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Abstract

Three Essays Using Natural Experiments to Measure Causal Effects on Education

Patrick A. Reilly

This dissertation covers two topics. The first in two essays, each using variation in the
timing of statewide deregulation of bank branching to estimate causal effects of credit avail-
ability on high school graduation. Between 1970 and 1999, 39 states reduced legal geographic
restrictions on the location of bank branches. These bank branching deregulations represent
quasi-random increases in credit availability to residents of the deregulating state relative
to residents of regulated states. In the first essay, using data on state of residence and
educational attainment from the Current Population Survey March Supplement, I estimate
bank branching deregulation’s impact on high school graduation by regressing a binary in-
dicator of high school attainment on a treatment variable. This treatment variable indicates
whether an individual’s graduation from high school was plausibly affected by bank branch-
ing deregulation. I find bank branching deregulation significantly increases the likelihood of
graduating high school by 1 percentage point. In the second essay, I continue to investigate
how bank branching deregulation affects high school graduation. In place of the CPS data,
I use National Longitudinal Survey of Youth 1979 data to mitigate both measurement error
introduced when identifying treatment and omitted variable bias. I also use the difference-
in-discontinuities method, which should improve similarity of unobservable characteristics
by finding the local average treatment effect. I again find positive and significant effects
of bank branching deregulation on high school graduation. The third essay comprises the
second topic covered in this dissertation, namely, does big-time college football promote
other university outcomes. Football Bowl Subdivision colleges and universities support their
athletics departments to the tune of $20 million per university per year. Advocates of uni-
versity sponsored athletics suggest there are large advertising effects of fielding big-time
college football and men’s basketball teams. Using athletic success to measure changes in
the advertising effect fails to control for unobservable, institution-specific factors that influ-
ence university outcomes.Therefore, we use conference changes to represent quasi-random
shocks to the aforementioned advertising effect. Using difference-in-differences methods we
estimate average treatment effects of conference switching with Integrated Postsecondary
Education Data System (IPEDS) data for 90 NCAA D1 FBS universities over the years
2000 to 2015. Difference-in-differences estimations provide weak evidence that conference
switching reduces applications and ACT scores of incoming students and increases state
appropriations, calling into question the subsidization of these athletics programs.
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Chapter 1

Introduction

Education is an outcome of interest for any economic change because of its association

with future benefits. In this dissertation, I use causal inference methods to assess the educa-

tional impact of two separate natural experiments. In the first two essays, I use commercial

bank branching deregulation during the 1970s, 1980s, and 1990s as an exogenous indicator

of increased credit availability and assess the impact on education, namely high school grad-

uation. In the last essay, jointly with Brad Humphreys, we use changes to NCAA Division

1 Football Bowl Subdivision conferences to assess whether or not big-time college sports

support universities’ academic goals.

I study how increased competition in credit markets impact individuals’ ability and de-

sire to graduate high school in chapters 2 and 3. More specifically, I empirically evaluate the

impact of states legally removing restrictions for the geographic location of bank branches,

known as bank branching deregulation (BBD), on individual attainment of high school grad-

uation. Thirty-nine states removed these restrictions at different times between 1970 and

1999. The variation in timing allows me to identify treated individuals, those who were likely

too young to have graduated high school when their state deregulated, and non-treated in-

dividuals. By identifying these two groups, I am able to estimate the average effect of BBD

on the likelihood of graduating high school.

In Chapter 2, I estimate linear probability models of an indicator of high school gradu-

ation using data from the Current Population Survey (CPS) March Supplement from 1977

to 1999. I find both white males and white females were more likely to graduate high
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school when treated. In Chapter 3, I estimate a type of regression discontinuity model

called difference-in-discontinuities, which controls for differences between states prior to

BBD. These models use National Longitudinal Survey of Youth 1979 geocoded data, which

provide county of residence along with many individual specific predictors of educational

attainment such as family income. Although only three out of the 39 states are viable for

the difference-in-discontinuities estimation, I find significant increases in the likelihood of

high school graduation for treated individuals.

In Chapter 4, a joint work with Brad Humphreys, we analyze whether or not big-time

college athletics, directly or indirectly, impacts non-athletic outcomes at the university. The

marriage of athletics and academics is unique to the US. In fact, universities subsidize ath-

letics programs at FBS schools at an average rate of $20 million per year. For this to make

economic sense for each university, this funding must benefit the university’s mission as much

as $20 million spent elsewhere. Proponents of this subsidization believe in advertising effects,

where more prominent athletics teams attract applicants, donations, and state funding.

If these effects exist, we expect improvements in university outcomes to follow these

conference improvements. We use movements to more prestigious football conferences as

quasi-random improvements to potential advertising effects. Using panel data for 90 uni-

versities from 2000 to 2015, we employ a difference-in-differences method to estimate the

effects of switching conferences. In the full model, and also in models limiting control groups

in order to better match unobservable aspects of universities changing conferences, we find

conference changes in general negatively affect applications, and switching to power 5 con-

ferences have weak negative effects or no effect on university outcomes.

This dissertation has two main contributions. First, by demonstrating bank branching

deregulation increased the likelihood of high school graduation, I provide evidence that

credit markets indirectly affect secondary education. Since high school attendance does

not have monetary costs, this relationship cannot derive from secondary students and their

families needing to borrow money to afford high school. Rather, access to credit must change

circumstances surrounding high school graduation through either changes to labor market

outcomes of dropouts relative to graduates or greater stability for families.

Second, together with Brad Humphreys, we improve the causal method used to study
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the relationship between big-time athletics and university academics by using conference

changes as a source of quasi-random increase in athletic program prestige. Previous studies

used athletic success to measure variation in athletic program prestige when assessing how

that prestige impacts university outcomes. However, this branch of research typically fails to

account for institution-specific unobservable factors related to athletic success and university

outcomes. Additionally, even if athletic success positively affects the university overall, this

cannot justify why big-time athletics is subsidized by universities because in the long run

success is zero-sum. No university can expect prolonged success in a system where all teams

subsidize their athletics programs. We believe using conference changes mitigates these

issues For a few reasons. First, teams cannot simply chose their conference at will. Next,

conference expansions allow more teams to join prestigious conferences so it is not zero-

sum. And finally, reasons for conference changes are revenue based and exogenous to other

university outcomes.
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Chapter 2

Bank Branching Deregulation and

High School Graduation

Credit markets affect the real economy. Rules and regulations of the banking industry

constrain credit markets. Bank branching is one such regulation. Most states initiated

intrastate bank branching deregulation of commercial banks (hereafter BBD) over the period

1970 to 1994. Several issues influenced BBD: low profits for small commercial banks caused

by usury laws acting as interest rate ceilings during a time of high nominal interest rates, and

higher profits from larger banks due to banking innovations such as the Automated Teller

Machine (ATM).1

BBD allowed commercial banks to compete with geographically unconstrained money

market mutual funds and increased the size of banks, allowing them to take advantage of

economies of scale. BBD also decreased the market power of local banks by lowering barriers

to entry. These decreases in costs and increases in competition reduced interest rates for

loans, stimulating the economy.

Jayaratne and Strahan (1996) and Clarke (2004) find economic growth positively related

to BBD. In fact, the same BBD is shown to have many real effects. Some effects are direct,

for instance an increase in commercial banking industry competition (Stiroh and Strahan,

2003). Other effects have a more indirect link. As an example, Beck et al. (2010) find

1For a review of the political economy surrounding bank branching deregulation, see Kroszner and Strahan
(1999) or Kroszner and Strahan (2014)
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decreases in income inequality due to BBD. This chapter focuses on indirect consequences

of BBD on educational attainment.

In related work, both Levine and Rubinstein (2013) and Teng Sun and Yannelis (2016)

identify a relationship between BBD and college enrollment. Both papers concluded in-

creased postsecondary enrollment resulting from BBD via improved credit availability. Levine

and Rubinstein focused on how intellectually able but financially constrained individuals were

affected by BBD. Teng Sun and Yannelis concentrate on financial constraints, used multi-

ple data sets, and found increases in both postsecondary school attendance, completion of

postsecondary education, and college loans, especially in low- and middle-income families.

This chapter examines BBD’s effect on education in the absence of a direct credit market

channel. Focusing on secondary school outcomes mitigates credit’s role in education. Any

effects of BBD on high school graduation provide evidence that other channels, more complex

than a direct credit channel, impact educational outcomes. The most likely alternative is

a labor market channel transmitted via older siblings, friends, and parents revealing the

relative labor market conditions for high school degree earners post-BBD.

Although other researchers focus on college attendance and BBD, policy impacts on

high school graduation are as, if not more, important than college attendance. First, high

school graduation is compulsory for college enrollment, so any negative effects on high school

graduation are compounded by a reduction in future educational opportunities. Addition-

ally, students and their families initially reduce wealth via student loans, limiting any gains

to welfare from improved postsecondary educational outcomes. No such burden exists for

secondary education. Finally, the negative consequences of failing to receive a high school

diploma are far worse than the negative consequences of failing to attend college. Bridgeland

et al. (2006) estimate the negative consequences of dropping out of high school, which in-

cluded $9,200 less income per year on average, greater rates of unemployment, and a smaller

likelihood of reporting good health. Also, high school dropouts needed and received more

public assistance than graduates. Oreopoulos (2007) reports similar findings.

With this in mind, focusing on high school graduation in addition to college attendance,

a la Levine and Rubinstein (2013) or Teng Sun and Yannelis (2016), provides a more com-

prehensive picture of the impact of BBD on education.
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This chapter estimates linear probability models explaining whether or not individuals

achieved specific levels of education using data from the March Current Population Survey

(CPS). Variation in dates of state-level BBD identifies treatment. Analysis reveals positive

impacts of BBD on high school graduation along with increases in postsecondary attendance

and bachelor’s degree achievement. The parameter estimates for postsecondary outcomes are

on par with results from Teng Sun and Yannelis (2016) and Levine and Rubinstein (2013),

which suggests validity of identification strategy and data used. The results provide no evi-

dence of heterogeneity by gender. However, nonwhite individuals (unlike white individuals)

are not significantly affected by BBD.

2.1 Background on Bank Branching Deregulation

Deregulation of geographic bank branching restrictions is a widely analyzed policy change.

Throughout the 1970s, 1980s, and 1990s most states removed geographic restrictions on bank

branching. In 1969, thirty-nine states had regulations on intrastate (within-state) branching

and all fifty states had regulations on interstate (across-state) bank branching. By 1994,

every state except Iowa had deregulated their intrastate branching in some form and only

Hawaii continued to prohibit interstate bank branching.2

Why were there restrictions on bank branching? One reason comes from the rent seek-

ing/rent extraction literature. Taxes on bank profits were originally a large part of states’

revenues (Sylla et al., 1987). To maximize revenue, states maximized bank profits. States

increased monopoly power by passing laws restricting bank branching. Separating banks

geographically, especially in an era without electronic banking, allowed banks to set prices

higher than competition would dictate.

Depositors and borrowers in the 18th and 19th and even 20th centuries chose not to

switch banks because of the high cost of locating and traveling to competing banks. Thus,

demand for bank services was price inelastic, so banks charged more for loans and paid less to

depositors to maximize profits. Therefore, by restricting competition through limiting bank

2Deregulation dates from Amel (1993) and Kroszner and Strahan (1999). See Table 2.1.



Patrick A. Reilly Chapter 2. Bank Branching Deregulation and High School Graduation 7

branching, banks maximized profits and states maximized revenues.3 This rent extraction

relationship became less important overtime as state governments found alternative sources

of revenue. Nevertheless, incumbent banks lobbied state governments to keep the laws intact

in order to protect monopoly rents.4

Interstate regulations originated because, in order to charter in a state, a bank incorpo-

rated in that state must pay a fee; whereas, a bank incorporated in a different state need not

pay (Kroszner and Strahan, 2014). Once again, regulations acted to maximize state revenue.

Kroszner and Strahan (1999) suggest that these rents decreased, particularly for small

banks, in the 1970s and into the 1980s because of high nominal interest rates combined with

the usury law ceiling for rates charged on commercial bank loans. Creation of demand deposit

substitutes such as money market mutual funds also directly hurt small banks’ profits.

During the same time period, ATMs, use of credit scores, and improvements in infor-

mation technology all benefit large banks disproportionately with respect to small banks.

Thus, BBD should increase bank profits from these innovations as well as reduce risk by

geographically spreading assets. In a rent seeking framework, large banks eventually outbid

the incumbent small banks and BBD laws passed (Kroszner and Strahan, 2014).5

The literature identifies three types of BBD. First, intrastate BBD through mergers and

acquisitions; next full intrastate or de novo branching deregulation, and third, interstate

BBD. This chapter focuses on mergers and acquisitions. Mergers and acquisitions allowed

Multibank Holding Companies (MBHC) to consolidate their subsidiaries into branches of a

single bank.6

After each BBD, banks grew larger and spread their risk geographically. Geographic

3This relationship falls within the rent extraction literature a la McChesney (1987).
4If states are no longer extracting, we can still expect some sort of rent seeking by incumbent banks a la

Tullock (1967) and Krueger (1974).
5Some small commercial banks and thrifts initiated a last ditch loan scheme to cover their losses from

high interest rates and regulation. Armed with deregulation and moral hazard created by federal insurance
of many Savings and Loans, some Savings and Loan institutions took on very risky assets to make back
losses. The failure of these junk assets led directly to the Savings and Loan Crisis in the 1980s. See Kroszner
and Strahan (2014) or White (1991)

6However, banks could not open up a branch anywhere after merger and acquisition BBD. They had
to acquire or merge with an existing bank in order to add branches. The ability to add non-preexisting
branches was the last step of intrastate BBD. This, de novo branching, completed the intrastate BBD. The
last type of BBD discussed here is interstate. This allowed MBHCs to own banks in states other than where
they were headquartered.
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spread of risk decreased the likelihood of a bank failure due to economic weakness in a

certain region of a state. Bank size can reduce costs through economies of scale. If banks

pass on this cost saving to depositors and borrowers BBDs could have had a positive influence

on real economic variables.

The use of merger and acquisition BBD is the norm in the literature because it has the

greatest effect on other real variables and a larger variation in policy timing (Jayaratne and

Strahan, 1996; Beck et al., 2010; Levine and Rubinstein, 2013). Table 2.1 and Figure 2.1,

using dates from Amel (1993) and Kroszner and Strahan (1999), present the years BBD

occurred for each state.

2.2 Discussion of Mechanisms

Bank branching deregulation increased credit availability. This could directly affect the

purchasing power of students and their families resulting in changes in educational opportu-

nities. Indirectly, BBD promotes economic growth, increasing demand for employment. The

labor market influences educational decisions in a number of ways. Additionally, increased

credit availability can stabilize families and businesses when negative shocks occur. Holding

all else constant, a more stable family will benefit children’s educations. What follows is a

discussion of these possible channels by which BBD may affect high school graduation.

If BBD relaxes credit constraints and if education is a normal good, then parents should

make a greater investment in their child’s education, along with young adults increasing

investment in their own education. Additionally, relaxing geographic restrictions could in-

fluence the labor market by changing the relative wages and availability of jobs for dropouts,

high school grads, college attendees, and college degree earners. The overall effect depends

on both channels.

Relaxing branching regulations increases college attendance through credit availability

(Teng Sun and Yannelis, 2016; Levine and Rubinstein, 2013). However, credit availability

should not affect high school graduation in the same way. One might posit students change

behaviors based on postsecondary school becoming more affordable. However, this is unlikely

to cause any significant effects on high school graduation. In order to take advantage of more
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affordable college educations, students must possess the skills to succeed academically. If

a student has the potential to earn a college degree, the cost of graduating high school is

low. That is not to say that every high school dropout is incapable of graduating college.

But those dropouts who are capable face some constraint. And if they cannot overcome said

constraint to avoid dropping out of high school (a publicly provided good) then that must

be a non-financial constraint, or a financial constraint much larger than a marginal increase

in credit availability can alleviate. So, even if credit is made more available via BBD, the

constraint remains.

Over time, however, reduced cost of credit may affect educational outcomes. Caucutt

and Lochner (2012) find differences in returns to educational investment in younger versus

older students. They split parental investment on child’s education into “early” (investment

in young children) and “late” (investment in adolescents) categories and found early invest-

ment is of greater importance than late. Without the early investment, the individual will

be of lower ability and cannot take advantage of additional subsidies for later education.

Thus, younger individuals at the time of BBD may benefit from increased early educational

investment improving ability. This reduces the overall cost of education, leading to increases

in both high school and college attainment.

In a theory that combines labor market and credit channels, Bedard (2001) demonstrates

that relaxing credit constraints on high-ability high school students (or their families) enables

them to signal those abilities to employers by earning a postsecondary degree. If these high-

ability individuals earn a college degree ex-post, they reduce the average (expected) ability

level of someone earning a high school diploma. In this case, employers decrease their

expectation of ability signaled by high school diploma earners.

Thus, firms reduce the relative wage and employment opportunities provided to individ-

uals with high school degrees but no college degree. Individuals on the margin will drop

out because the relative benefits of graduating high school decrease. Therefore, this theory

suggests BBD could lower high school graduation outcomes.

BBD is linked to labor market outcomes. Benmelech et al. (2011) and Beck et al. (2010)

find decreases in unemployment rates following BBD. Results in Boustanifar (2014) demon-

strate a positive association between BBD and employment growth. These labor market
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changes should affect educational attainment. The direction of this effect depends on the

reactions of both earnings forgone and changes in potential for future earnings. If BBD ben-

efits a certain skill level of worker relatively more than other skill levels, then I expect BBD

caused changes to high school graduation patterns. Specifically, I expect more dropouts if low

skilled workers enjoy relatively greater benefit or more high school graduates if medium/high

skilled workers enjoy relatively greater benefits.

Prior research demonstrate this exact sentiment. Black et al. (2005) study how changes

in labor markets, specifically, a coal boom in the 1970s and subsequent bust in the 1980s,

caused changes in high school enrollment decisions in Pennsylvania and Kentucky. Enroll-

ment decreased during the boom and increased in the subsequent bust. Evans and Kim

(2006) investigate changes in education decisions after casinos opened on Native American

reservations. They found opening a casino increased employment and wages of low-skilled

workers. Students responded by dropping out of high school more often and attending college

less often. Additionally, Rees and Mocan (1997) find worse labor market conditions (higher

school district unemployment rates) reduced high school dropout rates in New York State.

Some evidence of disproportionate labor market changes from BBD come from Beck

et al. (2010), who find that BBD raised the income and employment hours of low skilled

individuals. This means increased returns for low skill jobs relative to high or medium skilled

jobs. It follows that, on the margin, individuals would lower educational investment since

low skilled jobs became relatively better paying and more available after BBD.

Jerzmanowski and Nabar (2013), however, find opposing results. They found that wages

of skilled labor increased and wages of unskilled labor decreased following BBD. Thus, on the

margin, educational attainment would increase as individuals try and earn those heightened

wages at high skilled jobs.

Additionally, over a long time horizon, increased economic growth due to bank branching

deregulation could improve the home lives of children. One of the most important determi-

nants of high school graduation is social and emotional development (Murnane, 2013). Both

Murnane (2013) and Caucutt and Lochner (2012) demonstrate a better home life during

formative years can improve this development and increase the chances that an individual

graduates high school by increasing her cognitive or social/emotional abilities. Thus, in the



Patrick A. Reilly Chapter 2. Bank Branching Deregulation and High School Graduation 11

long run, there may be increases in high school graduation associated with BBD via better

home life.

2.3 Data and Methods

2.3.1 Empirical Method

The typical approach in the literature identifies the year when BBD occurred in a state

and employs a difference-in-differences approach based on this timing to explain observed

variation in data aggregated to the state level. This study differs in several ways. First,

I analyze individual level data, not statewide aggregate data. However, I do not follow

individuals through time. Because of the bivariate nature of the educational attainment

variables, I estimate linear probability models (LPMs).7 I estimate the following LPM using

ordinary least squares (OLS):

Yist = α + φBBDist + βXit + Ait + θs + τt + εist (2.1)

where Yist is an educational attainment indicator variable of interest. The variable of interest,

BBDist, indicates whether or not BBD plausibly affects an individual’s ability or desire to

graduate high school. BBDist = 1 if individual i is of an age when surveyed, year t, that

suggests he or she was 17 or under when state s, the state of residence of individual i

when surveyed, first deregulated bank branching. BBDist = 0 otherwise. I discuss this

identification at length in section 2.3.2. Xit is a vector of individual specific variables of

central city (i lives in city center in year t), MSA (i lives in a MSA but not in the central city

in year t), nonwhite (i is nonwhite), and male (i is male). Ait picks up a cohort effect. It is a

vector of indicator variables for survey ages (21, 22, 23, ..., 29) to control for nonlinearity in

high school graduation by age.8 θs is a state specific indicator to control for time-invariant

state-specific unobservable characteristics, τt is the year specific indicator to control for year-

specific unobservable determinants of educational attainment common to all states. εist is the

7LPMs are also used in Teng Sun and Yannelis (2016).
8Since I cannot differentiate between high school graduates and GED earners this could be a real concern

if GED earning is prevalent among, say, 20 to 24 year olds but not 25 to 29 year olds
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normally distributed random error term with mean zero for individual i. In each estimation,

the error terms are cluster-corrected by state to address potential serial correlation.

φ represents the estimated effect of BBD on educational outcomes. This is true as long

as the timing of BBD is not related to other state/year specific policies. For example,

financial equalization court rulings changes school funding for some states during this time

period, however the timing of these rulings does not correspond closely to the branching

deregulations (Card and Payne, 2002).

Another potential policy affecting high school graduation via increased bank branching is

the Community Reinvestment Act (CRA), which starting 1977 made it necessary for banks

to prove they helped meet the credit needs of their entire community, especially lower income

neighborhoods. Banks adhering to the CRA positively impact poorer communities including

education of those community members. Banks in states with fewer bank branching restric-

tions had greater incentive to adhere to the CRA as compliance is taken into account when

approving branching. Additionally, having more branching increases the geographic domain

of a bank. This increases the likelihood that it serves both poor and wealthy communities,

which compels the bank to change its lending to comply. This channel is not demonstrated

by the data as nonwhite individuals, who typically live in poor areas, do not see relatively

larger increases in high school graduation.

To account for heterogeneous effects of BBD on race and gender, the sample is split

into four subsamples: nonwhite females, nonwhite males, white females, and white males.

Regression models for these subsamples are estimated separately using Equation (1) with

race and gender variables omitted. Separating into sub samples ensures we do not restrict

parameter estimates to be common for each sub-sample. For instance, there is likely large

changes in the difference between white-male and white-female graduation likelihood in 1975

versus 1999, or in New York versus West Virginia.

Similar models are used to identify the difference in effects of BBD on residents of unit

banking states versus states with other levels of branching restrictions. I split the sample

for individuals living in unit banking states and those not and estimate separate models.

Error terms of LPM may suffer from non-normality and heteroskedasticity because of

the bivariate nature of the dependent variable. To address this issue, the Probit estimator
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is used as a robustness check:

P (Yi = 1|θs, τt, BBDist, Xit, Ait) = Φ(a+ θs + τt + φBBDist + βXist + Ait + εist) (2.2)

Probit estimates whether or not the bivariate dependent variable, Yist, equals 1 using a

maximum likelihood approach. Φ() is the cumulative distribution function of the unit-normal

distribution.

2.3.2 Identifying the Treatment Group

BBDst identifies individuals whose high school education was plausibly influenced by

BBD. The data available can identify a treatment group under certain assumptions.

First, I must identify individuals who already reached the educational achievement of

interest when BBD occurs as non-treated. For instance, if an individual graduates high

school in 1980 but BBD occurred in 1981 in her state of residence, then the BBD could not

have any effect on her ability to stay in school and graduate high school.

The March CPS does not identify the year each individual graduated high school. I

instead use the fact that most individuals do not graduate high school before age 17 and

use data on individuals’ ages and states of residence to sort them into treated and control

groups. I identify individuals as treated if they were 17 or under at the time their state of

residence deregulated. I use this same identification when focused on postsecondary degree

earners because most decisions about college attendance are made around the same time as

(or before) high school graduation.

Therefore, BBDst is an indicator variable intended to identifying the treatment group,

namely, individuals exposed to BBD before graduating high school. BBDst = 1 if individual i

was under the age of 18 when the state individual i lives in deregulated branching. Otherwise,

BBDst = 0.9

9To create BBDst I use information from the CPS on the age, AGEist, of each individual, i, the
year, Y EARist, and the state of residence, θist. I create a variable called BBD yearist, which takes
the value of the year of BBD of state, θist. I then create another variable called age at BBDst, which
takes the value of individual i’s age in the year when state, θist, was deregulated: age at BBDst =
(BBD yearist–(Y EARist–AGEist)). Then I create the BBD treatment variable, BBDst, which takes a
value of 1 when age at BBDst < 18, 0 otherwise, unless differently specified.
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To visually demonstrate the treatment criterion, Figure 2.2 depicts age-year combinations

in two BBD states. The rows indicate a subset of survey years. The columns indicate ages

observed in the survey. The shaded cells are treated cohorts. Notice, the diagonal boundary.

Shaded cells on the boundary represent 17-year-olds in the survey year. Any observations

to the left/below this boundary are 17 or younger at the time their state deregulated, which

is the definition of treated. Unshaded cells on the boundary represent 18-year-olds in the

survey year. Any individuals to the right or above this boundary are 18 years old or older

at the time their state deregulated, which is the definition of non-treated.

In this sample, 78.3% of 19-year-olds graduated high school, 45.5% of 18-year-olds have

graduated high school, and 5.4% of 17-year-olds have graduated high school. Because of the

difficulty in sorting individuals aged 18 and 19 into “should have graduated” or “likely still

in school” categories, I exclude them from estimation. Measurement error from graduation

age is randomly created by differences in day and month of birth. However, most of this

error is eliminated by excluding observations of those individuals aged 18 and 19 in the year

of BBD.

There may be some systematic error remaining. It is likely that I improperly place low

ability individuals in the control group, 20-year-olds or older still in high school. It is also

likely that I improperly place high ability individuals treated group because they graduated

before age 17. This could bias the BBD coefficient upward. However, this applies to such a

small portion of the sample that the bias is likely inconsequential.10

A challenge with this identification strategy is that some individuals moved to another

state after high school and were not influenced by BBD in their current state of residence.

This unobserved migration across state lines introduces measurement error. This movement

may be tied to educational attainment. Educated individuals are more able to move than

less-educated individuals. Educated individuals more likely have experience away from home,

e.g. going to college out of state/away from home. Also, higher educated individuals usually

have greater means to move, both financial and time to search.

However, most migration decisions are likely uncorrelated with BBD.11 People are un-

10The effect of excluding 17-year-olds from the treatment group is addressed in robustness checks. Only
0.6% of 16-year-olds graduated high school in this sample.

11BBD is found to increase economic growth, so there may be some systematic movement toward dereg-
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likely to move to another state to gain access to banks with less branching regulation.

Therefore, migration likely creates random noise acting to bias BBD estimates toward zero.

Nonetheless, to avoid some measurement error, I restrict the sample to individuals under 30

in most models. These individuals have less time to move to other states.

There may be differences in the effects of BBD on education given individuals’ age at

BBD. Caucutt and Lochner (2012) demonstrated increased effects of relaxing credit con-

straints on younger children Caucutt and Lochner (2012). To check this effect, I generate

the variable: Age at BBD 12 and underist to identify individuals 12 and under at the time of

BBD. Because the education of individuals aged 13 through 17 at time of BBD are plausibly

affected by BBD I also include an indicator variable for individuals aged 13 to 17 at the time

of BBD.

2.3.3 CPS Data

This study uses data from the CPS March Supplement 1977 to 1999. The March supple-

ment contains a rich store of individual level data. I omit survey observations from years prior

to 1977 as the state of residence is not identified. Even so, this data provides a time frame

where most of the variation in state BBD occurred; 36 states deregulated in those years.

Additionally, because of the retroactive nature of my identification, I include observations

from individuals residing in those three states where BBD occurred prior to 1977.

The last intrastate BBD occurred in 1999 (Iowa). All other states deregulated by 1994.

By ending in year 1999, I represent 38 states (all but Iowa) in the treated group. Limiting

the dates from 1977 to 1999 narrows the set to 3.5 million observations. I exclude states

deregulating before 1970 as no analogous BBD dates exist.12 This decreases the number of

ulated states, especially by more educated individuals who have greater means to migrate. Estimations
excluding individuals moving in the past year are included in the robustness section to investigate the effect
of measurement error.

12Rhode Island, South Dakota, Delaware, Maryland, D.C., North Carolina, South Carolina, Idaho, Nevada,
Arizona, California, and Alaska deregulated bank branching before 1970. Levine and Rubinstein (2013)
suggest that these states all deregulated in 1960, but the source they cite, Kroszner and Strahan (1999), only
indicates that these states deregulated prior to 1970. For most studies of BBD this does not matter greatly
because they are interested in how BBD effects the macroeconomy. In this chapter, however, the setup of
the treatment group relies heavily on the year that these states deregulated. Therefore, I omit those states
and D.C. deregulating at an unknown date unless otherwise indicated.
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observations to about 2.7 million.

I omit individuals surveyed before age 20 as there are many reasons why they might not

have completed high school. I omit individuals aged 30 and above when surveyed to limit

the measurement error caused by state-to-state migration. Also to avoid measurement error,

I excluded individuals aged 18 or 19 at the time the state they live in deregulated. This

leaves about 387,000 observations in the base model.

There are several educational outcome variables of interest. High School Graduateit

takes the value of 1 if individual i has received a high school degree or equivalent in or before

year t, 0 otherwise.13 Collegeit takes the value of 1 if individual i has attended college in or

before year t, 0 otherwise. For data gathered in years 1977 to 1991, Bachelorsit takes the

value of 1 if individual i finished at least four years of college in or before year t, 0 otherwise.

For 1992 to 1999, Bachelorsit takes the value of 1 if individual i earned a Bachelor’s Degree

or higher in or before year t, 0 otherwise.

It is important to control for other factors affecting educational attainment to limit

omitted variable bias. Murnane (2013) describes many indicators lowering the opportunity

cost of learning or moving up a grade level. Herein lies one limitation of this study. The

CPS contains no data on individuals during adolescence. It does not indicate family wealth,

enrollment in prekindergarten, parent education levels, etc.

Rather, the CPS includes data on demographic variables, state of residence, age, and

survey year. I include an indicator variable for nonwhite individuals, Nonwhiteist. There are

also gender differences in high school graduation rates. These are captured by the indicator

variable, Maleist. I also include geographic indicator variables Central Cityist and MSAist.
14

Central Cityist indicates that the individual lives in a central city. MSAist indicates that

individual i lives in a metropolitan area but outside of the central city. Individuals living in

13The CPS includes GED recipients which may distort economic impact of increased high school graduation
in this study, see Cameron and Heckman (1993).

14Being in the Central City or MSA seem less important than Nonwhite and Female in determining
education because these only indicate whether the individual is living in a city or MSA at the time of the
survey, whereas individuals who are nonwhite or female at the time of the survey were that way their whole
lives. If there is some persistence to type of area on individual lives (city, MSA, or rural) then they may have
some explanatory power. However, individuals with low skills (high school dropouts) likely flock to cities as
a place with greater opportunity and also greater public good production such as transportation (Glaeser
et al., 2008). Additionally, cities have lower high school graduation rates. Not graduating high school makes
it harder to find a job and harder to move, so there may be lower levels of graduates in cities for that reason.
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rural areas or individuals not answering which type of area they live in take the value of 0

for both of these indicators.

Table 2.2 presents summary statistics of the described variables. Each mean represents

the proportion of the sample population with that attribute.

2.4 Results

These results focus on the effect of BBD on high school graduation and heterogeneous

effects due to differences in race, gender, and age at deregulation. Table 2.3 splits the data

into four subsamples: white males, white females, nonwhite males, and nonwhite females.

White males are 1.3 percentage points more likely to graduate high school after the BBD.

White females are 1.0 percentage points more likely. There are no significant effects for

nonwhite males or nonwhite females. Cameron and Heckman (2001) suggest a marginal

change in credit access at commercial banks will not help minority groups on average. It

would take a much larger change in credit circumstances to influence this group.

To establish the validity of estimates using the identification strategy, methods, and data

in this study, Table 2.4 presents the effects of BBD on higher education outcomes. Teng Sun

and Yannelis (2016) estimate BBD increases college attendance by 2.6 percentage points.

Using my data, I estimate around a 2 percentage point increase in college attendance for

both males and females. The parameter estimate for Males is significant at the 10 percent

alpha level, female at the 5 percent alpha level. This similar result suggests validity of my

empirical method and data.

The last two specifications in Table 2.4 analyze bachelor degree achievement of white

males and white females respectively. White males see a 2.1 percentage point increase in

bachelor’s degree attainment. White females enjoy a similar increase in likelihood of earning

a bachelor’s degree. BBD has greater impacts on college attendance and attainment than

high school graduation because credit more directly affects college students through student

loans.

Table 2.5 presents results splitting observations into two subsets: states with a history of

unit banking and states with all other types of geographic restrictions leading up to merger
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and acquisition BBD. Deregulating directly from unit banking rather than from some less

restrictive policy is a more radical change to intrastate branching and may generate a greater

overall effect on educational outcomes. The first two specifications represent models of high

school graduation for unit banking states and non-unit banking states respectively. Neither

of these models identify BBD as a significant factor in explaining high school graduation.

The last two specifications in Table 2.5 analyze bachelor’s degree attainment in unit

banking and non-unit banking states respectively. Individuals living in non-unit banking

states increase their likelihood of bachelor’s degree attainment by 2.6 percentage points.

Bachelor degree attainment by residents of unit banking states were unaffected by BBD

policy.

This is a puzzling result. The timing of BBD in unit banking states is generally later

than the timing in non-unit banking states. Unit banking states are also clustered toward

the middle of the country and in more rural states. These systematic differences may af-

fect the estimates. Additionally, before 1992, Bachelorsist = 1 indicates that individual i

completed at least 4 years of college. Whereas, for 1992 onward, Bachelorsist = 1 signifies

that individual i earned a bachelor’s degree. In the unit-banking model, this difference in

the dependent variable puts emphasis on BBD’s effect on degree attainment due to the later

timing of BBD in unit-banking states.

Studies by Carneiro and Heckman (2002) and Caucutt and Lochner (2012) show greater

impact of policy on younger individuals. Table 2.6 presents a test of this claim. Models

with only younger individuals (those aged 12 and under) at the time of BBD included in the

treatment group estimate greater effects on these individuals than models with individuals

17 and under (1.4 as opposed to 1.0). However, the coefficient estimates are not significantly

different from one another, so this does not provide strong evidence for or against the idea

that BBD has a greater effect on younger individuals.

Individuals aged 12 and under during the policy change react differently to BBD than

individuals aged 13 to 17. Table 2.6 reports evidence of this heterogeneous effect with

estimates suggestive of relatively higher increases to high school graduation and Bachelor’s

degree achievement for individuals aged 12 and under, whereas, older individuals at the

time of BBD see relatively larger increases in college attendance. Interestingly, BBD has no



Patrick A. Reilly Chapter 2. Bank Branching Deregulation and High School Graduation 19

significant effect on the college attendance of individuals aged 12 and under at the time of

BBD.

This may suggest that increases to college attendance are short lived. Older individuals

at the time of BBD benefit from increased credit supply, boosting their ability to afford

college and their college attendance. In response, the price of postsecondary education

would increase overtime, reducing the initial increase in college attendance. Additionally, an

increase in postsecondary education prices changes the average college attendee. Applicants

facing higher costs must be either more certain of earning a degree or earning more from

their degree. This leads to increases in degree attainment.

Another explanation for increases in the likelihood of earning both high school and bach-

elor’s degrees could come from increased business competition. Black and Strahan (2002)

and Kerr and Nanda (2009) find BBD leading to easier credit increasing entrepreneurship

and creative destruction. This increases competition in many industries. Employers may

become more wary on the hiring side, stipulating stricter degree requirements to qualify em-

ployees for jobs. So, even though college attendance is not increasing, individuals entering

college have incentives to seek higher degrees, Bachelor’s instead of Associate’s for instance.

More comprehensive than Table 2.6, Figure 2.3 depicts the dynamic impact of BBD on

high school graduation. The figure presents coefficient estimates and 95% confidence bands

corrected for state clustering. Coefficients estimate the effect of being a certain age at the

time of BBD. Specifically, I estimate the following model.

Yist = α +
12∑
j=0

βjD
24−j
ist + β13D

<12
ist +BXist + γθst+ θs + τt + εist (2.3)

D24−j
ist = 1 if individual i was age 24−j when state s deregulated, 0 otherwise. The parameter

estimates are relative to the graduation likelihood of those individuals 25 years and older at

the time of BBD. If properly specified, BBD should only affect the likelihood of high school

graduation for individuals aged 17 and under. In this analysis, individuals turning 18 or

19 at the time of BBD as well as state specific linear time trends (θst) are included in the

estimation.

The figure demonstrates two main points. First, BBD’s impact on high school graduation
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was fast acting and seems to be long lasting. With the exception of age 15 (slightly smaller

positive estimate), all ages 17 and below at the time of BBD find similar impacts. Second,

there is minimal evidence of BBD affecting those who should have already graduate high

school. With the exception of 20-year-olds, those turning 17 prior to the date of BBD see no

significant changes in likelihood of graduating high school. The positive estimate at 20 years

old could result from imprecise measurement of high school graduates. CPS data groups

together high school graduates and GED earners. Additionally, there is a possible trend

forming from ages just above the 17 year old threshold. This is likely caused by BBD’s

impact on a significant number of 18 and 19 year olds yet to graduate from high school or

earn GEDs.

2.5 Robustness

Table 3.11 summarizes robustness checks where high school graduation is the dependent

variable. In Table 3.11, specification 1 is the baseline results for comparison. Specification 2

uses a Probit model rather than a linear probability model, as the LPM estimation technique

assumes normal and homoskedastic errors, which may not hold here. The point estimates are

nearly identical and the errors are actually larger for the LPM specification than the Probit,

which suggests the LPM method with errors cluster-corrected by state provides satisfactory

results.

Specification 3 changes the treatment group by restricting the treatment age at the year

of BBD to be 16 and under rather than 17 and under, eliminating some possibly systematic

measurement error. Some individuals, for example, may have graduated high school at age

16, which, if BBD occurred in their state when they were 17, would improperly mark them

as treated. To protect against this sort of error, this specification omits 17 year olds from

the sample. The results are no different from the baseline specification.

Specification 4 checks robustness by varying the sample years. In this case, I still begin

the sample in the 1977 survey year, but I end in sample year 1989. The point estimates

are no different when sample years are changed. This indicates that the selection of sample

years of 1977 to 1999 is not biasing the results.
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One of the assumptions made when identifying the treatment was that migration from

state to state is independent of BBD, and, therefore, estimates of BBD’s effect on education

are lower bounds. To test this claim, specification 5 amends the original model by restrict-

ing the sample to exclude individuals who indicated they moved to their current state of

residence in the past year. A decrease in parameter estimate suggests this assumption gen-

erates systematic bias inflating our results. The point estimates and significance levels are

unchanged so there is no evidence of systematic measurement error due to recent interstate

migration.

Specification 6 includes observations from all states, including the 11 states and D.C.

that deregulated prior to 1970. The BBD dates used for those states and D.C. are from

Levine and Rubinstein (2013). This does not change sign or significance. This will mainly

add observations to the treatment group because, according to Levine and Rubinstein, the

11 states and D.C. deregulated in 1960.

If the likelihood of high school graduation increases over time and the number of treated

individuals increase overtime as well one might expect a stationarity problem. Although year

effects are included in all models, individual states may have their own trend in high school

graduation rates. To account for this possibility, Specification 8 depicts estimates including

state-specific linear time trends. Including these trends has little effect on the overall model.

Table 2.8 presents results of estimations using false BBD dates. Each state’s false BBD

date is randomized so the distribution of false dates matches the distribution of true dates.

The randomization strategy is as follows. Each state is given a random number from a

uniform distribution from 0 to 1. The smallest random number is matched with the earliest

BBD date. The second smallest random number is matched with the next earliest BBD

date, etc.

Holding constant the distribution of BBD timing but randomizing the order in which

states go pass BBD legislation helps assess if the results are spurious. If the effect of BBD

is the same when the dates are randomized, then the results may be spurious. After ran-

domization of BBD timing, BBD has no significant effect on the likelihood of high school

graduation. Therefore, there is no evidence of a spurious relationship.
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2.6 Conclusion

I find that BBD increased high school graduation likelihood. I find no differences in BBD

affecting educational achievement by gender. Race, however, proved to be an important fac-

tor. White individuals as a group were significantly affected while non-white individuals, on

average, saw no change to their educational attainment after BBD. This result is consistent

with Cameron and Heckman (2001) who suggest that non-white individuals react less to

policies regarding labor or credit markets because the underlying detriment to education de-

veloped by these groups in early childhood. Changes to affordability or benefits of education

during middle/high school cannot have a strong effects on these individuals because a lack

of investment in early childhood reduced their academic potential and/or contributed to the

development of personalities conflicting with traditional academics.

This research extends recent literature by looking at the effects of BBD not only on

college enrollment, but on high school graduation as well. It is difficult to identify the

channels responsible for these effects. But I can point out channels not at work. Most high

schools do not charge tuition and therefore direct credit channels are not likely to affect

high school graduation. This means some indirect credit channel exists, plausibly through

the labor market or though increased family stability resulting from an increases in credit

availability. Additionally, parameter estimates suggesting BBD increases college attendance

and bachelor’s degree achievement strengthens evidence found in the previous literature.

There are data limitations in this study. Future research should focus on identifying the

specific channels responsible for the results, as well as using longitudinal data. The ability

to follow an individual’s state of residence over their lifetime would more precisely identify

those affected by BBD. Additionally, knowing more about an individual’s past will reduce the

influence of omitted variables such as family income and parental educational background.
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Figure 2.2: Intent to Treat Strategy, Two States
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Figure 2.3: Bank Branching Deregulation’s Effect on HSG by Age at BBD
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Table 2.1: Bank Branching Deregulation Dates, by Year

State Year State Year

Alaska < 1970 Tennessee 1985
Arizona < 1970 Washington 1985
California < 1970 Hawaii 1986
Delaware < 1970 Mississippi 1986
Washington D.C. < 1970 Kansas* 1987
Idaho < 1970 Michigan 1987
Maryland < 1970 New Hampshire 1987
Nevada < 1970 North Dakota* 1987
North Carolina < 1970 West Virginia* 1987
Rhode Island < 1970 Florida* 1988
South Carolina < 1970 Illinois * 1988
South Dakota < 1970 Louisiana 1988
Vermont 1970 Oklahoma* 1988
Maine 1975 Texas* 1988
New York 1976 Wyoming 1988
New Jersey 1977 Indiana 1989
Virginia 1978 Kentucky 1990
Ohio 1979 Missouri* 1990
Connecticut 1980 Montana* 1990
Alabama 1981 Wisconsin* 1990
Utah 1981 Colorado* 1991
Pennsylvania 1982 New Mexico 1991
Georgia 1983 Minnesota* 1993
Massachusetts 1984 Arkansas* 1994
Nebraska* 1985 Iowa* 1999
Oregon 1985

Notes: Dates from Amel (1993). * indicates unit banking state.

Year indicates when the corresponding state allowed bank branch-

ing throughout the state via mergers or acquisitions. < 1970

indicates BBD prior to 1970.
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Table 2.2: Summary Statistics

mean sd min max

BBD 0.315 0.464 0 1
HS Grad 0.859 0.348 0 1
Some College 0.484 0.500 0 1
Bachelor’s 0.167 0.373 0 1
Central City 0.257 0.437 0 1
MSA 0.316 0.465 0 1
Male 0.482 0.500 0 1
Nonwhite 0.134 0.341 0 1

Observations 386841

Notes: Data from the CPS March supplement:

years 1977 to 1999, ages 20 to 29, states deregu-

lating after 1969. Mean is the proportion of the

sample with that attribute.
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Table 2.3: Effect of BBD on High School Graduation by Race and Gender

HS Grad HS Grad HS Grad HS Grad HS Grad

Deregulation 0.010* 0.013** -0.002 0.010* -0.006
(0.004) (0.005) (0.015) (0.004) (0.013)

Male -0.009***
(0.002)

Nonwhite -0.045***
(0.011)

White or Non-white Both White Non-white White Non-white
Male or Female Both Male Male Female Female
R-squared 0.025 0.024 0.028 0.026 0.024
Observations 386841 163458 22883 171538 28962

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by state in parentheses.

High school graduate is the dependent variable for all specifications. Each specification uses

CPS March supplement data including years 1977 to 1999 and 39 states with mergers and

acquisitions BBD after 1969.
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Table 2.4: Identification Validity: College Attendance and Attainment

Some College Some College Bachelor’s Bachelor’s

Deregulation 0.020 0.022* 0.021* 0.020*
(0.010) (0.009) (0.009) (0.010)

Female or Male Male Female Male Female
Nonwhite or White White White White White
Ages Observed 20 to 29 20 to 29 24 to 29 24 to 29
R-squared 0.022 0.030 0.022 0.022
Observations 163458 171538 101177 105705

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by state in

parentheses. The dependent variable labels each specification. The dependent variable

takes the value of 1 if the individual attained that education level, 0 otherwise. Each

specification uses CPS March supplement data including years 1977 to 1999 and 39 states

with mergers and acquisitions BBD after 1969.
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Table 2.5: Comparison of Unit Banking vs Limited Branching Groups

HS Grad HS Grad Bachelor’s Bachelor’s

Deregulation 0.015 0.004 -0.003 0.026**
(0.007) (0.004) (0.023) (0.008)

Male -0.007 -0.011*** 0.010* 0.012**
(0.004) (0.003) (0.004) (0.003)

Nonwhite -0.034 -0.051*** -0.073*** -0.077***
(0.028) (0.009) (0.014) (0.010)

MSA 0.041*** 0.059*** 0.073*** 0.089***
(0.005) (0.010) (0.010) (0.012)

Central City -0.015 -0.007 0.093*** 0.079***
(0.023) (0.020) (0.013) (0.017)

Constant 0.804*** 0.855*** 0.171*** 0.133***
(0.013) (0.007) (0.012) (0.008)

Unit Banking State Yes No Yes No
Ages Observed 20 to 29 20 to 29 24 to 29 24 to 29
R-squared 0.031 0.022 0.018 0.025
Observations 153407 233434 95085 143052

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by

state in parentheses. The dependent variable labels each specification. The

dependent variable labels each specification. Each specification uses CPS March

supplement data including years 1977 to 1999 and 39 states with mergers and

acquisitions BBD after 1969.
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Table 2.6: Comparison of Treatment Group by Age at BBD

HS Grad Some College Associate’s Bachelor’s

Age at BBD: 0.013* 0.014 0.003 0.028*
12 and Under (0.005) (0.015) (0.021) (0.012)
Age at BBD: 0.010* 0.020* 0.006 0.019*
13 to 17 (0.004) (0.008) (0.014) (0.008)
Male -0.009*** -0.001 0.003 0.011***

(0.002) (0.003) (0.003) (0.003)
Nonwhite -0.045*** -0.073*** -0.078*** -0.077***

(0.011) (0.011) (0.011) (0.008)
MSA 0.052*** 0.109*** 0.101*** 0.083***

(0.006) (0.011) (0.010) (0.008)
Central City -0.010 0.079*** 0.087*** 0.085***

(0.015) (0.016) (0.014) (0.011)
Constant 0.854*** 0.389*** 0.337*** 0.136***

(0.005) (0.008) (0.013) (0.008)

Ages Observed 20 to 29 20 to 29 22 to 29 24 to 29
R-squared 0.025 0.025 0.034 0.022
Observations 386841 386841 313025 238137

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by state in

parentheses. The dependent variable labels each specification. The dependent variable

labels each specification. Each specification uses CPS March supplement data including

years 1977 to 1999 and 39 states with mergers and acquisitions BBD after 1969.
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Table 2.8: Placebo Test, False BBD Dates

HS Grad HS Grad HS Grad HS Grad HS Grad

BBD False Date 0.008 0.014 -0.015 0.010 -0.019
(0.006) (0.008) (0.012) (0.006) (0.014)

Male -0.010***
(0.002)

Nonwhite -0.020
(0.027)

White or Non-white Both White Non-white White Non-white
Male or Female Both Male Male Female Female
R-squared 0.026 0.032 0.033 0.033 0.028
Observations 392990 165900 24310 172693 30087

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by state in

parentheses. Models in this table feature false BBD dates. These dates use the same

distribution of timing for BBD, but randomize where each state falls in that distribution.

Each specification uses CPS March supplement data including years 1977 to 1999 and 39

states with false timing of mergers and acquisitions BBD after 1969.
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Table 2.9: False BBD Dates, by Year

State Year State Year

New York < 1970 Nebraska 1985
North Carolina < 1970 Washington 1985
Indiana < 1970 West Virginia 1986
Alaska < 1970 Florida 1986
Tennessee < 1970 North Dakota 1987
Oklahoma < 1970 South Carolina 1987
Missouri < 1970 Texas 1987
Massachusetts < 1970 Idaho 1987
Maryland < 1970 Utah 1987
Oregon < 1970 Rhode Island 1988
Vermont < 1970 Minnesota 1988
Louisiana < 1970 Kentucky 1988
Colorado 1970 Arkansas 1988
New Hampshire 1975 California 1988
New Jersey 1976 Hawaii 1988
Washington D.C. 1977 Mississippi 1989
Maine 1978 Ohio 1990
Connecticut 1979 Illinois 1990
Wisconsin 1980 New Mexico 1990
Iowa 1981 Arizona 1990
Delaware 1981 Wyoming 1991
Alabama 1982 Nevada 1991
Georgia 1983 Kansas 1993
Pennsylvania 1984 Virginia 1994
Michigan 1985 Montana 1999
South Dakota 1985

Note: The randomization strategy is as follows. Each state is

given a random number from a uniform distribution from 0 to 1.

The smallest random number is matched with the earliest BBD

date. The second smallest random number is matched with the

next earliest BBD date, etc.
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Chapter 3

Bank Branching Deregulation and
High School Graduation: A
Regression Discontinuity Approach

Previous empirical work associates failure to graduate high school with a number of

unfavorable outcomes.1 High school graduates are more likely to be employed, less likely

to rely on government transfer payments, and earn more income than high school dropouts

(Bridgeland et al., 2006; Oreopoulos, 2007). Non-pecuniary benefits of earning a high school

diploma include better health (Lleras-Muney, 2002; Powdthavee, 2010), reduced likelihood

of committing crime (Lochner and Moretti, 2004; Oreopoulos and Salvanes, 2011), and more

active civic participation (Dee, 2004; Milligan et al., 2004; Siedler, 2010).

In addition to these internal benefits, earning a high school degree generates positive

externalities. Greater employment and income decreases the need for transfer payments

and increases tax revenue, providing the government additional resources to spend on other

publicly provided goods and services or to reduce taxes. Better health outcomes impede

the spread of disease and reduce overall health care costs. Crime represents a negative

externality, so reducing crime through education generates external benefits. Finally, greater

civic engagement leads to improved political outcomes.

Given the only substantial individual cost of graduating high school is the opportunity

cost of time spent in the classroom (leisure, low skilled pay, starting a family a year or

two early), putting forth enough effort to graduate seems likely. However, as recently as

1This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views
expressed here do not necessarily reflect the views of the BLS.
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2009, over 3 million individuals from the U.S. aged 16 to 24 (8.1% of this population) were

identified as high school dropouts (Chapman et al., 2011).

Persistence of drop outs, particularly in an economy with diminishing availability of

low-skilled work and increasing incense at welfare reliance, highlights the importance of

understanding the intended and unintended effects of government policies on educational

outcomes. Bank branching deregulation, the lifting of geographic restrictions on intrastate

bank branching, is one such policy. During the 1970s, 1980s, and 1990s, 39 states switched

from regulated branching to allowing banks to operate branches anywhere in the state via

mergers or acquisitions. In this chapter, I analyze the impact of bank branching deregulation

(hereafter BBD) on the likelihood of high school graduation.

To analyze this impact, I combine data from public sources with restricted use geocoded

data from the National Longitudinal Survey of Youth 1979 (hereafter NLSY 79). The

NLSY 79 public use data file contains pertinent information on respondents’ education,

cognitive ability, parents’ education, and other important determinants of high school grad-

uation. Geocoded data permit identification of individuals plausibly affected by BBD as it

provides individuals’ state residency histories. Geocoded data are also needed to employ

regression-discontinuity design (hereafter RD) approaches to causal analysis in this setting.

RDs exploit a discontinuity of interest determined by a continuous variable (Hahn et al.,

2001). In this study, the discontinuity is whether or not a state deregulated banking. The

underlying continuous variable is distance to the state border. However, the NLSY geocoded

data does not reach that level of granularity: county is the smallest observed geographic unit.

Thus, samples are created based on counties on or near state borders. The preferred RD

model uses a subsample of residents of border counties. Linear Probability Models (hereafter

LPM) of individual high school graduation in the RD setup suggest BBD increased the

likelihood of high school graduation at the border.

This chapter extends a large literature that uses variation in the timing of state level

BBD as an exogenous increase in credit availability. Most research using BBD focuses on

macroeconomic outcomes including economic growth (Jayaratne and Strahan, 1996; Clarke,

2004; Huang, 2008), banking industry composition and lending patterns (Cetorelli, 2006;

Black and Strahan, 2002), and entrepreneurship (Black and Strahan, 2002; Kerr and Nanda,
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2009). More specifically, this chapter contributes to the growing area of research exploring

the relationship between BBD and educational outcomes. Levine and Rubinstein (2013)

and Teng Sun and Yannelis (2016) each find evidence of increased college attendance and

post-secondary degree earning attributed to increases in credit availability post-BBD.

Previous research focused on post-secondary educational outcomes and credit market

effects generated by BBD. This chapter focuses on secondary school educational outcomes,

which, since high school is publicly provided, are not directly affected by credit constraints.

Rather, improved credit likely impacts economic stability of families, labor market opportu-

nities for dropouts or graduates, and opportunities for continuing education.

This research makes three main contributions. First, the chapter links credit availability

with educational outcomes. Although it is not the first study to make this connection, this

analysis reinforces the idea that credit availability has real and unintended effects on eco-

nomic outcomes like educational attainment. Second, the use of NLSY 79 data: ensures the

high school graduation outcome variable is separated from GED earners, mitigates omitted

variable bias as NLSY 79 contains variables known to affect high school graduation such as

Armed Forces Qualifying Test (AFQT ) percentile, and limits measurement error because

NLSY 79 geocoded data identifies state residency on a yearly basis. Third, use of an RD ap-

proach generates results at the local treatment level, establishing an alternative argument for

causation than the typical difference-in-differences approach used in previous BBD research.

3.1 Background: Bank Branching Deregulation

Prior to the 1970s, a majority of states restricted the geographic scope of bank operations

both within state (intrastate) and between states (interstate). In part, these restrictions were

relics of state revenue strategies used in the 19th and 20th centuries, before implementation

of alternative taxes (Kroszner and Strahan, 1999). Prior to 1970, 11 states and D.C. allowed

intrastate bank branching without restrictions, and 24 states allowed limited branching. For

example, Pennsylvania allowed branching in all bordering counties of bank headquarters;

Mississippi allowed 15 branches within 100 miles of headquarters (Amel, 1993). 15 states
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did not allow any intrastate branching; these were known as unit banking states.2 Unit

banks had no branches.3

Beginning in the 1970s states began removing restrictions on bank branching. Kroszner

and Strahan (1999) discussed the political economy of BBD. Increased competition in com-

mercial banking and improvements in banking technology changed the status quo resulting

in deregulation of the banking industry. Competition drastically lowered small banks’ prof-

itability, even for those banks protected by restricted bank branching. Larger banks found

BBD beneficial, as it allowed them to spread risk and save on costs with new found economies

of scale due to technological improvements. Kroszner and Strahan (1999) suggested these

changes increased incentive for the large firms to lobby for BBD while reducing rent seeking

in smaller firms culminating in BBD.

Across state variations in the timing of BBD identifies shocks to credit markets. For larger

firms, this should not change borrowing behavior as they typically do not deal with commer-

cial banks. However, lower commercial banking costs should be passed on to smaller firms

and individuals seeking business loans, student loans, or home loans. Ceteris paribus, BBD

increased the supply of credit by allowing consolidation of banks which created economies of

scale and spread risk geographically, lowering operating costs. Prior research identifies many

real economic impacts of improved access to credit via BBD including increased economic

growth (Jayaratne and Strahan, 1996), decreased income inequality (Beck et al., 2010), and

increases in entrepreneurship and firm turnover (Black and Strahan, 2002; Kerr and Nanda,

2009).

3.2 Theoretical Foundations

Most economists use models following Becker (1957) and Mincer (1958) to analyze in-

dividual economic decisions about education. These models suggest rational individuals

forgo earnings and invest in education (training) if the increase in expected discounted fu-

2See Table 2.1 for the distribution of branch banking, limited branch banking, and unit banking states.
3Although banks in unit banking states where not allowed to have additional branches, some had addi-

tional ”facilities” near the bank headquarters. For instance in Illinois in 1982 a bank could have a second
”facility” within 3500 yards of headquarters and a third ”facility” within the same county as the headquarters
(Illinois Department of Financial & Professional Regulation, 2015).
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ture earnings from educational investment outweigh current forgone earnings. Extensions to

these models account for: likelihood of completing an additional year of schooling (Lang and

Ruud, 1986), importance of an individual’s cognitive and socioemotional skills for academic

success (Cameron and Heckman, 2001), and human capital signaling (Betts, 1998; Bedard,

2001).

None of these extensions are an obvious choice for a model of BBD and education.

However, the current banking deregulation literature provides insights into possible channels

where BBD may affect (positively or negatively) educational attainment.

The most general economic theory through which policies affect education involve op-

portunity cost of education, wages forgone. Jayaratne and Strahan (1996) found evidence

of increases in state GDP growth post-BBD. Beck et al. (2010) found evidence of relative

increases in income and working hours for low skilled workers post-BBD. If this is true and

if high school students realize the improvements to low skilled labor markets, then more

students will seek employment. If a student accepts a full-time job then he/she will drop

out immediately. If a student accepts a part-time position, he or she will devote less time to

his or her studies and, on the margin, will take longer to graduate. This process increases

the likelihood of dropping out of school all together (Rees and Mocan, 1997). So, BBD may

result in more dropouts through improved low skill labor markets.

Contrary to Beck et al. (2010), Jerzmanowski and Nabar (2013) reported increased rel-

ative wages for high skilled laborers. If this is the case, skilled workers benefit more from

BBD and so students react to changes in their potential labor market (Long et al., 2015)

and stay in school longer. Thus, marginal individuals influenced by BBD tend to continue

their educations.

Bedard’s (2001) theory on ability signaling proposes another possible channel culminating

in negative high school graduation outcomes via BBD. Prior to BBD, financial constraints

forced poorer high ability individuals to end their educations at high school graduation,

inflating the average level of ability signaled when earning a high school degree. post-BBD,

with these high ability, previously financially constrained individuals now able to afford

college, the average ability level signaled by a high school degree declines. Thus, high school

degree earners are offered a lower wage premium relative to dropouts. Those individuals on
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the margin of staying in school have less incentive to graduate, so they drop out of school.

Therefore, in this case, BBD should decrease high school graduation rates.

In another possible channel, economic growth brought on by BBD should raise local tax

revenues, increasing funding for public schools. Jayaratne and Strahan (1996) found BBD

generated higher state growth rates and Tewari (2014) reported greater homeownership

as a result of BBD. These each imply greater tax revenues and hence greater funding for

public education post-BBD. Higher growth rates and homeownership also imply more stable

families, as does increased credit availability. For instance, with better access to credit, a

recently unemployed parent, on the margin, can be more judicious when finding employment

without affecting life at home.

3.3 Data and Methods

This analysis focuses on BBD and educational outcomes at state border counties. I use

linear probability models (LPMs) and differences-in-discontinuities (diff-in-disc) model, an

RD type model, with the educational outcome of interest as my binary dependent variable.

For RD models, I need a relatively small granularity for geographic location, therefore, I use

the National Longitudinal Survey of Youth 1979 (NLSY 79) geocoded data, a data set which

identifies county of residence, educational attainment, and many control variables capable

of predicting educational attainment.

3.3.1 Data

The NLSY 79 data set surveyed 12,686 individuals beginning in 1979 when the partic-

ipant ages ranged from 14 to 22. NLSY 79 participants were interviewed annually until

1994 and then every two years from 1996 on. The data set includes many educational at-

tributes. Education-related variables include: Highest Grade Completed, Highest Grade

Completed by Mother (HGC − M), High School Diploma or GED received, and Armed

Forces Qualifying Test Percentile (AFQT ) . Demographic variables include: Race (White,

Black, Hispanic, and Nonwhite), Sex of Participant, Number of Siblings, Family Income,

and Age. The geocoded data provides information on county and state of residence in each
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survey year.

High School Graduate (HSG) is the main variable of interest. HSG takes the value of 1

if an individual received a high school diploma and takes the value of 0 if the individual did

not graduate from high school or received a General Equivalency Degree (GED). According

to Cameron and Heckman (1993), GED earners have outcomes closer to drop outs than

to high school graduates. Therefore, separating HSG from GED earners strengthens the

implications of my results. Highest Grade Completed (HGC) takes the numeric value of the

highest grade completed by a participant for each survey year with HGC = 8 indicates the

survey individual completed 8th grade but not 9th grade. HGC = 13 indicates the survey

individual completed one year of college, HGC = 14 represents completing two years of

college, etc.

Including demographic control variables reduces omitted variable bias. Age provides a

participant’s age in a given year. Female takes the value of 1 if an individual is female, 0

if male. Nonwhite takes the value of 1 if the individual is not white, 0 if the individual is

white. Number of Siblings takes the value of the number of siblings the individual had in

1979.

Key to this data set are a number of individual level variables known to influence ed-

ucational outcomes. AFQT is the percentile earned in the Armed Forces Qualifying Test

administered in 1981 to each NLSY 79 participant. The AFQT questions address arith-

metic reasoning, vocabulary, and mathematical knowledge. HGC −M is the highest grade

completed by the surveyed individual’s mother where the values act the same as HGC.

Family Income provides the income of the participant’s family in 1979. These three mea-

sures are important proxies for determinants of education level: educational ability (AFQT )

and socio-economic well-being (HGC −M and Family Income).

AFQT percentiles depend on the learning of individuals, which reflect academic ability

and effort. In economic models of educational attainment, the opportunity cost of an in-

dividual continuing education decreases as ability increases because high ability individuals

need to put less time into their studies to succeed (Murnane, 2013). AFQT − Squared is

also included to allow for diminishing returns. Diminishing returns are likely pronounced.

70 percent of individuals graduate in the sample. Those scoring a 100 rather than an 80 on
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the AFQT will not make much of a difference in high school graduation; whereas, scoring a

40 instead of a 20 likely has some impact. AFQT should be positively related to high school

graduation. AFQT − Squared should be negatively related.

HGC−M , captures multiple determinants of educational achievement. First, HGC−M

may indicate the family’s value of the importance of education, which in turn reflects parents’

investment (not only money but time) in their children’s education. Greater investment in

education should increase educational attainment. Additionally, higher maternal grade level

indicates a higher level of family income. Families with more income can afford better

teachers, better tutors, and more educational resources. Greater educational investment

increases educational attainment, ceteris paribus ; therefore, HGC −M should be positively

related to high school graduation

Family/Income reflects socio-economic status. If education is a normal good, then well-

off families will invest more in their children’s education than poor families all else equal. A

greater investment in education should increase the likelihood of graduating high school and

the overall highest grade completed. Therefore, family income should be positively related

to educational outcomes. I generally use Log Family Income to control for diminishing

returns of income on educational attainment.

The remaining variables likely have less influence on high school graduation. Female

controls for differences in high school graduation based on gender, Nonwhite differences

based on race. Nonwhite individuals in aggregate have lower graduation rates (Murnane,

2013); however, this difference is likely attributed to HGC −M , Family Income 1979, and

AFQT of non-white individuals.

Having more children means less time to spend with each individual child when he or she

is developing. It also reduces family resources per child. Both of these decrease investment

in education per child; hence, Number of Siblings should have a negative relationship with

educational outcomes.

3.3.2 Identifying Treated Individuals

The NLSY 79 Geocoded data contain information on respondents’ states and counties

of residence for each survey year. The longitudinal aspect of NLSY 79 promotes a fairly
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precise identification strategy. However, errors in treatment selection remain as there is no

backward looking residency history.

Treated individuals are those plausibly affected by BBD prior to dropping out of or

graduating from high school. For consistency, treated individuals lived in a branching state

prior to their 18th birthday. However, some individuals are 18 years and older when first

surveyed, and residency data does not exist for years prior to 1979. For individuals 18 and

older in 1979, I impute their state of residence while in high school by assuming their resident

state in 1979 (the nearest available data point) is the same as their state of residence when

under 18. Therefore, the treatment identification variable, BBD, takes the value of 1 for

both individuals who lived in a branching state when under 18 and individuals 18 or older

in 1979 whose state of residence deregulated branching when they were 17 or younger.

Take four hypothetical survey participants: Anne, Bob, Cathy, and Dan. I first observe

Anne when she is 19 years old and living in New York State (BBD in 1976) in 1979. As

she is 18 or older in 1979, I assume that her state of residence in 1979, NY, was her state

of residence when she was under the age of 18. Thus, Anne is marked as treated since NY

deregulated in 1976 when Anne was 16. .

I first observe Bob as a 22 year-old living in Ohio (BBd in 1979) in 1979. Bob is part of

the 18 or older group in 1979 when Ohio deregulated bank branching. Thus, Bob is marked

as non-treated.

I first observe Cathy at 14 years old living in New York (BBD in 1976) in 1979. I also

observe her moving to Florida (BBD in 1987) in 1982. Cathy was under 18 when she lived

in New York and NY, at that point, had bank branching so Cathy is marked as treated.4

I first observe Dan as a 17 year-old living in Massachusetts (BBD in 1984) in 1979. He

moves to New Jersey (BBD in 1977) in 1981. Since he did not move to New Jersey until

he was 19 years-old, New Jersey’s BBD has no influence on Dan’s high school completion.

Instead, I mark Dan as non-treated because he lived in Massachusetts and MA did not

deregulate branching until 1984.

Using this identification strategy, treated individuals under the age of 18 when first

surveyed are properly identified. There is no guarantee of proper identification for other

4Cathy is always treated, even if she moves to a regulated state like Florida
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individuals. NLSY 79 does not indicate where individuals lived before 1979, so some indi-

viduals marked as non-treated are, in fact, treated. For instance, what if Bob (from the

above example) moved to Ohio from Vermont in 1973. Vermont deregulated branching in

1970, so if this was the case, I incorrectly identified Bob as non-treated.

Limitations identifying the treatment group create measurement error. Families move

from state to state. Young adults move away from home to attend college or to secure

work. Some moved from regulated states to branching states. Others moved from branching

states to limited branching or unit banking states. If BBD does not contribute to relocation

decisions, then any measurement error should be randomly assigned and parameter estimates

are biased towards zero. In this case any significant effects would only strengthen with perfect

identification. Measurement error becomes a problem if BBD is (or contributes to) a factor

in the relocation decisions of families or young adults.

If BBD affects labor markets enough to change educational attainment, one might expect

changes to individuals’ choices for state of residence. However, moving is costly. It takes time

to end a lease or to sell your house. Poorer families have very little time to look for a new

place to stay in another state, let alone time to find work and physically move. Additionally,

these families have adolescent children who make moving even more costly when the parent

accounts for the child’s ties to their social groups. Furthermore, the use of border counties,

and the RD analysis mitigate possible endogeneity. If BBD increases job opportunity across

the border then individuals living close to the border in the regulated state could simply

commute to a new job across the border.

3.3.3 State Selection

The use of NLSY 79 data limits variation in state BBD dates. 14-year-olds in 1979

turned 18 in 1983, so state BBDs occurring after 1982 have no effect on secondary education

outcomes of NLSY participants. At the other end of the age range, 22-year-olds in 1979 were

17 in 1974, so there are no pre-treatment/control observations for any state deregulating

branching before 1975. Given these constraints, the viable deregulating states are ME, NY,

NJ, VA, OH, CT, AL, UT, and PA.

This analysis focuses on border counties because people from similar areas should have
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similar unobservable characteristics. Individuals living in border counties of these states

overwhelmingly live in New York City, Philadelphia, and their suburbs in NY, NJ, and PA.

This fact likely restricts the external validity to the Atlantic metropolis from Washington

D.C. to Boston if I use all sample participants in the border counties of the above states.

Additionally, NY and NJ deregulated only one year apart, so there is minimal cross state

variation in policy timing. Because of this, Huang (2008) drops observations on the NY-NJ

border in a related paper. Additionally, many younger individuals move to these areas, so

measurement error becomes stronger when including New York City. Therefore, I omit the

NY-NJ border and the NJ-PA border from my analysis.

Furthermore, the data used need to focus on deregulating states with enough observations

in state border counties and whose neighboring states had unit banking or limited branching.

Thus I omit the borders of Maine (too few observations), Virginia (only viable border is with

West Virginia and has too few observations), Tennessee (too few observations), Utah (too

few observations), and Pennsylvania (only one year of data and only the PA-WV border so

not enough observations). Therefore, the main results use data for individuals residing along

the borders of Ohio, Alabama, and the Connecticut border with Massachusetts (see Table

3.1).

Although not ideal, limiting my analysis to OH, CT, and AL as transition states has one

distinct advantage, these states represent different US regions. OH is a Midwestern, Rust

Belt state. CT represents the Northeast. And AL represents the South and even Appalachia

in northern parts of the state. Therefore, results from this set of observations broadly reflect

the impact of BBD in the US.

3.3.4 Regression Model

The following model explains variation in education outcomes.

Yi = α + β1BBDi + X1iβ2 + X2iβ3 + εist (3.1)

Where Yi is an educational attainment variable. BBDi takes the value of 1 if individual i′s

likelihood of graduation was plausibly affected by BBD. More specifically, BBDi takes the
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value of 1 for both individuals who lived in a branching state when under 18 and individuals

18 or older whose state of residence in 1979 deregulated branching when they were 17 or

younger.

X1i is a vector of demographic control variables: Femalei takes the value of 1 if in-

dividual i is female; Nonwhitei, takes the value of 1 if individual i is nonwhite, and

Number of Siblingsi is the Number of Siblings that individual i had in 1979.

X2i is a vector of education related variables: AFQTi is the percentile score that

individual i received in the Armed Forces Qualifying Test administered to all NLSY 79

participants in 1981; HGC − Mi is the highest grade completed by i′s mother in 1979;

Log Family Incomei is the natural log of family income in 1979 for i. And εi is the indi-

vidual specific error term clustered by state of residence in 1979.

3.3.5 Regression Discontinuity Validity Checks

Estimating RD models can improve empirical performance by producing a randomized

experiment-like treatment assignment as individual close to the threshold of assignment

should be similar in unobservable characteristics. To demonstrate plausible improvements

to the counterfactual, panels A and B in Tables 3.2 and 3.3 present means and standard

errors for both the entire state (Table 3.2) and the border county subsamples (Table 3.3).

Table 3.4 compares differences in means between treated and non-treated individuals for

the border county subsample (Panel A) and the entire state (Panel B). A reduction in the

differences between treated and non-treated individuals for the border county subsample in

observable charactersitcs indicates RD may also reduce differences in unobservables. If the

full state subsample is more homogenous, then limiting estimation to border counties may

not be appropriate.

The border county subsample improves the homogeneity of the covariate Nonwhitei. At

the 95 percent confidence level, the Nonwhite population makes up a significantly larger

proportion for the non-treated group relative to treated individuals in the full state sample.

There is no difference at that confidence level for the border county subsample. This differ-

ence likely exists because of the inclusion of southern Florida and its large Latino population

in the unrestricted sample along with the inclusion of more urban areas in the unrestricted
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sample, which includes cities like Atlanta and Philadelphia. Individuals from Florida, At-

lanta, and Philadelphia would be non-treated for the most part.

3.3.6 Differences-in-Discontinuity Design

A pure geographic RD is not appropriate in this setting because systematic differences

that may exist between control and treated states prior to BBD. Instead, I adopt the

difference-in-discontinuities (diff-in-disc) as outlined by Grembi et al. (2016) to mitigate

such problems. Grembi et al. (2016) estimate the diff-in-disc coefficient using the difference

in intersections on either side of the running variable cutoff (here the distance to border)

and on either side of the post treatment cutoff (here the year of BBD for corresponding

treated state, 1979 for OH and bordering state, 1980 for CT and bordering states, and 1981

for Alabama and bordering states).

In this case, I estimate educational attainment impacts on four margins: as distance to

the BBD border approaches 0 from treated states before BBD, as the distance to BBD border

approaches 0 from treated states after BBD, as the distance to BBD border approaches 0

from control states before BBD, and as the distance to BBD border approaches 0 from control

states after BBD. Grembi et al. (2016) apply the OLS estimator to observations within a

specified bandwidth, h, of their running variable, both before and after their policy change.

Likewise, I restrict the sample to individuals in border counties and estimate the model:

Yit = α + β1Dit +Bi(β2 + β3Dit) + Tt[β3 + β5Dit +Bi(β6 + β7Dit)] + εit (3.2)

Where Bi = 1 indicates individual i plausibly attended high school in a state that deregulated

bank branching prior to 1982. Tt is a dummy variable for post-BBD. Dit is the running

variable, distance to BBD border, where negative values indicate residency in OH, CT, or

AL. The coefficient of interest, β6, identifies the local average treatment effect (LATE) of

BBD on the education outcome variable, Yit.
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3.4 Results

The results focus on BBD’s impact on high school graduation and highest grade com-

pleted with a secondary analysis of BBD’s effect on postsecondary achievement outcomes,

namely college attendance and completing four or more years of college. Both LPM and

RD models indicate increased probability of high school graduation for treated individuals

as well as increases in postsecondary attendance and achievement.

Figure 3.1 illustrates the difference-in-discontinuities results. In each graph, distance to

border is on the x-axis. Negative distance to border signifies survey participants from the

deregulating states: Alabama, Connecticut, and Ohio. The y-axis variable is High School

Graduate. The lines fit a quadratic of distance to border onto sub-samples of high school

graduation grouped by distance to border. The plotted data points depict the ordered

pairs of the average distance to border and the sample proportion/mean of the educational

outcome for each bin/group.

The left column represents the pre-treatment group, using only the set of individuals

turning 18 prior to BBD of their state or neighboring state. The pre-treatment border effect

identifies differences between treated and control states prior to BBD. The right column

observes only post-treatment, participants turning 18 after BBD of their state or neighbor

state. The difference between the discontinuities before and after BBD illustrate the LATE.

Notice that for High School Graduates at the border, treated states seem to increase high

school graduation relative to regulated states post-BBD. These graphs resemble the results

presented in Table 3.7.

Analysis begins with simple OLS with border county residents as a baseline and finish

with diff-in-disc results. Table 3.5: contains results from Equation (3.1). Estimated stan-

dard errors reported on all tables are clustered-corrected at the state level unless specified

differently. The results estimate a 12.5 percentage point increase in graduation likelihood

relative to the control group post-BBD. The estimate for BBD’s effect on high school grad-

uation is relatively large as it is specific to border counties in for the three BBDs studied.

Additionally, data include the NLSY 79 oversample of socio-economically poor individuals.

One must be judicious when making inferences of policy effects on other populations based
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on the results using these samples.

BBD had a slightly stronger effect on high school graduation of white male participants

at 17.3 percentage points. Parameter estimates for white females and non-white individu-

als were all positive but not statistically different from zero. Nonetheless, these estimates

suggest BBD brought about a Pareto improvement (at least in terms of the gender-race ag-

gregate groups tested). Interestingly, in this model, AFQT score is not significantly related

to high school graduation of white males; whereas, higher scoring females and nonwhites are

significantly more likely to graduate high school. Factors keeping white males from grad-

uating high school seem unrelated to academic ability; while minorities’ and women’s high

school graduation outcomes were greatly affected by factors related to ability and family

educational background.

All education related covariates (AFQT , HGC −M , and Log Income) have their ex-

pected sign. Interestingly, HGC−M has no significant relationship with High School Grad-

uate when Log Income is included in the model, but HGC −M has a strong correlation

with Highest Grade Completed. It follows that education level of family is persistent over

generations for educational attainment above high school graduate.

Due to the binary nature of high school graduation and the high frequency of high school

graduation in the US during the period of study, BBD will affect a small proportion of the

population. Most likely affected are those individuals with characteristics that increase the

likelihood of being a dropout, for instance low AFQT scores. Conversely, BBD is more

likely to affect post-secondary educational outcomes for more intelligent individuals who

would have graduated high school regardless of BBD, but who were struggling to afford

tuition. Many of the results separate the data into groups to test whether or not these

theories are true.

Table 3.6 divides the data with the 50th percentile AFQT score. The results show BBD

has stronger effects on marginal individuals: high school students with relatively low AFQT

scores and college aged individuals with relatively high AFQT scores. More interestingly,

when restricted to individuals scoring less than 50 on the AFQT and who fail to earn a

high school diploma BBD had a negative and significant effect on Highest Grade Completed.

For those who do drop out of high school, another year of education has little benefit as it
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does not lead to a degree. Therefore, dropping out at an earlier age is not necessarily a bad

outcome.

The rest of the models use diff-in-disc models. Table 3.7 presents results from Equation

(3.2), the difference-in-discontinuity model from Grembi et al. (2016). These results are

qualitatively the same as the LPM results; however, the magnitude of the parameter estimate

for the LATE of BBD is 2 to 3 times higher than the LPM average treatment effect. These

parameters are not estimating the same effect, but it does raise the question as to why the

LATE estimate is larger than the ATE estimate.

A larger LATE could result from increased economic activity in deregulated areas im-

proving schools through greater tax revenues along with improved parental employment

opportunities. Better schools and more economically stable families decrease likelihood of

dropping out for students on the deregulated side of the border. However, students on the

still regulated side of the border find no improvements in school or family job security. But,

if they live close enough to the border, teenagers might find more low skilled jobs avail-

able on the deregulated side. This would decrease high school graduation for non-treated

individuals, especially close to the border.

Similar to the LPM model, diff-in-disc models of Highest Grade Completed (HGC) pro-

vide no significant evidence that BBD significantly increased educational attainment overall.

Nonwhite has a strong positive relationship with HSG and HGC. Reducing the sample to

only white participants does not significantly change treatment effect. For the diff-in-disc

model, the nonwhite sample demonstrates positive and significant relationship between BBD

and HGC. However, this is for a very small sample and the LPM model for the same obser-

vations provides no evidence of a relationship. The lack of an effect of BBD on HGC may

be evidence of the post-BBD separation seen in Table 3.6: academically poor individuals are

leaving school earlier, while others are staying in school longer.

To further investigate HGC, Table 3.8 models different age splits: first all ages, then

High school age (14 -– 18), undergraduate age (19 -– 22), and older individuals (23 -– 26).

Again, BBD has no effect on HGC for any of these age splits.

Additionally, Table 3.9 shows estimates of a negative parameter estimate of Number of

Siblings for high school ages. This is not likely a story of spreading monetary resources
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among too many children. If it was, family income and mother’s education would have

been significant. Rather, this likely demonstrates that having more children causes parents

to spend less time with each child, reducing social-emotional skills necessary to succeed in

elementary, middle, and secondary school (Cameron and Heckman, 2001). So, students with

more siblings are more likely to be held back a grade, resulting in less completed grade levels

than members of their cohort with fewer siblings.

BBD may have different effects on education depending on income level. Table 3.9 pro-

vides results investigating this claim. Individuals with higher family incomes seem less likely

to benefit from the BBD. Advantages for students from wealthy families make high school

graduation almost certain regardless of BBD. The Highest Grade Completed specification

found no evidence of effects from a income-treatment interaction.

A previous study by Levine and Rubinstein (2013) found that BBD helped higher achiev-

ing, low-income individuals attend college by making loans more affordable. Table 3.10 pro-

vides similar results to Levine and Rubinstein, adding to the validity of this data set and

identification strategy. All specifications used an LPM model limiting observations to indi-

viduals scoring above the 33rd percentile in the AFQT. The samples differ by limiting the

Family Income 1979 range. Specification (1) includes all income levels; (2) incomes below

the 25th percentile; (3) incomes above the 25th percentile; (4) incomes above the 50th per-

centile; (5) incomes above the 75th percentile; (6) incomes above the 90th percentile. BBD

has positive and significant effects for the 2nd, 3rd, and 4th specifications. The top 25 per-

cent of individuals in terms of family income are not significantly influenced by BBD. Thus,

more credit may help higher ability individuals from lower class and middle class families

afford college with no change to college attendance of lower income families.

3.5 Robustness Checks and Falsification Tests

The empirical designs utilized in this chapter lend themselves to certain vulnerabilities.

This section refers to Table 3.11 which contains tests of validity for the results discussed

in Section 3.4. Table 3.11 shows robustness tests for both the LPM estimator, the upper

coefficient estimate, and the diff-in-disc approach, the lower coefficient estimate. The first
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test focuses on the binary dependent variable. Despite non-normality and heteroskedasticity

of the error terms, the LPM typically performs well when the probability of the outcome is

not close to zero or unity. Although the probability of graduating high school is relatively

distant from 1 (about 0.8), I check performance of the LPM by estimating a Probit model

and comparing its parameter estimates with the LPM. Using the Probit model does not

significantly change estimates for BBD’s effect on high school graduation. This is true for

both LPM and diff-in-disc estimations.

The next test of robustness eliminates county indicator variables from the empirical

model. There are over 60 counties in the sample and some counties have very few survey

participants. According to Blankmeyer (2006), this could affect coefficient estimates for not

only the indicator variables but also other variables in the model. However, the alternative

specification does not show any significant changes to coefficient estimates reflecting BBD’s

effect on high school graduation.

The next pair of robustness exercises address possible measurement error generated by

the assumption that individuals over the age of 17 in 1979 remained in the same state where

they attended high school. This assumption allowed the use of the diff-in-disc design but

introduced measurement error. The third column omits individuals who were over 17 years

old in 1979 and college students before age 23. Individuals with some college experience

have more opportunities and are more likely to have moved out of state (Bui and Miller,

2015). Omitting these individuals likely reduces measurement error without substantially

reducing the size of the control group. The fourth column takes a more extreme approach by

additionally omitting individuals above age 20 in 1979. This reduction of the control group

reduces measurement error but also reduces the size of the pre-treatment group, causing a

loss in significance in the LPM. However, the diff-in-disc results are robust to this test.

The final column simply removes outlying survey participants, those who never attended

high school. This makes no difference in sign or significance of the parameter estimates.

Interestingly, omitting these outliers, comprising 3.4 percent of the sample, narrows the gap

in coefficient estimates between OLS and diff-in-disc designs.

To assess the diff-in-disc specification, Figure 3.2 uses survey participants from dereg-

ulating states only and makes the cutoff at the median distance (20 miles) to the border.
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There should be no discontinuity at 20 miles from the border, and more importantly, there

should not be a difference in the before and after treatment graphs. This placebo test runs

as expected. There is little difference at the cutoff while the before and after panels are

nearly identical.

3.6 Conclusion

Graduates of high school are relatively better off than dropouts in terms of income,

health outcomes, and standard of living (Bridgeland et al., 2006; Rumberger, 1987). This

chapter finds removal of credit constraints in the form of BBD caused increases in high

school graduation. Moreover, parameter estimates suggest positive effects of BBD for each

group studied (white males, white females, and nonwhite males and females.). Estimates

indicate BBD increased the likelihood of high school graduation by 13 percentage points for

the sample studied. This effect is most noticeable in white males and in individuals with

low AFQT scores. I also find high school dropouts left school earlier after BBD. This is

not necessarily a negative outcome. These individuals face reduced benefits of an additional

year of education as it will not lead to a high school degree. Therefore, dropouts ending

education earlier may improve their lives especially if they find employment when they leave

school.

One of the more important contributions of this chapter is the evidence of a causal

relationship between BBD and high school graduation. Estimating an RD model, specifically

a diff-in-disc model, provides evidence of relatively large increases to probability of high

school graduation for treated individuals. Although the estimate for LATE is higher than

plausible, the estimate approaches a more acceptable range of 15 percentage point increase

when omitting individuals who did not enter high school.

More complete data could improve this study in precision and in scope. Although this

study improved treatment identification, measurement error could still be problematic. Ro-

bustness models used to limit measurement errors in LPM actually reduced parameter esti-

mates of average treatment effect for BBD on high school graduation. This indicates mea-

surement error may have biased results away from zero. However, diff-in-disc estimates are
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unchanged for these robustness specifications. Additionally, scope of this chapter is limited

to short term effects. It would be interesting to see how BBD affected individuals below age

10 at the time of BBD, as future educational attainment is greatly affected by educational

investment at an early age (Cameron and Heckman, 2001). Future research might benefit

by using data from the children of the NLSY and focusing on states with later BBD. This

would improve identification and help to focus on earlier investments in education.
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Table 3.1: Borders of Interest

Early Deregulating State Year Late Deregulating State Year

Ohio 1979 Pennsylvania 1982
Ohio 1979 Michigan 1987
Ohio 1979 West Virginia* 1987
Ohio 1979 Indiana 1989
Ohio 1979 Kentucky 1990
Connecticut 1980 Massachusetts 1984
Alabama 1981 Georgia 1983
Alabama 1981 Tennessee 1985
Alabama 1981 Mississippi 1986
Alabama 1981 Florida* 1988

Notes: Dates from Amel (1993) and Kroszner and Strahan (1999). * indicates

unit banking state.
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Table 3.2: Summary Statistics, All Counties Sample, Age 22

Panel A: Regulated States Obs. Mean SE Min Max

High School Graduate 2566 0.805 0.014 0 1
Female 2566 0.497 0.013 0 1
Nonwhite 2566 0.165 0.027 0 1
Number of Siblings 2566 3.316 0.081 0 19
AFQT Percentile 2566 49.07 1.35 1 99
HGC-Mother 2566 11.54 0.10 0 20
Family Income 1979 2566 20168 681 5 75001

Panel B: Deregulated States Obs. Mean SE Min Max

High School Graduate 408 0.805 0.022 0 1
Female 408 0.518 0.031 0 1
Nonwhite 408 0.126 0.031 0 1
Number of Siblings 408 3.398 0.136 0 16
AFQT Percentile 408 43.74 1.96 1 99
HGC-Mother 408 11.98 0.22 0 20
Family Income 1979 408 21437 1333 603 75001

Notes: Data in this statistical summary are from NLSY79: years 1979 to 1987,

age 22. Summarized individuals either (1) resided in the following states in

1979 or (2) resided in one of the following states after 1979 but before the age

of 18: AL, CT, FL, GA, IN, KY, MA, MI, MS, OH, PA, TN, or WV. Standard

Errors clustered by state of residence.
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Table 3.3: Summary Statistics, Border County Sample, Age 22

Panel A: Regulated States Obs. Mean SE Min Max
High School Graduate 405 0.806 0.020 0 1
Female 405 0.480 0.026 0 1
Nonwhite 405 0.114 0.030 0 1
Number of Siblings 405 3.375 0.152 0 16
AFQT Percentile 405 54.15 2.11 1 99
HGC-Mother 405 11.36 0.20 0 18
Family Income 405 20468 1384 5 75001

Panel B: Deregulated states Obs. Mean SE Min Max

High School Graduate 183 0.855 0.030 0 1
Female 183 0.535 0.058 0 1
Nonwhite 183 0.115 0.045 0 1
Number of Siblings 183 3.501 0.217 0 16
AFQT Percentile 183 44.67 3.32 1 99
HGC-Mother 183 12.24 0.41 2 20
Family Income 1979 183 22554 2831 603 75001

Notes: Data in this statistical summary are from NLSY79: years 1979 to 1987,

age 22. Summarized individuals either (1) resided in the border counties of

AL, CT, or OH in 1979 or after 1979 if under age 18, (2) resided in a county

bordering AL in 1979 or after 1979 if under age 18, (3) resided in a county

bordering OH in 1979 or after 1979 if under age 18, or (4) resided in a MA

county bordering CT in 1979 or after 1979 if age under 18.
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Table 3.4: Mean Comparison Test: Are Border Counties more Homogenous?

Panel A: Border Counties
Deregulated Regulated p-value

Mean SE N Mean SE N (2-tailed)

High School Graduate 0.855 183 0.806 405 0.151
Female 0.535 183 0.480 405 0.217
Nonwhite 0.115 183 0.114 405 0.972
Percent Urban (County) 62.69 7.51 183 67.57 6.72 405 0.663
Number of Siblings 3.501 0.217 183 3.375 0.152 405 0.640
AFQT-Percentile 44.67 3.279 183 54.15 2.479 405 0.015**
HGC-Mother 12.24 0.328 183 11.36 0.208 405 0.021**
Family Income 1979 22,554 2831 183 20,468 1384 405 0.457

Panel B: All Counties
Deregulated Regulated p-value

Mean SE N Mean SE N (2-tailed)

High School Graduate 0.805 408 0.805 2566 1
Female 0.518 408 0.497 2566 0.431
Nonwhite 0.126 408 0.165 2566 0.046**
Percent Urban (County) 68.32 5.87 408 69.26 2.98 2566 0.887
Number of Siblings 3.398 0.138 408 3.316 0.081 2566 0.608
AFQT-Percentile 43.74 1.94 408 49.07 1.35 2566 0.024**
HGC-Mother 11.98 0.23 408 11.54 0.10 2566 0.080*
Family Income 1979 21,437 1326 408 20,168 681 2566 0.395

Notes: Data in this statistical summary are from NLSY79: years 1979 to 1987, age 22. Summa-

rized individuals in Panel A either (1) resided in the border counties of AL, CT, or OH in 1979

or after 1979 if under age 18, (2) resided in a county bordering AL in 1979 or after 1979 if under

age 18, (3) resided in a county bordering OH in 1979 or after 1979 if under age 18, or (4) resided

in a MA county bordering CT in 1979 or after 1979 if age under 18. Summarized individuals in

Panel B either (1) resided in the following states in 1979 or (2) resided in one of the following

states after 1979 but before the age of 18: AL, CT, FL, GA, IN, KY, MA, MI, MS, OH, PA, TN,

or WV.
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Table 3.5: Effect of BBD on High School Graduation by Race and Gender

HSG HGC HSG HSG HSG

BBD 0.125*** 0.302 0.173* 0.034 0.068
(0.009) (0.348) (0.068) (0.056) (0.113)

Female 0.068 0.200 0.062
(0.046) (0.188) (0.082)

Nonwhite 0.169** 0.795*
(0.045) (0.279)

AFQT 0.012** 0.035*** 0.002 0.019** 0.023***
(0.003) (0.005) (0.010) (0.004) (0.003)

AFQT Squared -0.000* 0.000 0.000 -0.000** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000)

HGC(M) 0.013 0.125** 0.029 -0.002 0.034*
(0.011) (0.029) (0.023) (0.011) (0.011)

Siblings -0.012 -0.046 -0.010 -0.026 -0.003
(0.009) (0.022) (0.016) (0.014) (0.006)

Log(Family Income) 0.090*** 0.149 0.085* 0.119** 0.059*
(0.019) (0.086) (0.036) (0.031) (0.024)

State Dummies Yes Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes Yes
County Dummies Yes Yes No No No
Nonwhite Yes Yes No No Yes
White Yes Yes Yes Yes No
Male Yes Yes Yes No Yes
Female Yes Yes No Yes Yes
Age Observed 22 22 22 22 22
R-squared 0.196 0.578 0.178 0.290 0.352
Observations 588 588 213 206 169

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by state of

residence in 1979/before age of 18 in parentheses.
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Table 3.6: Effect of BBD on High School Graduation, Split at AFQT = 50

HSG HSG HGC HGC HGC

BBD 0.008 0.215*** 0.435* 0.043 -1.678*
(0.031) (0.029) (0.147) (0.300) (0.697)

Female 0.091 0.034 0.218* 0.200 -0.054
(0.058) (0.075) (0.098) (0.191) (0.398)

Nonwhite -0.018 0.190 0.145 0.910* 1.295*
(0.129) (0.088) (0.306) (0.317) (0.442)

AFQT 0.035 0.039** 0.062 0.098*** 0.172*
(0.023) (0.010) (0.063) (0.020) (0.036)

AFQTSquared -0.000 -0.001* -0.000 -0.001* -0.003*
(0.000) (0.000) (0.000) (0.000) (0.001)

HGC-M 0.024* -0.002 0.099* 0.042* -0.035*
(0.009) (0.013) (0.042) (0.017) (0.013)

Siblings -0.015 -0.007 -0.057 -0.046 -0.084***
(0.013) (0.014) (0.031) (0.026) (0.015)

Log(Family Income) 0.097** 0.102** 0.066* 0.141* -0.168
(0.027) (0.023) (0.028) (0.049) (0.277)

AFQT > 49 < 50 > 49 < 50 < 50
State Dummies Yes Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes Yes
County Dummies Yes Yes Yes Yes Yes
Age Dummies No No Yes Yes Yes
Dropouts Only Yes Yes No No Yes
Ages Observed 22 22 18-23 18-23 20-23
R-squared 0.031 0.317 0.550 0.422 0.465
Observations 219 369 1120 2017 480

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by state of

residence in 1979/before age of 18 in parentheses.
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Table 3.7: Difference-in-Discontinuities
Method, Local Average Treatment Effect of
BBD on Educational Outcomes

HSG HGC

BBD 0.323*** 0.551
(0.045) (0.939)

Female 0.071 0.206
(0.050) (0.200)

Nonwhite 0.163** 0.809*
(0.047) (0.276)

AFQT 0.011** 0.038***
(0.004) (0.005)

AFQTSquared -0.000* -0.000
(0.000) (0.000)

HGC-M 0.013 0.128**
(0.012) (0.031)

Siblings -0.012 -0.048*
(0.009) (0.020)

Log(Family Income) 0.095*** 0.137
(0.019) (0.083)

State Dummies Yes Yes
Year Dummies Yes Yes
County Dummies Yes Yes
Diff-in-Disc Yes Yes
Age Observed 22 22
R-squared 0.196 0.579
Observations 588 588

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Stan-

dard errors clustered by state of residence in 1979/be-

fore age of 18 in parentheses.
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Table 3.8: Difference-in-Discontinuities Method, Local Average
Treatment Effect of BBD on Grade Completion by Age

HGC HGC HGC HGC

BBD (LATE) -0.028 0.147 0.313 0.454
(0.396) (0.314) (0.642) (0.741)

Female 0.215** 0.231* 0.277 0.215
(0.095) (0.083) (0.142) (0.137)

Nonwhite 0.737*** 0.432 0.688* 0.994***
(0.146) (0.219) (0.237) (0.209)

AFQT 0.031*** 0.031** 0.039*** 0.034***
(0.009) (0.009) (0.005) (0.005)

AFQT Squared -0.000 -0.000 -0.000* 0.000
(0.000) (0.000) (0.000) (0.000)

HGC-M 0.090*** 0.002 0.095*** 0.133**
(0.025) (0.021) (0.019) (0.035)

Siblings -0.058** -0.043* -0.052* -0.057
(0.021) (0.016) (0.018) (0.032)

Log(Family Income) 0.101 -0.006 0.130* 0.145
(0.070) (0.029) (0.052) (0.067)

State Dummies Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes
County Dummies Yes Yes Yes Yes
Age Dummies Yes Yes Yes Yes
Diff-in-Disc Yes Yes Yes Yes
Age Observed 14-26 14-18 19-22 23-26
R-squared 0.642 0.720 0.548 0.572
Observations 7136 1183 2151 2089

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by

state of residence in 1979/before age of 18 in parentheses.
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Table 3.9: Effect of BBD on Educational At-
tainment, Income-BBD Interaction

HSG HGC

BBD 3.205* -7.100
(1.132) (4.535)

Log(Family Income) 0.094*** -0.037
(0.013) (0.149)

IncomexDeregulation -0.299* 0.784
(0.120) (0.402)

Female 0.080 0.184
(0.051) (0.186)

Nonwhite 0.174** 0.784*
(0.050) (0.264)

AFQT 0.012** 0.036***
(0.004) (0.006)

AFQT Squared -0.000* 0.000
(0.000) (0.000)

HGC-M 0.013 0.130**
(0.011) (0.032)

Siblings -0.011 -0.050*
(0.009) (0.020)

State Dummies Yes Yes
Year Dummies Yes Yes
County Dummies Yes Yes
Diff-in-Disc Yes Yes
Age Observed 22 22
R-squared 0.208 0.582
Observations 588 588

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Stan-

dard errors clustered by state of residence in 1979/be-

fore age of 18 in parentheses.
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Table 3.10: Effect of BBD on College Attendance Grouped by Income Level

College College College College College College

BBD 0.194** 0.531* 0.158* 0.205* 0.152 -0.027
(0.048) (0.163) (0.050) (0.087) (0.123) (0.127)

Female 0.078* -0.083 0.083* 0.031 0.143* 0.300
(0.028) (0.092) (0.031) (0.044) (0.051) (0.139)

Nonwhite 0.346** 0.249 0.391*** 0.368 0.558* 0.144
(0.081) (0.154) (0.079) (0.223) (0.227) (0.078)

AFQT 0.011 -0.006 0.014 0.022* 0.023* -0.018*
(0.007) (0.019) (0.008) (0.008) (0.008) (0.006)

AFQT Squared 0.000 0.000 -0.000 -0.000 -0.000 0.000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

HGC-M 0.054*** 0.044 0.047** 0.043 0.073* 0.056*
(0.009) (0.035) (0.012) (0.024) (0.021) (0.020)

Siblings -0.006 -0.044 -0.006 0.002 0.010 0.025
(0.007) (0.020) (0.008) (0.009) (0.031) (0.054)

Log(Family Income) -0.010 -0.082 0.029 0.034 -0.086 -0.388*
(0.023) (0.101) (0.047) (0.112) (0.132) (0.119)

State Dummies Yes Yes Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes Yes Yes
County Dummies Yes Yes Yes Yes Yes Yes
AFQT > 33 Yes Yes Yes Yes Yes Yes
Family Income Percentile All < 25 > 25 > 50 > 75 > 90
Diff-in-Disc Yes Yes Yes Yes Yes Yes
Age Observed 21-26 21-26 21-26 21-26 21-26 21-26
R-squared 0.477 0.681 0.480 0.468 0.548 0.468
Observations 1741 421 1320 924 466 175

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered by state of residence in

1979/before age of 18 in parentheses.
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Table 3.11: Robustness Estimations

LPM HSG HSG HSG HSG HSG

BBD
0.121*** 0.123*** 0.097*** 0.047 0.132***

(0.014) (0.014) (0.013) (0.041) (0.034)

Probit X

Restriction
Not a Not a

HGC > 8
student student

County X X X
Age 22 22 22 20 22
Observations 579 588 477 445 568
R-squared 0.254 0.314 0.273 0.260
Pseudo R2 0.268

diff-in-disc HSG HSG HSG HSG HSG

BBD
0.419*** 0.299*** 0.394*** 0.320*** 0.156***

(0.088) (0.052) (0.066) (0.051) (0.047)

Probit X

Restriction
Not a Not a

HGC > 8
student student

County X X X
Age 22 22 22 20 22
Observations 579 588 477 445 568
R-squared 0.259 0.329 0.290 0.260
Pseudo R2 0.277

Notes: Standard errors clustered by state of residence in 1979/before age of 18.

** and *** represent 5 and 1 percent significance levels, respectively. The first two

specifications in each panel use Probit instead of linear regressions; however, the

diff-in-disc panel does not have county dummies. The 3rd and 4th specifications

use linear models, but do not have county dummies. In both panels, the 5th and

6th specifications omit participants that are currently students; however, the 5th

specification observes individuals at age 22, whereas the 6th specification observes

individuals at age 20. In bother panels the 7th, 8th, and 9th specifications restrict

the sample by omitting nonwhites, females, and individuals with less than a 9th

grade education, respectively.
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Chapter 4

The Impact of Big-Time Sports on
University Outcomes: Evidence from
NCAA Conference Realignment

Intercollegiate athletic programs at American colleges and universities experienced un-

precedented growth over the last few decades. Sanderson and Siegfried (2015) report that

median athletic program revenue increased from $28.5 million in 2004 to $68.9 million in

2013 for the 126 colleges and universities playing in National Collegiate Athletic Associa-

tion’s (NCAA) Football Bowl Subdivision (FBS). These represent the largest intercollegiate

athletic programs in the country. Fulks (1998) reports that the average revenues for NCAA

Division 1-A colleges and universities (the precursor to FBS) was about $6.8 million in 1985.

Under the accounting standards used by NCAA institutions, funds transferred from the

general university budget to the athletic department fall under the category of “revenues”

even though economists would call these funds “subsidies.” According to Sanderson and

Siegfried (2015), about 20% of the revenues reported by FBS athletic departments take the

form of subsidies, about $20 million per year. The figures reported by Fulks (1998) suggest

equally large or larger subsidies, in percentage terms, at Division 1-A athletic departments

as far back as the 1980s. Then, and now, only a few athletic departments at this level report

revenues greater than total expenditures. These large, persistent subsidies from universi-

ties to their intercollegiate athletic departments clearly raise important questions about the

relationship between big-time college sports and academic outcomes.

A large body of empirical research addresses the relationship between big-time college
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sports and outcomes in other parts of the university, which we call academic outcomes. These

academic outcomes include the number and quality of new undergraduate applicants to the

university, student achievement in terms of grade point average, retention, and graduation of

undergraduate students, and general fund revenues like donations, tuition revenues, and state

government appropriations. This empirical literature posits that successful intercollegiate

athletic programs, typically football and men’s basketball, generate an advertising effect

that enhances a university’s ability to attract high-quality students, engage alumni, and

lobby legislators.1 In terms of student performance, papers in this literature assume that

following a successful athletic program either increases the opportunity cost of studying, thus

reducing student academic performance, or acts as a complement to studying, perhaps by

increasing student engagement or attachment to the university, increasing student academic

performance.

Much of the empirical research uses athletic success measures like football and men’s

basketball winning percentage, bowl appearances, NCAA basketball tournament success,

final ranking in football and basketball polls, and end-of-season position in the Sagarin and

Massey computer rankings of college teams. Little attention has been paid to identification

or causal inference in this literature; most studies implicitly assume intercollegiate athletic

success to be uncorrelated with unobservable institution-specific factors that affect academic

outcomes. Perhaps because of this lack of identification, no consensus has been reached in

this literature. Papers conclude that successful football and men’s basketball teams increase

or decrease academic outcomes, depending on the athletic success measure, time period, and

sample of schools analyzed.

Several recent papers use causal inference methods to assess the relationship between

intercollegiate athletics and academic outcomes. Pope and Pope (2014) use a regression

discontinuity design (RDD) to investigate the causal impact of success in the NCAA men’s

basketball tournament on the number and quality of new freshman applicants at 332 schools

that played Division 1 basketball or Division 1A football over the period 1994-2001 using

1Some papers call this the “Flutie Effect” because of increases in applications and the quality of incoming
freshman classes at Boston College while Doug Flutie was the quarterback on the successful BC football
teams in the early 1980s (which lost to West Virginia University all four years Flutie played for BC).
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a unique data set containing information on where individual applicants send SAT scores.

Pope and Pope (2014) found that qualifying for the NCAA tournament increased the number

of applicants sending their SAT scores to a university by 2%, making the Sweet 16 increased

it by about 4%, making the Final Four increased it by 6%, and winning the national champi-

onship increased it by 9% in the following year. Football success also increased the number

of applicants sending their SAT scores to a university.

Anderson (2017) uses the propensity score method to investigate the causal impact of

football success on a number of academic outcomes at all FBS/Division 1A schools (about 120

schools) over the period 1990-2009. Academic outcomes included donations, undergraduate

applicants, acceptance rates, SAT scores, first-time undergraduate enrollment, and a mea-

sure of academic reputation. Anderson (2017) creates a football success measure exogenous

to any unobservable school-specific factors by exploiting unexpected week-to-week outcomes

(upset wins or losses) over the course of each football season. Football success increased

donations to the athletic department, applicants, acceptance rates, first-time in-state fresh-

men enrollment, SAT scores at the 25th percentile, and academic reputation of the school.

Taken together, the evidence in these two papers suggest that successful intercollegiate ath-

letic programs generate significant positive spillover benefits in terms of improvements in

academic outcomes.

However, these papers, like prior research, focus on measures of athletic success. In sports

leagues, athletic success is zero sum; for each successful team in an athletic conference, there

must be an unsuccessful team. This muddies the overall impact of intercollegiate athletics

on academic outcomes. If a successful football or men’s basketball season causes applications

to increase, does an unsuccessful season cause applications to decrease? While a handful of

teams have continuous success in football or men’s basketball, most FBS teams go through

periods of success and periods of failure. If periods of success and failure roughly even out

over the long run, what is the overall effect of intercollegiate athletics on academic outcomes

at these universities? Focusing solely on athletic success cannot provide an answer to this

question.

We extend the line of research using causal inference methods to assess the relationship

between intercollegiate athletics and academic outcomes. Instead of focusing on athletic
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success, we exploit a different intercollegiate athletic outcome: changes in athletic conference

affiliation. A substantial number of FBS schools changed conference membership over the last

20 years. A university cannot unilaterally decide to move to a new athletic conference. An

invitation to join a new athletic conference can only be extended when a majority of existing

conference members vote to extend an invitation to a new member. The reason for much of

the athletic conference realignment over the past 20 years comes from conferences attempting

to increase revenues generated by selling the broadcast rights to athletic events, not from

attempts to improve academic outcomes at member universities. Moving from one conference

to another should be plausibly exogenous to unobservable institution-specific factors affecting

academic outcomes. Conference changes also reflect variation in the intercollegiate athletic

environment at a school without the limitations associated with success-based measures.

We empirically analyze the causal effect of intercollegiate athletics on academic outcomes

using conference membership changes as a treatment in a difference-in-differences approach,

along with propensity score matching approach to generate appropriate samples of untreated

institutions. We use data from 90 FBS colleges and universities over the period 2000-2015,

a period with a large number of changes in conference membership. Difference-in-differences

results from the full sample contain weak evidence that changing conferences reduces the

number applicants and entering class ACT scores, and increases state appropriations to

public institutions. Difference-in-differences estimates using propensity score matched con-

trol groups provide no evidence that switching to a power 5 conference improves academic

outcomes. Finally, use of select realignment clusters indicate inconsistent outcomes when

athletic programs switch to better conferences.

4.1 Context

4.1.1 Previous Literature on Athletics and Academic Outcomes

In the unique higher education system in the US, the academic units of colleges and

universities often subsidize intercollegiate athletic programs. This outcome generated a

substantial body of research assessing the relationship between intercollegiate athletics and

academic outcomes to determine why these subsidies are provided, and what the larger
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university community gets in return for these subsidies. This research focused on two broad

categories of academic outcomes: student outcomes and financial outcomes.

Intercollegiate Athletics and Student Outcomes

Most of the empirical literature on the relationship between post-secondary athletics and

academics analyzes the impact of athletic success on student-related outcomes. The existing

literature contains mixed results on the relationship between big-time college athletics and

student outcomes. Possible student-related outcome variables influenced by sports programs

include: applications and admissions, quality of new admits, retention, graduation, and

student academic performance.

The primary mechanism through which athletic success affects the quantity and quality

of undergraduate applicants to a university is an advertising effect. Successful college athletic

programs generate name recognition and popularity for a university, increasing the applicant

pool size and potentially the academic ability of incoming students (McCormick and Tinsley,

1987). Much of this literature focuses on the SAT scores of the incoming freshman class, a

measure of the quality of incoming undergraduate students.

In this literature McCormick and Tinsley (1987), Tucker and Amato (1993), Mixon Jr

(1995), Mixon et al. (2004), Tucker and Amato (2006), Pope and Pope (2009), and Segura and

Willner (2016) find evidence that successful football and basketball programs were associated

with higher SAT scores in incoming freshman classes. Bremmer and Kesselring (1993) and

Smith (2008) find no evidence that football or basketball success were associated with higher

SAT scores of incoming freshmen classes. Tucker (2005) finds mixed evidence, including no

statistical relationship in the 1990s and a weak positive relationship between football success

and SAT scores in 2002.

Many early studies used SAT score data from a single incoming class and did not ade-

quately control for unobservable school-specific factors. Early studies generally found only

football success related to higher SAT scores while later studies found only basketball suc-

cess related to higher scores. Only Tucker and Amato (2006), Pope and Pope (2009), Smith

(2008), and Segura and Willner (2016) use panel data that allow for fixed effects to control

for unobservable institution-level heterogeneity.
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None of these studies used causal inference methods to investigate the relationship be-

tween athletic success and incoming freshman class SAT scores. Most used lags in athletic

success, but this does not adequately control for long-run changes in school-specific unob-

servables, for example a sustained effort by university administrators to increase resources

devoted to intercollegiate athletics, that might bias the estimated relationship between ath-

letic success and incoming student quality. In addition, the use of athletic success variables

ignores any possible relationship between athletic failure and incoming student SAT scores.

Only Anderson (2017) addresses these issues, but this study focuses only on football success

and finds a negative effect of unexpected football losses on student outcomes.

While SAT scores received most of the attention, research also examined other student-

related academic outcomes and athletic success. Tucker (1992) and Segura and Willner

(2016) find evidence that graduation rates decreased with athletic success or were unrelated

to athletic success. Rishe (2003), Tucker (2004), Mixon Jr and Trevino (2005), and Hickman

and Meyer (2017) find a positive relationship between athletic success and graduation rates.

Again, these studies suffer from a lack of attention to the impact of athletic failure on

graduation rates and a lack of causal inference methods. Mixon Jr and Trevino (2005) find

a positive relationship between football success and freshman retention rates; Hickman and

Meyer (2017) find a positive relationship between both football and basketball success and

freshman retention rates. However, both ignore the effect of athletic failure on freshman

retention rates, an important omission since decisions made by freshman have a long-lasting

impact on enrollment.

Another line of research examines the relationship between the number of undergraduate

applicants to a school and athletic success. Murphy and Trandel (1994), Pope and Pope

(2009), Pope and Pope (2014) and Anderson (2017) report evidence that freshman appli-

cations increase with football and basketball success. Pope and Pope (2014) and Anderson

(2017) use causal inference methods, and the detailed data used by Pope and Pope (2014)

indicate substantial heterogeneity in the characteristics of applicants that respond to ath-

letic success. Again, only Anderson (2017) examines the impact of athletic failure, and finds

that applications decline with unexpected football losses. Also, an increase in applicant pool

size, though likely improving the ability of incoming classes, may not generate significant
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improvements in the quality of admitted students.

The results in Pope and Pope (2009) and Pope and Pope (2014) using detailed, individual-

level data on SAT scores indicate that applicants with a strong interest in consuming or

participating in intercollegiate sports may base their application decisions on recent athletic

success. These applicants tend to be male, so a successful athletic campaign may increase

applications from only a homogenous group of potential students. Therefore, it is important

to measure a number of characteristics of applicants and admits when analyzing the impact

of athletic success on academic outcomes.

Finally, a recent set of papers casts substantial doubt on the idea that successful inter-

collegiate athletic programs generate positive academic benefits for students. Lindo et al.

(2012) and Hernández-Julián and Rotthoff (2014) undertake detailed studies of the relation-

ship between football success and individual student grades at the University of Oregon and

Clemson University, respectively. Both universities enjoyed very successful football seasons

during the period of analysis.

Both studies contain convincing evidence that successful football programs reduced stu-

dent GPAs in the fall semester, during football season. Hernández-Julián and Rotthoff (2014)

find that this negative effect carries over to the following spring semester. Both found that

grades of students at the lower end of the socio-economic spectrum, (those with higher levels

of financial aid and student loans) suffered the most during these periods. Both studies make

the case that football success was exogenous to unobservable university-specific factors that

might affect student GPAs, and both use detailed individual-level controls for student abil-

ity, unlike all of the other studies reviewed above. Since GPA predicts future labor market

success, these results suggest large and persistent negative individual effects of exposure to

a successful football program during the undergraduate educational experience.

In general, the literature on intercollegiate athletic success and student-related academic

outcomes contains mixed results. Research finds both negative and positive effects on in-

coming freshman class quality, retention, graduation rates, and applications. Nearly all of

these studies ignore the effect of athletic failure on these outcomes. The limited evidence

using causal inference methods finds negative effects of athletic failure, casting further doubt

on the general findings in this literature.
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Only a few previous studies focused on the presence or absence of athletic programs,

which appears to be a better outcome measure, as this would reflect the average effect of

periods of athletic success and failure on academic outcomes. McCormick and Tinsley (1987)

find that incoming freshman class SAT scores were higher at schools in six prominent “Power

Conferences” (ACC, Big 8, Big 10, PAC 10, SEC, SWC). Goff (2000) finds that applications

dropped when football teams were eliminated and increased when new football teams were

added in a case study of four universities in the 1990s. Caudill et al. (2018) find that

applications declined after football programs were dropped at a sample of 10 universities over

the period 1997-2015. These results suggest that focusing on measures of athletic success

overlooks key features of the relationship between big-time college sports and academic

outcomes.

Intercollegiate Athletics and Financial Outcomes

Another line of research analyzes the effects of conference realignment on financial out-

comes at universities, including athletic department revenues, state appropriations, tuition

revenues, and donations. The mechanisms underlying this relationship generally differ from

those in the literature on athletic success and student academic outcomes, since revenues

come from fans and donors, legislators, and parents.

Hoffer and Pincin (2015) report substantial increases in athletic revenue and expendi-

tures when teams moved to more competitive football conferences. Kearney (2014) find

basketball success increased total athletic department revenues. These direct relationships

are expected, since the athletic department benefits directly from higher ticket sales and

television broadcast revenues during periods of athletic success.

Humphreys (2006) and Alexander and Kern (2010) both find athletic success positively

associated with state appropriations to public universities. Humphreys (2006) analyzes a

large sample of colleges and universities over a long period and found that the presence of a

big-time football program increased state appropriations. Alexander and Kern (2010) find

that successful big-time sports programs increased state appropriations; each FBS school

in their sample received about a million additional dollars in state appropriations for each

additional football or basketball win. Both papers posit that legislators respond favorably
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to athletic success by rewarding successful schools.

An extensive literature examines the effect of athletic success on donations to colleges

and universities. A large number of data sources and success measures are used. The results

are decidedly mixed. See Humphreys and Mondello (2007) and Anderson (2017) for reviews

of this literature.

A few papers examine the relationship between intercollegiate athletic success and tuition

revenues. This line of research assumes that successful football or basketball teams increase

demand for enrollment among prospective students which reduces the price elasticity of

demand. This reduction allows schools to charge higher tuition, increasing tuition revenues.

Mixon Jr and Ressler (1995) reported that out-of-state student enrollment was higher at

schools with successful men’s basketball programs using data from the early 1990s, and

inferred that this led to increases in tuition revenues, since out-of-state students pay higher

tuition at public universities. Alexander and Kern (2009) find that schools in major power

conferences with successful football and basketball programs charged higher tuition and fees,

raising tuition revenues using panel data from 1987-2007. Smith (2012) finds no evidence

of a relationship between athletic success and tuition revenues using a broader panel of

universities than Alexander and Kern (2009). None of these papers use causal inference

methods.

In general, the existing literature finds evidence that athletic success affects finance-

related academic outcomes based on a number of common financial variables. However, this

literature also generally ignores the effect of athletic failure and does not make use of causal

inference methods.

4.1.2 Conference Realignment in Big-Time College Sports

Instead of focusing on athletic success, we exploit conference realignment as an exogenous

source of variation in the costs and benefits of intercollegiate athletics. Beyond athletic suc-

cess, athletic conference peers act as an academic benchmark potentially spurring academic

competition (Kramer II, 2014; Sweitzer, 2009).

Athletic conference realignment directly reflects the growing importance of television

broadcast rights revenues in big-time college sports. Until the early 1980s, the NCAA nego-
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tiated with television networks for the rights to broadcast college football and men’s basket-

ball games on behalf of institutions and tightly controlled the number of games that were

televised and the number of television appearances any NCAA school could make in a season.

There were also relatively few networks that were interested in televising NCAA sporting

events. ESPN began operation on 7 September 1979, and broadcast a few college football

games on tape delay starting in the 1979 regular season, but did not begin broadcasting live

college football games until the 1984 season.

The NCAA sold the first football television broadcast rights deal to NBC in 1952 for $1.1

million ($10.5 million in 2018 dollars).2 The contract allowed NBC to broadcast one regular

season game per week to a national audience on Saturday afternoon. In 1953 the NCAA

allowed multiple regional broadcasts of different games on selected weeks. This contract

was terminated after the 1953 season. In 1955 the contract was again sold, this time for

the rights to broadcast one nationally-televised regular season Saturday afternoon game per

week for eight Saturdays and a small number of regionally-televised games in a single time

slot on Saturday afternoon for five weeks during the regular season.3 This system remained

in place until 1981, when the Board of Regents of the University of Georgia and University

of Oklahoma sued the NCAA on the grounds that the NCAA college football television

broadcast regulation violated anti-trust law. This landmark case is commonly called the

Board of Regents case.

In June 1984 the US Supreme Court ruled that the NCAA was in violation of anti-trust

law and could no longer regulate college football broadcasts. The right to negotiate football

broadcast rights, and distribute the revenues, devolved to conferences, and in some cases,

individual universities. Unshackled from NCAA control, conferences underwent substantial

changes to increase broadcast rights revenues.

Conference membership in big-time college sports was stable in the pre Board of Regents

era.4 The Big 10 Conference had the same members from its founding in the 1890s until

2The first game broadcast under this contract was TCU versus Kansas on 20 September 1952.
3Bowl games were exempted from NCAA broadcast regulation and have been regularly televised since

the 1950s.
4The only notable exceptions were the University of Arizona and Arizona State University joining the

Pacific 8 to form the Pacific 10 in 1978. Although this move was not based on broadcast rights, it was based
on revenues. The University of Southern California (USC) was tired of losing money traveling to play in
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1990 with the exception of the (ex post wise) choice by the University of Chicago to eliminate

all intercollegiate sports in 1940 and the addition of Ohio State (1912) and Michigan State

(1950). Ten of the founding members of the Southeastern Conference (SEC) have been

continuous members since 1932. Only a few membership changes occurred in SEC in the

pre Board of Regents era, notably the (ex post wise) choice by the University of the South

(Sewanee) to eliminate all intercollegiate sports in 1940.

Schools occasionally left major athletic conferences for independent status in the pre

Board of Regents era. Georgia Tech and Tulane left the Southeastern Conference, and

South Carolina left the Atlantic Coast Conference in the mid 1960s. In this era, television

broadcast rights were controlled by the NCAA so leaving a conference resulted in no change

in broadcast rights fees.

The Board of Regents decision clearly impacted conference incentives, spurring realign-

ment and other outcomes in big-time college sports (Carroll and Humphreys, 2016). The

Board of Regents decision put conferences in charge of negotiating television broadcast rights

contracts. At the same time, the number of broadcasters televising college football exploded,

driving up the value of these rights fees and revenues (Sanderson and Siegfried, 2018).

The growing importance of college football television broadcast rights increased the return

to broadcasts of college football games, and conferences responded by adding new members

that would increase the footprint of their TV audience. Traditional athletic conferences like

the Big 10 added universities from Pennsylvania, Maryland, and New Jersey, well outside

their original territory in the midwest. The PAC-10 Conference expanded eastward, adding

teams in Utah and Colorado. Some long-lived conferences like the SWC were torn apart and

new power conferences like the Big 12 emerged from the ashes.

Sanderson and Siegfried (2015) and Sanderson and Siegfried (2018) emphasize that these

changes were driven by the desire of conferences to increase television broadcast revenues,

and not by university-led attempts to improve academic outcomes. We exploit these changes

to better understand the impact of intercollegiate athletic programs on broader academic

outcomes at universities. Conference realignment represents an exogenous change to the

the Pacific Northwest to small crowds and threatened to leave to join a power conference with Notre Dame,
Penn State and others unless a change was made to the Pac 8 Hansen (2016).
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intercollegiate athletic environment on campus that is plausibly exogenous to unobservable

university-level factors affecting academic outcomes. Television-revenue generated confer-

ence realignments represent ideal natural experiments to be used with modern causal infer-

ence methods like difference-in-differences models and propensity score matching.

4.2 Data

We collected data from 90 NCAA Division 1 Football Bowl Subdivision (FBS) colleges

and universities over the period 2000-2015 from a number of sources. We combine data on

university characteristics from the Integrated Postsecondary Education Data System, state

and local macroeconomic indicators from Bureau of Economic Analysis (BEA) Regional

Economic Information System (REIS), and data on Division I athletic conference affiliation

from publicly available news outlets. Table 4.1 provides summary statistics for our data.

We begin by describing athletic conference membership and realignment over the sample

period. The first two rows of Table 4.1 motivate our empirical analysis. About 21% of the

team-seasons in the sample involved a change in athletic conferences.

4.2.1 Changes to Conference Membership

We define conference changes or switches as the case where institutions switch from one

athletic conference to another. As discussed above, a relatively large number of NCAA Divi-

sion 1-A/FBS schools switched conferences since the 1984 Board of Regents decision. These

changes in conference affiliation reflect the fact that the 1984 Board of Regents Supreme

Court decision reduced the power of the NCAA to regulate television schedules and appear-

ances in college football and increased the power of athletic conferences.

Figure 4.1 illustrates the number of universities switching conferences for the first time

since the formation of the Big 12 Conference.5 Some teams change conferences more than

once over the period, so the conference changes shown on Figure 4.1 do not represent the

full extent of realignment over this time period. For simplicity, we only identify a change of

conference if it is the first move since the Big 12 formed. Notice that conference changes are

5For a complete accounting of NCAA D1 Football Conference changes since 1965 see Bostock et al. (2013).
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not uniformly distributed over time. Rather, they tend to cluster during specific periods.

For example, the demise of the Big West Conference in 2001 and the collapse of the Big East

Conference in 2013.

Not all conference changes are equal, even at the same school; conference realignments

are heterogeneous. Consider the experience of Texas Christian University (TCU). TCU left

the Southwest Conference (SWC) in 1996 when the Big 12 formed from a merger of some

members of the SWC and the Big 8 Conference. Lacking an invitation to join the newly

formed Big 12, TCU moved to the Western Athletic Conference, which expanded to a mega-

conference from a smaller conference with 10 incumbents by adding six teams from the Big

West Conference and SWC. This move was certainly not a step up for TCU, since they

traded membership in a conference with powerhouse football schools like Texas and Texas

A&M for membership in a conference with Texas-El Paso and Tulsa. It was perhaps a lateral

move, but more likely a step down in terms of prestige of their conference foes. This was a

negative conference move for TCU.

TCU’s most recent conference change saw the Horned Frogs join some of their old SWC

rivals (Baylor, Texas, and Texas Tech) and most of the former Big 8 conference in the

Big 12 conference when former SWC member Texas A&M moved from the Big 12 to the

Southeastern Conference in 2012 and former Big 8 member Colorado moved to the PAC

10 conference in 2011. In this case, TCU found itself joining more prestigious conference

affiliates, which increased the profile of TCU’s athletic programs. This was undoubtedly

a positive move for TCU. We must account for the difference between negative conference

changes and positive conference changes when assessing the relationship between conference

changes and educational outcomes.

To account for this we create two different conference move indicator variables. One

indicates any move from one FBS conference to another. The other indicates a move from

an FBS conference to a Power 5 Conference (ACC, Big 10, Big 12, Pac 12, or SEC). In this

project we only include FBS conference changes after 1996 (the year the Big 12 was formed).

The variable Conference Changeit = 1 if university imoved to a different athletic conference

after 1996 and before year t. The variable Conference Change 5it = 1 if university i moved

to a Power 5 conference after 1996 but before year t. These variables act as treatment
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indicators for each model described in the Empirical Analysis section. Before discussing the

empirical methods, we describe the institution specific academic outcome variables.

4.2.2 IPEDS Data

The Integrated Postsecondary Education Data System (IPEDS) is the richest publicly

available data set on characteristics of US institutions of higher education. IPEDS data

contain variables in several broad categories including institutional characteristics, revenues,

expenditures, graduation rates, admissions, and incoming student test scores. It is cumber-

some to format IPEDS in panel data form so we use Delta Cost Project (DCP) data. The

DCP team formatted much of the IPEDS universe into an easily usable panel structure.

Some researchers caution against using the DCP data because it collapses data from

multiple institutions in a university system into a single unified institution. Jaquette and

Parra (2016) highlight concerns about the DCP aggregation of university systems into a

single composite institution. DCP treats all institutions that are part of a larger university

system (e. g. UMass Amherst, UMass Boston, and UMass Lowell) as one consolidated entity,

aggregating or averaging each variable from individual campuses. A prime example of this

issue is the University of Texas System. According to DCP, the University of Texas at Austin

had an enrollment of 229,778 in 2015, a large value that reflects total enrollment across the

entire University of Texas system, which contains 14 individual institutions.

In this analysis, the use of institution/group specific fixed effects mitigates the likelihood

of any systemic bias in our main results because the DCP consistently aggregates data for

the entire grouping each year. Additionally, we limit our scope to FBS schools, typically the

main campuses of these groupings. Because of the relative sizes of the main campuses, any

major change in variable x for the group almost certainly results from a similar change in

variable x for the main campus. We would only be concerned in two situations. First, if

conference realignment of the main campus of a university system/grouping systematically

directed funds/applicants/enrollees from satellite campuses to the main campus or from

main campuses to the satellite campuses. Or second, if the institutional system/grouping

has two D1, FBS football schools. We eliminate this second concern by omitting the two

systems/groups with more than one FBS football school (UT Austin and UT El Paso in the
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University of Texas system; UNM and NM State in the University of New Mexico system).

Revenues and Expenditures

As noted by Hoffer and Pincin (2015) some university administrators believe conference

changes may reduce the need for the university to subsidize its athletics programs by gen-

erating more revenue. However, Hoffer and Pincin (2015) find increases in athletic revenues

stick to athletics departments like a fly to flypaper. Nevertheless, we assess the extent to

which conference changes affect academic spending or university-wide revenues. The follow-

ing describes the revenue and expenditure data. We normalize all expenditure and revenue

data to a per full time student basis and deflate dollar values to 1982-1984 dollars using the

Consumer Price Index (CPI).

On Table 4.1, State Appropriation (The variable Stateit below) is direct state appropri-

ations to university i in year t. This is funding from state governments to help universities

in their state meet operating expenses. State and Localit represents revenue generated by

university i in year t in the form of state and local appropriations, grants, and contracts.

Privateit are revenue from private gifts, grants, and contracts. This includes only those

gifts, grants, and contracts that are directly related to instruction, research, public service, or

other institutional purposes. Federalit are revenues from federal grants or contracts for train-

ing programs, research, or public service activities for which expenditures are reimbursable

under the terms of a government grant or contract, includes Pell Grants for institutions that

do not treat it as a pass-through to tuition revenues.

Expenditure data focus on research and instruction. Research Totalit is the total spend-

ing on activities specifically organized to produce research outcomes and commissioned by

an agency either external to the institution or separately budgeted by an organizational unit

within the institution for university i in year t. Research Salariesit are the salaries and

wages paid to directly support research in institution i in year t.

Total Instructionit includes expenses of the colleges, schools, departments, and other

instructional divisions of the institution and expenses for departmental research and public

service for university i in year t that are not separately budgeted. Instruction Salaryit is

the employee salary/wage/compensation component of Total Instruction for university i in
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year t.

Characteristics of Incoming and Existing Students

Institutions in IPEDS began providing information on admissions beginning in fall 2002.

We use Applicantsit, the number of applicants to institution i in the fall semester of year

t, and Admissionsit, the number of first time college students enrolled at institution i in

year t. Universities have reported Total Enrollmentit since the inception of postsecondary

data collection. This is the number of students enrolled in a course at institution i at the

beginning of the fall semester of year t.

Institutions in IPEDS began submitting summary measures of standardized test scores

for their incoming classes starting in 2002. They report components of two test types, the

ACT and the SAT. We use each testing component as an outcome variable. They are as

follows: ACT Composite, ACT Math, ACT Verbal, SAT Math, and SAT Critical Reading.

In earlier years, universities had more leeway on reporting these scores. For instance, in

2004, regulations only required schools to report scores for tests where 60% of their enrolled

students provided those scores to the university. In more recent years, if any students submit

test scores and test scores are required for admission the institution must report the first

and third quartiles.

Student Retention and Completion

Our final variables from the IPEDS database reflect student success in terms of remain-

ing enrolled in school and graduating with a degree. Graduation Rateit is the fraction of

a cohort of students at university i who graduated by year t with their intended degree

within 150% of the normal time to degree completion. For example, the graduation rate

for 2008 is the fraction of the 2002 cohort of new Bachelor’s Degree seekers and the 2005

cohort of new Associate’s Degree seekers who earned their respective degrees by 2008. It is

important to account for the lagged characteristic of this variable when interpreting results.

Retention Rateit is the proportion of year (t − 1)’s first-time, full-time cohort of students

who re-enrolled at institution i as either full-time or part-time students in the fall of year t.
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4.2.3 REIS Data

We collect BEA Regional Accounts data to control for variation in economic factors

at the state and county level that may influence the outcome variables listed above. We

downloaded Populationit, the population of the state where university i is located in year t,

State RGDPPCit, the per capita GDP of the state where university i is located in year t in

2017 Dollars, County Incomeit the personal income in year of the county in which university

i is located, and State Unemploymentit, the unemployment rate of the state where university

i is located in year t.6

4.3 Empirical Analysis

We estimate average treatment effects of moving from one athletic conference to another

on university-level outcomes. To identify a causal effect of a conference switch we must ac-

count for the heterogenous nature of both universities and conferences, and any correlation

between the treatment variable, switching athletic conference affiliation, and unobservable

university-specific and state-specific factors that affect the decision to change athletic confer-

ence affiliation. We address these issues using a variety of causal inference methods including

difference-in-differences methods, propensity score matching, and focusing empirical analy-

sis on clusters of homogeneous conference moves. First, we discuss the identification of our

treatment variable to establish our claim of quasi-random treatment selection.

4.3.1 Identification

This research uses athletic conference realignment as a quasi-random treatment that

possibly generates negative or positive changes in academic outcomes at universities. Much

of the previous research on intercollegiate athletics and academic outcomes typically used win

percentage, bowl appearances, NCAA Men’s Basketball Tournament appearances, or final

poll rankings as proxy variables for intercollegiate athletic success. However, using athletic

success measures may introduce endogeneity problems, as university administrators could

6Virginia separates its counties and independent cities. Therefore we use data from the independents
cities of Blacksburg, VA and Charlottesville, VA instead of county income for Virginia Tech and University
of Virginia respectively.
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direct funding to intercollegiate athletics as a means to increase these academic outcomes.

Using athletic conference realignment mitigates this problem. Athletic conferences aim

to maximize revenues generated from sale of the television broadcast rights to games played

by conference members. Decisions to add new members to an athletic conference are made

by the conference commissioner in consultation with current members. Many of the con-

ference realignment decisions in the sample reflect attempts by conferences to expand the

conference television footprint, or the number of television viewing households that might

watch conference games. Alternatively, realignment may reflect attempts by a conference to

improve the quality of athletic competition in the conference.

Athletic conferences invite new schools to join based on the expected effect of new con-

ference members on total conference television broadcast rights revenues. When conferences

expand, they offer membership to universities with large fan bases or large potential fan

bases. These factors are unlikely to be correlated with unobservable institution-specific fac-

tors that affect academic outcomes like the number of applicants, standardized test scores of

applicants, student retention rates, graduation rates, or other variables under the control of

university decision makers. This forms the basis of the identification approached used here;

we assume that a change in athletic conference affiliation is uncorrelated with unobservable

institution-specific factors affecting academic outcomes at universities.

Because conference membership invitations reflect the television broadcast rights rev-

enue generating potential of new conference members, we need to control for state and local

characteristics like state population and state per capita real GDP, which reflect the number

and disposable income of the fans of schools invited to join a conference. The academic

outcomes of new conference members should not be correlated with conference television

broadcast rights revenue or state and local economic conditions. Because realignment deci-

sions should be exogenous to academic conditions at universities that switch conferences, we

can use conference changes as a quasi-randomly assigned treatment in this setting.

4.3.2 Baseline Empirical Model

Our baseline model, Equation (4.1), is a reduced form model of the determination of

institution-specific outcome variables. This equation can be used to generate estimates of the
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average treatment effect of a school switching conferences using the standard difference-in-

differences framework with institution and time fixed effects. This approach assumes that the

decision to switch athletic conferences is uncorrelated with unobservable institution-specific

factors that affect academic outcomes. Treated schools switch from one athletic conference

to another and remain treated in all periods after switching athletic conferences. The panel

nature of the data allows us to include institution fixed effects to control for unobservable,

time invariant institutional factors, and year fixed effects to control for unobservable, time

varying factors that affect all institutions in the sample. Finally, we use state-level, county-

level, and institution-level time varying explanatory variables to control for state-, county-

and institution-level time varying factors that may impact academic outcome variables at

institutions in the sample. β is the estimated ATE of switching athletic conferences.

Yit = α + βSwitchit + γXit + δi + θt + εit (4.1)

Where Yit represents a university-specific outcome variable. Switchit is the treatment vari-

able indicating a university switched conferences in some year T < t. Xit is a vector of

control variables for university i at time t, namely, state real GDP per capita, unemploy-

ment rate, and population for university i’s state, county real GDP per capita for the county

in which institution i resides and, for most models, total enrollment in university i. δi is a

university fixed effect. θi is a year fixed effect and εit is a heteroscedasticity-robust equation

error term randomly distributed around zero that captures all other factors that affect the

university-specific outcome variables.

For Equation (4.1), the parameter β reflects the ATE for a switch in athletic conference

membership for any institution. However, as discussed in detail in the data section, we would

need to investigate the circumstances surrounding each realignment to categorize it as a boon

or a bust for the university. But we want to avoid arbitrarily deciding which realignments

are “good” and which are “bad” for their universities. Rather, we claim realignment to a

Power 5 Conference (ACC, Big 10, Big 12, Pac 12, or SEC) creates an undoubtedly improved

situation for the realigning university. Therefore, Equation (4.2) uses the same specification

with the exception of the treatment variable, Switch Power 5it, which identifies only those
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university–years where university i joins a power 5 conference prior to year t.7

Yit = α + β(Switch Power 5it) + γXit + δi + θt + εit (4.2)

Other than the treatment variable, Equation (4.2) is a replica of Equation (4.1).

4.3.3 Propensity Score Matching

The previous models use data on 90 institutions and their athletics programs. Not all

of these universities are ideal comparisons. In our second model, we control the realign-

ments of schools like West Virginia University and Texas A&M with schools like Tulane

and Kent State. Granted, we are simply using all available data, but not all universities

could plausibly replace WVU or Texas A&M as conference switchers and therefore closely

represent a counterfactual. The real problem is, not all universities are equally likely to

switch conferences, especially switch to a power 5 conference. Additionally, the likelihood

of switching conference is not constant across time so university fixed effects cannot control

for this discrepancy. Without question, the group of institutions that has changed to power

5 conferences shared characteristics that made them more likely to switch conferences than

other institutions. If we can model the probability of changing conferences based on ob-

servable characteristics, then we can identify non-switching universities that shared similar

probabilities to switch conferences as the actual conference changers. Therefore, to better

resemble a randomized control trial, we assign a more appropriate comparison group via

Propensity Score Matching (PSM). We then estimate difference-in-difference models, only

including the matched observations as controls.8

First, we estimate the propensity scores: a measure of the likelihood of treatment as-

signment (in this case conference changes) based on observable characteristics. We believe

conferences rely on expected revenue improvements when determining membership offers.

7We include universities realigning to non-power 5 conferences in the control group. This represents an
implicit assumption that non-power 5 conference switches do not systematically affect academic outcomes. If
non-power 5 realignments positively affect academic outcomes our estimated ATE’s for power 5 conferences
are biased downward and vice-versa

8Although some PSM methods use difference-in-means as the treatment effect, doing so in this case would
ignore the time variation in our data. Therefore, we simply use PSM as a method of identifying a more
appropriate control group.
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So, we estimate the propensity scores using a logit model, estimating the log odds of realign-

ment based on observable characteristics that likely influence expected conference revenues.

TV broadcast revenues depend on the number of viewers reached, so we posit that state

population, the disposable revenue of those in the state, the size of the institution, and

the success of the institution will likely influence the marginal increase in viewership post-

conference change. Therefore, we estimate the log-odds (logit) of conference switching based

on averages of the previous five years for state population, state real GDP per capita, state

unemployment, total enrollment, and bowl appearances.

In this model, we observe conference switchers up to their year of realignment. We

observe control universities from 2000 to 2015. We also omit universities from the top

conferences (Big 10 and SEC) and the lowest level conferences (MAC and Sun Belt) as it

is extremely unlikely that these athletics programs would change affiliation to a Power 5

conference. We assume Switch Power 5it is a random variable selected from a one-draw

binomial distribution with probability of switching to a power 5 conference equal to πit for

university i in year t. Equation (4.3) estimates the logit of πit.

ηit = logit(πit) = log
πit

1− πit
= x′itβ (4.3)

Where x′it is a vector of variables listed above and β is a coefficient vector. Estimates for

β are available in the appendix tables. Specific to the year of each switch, we pair each

treated university with control university that has the closest predicted logit value based on

Equation (4.3). The relatively low propensity of switching makes using the predicted logit

necessary. To avoid the control universities being matched with two treated universities,

we start by matching the treated university with the highest logit first, the second highest

second, ect and removing the matched university from the pool of untreated universities at

each stage. To ensure that the pairs are near enough matches, we choose a caliper of 0.2σ2,

where σ2 is the standard deviation of the predicted logit values. This analysis identifies 13

matches for the 15 universities changing to power 5 conferences. Table 4.2 identifies the

matches. We estimate academic outcome variables using Equation (4.2) with the matched

universities listed in Table 4.2.
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4.3.4 Analyzing Realignment Clusters

Problems may still exist using this PSM method to establish the control group. Eleven

of the 13 matches are already members of Power 5 conferences; whereas only 6 of the 15

treated universities switched from one power 5 conference to another. Many of the switchers

join conferences of the matched universities, so existence of any conference peer effect would

cloud the meaning of parameter estimates. Additionally, many of the conference changes

result in increased number of teams in a conference. This in itself could improve bargaining

power of a conference when it comes to TV Broadcast Rights and increases conference-wide

revenue by making possible conference championship games. So for this set of switchers and

controls, expansion affects both groups, which could bias results.

Rather, we believe estimating the difference in the outcomes of a conference switcher

from conference j and the universities still in conference j is a more appropriate test of the

effect of conference changes. We address this in our final model specification where we look

at two specific clusters of athletic conference realignment. The first occurred in 2004 and

2005 when the University of Miami, Virginia Tech, and Boston College left the Big East

Conference for the Atlantic Coast Conference and Louisville and Cincinnati replaced them

in the Big East. 9

We categorize each of these conference changes as improvements for the realigning school.

Miami, VaTech, Louisville, and Cincinnati were the powerhouses of their respective confer-

ences. They were not forced to change conferences. They chose to switch when given the

opportunity because they believed it was advantageous. If moving to the ACC was advan-

tageous to Miami and VaTech then we can safely assume the same logic holds for BC.

We limit our data set to members of Conference USA and the Big East Conference in

2003 with the exception of USF, which joined D1 FBS Football in that same year. This

smaller data set assures an excellent comparison group, the former conference members

of the realigning universities. There is even direct evidence that if Miami or VaTech had

refused to switch then the ACC would plausibly have asked other BE schools to join them

9The University of South Florida also moved from Conference USA to the Big East in 2005. However,
South Florida had only been part of FBS football for two years prior to this move. The impact of a conference
move may be affected by the amount of time spent in FBS before the move. This could bias our results.
Therefore, we omit USF from this model specification.
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since Syracuse and Pittsburgh do so in 2013. Additionally, CUSA schools joined former

BE schools when the AAC formed. Those conference changing universities mentioned above

comprise our treatment group for the years they hold membership in their new conferences.

Universities leave the data set if they change conferences at a later time (i.e. WVU in after

2011). We model this selective data set with Equation (4.1).

We use the same method with universities realigning in 2011 and 2012 moving to Power

5 conferences. We limit the data set to universities in the Mountain West Conference or

the Big East Conference in 2005. Conference changers include those schools moving into

power five conferences (TCU, Utah, WVU, Louisville, Pittsburgh, and Syracuse). With the

exception of the formation of the American Athletic Conference, which kept the Big East

Conference control schools together, there is no additional movement from these conferences.

Since all the realignments in this case are to Power 5 conferences, we can use either Equation

(4.1) or Equation (4.2) to estimate the average treatment effect of these realignments.

4.4 Results

We find two general patterns across methods and outcome variables. First, conference

changes as a whole seems to have negative or no relationship with academic outcomes.

Second, conference changes identified as expected improvements for the switching athletics

program see no or perhaps positive effects on academic outcomes. We highlight the results

following the order outlined in the last section. We begin by analyzing the general effects

of conference changes on the entire set of schools in a difference-in-differences framework.

Next, we discuss the estimated ATE of conference switching using a PSM framework. Finally,

we focus on clusters of conference realignment where the conference changes all represent

improvements in regional or national attention received by football programs while restricting

control universities to those starting in the same conference as the switching universities.

4.4.1 Full Sample Results

Tables 2 through 12 present estimates of the ATE of conference changes using Equation

(4.1), estimating the ATE of changing conferences in general, and Equation (4.2), estimating
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the ATE of changing to power 5 conferences in particular, for the entire sample of 90 NCAA

D-1 FBS schools. Because conference changes advertise universities in a new light or to

a new audience, number of applicants is one of the main outcomes variables of interest in

this study. Table (4.3) presents estimates indicating significant reductions of around 2700

applicants for universities switching to any FBS conference; whereas, the estimated ATE of

a school switching to a power 5 conference is less precise and around -1400. If conference

changes significantly reduce applications, universities might automatically counter to keep

enrollment steady by increasing acceptance rates. We find imprecise positive estimates for

conference changes on acceptance rates.

We cannot claim that conference switching makes universities less selective using ac-

ceptance rates. However, we can use test scores to measure if conference switching affects

incoming student quality. Tables 4.5 through 4.9 present estimates of the ATE of switching

and power 5 switching on first (Q1) and third (Q3) quartile scores of incoming students for

the SAT and ACT standardized tests. We find negative estimates across test score specifica-

tions; however, few are significant. Interestingly, although we estimate significantly greater

reductions in applicants for universities changing to any conference, we find only universities

switching to power 5 conferences encountered significantly negative impacts on incoming

students’ test scores.

Changes in perception can plausibly explain why switching to big-time football con-

ferences might reduce incoming student ability while losing fewer applicants than typical

conference switchers. First, people are more aware or pay more attention to big-time con-

ference changes than conference change in general. This advertising effect might limit any

reductions in applications common to switching conferences. However, not every applicant

will view conference changes in the same light. Imagine two types of applicants, an investing

applicant, who values college because of expected improvements in labor market outcomes,

and a consuming applicant, one who values college as an experience. The investing applicant

views University X switching to a Power 5 conference as a negative because the university

is associated more with football, taking away from its academic prestige. On the margin,

the investing applicant would decide not to apply to University X. On the other hand, the

consuming applicant views University X switching to a Power 5 conference as a benefit be-
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cause this improves the amenities an applicant can consume while at University X. On the

margin, the consuming applicant would rather apply if University X switches to a power 5

conference. If a greater proportion of high (low) ability applicants are investing (consuming)

applicants, then we would expect lower ability levels of incoming students after a university

switches to a power 5 conference. Neither applicant type cares if University X switches to

a non-power 5 conference; therefore, conference realignment in general would have no affect

on incoming students’ abilities.

The final set of outcomes focus on institution specific funding and expenditures. Table

4.10, Table 4.11, Table 4.12, and Table 4.13 present results on Instructional Expenditures,

Research Expenditures, State and Local Funding, and Private and Federal Funding respec-

tively. We find power 5 conference changes increase some funding and expenditure measures.

Research salaries tend to increase post-power 5 realignment as do state appropriations and

state and local grants and contracts. Realignment overall has little impact. We find decreases

in instructional spending and increases in state appropriations at the 10 percent level.

It is important to note these results include university systems or groupings. To reduce

any possible biases introduced when modeling aggregated outcome variables, we also estimate

each model omitting universities that are or were part of institutional systems or groupings.

Results from these models located in the appendix tables are consistent with the above

results.

4.4.2 Propensity Score Based Control Group Selection

The remainder of our analysis focuses on selecting proper comparison universities for

positive conference changes beginning with selecting comparison universities based on pre-

dicted treatment likelihood. We select those control universities with predicted log odds of

switching to a power 5 conference closest to the predicted log odds of programs actually

moving to power 5 conferences.

Table 4.14, using Equation (4.2) and limiting analysis to institutions selected, presents the

parameter estimates and standard errors of the conference change treatment (Switch P5).

We find consistently insignificant parameter estimates. One exception is the first quartile

ACT verbal scores, which are negatively related to switching to a power 5 conference at the
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10 percent level. Generally speaking, using this selection method, conference improvements

appear to have no affect on academic outcomes of universities. This null result begs the

question to universities, why subsidize big-time college football?.

However, this result could derive from problems with our new control group. The perfect

counterfactual for say WVU leaving the Big East for the Big 12 would be if we could observe

a reality where WVU stayed in the Big East. Rather, we select a control group comprised of

mostly Pac 12, ACC, and Big 12 schools (10/13), the conferences which many of the switchers

(10/15) are joining. This is not the ideal setup for difference-in-differences. Although the

control schools may be more similar to the switchers, if conference peers have an effect

on each other, then conference change affect both the treatment and the control groups

possibly biasing any results. To mitigate these concerns, the next section focuses instead on

the conference foes left behind by universities experiencing positive conference changes.

4.4.3 Investigating Realignment Clusters

College football realignments are often clustered at specific points in time. First movers

generate conference membership positions for second movers who, in turn, open up conference

switching opportunities for other programs or perhaps weaknesses in their former conferences.

Figure 4.1 depicts three clusters from our sample years. One centered around 2001 when

the Big West Conference ceased to exist and its small-time teams jostled for affiliations in

second and third tier conferences. One in 2004 and 2005 when Miami and VaTech sought to

improve their fortunes in the ACC. And finally, one centered around the demise of the Big

East Football Conference, which took place between 2011 and 2014. We analyze the latter

two realignment clusters as they involve movement in the top tier conferences.

2004/05 Realignment Cluster

Propensity score matching should select an improved control group by matching on ob-

servable characteristics. However, we might improve on this method by using a control

group of schools from the former conference of universities with undoubtedly positive re-

alignments. We begin with the 2004/05 conference realignment comprised of three Big East

Conference members (University of Miami, Virginia Tech, and Boston College) joining the
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Atlantic Coast Conference and two Conference USA members (Cincinnati and Louisville)

joining the Big East Conference. Each of these moves were athletic conference improvements

for the switchers. The true counterfactual would see the switchers staying in their respective

conferences. This identifies a natural control group, the former conference members of the

universities changing conferences. Thus, we use Equation (4.1) to model how these five con-

ference changes affected university academic outcomes using former conference foes as the

control group.

Table 4.15 presents evidence of positive academic effects for these conference changes for

student retention and graduation. Those teams changing conferences saw a 5 percentage

point improvement in graduation rates and a 4 percentage point improvement in first time

student retention rate than their former conference peers. This suggests that students are

more likely to stay at their university when the relative quality of football competition

improves. It is important to note, however, that retention rates are first available in 2004, so

when including fixed effects, this estimate only pertains to Boston College, Louisville, and

Cincinnati, those schools realigning in 2005.

In Table 4.16 and Table 4.17, we present findings on how the 2004/05 realignment cluster

affected incoming student test scores. Following conference changes, incoming students’ ACT

scores improved by 0.9 to 1.6 percentage points for both Q1 and Q3. SAT scores improved by

over 20 points for both the first and third quartiles in Math and the first quartile of Critical

Reading. The third quartile critical reading score improved by 12 points after conference

changes.

Although these five universities saw improvements in student retention, graduation, and

test scores, all estimates of the ATE of conference changes on university funding and spending

found in Tables 4.18 and 4.19 are imprecise. It is likely that most funding and expenditures

are stable from year-to-year. Additionally, athletic departments spend any increase in rev-

enues from changing conferences, failing to relieve the university of any subsidization to the

athletics department (Hoffer and Pincin, 2015). These improved academic outcomes may

be specific to this conference switching cluster. To assess the external validity we check the

2011/12/13 realignment cluster using the same method.
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2011/12/13 Realignment Cluster

The 2011/12/13 conference changes we focus on are really just a part of a larger mass

of conference changes. We select those conference switches that are most certainly improve-

ments, namely, programs moving from non-power 5 to power 5 conferences. We include

those universities changing football conferences from the Big East Conference to the At-

lantic Coast Conference and to the Big 12 Conference and also universities changing from

the Mountain West Conference to the Pac 12 Conference and to the Big 12 Conference. The

universities changing conferences are: Utah, TCU, WVU, Syracuse, and Pittsburgh. We

do not include movements of Big 12 universities to Power 5 conferences because these were

lateral movements from one Power 5 conference to another.

For these conference changes we do not estimate positive impacts. Rather, we find im-

precise positive estimates on Applicants, Acceptance Rate, Graduation Rate, and Retention

Rate in Table 4.20. Mainly imprecise, mostly negative effects to test scores in Tables 4.21

and 4.22. Table 4.23 presents imprecise estimates for all but State Appropriations. Our esti-

mates suggest conference change reduces State Appropriations. In specifications estimating

expenditures on research and instruction (Table 4.24), we find conference changes positively

affected research salaries and instructional spending at the 10% alpha level.

We expect imprecise estimates, especially for graduation rates of previous cohorts, be-

cause many of these variables will act with a slight lag and we only observe university

characteristics for three or four years after the conference changes. However, these results

suggest we should reject the external validity of our results from the 2004/05 cluster. The

2011/12/13 conference changes we focused on were certainly improvements for the switchers

and we did not find positive results as we did in the 2004/05 conference changes above.

It could be that some of these realignments, most notably Syracuse and Pittsburgh, were

out of necessity rather than desire. Additionally, there could be saturation in the Power 5

Conferences. With all of the conference expansion, being part of a big-time football con-

ference may not result in as much increase in prestige or popularity than it did during the

2004/05 conference changes. Whatever the case, we do not claim the results from 2004/05

realignment would hold for other conference changes.
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4.5 Conclusion

To defend the subsidization of big-time sports programs in the United States, advocates

refer to the revenue creation and advertising benefits of successful university athletics pro-

grams. But this cannot be a one-size-fits-all argument for subsidies because each team’s

success is built on other teams’ failures. However, subsidization of athletics might prove

useful to university academics in general if universities not only benefit through success, but

also through simply vying against big-time sports programs on the field. We test this by

modeling how conference changes in FBS football affect university academic outcomes. Not

only does this empirical strategy test whether participation in big-time college sports affects

academic outcomes, it also avoids identification issues met by previous research focusing on

the impact of athletic success on university outcomes.

We find that conference changes have mostly insignificant or negative effects on academic

outcomes. In our full model, conference changes, even switching to power 5 conferences,

reduce the number applications and test scores of incoming students. We do provide evidence

that universities switching to higher tiered conferences in the 2004/05 realignment cluster

improved some academic outcomes. However, similar switches in a later time period had few

precisely estimated effects. In sum, although there may be evidence of improved outcomes

for changes to big-time conferences, the aftershocks caused by these first movers likely have

negative academic impacts for NCAA D1-FBS football programs as a whole.
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Figures and Tables

Figure 4.1: Conference Changes by Year, First Time Switchers
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Table 4.1: Summary Statistics, Full Sample

Mean St. Dev. Min Max Obs

Conference Change 0.21 0.41 0 1 1552
Conference Change Power 5 0.05 0.22 0 1 1552
State Appropriations 8938 4314 28 24222 1064
State & Local Grants & Contracts 10463 6972 30 33820 1250
Private Gifts Grants & Contracts 4410 8283 0 66357 1207
Federal Grants & Contracts 8599 9458 356 69382 1261
Total Research 8739 9427 0.02 67233 1247
Research Salaries & Wages 4240 4369 0.18 30890 1242
Instructional Expenditures 14428 11069 3567 89588 1261
Instructional Salaries & Wages 9033 6229 513 50456 1260
Enrollment (1000s) 23.19 12.00 3.36 74.11 1551
Applicants 16866 10262 2077 86537 1240
Acceptance Rate 63.4 20.3 5.1 99.2 1240
Graduation Rate 65.9 15.2 30.0 96.5 1358
Retention Rate 84.9 7.9 62.0 99.0 1134
ACT Comp. 25 22.7 3.2 14 32 1192
ACT Comp. 75 27.8 2.8 22 34 1192
ACT English 25 21.9 3.4 14 33 1074
ACT English 75 28.2 3.1 21 35 1074
ACT Math 25 21.8 3.4 15 32 1075
ACT Math 75 27.8 3.0 22 35 1075
SAT Verbal 25 522 60.7 390 710 1200
SAT Verbal 75 632 54.8 480 780 1200
SAT Math 25 542 65.8 400 750 1200
SAT Math 75 653 57.8 520 800 1200
State Population (Mil) 10.49 9.36 0.49 38.99 1552
State GDP/pop (1000) 38.81 7.56 20.85 64.59 1552
County Income/pop (1000s) 32.33 10.80 13.01 85.35 1552
State Unemployment Rate 6.30 2.06 2.30 13.70 1552

Notes:Data from 2000 to 2015. Omits Texas, UTEP, University of New Mexico and

New Mexico State and service academies (US Air Force Academy, US Naval Academy,

and US Military Academy). ACT scores, SAT scores, and Graduation Rate data not

available until 2002. Applicants data not available until 2003, and Retention Rate data

not available until 2004. Revenue and expenditure data used starting in 2003 because

of differences in reporting from public and private institutions.
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Table 4.2: PSM Treated and Control Pairs

Year Switcher Match

2004 University of Miami (FL) Arizona State University
2004 Virginia Tech University of Washington
2005 Boston College Colorado State University
2011 University of Colorado University of Kansas
2011 University of Utah University of Wyoming
2011 University of Nebraska University of Oregon
2012 West Virginia University Texas Tech University
2012 Texas A&M University Georgia Tech
2012 University of Missouri No Match
2012 Texas Christian University Wake Forest University
2013 University of Pittsburgh Brigham Young University
2013 Syracuse University Oklahoma State University
2014 University of Louisville University of Virginia
2014 University of Maryland University of Oklahoma
2014 Rutgers University No Match

Note: BYU’s 2012 predicted logit was within the caliper of Missouri’s, how-

ever, Pittsburgh matched with BYU at a higher predicted logit. Rutgers

had no matches within the caliper of 0.2σ2.
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Table 4.3: Admissions Outcomes and Conference Changes, Full Sample

(1) (2) (3) (4)
Applicants Applicants Acceptance Rate Acceptance Rate

Conference Change -2713.6∗∗∗ 1.7
(691.9) (1.6)

Conference Change Power 5 -1368.1∗ 2.5
(713.9) (1.8)

State Population (Mil) 1587.3∗∗∗ 1527.0∗∗ -1.2 -1.1
(559.9) (584.6) (0.8) (0.8)

State RPCGDP (1000s) 109.6 95.5 0.4 0.4
(112.1) (111.7) (0.2) (0.2)

Cty RPC Inc (1000s) 199.3∗∗ 172.6∗ -0.3 -0.2
(86.3) (92.0) (0.2) (0.2)

State Unemployment Rate 83.1 54.5 1.0∗ 1.0∗

(251.5) (257.9) (0.5) (0.5)
Year 297.3∗ 325.2∗ -0.5 -0.5

(172.4) (176.8) (0.4) (0.4)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 1240 1240 1240 1240

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service academies
omitted. The University of Texas and New Mexico University Systems omitted as they have multiple FBS
teams. Coefficient estimates in the Conference Change row represent the ATE of a move to any conference.
Estimates in the Conference Change Power 5 row represent the ATE of a move to a Power 5 conference
(ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.4: Graduation and Retention Rates and Conference Changes, Full Sample

(1) (2) (3) (4)
Graduation

Rate
Graduation

Rate
Retention

Rate
Retention

Rate

Conference Change 1.2 0.3
(0.8) (0.5)

Conference Change Power 5 0.4 0.3
(0.9) (0.8)

State Population (Mil) 0.6 0.6 0.2 0.2
(0.4) (0.4) (0.3) (0.3)

State RPCGDP (1000s) -0.2∗ -0.2∗ -0.2∗∗∗ -0.2∗∗∗

(0.1) (0.1) (0.1) (0.1)
Cty RPC Inc (1000s) 0.2∗∗ 0.2∗∗ 0.1 0.1

(0.1) (0.1) (0.1) (0.1)
State Unemployment Rate 0.0 0.0 -0.3∗ -0.3∗

(0.2) (0.2) (0.1) (0.1)
Enrollment 0.3∗∗∗ 0.3∗∗∗ 0.2 0.2

(0.1) (0.1) (0.1) (0.1)
Year 0.4∗∗ 03∗ 0.3∗∗∗ 0.3∗∗∗

(02) (0.2) (0.1) (0.1)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 1357 1357 1134 1134

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses.
Service academies omitted. The University of Texas and New Mexico University Systems
omitted as they have multiple FBS teams. Coefficient estimates in the Conference Change
row represent the ATE of a move to any conference. Estimates in the Conference Change
Power 5 row represent the ATE of a move to a Power 5 conference (ACC, Big 10, Big 12,
Pac 12, or SEC).
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Table 4.5: ACT Composite Scores and Conference Changes, Full Sample

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change -0.143 -0.027
(0.200) (0.179)

Conference Change Power 5 -0.357 -0.283
(0.232) (0.183)

State Population (Mil) 0.211∗∗ 0.215∗∗∗ 0.170∗∗ 0.173∗∗

(0.082) (0.081) (0.070) (0.070)
State RPCGDP (1000s) -0.074∗∗ -0.071∗∗ -0.042∗∗ -0.038∗

(0.031) (0.031) (0.021) (0.021)
Cty RPC Inc (1000s) 0.080∗∗∗ 0.078∗∗∗ 0.032∗ 0.031∗

(0.019) (0.019) (0.018) (0.018)
State Unemployment Rate -0.019 -0.020 -0.059∗ -0.058∗

(0.041) (0.040) (0.034) (0.034)
Enrollment 0.021 0.023 0.049 0.051∗

(0.027) (0.027) (0.031) (0.031)
Year 0.063∗ 0.063∗ 0.091∗∗ 0.090∗∗

(0.038) (0.038) (0.038) (0.038)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Year 2002–2015 2002–2015 2002–2015 2002–2015
Observations 1191 1191 1191 1191

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service
academies omitted. The University of Texas and New Mexico University Systems omitted as they
have multiple FBS teams. Coefficient estimates in the Conference Change row represent the ATE
of a move to any conference. Estimates in the Conference Change Power 5 row represent the ATE
of a move to a Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.6: ACT Verbal Scores and Conference Changes, Full Sample

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change -0.303 -0.205
(0.222) (0.260)

Conference Change Power 5 -0.593∗∗ -0.360
(0.241) (0.364)

State Population (Mil) 0.325∗∗∗ 0.316∗∗∗ 0.217∗ 0.211∗

(0.118) (0.116) (0.123) (0.121)
State RPCGDP (1000s) -0.095∗∗∗ -0.092∗∗∗ -0.067∗∗ -0.065∗∗

(0.033) (0.033) (0.029) (0.030)
Cty RPC Inc (1000s) 0.094∗∗∗ 0.091∗∗∗ 0.034 0.032

(0.023) (0.023) (0.021) (0.021)
State Unemployment Rate -0.052 -0.055 -0.038 -0.040

(0.046) (0.045) (0.044) (0.044)
Enrollment 0.015 0.020 0.021 0.023

(0.027) (0.027) (0.035) (0.035)
Year 0.093∗ 0.094∗ 0.176∗∗∗ 0.177∗∗∗

(0.049) (0.050) (0.048) (0.048)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 1073 1073 1073 1073

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service
academies omitted. The University of Texas and New Mexico University Systems omitted as they
have multiple FBS teams. Coefficient estimates in the Conference Change row represent the ATE
of a move to any conference. Estimates in the Conference Change Power 5 row represent the ATE
of a move to a Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.7: ACT Math Scores and Conference Changes, Full Smaple

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change 0.049 -0.054
(0.209) (0.174)

Conference Change Power 5 -0.316∗ -0.184
(0.184) (0.203)

State Population (Mil) 0.223∗∗ 0.222∗∗ 0.245∗∗∗ 0.243∗∗∗

(0.096) (0.094) (0.082) (0.082)
State RPCGDP (1000s) -0.019 -0.016 -0.038 -0.037

(0.029) (0.029) (0.025) (0.025)
Cty RPC Inc (1000s) 0.055∗∗∗ 0.056∗∗∗ 0.039∗∗ 0.038∗∗

(0.019) (0.019) (0.018) (0.017)
State Unemployment Rate -0.066 -0.065 -0.053 -0.054

(0.041) (0.040) (0.042) (0.042)
Enrollment 0.070∗∗ 0.074∗∗ 0.008 0.009

(0.030) (0.031) (0.029) (0.028)
Year 0.022 0.020 0.067∗ 0.067∗

(0.044) (0.045) (0.039) (0.039)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 1074 1074 1074 1074

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service
academies omitted. The University of Texas and New Mexico University Systems omitted as they
have multiple FBS teams. Coefficient estimates in the Conference Change row represent the ATE
of a move to any conference. Estimates in the Conference Change Power 5 row represent the ATE
of a move to a Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.8: SAT Critical Reading Scores and Conference Changes, Full Smaple

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change -1.5 -0.2
(3.1) (2.7)

Conference Change Power 5 -4.4 -2.7
(3.3) (3.0)

State Population (Mil) 4.7∗∗∗ 4.7∗∗∗ 3.0∗∗ 3.0∗∗

(1.5) (1.5) (1.4) (1.4)
State RPCGDP (1000s) -1.2∗∗ -1.1∗∗ -0.9∗ -0.8∗

(0.5) (0.5) (0.5) (0.5)
Cty RPC Inc (1000s) 0.9∗∗∗ 0.9∗∗∗ 0.8∗∗∗ 0.8∗∗∗

(0.3) (0.3) (0.3) (0.3)
State Unemployment Rate 0.4 0.4 -0.9 -0.9

(0.9) (0.9) (0.8) (0.8)
Enrollment -0.5 -0.5 0.0 0.0

(0.435) (0.428) (0.4) (0.4)
Year 0.6 0.6 0.3 0.3

(0.7) (0.8) (0.7) (0.7)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 1199 1199 1199 1199

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service
academies omitted. The University of Texas and New Mexico University Systems omitted as they
have multiple FBS teams. Coefficient estimates in the Conference Change row represent the ATE
of a move to any conference. Estimates in the Conference Change Power 5 row represent the ATE
of a move to a Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.9: SAT Math Scores and Conference Changes, Full Smaple

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change -3.0 -2.2
(3.8) (3.2)

Conference Change Power 5 -4.1 -2.7
(4.0) (3.5)

State Population (Mil) 2.3 2.2 1.1 1.0
(1.7) (1.7) (1.5) (1.5)

State RPCGDP (1000s) -1.2∗∗ -1.2∗∗ -0.6 -0.6
(0.6) (0.6) (0.5) (0.5)

Cty RPC Inc (1000s) 0.8∗∗ 0.8∗∗ 0.8∗∗ 0.8∗∗

(0.3) (0.3) (0.3) (0.3)
State Unemployment Rate -1.8∗∗ -1.8∗∗ -1.7∗∗ -1.7∗∗

(0.8) (0.8) (0.7) (0.7)
Enrollment 0.1 0.1 0.5 0.5

(0.5) (0.5) (0.5) (0.5)
Year 1.3∗ 1.3∗ 0.6 0.7

(0.7) (0.7) (0.8) (0.8)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 1199 1199 1199 1199

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service
academies omitted. The University of Texas and New Mexico University Systems omitted as they
have multiple FBS teams. Coefficient estimates in the Conference Change row represent the ATE
of a move to any conference. Estimates in the Conference Change Power 5 row represent the ATE
of a move to a Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.10: Instructional Expenditures and Conference Changes, Full Smaple

(1) (2) (3) (4)
Total Total Salaries

and Wages
Salaries

and Wages

Conference Change -1093∗ -404
(623) (291)

Conference Change Power 5 -351 32
(450) (229)

State Population (Mil) 390 367 199 192
(312) (311) (162) (161)

State RPCGDP (1000s) -8 -17 -26 -32
(72) (73) (48) (49)

Cty RPC Inc(1000s) 225 214 87 83
(144) (144) (52) (52)

State Unemployment Rate 321∗∗∗ 308∗∗ 94 87
(121) (119) (71) (70)

Enrollment -66 -73 -93∗∗ -98∗∗

(58) (59) (39) (39)
Year -135 -119 -5 2

(218) (219) (83) (84)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 1260 1260 1259 1259

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service academies
omitted. The University of Texas and New Mexico University Systems omitted as they have multiple FBS
teams. Coefficient estimates in the Conference Change row represent the ATE of a move to any conference.
Estimates in the Conference Change Power 5 row represent the ATE of a move to a Power 5 conference
(ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.11: Research Expenditures and Conference Changes, Full Smaple

(1) (2) (3) (4)
Total Total Salaries Salaries

Conference Change 30 67
(289) (147)

Conference Change Power 5 341 295∗∗

(339) (138)
State Population (Mil) 237∗ 239∗ 85 87

(142) (140) (71) (71)
State RPCGDP (1000s) -23 -29 -5 -9

(49) (49) (18) (18)
Cty RPC Inc (1000s) 82∗∗ 82∗∗ 36 37

(40) (39) (31) (31)
State Unemployment Rate 5 1 -11 -14

(72) (73) (25) (25)
Enrollment -87∗∗ -91∗∗ -56∗∗ -59∗∗

(43) (43) (24) (24)
Year -50 -46 -40 -37

(68) (68) (50) (49)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 1246 1246 1241 1241

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service academies
omitted. Coefficient estimates in the Conference Change row represent the ATE of a move to any con-
ference. Estimates in the Conference Change Power 5 row represent the ATE of a move to a Power 5
conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.12: State and Local Funding and Conference Changes, Full Smaple

(1) (2) (3) (4)
State State State & Local State & Local

Conference Change 576∗ 426
(343) (361)

Conference Change Power 5 722∗∗ 819∗

(338) (471)
State Population (Mil) -314 -306 123 152

(299) (301) (223) (216)
State RPCGDP (1000s) 146∗∗ 146∗∗ 73 66

(67) (66) (74) (74)
Cty RPC Inc (1000s) -121∗∗∗ -116∗∗∗ -13 -9

(44) (44) (35) (33)
State U- Rate -147 -140 -127 -133

(108) (105) (90) (89)
Total Enrollment (1000s) -179∗∗∗ -181∗∗∗ -236∗∗∗ -242∗∗∗

(60) (60) (64) (63)
Year -140 -146 -175∗ -176∗

(103) (103) (92) (90)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 972 972 1249 1249

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service academies
omitted. The University of Texas and New Mexico University Systems omitted as they have multiple FBS
teams. Coefficient estimates in the Conference Change row represent the ATE of a move to any conference.
Estimates in the Conference Change Power 5 row represent the ATE of a move to a Power 5 conference
(ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.13: Private and Federal Funding and Conference Changes, Full Smaple

(1) (2) (3) (4)
Private Private Federal Federal

Conference Change -356 126
(446) (281)

Conference Change Power 5 -193 141
(356) (252)

State Population (Mil) 535∗∗ 527∗∗ -78 -75
(212) (215) (101) (102)

State RPCGDP (1000s) -50 -51 -29 -30
(79) (79) (43) (43)

Cty RPC Inc (1000s) 208∗ 204∗ 22 23
(107) (106) (31) (29)

State Unemployment Rate -75 -79 -38 -38
(133) (133) (75) (76)

Enrollment -124∗∗∗ -125∗∗∗ -85∗ -85∗

(45) (46) (44) (45)
Year -211 -207 21 20

(148) (148) (66) (65)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 1206 1206 1260 1260

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Service
academies omitted. The University of Texas and New Mexico University Systems omitted as
they have multiple FBS teams. Private denotes private gifts, grants, and contracts. Federal
is the amount of federal grants and contracts. All dependent variables are in 2014 dollars per
FTE. Coefficient estimates in the Conference Change row represent the ATE of a move to any
conference. Estimates in the Conference Change Power 5 row represent the ATE of a move to a
Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.14: Diff-in-Diff Estimates: Universities PS Matched on Switch Power 5

Switch P5 Switch P5

Applications 174.3 Graduation Rate (%) 0.9
(846.5) (1.0)

Acceptance Rate (%) 1.3 Retention Rate (%) 1.0
(2.0) (0.9)

State Appropriations -114 Total Research Spending -34
(417) (441)

State and Local Grants and Contracts -31 Research Salaries 159
(440) (206)

Private Gifts, Grants, and Contracts 84 Total Instructional Spending 386
(321) (522)

Federal Grants and Contracts 8 Instructional Salaries 220
(457) (201)

SAT Critical Reading Q1 -1.1 ACT Verbal Q1 -0.501∗

(2.6) (0.289)
SAT Critical Reading Q3 -1.5 ACT Verbal Q3 -0.167

(2.9) (0.413)
SAT Math Q1 0.5 ACT Math Q1 -0.266

(3.4) (0.166)
SAT Math Q3 -1.1 ACT Math Q3 -0.107

(3.0) (0.211)
ACT Composite Q1 -0.160 ACT Composite Q3 -0.166

(0.253) (0.170)

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Heteroskedasticity-robust standard errors in parenthesis. Each

estimate represents a different model specification. PSM match based on logit estimation of treatment using

averages of prior 5 years of bowl apperances, state population, state RPCGDP, state unemployment rate and

university enrollment.
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Table 4.15: Applications, Retention, Graduation, and Conference Changes: 04/05 Cluster

(1) (2) (3) (4)
Applicants Acceptance Rate Graduation Rate Retention Rate

Conference Change 193.2 3.2 5.4∗∗∗ 3.9∗∗

(1277.3) (3.7) (1.0) (1.9)
State Population (Mil) 363.5 -0.7 1.0∗∗∗ 0.8

(749.0) (1.7) (0.4) (0.6)
State RPCGDP (1000s) -126.9 0.8 -0.5∗∗∗ -0.1

(315.1) (0.5) (0.1) (0.2)
Cty RPC Inc (1000s) -117.1 -0.0 0.2∗∗ -0.0

(213.8) (0.2) (0.1) (0.1)
State Unemployment Rate -1779.7∗∗∗ 3.9∗∗∗ 0.3 -0.5∗

(606.1) (1.4) (0.3) (0.3)
Enrollment (1000s) 0.6∗∗∗ -0.2

(0.2) (0.4)
Year 734.7∗∗ -0.7 0.4∗∗ 0.4∗∗

(364.7) (1.0) (0.2) (0.2)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2003-2015 2003-2015 2002-2015 2004-2015
Adj R-Squared 0.861 0.784 0.982 0.894
Observations 162 162 176 140

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models include data
from all members of Conference USA and Big East in 2003. Coefficient estimates in the conference change
row represent the ATE of a change from Conference USA or the Big East to a more prestigious conference
(CUSA to BE and BE to ACC) in 2004 and 2005. Models omit observations from schools that left CUSA
or the BE at other times or to different conferences.
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Table 4.16: ACT Scores and Conference Changes: 04/05 Cluster

Composite Verbal Math
Q1 Q3 Q1 Q3 Q1 Q3

Conference Change 0.909∗∗ 0.977∗∗∗ 1.399∗∗∗ 1.418∗∗∗ 1.556∗∗∗ 1.509∗∗∗

(0.380) (0.370) (0.469) (0.441) (0.361) (0.404)
State Population (Mil) 0.254 0.286∗∗ 0.542∗∗∗ 0.437∗∗ 0.436∗∗ 0.360∗∗

(0.153) (0.140) (0.188) (0.182) (0.179) (0.155)
State RPCGDP (1000s) -0.105 -0.030 -0.085 -0.102 -0.274∗∗∗ -0.111

(0.077) (0.061) (0.106) (0.077) (0.092) (0.073)
Cty RPC Inc (1000s) 0.041 0.007 0.043 0.017 0.095∗ -0.051

(0.052) (0.037) (0.080) (0.053) (0.057) (0.054)
State Unemployment Rate 0.081 0.125 0.104 0.054 -0.051 -0.091

(0.093) (0.098) (0.141) (0.151) (0.114) (0.132)
Enrollment (1000s) 0.139∗∗ 0.217∗∗∗ 0.180∗ -0.026 0.414∗∗∗ 0.066

(0.068) (0.078) (0.104) (0.105) (0.095) (0.115)
Year 0.110 0.022 0.013 0.101 0.042 0.322∗∗

(0.074) (0.111) (0.139) (0.125) (0.106) (0.128)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Years 2002-2015 2002-2015 2002-2015 2002-2015 2002-2015 2002-2015
Adj R-Squared 0.972 0.952 0.964 0.960 0.968 0.960
Observations 137 137 115 115 115 115

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models include members of Conference

USA and the Big East Conference in 2003. Coefficient estimates in the Conference Change row represent the ATE of a move

from Conference USA or the Big East to a more prestigious conference (CUSA to BE and BE to ACC) in 2004 and 2005.

Data from schools that left CUSA or the BE at other times or to different conferences omitted.
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Table 4.17: SAT Scores and Conference Changes: 04/05 Cluster

Math Critical Reading
Q1 Q3 Q1 Q3

Conference Change 23.2∗∗∗ 21.7∗∗∗ 22.2∗∗∗ 11.7∗

(6.130) (4.067) (4.344) (6.513)
State Population (Mil) 9.1∗∗∗ 8.7∗∗∗ 5.8∗∗∗ 6.7∗∗

(2.3) (2.0) (1.6) (2.7)
State RPCGDP (1000s) -3.2∗∗∗ -0.8 -2.8∗∗∗ -0.7

(1.0) (0.8) (0.8) (0.9)
Cty RPC Inc (1000s) 0.7 0.8∗ 1.4∗∗ 1.1∗∗

(0.6) (0.5) (0.6) (0.5)
State Unemployment Rate -3.2 -2.3 -2.4 1.3

(2.1) (1.4) (1.5) (1.9)
Enrollment (1000s) 1.1 1.8∗∗ 1.2∗ 2.5∗∗

(1.1) (0.7) (0.7) (1.2)
Year 1.6 -0.8 0.3 -1.4

(1.3) (1.4) (1.0) (1.7)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2002-2015 2002-2015 2002-2015 2002-2015
Adj R-Squared 0.947 0.952 0.959 0.917
Observations 174 174 174 174

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models

include members of Conference USA and the Big East Conference in 2003. Coefficient estimates

in the Conference Change row represent the ATE of a move from Conference USA or the Big East

to a more prestigious conference (CUSA to BE and BE to ACC) in 2004 and 2005. Data from

schools that left CUSA or the BE at other times or to different conferences omitted.
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Table 4.18: University Funding and Conference Changes: 04/05 Cluster

(1) (2) (3) (4)
State State and Local Private Federal

Conference Change -148 -151 370 -561
(232) (308) (451) (463)

State Population (Mil) 391∗∗∗ 476∗∗∗ 331 -137
(93) (115) (254) (195)

State RPCGDP (1000s) 114∗ 95∗ 135 -68
(59) (48) (83) (93)

Cty RPC Inc (1000s) 9 1 60 139
(22) (41) (51) (84)

State Unemployment Rate 121 52 72 279∗

(105) (82) (225) (144)
Enrollment (1000s) -305∗∗∗ -344∗∗∗ -16 -181∗∗

(59) (46) (68) (73)
Year -221∗∗∗ -145∗∗ -124 -167

(71) (65) (111) (129)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2003-2015 2003-2015 2003-2015 2003-2015
Adj R-Squared 0.982 0.980 0.927 0.972
Observations 124 161 161 161

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models include

members of Conference USA and the Big East Conference in 2003. Coefficient estimates in the Con-

ference Change row represent the ATE of a move from Conference USA or the Big East to a more

prestigious conference (CUSA to BE and BE to ACC) in 2004 and 2005. Data from schools that left

CUSA or the BE at other times or to different conferences omitted.
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Table 4.19: Research, Instructional Expenditures, and Conference Changes: 04/05 Cluster

Research Instructional
Total Salaries Total Salaries

Conference Change 99 105 -129 -181
(341) (163) (457) (258)

State Population (Mil) -76 8 499∗∗ 254∗

(148) (47) (222) (132)
State RPCGDP (1000s) 79 28 -127∗ -87∗∗

(65) (24) (65) (42)
County RPC Inc (1000s) 5 12 55 99∗∗∗

(45) (17) (35) (26)
State Unemployment Rate 153 144∗∗∗ 608∗∗∗ 408∗∗∗

(120) (41) (193) (103)
Enrollment (1000s) -73 -14 -296∗∗∗ -253∗∗∗

(49) (18) (77) (54)
Year -1 -45 255∗∗∗ 37

(86) (34) (84) (47)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2003-2015 2003-2015 2003-2015 2003-2015
Adj R-Squared 0.977 0.981 0.979 0.973
Observations 161 161 161 161

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models include

members of Conference USA and the Big East Conference in 2003. Coefficient estimates in the Con-

ference Change row represent the ATE of a move from Conference USA or the Big East to a more

prestigious conference (CUSA to BE and BE to ACC) in 2004 and 2005. Data from schools that left

CUSA or the BE at other times or to different conferences omitted.
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Table 4.20: Admissions, Student Outcomes, and Conference Changes: 11/12/13 Cluster

(1) (2) (3) (4)
Applicants Acceptance Rate Graduation Rate Retention Rate

Conference Change 582.5 2.1 0.2 0.5
(678.1) (2.4) (1.0) (0.8)

State Population (Mil) 2497.8∗∗∗ -5.1∗∗∗ 1.6∗∗ 1.9∗∗∗

(797.9) (1.1) (0.6) (0.3)
State RPCGDP (1000s) 200.2∗ 0.1 -0.6∗∗∗ -0.7∗∗∗

(118.1) (0.5) (0.2) (0.2)
Cty RPC Inc (1000s) 550.4∗∗∗ 0.5 0.8∗∗∗ 0.9∗∗

(187.8) (0.8) (0.3) (0.4)
State Unemployment Rate 729.3∗∗ 2.0∗ -0.5 -0.1

(335.4) (1.1) (0.4) (0.4)
Enrollment (1000s) 0.3∗∗ -0.3

(0.1) (0.2)
Year -788.9∗∗∗ -1.3 -0.2 -0.8

(245.1) (1.2) (0.4) (0.5)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2005-2015 2005-2015 2005-2015 2005-2015
Adj R-Squared 0.966 0.814 0.957 0.803
N 143 143 143 143

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models include members
of the Mountain West Conference and the Big East Conference in 2007. Coefficient estimates in the Conference
change row represent the ATE of a move from the Mountain West Conference or the Big East to a more prestigious
conference (MWC to Pac 12 or Big 12 and BE to ACC) between 2011 and 2013.
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Table 4.21: ACT Scores and Conference Changes: 11/12/13 Cluster

Composite Verbal Math
Q1 Q3 Q1 Q3 Q1 Q3

Conference Change -0.109 -0.038 -0.588∗∗ -0.307 -0.383 0.252
(0.203) (0.141) (0.288) (0.385) (0.272) (0.191)

State Population (Mil) 0.178 0.214∗∗ 0.293 0.122 0.200 0.129
(0.138) (0.104) (0.219) (0.153) (0.292) (0.232)

State RPCGDP (1000s) -0.072 -0.043 -0.114 -0.102∗ -0.133 -0.062
(0.059) (0.033) (0.075) (0.057) (0.089) (0.048)

Cty RPC Inc (1000s) 0.137∗ 0.082 0.159 -0.004 0.290∗∗ 0.064
(0.079) (0.053) (0.115) (0.081) (0.122) (0.081)

State Unemployment Rate 0.006 -0.122∗ -0.141 -0.254∗∗ 0.014 -0.064
(0.077) (0.067) (0.138) (0.102) (0.130) (0.106)

Enrollment (1000s) 0.039 -0.040 0.004 -0.070 0.072 -0.030
(0.085) (0.050) (0.084) (0.053) (0.097) (0.073)

Year -0.020 0.047 0.010 0.350∗∗∗ -0.199 0.046
(0.093) (0.082) (0.155) (0.111) (0.156) (0.120)

University FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Years 2005-2015 2005-2015 2005-2015 2005-2015 2005-2015 2005-2015
Adj R-Squared 0.919 0.938 0.912 0.923 0.906 0.906
N 131 131 114 114 114 114

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models include members of the
Mountain West Conference and the Big East Conference in 2007. Coefficient estimates in the Conference change row
represent the ATE of a move from the Mountain West Conference or the Big East to a more prestigious conference
(MWC to Pac 12 or Big 12 and BE to ACC) between 2011 and 2013.
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Table 4.22: SAT Scores and Conference Changes: 11/12/13 Cluster

Math Critical Reading
Q1 Q3 Q1 Q3

Conference Change 1.2 -0.1 -6.0∗ -7.5∗

(3.5) (3.9) (3.5) (4.1)
State population (Mil) 2.0 1.3 3.3 1.3

(2.1) (1.7) (2.0) (1.7)
State RPCGDP (1000s) -1.7∗ -0.3 -1.8∗ -0.1

(0.9) (0.9) (1.0) (0.8)
Cty RPC Inc (1000s) 2.5∗ 1.5 2.3∗ 0.4

(1.3) (1.0) (1.3) (1.0)
State Unemployment Rate -3.8∗∗ -2.2 -4.1∗∗∗ -2.6∗

(1.6) (1.4) (1.5) (1.3)
Enrollment (1000s) -1.2∗ -2.1∗∗∗ -1.8∗∗ -1.5∗∗∗

(0.7) (0.6) (0.7) (0.5)
Year -1.5 -0.9 -0.9 0.9

(1.6) (1.4) (1.7) (1.4)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2005-2015 2005-2015 2005-2015 2005-2015
Adj R-Squared 0.927 0.918 0.927 0.933
N 141 141 141 141

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses.
Models include members of the Mountain West Conference and the Big East Conference
in 2007. Coefficient estimates in the Conference change row represent the ATE of
a move from the Mountain West Conference or the Big East to a more prestigious
conference (MWC to Pac 12 or Big 12 and BE to ACC) between 2011 and 2013.
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Table 4.23: University Funding and Conference Changes: 11/12/13 Cluster

(1) (2) (3) (4)
State State and Local Private Federal

Conference Change -936∗∗ -116 -370 -46
(366) (528) (417) (292)

State Population (Mil) -1529∗∗∗ -628∗ 836∗∗∗ 334∗∗∗

(339) (371) (279) (116)
State RPCGDP (1000s) 320∗∗∗ 315∗ -21 -8

(115) (170) (60) (46)
Cty RPC Inc (1000s) -94 -374∗ -95 -102

(159) (200) (134) (64)
State Unemployment Rate 66 -405∗∗ -84 18

(180) (184) (148) (84)
Enrollment (1000s) -382∗∗∗ 54 -22 89∗∗

(143) (170) (40) (42)
Year -86 290 266 49

(236) (246) (205) (91)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2005–2015 2005–2015 2005–2015 2005–2015
Adj R-Squared 0.969 0.958 0.755 0.984
N 110 138 141 143

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models include
members of the Mountain West Conference and the Big East Conference in 2007. Coefficient
estimates in the Conference change row represent the ATE of a move from the Mountain West
Conference or the Big East to a more prestigious conference (MWC to Pac 12 or Big 12 and BE
to ACC) between 2011 and 2013.
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Table 4.24: University Expenditures and Conference Changes: 11/12/13 Cluster

Research Instruction
Total Salaries Total Salaries

Conference Change -79 186∗ 516∗ 424∗∗∗

(231) (102) (278) (161)
State population (Mil) -33 25 -74 -126

(130) (47) (147) (82)
State RPCGDP (1000s) -21 -4 -28 64∗

(74) (21) (64) (33)
Cty RPC Inc (1000s) 76 -11 -37 -95∗

(91) (31) (96) (50)
State Unemployment Rate -86 -60∗∗ 21 2

(69) (30) (97) (51)
Enrollment (1000s) 85 27 -76 -42

(80) (30) (72) (43)
Year -102 13 257∗ 174∗∗

(118) (43) (136) (68)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2005-2015 2005-2015 2005-2015 2005-2015
Adj R-Squared 0.983 0.988 0.938 0.945
N 143 143 143 143

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Models
include members of the Mountain West Conference and the Big East Conference in 2007.
Coefficient estimates in the Conference change row represent the ATE of a move from the
Mountain West Conference or the Big East to a more prestigious conference (MWC to
Pac 12 or Big 12 and BE to ACC) between 2011 and 2013.
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Appendix Figures and Tables

Figure 4.2: Propensity Score Distribution: Power 5 Conference Changes
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Table 4.25: Summary Statistics, 2004/05 Clusters

Mean St Dev Min Max Obs

Conference Change 0.358 0.481 0 1 162
Applicants 15089 8200 4205 43815 162
Total Enrollment 25884 10887 10125 58182 161
Acceptance Rate 59.9 17.3 25 94 162
Graduation Rate 0.633 0.165 0.333 0.924 162
Retention Rate 0.838 0.072 0.71 0.96 140
ACT Comp. 25 22.2 3.7 18 30 129
ACT Comp. 75 27.1 3.1 22 33 129
ACT English 25 21.8 4.1 16 30 110
ACT English 75 27.89 3.7 22 34 110
ACT Math 25 21.2 4.0 16 29 110
ACT Math 75 27.2 3.5 22 33 110
SAT Verbal 25 515.8 58.0 420 640 162
SAT Verbal 75 622.0 51.7 540 730 162
SAT Math 25 531.5 62.1 425 650 162
SAT Math 75 636.0 51.9 550 740 162
Total Research 6828 5052 745 20591 162
Research Salaries & Wages 3212 2246 406 9265 162
Instructional Expenditures 13611 5827 6617 32143 162
Instructional Salaries & Wages 8741 3216 4340 18473 162
State Appropriations 6897 3939 28 13789 146
State & Local Grants & Contracts 8749 4695 357 18091 162
Private Gifts, Grants, & Contracts 3683 3950 7 18689 162
Federal Grants & Contracts 7470 5828 1671 23303 162

Notes: Data from 2003 to 2015. The data include those universities from Conference

USA and the Big East in 2003 with the exception of TCU. We focus on schools switching

to more prestigious conferences in 2004 and 2005. So we drop those observations where

teams change conference after 2005.
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Table 4.26: Admissions and Enrollment and Realignment, No Institutional Groupings

(1) (2) (5) (6)
Applicants Applicants Acceptance

Rate (%)
Acceptance
Rate (%)

Conference Change -3146.7∗∗∗ 1.4
(827.8) (1.8)

Conference Change Power 5 -1379.1 2.6
(889.5) (2.1)

State Population (Mil) 1697.3∗∗∗ 1586.1∗∗ -0.6 -0.6
(592.2) (617.1) (0.9) (0.8)

State RPCGDP (1000s) 99.8 93.9 0.1 0.1
(121.8) (122.2) (0.2) (0.2)

Cty RPC Inc (1000s) 196.4∗∗ 160.9∗ -0.2 -0.2
(84.6) (92.3) (0.2) (0.2)

State Unemployment Rate 30.1 12.8 0.8∗ 0.8∗

(273.0) (284.6) (0.5) (0.5)
Year 244.5 273.7 -0.4 -0.4

(180.6) (186.2) (0.4) (0.4)

University FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 871 871 871 871

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities part of

institutional groupings or systems and service academies omitted. Coefficient estimates in the Conference

Change row represent the ATE of a switch to any conference. Estimates in the Conference Change Power 5

row represent the ATE of a switch to a Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.27: ACT Composite Scores and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change -0.150 0.190
(0.259) (0.218)

Conference Change Power 5 -0.369 -0.013
(0.347) (0.225)

state population millions 0.198∗∗ 0.211∗∗ 0.109 0.113
(0.091) (0.092) (0.077) (0.080)

State RPCGDP Thousands -0.070∗ -0.070∗ -0.020 -0.021
(0.038) (0.039) (0.023) (0.023)

County RPC Income Thousands 0.063∗∗∗ 0.061∗∗∗ 0.018 0.021
(0.021) (0.020) (0.019) (0.019)

State Unemployment Rate 0.001 -0.004 -0.038 -0.038
(0.048) (0.047) (0.037) (0.038)

total full time thousands 0.052 0.053 0.072∗ 0.075∗∗

(0.048) (0.047) (0.037) (0.037)
Year 0.082∗∗ 0.085∗∗ 0.089∗∗ 0.087∗∗

(0.040) (0.040) (0.042) (0.042)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 835 835 835 835

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates in

the Conference Change row represent the ATE of a Conference Changement to any conference.

Estimates in the Conference Change Power 5 row represent the ATE of a Conference Changement

to a Power 5 conference (ACC, Big 10, Big 12, Pac 12, or SEC).
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Table 4.28: ACT Verbal Scores and Realignmen, No Institutional Groupingst

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change -0.264 0.118
(0.253) (0.243)

Conference Change Power 5 -0.486 0.331
(0.338) (0.347)

State Population (Mil) 0.266∗ 0.261∗ 0.166 0.166
(0.133) (0.134) (0.142) (0.139)

State RPCGDP (1000s) -0.074∗ -0.076∗ -0.045 -0.044
(0.041) (0.041) (0.033) (0.033)

Cty RPC Inc (1000s) 0.078∗∗∗ 0.076∗∗∗ 0.013 0.014
(0.024) (0.024) (0.022) (0.022)

State Unemployment Rate -0.010 -0.018 -0.004 0.001
(0.052) (0.051) (0.047) (0.048)

Enrollment 0.050 0.056 0.041 0.036
(0.057) (0.057) (0.051) (0.052)

Year 0.096∗ 0.099∗ 0.188∗∗∗ 0.186∗∗∗

(0.054) (0.055) (0.051) (0.050)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 747 747 747 747

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates

in the Conference Change row represent the ATE of a switch to any conference. Estimates in the

Conference Change Power 5 row represent the ATE of a switch to a Power 5 conference (ACC,

Big 10, Big 12, Pac 12, or SEC).
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Table 4.29: ACT Math Scores and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change 0.037 0.003
(0.267) (0.222)

Conference Change Power 5 -0.390 -0.133
(0.269) (0.284)

State Population (Mil) 0.256∗∗ 0.264∗∗ 0.216∗∗ 0.219∗∗

(0.096) (0.100) (0.099) (0.098)
State RPCGDP (1000s) -0.016 -0.018 -0.032 -0.033

(0.035) (0.034) (0.029) (0.029)
Coty RPC Inc (1000s) 0.037∗∗ 0.038∗∗ 0.029 0.029

(0.018) (0.017) (0.019) (0.019)
State Unemployment Rate -0.059 -0.065 -0.052 -0.054

(0.046) (0.046) (0.047) (0.047)
Enrollment (1000s) 0.070 0.076 0.035 0.037

(0.063) (0.062) (0.045) (0.044)
Year 0.031 0.033 0.070∗ 0.070∗

(0.047) (0.047) (0.041) (0.040)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 748 748 748 748

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates in

the realign row represent the ATE of a realignment to any conference. Estimates in the Realign

Power 5 row represent the ATE of a realignment to a Power 5 conference (ACC, Big 10, Big 12,

Pac 12, or SEC).
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Table 4.30: SAT Critical Reading Scores and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change 0.1 1.8
(3.4) (3.3)

Conference Change Power 5 -0.5 -0.2
(3.6) (3.9)

State Population (Mil) 4.6∗∗ 4.7∗∗ 3.1∗ 3.1∗

(2.0) (2.0) (1.6) (1.7)
State RPCGDP (1000s) -1.0 -1.0 -0.7 -0.7

(0.6) (0.6) (0.6) (0.6)
County RPC Inc (1000s) 0.7∗∗ 0.7∗∗ 0.7∗∗ 0.7∗∗

(0.3) (0.3) (0.3) (0.3)
State Unemployment Rate 1.3 1.3 -0.0 -0.0

(1.1) (1.1) (0.9) (0.9)
Enrollment (1000s) -0.6 -0.6 -0.0 -0.0

(1.1) (1.1) (0.9) (0.9)
Year 0.7 0.7 0.4 0.4

(0.8) (0.8) (0.7) (0.7)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 839 839 839 839

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates in

the realign row represent the ATE of a realignment to any conference. Estimates in the Realign

Power 5 row represent the ATE of a realignment to a Power 5 conference (ACC, Big 10, Big 12,

Pac 12, or SEC).
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Table 4.31: SAT Math Scores and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Q1 Q1 Q3 Q3

Conference Change 0.1 1.8
(3.4) (3.3)

Conference Change Power 5 -0.5 -0.2
(3.6) (3.9)

State Population (Mil) 4.6∗∗ 4.7∗∗ 3.1∗ 3.1∗

(2.0) (2.0) (1.6) (1.7)
State RPCGDP (1000s) -1.0 -1.0 -0.7 -0.7

(0.6) (0.6) (0.6) (0.6)
Cty RPC Inc (1000s) 0.7∗∗ 0.7∗∗ 0.7∗∗ 0.7∗∗

(0.327) (0.325) (0.313) (0.306)
State Unemployment Rate 1.3 1.3 -0.0 -0.0

(1.1) (1.1) (0.9) (0.9)
Enrollment (1000s) -0.6 -0.6 -0.0 -0.0

(1.1) (1.1) (0.9) (0.9)
Year 0.7 0.7 0.4 0.4

(0.8) (0.8) (0.7) (0.7)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2002–2015 2002–2015 2002–2015 2002–2015
Observations 839 839 839 839

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates

in the Conference Change row represent the ATE of a switch to any conference. Estimates in the

Conference Change Power 5 row represent the ATE of a switch to a Power 5 conference (ACC,

Big 10, Big 12, Pac 12, or SEC).
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Table 4.32: Graduation and Retention Rates and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Graduation

Rate
Graduation

Rate
Retention

Rate
Retention

Rate

Conference Change 0.023∗∗ 0.009∗

(0.009) (0.005)
Conference Change Power 5 0.017 0.010

(0.011) (0.010)
State Population (Mil) 0.001 0.002 0.002 0.002

(0.004) (0.004) (0.002) (0.002)
State RPCGDP (1000s) -0.003∗∗ -0.003∗∗ -0.002∗ -0.002∗

(0.001) (0.001) (0.001) (0.001)
Cty RPC Inc (1000s) 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001)
State Unemployment Rate -0.001 -0.001 -0.001 -0.001

(0.002) (0.002) (0.001) (0.001)
Enrollment (1000s) 0.005∗∗∗ 0.005∗∗∗ 0.002 0.002

(0.002) (0.002) (0.001) (0.001)
Year 0.006∗∗∗ 0.006∗∗∗ 0.002∗∗ 0.002∗∗

(0.002) (0.002) (0.001) (0.001)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 937 937 787 787

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities
part of institutional groupings or systems and service academies omitted. Coefficient estimates in
the realign row represent the ATE of a realignment to any conference. Estimates in the Realign
Power 5 row represent the ATE of a realignment to a Power 5 conference (ACC, Big 10, Big 12,
Pac 12, or SEC)
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Table 4.33: Instructional Expenditures and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Total Total Salaries

and Wages
Salaries

and Wages

Conference Change -1726∗ -852∗∗

(915) (402)
Conference Change Power 5 -686 -275

(683) (327)
State Population (Mil) 415 356 167 137

(328) (328) (167) (168)
State RPCGDP (1000s) -12 -16 -26 -28

(87) (88) (58) (58)
Cty RPC Inc (1000s) 285 264 117∗ 107

(174) (176) (63) (65)
State Unemployment Rate 356∗∗ 347∗∗ 104 100

(136) (133) (80) (78)
Enrollment (1000s) -90 -95 -80 -83

(129) (137) (79) (82)
Year -179 -160 -23 -14

(260) (265) (101) (104)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 870 870 870 870

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates

in the Conference Change row represent the ATE of a switch to any conference. Estimates in the

Conference Change Power 5 row represent the ATE of a switch to a Power 5 conference (ACC,

Big 10, Big 12, Pac 12, or SEC).
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Table 4.34: Research Expenditures and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Total Total Salaries

and Wages
Salaries

and Wages

Conference Change -109 -35
(400) (205)

Conference Change Power 5 316 299
(483) (180)

State Population (Mil) 225 216 67 61
(157) (155) (79) (78)

State RPCGDP (1000s) 16 13 17 14
(60) (60) (21) (21)

Cty RPC Inc (1000s) 83∗ 81∗ 41 40
(48) (48) (37) (37)

State Unemployment Rate 19 18 -7 -8
(82) (82) (31) (30)

Enrollment (1000s) -136∗ -140∗ -70∗∗ -73∗∗

(75) (73) (30) (29)
Year -71 -69 -63 -61

(76) (77) (54) (55)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 856 856 852 852

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates

in the Conference Change row represent the ATE of a switch to any conference. Estimates in the

Conference Change Power 5 row represent the ATE of a switch to a Power 5 conference (ACC,

Big 10, Big 12, Pac 12, or SEC).
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Table 4.35: State and Local Funding and Realignment, No Institutional Groupings

(1) (2) (3) (4)
State

Appropr-
iations

State
Appropr-

iations

State and
Local

Grants
and

Contracts

State and
Local

Grants
and

Contracts

Conference Change 563 119
(607) (452)

Conference Change Power 5 973∗ 585
(532) (421)

state population millions -102 -104 294 301
(331) (328) (257) (247)

State RPCGDP Thousands 194∗∗ 198∗∗ 136 133
(84) (80) (90) (90)

County RPC Income Thousands -137∗ -130∗ -10 -10
(75) (73) (43) (39)

State Unemployment Rate -120 -104 -72 -73
(156) (149) (111) (110)

total full time thousands -344∗∗∗ -353∗∗∗ -466∗∗∗ -472∗∗∗

(97) (96) (104) (101)
Year -146 -161 -215∗∗ -215∗∗

(149) (145) (98) (95)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 595 595 859 859

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates in

the realign row represent the ATE of a realignment to any conference. Estimates in the Realign

Power 5 row represent the ATE of a realignment to a Power 5 conference (ACC, Big 10, Big 12,

Pac 12, or SEC).
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Table 4.36: Private and Federal Funding and Realignment, No Institutional Groupings

(1) (2) (3) (4)
Private Private Federal Federal

Conference Change -710 262
(634) (385)

Conference Change Power 5 -341 240
(556) (342)

State Population (Mil) 455∗ 429 -126 -119
(254) (259) (118) (120)

State RPCGDP (1000s) -51 -51 9 9
(103) (103) (49) (49)

Cty RPC Inc (1000s) 243∗ 234∗ 21 24
(128) (127) (36) (34)

State Unemployment Rate -83 -86 -55 -54
(167) (164) (89) (90)

Enrollment (1000s) -117 -119 -164∗∗∗ -164∗∗∗

(71) (73) (44) (45)
Year -200 -194 1 -1

(163) (166) (73) (71)

University Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Years 2003–2015 2003–2015 2003–2015 2003–2015
Observations 841 841 870 870

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Universities

part of institutional groupings or systems and service academies omitted. Coefficient estimates

in the Conference Change row represent the ATE of a switch to any conference. Estimates in the

Conference Change Power 5 row represent the ATE of a switch to a Power 5 conference (ACC,

Big 10, Big 12, Pac 12, or SEC).
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Table 4.37: Log Odds of Joining a Power 5 Conference

(1)
Switch Power 5

Bowl Appearance 3.121∗∗∗

(1.123)
State Population (Millions) -0.0433

(0.0279)
State RPCGDP (Thousands) 0.1387∗∗∗

(0.0413)
State Unemployment -0.0046

(0.1601)
Enrollment (Thousands) 0.0230

(0.0202)

Pseudo R-Squared 0.1605
Observations 802

Note: Standard errors in parentheses. ∗p < 0.1, ∗∗p <

0.05, ∗∗∗p < 0.01. Variables are all averages of the

previous 5 years.
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Table 4.38: PSM with Rutgers and Maryland

Switch P5 Switch P5

Applications 324.5 Graduation Rate (%) 0.7
(820.8) (0.9)

Acceptance Rate (%) 1.6 Retention Rate (%) 0.8
(2.0) (0.8)

State Appropriations 115 Total Research Spending -33
(481) (446)

State and Local Grants and Contracts 267 Research Salaries 166
(554) (212)

Private Gifts, Grants, and Contracts 100 Total Instructional Spending 398
(265) (501)

Federal Grants and Contracts 24 Instructional Salaries 242
(428) (204)

SAT Critical Reading Q1 -3.3 ACT Verbal Q1 -0.465
(2.6) (0.272)

SAT Critical Reading Q3 -3.4 ACT Verbal Q3 -0.252
(2.8) (0.376)

SAT Math Q1 -0.9 ACT Math Q1 -0.258
(3.5) (0.166)

SAT Math Q3 -2.5 ACT Math Q3 -0.130
(3.0) (0.208)

ACT Composite Q1 -0.211 ACT Composite Q3 -0.247
(0.241) (0.174)

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Heteroskedasticity-robust standard errors in parenthesis. Each

estimate represents a different model specification. PSM match based on logit estimation of treatment using

averages of prior 5 years of bowl apperances, state population, state RPCGDP, state unemployment rate and

university enrollment.
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