
Graduate Theses, Dissertations, and Problem Reports

2014

LACE: Supporting Privacy-Preserving Data Sharing in Transfer LACE: Supporting Privacy-Preserving Data Sharing in Transfer

Defect Learning Defect Learning

Fayola Peters

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Peters, Fayola, "LACE: Supporting Privacy-Preserving Data Sharing in Transfer Defect Learning" (2014).
Graduate Theses, Dissertations, and Problem Reports. 6410.
https://researchrepository.wvu.edu/etd/6410

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230476162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6410?utm_source=researchrepository.wvu.edu%2Fetd%2F6410&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

LACE: Supporting Privacy-Preserving Data Sharing in
Transfer Defect Learning

Fayola Peters

Dissertation submitted
to the College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in
Computer Science

Tim Menzies, Ph.D., Chair
Arun Ross, Ph.D.

Katerina Goseva-Popstojanova, Ph.D.
Bojan Cukic, Ph.D.

Mark Grechanik, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2014

Keywords: Privacy Preserving Data Sharing, Defect Prediction, Software Engineering, Clojure

© 2014 Fayola Peters

Abstract

LACE: Supporting Privacy-Preserving Data Sharing in Transfer Defect Learning

Cross Project Defect Prediction (CPDP) is a field of study where an organization lacking enough
local data can use data from other organizations or projects for building defect predictors. Research
in CPDP has shown challenges in using “other” data, therefore transfer defect learning has emerged
to improve on the quality of CPDP results. With this new found success in CPDP, it is now
increasingly important to focus on the privacy concerns of data owners.

To support CPDP, data must be shared. There are many privacy threats that inhibit data sharing.
We focus on sensitive attribute disclosure threats or attacks, where an attacker seeks to associate a
record(s) in a data set to its sensitive information. Solutions to this sharing problem comes from
the field of Privacy Preserving Data Publishing (PPDP) which has emerged as a means to confuse
the efforts of sensitive attribute disclosure attacks and therefore reduce privacy concerns. PPDP
covers methods and tools used to disguise raw data for publishing. However, prior work warned
that increasing data privacy decreases the efficacy of data mining on privatized data.

The goal of this research is to help encourage organizations and individuals to share their
data publicly and/or with each other for research purposes and/or improving the quality of their
software product through defect prediction. The contributions of this work allow three benefits for
data owners willing to share privatized data: 1) that they are fully aware of the sensitive attribute
disclosure risks involved so they can make an informed decision about what to share, 2) they are
provided with the ability to privatize their data and have it remain useful, and 3) the ability to work
with others to share their data based on what they learn from each others data. We call this private
multiparty data sharing.

To achieve these benefits, this dissertation presents LACE (Large-scale Assurance of Confi-
dentiality Environment). LACE incorporates a privacy metric called IPR (Increased Privacy Ratio)
which calculates the risk of sensitive attribute disclosure of data through comparing results of
queries (attacks) on the original data and a privatized version of that data. LACE also includes a
privacy algorithm which uses intelligent instance selection to prune the data to as low as 10% of
the original data (thus offering complete privacy to the other 90%). It then mutates the remaining
data making it possible that over 70% of sensitive attribute disclosure attacks are unsuccessful.
Finally, LACE can facilitate private multiparty data sharing via a unique leader-follower algorithm
(developed for this dissertation). The algorithm allows data owners to serially build a privatized
data set, by allowing them to only contribute data that are not already in the private cache. In this
scenario, each data owner shares even less of their data, some as low as 2%.

The experiments of this thesis, lead to the following conclusion: at least for the defect data
studied here, data can be minimized, privatized and shared without a significant degradation in
utility. Specifically, in comparative studies with standard privacy models (k-anonymity and data
swapping), applied to 10 open-source data sets and 3 proprietary data sets, LACE produces pri-
vatized data sets that are significantly smaller than the original data (as low as 2%). As a result
LACE offers better protection against sensitive attribute disclosure attacks than other methods.

Acknowledgments

For all his help with this thesis, I am grateful to Dr. Tim Menzies. As my advisor, he has shown
a tremendous faith in my abilities and shared not only his expert knowledge in the field of Data
Mining, but also advised me on practical issues concerning my future career plans and what I
would need to do now and in the near future to be competitive.

Much of the research in this thesis was conducted at the West Virginia University Modelling
Intelligence Lab (the MIL).

Finally, I would like to thank my family and friends. My parents and my brothers and sisters
who have done all that they can to support me on this path, and my friends who have kept me
laughing, entertained and fed throughout this entire process.

i

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 LACE: Supporting Privacy-Preserving Data Sharing in Transfer Defect Learning . 4
1.2 Thesis Statement . 5
1.3 Contributions and Outline . 5
1.4 Minimizing and Obfuscating Data . 7
1.5 Private Multiparty Data Sharing . 8
1.6 Publications Supporting Thesis . 10

2 Privacy Preserving Data Publishing 11
2.1 Privacy Threats . 12
2.2 Privacy Models . 15
2.3 Privacy Techniques . 17

2.3.1 Generalization and Suppression . 17
2.3.2 Bucketization . 20
2.3.3 Anatomization and permutation . 20
2.3.4 Perturbation . 20
2.3.5 Output Perturbation . 21

2.4 Privacy Algorithms . 22
2.4.1 Datafly for k-anonymity . 23
2.4.2 Incognito for k-anonymity . 24
2.4.3 PriestPrivacy for Data Swapping . 24

2.5 Evaluating Privacy . 25
2.5.1 Privacy Metrics . 25

2.6 Privacy for Testing and Debugging . 27
2.7 Summary . 28

3 Software Defect Prediction 30
3.1 Introduction . 30
3.2 Software Defect Prediction Economics . 31

ii

3.3 Static Code Defect Prediction . 32
3.4 CPDP = Cross Project Defect Prediction . 33
3.5 Measuring the Feasibility of CPDP . 34
3.6 Transfer Learning . 35

3.6.1 Instance-Transfer . 37
3.7 Open-Source Predicts for Projects . 40

3.7.1 Methodology . 41
3.7.2 Research Method . 45
3.7.3 Evaluation . 52

3.8 Summary . 55

4 LACE Design and Operation 57
4.1 Introduction . 57
4.2 LACE . 59

4.2.1 Minimization with CLIFF . 61
4.2.2 Obfuscation with MORPH . 65
4.2.3 Illustrative Example of CLIFF&MORPH 66
4.2.4 LeaF: Leader Follower Algorithm . 68

4.3 How are privatized data candidates evaluated? . 69
4.3.1 IPR: Increased Privacy Ratio . 69
4.3.2 Upper and Lower Bounds on IPR . 73
4.3.3 Query Generator . 75
4.3.4 IPR Evaluation . 77

4.4 Summary . 80

5 Experiment 1: Comparison of CLIFF&MORPH with other Privacy Algorithms 82
5.1 Introduction . 82
5.2 Experimental Setup . 85

5.2.1 Data . 85
5.2.2 Benchmark Privacy Algorithms . 87
5.2.3 Naive Bayes . 88
5.2.4 Performance Evaluation . 89

5.3 Analysis 1. Does CLIFF&MORPH provide better balance between privacy and
utility than other state-of-the-art privacy algorithms? 91
5.3.1 Design . 91
5.3.2 Results and Discussion . 93

5.4 Analysis 2. How hard is parameter tuning for privacy algorithms? 95
5.4.1 Design . 95
5.4.2 Results . 95
5.4.3 Discussion . 96

5.5 Analysis 3. Are the results for parameter tuning for privacy algorithms useful for
reducing the search budget? . 99
5.5.1 Design . 99

iii

5.5.2 Results . 102
5.5.3 Discussion . 104

5.6 Related Work . 105
5.7 Conclusions . 106

6 Experiment 2: LACE for Private Multiparty Data Sharing 108
6.1 Introduction . 108
6.2 Experimental Setup . 109

6.2.1 Data . 111
6.2.2 Performance Evaluation . 112

6.3 Experimental Results . 113
6.3.1 Privacy . 113
6.3.2 Utility . 116
6.3.3 Comparison to Prior Results . 119

6.4 Summary . 119

7 Threats to Validity 121
7.1 Alleviated Threats . 121
7.2 External Validity . 122
7.3 Construct Validity . 123
7.4 Internal Validity . 124

8 Conclusions and Future Work 125
8.1 Summary of Results . 126
8.2 Research Impacts . 126

8.2.1 Impact on Privacy metrics . 126
8.2.2 Impact on Cross Project Defect Prediction 127
8.2.3 Impact on Private Multiparty Data Sharing 128

8.3 Future Work . 128
8.4 Final Remarks . 131

Bibliography 132

iv

List of Figures

2.1 Effects of background knowledge on privacy. 19

3.1 Cost-to-fix escalation factors. From [1]. Here, C[f , i] denotes the cost-to-fix esca-
lation factor relative to fixing an issue in the phase where it was found (f) versus
the phase where it was introduced (i). The last row shows the cost-to-fix delta if
the issue introduced in phase i is fixed immediately afterward in phase f = i+1. . 32

3.2 Comparisons of prediction performance among CPDP-Best, WPDP, and CPDP-All. 47
3.3 Overview of the proposed training data selection method 49
3.4 Overview of the data similarity measuring method, these pictures show examples

that distribution of two data sets are (a) very close to each other, (b) partly close,
and (c) totally different, respectively. 51

3.5 Comparison of G-measure under different parameter setting for feature subset se-
lection. 53

3.6 Comparison of performance between our proposed method and the KNN filter,
where WPDP presents the within project defect prediction, FSS+Bagging presents
cross project defect prediction using our proposed data selection method, and KNN
Filter presents cross project defect prediction using the KNN filter. 54

4.1 Example of three data owners teaming up in LACE (the Large-scale Assurance of
Confidentiality Environment) to produce a private cache for cross project defect
prediction. 58

4.2 Finding the power of (6−14] . 68
4.3 Example of how IPR is calculated based on queries. 73

5.1 The IPRs and g-measures of CLIFF&MORPH, k-anonymity and data swapping. In
this figure, an ideal method would have results at the top-right. CLIFF&MORPH
outperforms both k-anonymity and data swapping with higher IPRs and g-measures.
All algorithms show a wide variance in the IPR results while only k-anonymity also
shows variance in the g-measures, decreasing as privacy (IPR) increases. 93

v

5.2 The stability of the performance of the privacy algorithms, CLIFF&MORPH, Data
Swapping and k-anonymity. a) Shows the results of 24 simulations, b) shows 48,
c) 96 and d) 192 runs. As seen, the general pattern holds as the number of runs
increase. This shows that finding a privatized data candidate that satisfies a data
owner’s criteria is not exhaustive. 97

5.3 The parameters that allow CLIFF&MORPH to have the best performance. For the
Class Boundary (r) used by the MORPH algorithm to determine how much the
new synthetic instance should move to its nearest unlike neighbor. From this chart
we choose a range of 0.3 to 1 for r. For CLIFF&MORPH, we choose p=0.1 and
0.2, i.e. after applying CLIFF, we choose 10% or 20% of the top ranked instances. . 100

5.4 The parameters that allow k-anonymity to have the best performance. From chart
on the top we choose k=2 an 4 and q is a range form 8 to 15. 101

5.5 The parameters that allow data swapping to have the best performance. From this
chart we choose 0.8 for the probability of swap(p). 102

5.6 Median IPR results for each privacy algorithm from applying “best” parameter
values from Analysis 2. According to the Mann Whitney U test [2] (P < 0.05, two-
tailed test), CLIFF&MORPH has significantly better IPRs than both data swapping
and k-anonymity. 104

6.1 Shows the difference between the proprietary data and the open-source data. 112

8.1 Pie chart showing privacy research in software engineering. The pie slices are
sized according to the number of publications in each area of research: 1) soft-
ware testing [3–6], 2) bug reporting [7, 8], 3) requirements [9, 10], 4) cross defect
prediction [11, 12], and 5) program comprehension [13]. 130

vi

List of Tables

1.1 Publications supporting this research. 10

2.1 Description of the Static Code Metrics Used For Defect Prediction. Jureczko et
al. [14, 15] provide more information on these metrics. 13

3.1 Objective Data Sets . 42
3.2 Some popular measures used in software defect prediction work. 45
3.3 Comparision of Prediction Performance Between Our Proposed Method and the

KNN Filter. This Comparision Result is Based on Significance Test Results Using
Mann-Whitney U Test at Confidence Level 0.95. 54

4.1 Example of CLIFF&MORPH. (a) Shows the original data and is an abbreviated
version of ant-1.3. (b) Data from a binned using equal frequency binning. (c)
Power values for each sub-range in b. (d) CLIFF result. (e) MORPH result. 67

4.2 Example defect data for generating queries. First data is binned using equal fre-
quency binning to create subranges. Table 4.2a shows the original data while Ta-
ble 4.2b shows the data after equal frequency binning. 76

4.3 Example: Queries, Query Sizes and the number of rows that match the queries,
|G|. Table 4.2b is used for this example. 77

4.4 Case 1: IPRs of different sensitive attributes in the Arc defect data set. The gray
rows indicates those with relatively higher IPRs (when the query size is one) than
the other rows at query size=1. 79

4.5 Case 2: IPRs of different groups of sensitive attributes in the Arc defect data set. . . 80

5.1 Objective Data Sets for Open-source Project Data 88
5.2 Some popular measures used in software defect prediction work. 90
5.3 Privacy algorithms and their parameter values used in this study. 92
5.4 The results for 24 experimental runs with their parameter values used to find the

g-measures and the IPRs. 94
5.5 This table shows the top 10 privatized data candidates sorted in descending order

according to the harmonic mean between IPR and G-Measure. Only CLIFF&MORPH
appears in the top 10 and all of them appeared after 48 runs of the algorithm. Data
Swapping and K-Anonymity have the 55th and 145th harmonic means of 192 ex-
perimental runs. 98

vii

5.6 G-measures for privacy algorithms using parameter values learned from the pa-
rameter experiments from Analysis 2. These are compared with the results for the
original data. The bold numbers of each row indicates that it is the highest value
for the privacy algorithms. 103

6.1 Objective Data Sets for Open-source and Proprietary Project Data. 111
6.2 This table shows the number and percentages of data added to the private cache

by each data owner. Also shown are the IPRs for six sensitive attributes calculated
individually then together. These results are based on the data owner sharing their
data with the sensitive attribute values intact. 114

6.3 This table shows the IPRs for each data set participating in LACE for the different
masked sensitive attributes. The Median IPRs row shows that each data set has
median IPRs above 75%, while the Median Exemplars row reports the number of
exemplars contributed by each data set. Finally, the Exemplars row shows that
only 2% percent of the total data ended up in the private cache. 116

6.4 Cross project defect prediction results for open source data. Defect predictors are
built from proprietary data. The classifier is Naive Bayes. 117

6.5 Cross project defect prediction with transfer learning in the form of relevancy fil-
tering. As in Table 6.4, results are for open source data. Defect predictors are built
from proprietary data. The classifier is Naive Bayes. 118

8.1 Summary of Research Questions . 127

viii

List of Program Codes

1 Source code for LeaF main function. 70
2 Source code for the private cache. 71
3 Source code for the attacker’s best guess (sad++) main function. 72
4 Source code for IPR main function. 74
5 Source code for the query generator, with one instance. 77

ix

Chapter 1

Introduction

Previously, research into software engineering was hampered by a lack of data. That era is over.

Recent advances in the mining of software repositories has created tremendous opportunities to

identify interesting trends and patterns about the process of software development. For example,

in the field of Cross Project Defect Prediction (CPDP), researchers have found it possible to pre-

dict defects for software projects with insufficient data by using data from other projects [16–29].

Considering that inadequate software testing costs the US economy $59.5 billion per year, even

though 50% to 80% of development budgets go toward testing [30], this result in CPDP can con-

tribute to improved software inspection efficiency [31] and improved software quality. However

although the field of CPDP is useful and active, it’s main component is data sharing which brings

up privacy concerns.

Very few studies in CPDP focus on privacy [11, 12]. Instead, more attention is paid to other

issues such as: finding or creating viable data for building quality defect predictors and doing

so with little computational expense. In the future as the number and size of software products

increase and we seek to find out what we can learn from each other, addressing privacy will become

even more important. This is evident by the release of the privatized Google data set of testing

results. These contain 3.5 Million test suite execution results. When questioned about sharing the

1

source code being tested and details on the failures, data owners responded with:

Sharing industrial datasets with the research community is extremely valuable, but

also extremely challenging as it needs to balance the usefulness of the dataset with the

industry’s concerns for privacy and competition [32].

Research has successfully expanded to show that cross project defect prediction is now possible

between open source and proprietary projects [28]. Hence, if we can address privacy concerns,

there is much the open source community and proprietary developers can learn from each other.

As cross project research moves in this new direction it is now extremely vital for new studies to

focus on maintaining the confidentiality1 [11,12] of data with privacy-preserving methods. Failure

in this regard would mean that even with the successes of cross project defect prediction [18, 20,

24, 28], this promising field of research can be stalled.

Privacy-Preserving Data Publishing (PPDP) also referred to as data sharing in this dissertation,

has emerged as a means to minimize the problems that can be caused by attackers (those seeking

to gain confidential knowledge from published data) and therefore reduce privacy concerns. PPDP

covers methods and tools used to disguise raw data for publishing.

Research in PPDP has two key goals: 1) to publish data that are private such that little or no

knowledge is gained about the original data, and 2) useful for tasks such as classification or ag-

gregate querying answering. As a result of these goals, there are many components to privacy

research. These are: privacy threats, privacy models, privacy techniques, privacy algorithms, pri-

vacy measures and utility (Chapter 2 explains the details of these components). First researchers

determined the possible privacy threat(s), then decide on a definition for privacy (model), this in

turn determines the techniques to use and algorithms are then created. In some cases the model also

determines how privacy is measured. Finally utility is a measure of the usefulness of the shared

data.
1The term confidentiality in this dissertation refers to maintaining privacy of data by limiting access to data through

methods that minimize and obfuscate data making it distinguishable from the original.

2

Many of the privacy tools focus on protecting the sensitive personal data of an individual, such

as social security numbers or a health diagnosis. While the data we study in this dissertation are

code metrics extracted from source code at the granularity level of classes. All the values are

numeric except for the class label. A successful attack on this data can expose the complexity of

the source code for a particular class which can lead the attacker to infer the effort and cost required

to maintain said code. Such a breach can have negative effects particularly in cases where software

engineering companies are engaged in competitive bidding for contracts.

Sensitive attribute disclosure is the privacy threat we focus on in this dissertation. To carry

out this threat background knowledge about a specific record in the data are required. With this

knowledge the record can be found as well as the sensitive information associated with that record.

Standard methods for privacy-preserving data sharing like k-anonymity [33, 34] do not protect

against any background knowledge used to gain information from privatized data, and so may

still reveal the sensitive attribute of a record. Moreover, two reports concluded that the more we

privatize data, the less useful it becomes for the utility of certain tasks, for example, classification.

Grechanik et al. and Brickell et al. [3,35] reported that the application of standard privacy methods

such as k-anonymity [33,34], l-diversity [36], and t-closeness [37] damages inference power as the

privacy of the data increases.

The above motivates a need for privacy-preserving data sharing solutions for cross project

defect prediction to encourage data sharing for research in detecting useful trends and patterns

in software engineering and the improvement of inspection efficiency and software quality. This

dissertation presents one such solution.

3

1.1 LACE: Supporting Privacy-Preserving Data Sharing in Trans-

fer Defect Learning

This dissertation presents and evaluates LACE, a tool that facilitates privacy-preserving data shar-

ing for two scenarios:

1. The case where one data owner wants to share their data, and;

2. The case where multiple data owners want to collaborate with each other and share their data

collectively.

LACE combines data minimization and constrained obfuscation algorithms to produce priva-

tized data candidates that are both private and useful for data sharing (publication). The main

goal of LACE is to prevent or lower the risk of a sensitive attribute disclosure attack (explained in

Section 2.1). As a result, LACE also includes a means to measure the level of sensitive attribute

disclosure of a privatized data candidate. This is called IPR, the Increased Privacy Ratio. We

cannot claim absolute data privacy with LACE, however, with IPR we can show a data owner how

protected the sensitive attribute values of their data will be against a sensitive attribute disclosure

attack. It is then up to them to decide whether or not to share their data based on the IPR.

Our approach to privacy-preserving data sharing relies on two key insights to achieve a balance

between privacy and utility. First, only a subset of the data is required to get comparable utility

with the original data. Research in minimization techniques yielded algorithms that avoid the

drawbacks of large data set analysis such as large storage requirements and high computational

expense. This is accomplished by selecting exemplars (instances that best describe the data) from

the data and using only these exemplars in analysis. An additional benefit is that in the context

of privacy, since only the exemplars are used for analysis, data that are not exemplars are kept

private by the data owner. We apply a minimization algorithm called CLIFF (Section 4.2.1) which

determines these exemplars by ranking the values based on how well they predict for a class value

4

in the data and selecting only those instances that have the highest ranks.

The second insight is: Providing that noise does not drive data across classification bound-

aries, adding noise to the independent variables of a minimized data set has minimal effect

on classification. As evidence for this claim, in the experiments of this dissertation, we explore

“constrained obfuscation”; i.e. we find the hyperspace classification boundary and mutate by a

random amount up to, but not more than, the distance to that boundary, then we can successfully

obfuscate the data without damaging data mining efficacy. This insight is crucial in creating a

privacy algorithm for defect data that respects class boundaries. Therefore we propose MORPH

(Section 4.2.2), an algorithm that takes advantage of this insight and randomly changes the data

values up to the point of class boundaries where class values change.

1.2 Thesis Statement

Preliminary work [11, 12] has shown promise with CLIFF&MORPH. These algorithms created

privatized data candidates that are both private (protects against sensitive attribute disclosure at-

tacks) and useful for cross project defect prediction. With these insights and results in mind, we

make the following claim:

Thesis Statement: Privacy-Preserving Data Sharing in Transfer Defect Learning can

be accomplished by the Minimization and then Constrained Obfuscation of data.

1.3 Contributions and Outline

The main contributions of this dissertation are:

1. Minimizing and Obfuscating Data: A tool which we call LACE (Large-scale Assurance

of Confidentiality Environment) which consists of two algorithms for privacy: CLIFF and

MORPH. We use CLIFF to find exemplars and therefore mitigate against the drawbacks

5

of poor data quality and MORPH changes the values of exemplars found by CLIFF while

keeping them in behind class boundaries (Section 4.2).

2. Increased Privacy Ratio (IPR): LACE also includes IPR, a means to measure the level of

protection offered against sensitive attribute disclosure attacks (Section 4.3).

3. Locating Optimized Privatized Data Candidates: A means to obtain improved privacy

algorithms via parameter tuning thereby removing the burden of parameter value decisions

from the data owner (Chapter 5).

4. Private Multiparty Data Sharing: LACE facilitates multiparty data sharing where multiple

data owners can collaborate to create a collective privatized data candidate. In this scenario

each data owner uses output (shared data) from another in order to privatize their own data

(Chapter 6).

5. Proprietary Predicts for Open Source: Empirical evidence that it is possible for propri-

etary project defect data to build defect predictors for open source projects.

6. Better CPDP: Later work in this dissertation solves a problem of high false alarm rates

found in an earlier publication from this work (Section 6.3.2).

7. Functional Programming for Privacy: A lesser contribution of this work is that all code

used to build LACE are done in a functional language called Clojure [38]. Clojure targets

the Java Virtual Machine and provides easy access to the Java frameworks. As a result of

this, LACE was faster to code in Clojure than Java. LACE can easily be extended with either

Java or Clojure libraries.

We begin with background and related work for privacy preserving data publishing and defect

prediction in Chapter 2 and Chapter 3 respectively. Next, we explain the design and operation of

LACE in Chapter 4, followed by experiments in Chapter 5 and Chapter 6. Finally, we end this

6

dissertation with threats to validity in Chapter 7 and conclusions in Chapter 8. We have a total

of five research questions (RQ1 to RQ5) and will briefly describe our approaches to answering

each in the following sections. We then conclude this chapter with publications that support this

dissertation.

1.4 Minimizing and Obfuscating Data

In the literature, minimizing data has many synonyms; data summary, instance-based selection,

exemplar-based learning, relevancy filtering, prototype learning and so on. It is seen as a means

to solve some of the drawbacks of analyzing large data sets, such as high storage and computa-

tion requirements. In addition, if data is noisy, this can have an effect on inference [39, 40] and

minimizing data has proven to be an effective immunization solution to noise. In Section 4.2.1

we present a minimization technique called CLIFF which avoids the drawbacks for analyzing data

and also seeks those data points that best predict for a target class in order to maintain comparable

utility with the original data. For clarity, we refer to data resulting from a minimization technique

as exemplars.

In addition to minimizing data, we seek to further protect the data by obfuscating the exemplars.

There are a plethora of privacy algorithms available to accomplish this task, however many share

the problem of reducing the usefulness of data as privacy increases [3, 35]. In Section 4.2.2 we

present MOPRH, a privacy algorithm that is designed to maintain the structure of the data in order

to maintain the usefulness of the data. In combination, CLIFF&MORPH represent the privacy

algorithm in LACE. We benchmark its performance with other state-of-the-art privacy algorithms

in Chapter 5 and answer the following research question.

RQ1: Does CLIFF&MORPH provide better balance between privacy and utility than other

state-of-the-art privacy algorithms?

CLIFF&MORPH like other privacy algorithms relies on a set of “magic parameters” that con-

7

trol certain engineering decisions within that system. Different parameter values can lead to dif-

ferent privatized data candidates with varying results for privacy and utility. Therefore, to better

answer this question (RQ1) we perform a parameter tuning experiment with different parameter

values for the privacy algorithms studied here. This approach extends on previous work [11, 12]

which uses a narrow range of parameter values. This experimental approach raises the next two

research questions.

RQ2: How hard is parameter tuning for privacy algorithms?

With multiple privacy algorithms and even more possible parameter vectors, our tunings require

multiple runs of the systems to assess the impact of a particular range of the magic parameters. We

found that in the privacy domain, a large number of tunings or search budget is unnecessary. We

were able to find good privatized data candidates in as little as eight runs for each privacy algorithm

studied.

RQ3: Are the results for parameter tuning for privacy algorithms useful for reducing the search

budget (multiple system runs)?

Here we investigate if the parameter vectors found from answering RQ2 can work well for

other problems and reduce the search budget? Since the data owners’ search ends when they are

satisfied with a particular result, the ability to transfer parameter knowledge would reduce any

search budget. We found that we could successfully transfer parameters learned from one data set

to another.

1.5 Private Multiparty Data Sharing

Beyond data privacy for a single data set, LACE extends to facilitate data privacy for multiple data

owners based on the following scenario. Consider the problem of l parties (data owners) P0...Pl−1,

each with local data, xi. They want to securely work together to create a private cache containing

pooled minimized and obfuscated data from all parties involved. Each data owner Pi determines

8

what data to add to the private cache based on what others have added previously. The final private

cache can then be shared for cross project defect prediction. According to Lindell et al. [41], this

problem is a special case in cryptography where a set of parties with private data wishes to jointly

compute some function of their data. This joint computation should have the property that the

parties learn the correct output and nothing else, even if some of the parties maliciously collude to

obtain more information.

Given that our aim is to share data for the purpose of cross project defect prediction, we in-

corporate a unique leader-follower algorithm (developed for this dissertation) with LACE which

determines what sub-set of data each data owner can add to the private cache.

In Chapter 6, we evaluate private multiparty data sharing with LACE using two research ques-

tions:

RQ4: Does private multiparty data sharing with LACE offer protection against sensitive at-

tribute disclosure for each data owner?

Prior to submitting exemplars to the private cache, each data owner calculates the increased

privacy ratio (IPR) [12] of the exemplars to determine how much of the sensitive information in

the original data are revealed by the exemplars. IPR is discussed in Section 4.3.

RQ5: Are the data resulting from private multiparty data sharing i.e. the private cache, useful

for cross project defect prediction?

Recent results in cross project defect prediction have improved due to transfer learning tech-

niques [18, 24, 27, 28]. We therefore measure usefulness by finding out if there is a significant

difference in the performance of defect predictors built with all the original data from the data

owner vs. LACEd data. For each test set used, we apply the transfer learning technique of Turhan

et al. [18] by finding a sub-set of the private cache that are most similar to the test set.

9

1.6 Publications Supporting Thesis

Table 1.1 shows that the primary findings of our work thus far that have been published at major

software engineering research venues or are currently under review. Some of the content appear in

this dissertation.

Table 1.1: Publications supporting this research.

Contributions Venue Year Title

1 ICSE 2012 Privacy and Utility for Defect Prediction:
Experiments with ”MORPH” [11]

1 TSE 2013 Balancing Privacy and Utility in Cross-
Company Defect Prediction [12]

1 ESEM 2013 Learning from Open-Source Projects:
An Empirical Study on Defect Predic-
tion [28]

2 ASE Journal under review Parameter Tuning for Balancing Privacy
and Utility in Cross Defect Prediction

10

Chapter 2

Privacy Preserving Data Publishing

Our objective for this work is to encourage data sharing. We seek to give data owners the means to

maintain the confidentiality stipulations of their data by producing privatized data candidate(s) for

publication. These privatized data candidates are disguised versions of the original data. Ideally

these disguised data are useful for research purposes and do not reveal any information about the

original data.

In this chapter we elaborate on the major components that are involved in data privacy research,

namely: 1) privacy threats, 2) privacy models (definitions), 3) privacy techniques, 4) privacy al-

gorithms and finally 5) the utility of the privatized data candidates. In addition, we explain how

to evaluate privacy in Section 2.5 and we also look at data privacy research in another area of

software engineering, i.e. testing and debugging software artifacts (Section 2.6). Finally we deal

with utility in Chapter 3 where we focus on the utility measure used in this dissertation, i.e. cross

project defect prediction with transfer learning.

Before elaborating on these five major components, it is important to know how data is con-

sidered in privacy-preserving data publishing. More specifically, we focus on the software defect

data studied in this work. Defect data consists of a set of classes which we refer to as targets

(T={t1, t2, ..., t|T |}). Each target t ∈ T is a tuple of attribute values representing the individual

11

target class. Each attribute in the set of attributes (A) could have one or more of the following

definitions:

• Direct-identifiers are attributes that explicitly identifies an individual or project such as a

social security number or filename.

• Quasi-identifiers (QIDs) are attributes, QID∈A, that in combination, can be used to re-

identify an individual target in a data set.

• Sensitive Attributes (S) are attributes, S∈A, that we do not want an attacker (adversary) to

associate with a target, t in a data set.

• Dependent Attributes are attributes used when evaluating the utility of data via classification.

In this work, utility is measured via cross project defect prediction. In other words for targets

with unknown dependent attribute values, we predict those values.

Privacy threats represent the different attacks data can face. Threats are based on the top three

attributes described above and are classified as identity disclosure or re-identification, membership

disclosure, and attribute disclosure or sensitive attribute disclosure [35, 42, 43]. We expand on

these in the following section.

2.1 Privacy Threats

Most of the research done in data privacy focuses on protecting micro data, that is, the data of a

person. In our work we seek to protect project defect data of software projects. Here instead of

persons we have classes which we also refer to as targets, and the data about each class includes

metrics such as WMC (weighted methods per class) or DIT (depth of inheritance tree) which are

indicators of the complexity of the code in each target and what effort is require for maintaining

the code. For instance with both WMC and DIT, the higher these values are the more complex the

code. Details abouts these attributes and others used in this dissertation are shown in Table 2.1.

12

Table 2.1: Description of the Static Code Metrics Used For Defect Prediction. Jureczko et al. [14,
15] provide more information on these metrics.

Attributes Symbols Description
average method complexity amc e.g., number of JAVA byte codes
average McCabe avg cc average McCabe’s cyclomatic complexity seen in class
afferent couplings ca how many other classes use the specific class
cohesion amongst classes cam summation of number of different types of method parameters in every method divided by a multipli-

cation of number of different method parameter types in whole class and number of methods
coupling between methods cbm total number of new/redefined methods to which all the inherited methods are coupled
coupling between objects cbo increased when the methods of one class access services of another
efferent couplings ce how many other classes is used by the specific class
data access dam ratio of the number of private (protected) attributes to the total number of attributes
depth of inheritance tree dit provides the position of the class in the inheritance tree
inheritance coupling ic number of parent classes to which a given class is coupled (includes counts of methods and variables

inherited)
lack of cohesion in methods lcom number of pairs of methods that do not share a reference to an instance variable
another lack of cohesion mea-
sure

locm3 if m,a are the number of methods,attributes in a class number and µ(a) is the number of methods
accessing an attribute, then lcom3 = ((1

a ∑
a
j µ(a j))−m)/(1−m)

lines of code loc measures the volume of code
maximum McCabe max cc maximum McCabe’s cyclomatic complexity seen in class
functional abstraction mfa number of methods inherited by a class plus number of methods accessible by member methods of the

class
aggregation moa count of the number of data declarations (class fields) whose types are user defined classes
number of children noc measures the number of immediate descendants of the class.
number of public methods npm counts all the methods in a class that are declared as public. The metric is known also as Class Interface

Size (CIS)
response for a class rfc number of methods invoked in response to a message to the object
weighted methods per class wmc the number of methods in the class (assuming unity weights for all methods).
number of bugs bug number of bugs detected in the class.

13

When protecting a person’s data from privacy threats, the goal is to avoid re-identification and

block malicious intruders from trying to uncover private data. Re-identification occurs when an

intruder with external information such as a voters list, can re-identify an individual from data that

has been stripped of personally identifiable information such as a social security number. Popular

examples of this are the re-identification of William Weld from released health-care data [33] and

Thelma Arnold from the AOL search data [44].

Membership disclosure is another privacy threat that focuses on protecting a person’s micro

data. It can happen if an attacker is able to confirm that the target’s data is contained in a particular

data set. For example, if the data set contains information only on HIV patients, then the attacker

can infer that the target is HIV-positive [43].

In this dissertation, the data are aggregated at the project level and do not contain personnel or

specific company information. Hence, re-identification or membership disclosure are not explored

further in this work. Instead, we protect the project data for the final privacy threat: attribute

disclosure or sensitive attribute disclosure. Sensitive attribute disclosure occurs when a target is

associated with information about their sensitive attributes, such as software code complexity. The

defect data used in this work contains a few attributes that can be considered as sensitive, some of

these are:

• Weighted Methods Complexity (WMC): WMC is the number of methods in a class (assum-

ing unity weights for all methods). Therefore, larger values of WMC mean large complexity

as well.

• Depth of Inheritance Hierarchy (DIT): DIT provides the position of the class in the inheri-

tance tree. This is an indicator of the number of ancestors of a class. Developers and testers

may need to understand all ancestors in order to know all the specializations of a class. This

is necessary to maintain the software product or to uncover defects.

• Number of Child Classes (NOC): NOC measures the number of immediate descendants of

14

the class. The number of children represents the number of uses of a class. Therefore, under-

standing all children is important to understanding the parent. A large number of children

increases the burden on developers and testers in understanding, maintaining, and finding

defects.

• Response for Class (RFC): The size of the response set for the class includes methods in

the class inheritance hierarchy and methods that can be invoked on other objects. The RFC

metric counts the number of methods in the response set for a class, which includes the

number of local methods and the number of remote methods invoked by local methods. The

class that has a large number of responsibilities tends to be large and has many interactions

with other classes. Such classes are complex and take more time and effort to maintain and

test than smaller classes.

• Coupling between Objects (CBO): the CBO metric counts the number of other classes to

which a class is coupled. Larger values of CBO metrics mean that the class is highly coupled.

The developers and testers can infer that the maintainability and testability of highly coupled

classes is difficult. This makes the process of maintaining and finding defects difficult as

well.

• Lines of Code (LOC): Measures the volume of code. It is also seen as a function of code

complexity where higher LOC indicate higher complexity. High LOC also make understand-

ing and maintaining code more difficult for developers and testers to find defects.

2.2 Privacy Models

A privacy requirement or goal seeks to avoid privacy breaches or disclosure. In order to realize

privacy breaches, one needs to define what constitutes a privacy breach for a particular data set.

There are different levels of privacy. Some levels are determined by individuals in the data set or

15

by the creators of a privacy policy or laws.

An optimal result of a privacy model is defined by Dalenius [45] where he states that access to

published data should not enable the attacker to learn anything extra about any target victim, com-

pared to no access to the database, even with the presence of any attacker’s background knowledge

obtained from other sources [42].

Fung [42], considers two categories of privacy models:

1. A privacy threat occurs when an attacker is able to link a record owner to a sensitive attribute

in a published data table. These are specified as, record linkage, attribute linkage and table

linkage respectively.

2. The published data should provide the attacker with little additional information beyond their

background knowledge.

Brickell [35], defines a privacy model based on sensitive attribute disclosure which occurs

when the attacker learns information about an individual’s sensitive attributes. In other words, it

captures the gain in the attackers’ knowledge due to his/her observations of the disguised data set.

Also “Microdata privacy can be understood as prevention of membership disclosure” where the

attacker should not learn whether a particular individual is included in the database.

In 2007, Wang [46] put forward other definitions of privacy. The article explains:

There have been two types of privacy concerning data mining. The first type of privacy,

called output privacy, is that the data is minimally altered so that the mining result will

not disclose certain privacy. The second type of privacy, called input privacy, is that

the data is manipulated so that the mining result is not affected or minimally affected.

One of the earliest privacy models is k-anonymity [33, 34]. This model is widely studied and

understood. It requires that for each target in a data set, it’s quasi-identifiers must be the same

as k-1 others. For this dissertation, we consider the privacy model based on sensitive attribute

16

disclosure as described by Brickell et al. [35], where an attacker is unsuccessful at gaining more

information from a privatized data candidate. Our measure of gain is IPR (Section 4.3) based on

the privacy measures explained by Brickell et al. [35].

Once a decision is made on the privacy threat to protect their data against, its time to determine

what privacy techniques will help accomplish this and create privacy algorithms based on these

techniques.

2.3 Privacy Techniques

The idea of disguising a data set is known as anonymization. Since the data used in this dissertation

is software defect data and not personal data, we use the term privatization. This is performed

on the original data set to “satisfy a specified privacy requirement” [42] resulting in a modified

data set being published. There are six general categories for anonymization, 1) generalization, 2)

suppression, 3) bucketization 4) anatomization, 5) permutation, and 6) perturbation. Most methods

and tools created for preserving privacy fall into one or more of these categories and have some

drawbacks.

2.3.1 Generalization and Suppression

Many researchers comment on how privatization algorithms can distort data. For example, con-

sider privatization via generalization and suppression. Generalization can be done by replacing

exact numeric values with intervals that cover a sub-range of values; e.g., 17 might become 15..20

or by replacing symbols with more general terms; e.g., “date of birth” becomes “month of birth”.

Suppression can be done by replacing exact values with symbols such as a star or a phrase like

“don’t know” [47].

According to Fung et al. [42], generalization and suppression, hide potentially important details

in the quasi-identifiers that can confuse classification. Worse, these transforms may not guarantee

17

privacy.

Widely-used generalization and suppression approaches are used of privacy models such as

k-anonymity, l-diversity, and, t-closeness. K-anonymity [34] makes each record in the table indis-

tinguishable with k-1 other records by suppression or generalization [34,48,49]. The limitations of

k-anonymity, as listed by Brickell et al. [35] are many fold. They state that k-anonymity does not

hide whether a given individual is in the database. Also, in theory, k-anonymity hides uniqueness

(and hence identity) in a data set, thus reducing the certainty that an attacker has uncovered sen-

sitive information. However, in practice, k-anonymity does not ensure privacy if the attacker has

background knowledge of the domain. An example of k-anonymity in action and how background

knowledge of an attacker can affect privacy is shown in Figure 2.1.

Machanavajjhala et al. [36] proposed l-diversity. The aim of l-diversity is to address the limi-

tations of k-anonymity by requiring that for each QID group,1 there are at least l distinct values for

each sensitive attribute value. In this way an attacker is less likely to “guess” the sensitive attribute

value of any member of a QID group.

Work by Li et al. [37], later showed that l-diversity was vulnerable to skewness and similarity

attacks, making it insufficient to prevent attribute disclosure. Hence, Li et al. proposed t-closeness

to address this problem. t-closeness focuses on keeping the distance between the distributions of

a sensitive attribute in a QID group and that of the whole table no more than a threshold t apart.

The intuition is that even if an attacker can locate the QID group of the target record, as long

as the distribution of the sensitive attribute are similar to the distribution in the whole table, any

knowledge gained by the attacker cannot be considered as a privacy breach because the information

is already public. However, with t-closeness, information about the correlation between QIDs and

sensitive attributes is limited [37] and so causes degradation of data utility.

1A QID group is a set of instances whose quasi-identifier values are the same because of generalization or sup-
pression.

18

Consider the abbreviated ant-1.3 data shown in the following table from the PROMISE data repository [50].
We assume that we want to share this data.

ID QIDs
name wmc dit noc cbo rfc lcom ca ce loc∗

taskdefs.ExecuteOn 11 4 2 14 42 29 2 12 395
DefaultLogger 14 1 1 8 32 49 4 4 257
taskdefs.TaskOut- putStream 3 2 0 1 9 0 0 1 58
taskdefs.Cvs 12 3 0 12 37 32 0 12 310
taskdefs.Copyfile 6 3 0 4 21 1 0 4 136
types.Enumerated- Attribute 5 1 5 12 11 8 11 1 59
NoBannerLogger 4 2 0 3 16 0 0 3 59

The ten attributes of this table divide into two categories: Identifier ID and Quasi-Identifiers QIDs. Note that
the sensitive QID is indicated by a superscript “*”, in this case it’s lines of code (loc). An ID could be anything
that specifically identifies an individual or thing such as a social security number, first and last names or a
filename. Unlike an ID, QIDs are not specific to a particular individual or thing. However, they can be used to
re-identify an individual record in a database.

The first step in privatizing this data-set is to de-identify the table i.e., remove the identity attribute “name” (but
note that for the ease of explanation, we leave the ID for the example). One might think that removing the ID
column should be enough to protect individual privacy, however, research has shown that this is not the case
[33,35,42,51]. In fact, using external public databases and/or personal background knowledge, an attacker can
re-identify an individual record and associate that record with a sensitive attribute. For example, suppose the
attacker has the following background knowledge.

r f c = 11orlcom = 0

On the data with deleted IDs, this attacker might use this knowledge to select the rows containing
type.EnumeratedAttribute, taskdefs.TaskOutputStream, and NoBannerLogger, thereby learning with 100% cer-
tainty that there are 58 or 59 lines of code in the target file.

Even after applying a privacy algorithm, that background knowledge can still be used to violate privacy. Sup-
pose this attacker studies the following k=2-anonymous version of the above data:

ID QIDs
name wmc dit noc cbo rfc lcom ca ce loc∗

taskdefs.ExecuteOn 11-14 <5 ≤ 5 8-14 32-42 29-49 * * 395
taskdefs.Cvs 11-14 <5 ≤ 5 8-14 32-42 29-49 * * 310
Default Logger 11-14 <5 ≤ 5 8-14 32-42 29-49 * * 257
taskdefs. TaskOut- putStream <7 <5 ≤ 5 1-4 * ≤ 8 0 ≤ 4 58
taskdefs. Copyfile <7 <5 ≤ 5 1-4 * ≤ 8 0 ≤ 4 136
types. Enumerated Attribute <7 <5 ≤ 5 * 11-16 ≤ 8 * ≤ 4 59
NoBanner Logger <7 <5 ≤ 5 * 11-16 ≤ 8 * ≤ 4 59
“*” denotes that any value is possible

The background knowledge that r f c = 11 and lcom = 0 will result in 4 records being returned (the last four
rows). With this result, because of the lack of diversity in the sensitive attribute of the result, an attacker will
know with 75% certainty that the target has 58 or 59 lines of code.

Figure 2.1: Effects of background knowledge on privacy.

19

2.3.2 Bucketization

Bucketization arose as a way to handle high dimensional data, which cannot be handled by general-

ization. This is due to the “curse of dimensionality” [52]. Martin et al. [53] describes bucketization

as follows:

1. Partition tuples or instances in a data set into “buckets”;

2. Separate sensitive attributes from non-sensitive ones by randomly permuting the sensitive

attribute values within each bucket.

The result is a sanitized data set that consists of the buckets with permuted sensitive values.

2.3.3 Anatomization and permutation

Anatomization and permutation both accomplish a similar task, that is, the de-association of the

relationship between quasi-identifiers and sensitive attributes. However, anatomization does it by

releasing “the data on QID and the data on the sensitive attribute in two separate tables...” with “one

common attribute, GroupID” [42]. On the other hand, permutation de-associates the relationship

between a QID and a numerical sensitive attribute. This is done by partitioning a set of data records

into groups and shuffling the sensitive values within each group [54].

2.3.4 Perturbation

A precise definition of perturbation is put forward by Fung et al. [42]:

The general idea is to replace the original data values with some synthetic data values,

so that the statistical information computed from the perturbed data does not differ

significantly from the statistical information computed from the original data.

It is important to note that the perturbed data records do not correspond to real world record

owners. Also, methods used for perturbation include, additive noise, data swapping and synthetic

20

data generation. The drawback of these transforms is that they may not guarantee privacy. For

example, suppose an attacker has access to multiple independent samples from the same distribu-

tion from which the original data was drawn. In that case, a principal component analysis could

reconstruct the transform from the original to privatized data [55]. Here the attacker’s goal is to

estimate the matrix (MT) used to transform the original data to it’s privatized version. MT is then

used to undo the data perturbation applied to the original data. According to Giannella et al. [55],

MT = WD0Z′, where W is the eigenvector matrix of the covariance matrix of the privatized data.

Z′ is the transform of the eigenvector matrix of the covariance matrix of the independent samples.

Finally, Do is an identity matrix.

2.3.5 Output Perturbation

Different to perturbation where the data is transformed to maintain its privacy, output perturbation

maintains the original data in a database and instead adds noise to the output of a query [56].

Differential privacy falls into the category of output perturbation. Work by Dinur and Nissim [56]

also fall into this category and forms the basis of Dwork’s work on differential privacy [57, 58]

(ε-differential).

According to Fung et al. [42], ε-differential privacy is based on the idea that the risk to the

record owner’s privacy should not substantially increase as a result of participating in a statistical

database. So, instead of comparing the prior probability and the posterior probability before and

after accessing the published data, Dwork et al. [57, 58] proposed to compare the risk with and

without the record owner’s data in the published data.

Dwork [57, 58] defines ε-differential privacy as follows:

We say databases D1 and D2 differ in at most one element if one is a proper subset of

the other and the larger database contains just one additional row.

Although ε-differential privacy assures record owners that they may submit their personal infor-

21

mation to the database securely, it does not prevent membership disclosure and sensitive attribute

disclosure studied in this work. This is shown in an example from Chin and Klinefelter [59] in a

Facebook advertiser case study. Through reverse-engineering, Chin and Klinefelter [59] inferred

that Facebook uses differential privacy for its targeted advertising system. To illustrate the prob-

lem of membership and sensitive attribute disclosure, the authors described Jane’s curiosity about

her neighbor John’s HIV status when she learned that he was on the finisher’s list for the 2011

Asheville AIDS Walk and 5K Run. So armed with John’s age and zip code, she went to Face-

book’s targeted advertising area and found that there was exactly one male Facebook user age 36

from zip code 27514 who listed the “2011 Asheville AIDS Walk and 5K Run” as an interest. At

this point, Jane placed a targeted advertisement offering free information to HIV-positive patients

about a new antiretroviral treatment. If charged by Facebook for having her ad clicked, Jane can

assume with some level of certainty that John is HIV positive.

In practice, the above issues with privacy models and techniques are very real problems.

Grechanik et al. [3] found that k-anonymity greatly degraded the test-coverage of data-centric

applications. Furthermore, Brickell and Shmatikov [35] reported experiments where achieving

privacy using the above methods “requires almost complete destruction of the data mining capa-

bility”. They concluded that depending on the privatization parameter, the privatized data pro-

vided no additional utility vs. trivial privatization which privatizes data by simply removing all

the sensitive attributes or all the other quasi-identifiers. Worse, they also reported that simplistic

trivial privatization provides better privacy results than supposedly better methods like l-diversity,

t-closeness and k-anonymity.

2.4 Privacy Algorithms

Fung et al. provided an excellent survey for privacy preserving data publishing [42]. In it they

characterize 28 privacy algorithms. In this dissertation we focus on algorithms that change quasi-

22

identifiers of data in order to prevent sensitive attribute disclosure attacks. In the previous section

we discussed some techniques that accomplish this, namely generalization and suppression, and

perturbation. In this section, we will therefore focus on the algorithms that are based on these

techniques.

2.4.1 Datafly for k-anonymity

Datafly [34, 60] uses generalization and suppression techniques to achieve the k-anonymity model

of the quasi-identifiers of each target in a data set being indistinguishable from k - 1 others. The

core Datafly algorithm starts with the input of a set of quasi-identifiers, k, and a generalization hi-

erarchy. An example of a hierarchy is shown in the tree below. Values at the leaves are generalized

by replacing them with the sub-ranges [3-6] or (6-14]. These in turn can be replaced by [3-14]. Or

the leaf values can be suppressed by replacing them with a symbol such as the stars at the top of

the tree.

[3-14]

[3-6]

3 4 5 6

(6-14]

11 12 14
Datafly then replaces values in the quasi-identifiers according to the hierarchy. This general-

ization continues until there are k or fewer distinct instances. These instances are suppressed.

In software engineering, the Datafly algorithm for k-anonymity has been explored by Grechanik

et al. [3]. Therefore we use it in this dissertation as a benchmark for CLIFF&MORPH, the privacy

algorithm included in LACE.

23

2.4.2 Incognito for k-anonymity

Incognito is a suite of optimal bottom-up generalization algorithms presented by LeFevre et al. [42,

61, 62], to generate all possible k-anonymous full-domain generalizations. According to Ciriani et

al. [62], Incognito follows a bottom-up breadth-first search strategy on the domain generalization

hierarchy. They state that first (iteration 1), Incognito checks k-anonymity for each single quasi-

identifier, discarding those generalizations that do not satisfy k-anonymity for the single attribute.

Then, it combines the remaining generalizations in pairs performing the same control on pairs

of attributes (iteration 2); then in triples (iteration 3), and so on, until all the quasi-identifiers

are considered. In other words, for each combination, Incognito checks the satisfaction of the k-

anonymity constraint with a bottom-up approach; when a generalization satisfies k-anonymity, all

its direct generalizations also certainly satisfy k-anonymity and therefore the algorithm terminates.

2.4.3 PriestPrivacy for Data Swapping

In software engineering, Taneja et al. [5] use data swapping to privatize databases for database-

centric applications. Their algorithm is called PriestPrivacy. Data swapping is a standard pertur-

bation technique used for privacy [5, 42, 63]. This is a permutation approach which preserves the

original values of data as it de-associates the relationship between a non-sensitive quasi-identifier

and a numerical sensitive attribute.

As described by Taneja et al. [5], the PriestPrivacy algorithm takes as its inputs the matrix of

quasi-identifiers and their values, and the value of the probability that the original data will remain

unchanged in the privatized data set. The output is a privatized matrix that has the same dimensions

and semantics as the quasi-identifier matrix.

To get this privatized matrix, PriestPrivacy iterates through the attributes in the quasi-identifier

matrix computing the distinct values for each quasi-identifier. Next, the algorithm iterates through

all the rows for the given quasi-identifier and randomly replaces the original value in a cell with

24

one of the original distinct values for the given quasi-identifier. We also use PriestPrivacy in this

dissertation as a benchmark for CLIFF&MORPH.

2.5 Evaluating Privacy

Three privacy evaluation methods are outlined in work by Torra et al. [64]. These measures are 1)

Information loss measures, 2) Disclosure risk measures and 3) Scores. Information loss measures

are designed to establish in which extent published data is still valid for carrying out the experi-

ments planned on the original data. They take into account the similarity between the original data

set and the protected one, as well as the differences between the results that would be obtained

with the original data set and the results that would be obtained from the disguised data set. Torra

et al. [64] further explains that disclosure risk measures are used to evaluate the extent in which the

protected data ensures privacy and that scores, is a summary both information loss and disclosure

risk, that is, when these two measures are commensurate, it is possible just to combine them using

the average.

2.5.1 Privacy Metrics

Privacy is not a binary step function where something is either 100% private or 100% disclosed.

Rather it is a probabilistic process where we strive to decrease the likelihood that an attacker can

uncover something that they should not know. The rest of this section reviews some privacy metrics

used in testing and debugging research and finally defines privacy using a probabilistic increased

privacy ratio (IPR), of privatized data sets.

Privacy metrics allows you to know how private the disguised version of your data is. There

are two categories of privacy metrics in the literature: syntactic and semantic [35]. The syntactic

measures considers the distribution of attribute values in the privatized data set and are used by

algorithms such as k-anonymity and l-diversity. In comparison, the semantic metrics measures

25

what an attacker may learn or the incremental gain in knowledge caused by the privatized data

set [35] and use distance measures such as the Earth Movers Distance, KL-divergence and JS-

divergence to quantify this difference in the attackers knowledge. Other methods in the software

engineering literature include Increased Privacy Ratio (IPR) [11, 12], entropy [7, 8] and guessing

anonymity [5, 6, 65].

Previous privacy studies in software engineering [7, 8] have used entropy to measure privacy.

Entropy (H) measures the level of uncertainty an attacker will have in trying to associate a target

to a sensitive attribute. For example, if querying a data set produces two instances with the same

sensitive attribute value then the attacker’s uncertainty level or entropy is zero. However, if the

sensitive attribute values are different, the attacker has a 1
2 chance of associating the target with

the correct sensitive attribute value. The entropy here is 1 bit, assuming that there are only two

possible sensitive values. In general, the entropy of a data set is, H = ∑
|S|
i=1 p(si)|log2 p(si)| bits

which corresponds to the number of bits needed to describe the outcome. Here S is the set of

sensitive attribute values and si is the probability that S = si.

Guessing anonymity was introduced by Rachlin et al. [65] and it is describe as a privacy def-

inition for noise perturbation methods. Guessing anonymity of a privatized record in a data set is

the number of guesses that the optimal guessing strategy of the attacker requires to correctly guess

the record used to generate the privatized record [5, 6, 65].

We introduced Increased Privacy Ratio (IPR) in previous work [11]. It is based on the adver-

sarial accuracy gain, Aacc from the work of Brickell and Shamtikov [35]. According to the authors

definition of Aacc, it quantifies an attacker’s ability to predict the sensitive attribute value of a tar-

get t. Aacc measures the increase in the attacker’s accuracy after he observes a privatized data set

and compares it to the baseline from a trivially privatized data set which offers perfect privacy by

removing either all sensitive attribute values or all the other QIDs.

26

2.6 Privacy for Testing and Debugging

LACE is designed based on the privacy needs of cross project defect prediction. Other researchers

in SE focus on privacy in software testing and debugging [4–8], This becomes an issue when it

involves:

• Collecting user information after a software system has been deployed [7, 8];

• Or outsourcing the software testing to third parties (e.g. see Budi et al. [4], Taneja et al. [5]

and Li et al [6]). In this case, companies do not wish to release actual cases for testing.

Hence, they anonymize the test cases before releasing them to testers.

Work published by Castro et al. in 2008 [7], sought to provide a solution to the problem of software

vendors who need to include sensitive user information in error reports in order to reproduce a

bug. To protect sensitive user information, Castro et al. [7] used symbolic execution along the path

followed by a failed execution to compute path conditions. Their goal was to compute new input

values unrelated to the original input. These new input values satisfied the path conditions required

to make the software follow the same execution path until it failed.

As a follow-up to the Castro et al. [7] paper, Clause et al. [8] presented an algorithm which

anonymized input sent from users to developers for debugging. Like Castro et al. [7], the aim of

Clause et al. was to supply the developer with anonymized input which causes the same failure as

the original input. To accomplish this, they first used a novel “path condition relaxation” technique

to relax the constraints in path conditions thereby increasing the number of solutions for computed

conditions.

In contrast to the work done Castro [7] and Clause [8], Taneja et al. [5] proposed PRIEST,

a privacy framework. Unlike our work, which privatizes data randomly within “nearest unlike

neighbor” border constraints, the privacy algorithm in PRIEST is based on data-swapping where

each value in a data set is replaced by another distinct value of the same attribute. This is done

according to some probability that the original value will remain unchanged.

27

Work by Taneja et al. [5], followed work done by Budi et al. [4]. Similarly, their work focused

on providing privatized data for testing and debugging. They were able to accomplish this with

a novel privacy algorithm called kb-anonymity. This algorithm combined k-anonymity with the

concept of program behavior preservation which guide the generation of new test cases based on

known ones and make sure the new test cases satisfy certain properties [4]. The difference with

the follow-up work by Taneja et al [5], is that while Budi et al. [4] replaces the original data with

new data, in Taneja’s work [5], the data-swapping algorithm maintains the original data and offers

individual privacy by swapping values.

Software test outsourcing work by Li et at. [6], follows a similar approach to our work in

privacy for cross project defect prediction (CLIFF&MORPH [12] and now LACE): 1) Don’t use

all the data (minimize), and 2) obfuscate data that are used. Li et al. accomplish this through

the process of securing centroids using a novel combination of data mining approaches, program

analysis, and privacy constraints.

2.7 Summary

Research in privacy preserving data publishing focuses on accomplishing two goals, i.e., the pri-

vacy and utility of the data to be shared (published). The privacy algorithms that make up LACE

(CLIFF&MORPH) are designed to balance these goals via data minimization with CLIFF and

constrained obfuscation with MORPH. This is different from the earlier methods like k-anonymity,

l-diversity and t-closeness which only focus on offering privacy via obfuscation of data to decrease

the likelihood of re-identification disclosure and sensitive attribute disclosure discussed in Sec-

tion 2.1. In terms of utility, research concerning the application of k-anonymity to software testing

was shown to be unsuccessful as privacy was increased (by increasing k) [3]. Since neither l-

diversity nor t-closeness take utility into consideration, we conjecture that they would also produce

weak utility results. More recent work in software testing focuses on finding that balance between

28

privacy and utility by using data swapping and data minimization [5, 6].

There are many aspects of privacy research to take into account when seeking this balance

between privacy and utility, including privacy threats, models, algorithms and metrics used to

evaluate these algorithms. As privacy research continues to grow in software engineering, we

apply these aspects of privacy research to cross project defect prediction.

29

Chapter 3

Software Defect Prediction

3.1 Introduction

All the experiments in this dissertation focuses on defect prediction. This chapter describes that

kind of prediction, why we explore it and what is the missing in the current literature on defect

prediction (the need to privatize data before it is shared).

According to Lessmann et al. [66], the goal of software defect prediction is to improve software

quality and testing efficiency via predictive classification models to allow for the timely identifi-

cation of defective modules. Cross project defect prediction is recognized as a type of software

defect prediction that deals with the challenge of those organizations with insufficient data to build

their own quality defect predictors. It is an active field of study whose main component involves

data sharing [18, 19, 24, 27, 28]. Many studies exist which focus on improving the quality of cross

project defect predictors, however very few consider the privacy concerns that arise from needing

access to other data [11, 12]. Failure to address the privacy concerns of data owners can stall this

field of research.

In this chapter we present a brief review of the field of the economics of software defect predic-

tion, static code defect prediction since all the data used in our experiments are static code metrics.

30

We then elaborate on cross project defect prediction and transfer learning techniques used to im-

prove on the defect predictors built with other data. Finally, we conclude this chapter with the

empirical study of He&Peters et al. [28], showing that with transfer learning open-source data can

predict for proprietary data.

3.2 Software Defect Prediction Economics

Many researchers have documented the economical value of early defect detection [1, 67, 68].

Boehm & Papaccio advised that reworking software (e.g. to fix bugs) is cheaper earlier in the life

cycle than later “by factors of 50 to 200” [67]. Other research make the same conclusion. A panel

at IEEE Metrics 2002 concluded that finding and fixing severe software problems after delivery is

often 100 times more expensive than finding and fixing them during the requirements and design

phase [68].

Finally, Dabney et al. [1] studied the cost of quickly fixing an issue relative to leaving it for

a later phase (data from four NASA projects - see Figure 3.1). He found that delaying issue

resolution even by one phase increases the cost-to-fix to ∆ = 2 . . .5. Using this data, Dabney et

al. [1] calculated that a dollar spent on verification returns to NASA, on those four projects, $1.21,

$1.59, $5.53, and $10.10, respectively.

Once we accept that it is economically effective to find bugs earlier, then the next question

becomes “how do we find the bugs earlier?” Defect prediction learned from static code measures

allows software companies to take advantage of early defect detection [69, 70]. Models made for

defect prediction are usually built with local or within-company data sets using common machine

learners. The data sets are comprised of independent variables such as the code metrics used in

this work and one dependent variable or prediction target with values (labels) to indicate if defects

are present.

31

Phase issue found
Phase issue f=1 f=2 f=3 f=4 f=5 f=6

i introduced Requirements Design Code Test Int Ops
1 Requirements 1 5 10 50 130 368
2 Design 1 2 10 26 74
3 Code 1 5 13 37
4 Test 1 3 7
5 Integration 1 3

∆ = mean
(

C[f ,i]
C[f ,i−1]

)
5 2 5 2.7 2.8

Figure 3.1: Cost-to-fix escalation factors. From [1]. Here, C[f , i] denotes the cost-to-fix escalation
factor relative to fixing an issue in the phase where it was found (f) versus the phase where it was
introduced (i). The last row shows the cost-to-fix delta if the issue introduced in phase i is fixed
immediately afterward in phase f = i+1.

3.3 Static Code Defect Prediction

A typical, object-oriented, software project can contain hundreds to thousands of classes. In order

to guarantee general and project-related fitness attributes for those classes, it is commonplace to

apply some quality assurance (QA) techniques to assess the classes’s inherent quality. These tech-

niques include inspections, unit tests, static source code analyzers, etc. A record of the results of

this QA is a defect log. We can use these logs to learn defect predictors, if the information con-

tained in the data provides not only a precise account of the encountered faults (i.e., the “bugs”),

but also a thorough description of static code features such as Lines of Code (LOC), complexity

measures (e.g., McCabe’s cyclomatic complexity [71]), and other suitable object-oriented design

metrics [72–74].

For this, data miners can learn a predictor for the number of defective classes from past projects

so that it can be applied for QA assessment in future projects. Such a predictor allows focusing

the QA budgets on where it might be most cost effective. This is an important task as, during de-

velopment, developers have to skew their quality assurance activities towards artifacts they believe

require most effort due to limited project resources.

Now, static code defect predictors yield a lightweight sampling policy that, based on suit-

32

able static code measures, can effectively guide the exploration of a system and raises an alert

on sections that appear problematic. One reason to favor static code measures is that they can

be automatically extracted from the code base, with very little effort even for very large software

systems [75]. The industrial experience is that defect prediction scales well to a commercial con-

text. Defect predicting technology has been commercialized in Predictive [76], a product suite to

analyze and predict defects in software projects. One company used it to manage the safety critical

software for a fighter aircraft (the software controlled a lithium ion battery, which can over-charge

and possibly explode). After applying a more expensive tool for structural code coverage, the

company ran Predictive on the same code base. Predictive produced results consistent with the

more expensive tool. But, Predictive was able to faster process a larger code base than the more

expensive tool [76].

In addition, defect predictors developed at NASA [69, 70] have also been used in software

development companies outside the US (in Turkey). When the inspection teams focused on the

modules that trigger the defect predictors, they found up to 70% of the defects using just 40% of

their QA effort (measured in staff hours) [77].

Finally, a subsequent study on the Turkish software compared how much code needs to be

inspected using random selection versus selection via defect predictors. Using random testing,

87% of the files would have to be inspected in order to detect 87% of the defects. However, if the

inspection process was restricted to the 25% of the files that trigger the defect predictors, then 88%

of the defects could be found. That is, the same level of defect detection (after inspection) can be

achieved using 87−25
87 = 71% less effort [78].

3.4 CPDP = Cross Project Defect Prediction

When data can be shared between organizations, such as the NASA and Turkey study mentioned in

the previous section, defect predictors from one organization can generalize to another. However,

33

initial experiments with cross-project learning were either very negative [19] or inconclusive [17].

Zimmermann et. al. [19] observed, defect prediction via local data is not always available to many

software companies as

• The companies may be too small.

• The product might be in its first release and so there is no past data.

Kitchenham et al. [17], who studied cross versus within-company cost estimation, saw prob-

lems with relying on within-company data sets. They noted that the time required to collect enough

data on past projects from a single company may be prohibitive. Additionally, collecting within-

company data may take so long that technologies used by the company would have changed and

therefore older projects may no longer represent current practices.

Recently, we have had more success using better selection tools for training data [18, 25] but

this success was only possible if the learner had unrestricted access to all the data. For example,

let us return to the results of the NASA and Turkey study. The defect predictors developed at

NASA [69, 70] were used in software development companies in Turkey. Inspection teams found

up to 70% of the defects using just 40% of their QA effort (measured in staff hours) [77]. Work by

Rahman et al. [20], also show the success of CPDP. Their focus was on cost sensitive prediction

where only the top n% of reported defect prone lines or files were used in CPDP and within (local)

experiments.

3.5 Measuring the Feasibility of CPDP

Studies in CPDP benchmark their work against within (local) defect prediction [18]. However, re-

cent studies have shown that the success of CPDP depends on selecting or creating the right training

instances and so the feasibility of CPDP should depend on the number of test sets able to access a

training instances+predictor combination that will build a defect model whose performance meet

34

user criteria [19, 24].

More recent work in CPDP, have avoided the within (local) comparison for judging the success

of CPDP. Instead CPDP success is based on perceived user criteria and conclusions are made based

on these results. For instance, Zimmermann et al. [19] built 622 cross-company predictions and

found that only 3.4% met the criteria they used to determine if a project was a strong predictor

for another project (accuracy, precision and recall were above 75%). From these results, they

concluded that CPDP remained a challenge. However, they also studied the factors which influence

the the success of CPDP and used these factors to derive decision trees that provided estimates for

precision, recall, and accuracy before a prediction was attempted. In others words careful selection

of training data can determine the success of CPDP.

Similar to the work done by Zimmermann et al. [19], He et al. [24] checked when cross project

defect predictions that were successful. In their work, defect predictors were considered strong

if recall was above 70% and precision above 50%. Although their criteria was different and less

stringent than the Zimmermann et al. study [19], their results were similar, ranging from 0.32% to

4.67% of cross-company predictions that met their criteria over five different learners. However,

the authors did not use this result as a measure of the success of CPDP, instead they based their

measure on the results of selecting the best training instances for a test set. On average their

results met their criteria. Out of 34 test sets 18 were considered as strong defect predictors. From

those results, they concluded that CPDP was feasible as long as it involved the careful selection of

training data. To help with the selection of training data, we look to the field of transfer learning.

3.6 Transfer Learning

Researchers of cross project defect prediction have turned to transfer learning to improve the qual-

ity of defect predictors built from other data. Transfer learning techniques therefore assume easy

access to data which may not always be the case. As a result, it is increasingly necessary that

35

research also focus on privacy concerns of data owners. In this way, with access to privatized data,

researchers can continue to add to this field of research.

In this section we report on the literature for transfer learning starting with machine learning

and then exploring techniques used in cross project defect prediction.

In the machine learning literature, the 2010 article by Pan&Yang [79] is the definitive definition

of transfer learning. Pan&Yang state that transfer learning is defined over a domain D, which is

composed of pairs of examples X and a probability distribution about those examples P(X); i.e.,

D = {X ,P(X)}. This P distribution represents what class values to expect, given the X values.

The transfer learning task T is to learn a function f that predicts labels Y ; i.e., T = {Y, f}.

Given a new example x, the intent is that the function can produce a correct label y ∈ Y ; i.e.,

y = f (x) and x ∈ X . According to Pan&Yang, synonyms for transfer learning include, learning

to learn, life-long learning, knowledge transfer, inductive transfer, multitask learning, knowledge

consolidation, context-sensitive learning, knowledge-based inductive bias, metalearning, and in-

cremental/cumulative learning.

Transfer occurs between a source domain Ds and a target domain Dt . Transfer might be re-

quired since there is not enough data in the target to learn a predictive function (in which case

|Dt | � |Ds|). If transfer learning is successful, then we can find a function in the target domain ft

that generates correct labels in the target domain. This function ft can be used by management to

create and justify their decisions. That is, the above is a formal definition of the process of finding

and reusing best practices. For example, Company X’s source data indicates that large C/C++ files

have more defects than small or non C/C++ files. Thus a function or rule is learned that associates

“large” and “C/C++” files with the label “more defect-prone”. Best practice would then be to

re-factor large “C/C++” files to reduce defects.

If transfer learning fails, this may be due to negative transfer where the source domain data

contributes to reduced performance in the target domain [79]. This can be caused by:

• The source and target are too dissimilar; or

36

• The wrong data are moved from source to target.

Note that there may be no solution to dissimilarity. However, in the latter case, negative transfer

can be avoided using a relevancy filter that carefully selects what is transferred [18]. One such

filter (discussed in Section 3.6.1) is the Turhan filter that generates training sets by rejecting data

that is far away from the test sets.

3.6.1 Instance-Transfer

Inspired by Kitchenham et al.’s 2007 TSE article “Cross- vs. Within-Company Cost Estimation

Studies” [17], Menzies et al. tried transferring defect models between American NASA software

(for ground systems and flight missions) and Turkish software controllers (for whitegoods such as

ovens and refrigerators). The initial results were not promising:

• Round-robin experiments were conducted with 10 data sets: models were learned on nine

and tested on the tenth.

• The resulting defect prediction models exhibited high recalls (on average, 94%).

• But the false alarm rates were unsatisfactory (over 67%).

A moment’s reflection explains the above results. If we walk into a very large crowd asking “am

I defective?” sooner or later some oracle will say “yes”. However, in a large crowd, many oracles

can be wrong. Hence, we should expect that large crowds generate high recalls with high false

alarms.

While unaware of the Pan&Yang’s paper, Turhan’s fix [18] to the above problem can be ex-

pressed as “avoid negative transfer”. Turhan reasoned that the high false alarms were a result of

using too many unrelated projects. Hence, he proposed the following relevancy filter:

• For each test item in the target, find the k = 10 nearest neighbors in the source domain (in

37

the case of the round-robin experiments, the “source” was the union of nine data sets and the

“target” was the tenth data set).

• Using an off-the-shelf Naive Bayes classifier, learn a defect predictor from a training set

formed from the union of all those k = 10 neighbors.

The models formed in this way had recall and false alarm rates of (on average) (69,27)% respectively-

a performance level that is (a) competitive with defect predictors learned from just the target do-

main; (b) much larger than known performance levels for humans using manual methods1; and

(c) sufficient to guide inspection teams to code sections with the most errors2.

In terms of the Pan&Yang taxonomy, the work of Turhan et al. [18] is an instance-transfer

method since it samples training data according to a weight function that returns either one (if that

instance is within the k=10 nearest neighbors of a test instance) or zero (otherwise).

Turhan et al. [18] used a simple Euclidean measure over i static code measures seen in source

and target instances xs,xt : d =
√

∑i(xi
s− xi

t)
2. Ma et al. [21] repeated parts of the Turhan et al.

study using the same data sets [18]3, but with a different distance measure. For each feature, they

assigned the values {0,1} to source domain ranges if they overlapped with the min,max range

seen in the target ranges. Then, the distance si between a source and target instance was the sum

of the ranges that overlapped. Finally, appealing to gravitational physics, they assigned weights

proportional to 1
s2

i
. These weights were then used to adjust the weights on frequency counts within a

Naive Bayes classifier (their justification for this approach was to ignore examples that are nearest,

but remote).

The Turhan & Ma et al. studies use fine-grain relevancy filters. In the fine-grain approach,

given a table of X instances, each instance might be used with a different weight. An alternate

1Humans can find up to ≈ 20%..60% of the bugs [69].
2Weyuker et al. report that such predictors can isolate 20% of the code with 80% of the errors [80]. Tosun et al.

report that software inspection that focus on code that triggers these predictors find up to 70% of the defects using just
40% of their QA original effort (measured in staff hours) [77].

3All this data is available in the PROMISE repository http://promisedata.googlecode.com.

38

approach, explored by He et al. [24, 28], is to perform coarse-grain relevancy at the table level.

In this approach, all instances in one table get the same weight and, often, most tables get a zero

weight for all instances.

He et al. [24, 28] have defined two coarse-grained filters (the second is less computationally

expensive than the first, and has elements of feature representation transfer and parameter transfer).

CoarseFilter1 [24] was applied to a corpus of 34 defect data sets from the PROMISE repository.

For every one ∈ corpus data sets, explore triplets of size three (x,y,z) ∈ {corpus− one}. Each

combination of (x,y,z) data sets was tested on the other 30 data sets ({corpus−one− x− y− z}).

The highest scoring triplet was then selected as the training set.

CoarseFilter2 [28] was used on a different corpus of 34 releases of 10 open source data sets and

34 releases of 7 proprietary data sets. For each test ∈ corpus, the train set were the ten “closest”

data sets, calculated as follows:

• Let other = corpus− test.

• For each one∈ other, select K instances at random from test and one (so 2K instances in all).

• The distance between one and test is the error rate seen in predictions if a model is learned

from the 2K instances and applied back to itself (zero error = zero distance).

He et al. found that with CoarseFilter1 in half of their experiments, cross-company learning using

coarse-grain relevancy filtering can generate defects models just by learning from the local within-

data [24]. Also, using CoarseFilter2, He&Peters et al. [28] found that it was possible to success-

fully learn a defect predictor for open source projects, then apply it to proprietary projects [28].

Like Turhan et al. [18], we characterize the work of Ma&He et al as instance-transfer methods

that propose a range of weighting schemes for instances.

As research continues in transfer learning techniques for cross project defect prediction, as

seen in the example of the next section, any future research in this field can be severely inhibited

39

by privacy. The work in this dissertation seeks to avoid that. We expand on the He&Peters et al.

study in the following section [28].

3.7 Open-Source Predicts for Projects

With the found success of applying transfer learning techniques to CPDP, research has now ex-

panded to building defect predictors from open-source data to predict for proprietary data [28].

In the following section we share the techniques, and experimental results from the He&Peters et

al. [28] empirical study.

Most of the research done in cross project defect prediction only evaluate open source data [11,

12,21,24]. Those that included proprietary data in their experiments maintained that not only could

these data not be shared, but that cross defect prediction was a challenge between open source

and proprietary data [19]. Specifically, in an example of cross defect prediction between Firefox

and Internet Explorer, Zimmermann et al. [19] found that while Firefox defect data could build a

strong defect predictor for Internet Explorer, the reverse was not true. In other words, Firefox (the

open source project) predicts for Internet Explorer, but Internet Explorer (the proprietary project)

could not predict Firefox. This empirical study further explores the notion of open source projects

predicting for proprietary projects.

Considering the differences between development environment of open-source projects and

proprietary projects, it would be risky to directly apply knowledge of open-source projects to

proprietary projects. For example, a widely cited comparison study conducted by Zimmermann et

al. shows that cross project defect prediction rarely succeeded [19]. Hence the following question:

Can we transfer defect prediction knowledge from open-source projects to proprietary projects?

We argue that learning from open-source projects is a practical solution for proprietary projects

lacking local historical data because:

• The measurement data of open-source projects is easy and cheap to obtain;

40

• Companies are usually not willing to share their proprietary data because of the risk of

privacy and safety [12].

3.7.1 Methodology

Data

In this study we investigate a total number of 68 datasets (34 releases of 10 open-source projects

and 34 releases of seven proprietary projects) shown in Table 3.1 with attribute details in Table 2.1.

These data sets were collected and shared by Jureczko et al. [15, 81]. Each instance in a data set

represents a Java class of the release and consists of two parts: instance features including 20 static

code metrics and a labeled feature “bug” indicating how many defects in that class. In this study,

we consider a class as defect-free (DF) if the value of bug is equal to 0; otherwise, defect-prone

(DP). The goal of defect prediction in this study is to identify defect-prone classes precisely. These

data sets are publicly accessible and have been used in many previous studies, which make it easy

to repeat and compare our experiments to other related studies.

Learning Algorithms

In this study we use three learners widely used in defect prediction research. First, Random Forest

(RF) is selected for its good performance. A benchmarking study done by Lessmann et al. showed

that RF performs significantly better than 21 other predictors [66]. Second, we select Naı̈ve Bayes

according to recommendation of Menzies et al. which reported that the simple NB learner per-

forms as well as complex learners [69]. Third, Logistic Regression (LR) which is favored by

Zimmermann et al. [19].

1) Random Forest, RF is a collection of decision trees where each tree is learned from a

bootstrap sample (randomly sampling the data with replacement) [82]. The features used to find

the best split at each node is a randomly chosen subset of the total number of features. Each tree in

41

Table 3.1: Objective Data Sets

Open-source project data (training sets) Proprietary project data (test sets)
Dataset Size #DP %DP Dataset Size #DP %DP
ant-1.3 187 20 10.7 prop1-ver128 3619 220 6.1
ant-1.4 265 40 15.1 prop1-ver164 3541 319 9
ant-1.5 401 32 8 prop1-ver192 3692 85 2.3
ant-1.6 523 92 17.6 prop1-ver44 4081 376 9.2
ant-1.7 1066 166 15.6 prop1-ver9 4455 149 3.3
camel-1 436 13 3 prop1-ver92 3670 1287 35.1
camel-1.2 765 216 28.2 prop2-ver225 1864 147 7.9
camel-1.4 1122 145 12.9 prop2-ver236 2403 76 3.2
camel-1.6 1252 188 15 prop2-ver245 2023 103 5.1
ivy-1.1 135 63 46.7 prop2-ver256 2025 625 30.9
ivy-1.4 321 16 5 prop2-ver265 2372 229 9.7
ivy-2 477 40 8.4 prop2-ver276 2472 334 13.5
jEdit-3.2.1 508 90 17.7 prop3-ver285 1709 177 10.4
jEdit-4 606 75 12.4 prop3-ver292 2330 209 9
jEdit-4.1 644 79 12.3 prop3-ver305 2388 89 3.7
lucene-2 288 91 31.6 prop3-ver318 2440 365 15
lucene-2.2 381 144 37.8 prop4-ver347 2906 162 5.6
lucene-2.4 536 203 37.9 prop4-ver355 2802 924 33
poi-1.5 300 141 47 prop4-ver362 2865 213 7.4
poi-2.0RC1 386 37 9.6 prop42-ver452 317 33 10.4
poi-2.5.1 466 248 53.2 prop42-ver453 259 20 7.7
poi-3 531 281 52.9 prop42-ver454 295 13 4.4
synapse-1 162 16 9.9 prop43-ver461 1730 32 1.9
synapse-1.1 230 60 26.1 prop43-ver472 1740 32 1.8
synapse-1.2 269 86 32 prop43-ver481 1884 33 1.8
velocity-1.4 224 147 65.6 prop43-ver492 1888 27 1.4
velocity-1.5 246 142 57.7 prop43-ver501 2172 83 3.8
velocity-1.6.1 261 78 29.9 prop43-ver512 2265 134 5.9
xalan-2.4.0 862 110 12.8 prop5-ver4 3514 264 7.5
xalan-2.5.0 945 387 41 prop5-ver40 3815 466 12.2
xalan-2.6.0 1170 411 35.1 prop5-ver85 3509 930 26.5
xerces-init 206 77 37.4 prop5-ver121 3445 425 12.3
xerces-1.2.0 515 71 13.8 prop5-ver157 2863 367 12.8
xerces-1.3.0 545 69 12.7 prop5-ver185 3260 268 8.2
mean 507 120 25.7 mean 2547 271 9.9
median 451 88 17.7 median 2421 193 7.8

42

the collection is used to classify a new instance. The forest then selects a classification by choosing

the majority result.

2) Naı̈ve Bayes, NB is a statistical learning algorithm that assumes features are equally im-

portant and statistically independent. The NB learner builds its classification power based on the

Baye’s rule shown below [83]:

P(ck|x) = P(ck)×
P(x|ck)

P(x)

where ck is a member of the set of values for the dependent attribute. In our case ck could be

defect-prone or defect-free. Also, x represents a test instance or unknown instance. So, to classify

a test instance, NB finds the conditional probability of that instance being labeled ck. The ck with

the highest probability is chosen as the label for x.

3) Logistic Regression, LR Afzal recommended LR when the dependent variable is dichoto-

mous [84]. LR avoids the Gaussian assumption used in standard Naı̈ve Bayes. The form of the

logistic regression model is:

log(
p

1− p
) = β0 +β1X1 +β2X2 + ...+βkXk

where p is the probability that the fault was found in the module and X1,X2, ...,Xk are the indepen-

dent variables. β0,β1, ...,βk are the regression coefficients estimated using maximum likelihood.

Data Preprocessing

In our experiments we adopt some data preprocessing operations to address quality problems of

the experimental data.

• Data sampling: in each prediction we applied under-sampling to training data to reduce

the effects of imbalance distribution (i.e., the ratio of defect-free classes is usually much

higher than that of defect-prone classes). During our experiments we found that under-

43

sampling helps to improve prediction performance, which is consistent with what Menzies

et al. found [85].

• Normalization: we normalize each attribute to the 0-1 intervals to reduce the effect of differ-

ent value scales.

• Discretization: for predictions using the Naı̈ve Bayes learner, we convert continuous at-

tributes into nominal values using 5 equal-frequency bins. The reason we adopted equal-

frequency is that distributions of most attributes are seriously skewed in our experimental

data sets. For learners that can handle numerical attributes (i.e., Random Forest, Logistic

Regression), we input the original data without discretization operation.

Performance Assessment

In the context of defect prediction, defect-prone classes are usually considered as positive in-

stances. Consequently the 4 categories of defect prediction results are defined as below:

• TP (True Positive): defect-prone classes that are classified correctly;

• FN (False Negative): defect-prone classes that are wrongly classified to be defect-free;

• TN (True Negative): defect-free classes that are classified correctly;

• FP (False Positive): defect-free classes that are wrongly classified to be defect- prone.

In this study we employ probability of defects (PD), probability of false alarm (PF), and the G-

measure which is the harmonic mean of PD and 1-PF, to assess performance of defect prediction

models. There is a debate on right metrics to use when evaluating software defect prediction

results [86], we do not explore this as it is out of the scope of this chapter. Instead, we adopt these

three indicators based on the widely cited studies done by Menzies et al. [69, 70]. According to

44

Table 3.2: Some popular measures used in software defect prediction work.

Actual
DP DF

Predicted DP TP FP
DF FN TN

PD T P
T P+FN

PF FP
FP+T N

G 2*pd*(1-pf)
pd+(1-pf)

definitions of these three indicators, we favor prediction results with high PD, low PF, and high

G-measure. Table 3.2 shows how we calculate the three measures used in this work.

To eliminate the potential bias caused by data sampling, we repeated each prediction 10 times

and use the median performance as the overall prediction performance.

3.7.2 Research Method

We conduct empirical studies on aforementioned objective data sets in Table 3.1. Our empirical

studies include:

• A simulation experiment to verify the feasibility of using open-source project data to build

defect prediction models for proprietary projects.

• A empirical study to verify the effectiveness and computational cost of a new proposed train-

ing data selection method. The idea behind our proposed data selection method is to select

potential training data based on data similarity. More specifically, we first find cross training

sets that are close to the test set, then we find features that cause the differences between

training set and test set (i.e., unstable features), finally we remove these unstable features

and learn cross project defect prediction models from remaining data of close training sets

45

The following two sub-sections describe details of these two empirical studies.

Usability of Open-Source Project Data

Before employing open-source project data to build defect prediction models for proprietary projects,

we need to assess their usability for model training, i.e. we need to find evidence showing that

learning from open-source project is feasible. To achieve this goal we conduct a simple simulation

experiment as follows:

• Cross project defect prediction using the most appropriate training set (CPDP-Best). For

each test set (i.e., a release of proprietary projects) we train defect prediction models on each

individual cross project training set (i.e., a release of open-source projects) and observe its

performance on the test set. We then select the best prediction performance for each test

set. The results from this simple simulation provides empirical evidence indicating whether

cross project defect prediction is feasible.

We have to point out that CPDP-Best is a post-facto approach and it does not work for practical

prediction settings. We use CPDP-Best here as an baseline to explore the theoretical possibility

of learning from open-source projects. We compared prediction performance of CPDP-Best with

those of two other baselines described below:

• Within project defect prediction (WPDP). This baseline represents prediction performance

of a within project learning scenario, i.e., 5-folds cross validation on the test set. Theoret-

ically, performance of the within project defect prediction is the best performance we can

achieve since in this scenario the training data and the test data are sampled from the same

distribution.

• Cross project defect prediction using all available training data (CPDP-All). This baseline

represents a very intuitive cross project defect prediction setting: combine all open-source

46

(a) Naı̈ve Bayes (b) Logistic Regression (c) Random Forest

Figure 3.2: Comparisons of prediction performance among CPDP-Best, WPDP, and CPDP-All.

project data into a big training set without any data selection or filtering operation, and then

learn prediction models from it. This cross project defect prediction would have success

only if all open-source projects and proprietary projects hold the same global pattern for

defect prediction. Turhan et al. found that CPDP-All would generate prediction results with

very high PF, which was the main reason that motivated the data selection research for cross

project defect prediction [18].

Figure 3.2 illustrates the comparisons of prediction performance. Note that in this simulation

experiment, prediction results of CPDP-Best refer to results that have the greatest G-measure val-

ues. Intuitively we can see that the performance of CPDP-Best is close to that of WPDP, and

CPDP-ALL produce very bad defect prediction results in terms of G-measure. The finding that

learning from all cross training data without data filtering will lead to higher PF is consist with

what Turhan et al. found [18].

Results of this simulation experiment provide empirical evidence showing that learning defect

prediction models from open-source project data is a feasible way for proprietary projects lacking

local historical data. However simply learning prediction models from all available open source

project training data without data selection is not a good practice.

47

Data Selection for Cross Project Defect Prediction

In Section 3.7.2 we show that learning from open-source projects is theoretically possible when

using the right training data. Consequently, the problem is how to select these appropriate cross

training data. In this study we proposed a new training data selection method based on data simi-

larity. Our goal is to learn from training data that have similar distribution with that of the test set.

Our proposed method achieves this goal by two operations: instance selection and feature subset

selection.

Considering the various development environments and inherent characteristics of different

projects, it is possible that the historical data extracted from different projects are different, i.e.,

the distribution of the data may be different from each other from a mathematical point-of-view.

Thus an intuitive idea for cross project defect prediction is to learn from historical projects that

are similar to the target project. The KNN filter introduced by Turhan et al. is a typical way to

find “similar” training data for model training [18]. However, our proposed method do instance

selection in a different way, we select training instances on the granularity of data set, i.e., we select

or filter out some cross training sets rather than some individual data instances. We argue that the

properties of each training/test set are reflections of the properties of the project that generated

that data set (or in other words, the “context” of the project). Also it is possible to find “similar”

projects to learn from by measuring similarity between data sets. In the proposed data selection

method, we adopt a simple and intuitive strategy for instance selection: for each test set, we only

learn from the top N closest training sets.

After instance selection, we further employ feature subset selection to filter out features that

cause differences between distributions of training data and test data (i.e., unstable features). The

intuition is that we should learn on these “common” feature subsets in case training data and test

data are different. However, we have to point out that feature subset selection is a trade-off between

data similarity and training information. The more unstable features we filter out, the more similar

the training data and test data will be, while at the same time the more supervised information in

48

the training data for model learning is lost. In our proposed training data selection method, we

adopt a data change analysis framework to identify these unstable features.

It is natural that the common feature subset between different training set and test set pairs

are different. According to our experimental setting, we try to learn defect prediction models for

proprietary projects from multiple open-source projects. So to combine the knowledge of multiple

training sets, we adopt the bagging ensemble method to get the final prediction results for the test

set. More specifically, we first learn prediction models on each individual training set after feature

subset selection, and then apply these prediction models to the test set and use majority voting to

combine prediction results.

Figure 3.3 gives an overview of our proposed training data selection method for cross project

defect prediction. We then describe technical details about measuring similarity between data sets,

identifying unstable features, the bagging ensemble strategy, and empirical evaluation of the pro-

posed method, respectively.

Input: training sets D(1)
train, D(2)

train, ...,D(m)
train;

test set Dtest ;
top N; {learning from top N closest training sets}
FSS ratio; {the ratio of unstable features filtered out}
score thre; {the threshold for bagging.}
Output: Prediction results for Dtest .
Procedure:

1. For each training set D(i)
train (i = 1, 2, ..., m), calculate the distance between D(i)

train and
Dtest ;

2. Select top N training sets with lowest distance to the test set;

3. For each selected training set of step 2, remove FSS ratio× 100 percent of features that
are most unstable;

4. Learn prediction models on each selected training set (step 2) after feature subset se-
lection (step 3), and ensemble prediction results from each prediction model by using
bagging (i.e, majority voting with a threshold score thre).

Figure 3.3: Overview of the proposed training data selection method

Measuring Data Similarity: The data similarity measuring method we adopted is derived from

49

the data change detection and analysis framework proposed by Hido et al. [87]. Given a training

set Dtrain that comprises of M labeled instances {(x(1)train, y(1)train), (x(2)train, y(2)train), ...(x(M)
train, y(M)

train) }, and

a test set Dtest that comprises of N unlabeled instances {(x(1)test), (x(2)test), ...(x(N)
test}, the data similarity

measuring problem is to calculate the similarity between the marginal distribution of the training

set (noted as P(Xtrain)) and that of the test set (noted as P(Xtest)). The key idea of the data similarity

measuring solution is as follows:

1. Randomly sample K instances from training set Dtrain, noted as SAMtrain, and K instances

from test set Dtest , noted as SAMtest . Then attach a hypothetical label 0 to each instance of

SAMtrain, and 1 to each instance of SAMtest .

2. Combine SAMtrain and SAMtest into a new data set SAM whose size should be 2K. Train a

classifier C on SAM in a supervised fashion and evaluate its accuracy on SAM.

3. Use the accuracy of the classifier in Step 2 as a measurement of distance between Dtrain and

Dtest .

Figure 3.4 shows an overview of the data similarity measuring method, where4 and � indicate

instances of SAMtrain and SAMtest , respectively. If marginal distributions of Dtrain and Dtest are

actually different, instances of SAMtrain and SAMtest should be correctly classified by the classifier.

Thus a high classification accuracy indicates a difference between Dtrain and Dtest . For example,

if P(Xtrain) = P(Xtest), the classification accuracy will be about 0.5. However, if the accuracy is

significantly larger than 0.5, we can infer that P(Xtrain) and P(Xtest) are different with each other.

In this study, we employ the Logistic Regression algorithm to build the classifier mentioned in

Step 2 above. We evaluate the classifier using 5-folds cross validation. To eliminate the potential

bias caused by the data sampling operation in Step 1, we repeat Step 1 and Step 2 for 10 times and

use the mean value of accuracies from these 10 rounds as the final accuracy (noted as Acc). Our

calculation to convert classification accuracy to data distance is as follows:

50

Distance(Dtrain,Dtest) = 2∗ (Acc−0.5)

Figure 3.4: Overview of the data similarity measuring method, these pictures show examples that
distribution of two data sets are (a) very close to each other, (b) partly close, and (c) totally different,
respectively.

Identifying Unstable Features: To identify which part of features cause the differences between

Dtrain and Dtest , we revisit the hypothetical data set SAM generated for measuring data distance.

The intuition is that features that play a dominant role in the classification are the ones that charac-

terize the difference. Hido et al. suggested to identify unstable features by exploring the structure

of classifier C learned from SAM [87]. For example, if C was constructed using the Logistic Re-

gression algorithm, features with high regression coefficients would be more unstable; or if C was

constructed using the Decision Tree algorithm, features close to the root of the tree can be seen as

unstable ones [87].

In this study, we identify unstable features by comparing the Information Gain associated with

each feature. More specifically, we calculate information gain of each feature against data set SAM,

and see features with the highest information gains as unstable features.

Ensemble Prediction Results: The intuition of adopting bagging to merge prediction results pro-

duced by each individual defect prediction model is that the stable feature subset selected may be

different on different training sets, thus we need an ensemble mechanism to combine prediction

results derived from heterogeneous training sets. Bagging is essentially a method to eliminate

51

the potential prediction bias caused by each individual predictor by integrating their predictive

power [88]. We employed bagging to combine defect prediction results generated by different

training sets after feature subset selection. The process of the bagging ensemble method can be

described as follows:

Given a set of classifiers {C1,C2, ...Cp} and the test set Dtest , for each instance of Dtest :

1. Get prediction result of each classifier for that instance, noted as ri (i = 1, 2, ...p).

2. Compute the voting score of that instance as:

score =
p

∑
i=1

scorei

where scorei = 1 if ri says the prediction result is “defect-prone”, otherwise scorei = 0.

3. If the voting score is greater than a pre-defined threshold score thre, the final prediction

result of that instance will be set as “defect-prone”.

3.7.3 Evaluation

To evaluate the effectiveness of our proposed training data selection approach, we compare its

performance with that of the KNN filter [18]. During the comparisons, we set the parameter K=10

for the KNN filter. Also for our data selection approach, we set top N=10 and score thre=0.5 in

all experiments. As for the parameter FSS ratio for feature subset selection, we try FSS ratio from

0.1 to 0.9 since it is a trade-off between data similarity and training information, and we observe

the change of prediction performance.

Figure 3.5 illustrates the change of prediction performance when using different parameter

settings for feature subset selection, where the X-axis indicates how many unstable features are

removed. We can see that the Random Forest, Naı̈ve Bayes and Logistic Regression learners can

achieve highest performance after removing 60%, 70%, and 80% of features, respectively. An

52

intuitive conclusion is that cross project defect prediction can achieve best performance by only

learning from 20% to 40% features. What’s more, we can see that the Random Forest learner

performs worse than Naı̈ve Bayes and Logistic Regression, while in the within project learning

scenario Random Forest performs best. A potential explanation for this observation is that there

may be over-fitting happening for Random Forest. Our suggestion is to use simple learners such

as Naı̈ve Bayes rather than complicated learners such as Random Forest when doing cross project

defect prediction.

Figure 3.5: Comparison of G-measure under different parameter setting for feature subset selec-
tion.

We then compare the best performance our proposed method with those of the KNN filter

and within project learning (WPDP). Figure 3.6 illustrates the comparison details. For all three

learning algorithms we tested, our proposed method produces relatively higher G-measure values

than the KNN filter. For prediction models using Naı̈ve Bayes and Logistic Regression learner, our

method produces lower PD as well as lower PF, and for prediction models using Random Forest,

our method produces both higher PD and PF. An empirical conclusion observed in cross project

defect prediction using static code metrics is that cross training data may generate prediction results

with comparable or even higher PD at the cost of a higher PF [18]. A key task of cross project

defect prediction is to find methods that can reduce the PF. Figure 3.6 shows that our proposed

methods can largely reduce PF while it doesn’t cause big damage to PD if using Naı̈ve Bayes or

53

(a) Naı̈ve Bayes (b) Logistic Regression (c) Random Forest

Figure 3.6: Comparison of performance between our proposed method and the KNN filter, where
WPDP presents the within project defect prediction, FSS+Bagging presents cross project defect
prediction using our proposed data selection method, and KNN Filter presents cross project defect
prediction using the KNN filter.

Logistic Regression. As for Random Forest, again, we do not recommend it for cross project defect

prediction because of its bad performance.

To further support our observation from Figure 3.6, we employed Mann-Whitney U test to

compare the performance of KNN filter and our method. Table 3.3 gives an overview of the

significance test results, where “Win” indicates that performance of our method is better than KNN

filter, “Loss” means that KNN filter is better, and “Tie” means no significant difference observed

between these two methods. The significance test results show that our proposed method performs

better or equally with the KNN filter for most test sets.

Table 3.3: Comparision of Prediction Performance Between Our Proposed Method and the KNN
Filter. This Comparision Result is Based on Significance Test Results Using Mann-Whitney U
Test at Confidence Level 0.95.

Learner #Win #Tie #Loss
Naı̈veBayes 22 8 4
Logistic Regression 15 12 7
Random Forest 17 12 5

Compared with the KNN filter, our proposed method can generate better results for cross

54

project defect prediction with regards to the G-measure. Also for two out of the three learners

tested, our method can largely reduce the PF without causing big damage to PD.

Necessity of Cross Project Defect Prediction

Some studies argue that learning from other projects is a serious problem while some other argue

that the performance of cross project defect prediction is comparable with that of within project

defect prediction [18–20]. Our findings in this study are consistent with what Turhan et al. found

and support the conclusion that learning from other projects without data filtering will cause very

high PF [18]. Also, considering the expensive cost of project measurement and data maintenance

program [89], and the fact that local historical data are not always available (e.g., the first release

of a new project), we argue that cross project defect prediction is necessary.

Additionally, data filtering is needed because the characteristics of the training data and the

test data may be significantly different. For example, for the open-source projects and proprietary

projects we investigated, there is a very intuitive difference: the ratio of defect-prone classes of

proprietary projects are much lower than that of open-source projects.

3.8 Summary

These results lead to the following question. Can proprietary data predict for open source data?

Zimmermann et al. have shown us that it was not possible with Internet Explorer and Firefox.

However, in later chapters, our experiments with LACE indicate that this is possible. In subsequent

chapters we explain the design and operation or LACE (Chapter 4) and evaluate its performance

for both privacy (IPR) and utility (CPDP) (shown in Chapter 5 and Chapter 6).

From this chapter we also see that cross project defect prediction is challenging but can be

improved through the use of transfer learning techniques. This result, particularly for the open-

55

source and proprietary study, intensifies the need for research into privacy issues associated with

the sharing component of cross project defect prediction. Without this privacy research, cross

project defect prediction will be limited to studies with only open source data.

56

Chapter 4

LACE Design and Operation

4.1 Introduction

The ability to build quality defect predictors for proprietary data using open source data as shown

in the previous chapter, highlights the increasing importance for privacy research in software de-

fect prediction. Since confidentiality is so important, and since standard privacy methods damage

data mining efficacy, we have been engaged for some time on research to build better privacy al-

gorithms for software defect prediction. Our previous work [11, 12] allowed data owners to share

a minimized and obfuscated version of their data on an individual level. In this dissertation we

repeat those results with a more comprehensive parameter tuning experiment (Chapter 5) and we

extend that work with private multiparty data sharing (Chapter 6) based on the following scenario.

Consider the problem of l parties (data owners) P0...Pl−1, each with local data, xi. They want

to securely work together to create a private cache containing pooled minimized and obfuscated

data from all parties involved. Each data owner Pi determines what data to add to the private cache

based on what others have added previously. The final private cache can then be used by others for

cross project defect prediction. According to Lindell et al. [41], this problem is a special case in

cryptography where a set of parties with private data wishes to jointly compute some function of

57

their data.

Given that our aim is to share data for the purpose of cross project defect prediction, we include

this second mode of LACE where multiple data owners can team up and share data guided by a

novel multiparty privacy protocol. Figure 4.1 illustrates how LACE works for private multiparty

data sharing with three data owners.

Figure 4.1: Example of three data owners teaming up in LACE (the Large-scale Assurance of
Confidentiality Environment) to produce a private cache for cross project defect prediction.

First LACE randomly selects a data owner P0 as the initiator of the privacy protocol. P0 then

minimizes and obfuscates its data then adds these to the private cache. The cache is then randomly

passed to another data owner P1, who minimizes it’s data based on the data in the private cache

then obfuscates it and passes the result to the private cache. The process at P1 is repeated at the

randomly chosen P2 data owner, who then releases the final private cache as a training set for cross

project defect prediction.

Minimization in LACE takes place in two steps:

1. Instance selection with CLIFF, which is an instance selector that returns instances that best

predict for the target class;

2. Instance selection via incremental learning with the leader-follower algorithm (LeaF) [90]

which is an online technique for clustering data. It is this algorithm that facilitates collabo-

58

ration among data owners where they submit data to the cache that are dissimilar to what’s

already there.

Obfuscation in LACE is handled by applying our MORPH algorithm on the minimized data.

MORPH reflects on the boundary between this instance and the nearest instance of another class

(and MORPH’s restricted mutation policy never pushes an instance across that boundary).

Note the key features of this protocol:

• Private data remains with the data owner behind the firewalls.

• All the algorithms are run behind firewalls by data owner. Hence, in LACE, there is no need

for a central server or some third party privatization service.

• Most data is never shared. LACE’s instance selection prunes away most of the data (which

means that the pruned data is completely private).

• The shared data is privatized such that queries to that data return very different values than

in the raw data. In other words, we reduce the risk is sensitive attribute disclosure.

• MORPH’s obfuscation of the data does not change the classifications of the training data.

That is, this protocol obfuscates data without damaging data mining efficacy.

In addition to the privacy algorithms, LACE also includes IPR (increased privacy ratio) to measure

the privacy threat of sensitive attribute disclosure for our LACEd data. We expand on the basics of

LACE, the algorithms and IPR in the following sections.

4.2 LACE

We designed LACE based on the success and failures of previous work on multiparty computation.

As explained by Vaidya et al. [91], the advantage of perfectly secure multiparty computation is that

nothing is revealed. They offer a simple example of such a computation. Suppose we want to know

59

the average age of everyone attending a conference. First, we generate a large random number R

and pass it to a random attendee. The attendee adds their age and passes the sum to another

attendee (selected at random). This repeats till all attendees have been sampled at which point the

sum returns to the origin. After subtracting R, we have the sum of the ages from which we can

compute the average sum.

The benefits of this protocol are that, if R is kept private, then no single participant can “decode”

the passed value to find the sum of the ages. Also, if the ordering of the sampled attendees is also

kept private, then no pair of attendees a,c can compare their numbers to determine the age of the

attendee b who was sampled between a and c.

Vaidya et al. discuss an experiment with a distributed data miner (based on C4.5) that used a

variant of the above multiparty computation, every time it searched data from different organiza-

tions. They declared that experiment a failure, for two reasons. Firstly, the network overhead of

that approach was prohibitive. Secondly, this approach conducted so many queries across different

sites that it was possible for pairs of sites to collude to “decode” the passed values.

Our analysis of the failed Vaidya et al. experiment was that it is a mistake to conduct mul-

tiple micro-queries of a distributed data sources. Rather, what is more practical, is a one-pass

coarse-grained query over a random sample of those source. Such a single-pass random sampling

approach mitigates against collusion. Further, it reduces the network traffic associated with the

query.

LACE is such a single-pass randomized query. Instead of a total sum of numbers, its desired

outcome is a private cache containing exemplars from each site. LACE proceeds as follows:

1. Each data owner applies CLIFF to their data. Only the data selected by CLIFF are used in

LACE.

2. The initiator is chosen at random and applies LeaF (Section 4.2.4) to minimize its CLIFFed

data.

60

3. The results are then obfuscated with MORPH (Section 4.2.2), and are the beginnings of the

private cache.

4. The private cache is sent to the second randomly chosen site (data owner), where they test

each instance of their CLIFFed data using LeaF and the private cache. The test involves

each instance finding its nearest exemplar in the private cache and if their class labels are

different and/or they are a certain distance away then that instance is MORPHed and added

to the cache.

5. Once this is complete the private cache moves on to the next random data owner and the

process repeats.

6. The protocol is complete when all data owners involved have had a chance to contribute to

the private cache.

When implementing LACE, we make the following assumptions:

• There must be at least three data owners involved in the process. This is because for only

two parties, the result will reveal the input of the other party, thus eliminating privacy [91].

• Since data is pooled into a private cache for defect prediction, each party must provide data

with the same features or attributes.

• Data involved in LACE are not extreme. For example in a case where a bunch of startups and

Microsoft contributed to a private cache. Even with the random perturbation in MORPH,

it will be obvious which defect data came from Microsoft Windows vs. all of the others

because Windows will have LOC orders of magnitude greater than anyone else.

4.2.1 Minimization with CLIFF

One core aspect of LACE is to look at less data. In this section we describe CLIFF which is used

to minimize data.

61

Initially, CLIFF was constructed to achieve the goal of reducing the drawbacks of the k-Nearest

Neighbor (kNN) algorithms by Hart [92]. Since their invention, many researchers have explored

intelligent instance selection methods to address the drawbacks with k-Nearest Neighbor algo-

rithms [40, 93–114]. These drawbacks include, (a) the high computation costs caused by the need

for each test sample to find the distance between it and each training sample (b) the storage re-

quired to hold the entire dataset in memory; (c) the effects of outliers which can negatively affect

the accuracy of the classifier; (d) the negative effect of data sets with non-separable and/or overlap-

ping classes; and (e) the effects on noise on kNN inference [39, 40]. Noise can lead to brittleness

i.e. when random changes to an instance leads to a major change in the inferences drawn from

those instances.

A standard solution to these drawbacks is some instance selection algorithm that replaces all

the data with X% fewer instances. Instance selection can mitigate the effects of noise and therefore

reduce brittleness.

Research in instance selection is an active field of study [95, 98, 102, 112, 115–119]. In-

stance selection involves selecting a subset of instances from the original training set. Using what

Dasarathy [95] terms as edit rules.

CLIFF is our solution for reducing or eliminating these drawbacks. The success of CLIFF

when compared with other instance selectors allowed us to see that we could maintain the utility

of data even with a minimized data set. CLIFF assumes tables of training data can be divided into

classes. For example, for a table of defect data containing code metrics, different rows might be

labeled accordingly (defective or not defective).

CLIFF executes as follows:

• For each column of data, find the power of each attribute sub-range; i.e., how much more

frequently that sub-range appears in one class more than any other.

• In prior work [120], at this point we select the sub-range with the highest power and removed

62

all instances without this sub-range. From the remaining instances, those with sub-ranges

containing the second highest power are kept while the others are removed. This process

continued until at least two instances were left or to the point before there were zero instances

left. In this work, to control the amount of instances left by CLIFF, we find the product of

the powers for each row then,

• Remove the less powerful rows.

The result is a reduced data set with fewer rows. In theory, this reduced data set is less susceptible

to privacy threats such as sensitive attribute disclosure discussed in Chapter 2.

Algorithm 1: Power is based on BORE [121]. First we assume that the target class is divided

into one class as first and the other classes as rest. This makes it easy to find the attribute values

which have a high probability of belonging to the current first class using Bayes theorem. The

theorem uses evidence E and a prior probability P(H) for hypothesis H ∈ {first, rest}, to calculate

a likelihood (hereafter, like) of the evidence selecting for one class:

like(H|E) = P(E|H)×P(H).

This calculation is then normalized to create probabilities:

P(f irst|E) = like(f irst|E)
like(f irst|E)+ like(rest|E)

(4.1)

Jalali et al. [121] found that Equation 1 was a poor ranking heuristic for low frequency evidence.

To alleviate this problem the support measure was introduced. Note that like(first|E) is also a

measure of support since it is maximal when a value occurs all the time in every example of one

class. Hence, adding the support term is just:

P(f irst|E)∗ support(f irst|E) = like(f irst|E)2

like(f irst|E)+ like(rest|E)
(4.2)

To compute the power of a sub-range, we first apply equal frequency binning to each attribute

63

in the data set. Equal frequency binning divides the range of possible values into n bins or sub-

ranges, each of which holds the same number of attribute values. However, to avoid duplicate

values being placed into different bins, boundaries of every pair of neighboring bins are adjusted

so that duplicate values should belong to one bin only [122]. For these experiments, we did not

optimize the value for n for each data set. We simply used n=10 bins. In future work we will

dynamically set the value of n for a given data set.

Algorithm 1 Finding sub-range Power.
1: Power(D, E) {D is the data-set, and E is a set of sub-ranges for a given attribute}
2: Partition(D) 7→ C {Returns data partitioned according to the class label.}
3: PR← /0 {Initialize sub-ranges with power for each sub-range in E}
4: for j=0 to # of class values in |C| do
5: first←C j
6: rest←C6= j

7: p f irst ← | f irst|
|D| {Probability of first data}

8: prest ← |rest|
|D| {Probability of rest data}

9: for k=0 to # of sub-ranges in |E| do
10: like(first|Ek)← number of times Ek appears in first × p f irst
11: like(rest|Ek)← number of times Ek appears in rest × prest

12: powerk ← like(f irst|Ek)
2

like(f irst|Ek)+like(rest|Ek)

13: PR← powerk
14: end for
15: end for
16: return PR

Next, CLIFF selects p% of the rows in a data-set D containing the most powerful sub-ranges.

The matrix M holds the result of Power for each attribute, for each class in D. This is used to help

select the rows from D to produce D’ within CliffSelection.

The for-loop in Lines 3 to 9 of Algorithm 2 iterates through attributes in D and UniqueRanges

is called to find and return the unique sub-ranges for each attribute. Inside that loop, at Lines 5 to

8, a nested for-loop iterates through the unique sub-ranges for a given attribute and Power is called

to find the power of each sub-range. Last, once the powers are found for each attribute sub-range,

CliffSelection is called to determine which rows in D will make up the final sample in D’:

• Partition D by the class label;

64

• For each row in each partition, find the product of the power of the sub-ranges in that row;

• For each partition, return the p percent of the partitioned data with the highest power.

An example of how CLIFF is applied to a data set is described in Section 4.2.3.

Algorithm 2 The CLIFF algorithm.
1: CLIFF(D, p) {D is the original data-set, and p is the percentage of data to be returned}
2: M← /0 {Initialize sub-range power for each attribute}
3: for i=0 to # of attributes in D do
4: UniqueRanges(Di) 7→ Ri {Returns set of unique sub-ranges for a given attribute}
5: for j=0 to # of sub-ranges in Ri do
6: Power(D, Ri) 7→ PR j {Returns the sub-ranges with their powers for each class}
7: M← PR j
8: end for
9: end for

10: CliffSelection(D, p, M) 7→ D′ {Returns p of the original data}
11: return D′

4.2.2 Obfuscation with MORPH

MORPH is an instance mutator that changes the numeric attribute values of each row by replacing

these original values with MORPHed values. MORPH takes care never to change an instance such

that it moves across the boundary between the original instance and instances of another class.

The MORPHed instances are created by applying Equation 4.3 to each attribute value of the

instance.

y = x± (x− z)∗ r (4.3)

Let x∈D be the original row to be changed, y the resulting MORPHed row and z∈D the Nearest

Unlike Neighbor (NUN) of x. NUN is the nearest neighbor of x whose class label is different from

x’s class label (distance is calculated using the Euclidean distance). The random number r is

calculated with the property:

α≤ r ≤ β.

65

In previous work we used α = 0.15 and β = 0.35. These values for α and β were chosen in an

effort to keep the MORPHed value close enough to the original in order to maintain the utility of

the data set but far enough to keep the original data private. For the experiments in Chapter 5 of

this dissertation we expand this range of values to α = 0 and β = 1.

A simple hashing scheme lets us check if the new instance y is the same as an existing instance

(and we keep MORPHing x until it does not hash to the same value as an existing instance). Hence,

we can assert that none of the original instances are found in the final data-set.

An example of how MORPH is applied to a data set is described in Section 4.2.3.

4.2.3 Illustrative Example of CLIFF&MORPH

Let us consider the abbreviated version of the ant-1.3 data set shown in Table 4.1a. Definitions for

these attributes as well as other attributes of data used in the experiments in this dissertation are

shown in Table 2.1. This data set contains ten attributes. One dependent attribute (class) and nine

independent attributes. Each row is labeled as 1 (containing at least one defect) or 0, (having no

defects). The first column holds the row number and each cell contains the original metric values.

The result of applying CLIFF&MORPH is shown in Table 4.1e. To get to that point, first

the original data is binned using equal frequency binning because CLIFF is designed to handle

discrete data. The result of this is shown in Table 4.1b. For example the attribute values of wmc

are replaced by two sub-ranges of values ([3-6] and (6-14]). Here all values from 3 to 6 inclusive

are placed in the first sub-range and all values between 6 and 14 (not including 6) are placed in the

last sub-range.

Following this, each sub-range is the ranked according to Equation 4.2. To find the power of

each sub-range, we first divide the data into first and rest. For this example, let us say that all the

rows with the 0 class label are first while the others are rest. Figure 4.2, shows an example of

finding the power of (6-14] for attribute wmc and Table 4.1c shows the power values for all the

sub-ranges of Table 4.1b.

66

Table 4.1: Example of CLIFF&MORPH. (a) Shows the original data and is an abbreviated version
of ant-1.3. (b) Data from a binned using equal frequency binning. (c) Power values for each
sub-range in b. (d) CLIFF result. (e) MORPH result.

(a) Partial ant-1.3 Defect Data
wmc dit noc cbo rfc lcom ca ce loc class
1 11 4 2 14 42 29 2 12 395 0
2 14 1 1 8 32 49 4 4 297 1
3 3 2 0 1 9 0 0 1 58 0
4 12 3 0 12 37 32 0 12 310 0
5 6 3 0 4 21 1 0 4 136 0
6 5 1 5 12 11 8 11 1 59 0
7 4 2 0 3 16 0 0 3 59 0
8 14 1 0 24 63 63 20 20 822 1

(b) ant-1.3 After Equal Frequency Binning
wmc dit noc cbo rfc lcom ca ce loc class
1 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 0
2 (6-14] [1-4] [0-5] [1-8] (21-63] (8-63] (2-20] [1-4] (136-822] 1
3 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
4 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] 0 (4-20] (136-822] 0
5 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
6 [3-6] [1-4] [0-5] (8-24] [9-21] [0-8] (2-20] [1-4] [58-136] 0
7 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
8 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 1

(c) ant-1.3 Power Values
wmc dit noc cbo rfc lcom ca ce loc class
1 0.13 0.56 0.60 0.28 0.13 0.13 0.28 0.17 0.28 0
2 0.13 0.06 0.06 0.03 0.13 0.13 0.03 0.03 0.03 1
3 0.50 0.56 0.56 0.28 0.50 0.50 0.75 0.40 0.50 0
4 0.13 0.56 0.56 0.28 0.13 0.13 0.75 0.17 0.28 0
5 0.50 0.56 0.56 0.28 0.50 0.50 0.75 0.40 0.50 0
6 0.50 0.56 0.56 0.28 0.50 0.50 0.28 0.40 0.50 0
7 0.50 0.56 0.56 0.28 0.50 0.50 0.75 0.40 0.50 0
8 0.13 0.06 0.06 0.03 0.13 0.13 0.03 0.04 0.03 1

(d) CLIFF Result
wmc dit noc cbo rfc lcom ca ce loc class
3 3 2 0 1 9 0 0 1 58 0
8 14 1 0 24 63 63 20 20 822 1

(e) MORPH Result
wmc dit noc cbo rfc lcom ca ce loc class
3 2 2 0 1 5 5 2 0 1 0
8 15 1 0 26 67 68 22 21 879 1

67

Next, the power of each row is calculated by finding the product of the sub-range powers of

each row. In this example the row with the highest power for each class is selected. In this case

that is row 3 for the 0 class label and row 8 for the 1 class label. This result is shown in Table 4.1d.

Finally, we apply MORPH this result according to Equation 4.3 to obtain the result in Ta-

ble 4.1e.

E = (6 - 14]
P(first) = 6/8
P(rest) = 2/8
freq(E|first) = 2/6
freq(E|rest) = 2/2
like(first|E) = 2/6 × 6/8 = 0.25
like(rest|E) = 2/2 × 2/8 = 0.25

P(first|E) × support(first|E) = 0.252

0.25+0.25 = 0.13

Figure 4.2: Finding the power of (6−14]

4.2.4 LeaF: Leader Follower Algorithm

LeaF is a leader-follower algorithm [90]. It is an online incremental technique for clustering data.

The cluster centers are the “leaders” and all other instances are the “followers”. For this work

we are only interested in the leaders. The basic algorithm works as follows: (1) initialize cluster

centers, then (2) for each instance in the data, find its nearest center. If the distance to the center is

less than a user defined distance, then (3) update the cluster. Otherwise, create a new cluster with

the instance as the center.

In the scenario of collaboration among multiple data owners, LeaF is applied to each instance

selected by CLIFF from the party’s data set to determine if it should be included in the private

cache. To fit our work, we adapt LeaF in four ways:

1. The cluster centers are never updated to create centroids.

68

2. The initial centers are the two instances I1, I2 that are farthest from each other in the data. I1

and I2 are found using the choose distant object algorithm by Faloutsos et al. [123]. We call

the distance between Ii, I2 the separation of the data.

3. We use the value d = separation/10 to determine if data from a data owner should be in-

cluded in the private cache (new data is added to the cache if it falls more than d away from

its nearest exemplar and their class attribute values are different.) 1

4. Prior to a new instance being added to the cache, it is first MORPHed using the method

described above. The source code for LeaF is shown in Listing 1 and the source code for the

private cache is shown in Listing 2. LeaF is only used by the data owner who is the initiator

for multiparty data sharing. All other data owners that follow, use the private cache. They

input their CLIFFed data and the current private cache. The result is an updated cache whose

new MORPHed exemplars adhere to the conditions for entering the private cache.

4.3 How are privatized data candidates evaluated?

In our work, we seek to defend data against the privacy threat of sensitive attribute disclosure.

To measure if LACEed data reduces this threat we use IPR which models a sensitive attribute

disclosure attack using background knowledge.

4.3.1 IPR: Increased Privacy Ratio

For IPR, we assume the role of an attacker armed with some background knowledge from the

original data set and also supplied with the private data set. When the attacker predicts the sensitive

attribute value of a target we use the original data to see if the prediction is correct. If it is we

1 Note that the smaller the distance value the more data gets added, the larger the value the less data gets added to
the private cache. We leave it to future work to determine what would be the best distance value to use.

69

Listing 1 Source code for LeaF main function.
1(defn leaf
2 "Returns matrix of exemplars from data and maybe the distance value, dist-s.
3 Arguments:
4 data matrix
5

6 Options:
7 :p (default 0.1)
8 used to calculate dist-s=separation/10
9 :only-exemplars (default true)

10 return only the exemplars otherwise return exemplars vectored with dist-s.
11 :distance-fnc (default euclidean-distance)
12 returns euclidean distance between two points."
13 [data & {:keys [p only-exemplars distance-fnc]
14 :or {p 0.1 only-exemplars true distance-fnc euclidean-distance}}]
15 (let [pivots (choose-distant-objects ; Find two farthest points, east and west.
16 data :distance-fnc distance-fnc)
17 east (nth data (first pivots))
18 west (nth data (second pivots))
19 dist-ew (distance-fnc ; Distance between east and west
20 (butlast east)
21 (butlast west))
22 dist-s (* p dist-ew)] ; Divide distance by 10.
23 (loop [dat data result [east west]]
24 (if (empty? dat)
25 (if only-exemplars ; If only-exemplars is true,
26 (matrix (remove #(= nil %) result)) ; return only the exemplars,
27 [(remove #(= nil %) result) dist-s]) ; otherwise return exemplars
28 (recur ; and distance, dist-s.
29 (rest dat)
30 (conj result (let [ans (get-nearest
31 (first dat)
32 (remove #(= nil %) result)
33 :distance-fnc distance-fnc)
34 pt (first ans) ; Nearest exemplar from result.
35 dist-pt (second ans)
36 label (last pt)]
37 (if (and ; If instance class label = nearest exemplar label
38 (= (last (first dat)) label) ; and distance to nearest
39 (< dist-pt dist-s)) ; is less than dist-s
40 nil ; return nil
41 (first dat))))))))) ; else return instance.

consider this as sensitive attribute disclosure otherwise it is not. Listing 3 shows the source code

for sensitive attribute disclosure.

Recall that we assume that the attacker has access to a privatized version (T ′) of an original data

70

Listing 2 Source code for the private cache.
1(defn private-cache
2 "Returns updated private cache, with MORPHed exemplars.
3 Arguments:
4 X, the current cache
5 cliff-data, new CLIFFed data
6 dist-s, distance boundary from LeaF
7 r, boundary for MORPHing to nearest unlike neighbor
8

9 Options:
10 :sav (default [10 20])
11 vector containing the sensitive attribute value(s) and the class attribute is last.
12 :distance-fnc (default euclidean-distance)
13 returns euclidean distance between two points."
14 [X cliff-data dist-s r & {:keys [sav distance-fnc]
15 :or {sav [10 20] distance-fnc euclidean-distance}}]
16 (loop [dat cliff-data exemplars X]
17 (if (empty? dat)
18 (let [cache (remove #(= nil %) exemplars)]
19 cache)
20 (recur
21 (rest dat)
22 (conj
23 exemplars
24 (morph-one-exemplar ; Returns MORPHed exemplar if it meets conditions,
25 (first dat) ; otherwise returns nil.
26 dist-s r))))))
27

28

set (T), and knowledge of non-sensitive QID values for a specific target in T . We refer to the latter

as a query. For our experiments we randomly generate up to 1000 of these queries, |Q| ≤ 1000

(Section 4.3.3 describes how queries are generated).

For each query, q in a set Q = {q1, ...,q|Q|}, G∗i is a group of rows from any data set which

matches qi. Hence, let Gi be the group from the original data set and G′i be the group from the

privatized data set which matches qi. Next, for every sensitive attribute sub-range in the set S =

{s1, ...,s|S|}, we denote the idea of the most common sensitive attribute value (otherwise known as

the attacker’s best guess) as smax(G∗i). Listing 3 shows the source code for finding this common

sensitive attribute value. The functions takes as input G′i (data-q), the privatized data set (all-data)

and a list of sensitive attributes. For each sensitive attribute a best guess sensitive value is returned.

71

However is the G′i is empty, a question mark is returned instead.

Listing 3 Source code for the attacker’s best guess (sad++) main function.
1(defn sad++
2 "Returns the sensitive attribute disclosure of one or more sensitive attributes.
3 Arguments:
4 data-q: Instances resulting from a query.
5 atts: Vector of sensitive attribute values."
6 [data-q atts]
7 (loop [att atts result []] ; For each senstive attribute in att
8 (if (empty? att)
9 result

10 (recur
11 (rest att)
12 (conj result
13 (cond
14 (empty? data-q) "?" ; If data-q empty, return ?.
15

16 (= (nrow data-q) 1) ; If data-q has one instance,
17 (nth (first data-q) (first att)) ; return senstitive value.
18

19 :else (first (first ; If data-q > 1,
20 (sort-by ; return sensitive value
21 last ; with highest frequency
22 > ; in data-q
23 (frequencies (nth (trans data-q) (first att))))))))))))

Now, we define a breach of privacy as follows:

Breach(S,G∗i) =

 1, i f smax(Gi) = smax(G′i),

0, otherwise.

Therefore, the privacy level of the privatized data set is,

P1 = 100× IPR(T ∗) = 1− 1
|Q|

|Q|

∑
i=0

Breach(S,G∗i). (4.4)

IPR(T ∗) stands for increased privacy ratio and has some similarity to Aacc of Brickell and

Shamtikov [35], where IPR(T ∗) measures the attacker’s ability to infer the sensitive attribute value

of a target in the privatized data set T ′ compared to a baseline of the original data set T . To be

72

more precise, IPR(T ∗) measures the percent of total queries that did not cause a privacy Breach.

We baseline our work against the original data set (our worst case scenario) which offers no

privacy and therefore its IPR(T) = 0. In our case, to have perfect privacy (our best case scenario)

we create a privatized data set by simply removing the sensitive attribute values. This will leave us

with IPR(T ′) = 1.

Figure 4.3 shows an example of how IPR works with three queries (Q1, Q2, and Q3). When

the query is applied to the original and the privatized data, if the both report the same sensitive

attribute value then we consider this a privacy breach. From the results of three queries we find

that we are able to protect our data from 33% of the queries. Also, Listing 4 shows the source code

for the main function of IPR.

Figure 4.3: Example of how IPR is calculated based on queries.

4.3.2 Upper and Lower Bounds on IPR

When used in conjunction with instance selection algorithms like LeaF and CLIFF, Equation 4.4

is a lower bound on privacy. Recall that:

• From data set, D, CLIFF and LeaF discards X rows;

• Equation 4.4 is applied to the remaining D−X rows.

Since data from the X discarded rows are never shared, it is fully private. Therefore, an upper

bound on privacy is:

73

Listing 4 Source code for IPR main function.
1(defn ipr
2 "Returns IPR score for each sensitive attribute.
3 Arguments:
4 original data matrix
5 private data matrix
6

7 Options:
8 :sav (default [10 20])
9 vector containing the sensitive attribute value(s) and the class attribute is last.

10 :n (default 10)
11 used in equal frequency binning to create n number of bins.
12 :query-size (default 1)
13 used as amount of info attacker knows, can use 1, 2 and 4.
14 :num (default 1000)
15 can generate up to 1000 queries."
16 [original-data
17 private-data
18 & {:keys [sav n query-size num worst]
19 :or {sav [10 20] n 10 query-size 1 num 1000}}]
20 (let [mybin (bind-columns ; Bin data to make queries.
21 (trans (butlast (efb2 original-data n)))
22 (sel original-data :cols (dec (ncol original-data))))
23 que (take num (shuffle (get-queries mybin query-size sav :num num)))
24 ans (bind-rows ; For each query
25 (query-scores ; find best guess sensitive value for
26 que ; original data.
27 mybin
28 original-data
29 original-data
30 query-score3
31 (butlast sav)
32 query-size)
33 (query-scores ; For each query
34 que ; find best guess sensitive value for
35 mybin ; private data.
36 original-data
37 private-data
38 query-score3
39 (butlast sav)
40 query-size))
41 scores (get-accs (sel ans :cols (range 3 (ncol ans))) (count que))]
42 scores)) ; Return percent of best guesses that don’t match.

P2 =
X
D
+

(D−X)

D∗P1/100
(4.5)

74

where P1 comes from Equation 4.4. For example, if CLIFF and LeaF discard 80% of the data

and, on the remaining data, we achieve an IPR of 80%. The resulting increased privacy is hence

0.8+0.2∗0.8 = 96%.

Note that P2 is an upper bound on privacy since it is possible that the patterns in the discarded

data might repeat in the cached data. That said, given a large enough community sharing their data,

there would always be some doubts about which members of the community had the exact values

found in particular query. In this dissertation, we use the lower bound IPRs to show the worst-case

results.

4.3.3 Query Generator

A query generator is used to provide a sample of attacks on the data. Before discussing the query

generator, a few details must be established. First, to maintain some “truthfulness” to the data,

a selected sensitive attribute(s) and the class attribute are not used as part of query generation.

Here we are assuming that the only information an attacker could have is information about the

non-sensitive attributes in the data set. As a result these attribute values (sensitive and class) are

unchanged in the privatized data set.

To illustrate the application of the query generator, we use Table 4.2a and Table 4.2b. First,

equal frequency binning is applied to the original data in Table 4.2a to create the sub-ranges shown

in Table 4.2b. Next, to create a query, we proceed as follows:

1. Given a query size (measured as the number of {attribute sub-range} pairs), for this example

we use a query size of 1;

2. Given the set of attributes A = (wmc, dit, noc, cbo, rfc, lcom, ca, ce);

3. Randomly choose an instance from the data, for this example we will use row 1 in Table 4.2b,

randomly select an attribute from A, e.g. wmc pair with its sub-range (6-14].

75

In the end the query we generate is, wmc = (6-14]. Table 4.3, shows more examples of queries,

their sizes, the number and rows they match from the data set. We continue this process until we

have used all instances or 1000 queries. Listing 5 shows the source code for generating queries

from one instance.

Table 4.2: Example defect data for generating queries. First data is binned using equal frequency
binning to create subranges. Table 4.2a shows the original data while Table 4.2b shows the data
after equal frequency binning.

(a) Partial ant-1.3 Defect Data
wmc dit noc cbo rfc lcom ca ce loc class
1 11 4 2 14 42 29 2 12 395 0
2 14 1 1 8 32 49 4 4 297 1
3 3 2 0 1 9 0 0 1 58 0
4 12 3 0 12 37 32 0 12 310 0
5 6 3 0 4 21 1 0 4 136 0
6 5 1 5 12 11 8 11 1 59 0
7 4 2 0 3 16 0 0 3 59 0
8 14 1 0 24 63 63 20 20 822 1

(b) ant-1.3 After Equal Frequency Binning
wmc dit noc cbo rfc lcom ca ce loc class
1 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 0
2 (6-14] [1-4] [0-5] [1-8] (21-63] (8-63] (2-20] [1-4] (136-822] 1
3 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
4 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] 0 (4-20] (136-822] 0
5 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
6 [3-6] [1-4] [0-5] (8-24] [9-21] [0-8] (2-20] [1-4] [58-136] 0
7 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
8 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 1

For each query size, we generate up to 1000 queries because it is not practical to test every

possible query. With these data sets the number of possible queries with arity 4 and no repeats is

38,760,000.2

Each query must also satisfy the following sanity checks:
2 n!

k!(n−k)! =
(n

k

)
, where n is 19 (all attributes minus the class and sensitive attributes), and k = 4. This gives 3,876

combinations. Four queries over a variable with ten values (i.e. the 10 values generated by EFB) generates a space of
104 options. Therefore the total number of possible queries of arity four is 104 ∗3876 = 38,760,000.

76

Table 4.3: Example: Queries, Query Sizes and the number of rows that match the queries, |G|.
Table 4.2b is used for this example.

Query Size |G| Row#
cbo = (8-24] 1 4 1,4,6,8
cbo = (8-24] and wmc = (6-14] 2 3 1,4,8
cbo = (8-24] and wmc = (6-14] and
noc = [0-5] and ca = 0 4 1 4

• They must not include attribute value pairs from either the designated sensitive attribute or

the class attribute;

• They must return at least one instance after a search of the original data set;

• They must not be the same as another query no matter the order of the individual {attribute

sub-range} pairs in the query.

Listing 5 Source code for the query generator, with one instance.
1(defn get-queries-one
2 "Returns queries generated from one instance.
3 Arguments:
4 one instance from binned original data.
5 all possible combinations of qids of size n.
6 vector of sensitive attributes plus the class attribute (sav)."
7 [one n sav]
8 (let [atts (range (count one))
9 qids (remove (set sav) atts) ; Get the qids.

10 combos (combinations qids n) ; Combos of qids of size n
11 query (fn [one combo] ; For each combo, map qids to their values.
12 (apply vector (map #(vector % (nth one %)) combo)))]
13 (apply vector (map #(query one %) combos)))) ; Return qid, value pairs (queries)

4.3.4 IPR Evaluation

In previous work [11,12] we calculated the IPR of a single sensitive attribute, specifically, lines of

code (LOC). In this section we evaluate IPR with different and multiple sensitive attributes. This

77

is done to show that IPR is a relevant privacy metric for data owners particularly since they are the

ones that determine what the sensitive attributes are for their data.

To complete this evaluation of IPR we use the Arc defect data set and apply CLIFF&MORPH,

selecting 20% of the data with CLIFF and randomly MOPRHing the selected data at a 30% dif-

ference for each attribute value to the nearest unlike neighbor. We do this because the aim here

is only to show the versatility of IPR and it’s independence from the different privacy models that

could be applied to the data. We then select five attributes as sensitive and add LOC since it is used

in previous work [11, 12]. This evaluation is repeated in Chapter 6 for three proprietary data sets.

IPR accepts as input, the original data and its privatized data candidate. We report on two

possible cases that data owners can find the IPR of the sensitive attributes in their data if the

privatized data candidate is to be published. The first case considers if the data owner determines

that there is only one sensitive attribute in their data. Table 4.4 shows the IPRs of six different

“sensitive” attributes as a function of an attacker’s background knowledge represented as query

size. Also, the Bin? column indicates whether or not the attribute values required equal frequency

binning.

In the second case we consider the data owner with multiple (three) sensitive attributes in their

data. To calculate the IPR for multiple sensitive attributes we determine the IPR of each attribute

and report the average. Table 4.5 shows the IPRs for six randomly chosen triplets of sensitive

attributes.

The general trend in these results is that, as the attacker’s background knowledge increases,

the sensitive attribute(s) of the data are better protected. This is counter-intuitive, however we

conjecture that since the data is changed with MORPH and it is possible that a target not be present

in the published data, as the attacker’s knowledge increases it is less likely that they find their target.

From these results we also find that IPR is dependent on the “sensitive attribute” chosen. For

instance, from Table 4.4, wmc, rfc and loc in the gray rows, have relatively higher IPRs than dit,

noc and mfa.

78

Table 4.4: Case 1: IPRs of different sensitive attributes in the Arc defect data set. The gray rows
indicates those with relatively higher IPRs (when the query size is one) than the other rows at query
size=1.

Sensitive Attributes Bin? Query Size Quartiles
25% 50% 75%

wmc TRUE 1 75.0 75.0 75.0
2 87.6 88.1 88.5
4 90.0 91.1 91.6

dit FALSE 1 50.8 50.8 50.8
2 70.5 70.9 71.3
4 73.3 74.1 75.1

noc FALSE 1 43.9 43.9 43.9
2 62.4 63.1 63.9
4 67.5 68.6 69.3

rfc TRUE 1 70.4 70.4 70.4
2 86.2 86.6 87.3
4 90.0 90.4 90.8

loc TRUE 1 74.8 74.8 74.8
2 87.9 88.5 89.0
4 91.8 92.3 93.0

mfa TRUE 1 47.5 47.5 47.5
2 66.6 67.4 69.4
4 68.9 70.4 71.1

In conclusion, IPR provides a data owner with information required to decide if to publish data

with or without a particular sensitive attribute(s). Also, it is important to note that in our work

attributes that are not considered as sensitive, their values are transformed via MORPH and what

IPR tells us is how protected the sensitive values will be if the data is published with the sensitive

attributes untouched while the other attribute values are changed as a means to “hide” the sensitive

attribute values. We expand on this notion later on in Section 6.3.1, where we calculate IPRs for

sensitive attributes that are MORPHed.

79

Table 4.5: Case 2: IPRs of different groups of sensitive attributes in the Arc defect data set.

Sensitive Attributes Query Size Quartiles
25% 50% 75%

wmc:dit:rfc 1 64.1 64.1 64.1
2 79.7 80.2 80.6
4 84.3 84.4 85.3

wmc:noc:rfc 1 63.1 63.1 63.1
2 80.0 80.5 80.8
4 84.5 85.0 85.9

wmc:loc:mfa 1 65.0 65.0 65.0
2 79.8 80.5 80.8
4 82.9 83.5 84.0

wmc:rfc:mfa 1 65.7 65.7 65.7
2 79.9 80.8 81.3
4 84.3 84.4 84.9

dit:noc:mfa 1 46.2 46.2 46.2
2 68.6 69.3 70.2
4 72.2 72.7 73.6

dit:noc:loc 1 56.1 56.1 56.1
2 75.3 76.4 77.3
4 81.3 81.8 82.2

4.4 Summary

LACE is made to defend against the privacy threat of sensitive attribute disclosure. It creates

privatized data candidates through minimization and then obfuscation of data in order to facilitate

data sharing. CLIFF is the algorithm used for minimization and MORPH for obfuscation. To

facilitate collaboration among multiple data owners we use the leader follower algorithm, LeaF. We

conjecture, that LACE can provide data owners with a viable means to protect the confidentiality

of their data. To measure the protection offered through LACE, we find the IPR which models

a sensitive attribute disclosure attack using background knowledge. Finally, the usefulness of

privatized data can be measured in various ways, such as information loss, distance of distributions,

aggregate query answering or classification. In this dissertation we measure utility in terms of

classification via cross project defect prediction.

80

In subsequent chapters we evaluate LACE based on a single data owner usage (Chapter 5) then

based on multiple data owners (Chapter 6). We start by evaluating CLIFF&MORPH for single

usage and baseline this with other standard privacy algorithms.

81

Chapter 5

Experiment 1: Comparison of

CLIFF&MORPH with other Privacy

Algorithms

5.1 Introduction

The original intent of this chapter was to show that the parameters we offered in our paper [12] for

CLIFF&MORPH were satisfactory over a large number of data sets. Our preliminary experiments

showed that this was not the case, a result that was somewhat discomforting since that meant

we were now forced to conduct parameter tuning experiments, to offer a more comprehensive

comparison of CLIFF&MORPH with other privacy algorithms.

Parameter tuning is the black art of adjusting the “magic numbers” within an algorithm in order

to improve that algorithm. This section documents the multiple problems other researchers have

encountered with tuning. The rest of this chapter is more optimistic- we show that for the particular

case of privacy algorithms for software engineering, that (a) the effort associated with parameter

tuning is not excessive; and (b) the tunings can transfer to other domains (which means that tuning

82

does not need to be repeated for each new domain).

Work in parameter tuning tends to focus on setting parameters for evolutionary algorithms

(EAs) [124–126], search-based software engineering (SBSE) techniques [127–129] or tuning data

mining algorithms. Considering tuning data mining algorithms and software engineering, a com-

mon and critical problem is that most algorithms use a variety of parameters, which are domain

and data specific. Reusing a set of parameter values from one application to another usually leads

to poor results. For example, Bayes classifiers use the “M” and Laplace factors to handle low fre-

quency counts. Standard default values are M=2 and L=1, [130] but there is no telling what is the

best configuration for a particular domain. These standard parameter values are usually derived

empirically from applications in domains outside software engineering. For example, default pa-

rameter values used by many information retrieval techniques are established based on data from

text retrieval tasks on natural language corpora. Recent empirical research in applications of text

retrieval in software engineering [131–133] showed that best results are in fact obtained for con-

figurations different from those used in natural language retrieval applications. More than that,

the quality of the results is highly dependent on these configurations [134, 135]. The observation

also holds for many defect prediction approaches [69]. For most data mining algorithms, the space

of possible parameter values is extremely large. Finding the right combination is often based on

intuition rather than on science.

Eiben et al. [126] explain two categories of tuning methods:

1. non-iterative and

2. iterative tuners.

According to the authors, all tuning methods work by the GENERATE-and-TEST principle

where each parameter vector is generated and their performance tested by executing the EA or

in our case, a privacy algorithm. The non-iterative methods execute the GENERATE step once,

creating a set of parameter vectors that are tested during the TEST step to find the “best param-

83

eter vector” in the set. Here the GENERATE step can be done via random sampling (our choice

in this work), generating a systematic grid in the parameter space, or some space filling set of

vectors. Iterative tuning methods start with a small initial set and create new vectors iteratively

during execution [126]. These methods are commonly done via meta-EAs and Iterative Sampling

Methods.

Like many algorithms, privacy algorithms come with at least one parameter that needs to be

set. Considering that different parameter settings can cause large variation in performance [136],

this places a lot of the burden on the data owner, whose only concern is whether or not to release

data based on the algorithm performance of both high privacy and utility.

Another concern lies with the idea of a generalist result. Many of these privacy algorithms may

come with recommended settings which the author(s) certified as able to work well on multiple

and different problems. However, since the creator of the algorithm does not know about all

the problems their algorithm will face, it may still be the case that the recommended parameter

vectors will perform worse on other unseen problems. This idea has resulted in the “no-free-lunch”

theorem for optimization [137] which states that for any algorithm, any elevated performance over

one class of problems is offset by performance over another class. In other words algorithms

performing well on one type of problem, will perform worse on another [125].

Recall that parameter tuning works by means of a generate-test method. In the case of privacy

algorithms which have two objectives, during the TEST step, the performance is measured by the

level of privacy offered and the utility from (say) defect prediction. In the end, the “best parameter

vector” is the one with the best (or good enough) performance of high privacy and high utility.

The historical evidence is that parameter tuning can be very hard, possibly even needing state-

of-the-art multiple objective optimizers [124]. For example, in standard tuning methods, associated

with evolutionary algorithms, it is common practice to set a simulation limit to 1000. As a result,

parameter tuning requires a lot of computer power [124]. In addition, from their results Smit et

al. [124] found that overall, it was difficult for tuners to consistently reach areas with the best EA

84

setup that offered a good solution. From this they concluded that the tuning algorithms they studied

needed to be ran several times in order to find a good parameter vector. The point of this chapter

now is a “good news” result that, at least for privacy and defect prediction, we did not need to go

to these extremes to find our “magic numbers”.

5.2 Experimental Setup

As explained, in this chapter we investigate the performance of CLIFF&MOPRH compared with

other privacy methods specifically k-anonymity and data swapping, using parameter tuning exper-

iments. The following sections explain our experimental setup, including the data sets and the

defect predictor used.

5.2.1 Data

A total of 10 open-source static code defect data sets are used in this study. These data sets

are the latest open-source releases from Table 3.1. They were collected and shared by Jureczko et

al. [15,81]. As explained in Section 3.7.1, each instance in a data set represents a class and consists

of two parts: 20 independent static code attributes and the dependent attribute labeled “defects”

indicating the number of defects in the class. For our work, we refer to each class as an instance.

Additionally, instances with no defects are labeled as 0, and instances with one or more defects are

labeled as 1. Below we present short descriptions of the open-source Java projects and Table 5.1

shows the names and details of the data sets used in these experiments, the type (open-source or

proprietary), the number of instances in each data set, and the number and percent of defects. In

addition, recall that Table 2.1 describes the attributes of these data sets.

Short descriptions of the open-source Java projects are presented as follows:

• Ant [138], is a well known, java-based, shell independent, build tool. Ant is mainly used

85

to build java applications. With Ant, developers can compile, assemble, test and run Java

applications.

• Camel: According to [139], the Camel framework is a routing-engine builder that allows

you to define your own routing rules, decide from which sources to accept messages, and

determine how to process and send those messages to other destinations. Camel uses an inte-

gration language that allows you to define complex routing rules, akin to business processes.

It also allows the developer an opportunity to integrate any kind of system, without the need

to convert data to a canonical format.

• Ivy [140]: is a tool for managing (recording, tracking, resolving and reporting) project de-

pendencies.

• jEdit [141]: is a cross platform programmer’s text editor written in Java.

• Lucene [141, 142]: provides Java-based indexing and search technology as well as spell-

checking, hit highlighting and advanced analysis/tokenization capabilities.

• Poi [143]: creates and maintains Java APIs for manipulating various file formats based upon

the Office Open XML standards (OOXML) and Microsoft’s OLE 2 Compound Document

format (OLE2). In short, according to the project website [143], one can read and write MS

Excel files using Java. In addition, you can read and write MS Word and MS PowerPoint

files using Java.

• Synapse [144]: According to the project website [144], Synapse is a lightweight and high-

performance Enterprise Service Bus (ESB). Powered by a fast and asynchronous mediation

engine. It provides exceptional support for XML, Web Services and REST. In addition to

XML and SOAP, Apache Synapse supports several other content interchange formats, such

as plain text, binary, Hessian and JSON. The wide range of transport adapters available for

Synapse, enables it to communicate over many application and transport layer protocols.

86

Apache Synapse supports HTTP/S, Mail (POP3, IMAP, SMTP), JMS, TCP, UDP, VFS,

SMS, XMPP and FIX.

• Velocity [141, 145]: a Java-based template engine that permits anyone to use a powerful

template language to reference objects defined in Java code. From their description, Jureczko

et al. [141], go on to explain that Velocity separates Java code from web pages, making the

websites more maintainable over a lifespan and providing a viable alternative to Java Server

Pages or PHP, a server-side scripting language for web development.

• Xalan [146]: is an XSLT (Extensible Stylesheet Language Transformations) processor for

transforming XML documents into HTML, text, or other XML document types.

• Xerces [147]: is a parser that supports XML 1.0 recommendation, and contains advanced

parser functionality such as support for the W3C’s XML Schema recommendation version

1.0, DOM Level 2 version 1.0, and SAX Version 2, in addition to supporting the industry-

standard DOM Level 1 and SAX version 1 APIs. Some applications for Xerces include:

building XML-savvy Web servers, the next generation of vertical applications which will

use XML as their data format, on-the-fly validation for creating XML editors, ensuring the

integrity of e-business data expressed in XML, and building truly internationalized XML

applications.

5.2.2 Benchmark Privacy Algorithms

In order to benchmark our approach, we compare it against data swapping and k-anonymity. Recall

that data swapping is a standard perturbation technique used for privacy [5, 42, 63]. This is a per-

mutation approach that de-associates the relationship between a non-sensitive quasi-identifier and

a numerical sensitive attribute. In our implementation of data swapping, for each quasi-identifier

a certain percent of the values are swapped with any other value in that quasi-identifier. For our

experiments, these percentages are 10%, 20%, 40% and 80%.

87

Our implementation of k-anonymity follows the Datafly algorithm [34, 60] for k-anonymity.

Recall from Section 2.4, that the algorithm starts with the input of a set of quasi-identifiers, k,

and a generalization hierarchy. Datafly replaces values in the quasi-identifiers according to the

hierarchy. This generalization continues until there are k or fewer distinct instances which are

suppressed.

Table 5.1: Objective Data Sets for Open-source Project Data

Defect Data Type # Instances # Defects % Defects

ant-1.7 open-source 1066 166 15.6

camel-1.6 open-source 1252 188 15.0

ivy-2.0 open-source 477 40 8.4

jEdit-4.1 open-source 644 79 12.3

lucene-2.4 open-source 536 203 37.9

poi-3.0 open-source 531 281 52.9

synapse-1.2 open-source 269 86 32.0

velocity-1.6 open-source 261 78 29.9

xalan-2.6 open-source 1170 411 35.1

xerces-1.3 open-source 545 69 12.7

5.2.3 Naive Bayes

We use Naive Bayes as our defect predictor based on an extensive study done by Lessmann et

al. [66] who found that Naive Bayes performs well compared to more complex predictors. In

addition, another study by Menzies et al. [69] endorsed Naive Bayes for building defect predictors

since it performed better than the other learners used in their study, namely J48 and OneR.

Lewis [83] describes Naive Bayes as a classifier based on Baye’s rule shown in Equation 5.1.

It is a statistical based learning scheme which assumes that attributes are equally important and

88

statistically independent.

P(ck|x) = P(ck)×
P(x|ck)

P(x)
(5.1)

where ck is a member of the set of values for the dependent attribute. In our case ck could be 0

or 1. Also, x represents a test instance or unknown instance. So, to classify a test instance, Naive

Bayes finds the conditional probability of that instance being labeled ck. The ck with the highest

probability is chosen as the label for x. We do not implement Naive Bayes ourselves, instead we

use the Weka [148] implementation with the default values set.

5.2.4 Performance Evaluation

Privacy algorithms have two performance objectives: 1) privacy and 2) utility. To measure the

privacy offered by a privacy algorithm for a specific data set we use Increase Privacy Ratio or IPR.

A full explanation of IPR and how it works is in Section 4.3. IPR measures the sensitive attribute

disclosure risk for specific attributes of a privatized data candidate by comparing query results with

the original data. In this chapter we focus on lines of code as the sensitive attribute. Other sensitive

attributes will be explored in the next chapter.

The size of a query represents the amount of background knowledge an attacker has about a

target record in a data set. In the experiments of this dissertation we use a query size of 1 due to the

analysis in Section 4.3.4, where when query size = 1, sensitive attribute value disclosure is worse

than for higher query sizes.

To measure the utility of a privatized data set, we measure the performance of defect predictors.

The performance measures used for the defect predictors are shown in Table 5.2 and summarized

as follows:

• Recall or pd is equal to how much of the target (defective instances) are found. The higher

the pd, the fewer the false negative results.

89

• Probability of false alarm or pf measures how many of the instances that triggered the detec-

tor actually did not contained the target (defects) concept. Like pd, the highest pf is 100%

however its optimal result is 0%.

• g-measure (harmonic mean of pd and 1-pf): Instead of the f-measure, we report on the

g-measure. The 1-pf represents Specificity (not predicting instances without defects as de-

fective. Specificity (1-pf) is used together with pd to form the G-mean2 measure seen in Jiang

et al. [86]. It is the geometric mean of the pd’s for both the majority and the minority class.

In our case, we use these to form the g-measure which is the harmonic mean of pd and 1-pf.

Measures such as accuracy, precision, and f-measure are not shown in our experimental results

since they are poor indicators of performance for data where the target class is rare (in our case,

the defective instances). This is based on a study done by Menzies et al. [149] which shows that

when data sets contain a low percentage of defects, precision can be unstable.

Table 5.2: Some popular measures used in software defect prediction work.

Actual
yes no

Predicted yes TP FP
no FN TN

Recall (pd) T P
T P+FN

pf FP
FP+T N

g-measure 2*pd*(100-pf)
pd+(100-pf)

90

5.3 Analysis 1. Does CLIFF&MORPH provide better balance

between privacy and utility than other state-of-the-art pri-

vacy algorithms?

5.3.1 Design

Many privacy algorithms require that the data owner have some knowledge about how the algo-

rithms work in order to use the appropriate parameters. Without the correct understanding it is

possible to produce a privatized data candidate that is prone to malicious attacks. Therefore, a

more substantial parameter tuning experiment is required to compare different privacy algorithms.

We use the following experimental design to answer our first research question: given different

parameter values, “Does CLIFF&MORPH provide better balance between privacy and utility than

other state-of-the-art privacy algorithms?”

From Table 5.1, we use ant-1.7 as the training set and jEdit-4.1 as the test set. We first privatize

ant-1.7 in 24 ways using the three privacy methods, with different parameter vectors. We then

calculate their IPRs and the utility of the privatized data through CPDP with jEdit-4.1. These data

sets are chosen and assigned arbitrarily to showcase the possible variance in the performance. In

a later experiment looking at the generalizabilty of our parameter values, we consider more data

from Table 5.1.

Table 5.3, shows the parameters and the values used in this experiment and Algorithm 3 shows

the pseudo-code for the experimental design. Note that CLIFF&MORPH has two parameters to

set (r and p). Here r is a random value that determines the border between an original instance and

it’s nearest unlike neighbor (the instance with a different defect label). In previous work [11, 12],

r was selected from a range of 0.15 to 0.35. Our intuition was that to establish a privatized data

set that was both private and useful, we would change the data so that it was closer to the original

instance than to it’s nearest unlike neighbor. In this experiment we increase that range to 0 to 1.

91

Table 5.3: Privacy algorithms and their parameter values used in this study.

Parameters and Values

Privacy Algorithms r p k q
CLIFF&MORPH 0...1 {0.1, 0.2, 0.4} NA NA
Swapping NA {0.1, 0.2, 0.4, 0.8} NA NA
K-Anonymity NA NA {2, 4, 8, 16} 2...15

Algorithm 3 Pseudo-code of the experimental design for Analysis 1.
1: Input
2: Data: Train ant-1.7, Test jEdit-4.1
3: Algorithms: 1 CLIFF&MORPH, 2 Data Swapping, 3 k-anonymity
4: Parameters: r (0 to 1), p (0.1 0.2 0.4 0.8), k (2, 4, 8, 16), q (2 to 15)
5: Iterations: i = 24
6:
7: Output
8: 24 rows of {algorithm, ipr, g, r, p, k, q}
9:

10: while i≥ 1 do
11: if Rand(Algorithms) = 1 then
12: CLIFF&MORPH(Rand(r),Rand(p = [0.2to0.8])) 7→ {algorithm, ipr,g,r, p,k,q}
13: else if Rand(Algorithms) = 2 then
14: Data Swapping(Rand(p−1.0)) 7→ {algorithm, ipr,g,r, p,k,q}
15: else
16: k-anonymity(Rand(k),Rand(q)) 7→ {algorithm, ipr,g,r, p,k,q}
17: end if
18: Decrement(i)
19: end while

For CLIFF&MORPH, p represents the proportion of data kept after applying CLIFF. Data

Swapping has one parameter to set, p. Here p represents the proportion of attribute values randomly

chosen to be swapped with any other of that attribute’s values. Last, k-anonymity has two parameter

values to set, k and q. Values for k indicate that for the quasi-identifiers in a group, each instance

is the same as k-1 other instances in the data set. Values for q represent the number of quasi-

identifiers in the data set. Note that when a parameter is not applicable to a privacy method, NA is

returned.

92

5.3.2 Results and Discussion

CLIFF&MORPH Data Swapping K-Anonymity

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

IPR

35

40

45

50

55

60

65

70

75

G
-M

ea
su

re

Figure 5.1: The IPRs and g-measures of CLIFF&MORPH, k-anonymity and data swapping. In
this figure, an ideal method would have results at the top-right. CLIFF&MORPH outperforms
both k-anonymity and data swapping with higher IPRs and g-measures. All algorithms show a
wide variance in the IPR results while only k-anonymity also shows variance in the g-measures,
decreasing as privacy (IPR) increases.

Figure 5.1 and Table 5.4 show the results of the IPRs and g-measures for 24 parameter tun-

ing experiments for the privacy algorithms used in this study. From Figure 5.1 it is clear that

CLIFF&MORPH outperforms both k-anonymity and data swapping with higher IPRs and g-measures.

All the algorithms show a variance in the IPR results while only k-anonymity also shows variance

in the g-measures, decreasing as privacy (IPR) increases. From Table 5.4 we also see the parame-

ter values used for each experimental run. These results indicate that the parameter setting for the

CLIFF&MORPH algorithm are less prone to large variance in the IPR and g-measures. However

as the parameter settings changes for data swapping and k-anonymity, both show variance in IPR

93

Table 5.4: The results for 24 experimental runs with their parameter values used to find the g-
measures and the IPRs.

Algorithms r p k q ipr g

CLIFF&MORPH 0.7 0.1 NA NA 78.1 74.9
1.0 0.1 NA NA 82.0 76.7
0.4 0.4 NA NA 64.8 75.6
0.7 0.4 NA NA 64.8 71.5
0.9 0.2 NA NA 75.8 76.4
0.5 0.1 NA NA 73.4 74.0
0.2 0.4 NA NA 63.3 75.2
0.1 0.4 NA NA 58.6 75.0

Data Swapping NA 0.4 NA NA 31.3 71.5
NA 0.1 NA NA 12.5 74.3
NA 0.8 NA NA 66.4 70.5
NA 0.8 NA NA 60.9 65.9
NA 0.8 NA NA 62.5 63.9
NA 0.4 NA NA 35.2 71.9
NA 0.1 NA NA 10.2 71.1
NA 0.4 NA NA 35.9 71.2

K-Anonymity NA NA 8 9 43.0 35.3
NA NA 2 15 52.3 50.7
NA NA 2 6 21.9 71.9
NA NA 2 4 14.1 72.2
NA NA 2 3 10.2 72.2
NA NA 4 5 25.0 69.4
NA NA 16 9 52.3 38.6
NA NA 4 8 37.5 65.0

with data swapping ranging from 10.2% to 66.4% and k-anonymity ranging from 10.2% to 52.3%.

In addition k-anonymity also shows a large variance in g-measures ranging from 35.3% to 72.2%.

This result for k-anonymity is consistent with work done by Grechanik et al. [3] where in-

creasing privacy by increasing k decreased their utility which they measured as test coverage. In

addition, the high g-measures for data swapping can be as a result of instances maintaining certain

distribution properties that allow it to be more effective in preserving utility than privacy algo-

94

rithms that use data suppression and data generalization like k-anonymity [5]. Finally, we attribute

the high IPRs for CLIFF&MORPH to instance selection with CLIFF which offers 100% privacy

to those instances not selected for sharing and the high g-measures and IPRs to MORPH which

insures that the remaining instances are mutated to the point that their class labels do not change.

From these results, we can now answer RQ1, Does CLIFF&MORPH provide better balance

between privacy and utility than other state-of-the-art privacy algorithms? Our answer is:

A1: For the various parameter values investigated, it is clear that CLIFF&MORPH of-

fer the better balance for privacy and utility than both data swapping and k-anonymity.

In addition, these results also indicate that in cases where privacy algorithms contain

at least one parameter to set, parameter tuning is necessary for adequate comparison

of privacy algorithms used in this study (some more than others).

5.4 Analysis 2. How hard is parameter tuning for privacy al-

gorithms?

5.4.1 Design

In this analysis, we expand on the design of our first analysis from Algorithm 3 by increasing i

to 192. In other words, we do a total of 192 runs of parameter tuning experiments for the three

privacy algorithms studied in this work. We do this to see if the results stabilize and how long it

takes to do so in terms of the number of experimental runs of the privacy algorithms.

5.4.2 Results

Figure 5.2 and Table 5.5 show the results of this experiment. From Figure 5.2, we see the stability

of the performance of the privacy algorithms, CLIFF&MORPH, data swapping and k-anonymity.

95

Chart a shows the results of 24 runs as seen in our first analysis, b shows 48, c shows 96 and d

shows 192 experiment runs.

The following general pattern holds as the number of runs increase. As before, the k-anonymity

algorithm has large variance for both the IPR and g-measures. Data swapping shows large variance

for IPR and minimal variance on g-measures. The CLIFF&MORPH algorithm with variance on

IPR and higher g-measures than both k-anonymity and data swapping. This shows that finding

a privatized data candidate that meets a data owner’s standards for privacy and utility does not

require an exhaustive search.

Table 5.5 offers a closer look at the results. For all 192 runs we sort them in descending order

according to the harmonic mean of the IPR and the g-measure calculated as follows:

2× ipr×g
ipr+g

(5.2)

Also included in Table 5.5 are the a, b, c and d columns from the charts in Figure 5.2. They

represent the results of 24, 48, 96 and 192 experimental runs respectively. The checkmarks in

these columns indicate the amount of runs required before each of the top 10 results are found.

Also included in the last two rows of the table are the results for data swapping and k-anonymity,

with the first column indicating where they rank in terms of the harmonic mean for 192 runs, 55

and 145 respectively.

Finally, the checkmarks in columns in a, b, c and d for each level of background knowledge

show that after only 24 simulations, we were able to find at least one result in the top 10. Addi-

tionally, this number more than doubles after 48 simulations.

5.4.3 Discussion

From the results of our first analysis we found that parameter tuning is necessary when using

privacy algorithms because of the large variance in IPR and g-measures. However we wondered

96

Stability of Parameter Tuning Results
a

CLIFF&MORPH Data Swapping K-Anonymity

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

IPR

35

40

45

50

55

60

65

70

75

G
-M

ea
su

re
b

CLIFF&MORPH Data Swapping K-Anonymity

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

IPR

15

20

25

30

35

40

45

50

55

60

65

70

75

80

G
-M

ea
su

re

c

CLIFF&MORPH Data Swapping K-Anonymity

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

IPR

10

20

30

40

50

60

70

80

G
-M

ea
su

re

d

CLIFF&MORPH Data Swapping K-Anonymity

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

IPR

0

10

20

30

40

50

60

70

80

G
-M

ea
su

re

Figure 5.2: The stability of the performance of the privacy algorithms, CLIFF&MORPH, Data
Swapping and k-anonymity. a) Shows the results of 24 simulations, b) shows 48, c) 96 and d) 192
runs. As seen, the general pattern holds as the number of runs increase. This shows that finding a
privatized data candidate that satisfies a data owner’s criteria is not exhaustive.

about the number of runs that would be required to find an adequate solution. To answer this

question, for our second analysis we increased the number of runs to determine if the top results at

192 runs were present at 24, 48 and 96 runs.

The first thing to notice is that neither data swapping nor k-anonymity appear in the top 10

privatized data candidates. We conclude that for data swapping this is because the IPRs are low

when the probability of swapping values are low. While for k-anonymity we conclude that this is

97

Table 5.5: This table shows the top 10 privatized data candidates sorted in descending order ac-
cording to the harmonic mean between IPR and G-Measure. Only CLIFF&MORPH appears in the
top 10 and all of them appeared after 48 runs of the algorithm. Data Swapping and K-Anonymity
have the 55th and 145th harmonic means of 192 experimental runs.

Algorithms IPR G-Measure Harmonic Mean a b c d

1 CLIFF&MORPH 82.0 76.7 79.3
√

2 CLIFF&MORPH 80.5 75.9 78.1
√

3 CLIFF&MORPH 80.5 74.7 77.5
√

4 CLIFF&MORPH 80.5 74.6 77.4
√

5 CLIFF&MORPH 79.7 75.2 77.4
√

6 CLIFF&MORPH 79.7 74.8 77.2
√

7 CLIFF&MORPH 78.9 75.4 77.1
√

8 CLIFF&MORPH 78.1 75.0 76.5
√

9 CLIFF&MORPH 78.1 74.9 76.5
√

10 CLIFF&MORPH 77.3 75.6 76.5
√

55 Data Swapping 66.4 70.5 68.4
√

145 K-Anonymity 49.2 66.0 56.4
√

because k-anonymity offers no protection against background knowledge [35] used for sensitive

attribute disclosure attacks and so their IPRs generally tend to be low. In addition, on occasions

when the IPRs are high due to high k and q values, their g-measures are low.

We also found that the top results for each privacy algorithms studied, can be found at 24 sim-

ulations. Based on the findings of our second analysis, we answer RQ2 (“ How hard is parameter

tuning for privacy algorithms?”) as follows:

A2: When seeking the best parameter values for privacy algorithms, the search does

not have to be exhaustive. A best privatized data candidate can be found in a few runs,

in this case 24.

98

5.5 Analysis 3. Are the results for parameter tuning for privacy

algorithms useful for reducing the search budget?

Recall that conclusions made from previous analyses are based on the CPDP results using only

two project defect data sets, ant-1.7 as the training set and jEdit-4.1 as the test set. In this section

we explore the notion that the “best parameter values” learned from our second analysis can be

used for other projects as well. Since the data owners’ search ends when they are satisfied with a

particular result, the ability to transfer parameter knowledge would reduce any search budget (i.e.

number of runs).

With multiple privacy algorithms and even more possible parameter values, there is a concern

about the search budget required to find the “best parameter values” for each algorithm. However,

the goal of producing a privatized data candidate is not necessarily to find the absolute best result.

That would require testing all the possible parameter vectors and their algorithms. Instead it is the

data owners’ who decide on what is their best result. This may by based on company guidelines or

personal choice.

5.5.1 Design

In this experiment we want to find out if lessons learned from one project can be transferred to

other projects to reduce the search budget. The lessons learned here are the “best parameter values”

for the privacy algorithms studied here. Figure 5.3, Figure 5.4, and Figure 5.5 show the parameter

values used in the previous analyses in this chapter, and the performance measured as the harmonic

mean of IPR and the g-measure (see Equation 5.2). These figures help support our choices of best

parameter values for each privacy algorithm.

For CLIFF&MORPH, based on Figure 5.3 we see that r which Class Boundary (r) used by the

MORPH algorithm to determine how much the new synthetic instance should move to its nearest

unlike neighbor. works well for all values in the range of 0 to 1, however we limit the range of

99

Parameter Tuning for CLIFF&MORPH

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

H
ar

m
o

n
ic

 M
ea

n

0.10 0.15 0.20 0.25 0.30 0.35 0.40

CLIFF Selection Size

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

H
ar

m
o

n
ic

 M
ea

n

Figure 5.3: The parameters that allow CLIFF&MORPH to have the best performance. For the
Class Boundary (r) used by the MORPH algorithm to determine how much the new synthetic
instance should move to its nearest unlike neighbor. From this chart we choose a range of 0.3 to 1
for r. For CLIFF&MORPH, we choose p=0.1 and 0.2, i.e. after applying CLIFF, we choose 10%
or 20% of the top ranked instances.

100

Parameter Tuning for k-anonymity

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k

0

5

10

15

20

25

30

35

40

45

50

55

H
ar

m
o

n
ic

 M
ea

n

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of QIDs

0

5

10

15

20

25

30

35

40

45

50

55

H
ar

m
o

n
ic

 M
ea

n

Figure 5.4: The parameters that allow k-anonymity to have the best performance. From chart on
the top we choose k=2 an 4 and q is a range form 8 to 15.

r to 0.3 to 1 which contains the majority of the better results. Also for p which is the CLIFF

selection size we decided on 0.1 and 0.2. For data swapping, the probability of swap (p) is 0.8,

since Figure 5.5 shows it to have a much higher harmonic mean than the other three values. All

101

Parameter Tuning for Data Swapping

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of Swap

20

25

30

35

40

45

50

55

60

65

70

H
ar

m
o

n
ic

 M
ea

n

Figure 5.5: The parameters that allow data swapping to have the best performance. From this chart
we choose 0.8 for the probability of swap(p).

harmonic means with 0.8 are at 55% and above while all others are 55% and below. Finally for

k-anonymity, from Figure 5.4, k is set to two and four, while q the number of QIDs will have a

range of 8 to 15.

We privatize the data sets and perform CPDP experiments. We benchmark this work with the

CPDP of the original (non-privatized) data. The pseudo-code for the experimental design is shown

in Algorithm 4 for CLIFF&MORPH. The same holds for the other algorithms and their parameter

values as well.

5.5.2 Results

Table 5.6 shows the g-measures based on the “best parameter values” for CLIFF&MORPH, data

swapping and k-anonymity from Analysis 2. For the test set we continue to use jEdit-4.1 as a

constant in our analysis. What we find here is that there is no significant difference between each

102

Algorithm 4 Pseudo-code of the experimental design for Analysis 3.
1: Input
2: Data: ant-1.7, camel-1.6, ivy-2.0, jEdit-4.1, lucene-2.4, poi-3.0, synapse-1.2, velocity1.6, xalan-2.6, xerces-1.3,
3: Algorithm: CLIFF&MORPH
4: Parameters: r 0.3 to 1, p 0.1 or 0.2
5: Learner: Naive Bayes
6:
7: Output and initial values
8: IPR← /0 {R}eturns the IPRs of privatized Data.
9: G← /0 {R}eturns the matrix of g-measures of Data from CPDP.

10: G′← /0 {R}eturns the matrix of g-measures of privatized Data from CPDP.
11:
12: for d in Data do
13: CLIFF&MORPH(d,r, p) 7→ privated
14: IPR← IPR(d, privated)
15: for d′ in Data−d do
16: G← CPDP(d,d′, learner)
17: G′← CPDP(privated ,d′, learner)
18: end for
19: end for
20: return IPR, G, G′

Table 5.6: G-measures for privacy algorithms using parameter values learned from the parameter
experiments from Analysis 2. These are compared with the results for the original data. The bold
numbers of each row indicates that it is the highest value for the privacy algorithms.

Projects Original CLIFF&MORPH Data Swapping K-Anonymity

ant-1.7 75.1 75.8 61.9 66.0
camel-1.6 73.2 58.3 44.5 59.4
ivy-2.0 67.6 55.1 30.0 53.0
lucene-2.4 77.4 71.6 67.6 66.6
poi-3.0 71.1 52.3 64.1 60.4
synapse-1.2 78.5 72.6 57.3 58.0
velocity-1.6.1 57.7 67.5 63.9 43.1
xalan-2.6 69.6 69.3 49.2 59.3
xerces-1.3 73.5 70.9 63.6 60.6
Median 73.2 69.3 61.9 59.4

result for the privacy algorithms and the original data. This is according to the Mann Whitney U

test [2] (P >= 0.05, two-tailed test). So the “best parameter values” work for other data.

Figure 5.6 shows the median IPR results for each privacy algorithm from applying “best” pa-

rameter values from Analysis 2. CLIFF&MORPH has the highest median IPR at 71.3 followed by

103

Figure 5.6: Median IPR results for each privacy algorithm from applying “best” parameter val-
ues from Analysis 2. According to the Mann Whitney U test [2] (P < 0.05, two-tailed test),
CLIFF&MORPH has significantly better IPRs than both data swapping and k-anonymity.

data swapping with 61.0, then k-anonymity with 50.9. According to the Mann Whitney U test [2]

(P < 0.05, two-tailed test), CLIFF&MORPH has significantly better IPRs than both data swapping

and k-anonymity.

5.5.3 Discussion

From our second analysis we found that “best parameter values” for privacy algorithms can be

found with a search budget of 24 runs. But, could the parameters learned be transferred to other

projects to reduce the search budget? The results in Table 5.6 indicate that this maybe the case.

In the best case, if the performance of transferred parameters meet the data owners’ standards, the

search budget is nil. In the worst case, if expectations are not met, the transferred parameters offer

knowledge of what is not acceptable, thereby reducing the search budget.

Looking at Table 5.6 more closely, we see that 4 out of 9 data sets have relatively higher

104

g-measures for the “Original” data than the data we applied privacy algorithms to. For example,

camel-1.6 has a g-measure of 73.2 while the g-measures for the privacy algorithms range from 44.5

to 59.4. This pattern follows with ivy-2.0, poi-3.0, and synapse-1.2. In these cases we attribute

this to information loss after applying the privacy algorithms with the learned parameters from

the previous analysis. In addition, for the cases of camel-1.6 and ivy-2.0 which both have small

percentages of defects, 15% and 8.4% respectively, this severe imbalance could have contributed

to the degradation from the “Original” result. We also see the opposite pattern with velocity-1.6.1,

where its g-measure of 57.7 is less than that for CLIFF&MORPH and Data Swapping, but higher

than that of k-anonymity. We attribute this result to the possible overlapping of defective instances

and non-defective instances in the velocity-1.6.1, making it difficult for the Naive Bayes learner to

distinguish between the two class values.

Using these results, we can now address RQ3 (“Are the results for parameter tuning for privacy

algorithms useful for reducing the search budget?”). Our answer is as follows:

A3: When it comes to both privacy (IPR) and utility (g-measure), the “best parameter

values” from CLIFF&MORPH appears to be generalist in nature for the static code

defect data used in this study and can reduce the search budget. In other words, we

were able to successfully transfer the “best parameter values” from one train-test com-

bination to other project combinations with significantly higher IPRs than both data

swapping and k-anonymity. This is done with a reduced search budget since we are

able to start with promising parameter vectors that produce good results.

5.6 Related Work

To to best of our knowledge, this is the first work on parameter tuning for privacy algorithms in

the CPDP context. However, there are some studies on integrating background knowledge into

privacy algorithms which put the burden on the data owner for setting parameters based on how

105

much information an attacker may have about their target. Here we use background knowledge

as a means to measure privacy and found a contradictory result with swapping in that the less the

attacker knew the more likely they were to discover the sensitive attribute value of their target.

Martin et al. [53] provide one of the first methods for modeling an attacker’s background knowl-

edge. Their work does not assume that you know the attacker’s background knowledge, instead,

they assume bounds on the attacker’s knowledge in terms of the number of basic units of knowledge

of the attacker. In other words the authors take the worst-case view where the attacker obtained the

complete information about which individuals have records in the data set.

This work was then extended by Chen et al. [150]. They complained that the formal language

developed by Martin et al. quantified background knowledge in a less than intuitive fashion. They

also stated that because of this it would be difficult for the data owner to set an appropriate value

for k which is the number of k implications that an attacker may know. To improve on this, Chen et

al. provide an intuitive and therefore usable, quantification of an attacker’s background knowledge.

They consider three types of knowledge that arise naturally:

1. Knowledge about the target individual.

2. Knowledge about others.

3. Knowledge about same value families.

5.7 Conclusions

Privacy algorithms with at least one parameter value to set, places the burden on the data owner to

know how the algorithm works in order the select the best parameter value(s) to produce a private

data set that is less prone to malicious privacy attacks than the original data. Through a more

substantial experiment than previous work [11, 12] we show that CLIFF&MORPH creates more

privatized data candidates that have higher IPRs and g-measures than other privacy algorithms

106

studied here (Figure 5.2). Our results also indicate that setting parameters is not a trivial task. The

results of a total of 192 runs show variance in the IPRs (used for measuring privacy) and/or g-

measures (used for measuring utility) for the three privacy algorithms used in our study. However,

we also found that the data owner does not have to embark on an exhaustive search to find the “best

parameter values” to produce a private data set for publication. Last, we show that it is possible

for a the “best parameter values” to generalize to other projects with results that indicate a better

privacy algorithm than previous work.

The results of this chapter are based on a data owner preventing or reducing the risk of sensitive

attribute disclosure attacks for loc. As shown in Section 4.3.4, IPR values can differ according to

what sensitive attributes are used. In Chapter 6, in addition to focusing on private multiparty data

privacy with LACE, our experiment will also look at protecting other sensitive attributes in the

data.

107

Chapter 6

Experiment 2: LACE for Private

Multiparty Data Sharing

6.1 Introduction

In Section 3.7 we recalled the result of Zimmermann et al. [19] that stated:

Firefox predicts IE, but IE does not predict Firefox.

We showed that like the Firefox and IE (Internet Explorer) example, it is possible to build

predictors from open source projects for proprietary projects. In the Zimmermann study, they did

not use any transfer learning techniques to improve on the cross defect prediction result. So the

follow-up question to that study is, “With the application of transfer learning techniques, can IE

predict Firefox?” Without access to the IE data due to privacy concerns, we cannot answer this

question for IE. As a result, in this chapter we focus on privacy for other accessible proprietary

data with the scenario of private multiparty data sharing.

This is another mode of LACE where multiple data owners share privatized versions of their

data, based on what others have shared. This results in a collective data set we call a private cache.

Data owners that understand the benefits of collaboration, are wary of the consequences and/or

108

dangers (disclosure of sensitive data) of joining their databases. In this chapter we investigate the

feasibility for allowing this collaboration while limiting the knowledge gain of another’s data. In

other words, if two data owners (A and B) are collaborating, A will not gain knowledge about B’s

data and vice versa.

We accomplish this as follows: when each data owner has possession of the private cache, they

observe its content and if they have different information to add, they first privatize it and then add

the new data to the private cache. This is then passed on to the next data owner.

6.2 Experimental Setup

To evaluate LACE for the case where multiple data owners want to collaborate with each other and

share their data collectively, we conduct experiments in different settings:

• cross project defect prediction without LACE and without a transfer learning technique;

• cross project defect prediction with LACE and without transfer learning with relevancy fil-

tering;

• cross project defect prediction with LACE and with relevancy filtering [18].

Recall from Chapter 4 that to create the private cache for multiple data owners, LACE proceeds

as follows:

1. Each data owner applies CLIFF to their data. Only the data selected by CLIFF are used in

LACE.

2. The initiator (the first to submit data to the private cache) is chosen at random and applies

LeaF (Section 4.2.4) to minimize its CLIFFed data.

3. The results are then privatized with MORPH (Section 4.2.2), and are the beginnings of the

private cache.

109

4. The private cache is sent to the second randomly chosen site (data owner), where they test

each instance of their CLIFFed data using LeaF and the private cache. The test involves

each instance finding its nearest exemplar in the private cache and if their class labels are

different and/or they are a certain distance away then that instance is MORPHed and added

to the cache.

5. Once this is complete the private cache moves on to the next random data owner and the

process repeats.

6. The protocol is complete when all data owners involved have had a chance to contribute to

the private cache.

All our experiments are designed around research questions RQ4 and RQ5 from the introduc-

tion. First, to check if LACE can provide adequate protection against sensitive attribute disclosure

for each data owner (RQ4), before adding their MORPHed exemplars to the private cache we use

the new exemplars and the original data to calculate the IPR (explained in Chapter 4, Section 4.3).

Second, to determine if the data resulting from private multiparty data sharing (private cache) are

useful for cross project defect prediction (RQ5), we baseline our work with a cross project defect

prediction using the original data to build the defect predictor.

For the cross project defect prediction experiments with LACE, the defect predictors are built

from LACEd (exemplars in the private cache) as well as Naive Bayes [83] from WEKA [148]. We

run our experiments six times and the medians for IPR and the prediction performance are calcu-

lated. This is done to avoid the order bias in randomly selecting data sets to pass the private cache.

Because of the incremental learning aspect of LeaF, the order in which data owners contribute to

the private cache matters. The order can affect the number of exemplars found for each data set as

well as the total number of exemplars that end up in the private cache.

110

Table 6.1: Objective Data Sets for Open-source and Proprietary Project Data.

Defect Data Type # Instances # Defects % Defects

ant-1.7 open-source 1066 166 15.6

camel-1.6 open-source 1252 188 15.0

ivy-2.0 open-source 477 40 8.4

jEdit-4.1 open-source 644 79 12.3

lucene-2.4 open-source 536 203 37.9

poi-3.0 open-source 531 281 52.9

synapse-1.2 open-source 269 86 32.0

velocity-1.6 open-source 261 78 29.9

xalan-2.6 open-source 1170 411 35.1

xerces-1.3 open-source 545 69 12.7

prop2-ver276 proprietary 2472 334 13.5

prop5-ver185 proprietary 3260 268 8.2

prop42-ver454 proprietary 295 13 4.4

6.2.1 Data

We use a total of 13 of the static code defect data sets [15, 81] (10 open-source and 3 proprietary).

Table 6.1 shows the defect data used in LACE to make the private cache in the last three gray rows.

These are proprietary data sets and are chosen because of their relative similarity to the 10 open

source projects in Table 6.1. The similarity of the data set are calculated using the data similarity

method in Section 3.7, Figure 3.3. Figure 6.1 illustrates the results. As seen, all open source data

sets are close together while the proprietary data sets are spread apart. Each of the three similar

proprietary projects represents data from a data owner and are used to build the private cache. The

open source projects are the test defect data used in cross defect prediction experiments with the

private cache. In addition, recall that in Section 5.2.1 we presented descriptions of the open-source

data shown in Table 6.1 and Table 2.1 which describes the attributes of these data.

111

The proprietary data (prop2-ver276, prop5-ver185, and prop42-ver454) used in this experi-

ment are all from the insurance domain and are developed by the same software development

company by international teams in a plan-driven manner [151]. Madeyski et al. [151] explain

that the projects are from the insurance domain and are custom built solutions with more than

five years of development history. These projects also implement different feature sets according

to the individual customer requirements. Finally, all of them are developed using Java enterprise

technologies and frameworks, as well as already installed in customer environments.

Data Similarity for Each Data Set used in LACE

Figure 6.1: Shows the difference between the proprietary data and the open-source data.

6.2.2 Performance Evaluation

Recall that privacy algorithms have two performance objectives: 1) privacy and 2) utility. To

measure the privacy offered by a privacy algorithm for a specific data set we use a Increase Privacy

Ratio or IPR [12], which measures the risk of a sensitive attribute disclosure attack. We explain

how IPR works in Section 4.3. In previous work IPR only measured how protected one sensitive

attribute (LOC) would be if the data were published with all other attribute values changed by

MORPHing and LOC values remained intact. In this chapter we investigate the IPRs when five

additional sensitive attributes. In addition, we present results for when the data owner chooses to

112

mask the sensitive attribute values by allowing them to be MORPHed. As in Chapter 5, to measure

the utility of the data generated by LACE (with sensitive attribute values masked), we measure the

performance of defect predictors built with Naive Bayes [83] from WEKA [148].

Finally, recent success in cross project defect prediction is due to transfer learning. One transfer

learning method is relevancy filtering [18,24,28]. Turhan et al. used a k-nearest neighbor filtering

method to measure the similarity (with Euclidean distance) between test and train data. In their

experiment they found k=10 nearest training instances for each test instance. It is these selected

train instances that are used in cross project defect prediction experiments. We apply Turhan’s

relevancy filter to our private cache for each test data set used in this work. However instead

of using k=10, we tune k through initial experimentation with cross project defect prediction on

the combination of the three proprietary data sets and the open source data and found that k=5

produced the better g-measure. Therefore all our experiments use k=5 when applying relevancy

filtering.

6.3 Experimental Results

We organize our results around research questions RQ4 and RQ5 from the introduction.

6.3.1 Privacy

In this section we seek to find out if privacy offered by using LACE is adequate. Privacy is achieved

in two ways: 1) Removal of data (minimization) and 2) MORPHing of the remaining data. We

evaluate the privacy offered to each data owner with IPR both when sensitive attribute values intact

and masked. We found that:

Table 6.2 displays the median results of IPRs of the data submitted to the private cache by each

data owner (three total). Results are with the sensitive attribute values intact. The medians are

calculated after six experimental runs. IPR results are shown for six individual sensitive attributes

113

and one combination of three sensitive attributes in the last column. This is shown for each of

the three data sets that contributed to the private cache. In addition, the number and percent of

exemplars contributed by each data owner are shown.

Table 6.2: This table shows the number and percentages of data added to the private cache by
each data owner. Also shown are the IPRs for six sensitive attributes calculated individually then
together. These results are based on the data owner sharing their data with the sensitive attribute
values intact.

IPRs and the Number of Exemplars added to the Private Cache
Sensitive Attributes Data Size # Exemplars % Exemplars IPR
loc prop42-ver454 295 5 2% 94.7

prop2-ver276 2472 56 2% 73.9
prop5-ver185 3260 63 2% 83.3

Total 6027 124 2% 84.0
wmc prop42-ver454 295 15 5% 76.5

prop2-ver276 2472 98 4% 80.9
prop5-ver185 3260 73 2% 89.3

Total 6027 186 3% 82.2
mfa prop42-ver454 295 9 3% 57.1

prop2-ver276 2472 70 3% 17.5
prop5-ver185 3260 76 2% 13.0

Total 6027 155 3% 29.2
dit prop42-ver454 295 8 3% 88.3

prop2-ver276 2472 67 3% 73.0
prop5-ver185 3260 75 3% 38.9

Total 6027 150 2% 66.8
noc prop42-ver454 295 13 4% 49.6

prop2-ver276 2472 79 3% 20.2
prop5-ver185 3260 87 3% 11.0

Total 6027 179 3% 26.9
rfc prop42-ver454 295 8 3% 98.2

prop2-ver276 2472 64 3% 92.8
prop5-ver185 3260 58 2% 95.8

Total 6027 130 2% 95.6
loc:wmc:mfa prop42-ver454 295 5 2% 89.4

prop2-ver276 2472 47 2% 72.8
prop5-ver185 3260 57 2% 74.0

Total 6027 109 2% 78.7

From the results in Table 6.2, we see that each data owner provides less than 6% of their data

114

to the private cache. The majority of them provide approximately 2% of their data. Table 6.2 also

shows the IPR is dependent on the sensitive attributes. For five out of the seven cases of sensitive

attributes studied, the average IPR is above 65%. From the remaining two (mfa and noc), the lowest

average is 26.9. This is an expected result based on the IPR analysis done in Section 4.3.4. We

found that these attribute values are heavily skewed and therefore an attacker’s best guess strategy

will be successful and therefore produce low IPRs. For those data sets with low IPRs for specific

sensitive attributes, data owners can choose not to add their exemplars to the private cache.

Table 6.3, reports on the IPRs on the occasion where for add privacy, the data owner decides

to completely mask the entire data set with CLIFF&MORPH. The table shows the IPRs for each

data set participating in LACE for the different masked sensitive attributes. The Median IPRs row

shows that each data set has median IPRs above 75%, while the Median Exemplars row reports the

number of exemplars contributed by each data set. Finally, the Exemplars row shows that only 2%

percent of the total data ended up in the private cache. Also, from the results in Table 6.3, we see

that IPRs can differ according to the sensitive attributes considered by a data owner. For example,

we see IPRs for 4 out of the 6 sensitive attributes measured in our experiment at 75% and above,

while we have IPRs as low as 16.4% and 30.8% for “number of children” (noc) and “functional

abstraction” (mfa) respectively. As explained earlier, the values of these sensitive attributes are

heavily skewed and therefore it more likely for an attacker’s “best-guess” to be correct. Again, in

this situation a data owner can choose not to share their data.

In the following section for utility, we used the private cache generated from the data where

sensitive attribute values are masked just as all the other attribute values via MORPHing.

Overall, LACE releases only 3% of the 3 data sets used. Specifically, less than 200

out of 6027 instances that are collected into the cache. Also, for the cached instances,

LACE provides adequate privacy for data owners with IPR above 70% when the dis-

tribution of sensitive attribute values are relatively uniform (loc, wmc and rfc).

115

Table 6.3: This table shows the IPRs for each data set participating in LACE for the different
masked sensitive attributes. The Median IPRs row shows that each data set has median IPRs above
75%, while the Median Exemplars row reports the number of exemplars contributed by each data
set. Finally, the Exemplars row shows that only 2% percent of the total data ended up in the private
cache.

IPRs for Masked Sensitive Attribute Values
Sensitive Attributes prop42-ver454 prop2-ver276 prop5-ver185
loc 99.0 99.1 100.0
wmc 79.8 76.5 95.0
mfa 30.8 43.2 39.8
dit 75.0 82.8 79.8
noc 16.4 41.5 17.9
rfc 97.1 98.2 97.4
loc:wmc:mfa 75.3 64.5 77.3
Median IPRs 75.3 76.5 79.8
Median Exemplars 31 25 43
% Exemplars 2%

6.3.2 Utility

In this section we answer the question: Are the data released by LACE useful for cross defect

prediction? We compare the performance of LACE to Original data as well as LACE(filter) to

Original data and measure pd, pf and g-measure as described in Section 5.2.4. LACE(filter) is the

transfer learning element to this study that has proven to improve on CPDP results. Here we use

the nearest neighbor filter from Turhan et al. [18] where each test set instance finds the k=5 nearest

exemplars from the private cache. It is these selected exemplars that are used by LACE(filter) to

build defect predictors. In addition, we use the Mann-Whitney statistical test at 95% confidence to

determine if the result differences are statistically significant.

First Table 6.4 shows the results for CPDP with LACE compared to the original data. The first

thing to notice is that there is a significant increase in the pds for LACE. These results comment on

the benefits of sharing. LACE’s intelligent selection of training data led to much higher pds for all

ten test-data sets studied here. We attribute this better performance to LACE’s careful selection of

privatized data via CLIFF and LeaF. As to the pfs, increasing the probability of detection usually

116

Table 6.4: Cross project defect prediction results for open source data. Defect predictors are built
from proprietary data. The classifier is Naive Bayes.

Projects PD PF G-Measure
ant-1.7
Original 39.2 5.1 55.4
LACE 74.7 61.2 51.1
camel-1.6
Original 18.1 5.8 30.3
LACE 72.9 72.7 39.7
ivy-2.0
Original 50.0 10.1 64.3
LACE 77.5 69.6 43.7
jEdit-4.1
Original 48.1 4.6 64.0
LACE 73.4 67.6 44.9
lucene-2.4
Original 16.7 1.5 28.6
LACE 72.9 63.7 48.5
poi-3.0
Original 17.4 4.4 29.5
LACE 84.3 56.0 57.8
synapse-1.2
Original 33.7 9.3 49.2
LACE 81.4 69.9 43.9
velocity-1.6.1
Original 15.4 6.0 26.4
LACE 92.3 77.0 36.8
xalan-2.6
Original 43.6 6.3 59.5
LACE 66.7 59.3 50.6
xerces-1.3
Original 27.5 9.2 42.3
LACE 59.4 64.5 44.4
Average
Original 31.0 6.2 45.0
LACE 75.6 66.2 46.1

means more false alarms (pf=66.2) as in previous work [12]. However with the added filter, we

see this reduced to 33%, with pd of 51.2% still significantly higher than the original result with

pd=31%.

117

Table 6.5: Cross project defect prediction with transfer learning in the form of relevancy filtering.
As in Table 6.4, results are for open source data. Defect predictors are built from proprietary data.
The classifier is Naive Bayes.

Projects PD PF G-Measure
ant-1.7
Original 39.2 5.1 55.4
LACE(filter) 58.4 29.7 63.8
camel-1.6
Original 18.1 5.8 30.3
LACE(filter) 4.8 1.7 9.1
ivy-2.0
Original 50.0 10.1 64.3
LACE(filter) 70.0 47.8 59.8
jEdit-4.1
Original 48.1 4.6 64.0
LACE(filter) 68.4 39.8 64.0
lucene-2.4
Original 16.7 1.5 28.6
LACE(filter) 67.0 49.8 57.4
poi-3.0
Original 17.4 4.4 29.5
LACE(filter) 79.4 46.8 63.7
synapse-1.2
Original 33.7 9.3 49.2
LACE(filter) 41.9 13.1 56.5
velocity-1.6.1
Original 15.4 6.0 26.4
LACE(filter) 15.4 2.2 26.6
xalan-2.6
Original 43.6 6.3 59.5
LACE(filter) 64.5 48.5 57.3
xerces-1.3
Original 27.5 9.2 42.3
LACE(filter) 42.0 49.6 45.8
Average
Original 31.0 6.2 45.0
LACE(filter) 51.2 33.0 50.4

Looking closer at these results we see that there are some exceptions to these observations.

Specifically, in Table 6.5 where we use the filter, camel-1.6 and velocity-1.6.1 have either the same

118

or low pds than the Original data. This was not the case in Table 6.4 where no filter is used. We

attribute this to the data sets being dissimilar to the proprietary data and therefore filtering this data

further increased this dissimilarity thus causing the lower pds and pfs.

The overall results indicate that cross project defect prediction with LACEd data and

relevancy filtering is comparable and sometimes better than defect prediction with the

original data according to the average pds and g-measures.

6.3.3 Comparison to Prior Results

First, previous work only focused only on open source data [12], here we use proprietary data for

building predictors for open source data. This is the reverse of the study done by He&Peters [28].

Previous work with CLIFF&MORPH also worked best when returning 20% of data, MOR-

PHed [12]. Here, with LeaF we are able to return approximately 3% of data with lower false alarm

rates. Why is this so? We hypothesize that the LeaF algorithm and the application relevancy filter-

ing are the reasons for this new better result. While LeaF seeks diversity when creating the private

cache, relevancy filtering seeks to extract data from the private cache that are most similar to the

test data.

Whatever the reason, the overall pattern is clear:

LACE greatly improves on our prior results by halving the observed false rate from

an average of 66.2% to 33%.

6.4 Summary

In this chapter we presented LACE as a private multiparty data sharing environment for cross

project defect prediction. LACE is designed to encourage data owners to team-up to minimize and

privatize their data for publication. LACE is able to produce a private cache the following qualities:

119

• Data in the private cache cannot be linked to the original data owner since the private cache

contains subsets of MORPHed data from multiple sources.

• Depending on the distribution of the sensitive attributes, data in the private cache are private

with only 3% of all data added to the private cache and IPRs above 70% when the sensitive

attribute values are more uniformly distributed (Table 6.2).

• LACE’s instance selection strategy is more intelligent than methods used in prior work [12]-

so much so that LACE halves the observed false alarm rates.

• Data in the private cache remains useful for cross project defect prediction showing compa-

rable results to the original data.

We hope that this result encourages more data sharing, more cross-project experiments, and more

work on building software engineering models that are general to large-scale systems. We also

hope one day to be able to answer the following question for ourselves,

“Can IE predict Firefox?”

120

Chapter 7

Threats to Validity

Feldt et al. [152] stated that a critical element of any empirical research study is to analyze and

mitigate threats to the validity of the results. With any empirical study, biases can affect the final

results. Therefore any conclusions made from this work must be considered with threats to validity

in mind. We begin with those threats we have alleviated in our experiments and then report on the

external, construct and internal validity of our work.

7.1 Alleviated Threats

We present two alleviated threats. First, in previous experiments with privacy algorithms [12], we

employed a narrow range of values for the different algorithm parameters. In this dissertation, we

mitigate this parameter bias by expanding on the ranges of parameter values for each privacy algo-

rithm studied here. We therefore perform a parameter tuning experiment, running each algorithm

48 times (Chapter 5).

Second, in previous experiments [12], we measured the sensitive attribute disclosure risk of a

privatized data set with IPR using only lines of code as the sensitive attribute. In this work, we show

that IPR can be used on other and multiple sensitive attributes (Section 4.3.4 and Section 6.3.1).

121

Additionally, in previous work [12], this idea of IPR was to show data owners how protected their

sensitive attribute data would be if released without disguise while the other attribute values were

masked. Here we also add IPR results for sensitive attributes that are masked.

7.2 External Validity

External validity is concerned with whether we can generalize results outside the scope of our

study. We explain these in terms of bias.

Sampling bias threatens any classification experiment; i.e., what matters there, may not be true

here. For example, the data sets used here were supplied by one research group. Also, even though

we used both open source and proprietary data in our studies, and the data covers a large scope of

applications including text/xml processing systems, search engines, source code integration/build

tools, and management information systems, they are all from Java systems. We therefore cannot

assume these projects represent all projects in industry and we do not know if the results of this

study generalize to other programming languages. The best we can do is define our methods and

publicize our data so that other researchers can try to repeat our results and, perhaps, point out a

previously unknown bias in our analysis. Hopefully, other researchers will emulate our methods

in order to repeat, refute, or improve our results.

In addition, when we use the query generator described in Section 4.3.3 to model an attacker’s

background knowledge, we randomly create up to 1000 queries to calculate the IPR. It is therefore

possible that increasing the number of queries used may change the IPR values and so affect the

conclusions made in this dissertation. However we believe that the high number of queries use will

mitigate against this due to the law of large numbers [153] in probability theory which claims that

the more trials (queries) done, the closer the experimental result (IPR) could get to the expected

value.

Learner bias: For building the defect predictors in this study, we elected to use Naive Bayes

122

based on its reputation for comparable performance with more complicated learners [28, 66, 69].

Classification is a large and active field and any single study can only use a small subset of the

known classification algorithms. Surely other learners may produce different results, however

considering the scope of our work, the “No-free-lunch” theorem [137], and the fact that the data

owner has no idea how the published privatized data will be used, we determine that one indicator

for utility is enough. Another issue with the learner particularly in this study of parameter tuning

is that Naive Bayes also has parameters that can be adjusted based on the data, for example using

a kernel estimator rather than the normal distribution for numeric attributes. To keep things simple

we use the default values in the WEKA [148] implementation of Naive Bayes.

Comparison bias: There are many privacy algorithms and it would be difficult to compare the

performance of CLIFF&MORPH against all of them. This dissertation compares our approach

with privatization methods that are known not to damage classification, this is why we used the

Data Swapping (also used by Taneja et al. [5]). We also used k-anonymity [34], a widely used

privacy algorithm.

7.3 Construct Validity

Construct validity of this study mainly questions the model performance assessment approach and

indicators we adopted.

Evaluation bias: As mentioned in many other related studies, the conclusion of defect predic-

tion depends on the performance assessment indicators [20, 86]. In this study we used g-measure

(Chapter 5) as well as pd and pf (Chapter 6) to present the prediction performance just as some

widely cited studies did [69, 70].

Also in this dissertation we use IPR to measure the sensitive attribute disclosure risk for sensi-

tive attributes in a data set. To calculate IPR we use background knowledge specific to the original

data sets without regard for other types of background knowledge which cannot be captured by

123

the queries used in this study. For instance, correlation knowledge and knowledge about knowing

information about related files.

Another evaluation bias involves the utility of a privatized data set. This can be measured

semantically (where the workload is unknown) or empirically (known workload e.g., classification

or aggregate query answering). In this work we measure utility empirically for defect prediction.

7.4 Internal Validity

With internal validity it is important to ask, “Are there alternative causes that explain my obser-

vations and results?” In our work we consider an encoding bias. All the privacy algorithms for

this research were encoded based on the published papers in which they appeared. There is no

guarantee that programming flaws or bugs were not introduced. To mitigate this threat, a code

review is conducted by both the author of the code along with a lab advisor. However, since this

process involves a human element, it is not full-proof and therefore the encoding bias may exist in

this research.

124

Chapter 8

Conclusions and Future Work

Studies have shown that early detection and fixing of defects in software projects is less expensive

than finding defects later on [1, 67, 68]. Organizations with local data can take full advantage

of this early detection benefit by doing local defect prediction. When an organization does not

have enough local data to build defect predictors, they might try to access relevant data from other

organizations in order to perform cross project defect prediction. That access will be denied unless

the privacy concerns of the data owners can be addressed.

In this dissertation we explored whether privacy-preserving data sharing in cross project defect

prediction can be accomplished by the minimization and then constrained obfuscation of data. Our

goal was to develop algorithms to privatize data and allow for data sharing while adhering to any

confidentially stipulations of data. We based our research on two key insights. First, that using

less data did little to degrade classification results and second, swapping data attribute values also

did not greatly affect the results of classification. As a result, we began by exploring minimization

and obfuscation techniques for producing privatized data candidates. Through a parameter tuning

experiment, we show that our approach, CLIFF&MORPH (the privacy algorithms used in LACE)

offer a better balance between privacy and utility than other state-of-the-art algorithms. Also,

through private multiparty data sharing, we found that data from proprietary data can be used to

125

build defect predictors for open source data. Finally we found that multiple data owners who

understand the benefits of sharing their data, can accomplish this by contributing just 2% of their

data to a private cache.

In this concluding chapter we summarize our results in Section 8.1. In Section 8.2 we dis-

cuss broader impact goals for the presented work, future work (Section 8.3) and final remarks

(Section 8.4).

8.1 Summary of Results

The summary of the results of the five research questions studied in this dissertation are shown in

Table 8.1. The table informs on the questions, the sections where they are explored and answered

and the key result.

8.2 Research Impacts

8.2.1 Impact on Privacy metrics

There are several privacy metrics that are either synaptic or semantic [35]. Our privacy metric,

IPR is semantic in that it measures the effectiveness of privacy algorithms in protecting data from

sensitive attribute disclosure attacks. IPR is independent of privacy models. In this dissertation,

IPR is backed with empirical evidence for multiple sensitive attributes. IPR can serve as a decision

making tool for data owners. They may have privacy policies to adhere to and they can set IPR

standards for their data. So, when standards are met by a privatized data candidate, this data is

publicly shared otherwise it is not shared.

126

Table 8.1: Summary of Research Questions

RQ# Research Question Section Key Result

1 Does CLIFF&MORPH provide
better balance between privacy and
utility than other state-of-the-art
privacy algorithms?

Section 5.3 CLIFF&MORPH provides ad-
equate privacy compared with
other privacy algorithms and utility
(with comparable and better results
than non-privatized data for defect
prediction).

2 How hard is parameter tuning for
privacy algorithms?

Section 5.4 When seeking the best parameter
values for privacy algorithms, the
search does not have to be exhaus-
tive. A best answer can be found in
a few runs, in this case 24.

3 Are the results for parameter tuning
for privacy algorithms useful for re-
ducing the search budget (multiple
system runs)?

Section 5.5 We are able to successfully transfer
the “best parameter values” from
one train-test combination to other
projects (Table 5.6).

4 Does private multiparty data shar-
ing with LACE offer adequate pri-
vacy to data owners?

Section 6.3.1 Yes, Table 6.2 shows that overall
only about 3% of all data is added
the private cache for data sharing.

5 Are the data resulting from pri-
vate multiparty data sharing (pri-
vate cache) useful for cross project
defect prediction?

Section 6.3.2 After filtering the private cache, re-
sults are comparable to the original
data.

8.2.2 Impact on Cross Project Defect Prediction

Recent work in CPDP has shown success when transfer learning techniques are incorporated. This

success will be for nothing if organizations cannot access to create defect predictors when they

have insufficient data to build their own defect predictors. Our work on data privacy for CPDP has

also added to this field of study. Through a data similarity measure (Section 3.7) we show that

when projects need access to “other” data to build defect predictors, one solution is to choose data

that are the most similar. This is one way to remove the brute force search that is required when

trying to locate the best data for CPDP and quickly improve on transfer results.

127

8.2.3 Impact on Private Multiparty Data Sharing

There is much the open source community and proprietary developers can learn from each other.

One way to find general trends and patterns in software engineering is to share data with others

for data analysis or to replicate research studies. LACE offers a way for data owners in industry to

work together to produce a private cache. One issue with data sharing among a group especially

among competitors is fear of loss of competitive edge [32]. The private multiparty data sharing

component of LACE allows such group sharing and allows for even less data to be shared in the

group than if they applied LACE separately.

8.3 Future Work

Our experimental results have shown that it is possible to protect data from sensitive attribute

disclosure, and have the data remain useful for cross project defect prediction. However it is

important to continue to work on improving LACE. Our results suggest the following future work:

• The experiments in this dissertation should be repeated with other privacy algorithms and

privacy measures.

• While Section 6.3.1 shows that we can increase privacy, it also shows that we cannot 100%

guarantee it. At this time, we do not know the exact levels of privacy required in industry

or if the results of Section 6.3.1 meet those needs. A survey of data owners to find out their

privacy standards for data sharing is required.

• In the study of data privacy, modeling the attacker’s background knowledge is important

to determine how private a data set is. Researchers [53, 150] in this area agree that it is a

challenge especially since no one knows the exact knowledge of a potential attacker. In this

dissertation we only focused on background knowledge specific to the original data sets.

128

In other words, we try to answer the question, “What if the attacker knows this or that?”

Evaluation of other types of background knowledge need to be considered for this work.

• As shown in Figure 8.1, there are other areas in software engineering that feature work

in data privacy. The work on privacy and awareness [10] focuses on providing users with

information to make them aware of the consequences of information disclosure. My work

can relate to this by providing an extra layer of privacy for users who are willing to share

their data but not their exact data i.e. if they are not happy with the potential privacy threats

related to disclosure, they can choose to release an anonymous version of their data that are

still useful to the receivers of the data.

My algorithms thus far are trained on project defect data that are numerical. Adding a more

social aspect to the research which puts the focus on an individual’s privacy and providing

them with the necessary information and control to protect that privacy is the next step.

• With Big Data Privacy, an open issue is computation cost of applying privacy algorithms

prior to analysis. It is important that algorithms studied here are improved to be scalable.

• An interesting observation of our experiments is that the low dimensionality phenomenon of

cross project defect prediction. This is evident in the use of approximately 3% of defect data

contributed to the private cache to build defect predictors. Our IPR results (Section 6.3.1)

shows that learning from less data has benefits for the privacy and security of projects that

generate the training data. The low dimensionality nature of defect prediction data was first

described by Menzies et al. [69]. More investigations are needed on the low dimensionality

phenomenon of cross project defect prediction. The particular focus will be to try feature

selection methods.

• Techniques from the field of transfer learning have been employed to improve on cross

project defect prediction [18, 27, 28]. The next step is to explore cross domain knowledge

129

transfer, where data owners with data for different metrics such as process metrics or social

network metrics, can collaborate with each other. In usual practice, the training and test sets

of a data miner operate over tables of data with the same column names. From a technical

perspective, that means that the training and test sets share the same ontology.

With transfer learning, it should be possible to relax the assumption that the source and target

data has the same ontology. For example, at least in principle, a learner could learn synonyms

between features expressed in different ontologies in different data sets. For example, given

effective synonyms, it would be possible to apply lessons learned from (e.g.) procedural

systems to object-oriented systems.

Note that if transfer learning can move models between data sets of different ontologies, then

that would greatly increase the amount of data available for training software engineering

models.

Figure 8.1: Pie chart showing privacy research in software engineering. The pie slices are sized
according to the number of publications in each area of research: 1) software testing [3–6], 2)
bug reporting [7, 8], 3) requirements [9, 10], 4) cross defect prediction [11, 12], and 5) program
comprehension [13].

130

8.4 Final Remarks

The long-term goal of this work is to produce tools that will allow organizations and individuals

to share data with each other with the following constraints: 1) that they are fully aware of the

benefits and risks involved so they can make an informed decision about sharing, and 2) they are

provided with the ability to privatized their data before release.

We believe this work was a successful step toward encouraging more data owners to share

their data for research purposes, namely cross project defect prediction. Given a data set we can

minimize it and privatize it while remaining useful for defect prediction. Furthermore, we provide

data owners with IPR so that they will know how protected their data will be once shared. Finally,

we can facilitate private multiparty data sharing particularly for those in industry willing to share

but are concerned about privacy [32].

The privacy algorithms that make up LACE, (CLIFF&MORPH) and presented in this disser-

tation have been published at a major software engineering conference (ICSE) [11] and journal

(TSE) [12]. We hope that this result encourages more data sharing in the future, more cross project

experiments, and more work on building software engineering models that are general to large-

scale systems.

131

Bibliography

[1] J. B. Dabney, G. Barber, and D. Ohi, “Predicting software defect function point ratios using

a bayesian belief network,” in Proceedings of the PROMISE workshop, 2006.

[2] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is

stochastically larger than the other,” The Annals of Mathematical Statistics, vol. 18, no. 1,

pp. pp. 50–60, 1947. [Online]. Available: http://www.jstor.org/stable/2236101

[3] M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data privacy always good for software

testing?” in Proceedings of the 2010 IEEE 21st International Symposium on Software Re-

liability Engineering, ser. ISSRE ’10. Washington, DC, USA: IEEE Computer Society,

2010, pp. 368–377.

[4] A. Budi, D. Lo, L. Jiang, and Lucia, “kb-anonymity: a model for anonymized

behaviour-preserving test and debugging data,” in Proceedings of the 32nd ACM

SIGPLAN conference on Programming language design and implementation, ser.

PLDI ’11. New York, NY, USA: ACM, 2011, pp. 447–457. [Online]. Available:

http://doi.acm.org/10.1145/1993498.1993551

[5] K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing software in age of data

privacy: A balancing act,” in Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering, ser.

132

http://www.jstor.org/stable/2236101
http://doi.acm.org/10.1145/1993498.1993551

ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 201–211. [Online]. Available:

http://doi.acm.org/10.1145/2025113.2025143

[6] B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing and minimizing databases for software

application test outsourcing,” IEEE International Conference on Software Testing Verifica-

tion and Validation, 2014.

[7] M. Castro, M. Costa, and J.-P. Martin, “Better bug reporting with better privacy,” in

Proceedings of the 13th international conference on Architectural support for programming

languages and operating systems, ser. ASPLOS XIII. New York, NY, USA: ACM, 2008,

pp. 319–328. [Online]. Available: http://doi.acm.org/10.1145/1346281.1346322

[8] J. Clause and A. Orso, “Camouflage : Automated anonymization of field data,” Proceeding

of the 33rd international conference on Software engineering, pp. 21–30, 2011. [Online].

Available: http://portal.acm.org/citation.cfm?id=1985797

[9] T. Breaux and A. Anton, “Analyzing regulatory rules for privacy and security requirements,”

Software Engineering, IEEE Transactions on, vol. 34, no. 1, pp. 5–20, Jan 2008.

[10] I. Omoronyia, L. Cavallaro, M. Salehie, L. Pasquale, and B. Nuseibeh, “Engineering

adaptive privacy: On the role of privacy awareness requirements,” in Proceedings

of the 2013 International Conference on Software Engineering, ser. ICSE ’13.

Piscataway, NJ, USA: IEEE Press, 2013, pp. 632–641. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2486788.2486872

[11] F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with

morph,” in Proceedings of the 2012 International Conference on Software Engineering, ser.

ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2337223.2337246

133

http://doi.acm.org/10.1145/2025113.2025143
http://doi.acm.org/10.1145/1346281.1346322
http://portal.acm.org/citation.cfm?id=1985797
http://dl.acm.org/citation.cfm?id=2486788.2486872
http://dl.acm.org/citation.cfm?id=2486788.2486872
http://dl.acm.org/citation.cfm?id=2337223.2337246

[12] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-

company defect prediction,” Software Engineering, IEEE Transactions on, vol. 39, no. 8,

pp. 1054–1068, Aug 2013.

[13] M. Grechanik, C. McMillan, T. Dasgupta, D. Poshyvanyk, and M. Gethers, “Redacting

sensitive information in software artifacts,” 2014.

[14] M. Jureczko and D. Spinellis, “Using object-oriented design metrics to predict software

defects,” Models and Methods of System Dependability. Oficyna Wydawnicza Politechniki

Wrocławskiej, pp. 69–81, 2010.

[15] M. Jureczko, “Significance of different software metrics in defect prediction,” Software En-

gineering: An International Journal, vol. 1, no. 1, pp. 86–95, 2011.

[16] F. Shull, V. Basili, J. Carver, J. Maldonado, G. Travassos, M. Mendonca, and S. Fabbri,

“Replicating software engineering experiments: addressing the tacit knowledge problem,”

in Empirical Software Engineering, 2002. Proceedings. 2002 International Symposium n,

2002, pp. 7–16.

[17] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-company cost

estimation studies: A systematic review,” IEEE Transactions on Software Engineering,

vol. 33, pp. 316–329, 2007.

[18] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value of cross-

company and within-company data for defect prediction,” Empirical Software Engineering,

vol. 14, pp. 540–578, 2009.

[19] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect

prediction: a large scale experiment on data vs. domain vs. process.” in ESEC/SIGSOFT

FSE’09, 2009, pp. 91–100.

134

[20] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the ”imprecision” of cross-project

defect prediction,” in Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering, ser. FSE ’12. New York, NY, USA: ACM,

2012, pp. 61:1–61:11. [Online]. Available: http://doi.acm.org/10.1145/2393596.2393669

[21] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software defect

prediction,” Information and Software Technology, vol. 54, no. 3, pp. 248 – 256, 2012.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950584911001996

[22] E. Kocaguneli and T. Menzies, “How to find relevant data for effort estimation?” in Proceed-

ings of the 2011 International Symposium on Empirical Software Engineering and Measure-

ment, ser. ESEM ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 255–264.

[23] L. L. Minku and X. Yao, “Can cross-company data improve performance in software effort

estimation?” in Proceedings of PROMISE’12, 2012.

[24] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the feasibility of cross-

project defect prediction,” Automated Software Engineering, vol. 19, pp. 167–199, 2012.

[25] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and J. W. Keung, “When to use data from other

projects for effort estimation,” in Proceedings of the IEEE/ACM international conference

on Automated software engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010, pp.

321–324.

[26] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, and T. Zim-

mermann, “Local versus global lessons for defect prediction and effort estimation,” Software

Engineering, IEEE Transactions on, vol. 39, no. 6, pp. 822–834, June 2013.

[27] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE’13. IEEE Press Piscat-

away, NJ, USA, 2013, pp. 802–811.

135

http://doi.acm.org/10.1145/2393596.2393669
http://www.sciencedirect.com/science/article/pii/S0950584911001996

[28] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source projects: An empiri-

cal study on defect prediction,” in Empirical Software Engineering and Measurement, 2013

ACM / IEEE International Symposium on, Oct 2013, pp. 45–54.

[29] E. Kocaguneli, B. Cukic, T. Menzies, and H. Lu, “Building a second opinion: Learning

cross-company data,” in PROMSE’13, October 2013.

[30] G. Tassey, “The economic impacts of inadequate infrastructure for software testing,” Na-

tional Institute of Standards and Technology, RTI Project, vol. 7007, no. 011, 2002.

[31] F. Rahman, S. Khatri, E. T. Barr, and P. T. Devanbu, “Comparing static bug finders and

statistical prediction.” in ICSE, 2014, pp. 424–434.

[32] S. Elbaum, A. Mclaughlin, and J. Penix, “The google dataset of testing results,” june 2014.

[Online]. Available: https://code.google.com/p/google-shared-dataset-of-test-suite-results

[33] L. Sweeney, “k-anonymity: A model for protecting privacy,” IEEE Security And Privacy,

vol. 10, no. 5, pp. 557–570, 2002.

[34] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and suppres-

sion,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 571–588, Oct.

2002.

[35] J. Brickell and V. Shmatikov, “The cost of privacy: destruction of data-mining utility in

anonymized data publishing,” in Proceeding of the 14th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, ser. KDD ’08. New York, NY, USA:

ACM, 2008, pp. 70–78.

[36] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “L-diversity: Pri-

vacy beyond k-anonymity,” ACM Trans. Knowl. Discov. Data, vol. 1, March 2007.

136

https://code.google.com/p/google-shared-dataset-of-test-suite-results

[37] N. Li and T. Li, “t-closeness: Privacy beyond k-anonymity and l-diversity,” in In Proc. of

IEEE 23rd Intl Conf. on Data Engineering (ICDE 07), 2007.

[38] R. Hickey, “Clojure.” [Online]. Available: http://clojure.org/

[39] B. Li, Y. W. Chen, and Y. Q. Chen, “The nearest neighbor algorithm of local probability cen-

ters,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 38,

no. 1, pp. 141 –154, feb. 2008.

[40] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-based learning algo-

rithms,” Machine Learning, vol. 38, pp. 257–286, 2000.

[41] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-preserving data min-

ing,” Journal of Privacy and Confidentiality, vol. 1, no. 1, p. 5, 2009.

[42] B. C. M. Fung, R. Chen, and P. S. Yu, “Privacy-Preserving Data Publishing: A Survey on

Recent Developments,” Computing, vol. V, no. 4, pp. 1–53, 2010.

[43] A. Gkoulalas-Divanis, G. Loukides, and J. Sun, “Publishing data from electronic health

records while preserving privacy: A survey of algorithms,” Journal of Biomedical

Informatics, no. 0, pp. –, 2014. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1532046414001403

[44] M. Barbaro, T. Zeller, and S. Hansell, “A face is exposed for aol searcher no.

4417749,” New York Times, vol. 9, no. 2008, p. 8, August 2006. [Online]. Available:

http://www.nytimes.com/2006/08/09/technology/09aol.html

[45] T. Dalenius, “Towards a methodology for statistical disclosure control,” Statistik Tidskrift,

vol. 15, no. 429-444, pp. 2–1, 1977.

137

http://clojure.org/
http://www.sciencedirect.com/science/article/pii/S1532046414001403
http://www.sciencedirect.com/science/article/pii/S1532046414001403
http://www.nytimes.com/2006/08/09/technology/09aol.html

[46] S.-L. Wang, B. Parikh, and A. Jafari, “Hiding informative association rule sets,” Expert

Systems with Applications, vol. 33, no. 2, pp. 316 – 323, 2007. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S095741740600145X

[47] V. Verykios, E. Bertino, I. Fovin, L. Provenza, Y. Saygin, and Y. Theodoridis, “State-of-the-

art in privacy preserving data mining,” SIGMOD RECORD, vol. 33, no. 1, pp. 50–57, MAR

2004.

[48] P. Samarati and L. Sweeney, “Protecting privacy when disclosing information: k-anonymity

and its enforcement through generalization and suppression,” CiteSeerX - Scientific

Literature Digital Library and Search Engine [http://citeseerx.ist.psu.edu/oai2] (United

States), Tech. Rep., 1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=?doi=10.1.1.37.5829

[49] H. Park and K. Shim, “Approximate algorithms with generalizing attribute values for k-

anonymity,” INFORMATION SYSTEMS, vol. 35, no. 8, pp. 933–955, DEC 2010.

[50] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, “The

promise repository of empirical software engineering data,” June 2012. [Online]. Available:

promisedata.googlecode.com

[51] D. Zhu, X.-B. Li, and S. Wu, “Identity disclosure protection: A data reconstruction approach

for privacy-preserving data mining,” DECISION SUPPORT SYSTEMS, vol. 48, no. 1, Sp.

Iss. SI, pp. 133–140, DEC 2009.

[52] C. C. Aggarwal, “On k-anonymity and the curse of dimensionality,” in Proceedings of

the 31st International Conference on Very Large Data Bases, ser. VLDB ’05. VLDB

Endowment, 2005, pp. 901–909. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1083592.1083696

138

http://www.sciencedirect.com/science/article/pii/S095741740600145X
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.37.5829
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.37.5829
promisedata.googlecode.com
http://dl.acm.org/citation.cfm?id=1083592.1083696
http://dl.acm.org/citation.cfm?id=1083592.1083696

[53] D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Halpern, “Worst-case back-

ground knowledge for privacy-preserving data publishing,” in 2007 IEEE 23rd International

Conference on Data Engineering. IEEE, 2007, pp. 126–135.

[54] N. Zhang and W. Zhao, “Privacy-preserving data mining systems,” Computer, vol. 40, no. 4,

pp. 52–58, April 2007.

[55] C. Giannella, K. Liu, and H. Kargupta, “On the privacy of euclidean distance preserving

data perturbation,” CoRR, vol. abs/0911.2942, 2009.

[56] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in Proceedings of

the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems. ACM, 2003, pp. 202–210.

[57] C. Dwork, “Differential privacy,” in Automata, Languages and Programming, ser. Lecture

Notes in Computer Science, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds.

Springer Berlin Heidelberg, 2006, vol. 4052, pp. 1–12.

[58] C. Dwork, “Differential privacy: A survey of results,” Theory and Applications of Models

of Computation, pp. 1–19, 2008.

[59] A. Chin and A. Klinefelter, “Differential privacy as a response to the reidentification threat:

The facebook advertiser case study,” North Carolina Law Review, vol. 90, no. 5, 2012.

[60] L. Sweeney, “Datafly: A system for providing anonymity in medical data,” in Proceedings

of the IFIP TC11 WG11.3 Eleventh International Conference on Database Securty XI:

Status and Prospects. London, UK, UK: Chapman & Hall, Ltd., 1998, pp. 356–381.

[Online]. Available: http://dl.acm.org/citation.cfm?id=646115.679937

[61] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Incognito: Efficient full-domain

k-anonymity,” in Proceedings of the 2005 ACM SIGMOD International Conference on

139

http://dl.acm.org/citation.cfm?id=646115.679937

Management of Data, ser. SIGMOD ’05. New York, NY, USA: ACM, 2005, pp. 49–60.

[Online]. Available: http://doi.acm.org/10.1145/1066157.1066164

[62] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati, “Microdata protection,”

in Secure Data Management in Decentralized Systems, ser. Advances in Information

Security, T. Yu and S. Jajodia, Eds. Springer US, 2007, vol. 33, pp. 291–321. [Online].

Available: http://dx.doi.org/10.1007/978-0-387-27696-0 9

[63] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu, “Aggregate Query Answering on

Anonymized Tables,” 2007 IEEE 23rd International Conference on Data Engineering, pp.

116–125, 2007.

[64] V. Torra, Y. Endo, and S. Miyamoto, “On the comparison of some fuzzy clustering methods

for privacy preserving data mining: towards the development of specific information loss

measures,” Kybernetika, vol. 45, no. 3, pp. 548–560, 2009.

[65] Y. Rachlin, K. Probst, and R. Ghani, “Maximizing privacy under data distortion

constraints in noise perturbation methods,” in Privacy, Security, and Trust in KDD, ser.

Lecture Notes in Computer Science, F. Bonchi, E. Ferrari, W. Jiang, and B. Malin,

Eds. Springer Berlin Heidelberg, 2009, vol. 5456, pp. 92–110. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-01718-6 7

[66] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models

for software defect prediction: A proposed framework and novel findings,” Software Engi-

neering, IEEE Transactions on, vol. 34, no. 4, pp. 485 –496, july-aug. 2008.

[67] B. Boehm and P. Papaccio, “Understanding and controlling software costs,” IEEE Trans. on

Software Engineering, vol. 14, no. 10, pp. 1462–1477, October 1988.

[68] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus,

R. Tesoriero, and M. Zelkowitz, “What we have learned about fighting defects,” in Proceed-

140

http://doi.acm.org/10.1145/1066157.1066164
http://dx.doi.org/10.1007/978-0-387-27696-0_9
http://dx.doi.org/10.1007/978-3-642-01718-6_7

ings of the 8th International Symposium on Software Metrics, ser. METRICS ’02. Wash-

ington, DC, USA: IEEE Computer Society, 2002, pp. 249–258.

[69] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect

predictors,” Software Engineering, IEEE Transactions on, vol. 33, no. 1, pp. 2 –13, jan.

2007.

[70] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, “Defect

prediction from static code features: current results, limitations, new approaches,”

Automated Software Engineering, vol. 17, no. 4, pp. 375–407, 2010. [Online]. Available:

http://dx.doi.org/10.1007/s10515-010-0069-5

[71] T. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions on, vol.

SE-2, no. 4, pp. 308–320, Dec 1976.

[72] R. Vasa, “Growth and change dynamics in open source software systems,” Ph.D. disser-

tation, Faculty of Information and Communication Technologies,Swinburne University of

Technology, 2010.

[73] M. Lumpe, S. Mahmud, and R. Vasa, “On the use of properties in java applications,” in

Software Engineering Conference (ASWEC), 2010 21st Australian, April 2010, pp. 235–

244.

[74] S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” Software Engi-

neering, IEEE Transactions on, vol. 20, no. 6, pp. 476–493, Jun 1994.

[75] N. Nagappan and T. Ball, “Static analysis tools as early indicators of pre-release defect

density,” in Proceedings of the 27th International Conference on Software Engineering,

ser. ICSE ’05. New York, NY, USA: ACM, 2005, pp. 580–586. [Online]. Available:

http://doi.acm.org/10.1145/1062455.1062558

141

http://dx.doi.org/10.1007/s10515-010-0069-5
http://doi.acm.org/10.1145/1062455.1062558

[76] J. Turner, “A predictive approach to eliminating errors in software code,” http://spinoff.nasa.

gov/Spinoff2006/ct 1.html, 2006, accessed: 2014-07-10.

[77] A. Tosun, B. Turhan, and A. Bener, “Practical considerations in deploying ai for defect pre-

diction: a case study within the turkish telecommunication industry,” in Proceedings of the

5th International Conference on Predictor Models in Software Engineering, ser. PROMISE

’09. New York, NY, USA: ACM, 2009, pp. 11:1–11:9.

[78] A. T. Misirli, A. B. Bener, and R. Kale, “Ai-based software defect predictors: Applications

and benefits in a case study.” AI Magazine, vol. 32, no. 2, pp. 57–68, 2011.

[79] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and Data Engineering,

IEEE Transactions on, vol. 22, no. 10, pp. 1345–1359, Oct 2010.

[80] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in Proceedings

of the 2004 ACM SIGSOFT international symposium on Software testing and analysis,

ser. ISSTA ’04. New York, NY, USA: ACM, 2004, pp. 86–96. [Online]. Available:

http://doi.acm.org/10.1145/1007512.1007524

[81] M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard

to defect prediction,” in Proceedings of the 6th International Conference on Predictive

Models in Software Engineering, ser. PROMISE ’10. New York, NY, USA: ACM, 2010,

pp. 9:1–9:10. [Online]. Available: http://doi.acm.org/10.1145/1868328.1868342

[82] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001.

[83] D. Lewis, “Naive (bayes) at forty: The independence assumption in information retrieval,”

in Machine Learning: ECML-98, ser. Lecture Notes in Computer Science, C. Ndellec and

C. Rouveirol, Eds. Springer Berlin / Heidelberg, 1998, vol. 1398, pp. 4–15.

142

http://spinoff.nasa.gov/Spinoff2006/ct_1.html
http://spinoff.nasa.gov/Spinoff2006/ct_1.html
http://doi.acm.org/10.1145/1007512.1007524
http://doi.acm.org/10.1145/1868328.1868342

[84] W. Afzal, “Using faults-slip-through metric as a predictor of fault-proneness,” in Proceed-

ings of the 2010 Asia Pacific Software Engineering Conference, ser. APSEC ’10, 2010, pp.

414–422.

[85] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Implications of ceiling

effects in defect predictors,” in Proceedings of the 4th international workshop on Predictor

models in software engineering, ser. PROMISE ’08. New York, NY, USA: ACM, 2008,

pp. 47–54.

[86] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault prediction models,” Empir-

ical Software Engineering, vol. 13, pp. 561–595, 2008.

[87] S. Hido, T. Idé, H. Kashima, H. Kubo, and H. Matsuzawa, “Unsupervised change analysis

using supervised learning,” in Proceedings of the 12th Pacific-Asia conference on Advances

in knowledge discovery and data mining, ser. PAKDD’08. Berlin, Heidelberg: Springer-

Verlag, 2008, pp. 148–159.

[88] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

[89] N. E. Fenton and M. Neil, “Software metrics: successes, failures and new directions,” Jour-

nal of Systems and Software, vol. 47, no. 2-3, pp. 149 – 157, 1999.

[90] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2012. [Online]. Available:

http://books.google.com/books?id=Br33IRC3PkQC

[91] J. Vaidya and C. Clifton, “Privacy-preserving data mining: why, how, and when,” Security

Privacy, IEEE, vol. 2, no. 6, pp. 19–27, Nov 2004.

[92] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information Theory, IEEE

Transactions on, vol. 13, no. 1, pp. 21–27, Jan 1967.

143

http://books.google.com/books?id=Br33IRC3PkQC

[93] G. Gates, “The reduced nearest neighbor rule (corresp.),” Information Theory, IEEE Trans-

actions on, vol. 18, no. 3, pp. 431 – 433, 1972.

[94] P. Hart, “The condensed nearest neighbor rule (corresp.),” Information Theory, IEEE Trans-

actions on, vol. 14, no. 3, pp. 515 – 516, may 1968.

[95] B. Dasarathy, “Minimal consistent set (mcs) identification for optimal nearest neighbor deci-

sion systems design,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 24, no. 3,

pp. 511–517, Mar 1994.

[96] J. A. Olvera-López, J. A. Carrasco-Ochoa, and J. F. Martı́nez-Trinidad, “A new fast

prototype selection method based on clustering,” Pattern Analysis and Applications,

vol. 13, no. 2, pp. 131–141, 2010. [Online]. Available: http://dx.doi.org/10.1007/

s10044-008-0142-x

[97] D. Aha, D. Kibler, and M. Albert, “Instance-Based Learning Algorithms,” Machine Learn-

ing, vol. 6, no. 1, pp. 37–66, JAN 1991.

[98] J. Bezdek and L. Kuncheva, “Nearest prototype classifier designs: An experimental study,”

International Journal of Intelligent Systems, vol. 16, no. 12, pp. 1445–1473, DEC 2001.

[99] H. Brighton and C. Mellish, “Advances in instance selection for instance-based learning

algorithms,” Data Mining and Knowledge Discovery, vol. 6, no. 2, pp. 153–172, APR 2002.

[100] J. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms as instance selection

for data reduction in KDD: An experimental study,” IEEE Transactions on Evolutionary

Computation, vol. 7, no. 6, pp. 561–575, DEC 2003.

[101] C.-H. Chou, B.-H. Kuo, and F. Chang, “The generalized condensed nearest neighbor rule

as a data reduction method.” Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, pp. 556 – 559, sep 2006.

144

http://dx.doi.org/10.1007/s10044-008-0142-x
http://dx.doi.org/10.1007/s10044-008-0142-x

[102] S. Garcı́a, J. R. Cano, and F. Herrera, “A memetic algorithm for evolutionary prototype

selection: A scaling up approach,” Pattern Recognition, vol. 41, no. 8, pp. 2693–2709,

2008.

[103] A. Lumini and L. Nanni, “A clustering method for automatic biometric template selection,”

Pattern Recognition, vol. 39, no. 3, pp. 495–497, MAR 2006.

[104] B. Narayan, C. Murthy, and S. Pal, “Maxdiff kd-trees for data condensation,” Pattern Recog-

nition Letters, vol. 27, no. 3, pp. 187–200, FEB 2006.

[105] J. Arturo Olvera-López, J. Ariel Carrasco-Ochoa, and J. Francisco Martı́nez-Trinidad, “Ob-

ject selection based on clustering and border objects,” in Computer Recognition Systems 2,

ser. Advances in Intelligent and Soft Computing, M. Kurzynski, E. Puchala, M. Wozniak,

and A. Zolnierek, Eds. Springer Berlin / Heidelberg, 2007, vol. 45, pp. 27–34.

[106] J. A. Olvera-López, J. A. Carrasco-Ochoa, and J. F. Martı́nez-Trinidad, “Prototype selection

via prototype relevance,” in Progress in Pattern Recognition, Image Analysis and Applica-

tions, ser. Lecture Notes in Computer Science, J. Ruiz-Shulcloper and W. Kropatsch, Eds.

Springer Berlin / Heidelberg, 2008, vol. 5197, pp. 153–160.

[107] T. Raicharoen and C. Lursinsap, “A divide-and-conquer approach to the pairwise opposite

class-nearest neighbor (POC-NN) algorithm,” Pattern Recognition Letters, vol. 26, no. 10,

pp. 1554–1567, JUL 15 2005.

[108] J. Riquelme, J. Aguilar-Ruiz, and M. Toro, “Finding representative patterns with ordered

projections,” Pattern Recognition, vol. 36, no. 4, pp. 1009–1018, APR 2003.

[109] G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour, “An algorithm for a selective nearest

neighbor decision rule (corresp.),” Information Theory, IEEE Transactions on, vol. 21, no. 6,

pp. 665 – 669, nov 1975.

145

[110] A. Srisawat, T. Phienthrakul, and B. Kijsirikul, “Sv-knnc: An algorithm for

improving the efficiency of k-nearest neighbor,” in PRICAI 2006: Trends in Artificial

Intelligence, ser. Lecture Notes in Computer Science, Q. Yang and G. Webb, Eds.

Springer Berlin Heidelberg, 2006, vol. 4099, pp. 975–979. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-36668-3 117

[111] I. TOMEK, “Experiment with Edited Nearest-Neighbor Rule,” IEEE TRANSACTIONS ON

SYSTEMS MAN AND CYBERNETICS, vol. 6, no. 6, pp. 448–452, 1976.

[112] C. Veenman and M. Reinders, “The nearest subclass classifier: A compromise between the

nearest mean and nearest neighbor classifier,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 27, no. 9, pp. 1417–1429, SEP 2005.

[113] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using edited data,” Systems,

Man and Cybernetics, IEEE Transactions on, vol. 2, no. 3, pp. 408 – 421, jul 1972.

[114] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Martı́nez-Trinidad, and J. Kittler, “A review

of instance selection methods,” Artificial Intelligence Review, vol. 34, no. 2, pp. 133–143,

2010.

[115] V. S. Devi and M. N. Murty, “An incremental prototype set building tech-

nique,” Pattern Recognition, vol. 35, no. 2, pp. 505 – 513, 2002. [On-

line]. Available: http://www.sciencedirect.com/science/article/B6V14-44HT45G-K/2/

a27d8d6d4a216b97974cfa5cd7947419

[116] Y. Li, M. Xie, and T. Goh, “A study of project selection and feature weighting for analogy

based software cost estimation,” Journal of Systems and Software, vol. 82, pp. 241–252,

2009.

146

http://dx.doi.org/10.1007/978-3-540-36668-3_117
http://www.sciencedirect.com/science/article/B6V14-44HT45G-K/2/a27d8d6d4a216b97974cfa5cd7947419
http://www.sciencedirect.com/science/article/B6V14-44HT45G-K/2/a27d8d6d4a216b97974cfa5cd7947419

[117] J. Bezdek, T. Reichherzer, G. Lim, and Y. Attikiouzel, “Multiple-prototype classifier de-

sign,” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transac-

tions on, vol. 28, no. 1, pp. 67–79, Feb 1998.

[118] J. R. Cano, F. Herrera, and M. Lozano, “Stratification for scaling up evolutionary

prototype selection,” Pattern Recognition Letters, vol. 26, no. 7, pp. 953 – 963, 2005.

[Online]. Available: http://www.sciencedirect.com/science/article/B6V15-4DTTHDM-1/2/

1c98d61e651bcd792d23fce1360b91c9

[119] U. Garain, “Prototype reduction using an artificial immune model,” Pattern Anal. Appl.,

vol. 11, no. 3-4, pp. 353–363, 2008.

[120] F. Peters, “Cliff: Finding prototypes for nearest neighbor algorithms with application

to forensic trace evidence,” Master’s thesis, Lane Department of Computer Science

and Electrical Engineering, West Virginia University, 2010, copyright ProQuest, UMI

Dissertations Publishing 2010. [Online]. Available: http://search.proquest.com/docview/

859578571?accountid=2837

[121] O. Jalali, T. Menzies, and M. Feather, “Optimizing requirements decisions with keys,” in

Proceedings of the PROMISE 2008 Workshop (ICSE), 2008.

[122] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent survey,” GESTS

International Transactions on Computer Science and Engineering, vol. 32, no. 1, pp. 47–58,

2006.

[123] C. Faloutsos and K.-I. Lin, “Fastmap: A fast algorithm for indexing, data-mining and

visualization of traditional and multimedia datasets,” SIGMOD Rec., vol. 24, no. 2, pp.

163–174, May 1995. [Online]. Available: http://doi.acm.org/10.1145/568271.223812

147

http://www.sciencedirect.com/science/article/B6V15-4DTTHDM-1/2/1c98d61e651bcd792d23fce1360b91c9
http://www.sciencedirect.com/science/article/B6V15-4DTTHDM-1/2/1c98d61e651bcd792d23fce1360b91c9
http://search.proquest.com/docview/859578571?accountid=2837
http://search.proquest.com/docview/859578571?accountid=2837
http://doi.acm.org/10.1145/568271.223812

[124] S. K. Smit and A. Eiben, “Comparing parameter tuning methods for evolutionary algo-

rithms,” in Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, 2009, pp. 399–

406.

[125] S. Smit and A. Eiben, “Parameter tuning of evolutionary algorithms: Generalist vs. spe-

cialist,” in Applications of Evolutionary Computation, ser. Lecture Notes in Computer Sci-

ence, C. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekrt, A. Esparcia-Alcazar, C.-K. Goh,

J. Merelo, F. Neri, M. Preu, J. Togelius, and G. N. Yannakakis, Eds. Springer Berlin

Heidelberg, 2010, vol. 6024, pp. 542–551.

[126] A. Eiben and S. Smit, “Parameter tuning for configuring and analyzing evolutionary algo-

rithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 19 – 31, 2011.

[127] M. Harman and B. Jones, “Search-based software engineering,” Information and Software

Technology, vol. 43, pp. 833–839, December 2001.

[128] M. Harman, “The current state and future of search based software engineering,” in 2007

Future of Software Engineering, ser. FOSE ’07. Washington, DC, USA: IEEE Computer

Society, 2007, pp. 342–357. [Online]. Available: http://dx.doi.org/10.1109/FOSE.2007.29

[129] T. Menzies, O. Elrawas, J. Hihn, M. Feathear, B. Boehm, and R. Madachy, “The business

case for automated software engineerng,” in ASE ’07: Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering. New York, NY,

USA: ACM, 2007, pp. 303–312.

[130] Y. Yang and G. Webb, “Weighted proportional k-interval discretization for naive-bayes clas-

sifiers,” in Proceedings of the 7th Pacific-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD 2003), 2003.

148

http://dx.doi.org/10.1109/FOSE.2007.29

[131] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo, “Recovering traceabil-

ity links between code and documentation,” IEEE Transactions on Software Engineering,

vol. 28, no. 10, pp. 970–983, October 2002.

[132] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance feedback in ir-based

concept location,” in IEEE ICSM’09, 2009.

[133] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate link generation for

requirements tracing: The study of methods,” IEEE Trans. Software Eng, vol. 32, no. 1, pp.

4–19, 2006. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/TSE.2006.3

[134] A. Marcus, J. I. Maletic, and A. Sergeyev, “Recovery of traceability links between soft-

ware documentation and source code,” International Journal of Software Engineering and

Knowledge Engineering, pp. 811–836, 2005.

[135] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich, “Feature loca-

tion using probabilistic ranking of methods based on execution scenarios and information

retrieval,” Software Engineering, IEEE Transactions on, vol. 33, no. 6, pp. 420–432, 2007.

[136] A. Arcuri and G. Fraser, “On parameter tuning in search based software engineering,” in

Search Based Software Engineering, ser. Lecture Notes in Computer Science, M. Cohen

and M. Cinnide, Eds. Springer Berlin Heidelberg, 2011, vol. 6956, pp. 33–47.

[137] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” Evolutionary

Computation, IEEE Transactions on, vol. 1, no. 1, pp. 67–82, 1997.

[138] C. MacNeill, “Apache ant,” may 2014. [Online]. Available: http://ant.apache.org/

[139] C. Ibsen and J. Anstey, Camel in action. Manning Publications Co., 2010.

[140] “Apache ivy.” [Online]. Available: http://ant.apache.org/ivy/

149

http://doi.ieeecomputersociety.org/10.1109/TSE.2006.3
http://ant.apache.org/
http://ant.apache.org/ivy/

[141] M. Jureczko, “Open source project descriptions,” 2011. [Online]. Available: http:

//madeyski.e-informatyka.pl/download/JureczkoMadeyskiOpenSourceProjects.pdf

[142] “Apache lucene - welcome to apache lucene.” [Online]. Available: http://lucene.apache.org/

[143] “Apache poi - the java api for microsoft documents.” [Online]. Available: http:

//poi.apache.org/

[144] “Apache synapse - the lightweight esb,” 2012. [Online]. Available: http://synapse.apache.

org/

[145] “Apache velocity site - the apache velocity project,” nov 2010. [Online]. Available:

http://velocity.apache.org/

[146] “Xalan-java version 2.7.1.” [Online]. Available: http://xml.apache.org/xalan-j/

[147] “Xerces java parser readme.” [Online]. Available: http://xerces.apache.org/xerces-j/

[148] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka

data mining software: an update,” SIGKDD Explor. Newsl., vol. 11, pp. 10–18, November

2009.

[149] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems with precision: A

response to “comments on ‘data mining static code attributes to learn defect predictors’”,”

IEEE Trans. Softw. Eng., vol. 33, no. 9, pp. 637–640, Sep. 2007.

[150] B.-C. Chen, K. Lefevre, and R. Ramakrishnan, “Privacy Skyline : Privacy with Multidi-

mensional Adversarial Knowledge,” in Organization, ser. VLDB ’07. VLDB Endowment,

2007, pp. 770–781.

[151] L. Madeyski and M. Jureczko, “Which process metrics can significantly improve

defect prediction models? an empirical study,” 2014. [Online]. Available: http:

//madeyski.e-informatyka.pl/download/Madeyski14SQJ.pdf

150

http://madeyski.e-informatyka.pl/download/JureczkoMadeyskiOpenSourceProjects.pdf
http://madeyski.e-informatyka.pl/download/JureczkoMadeyskiOpenSourceProjects.pdf
http://lucene.apache.org/
http://poi.apache.org/
http://poi.apache.org/
http://synapse.apache.org/
http://synapse.apache.org/
http://velocity.apache.org/
http://xml.apache.org/xalan-j/
http://xerces.apache.org/xerces-j/
http://madeyski.e-informatyka.pl/download/Madeyski14SQJ.pdf
http://madeyski.e-informatyka.pl/download/Madeyski14SQJ.pdf

[152] R. Feldt and A. Magizinius, “Validity threats in empirical software engineering research

- an initial survey,” in Proc. of the Int’l Conf. on Software Engineering and Knowledge

Engineering, 2010, pp. 374–379.

[153] E. Gregersen, The Britannica Guide to Statistics and Probability, ser. Britannica guide

series. Britannica Educational Pub., 2010. [Online]. Available: http://books.google.ie/

books?id=CI111lrB6vsC

151

http://books.google.ie/books?id=CI111lrB6vsC
http://books.google.ie/books?id=CI111lrB6vsC

	LACE: Supporting Privacy-Preserving Data Sharing in Transfer Defect Learning
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	LACE: Supporting Privacy-Preserving Data Sharing in Transfer Defect Learning
	Thesis Statement
	Contributions and Outline
	Minimizing and Obfuscating Data
	Private Multiparty Data Sharing
	Publications Supporting Thesis

	Privacy Preserving Data Publishing
	Privacy Threats
	Privacy Models
	Privacy Techniques
	Generalization and Suppression
	Bucketization
	Anatomization and permutation
	Perturbation
	Output Perturbation

	Privacy Algorithms
	Datafly for k-anonymity
	Incognito for k-anonymity
	PriestPrivacy for Data Swapping

	Evaluating Privacy
	Privacy Metrics

	Privacy for Testing and Debugging
	Summary

	Software Defect Prediction
	Introduction
	Software Defect Prediction Economics
	Static Code Defect Prediction
	CPDP = Cross Project Defect Prediction
	Measuring the Feasibility of CPDP
	Transfer Learning
	Instance-Transfer

	Open-Source Predicts for Projects
	Methodology
	Research Method
	Evaluation

	Summary

	LACE Design and Operation
	Introduction
	LACE
	Minimization with CLIFF
	Obfuscation with MORPH
	Illustrative Example of CLIFF&MORPH
	LeaF: Leader Follower Algorithm

	How are privatized data candidates evaluated?
	IPR: Increased Privacy Ratio
	Upper and Lower Bounds on IPR
	Query Generator
	IPR Evaluation

	Summary

	Experiment 1: Comparison of CLIFF&MORPH with other Privacy Algorithms
	Introduction
	Experimental Setup
	Data
	Benchmark Privacy Algorithms
	Naive Bayes
	Performance Evaluation

	Analysis 1. Does CLIFF&MORPH provide better balance between privacy and utility than other state-of-the-art privacy algorithms?
	Design
	Results and Discussion

	Analysis 2. How hard is parameter tuning for privacy algorithms?
	Design
	Results
	Discussion

	Analysis 3. Are the results for parameter tuning for privacy algorithms useful for reducing the search budget?
	Design
	Results
	Discussion

	Related Work
	Conclusions

	Experiment 2: LACE for Private Multiparty Data Sharing
	Introduction
	Experimental Setup
	Data
	Performance Evaluation

	Experimental Results
	Privacy
	Utility
	Comparison to Prior Results

	Summary

	Threats to Validity
	Alleviated Threats
	External Validity
	Construct Validity
	Internal Validity

	Conclusions and Future Work
	Summary of Results
	Research Impacts
	Impact on Privacy metrics
	Impact on Cross Project Defect Prediction
	Impact on Private Multiparty Data Sharing

	Future Work
	Final Remarks

	Bibliography

