 Violated: Refractory problem
23664 Constraint 2 Violated: Refractory problem
24165 Constraint 1 Violated: Delayed Pacing problem
24715 Constraint 2 Violated: Refractory problem
25216 Constraint 1 Violated: Delayed Pacing problem
25767 Constraint 2 Violated: Refractory problem
26268 Constraint 1 Violated: Delayed Pacing problem
26818 Constraint 2 Violated: Refractory problem
27319 Constraint 1 Violated: Delayed Pacing problem
27870 Constraint 2 Violated: Refractory problem
34339 Constraint 2 Violated: Refractory problem
35391 Constraint 2 Violated: Refractory problem
35891 Constraint 1 Violated: Delayed Pacing problem
36442 Constraint 2 Violated: Refractory problem
36943 Constraint 1 Violated: Delayed Pacing problem
37494 Constraint 2 Violated: Refractory problem
37994 Constraint 1 Violated: Delayed Pacing problem
38545 Constraint 2 Violated: Refractory problem
39046 Constraint 1 Violated: Delayed Pacing problem
39597 Constraint 2 Violated: Refractory problem
46056 Constraint 2 Violated: Refractory problem
47108 Constraint 2 Violated: Refractory problem
47608 Constraint 1 Violated: Delayed Pacing problem

- - 34

number of constraints modeled. This fact makes this method limited by the number of constraints

to be studied, thus introducing the limitation on the use of the method in cases where more than

four timing constrains are being verified. This limitation is eliminated when using the Use Case

Observer modeling, yet the trade off when selecting the constraint driven Observer modeling over

the Use Case driven Observer modeling in case of four constraints or less is in the amount of

effort spent in modeling the Observer versus the inability (if required) to verify sequence diagrams

nor to gather statistics that can be used in other analysis.

4.2 The Four Timing Analysis Methods

4.2.1 Methods

Using the automatic generation of timing diagrams described in chapter 2, the analyst can inspect

the timing diagrams to verify that timing constraints are met. Moreover, the analyst can deploy

several timing analysis methods to study the effect of delays in transmission or processing of

messages. Table 4.2 summarizes four timing analysis methods that we developed to analyze UML

specifications. We discuss each of the proposed methods using a Focus/Purpose/Method template.

Timing Analysis Method Focus Purpose

Concurrency-based Links between

objects

(components)

Study the effect of delays of delivering

messages between objects

Performance-based Objects

(components)

Study the effect of implementation efficiency

Timeouts-based Objects

(components)

Study effect of various timeout values.

Environment-Interactions External

Environment

Study effect of delays in recognizing

hardware events

Table 4.2 Summary of Timing Analysis Methods

- - 35

4.2.1.1 Concurrency-based Timing Analysis:

Focus: Architecture connectors (links between objects)

Purpose: Analyze the effect of delays in delivering messages from one component (object) to

another.

Method:

• Augment the model with delays over connectors involved in each scenario.

• Generate timing diagrams for each simulation run.

• Inspect timing diagrams to study the effects of these delays on model behavior and

required deadlines.

4.2.1.2 Performance-based Timing Analysis

Focus: Architecture components (objects)

Purpose: Analyze the effect of inefficient implementation of state activities and actions.

Method:

• Augment the model with delays in the execution of entry, exit, and activity code segments

of all states involved in each scenario.

• Generate timing diagrams for each simulation run.

• Inspect timing diagrams to study the effect of these delays on model behavior and

required deadlines.

4.2.1.3 Timeouts-based Timing Analysis

Focus: Architecture components (objects)

Purpose: Analyze the effect of timeout values of all user defined timers in the model.

Method:

• Vary the values of timers used in each scenario.

• Generate timing diagrams for each simulation run.

- - 36

• Inspect timing diagrams to study the effect of these variations on model behavior and

required deadlines.

4.2.1.4 Environmental-Interactions Timing Analysis

Focus: Interactions with the environment including hardware devices and sensors.

Purpose: Analyze the effect of delay in sensing environmental events, caused by external systems

and/or event recognition software (outside system boundaries).

Method:

• Augment the model with delays in sensing hardware events.

• Produce timing diagrams for each simulation run.

• Inspect timing diagrams to study the effect of these delays on model behavior and

required deadlines.

Later in chapter 6 the above methods are used in Fault Injections analysis.

4.2.2 The Cardiac Pacemaker Example

4.2.2.1 Concurrency-based Timing Analysis

Focus: Delay all messages on the connector between the Atrial and Ventricular components. (10

epochs is shown in Figure 4.5)

Result: Figure 4.5 shows a sample of the Concurrency-based analysis for a Cardiac Pacemaker in

the AVI operational mode where all messages between the Atrial and the Ventricular models are

delayed by 10 epochs (100 milliseconds). In case of more than one unsensed consecutive heart

beats, the next heart beat overlaps with the generated paces.

Reason: Due to message delay, the refractory time for the Atrial increased by at least 20 epochs

and the Pacing is delayed from expected by 10 epochs, thus the start of the waiting state was

delayed by at least 30 epochs.

Note: We observed that Queuing of messages occurs for delays larger than 20 epochs.

- - 37

4.2.2.2 Performance-based Timing Analysis

Focus: Insert delays in the execution of actions in the refractory state of the Atrial component. (10

epochs is shown)

Result: : Figure 4.6 shows a sample of the Performance-based analysis for a Cardiac Pacemaker

in the AVI operational mode where the entry actions of the Atrial Refractory state is delayed by

10 epochs (100 milliseconds).In Case of 2 consecutive unsensed heart beats, the second heart

pulse overlaps with the second pace.

Reason: The inserted delay added to the refractory period of the Atrial, thus causing the start of

the waiting state to be delayed.

4.2.2.3 Timeout-based Timing Analysis

Focus: Increase the timeout value of the Ventricular refractory (Vrefract) timer. (5 epochs is

shown)

Result: Figure 4.7 shows a sample of the Timeout-based analysis for a Cardiac Pacemaker in the

AVI operational mode where the Venticular Refractory timer is increased by 5 epochs (50

milliseconds) to be 35 epochs (350 milliseconds).In Case of 2 consecutive unsensed heart beats,

the 2nd heart pulse intersects with the 2nd pace.

Reason: The Refractory time-out in the Ventricular triggers the change of state to waiting in the

Atrial, thus the increase in its value causes a delayed sensation period which accumulates in the in

case of consecutive unsensed heart beats.

4.2.2.4 Environmental-based Timing Analysis

Focus: Delay the sensation of the heart pulses in the Ventricular component. (30 epoch is shown)

Result: Figure 4.8 shows a sample of the Environmental-based analysis for a Cardiac Pacemaker

in the AVI operational mode where the sensation messages are delayed by 30 epochs (300

milliseconds). After pulse A two pulses were not sensed from the heart, thus two paces were

generated but delayed by 30 epochs, this made pulse B to fall between the two paces.

Reason: The delay causes a shift in the sensed Heart beats series, thus increasing the chance for

pacing while pulsing. The effect is more clear in pulse C where one pace was generated and pulse

C fallen in the refractory state.

- 38 -

Figure 4.5 Sample of Concurrency-based Timing Analysis for a Cardiac Pacemaker in the AVI operational mode

Graph Star t : 5000 Graph End: 7500 X ax is labe l S tep : 100
Graph Name: Concurrency based analysis. Al l messages between the Atr ia l and the Ventr icular models are delayed by 10 epochs
Ser ies 1: heHeart Ser ies 2 : V E N T R I C U L A R _ M O D E L Ser ies 3 : A T R I A L _ M O D E L

C o m m e n t s :

Pac ing

Wai t ing

Refract ing

Pac ing

Wai t ing

Refract ing

Pu lse

Wai t ing

Time in epochs

In case of more than one unsensed consecut ive heart beets, the next heart beet overlaps with the generated paces. The Pacing, Pacing
t imeout and the Refractory t imeout messages are each delayed f rom expected by 10 epochs thus the wai t ing state star ts delayed by at least
30 epochs. As wel l i t was not iced in other delay values that queuing of messages occurs for delays larger than 20 epochs.

0

1

2

3

4

5

6

7

8

9

10

11

12

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

59
00

60
00

61
00

62
00

63
00

64
00

65
00

66
00

67
00

68
00

69
00

70
00

71
00

72
00

73
00

74
00

75
00

- 39 -

Figure 4.6 Sample of the Performance-based analysis for a Cardiac Pacemaker in the AVI operational mode

Graph Star t : 5000 G r a p h E n d : 7000 X a x i s l a b e l S t e p : 5 0
G r a p h N a m e : Per fo rmance Based ana lys is . A t r ia l re f rac tory s ta te de layed by 10 epochs
Ser ies 1 : h e H e a r t S e r i e s 2 : V E N T R I C U L A R _ M O D E L S e r i e s 3 : A T R I A L _ M O D E L

C o m m e n t s : In Case of 2 consecut ive unsensed heart beets, the second hea r t pu l se i n te r sec t s w i t h t he second pace .

P a c i n g

Wai t ing

Refract ing

P a c i n g

Wai t ing

Refract ing

P u l s e

Wai t ing

T ime i n epochs

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2
50

00

50
50

51
00

51
50

52
00

52
50

53
00

53
50

54
00

54
50

55
00

55
50

56
00

56
50

57
00

57
50

58
00

58
50

59
00

59
50

60
00

60
50

61
00

61
50

62
00

62
50

63
00

63
50

64
00

64
50

65
00

65
50

66
00

66
50

67
00

67
50

68
00

68
50

69
00

69
50

70
00

Heart

Ventrical

Atrial

- 40 -

Figure 4.7 Sample of the Timeout-based analysis for a Cardiac Pacemaker in the AVI operational mode

Graph Star t : 4500 G r a p h E n d : 9 0 0 0 X a x i s l a b e l S t e p : 100
G r a p h N a m e : Time-out based analys is . Vent r icu lar re f ractory t imer i nc reased by 5 epochs t o b e 3 5 e p o c h s
Ser ies 1: h e H e a r t Ser i es 2 : V E N T R I C U L A R _ M O D E L Ser ies 3: A T R I A L _ M O D E L

C o m m e n t s : In Case o f 2 consecut ive unsensed hear t beets , the 2nd hear t pu lse in te rsec ts wi th the 2nd pace.

P a c i n g

Wa i t i ng

Refract ing

P a c i n g

Wa i t i ng

Refract ing

P u l s e

Wa i t i ng

T ime i n epochs

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

45
00

46
00

47
00

48
00

49
00

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

59
00

60
00

61
00

62
00

63
00

64
00

65
00

66
00

67
00

68
00

69
00

70
00

71
00

72
00

73
00

74
00

75
00

76
00

77
00

78
00

79
00

80
00

81
00

82
00

83
00

84
00

85
00

86
00

87
00

88
00

89
00

90
00

Heart

Ventrical

Atrial

- 41 -

Figure 4.8 Sample of the Environmental-based analysis for a Cardiac Pacemaker in the AVI operational mode

Graph Star t : 5800 G r a p h E n d : 8000 X a x i s l a b e l S t e p : 5 0
G r a p h N a m e : Env i ronment in terac t ions ana lys is . sensa t ion messages f rom the hear t a re de layed by 30 epochs
Ser ies 1 : h e H e a r t Ser ies 2 : V E N T R I C U L A R _ M O D E L Ser ies 3 : A T R I A L _ M O D E L

C o m m e n t s :

Pac ing

Wai t ing

Refracting

Pac ing

Wai t ing

Refracting

Pulse

Wai t ing

T ime i n epochs

The de lay causes a sh i f t in the Hear t ser ies , thus inc reas ing the chance fo r pac ing wh i le pu ls ing . Ind ica ted are two cases: A f te r pu lse A two
pu lses were no t sensed f rom the hear t , thus two paces were genera ted bu t de layed by 30 epochs , th is made pu lse B to fa l l be tween the two
paces. The ef fec t is more c lear in pu lse C where one pace was generated and pu lse C fa l len in the re f rac tory s ta te .

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

58
00

58
50

59
00

59
50

60
00

60
50

61
00

61
50

62
00

62
50

63
00

63
50

64
00

64
50

65
00

65
50

66
00

66
50

67
00

67
50

68
00

68
50

69
00

69
50

70
00

70
50

71
00

71
50

72
00

72
50

73
00

73
50

74
00

74
50

75
00

75
50

76
00

76
50

77
00

77
50

78
00

78
50

79
00

79
50

80
00

A B C

Heart

Ventrical

Atrial

- - 42

CHAPTER 5: AUTOMATED RISK ASSESSMENT

5.1 Introduction

Risk assessment is an important process in managing software development. Performing risk

assessment in the early development phases enhances the resource allocation decisions [33].

Several methodologies for risk assessment were developed, mostly based on subjective judgment.

In this chapter we present how the methodology presented in [33] is automated. The methodology

is based on:

1. Dynamic metrics: presented in [35] where component complexity and connector coupling

factors are derived from simulating all scenarios based on the system scenario profile. A

brief description is presented in section 5.1.1 of this chapter.

2. Component Dependency Graphs (CDG): introduced in [36] and adapted in [33] where a

CDG Risk traversal algorithm is presented. A brief description of the CDG and the risk

aggregation algorithm is presented in section 5.1.2 of this chapter.

3. Severity analysis: Based on MIL_STD_1629A where the worst case consequence of a

failure is considered, and the severity is determined by the degree of injury, property

damage, system damage, and mission loss that can occur. The Failure Mode and Effect

Analysis (FMEA) technique is a systematic approach that details all possible failure

modes and identifies their resulting effect on the system [24]. In [33] severity indices

(svrty i) of 0.25, 0.50, 0.75, and 0.95 were assigned to minor, marginal, critical, and

catastrophic severity classes respectively.

The UML-RT model is built and simulated using RRT, from which log files are made available

for extracting the required parameters. We use Microsoft Excel sheets and Macros in the

development of the automated environment together with RRT tool. The methodology derives

heuristic risk factors for components and connectors from dynamic metrics and severity analysis

(equation 5.1), and the system/subsystem overall risk factor is obtained from the traversal of the

CDG.

hrf i = cpxi x svrty i Eq. 5.1 (source [33])

- - 43

where 0 <= cpxi <= 1, and 0<= svrty i < 1 are the normalized complexity level (dynamic

complexity for components or dynamic coupling for connectors) and severity level for the

architecture element respectively (source [33]). The first step in the Risk assessment methodology

for dynamic specifications is to derive the complexity factors (component complexity and

connector coupling) using simulation and Dynamic Metrics [35]. The next step is to derive

severity factors for components and connectors using FMEA and simulation. Developing heuristic

risk factors for components and connectors by using equation 5.1 is the third step. Constructing a

CDGs for risk assessment purposes and traversing the graph using the risk aggregation algorithm,

presented later in this chapter, is the final step where the product is the system/subsystem overall

risk factor.

5.1.1 Dynamic Metrics

The complex dynamic behavior of many real-time applications motivates a shift in interest from

traditional static metrics to dynamic metrics. Active components are sources of errors because

they execute more frequent and experience numerous state changes. Therefore there is a higher

probability that if a fault exists in an active component, it will easily manifest itself into a failure.

For risk analysis at the architecture level, the risks of a failure are the interest. Hence, the motive

to assess the complexity of components and connectors as expected at run-time using dynamic

metrics.

In the risk analysis, the dynamic metrics defined in [35] are used to obtain complexity factors for

each architecture element. A complexity factor for each component is obtained using the dynamic

complexity metric for the statechart specification of that component. A complexity factor for each

connector is obtained using the dynamic coupling metric for the messaging protocol of that

connector.

5.1.2 Component Dependency Graphs

Component Dependency Graphs (CDGs) are introduced in [36] as probabilistic models for the

purpose of reliability analysis at the architecture level. CDGs are directed graphs that represent

components, component reliabilities, link and interface reliabilities, transitions, and transition

probabilities. CDGs are developed from scenarios. One way to model scenarios is using UML

- - 44

sequence diagrams . By using sequence diagrams, we are able to collect statistics required for

building CDGs, such as the average execution time of a component in a scenario, the average

execution time of a scenario, and possible interactions among components. Figure 5.1 illustrates a

simple CDG example consisting of four components, C1, C2, C3, and C4.

 Figure 5.1 A Sample CDG 1 (source [33])

A CDG is defined as follows:

CDG=<N,E,s,t>; where N is set of nodes, E is set of edges, and s and t are the start and

termination nodes, i.e. N = {n}, E ={e},

n = < Ci, RCi, ECi >; where Ci is the name of the ith component, RCi is component reliability,

and ECi is average execution time of a component Ci

<C1,RC1=0.2, EC1=3>

<T12,RT12=1,PT12=0.8>

<C3,RC3=0.7,EC3=6><C2,RC2=0.4,EC2=4>

<C4,RC4=0.8, EC4=3>

<T13 ,RT13=1,PT13= 0.2>

<T24,RT24=1,PT24=1>
<T34 ,RT34=0.9,PT34=1>

s

<T43 ,RT43=1,PT43=0.7>

t

PT4,t=0.3

- - 45

e = <Tij, RTij, PTij>, where Tij is transition from node ni to nj in the graph, RTij is transition

reliability, PTij is transition probability.

5.1.3 The Risk Analysis Algorithm

The architecture risk factor is obtained from aggregating the risk factors of individual components

and connectors. Assuming that a sequence of components are executed, then the risk factor for

that sequence of execution is given by:

 HRF = 1 - π i(1-hrf i)

Where π i is the CDG traversal operation defined by the “while loop” in the algorithm shown in

figure 5.2.

After constructing the CDG model, the risk of the application can be analyzed as the function of

risk factors of components and connectors using the following risk assessment algorithm.

Figure 5.2 Risk Aggregation Algorithm (source [33])

Eq. 5.2(source [33])

Algorithm
Procedure AssessRisk
Parameters
 consumes CDG, AEappl,(average execution time for the application)
 produces Riskappl
Initialization:

Rappl = Rtemp = 1 (temporary variables for (1-RiskFactor))
Time = 0

Algorithm
push tuple <C1, hrf1, EC1 >, Time, Rtemp
while Stack not EMPTY do
 pop < Ci, hrfi , ECi >, Time, Rtemp
 if Time > AEappl or Ci = t; (terminating node)
 Rappl += Rtemp ;(an OR path)
 else
 ∀ < Cj ,hrfj , ECj > ∈ children(Ci)

push (<Cj, hrfj ,ECj>, Time += ECi , R temp =
Rtemp*(1-hrfi)*(1-hrfij)*PTij) (AND path)

 end
end while

Riskappl = 1- Rappl
end Procedure AssessRisk

- - 46

The algorithm expands all branches of the CDG starting from the start node. The breadth

expansions of the tree represent logical "OR" paths and are hence translated as the summation of

aggregated risk factors weighted by the transition probability along each path. The depth of each

path represents the sequential execution of components, the logical "AND", and is hence

translated to multiplication of risk factors (in the form of (1-hrf i)). The "AND" paths take into

consideration the connector risk factors (hrf ij). The depth expansion of a path terminates when the

summation of execution time of that thread sums to the average execution time of a scenario or

when the next node is a terminating node.

5.2 The Automated Environment

Figure 5.1 shows a block diagram of the products and processes in the proposed environment for

automated risk assessment. Circles and ovals denote inputs/outputs to be processed/produced by

the processes and activities shown.

Architecture modeling is performed using the UML simulation environment provided by RRT.

The UML simulation environment consists of an Observer Capsule defined as an external

observing entity. The Observer component is not part of the RRT tool; we defined this component

in order to facilitate the automation process. These violations represent detected failures during the

simulations. The observer is modeled using state charts based on the expected dynamic behavior

of the components as depicted in the sequence diagrams.

The analyst provides simulation settings at the start of the simulation. These settings consist of

variations for variables that represent timer and delay value for real-time activities on successive

runs managed by the observer. They also capture the different settings for the input stimuli that

simulate sequences of scenarios. The simulation Log and the violation report produced from the

simulation are fed to the analysis tool (MS Excel Macro). The MS Excel Processing Macro

analyzes the log file and produces timing diagrams and a violation table. The violation table

consists of detected violations or failures and their occurrence time. The timing diagrams are

provided to help the analyst identify the severity level of the detected failure in terms of meeting

deadlines. The Excel Processing Macro also produces an Excel sheet for normalized component

complexity for each component, an Excel sheet for normalized connector complexity for each

connector, and an Excel sheet for the CDG. The values hrf i and hrf ij are identified in a later stage

- - 47

during the execution of the Risk Macro. Severity Ranking is obtained from the severity analysis

performed by the analyst using the violation table and timing diagrams as diagnostics for effect

analysis and the simulation settings. Feeding the Severity ranking, complexity factors and CDG to

the analysis tool, Risk factors for each component and connector are obtained and the CDG is

traversed to obtain the system/subsystem overall risk factor HRF. Appendix B shows the MS

Excel Risk Macro and Risk Traversal Macro, where in the Risk Macro the construction of the

CDG is achieved and equation 5.1 is utilized while in the Risk Traversal Marco the CDG traversal

algorithm (figure 5.2) is implemented and the product is the overall system/subsystem Risk factor

based on equation 5.2.

Figure 5.3 The Automation process-product diagram

• Component
Complexity
Factors

• Connector
complexity
Factors

• CDG
“ hrf i

 and hrf ij
unident ified”

• Formatted
Excel charts

• Violation
Tables

UML Simulation Environment

Simulation
Settings

Simulation
Log and
Violation
Report

Analysis
Tool

Timing Diag .
 Violation Table

Analyst

• Rose Real Time tool
• Text File

• MS Excel
Processing
Macro

Inspection
Viewing Macro

UML Model

Observer

Sub Run
Settings

Analysis
Tool HRF

• MS Excel Risk
Macro. Based on
the CDG Traversal
algorithm.

Excel sheets

Severity
Ranking

 Severity Analysis
(Failure/Effect analysis)

- - 48

5.3 Conclusion and Future Work

The methodology presented in [33] has the following benefits: it is applicable early at the

architectural-level and hence it is possible to identify critical components and connectors early in

the lifecycle. The methodology uses dynamic metrics, that covers the fact that a fault in a

frequently executed component will frequently manifest itself into a failure. The methodology is

based on simulation of UML-RT models. Simulation helps in: performing FMEA procedures and

observing the timing diagrams. The presented automation environment shows how RRT tool can

be used in fast and efficient deployment of the methodology.

The above methodology and its automation were applied to the Cardiac Pacemaker case study

(presented in chapter 3). Yet future research could experiment with applying the methodology to

larger case studies with multiple subsystems to compare the aggregated risk factors of individual

subsystems. A Static Architectural-Level Risk Assessment methodology based on McCabe's

Cyclomatic Complexity can be derived following the same fashion of the dynamic Architectural-

Level Risk Assessment methodology. Tool support can be provided by Rose Extensibility

Interface where simulation is not required. Comparing Static Risk and Dynamic Risk is required

to assess the effort and time spent in applying both methods

- - 49

CHAPTER 6: FAULT INJECTION ANALYSIS

Failures can occur when a software component fails, a hardware component fails, bad or corrupted

input is provided to the system or/and Executing an unlikely software/hardware error (design or

implementation). Fault injection is a technique for analysis and verification of systems behavior

(responses) to these failures before deployment. Fault injection studies can be categorized into

three types: Hardware fault injection, Software Implemented Fault Injection (SWIFI) and software

simulation fault injection, which intern was studied versus SWIFI in [28]. Several studies on Fault

Injection analysis were conducted, mostly on code level in case of SWIFI, on hardware prototypes

in case of hardware fault injection and on simulation models in case of software simulation fault

injection. Several tools were developed for fault injection analysis [9,6,7]. Software simulation are

typically high level abstraction of a system, characterized by protocols, interfaces, components

and function, where the typically injected faults are: miss-timings, missing or corrupted massages,

and missing or corrupted message replays. Software simulation fault injection help flush out

design level flaws (specially in fault tolerant systems). In this chapter we present a fault model, for

conducting software simulation fault injection analysis, that we derived to be specific and

optimized for UML-RT design models.

6.1 Motivations

It is our concern for this work to provide a fault model for UML-RT models in order to use it in

conducting fault injection analysis. Three motives derive our study in fault injection analysis:

1. Severity Analyses: where a severity factor based on MIL_STD 1629A [24] for each

component in a UML-RT model is derived. Severity factors were required in

Architectural-level Risk assessment in [33].

2. Test Cases Optimization: In [1] a method for building trusted components where a

component is seen as a set of: specifications, a given implementation and its embedded

test cases. Later in section 5 we demonstrate the use of our fault model in optimizing the

number of test cases needed.

- - 50

3. Verification of Fault Tolerant software and systems. In [31] and [32] fault injection is

viewed as a testing and verification tool, rather than a debugging tool.

6.2 UML-RT Model elements

The UML-RT model can be covered from two general types of elements: the Structural related

elements and the Behavioral related elements. The Structural elements describe the software

architecture of the model. UML-RT defines Capsules that decompose into several Capsules in a

layered fashion. RRT Structure Diagram is used to view the Capsule structure. Ports and

Connectors are used to connect these Capsules. Capsules are the equivalent of components in a

Software Architecture while Ports and Connectors resemble the connectors. The Behavioral

elements are used to describe the time related and/or dependent requirements, in essence the

dynamic behavior of Components. UML-RT (and therefore RRT) defines State Charts to describe

the dynamic behavior of a Component. The State Diagrams are composed from: States (Marco

Figure 6.1 UML-RT model elements

Structure Components Connectors/Ports Protocols

Messages

Initial

States Final
(Macro
& Micro
States)

Intermediate

Behavior State Diagrams

Transitions

Variables

Timers

Code

- - 51

and Micro States), Messages, Transitions (responding to the reception of a Message), Code (used

in sending Messages), Timers and Variables. In [10], a full analysis for the major testing problems

and their resolutions in testing state machine based models were presented. States were

categorized into three types of states: Initial State, Final State and Intermediate State. The

Behavioral and Structural elements are linked by the definition of Protocols that define the flow

(time dependent behavior) of Messages (a behavioral element) on a Connector. Figure 8.1

summarizes the UML-RT model elements described.

6.3 Domain of faults in UML-RT Models

In this section we derive possible faults that can take place in the dynamic specification model.

Based on the model elements presented above and following the Structural and Behavioral

categorization, we derive faults that can exist from miss implementations.

6.3.1 Structural Faults

1. Components (that are part of the defined Software Architecture of the model):

a. A missing component: A component that was not modeled. This makes the

specification incomplete.

b. Component class mismatch: In UML-RT Components are Capsules that are

based on a Capsule Class. The Capsule should match the Capsule Class it is

based on (instantiated from).

2. Connectors/ports:

a. Misconnected ports: The connection between ports is established in the graphical

interface, thus it is possible to swap (misconnect) connectors while connecting

ports causing incorrect delivery of messages.

b. Unconnected ports: A missing connectors causes two or more ports to be

unconnected. This causes messages not to be received.

- - 52

3. Protocol:

a. Missing messages: An incomplete Protocol definition causes an incomplete

specification.

b. Incorrect directional configuration: For each Protocol two sets of messages are

defined, incoming & outgoing, misplacement of messages between those sets can

occur.

6.3.2 Behavioral Faults

1. State Diagrams:

a. A missing State Diagram: A component without a State Diagram is a component

without any behavioral representation.

b. Interchanged diagrams: Two components with interchanged state diagrams are

two components with interchanged behavioral representations.

2. States:

a. Incorrect initial state: Default initial state is miss configured, thus causing the

components Statechart to start executing from an incorrect state.

b. Incorrect final state: In a macro state of a component with more than one

ChainState , the transition leading to the transition exiting from the grand state

(through ChainState) is miss configured. Thus leading to incorrect exit conditions

from the macro state.

c. Interchanged states: The transitions from and into a state and the entry and exit

actions define the state. Interchanged states cause the state entry and exit actions

to be swapped.

d. Missing states: Incomplete description of the dynamic behavior of a component.

- - 53

3. Transitions:

a. Incorrect trigger: Incorrect transition configuration, i.e. incorrect triggering

message configured.

b. Interchanged transitions: the transitions triggering message and actions are

interchanged with equivalent in another transition.

c. Missing transitions: Incomplete description of the dynamic behavior of a

component.

4. Messages:

a. Missing sends: A message command “in code” responsible for triggering a

transition in a remote component resulting in an incomplete description of the

dynamic behavior of both components.

b. Corrupted message attributes: Corrupted data carried in a message.

5. Variables:

a. Corrupted initial value: Incorrect initial value.

b. Corrupted dynamic value: Incorrect handling of variable value during run time.

6. Time: We refer to four timing analysis methods developed in [34] as the types of time

related faults.

6.4 The Fault Model

In this section we present the set of faults derived from the domain of faults in UML-RT Models

presented earlier and their deployment procedure. We claim that the selected set is generally

representing the dynamic part of the domain and we assess our claim by applying the selected

Fault Model to the Pacemaker case study described in chapter 3.

The Proposed Fault Model is based on the basic behavioral element in UML-RT models; the

micro State, and is defined by the following four subsections.

- - 54

6.4.1 State Selection Process

Five steps describe our process for Fault Injection analysis for UML-RT models. The first two

steps are not required for Severity analysis since the severity level of each component has to be

deduced. While for test case optimization all steps are required.

1. Order Components based on dynamic complexity: Our process for Fault Injection

analysis for UML-RT model starts by the selection of a set of components to be analyzed

based on their dynamic complexity factors (refer to [35] for details on dynamic

complexity).

2. Select the set of components to be injected with faults based on highest complexities: The

number of the selected components depends on the complexity threshold specified by the

analyst.

3. Order states in each component based on contribution to the component complexity:

Order the microstates of each component based on the degree of contribution to the

dynamic complexity factor of the component. The first having the highest share in the

components dynamic complexity.

4. Select the set of states and macro states to be injected with faults based on the highest

contribution to the component’s complexity: The number of selected states is proportional

to the inverse of the quality level of the analysis and to the time spent in the whole

process, which is again up to the analyst to decide.

5. Inject the three sets of faults indicated bellow for each of the selected states.

6.4.2 State faults

1. Swap the selected state with the state next in order (State Swap): Interchange the entry

and exit action code of the selected state with equivalents in the state next in order of

contribution to dynamic complexity.

2. Swap transitions out of the selected state (Transition Swap): If and only if the selected

state has more than one outgoing transitions, interchange each two transitions, i.e. swap

destination, trigger and actions.

- - 55

3. If an initial state exists, force the selected state to be the initial state (Initial State Swap):

The tool provides the ability to specify the initial state in a state diagram, and hence forces

the selected state to be the initial state if it is not.

4. If a final state exists, force the selected state to be the final state: The tool provides the

ability to specify the final state (or states in case of more than one exit transition from the

containing macro state) in a state diagram, and hence forces the selected state to be the

final state (or any of them if more than one exists).

6.4.3 State transition faults

1. Disable the transition (Null Trigger): Remove the triggering message (equivalent to the

transition being configured to a null message).

2. Interchange trigger message with another randomly selected message (Trigger Swap):

Change the triggering message to any other message from the same protocol.

6.4.4 Timing Faults

Listed bellow are the four timing analysis methods described in chapter 3 and summarized in

table 4.2:

1. Timeouts-based

2. Concurrency-based

3. Performance-based

4. Environmental-interactions

6.5 Pacemaker case study Experimentation

We injected faults in the Pacemaker model, presented in chapter 3, based on the fault model

presented above. First we conduct the dynamic complexity ordering of components [33], and we

arrive to the fact that the Atrial_Model and the Ventricular_Model have the highest factors. For

the purpose of this work we show results from analyzing the Atrial_Model. Second we analyzed

the Atrial_Model microstates and the Waiting state of the AVI scenario had the highest

contribution to the components dynamic complexity, followed by the Pacing state. We use two

- - 56

sequences of heart pulses as test cases for the V&V of the AVI mode, each is a different set of

heart pulses, one with three skipped pulses and the other with one skipped pulse. We use Timing

Diagrams to show our results. Each fault is injected in two simulation runs with the two heart

sequences as two different inputs to the system. Figure 6.2 and figure 6.3 show the expected

behavior of the Pacemaker in the AVI operational mode, in case of the heart skipping three pulses

consecutively (figure 6.2) and in case of the heart skipping one pulse (figure 6.3). The Timing

Diagrams for the three heart pulses skipped and the one heart pulse skipped are shown for each

fault. The six Timing Diagrams next to figure 6.3 are the results of applying the State Faults of the

fault model while the last four are the results from applying the State Transition Faults. Below we

describe the application of the fault model in Fault – Result fashion:

1. State Faults:

a. State Swap (figure 6.4 & figure 6.5):

i. Fault: Swap the Waiting and Pacing states of the Atrial_Model AVI

macro state.

ii. Result: Faulty behavior in which the Atrial_Model is pacing the heart

periodically regardless of the existence of the pulse from the heart. This

violates the AVI operational mode requirements.

b. Transition Swap (figure 6.6 & figure 6.7):

i. Fault: Swap the transitions “GotVSense” with “Time-Out” of the

Waiting state.

ii. Result: Atrial_Model and Ventricular_Model went out of

synchronization. Thus causing the Atrial_Model to be stuck at the

Refractory state and the Ventricular_Model to be stuck at the waiting

state.

c. Initial Sate Swap (figure 6.8 & figure 6.9):

i. Fault: The waiting state is forced to be the initial state instead of the

refractory state.

ii. Results were deferent in each heart sequence:

1. Three skipped pulses: Failure to meet the timing constrains in

the first 15 seconds of operation in case of three skipped pulses

- - 57

2. One skipped pulse: Successful operation in case of one skipped

pulse.

2. State Transition Faults:

a. Null Trigger (figure 6.10 & figure 6.11):

i. Fault: The trigger of the Time-Out transition is removed.

ii. Result: Both Atrial_Model and Ventricular_Model were stuck at the

Waiting states, Pacing state never visited and the Heart was never paced.

b. Trigger Swap (figure 6.12 & figure 6.13):

i. Fault: The trigger of the Time-Out transition changed to be the Sense

message from the Ventricular_Model and the trigger of the GotVSense

transition changed to the timer’s time-out message.

ii. Result: Pacing the heart when not required while not pacing when

required. Thus violating the AVI operation mode requirements.

Assuming the motive of studying the Severity of the Atrial Model, we conclude that since one or

more of the faults lead to a faulty behavior that will cause the death of the patient, then its severity

level is “Catastrophic”, even that one of the faults “Initial state swap” did lead to a faulty initial

behavior that would not cause patients death.

Assuming the motive of optimizing the number of test cases required for the testing the Atrial

component, we observe that the second sequence of heart pulses with one skipped pulse does not

cause the fault “Initial State Swap” to manifest into a failure, while the first sequence uncovers all

the injected faults. Thus we can eliminate the second sequence from our testing process. We note

that only two test cases we used demonstrate the use of our fault model in test case optimization.

6.6 Conclusions & Future Work

The proposed Fault Model is acknowledged for its applicability in early development stages and

scalability. Yet further experiments should be conducted on several case studies for better

assessment and enhancement. Enhancements are required in several areas:

- - 58

1. In the process of component selection, the number of components selected is decided by

the analyst based on the available resources (mainly time). Better criteria for this selection

is required to guarantee the best results when using the fault model in test case

optimization.

2. The presented model focuses on microstates, while it is applicable to Marco states as well.

Thus experiments for assessing the level of effectiveness of the fault model at the macro

state level.

3. In the process of state selection, the number of sates selected is decided by the analyst

based on the available resources (mainly time). But the tradeoff is in the quality of the

analysis, thus a criteria for this selection is required.

4. The selection of the second message to swap with in a Trigger Swap is random. We

perceive that a selection criteria is required for better results.

Finally we stress on the fact of future work and experiments conducted on several case studies to

assess and enhance the proposed model, before it is ready for industrial use.

- 59 -

 Figure 6.2 Pacemaker Expected Behavior (three pulses skipped)

- 60 -

Figure 6.3 Pacemaker Expected Behavior (one pulse skipped)

- 61 -

Figure 6.4 State Swap (three pulses skipped)

- 62 -

Figure 6.5 State Swap (one pulse skipped)

- 63 -

Figure 6.6 Transition Swap (three pulses skipped)

- 64 -

Figure 6.7 Transition Swap (one pulse skipped)

- 65 -

Figure 6.8 Initial Sate Swap (three pulses skipped)

- 66 -

Figure 6.9 Initial Sate Swap (one pulse skipped)

- 67 -

Figure 6.10 Null Trigger (three pulses skipped)

- 68 -

Figure 6.11 Null Trigger (one pulse skipped)

- 69 -

Figure 6.12 Trigger Swap (three pulses skipped)

- 70 -

Figure 6.13 Trigger Swap (one pulse skipped)

- . - 71

CHAPTER 7: PERFORMANCE MODELING

7.1 Introduction

The importance of early performance assessment grows as software systems increase in terms of

size, logical distribution and interaction complexity. Lack of time from the side of software

developers, as well as distance among software model notations and performance model

representation do not help to build an integrated software process that takes into account, from the

early phases of the lifecycle, non functional requirement. From performance viewpoint, the

validation of non functional requirements early in the lifecycle is an important and difficult task to

accomplish. Early performance assessment allows us to build software that better fulfills

performance requirements. This helps to reduce the risk of late detection of poor performance that

would be hard to manage. Thus the necessity to provide a standard representation of information

related to the performance (e.g., resource demand) in the UML framework is therefore ever more

clear [17]. As a consequent step, this makes it easier to transfer UML models from design to

performance analysis tools [27]. Several approaches for extending the UML notation to embed

performance related information have been introduced

Tailoring the derivation of a performance model on a specific application domain, such as Client-

Server systems, is the goal of [15], where a methodology is introduced (based on a performance

engineering language developed by the authors) to make the distance between software

developers and performance analysts shorter. A compiler of the language generates an analytic

performance model. The derivation of performance models, based on Layered Queuing Networks

(LQN), using graph transformation is presented in [18,19,20]. Specifically, the LQN model

structure is derived from the software architecture description based both on informal description

[20] and on UML Collaboration diagrams [19,18]. The generation of LQN model parameters is

dealt with in [19] where Activity Diagrams are generated (by graph transformation) from

Sequence Diagrams.

- . - 72

7.2 Our approach for performance modeling of Client-Server systems using the UML-RT

notation

Most of above introduced approaches aim at extending the UML notation to easily translate UML

models into well assessed performance tool notations. In this work we aim at filling the gap

between UML model notation and performance model representation, by extending the

capabilities of the environment described in chapter 2 (based on UML models), in essence we

introduce an opposite process. We introduce new stereotypes representing performance related

items, such as resource types and job dispatchers. They allow the software designers to

homogeneously represent a software architecture integrated with a running platform, and

parameterized with the resource demand that the components require. As an application example

the simplified ATM banking subsystem has been considered for studying our approach. This is to

prove the effectiveness in building, and simulating, software performance models. We use the

simulative potential of the RRT tool to run software models that include items and parameters

related to the performance of the model, so overcoming problems concerning analytical solutions

of performance models. The visual notation underlying the RRT tool, that is UML-RT, has been

therefore used to extend the set of stereotypes that the tool provides. The extension provides (a

library of) new stereotypes that allow the representation of resource related items (such as CPUs,

disks, etc.), in order to integrate in the same scheme the software structure and the resource

requests of a software product. Thereafter a systematic approach has been sketched (using this

additional library) to model software/hardware systems, in order to readily get insights on their

performance profiles.

7.2.1 A layered software architecture

In [23] it is shown how the software architecture of a client-server application can be structured as

a layered model. Components on the topmost level of the model are pure clients, the ones on the

bottom are pure servers, all the other components are clients with respect to the lower level ones

and server of the upper level ones. In figure 7.1 such a model is shown, where square boxes

represent software components (namely tasks), with entry points, and round blocks represent

resources.

- . - 73

Figure 7.1 Transparent diagram of Capsules and embedded Capsules

In an UML-RT perspective such a layered structure can be obtained by merging together all the

lowest level Capsules in the same diagram, that is from breaking down all the components that

contain subcomponents. The resultant Capsule diagram represents the most detailed software

architecture of the whole system. However a Capsule diagram presents two significant differences

with respect to a layered model, that we discuss in the following:

1. The layered model is specifically designed for performance analysis and evaluation, so it

contains also blocks that represent the resources. To every component a set of resources

can be attached in order to represent the resource that the component requires (see figure

7.1). This is missing in a Capsule diagram, that looses the possibility to be used (as it is)

for performance goals.

- . - 74

2. A Capsule diagram is supported by a set of State Diagrams, each describing the dynamic

behavior of the component represented by a Capsule. This is missing in a layered model,

that looses the possibility to simulate the dynamic internal behavior of its components.

The basic idea of our approach is providing a set of new stereotypes, based on the UML-RT

notation, that can be used to represent resources in a Capsule diagram (e.g., CPUs, LANs, etc.).

By embedding the appropriate set of resource instances into a Capsule diagram, the gap with a

layered model is removed, and the additional value of a naturally simulative environment can be

exploited to solve the performance model and get performance index insights.

7.2.2 Representing the extended software architecture

In order to represent in the same Capsule diagram the software architecture and the resources that

the software components require, the diagram is conceptually split in two sides: the Software side

and the Resource side (see figure 7.2). Capsules are in both sides, but while the ones in the

software side represent software components, the resource side Capsules represent the resource

that the considered architecture may need.

Upon the extension of the software architecture illustrated by the scheme in figure 7.2, a properly

parameterized simulation of such scheme allows to evaluate the performance of the combined

software architecture/resource system.

Three main issues have to be addressed to achieve this objective (and they are discussed in the

following):

1. Building a basic structure of the resource side of the scheme.

2. Providing standard Capsule stereotypes to be used in the resource side.

3. Providing standard criteria to introduce the resource requests as additional items to the

software side, without modifying the software architecture.

- . - 75

Figure 7.2 Generic two-sides Capsule diagram

In the upper side of figure 7.3 the Capsule diagram of the basic structure that we propose for the

resource side of the scheme has been drawn. This basic structure is intended to be used, as it is,

wherever a resource side is necessarily to be coupled to a software side. So, for example, the

Capsule diagram represents the internal structure of both resource sides of figure 7.2, namely

Resource_1 and Resource_2. It is basically composed by a Main Dispatcher and a set of resource

types.

Resources_1Software1

Software2

Resources_2

Communications

ResourceDemand ResourceDemand

ResourceDemand

Communications

ResourceDemand

Resources_1Software1

Software2

Resources_2

Communications

ResourceDemand ResourceDemand

ResourceDemand

Communications

ResourceDemand

- . - 76

Figure 7.3 Basic structure (Capsule and State Diagrams) of the resource side.

WaitingToForward

Configuring

Configuration_Complete

Registration

Incomming _Job

Initial

WaitingToForward

Configuring

Configuration_Complete

Registration

Incomming _Job

Initial

Waiting_To_
Forward

Configuring

Process_Job

Processed_Job

Initial

Configuration_Complete

Registration

Configuration_Complete

Waiting_To_
Forward

Configuring

Process_Job

Processed_Job

Initial

Configuration_Complete

Registration

Configuration_Complete

Idle

Busy

CP2

CP1

First_New_Job_Arrived

New_Job_Arrived

Queue_Empty

Job_Departure

Job_Queued

Queue_Not_Empty

Initial

Job_Processed

CP2

CP1

Queue_Empty

Initial

Idle

Busy

CP2

CP1

First_New_Job_Arrived

New_Job_Arrived

Queue_Empty

Job_Departure

Job_Queued

Queue_Not_Empty

Initial

Job_Processed

CP2

CP1

Queue_Empty

Initial

CPU_Resources

Disk_Resources

Net_Resources

Resource_Interface

Main
Dispatcher

CPU_Resources

Disk_Resources

Net_Resources

Resource_Interface

Main
Dispatcher

RoundRobin
CPU

4

Internal
dispatcher CPU_interface

4RoundRobin
CPU

4

Internal
dispatcher CPU_interface

4RoundRobin
CPU

4

Internal
dispatcher CPU_interface

4RoundRobin
CPU

4

Internal
dispatcher CPU_interface

4

- . - 77

The dispatcher is the Capsule in charge of receiving resource requests from the software side. We

suppose (like in a Software Performance Engineering approach [29]) that every resource request

has been produced by a software block (that is a set of operational steps), and includes the amount

of every resource type needed to execute that software block (e.g., number of CPU instructions,

number of disk blocks, bytes to be transferred on a network, etc.). Upon receiving a request, the

dispatcher schedules, in a given order (where the order of resource consumption is here supposed

do not affecting, in average, the final performance measures; however the dispatcher can be

modified to take into account a specific ordering), the visits to the resource types needed. The

Resource_Interface port in figure 7.3 is a multiport, that is a port with a given multiplicity. This

contributes to the generality of our scheme with regard to the number of resource types that can be

considered. Labels in figure 7.3 indicate the type of resources considered, but the implementation

of this scheme allows to add (delete) a resource type by simply introducing (eliminating) a new

Capsule and modifying the Resource_Interface multiplicity.

The internal structure of any resource type Capsule is quite standard as well. As shown in figure

7.3, where the CPU_Resources has been graphically expanded, every resource type Capsule

contains an Internal Dispatcher and a set of actual resource instances. In the figure we show, as an

example, the case of four CPUs, where four is the multiplicity given to the CPU Capsule (i.e., the

number of resource instances) and the multiport connecting them to the Internal Dispatcher. Upon

this “low level” dispatcher receiving a request of a specific amount of resource type it manages,

basing on prior knowledge (e.g., speeds of different resource instances, queue lengths, previous

request distribution) it schedules a job for a resource instance and notifies it by sending a message

to the latter. When the requested amount has been consumed in the resource, the notification is

sent back to the Internal Dispatcher and then forwarded to the Main Dispatcher; the latter checks

whether the complete resource request of the software side has been satisfied or other resource

types remain to be consumed. In the next section we show how to originate a resource request

from the software side.

- . - 78

Basically in figure 7.3 have been introduced three new stereotypes (as Capsules): a high level

dispatcher Main Dispatcher, a low level dispatcher Internal Dispatcher, and a CPU resource. In

the lower side of the figure the State Diagrams of these stereotypes are shown.

For sake of conciseness and readability, we do not discuss the details of the dispatchers' State

Diagrams, rather we focus on the CPU one. The CPU is modeled as a queued service center that

extracts jobs from the queue following a quantum based round-robin strategy [14,13]. In the “idle”

state the queue is supposed to be empty and no job is being served. Upon the arrival of a job, the

CPU becomes “busy” and it returns to the idle state in any moment the queue is idle and no job is

being served. Two state transitions originate from the busy state. In case of a new job arrival the

corresponding transition only serves as update of the queue length and contents. In case of a job

departure from the service center (either due to the quantum expiration or due to the end of service

requested) there are two conditions to be orderly checked, namely CP1 and CP2. First the residual

amount of resource requested is read: if zero then the job has been completely processed and it can

leave the CPU, else it has to be queued again (i.e., round-robin strategy) in order to be served later

for at least one more quantum. In case of job processed an additional check is needed: if there is at

least one job waiting into the queue then the first job is extracted and processed (i.e., the CPU

goes again in a busy state), else the CPU returns to the idle state.

In a similar way a Capsule stereotype can be introduced for any type of resource type that

contributes to build up a (possibly distributed) modern hardware platform (e.g., mass storage,

wired network, etc.), provided that the corresponding State Diagram is also given. In any case the

resource side of our scheme is open to represent whatever number of resource types with whatever

number of instances, the only bound being the actual scalability of the modeled software/resources

system.

Issue 3. aims at keeping “non-invasive” our technique, in the sense that the validation task of non

functional performance requirements must be conceivable on whatever (existing or under design)

software architecture, without affecting its generation process and its final structure. This means

that the information related to the performance evaluation has to be fully additional to the software

architecture, and therefore criteria have to be introduced to rule the addition of such information.

We have described in this section how a resource request is handled from the resource side. A

- . - 79

resource request from the software side viewpoint is basically a message that leaves the software

side and reaches the appropriate set of resources in the resource side. In the next section we show

the criteria that we use to build and send such message from the software side, and to manage the

associated reply.

7.3 Example: Simplified Automatic Teller Machine (ATM) banking subsystem

The application example that we have considered is a simplified ATM banking subsystem. The

ATN a bank-card and requires a password for user authentication. Users can perform two

transactions at the ATM: cash withdrawal, balance check. The ATM communicates with a

computer server at the host bank that verifies the account and processes the transaction. At the end

of the transaction some final operations are executed and user's card is returned.

7.3.1 ATM Architecture

We consider a simplified Automatic Teller Machine (ATM) banking subsystem for

experimentation purposes. In figure 7.4 a nested view of modeled subsystem is shown. The

topmost bold box represents the whole system built up by three types of components (i.e., the gray

boxes). The first component ServerSoftware representing the central processing unit, at the host

bank, of the subsystem and the second type of components is the ATM representing the remote

terminal client each include the ATM_Software which is a UML model of the software running in

the ATM and ATM_Peripherals representing the ATM hardware and the current user. This is

more clear when viewing figure 7.4 as a two levels of nesting, where the ATM is shown to be built

up by two components, to the left is the emulation of ATM Peripherals and users (ATM

Peripherals) and the to the write, the ATM_software. The latter, in turn, contains three basic

components: BalanceTransaction, Authenticator and WithdrawalTransaction

- . - 80

Figure 7.4 ATM software Architecture (3 level nested
view)

A T M

1 0

S e r v e r S o f t w a r e O b s e r v e r

 S e r v e r I O R e c o r d

T r i g g e r N e w U s e r

S e r v e r I O R e c o r d

 O b s e r v a t i o n s O b s e r v a t i o n s

T r i g g e r

1 0

Authenticator BalanceTransaction WithdrawalTransaction

User
information

User
information

 Userinformation Userinformation

ServerIO
Record

 IORecord

ServerIO
Record

ServerIO
Record

 IORecord IORecord

ATM_Software
ATM_Peripherals

 IORecord

ServerIORecord

IORecord TriggerNewUser

- . - 81

All the accounts information and transactions are maintained and processed at the ServerSoftware

which is modeled as an emulation (sending messages in respond to the received messages and

according to the Sequence Diagrams). The basic behavior is as follows: the ATM accepts a bank-

card and requires a password for user authentication. Users can perform two transactions at the

ATM: cash withdrawal, balance inquiry. The ATM communicates with the ServerSoftware to

validate the users and process the required transaction. At the end of the transaction some final

operations are executed and user's card is returned. The ATM_Software is the component that

directly interacts with the user represented as part of the ATM_Peripheral. Several ATM are

instantiated using the multiplicity factor of the tool. The ATM has a multiplicity of ten in this case

(figure 7.4 top level), meaning that ten instances of the same type of components are allocated.

These components interact with the ServerSoftware component whenever a transaction requires

access to data residing on the host bank.. On the other hand, there is a unique instance of

ServerSoftware, meaning that all requests of service (coming from whatever ATM instance) are

processed by one ServerSoftware component, where therefore contention can be high and

performance problems are to be investigated (chapter 7).

This simple architecture allows studying the scalability of such a scheme by directly increasing

the number of ATM instances. The Observer component is not part of the ATM subsystem, but it

performs the standard function (described in chapter 4) of starting and setting simulation sub runs,

as well as generating the users and the collecting the simulation statistics. It generates users in the

form of trigger messages containing the user type and basing on stochastic distributions.

7.3.2 Sequence Diagrams

The ATM software architecture represents the static behavior of the system, by showing

components and connectors. In order to describe the dynamic behavior of the system classical

UML diagrams were built, such as Sequence and State Diagrams. Five Sequence Diagrams were

derived from two scenarios: The balance scenario and the withdrawal scenario. The Five sequence

diagrams are:

1. Use_Denied: (Appendix C, figure 1)

2. Balance: (Appendix C, figure 2)

- . - 82

Idle

UserIdentification UserValidation

WaitingTransactionType

Initial

Password

StripInfo

Trans_Type

Cleared

Denied

Initial

Password

StripInfo

Trans_Type

Cleared

Denied

3. Balance_Print: (Appendix C, figure 3)

4. Withdrawal: (Appendix C, figure 4)

5. Withdrawal_Print: (Appendix C, figure 5)

6. Withdrawal_Denied: (Appendix C, figure 6)

7.3.3 State Diagrams

It is required for the RRT tool (for simulation purposes) to have at least State Diagrams modeling

the internal behavior of the lowest level components. Thus we present bellow the state diagrams

of the Authenticator (figure 7.5), BalanceTransaction (figure 7.6) and WithdrawalTransaction

(figure 7.7) components.

The lower side of figure 7.8 shows the State Diagrams of Authenticator and

WithdrawalTransaction components. The upper side shows two out of the five Sequence

Diagrams of the ATM subsystem. They represent a successful and an unsuccessful (without

statement printing) withdrawal transaction (including and after the authentication operations).

Note that the components acting in these diagrams correspond to lowest level Capsules in the

ATM software architecture of figure 7.4. It is perceived (in general and applied to the ATM State

Diagrams) that the overall behavior of a component can be obtained by merging the behaviors of

the component in all the different Sequence Diagrams it is involved. Figure 7.8 is not complete

(refer to [3] for further details), but it gives an idea on how the translation from a set of Sequence

Diagrams to a set of State Diagrams describing the behaviors of the components involved.

Figure 7.5 Authenticator Component State Diagram

- . - 83

Figure 7.6 BalanceTransaction Component State

Diagram

Figure 7.7 WithdrawalTransaction Component State

Diagram

WaitingUserInfo

WaitingServerReplay Dispensing

Printing
Initial

Eject
Print

Eject

RecivedUserInfor Denied

Accepted

Initial

Eject
Print

Eject

RecivedUserInfor Denied

Accepted

WaitingUserInfo

WaitingServerReplay Displaying

Printing
Initial

Eject
Print

Eject

Accepted

Initial

Eject
Print

Eject

RecivedUserInfor

Accepted

- . - 84

Figure 7.8 Sample of Sequence Diagram to State Diagram translation

WaitingUserInfo

WaitingServerReplay Dispensing

Printing

Initial

Eject
Print

Eject

RecivedUserInfor Denied

Accepted

Initial

Eject
Print

Eject

RecivedUserInfor Denied

Accepted

Idle

UserIdentification UserValidation

WaitingTransactionType

Initial

Password

StripInfo

Trans_Type

Cleared

Denied

Initial

Password

StripInfo

Trans_Type

Cleared

Denied

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD #
4: AuthenticateUserInfo #

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo # 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay
12: EjectCard

13: Eject

11: Denied

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD #
4: AuthenticateUserInfo #

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo # 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay

server
software

withdrawal
transactionauthenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD#

4: AuthenticateUserInfo#

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo# 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay

12: EjectCard

13: Eject

11: Dispense

server
software

withdrawal
transactionauthenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD#

4: AuthenticateUserInfo#

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo# 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay

12: EjectCard

13: Eject

11: Dispense

Authenticator State Diagram Withdrawal_Transaction State Diagram

Successful Withdrawal Sequence Diagram Unsuccessful Withdrawal Sequence Diagram

- . - 85

7.3.4 Performance Modeling for the ATM Example

Applying our approach to the ATM banking subsystem adds two types of Capsules:

ServerResources and ATMResources to the software Architecture (3 level nested view) presented

in figure 7.4, as shown in figure 7.9. These two components are the resource side (left hand side in

figure 7.2 is added to figure 7.4). The ServerResources are the model representing the resources

required/consumed during the activities of the Serversoftware based on the messages sent from

the ATMs across the bank network where ATMResources are the model representing the local

resources required/consumed during the activities of the ATM_Software based on the messages

sent from the ATM_Peripherals.

We describe how a resource request is generated in the software side and how the associated reply

(from the resource side) is handled. Let us associate each resource request to a software block.

Independently of the level of detail used, in a Sequence Diagram (such as the ones in figure 7.8) a

software block is the set of operations that a component performs to process an incoming

interaction. From a graphical viewpoint a software block is the segment of a component lifeline

that starts with an interaction entering the component and ends with the next interaction exiting

the component (We are here assuming that a “service request” to a software component is always

followed by either a reply to the request or a further request produced by the serving component,

but this is not true in general.). In figure 7.8 all the software blocks start with a small shaded

square box. In order to accomplish to the task required by an entering interaction, the component

has to perform several steps, that can require the use of different resource types (e.g., CPU, disk,

etc.). The resource request that corresponds to a software block is indeed a vector with each cell

containing the amount of a resource type requested. This vector is built, as soon as the software

block is entered, basing on prior knowledge of the designer. How many CPU instructions

constitute a software block, or how many accesses to disk it needs, is a know-how that the

software designer must have (at least in average) in order to fill the resource request vector.

Instead, if performance of an existing software is being evaluated then the average amount of

resources requested by every software block can be off-line measured. After the vector building,

the request must be addressed to the appropriate component in the resource side, and this is done

with a message sending. Therefore in figure 7.8, for example, the software blocks belonging to

- . - 86

Figure 7.9 ATM software Architecture (3 level nested view).with the Resource side components

Authenticator BalanceTransaction WithdrawalTransaction

 : IORecord

 Userinformation Userinformation

 ServerIORecord

 Userinformation

 ServerIORecord

 IORecord

 Userinformation

 ServerIORecord

 IORecord

ATMResources

10

ATMSoftware

10

ServerSoftware
ServerResources

 Observer

 ResourceDemand

 ServerIORecord

TriggerNewUser ResourceDemand

ServerIORecord

+ / Resou rceDemand Observations ResourceDemand Observations

Triggers

+ / ResourceDemand

10 10

ATM_Software
ATM_Peripherals

 IORecord

ServerIORecord

IORecord
TriggerNewUser

ResourceDemand

- . - 87

the Authenticator component address their requests to the corresponding ATMResources instance

of figure 7.9, while the ones belonging to the ServerSoftware component address them to the

ServerResources of figure 7.9.

In figure 7.9 an extended partial Sequence Diagram is drawn, in order to show the dynamics of a

resource request. The five initial common steps of the Sequence Diagrams in figure 7.8 have been

considered, and we have focused on the resource request originated by the software block

delimited by steps 4 and 5 in the ServerSoftware component. Lifelines of Capsules belonging to

the resource side have been appended and the sequence of interactions due to the resource request

has been explicitly drawn. The remaining of the figure is self-explaining.

Given the close correspondence between Sequence Diagrams and State Diagrams (as shown in

figure 7.8), it is straightforward that, in order to build and deliver a resource request vector (in the

software side) only modifications to the State Diagrams of Capsules are necessary. In particular no

additional states or transitions must be introduced, rather additional code (building and sending

the vector) must be wrapped up into State Diagrams in order to fire a remote transition in the

resource side that receives the request. Analogously, the termination of the request processing

from the resource side originates a message that enables the requiring software Capsule to perform

the next operations/interactions.

We now explore a systematic criteria to embed into a State Diagram the code corresponding to a

resource request vector, building and delivery. For example, let us consider the software block,

shown in both Sequence Diagrams of figure 7.8, along the WithdrawalTransaction component,

that starts with the incoming transition labeled 8:UserInfo and terminates with the outgoing

transition labeled 9:Withdrawal Transaction Request. In the WithdrawalTransaction State

Diagram this software block corresponds to the actions performed while entering the

WaitingServerReplay state. It is intuitive that code must be added to the entry point of this state

aimed at building and sending the request resource vector of this software block.

The fact that above considerations imply that, as claimed in the issue 3. of section 7.2.2, no

modification of the software architecture at all is required in our approach to embed information

related to the performance analysis.

- . - 88

7.4 Experiments

The scenario used for our preliminary experimentations of the proposed performance modeling

approach, is for a user entering an incorrect password. The User denied Sequence Diagram

(Appendix C Figure 1) describes the interactions in this scenario. The ATMSoftware interacts with

the ServerSoftware one time in this scenario. The message AuthenticateUserInfo and the replay

UserDenied define this interaction. In the ServerSoftware a resource consumption Job is created

upon the arrival of every AuthenticateUserInfo message. The Job is sent to the Resource side,

processed (resource consumption emulated) and sent back to the ServerSoftware. Upon the

reception of the processed Job the replay is generated and sent back to the ATMSoftware. The

system is assumed to be configured with one CPU, hence one RoundRobin CPU is configured in

the ServerResources. The speed of the CPU is configured through two parameters: the quantum

time, set at 1 milisec and in each quantum 2000 instructions are processed. The State Diagram of

the Observer shown in Figure 7.10 illustrates the start of the simulation as soon as the

configuration stage finishes. The ATM_Peripherals generated the initial user as soon as the

simulations time starts and a new User as soon as the current user finishes, Hence the user inter

arrival time is 0 and the total number of Users in the system at any given point in the simulation

time is equal to the number of ATMs. The simulation time is controlled by a timer that is initiated

as the state Running is entered. In our experiments the simulation time is set to 180 seconds.

Figure 7.10 Observer State Diagram

Configuring

Collecting_StatisticsRunning

Stopped

In i t ia l

OneMoreUserFinished

LogWrit ten

EndOfRun

Conf igurat ionCompleted

In i t ia l

OneMoreUserFinished

LogWrit ten

EndOfRun

Conf igurat ionCompleted

- . - 89

In the first experiment we configured the number of instructions for each Job to be 100,000

instructions and the total user thinking time (while entering the password) to be 30 milisec.

Figure 7.11 Average CPU Queue Length (first experiment)

Figure 7.12 CPU Throughput (first experiment)

Avr. Queue Length

0

0.5

1

1.5

2

2.5

1 5 10 15 20 25No. of ATMs

CPU Throughput (completed Jobs per one
milisec)

0

0.005

0.01

0.015

0.02

0.025

1 5 10 15 20 25No. of ATMs

- . - 90

Figure 7.13 Average User Inter-departure time (first experiment)

In the second experiment we configured the number of instructions for each Job to be 20,000

instructions and the total user thinking time (while entering the password) to be 500 milisec.

Figure 7.14 Average CPU Queue Length (second experiment)

Avr. Queue Length

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

No. Of ATMs

Avr. User Inter-departure time in milliseconds
(Inverse of System Overall Throughput)

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25

No. of ATMs

- . - 91

Figure 7.15 CPU Throughput (second experiment)

Figure 7.16 Average User Inter-departure time (second experiment)

CPU Throughput (completed Jobs per one milisec)

0

0.005

0.01

0.015

0.02

0.025

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
No. of ATMs

Avr. User Inter-departure time in milliseconds (Inverse of
System Overall Throughput)

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
No. Of ATMs

- . - 92

7.5 Conclusion

We have introduced a new approach to the performance analysis and evaluation of UML based

systems. The UML-RT notation has been used to build a library of stereotypes that represent

resources. A software architecture modeled in UML-RT notation can thus be extended by adding

a “resource side”, that is the representation of a generic platform the software is supposed to run

on. This uniform representation of software and resources, supported by the capability of the RRT

tool (that simulates an UML-RT based model), allows to gain performance insights at the time of

software architectural design. This is a preliminary study towards this approach, but we have here

shown the potential scalability of our resource representation that, together with its generality,

make this scheme flexible and portable.

Of the future areas of work: the automated collection of statistics using the Observer and

Microsoft Excel, as well as modeling the Disk Resources and studying the effect of Database size

(CPU and Disk Resources being affected simultaneously) on the overall system performance.

- . - 93

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Earlier we mentioned that V&V can be conducted at various development phases and that early

V&V of software specification and analysis artifacts is encouraged before large investment is

made in development. V&V of UML specifications can be done at an early development phase -

prior to implementation - using scenarios, requirements and simulation models. Although UML is

a rich analysis and design modeling language, it does not define how to study the dynamic aspects

of the models through simulation; a capability that is required to monitor and asses the expected

run-time behavior of software systems. V&V teams being much smaller than development teams

must use efficient techniques to perform their analysis. At present mostly manual methods are

being used to analyze UML models. Given the size and complexity of the large software systems,

the manual efforts are time-consuming, tedious and error prone. Therefore automatable means

(approaches and/or methods) for V&V of UML models need to be derived. In this work, we aim

at helping and assessing V&V teams in performing there task in the early development stages of

UML specifications through developing methods, approaches and extending there tool support for

fast and automatic deployment of the developed means. We presented our efforts in four areas:

8.1 Temporal V&V

We discussed the automatic generation of timing violation tables from simulating UML

specifications. We presented two approaches; in the first approach each simulation log is

processed in search for constraint violations. In the second approach, an Observer component,

acting as a monitoring object, is added as an external entity to the modeled system. We

presented two methods for modeling the timing constraints in the Observer Component,

namely: Constraint driven and Use Case driven. We showed results from applying the proposed

approaches to the UML specifications of a cardiac pacemaker. As well we described four

methods for timing analysis for assessing the degree of conformance to the timing constrains

under abnormal conditions is the first area of investigation. We perceive that developing a

technique for selecting scenarios, components, and connectors to which we apply the proposed

timing analysis approach is a potential research area.

- . - 94

8.2 Automated Architectural-Risk assessment

We selected the methodology presented in [33] for automated Architectural-level risk assessment,

because it has the following benefits: it is applicable early at the architectural-level and hence it is

used to identify critical components and connectors early in the lifecycle. The methodology uses

dynamic metrics, that covers the fact that a fault in a frequently executed component will

frequently manifest itself into a failure. The methodology is based on simulation of UML-RT

models. Simulation helps in: performing FMEA procedures and observing the timing diagrams.

The presented automation environment shows how RRT tool can be used in fast and efficient

deployment of the methodology. Future research could experiment with applying the

methodology to larger case studies with multiple subsystems to compare the aggregated risk

factors of individual subsystems.

8.3 Fault Injection analysis

We proposed a Fault Model, in chapter 6, that is acknowledged for its applicability in early

development stages and scalability. Yet further experiments should be conducted on several case

studies for better assessment and enhancement. Enhancements are required in several areas:

1. In the process of component selection, the number of components selected is decided by

the analyst based on the available resources (mainly time). Better criteria for this selection

is required to guarantee the best results when using the fault model in test case

optimization.

2. The presented model focuses on microstates, while it is applicable to Marco states as well.

Thus experiments for assessing the level of effectiveness of the fault model at the macro

state level.

3. In the process of state selection, the number of sates selected is decided by the analyst

based on the available resources (mainly time). But the tradeoff is in the quality of the

analysis, thus a criteria for this selection is required.

4. The selection of the second message to swap with in a Trigger Swap is random. We

perceive that a selection criteria is required for better results.

- . - 95

8.4 Performance Modeling

In chapter 7 we discussed how the importance of early performance assessment grows as software

systems increase in terms of size, logical distribution and interaction complexity. Lack of time

from the side of software developers, as well as distance among software model notations and

performance model representation do not help to build an integrated software process that takes

into account, from the early phases of the lifecycle, non functional requirement. In this work we

aimed at filling this gap by extending the capabilities of a simulative environment developed for

the UML notation. We introduced new stereotypes representing performance related items, such

as resource types and job dispatchers. They allow the software designers to homogeneously

represent a software architecture integrated with a running platform, and parameterized with the

resource demand that the components require. As an application example a simplified Automated

Teller Machine has been considered, and it has been designed also using the new stereotypes. This

is to prove the effectiveness of our approach in building, and simulating, software performance

models. We presented the preliminary insights gained from our study, in addition we make some

considerations on the scalability of our approach. For shifting this work from research level to

industrial level (being embedded in an tool and utilized by developers), more efforts in the

creation of all stereotypes that covers the performance analysis needs, are required.

- . - 96

 BIBLIOGRAPHY

[1] Baudry, B. Hanh, V.L., Jezequel J. and Traon, Y.L. “Building Trusted OO Components

Using Genetic Analogy”, Proc. of the 11th International Symposium on Software

Reliability Engineering, ISSRE'00, IEEE Comp. Soc., October, 2000

[2] Cortellessa, V. and Mirandola R. “Deriving a Queueing Network based Performance

Model from UML Diagrams”, Proc. of Second International Workshop on Software

and Performance, WOSP2000, September 2000, Ottawa, Canada, 2000.

[3] Cortellessa, V., Iazeolla, G. and Mirandola R. “Early Performance Validation for

Object-Oriented Systems based on OMT methodology”, IEE-Proceedings on Software,

vol.147, issue 3, October 2000.

[4] Douglass, B. "Real-Time UML : Developing Efficient Objects for Embedded Systems",

Addison-Wesley, 1998

[5] Firley, T., Huhn, M., Diethers, K., Gehrke, T. and Goltz, U., “Timed Sequence Diagrams

and Tool-Based Analysis - A Case Study”, The Second International Conference on The

Unified Modeling Language, Beyond the Standard (UML'99), Lecture Notes in

Computer Science, volume 1723, pp. 645-660, Springer-Verlag, October 1999.

[6] Goswami, K., Iyer, R. and Young, L. “DEPEND: A simulation-based environment for

system level dependability analysis”, IEEE Trans. on Computers, vol. 46, no. 1, pp. 60-

74, 1997.

[7] Han, S., Shin, K. and Rosenberg, H. “DOCTOR: An integrated software fault injection

environment for distributed real-time systems", in IEEE International Computer

Performance and Dependability Symposium (IPDS'95), pp.204-213, March 1995.

[8] Ibrahim, A., Ammar, H., Yacoub, S., Dabney J. B, and Lateef, K. “Automated

Verification of Timing Constraints in UML Dynamic Specifications”, Submitted to

Real-Time Technology and Applications Symposium RTAS’01, Taipei, Taiwan, May,

2001.

[9] Kao, W. and Iyer, R. “DEFINE: A distributed fault injection and monitoring

environment”, IEEE Workshop on Fault-Tolerant Parallel and Distributed System, June

1994.

- . - 97

[10] Lee, D. and Yannakakis, M. “Principles and methods of testing finite state machines - a

survey”, The IEEE, Vol. 84, No. 8, pp. 1090-1123, August 1996.

[11] Lyons, A. “UML for Real-Time Overview”, ObjecTime, Ltd.,White Paper.

http://www.ObjecTime.com/otl/technical/umlrt.html

[12] Li, X. and Lilius J. “Timing analysis of UML sequence diagrams”, The Second

International Conference on The Unified Modeling Language, Beyond the Standard

(UML'99), Lecture Notes in Computer Science, volume 1723, pages 661-674, Springer-

Verlag, October 1999.

[13] Lazowska, E.D., Zahorjan, J., Graham, G.S. and Sevcik K.C., “Quantitative system

performance : computer system analysis using queueing network models”, Englewood

Cliffs, N.J., Prentice-Hall, 1984.

[14] Lavenberg, S.S. “Computer Performance Modeling Handbook”, Academic Press, New

York, 1983.

[15] Menasce’, D.A. and Gomaa, H. “A method for design and performance modeling of

client/server systems”, IEEE Transactions on Software Engineering, vol.26, no.11,

November 2000.

[16] ObjecTime Ltd., Kanata, Ontario, Canada, http://www.ObjecTime.com

[17] Object Management Group, Inc., Needham, MA, USA. http://www.omg.org.

[18] Petriu, D. Shousha, C. and Jalnapurkar, A. “Architecture based Performance Analysis

Applied to a Telecommunica-tion System”, IEEE Transaction on Software

Engineering, November 2000.

[19] Petriu, D. “Deriving Performance Models from UML Models by Graph

Transformations”, Tutorials, Second International Workshop on Software and

Performance, WOSP2000, September 2000, Ottawa, Canada, 2000.

[20] Petriu, D. and Wang, X. “Deriving Software Performance Models from Architectural

Patterns by Graph Transfor-mations”, Proc. of Theory and Applications of Graph

transformations, TAGT’98, LNCS 1764, Springer Verlag, 1998.

[21] Rational Software Corporation, Cupertino, CA, USA. http://www.rational.com

[22] Rational Software Corporation, Rational Rose RealTime.

http://www.rational.com/products/rosert/index.jsp

- . - 98

[23] Rolia, J.A. and Sevcik, K.C. “The method of Layers”, IEEE Transactions on Software

Engineering, vol.21, no.8, August 1995.

[24] Software Safety, Nasa Technical Standard. NASA-STD-8719.13A, September 15, 1997

http://satc.gsfc.nasa.gov/assure/nss8719_13.html

[25] Selic, B. and Rumbaugh, J. “Using UML for modeling complex Real-Time systems”,

ObjecTime, Ltd.,White Paper. http://www.ObjecTime.com/otl/technical/umlrt.html

[26] Selic, B., Gullekson, G. and Ward, P. “Real-Time Object Oriented Modeling”, John

Wiley & Sons, Inc..

[27] Selic, B. “A generic framework for modeling resources with UML”, IEEE Computer,

June 2000.

[28] Scott, D.T.; Ries, G.; Hsueh, Mei-Chen; Iyer, R.K. "Dependability analysis of a high-

speed network using software-implemented fault injection and simulated fault injection."

Proc. of the Twenty-Seventh Fault Tolerant Computing Symposium. IEEE, 1997. p.

108-119

[29] Smith, C.U. “Performance Engineering of Software Systems”, Addison-Wesley,

Reading, MA, 1990.

[30] The Unified Modeling Language v1.3.

http://www.rational.com/uml/resources/documentation/index.jsp

[31] Voas, Jeffrey M.; Miller, Keith W. "Using Fault Injection to Assess Software

Engineering Standards", 1995 International Software Engineering Standards

Symposium. IEEE, 1995. p. 139-145

[32] Voas, Jeffrey M.; Miller, Keith W. "Examining Fault-Tolerance Using Unlikely Inputs:

Turning the Test Distribution Up-Side Down." Tenth Annual Conference on Computer

Assurance. IEEE, 1993. p. 3-11.

[33] Yacoub, S., Ammar, H. “A Methodology for Architectural-Level Risk Assessment

using Dynamic Metrics”, Proc. of the 11th International Symposium on Software

Reliability Engineering, ISSRE’00, IEEE Comp. Soc., October, 2000.

[34] Yacoub, S., Ibrahim, A., Ammar, H., and Lateef, K. “Verification of UML Dynamic

Specifications using Simulation-based Timing Analysis”, Proc. of 6th International

- . - 99

Conference on Reliability and Quality in Design, ISSAT, Orlando, Fl, August, 2000,

pp.65-69.

[35] Yacoub, S., Ammar, H. and Robinson, T. “Dynamic Metrics for Object Oriented

Designs”, Proc. of the Sixth International Symposium on Software Metrics,

Metrics’99, Boca Raton, Florida USA, November 4-6 1999, pp.50-61.

[36] Yacoub, S., Cukic, B. and Ammar, H. “Scenario-based Reliability Analysis of

Component-Based Software”, Proc. of the Tenth International Symposium on Software

Reliability Engineering, ISSRE’99, Boca Raton, Florida USA, November 1-4 1999,

pp.22-31.

- . - 100

APPENDIX A VISUAL BASIC MACROS

Sub Processing_Macro()

' Activation: ctr g

Sheets("Process_ctrl-g").Select

totalcolumns = 200000

' Extract all the Capsules “Objects” in the log file

i = 1

Objects = 1 'no of objects

While i < totalcolumns

 colB1 = "B" & i

 Oldobject = False

 j = 1

 For j = 1 To Objects Step 1 ' Set up 10 repetitions.

 colE1 = "E" & j

 If Range(colB1).Text = Range(colE1).Text Then

 Oldobject = True

 End If

 Next j

 If Oldobject = False Then

 Objects = Objects + 1

 colE1 = "E" & Objects

 Range(colE1).Value = Range(colB1).Text

 End If

 i = i + 1

Wend

- . - 101

‘Dedicate columns E to Y for Object names and their states “in the form of state codes”

Range("E" & 1).Select

Selection.Delete Shift:=xlUp

Range("F1").Value = Range("E1").Text & " (Series 1 States)"

Range("G1").Value = "State code"

Range("H1").Value = Range("E2").Text & " (Series 2 States)"

Range("I1").Value = "State code"

Range("J1").Value = Range("E3").Text & " (Series 3 States)"

Range("K1").Value = "State code"

Range("L1").Value = Range("E4").Text & " (Series 4 States)"

Range("M1").Value = "State code"

Range("N1").Value = Range("E5").Text & " (Series 5 States)"

Range("O1").Value = "State code"

Range("P1").Value = Range("E6").Text & " (Series 6 States)"

Range("Q1").Value = "State code"

Range("R1").Value = Range("E7").Text & " (Series 7 States)"

Range("S1").Value = "State code"

Range("T1").Value = Range("E8").Text & " (Series 8 States)"

Range("U1").Value = "State code"

Range("V1").Value = Range("E9").Text & " (Series 9 States)"

Range("W1").Value = "State code"

Range("X1").Value = Range("E10").Text & " (Series 10 States)"

Range("Y1").Value = "State code"

- . - 102

‘For each Object: extract all states and generate a consecutive sate code for each

i = 1

s = 1

If Not Range("E1").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "F" & s

 colstateval = "g" & s

 If Range(colB1).Text = Range("E1").Text Then

 j = 1

 While j < s

 jcolC1 = "F" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s

 Name = Range(colstate).Value

 Object = Range("E1").Text

 Value = Range(colstateval).Value

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("B4").Value = Object

- . - 103

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s - 1

nostatesseries1 = s - 1

i = 1

s = 1

If Not Range("E2").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "H" & s

 colstateval = "I" & s

 If Range(colB1).Text = Range("E2").Text Then

 j = 1

 While j < s

 jcolC1 = "H" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

- . - 104

 Name = Range(colstate).Value

 Value = Range(colstateval).Value

 Object = Range("E2").Text

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("D4").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesseries2 = s – 1

i = 1

s = 1

If Not Range("E3").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "J" & s

 colstateval = "K" & s

 If Range(colB1).Text = Range("E3").Text Then

 j = 1

 While j < s

 jcolC1 = "J" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

- . - 105

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Value = Range(colstateval).Value

 Object = Range("E3").Text

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("F4").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesseries3 = s - 1

i = 1

s = 1

If Not Range("E4").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "L" & s

- . - 106

 colstateval = "M" & s

 If Range(colB1).Text = Range("E4").Text Then

 j = 1

 While j < s

 jcolC1 = "L" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Object = Range("E4").Text

 Value = Range(colstateval).Value

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("H4").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesseries4 = s – 1

- . - 107

i = 1

s = 1

If Not Range("E5").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "N" & s

 colstateval = "O" & s

 If Range(colB1).Text = Range("E5").Text Then

 j = 1

 While j < s

 jcolC1 = "N" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Object = Range("E5").Text

 Value = Range(colstateval).Value

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("B5").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

- . - 108

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesseries5 = s - 1

i = 1

s = 1

If Not Range("E6").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "P" & s

 colstateval = "Q" & s

 If Range(colB1).Text = Range("E6").Text Then

 j = 1

 While j < s

 jcolC1 = "P" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Object = Range("E6").Text

- . - 109

 Value = Range(colstateval).Value

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("D5").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesseries6 = s - 1

i = 1

s = 1

If Not Range("E7").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "R" & s

 colstateval = "S" & s

 If Range(colB1).Text = Range("E7").Text Then

 j = 1

 While j < s

 jcolC1 = "R" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

- . - 110

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Object = Range("E7").Text

 Value = Range(colstateval).Value

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("F5").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesserie s7 = s - 1

i = 1

s = 1

If Not Range("E8").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "T" & s

 colstateval = "U" & s

 If Range(colB1).Text = Range("E8").Text Then

- . - 111

 j = 1

 While j < s

 jcolC1 = "T" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Object = Range("E8").Text

 Value = Range(colstateval).Value

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("H5").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesseries8 = s - 1

i = 1

s = 1

- . - 112

If Not Range("E9").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "V" & s

 colstateval = "W" & s

 If Range(colB1).Text = Range("E9").Text Then

 j = 1

 While j < s

 jcolC1 = "V" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Object = Range("E9").Text

 Value = Range(colstateval).Value

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("B6").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

- . - 113

 i = i + 1

 Wend

End If

NextValue = s + NextValue - 1

nostatesseries9 = s - 1

‘Next Object

i = 1

s = 1

If Not Range("E10").Text = "" Then

 While i < totalcolumns

 colB1 = "B" & i

 colC1 = "C" & i

 colstate = "X" & s

 colstateval = "Y" & s

 If Range(colB1).Text = Range("E10").Text Then

 j = 1

 While j < s

 jcolC1 = "X" & j

 If Range(colC1).Value = Range(jcolC1).Text Then

 j = s + 2

 Else

 j = j + 1

 End If

 Wend

 If j = s Then

 Range(colstate).Value = Range(colC1).Text

 Range(colstateval).Value = s + NextValue

 Name = Range(colstate).Value

 Object = Range("E10").Text

 Value = Range(colstateval).Value

- . - 114

 Sheets("Graph_ctrl-s").Select

 Graphlable = "A" & 20 - Value

 Range(Graphlable).Value = Name

 Range("D6").Value = Object

 Sheets("Process_ctrl-g").Select

 s = s + 1

 End If

 End If

 i = i + 1

 Wend

End If

‘For each Object and in columns AA though AI: use the state codes to generate an eleven

columns log file without time as the first column “A” and the rest as the states in state

code

nostatesseries10 = s - 1

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

 colAA1 = "AA" & i

 If Range(colB1).Text = Range("E1").Text Then

 j = 1

 While j <= nostatesseries1

 jcolS1 = "F" & j

 jcolV1 = "G" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries1 + 2

 Else

- . - 115

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

 colAA1 = "AB" & i

 If Range(colB1).Text = Range("E2").Text Then

 j = 1

 While j <= nostatesseries2

 jcolS1 = "H" & j

 jcolV1 = "I" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries2 + 2

 Else

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

- . - 116

 colAA1 = "AC" & i

 If Range(colB1).Text = Range("E3").Text Then

 j = 1

 While j <= nostatesseries3

 jcolS1 = "J" & j

 jcolV1 = "K" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries3 + 2

 Else

 j = j + 1

 End If

 Wend

 End If

i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

 colAA1 = "AD" & i

 If Range(colB1).Text = Range("E4").Text Then

 j = 1

 While j <= nostatesseries4

 jcolS1 = "L" & j

 jcolV1 = "M" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries4 + 2

 Else

- . - 117

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

 colAA1 = "AE" & i

 If Range(colB1).Text = Range("E5").Text Then

 j = 1

 While j <= nostatesseries5

 jcolS1 = "N" & j

 jcolV1 = "o" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries5 + 2

 Else

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

- . - 118

 colAA1 = "AF" & i

 If Range(colB1).Text = Range("E6").Text Then

 j = 1

 While j <= nostatesseries6

 jcolS1 = "P" & j

 jcolV1 = "Q" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries6 + 2

 Else

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

 colAA1 = "AG" & i

 If Range(colB1).Text = Range("E7").Text Then

 j = 1

 While j <= nostatesseries7

 jcolS1 = "R" & j

 jcolV1 = "S" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries7 + 2

 Else

- . - 119

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

 colAA1 = "AH" & i

 If Range(colB1).Text = Range("E8").Text Then

 j = 1

 While j <= nostatesseries8

 jcolS1 = "T" & j

 jcolV1 = "U" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries8 + 2

 Else

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

- . - 120

 colAA1 = "AI" & i

 If Range(colB1).Text = Range("E9").Text Then

 j = 1

 While j <= nostatesseries9

 jcolS1 = "V" & j

 jcolV1 = "W" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries9 + 2

 Else

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

i = 1

While i < totalcolumns

 colB1 = "B" & i 'actor

 colC1 = "C" & i ' state

 colAA1 = "AJ" & i

 If Range(colB1).Text = Range("E10").Text Then

 j = 1

 While j <= nostatesseries10

 jcolS1 = "X" & j

 jcolV1 = "Y" & j

 If Range(colC1).Value = Range(jcolS1).Text Then

 Range(colAA1).Value = Range(jcolV1).Text

 j = nostatesseries10 + 2

 Else

- . - 121

 j = j + 1

 End If

 Wend

 End If

 i = i + 1

Wend

'Create continuous lines (horizontal and vertical) from the ten fragmented serises

representing the state changes (in state codes) of the ten Objects

‘Use 2 D array for better speed

ReDim tiarray(11, totalcolumns) As Variant

ReDim tfarray(11, 2 * totalcolumns) As Variant

Dim lastVarray(10) As Variant

i = 1

‘reed from sheet into array

While i < totalcolumns

tiarray(1, i) = Range("A" & i).Text

tiarray(2, i) = Range("AA" & i).Text

tiarray(3, i) = Range("AB" & i).Text

tiarray(4, i) = Range("AC" & i).Text

tiarray(5, i) = Range("AD" & i).Text

tiarray(6, i) = Range("AE" & i).Text

tiarray(7, i) = Range("AF" & i).Text

tiarray(8, i) = Range("AG" & i).Text

tiarray(9, i) = Range("AH" & i).Text

tiarray(10, i) = Range("AI" & i).Text

tiarray(11, i) = Range("AJ" & i).Text

i = i + 1

- . - 122

Wend

i = 1

j = 1

While i < totalcolumns

 For x = 1 To 11 Step 1

 tfarray(x, j) = tiarray(x, i)

 If x > 1 Then tfarray(x, j) = lastVarray(x - 1)

 j = j + 1

 tfarray(x, j) = tiarray(x, i)

 If x > 1 Then

 If tfarray(x, j) = "" Then

 tfarray(x, j) = lastVarray(x - 1)

 Else

 lastVarray(x - 1) = tfarray(x, j)

 End If

 End If

 j = j - 1

 Next x

 i = i + 1

 j = j + 2

Wend

j = 1

‘Read from array into sheet

While j < totalcolumns

Range("A" & j).Value = tfarray(1, j)

Range("AA" & j).Value = tfarray(2, j)

Range("AB" & j).Value = tfarray(3, j)

Range("AC" & j).Value = tfarray(4, j)

Range("AD" & j).Value = tfarray(5, j)

- . - 123

Range("AE" & j).Value = tfarray(6, j)

Range("AF" & j).Value = tfarray(7, j)

Range("AG" & j).Value = tfarray(8, j)

Range("AH" & j).Value = tfarray(9, j)

Range("AI" & j).Value = tfarray(10, j)

Range("AJ" & j).Value = tfarray(11, j)

j = j + 1

Wend

‘Size the chart and force to start from 0 milisec and end at 20000 milisec

 Sheets("Graph_ctrl-s").Select

 ActiveSheet.ChartObjects("Chart 1").Activate

 ActiveChart.Axes(xlValue).Select

 y = ActiveChart.Axes(xlValue).MaximumScale

 ActiveChart.PlotArea.Select

 x = Selection.Height

 ActiveSheet.Range("A1").Activate

 Rows("8:50").Select

 Range("A1").Select

 xstart = 0

 Range("B2").Value = xstart

 xend = 20000

 Range("D2").Value = xend

 xstep = 500

 Range("F2").Value = xstep

 ActiveSheet.ChartObjects("Chart 1").Activate

 ActiveChart.Axes(xlCategory).Select

 With ActiveChart.Axes(xlCategory)

 .MinimumScale = xstart

- . - 124

 .MaximumScale = xend

 .BaseUnitIsAuto = True

 .MajorUnit = xstep

 .MajorUnitScale = xlDays

 .MinorUnit = 34

 .MinorUnitScale = xlDays

 .Crosses = xlAutomatic

 .AxisBetweenCategories = True

 .ReversePlotOrder = False

 End With

End Sub ‘end of processing macro

- . - 125

Sub Viewing_Macro()

‘Resize chart based on the start, end and step in the Graph_ctrl-s

'Activation ctr s

Sheets("Graph_ctrl-s").Select

 xstart = Range("B2").Value

 xend = Range("D2").Value

 xstep = Range("F2").Value

 ActiveSheet.ChartObjects("Chart 1").Activate

 ActiveChart.Axes(xlCategory).Select

 With ActiveChart.Axes(xlCategory)

 .MinimumScale = xstart

 .MaximumScale = xend

 .BaseUnitIsAuto = True

 .MajorUnit = xstep

 .MajorUnitScale = xlDays

 .MinorUnit = 34

 .MinorUnitScale = xlDays

 .Crosses = xlAutomatic

 .AxisBetweenCategories = True

 .ReversePlotOrder = False

 End With

End Sub

- . - 126

APPENDIX B RISK MACRO

Sub Risk_Macro()

' Keyboard Shortcut: Ctrl+r

totalcolumns = 6950 'changeble by user

noofcomponents = 1

Dim Componentchildarray(101, 1000) As Variant

mainloop = 1

'column 1 is for component names

'column 2 is for component no of children

'column 3 is for total no of messages out of component

Componentchildarray(1, 1) = Range("A1").Text

For initnoofchildren = 0 To (UBound(Componentchildarray, 1) - 1) Step 1

 Componentchildarray(initnoofchildren, 2) = 0

 Componentchildarray(initnoofchildren, 3) = 0

Next initnoofchildren ' Increment counter

While mainloop < totalcolumns

 j = 1

 While j <= noofcomponents

 If Range("A" & mainloop).Text = Componentchildarray(j, 1) Then

 'listed

 ' is it a new child for that component

 H = 0

 While H <= Componentchildarray(j, 2)

 If Range("B" & mainloop).Text = Componentchildarray(j, 11 + (H * 10)) Then

 Componentchildarray(j, 13 + (H * 10)) = Componentchildarray(j, 13 + (H * 10)) + 1

 Componentchildarray(j, 3) = Componentchildarray(j, 3) + 1

 H = Componentchildarray(j, 2) 'listed

- . - 127

 Else

 If H = Componentchildarray(j, 2) Then

 ' a new child

 Componentchildarray(j, 2) = Componentchildarray(j, 2) + 1

 Componentchildarray(j, 11 + (H * 10)) = Range("B" & mainloop).Text

 Componentchildarray(j, 13 + (H * 10)) = Componentchildarray(j, 13 + (H * 10)) +

1

 Componentchildarray(j, 3) = Componentchildarray(j, 3) + 1

 H = H + 1 ' h starts at 0 while j starts at 1

 End If

 End If

 H = H + 1

 Wend

 j = noofcomponents 'listed

 Else

 If j = noofcomponents Then

 ' a new component

 noofcomponents = noofcomponents + 1

 Componentchildarray(j + 1, 1) = Range("A" & mainloop).Text

 End If

 End If

 j = j + 1

 Wend

 mainloop = mainloop + 1

Wend

'calculate the probabilityies & child index

For calprob = 1 To noofcomponents Step 1

 For calchildprob = 1 To Componentchildarray(calprob, 2) Step 1

 Componentchildarray(calprob, 2 + (calchildprob * 10)) = Componentchildarray(calprob, 3 +

(calchildprob * 10)) / Componentchildarray(calprob, 3)

- . - 128

 Componentchildarray(calprob, 4 + (calchildprob * 10)) = Componentchildarray(calprob, 3 +

(calchildprob * 10)) / totalcolumns

 'child index

 For childindex = 1 To noofcomponents Step 1

 If Componentchildarray(calprob, 1 + (calchildprob * 10)) =

Componentchildarray(childindex, 1) Then

 Componentchildarray(calprob, 0 + (calchildprob * 10)) = childindex

 childindex = noofcomponents + 1

 End If

 Next childindex

 Next calchildprob ' Increment counter

Next calprob ' Increment counter

'dispaly ,write to file, input complexity, severity, ET

Columns("G:R").Select

Selection.ColumnWidth = 20

Range("F1") = noofcomponents

Range("G1").Value = "Component_Index"

Range("H1").Value = "Component_Name"

Range("I1").Value = "No._of_Children"

Range("J1").Value = "Total_No._Messages"

Range("k1").Value = "Component_Complexity"

Range("L1").Value = "Component_Severity"

Range("M1").Value = "Component_Execution_Time"

Range("N1").Value = "Component_Risk"

bias = noofcomponents + 4

Range("H" & bias).Value = "Index_of_Child"

Range("I" & bias).Value = "Child_Name"

Range("J" & bias).Value = "Probability_of_Transition"

Range("K" & bias).Value = "No_Of_Messages"

- . - 129

Range("L" & bias).Value = "Connector_Complexity"

Range("M" & bias).Value = "Connector_Severity"

Range("N" & bias).Value = "Connector_Risk"

For displayrows = 1 To noofcomponents Step 1

 'find match

 For Match = 1 To noofcomponents Step 1

 If (Componentchildarray(displayrows, 1) = Range("D" & Match).Value) Then

 matchedindex = Match

 End If

 Next Match

 Componentchildarray(displayrows, 4) = Range("e" & matchedindex + noofcomponents +

4).Value

 Componentchildarray(displayrows, 6) = Range("d" & matchedindex + noofcomponents +

4).Value

 Componentchildarray(displayrows, 5) = Range("L" & displayrows + 1).Value

 Componentchildarray(displayrows, 7) = Componentchildarray(displayrows, 4) *

Componentchildarray(displayrows, 5)

 Range("G" & displayrows + 1).Value = displayrows

 Range("H" & displayrows + 1).Value = Componentchildarray(displayrows, 1)

 Range("I" & displayrows + 1).Value = Componentchildarray(displayrows, 2)

 Range("J" & displayrows + 1).Value = Componentchildarray(displayrows, 3)

 Range("k" & displayrows + 1).Value = Componentchildarray(displayrows, 4)

 Range("N" & displayrows + 1).Value = Componentchildarray(displayrows, 7)

 Range("M" & displayrows + 1).Value = Componentchildarray(displayrows, 6)

 childrendisplay = Componentchildarray(displayrows, 2)

 bias = bias + Componentchildarray(displayrows - 1, 2)

 While childrendisplay > 0

 Componentchildarray(displayrows, 6 + childrendisplay * 10) =

Componentchildarray(displayrows, 5 + childrendisplay * 10) *

Componentchildarray(displayrows, 4 + childrendisplay * 10)

- . - 130

 Range("H" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 0 + childrendisplay * 10)

 Range("I" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 1 + childrendisplay * 10)

 Range("J" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 2 + childrendisplay * 10)

 Range("K" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 3 + childrendisplay * 10)

 Range("L" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 4 + childrendisplay * 10)

 Range("M" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 5 + childrendisplay * 10)

 Range("N" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 6 + childrendisplay * 10)

 childrendisplay = childrendisplay - 1

 Wend

Next displayrows ' Increment counter

End Sub

Sub Risk_CDG_Traversal()

'read from display

' Macro CDG Traversal

totalcolumns = 6950 'changeble by user

Start_Component = 1 'changeble by user

noofcomponents = 1

Dim Componentchildarray(101, 1000) As Variant

'get from display

noofcomponents = Range("F1")

bias = noofcomponents + 4

- . - 131

For displayrows = 1 To noofcomponents Step 1

 Componentchildarray(displayrows, 1) = Range("H" & displayrows + 1).Value

 Componentchildarray(displayrows, 2) = Range("I" & displayrows + 1).Value

 Componentchildarray(displayrows, 3) = Range("J" & displayrows + 1).Value

 Componentchildarray(displayrows, 4) = Range("k" & displayrows + 1).Value

 Componentchildarray(displayrows, 5) = Range("L" & displayrows + 1).Value

 Componentchildarray(displayrows, 6) = Range("M" & displayrows + 1).Value

 Componentchildarray(displayrows, 7) = Componentchildarray(displayrows, 4) *

Componentchildarray(displayrows, 5)

 Range("N" & displayrows + 1).Value = Componentchildarray(displayrows, 7)

 childrendisplay = Componentchildarray(displayrows, 2)

 bias = bias + Componentchildarray(displayrows - 1, 2)

 While childrendisplay > 0

 Componentchildarray(displayrows, 0 + childrendisplay * 10) = Range("H" & displayrows *

2 + bias + childrendisplay).Value

 Componentchildarray(displayrows, 1 + childrendisplay * 10) = Range("I" & displayrows * 2

+ bias + childrendisplay).Value

 Componentchildarray(displayrows, 2 + childrendisplay * 10) = Range("J" & displayrows * 2

+ bias + childrendisplay).Value

 Componentchildarray(displayrows, 3 + childrendisplay * 10) = Range("K" & displayrows *

2 + bias + childrendisplay).Value

 Componentchildarray(displayrows, 4 + childrendisplay * 10) = Range("L" & displayrows * 2

+ bias + childrendisplay).Value

 Componentchildarray(displayrows, 5 + childrendisplay * 10) = Range("M" & displayrows *

2 + bias + childrendisplay).Value

 Componentchildarray(displayrows, 6 + childrendisplay * 10) =

Componentchildarray(displayrows, 4 + childrendisplay * 10) *

Componentchildarray(displayrows, 5 + childrendisplay * 10)

 Range("N" & displayrows * 2 + bias + childrendisplay).Value =

Componentchildarray(displayrows, 6 + childrendisplay * 10)

- . - 132

 childrendisplay = childrendisplay - 1

 Wend

Next displayrows ' Increment counter

'CDG Traversal

Dim R_appl As Double

R_appl = 0

Dim SegmaTime As Double

SegmaTime = 0

Dim R_Temp As Double

R_Temp = 1

Dim AE_appl As Double

AE_appl = Range("d" & noofcomponents + 2).Value

Dim Stackindex As Integer

Stackindex = 1

Dim Currentcomponent As Integer

Currentcomponent = 0

Dim Traversalstack(100000, 3) As Double

'first push

Traversalstack(Stackindex, 1) = Start_Component

Traversalstack(Stackindex, 2) = SegmaTime

Traversalstack(Stackindex, 3) = R_Temp

Stackindex = Stackindex + 1

While Stackindex > 0

 Currentcomponent = Traversalstack(Stackindex, 1)

 SegmaTime = Traversalstack(Stackindex, 2)

 R_Temp = Traversalstack(Stackindex, 3)

 Stackindex = Stackindex - 1

 If (SegmaTime >= AE_appl) Or (Componentchildarray(Currentcomponent, 2) = 0) Then

'refer to terminal node

 R_appl = R_appl + R_Temp

- . - 133

 Else

 For x = 0 To (Componentchildarray(Currentcomponent, 2) - 1) Step 1

 Stackindex = Stackindex + 1

 Traversalstack(Stackindex, 1) = Componentchildarray(Currentcomponent, 10 + x * 10)

 Traversalstack(Stackindex, 2) = SegmaTime + Componentchildarray(Currentcomponent,

6)

 Traversalstack(Stackindex, 3) = R_Temp * (1 - Componentchildarray(Currentcomponent,

7)) * Componentchildarray(Currentcomponent, 12 + x * 10) * (1 -

Componentchildarray(Currentcomponent, 16 + x * 10))

 Next x ' Increment counter

 End If

Wend

Range("f3").Value = "System Risk"

Range("f4").Value = 1 - R_appl

End Sub

- . - 134

APPENDIX C ATM SEQUENCE DIAGRAMS

1. Use_Denied: (figure 1)

2. Balance: (figure 2)

3. Balance_Print: (figure 3)

4. Withdrawal: (figure 4)

5. Withdrawal_Print: (figure 5)

6. Withdrawal_Denied: (figure 6)

Figure 1 Use_Denied: Sequence Diagram for failed Authentication

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD
4: AuthenticateUserInfo

5: UserDenied

6: RequestTransactionType

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD
4: AuthenticateUserInfo

5:

6: RequestTransactionType

- . - 135

Figure 2 Balance: Sequence Diagram for balance inquiry

transaction without statement printing

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD
4: AuthenticateUserInfo

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo 9: Balance
Transaction
Request#

10: Balance
Transaction

Replay
12: EjectCard

13: Eject

11: Display Balance

server
software

Balance
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3:
4: AuthenticateUserInfo

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo
Transaction
Request#

Transaction
Replay

12: EjectCard

13: Eject

- . - 136

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD

4: AuthenticateUserInfo

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo 9: Balance
Transaction
Request#

10: Balance
Transaction

Replay

12: PrintStatement

13: Print

11: DisplayBalance

14: PrintCompleted

15: Eject

server
software

Balance
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3:

4:

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8:
Transaction
Request#

Transaction
Replay

12: PrintStatement

13: Print

14: PrintCompleted

15: Eject

Figure 3 Balance_Print : Sequence Diagram for balance

inquiry transaction with statement printing

- . - 137

Figure 4 Withdrawal : Sequence Diagram for successful

withdrawal transaction without statement printing

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD
4: AuthenticateUserInfo

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay
12: EjectCard

13: Eject

11: Dispense

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD
4: AuthenticateUserInfo

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay
12: EjectCard

13: Eject

11: Dispense

- . - 138

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD

4: AuthenticateUserInfo

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay

12: PrintStatement

13: Print

11: Dispense

14: PrintCompleted

15: Eject

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3:

4:

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay

12: PrintStatement

13: Print

11: Dispense

14: PrintCompleted

15: Eject

Figure 5 Withdrawal_Print : Sequence Diagram for

successful withdrawal transaction with statement printing

- . - 139

Figure 6 Withdrawal_Denied : Sequence Diagram for

unsuccessful withdrawal transaction without statement

printing

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3: ReturnPassWD
4: AuthenticateUserInfo

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: UserInfo 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay
12: EjectCard

13: Eject

11: Denied

server
software

withdrawal
transaction authenticator

ATM
peripherals

1: MagneticStripInfo

2: RequestPassWD

3:
4:

5: UserCleared

6: RequestTransactionType

7: ReturnTransactionType

8: 9: Withdrawal
Transaction
Request#

10: Withdrawal
Transaction

Replay

- . - 140

Alaa Ibrahim

Email: ibrahim@csee.wvu.edu
Department of Computer Science & Electrical Engineering,

West Virginia University. PO Box 6104
Morgantown, WV 26506-6104

Objective

Seeking a position in the design and development of real-time embedded software/systems where

graduate education and 6 years of varied experiences will add great value to the organization.

Experience

2000 – Present West Virginia University

Graduate Research Assistant

Thesis: Scenario based Verification and Validation of UML Specifications. Project funded by

AverStar Inc., Fairmont, WV, through the Software Engineering Research Center (SERC)

Publications:

1. Yacoub, S., Ibrahim, A., Ammar, H., and Lateef, K. “Verification of UML Dynamic

Specifications using Simulation-based Timing Analysis”, Proc. of 6th International

Conference on Reliability and Quality in Design, ISSAT, Orlando, Fl, August, 2000,

pp.65-69.

2. Ibrahim, A., Yacoub, S., Ammar, H., Dabney, J and Lateef, K. “Automated Verification

of Timing Constraints in UML Dynamic Specifications ”, submitted to Real-Time

Technology and Applications Symposium, RTAS’2001, Taipei, Taiwan, ROC, May 29-

June 1, 2001.

3. Ibrahim, A., Yacoub, S., Ammar, H., Dabney, J and Lateef, K. “Automated Verification

of Timing Constraints in UML Dynamic Specifications ”, Submitted to the Journal of

Automated Software Engineering.

4. Ibrahim, A., Yacoub, S., Ammar, H. “Automated Architectural-Level Risk Analysis

for UML Dynamic Specifications ”, submitted to Software Quality Management 2001,

SQM 2001, Loughborough , UK, April 18 -20, 2001.

- . - 141

5. Ibrahim, A., Ammar, H. “A Fault Model for Fault Injection analysis of Dynamic

UML Specifications”, submitted to 12th International Symposium on Software

Reliability Engineering, ISSRE 2001, Hong Kong, Nov 28- Dec 1, 2001.

6. Ammar, H., Cortellessa, V., Ibrahim, A. “Modeling resources in a UML-based

simulative environment”, Accepted by ACS/IEEE International Conference on

Computer Systems and Applications, AICCSA 2001, Beirut, Lebanon, June 26-29, 2001.

1998 – 2000 GlobalOne Egypt Network

Operations Manager

1. Responsible for software and hardware maintenance of ALCATEL Telnet Processors

“TPs for Frame Relay and X.25 Switching”, MUXs “IDNX 70 from NET and

DataSMART from Kentrox” and DSL modems “Paradyne and Nokia”.

2. Commissioning, startup and troubleshooting “connectivity and BERT, Bit Error Rate

Testing” of intentional Frame Relay & X.25 links in coordination with Egypt Telecomm,

customers and GlobalOne’s remote POP.

3. Analysis and breakdown of settlement, revenue and cost of backbone and services.

4. Provided sales technical support for Frame Relay & X.25 international services.

1995 – 1998 NCR Corporation Egypt Branch

System Engineer, CSS Customer Support Services

1. Installed and supported integrated information solutions for different classes of customers

with Windows NT and AT&T UNIX over varied NCR server platforms, TCP/IP on Cisco

routers and LANVIEW “Cabletron Systems Inc.” Network Management software.

2. Awarded Employee of the Month July 1996 for the outstanding achievements in

installing amazing variety of products “S10, S40, LAN Switches and Cisco Routers” and

Operating Systems “Windows NT and Novel”, for a large new pharmaceutical factory.

3. Launched the 23 site WAN of Monofia University, “Paradyne Modems, Cisco Routers

and SCOUNIX operating system”.

- . - 142

1994 – 1995 Siemens

Industrial Automation Engineer

1. Preformed Maintenance and troubleshooting of Siemens S5 PLC controlled machines in

several factories.

2. Replaced the obsolete PLC control unit of a cement crusher plant for the National Cement

company with SIMATIC S5 115U and rewrote and tested the software in STEP 5

language.

3. Engineered the software for Hans duplex elevator control unit, “SIMATIC S5 100U”.

4. Conducted Step 5 introductory training courses.

Education

2000 – Present West Virginia University, West Virginia, USA

Masters of Science in Electrical Engineering URL: www.csee.wvu.edu

Major: Software Engineering Minor: Control Systems Expected GPA: 3.89

Thesis: Scenario-based Verification & Validation of Dynamic UML SpecificationsDeveloped

Methodologies for dynamic UML specifications on Timing Analysis, Early verification of timing

constraints, Architectural – Level risk assessment and Performance analysis.

1997 – 1999 Maastricht School of Management, MSM, Maastricht, Netherlands

Masters of Business Administration URL: www.msm.nl

Major: International Business

Project: Competing Through Manufacturing.Studied El-Nile Clothing company’s competitive

edge through planning its manufacturing strategy based on John Miltenburg’s framework.

1997 Microsoft Certified System Engineer

Windows NT 4.0 MCSE

- . - 143

1989 – 1994 Cairo University

Bachelor of Science in Electrical Engineering

Major: Computer & Control Minor : Electronics & Communication Top 10% of class

Graduation Project: Deadlock Problem in Distributed DatabasesImplemented a distributed

database system and applied a deadlock prediction then detection algorithm developed at Cairo

University in 1986.

Further Information

Some Tools:

Rational Rose RealTime 6.1 “UML modeling and simulation of real-time models”

ObjecTime Developer 5.2 “ROOM modeling and simulation”

Software Through Pictures STP “Computer-Aided Software Engineering (CASE) tool”

Microsoft Visual C++ and J++

Visual Basic, VB Script.

Some Courses:

CPE391, Real-Time Software Engineering, WVU.§CPE391, Object-Oriented Programming in C++, WVU.

CPE391, Fundamentals of Object-Oriented Concurrent Programming in Java, WVU.

IMSE277, Engineering Economy, WVU.

	Scenario-based verification and validation of dynamic UML specifications
	Recommended Citation

	/var/tmp/StampPDF/3NTan8wZ5W/tmp.1540820079.pdf.sHD9j

