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ABSTRACT 

 
Development of Direct Elemental Speciation in Solid State  

Materials Using Pulsed Glow Discharge Mass Spectrometry 
 

Jennifer N. Robertson-Honecker 
 

 
Among the various elemental mass spectrometry techniques, glow 

discharge mass spectrometry is recognized for its ability to provide direct 

determination of trace elements present in solid state samples.  In the present 

work, a pulsed glow discharge time of flight mass spectrometry method is 

developed for the direct speciation of chromium in solid state samples.  In initial 

investigations, time-resolved power perturbation and Langmuir probe studies 

were undertaken to elucidate the excitation and ionization processes in a pulsed 

glow discharge plasma. The experimental data provides further insight into the 

energy transfer processes that occur at different spatial locations and in different 

temporal regimes of these pulsed glow discharge plasmas. Of greatest interest is 

the afterpeak regime, in which dissociative recombination between molecular 

argon ions (Ar2
+) and electrons is thought to be the principal process responsible 

for emission enhancements. Careful tuning of the operating parameters within 

this time regime yields the plasma chemistry that favors cluster ion formation. 

Unique mass spectral features found in the afterpeak permit differentiation 

between the trivalent and hexavalent forms of chromium, (CrIII) and (CrVI) 

respectively, in chromium oxide samples.  
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Chapter 1  

Introduction 

 

1.1 Well, how did I get here?: A Historical Perspective of Glow Discharge 
Mass Spectrometry 

 

1.1.1 In the Beginning 

 Although much of early chemistry was analytical in nature, the scientific 

discipline as we know it today didn’t begin until the 19th century. The beginnings 

of modern analytical chemistry, the branch of chemistry concerned with the 

separation, identification and determination of the constituents making up a 

sample of matter and their relative quantities [1], can be traced back to a 

textbook on quantitative analysis written by Karl Remigius Fresenius. Written in 

1846, this text described the known gravimetric and titrimetric methods of the 

time. Citing the growing amounts of research on chemical analysis being done in 

his and other laboratories, in 1862 Fresenius founded the first journal exclusively 

devoted to analytical chemistry entitled Zeitschrift für Analytische Chemie [2]. By 

the latter part of the century the discipline was well established and in 1894, 

Wilhelm Ostwald described it this way: 

“Analytical chemistry, or the art of recognizing different substances and 

determining their constituents, takes a prominent position among the 

applications of science, since the questions which it enables us to answer 

arise wherever chemical processes are employed for scientific or technical 

purposes. Its supreme importance has caused it to be assiduously 
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cultivated from a very early period in the history of chemistry, and its 

records comprise a large part of the quantitative work which is spread over 

the whole domain of science” [1]. 

 In the past 100 years since, analytical chemistry has grown from an art to 

a science. It is hard to imagine a part of modern life that hasn’t been touched by 

the discipline. Pharmaceuticals, foodstuffs, industrial goods and consumer 

products all utilize methods of chemical analysis to improve quality and insure 

public safety. Government policies on environmental issues have been shaped 

by the chemical analysis of our nation’s ambient air and water. The Clean Air and 

Water Acts of 1970 and1977, as well as the eventual ban of tetraethyl lead as an 

additive in gasoline in 1995 are but a few examples. Today, classical analytical 

chemistry has expanded to include applications in forensic, environmental, 

industrial, medical, and biological analytical chemistries. As Ostwald poignantly 

quipped, analytical chemistry truly is the “handmaiden of the sciences” [2]. 

 

1.1.2 Heralding in the Instrumental Revolution and the Advent of Mass 
Spectrometry 

 The major advances in analytical chemistry are due in no small part to key 

developments in instrumental analysis. The first instrumental analysis was 

performed in 1859 by Robert Bunsen and Gustav Kirchoff using their flame 

emissive spectroscope. The instrument consisted of a carbon disulfide filled 

prism and a Bunsen burner flame into which salts were introduced on a platinum 

wire. Further developments in instrumentation ensued and in 1905, the 

predecessor to the first mass spectrograph was produced by J. J. Thomson. 
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Inspired by the observations of “positive rays” (ion beams) made by Eugene 

Goldstein and Wilhelm Wein, Thomson channeled a stream of ionized neon 

through both a magnetic and an electric field. His device used ions with a wide 

range of velocities and a photographic plate onto which their deflection through 

the fields could be measured. These experiments provided the first observational 

evidence of the existence of ions, 20Ne and 22Ne [2].  

 The first working version of the modern mass spectrometer was designed 

by Thomson’s student, Francis W. Aston, in 1919. His instrument used a 

discharge bulb as the ion source and a method of electromagnetic focusing that 

could focus both the velocity and the direction of the ions, enabling very slight 

differences in mass to be separated and measured. When deciding on a name 

for his instrument, Aston commented 

“Since it is a close analogue of the ordinary spectrograph, and gives a 

spectrum depending upon mass alone, the instrument is called a ‘mass-

spectrograph’ and the spectrum it produces a ‘mass spectrum’” [2].  

Aston’s mass spectrograph had a mass resolving power of 130 allowing him to 

identify 212 of the naturally occurring isotopes [3]. 

 By the 1930’s, major advances in high-vacuum techniques and the 

commercial availability of electrometer vacuum tubes improved the accuracy and 

ease with which mass spectrometry measurements could be made. These 

innovations along with the advent of World War II and the development of the 

atomic bomb spawned a heightened interest in mass spectrometry. In the early 

1940’s the University of Minnesota was awarded contracts by the Office of 
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Scientific Research and Development to construct a pilot number of mass 

spectrometers for the isotopic analysis of uranium and hydrogen as well as 

helium sensitive leak detectors. The Minnesota design for the sector helium leak 

detector was commercialized by the General Electric Company in 1942 [2, 4]. 

 

1.1.3 Time-of-Flight Mass Spectrometry 

 Prior to the late 1940’s, the separation of ions in mass spectrometry was 

preformed via their deflection in electric and magnetic fields. These instruments 

required large, heavy electromagnets and very precise power supplies. In 1946, 

W. E. Stephens proposed a method for the separation of ions based on the time 

it would take them to fly down a long tube. Stephens postulated that if a pulse of 

ions were given the same start time with the same amount of energy, then, 

according to the fundamental relationship between kinetic energy (KE), mass (m), 

and velocity (υ) (shown in Equation 1.1), ions of different masses would have 

different velocities and thus different flight times down the tube.  

KE = ½ mυ
2
    (Equation 1.1) 

Using this concept, the “Velocitron” was built two years later by A. E. Cameron 

and D. F. Eggers. Subsequent modifications made by Wiley and McLaren in the 

early 1950’s became the prototype of the modern time-of-flight mass 

spectrometer (ToFMS) and was commercially marketed by the Bendix 

Corporation. This instrument had a mass range from 1-600 and could collect over 

10,000 spectra per second [4].  
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1.1.4 Glow Discharge Plasmas and GDMS 

 As stated earlier, the predecessor to the first mass spectrometer was 

produced in 1905 by J. J. Thomson when he was investigating the “positive rays” 

from what was effectively a glow discharge source. However, work with glow 

discharges had actually begun over a century earlier. In 1785, William Morgan 

communicated in a paper to the Royal Society of London on phenomena 

produced by the passage of electric discharges in a glass tube. Morgan found 

that when the vacuum was as perfect as he could make it, no electric discharge 

could pass, but upon admitting a minuscule amount of air, the glass glowed with 

a “beautiful green colour”, which changed from green to blue and so on to violet 

and purple as more gas was allowed to enter the tube [5].  

In the late 1850’s, Julius Plückner showed that by  applying an electric 

field  to two electrodes within a vacuum tube, he could cause the gas to glow with 

a greenish light near the positive electrode, which he named the cathode [6]. In 

addition, Plückner was able to demonstrate that a magnet affected the direction 

of the discharge rays. Eugene Goldstein, also pursuing research in this area, 

named these rays “cathode rays”. Goldstein continued his research with 

discharge tubes and in 1886, using a perforated cathode, observed faint 

streamers emerging from behind the holes in the cathode. He coined these rays 

“kanalstrahlen” or canal rays.  In 1895, J. Perrin demonstrated the associated 

negative charge of cathode rays when he was able to bend them using a 

magnetic field onto a faraday cup connected to an electrometer. A few years 

later, W. Wein showed that, while a fairly weak magnetic field could easily deflect 

cathode rays, it took a very strong magnetic field to affect the path of canal rays 
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to any modest degree. Furthermore, he concluded that since the deflection of 

canal rays were opposite to that of cathode rays, they were positive. It was these 

early observations of glow discharge plasmas in vacuum tubes that led to our 

present views of atoms, ions, protons, and electrons [4]. 

 In 1954, N. B. Hannay and A. J. Ahearn introduced spark source mass 

spectrometry (SSMS) a technique that utilized a high voltage electric discharge, 

or spark , to atomize and ionize solid samples within a vacuum [Hoffmann, 2004]. 

SSMS was only the second instrumental analysis tool capable of analyzing 

solids, the first being the flame emissive spectroscope invented by Bunsen and 

Kirchoff nearly 100 years earlier [4]. Unfortunately, spark sources were very 

unstable making them unsuitable for quantitative analysis; their ultimate 

successor became glow discharge mass spectrometry (GDMS). 

 In 1971, motivated by the needs of material science industries who were 

utilizing glow discharge (GD) plasmas for thin film deposition, etching, and 

surface treatment, W. Coburn and co-workers decided to investigate glow 

discharge plasmas by mass spectrometric methods [7]. Coburn et al. quickly 

realized the ability of glow discharge to both atomize and ionize solid cathode 

materials [8]. These initial studies were followed by the work of W. Harrison’s 

group who were working on a glow discharge alternative to SSMS, the results of 

which further confirmed glow discharge mass spectrometry (GDMS) as a method 

for elemental analysis for solid samples [9]. The use of GD plasmas is now well 

established for the direct determination of bulk and trace elements in solid state 

samples. Biological compounds, plastics, soils, and coal fly ash are but a few 
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examples of materials studied by GD [10, 11, 12, 13]. Furthermore, when 

modified by time gating and combined with separation techniques like gas 

chromatography, chemical speciation of volatile organic and organometallic 

compounds are possible [14, 15, 16]. 

 

1.2. So what is a glow discharge plasma anyway? 

 

1.2.1 Introduction 

 A plasma is a partially ionized gas consisting of equal numbers of positive 

and negative charges, mostly electrons and positive ions. The degree of 

ionization is on the order of 10-4 (fractional proportion), so the gas consists mostly 

of neutral gas atoms or molecules but can also contain free radicals, electrons, 

and photons. A glow discharge (GD) is a type of plasma in which only the 

electrons are hot (~25,000-50,000 K) and the neutrals and ions are at modest 

temperatures (~500 K) due to their large masses. This is in marked contrast to 

the kinetic temperatures of neutrals and ions in combustion flames (~2,500 K) or 

inductively coupled plasmas (~10,000 K) [17]. GD plasmas are created in a 

reduced-pressure environment (.02-1 Torr) when the voltage applied between 

two electrodes exceeds the energy necessary to cause the breakdown of the 

discharge gas, usually argon. This breakdown leads to the creation of electron-

ion pairs.  

 When a potential difference is applied between the two electrodes in the 

GD chamber, free electrons in the chamber are accelerated away from the 

cathode, occasionally colliding with argon atoms in the discharge gas. This gives 
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rise to ionization and excitation processes, creating argon ions and new 

electrons. The newly formed argon ions, Ar+, are then accelerated toward the 

cathode. When they strike the cathode surface, they can release “secondary 

electrons” which go on to create new argon ions and electrons thereby 

generating a self-sustaining plasma. GD owes its name to the fact that the 

plasma is luminous. This is caused by electron excitation processes between 

electrons and discharge gas atoms in the GD chamber. Following impact, the 

atom absorbs energy, exciting electrons which later relax and emit photons 

giving the plasma its characteristic glow [18]. An argon plasma emits a blue glow. 

  

1.2.2 Cathodic Sputtering 

 The analytical utility of glow discharge mass spectrometry (GDMS) lies 

squarely with a process called sputtering. Sputtering is a process of momentum 

transfer that occurs when a surface is bombarded by fast heavy particles causing 

atoms of the surface to be ejected in all directions. In GD, the two electrodes 

typically consist of a cathode composed of the sample material to be analyzed 

and the chamber walls serving as the anode. When highly energetic argon ions 

bombard the cathode surface, their kinetic energy is transferred into the cathode 

lattice. This impact can result in one or all of the following phenomena (see 

Figure 1.1) [19]:  

a) Reflected Ion: the ion is reflected and most likely neutralized in 

the process 
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b) Impacted Ion and Structural Changes: the ion becomes 

implanted within the cathode and can create an altered volume 

of lattice defects 

c) Secondary Electron Ejection: an electron is ejected from the 

cathode surface 

d) Cathode Atom Ejection: the impact creates a series of collisions 

among atoms in the cathode material ultimately ejecting one of 

these atoms 

The series of collisions between cathode atoms is known as a “collision cascade” 

and the atom ejection process is called “sputtering”. Two things must happen 

before an atom is sputter ejected from the surface of the cathode: 1) the collision 

cascade must occur along the surface of the cathode rather than into its interior, 

and 2) the collision between the final atoms must be enough to exceed the lattice 

binding energy of the cathode material [19]. It is for this reason that the sputtered 

atom population accounts for less than 1% of the total plasma species [7].  
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Figure 1.1. Schematic representation of the possible glow discharge ion 

interactions at the surface of the cathode [Adapted from 19]. 
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1.2.3 GD Plasma Architecture 

The architecture of a glow discharge (GD) consists of several regions, 

noted mostly for their luminosity. These regions differ greatly in the types of 

ionization mechanisms and the populations of charged species found therein. For 

the GD setup used in these studies, only three regions are available for analysis; 

the cathode dark space, the negative glow, and the Faraday dark space. 

Adjacent to the cathode is a noticeably dark region known as the cathode 

dark space (CDS). Although the CDS is very narrow, the majority of the potential 

difference between the two electrodes, in our case the cathode and the grounded 

chamber wall, drops across this region making it the area of strongest electric 

field. In this region, ions are accelerated into the cathode material with enough 

force to cause the emission of a cathode atom or a secondary electron from the 

cathode, called sputtering. Electrons, on the other hand, are repulsed in this area 

creating a sheath of positive space charge in front of the cathode, the thickness 

of which is approximately three times the Debye length (λD) [19, 20]. 

The bright luminous portion of the plasma bordering the CDS is the 

negative glow region (NG). Here, two general types of electrons can be found: 

energetic (fast) secondary electrons which have yet to lose their energy by 

collision, and thermalized (slow) electrons that have been collisionally cooled or 

created via ionization reactions [20]. The fast electrons are responsible for 

electron ionization and are essential to a sustained GD, whereas the thermalized 

electrons give rise to excitation and recombination processes responsible for 

both the characteristic visible emission of the NG and the “softer” Penning 

ionization found therein. Due to approximately equal densities of electrons and 
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positive ions, 109 - 1011 cm-3, the NG is essentially field free and its collision and 

ionization rich environment makes it the region of highest analytical utility [20].  

The third and final region in the GD is the Faraday dark space (FDS). This 

region is marked by low luminosity due to the diminished energies of the post-

collisional electrons diffusing from the anode edge of the NG. Here, the electrons 

begin to “feel” the presence of the positive anode and are accelerated toward it 

[20]. However, this diffusion is limited by the rate at which the positive ions can 

also diffuse to the walls, a phenomenon known as ambipolar diffusion [19]. 
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 Figure 1.2. Schematic of the A) normal glow discharge architecture 
showing the B) voltage, C) field strength, and D) net space charge for each area. 
Although two electrodes are marked for simplicity, the typical GD instrument uses 
the grounded chamber walls as the anode [Adapted from 20]. 
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1.2.4 Ionization Processes 

 Glow discharge (GD) plasmas are rich in ionization mechanisms. The 

atomization of an analyte in a GD ion source is by virtue of cathodic sputtering, in 

which ionized discharge gas atoms, created by the breakdown of the discharge 

support gas, are accelerated toward the cathode where they bombard the 

surface and “knock off” sample atoms.  Once atomized, the sputtered analyte 

atoms can become excited or ionized in the surrounding plasma via inelastic 

collisions with various energetic species (i.e. fast electrons, excited and 

metastable atoms, and ions). Each ionization mechanism imparts a specific 

amount of energy into the analyte atom or molecule, leading to possible 

fragmentation and dissociation in addition to ionization and excitation. The three 

main ionization mechanisms occurring within the GD plasma are electron 

ionization, charge transfer, and Penning ionization (see Figure 1.3). 

 

Electron Ionization 

 Electron ionization is central to a sustained GD plasma due to the fact that 

the electrons formed through this process can give rise to further ionization. In 

this ionization mechanism, a primary electron collides with an atom in an inelastic 

collision to remove an electron from the atom, producing a positive ion and two 

electrons (Equation 1.2). 

e- (fast) + Ar � 2e- (slow) + Ar+     (Equation 1.2) 



15 

 

Because electrons are typically accelerated to energies between 50 and 150 eV, 

electron ionization is considered a “hard” ionization process resulting in high 

ionization efficiencies and the extensive fragmentation of analyte molecules. 

 

Charge Transfer 

 When an argon ion collides with an atom, an electron can be transferred 

from the atom to the ion. This can occur between two argon atoms, known as 

symmetric charge transfer (Equation 1.3), or between an argon ion and an 

analyte atom, asymmetric charge transfer (Equation 1.4).  

Ar+ (fast) + Ar (slow) � Ar (fast) + Ar+ (slow)   (Equation 1.3) 

Ar+ + M � Ar + M+ + ∆E    (Equation 1.4) 

Symmetric charge transfer vastly increases the population of fast argon atoms in 

the negative glow of the plasma; these atoms play an important role in cathodic 

sputtering.  Asymmetric charge transfer can only occur if the ionization potentials 

of the argon ion (15.76 eV) and the resulting analyte ion are similar (±0.2 eV), 

making it a highly selective ionization process [18]. 

 

Penning Ionization 

 Besides the favorable characteristics of chemical inertness and large 

atomic weights necessary for sputtering in GD, noble gases have high-lying long-

lived metastable states. Atoms in a metastable electronic state (triplet), known as 

metastable atoms, have long radiative lifetimes because their relaxation to lower-

energy levels is spin-forbidden [20]. Metastable argon atoms are created via 



16 

 

recombination processes involving argon ions and thermalized (slow) electrons 

(Equation 1.5). If a metastable argon atom collides with an analyte atom, the 

potential energy of the metastable argon (11.55 and 11.62 eV) can be used for 

ionization, but only if the ionization potential of the analyte atom lies below the 

metastable energies. This process is known as Penning ionization (Equation 

1.6). 

 e- (slow) + Ar+ � Arm
      (Equation 1.5) 

Arm + M � Ar + M+ + e-
    (Equation 1.6) 

Fortunately, there are very few elements that can’t be ionized by this mechanism 

[18]. For those that can Penning ionize, the process accounts for 40-80% of their 

total ionization in a continuous glow discharge [7]. 
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Figure 1.3. Ionization processes occurring within the glow discharge 

plasma include A) electron Ionization, B) charge transfer, and C) Penning 

Ionization. 
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1.3 Pulsed GD Plasmas 

  

1.3.1 Introduction: Enhancement of Atomization and Ionization 

 In a continuous power glow discharge, the plasma is steady-state with the 

various ionization mechanisms occurring simultaneously. Pulsed glow 

discharges, first introduced by Harrison et al, use modulated power cycles 

generated by a succession of square wave pulses [21]. In such pulsed operation, 

a relatively brief “power-on” period is followed by a much longer “power-off” 

period. These pulses can last from microseconds to milliseconds with 

frequencies up to 200 Hz [15]. The investigations discussed in Chapters 2 

through 5 of this dissertation utilized 5 ms power pulses with a power-off period 

of 15 ms, giving a 50 Hz pulse rate with a 25% duty cycle. 

Several analytical advantages arise from pulsing the GD plasma. First, the 

pulsed power mode provides the sample material (cathode) with a “cooling off” 

period during each power-off phase. This affords the application of higher 

instantaneous power, yielding increases in atomization, excitation, and ionization, 

without provoking thermal degradation of the sample.  It has been reported that a 

pulsed glow discharge with the same average power input as a continuous glow 

discharge yields a 100-fold increase in signal intensity [22].  Second, when 

operated in pulsed mode, spatial and temporal separation of the different 

ionization mechanisms becomes possible through the creation of three distinct 

time regimes during each on/off cycle: a prepeak dominated by electron impact 

ionization, an afterpeak dominated by Penning ionization, and a steady state 

plateau which arises from a mixture of electron impact, charge transfer, and 
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Penning ionizations (see Figure 1.3). Using time-gated detection, these transient 

ionization periods permit temporal discrimination between analyte signal 

intensities and those of the discharge gas and background contaminants, 

dramatically enhancing the signal to noise ratio. 
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Figure 1.4. Schematic representation of a millisecond GD power pulse 

and the dominate ionization mechanisms associated with each temporal 

regime. Electron ionization dominates in the prepeak to yield elemental 

information; an equilibrium in the plateau between charge transfer, 

electron ionization, and Penning ionization yields structural and 

fragmentation information; and in the afterpeak Penning ionization 

dominates to yield molecular ion information. 
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1.3.2 Temporal Characteristics  

 Because of their light mass and high mobility, electrons are the first 

species in the plasma to react to the power onset. Upon power initiation, a highly 

energetic electron population forms and electron ionization becomes dominant. 

During this period, 0.1 to 0.5 ms into the GD pulse, the discharge gas is broken 

down and ionized resulting in a surge of ion intensities. Electron ionization is a 

very energetic and therefore “hard” ionization mechanism. Time-gated analysis of 

this time regime, denoted the prepeak, gives rise to extensive fragmentation and 

elemental information, but is mostly overshadowed by strong discharge gas ion 

intensities, in our case argon (Ar+ 40 m/z and ArH+ 41 m/z). 

 As more argon ions form, sputtering is enhanced and signal contributions 

from analyte species intensify. About ~1 ms into the GD pulse, the large electron 

population diminishes and dominant ionization mechanisms equilibrate into a 

mixture of electron impact, charge transfer, and Penning ionizations. At this time, 

the ions of both gas phase and sputtered species can be observed, the 

intensities of which remain at a steady-state value until power termination (1 to 5 

ms). The plasma configuration during this time regime, referred to as the plateau, 

closely resembles that of a continuous GD plasma. Time-gated analysis of the 

plateau regime yields structural and fragmentation information about the analyte. 

Upon power termination, both electron ionization and charge transfer 

processes halt and the ions formed by these processes quickly decay to a 

baseline value. At this time, Penning ionization dominates as argon ions and 

thermalized electrons undergo recombination processes to form metastable 

argon ions. Metastable atoms efficiently Penning ionize the plasma species of 
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lower ionization potentials, generally sputtered analyte atoms.  During this time 

regime, known as the afterpeak (5.1 to 6 ms), analyte ion signal profiles 

maximize.  Because Penning ionization is limited by the potential energies of 

metastable argon atoms, 11.55 eV and 11.72 eV, the afterpeak regime can 

provide for energy-tuned, selective ionization.  For elemental analysis, this 

permits temporal discrimination between signals of analytes and their 

interferences. The “soft” Penning ionization of the afterpeak produces principally 

molecular ions to provide molecular weight information for analytes.  

Figures 1.5 and 1.6 show the temporal ion profiles of a copper cathode, 

used as the analyte material with argon as the discharge gas for optical emission 

and mass spectral data respectively. 

 

 

  



23 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Schematic optical emission profiles of A) sputtered copper 

analyte material, B) argon discharge gas, and C) the applied millisecond 

power pulse (5 ms at 50 Hz). 
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Figure 1.6. Time resolved microsecond pulsed (20 µs at 100 Hz) GD-

ToFMS of a copper cathode in argon discharge gas. At 100 µs after the 

pulse initiation the argon discharge gas signal intensities (Ar+ 40 and ArH+ 

41) dominate. Contaminant ions due to molecular oxygen and water and 

their associated fragments can also be seen. At 200 µs and beyond, the 

copper analyte signal (Cu+ isotopes, 63 and 65) increase to a maximum 

while the discharge gas and contaminant signals become insignificant 

[14]. 
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1.3.3 Glow Discharge Plasma Time-of-Flight Mass Spectrometry  

 In time-of-flight mass spectrometry (ToFMS), ions enter the mass 

spectrometer and fill an extraction region defined by a repeller plate (R) and an 

extraction grid (G0) where they are held until the desired injection time. At a set 

delay time, the repeller is pulsed to a high voltage, producing a linear potential 

field between R and G0 that injects the ions into the acceleration region between 

G0 and G1 (see Figure 1.6). The acceleration region exerts a constant-

acceleration onto the ions before they enter the field-free drift region (flight tube). 

Ions separate in the flight tube based on differences in velocity, with light ions 

achieving higher velocities than heavier ones. A detector positioned at the end of 

the flight tube records the arrival time of the ions to produce a complete mass 

spectrum [23, 24].  

 The fundamental theory behind the creation of a mass spectrum in a 

ToFMS is dependent on the notion that the potential energy of a charged particle 

in an electric field is related to the strength of the electric field (eV) and to the 

charge of the particle (z).  

PE =zeV     (Equation 1.7) 

When the charged ion is accelerated between regions G0 and G1 (Figure 1.6), 

potential energy is converted into kinetic energy and Equations 1.1 and 1.7 

become equivalent. 

zeV = ½ mυ
2
    (Equation 1.8) 

The time-of-flight tube, region G1 to the detector, is field free allowing for constant 

velocity. The flight path (d) along this region is also constant and, since the time 
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(t) of the ion’s flight is measured by the instrument, the velocity can be 

calculated. 

v = d/t     (Equation 1.9) 

Equation 1.9 can now be substituted into Equation 1.8. 

zeV = ½ m(d/t)
2
    (Equation 2.0) 

Rearranging to solve for time we find…  

� =  �
√��� 	


�    (Equation 2.1) 

Where distance (d) and electric field (eV) are constant and known, demonstrating 

that the flight time of an ion varies with the square root of its mass-to-charge ratio 

(m/z) [25].   

If an ion's flight time was strictly dependent upon its mass-to-charge ratio, 

the ToFMS would have unlimited resolution. In practice, however, mass 

resolution is affected by factors that create a distribution in flight times for ions of 

the same m/z. These factors include space charge effects, inhomogeneous 

electric fields, the temporal and spatial spread of the ionization source, and the 

initial distribution of ion velocities. As a consequence, resolution decreases by 

increasing the measured time width of the ion packet that reaches the detector 

[25]. Resolution in time-of-flight can be calculated in two ways; based on 

Equation 2.2 or from the flight times. 

� =  

∆
    (Equation 2.2) 

From the flight time equation (2.1) we see that the mass resolving power is equal 

to 
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� =  �
�∆�    (Equation 2.3) 

Setting Equations 2.2 and 2.3 equal and rearranging for the change in mass we 

see  

∆
 =  

� �∆�   (Equation 2.4) 

revealing that the mass width is proportional to ∆t and the mass of the ion [26].  

 To ensure that all ions receive the same start time down the flight tube, ion 

sources for use with ToFMS must either be pulsed or gated and can be oriented 

orthogonally, at a right angle to, or axially, in line with the acceleration of the ions. 

In the investigations discussed herein, the GD ion source is pulsed using either a 

direct current (DC) or radio frequency (rf) generated power source. For DC, the 

power pulses are generated using a function generator and an electronic high 

voltage pulser. The function generator is programmed to produce the desired 

waveforms, which in turn triggers the pulser to gate the high voltage output from 

the power supply resulting in precisely controlled square wave power pulses. In 

rf, the internal pulsing mode of the power supply system permits control of 

applied power, pulse width, and duty cycle. 

 In summary, through the use of a pulsed glow discharge plasma source, 

analyte molecules are exposed to a series of transient ionization periods within 

each pulse cycle. The ionization mechanisms within these distinct temporal 

regions range from “hard” to “soft”, allowing for a highly tunable ion source. When 

combined with a time-gated detection method such as time-of-flight mass 

spectrometry, the investigator is afforded the selection of a particular time 
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regime/plasma chemistry. In this way, one can obtain elemental and/or molecular 

information in determining a sample’s composition.   
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Figure 1.7. Schematic of a simplified ToFMS system depicting the mass 

dispersion for three ions of different m/z with the repeller plate (R), 

extraction grid (G0), and the acceleration plate (G1) [Adapted from 24]. 
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Chapter 2  

Electronic Perturbation Investigations into Excitation and Ionization in 

the Millisecond Pulsed Glow Discharge Plasma 
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Abstract 

 This study employed a power perturbation method to examine the energy 

transfer processes at different locations within the afterpeak regime of a 

millisecond pulsed glow discharge plasma.  Brief power perturbation pulses were 

applied during the afterpeak regime altering the environment of the collapsing 

plasma.  Responses of several transitions to the power perturbations were 

measured via atomic emission and absorption spectroscopic methods at various 

distances from the surface of the cathode.  The experimental data provide further 

insight into the energy transfer processes that occur at different spatial locations 

and in different temporal regimes of these pulsed glow discharge plasmas.  

Although the enhancement of the large population of metastable argon atoms is 

again confirmed, the mechanism responsible for this enhancement remains 

unclear.  The most likely possibility involves some form of ion-electron 

recombination followed by radiative relaxation of the resulting species.  The 

metastable argon atoms subsequently Penning ionize sputtered copper atoms 

which then appear to undergo a similar ion-electron recombination process 

yielding variable degrees of observable afterpeak emission for copper atom 

transitions.  The kinetic information of these processes was approximated from 

the corresponding relaxation time.  The electron thermalization time allowing for 

recombination with ions was found to be ~25 µs after the discharge power 

termination. 
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2.1 Introduction 

Glow discharges find broad use as the source of atomization, excitation, 

and ionization in various analytical spectrometries [1].  Sputtering, an inherent 

process in the normal operation of a glow discharge plasma, affords the direct 

atomization of analyte from solid samples, and provides a ground state atom 

population for analytical measurement via atomic absorption [2] and fluorescence 

[3] spectrometries.  Subsequent excitation and ionization mechanisms in the 

glow discharge plasma yield excited-state atoms for determinations by atomic 

emission spectrometry [4] and ions for mass spectrometric determination [5].   

Most analytical glow discharges operate in a continuous mode, yielding 

essentially steady-state analytical signals.  Glow discharges operating in a 

pulsed power mode have been explored as an effective approach to enhance 

sputtering, excitation, and ionization while avoiding problems related to sample 

overheating and thermal degradation.  In such pulsed operation, a relatively brief 

“power-on” period followed by a much longer “power-off” period allows for 

efficient sample cooling.  A pulsed glow discharge with the same average power 

input as a continuous glow discharge is reported to yield a 100-fold increase in 

signal intensity [4].  Furthermore, pulsed operation allows for much higher 

instantaneous power and, when coupled with time-gated detection, yields several 

unique analytical advantages [6].  These advantages include not only improved 

ionization efficiencies, but also the creation of three distinct time regimes, the 

prepeak, plateau, and afterpeak, during which the signal to noise ratio is 

enhanced.  Of these three regimes, the period immediately following the 

discharge power termination, the afterpeak, has been the focus of recent 
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attention because it affords the ability to study the unique plasma chemistry of 

metastable argon species. 

While studying a high pressure (10-20 Torr) pulsed helium microwave 

discharge plasma, Johnson et al [7] observed that the total light intensity of the 

plasma started to rise and reached a maximum at 0.05-1ms after the power 

termination.  The intensity increase was thus termed “afterglow”.  A similar 

“afterglow” phenomenon was observed in a low-pressure glow discharge plasma 

by Strauss and coworkers [8].  The authors ascribed this phenomenon to 

excitation after power termination arising from energetic electrons released 

during the energy pooling (ionization) process of two metastable argon atoms.   

Later, Harrison and coworkers [9, 10] investigated the ion species in a 

pulsed glow discharge plasma and observed that a large number of sputtered 

copper atoms were ionized after the termination of discharge power, yielding an 

“afterpeak” in the mass spectrometric signal.  Combining mass spectrometric and 

spectroscopic measurements, our laboratory undertook studies of ion formation 

mechanisms within the afterpeak regime.  These studies gave further 

confirmation that the population of metastable argon atoms increases after power 

termination and indicated that Penning ionization was responsible for the 

increase in analyte ion signal [11, 12, 13, 14].  

Metastable atoms efficiently Penning ionize the plasma species of lower 

ionization potentials, generally sputtered analyte atoms.  Subsequently, these 

analyte ions can recombine with electrons to form highly excited atoms that 

radiatively decay, thereby causing the emission intensity for atomic transitions of 
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the analyte to increase. Because Penning ionization is limited by the potential 

energies of metastable argon atoms, 11.55 eV and 11.72 eV, the afterpeak 

regime can provide for energy-tuned, selective ionization.  For elemental 

analysis, this permits temporal discrimination between signals of analytes and 

their interferences [15].   This selective ionization has also found use in molecular 

mass spectrometry.  The “soft” Penning ionization of the afterpeak produces 

principally molecular ions to provide molecular weight information for analytes. 

[16, 17] 

Even now, there remains some debate regarding the origin of the 

afterpeak.  Some data indicate that the ion-electron recombination for argon is a 

low-probability process [18, 19].  A theoretical modeling study done by Bogaerts 

[20] predicts that an increase in the metastable atom population requires a 100-

fold increase in thermalized electron density during the afterpeak regime.  The 

two orders of magnitude increase, although expected to be readily detected, has 

not yet been experimentally observed.  The spectroscopic data presented here, 

strongly indicate that ion-electron recombination is critical to the production of 

argon metastable atoms.   

This work employed a perturbation method [21, 22] to examine the energy 

transfer processes within the afterpeak regime of a pulsed glow discharge 

plasma.  Brief power pulses were applied during the afterpeak regime to disturb 

the environment of the collapsing plasma, especially electron energies.  The 

responses of various plasma species to these “perturbation pulses” were 

followed using atomic emission or absorption spectroscopy.  The data acquired 
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provide greater insight into the fundamental plasma processes within the 

afterpeak regime, including further evidence of the role of ion-electron 

recombination.  Unfortunately the exact nature of the ion-electron recombination 

process remains unresolved.  Qualitative information regarding the kinetics of 

these processes is also gleaned from the observed response times.   

 

2.2 Experimental  

The pulsed glow discharge spectroscopy system employed in these 

investigations, Figure 2.1, consisted of the glow discharge source, a 0.64 m 

monochromator based optical spectroscopy system, and associated optics and 

electronics as described below.  The operation of the system to achieve various 

spectroscopic measurements is also described. 

 

2.2.1 Glow Discharge Source   

A stainless steel six-way cross (MDC, Hayward, CA), equipped with two 

Suprasil optical view ports (Heraeus Quartz, Duluth, GA), served as the glow 

discharge chamber and the grounded anode.  A vacuum, < 1 m Torr, was 

maintained in the chamber by a turbomolecular pump (Pfeiffer TPH50, Nashua, 

NH) and a molecular pump.  Ultra pure argon (Airgas, Randor, PA) was 

introduced through a metering valve to provide the discharge support gas.  Argon 

pressures were monitored by a thermocouple pressure gauge (Varian 801, 

Lexington, MA).  A copper disk cathode (NIST SRM 495, Gaithersburg, MD), 5 

mm in diameter and 2 mm in thickness, was mounted on a direct insertion probe 
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(DIP) equipped with a high voltage electrical feed through and introduced into the 

discharge chamber via a ball valve interlock.    

The pulsed discharge power supply system consists of a function 

generator (DS345, Stanford Research Systems, Sunnyvale, CA 94089), an 

electronic high voltage pulser (GRX-H, Directed Energy, Fort Collins, CO), and a 

power supply (Kepco APH 2000M, Flushing, NY).  The function generator was 

programmed to produce the desired waveforms, which in turn triggered the 

pulser to gate the high voltage output from the power supply resulting in precisely 

controlled square wave power pulses.  The function generator also provided 

triggers to synchronize the signal detection system.  The resultant pulse trains 

were monitored with an oscilloscope (Tektronix 2232, Beaverton, NY) equipped 

with a high voltage probe (Tektronix P6015, Beaverton, NY).  
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Figure 2.1.  Schematic of the pulsed glow discharge spectroscopy system 
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2.2.2 Atomic Emission Measurements 

Atomic emission was used to determine the population of various excited 

states.  Two plano-convex lenses were used to project the GD plasma image, 

1:1, on the entrance of a Czerny-Turner monochromator (ISA HR-640, Edison, 

NJ).  The monochromator entrance and exit slits were both set at widths of 50 

µm with a height of 1 mm.  Throughout this study, the lateral center of the plasma 

image was carefully aligned with the entrance.  Variation of the position of 

cathode with respect to the orthogonal axis of the optical system enables 

measurements of the plasma at different distances from the cathode surface.  

The zero position was determined when the copper cathode surface image was 

located at the horizontal and vertical center of the entrance slit.   

A photomultiplier tube (Hamamatsu R928, Bridgewater, NJ) detected the 

emission output of the monochromator and the signal was fed into an 

oscilloscope (LeCroy LT342, Chestnut Ridge, NY) that provided temporal 

emission profiles.  The profiles were digitized using 2500 data points and 

averaged for 100 sweeps by the oscilloscope.  The resultant data were then 

transferred into a spreadsheet program (Excel, Microsoft, Seattle, WA) on a 

computer through a GPIB interface.  Further data processing and graphing was 

achieved using a visual basic macro in the spreadsheet.  

 

2.2.3 Atomic Absorption Measurements 

The populations of argon metastable atoms and ground copper atoms 

were measured using an atomic absorption technique.  Boron-argon and copper-

neon hollow cathode lamps (HCL) operated at 15 mA current were used as the 
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light sources for measurements of argon or copper species respectively.  The 

incident light was first focused into a beam in the discharge chamber above the 

center of the cathode by two plano-convex lenses.  The transmitted light was 

then imaged onto the monochromator entrance slit by the same optical lenses 

used in the emission measurements.   

In this study, an approach was taken to eliminate the use of a lock-in 

amplifier and any associated temporal distortion.  This very basic method relies 

on the stability and reproducibility of the plasma and simply involves three 

measurements followed by an absorbance calculation (Figure 2.2).  First, the 

emission intensity profile of the HCL (IHCL) is recorded.  Then, the GD plasma is 

turned on and the total signal (Itotal), which consists of the emission from the GD 

plasma (Iplasma) and the transmitted light from the HCL after being absorbed by 

the plasma (Itrans), is recorded.  Finally, the HCL light source is blocked and only 

the emission from the plasma (Iplasma) is recorded.  The differences between the 

total signal and the plasma emission signal are calculated to give the transmitted 

light intensity (Itrans).  The absorbance is then calculated based on the well-

known, simple relationship in Equation 2.1.   

A= log [IHCL/Itrans] = log [IHCL/(Itotal-Iplasma)]            (Equation 2.1) 

Where: IHCL = emission intensity of the HCL. 

Itrans = intensity of transmitted light. 

Iplasma = emission intensity of the plasma only. 

Itotal = total radiation intensity of both transmitted light and plasma 

emission. 
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Because the absorbance profiles were calculated from emission signals 

there is no temporal distortion arising from the lock-in amplifier time constant.  

The resultant absorbance profiles can hence be directly compared with the 

emission profiles in terms of temporal characteristics (Figure 2.2). 

  



 

Figure 2.2.  The temporal profile of measured HCL emission intensity 

(IHCL), plasma emission intensity (I

and the calculated transmitted light intensity (I
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The temporal profile of measured HCL emission intensity 

), plasma emission intensity (IPLASMA), total emission intensity (I

and the calculated transmitted light intensity (ITRANS.) and absorbance.

 

The temporal profile of measured HCL emission intensity 

), total emission intensity (ITOTAL), 

.) and absorbance. 
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2.2.4 Power Modulation to Yield a Perturbation Pulse 

The pulsed GD plasma was operated under a fixed pressure at 0.8 Torr.  

Under the normal pulse mode, the discharge power was kept on for 5 ms and 

turned off for 15 ms, giving a 50 Hz pulse rate with a 25% duty cycle (Figure 

2.3a).  The pulse voltage was set at 800 V and the peak current was measured 

to be 3.2 mA, resulting in a 0.64 Watt average power.   

In order to explore the plasma processes within the afterpeak regime, brief 

power pulses were applied shortly after the termination of the power pulse to 

perturb the collapsing plasma (Figure 2.3b and 3c); the brief pulse is therefore 

termed a “perturbation pulse”.  The perturbing pulses had the same magnitude 

and power as the original pulse, differing only in the length of their on-time.  The 

duration of the perturbation pulse was set for 0.1 ms and was positioned at 0.1 

ms after power termination for the single perturbing pulse, and at 0.1 ms and 0.3 

ms after power termination for the double perturbing pulses. It should be noted 

that increasing the length of the perturbing pulse proportionately increases the 

maximum intensity until a plateau, steady state discharge, is reached.  In another 

study, the position of the single perturbing pulse was varied from 0.2 to 1.0 ms 

after the termination of the discharge plasma.   

  



45 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The temporal profiles of the applied power of (a) the normal pulsed 

glow discharge; (b) the pulsed glow discharge with a single perturbation pulse 

applied during the afterpeak 0.1 ms following power termination; and (c) two 

perturbation pulses applied 0.1 and 0.3 ms following termination.  Profiles are not 

drawn to scale. 
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2.3. Results and Discussion 

An applied perturbation pulse generates an instantaneous electric field 

between the anode and cathode.  Among the plasma species, electrons are most 

sensitive to transient shifts in the electric field.  The electric field immediately 

energizes free electrons because of their light mass and higher mobility.  These 

energetic electrons are then able to excite or ionize the heavier particles, i.e. 

atoms and molecules, via collisions.  These excited or ionized plasma species 

can further dissipate their energies to the surrounding environment through 

various processes.  The energy transfer chain can be schematically presented as 

follows: 

 

 

 

An important channel for this energy dissipation process in excited 

species is the emission of photons via radiative relaxation.  When the power is 

terminated, the electron population rapidly thermalizes [23, 24].  Highly energetic 

electrons disappear from the plasma rapidly and thermal equilibrium occurs ≤ 

100µs after the power termination [24], suspending electron excitation and 

ionization. 

Because of the close energy coupling, electronic perturbation of the 

plasma leads to changes in the spectroscopic observables of the plasma.  

Therefore, the study of the impact of these electric field induced electronic 

perturbations on spectral signals provides additional insight into the energy 
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transfer processes in the plasma.  A side benefit is that the temporal profiles also 

contain information regarding the kinetics of these energy transfer processes.   

In this study, temporal spectroscopic signal profile responses of discharge 

gas and sputtered species to perturbation pulse modulations were monitored.  

The transitions explored are listed in Table 2.1; of each group, a representative 

transition will be discussed in detail.   

 

Table 2.1.  Selected spectral lines and the respective transitions. 

 

Group Wavelength (nm) Transition 

Argon atom 

Ar I  811.5 

Ar I 794.8 

Ar I 415.8 

Ar I 420.0 

Ar I 810.3 

Ar I 750.3 

4p2 – 4s 3P2 

4p7 – 4s 3P0 

5p5 – 4s 3P2 

5p2 – 4s 3P2 

4p4  – 4s 3P1 

4p10 – 4s 1P1 

Argon ion 

Ar II 476.5 

Ar II 427.7 

Ar II 410.3 

Ar II 413.1 

4p 2P3/2 – 4s 2P1/2 

4p’ 3P3/2 – 4s 2D5/2 

5s 4P5/2 – 4p 4D7/2 

3d’ 2D3/2 – 4s’ 2D3/2 

Copper atom 

Cu I 324.7 

Cu I 327.4 

Cu I 809.3 

Cu I 368.7 

Cu I 515.3 

4p 2P1/2 – 4s 2S1/2 

4p 3P3/2 – 4s 2P1/2 

5s 2S1/2 – 4p 2P3/2 

6d 2D5/2 – 4p 2P3/2 

4d 2D3/2 – 4p 2P1/2 

 

 

Note: The transitions in bold are discussed in detail as the representative for 
each group. 
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2.3.1 Argon Ion Emission 

 

Because all of the argon ion transitions exhibit similar emission responses, 

the response of the transition from 4p 2P3/2 (19.87 eV) to 4s 2P1/2 (17.26 eV), 

yielding emission at 476.5 nm, is discussed as representative of this group.  

Excited argon ions are most likely produced by a two-step process: electron 

ionization of argon followed by electron excitation [14].  

1) electron ionization: Ar + e- (fast) � Ar+ + 2 e- (slow) 

2) electron excitation Ar+ + e- (fast) � Ar+ (excited) + e- (slow)  

Both steps directly involve energetic electrons; therefore, the emission is 

expected to exhibit immediate responses to power modulation.  Indeed, the 

spontaneous responses can be readily recognized in Figure 2.4a: the emission 

intensities quickly decay as soon as the power is turned off.  As explained earlier, 

energetic electrons disappear immediately after the power termination and both 

ionization and excitation halt; therefore, the excited argon ion state is no longer 

populated.  Consequently, the emission undergoes a sharp decrease.  Following 

the same argument, the application of the perturbation pulse will reverse the 

processes and the intensities instantaneously increase (Figures 2.4b and 4c). 

 

 

 

 

 



 

 

 

Figure 2.4. The temporal profiles of Ar II 476.5 nm emission at various 

distances: (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.2 ms to 5.3 ms; and 

(c) the pulsed glow discharge with the double perturb

from 5.1 to 5.2 ms and 5.3 to 5.4 ms.
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The temporal profiles of Ar II 476.5 nm emission at various 

distances: (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.2 ms to 5.3 ms; and 

(c) the pulsed glow discharge with the double perturbation pulse applied 

from 5.1 to 5.2 ms and 5.3 to 5.4 ms. 

 

The temporal profiles of Ar II 476.5 nm emission at various 

distances: (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.2 ms to 5.3 ms; and 

ation pulse applied 
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2.3.2 Argon Atom Emissions 

Excited argon atoms can be produced through various mechanisms in a 

glow discharge.  Within the cathode dark space (0-2 mm), fast atom excitation is 

the dominant excitation mechanism [25] because of the presence of the strong 

electric field.   

1) Energy coupling into the argon ion:   

Electric Field + Ar+ (slow) � Ar+ (fast)    

2) Charge exchange yielding fast atoms:   

Ar+ (fast) + Ar (slow) � Ar+ (slow) +Ar (fast)  

3) Fast atom excitation:   

Ar (fast) + Ar  � Ar (slow) +Ar* (excited) 

 

In the negative glow region (3-10 mm), the major excitation mechanisms 

are electron excitation and ion-electron recombination. 

1) Electron excitation:     

e- (fast) + Ar (ground) � e- (slow) +Ar* (excited)  

2) Ion-electron recombination-decay:   

Ar+ + e- (slow) � Ar** (highly excited)   

The highly excited argons lie close to the ionization continuum; once formed, 

they radiatively decay to lower excited states:    Ar**  � Ar* + photon.  
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Figure 2.5 shows the temporal profiles of argon atom emissions at 811.5 

nm.  This emission corresponds to the transition from 4p 3D3 (13.08 eV) to the 4s 

3P2 metastable state (11.55 eV).  It is evident that the temporal profiles are 

spatially dependent. In the close proximity of the cathode surface (0-1 mm), the 

emissions quickly decay after the power termination; no afterpeak is observed.  

However, once the perturbation pulse is applied the intensities start to enhance.  

These observations are consistent with the proposed fast atom excitation 

mechanism within the cathode dark space.  Note that the mechanism is closely 

coupled with electric field that is essential for the production of fast atoms.  The 

power termination, i.e., disappearance of the electric field, immediately suspends 

this mechanism.  Hence, the cessation of the power halts fast atom 

bombardment excitation resulting in near immediate intensity attenuation.  When 

the perturbation pulse is switched on, the electric field is re-established; fast atom 

bombardment excitation is re-initiated and, therefore, the emission signals start 

to increase.   

  



 

 

Figure 2.5.  The temporal profiles of Ar I 811.5 nm emission at various 

distances for (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.05 to 5.15 ms; and (c) 

the pulsed glow discharge with the double perturbation pulse applied from  

5.1 to 5.2 ms and 5.3 to 5.4 ms (within the dashed lines).

 

 

52 

 

.  The temporal profiles of Ar I 811.5 nm emission at various 

distances for (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.05 to 5.15 ms; and (c) 

discharge with the double perturbation pulse applied from  

5.1 to 5.2 ms and 5.3 to 5.4 ms (within the dashed lines). 

 

.  The temporal profiles of Ar I 811.5 nm emission at various 

distances for (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.05 to 5.15 ms; and (c) 

discharge with the double perturbation pulse applied from  
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At distances between 3 to 10 mm, which lie within the negative glow 

region, the emission exhibits completely different responses.  The intensities 

increase after the power termination and form the so-called “afterpeaks”.  The 

intensity upsurges, or the increases in excited argon atom population, arise from 

either electron excitation or ion-electron recombination-decay.  

In this case, the plasma perturbation is especially useful in allowing one to 

determine what type of excitation mechanism is dominant.  The electron 

excitation and ion-electron recombination have completely opposite responses to 

plasma perturbation.  The power application increases the average electron 

energy and also allows for electron excitation to be further enhanced.  On the 

other hand, as the electrons are accelerated, the thermalized electron population 

diminishes and the probability of ion-electron recombination is lowered.  

Therefore, if electron excitation is the dominant mechanism, the 811.5 nm 

emission intensity would exhibit a positive response to the applied perturbation 

pulse; that is, the intensity would increase at the onset of the perturbation pulse.  

Otherwise, a negative response would strongly suggest ion-electron 

recombination-decay to be the dominant excitation mechanism.   

The experimental results, shown in Figures 2.5b and c, clearly show that 

the intensities undergo an apparent decrease at the onset of the perturbation 

pulse.  Therefore, ion-electron recombination-decay is the predominant 

mechanism populating the argon excited state during the afterpeak regime.  As 

expected, the intensities start to increase after the perturbation pulse is 

terminated and ion-electron recombination re-establishes.   It is evident that the 
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intensity increases are delayed with respect to power termination.  Because ion-

electron recombination requires that the electron be thermalized, the delays are 

ascribed to the electron thermalization time.  Based on the time difference 

between the power termination and the resurgence of emission intensity, the 

electron thermalization time is estimated to be ~100 µs, in agreement with Biondi 

[24].  However, in this study, the thermalization time cannot be explicitly 

determined because of signal distortion.   

 

2.3.3 Argon Metastable Atom Absorption 

The metastable atoms of discharge gas play very important roles in 

excitation and ionization; therefore, the population of the metastable atoms and 

their production mechanism are of special interest.  In this study, the population 

of the argon 3P2 metastable state was monitored by measuring the absorbance at 

811.5 nm and the results are shown in Figure 2.6.   

The temporal responses of argon metastable atom 3P2 population are 

found to be correlated with the respective argon atom emission profiles.  Within 

the cathode dark space (~ 0-1 mm, Figures 2.6a, b, and c), the metastable 

population decreases as the discharge power pulse is turned off and then 

immediately increases at the onset of the perturbation pulse.  The observations 

suggest that, as with the other excited states, the metastable state is also 

predominantly populated by fast atom excitation inside the cathode dark space. 

The afterpeaks were observed at approximate distances of 3-10 mm 

(Figures 2.6d, e, and f), indicating that metastable atoms continue to form within 
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the negative glow region after the power termination.  As discussed earlier, the 

dominant excitation mechanism is ion-electron recombination followed by 

radiative decay.  When the perturbation pulse is applied, electrons are energized 

and ion-electron recombination is suppressed.  In addition, the energetic 

electrons deconstruct metastable atoms via electron ionization and excitation, 

further depopulating the metastable state.  Therefore, the metastable atom 

population undergoes a sudden decrease (Figure 2.6d).   

After the termination of the perturbation pulse, the argon metastable 

population starts to recover.  The recovery is delayed with respect to the 

perturbation pulse termination. Note that the delay closely matches the emission 

signal delay observed in Figure 2.5b, i.e., the assumed electron thermalization 

time. That is, the argon metastable population starts to increase as soon as the 

argon ion-electron recombination-decay re-initiates.  The strong correlation 

provides additional evidence for the conclusion that the recombination-decay 

mechanism is responsible for the formation of metastable atoms.  

  



 

 

Figure 2.6. The temporal profile of argon metastable atom absorbance at 

811.5 nm for (a) the normal pulsed glow discharge at 0

mm; (b) the pulsed glow discharge with the perturbation pulse applied 

from 5.05 to 5.15 ms (within the dashed lines) at 0

and (c) the double perturbation applied from 5.1 to 5.2 ms and 5.3 to 5.4 

ms (within the dashed lines).
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temporal profile of argon metastable atom absorbance at 

811.5 nm for (a) the normal pulsed glow discharge at 0-2 mm and (d) 3

mm; (b) the pulsed glow discharge with the perturbation pulse applied 

from 5.05 to 5.15 ms (within the dashed lines) at 0-2 mm and (e) 3

and (c) the double perturbation applied from 5.1 to 5.2 ms and 5.3 to 5.4 

ms (within the dashed lines). 

 

temporal profile of argon metastable atom absorbance at 

2 mm and (d) 3-10 

mm; (b) the pulsed glow discharge with the perturbation pulse applied 

and (e) 3-10 mm; 

and (c) the double perturbation applied from 5.1 to 5.2 ms and 5.3 to 5.4 
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2.3.4 Copper Atom Emission  

The excited Cu atom group is represented by the emission at 368.7 nm 

which originates from the 6d 2D5/2 state (7.18 eV).  Significant afterpeaks were 

found throughout the plasma after the power was terminated (Figure 2.7a). 

Atomic absorption measurements of copper revealed that the copper atom 

population in the plasma remains relatively stable during the same period 

because of the slow diffusion processes (Figure 2.8).  Therefore, the afterpeaks 

can be readily attributed to the corresponding excitation mechanisms of copper. 

Strauss et al. [8] also observed similar intensity increases and ascribed 

the increases to electron excitation.  The energy pooling of a pair of argon 

metastable atoms yields an electron carrying the extra energy of 7.48 eV.   The 

energetic electrons generated can subsequently excite copper atoms. 

Arm + Arm �  Ar0 + Ar+ + e- + ∆E     where ∆E= 7.48 eV    

e- (fast) + Cu0 (ground) � Cu* (Excited) 

An alternative mechanism is similar to the recombination-decay of argon 

[14].  The increasing argon metastable atoms Penning ionize copper atoms 

directly, resulting in an upsurge of copper ions after power termination [4, 10].  

The resultant copper ions recombine with thermalized electrons and 

subsequently populate the excited states of copper atoms through radiative 

cascade decay. 

Arm + Cu0 � Ar + Cu+ 

Cu+ + e- (slow) � Cu* (excited) 
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Again, the dominant excitation mechanism can be determined by applying 

the perturbation method.  Figures 2.7b and c show the responses of the copper 

emission to the applied perturbation pulse.  The onset of perturbation pulses 

causes sudden and significant decreases in the intensities at various distances; 

the intensities start to increase after the pulse is terminated.  However, unlike the 

argon excitation emissions, no spatial differences are observed.  The negative 

responses strongly suggest that copper atoms are predominantly excited through 

an ion-electron recombination-decay mechanism throughout the plasma.  Shortly 

after the perturbation pulse is terminated, the copper emission intensities 

undergo a resurgence.  Also observed in argon excited atom emissions, delays 

of ~100 µs can be discerned for the resurgences with respect to the perturbation 

pulse termination; these delays are assigned to electron thermalization time and 

the values are consistent with the previous measurement. 

Close examination reveals that the copper emission afterpeaks maximize 

at ~5.2 ms.  As compared to the argon emissions, the maxima are delayed for 

~0.1 ms, suggesting that the copper ion-electron recombination follows argon 

ion-electron recombination in time.  Furthermore, the maximum positions and the 

breadths of the copper afterpeaks closely match those of the argon metastable 

population afterpeaks shown in Figures 2.6e and f.  This suggests that the 

excited copper atoms are associated with argon metastable atoms: the copper 

ion population that undergoes further recombination-decay arises from Penning 

ionization during the afterpeak regime, rather than from the residual copper ions 

in the plateau regime.    



 

Figure 2.7. The temporal profiles of Cu I 368.7 nm emission at variou

distances for (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.1 to 5.2 ms; the 

pulsed glow discharge with the double perturbation pulse applied from 5.1 

to 5.2 ms and 5.3 to 5.4 ms.
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The temporal profiles of Cu I 368.7 nm emission at variou

distances for (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.1 to 5.2 ms; the 

pulsed glow discharge with the double perturbation pulse applied from 5.1 

to 5.2 ms and 5.3 to 5.4 ms. 

 

The temporal profiles of Cu I 368.7 nm emission at various 

distances for (a) the normal pulsed glow discharge; (b) the pulsed glow 

discharge with the perturbation pulse applied from 5.1 to 5.2 ms; the 

pulsed glow discharge with the double perturbation pulse applied from 5.1 
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Figure 2.8. A typical temporal profile of copper atom absorbance signal at 

334.7 nm in a pulsed glow discharge (sample distance: 4 mm). 
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2.3.5 Variation of the Perturbation Pulse in Time 

 A study was undertaken to examine the effect of varying the position of 

the perturbing pulse in time.  The position of the perturbing pulse relative to 

power termination was varied from 0.1 to 1.0 ms.  The glow discharge plasma 

was observed within both the dark space and negative glow region with cathode 

distances of 0 mm and 5 mm respectively.  As stated in section 2.2, the lateral 

center of the plasma image was carefully aligned with the entrance.  The zero 

position was determined when the copper cathode surface image was located at 

the horizontal and vertical center of the entrance slit. The temporal profiles of the 

two positions can be seen in Figures 2.9a, b, c and d. 

As seen in section 2.2, in close proximity to the cathode surface (Figure 

2.9a) the emissions quickly decay after the termination of power and are 

enhanced once the perturbing pulse is applied.  Again this observation is in 

agreement with the mechanism of fast atom excitation thought to be dominant 

within the cathode dark space.  At distances farther from the cathode surface, in 

this case 5 mm (Figure 2.9b, c, and d), emission intensities increase following 

power termination due to ion-electron recombination-decay to form the afterpeak.  

With the onset of a perturbation pulse soon after power termination, about 0.1 ms 

(Figures 2.9c and d), the emission intensities quickly drop and then rise again 

with the pulse’s cessation.  However, the introduction of perturbation pulses set 

farther in time from the termination of power, 0.2 to 1.0 ms (Figure 2.9b), causes 

a spike in intensity followed by a mini-afterpeak once the pulse has ended. 
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Within the cathode dark space (Figure 2.9a), the position of the perturbing 

pulse relative to the termination of power seems to have little effect on both the 

shape and intensity of the resulting upsurge.  However, within the negative glow 

region of the plasma (Figure 2.9b), as the perturbing pulse is moved out farther in 

time, the intensity of the emission upsurge following the cessation of the 

perturbing pulse decreases.  This is most likely due to lower populations of 

metastable argon atoms at times farther from the termination of power.  Similar 

results were also observed for Ar II 476.5 nm emissions which have no 

afterpeak, and Cu I 368.7 nm emissions with an afterpeak.   



Figure 2.9.  The tempo

perturbing pulse at various times (0.2, 0.4, 0.6, 0.8, and 1.0 ms) after 

power termination with the cathode positioned at (a) 0 mm with no 

afterpeak; and (b) 5 mm with an afterpeak.  Figure (c) also has the 

cathode positioned at 5 mm and shows profiles with (0.1 ms) and without 

the perturbing pulse.  Figure (d) is a close
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The temporal profiles of Ar I 811.5 nm emission with the 

perturbing pulse at various times (0.2, 0.4, 0.6, 0.8, and 1.0 ms) after 

power termination with the cathode positioned at (a) 0 mm with no 

afterpeak; and (b) 5 mm with an afterpeak.  Figure (c) also has the 

athode positioned at 5 mm and shows profiles with (0.1 ms) and without 

the perturbing pulse.  Figure (d) is a close-up of (c).  

 

 

ral profiles of Ar I 811.5 nm emission with the 

perturbing pulse at various times (0.2, 0.4, 0.6, 0.8, and 1.0 ms) after 

power termination with the cathode positioned at (a) 0 mm with no 

afterpeak; and (b) 5 mm with an afterpeak.  Figure (c) also has the 

athode positioned at 5 mm and shows profiles with (0.1 ms) and without 
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2.4 Conclusions 

This study employed a perturbation method to probe the ionization and 

excitation processes within the afterpeak regime of a pulsed glow discharge 

plasma.  The responses of various plasma species to the perturbation were 

measured using spectroscopic techniques.  The experiments strongly suggest 

the following processes take place in sequence after the power termination. 

1) electron thermalization; 

2) argon ion-electron recombination-decay forming argon metastable 

atoms; 

3) Penning ionization of copper atoms yielding copper ions; 

4) copper ion-electron recombination-decay forming excited copper atoms. 

Through these processes, the plasma energy cascades from the argon ion 

(>15 eV) to the argon metastable state (>11.55 eV), to the copper ion (7.7 eV), 

and then the excited copper atom.  The downward energy flow arises from the 

plasma decay after the power input has halted. Since the radiative decay of 

argon metastable states is forbidden, these states serve as energy reservoirs 

where their populations undergo temporary increases during the decay process.  

Consequently, the energetic (11.55 and 11.72 eV) metastable atoms play a 

central role in ionization and excitation during the afterpeak regime.  It is 

important to note that the exact identity of the ion-electron recombination process 

remains unclear, particularly given that there does not appear to be an increase 

in electron density during the afterpeak that current theory indicates is required.  
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Further experiments to identify the responsible ion-electron recombination 

mechanism are planned. 

The experiments also revealed valuable information regarding the kinetics 

of the associated plasma processes, such as electron thermalization time.  

However, the signal distortion associated with the detection system prevents 

accurate measurements of these values.  Future work will update the signal 

detection system to make accurate measurements. 
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Chapter 3  

Spatial, Spectral, and Temporal Characteristics of a Millisecond 

Pulsed Glow Discharge: Electron Density & Temperature 
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Abstract 

 Time-resolved Langmuir probe studies were undertaken to elucidate the 

excitation and ionization processes in a direct current pulsed glow discharge 

plasma. Electron densities and temperatures were derived from the Langmuir 

probe results. Attention was paid to differences observed between the power-on, 

plateau, and power-off, afterpeak, regimes. The data suggest that ion-electron 

recombination plays a much less significant role in the formation of afterpeak 

emissions than previously thought. Instead, based on recent work by others, it is 

proposed here that dissociative recombination between molecular argon ions 

(Ar2
+) and electrons is the principal process responsible for emission 

enhancements and increases in electron temperature found within the afterpeak 

regime. Spatially-resolved Langmuir probe studies were also undertaken and 

enabled the analysis of electron densities and temperatures within the plasma as 

a function of axial and vertical distance from a direct insertion copper cathode. 

Simultaneous spectral data of several copper lines was collected using a 

monochromator to ascertain any affects the Langmuir probe might have on the 

plasma. 
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3.1 Introduction 

 Plasma research was pioneered in the early 1920’s by Irving Langmuir, a 

renowned American physicist and chemist who coined the term plasma because 

the ionized gases reminded him of blood plasma [1]. In 1928, Langmuir 

described the fourth state of matter as follows: "Except near the electrodes, 

where there are sheaths containing very few electrons, the ionized gas contains 

ions and electrons in about equal numbers so that the resultant space charge is 

very small. We shall use the name plasma to describe this region containing 

balanced charges of ions and electrons" [2]. Over the past 80 years, this branch 

of science has developed into a major discipline with vast bodies of research 

spanning the fields of chemistry, physics, and astronomy. Today, key driving 

forces behind plasma research include their use for controlled thermonuclear 

fusion, for thin film deposition and etching on microelectronics, and as solid state 

ion sources for atomic spectroscopy and mass spectrometry [3, 4, 5]. Glow 

discharge plasma is just one example that has been drawing increased interest 

over the last two decades. Well-known for their efficient generation of atomic 

populations from both conducting and non-conducting solid samples via cathodic 

sputtering, glow discharge (GD) plasmas find broad use as sources of 

atomization, excitation, and ionization in various analytical spectrometries [6, 7].  

GD plasmas are rich in ionization mechanisms, with the most dominant 

processes being electron ionization, charge transfer, and Penning ionization. 

When operated in the pulsed mode, spatial and temporal separation of the 

different ionization mechanisms becomes possible through the creation of three 

distinct time regimes during each on/off cycle: a prepeak dominated by electron 
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ionization, an afterpeak dominated by Penning ionization, and a steady-state 

plateau which arises from a mixture of electron impact, charge transfer, and 

Penning ionizations [8]. Although pulsed GD has been actively researched over 

the past 15 years, it remains a relatively new science with much debate about its 

basic plasma parameters and processes, including the origin of the afterpeak. 

Therefore, characterization of the energies and populations of charged species 

present would provide greater insight into the fundamental plasma processes 

within the pulsed GD.   

Irving Langmuir’s electrostatic probe, dubbed the Langmuir probe, 

remains one of the simplest and most widely used plasma diagnostic devices 

used in the field today. The device consists of a small conducting electrode, 

typically tungsten or graphite, inserted into the plasma from which localized 

electron and ion currents can be measured at its tip [9]. By applying a voltage 

ramp to the probe, the response current drained from the plasma can be 

recorded at different probe bias voltages, generating an I-V characteristic curve 

[10].  The I-V characteristic curve can then be used to determine several basic 

properties of the plasma, including temperature and density [11]. Part of the 

popularity of this method is due to the probe’s exceedingly simple design, ease of 

use, and low cost [12]. Moreover, other techniques for calculating electron 

temperature and density, such as optical methods utilizing excitation temperature 

or Hβ line broadening, preclude most low pressure plasmas because they are not 

at local thermal equilibrium (LTE) and do not have sufficient electron number 

densities [13].  
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Several studies have used Langmuir probes to investigate the nature of 

charged species in rf and dc GD plasmas [6, 10, 14-17]. In their investigation of a 

dc argon GD plasma operated in the continuous mode, Fang and Marcus found 

that the electron number density was proportional to the discharge current with 

the majority of the electron temperatures falling between 0.20 - 0.35 eV and 

electron densities on the order of 1011 cm-3 [6]. Heintz and Hieftje made Langmuir 

probe measurements for a conventional rf GD (operated in both the continuous 

and pulsed mode) and a rf planar-magnetron source. The conventional rf GD 

exhibited temperatures between 2 – 5 eV and electron densities between 109 – 

1010 cm-3 [16]. To our knowledge, there have not been any studies to date that 

have investigated pulsed dc glow discharges using the Langmuir probe method.  

In the present work, time-resolved Langmuir probe studies were 

undertaken to determine several fundamental plasma parameters in a direct 

current pulsed argon glow discharge plasma. Electron densities and 

temperatures were derived from the Langmuir probe results and attention was 

paid to differences observed between the power-on, plateau, and power-off, 

afterpeak, regimes. Spatially-resolved Langmuir probe studies enabled the 

analysis of electron densities and temperatures within the plasma as a function of 

axial and vertical distance from a direct insertion copper cathode. Simultaneous 

spectral data of several copper lines was also collected using a monochromator 

to ascertain any affects the Langmuir probe might have on the plasma. 
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3.2. Experimental 

The pulsed glow discharge spectroscopy system employed in these 

investigations, Figure 3.1, consisted of the glow discharge source, a single 

Langmuir probe with graphite electrode, a 1.0 m monochromator based optical 

spectroscopy system, and associated optics and electronics as described below.   

 

3.2.1 Glow Discharge Source   

The glow discharge source is described in detail in Chapter 2 section 2.2.1 

and is described only briefly here. A vacuum, < 1 m Torr, was maintained in the 

chamber and Ultra pure argon (Airgas, Randor, PA) was introduced through a 

metering valve to provide the discharge support gas.  A copper disk cathode 

(NIST SRM 495, Gaithersburg, MD), 5 mm in diameter and 2 mm in thickness, 

was mounted on a direct insertion probe (DIP) equipped with a high voltage 

electrical feed through and introduced into the discharge chamber via a ball valve 

interlock. Between runs, the copper cathode disks and ceramic shields were 

polished clean, rinsed with methanol, and allowed to dry in air. 

The pulsed discharge power supply system consists of a function 

generator (DS345, Stanford Research Systems, Sunnyvale, CA 94089), an 

electronic high voltage pulser (GRX-H, Directed Energy, Fort Collins, CO), and a 

power supply (Kepco APH 2000M, Flushing, NY).  The function generator was 

programmed to produce the desired waveforms, which in turn triggered the 

pulser to gate the high voltage output from the power supply resulting in precisely 

controlled square wave power pulses that were monitored with an oscilloscope 

(Tektronix 2232, Beaverton, NY). 
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The pulsed dc GD plasma was operated under a fixed pressure at 0.75 

torr.  Under pulsed mode, the discharge power was kept on for 5 ms and turned 

off for 15 ms, giving a 50 Hz pulse rate with a 25% duty cycle.  The pulse voltage 

was set between 600-900 V and the peak current was measured to be between 

.6 - .1 mA, resulting in average powers between .36 and .90 Watts.   

   

3.2.2 Langmuir Probe Construction 

 The Langmuir probe consisted of a 0.90 mm diameter graphite electrode 

(Pentel, Torrence, CA) soldered to a brass BNC pin and insulated in a ceramic 

MACOR ® shield (Accuratus, Washington, N.J.). The electrode was attached to 

the BNC connector using Teflon tape. Approximately 5 mm of the graphite was 

left exposed to sample the charged particles in the glow discharge plasma, 

resulting in a net exposed surface area of 1.48 × 10-5 m2. A schematic of the 

Langmuir probe assembly is shown in Figure 3.2.  

 The Langmuir probe was inserted into the glow discharge source using a 

BNC to BNC connector flange and two spacer flanges connected on one side of 

the six-way cross described earlier. The Langmuir probe assembly was mounted 

perpendicular to the cathode in the GD chamber. Vacuum integrity was 

maintained using O-rings between each flange. The graphite electrode was 

joined through the BNC connectors to a programmable dc power supply (125-

1DM, Kepco, Flushing, NY) from which the power ramp, -10 to 40 V, for the I-V 

characteristic curves was supplied. The Langmuir probe was electrically floated 

between the DC power supply and the oscilloscope. The voltage drop across a 1 
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kΩ resistor was used to measure the response current drained from the plasma. 

A schematic of the glow discharge source design with the mounted Langmuir 

probe and simplified circuit depicting the electrically-floating probe is shown in 

Figures 3.1 and 3.3.  
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Figure 3.1. Schematic of the pulsed glow discharge spectroscopy system 

with Langmuir probe and monochramator. 
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Figure 3.2. A) Schematic of the graphite Langmuir probe assembly and B) 

a picture of the actual Langmuir probes and the BNC to BNC connector 

flange used to introduce the probes into the glow discharge source. 

 

  



 

 

 

 

Figure 3.3. Schematic of the single Langmuir probe electrical circuit 

[adapted from 18]. 
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Schematic of the single Langmuir probe electrical circuit 

 

 

Schematic of the single Langmuir probe electrical circuit 
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3.2.3 Langmuir Probe I-V Characteristic Measurements 

 Before each data set, the copper cathode was sputtered for at least 15 

minutes at the chosen dc voltage. This pre-sputtering period allows the plasma 

and discharge voltage to stabilize while burning off any impurities on the surface 

of the cathode. Because the Langmuir probe becomes coated with sputtered 

sample while in the plasma, ultimately affecting the conductivity and sheath 

formation of the graphite electrode, the cathode was situated at the farthest 

position (~25 mm) during each pre-sputtering period.  

Once the plasma was stabilized, the cathode was moved to the desired 

location (~ 5 mm from the tip of the Langmuir probe) and the I-V characteristics 

were measured. This was achieved by applying a manual voltage ramp (-10 to 

40 V) to the Langmuir probe and collecting the corresponding current flow 

through the probe. The pulse profiles from each response current were digitized 

using 10,000 data points and averaged for 100 sweeps by the oscilloscope 

(Figure 3.5).  The resultant data were then transferred into a spreadsheet 

program (Excel, Microsoft, Seattle, WA) on a computer through a GPIB interface.  

Further data processing and graphing was achieved using a visual basic macro 

in the spreadsheet. To combat irregularities due to electrode coating by sputtered 

material and ensure comparable results, the Langmuir probes were cleaned with 

dilute nitric acid and rinsed with methanol between each data set.  
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3.2.4 Spectral Measurements 

To ascertain any affects the Langmuir probe might have on the plasma, 

simultaneous spectral data of several copper lines was collected using a 

monochromator. Two plano-convex lenses were used to project the GD plasma 

image, 1:1, on the entrance of a Czerny-Turner monochromator (ISA JY-38, 

Edison, NJ).  The monochromator entrance and exit slits were both set at widths 

of 50 µm with a height of 1 mm.  Throughout this study, the lateral center of the 

plasma image was carefully aligned with the entrance.  A photomultiplier tube 

(Hamamatsu R928, Bridgewater, NJ) detected the emission output of the 

monochromator and the signal was fed into the oscilloscope described in section 

3.2.3 to provide temporal emission profiles.  The profiles were digitized using 

2500 data points and averaged for 100 sweeps by the oscilloscope.  The 

resultant data were then transferred into a spreadsheet program (Excel, 

Microsoft, Seattle, WA) on a computer through a GPIB interface.  Further data 

processing and graphing was achieved using a visual basic macro in the 

spreadsheet. Figure 3.6 shows the placement of the monochromator PMT and 

lenses relative to the GD source and Langmuir probe. 
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Figure 3.5. The temporal profiles of A) the applied power of the pulsed 

glow discharge; and B) the response voltage from the Langmuir probe 

(later converted to current during data processing). 
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Figure 3.6. Close-up schematic of the Langmuir probe and cathode 

orientation, as well as pictures showing the top and side views of the GD 

chamber with the A) Langmuir probe and B) cathode. 
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3.3 Theoretical  

 When a conducting material is inserted into a plasma, the rapidly moving 

electrons in the plasma collect on its surface, resulting in negative charge on the 

conductor within a few nanoseconds. If the conductor is electrically isolated, 

floating, its potential will be negative with respect to the surrounding plasma 

causing positive ions to accelerate toward it (electrons are then repelled from the 

floating conductor) [4]. Eventually, the conductor will reach an equilibrium 

potential, called the floating potential (Vf), with the same number of electrons and 

positive ions per second reaching the surface. Chapman describes the area 

around such an object as follows: “It is as though a potential energy ‘hill’ 

develops in front of the substrate. However, it is a downhill journey for ions from 

the plasma to the substrate, but uphill for the electrons, so that only those 

electrons with enough initial kinetic energy make it to the ‘top’, i.e. the substrate” 

[19]. This region of disturbed potential is known as the sheath and its thickness is 

on the order of a few Debye lengths (λD). In a plasma, the Debye length is the 

scale over which electrons screen out the electric field allowing for space-charge 

separation. The densities and temperatures of charged species in the sheath 

match the bulk plasma conditions at the sheath edge (a region called the “pre-

sheath”) [20].  

If an external bias is applied to the conductor, current is drawn from the 

plasma with either ions or electrons being collected depending on the polarity of 

the bias [9]. The number and energies of the charged species incident on the 

probe, as well as its surface area and applied potential, dictate the magnitude of 

the current drawn [13]. The Langmuir probe method ascertains fundamental 
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plasma parameters by observing the current to the probe as a function of the 

difference between the applied probe potential (Vap) and the local plasma 

pontential (Vs). When Vap << Vs (i.e. more negative) only ion current reaches the 

probe and electrons are repelled. This area of the I-V characteristic is known as 

the ion saturation region. When Vap > Vs (i.e. more positive) only electron current 

reaches the probe and ions are repelled. This area is known as the electron 

saturation region. When Vap ≤ Vs, only electrons with enough kinetic energy to 

overcome the retardation potential, or the potential energy ‘hill’ as described by 

Chapman, are able to reach the probe. This area is known as the electron 

retardation region and can be used as an exclusive energy selector [6]. The ion 

saturation region is used to determine the plasma density (ion density, ni) and the 

electron retardation region is used to determine the electron energy distribution 

(EEDF) and the electron temperature (Te). If the ion density is equal to the 

electron density (ni = ne), then ne can also be determined. Figure 3.6 shows a 

representative I-V characteristic trace with each region labeled.  

Although the use of Langmuir probes is relatively simple, the treatment of 

the data is considerably more complex and adjustments in operating parameters 

can alter the applicable theory and calculations used. To analyze my data by 

conventional Langmuir theory, several assumptions are made: 1) the distribution 

of the electron energies is Maxwellian in nature (average kinetic energy is an 

order of kT), 2) that the plasma is in local thermal equilibrium (LTE), 3) that the 

particle mean free path exceeds the Debye length (collisionless sheath), and 4) 

that the probe radius exceeds the Debye length (thin sheath) [16]. The calculated 
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values for the mean free path and the Debye length were .081 mm and 0.10 mm 

respectively and the probe radius was 0.45 mm. While the mean free path does 

not exceed the Debye length, calculations using conventional Langmuir theory 

will give a good approximation of electron temperature and density within the 

plasma. 

The local plasma potential (Vs) is the potential difference of the plasma 

volume with respect to the anode, or in our case the chamber walls. Vs can be 

determined from the intersection of the electron retardation and electron 

saturation regions of the I-V characteristic (shown in Figure 3.6) or from the 

maximum of the first derivative of the electron current to the probe [4]. If the 

natural log of the current (ln|I - Iis|) is plotted versus voltage (V ≡ Vap – Vs), 

electron temperature (Te) can be calculated from the inverse of the slope in the 

electron retardation region of the curve. Once Te and Vs are known, electron 

number density (ne) can be calculated from Equation 3.1,  
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where Iv is the current at plasma potential, Iis is the ion saturation current, e is the 

charge of an electron, Ap is the exposed probe area, k is the Boltzmann constant, 

me is electron mass, and Vs is the plasma potential. Equation 3.1 shows that there 

is an exponential increase in the electron current until the probe voltage is equal 

to the plasma potential (V = Vap – Vs = 0). Beyond the local plasma potential (V > 
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Vs), the current is space charge limited and increases linearly with the probe 

voltage [11]. 
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 Figure 3.6. Schematic of a typical Langmuir I-V Characteristic trace with 

A) the ion saturation region (electrons repelled), B) the electron retardation 

region, and C) the electron saturation region (ions repelled) and where Iis = ion 

saturation current, Ies = electron saturation current, Vf = floating potential (I = 0), 

and Vs = plasma potential [adapted from 11]. 
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3.4. Results and Discussion 

 

3.4.1 Temporal Langmuir Probe I-V Characteristics 

Electron Temperature (Te) 

 A glow discharge (GD) plasma is a hot, partially ionized gas (fractional 

ionization on the order of 10-4) consisting of roughly equal numbers of positive 

and negative charges, mostly electrons and positive ions. In plasma chemistry it 

is convenient to talk about the temperature of the charged species, but the speed 

distribution is a more precise description. For argon gas, the electrons are over 

100,000 times less massive than their positive ion counterparts. In the presence 

of an electric field, the lighter mass of the electrons ensures them greater mobility 

and a faster mean speed.  Moreover, because of the mass inequality, an electron 

will lose only a small fraction of its energy in an elastic collision with a neutral or 

ion which is in stark contrast to ionic collisions [21]. Thus, the word “hot” in the 

definition refers mostly to the electrons which have an average velocity some 

3,000 times greater than that of the neutral molecules or positive ions [4]. In a 

typical GD plasma, the electrons are 25,000 - 50,000 K while the neutrals and 

ions have more modest temperatures (~500 K). 

 Figures 3.7 and 3.8 show a characteristic I-V trace and Te profile for both 

the plateau and afterpeak temporal regimes. The slope of ln(I) vs. V yielded 

straight lines for all plots, indicating that the distribution was Maxwellian. 

Calculated values for Te ranged between 3.3 and 4.7 eV for the plateau region 

and 3.8 and 6.0 eV for the afterpeak region with average values for both equal to 

3.6 eV (~41,000 K) and 4.4 eV (~50,000 K) respectively. In all cases, the 
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measured Te for the afterpeak was higher than that of the plateau with the 

average difference between the two temperatures equal to 0.8 eV. The 

calculated RSD was 45% for both the plateau and afterpeak making it difficult to 

assert whether any temperature difference between the two regions truly exists. 

Furthermore, the net drift of electrons with respect to the probe tends to 

overestimate the electron temperature, giving a value some 3 times greater than 

predicted [22].   

While the range of Te values are in good agreement with those of other 

GD-Langmuir investigations [6, 16, 17], the spike in Te values in the afterglow 

contradicts conventional descriptions of the pulsed GD afterpeak which suggest 

that upon pulse termination, the electron population will quickly thermalize to the 

gas temperature as electrons lose energy via collisions in the plasma [23]. 

However, similar results were observed by Overzet and Kleber in their Langmuir-

probe investigations into the electron properties of pulsed gaseous electronics 

conference reference cell (GEC) discharges in pure Ar [24]. They attributed this 

increase to reactions between metastable argon atoms that yield energetic 

electrons as follows: 

Arm + Arm � Ar+ + Ar0 + e- (fast)   EEDF = 7.3 – 7.9 eV  (Eqn. 3.2) 

In their experiments, electron energy distribution function (EEDF) peaks of ~7.5 

eV during the afterglow confirmed the presence of these high energy electrons 

[24]. Likewise, Wenig et. al. observed high constant values for the mean electron 

energy late in the afterglow of a pulsed low pressure inductively coupled plasma. 

The group undertook modeling experiments to better understand the phenomena 
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which demonstrated that energy losses of the electrons could be compensated 

by re-heating via superelastic collisions from the upper to the lower metastable 

level, and by chemo-ionization involving the metastable levels [25, 26].  

 

Electron Number Density (ne) 

As stated in Section 3.3, the electron number density (ne) can be 

calculated from Equation 3.1 once the electron temperature (Te) and the local 

plasma potential (Vs) have been determined. In most cases the first derivative 

method was used to find Vs unless no discernable maxima could be found, in 

which case, the intersection method was used. For applicable runs, Vs values 

were determined using both techniques. There was good agreement between the 

methods with differences in a single run of less than ± 1 V. Overall, Vs values 

ranged from 3.4 – 13.3 V with an average of 6.63 V and no statistical difference 

between the average values for the plateau and afterpeak was found.  

Calculated values for ne ranged between 9.1 × 109 and 3.3 × 1010 cm-3 for 

the plateau region and 4.3 × 109 and 1.5 × 1010 cm-3 for the afterpeak region. On 

average, the afterpeak ne dropped to about 47% of the plateau value. While 

these densities fall well within the range of other GD-Langmuir studies, the drop 

in ne during the afterpeak when compared with the plateau goes against 

traditional pulsed GD thinking as discussed in Chapter 2. Popular theory 

proposes that electron-ion recombination followed by radiative decay is the most 

likely cause of afterpeak emissions. However, in order to account for the 

emission intensification found in the after peak by this mechanism, a rise in 



91 

 

electron density of about two orders of magnitude would be required [23]. While 

this increase has never been found experimentally, similar drops in ne have been 

found for ms-pulsed GD investigated by Thompson laser-scattering [27], pulsed 

GEC discharges using Langmuir probes [24], and through Monte Carlo models of 

ms-pulsed GD plasmas [26]. In the latter example, the calculated electron density 

dropped to within 38% of the plateau value. 

Recent modeling experiments by Bogaerts strongly suggest that 

dissociative recombination between Ar2
+ ions and electrons, rather than electron-

ion recombination, is the most likely cause of the afterpeak emission 

intensification [26]. Production of molecular argon ions (Ar2
+) in the GD plasma 

occurs by several processes:  

Ar+ to Ar2
+ ion conversion 

Ar+ + 2Ar0 � Ar2
+ + Ar0  k = 2.7x10-31 cm6 s-1  (Eqn. 3.3) 

Ar metastable-metastable associative ionization 

 Arm* + Arm* � Ar2
+ + e-   k = 5.7x10-10 cm3 s-1  (Eqn. 3.4) 

Hornbeck Molnar associative ionization 

 Ar** + Ar0 � Ar2
+ + e-  k = 2x10-9 cm3 s-1   (Eqn. 3.5) 

  

Of these, Hornbeck Molnar associative ionization is thought to be the most 

important contributor of molecular argon ions during the afterpeak regime. This is 

due to the enhanced population of highly excited argon (Ar**) early-on in the 

afterglow that causes the ionization rate to spike over 1.0x10-17 s-1 upon pulse 

termination [26]. This process is offset by dissociative recombination between 

molecular argon ions and electrons in the following reaction: 
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Electron-ion dissociative recombination 

 Ar2
+ + e- � Ar** + Ar0  k = 8.5x10-7 cm3 s-1   (Eqn. 3.6) 

 

Some of Bogaerts modeling results are displayed in Figure 3.9. Figure 3.9.1 

shows the calculated population densities of Ar atoms in various excited levels as 

a function of time with Ar2
+ included in the modeling, while Figure 3.9.2 shows 

the same profiles with Ar2
+ excluded from the modeling. A clear discrepancy can 

been seen in the afterpeak populations for levels with excitation energies of 15.2 

eV or higher (d – h). Although a small afterpeak is evident in 3.9.2h, 

demonstrating that ion-electron recombination plays at least a minor role in the 

formation of elevated ion intensities in the afterglow, the populations are still an 

order of magnitude lower than for dissociative recombination. Figure 3.9.3 shows 

the calculated rates of a) dissociative recombination and b) ion-electron 

recombination as a function of time [26].   
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Table 3.1 lists the average operating power, ne and Te with the percent 

relative standard deviations (RSD) for both, the ion saturation current (Iis), 

electron saturation current (Ies), Vs, and the floating potential (Vf) for both the 

plateau and afterpeak temporal regions. 

 

Table 3.1 
Temporal 
Region 

Power 
(W) 

ne      
(cm

-3
) 

RSD 
(%) 

Te 
(eV) 

RSD 
(%) 

Iis             
(V) 

Ies          
(V) 

Vs  
(V) 

Vf        
(V) 

 

Plateau 

 

.668 

 

1.6E10 

 

17. 

 

3.6 

 

45. 

 

-3.28E-06 

 

3.16E-04 

 

6.68 

 

-3.60 

Afterpeak .668 7.6E09 19. 4.4 44. -2.08E-06 1.58E-04 6.59 -4.36 
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 Figure 3.7. I-V characteristic traces during the A) plateau (4.750 – 

5.000 ms) and B) afterpeak (5.001 – 5.101 ms). Floating potentials (Vf) 

and plasma potentials (Vs) for the plateau and afterpeak are listed on each 

plot. Discharge pressure 0.75 torr, operating power .64 W, and sampling 

distance 7 mm. 
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 Figure 3.8. Plot of the natural log of the current (ln|I - Iis|) versus the probe 

potential (Vap – Vs) for the A) plateau (4.750 – 5.000 ms) and B) afterpeak (5.001 

– 5.101 ms). The electron temperature (Te) was determined by the inverse of the 

slope in the electron retardation region of the plot (shown in pink). Discharge 

pressure 0.75 torr, operating power .64 W, and sampling distance 7 mm. 
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Figure 3.9.  Calculated level populations of several Ar excited 

levels as a function of time with 1a-h) Ar2
+ ions included and 2a-h) Ar2

+ 

ions excluded from the calculations. 3) Calculated rates of a) dissociative 

recombination and b) ion-electron recombination as a function of time [26]. 

1. 2. 3.1. 2. 3.
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3.4.2 Spatial Characteristics 

Axial profiles were measured by varying the position of the direct insertion 

probe (copper cathode) from 5 – 23 mm with respect to the Langmuir probe. 

Vertical profiles were also measured using four Langmuir probes of differing 

lengths. Probe 1 marked the center of the plasma at the zero position (5.4 mm in 

total length), while each consecutive probe, numbers 2, 3 and 4,  measured 1 

mm in from the center (5.3, 5.2, and 5.1 mm in total length or 1 – 3 mm from the 

center of the plasma respectively). A schematic representation of the axial and 

vertical distances analyzed is shown in Figure 3.10. Figure 3.11 shows the axial 

profiles for electron density and electron temperature, whereas Figure 3.12 

shows the average electron density and electron temperature for each vertical 

distance, 0 – 3 mm. The average was taken for at least three runs on each probe 

at a distance of 5 mm and with an operating power and discharge pressure of .64 

W and .75 torr respectively.  

 Both Figures 3.11.A and 3.12.A show little differences among ne values 

along either the axial or vertical axes.  Average values for ne were 5.4 x 109, 6.0 x 

109, 4.0 x109, and 1.0 x 1010 cm-3 for each Langmuir probe measuring 0 – 3 mm 

respectively, with the average standard deviation equal to ±3.2 x 109 cm-3. These 

data agree with spatially resolved measurements made throughout the bulk of 

the negative glow region by other investigators [6, 16], however, Marcus did see 

a small decrease in ne near the far end of the plasma. Because of the low 

pressures used and high diffusion rates found within glow discharge plasmas, the 

lack of dependence of the electron density on the cathode distance is expected 

[16].  
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 Figures 3.11.B and 3.12.B show the axial and vertical profiles of electron 

temperature. Te showed little statistical change when measured axially; however, 

a slight decrease was seen as the average distance from the cathode was 

measured vertically. Although minor, this decrease is not surprising because 

electron heating should take place close to the copper cathode surface near the 

edge of the cathode sheath. Average values for Te were 4.2, 3.7, 3.4, and 3.3 eV 

for probes 1 – 4 respectively, with the average standard deviation equal to ±0.5 

eV.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Schematic representation of the axial and vertical 

distances analyzed for the spatially resolved profiles. 
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 Figure 3.11. Axial profiles of A) electron density and B) electron 

temperature using probes of differing vertical distance (0 – 3 mm from the center 

of the plasma respectively). Sampled during the plateau regime (4.75-5.00ms) 

with discharge pressure 0.75 torr and operating power .60 W.  
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 Figure 3.12. Average profiles of A) electron density and B) electron 

temperature versus vertical distance from the cathode (0 – 3 mm from the center 

of the plasma respectively) with the direct insertion probe stationary. Sampled 

during the plateau regime (4.75-5.00ms). Discharge pressure 0.75 torr and 

operating power .64 W.
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3.4.3 Spectral Characteristics  

 To ascertain any effects the Langmuir probe might have on the plasma, 

simultaneous spectral data of several copper lines were collected using a 

monochromator. As discussed in Chapter 2, the copper emission afterpeaks (in 

this case Cu I, 368.7 nm) reach a maximum approximately 0.2 ms after pulse 

termination (~5.2 ms). This rise in the afterpeak emission of Copper I lines, 

including 324.7 and 368.7 nm, has been determined by optical emission, atomic 

absorption, and mass spectrometric methods and is well documented [28-31]. 

The rise in the copper ion population is closely associated with argon metastable 

atoms and Penning ionization during the afterpeak regime.   

Figure 3.13 shows the A) raw and B) normalized temporal profiles of 

optical emission data for Cu(I) 324.7 and 368.7 nm. The pink line is optical data 

taken with no voltage applied to the Langmuir probe whereas the blue line is 

optical data take while 65 volts was applied to the Langmuir probe. The raw data 

in 3.13A shows that the use of the Langmuir probe increases the relative 

intensity for the measured transition. However, there is little difference in the 

normalized profiles shown in 3.13B demonstrating that the use of the Langmuir 

probe did not affect the overall temporal emissions and therefore the sputtering 

and ionization efficiencies within a particular time regime. Future experiments are 

planned to examine the affects of lower voltages applied to the probe, between 0 

and 40V. 
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Figure 3.13. Temporal profiles of A) raw and B) normalized optical 

emission data for Cu(I) 324.7 and 368.7 nm with no voltage (pink) 

and 65 V (blue) applied to the Langmuir probe. Discharge pressure 

0.75 torr and sampling distance 5 mm. 

A. B. 
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3.4 Conclusions 

Time-resolved Langmuir probe studies were undertaken to elucidate the 

excitation and ionization processes in a direct current pulsed glow discharge 

plasma. Electron densities and temperatures were derived from the Langmuir 

probe results and attention was paid to differences observed between the power-

on, plateau, and power-off, afterpeak, regimes. Calculated values for electron 

density (ne) ranged between 9.1 × 109 and 3.3 × 1010 cm-3 for the plateau region 

and 4.3 × 109 and 1.5 × 1010 cm-3 for the afterpeak region. On average, the 

afterpeak ne dropped to about 47% of the plateau value. Values for electron 

temperature (Te) ranged between 3.3 and 4.7 eV for the plateau region and 3.8 

and 6.0 eV for the afterpeak region with average values for both equal to 3.6 eV 

(~41,000 K) and 4.4 eV (~50,000 K) respectively. The calculated RSD was 45% 

for both the plateau and afterpeak making it difficult to assert whether any 

temperature difference between the two regions truly exists. 

In the multipulse studies discussed in Chapter 2, it was proposed that the 

following processes take place in sequence after the power termination. 

1) electron thermalization; 

2) argon ion-electron recombination-decay forming argon metastable 

atoms; 

3) Penning ionization of copper atoms yielding copper ions; 

4) copper ion-electron recombination-decay forming excited copper atoms. 

While argon ion-electron recombination-decay plays a non-negligible role in the 

formation of the afterpeak, it cannot account for the majority of afterglow 
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emissions because it requires a rise in electron density of about two orders of 

magnitude not evident in our data. Rather, it is suggested here that dissociative 

recombination between molecular argon ions (Ar2
+) and electrons is the principal 

process responsible for afterpeak emissions.  

Upon power termination, both electron ionization and charge transfer 

processes halt and the ions formed by these processes quickly decay to a 

baseline value. The energetic metastable atoms (11.55 and 11.72 eV) play a 

central role in ionization and excitation during the afterpeak regime as Penning 

ionization becomes dominant. At the same time, the population of highly excited 

argon levels increases. This is due to electron-ion dissociative recombination, but 

also to a lesser degree from ion-electron recombination.   

The high energy ionization processes dominant within the afterglow may 

also account for the increase in electron temperature found within the afterpeak 

regime. Electrons are thought to thermalize upon pulse termination due to the 

drop in potential at the cathode. It is possible that re-heating of the electrons 

takes place via superelastic collisions from the upper to the lower metastable 

levels or by chemo-ionization involving the metastable levels. This, along with the 

decrease in the electron population could cause the average energy of the 

remaining electrons to increase. 

Spatially-resolved Langmuir probe studies allowed for the measurement of 

electron densities and temperatures within the plasma as a function of axial and 

vertical distance from a direct insertion copper cathode while simultaneous 

spectral data were collected to determine any affects the Langmuir probe might 
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have on the plasma. Although the raw data showed an increase in the relative 

intensity for a measured transition, there was little difference in the normalized 

profiles. This demonstrated that the use of the Langmuir probe did not affect the 

overall temporal emission profiles and therefore the sputtering and ionization 

efficiencies within a particular time regime over another. 
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Chapter 4  

Direct Chromium Speciation in Solid State Materials - A GDMS 

Approach  
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Abstract 

 Among the various elemental mass spectrometry techniques, glow 

discharge mass spectrometry is recognized for its ability to provide direct 

determination of trace elements present in solid state samples.  In the present 

work, a pulsed glow discharge time of flight mass spectrometry method is 

developed for the direct speciation of chromium in solid state samples.  The 

millisecond pulsed glow discharge is a versatile ion source that provides 

elemental, structural and molecular information. Careful tuning of the operating 

parameters yields the plasma chemistry that favors cluster ion formation. Unique 

mass spectral features permit differentiation between the trivalent and hexavalent 

forms of chromium, (CrIII) and (CrVI) respectively, in chromium oxide samples.  

Specifically, signals at 104 and 120 m/z corresponding to the Cr2
+ and Cr2O

+ 

cluster ions are indicative of the presence of Cr(III) in the sample, whereas signal 

at 100 m/z corresponding to the CrO3
+ cluster ion is indicative of the presence of 

Cr(VI).  The impact of glow discharge operating conditions on the appearance of 

these characteristic cluster ions is discussed.  
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4.1. Introduction 

 Historically, a trace element has been defined as an element with an 

average concentration of less than 100 ppm in a given sample. However, the 

definition of a trace element depends on the substance being analyzed, as 

Paracelsus Von der Besucht stated “All substances are poisons... The right dose 

differentiates a poison from a remedy”. Furthermore, technological advances in 

specificity and sensitivity have made the analysis of concentrations in the ppb 

and ppt range quite common. The term dates back to the early 20th century, 

when scientists were able to detect minute amounts of several elements in living 

organisms, often describing them as being present in "traces" or "trace amounts" 

[1]. Throughout the next half century, all efforts to analyze trace elements were 

focused on total concentrations [2]. Elemental speciation didn’t come to the 

forefront of the scientific community until the late 1950’s and early 1960’s with the 

methyl mercury poisoning epidemic of the Japanese residents near Minamata 

Bay. Subsequent anthropogenic pollution incidents, such as oyster extinctions in 

Arachon Bay, France due to tributyltin antifouling paints and globalized lead 

pollution from antiknock agents in gasoline, further demonstrated the need for 

analytical methodologies to detect and identify specific chemical forms of trace 

elements [3]. 

 Elemental speciation seeks to identify, characterize, and quantify the 

defined species, forms, or phases of an element present in a given sample and 

its distribution [4]. The importance of elemental speciation lies in the fact that 

environmental changes influence the behavior of both essential and toxic 

elements through alterations of the forms in which they occur. These forms, 
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including oxidation state and the associated complex or molecular form, 

profoundly impact the toxicity, bioavailability, metabolism, transport, uptake, and 

distribution of the element [5]. Chromium is just such an example, the toxicity of 

which is oxidation state dependent. Whereas the trivalent species of chromium 

(CrIII) is an essential nutrient needed in ultra-trace quantities (50 to 200 µg), the 

hexavalent species (CrVI) is a known carcinogen and is toxic to humans [6, 7]. 

By understanding the most important forms of an element and the transformation 

processes between those forms, one can more accurately predict their 

environmental impact. It is for this reason that the relevance of speciation 

science spans many different scientific backgrounds: specialists in chemistry, 

biology, geology, physics, nutrition, and medicine all have a need for this kind of 

information [4].  

A speciation study of a given material might include the determination and 

quantification of the elements present, as well as identification of the chemical 

nature or molecular form of each species. Such analysis typically requires a 

plethora of instrumental techniques, sample preparation procedures, and 

chemical analysis methods [8]. The most common approach to elemental 

speciation is the utilization of chromatographic separation methods coupled with 

elemental or molecular characterization techniques such as atomic spectroscopy 

or mass spectrometry [9]. However, as Marcus states “the greatest level of 

specificity comes from methods that allow the unambiguous identification of a 

complete analyte entity” including molecular weight as well as “selective 

information related to molecular structure (i.e., fragmentation patterns)” [10]. 
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In recent years, mass spectrometry (MS) has proven to be the best 

detection choice for speciation analysis because it provides both the sensitivity 

and selectivity needed to asses the molecular, structural, or elemental 

composition of a given analyte. Nevertheless, the type of elucidation achieved by 

MS is largely contingent on the ionization method used. “Hard” ionization 

methods like inductively coupled plasma (ICP) provide information regarding the 

elemental composition, whereas methods like electrospray ionization (ESI), a 

“soft” ionization technique, allow for the detection of intact molecular ions. As a 

result, to achieve a complete characterization of a given sample, one must 

interface among multiple detection methods inevitably increasing the time, cost, 

sample size and operator skill needed to conduct the analysis [9]. 

 Classic chromatographic and ‘wet chemistry’ techniques utilized in 

elemental speciation further complicate the analysis. Because these techniques 

require liquid samples, many complicated pretreatment procedures, such as 

extraction, preconcentration, or derivatization are needed. These methods not 

only lend to additional analysis duration and solvent cost, but also open the 

possibility for oxidation or reduction reactions to occur, thereby altering the 

speciation of the original sample [11]. For the analysis of geological samples 

where the specificity of a particular elemental valency is of great concern, it is 

often necessary to avoid such modifications and preserve the sample in its 

natural condition, thus making liquid techniques obsolete [3]. 

It is the combination of these two pressing needs, a mass spectrometric 

ionization source that can provide concurrent elemental, structural, and 



113 

 

molecular information and the necessity for a direct solid sampling technique, 

that has led our group to investigate the use of a glow discharge time of flight 

mass spectrometry method for the direct speciation of chromium in solid state 

samples. Glow discharge (GD) plasmas are “steady-state but highly 

heterogeneous plasmas with a number of dynamic processes occurring 

simultaneously” [8].  The atomization of an analyte in a GD ion source arises 

through cathodic sputtering, in which ionized discharge gas atoms, created by 

the breakdown of the discharge support gas, are accelerated toward the cathode 

where they bombard the surface and “knock off” sample atoms.  Once atomized, 

the sputtered analyte atoms can become excited or ionized in the surrounding 

plasma via interactions with numerous energetic species such as fast electrons, 

excited and metastable atoms, and ions generated in plasma sustaining 

processes. Each species transfers energy to analyte molecules through a 

characteristic ionization process that can excite them within a particular energy 

range. These processes include electron ionization, charge transfer, and Penning 

ionization [9].  

When operated in the pulsed mode, spatial and temporal separation of the 

different ionization mechanisms becomes possible through the creation of three 

distinct time regimes during each on/off cycle: a prepeak dominated by electron 

ionization, an afterpeak dominated by Penning ionization, and a steady-state 

plateau which arises from a mixture of electron impact, charge transfer, and 

Penning ionizations [12]. As a consequence, analyte molecules are exposed to a 

series of transient ionization periods within each pulse cycle that range from 
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“hard” to “soft”, allowing for a highly tunable ion source [9]. By coupling a pulsed 

GD plasma ion source with time-of-flight mass spectrometry (Pulsed-GDMS) and 

selecting a particular time regime/plasma chemistry, elemental and/or molecular 

information may be obtained regarding a sample’s composition.   

The use of GD plasma is now well established for the direct determination 

of trace elements in solid state samples, including geological materials [13, 14, 

15]. Previous research from this lab has also demonstrated the ability of this 

technique to be modified by time gating to permit chemical speciation of volatile 

organic and organometallic compounds [8, 9, 12]. In the present work, a Pulsed-

GDMS method for the direct speciation of chromium in solid state samples is 

presented. Based on similar work conducted by Aubriet et al. utilizing secondary 

ion mass spectrometry (SIMS) [11, 16], unique mass spectral features have been 

found that permit differentiation between the trivalent and hexavalent forms of 

chromium, (CrIII) and (CrVI) respectively, in chromium oxide samples. 
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4.2. Experimental 

The pulsed glow discharge mass spectrometry system employed in these 

investigations, Figure 1, consisted of the glow discharge ion source and chamber 

into which the sample materials were introduced, a linear time-of-flight (ToF) 

oriented orthogonally to the glow discharge ion beam, and associated electronics 

as described below.  Experimental conditions can be found in Table 4.1. 

 

 

Table 4.1.  ToF-MS operating parameters 

Glow discharge  

Pressure 0.3-0.4 Torr 

Operating power 100-130 W 

Pulse duration 5 ms 

Duty cycle 25% 

Sampling distance 5-9 mm 

Time-of-Flight  

Flight path length 1 m 

Ion lenses potential  

Skimmer -353V 

Accelerator (A2) -1535 V 

Deflector (X1, X2) -1800 V 

Deflector (Y1, Y2) -1549 V 

Repeller (A1) +250 V; 1 µs 

Detector -1850 V 
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Figure 4.1. Schematic of the GD-ToFMS Instrument (refer to Table 1 for 

component descriptions). 
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4.2.1 Pulsed Glow Discharge Plasma Device 

 A 13.56 MHz radio frequency (rf) generator coupled with an automatic 

matching network (RF Plasma Product Inc., Marlton, NJ) was used to power the 

GD plasma.  The internal pulsing mode of the rf power supply system permits 

control of applied power, pulse width, and duty cycle. A 5ms pulse width with a 

25% duty cycle was maintained throughout the experiments while the operating 

power was varied. The argon discharge support gas (ultra pure, Airgas, Randor, 

PA) was introduced through a metering valve to control the gas pressure which 

was monitored by a thermocouple pressure gauge (Varian, Lexington, MA). 

 

4.2.2 Chromium Sample Cathode Production 

 Analytical reagent grades of chromium (III) oxide (Cr2O3) and chromium 

(VI) oxide (CrO3) were purchased from commercial suppliers (J.T. Baker 

Chemical Co., Phillipsburg, N.J. and Alfa Aesar, Ward Hill, M.A. respectively). 

Because the chromium oxide samples do not form sturdy disk samples when 

pressed, they were mixed with spectroscopic grade silver or graphite powders 

(Alfa Aesar, Ward Hill, M.A. and Bay Carbon, Bay City, M.I. respectively). The 

silver matrix adds stability and makes the resulting pellets more conductive. The 

samples were prepared according to methods developed by this group [17, 18]. 

All constituent powders were dried overnight at 90°C and stored in a desiccator 

until needed. Sample weights between 1 to 2 g were prepared to yield the 

desired %weight compositions. The resulting powder mixture was then 

homogenized in a ball-in-vial mixer (Wig-L-Bug, SPEX, Edison, N.J.) for 3 

minutes. Approximately 160mg of powder was compacted in a die assembly 
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constructed in this department’s machine shop under 4,000lbs of force for 30 

minutes. The resulting disk-shaped sample pellets were 5mm in diameter and 

4.5mm in height.  

 

4.2.3 Time-of-Flight Mass Spectrometer 

 Instrumentation:  The mass spectrometer employed in this study was a 

linear ToF instrument (R.M. Jordan Co., Grass Valley CA) oriented orthogonally 

to the glow discharge ion beam.  A six-way, high vacuum cross (MDC Vacuum 

Products Co., Hayward, CA) served as the GD chamber. Plasmas were 

generated using a direct insertion probe (DIP) onto which the disk-shaped 

sample cathodes, 5mm in diameter and 4.5 mm in height, were mounted (Figure 

2). The DIP allows for axial movement inside the GD chamber enabling ToF 

sampling at different distances from the cathode surface (Figure 3). Using a 

nonconducting MACOR ® shield (Accuratus, Washington, N.J.), constant 

cathode surface area and current density were maintained allowing only the face 

of the sample disk to be exposed to discharge sputtering. Further information on 

the design of this instrumentation can be found in previous papers published by 

this group [19]. 
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Figure 4.2. Schematic of the pellet holder used for mounting compressed 

sample pellets to the DIP [adapted from 22]. 
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Figure 4.3. Schematic of the GD ion source.  
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 Data acquisition:  A digital delay generator (DDG) (EG&G Princeton 

Applied Research, Princeton, NJ) in synchronization with the rf power pulse was 

used to trigger an ion extraction pulse to the ToF repeller thereby initiating the 

signal detection system.  The DDG allows for time-gated detection with which 

mass spectra can be obtained at selected temporal intervals within the power 

pulse sequence (Figure 4).  In this study, plateau and afterpeak spectra were 

collected between 4.8 ms and 5.3 ms from the pulse initiation.  The mass 

spectrometric data was amplified and fed into a 1-GHz oscilloscope (Lecroy 

9370M, Chestnut Ridge, NY) for collection.  The spectra were averaged 

continuously at 1:1023 and transferred to the computer through a GPIB card 

where a macro tool was used to open the ASCII data in Microsoft Excel and 

produce the corresponding mass spectrum. 
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Figure 4.4. Schematic of the time-gated detection and data acquisition 

system for the ToFMS instrument. The digital delay generator (DDG) 

allows the trigger delay time (∆) to be adjusted relative to the rf power 

onset. 
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4.3. Results and Discussion 

 

4.3.1 Evaluation of Temporal Regimes 

The majority of analytical glow discharge (GD) plasmas operate in a 

continuous power mode, generating steady-state analytical signals.  When 

operated in a modulated or pulsed power mode, several unique characteristics 

are imparted to the plasma. These characteristics contribute to significant 

analytical advantages for pulsed GD plasmas over their continuous counterparts. 

First, because each “power-on” period is followed by a much longer “power-off” 

period allowing time for the cathode to cool, higher instantaneous power can be 

applied to the plasma to enhance sputtering, excitation, and ionization while 

preventing problems associated with sample overheating.  Second, pulsed 

operation of the plasma enables temporal discrimination between analyte signal 

intensities and those of the discharge gas and background contaminants through 

the creation of three distinct time regimes, the prepeak, plateau, and afterpeak 

[19]. Within each pulse cycle analyte molecules are exposed to a series of 

transient ionization periods: a prepeak dominated by electron ionization, an 

afterpeak dominated by Penning ionization, and a steady-state plateau which 

arises from a mixture of electron impact, charge transfer, and Penning ionizations 

[12].  Such temporal discrimination allows for a highly tunable ion source offering 

windows of ionization that range from “hard” to “soft.” In the present study, it is 

the unique plasma chemistry of the afterpeak, the period immediately following 

the discharge power termination during which a large population of metastable 

argon species is created, that is of greatest interest. 
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Upon power termination, high-energy electrons rapidly lose kinetic energy 

through collisional processes in the GD chamber. Although these thermalized 

electrons are no longer sufficiently energetic enough to ionize gas-phase 

species, they can recombine with argon ions to form energetic metastable atoms 

[20]. Metastable atoms efficiently ionize sputtered analyte atoms or molecules of 

lower ionization potentials through a process called Penning Ionization.  During 

this process, collisions between metastable and analyte atoms result in the 

transfer of the metastable atom’s  potential energy, 11.55 and 11.62 eV for 

metastable argon atoms, to form an analyte ion and a ground state argon atom. 

Because Penning ionization is limited by the relatively low potential energies of 

the metastable argon atoms, molecular fragmentation is inhibited and thus the 

afterpeak exhibits enhanced signals for the molecular ions sputtered from the 

analyte material [8].  

 Temporal comparisons were made between a pure silver pellet and a 

mixed pellet with 20% hexavalent chromium oxide (CrO3) and 80% silver by 

weight (Figures 4.5 and 4.6). In each case, the GD plasma was operated at 120 

W rf power and 0.32 torr argon discharge gas with the DIP positioned such that 

the cathode was 9 mm from the sampling orifice. Time resolved mass spectra 

were collected within each region of the pulse cycle for both pellets: prepeak (0.3 

and 0.4 ms), plateau (4.9 ms), and afterpeak (5.1 ms).  

Prepeak:  Just after the onset of power, 0.3 and 0.4 ms into the pulse, 

electron ionization dominates as electrons are accelerated away from the 

cathode and interact with the discharge gas. At this time, the argon ion profile 
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maximizes. Minimal signal contributions are obtained from the sample species, 

silver and chromium, due to delays in analyte sputtering and diffusion into the 

negative glow region of the plasma.  

Plateau:  At approximately 1 ms into the pulse cycle and until power 

termination, the plasma reaches pseudo steady-state conditions. In this temporal 

region, ionization mechanisms equilibrate into a mixture of electron impact, 

charge transfer, and Penning ionizations. Mass spectra collected in this region 

tend to be highly fragmented, yielding structural information about the analyte. 

Plateau mass spectra were obtained at 4.9 ms into the pulse cycle. Signal 

contributions from both the argon discharge gas and cathode material are 

present. For the mixed chromium (VI) oxide and silver pellet, steady-state signals 

were obtained for the ions of Cr, CrOH, CrO2H, and the isotopes of Ag (m/z 52, 

69, 85, 107, and 109 respectively).  

Afterpeak:  At 0.1 ms after power termination (5.1 ms into the pulse 

cycle), analyte ion signals maximize while the intensities of discharge species 

and background contaminants wane. As stated earlier, this temporal region is 

dominated by Penning ionization through a large population of metastable argon 

ions. For the pure silver pellet, the 107 and 109 masses maximize and saturate 

the detector. The silver dimer (m/z 214) and water-silver complexes (m/z 125 and 

127) can also be seen. For the mixed chromium (VI) oxide and silver pellet, the 

ion signal intensities for Cr, CrO, CrOH, CrO2 and CrO2H increase (m/z 52, 68, 

69, 84, and 85 respectively) and the parent ion appears (CrO3H, m/z 101).  
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Because this project desires the direct speciation of solid state samples to 

permit differentiation between the trivalent and hexavalent forms of chromium, 

the afterpeak time regime was chosen as the most analytically favorable for 

chromium cluster ion formation. All further mass spectra for chromium oxide and 

silver pellets were obtained at 5.1 ms. For the mixed pellets of chromium oxide 

and graphite, 5.3 ms was found to give the most intense analyte peaks. 
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Figure 4.5. Time resolved mass spectra of pure silver during the prepeak 

(0.3 ms and 0.4 ms), plateau (4.9 ms), and afterpeak (5.1ms). Discharge 

pressure 0.32 torr, operating power 120W, and sampling distance 9 mm. 

At 5.1 ms the ion intensity of the silver line becomes saturated. 
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Figure 4.6. Time resolved mass spectra of 20% chromium (VI) oxide and 

silver pellet during the prepeak (0.3 ms and 0.4 ms), plateau (4.9 ms), and 

afterpeak (5.1ms). Discharge pressure 0.32 torr, operating power 120W, 

and sampling distance 9 mm. 
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4.3.2 Evaluation of Operating Parameters 

One can significantly affect excitation and ionization processes within the 

GD by controlling the plasma operating parameters. Careful adjustment of the 

applied power or discharge pressure makes it possible to selectively enhance a 

particular ionization mechanism thus providing additional tuning capabilities for 

the optimization of a given analyte signal [9, 12]. The operating pressure controls 

the collisional environment of the GD plasma, whereas the applied potential 

defines the kinetic energy that can be obtained by charged species in the plasma 

[17]. Because excitation and ionization processes within pulsed GD plasmas 

show spatial heterogeneity over the pulse cycle, further tuning capabilities can be 

gained via careful selection of the plasma sampling region. Studies of discharge 

pressure, operating power, and sampling distance were conducted to favor the 

formation of chromium cluster ions in the plasma (Figures 4.7, 4.8, and 4.9 

respectively). The optimal settings can be found in Table 4.2. 

 Discharge Pressure: The discharge pressure determines the mean 

free path and collision frequency of ions and atoms in the plasma. Figure 4.7 

shows the effects of discharge pressure on the afterpeak mass spectra of a pellet 

mixed with 30% trivalent chromium oxide (Cr2O3) and silver. While higher 

pressures yielded high intensity peaks for elemental chromium and silver (m/z 52 

and 107-109 respectively), lower pressures favor the formation of larger 

chromium clusters. These results are in agreement with previous work conducted 

by this group. While investigating the molecular energetics of GD-ToFMS using 

the thermometer molecule tungsten hexcarbonyl, Li et al found that pressures 

between 0.2 to 0.6 torr were optimal for the “soft” ionization of large molecules. 
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Higher pressures lead to extensive fragmentation, while extremely low pressures 

resulted in low analyte signal intensities [9]. 

Operating Power: Although the operating power has little effect on the 

type of ionization garnered in the plasma, it greatly influences sputtering yields 

and ion intensities. Figure 4.8 shows the effects of operating power on the 

afterpeak mass spectra of a pellet mixed with 28% hexavalent chromium oxide 

(CrO3) and silver. Under conditions of constant pressure and distance, increases 

in operating power yielded increases in ion intensities. This was especially 

noticeable for chromium oxide clusters, with only modest increases in the ion 

intensities of elemental chromium and silver. 

Sampling Distance: While the optimal spatial distribution from which the 

GD is sampled is somewhat dependent on the analyte material under 

investigation, the metastable argon population tends to maximize approximately 

5 – 10 mm from the cathode surface leading to enhanced molecular ion 

intensities in this region [9, 21]. Figure 4.9 shows the afterpeak mass spectra of a 

20% hexavalent chromium oxide (Cr2O3) and silver pellet taken at various 

distances from the sampling orifice. As the plasma is sampled farther out from 

the cathode surface, around 9mm, the ion intensities of chromium and chromium 

oxide clusters increase dramatically.  Distances closer to the cathode (3 - 7 mm) 

show only lower mass chromium clusters, while farther distances (11 and 13 

mm) have decreased intensities. 
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Figure 4.7. Effects of discharge pressure on the afterpeak mass spectra 

(5.1ms) of a pellet mixed with 30% chromium (III) oxide and silver. Operating 

power 120W and sampling distance 9 mm. 
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Figure 4.8. Effects of operating power on the afterpeak mass spectra 

(5.1ms) of a pellet mixed with 28% chromium (VI) oxide and silver. 

Discharge pressure 0.32 torr and sampling distance 9 mm.  
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Figure 4.9. Afterpeak mass 

spectra (5.1 ms) of a 20% 

chromium (VI) oxide and 

silver pellet taken at 

various distances from the 

sampling orifice. Discharge 

pressure 0.32 torr and 

operating power 120 W. 

Cr
+
 

Cr
+
 

Ag
+
 

CrO
+
 

Ar2
+
 

CrO2
+
 

CrO
+
 

CrO2
+
 
CrO3

+
 

Cr2O
+
 

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

3 mm

5 mm

7 mm

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

50 70 90 110 130 150 170 190 210 230 250

9 mm

11 mm

13 mm

In
te

n
s
it
y
 (

V
)

m/z (amu)

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

3 mm

5 mm

7 mm

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

-0.02

0.38

0.78

1.18

1.58

50 70 90 110 130 150 170 190 210 230 250

9 mm

11 mm

13 mm

In
te

n
s
it
y
 (

V
)

m/z (amu)



134 

 

Table 4.2. Plasma Operating Parameters 
Pellet Type Pulse 

Time 
Discharge 
Pressure 

Operating 
Power 

Sampling 
Distance 

Chromium and 
Silver 

5.1 ms 0.32 torr 120 W 9 mm 

Chromium and 
Graphite 

5.3 ms 0.32 torr 100 W 5 mm 

 

 

4.3.3 Speciation and Quantitative Analysis 

 Differentiation of Pure Pellets:  The mass spectra of hexavalent and 

trivalent chromium oxide in silver matrices are shown in Figures 4.10 and 4.11 

respectively. Several CrxOy
+ cluster ions and hydrogenated species were 

detected for both chromium oxides, although the number, relative intensity, and 

distribution vary depending on the particular chromium oxide. Specifically, 

chromium (VI) oxide produced more numerous and more oxygenated species 

with molecular ions containing up to four chromium atoms. These findings are in 

direct agreement with previous chromium speciation work conducted by Aubriet 

et al using secondary ion mass spectrometry (SIMS) [11, 16]. The disparity in the 

number of cluster ions produced may be due to differences in ionization potential 

(IP), with the IP of hexavalent chromium closely matching that of metastable 

argon, 11.6 and 11.55 respectively. Specific ions were detected for both 

chromium oxides. Cr2
+ and Cr2O

+ (m/z 104 and 120) were characteristic of 

trivalent chromium oxide (Cr2O3), while CrO3
+ (m/z 100) and numerous larger 

cluster ions, Cr2-4O4-12
+ (m/z 168, 184, 200, 252, 268, 284, 300, 352, 368, 384, 

and 400), were specific for the hexavalent chromium oxide (CrO3). 



135 

 

 Differentiation of Mixed Pellets: The differentiation between trivalent and 

hexavalent chromium oxide was also studied using a graphite matrix. Figure 4.12 

shows the afterpeak mass spectra of a 20% chromium (III) oxide and graphite 

pellet and a 20% chromium (VI) oxide and graphite pellet. Although no specific 

peaks were detected for each oxidation state, the relative intensities of certain 

peaks allows one to easily discriminate between the two forms, in particular, the 

ratio of the CrO3 - CrO3H to Cr2 cations (m/z 100 - 101 and 104 respectively). As 

would be expected, higher ion abundances of the Cr2 ion is indicative of 

chromium (III) oxide (Cr2O3), while higher ion abundances of the CrO3 ion is 

indicative of chromium (VI) oxide (CrO3). Other specific markers include; m/z 120 

– 121, corresponding to the Cr2O and Cr2OH cations, which are characteristic for 

the trivalent form, and appreciably higher intensities for m/z 68 – 69 and 84 – 85, 

corresponding to the CrO, CrOH, CrO2, and CrO2H cations respectively, are 

characteristic of the hexavalent chromium oxide. 

 Mixed comparisons with varying ratios of the trivalent to hexavalent oxides 

in graphite were also performed. Figure 4.13 shows the afterpeak mass spectra 

of a pellet mixed with 15% chromium (III) oxide, 5% chromium (VI) oxide, and 

graphite and a pellet mixed with 5% chromium (III) oxide, 15% chromium (VI) 

oxide, and graphite. Using the same characteristic masses as stated earlier for 

graphite, one can quickly discern the oxidation state of greater quantity. Again, 

higher relative ion abundances for masses 104, 120, and 121 are indicative of 

Cr2O3, while higher relative ion abundances for masses 100 or 101 are indicative 

of CrO3. 
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Quantitative Analysis: Differences in sample preparation, weighing, 

drying, mixing, and pressing, as well as plasma instabilities, can cause the 

relative intensities to deviate from a linear response. For this reason, an internal 

standard is often useful for quantitative analysis where the response from the 

instrument varies from run to run. Pellets were pressed using a 1% silver internal 

standard mixed with varying % concentrations of trivalent or hexavalent 

chromium oxide and spectroscopic grade graphite. The average intensities of the 

silver isotopes, m/z 107 and 109, were then used to normalize the relative 

intensities of several chromium and chromium oxide peaks: Cr, CrO3, Cr2, and 

Cr2O (m/z 52, 100, 104, and 120 respectively). The average of at least five 

distinct measurements were calculated and plotted versus concentration. In 

Figure 4.14, the analytical calibration curves for chromium (III) oxide and 

chromium (VI) oxide in graphite are shown. The standard deviations between 

runs were calculated and are included by each point having error bars within the 

diameter of the marker on the plot. The R-square values for chromium (III) oxide 

and chromium (VI) oxide were found to be 0.9210 and 0.9222 respectively. 
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Figure 4.10. Afterpeak (5.1 ms) mass spectra of 20% chromium (VI) oxide 

with silver. Discharge pressure 0.32 torr, operating power 120 W, and 

sampling distance 9 mm. 
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Figure 4.11. Afterpeak (5.1 ms) mass spectra of 30% chromium (III) oxide 

with silver. Discharge pressure 0.32 torr, operating power 120 W, and 

sampling distance 9 mm. 
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Figure 4.12. Afterpeak (5.3 ms) mass spectra comparison of (A) a 20% 

chromium (III) oxide and graphite pellet and (B) a 20% chromium (VI) 

oxide and graphite pellet. Discharge pressure 0.32 torr, operating power 

100 W, and sampling distance 5 mm.  

A. 

B. 

-0.01

0.09

0.19

0.29

0.39

0.49

50 70 90 110 130 150 170 190 210 230 250

Cr+

CrOH+

Ar2
+

CrO2H
+

Cr2
+

CrO3
+

Cr2O
+

Cr2OH+

-0.01

0.09

0.19

0.29

0.39

0.49

50 70 90 110 130 150 170 190 210 230 250

Cr+

CrOH+

Ar2
+

CrO2H
+

Cr2
+

CrO3
+

Cr2O
+

Cr2OH+

-0.01

0.09

0.19

0.29

0.39

0.49

50 70 90 110 130 150 170 190 210 230 250

Cr+ CrOH+

CrO

Ar2
+

CrO2H
+

CrO3
+

Cr2
+

-0.01

0.09

0.19

0.29

0.39

0.49

50 70 90 110 130 150 170 190 210 230 250

Cr+ CrOH+

CrO

Ar2
+

CrO2H
+

CrO3
+

Cr2
+

m/z (amu) 

In
te

n
s
it
y
 (

V
)



140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Afterpeak (5.3 ms) mass spectra comparison of (A) a pellet 

mixed with 15% chromium (III) oxide, 5% chromium (VI) oxide, and 

graphite and (B) a pellet mixed with 5% chromium (III) oxide, 15% 

chromium (VI) oxide, and graphite. Discharge pressure 0.32 torr, 

operating power 100 W, and sampling distance 5 mm. 
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Figure 4.14. Calibration curves of (A) 5, 10, 15, and 20% chromium (III) 

oxide mixed with graphite and 1% silver, and (B) 5, 10, 15, and 20% 

chromium (VI) oxide mixed with graphite and 1% silver. Working 

conditions: 0.32 torr, 100 W, 5 mm, and 5.1 ms into the pulse cycle. 
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4.4 Conclusions 

As with many transition metals, the toxicity of chromium is oxidation state 

dependent. Whereas the trivalent species of chromium (CrIII) is an essential 

nutrient needed in ultra-trace quantities, the hexavalent species (CrVI) is toxic to 

humans and is a known carcinogen. It is for this reason that the ability to 

distinguish the valency of chromium is of great importance, a task defined under 

the broad definition of speciation. The data presented in this work demonstrate 

the suitability of Pulsed-GDMS for the direct speciation of chromium in solid state 

samples. Chromium (III) and chromium (VI) oxide samples were dried, mixed 

with matrices of spectroscopic grade silver or graphite by weight, and pressed 

into pellets. These pellets were then introduced into a pulsed rf glow discharge 

using a direct insertion probe and analyzed by time-of-flight mass spectrometry. 

Unique mass spectral features were found, permitting differentiation between the 

trivalent and hexavalent forms of chromium. Specifically signal at 104 and 120 

m/z, corresponding to the Cr2
+ and Cr2O

+ cluster ions, is indicative of the 

presence of Cr(III) in the sample, while signal at 100 m/z, corresponding to the 

CrO3
+ cluster ion, is indicative of the presence of Cr(VI). Discrimination was also 

achieved in mixed pellets with varying ratios of the trivalent to hexavalent oxides 

and calibration curves were constructed permitting quantitative analysis of each 

form in graphite. The R-square values from the calibration curves for chromium 

(III) oxide and chromium (VI) oxide were found to be 0.92 and 0.94 respectively. 
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