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Abstract

Development of an Optimized Short-span Steel Bridge Package

Gabor I. Nagy

West Virginia Department of Transportation indicates that a significant number of
bridges in West Virginia are structurally deficient or functionally obsolete. One third of
the nation’s bridges have similar conditions due to the age of the infrastructure and ever
increasing traffic demands. The resources available to replace or rehabilitate those
structures are finite, hence cost effective means of replacing the inadequate structures is
necessary. One of the solutions intended to ease the increasing demands of replacing
those structures are standardized bridge plans by providing a cost effective method to
save time and resources. Therefore, the focus of this effort is the development of an
optimized short-span steel bridge package.

The study focused on developing optimized plans for two roadway sections for
spans ranging from 40 feet to 140 feet in 5 feet increments. The girders designed in this
effort were optimized based on weight and targeted various cross section depth to span
length ratios incorporating homogeneous, hybrid and rolled sections.

This effort also focused on the feasibility of incorporating limited plate sizes in
the design of steel girders. Designs from the optimized study and the limited plate size
study were compared and evaluated to offer cost and time savings.
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Chapter 1

Introduction

1.1 Background

A considerable number of bridges in West Virginia are structurally deficient or
functionally obsolete. According to the West Virginia Bridge Data released by the
Maintenance Division in July 2003, 24.4% of all bridges in the state with spans of 100
feet or less is functionally obsolete and 14.9% are structurally deficient. There are not
adequate funds to replace or repair all of these structures. Hence, the development of
standardized bridge plans could provide a means to an economical design process that

will help facilitate and expedite the replacement of some of these structures.

Standardized plans for short-span bridge structures have been developed for
various types of structures in the past. Plans for concrete, timber and steel structures have
been successfully developed, as well as plans for abutments, piers and pier caps. The
focus of this study is to develop a short-span steel I-girder design package according to
the Third Edition of the AASHTO LRFD Bridge Design Specifications (AASHTO 2004).
A series of short-span design girders sections will include homogeneous, hybrid

configurations as well as rolled beam sections.



1.2 Objectives

This study focused on developing a design package of standardized short-span
steel I-girders to provide a more time efficient design process and to save time and
resources during construction of existing bridge replacements as well as the construction
of new structures. The standardized bridge plans include a series of steel I-girders for
spans length ranging from 40 to 140 feet. During the course of this study, two sets of

designs were developed: an optimized design study and a limited plate size study.

The optimized designs were completed based on girder weight and ranged for
span lengths of 40 to 140 feet, in increments of 5 feet. The design parameters
incorporated three girder configurations: homogeneous, hybrid and rolled beams.
Sections were developed for three span-to-depth ratios, 20, 25, and 30 unless the
minimum web height of 24 inches restricted it. Also, girders were designed based on

location, interior and exterior as well as stiffened and un-stiffened.

In addition to the optimized design package, a limited plate size study was
conducted. The main goal of this research was to investigate the possible economical
advantages of purchasing certain, more readily available plate thicknesses in bulk. This
study also included designs ranging in span length from 40 to 140 feet, in 5 feet

increments. Plate thicknesses were limited to the following:

e Web depths: 247, 32”, 40” and 48~



e Plate thicknesses: 15”7, 347, 17, 1 127, 1 34, and 2”

The limited plate study also incorporated interior and exterior designs for stiffened and

un-stiffened webs with the above mentioned three girder configuration.

1.3 Organization of Thesis

This research study contains six chapters. The second chapter describes practices
to design more economical steel I-girders, in addition to rapid construction techniques

currently employed in bridge construction practice.

Third chapter reviews the fundamentals of the Third Edition of the AASHTO
LRFD Bridge Design Specifications for the design of steel I-girder sections. This chapter
describes design loads, lateral distribution factors and the summary of the three main

design load cases.

The fourth chapter presents a parametric study concentrated on optimized short-
span steel I-girder design package. This section describes the design process as well as
the results and observations for the above mentioned three girder configurations at two
girder locations. Chapter five discusses the limited plate size design study and evaluates
the economy of the effort. This chapter also compares the optimized design study with
the limited plate size design alternatives. Lastly, chapter six presents the summary and

conclusions of this study.



Chapter 2

Literature review

2.1 Background

A considerable number of bridges are either structurally deficient or functionally
obsolete. The repair or replacement of these structures is one of the highest priorities, but
necessary funds are rarely available. Consequently, the bridge industry is focusing on
design techniques that provide a quality and cost effective product in relatively short
amount of time, with less maintenance requirement and a longer life span. This could be
achieved by developing standardized bridge plans and time saving construction

techniques.

Standardized bridge plans significantly reduce design time, increase and provide
cost effective solutions in the nation’s effort to repair and upgrade the infrastructure.
Modern computing power and the right software selection (MS Access and Visual Basic
software packages) makes standardized bridge plans readily available for practical design

level purposes (Vijaya 2004).

The main advantages of standardized bridge plans are time saving both in design
and construction repeatedly for various projects. Time efficient design and construction

will let DOTs to operate cost effectively nationwide. Reduced design and construction



leads to wide spread implementation of advanced, cost effective details (Holt and
Medlock 2004). Savings in construction cost are also realized, because the contractor’s
familiarity with the plans leads to more accurate bidding procedure and time and cost

savings in form work as well.

This chapter discusses some of the general steel I-girder design guidelines,

standardized bridge plans and rapid construction techniques currently being implemented.

2.2 General Bridge Design Guidelines

Cost effective and practical bridge design is often achieved by weight
optimization of the superstructure. The success depends on the design of optimized
girders and careful detailing as well. Lack of attention to details leads to significant cost
increase without adding value to the structure. This section presents an overview of
common practices in the bridge industry that have historically improved steel-stringer

bridge designs.

2.2.1 Weight Optimization

The design of optimized steel I-girder sections based on girder weight is the
analytical method of developing cost effective bridge systems. However, in reality,
weight optimized designs could be more costly in certain regions, or the availability of

certain steel markets. Several additional steps shall be taken to reduce the cost of bridges.



The designer is encouraged to solicit input from steel bridge fabricators to improve the
cost-effectiveness of the design and details (Steel Works 2004). Designers should be
knowledgeable of fabricators and contractors who may be potential bidders on the
project. This collaboration will save significant girder cost and will incorporate

practicality in the design process.

2.2.2 Flange Transitions

An economical individual girder shipping piece has one to three thicknesses per
flange, with each flange having zero to two shop-welded splices. Minimizing the number
of flange plate thicknesses for a project simplifies fabrication and inspection operations.
Larger quantities of plate cost less; hence by minimizing different plate thicknesses cost
savings could be realized. In order to achieve that, similar sizes of flanges obtained
during preliminary design should be grouped to minimize the number of plate thicknesses

(AASHTO/NSBA 2003).

Efficiently locating thickness transitions in plate girder flanges is a matter of plate
length availability and the economics of welding and inspecting a splice compared to
extending the thicker plate. For a flange transition to be economical, 800 to 1000 pounds
must be saved to offset fabrication cost (TxDOT 2002). The cost saved by eliminating the
splice may more than offset the cost of the heavier plate. Using a constant width flange
rather changing plate thickness will reduce fabrication cost by as much as 35 percent in a

field section (AASHTO/NSBA 2003).



2.2.3 Number of Girders Lines

Research has shown that using wider girder spacing could provide significant cost
savings. Clingenpeel and Barth (2003) conducted a parametric design study on a three
span continuous bridge system and showed that cost savings of 13 percent was realized
when selecting a 7-girder system instead of a 9-girder system. Another advantage to
wider girder spacing is lower structural steel weight, fewer girders and cross frames to

fabricate, erect, coat and inspect.

Reduced number of girders will lead to reduced time of fabrication and erection,
fewer structural components to purchase, install and maintain. One of them is the
additional concrete and reinforcing in the deck is required and the special formwork cost
to form the deck. Another consideration is the stability and redundancy of the structure
during future re-decking. In that case, a minimum number of four girders are required
keeping in mind that the maximum optimal girder spacing is on the order of 10 feet.
Girder depth limitations based on vertical clearance may restrict optimizing the number

of girders (AASHTO/NSBA 2003).

2.2.4 Optimal Deck Forming

Manufacturing and construction practices among fabricators and contractors vary;

therefore it is recommended to provide optional details for items such as cross frames,

integral/joint-less abutments, and deck forms. Preferences for section type and details



vary among fabricators and erectors depending on the equipment available, shipping
considerations and experience (Steel Works 2004). This will provide a cost effective

fabrication and construction.

2.2.5 Uncoated Weathering Steel

It is recommended that consideration be given to the use of uncoated weathering
steel where appropriate. The use of uncoated weathering steel typically provides initial
cost savings of 10% or more, and life-cycle cost savings of at least 30% over the life of
the structure. The suitability of weathering steel should be evaluated before specifying a
paint system, considering future re-painting process (Steel Works 2003). Environmental
benefits also result from the use of this material. The reduction in initial painting reduces
emissions of volatile organic compounds (VOC) and the elimination of removal of the
coating and disposal of contaminated blast cleaning debris over the life span of the

structure is another significant environmental benefit.

However, where painting is required, weathering steel should not be considered
because of the higher cost. Although the use of weathering steel is applicable in most
environments, the engineer should consider that weathering steel does not perform well

in humid environments with corrosive chemicals (TxDOT 2002).



2.2.6 High Performance Steel

High performance steel has the potential to decrease costs and increase
productivity for building steel bridges. It has been shown to provide 18 percent cost
savings and 28 percent weight savings compared to traditional steel (NSBA 2005). The
application of high performance steels could lead to more economical designs. The
higher strength and excellent weld-ability of this steel are especially advantageous for
hybrid girders. According to a design optimization study, done by Clingenpeel and Barth,
the most efficient material configuration was found to be the Hybrid configuration, which
consists of HPS 70W tension flange and 50 ksi compression flange and web in the
positive bending region and HPS 70W flanges and a 50 ksi web in the negative bending
region. The most economical design was always a hybrid configuration for all girder
spacing considered over the conventional 50 ksi homogeneous designs. (Clingenpeel

2001)

New optimized shapes, designed to replace the traditional I-girders and box
shapes, will further realize the full benefit of the strength and weldability of high
performance steel. One of these new shapes was an I-girder with a corrugated steel web,
developed by Advanced Technology for Large Structural Systems Center at Lehigh
University and Modjeski and Masters, Inc. It provides increased web stability, reduced

web thickness without the need for web stiffeners (NSBA 2005).



Among the disadvantages of high performance steel is the higher cost and the
design parameters that limit the wide spread use of this material. Limits states that
depend on girder geometry rather than steel strength, such as the live-load deflection limit
and fatigue limit state, decrease the economy of high performance steel. When the
deflection limit of L/800 is neglected, significant weight/cost savings may be realized.
Thus, given that the design passes all strength, fatigue and constructability requirements,
more reasonable serviceability limits could be used to achieve lighter limits (Clingenpeel

2001).

2.2.7 Substructure Design

When considering a cost effective bridge system, a well designed substructure and
superstructure are both main priorities. The location of the bridge is essential when
determining the initial and life-cycle cost of the structure. Therefore, during the design a
bridge system, the selection for the type of substructure should be an integral part of the

weight optimization process.

2.2.8 Expansion Joints

One of the more important aspects of design, reduction or elimination of roadway

expansion devices and associated bearings, is consistently overlooked by bridge

designers. Joints and bearings are expensive to buy, install, maintain and replace. Even

waterproof joints will leak, allowing water or salt-laden to pour through the joint and to

10



accelerate corrosion damage to girder ends, bearings and reinforced concrete structures.
Integral abutments only incorporate one row of piles, hence it is more cost effective and
faster to construct. Joint-less abutments also reduce the end span ratio and provide
protection against uplift conditions with the weight of the abutment. They have added
redundancy and capacity for all types of catastrophic events (AISI 1996). Therefore, an
integral abutment with a joint-less deck should be used wherever it’s possible to ensure

low initial cost and future maintenance.

2.2.9 Constructability

Emphasis on construction is essential when considering a well designed bridge
system. Often time structures are designed with lack of attention to constructability, and
the result is a very difficult or even impossible to construct structure. Therefore, it is
essential that the strength and stability of the structure is investigated during each stage of
construction. To economically satisfy these requirements, the designer should avoid
narrow compression flanges because the structure may require added cross frames or

temporary bracing during construction.

2.2.10 Inspect-ability

Bridge systems are required to be inspected at least every two years. For most of

the bridges, inspection could be performed from a rigging truck or some kind of elevated

platform. In case of box girders, the designers should adequately leave enough space
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inside the beam for inspection purposes. Hence, the specifications should determine

bridge designs that allows for convenient future inspections.

23 Summary of Standardized Bridge Plans

Standardized bridge packages are practical design solutions and gaining
popularity among organizations. They save design and possibly construction time and

provide design clarity. This section lists some of the standardized design packages.

2.3.1 AISI Short Span Steel Bridge Plans and Software

The American iron and Steel Institute has developed a comprehensive set of
standardized short-span steel bridge plans and design aid software to allow customers to
generate preliminary designs as well as final designs. The design aid was developed with
input from fabricators and designers to reduce cost of fabrication and minimize design
time (AISI 1998). This bridge package includes over 1100 designs for non-skewed, single

and multiple span bridges.

The design plans include spans ranging from 20 to 120 feet in five feet increments
and offers seven superstructure cross section layouts: 24, 28, 34, 40, and 44 feet (AISI
1998). The plans offer homogeneous, 50 ksi un-stiffened and stiffened plate girders, non-
composite or composite rolled beams and composite rolled beams with welded or end-

bolted cover plates. The document also incorporates light weight and normal weight
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concrete decks, quantity tables for concrete, rebar and steel and details for elastomeric
bearings as well. The girders were designed utilizing Load Factor Design method of the
16" Edition of AASHTO Standard Specifications for Highway Bridges, including 1997

Interim Specifications (AISI 1998).

2.3.2 TxDOT Bridge Standards

Standardized concrete bridge plans are widely used by the Texas Department of
Transportation (TxDOT), since more than 90 percent of Texas bridges are no longer than
120 feet.. The benefits of using standardized bridges include reduced design effort,
widespread implementation of economically proven construction technologies, and

reduced construction costs (Holt and Medlock 2004).

This standardized bridge package include pre-stressed I-beams, box beams, slab
beams, and double T-beams along with cast in place and precast culverts. Cross sections
accommodate for 24, 28, 30, 38, and 44 feet along with modest skews (less then 45
degrees). Drawings cover all superstructure and substructure details. Most of the bridges
are designed by Load and Resistance Factor Design and TxDOT is taking steps to

provide standard drawings representing LRFD-based designs for all the bridges.
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2.3.3 Standardized Bridge Plans

A research effort from the University of Alabama focused on the development of
a computer-aided tool that facilitates selection of standardized bridge systems for rapid
design and replacement or construction of bridges (Gopu 2004). The database was
developed using Microsoft Access and Microsoft Visual Basics and contains a collection
of standard drawings available from various DOT-s across the nation. The information
package contains a large amount of standardized plans and is a useful tool for bridge

designers.

24 Innovative Ideas for Rapid Construction

Rapid construction techniques combined with standardized bridge plans provide
for efficient construction of new bridges and the replacement of existing structures. The
benefits of accelerated bridge constructions are well known. They minimize traffic
disruption, improve work zone safety and also minimize environmental impact. In
addition to that, off site construction of pre-fabricated elements can improve quality,
constructability and lower life cycle cost (Concrete Bridge Conference Workshop 2006).
The next section includes some of the innovative ideas of accelerated bridge construction

alternatives.

14



2.4.1 Superstructure Systems

The typical sequence of constructing bridge superstructures is to erect the
concrete or steel beams, place temporary formwork or stay in place panels, place deck
reinforcement, cast deck concrete and remove formwork if necessary. The elimination of
formwork will accelerate construction and improve safety. One of the alternatives is a
prefabricated partial deck system placed on concrete or steel girders. After the beams are
erected, the edges of each deck unit almost touch each other so there is no need for
additional formwork for the cast in place concrete. This system is applicable to pre-
stressed concrete beams as well and has been implemented in Germany with great

SucCcCess.

Another superstructure alternative is the French Poutre Dalle system. It consists of
shallow, pre-cast, pre-stressed concrete inverted T-beams. The beams are placed next to
each other connected with a longitudinal joint and covered with cast in place concrete.
Continuity is accomplished through the 180-degree hooks that protrude from the sides of
the webs. The hooks overlap those from the adjacent beam and positioned precisely to
avoid confusion at the job site. This system is appropriate for span lengths from 20 to 82
feet, but can be extended up to 105 feet. A typical bridge can be erected in one day and
among the common advantages of rapid construction, this system does not require skilled

labor for erection and has a thinner deck resulting in higher vertical clearance.
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A similar system is implemented in France, called Dalle Preflex System, but uses
steel I-beams with their bottom flanges pre-cast in thick pre-stressed concrete slab.
Hooked bars passing through the steel web overlap from the adjacent members to provide
lateral transverse reinforcement. Cast in place concrete is used to complete the

superstructure. This system has similar advantages and is proprietary in Europe.

2.4.2 Deck Systems

Exodermic bridge deck is a composite modular system that is lightweight and
strong (NCHRP 2004). It consists of a reinforced concrete slab on top of an unfilled steel
grid providing composite action between components. These types of decks are 50 to 60
percent lighter than the conventionally reinforced concrete decks but provide superior

economy and durability.

One of the forms of bridge decks construction is the use of full depth
prefabricated concrete decks. It is widely used in Europe because it reduces construction
time and eliminates formwork. The deck panels are connected to steel I-girders through
the use of studs located in pockets of in the concrete deck slab. Screws located in the
panels are used to adjust elevations. The panels sit on elastomeric pads that also provide a

seal for the grouting between the panels and the steel I-girder.

Another deck system is the Hybrid Steel-Concrete Deck System developed by

Japanese engineers. The steel component of the system consists of bottom and side stay-
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in-place formwork and transverse beams. The transverse beams span over the
longitudinal beams and beyond the fascia beam for the slab overhang. The bottom flanges
of the transverse beams support the steel formwork for the bottom surface of the slab.
The formwork is sloped to provide a haunched section over the girders. The longitudinal
deck reinforcement is supported by the top flange of the transverse beams. Steel studs
welded to the beam flange connect the deck and the beams. When filled with concrete,
the system acts as a composite deck system. The system allows rapid placement with a
small-capacity crane of a lightweight deck stay-in-place formwork system complete with

reinforcement, including the overhang.

2.4.3 Substructure Systems

The Sumitomo Precast form for resisting Earthquakes and for Rapid construction
(SPER) system is a method developed by Sumitomo Mitsui Construction Company for
rapid construction of short and tall bridge piers in seismic regions using stay-in-place 3.9-
in thick pre-cast concrete panels as both formwork and structural elements. For short
solid piers, panels with pre-installed cross ties serve as exterior formwork. Segments are
stacked on top of each other using epoxy joints and filled with cast-in-place concrete to
form a solid pier. For taller hollow piers, inner and outer forms are used to produce a
hollow section. To reduce weight and size for hauling, panels form two channel-shaped
sections. Lateral reinforcement is embedded in the channel sections and joined together
in the field using couplers. After inner and outer pre-cast forms are set around vertical

reinforcement, cross ties (transverse reinforcement) are placed and concrete is cast within
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the section. Use of high-strength bars for cross ties reduces congestion and fabrication
time. Special details are used to transfer the force from the transverse reinforcement into
the panels. Cast-in-place concrete is used to connect the piers to the superstructure. The
system can shorten construction time to 60 to 70 percent of the time required for
conventional cast-in-place construction for 33-ft tall piers. This is attributed to the
elimination of formwork and reduction in curing time. For 50-m (164-ft) tall piers,
reduction in placement time for lateral reinforcement and cross ties resulted in a one-third

decrease in construction time.

2.4.4 Fiber Reinforced Polymer Elements

Fiber reinforced polymers composite materials have shown potential as
alternative bridge construction materials compared with conventional ones. Their
advantage is their high strength, low density, better durability and corrosion resistance
versus traditionally reinforced concrete decks (NCHRP 2004). Construction time is about
10 percent of the conventional concrete decks and requires construction crew. They tend
to land themselves to pre-fabrication and mass production; they are easily formed into
structural shapes, conveniently transported and erected. Two types of FRP decks are

commercially available, sandwich and pultruded shapes.

Sandwich construction implies the use of strong stiff face sheets and low density,

bonded core material that separates the face sheets and ensures composite action between

components. Because of the ease of construction, this alternative provides great
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flexibility in design for various depths and deflection requirements. The other FRP deck
design, the pultruded decks are constructed using assemblies of adhesive-bonded
pultruded shapes. Such shapes could be economically produced and design flexibility

comes from the orientation and type of the fibers (NCHRP 2004).

Although FRP decks offer a wide spectrum of advantages, they are still under
research. This alternative in order to become widely used requires quality control, quality

assurance and standardized tests to be implemented (NCHRP 2004).

2.5 Summary

The majority of the U.S. bridge inventory may be defined as short-span structures.
Therefore, rapid construction techniques combined with innovative material selection
outlines the path for designing new bridges and rehabilitate existing inventory. This
section detailed some of the bridge design alternatives to cut down design and
construction costs, discussed various efforts towards standardized bridge packages, and
described some innovative accelerated bridge construction techniques. This study focuses
on developing a standardized design package according to the general bridge design

trends.
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Chapter 3

Fundamental Steel Bridge Design Aspects of the AASHTO LRFD Bridge Design

Specifications

3.1 Introduction

This section summarized the American Association of State Highway
Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD)
Specifications for composite steel I-girder bridges. These guidelines provide information
about design loads, lateral distribution of live loads, and member strength and service

limit states.

3.2 Design Loads

I-girder sections are designed to carry a combination of factored dead load,
vehicular live loads, and estimated construction loads. Dead loads include the self weight
of the structure, and any additional loads that are associated with any future wearing
surface, utility loads and possible widening. The live load portion involves the static and

dynamic load exerted by the design vehicles and the lane load.
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3.2.1 Types of Design Loads

3.2.1.1 Dead Loads

The dead loads consists of a combination of the non-composite dead loads (DC1),
composite dead loads (DC2), and the dead load of the non-integral wearing surface
(DW). DC1 includes the dead weight of the steel section, concrete deck and haunch, stay
in place deck forms, and miscellaneous steel accounted for cross frames, shear studs and
stiffeners. DC2 consist of barriers, sidewalks, and railings and it is applied after the deck

becomes composite. DW is the dead load of the future wearing surface and utilities.

These designs are performed assuming composite action between the deck and the
supporting I-girders, meaning that the deck and the girder act as a single component once
the composite action takes place. The strain diagram of the separate components varies
linearly; hence there is no slip between the interfaces of the steel and the deck. This is
achieved by the use of shear studs. They are welded on the top flange and provide the
transfer of horizontal forces between the deck and the steel section. The long term section
properties are computed using three times the modular ratio to account for the shrinkage

and creep of the concrete with time. DC2 loads are applied to the long term section.
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3.2.1.2 Design Vehicular Loads

The design live load, described in Article 3.6.1.2.2 as HL-93 is a combination of
the design truck or design tandem combined with the design lane load. The design truck,
shown in Figure 3.1, is consists of a front axle load of 8 kips and two additional axle load
of 32 kips. The front axle is spaced 14 feet, while the two back axles have a variable
spacing between 14 feet to 30 feet apart. The design tandem has double axes with 25 kip
loads spaced at four feet as detailed in Article 3.6.1.2.3. Transverse axle spacing is 6 feet

for both design truck and design tandem.

The design lane load is described in Article 3.6.1.2.4 and is consisted of a
uniformly distributed load of 0.64kips per liner foot. The width of the design lane is 10

feet. Design lane load is not subjected to dynamic load allowance.

3.2.1.3 Construction Loads

A complete analysis of a bridge system includes the design of the components
during construction stages as well. Hence, the bending moments and shear forces
occurring in the structure during each construction stage has to be checked against the
resistance of the system. Additional construction loads applied to the overhang brackets
induce lateral flange bending of the compression flange of the exterior girder. Typical
construction loads are the following: overhang deck, overhang deck forms, screed rails,

railing, walkway, and finishing machine.
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3.2.2 Limit State Design Loads

Structural components made of steel shall be investigated for each phase that may
be critical during construction and the service life of the system. Therefore, the
specifications mandate structural components to be proportioned to satisfy the
requirements at strength, service, construction, and fatigue limit states. The following is a

brief description of each limit state and its load requirements.

3.2.2.1 Loading for Strength Limit State

To evaluate the strength limit state, the structure is subjected to HL-93 loading
combination. As previously described, it is a combination of a design truck or design
tandem with the design lane load. Depending on the specific Strength Limit State (I, II,
III, TV, V), different load factors are applied to the moment and shear envelopes (DC1,
DC2, DW and LL). In this study the following strength limit states are investigated:
Strength I limit state, which basic load combination is relating to the normal vehicular
use without wind, and Strength III limit state for a structure exposed to wind velocities

higher than 55 Mph.

e STRENGTHI: 1.25 DC + 1.50 DW + 1.75 (LL+IM)

e STRENGTH III: 1.25 DC + 1.50 DW + 1.40 WS
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3.2.2.2 Loading for Service Limit State

Service limit state loading requirements are divided into permanent deformations
check and live-load deflection check. The above mentioned HL-93 loading is applied to
evaluate permanent deformations and web requirement. The live-load deflection criteria

apply the bigger of the following two loadings:

e The design truck

e 25% of design truck plus the design lane load

3.2.2.3 Loading for Fatigue Limit State

Fatigue and fracture load combination is related to a repetitive gravitational and
vehicular live load and dynamic responses under a single design truck with axle spacing

of 30 feet described in Article 3.6.1.4.1.

3.3 Live-Load Distribution Factors

The live-load distribution factors determine the portion of the load that is carried
by a particular girder. The distribution factors are applied to vehicular and lane live-
loads. In determining the distribution factors, refined methods of analysis or approximate
equations could be utilized. In this study approximate equations method are utilized

according to the specifications in Article 4.6.2.2. This method is dependent on the type
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and geometry of the structure, as well as the location of the girder (i.e. interior or
exterior). Article 4.6.2.2 specifies the exact parameter ranges for span length, girder

spacing, slab thickness and number of girders.

3.3.1 Interior Girder Distribution Factors

Interior girder distribution factors for moment and shear could be found from
Specification Tables 4.6.2.2.2b-1 and 4.6.2.2.3a-1, respectively. Therefore, the
distribution factor for moment for an interior girder (one and two lanes loaded

respectively) is the following:

S 0.4 S 03 K 0.1
DF 4 =0.06+| — — -
moment-one lane loaded [ 14 j ( L j 120Lts3

S 0.6 S 0.2 K 0.1
DF =0.075+| — — -
moment-two lanes loaded (95 j ( Lj lZOLtS3

The distribution factors for an interior girder for shear (one and two lanes loaded

respectively) are the following:

S
DF =036+ ——
shear-one loaded ( 25.0 j
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S S 2.0
DF =02+ — |-| —=
shear-two lanes loaded [ 12 J ( 35 j

where: S = girder spacing (ft)
L = span length (ft)
K, = longitudinal stiffness parameter
ts = depth of concrete slab (in)

These approximate equations have the following applicability limits:

e 35<8<16.0
e 45<t;<12.0
e 20<L <240
e Ny<4

e 10,000 <K,<7,000,000

where: Ny = number of girders

3.3.2 Exterior Girder Distribution Factors

For an exterior girder, the live load distribution factors for moment and shear are

described from Specification Tables 4.6.2.2.2d-1 and 4.6.2.2.3b-1, respectively. The

exterior girder distribution factor for moment with one lane loaded is computed using the
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lever rule. The lever rule assumes that the deck is simply supported with hinges at the
center lines of the respected girder. Multiple presence factor, described in section 3.4.2, is
to be applied to distribution factor computed from the lever rule. To calculate the
distribution factor for two or more lanes loaded, the governing interior distribution factor

has to be multiplied by the following correction factor:

e=0.77+ d.
9.1

where: d. = the distance between the web of the exterior beam and the

interior edge of curb or traffic barrier (ft)

For slab on steel bridges with cross frames or diaphragms a special analysis
should also be considered (Article 4.6.2.2.2d). This approximate method assumes that the
slab deflects and rotates as a rigid cross section. Likewise in the lever rule, following the
computation of the distribution factor for a single lane and two or more lanes loaded, the

multiple presence factors has to be applied. The procedure is outlined below:

NL
R = N, N X 2e
N hl
b > x?
where: R = reaction on exterior beam in terms of lanes
NL = number of loaded lanes under consideration
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e = eccentricity of a design truck or a design lane load from the
center of gravity of the pattern of girders (ft.)

X = horizontal distance from the center of gravity of the pattern of
girders to each girder (ft.)

Xext = horizontal distance from the center of gravity of the pattern of
girders to the exterior girder (ft.)

Nb = number of beams or girders

3.3.3 Fatigue Distribution Factors

The distribution factor for fatigue is computed according to Specifications Article
3.6.1.4.3b. It is calculated for only one lane loaded and no multiple presence factor
applied. Hence, it could be computed by taking the governing exterior distribution factor

and divide it by the multiple presence factor.

3.3.4 Live-Load Distribution Factors

When computing the live load deflection factor, all design lanes shall be loaded
and all the girders are assumed to deflect equally (Article 2.5.2.6.2). Hence, the live load
deflection distribution factor is equal to the number of lanes divided by the number of
girders. Load combination Service I shall be used with the design truck portion including

dynamic allowance and multiple presence factor must also be applied.
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34 Other Force Effects

3.4.1 Dynamic Load Allowance

Dynamic effects to moving vehicles may be attributed to the hammering effect,
which is the dynamic response of the wheel assembly to riding surface imperfections,
such as deck joints, potholes and cracks. Also, dynamic response of the bridge as a
system to passing vehicles due to surface roughness could be a cause of dynamic
behavior. Research shows that among highway bridges, the dynamic response of a bridge
system is approximately 25% of the static response. The dynamic load allowance account
for those responses, as it is described in Article 3.6.2. It defined to be 15% for fatigue

limit state evaluation, and 33% for all other limit state (Table 3.6.2.1-1).

3.4.2 Multiple Presence Factor

The multiple presence factor account for the possibility of more than one lane
loaded when calculating live-load distribution factors as defined in Article 3.6.1.1.2.
Specifications note that the multiple presence factors are not to be used when computing
fatigue limit state and when using the approximate equations from tables 4.6.2.2.2, since
it is already incorporated in them. Hence, the multiple presence factors are to be used
when distribution factors are computed using the lever rule, and the special analysis

methods.

29



3.4.3 Effective Width

Longitudinal stresses in the flanges are spread across the flange and in the
composite deck by in-plane shear stresses. Therefore, the longitudinal stresses are not
uniform. The effective width is a reduced flange width where the longitudinal stresses
can be assumed uniformly distributed. Hence, the resulting force is the same as in the non
uniform stress distribution. Calculation of the effective width is dependent on several
parameters, such as span length, top flange width, slab thickness, girder spacing, web
thickness and the location of the girder (Interior or Exterior) and is described in Article

4.6.2.6.1. Interior girder effective width is computed as follows:

e One quarter of the effective span length
e 12.0 times the average depth of the slab, plus the greater of web thickness
or one-half the width of the top flange of the girder, or

e The average spacing of adjacent beams

For an exterior girder, the effective width is one half of the effective width of the adjacent

interior beam plus the minimum of the least of:

e One-eighth of the effective span length,
e 6.0 times the average depth of the slab, plus the greater of half the web

thickness or one-quarter of the width of the top flange of the girder, or

30



e The width of the overhang

3.4.4 Load Modifier

Ductility, redundancy, and operational importance are significant aspects
affecting the margin of safety of bridges (Article C1.3.2.1), The ductility and redundancy
factors are directly related to the strength of the structure, and the operational importance
factor addresses the consequence of the bridge being out of service, For the strength limit
state and extreme event limits states load factors are shown in Table 3.4.1-2 of the
specification; the factors for all other limit states are to be taken as 1.00. the limits of the
load modifier, which is the product of the ductility, redundancy, and operational

importance factors, is described in Article 1.3.2.1 of the specifications as the following:

For load for which the maximum value of'y; is appropriate:

N, = NpNgN; = 0.095 (Eq.3.1)

For load for which the minimum value of y; is appropriate:

3 1
NMpNr My

n, <1.0 (Eq. 3.2)

where: Np = a factor relating to ductility as specified in Article 1.3.3
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Nk = a factor relating to redundancy as specified in Article 1.3.4
N = a factor relating to operational importance as specified in Article

1.3.5

3.5 Load Combinations

The AASHTO LRFD Bridge Design Specifications define a variety of load combinations
to assess the failure limits of the bridge system. The design of a composite steel I-section
is defined in Chapter 6 of the Specifications. The proper evaluation of the safety of a
steel bridge girder, a variety of limit states must be satisfied; consequently each

component and connection has to satisfy for all the limit states the following equation:

Q=EXn7i Qs PR, =R, (Eq. 3.3)
where n; = load modifier specified in Article 1.3.2

Qi = force effects from loads specified herein

Yi = load factors specified in Tables 3.4.1-1 and 3.4.1-2

o = resistance factor

R, = nominal resistance

R, = factored resistance

There are three basic limit states: strength, service, and fatigue. The strength limit

state ensures the design has sufficient strength and stability by assessing the flexural and
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shear capacities of the member during each construction stage and in the final condition.
The service limit state controls the stresses and deflections of the structure to verify that
the bridge will satisfactorily perform during its service life. The fatigue limit state
ensures that the bridge will not experience fatigue cracking or fracture due to cyclic
loading. The following is a brief description of the three limit states specified in the

bridge design code.

3.5.1 Strength Limit States

The strength limit states assess the structures strength and stability of the design
structure under design. The following are the strength limit states as described in Article

3.2.1 of the specifications:

Strength I -  Basic load combination relating to the normal vehicular use of the
bridge without wind.

Strength II - Load combination relating to the use of the bridge by Owner-
specified special design vehicles, evaluation permit vehicles, or
both without wind.

Strength III - Load combination relating to the bridge exposed to wind velocity
exceeding 55 MPH.

Strength IV - Load combination relating to very high dead load to live load force

effect ratios.
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Strength V - Load combination relating to normal vehicular use of the bridge

with wind of 55 MPH velocity.

Table 3.4.1-1 and 3.4.1-2 discusses the appropriate load factors to be applied and
Article 3.4.2 of the specifications defines the load factors to apply when assessing

constructability.

3.5.2 Service Limit States

The service limit states control the stresses and deflections of the bridge to ensure
proper performance during the service life of the bridge. The Live-load Deflection check
is at the Service I load level, which applies a load factor of 1.0 to all load types. It is
optional and is covered in Article 2.5.2.6.2 of the specifications. The permanent
deflections check, which limits the yielding of the section to control the ride ability of the
structure, are controlled by the Service II load combination, which applies a factor of 1.3

to the live-load and 1.0 to all other loads.

3.5.3 Fatigue Limit States

The fatigue limit state relates to repetitive gravitational vehicular live load and

dynamic responses under a single design truck. This limit state ensures fatigue cracking

and fracture during cyclic loading throughout the 75-year design life of the structure.

The fatigue requirements must be checked when loaded with the fatigue load
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combination specified in Table 3.4.1-1 of the code; this load combination applies a load

factor of 0.75 to the fatigue truck with no multiple presence factors.

The following sections detail the process that must be followed for the Third

Edition of the specifications to evaluate each limit state.

3.6 Summary of the Third Edition of the ASHTO LRFD Specifications

The purpose of the development of the 3rd Edition of the AASHTO Bridge
Design Specifications was a step towards a consistent set of specifications for both
straight and horizontally-curved steel I-girders. The result is a set of specifications that
include vertical bending and lateral flange bending. Straight I-girders experience flange
lateral bending as a result of wind loads and torsion, which can be caused by significant
skew, construction limit state loading such as overhang brackets, and staggered cross-

frames.

The 3" Edition of the AASHTO Bridge Design Specifications also incorporate
general section proportion limits to make the initial design easier to develop. Appendix
C contains flow-charts to guide the design of steel I-girders, and Appendix D
incorporates procedures for determining fundamental values, such as the plastic moment
and yield moment. The following section describes the cross-section proportion limits of

the specifications followed by strength, service and fatigue limit states design codes.

35



3.6.1 Cross-section Proportion Limits

The Third Edition of the AASHTO LRFD Bridge Design Specifications describes

proportion limits for the web, flanges, and general geometry in Article 6.10.2. It provides

an initial design tool to prevent excessive deformations during welding, allows for easier

proportioning of the web, and to prevent difficulties with handling during construction.

Overall, it is a good initial measure for the final girder section.

3.6.2 Web Proportions

To prevent the design of girders that are difficult to handle during the construction

stage, and to set the upper limit on the slenderness of webs without longitudinal stiffeners

are limited to the following:

— <150 (Eq. 3.4)

3.6.3 Flange Proportions

The following is a list of compression and tension flange proportions as described

in Article 6.10.2.2 of the specifications.

o <120 (Eq. 3.5)
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e b.2D/6 (Eq. 3.6)

o t. 211t (Eq. 3.7)
I C
e 0.1<2>2<10 (Eq. 3.8)
L,
where: Iy = moment of inertia of the compression flange of the steel section

about the vertical axis in the plane of the web (in*)
Lyt = moment of inertia of the tension flange of the steel section about

the vertical axis in the plane of the web (in®)

The flange slenderness, Equation 6.10.2.2-1, is an upper limit, set at 12.0 to ensure that
the flange will not excessively distort when welded to the web. White and Barth (1998)
observed that the cross-section aspect ratio, D/br is a significant parameter affecting the
strength and moment-rotation characteristics of I-sections. Equation 6.10.2.2-2 limits the
cross-section aspect ratio to 6 to make certain that the section can develop post buckling
shear resistance due to tension-field action, discussed in C6.10.2.2 of the specifications.
Equation 6.10.2.2-3 ensures that some restraint will be provided by the against web shear
buckling and also that the boundary conditions assumed at the web-flange juncture in the
web bend-buckling and compression flange local buckling formulations within these
specifications are sufficiently accurate (Article C6.10.2.2). In Equation 6.10.2.2-4,
limiting the ratio of Iy to I prevents the section from being difficult to handle during

construction and provides more proportioned sections.
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3.7 Limit State Specifications

The following sections details the design specifications of the Third Edition of the
AASHTO Bridge Design Code for the three major load conditions, Strength, Service and

Fatigue limit states.

3.7.1 Strength Limit State

As previously mentioned, this study focused on the design of simple span bridge
structures, therefore only the positive bending flexural capacity will be described in this

section.

3.7.1.1 Positive Flexural Capacity

The Third Edition of the ASHTO LRFD defines the positive flexural resistance of a

composite section in Article 6.10.7. It is different whether a section classifies as compact

or non-compact, but regardless of the girder classification, it has to satisfy the ductility

requirement in Article 6.10.7.3, which is the following:

D, <0.42 D, (Eq. 3.9)

where D, = distance from the top of the concrete deck to the neutral axis of

the composite section at the plastic moment (in.)
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Dt = total depth of the composite section (in.)

The ductility requirement specified above is set to protect the concrete deck from
premature crushing. The following sections describe the procedure involved in
determining the positive flexural resistance of a composite girder for compact and non-

compact sections.
Compact Sections

Article 6.10.7.1.1 of the specifications states that compact sections must satisfy

the following criteria:

o F,;<70ksi

° BSISO, and

2D
o —P£<376 £
tW ch

If the section is deemed compact, the following equation must be satisfied:

M, +=£S <M, (Eq. 3.10)

xt —
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where M, = bending moment about the major axis of the cross-section
determined as specified in Article 6.10.1.6 (k-in)
fi = flange lateral bending stress (ksi)
Sxt = elastic section modulus about the major axis of the section to the
tension flange taken as My/Fy, (in3)
Of = 1.0, resistance factor for flexure
M, = nominal flexural resistance of the section specified in

Article 6.10.7.1.2 (k-in)

For composite sections in positive flexure at strength limit state, lateral bending is not

considered since the compression flange is continuously supported by the concrete deck.

The specifications define the nominal flexural resistance, M, in Article 6.10.7.1.2,
if the distance from the top of the concrete deck to the neutral axis of the composite
section at plastic moment, Dp, is less than one tenth of the total depth of the composite
section, Dt, then the nominal flexural resistance of the section is equal to the plastic
moment of the section. Sections that do not satisfy the previous criteria are limited to the
resistance calculated from Eq. 6.10.7.1.2-2, which limits the nominal resistance to

prevent premature crushing of the concrete deck and ensures sufficient ductility.

D
M, =M, [1.07—0.7#} (Eq. 3.11)

t
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Non-compact Sections

Non-compact sections are limited to the moment at first yield, and must satisfy

the following inequalities:

Compression flange: £, <o.F, (Eq. 3.12)

where fi,, = flange stress calculated without consideration of flange lateral
bending determined as specified in Article 6.10.1.6 (ksi)
Frc = nominal flexural resistance of the compression flange determined

as specified in Article 6.10.7.2.2 (ksi)

Of = resistance factor for flexure specified in Article 6.5.4.2
. 1
Tension flange: £, + §f1 <¢.F, (Eq. 3.13)
where: Fy = nominal flexural resistance of the tension flange determined as

specified in Article 6.10.7.2.2 (ksi)

fi = flange lateral bending stress determined as specified in Article

6.10.1.6 (ksi)
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For composite section in positive flexure, lateral bending does not need to be
considered in the compression flange at the strength limit state, because the flange is
continuously supported by the concrete deck. The nominal flexural resistance of a non-
compact section is limited to the moment at first yield and has to be calculated for each

flange. The compression flange nominal flexural strength is computed from the following

equation:
Fnc = Rb Rh ch (Eq 3. 14)
where Ry = web load-shedding factor determined as specified in Article
6.10.1.10.2
Ry = hybrid factor determined as specified in Article 6.10.1.10.1

The hybrid factor is 1.0 for homogeneous sections, rolled beams and sections with higher
strength steel in the web than in both flanges. Otherwise, the hybrid factor can be

determined using the following equations:

_ 3
R, = 12+PGP=p) (Eq. 3.15)
12+2pB
2D t
=""n'w Eqg. 3.16
p A (Eq )
where p = minimum of Fy,/f, and 1.0
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Ag = sum of the flange area on the side of the neutral axis
corresponding to D, (in.2)

D, = larger of the distances from the elastic neutral axis of the cross
section to the inside face of either flange (in.)

fa = for sections where yielding occurs first in the flange on the side
of the neutral axis corresponding to Dy, the largest of the specified
minimum yield strengths of each component included in the
calculation of Ay, (ksi). Otherwise the largest of the elastic stresses
in the flange on the side if the neutral axis corresponding to D, at
first yield on the opposite side of the neutral axis

The Web Load-shedding factor, Ry is defined in Article 6.10.1.10.2 and is taken

as 1.0 when:

e checking constructability according to the provisions of Article 6.10.3.2
e if the section is composite, in positive flexure, and the web satisfies the
requirement of Article 6.10.2.1.1 or,

e one or more longitudinal stiffeners are provided and

D 095 /E—k (Eq. 3.17)
tw ch

e the web satisfies:

<)\ (Eq. 3.18)
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where An = limiting slenderness ratio for a non-compact web

A, =57 /3 (Eq. 3.19)
F,

Otherwise Ry, is calculated using the following equation:

R, =1- Tue 2De <10 (Eq. 3.20)
1200+300a , )\ t,
where ay. = for composite longitudinally-stiffened sections in positive
flexure
a, = 2D.t, (Eq. 3.21)
brte + byt (1= o, /F,. ) /30
where fpc; = compression flange stress in the section under consideration,

calculated without consideration of flange lateral bending and
caused by the factored permanent load applied before the concrete
deck has hardened or is made composite (ksi)

D, = depth of web in compression in elastic range (in.)
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otherwise

a, 6 =—% (Eq. 3.22)
tf

3.7.1.2 Shear

The shear resistance of a section in Strength Limit State for stiffened, unstiffened
web is discussed in Article 6.10.9 of the Third Edition of the AASHTO LRFD. The
consideration of tension field action (Basler 1961) is not permitted for unstiffened webs
panels. Hence, the nominal shear resistance is controlled by either the ratio of shear-
buckling resistance to the shear yield strength, or by the shear-buckling coefficient as

calculated in the following:

Vo=Vg=CV, (Eq. 3.23)
and V,=058F,,Dty (Eq. 3.24)
where V, = nominal shear resistance (kip)
Vo = shear buckling resistance (kip)
Vo = plastic shear force (kip)
C = ratio of the shear buckling resistance to the shear yield strength

determined as specified in Article 6.10.9.3.2, with the shear
buckling coefficient, k, taken equal to 5.0

Fyw  =minimum yield strength of the web (ksi)
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D = depth of the web (in.)

tw = thickness of web (in.)

The coefficient C can be determined by the following method described in Article

6.10.9.3.2, and is as follows:

o If BSI.IZ E—k,then
t, E,

C=1.0 (Eq. 3.25)
o If 1.12 E—k<2£1.40 E—k,then
\/wa t, \/wa
1.12 |Ek
C=—— |— Eq. 3.26
D \E, (Eq )
tW
o If 2>1.4O E—k,then
t \/F
w yw
C= 157 [E—k] (Eq. 3.27)
yw
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where k = shear buckling coefficient, which is 5.0 for unstiffened webs, or

for stiffened webs is as follows:

(Eq. 3.28)

where d = transverse stiffener spacing

Nominal resistance of stiffened web section is described in Article 6.10.9.3 of the
Specifications and is defined based on the section location (Interior and end panels).
When stiffened interior web panels of homogeneous and hybrid girders are proportioned
according to Eq. 6.10.9.3.2-1, they are capable of developing post-buckling shear

resistance due to tension-field action (White 2004).

DL, s (Eq. 3.29)

(bfctfc + bfttft )

The nominal shear resistance of these panels can be computed by summing the
contributions of beam action and post-buckling tension-field action, and it is defined as

follows:
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L 08701-0)

V,=V,|C (Eq. 3.30)
d 2
1+ (OJ
D -
in which: V,=0.58 Fyw D ty (Eq. 3.31)
where dy = transverse stiffener spacing (in)
Vi = nominal shear resistance of a web panel (kips)
Vo = plastic shear force (kips)
C = ratio of the shear-buckling resistance to the shear yield strength

(described previously)

If the total area of the flanges within the panel is small relative to the area of the web, the
post-buckling resistance cannot develop (White 2004). Therefore, the shear resistance can

be computed according to the following:

0.87(1-C)

2
1+(d°] +$
D D |

V =V |C+ (Eq. 3.32)

The shear in end panels adjacent to simple supports is limited to either the shear yielding

or the shear-buckling resistance. Therefore, the nominal shear resistance of web end
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panels shall be calculated according to article 6.10.9.3.3 of the Specifications, and is as

follows:

Vi=Vg=C Vp , and (Eq. 3.33)

V,=0.58 Fyy D t,,

The transverse stiffener spacing of end panels shall not exceed 1.5D.

3.7.1.3 Constructability

The Third Edition of the AASHTO Specifications defines checks for
constructability in section 6.10.3. During each construction stage, the member must
satisfy requirements for flange nominal yielding, flexural resistance, and web bend
buckling, equations 6.10.3.2.1-1, 6.10.3.2.1-2, and 6.10.3.2.1-3 respectively. The first
equation is a yielding limit state check, ensures that the maximum combined stress in the
compression flange will not exceed the minimum specified yield strength of the flange.
Equation 2 ensures that the member has sufficient strength towards lateral torsional and
flange local buckling based limit states. The third check ensures, that theoretical web

bend-buckling will not occur during construction.

f,, +f <ORF, (Eq. 3.34)

49



fu +3f <OF, (Eq. 3.35)

., <o:F,., (Eq. 3.36)

where @f = resistance factor for flexure specified in Article 6.5.4.2

fou = flange stress calculated without consideration of flange lateral
bending determined as specified in Article 6.10.1.6 (ksi)

fi = flange lateral bending stress determined as specified in Article
6.10.1.6 (ksi)

Faw = nominal elastic bend-buckling resistance determined as specified
in Article 6.10.1.9 (ksi)

Foc = nominal flexural resistance of the flange and shall be determined
according to Article 6.10.8.2. (ksi) For sections in straight i-girder
bridges, F,,. can be taken as M,./Sx.. In coputing F,, for
constructability, Ry, shall be taken as 1.

M,. = yield moment with respect to the compression flange determined
as specified in Article D6.2 (kip-in)

Sie = elastic section modulus about the major axis of the section to the
compression flange, shall be taken as My, / Fy. (in®)

Ry = hybrid factor specified in Article 6.10.1.10.1

The Third Edition of the specifications makes a distinction between discretely and

continuously braced cross sections, and requires the consideration of the flange lateral
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bending stresses, f, which is the result of overhang bracket forces and wind loads. For a
continuously braced flange, flange lateral bending need not to be considered. For
members with slender webs, when fj is zero, equation 6.10.3.2.1-1 needs not to be
checked while for sections with compact or non-compact webs; equation 6.10.3.2.1-3
shall not be checked. Equation 1 often controls over equation 2, especially for members
with large f; and for compact and non-compact webs. However, for sections with non-
compact flanges or large unsupported lengths during constructions combined with small
or zero values for fj, equation 2 typically controls. The specifications state in Article
6.10.3.2.2 the following flange nominal yielding requirement for a discretely braced

tension flange must be satisfied:

f,, +f <O.R,F, (Eq. 3.37)

where Fy = minimum specified yield strength of the tension flange (ksi)

It ensures that during each construction stage, the stress in the flange will not exceed the

minimum required yield strength times the hybrid factor under factored loads. For

continuously braced compression and tension flanges the following equation must be

satisfied:

f,, <OR,F, (Eq. 3.38)
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3.7.2 Serviceability

3.7.2.1 Elastic Deformations

The live load deflection criterion is specified in Article 2.5.2.6 together with the
criteria for span-to-depth ratio. The designer must determine the maximum deflection
based on parameters defined in Section 3.6.1. The outcome of a line girder analysis,
multiplied by the lateral distribution factors has to be considered in the absence of a
refined analysis to determine the estimated live-load deflection. The limit is L/1000 if

pedestrian traffic is expected on the bridge; otherwise it is L/800.
3.7.2.2 Plastic Deformations

To evaluate plastic deformations, the Specifications define to use Service II load
combinations. Article 6.10.4.2.2 of the specifications determines the allowable stresses
the flanges can experience, and is as described below:

For the top flange of composite sections:

f, <0.95R,E, (Eq. 3.39)

For the bottom flange of composite sections:

f, +% <0.95R,F, (Eq. 3.40)
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For both steel flanges of non-composite sections:
fi
f, +E <0.80R,F (Eq. 3.41)

where f; = flange stress in the section under consideration due to the Service
II loads calculated without consideration of flange lateral bending
(ksi)
fi = flange lateral bending stress in the section under consideration
due to the Service II loads determined as specified in Article
6.10.1.6 (ksi)
Ry = hybrid factor determined as specified in Article 6.10.1.10.1
Above mentioned equations intend to prevent objectionable permanent deflections
that would impair ride ability due to heavy traffic loading conditions. These checks also
address the increase in flange stresses caused by early web yielding in hybrid sections by
including the hybrid factor, Ry. It is recommended to conservatively apply the value of Ry,

used in Strength limit state checks for these equations as well (Article C6.10.4.2.2).
3.7.2.3 Web Requirements

Article 6.10.4.2.2 of the Third Edition states that sections must satisfy the web

requirement check, Eq. 6.10.4.2.2-4, unless the section is composite, in positive flexure,
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and the web satisfies the requirement of Article 6.10.2.1.1, which is the ratio of D/t,, less

than or equal to 150.

where f. = compression-flange stress in the section under consideration due
to the Service II loads calculated without consideration of flange
lateral bending (ksi)
Faw = nominal bend-buckling resistance of web with or without

longitudinal stiffeners specified in Article 6.10.1.9

Since this study is focused on simple span composite [-girder designs, this web

requirement check is automatically satisfied.

3.7.3 Fatigue and Fracture Limit State

The fatigue limit state imposes restrictions on the stress levels under regular

conditions to prevent crack growth and fracture during the design life of the bridge.

There are two main types of fatigue problems that the specifications require to checks,

distortion induced fatigue and load-induced fatigue.
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3.7.3.1 Distortion-Induced Fatigue

Distortion-induced fatigue is discussed in Article 6.6.1.3 of the Third Edition. To
prevent distortion-induced fatigue, both the tension and compression flanges of the girder
are to be welded or bolted to all transverse connection plate details in order to provide

load paths sufficient to transmit forces.

To control web buckling and elastic flexing of the web, the provisions of Article
6.10.5.3 shall be satisfied. Interior web panels with transverse stiffeners, with or without

longitudinal stiffeners shall satisfy the following equation:

where V, = shear in the web in the section under consideration due to
the un-factored permanent load plus the factored fatigue
load (kip)
Ve = shear-buckling resistance determined from equation

6.10.9.3.3-1 (kip)

The factored fatigue load shall be taken as twice that calculated using the Fatigue load

combination.
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3.7.3.2 Load-Induced Fatigue

The force effect considered for the fatigue design of steel bridge detail shall be the
live load stress range, therefore, residual stresses should not be considered when
investigating fatigue. These provisions only apply to details subjected to net tensile
stresses. Where un-factored permanent loads induce compression, fatigue should only be
investigated if the compressive stress is less then twice the maximum tensile live-load
stress resulting from the fatigue load combination. Load induced fatigue detail category
shall be determined from Tables 6.6.1.2.3-1 and 6.6.1.2.3-2 in Article 6.6.1.2.3 of the
specifications. The detail with the least fatigue resistance employed in typical bridge
systems is the welded connection of the cross-frame to the web of the girder, which falls
under a fatigue category C’. For load induced fatigue considerations, each detail shall

satisfy:

V(Af) < (AF),
where vy = load factor specified in Table 3.4.1-1 for the fatigue load
combination

(Af) = force effect, live load stress range due to the passage of the
fatigue load as specified in Article 3.6.1.4 (ksi)

(AF), =nominal fatigue resistance as specified in Article 6.6.1.2.5 (ksi)

The nominal fatigue resistance shall be taken as follows:
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A % 1
(AF), = (Ej > E(AF)TH (Eq. 3.44)

in which:
N=(365) (75) n (ADTT)s. (Eq. 3.45)
where A = constant from Table 6.6.1.2.5-1 (ksi3)
n = number of stress range cycles per truck passage taken
from Table 6.6.1.2.5-2
(ADTT)sL = single-lane ADTT as specified in Article 3.6.1.4
(AF)ry = constant-amplitude fatigue threshold taken from Table

6.6.1.2.5-3 (ksi)
When the design stress range is less than one half of the constant amplitude fatigue

threshold, the detail will theoretically provide infinite life.

3.7.3.3 Fracture

To prevent fracture, the material for main components subjected to tension due to

the Strength I load combination are to meet the Charpy V-notch fracture toughness

requirements for the appropriate temperature zone, see Article 6.6.2. These requirements

vary, based on type of steel, type of construction and the applicable minimum service

57



temperature, which could be determined from Table 6.6.2.1. In addition, any member that

is fracture critical should be denoted in the plans.

3.8 Additional Considerations

This chapter has described the Third Editions of the AASHTO LRFD for the
design of steel I-girders considering the strength, service, and fatigue limit states, as well
as the general proportions limits. A complete superstructure design requires additional
design details to be performed that are outside of the scope of this study. Such details
include, shear studs, transverse and bearing stiffeners, bearings, cross frame details, and

deck design.
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Table 3.1 Code Equation legend

Thesis Equation AASHTO Equation
3.1 1.3.2.1-2
3.2 1.3.2.1-3
3.3 1.3.2.1-1
34 6.10.2.1.1.-1
3.5 6.10.2.2-1
3.6 6.10.2.2-2
3.7 6.10.2.2-3
3.8 6.10.2.2-4
3.9 6.10.7.3-1
3.10 6.10.7.1.1-1
3.11 6.10.7.1.2-2
3.12 6.10.7.2.1-1
3.13 6.10.7.2.1-2
3.14 6.10.7.2.2-1
3.15 6.10.1.10.1-1
3.16 6.10.1.10.1-2
3.17 6.10.1.10.2-1
3.18 6.10.1.10.2-2
3.19 6.10.1.10.2-4
3.20 6.10.1.10.2-3
3.21 6.10.1.10.2-6
3.22 6.10.1.10.2-5
3.23 6.10.9.2-1
3.24 6.10.9.2-2
3.25 6.10.9.3.2-4
3.26 6.10.9.3.2-5
3.27 6.10.9.3.2-6
3.28 6.10.9.3.2-7
3.29 6.10.9.3.2-1
3.30 6.10.9.3.2-2
331 6.10.9.3.2-3
3.32 6.10.9.3.2-8
3.33 6.10.9.3.3-1
3.34 6.10.3.2.1-1
3.35 6.10.3.2.1-2
3.36 6.10.3.2.1-3
3.37 6.10.3.2.2-1
3.38 6.10.3.2.3-1
3.39 6.10.4.2.2-1
3.40 6.10.4.2.2-2
341 6.10.4.2.2-3
342 6.10.4.2.2-4
343 6.10.5.3-1
3.44 6.6.1.2.5-1
3.45 6.6.1.2.5-2

59




Table 3.2 Multiple Presence Factors

Number of Loaded Lanes Multiple Presence Factors “m”
1 1.20
2 1.00
3 0.85
>3 0.65

Table 3.3 Dynamic Load Allowance, IM

Component M
Deck joints — All Limit States 75%
All Other Components
e Fatigue and Fracture Limit 15%
State
e All Other Limit State 33%

Table 3.4 Load Modifiers
Ductility
Nonductile components and connections No=1.05
Conventional designs and details no=1.00
Components and details with more ductility than required No=0.95
Redundancy
Nonredundant members Nnr=1.05
Conventional levels of redundancy nr=1.00
Exceptional levels of redundancy Nr=0.95
Operational Importance
Important bridges ni=1.05
Typical bridges ni=1.00
Relatively less important bridges ni=0.95
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Figure 3.1 AASHTO Design Truck
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Chapter 4

Optimized Short-Span Steel Bridge Girder Design Study

4.1 Introduction

The purpose of this design study is to develop an optimized simply supported
short-span steel girder package for 2 lane cross sections roadway. The following
parameters are varied: cross sections (28 ft and 34 ft), girder configuration (homogeneous
and hybrid plate girders, rolled beams), stiffened and un-stiffened webs, girder location
(exterior, interior) and span length. The homogeneous plate girders and rolled beams
utilize of 50-ksi steel, the hybrid configuration has 50-ksi compression flange and webs,
and 70-ksi tension flanges. The designs are completed in accordance with the 3" Edition

of the AASHTO LRFD Bridge Design Specifications (AASHTO 2004).

Previous research (Clingenpeel 2001) has concluded the effect of Live-load
Deflection Criteria on the design and economy of plate girders consisting HPS steel.
Therefore, this study investigates and compares the designs incorporating the Live-load

Deflection Criteria with the ones where it is neglected.
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4.2 Design Assumptions

Short-span steel I-girders were designed in accordance with the 3" Edition of the
AASHTO LRFD Bridge Design Specifications (AASHTO 2004). A typical girder
elevation is shown in Figure 4.1, where L is the span length, C indicates the cross frame
spacing, and X, Y, and Z denote the transverse stiffener spacing for partially stiffened
webs. Designs with un-stiffened webs only have bearing stiffeners and cross frame
connection plates shown in Figure 4.1. Interior and Exterior girders were designed for
two 2-lanes cross sections: a 28 ft cross section with four girders spaced at 8’-3” (Figure
4.2), and a 34 ft cross section with four girders spaced at 10°-0” (Figure 4.3). Full
composite action was assumed between the steel girders and the concrete slab via headed

shear studs.

The following parameters were varied for both cross sections:
e Girder type selection: 50-ksi homogeneous plate girder, Hybrid plate
girder (50-ksi compression flange and web, 70-ksi tension flange), 50-ksi

Rolled beam
e Girder locations: Interior, Exterior
e Target span-to-depth, L/D, ratios: 20, 25, 30
e Stiffened or un-stiffened webs

e Span lengths: 40 ft to 140 ft in 5 ft increments
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Span-to-depth ratios are calculated by using the entire depth of the superstructure,
D, which includes the concrete slab, concrete haunch and the steel section. The concrete
haunch is the distance from the bottom of the top flange to the bottom of the concrete
slab. The stiffened web designs were developed utilizing the “partially stiffened web
approach”, which involves reducing the un-stiffened web thickness by 1/16” or 1/8” to

vary the layout of the transverse stiffeners.

The following parameters remained constant for each design:
e Stay-in-place (SIP) forms: 15 psf
e Future wearing surface: 25 psf
e Concrete barriers (F-type): 305 1bs/ft
e Miscellaneous steel weight increase: 5%
e Compressive strength of concrete: 4.0 ksi
e (Concrete unit weight: 150 pcf
e Steel unit weight: 490 pcf
e Modular ratio: 8
e Concrete haunch thickness: 2 in
e Constant flange width
e (Constant web height
e Construction loads:
0 Overhang deck forms: 40 lbs/ft
0 Screed rail: 85 lbs/ft

0 Railing: 25 lbs/ft
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0 Walkway: 125 lbs/ft

0 Finishing machine: 3000 lbs

The available flange thicknesses are taken in increments of 1/8 in, and the web
plates in increments of 1/16 in. The plate widths are taken in 2 in increments. Minimum
plate sizes were set to ensure ease of fabrication and reduce problems associated with
flange distortion due to welding. The minimum allowable flange size was 12 in wide and
% in thick. The minimum permitted web size was 24 in by 7/16 in. Flange transitions
were allowed at 20% of the span length if the transition would save 800 Ibs of steel to

save the cost of fabrication.

4.3 Design Approach

One of the goals of this study was to develop a user friendly and detailed
document for each design alternative. For this purpose, an extensive design document in
Microsoft Excell was prepared. The spreadsheet details the entire girder design from
entering initial design parameters to optimizing the final design. The accuracy and
effectiveness of the computation sheet was verified through Steel Bridge, by Bridgesoft
(2003). The document allows more convenient design process and provides the benefit of
visibility through each design step. All the design sections are equipped with tables and
references to the 3" Edition of the AASHTO LRFD Bridge Design Specifications
(AASHTO 2004) to provide not just clarity through the design process but also to provide

detailed references.
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Every girder design started by computing the web depth based on the proposed
span-to-depth ratio (L/D). For the purpose of this study, three target ratios were selected:
20, 25 and 30. For shorter span lengths only one design was developed with span-to-
depth ratios less than 20, due to previously mentioned plate size restrictions. The target
overall depth of the superstructure was determined from the L/D ratio. By subtracting the
concrete slab thickness, the concrete haunch thickness and the bottom flange thickness,
the web height was determined. That value was rounded up to the nearest even number to

satisfy the web increment of 2 inches criteria.

After the web depth was determined, a preliminary flange width was selected to
satisfy to the ratio of web depth and flange width to be between 3.0 and 4.0, if possible.
Due to plate restrictions, some sections were not able to satisfy the aspect ratio. The
initial flange width and thickness was always set to the minimum allowed based on the
plate restrictions. Cross frame spacing was based on span length and was set at equal

distance at 4 of the span length. The maximum cross frame spacing was set at 30 ft.

Following the selection of the initial cross section height, the web thickness was
determined. Initially, webs were designed such that no transverse stiffeners were
required. Depending on the cost savings and the capacity of the unstiffened design, a
partially stiffened web thickness was determined by subtracting 1/16” or 1/8” from the
web thickness. Once the initial cross section was selected, the above mentioned

spreadsheet was used to calculate the section properties. Moment and shear envelopes
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were extracted from the commercial software program ConSys 2000 (Leap Software,

Consys 2000). This last step was repeated until the optimized section was found.

To evaluate the effect of the live-load deflection criteria on the girder weight, the
sections were first optimized to satisfy all design limit states neglecting the optional live-
load deflection limit. If the optimized girder did not satisfy the deflection limit, a separate
girder was designed to meet the criteria. According to Article 6.10.4.2, to evaluate live-
load deflections on girders with shear connectors provided throughout the entire length,
short term or long term composite section may be used to evaluate stresses and live-load
deflection from Service II load combinations. Hence, in this study live-load deflections

were computed using the short-term composite section.

4.4 Design Summary and Observations

This section describes the summary and observation from the optimized

parametric design study. The girders discussed in this section are both interior and

exterior that were designed according to the 3™ Edition of the AASHTO LRFD Bridge

Design Specifications. Appendix A presents design summaries for all girders.
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4.4.1 Influence of Material Configuration

Figures 4.4 through 4.13 show the weight versus span-to-depth ratio for
homogeneous and hybrid girder configurations for both locations, exterior and interior.
The weight corresponds to a single girder for span lengths of 140 feet, 120 feet, 100 feet,
80 feet, and 60 feet. From the figures, it can be seen that hybrid material configuration
results in a lighter design than the homogeneous sections for longer spans in this study.
Span lengths of 50 feet and shorter do not benefit from the use of a hybrid girder
configuration since the sections are controlled by minimum plate size restrictions. Hybrid
girders that did not satisfy the L/800 Deflection limit are significantly lighter than the

homogeneous girders for higher L/D ratios.

Exterior hybrid girders are approximately 8.8% lighter than homogeneous
members for sections that satisfy the L/800 deflection criteria and also when neglecting
the optional deflection criteria. In the case of interior designs, hybrid sections that satisfy
the L/800 deflection criteria are on average 8.7% lighter than homogeneous members,
and when L/800 is neglected, hybrid sections were found to be 10.0% lighter than the

homogeneous designs.

4.4.2 Optimum Span-to-Depth Ratio

The span-to-depth ratio has a significant impact on girder design economy. In

general, higher span-to-depth ratios result in heavier sections for both homogeneous and
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hybrid girder configurations. Figure 4.4 shows an exterior girder weight comparison of
140 feet span length, where the hybrid section with the higher span-to-depth ratio, 27.5
weighs 21.9 percent heavier than the optimum span-to-depth ratio of 24.9. figure 4.11
shows an additional example where the difference of 25.5 percent for a homogeneous

girder configuration between span-to-depth ratios of 22 and 24.1.

Another notable observation is that the optimum span-to-depth ratio decreases as
the span length decreases. The optimum span-to-depth ratio for span lengths between 95
feet and 140 feet is approximately 24 while for shorter span lengths the optimum span-to-

depth ratio is approximately 20, the smallest target design ratio.

4.4.3 Interior and Interior girder Design

The optimized design package includes both exterior and interior girder designs in
order to compare weight differences based on section location and Figures 4.14 through
4.21 shows the girder weight versus span-to-depth ratios of selected homogeneous and
hybrid section. In general, exterior girder designs required more steel than interior

sections.

To describe the differences more specifically, interior girders with homogeneous

configuration were generally controlled by permanent deformations while hybrid girders

were controlled by the construction limit state requirements. While for exterior girders,
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they were generally controlled by either the construction requirements in case of hybrid

girders, or permanent deformations for homogeneous girders.

Construction limit state requirements have a significant influence on the design of
exterior girders due to lateral bending stresses in the compression flange developed
during deck placement. Temporary bracing was implemented at mid-span for exterior
girders with span lengths of 75 feet and above during construction. This served a purpose
to lower the value of the un-braced length, which in some cases eliminated or minimized
the amplification factor during the computation of the lateral bending stresses in the

compression flange.

4.4.4 Influence of a Partially Stiffened Web

As previously described, sections were designed for un-stiffened and partially
stiffened webs. Figures 4.22 through 4.27 show the comparisons between the two types
of designs. There was an overall average weight difference of 7.5% between the un-
stiffened and partially stiffened designs. Exterior girders realized an 8.8% difference
while interior designs with partially stiffened webs were 6.2% lighter than un-stiffened

sections.

It is notable to mention, that stiffened designs that did not weight less than the un-

stiffened web sections all have larger span-to-depth ratios. These sections must be

significantly increased to meet the flexural requirements under the strength limit state.
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Typically, homogeneous designs offered no weight savings because of the above

mentioned flexural capacity.

4.4.5 Weight Comparison of Rolled Beams

Rolled beams were found to be more economical as span lengths decreased,
namely for span lengths 40 feet to 50 feet. Figures 4.28 to 4.39 show the relationship
between girder weight and span-to-depth ratio for rolled sections as they are compared to
homogeneous and hybrid designs. Longer span lengths require significantly heavier
sections than the plate girder design options since rolled beams are manufactured with
shallower depths. Despite of the weight disadvantage, span lengths of 50 feet to 85 feet,
rolled beams require an average 19% more steel than homogeneous and 29% more than

hybrid plate girder alternatives, which could be offset by steel and fabrication cost.

4.4.6 Influence of Span-to-Depth Ratio on Live-load Deflection Criteria

The span-to-depth ratio has a significant influence on the Live-load deflection
criteria. Figures 4.40 through 4.49 are graphs of the deflection versus span-to-depth ratios
for selected girder lengths. The L/800 optional live-load deflection limit is presented with
a black dashed line. From the figures it can be observed, that the majority of the girders
that did not meet the L/800 criteria have higher span-to-depth ratios. Since the deflection
criteria is a function of the moment of inertia of the composite cross section, it is self

explanatory that girders with higher span-to-depth ratios have shallower depths and will
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fail the criteria more often that with girders of higher L/D ratios. Also of note, the girders

with the lowest of the three target span-to-depth ratios never failed the deflection criteria.

4.4.7 Influence of Material Configuration on Live-load Deflection Criteria

In this optimization study, the hybrid configuration failed the initial live-load
deflection limit more often than the homogeneous sections. In this design study, a total of
22 designs failed the L/800 deflection criteria and all of the girders that failed the

deflection criteria were hybrid girders.

To better illustrate the rate of the additional steel required, the average deflection
by which the girders were failing the limit was compared to the additional steel required
to satisfy the limit. Hence, exterior girders failed the L/800 deflection criteria by an
average of 0.057 inches and required 4% more steel to meet the criteria, while interior
girders failed the L/800 deflection criteria by an average of 0.123 inches and required
5.5% more steel to satisfy per girder. Approximately similar ratios apply to the interior
designs that failed the live-load deflection limit. Therefore, the optional live-load

deflection limit can have a negative impact on steel I-girder designs.
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Figure 4.4 Exterior Girder Designs
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Figure 4.5 Exterior Girder Designs
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Figure 4.6 Exterior Girder Designs
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Figure 4.7 Exterior girder Designs
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Figure 4.8 Exterior Girder Designs
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Figure 4.9 Interior Girder Designs
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Figure 4.10 Interior Girder Designs
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Figure 4.11 Interior Girder Designs
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Figure 4.12 Interior Girder Designs
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Figure 4.13 Interior Girder Designs
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Figure 4.14 Interior vs. Exterior Girder Designs
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Figure 4.15 Interior vs. Exterior Girder Designs
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Figure 4.16 Interior vs. Exterior Girder Designs
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Figure 4.17 Interior vs. Exterior Girder Designs
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Figure 4.18 Interior vs. Exterior Girder Designs
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Figure 4.19 Interior vs. Exterior Girder Designs
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Figure 4.21 Interior vs. Exterior Girder Designs
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Figure 4.22 Partially Stiffened Web Exterior Girder Designs
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Figure 4.23 Partially Stiffened Web Exterior Girder Designs
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Figure 4.24 Partially Stiffened Web Exterior Girder Designs
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Figure 4.25 Partially Stiffened Web Interior Girder Designs
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Figure 4.26 Partially Stiffened Web Interior Girder Designs
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Figure 4.27 Partially Stiffened Web Interior Girder Designs
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Figure 4.28 Weight Comparisons of Exterior Rolled Beam Designs

28 ft Cross Section
120 ft Span Length, L/D vs. Weight

21.0
—e&— Homogeneous
—s—Hybrid
19.0 —%—Rolled
— 170
(2]
c
2
= 150
K=
Ry
(7]
2 130
11.0

9.0

L/D

Figure 4.29 Weight Comparisons of Exterior Rolled Beam Designs

86



28 ft Cross Section
100 ft Span Length, L/D vs. Weight

—e— Homogeneous

—=8— Hybrid

——>¢— Hybrid not meeting L/800
—%—Rolled

Weight (tons)

8.0

7.0

6.0
18 20 22 24 26 28 30

L/D

Figure 4.30 Weight Comparisons of Exterior Rolled Beam Designs
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Figure 4.31 Weight Comparisons of Exterior Rolled Beam Designs
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Figure 4.32 Weight Comparisons of Exterior Rolled Beam Designs
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Figure 4.33 Weight Comparisons of Exterior Rolled Beam Designs
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Figure 4.34 Weight Comparisons of Interior Rolled Beam Designs
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Figure 4.35 Weight Comparisons of Interior Rolled Beam Designs
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Figure 4.36 Weight Comparisons of Interior Rolled Beam Designs
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Figure 4.37 Weight Comparisons of Interior Rolled Beam Designs
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Figure 4.38 Weight Comparisons of Interior Rolled Beam Designs
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Figure 4.39 Weight Comparisons of Interior Rolled Beam Designs

91



28 ft Cross Section
140 ft Span Length, L/D vs. Weight

———— Homogeneous
——=a— Hybrid
— = /800

Weight (tons)

L/D

Figure 4.40 Deflection Comparisons for Exterior Girder Designs
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Figure 4.41 Deflection Comparisons for Exterior Girder Designs
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Figure 4.42 Deflection Comparisons for Exterior Girder Designs
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Figure 4.43 Deflection Comparisons for Exterior Girder Designs
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Figure 4.44 Deflection Comparisons for Exterior Girder Designs
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Figure 4.45 Deflection Comparisons for Interior Girder Designs
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Figure 4.46 Deflection Comparisons for Interior Girder Designs
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Figure 4.47 Deflection Comparisons for Interior Girder Designs
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Figure 4.48 Deflection Comparisons for Interior Girder Designs
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Figure 4.49 Deflection Comparisons for Interior Girder Designs
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Chapter 5

Short-span Limited Plate Size Design Study

5.1 Introduction

This chapter describes the design of short-span steel I-girders considering a
limited number of plate sizes to investigate the economical effect of stockpiling more
common plate sizes. Plates are more economical when purchased in bulk in widths of at
least 487, therefore designs that require fewer plate transitions might reduce the overall
cost of the bridge. This chapter discusses the effort that limits the available plate sizes
and flange transitions used in this design package to investigate the possibility, that

savings might be realized even though the sections may require slightly more steel.

5.2 Assumptions and Plate Sizes

In this study, composite steel I-girders consisting of limited plate sizes were
designed for two cross sections with span lengths ranging from 40 to 140 feet in 5 feet
increments. The typical girder elevation is similar to the ones used in the optimized study
with the exception of flange transitions, which was omitted to evaluate the above
mentioned design alternatives. Homogeneous and hybrid girders were evaluated, similar
to the optimized designs, where homogeneous plate girders consist of a 50 ksi steel, and
hybrid plate configurations have a 70 ksi tension flange and 50 ksi compression flange

and web. A typical girder elevation is shown in Figure 5.1, with the exception of flange
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transitions and transverse stiffeners at locations x, y and z, since these girders were
designed with un-stiffened webs. The available plate thicknesses were limited to the more
common plate sizes of 127, %47, 17, 1 127, 1 ¥4 and 2”. Only four web depths were
employed during this design process; these are 24”, 327, 40” or 48”. Similar to the
optimized designs, the web depth was selected from the target span-to-depth ratios by
subtracting the slab thickness, haunch and the bottom flange thickness. Since only limited
plate sizes were allowed for web depths, span-to-depth ratios vary as a function of
available plate selections. Span lengths 75 feet to 120 accommodated for two target span-

to-depth ratios, while all the other span lengths allowed one limited plate size design.

The design criteria remained the same as for the optimized girder study discussed
in section 4.2. This includes first selecting the appropriate web height using the limited
web plate options and the target span-to-depth ratios. Since limited plates were only
available to select from, the nearest web height was picked from the computed span-to-
depth ratios. The initial flange width was selected so that the web-depth-to-compression-
flange-width ratio falls between 3.0 and 4.0. The design capacity of the initial section was
computed using the excel spreadsheet discussed in section 4.3 and extracting moment and
shear envelopes from Consys 2000. Once the initial cross section was developed, the
capacity of the girder was checked and necessary revision to the steel section was made.
The iterative process was continued until the lightest cross section was developed using

the limited plate sizes.
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The designs were completed initially neglecting the optional live-load deflection
criteria, followed by the same web depth designs to satisfy the limit. Similar to the
optimized design study, minimum plate restrictions were employed which set the
minimum flange size to be 12” x %”. The girders were developed in this study to satisfy
the strength, service, construction and fatigue limit states according to the 3" Edition of

the AASHTO LRFD Bridge Design specifications.

53 Designs and Results

A summary of the limited plate size designs for the 28 feet and 34 feet cross
section are presented in Appendix A. Figures 5.1 through 5.3 details the typical girder

elevation and the two cross sections.

5.3.1 Weight Comparison

This study revealed that limited plate size designs are not significantly heavier
than the optimized designs, as it is shown in Figures 5.4 through 5.8. As span length
decreases limited design girder weight approach optimized section weight since shorter
span length are controlled by minimum plate restrictions. For exterior designs,
homogeneous configurations were 10.0% heavier than the ones from the optimized
design study, while for hybrid designs the difference is approximately 5.5%. Interior

design weight differences show similar patterns when compared to the optimized designs.
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5.3.2 Influence of Material Configuration

On average, within the limited plate sizes hybrid configurations were found to be
closer to the optimized girder weight. As previously mentioned, the limited plate designs
are on average 10.0% heavier for homogeneous sections and 5.5% heavier for hybrid
sections than the optimized girders. When compared the influence of material
configuration among the limited plate size designs, hybrid sections are lighter than
homogeneous sections. For exterior girder designs, hybrid sections are 12.5% lighter than
homogeneous girders, while for interior designs the difference is 9.0%. This is a result of
the hybrid sections requiring the tension flange to be less than the homogeneous girders.
Since the plate thicknesses are only available in larger increments, 50 ksi configurations

will produce in significantly heavier sections.

5.3.3 Influence of Live-load Deflection

In general, limited plate size designs are more likely to satisfy the optional live-
load deflection limit. Figures 5.9 through 5.14 show the comparisons between optimized
and limited designs as deflection versus span-to-depth ratios are plotted. Only four of all
the limited designs did not satisfy the optional live-load deflection criteria, all of them
being hybrid girder configuration. Limited plate size designs failed the L/800 deflection

criteria by an extremely small amount of 0.04 in.
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Figure 5.2 Bride Cross-section with 28-ft. Clear Roadway Width
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Figure 5.3 Bride Cross-section with 34-ft. Clear Roadway Width
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Figure 5.5 Limited Plate Designs
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Figure 5.6 Limited Plate Designs
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Figure 5.7 Limited Plate Designs
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Figure 5.8 Limited Plate Designs
L/Dvs. Live-load Deflection
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Figure 5.9 Limited Plate Design Deflection for Exterior Girders
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L/Dvs. Live-load Deflection
120 ft Span Length, 28 ft Cross Section
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Figure 5.10 Limited Plate Design Deflection for Exterior Girders

L/Dvs. Live-load Deflection
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Figure 5.11 Limited Plate Design Deflection for Exterior Girders
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Figure 5.12 Limited Plate Design Deflection for Exterior Girders
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Figure 5.13 Limited Plate Design Deflection for Exterior Girders
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L/Dvs. Live-load Deflection
40 ft span Length, 28 ft Cross Section

——e——Homogeneous
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Lim. Homogeneous
———¢——Lim. Hybrid
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Figure 5.14 Limited Plate Design Deflection for Exterior Girders
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Chapter 6

Summary and Concluding Remarks

6.1 Introduction

The focus of this study was to develop a standardized bridge girder package for
short-span steel I-girder systems. Two design studies were conducted and a summarized
description of the observations with regard to live-load deflection, weight and

performance is presented in this chapter.

Chapter 2 presented a literature review of the basic steel bridge design guidelines,
an overview of standardized bridge packages and methods of currently employed rapid
construction techniques. The following section, Chapter 3 detailed the fundamental
design procedures based on the 3™ Edition of the AASHTO LRFD Bridge Design
Specifications. The topics in this chapter discusses the basic limit states, flexural and
shear capacity checks, constructability and fatigue design as well as geometric

proportions.

A series of parametric design studies were conducted varying the span length,
material configuration, and span-to-depth ratios for two bridge cross section. Designs
were completed for homogeneous (50 ksi), hybrid (50/70 ksi) plate girders and rolled

beam sections. Sections were designed utilizing un-stiffened and partially stiffened webs.
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6.2 Scope of Work

This research includes two studies conducted on short-span bridge design. An
optimized design study based on span lengths between 40 feet and 140 feet was
completed. Girders were designed for homogeneous 50 ksi configurations, hybrid HPS
70W/50 ksi plate girders, and 50 ksi rolled beams. Designs were completed for two
bridge cross sections: a 28 feet clear roadway width cross section carrying tow design
lanes on four girders spaced at 8°-3”, and a 34 feet cross section with two design lanes
and four girders spaced at 10°-0”. The designs were optimized based on weight and were
checked against the live-load deflection limit. Observations and conclusions based on
girder weight, span-to-depth ratio, girder location, material configuration and live-load

deflection was presented.

A study concentrating on the economy of designs based on limited plate size
availability was also conducted. The designs were limited to six plate thicknesses and
four web depths to evaluate the economy of stock piling more common plate sizes. Span
lengths ranged from 40 feet to 140 feet incorporating the above mentioned homogeneous
50 ksi and the hybrid HPS 70W/50 ksi girder configurations. A discussion on the
comparison between the optimized designs and the limited plate size designs was

completed.
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6.3 Summary of Results

This section presents a brief overview of the previously discussed observations

from the extensive design studies.

It is concluded from the optimized designs that the economy of the hybrid girder
configuration depends on the span length and the span-to-depth ratio. Hybrid designs
with lower span to depth ratios are generally more economical than homogeneous
sections. Also, the difference in weight between hybrid and homogeneous designs
decreases as span length decreases until they both equal because of minimum plate

restrictions.

Observing the girder economy based on the span-to-depth ratio it could be noted,
that the girders with higher span-to-depth ratios weighed the most. Additionally, sections
with larger span-to-depth ratios were more likely to fail the optional live-load deflection

limit of L/800.

The optimized short span design study indicates that without the implementation
of temporary bracings at mid-span, the influence of the construction limit state for
exterior girders can be significant. As a consequence, the use of temporary bracings
during construction stages, at mid-span locations to prevent lateral bending of the

compression flanges, is recommended.
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Rolled beam sections have found to weigh more than plate girders except for
shorter span lengths as a result of the minimum plate size restrictions. It was observed,
that the difference between plate girder and rolled beam weight for span lengths of 50
feet to 85 feet are relatively small, which could be offset with steel and fabrication cost.
For larger span lengths, because of the shallower rolled beam sections, rolled beam

designs were found to be significantly heavier.

The limited plate size study concluded that the weight difference between the
optimized and limited designs are not significant. Therefore, it could be more economical
to purchase steel in more common plate sizes to offset the difference compared to the

optimized designs.

6.4 Concluding Remarks

From the results of this research study it could be concluded, that the hybrid
designs are more economical for longer span lengths. Hybrid sections were not found to
offer weight advantages for shorter spans because of the minimum plate restrictions. It
was also concluded, that the rolled beam sections were more economical for the shortest
span lengths, however they were shown to be significantly heavier than plate girders for

longer span lengths.
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The limited plate size designs were heavier but competitive in weight to the
weight optimized sections, and therefore could offer economical advantages when

purchasing common plate sizes for a fabricator is an option.

The result of this research is a bridge design package. This short span steel bride
envelope is designed according to the 3" Edition of the AASHTO LRFD Bridge Design
Specifications. The goal of such a package is to facilitate the cost efficient replacement or
design of new bridge structures. To broaden the spectrum of this design package, further
improvements should concentrate on incorporating skewed structures and additional

Cross sections.
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Figure A.3 Bridge Cross-section with 34 ft. Clear Roadway Width
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Table A.24 Limited interior Plate Size Designs for 28-ft. Homogeneous Cross Section in Accordance to the 3rd Edition of

Specifications

Lseﬁzrt]h LD Top(li:rlle)\nge Web (in) Botto;r:nl):lange L;‘:;;:' \I(\:Eingsr;t Contr(;ltliir:g Limit Perfg;rtri]snce Defl((ie:)tion L(/iSHO)O
(ft) Spacing
40 13.81 12 x 0.75 24x0.5 12 x 0.75 10 2.04 Service 0.638 0.191 0.600
45 15.54 12 x0.75 24x0.5 12 x0.75 11.25 2.30 Service 0.765 0.290 0.675
50 17.27 12 x 0.75 24x0.5 12 x 0.75 12.5 2.55 Service 0.905 0.416 0.750
55 18.86 12 x 0.75 24x0.5 12x1 13.75 3.09 Service 0.882 0.482 0.825
60 20.57 12x0.75 24x0.5 14x1 15 3.57 Service 0.912 0.585 0.900
65 21.97 12 x 0.75 24 x 0.4375 12x 15 16.25 4.15 Service 0.887 0.651 0.975
70 19.53 12 x 0.75 32x0.5 12x1 17.5 4.41 Service 0.980 0.634 1.050
70 23.66 12 x 0.75 24x0.5 12x 15 175 4.64 Service 0.984 0.810 1.050
75 20.93 12 x0.75 32x0.5 14x1 18.75 4.98 Service 0.989 0.724 1.125
75 25.35 12x0.75 24x0.5 14x 15 18.75 5.36 Service 0.980 0.916 1.125
80 18.82 12 x 0.75 40 x 0.5 12x1 20 5.58 Service 0.961 0.635 1.200
80 22.07 12x 0.75 32x0.5 12x 15 20 5.85 Service 0.932 0.757 1.200
85 20.00 12x1 40 x 0.5 14x1 21.25 6.65 Service 0.951 0.706 1.275
85 23.45 12 x 0.75 32x0.5 14x 15 21.25 6.65 Service 0.920 0.833 1.275
90 20.97 12 x 0.75 40x 0.5 12x 15 225 7.20 Service 0.904 0.729 1.350
90 24.83 12x1 32x0.5 14x 15 22.5 7.50 Service 0.994 0.996 1.350
95 19.32 12 x 0.75 48 x 0.5 14x1 23.75 7.60 Service 0.948 0.700 1.425
95 22.14 12 x 0.75 40x 0.5 12x 15 23.75 7.60 Service 0.985 0.862 1.425
100 20.17 12 x0.75 48 x 0.5 12x 15 25 8.68 Service 0.888 0.713 1.500
100 23.30 12 x 0.75 40x 0.5 14x 15 25 8.51 Service 0.962 0.923 1.500
105 21.18 12 x0.75 48 x 0.5 12x 15 26.25 9.11 Service 0.960 0.829 1.575
105 24.35 14 x 0.75 40x 0.5 14 x 1.75 26.25 9.83 Service 0.932 0.974 1.575
110 22.18 12 x 0.75 48 x 0.5 14x 15 27.5 10.11 Service 0.935 0.878 1.650
110 25.51 12x1 40 x 0.5 14 x 1.75 27.5 10.57 Service 0.996 1.123 1.650
115 23.19 12x1 48 x 0.5 14x 15 28.75 11.15 Service 0.990 1.004 1.725
115 26.67 14x1 40 x 0.5 16 x 1.75 28.75 12.13 Service 0.967 1.185 1.725
120 24.10 12x1 48 x 0.5 14 x 1.75 30 12.35 Service 0.959 1.044 1.800
120 27.69 16x 1 40 x 0.5 16 x 2 30 13.88 Service 0.939 1.237 1.800
125 25.10 14x1 48 x 0.5 16 x 1.75 31.25 14.04 Service 0.928 1.092 1.875
130 26.00 14x1 48 x 0.5 14x2 32.5 14.60 Service 0.993 1.226 1.950
135 27.00 16x 1 48 x 0.5 16 x 2 33.75 16.54 Service 0.956 1.295 2.025
140 28.00 16x 1.5 48 x 0.5 16x2 35 19.06 Service 0.997 1.470 2.100
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Table A.25 Limited Interior Plate Size Designs for 28-ft. Hybrid Cross Section in Accordance to the 3rd Edition of Specifications

Ijgg?h LD Top(li:r:?nge Web (in) Bottorg:nl)ilange L;::;:' V(\:zil?si:l)t Contrt)sltljar:g Limit Perfg;rtri]snce Deﬂ((ie;:)tion L(/it?:no)o
(ft) Spacing
40 13.81 12 x0.75 24 x0.5 12 x0.75 10 2.04 Fatigue 0.537 0.191 0.600
45 15.54 12 x0.75 24 x 0.5 12x0.75 11.25 2.30 Service 0.547 0.290 0.675
50 17.27 12 x0.75 24 x0.5 12 x0.75 12.5 2.55 Service 0.647 0.416 0.750
55 18.99 12 x0.75 24 x 0.5 12 x0.75 13.75 2.81 Service 0.753 0.571 0.825
60 20.72 12 x0.75 24 x0.5 12 x0.75 15 3.06 Service 0.864 0.761 0.900
65 22.45 12 x 0.75 24 x 0.5 12x0.75 16.25 3.32 Service 0.981 0.986 0.975
70 19.65 12 x0.75 32x0.5 12x0.75 17.5 4.05 Service 0.828 0.742 1.050
70 24.00 12 x0.75 24 x0.5 12x1 17.5 3.93 Service 0.923 1.053 1.050
75 21.05 12 x0.75 32x0.5 12x0.75 18.75 4.34 Service 0.922 0.926 1.125
75 25.71 12 x0.75 24x0.5 14x1 18.75 4.47 Constructibility 0.984 1.197 1.125
80 22.33 12 x0.75 32x0.5 12x1 20 5.04 Service 0.864 0.969 1.200
80 27.04 14 x0.75 24x0.5 14x 1.5 20 5.92 Constructibility 0.989 1.122 1.200
85 20.10 12 x0.75 40 x 0.5 12x0.75 21.25 5.50 Service 0.884 0.889 1.275
90 21.28 12 x0.75 40x 0.5 12 x0.75 22.5 5.82 Service 0.968 1.064 1.350
90 25.12 14 x 0.75 32x0.5 14x1 22.5 6.20 Service 0.937 1.284 1.350
95 19.40 12 x0.75 48 x 0.5 12x0.75 23.75 6.79 Service 0.857 0.867 1.425
95 22.46 12 x0.75 40x 0.5 14x0.75 23.75 6.38 Service 0.969 1.168 1.425
100 20.43 12 x 0.75 48 x 0.5 12 x0.75 25 7.15 Service 0.930 1.017 1.500
100 23.53 12 x0.75 40x 0.5 12x1 25 6.98 Service 0.978 1.274 1.500
105 21.45 12 x0.75 48 x 0.5 14 x0.75 26.25 7.77 Service 0.930 1.102 1.575
105 24.71 14 x 0.75 40 x 0.5 14x1 26.25 7.95 Constructibility 0.971 1.363 1.575
110 22.47 12 x0.75 48 x 0.5 14 x 0.75 275 8.14 Service 1.002 1.272 1.650
110 25.63 12x1 40 x 0.5 14x 15 27.5 9.92 Constructibility 0.946 1.237 1.650
115 23.39 14 x 0.75 48 x 0.5 14x1 28.75 9.49 Constructibility 0.937 1.262 1.725
115 26.80 14x1 40x 0.5 14x1.5 28.75 10.76 Constructibility 0.938 1.416 1.725
120 24.41 14x1 48 x 0.5 14x1 30 10.62 Strength 0.976 1.435 1.800
120 27.96 14x1.5 40x 0.5 14x 1.5 30 12.66 Strength 0.956 1.606 1.800
125 25.21 12x1 48 x 0.5 14x 1.5 31.25 12.12 Constructibility 0.985 1.297 1.875
130 26.22 14x1 48 x 0.5 14x 1.5 325 13.05 Constructibility 0.972 1.460 1.950
135 27.23 14x 1.5 48 x 0.5 14x 15 33.75 15.16 Strength 0.949 1.661 2.025
140 28.24 14x1.5 48 x 0.5 16x 1.5 35 16.44 Strength 0.962 1.763 2.100
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Table A.26 Limited Interior Plate Size Designs for 34-ft. Homogeneous Cross Section in Accordance to the 3rd Edition of Specifications

Lseflzr:h LD Top('i:rlla)ange Web (in) Flig;tgr(\?n) L;rts;zl V(\:Eir?:)t Controsltliar:g Limit Perfgrar::gnce Defl(tier::)tion L(/i£:10)0
(ft) Spacing
40 13.81 12x0.75 24 x0.5 12x0.75 10 2.04 Service 0.740 0.191 0.600
45 15.54 12x0.75 24x0.5 12x0.75 11.25 2.30 Service 0.887 0.290 0.675
50 17.27 12x0.75 24x0.5 14 x 0.75 12.5 2.68 Service 0.954 0.381 0.750
55 18.86 12x0.75 24x0.5 14x1 13.75 3.28 Service 0.922 0.439 0.825
60 20.28 12x0.75 24 x0.5 12x1.5 15 3.98 Service 0.895 0.494 0.900
65 21.97 12x0.75 24 x0.5 14x1.5 16.25 4.64 Service 0.906 0.580 0.975
70 19.31 12x0.75 32x05 12x1.5 17.5 5.12 Service 0.876 0.495 1.050
70 23.50 12x1 24 x0.5 14 x1.75 17.5 5.78 Service 0.899 0.660 1.050
75 20.69 12x0.75 32x0.5 12x1.5 18.75 5.49 Service 0.976 0.618 1.125
75 25.17 12x1 24 x 0.5 14 x 1.75 18.75 6.19 Service 1.003 0.823 1.125
80 22.07 12x0.75 32x0.5 14x1.5 20 6.26 Service 0.968 0.689 1.200
80 26.67 14x1 24 x0.5 14x2 20 7.35 Strength 1.003 0.915 1.200
85 19.81 12x0.75 40 x 0.5 12x1.5 21.25 6.80 Service 0.956 0.609 1.275
85 23.31 12x1 32x0.5 14 x1.75 21.25 7.59 Service 0.944 0.752 1.275
90 18.15 12x0.75 48 x 0.5 12x1.5 22.5 7.81 Service 0.869 0.514 1.350
90 24.62 12x1 32x0.5 14 x 1.875 22.5 8.31 Service 0.984 0.859 1.350
95 19.16 12x0.75 48 x 0.5 12x1.5 23.75 8.24 Service 0.947 0.608 1.425
95 22.03 14x1 40x 0.5 14 x 1.75 23.75 9.46 Service 0.906 0.711 1.425
100 20.17 12x0.75 48 x 0.5 14x1.5 25 9.19 Service 0.929 0.655 1.500
100 23.19 12x1 40 x 0.5 14 x1.75 25 9.61 Service 0.989 0.837 1.500
105 21.18 12x1 48 x 0.5 14x1.5 26.25 10.18 Service 0.989 0.759 1.575
105 24.23 14x1 40 x 0.5 14x2 26.25 11.08 Service 0.968 0.889 1.575
110 22.18 14x0.75 48 x 0.5 16x1.5 27.5 10.95 Service 0.981 0.811 1.650
110 25.38 14x1 40x 0.5 16x 2 275 12.35 Constructibility 0.989 0.946 1.650
115 23.10 14x1 48 x 0.5 16 x 1.75 28.75 12.91 Strength 0.978 0.843 1.725
115 26.54 14x 1.5 40 x 0.5 16x 2 28.75 14.28 Service 0.998 1.076 1.725
120 24.10 14x1 48 x 0.5 16 x 1.75 30 13.48 Strength 1.004 0.961 1.800
120 27.69 16 x 1.5 40 x 0.5 18x2 30 16.33 Strength 0.994 1.134 1.800
125 25.00 16x1 48 x 0.5625 16 x 2 31.25 15.95 Service 0.961 0.983 1.875
130 26.00 16 x 1.5 48 x 0.5625 18x2 32.5 19.24 Service 0.924 1.023 1.950
135 27.00 16 x 1.5 48 x 0.5625 18x2 33.75 19.98 Service 0.983 1.172 2.025
140 28.00 16 x 1.5 48 x 0.5625 20x 2 35 21.68 Service 0.967 1.263 2.100
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Table A.27 Limited Interior Plate Size Designs for 34-ft. Hybrid Cross Section in Accordance to the 3rd Edition of Specifications

LiE:Th LD Top(’i:ri?nge Web (in) Flgr(:;tsrgn) L;:;;Z' V(\{iingsh)t Controsltlianlg Limit Perfg;rtri]snce Defl((i-::)tion LéiiO)O
(ft) Spacing
40 13.81 12 x0.75 24x0.5 12 x 0.75 10 2.04 Fatigue 0.537 0.191 0.600
45 15.54 12 x0.75 24x0.5 12 x 0.75 11.25 2.30 Service 0.634 0.290 0.675
50 17.27 12 x0.75 24 x 0.5 12x0.75 125 2.55 Service 0.751 0.416 0.750
55 18.99 12 x0.75 24 x 0.5 12x0.75 13.75 2.81 Service 0.874 0.571 0.825
60 20.72 12 x0.75 24x0.5 12 x0.75 15 3.06 Service 1.003 0.761 0.900
65 22.29 12 x 0.75 24x 0.5 12x1 16.25 3.65 Service 0.952 0.832 0.975
70 19.65 12 x0.75 32x0.5 12x0.75 175 4.05 Service 0.960 0.742 1.050
70 24.00 14 x 0.75 24x0.5 14x1 175 4.35 Service 0.958 0.958 1.050
75 21.05 12 x0.75 32x0.5 14 x 0.75 18.75 4.53 Service 0.977 0.854 1.125
75 25.35 12x1 24 x 0.5 12x1.5 18.75 5.36 Constructibility 0.936 1.010 1.125
80 22.33 12 x0.75 32x0.5 14 x1 20 5.31 Constructibility 0.948 0.888 1.200
80 27.04 14x1 24x0.5 14x 1.5 20 6.40 Strength 0.964 1.119 1.200
85 20.10 12 x0.75 40x 0.5 14 x 0.75 21.25 571 Service 0.942 0.825 1.275
85 23.72 12x1 32x0.5 14x1 21.25 6.07 Strength 0.991 1.073 1.275
90 21.18 12 x0.75 40x 0.5 12x1 225 6.28 Service 0.958 0.919 1.350
90 24.83 12x1 32x0.5 12x 1.5 225 7.04 Constructibility 0.974 1.095 1.350
95 19.40 12 x 0.75 48 x 0.5 12 x 0.75 23.75 6.79 Service 0.994 0.867 1.425
95 22.35 12x1 40x 0.5 14x1 23.75 7.44 Strength 0.943 1.000 1.425
100 20.43 12 x0.75 48 x 0.5 14 x 0.75 25 7.40 Service 0.996 0.948 1.500
100 23.30 12x1 40 x 0.5 14x 1.5 25 9.02 Constructibility 0.920 0.922 1.500
105 21.36 12 x0.75 48 x 0.5 14x1 26.25 8.40 Constructibility 0.993 0.954 1.575
105 24.47 12x1.5 40x 0.5 12x1.5 26.25 10.00 Strength 0.975 1.169 1.575
110 22.37 12x1 48 x 0.5 14x1 275 9.36 Strength 0.984 1.100 1.650
110 25.63 14x 1.5 40x 0.5 14x 1.5 27.5 11.60 Strength 0.961 1.227 1.650
115 23.19 14x 1 48 x 0.5 14x1.5 28.75 11.54 Strength 0.973 1.000 1.725
115 26.80 14x 1.5 40x 0.5 16x 1.5 28.75 12.72 Strength 0.953 1.297 1.725
120 24.20 14x1 48 x 0.5 14x 1.5 30 12.05 Strength 0.998 1.140 1.800
120 27.83 14 x 1.5 40x 0.5 14 x1.75 30 13.37 Strength 1.003 1.453 1.800
125 25.21 12x1.5 48 x 0.5625 14x 1.5 31.25 14.04 Strength 0.944 1.261 1.875
130 26.22 12x1.5 48 x 0.5625 14 x 1.5 325 14.60 Strength 1.004 1.422 1.950
135 27.11 14x 1.5 48 x 0.5625 14 x 1.75 33.75 16.65 Strength 0.976 1.481 2.025
140 28.12 14 x 1.5 48 x 0.5625 16 x 1.75 35 18.10 Constructibility 0.991 1.573 2.100
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Table A.28 Limited Exterior Plate Size Designs for 28-ft. Homogeneous Cross Section in Accordance to the 3rd Edition of Specifications

Lseflzr:h LD Top('i:rlli;mge Web (in) Flig;tgrgn) LBartaeCr:I V(\:qce)ingsh)t Contrcgltliar:g Limit Perfg;rt'?gnce Defl(qie:)tion L(/iE:gO
(ft) Spacing
40 13.81 12x0.75 24x0.5 12x0.75 10 2.04 Service 0.629 0.198 0.600
45 15.54 12x0.75 24x0.5 12x0.75 11.25 2.30 Service 0.767 0.300 0.675
50 17.27 12x0.75 24x0.5 12x0.75 12.5 2.55 Service 0.921 0.430 0.750
55 18.86 12x0.75 24x0.5 12x1 13.75 3.09 Service 0.899 0.500 0.825
60 20.28 12x0.75 24 x 0.5 12x1.5 15 3.98 Constructibility 0.944 0.514 0.900
65 21.97 12x1 24 x 0.5 12x1.5 16.25 4.64 Service 0.886 0.665 0.975
70 19.53 12x1 32x0.5 12x1 17.5 4.76 Service 0.991 0.656 1.050
70 23.66 12x0.75 24x0.5 14x 1.5 17.5 5.00 Constructibility 0.927 0.765 1.050
75 20.69 12x0.75 32x0.5 12x1.5 18.75 5.49 Service 0.856 0.643 1.125
75 25.17 14 x0.75 24 x 0.5 14 x 1.75 18.75 6.00 Strength 0.938 0.860 1.125
80 22.07 12x1 32x0.5 12x1.5 20 6.26 Service 0.943 0.786 1.200
80 26.67 12x1 24 x 0.5 14 x 2 20 7.08 Strength 0.954 0.961 1.200
85 19.81 12x0.75 40 x 0.5 12x1.5 21.25 6.80 Constructibility 0.880 0.634 1.275
85 23.45 14x0.75 32x0.5 14x 1.5 21.25 6.87 Service 0.938 0.868 1.275
90 20.97 12x0.75 40x 0.5 12x1.5 22.5 7.20 Constructibility 0.978 0.758 1.350
90 24.69 12x1 32x0.5 14 x 1.75 22.5 8.04 Constructibility 0.959 0.939 1.350
95 19.32 12x0.75 48 x 0.5 14x1 23.75 7.60 Service 0.960 0.727 1.425
95 22.14 12x1 40x 0.5 12x1.5 23.75 8.08 Service 0.993 0.895 1.425
100 20.17 12x0.75 48 x 0.5 12x1.5 25 8.68 Constructibility 0.994 0.743 1.500
100 23.30 12x1 40 x 0.5 14x1.5 25 9.02 Service 0.971 0.960 1.500
105 21.18 12x0.75 48 x 0.5 12x1.5 26.25 9.11 Constructibility 0.990 0.863 1.575
105 24.35 12x1 40 x 0.5 14 x 1.75 26.25 10.09 Constructibility 0.964 1.015 1.575
110 22.18 14 x0.75 48 x 0.5 14x1.5 275 10.39 Service 0.944 0.915 1.650
110 25.38 14x1 40x 0.5 14 x 2 27.5 11.60 Strength 0.933 1.076 1.650
115 23.10 14x1 48 x 0.5 14 x 1.75 28.75 12.23 Service 0.905 0.954 1.725
115 26.54 14x 1.5 40 x 0.5 14 x 2 28.75 13.50 Strength 1.001 1.222 1.725
120 24.10 14x1 48 x 0.5 14 x 1.75 30 12.76 Service 0.973 1.087 1.800
120 27.69 14x 1.5 40 x 0.5 16 x 2 30 14.90 Strength 0.990 1.284 1.800
125 25.10 14x 1.5 48 x 0.5 16 x 1.75 31.25 15.53 Strength 0.932 1.129 1.875
130 26.11 14 x 1.5 48 x 0.5 16 x 1.75 32.5 16.15 Service 0.995 1.272 1.950
135 27.00 14x 1.5 48 x 0.5 16 x 2 33.75 17.69 Constructibility 0.998 1.343 2.025
140 28.00 16 x 1.5 48 x 0.5 18 x 2 35 20.01 Strength 0.967 1.430 2.100
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Table A.29 Limited Exterior Plate Size Designs for 28-ft. Hybrid Cross Section in Accordance to the 3rd Edition of Specifications

L?;Zrt]h LD Top(’i:r:n’;lnge Web (in) Fliz;t:rgn) I_Bartaecrzl V(\:zir?gt ControSIlI;r:g Limit Perf;;r:snce Defl(?r?)tion L(/iE:]O)O
(ft) Spacing
40 13.81 12x0.75 24x0.5 12x0.75 10 2.04 Constructibility 0.462 0.198 0.600
45 15.54 12 x0.75 24x0.5 12x0.75 11.25 2.30 Constructibility 0.569 0.300 0.675
50 17.27 12x0.75 24 x0.5 12x0.75 12.5 2.55 Constructibility 0.687 0.430 0.750
55 18.99 12x0.75 24 x0.5 12x0.75 13.75 2.81 Constructibility 0.817 0.591 0.825
60 20.72 12x0.75 24x0.5 12x0.75 15 3.06 Constructibility 0.988 0.787 0.900
65 22.45 12 x0.75 24 x0.5 14 x0.75 16.25 3.48 Strength 0.952 0.936 0.975
70 19.65 12 x0.75 32x0.5 12x0.75 17.5 4.05 Strength 0.859 0.767 1.050
70 24.00 12x0.75 24 x0.5 12x1 17.5 3.93 Strength 1.000 1.091 1.050
75 21.05 12 x0.75 32x0.5 12x0.75 18.75 4.34 Strength 0.961 0.957 1.125
75 25.35 12x1 24 x0.5 12x 1.5 18.75 5.36 Strength 0.917 1.051 1.125
80 22.33 12 x 0.75 32x0.5 12x1 20 5.04 Strength 0.928 1.004 1.200
80 27.04 14 x 0.75 24 x0.5 14x 1.5 20 5.92 Constructibility 1.002 1.170 1.200
85 20.10 12x0.75 40 x 0.5 12x0.75 21.25 5.50 Constructibility 0.932 0.920 1.275
85 23.72 14 x0.75 32x0.5 14x1 21.25 5.86 Strength 0.970 1.114 1.275
90 21.18 12x0.75 40 x 0.5 12x1 22.5 6.28 Constructibility 0.988 0.952 1.350
90 24.83 12x1 32x0.5 14x1.5 22.5 7.50 Constructibility 0.965 1.037 1.350
95 19.40 12x0.75 48 x 0.5 12x0.75 23.75 6.79 Constructibility 0.968 0.898 1.425
95 22.14 12x1 40 x 0.5 12x 15 23.75 8.08 Constructibility 0.869 0.895 1.425
100 20.43 12x0.75 48 x 0.5 12x0.75 25 7.15 Constructibility 0.977 1.052 1.500
100 23.53 14 x0.75 40 x 0.5 14x1 25 7.57 Strength 0.981 1.217 1.500
105 21.45 14 x0.75 48 x 0.5 14 x0.75 26.25 8.04 Strength 0.981 1.141 1.575
105 24.47 12x1 40x 0.5 14x 1.5 26.25 9.47 Constructibility 0.975 1.116 1.575
110 22.37 12x1 48 x 0.5 12x1 275 8.98 Strength 0.990 1.232 1.650
110 25.63 14x1 40 x 0.5 14x 1.5 27.5 10.29 Strength 0.903 1.286 1.650
115 23.39 14x1 48 x 0.5 14x1 28.75 10.17 Strength 0.989 1.306 1.725
115 26.80 14x1 40 x 0.5 14x 1.5 28.75 10.76 Strength 0.972 1.474 1.725
120 24.20 14x1 48 x 0.5 14x 15 30 12.05 Constructibility 0.970 1.190 1.800
120 27.96 14x1.5 40 x 0.5 16 x 1.5 30 13.27 Strength 0.956 1.541 1.800
125 25.21 14x1.5 48 x 0.5 14x 1.5 31.25 14.04 Strength 0.899 1.336 1.875
130 26.22 14x1.5 48 x 0.5 14x 1.5 325 14.60 Strength 0.960 1.507 1.950
135 27.23 16 x 1.5 48 x 0.5 16 x 1.5 33.75 16.54 Strength 0.944 1.593 2.025
140 28.24 16 x 1.5 48 x 0.5 16 x 1.5 35 17.15 Strength 1.003 1.827 2.100
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Table A.30 Limited Exterior Plate Size Designs for 34-ft. Homogeneous Cross Section in Accordance to the 3rd Edition of Specifications

ng::'h LD Top(li:r:';lnge Web (in) Flirc:;tsr(r:n) L;t;:é:l V(\:ﬁirc_l,jst;t Contrcgltliarzg Limit Perfg;rt?snce Defl(tiar(]:)tion Léii?;lO)O
(ft) Spacing
40 13.81 12x0.75 24 x 0.5 12x0.75 10 2.04 Service 0.741 0.196 0.600
45 15.54 12x0.75 24 x 0.5 12x0.75 11.25 2.30 Service 0.902 0.297 0.675
50 17.14 12x0.75 24 x 0.5 12x1 12.5 2.81 Service 0.898 0.359 0.750
55 18.86 12x0.75 24x 0.5 14x1 13.75 3.28 Service 0.947 0.450 0.825
60 20.28 14 x0.75 24 x0.5 14x 1.5 15 4.44 Constructibility 0.878 0.460 0.900
65 21.97 12x0.75 24 x 0.5 14x1.5 16.25 4.64 Constructibility 0.950 0.596 0.975
70 19.31 12x0.75 32x0.5 12x 1.5 17.5 5.12 Service 0.894 0.509 1.050
70 23.66 14 x0.75 24 x 0.5 16x 1.5 17.5 5.54 Strength 0.961 0.693 1.050
75 20.69 12x0.75 32x0.5 12x 1.5 18.75 5.49 Service 1.003 0.634 1.125
75 25.00 12x1 24 x0.5 14x2 18.75 6.64 Strength 0.998 0.773 1.125
80 22.07 12x1 32x0.5 14x1.5 20 6.67 Service 0.985 0.707 1.200
80 24.00 12x1 28x0.5 14x2 20 7.35 Strength 0.950 0.735 1.200
85 19.81 12x1 40x 0.5 12x 1.5 21.25 7.23 Service 0.965 0.624 1.275
85 23.18 12x1 32x0.5 14x2 21.25 8.10 Constructibility 0.985 0.709 1.275
90 18.15 12x0.75 48 x 0.5 12x1.5 22.5 7.81 Constructibility 0.933 0.528 1.350
90 24.69 14x1 32x0.5 16 x 1.75 225 8.88 Strength 1.003 0.850 1.350
95 19.16 12x1 48 x 0.5 12x 15 23.75 8.73 Service 0.950 0.623 1.425
95 21.92 12x1 40x 0.5 12x2 23.75 9.05 Service 0.950 0.740 1.425
100 20.17 14 x0.75 48 x 0.5 14x 1.5 25 9.44 Service 0.939 0.671 1.500
100 23.08 14x1 40 x 0.5 14x2 25 10.55 Strength 0.928 0.789 1.500
105 21.09 14 x0.75 48 x 0.5 14 x1.75 26.25 10.54 Constructibility 0.937 0.713 1.575
105 24.23 14x1 40x 0.5 16x 2 26.25 11.79 Constructibility 0.929 0.846 1.575
110 22.09 14x1 48 x 0.5 14 x1.75 275 11.70 Service 0.978 0.819 1.650
110 25.38 14x1.5 40x 0.5 16x 2 275 13.66 Strength 0.996 0.968 1.650
115 23.10 14x1 48 x 0.5 16 x 1.75 28.75 12.91 Service 0.957 0.870 1.725
115 26.54 14x 1.5 40x 0.5 18x2 28.75 15.07 Strength 0.995 1.033 1.725
120 24.00 16x1 48 x 0.5 16x2 30 14.70 Strength 0.936 0.909 1.800
120 27.69 16x1.5 40 x 0.5 20x2 30 17.15 Strength 0.997 1.098 1.800
125 25.00 16x1.5 48 x 0.5 16x 2 31.25 17.01 Strength 0.998 1.018 1.875
130 26.00 16x 1.5 48 x 0.5 18x2 325 18.58 Strength 0.990 1.070 1.950
135 27.00 16x 1.5 48 x 0.5 20x 2 33.75 20.21 Strength 0.986 1.151 2.025
140 28.00 16x 1.5 48 x 0.5 22x2 35 21.91 Strength 0.993 1.248 2.100
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Table A.31 Limited Exterior Plate Size Designs for 34-ft. Hybrid Cross Section in Accordance to the 3rd Edition of Specifications

L?;Zr:h LD Top(li:r:?nge Web (in) Bottor(?nl)ilange I_Bart;eézl \/(\tliir?;t Contrc;ltliar;g Limit Perfg;rt?snce Defl(tie:)tion L(/:?q(;o
(ft) Spacing
40 13.81 12 x0.75 24 x0.5 12x0.75 10 2.04 Strength 0.536 0.196 0.600
45 15.54 12 x 0.75 24x0.5 12x0.75 11.25 2.30 Constructibility 0.656 0.297 0.675
50 17.27 12 x0.75 24x0.5 12x0.75 12.5 2.55 Constructibility 0.781 0.425 0.750
55 18.99 12 x0.75 24x0.5 12x0.75 13.75 2.81 Constructibility 0.954 0.584 0.825
60 20.72 12 x0.75 24 x 0.5 14 x 0.75 15 3.22 Strength 0.973 0.714 0.900
65 22.29 12 x 0.75 24x0.5 14x1 16.25 3.87 Constructibility 0.974 0.777 0.975
70 19.65 12 x0.75 32x0.5 12x0.75 17.5 4.05 Strength 1.002 0.759 1.050
70 23.66 12x1 24x0.5 12x1.5 17.5 5.00 Strength 0.954 0.832 1.050
75 20.93 12 x0.75 32x0.5 12x1 18.75 4.72 Strength 0.973 0.810 1.125
75 25.35 12x1 24x0.5 14x 1.5 18.75 5.74 Strength 0.972 0.941 1.125
80 22.33 12 x0.75 32x0.5 14x1 20 5.31 Strength 0.998 0.910 1.200
80 26.85 14x1 24x0.5 14 x 1.75 20 6.87 Strength 0.976 1.036 1.200
85 20.00 12x1 40x 0.5 12x1 21.25 6.36 Strength 0.948 0.786 1.275
85 23.45 12x1 32x0.5 14x 1.5 21.25 7.09 Constructibility 0.997 0.856 1.275
90 21.18 12x1 40x 0.5 14x1 22.5 7.04 Strength 0.960 0.866 1.350
90 24.83 14x1 32x0.5 14x 1.5 22.5 7.81 Strength 0.971 1.021 1.350
95 19.32 12x1 48 x 0.5 12x1 23.75 7.76 Strength 0.910 0.774 1.425
95 22.14 14 x 0.75 40x 0.5 14x1.5 23.75 8.32 Constructibility 0.993 0.808 1.425
100 20.34 12x1 48 x 0.5 12x1 25 8.17 Strength 0.988 0.907 1.500
100 23.30 14x1 40 x 0.5 14x 1.5 25 9.36 Constructibility 0.900 0.945 1.500
105 21.36 12x1 48 x 0.5 14x1 26.25 8.93 Strength 0.991 0.976 1.575
105 24.47 14x1 40x 0.5 14x 1.5 26.25 9.83 Strength 0.974 1.098 1.575
110 22.18 14x1 48 x 0.5 14x 1.5 27.5 11.04 Strength 0.851 0.897 1.650
110 25.63 16x1 40x 0.5 16 x 1.5 27.5 11.23 Strength 0.968 1.168 1.650
115 23.19 14x1 48 x 0.5 14x 1.5 28.75 11.54 Strength 0.915 1.029 1.725
115 26.67 16x1 40x 0.5 16 x 1.75 28.75 12.52 Constructibility 0.964 1.215 1.725
120 24.20 16x 1 48 x 0.5 16x1.5 30 13.07 Constructibility 0.931 1.083 1.800
120 27.83 14x 1.5 40x 0.5 16 x 1.75 30 14.09 Strength 1.003 1.378 1.800
125 25.21 16x 1.5 48 x 0.5 16x 1.5 31.25 15.31 Strength 0.965 1.216 1.875
130 26.11 16x1.5 48 x 0.5 16 x 1.75 32.5 16.81 Strength 0.934 1.247 1.950
135 27.11 16x 1.5 48 x 0.5 16 x 1.75 33.75 17.46 Strength 0.991 1.429 2.025
140 28.00 16 x 1.75 48 x 0.5 16x2 35 20.01 Strength 0.984 1.499 2.100
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