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Abstract

Machine learning knowledge representations, such as decision trees, are often incomprehensible to
humans. They can also contain errors specific to the representation type and the data used to
generate them. By combining larger, less comprehensible decision trees, it is possible to increase
their accuracy as an ensemble compared to the best individual tree. The thesis examines an ensem-
ble learning technique and presents a unique knowledge elicitation technique which produces an
ordered ranking of attributes by their importance in leading to more desirable classifications. The
technique compares full branches of decision trees, finding the set difference of shared attributes.
The combination of this information from all ensemble members is used to build an importance
table which allows attributes to be ranked ordinally and by relative magnitude. A case study uti-
lizing this method is discussed and its results are presented and summarized.

by Erik Sinsel
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Definitions

tree : connected, undirected, acyclic graph

depth of a node : the number of edges in the path from the root to the node

height of a tree : the maximum depth in the tree

full binary tree : a tree where all but one node have degree either one or three, and
exactly one node has degree two (the root)

complete binary tree : full binary tree where a node at level k may have children only if
all nodes at level k − 1 already have two children

path : the ordered list of nodes in a traversal from the root node to the
destination node, including the root node

n : the number of nodes in a tree

l : the number of terminal leaf nodes in a tree

h : the height of the tree

Ri : the ith rule of the tree, which is a path where tests at nodes are
conjuncted

|x| : the arity of set-representable variable x

A : the set of all attributes present in the model examined

Va : the set of all valid values for attribute a ∈ A

viii



Chapter 1

The Problem

With ever-increasing computer processing power and data storage capabilities comes an ever-

increasing amount of stored data to process [26]. From catalogues of deep-space objects to consumer

databases, current data warehouses are designed to hold on the order of many terabytes of data. For

example, the NASA Earth Observing System of satellites and observing instruments is projected

to generate some 50 terabytes of data per hour when fully employed [13]. Traditional methods

of data analysis can be overwhelmed by such massive amounts of data. In addition, this data is

expressed at such a low level of of knowledge that it is not directly actionable [32].

The process known as knowledge discovery in databases (KDD) has been devised and enumer-

ated specifically to address this problem of analyzing such large amounts of data, which has been

described as “the most nagging and fundamental problem of KDD” [34]. KDD involves a process

which integrates human subjectivity with computer-assisted data mining techniques in order to

transform data into knowledge which is both useful and understandable.

1
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Definition 1 “Knowledge discovery in databases is the non-trivial process of identifying valid,

novel, potentially useful, and ultimately understandable patterns in data.” [13]

The last three components of the KDD process are of particular interest. Novel patterns are those

which are interesting to the user. Findings which simply reinforce a strongly held prior belief may

be of much less interest than those which represent previously unknown or under-represented re-

lationships. Useful patterns are those which are actionable, or capable of being implemented in a

real-world situation. A strong relationship between a desired outcome and a fixed attribute is not

a particularly useful discovery. Usefulness could be discussed in terms of the utility given by the

discovered knowledge. Finally, an understandable pattern is one which is expressed in such a way

as to be well understood by the human end user who may not be a KDD expert.

Within this KDD process, the step which provides an enumeration of patterns discovered over

the data is called data mining (DM). This step may be constrained by processing limitations, and

produces some concept description capable either of prediction or classification [13, pp. 12-13].

While prediction involves using existing data to predict values in future data, the classification

aspect of data mining considered here is a function of mapping the feature vectors of data onto

output classification classes. A feature vector includes a set of descriptive attributes and their in-

stance values, while the output classification is some discrete description class to which the instance

feature vector belongs. An example may be the classification of riskiness of health insurance policy

holders, based on a feature vector which contains such attributes as age, weight, cigarette smoking,

occupation, income, education, and so on. For each instance of policy-holder data, there would be

a risk classification.
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The input space X of the data mining algorithm is the feature space of all possible combina-

tions of attribute values, where X = A × V , the cross product of the attributes and their values,

and each x ∈ X is a feature vector. If the output space is C, the set of all possible classifications,

then the goal of the data mining step of the KDD process is then to develop a hypothesis which is

a mapping of feature vectors onto classifications, h = X → C, and which is expressed as some con-

cept description, such as a decision tree. The set H of all possible hypotheses is the hypothesis space.

The hypothesis creation step in the knowledge elicitation process is circumscribed by the charac-

teristics of the particular data mining algorithm used, and by its form of knowledge representation.

It is this circumscription of the knowledge representation which the author addresses through the

combination of multiple hypotheses h from within H in an attempt to provide a closer approxima-

tion of the underlying concept.

As Fayyad notes, the resulting concept descriptions provided by the data mining step of the KDD

process may not, on their own, satisfy our definition of the KDD process in that their descriptions

may not provide particularly useful or interesting knowledge [13]. Useful knowledge is that which

is actionable, i.e. it allows actions to be taken by the data user within the particular domain in

question, using the extracted knowledge in an attempt to produce the desired output classification.

For example, the knowledge that reducing cholesterol in the blood tends to reduce health insurance

risk is actionable. Interesting knowledge is that which is additive from the point of view of the

end user. What is interesting is that the knowledge is new to the end user, and what is useful is

that the knowledge provides a set of actionable changes which may be taken to gain the desired
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outcome. Taken together, these two aspects of knowledge provide domain utility to the end user

by providing a strategy for potentially reducing health insurance costs (not to mention perhaps

avoiding serious health complications).

While there are several methods to perform the data mining step of the KDD process, the thesis will

focus primarily on the popular decision tree (DT) method. Standard decision trees utilize univari-

ate node splits on features within the feature vector, ending with leaf nodes which are labeled with

an output classification. The tree may then be viewed as a composition of rules given in the form

of conjunctions in propositional logic, leading to some implied classification. The tree structure is

thus a concept simplification more easily absorbed by human minds than a list of conjunctions of

rules in propositional logic. This becomes especially important as the users of KDD are increas-

ingly becoming those who are charged with making operational decisions but who are not KDD

experts [34]. KDD literature also warns against directly using information obtained through the

use of a data mining methodology without involving a “human in the loop” to provide necessary

interpretation of the results [13] [33, pp. 14] . Decision trees are a form of knowledge representation

which help satisfy this human-interaction requirement by presenting knowledge in a form readily

absorbed by human users.

While many machine learning packages, including some decision tree inducers like Ross Quin-

lan’s C4.5 program, can generate decision rules in the simple to understand format of propositional

logic, these rules have limited usefulness in a proactive decision making context. Trees and rules are

useful for answering instance-based questions such as “Given these values for my parameters, what

outcome is most likely to occur?” However, they are inadequate to answer such directive proactive
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questions as “What parameters are most important for me to focus on if I wish to move from

outcome A to more desirable outcome B?” This aspect of automated knowledge learners reduces

their utility in resource allocation decision making where planning a future course of action is of

paramount importance. This loss of utility could be avoided by providing a method of presenting

the discovered knowledge in such a way that the end-user can utilize the knowledge as a whole in

a proactive decision making process, rather than simply as a descriptive or single-instance classifi-

cation.

In general, decision trees learned by such machine learners as C4.5 become more complex as they

become more accurate, a likelihood which increases with the complexity of the underlying rela-

tionship to be modeled [36]. This is seen by considering that given a particular representation

with a particular error rate, increasing the accuracy necessarily means producing a structure which

misclassifies fewer cases. This can be done either by creating a new structure with better accuracy,

or more commonly by simply creating a new branch in the tree which correctly classifies one or

more previously misclassified cases. This latter case provides an increase in accuracy paid for with

an increase in representation complexity. Thus, with decision trees, there is what the author refers

to as the accuracy-complexity constraint in the knowledge representation.

Definition 2 Accuracy-complexity constraint - The typical direct relationship in decision tree clas-

sifiers between predictive accuracy and tree complexity.

While more accurate representations may also generally imply more complexity, human beings

generally have more difficulty understanding knowledge representations which are more complex,
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and less difficulty understanding less complex ones. According to Ross Quinlan, author of the

C4.5 machine learner, these more complex trees are “suspect” as an explanation of the underlying

relationship [29]. Rather than relying solely on predictive accuracy, Quinlan seems to imply that

for a model to adequately explain a relationship, a human must be capable of understanding that

knowledge representation. This requirement leads to what the author refers to as the complexity-

understandability constraint on knowledge representations.

Definition 3 Complexity-understandability constraint - The inverse relationship in decision tree

classifiers between tree complexity and human understandability.

Taken transitively, the accuracy-complexity constraint and the complexity-understandability con-

straint lead to an accuracy-understandability constraint.

Definition 4 Accuracy-understandability constraint - The more accurate the decision trees be-

come, the less understandable they are likely to be.

Because of this accuracy-complexity constraint when modeling complex relationships within highly

dimensional feature sets, DT’s may often be unable to satisfy the definition of a KDD process. The

presence of dozens of conjunctions of sometimes-overlapping, sometimes-disjoint feature sets results

in a concept description incapable of being either understandable or actionable [31]. This difficulty

is present precisely due to the requirement of involving the human KDD user in the modeling

process, without which trees could be permitted to grow sufficiently complex to achieve the desired
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accuracy. A solution to this problem could thus lie in the development of methods which reduce

the complexity of the knowledge representation while maintaining adequate accuracy, resulting in

a representation which is understandable enough to the human user to provide actionable analysis.

In this thesis, we will present a unique method for addressing this accuracy-understandibility con-

straint on the KDD process. The approach first involves creating an ensemble of decision trees.

Each tree is then converted into a disjunction of decision rules which are the branches of the tree.

Rules with classifications differing by two or more ordinal positions are compared according to

shared attributes. When two rules contain the same attribute, the set of values of the rule with the

worse classification is subtracted from the set of values from the rule with the better classification.

This set of values in the better rule which are not in the worse rule, for all attributes existing in

both rules is then added to a frequency table, called the importance table. Each tree’s importance

table is then added to a master ensemble importance table. This table provides a relative measure

of the importance of each attribute’s value in leading to classifications with a better outcome from

a rule with a worse outcome. A case study will be presented which utilize this method, and its

results will be presented.



Chapter 2

Related Work

2.1 Machine Learning and Data Mining

Machine learning (ML) from data is a discipline primarily concerned with developing computer-

intensive techniques which aid in the task of building knowledge representations which, given a set

of example cases with associated classifications will correctly map unseen cases to those classes.

This inductive learning from already classified examples is referred to in ML literature as supervised

learning [30]. Data Mining (DM) is also often used synonymously with machine learning but ML

subsumes DM as ML is the general task of learning problem solving strategies given some input

data. For example, solving a chess problem using a computer learning algorithm would be con-

sidered machine learning, while not falling within the domain of data mining. Data mining, while

often used synonymously with Knowledge Discovery in Databases (KDD) is actually a methodology

which is utilized within the overall KDD process [24]. The KDD process will be covered in more

detail in Section 2.3.

8
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Machine learning algorithms can create classifiers in many different forms, including decision trees

and rules, Bayes networks, and artificial neural networks (ANNs) as the most popular. Other pop-

ular methods include nonlinear regression, example-based reasoning, inductive logic programming,

as well as other approaches. While algorithms like Bayes networks and ANNs can sometimes con-

sistently outperform induced decision trees, they both require specific knowledge on the part of

the user which would violate the problem statement considered in Section 1. For example, Bayes

network learning requires estimating the posterior probabilities. It also assumes that features are

independent of one another, something which may not be practical beyond an academic problem

formulation. ANNs require training to customize the algorithm to a particular data set, with pos-

sible required modifications to such things as the internal weightings. In essence, both approaches

require modification or training before being deployed in a real-world situation.

As decision trees are a popular approach for decision combination in the ensemble learning ap-

proach utilized here, and decision tree induction problems generally require little specific KDD

training on the part of the user, the research presented here will focus on decision trees. However,

the approach is not limited to this knowledge representation, and can be used with any technique

which allows the knowledge to be translated into the intermediate representation of decision rules

involving feature ranges and ordinal or categorical outcome classes.
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2.2 Decision Trees

A decision tree (DT) is a knowledge representation utilizing a simple binary decision test branching

formalism which lacks the power of some more sophisticated representations, yet is still capable

of powerful practical problem solving [29]. In the world of machine learning, a family of deci-

sion tree learners exists whose members are referred to as being Top Down Induction of Decision

Tree (TDIDT) algorithms [29, pp. 350]. The TDIDT family is characterized primarily by a non-

incremental induction which utilizes frequency information in the training samples yet does not

consider the order in which samples are given. The TDIDT tool is supplied with a training set

of cases where membership in some classification is known, and then the task of the induction

algorithm is to develop a tree-based decision-test classification scheme which allows prediction of a

sample case’s class by finding a tree branch consistent with the case’s feature vector.

An example training set is given in Figure 2.1. This data set consists of four attributes and a

single categorical classification. The attributes represent some weather conditions important when

deciding whether to play golf, and the classification is then “N” for “no play”, and “P” for “play”.

In a decision tree, each non-leaf node represents a binary test on an attribute a with child branches

representing certain mutually exclusive subsets of Va, the set of all valid values for a. Each leaf

node contains a classification c which is predicted given the conjunction of the internal nodes along

the full path to that leaf from the root of the tree. The decision tree can then be thought of as a

disjunction of branches, where each leaf node represents the consequent implied by the satisfaction

of the conjunction of all tests in the branch connecting the root node to that particular leaf node.
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No. Attributes Class
Outlook Temperature Humidity Windy

1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P
10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

Table 2.1: A sample training set. [29]

A possible decision tree generated from the data of Figure 2.1 is shown in Figure 2.1. Quinlan’s

ID3-based TDIDT machine learners, including C4.5, produce such decision trees by utilizing an

estimate of information gained by attribute tests at each node [29]. An initial window subset of the

data is selected and the attribute test found to contribute the most information to the classification

task is selected as the root, and then this process is repeated for the subsequent branches of the

current node as the window is widened to eventually include the entire training set. Algorithms in

the ID3 family are not designed to seek an optimal decision tree, but rather are designed to accept

large training sets with a large number of attributes and produce a “reasonably good” decision tree

without extensive computation requirements [29, pp. 352].

A feature vector consists of a conjunction of attribute-value tuples (a, v) where a ∈ A, the set of all

valid attributes, and v ⊆ VA, the set of all valid values for attribute A. Each branch of a decision

tree may be thought of as being a decision rule, consisting of a feature vector and c ∈ C, the
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Figure 2.1: Graphical Representation of a Decision Tree [29, pp. 352]

implied classification selected from the set of all valid classifications. A decision rule Ri has the

following general form:

Ri = a1 ∈ v1 ∧ a2 ∈ v2 ∧ . . . ∧ ak ∈ vk → c (2.1)

where k = |A|, the number of attributes, and no attribute appears in Ri more than once. This

definition symbolizes TREE’s simple disjunctive normal form, discussed in Section 3. A decision

tree T with l leaf nodes then consists of the disjunction of all individual decision rules which

represent its branches:

T = R1 ∨R2 ∨R3 ∨ . . . ∨Rl (2.2)

Given Equation 2.1, the accuracy of a decision rule can be defined as the conditional probability

that c is satisfied if R is satisfied, and then from Equation 2.2 the error of the tree can be defined

as the sum of the errors of the disjuncted rules. The overall actual error rate of a C4.5 decision

tree can then be expressed as the sum of weighted error rates at all of the leaf nodes, as shown in

Equation 2.3:
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E(T ) =
n∑

i=1

(
E(i)
T (i)

× T (i)
T

) =
1
T

n∑
i=1

E(i) (2.3)

where E(i) is the number of erroneously classified cases at node i, T (i) is the total number of cases

classified as belonging at node i, and T is the total number of cases.

Tree error is simply then the total number of incorrectly classified cases divided by the total

number of training cases. At the end of C4.5’s decision tree output is a summary table giving

actual and predicted error rate statistics for the given decision tree. An example from an Expert

COCOMO Case Study tree is given in Figure 2.2.

Evaluation on training data (10000 items):

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate

2069 278( 2.8%) 2055 278( 2.8%) ( 4.1%) <<

Figure 2.2: Sample C4.5 Error Rate Summary Table

The graphical decision tree of Figure 2.1 is shown in C4.5 ASCII text format in Figure 2.3. The

parenthecized values after each leaf node is the accuracy of that particular rule, measured as the

ratio of cases classified correctly by the branch terminating at that leaf node and the number of

cases which were consistent with the branch but did not have the same classification. For example,

“windy = true : N (2.0)” indicates that this rule correctly classified two cases which satisfied

the branch node tests, and there were no cases which satisfied the node tests but did not match

the resulting classification of N.
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outlook = sunny :
| humidity = high : N (4.0/1.0)
| humidity = normal : P (2.0)
outlook = overcast : P (6.0/1.0)
outlook = rain :
| windy = true : N (2.0)
| windy = false : P (3.0)

Figure 2.3: Sample of C4.5 Decision Tree Syntax

Structure in a C4.5 decision tree is indicated by both depth and indentation level, and is recursive.

Tree traversal is done in a typical “depth-first” fashion until a leaf node is reached, at which point

the recursive descent stops and begins again at the last node visited which has untraversed edges.

In Figure 2.3, a horizontal bar followed by three spaces (“| ”) indicates a level of depth. Therefore,

humidity = high is located at d = 1. Conversion of C4.5 ASCII trees to a linked list structure is

covered in more detail in Section 3.

The decision tree in Figures 2.1 and 2.3 could be rewritten as decision rules in the form of Equa-

tion 2.1:

R1 : outlook = sunny ∧ humidity = high → N
R2 : outlook = sunny ∧ humidity = normal → P
R3 : outlook = overcast → P
R4 : outlook = rain ∧ windy = true → N
R5 : outlook = rain ∧ windy = false → P

Figure 2.4: Decision Rules Derived from Figure 2.3

Decision tree induction is typically unstable, in that the generated classifier will likely undergo

significant changes due to small changes in the training data used to create it [9]. This means that

ambiguous cases, those which have identical feature vectors but contradictory classifications, and

cases which contain faulty or imprecise measurements referred to as noise in the data, can cause
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errors in the resulting decision tree. Section 3 will present methods which have been devised in

part to address this sensitivity to noise in unstable learning algorithms such as those in the TDIDT

family of machine learners.
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2.3 Knowledge Discovery in Databases

According to Usama Fayyad, the unifying goal of the knowledge discovery in databases (KDD) pro-

cess is extracting knowledge from large databases [13]. The KDD process integrates data mining

(DM) methods in a cycle which begins with data collection and culminates in the interpretation

and use of the elicited knowledge by the end user [13]. While the DM step is generally of most

importance to the academic investigator, the industrial user is concerned with the entire KDD

process, especially with the practical utility of the output [24].

The particular methodologies used in the process can vary with domain and end-user require-

ments, while remaining a component in the overall KDD process. Fayyad provides a more rotund

definition:

“Knowledge discovery in databases is the non-trivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in data.” [13]

The first two components of the definition are fairly straightforward. Valid patterns are simply

those which can classify unseen cases within a desired misclassification rate. Novel patterns are

those which present the user with some new information, or with desired reinforcement for existing

views which lack adequate substantiation. It is important to note that this particular aspect of the

KDD process necessitates human interpretation, and is thus fundamentally subjective. Discovering

a strong covariance between two particular features known to exhibit such behaviors would have

little novelty value.

Potentially useful patterns are those which are would provide utility for the end user [26]. Closely
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related to novelty, utility is derived by being able to implement some change based on the discov-

ered knowledge which would result in achieving some desirable outcome. To continue the example,

a strong covariance between two features which are completely immutable would, regardless of sta-

tistical significance and novelty, be of no utility whatsoever. In other words, a necessary condition

for a pattern to be useful is that it is actionable.

As several authors note, it is essential that the KDD system allow for discrimination between inter-

esting patterns and uninteresting ones, which relies on the goal of the end-user as being a necessary

and beneficial bias within the knowledge discovery process [38] [24]. KDD systems are increasingly

user-oriented systems working interactively with the end-user, as opposed to autonomous decision

making systems [1]. As a result, there are both objective and subjective measures of interesting-

ness. Among the objective measures are standard approaches of classical statistics. The subjective

measures are bifurcated, being measured by their unexpectedness or their actionability.

Unexpectedness is a feature of the descriptive nature of data mining, providing some explana-

tory information, while actionability is a feature of the predictive nature of data mining [31].

Neither of these aspects alone is sufficient to provide useful knowledge. For example, a physician

may find that a particular patient’s blood glucose fluctuations are most influenced by his body

weight. While significant weight loss is an achievable long-term goal, this information is of little

use for short-term avoidance of dangerous levels of blood glucose, as it is not actionable. However,

if the physician finds that late evening carbohydrate intake is the next most significant factor in

avoiding such dangerous situations, and this is new information regarding this particular patient,

then the physician can take the immediate action of prescribing a diet which implements this new
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knowledge. Clearly, unexpected patterns are not useful if not actionable, and actionable patterns

are of little usefulness if they provide only that information which was already known to the user,

and presumably already integrated into the decision framework prior to using the KDD process.

Therefore, in order to be useful, the pattern must be both interesting and actionable.

Understandable patterns are those which are interpretable by a human end-user who may not

be a KDD expert, or who may have no particular expertise in the knowledge representation used

[34]. This has a particular impact on such representations as the weightings in neural networks,

complex statistical data analysis methods, and large decision trees representing dozens of decision

rules. Recent trends in KDD indicate that more emphasis is being placed on an understandable

representation of discovered knowledge, even at the cost of the formal neatness of more logically

provable representations [1] [24]. Kodratoff goes as far as to say that “the results of KDD have to

be directly usable, even if they are particular, imprecise, and unproved” [24]. Recalling the notion

of the utility of the discovered knowledge to the end user, formally precise representations which

are difficult to understand may actually provide less utility than less precise representations which

are much more easily understood and implemented.

While the real-world users of KDD insist that comprehensibility and usability are most impor-

tant, academics insist that predictive accuracy is most important, and all but ignore the other two

aspects of the process [24]. One reason for this, as Kodratoff notes, is that the former two aspects

are largely user-dependent and subjective, while accuracy can be tested empirically and objectively.

Involving a “human in the loop”, however, necessitates some intermediate approach involving both

of these types of measures. Interactive KDD environments support both “human-assisted com-
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puter discovery” as well as “computer-assisted human discovery” [34]. As Uthur notes, the ability

of a human user to understand the learned patterns (if displayed in an easily understood format)

allows for a faster application of the KDD process than either the computer or the human alone

could achieve. According to Uthur, the “complete solution” is an environment which successfully

integrates the KDD process as a support in the analyst’s existing decision framework. In the end,

the final step of the KDD process lies in the strategic use of the knowledge discovered to achieve

some competitive advantage [34] .
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2.4 Ensemble Learning

Combining an ensemble of classifiers produced by machine learning algorithms is a relatively new

technique which has yielded experimental successes in reducing classification errors on unseen cases

[11][15][35][17]. In ensemble learning a group of classifiers, called an ensemble, have their decisions

combined in some way in an attempt to provide better classification on new cases than any ex-

pected individual classifier would produce alone [10][11][15][20][35][36]. When the classifiers used

are decision trees, this ensemble is often referred to as a decision forest [27].

Ensemble learning is a two-stage process, consisting of the generation of multiple classifiers per-

haps with some manipulation of the data prior to training, followed by the application of some

combination function to combine the classifications of the ensemble of classifiers. Ho categorizes

ensemble combination techniques as being either decision optimization or coverage optimization

techniques [20]. In decision optimization, a select group of highly specialized classifiers are used

to attempt to find an optimal combination of their decisions. By contrast, coverage optimization

is characterized by the use of complementary generic classifiers in an attempt to provide sufficient

coverage of the hypothesis space to provide an optimal classification. As discussed in Section 1,

coverage optimization involves the combination of multiple hypotheses h ∈ H.
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Dietterich argues that there are three reasons why good ensembles can be created [10]:

Statistical ML involves searching hypothesis space H for an approximation hi of the true classifi-

cation function h∗. If there is little training data relative to a large hypothesis space H, then

it may be difficult for any particular hi to closely approximate h∗. This is an effect of the

curse of dimensionality, which refers to the exponential growth in data required to estimate

h relative to the number of variables involved [3, pp. 94].

Computational Finding optimal decision trees is an NP-hard problem [8]. Even in cases where the

statistical problem is overcome by a relative wealth of data there is great difficulty for current

algorithms to find an optimal solution, requiring significant computing resources compared

to the creation of an ensemble of close approximations. In addition, many ML algorithms

may get stuck in a local optimum, and the use of ensembles of approximations may allow the

algorithm to closer approximate h∗ than it could achieve seeking an optimal solution [15].

Representational The true model may not be representable through traditional ML concept

descriptions, even in cases where the previous two barriers are surmounted. In ensemble

learning, the output of the classification algorithm can be seen as mapping the data to an

intermediate space, over which the combination algorithm operates to make the final decision

[11]. If the problem, or data used, does not allow any particular classifier to provide a

sufficiently close approximation, it is possible that the combination of several nearby classifiers

can more closely approximate the true decision function than would be expected by the

selection of a single classifier.

Finally, the possible reduction in classification errors provides perhaps the strongest justification

for the use of ensemble learning in these cases where it is appropriate. If the errors made by the
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individual classifiers used are relatively independent, and their individual error rates are on average

less than 50%, then their combination can result in a lower error rate in classifying new cases than

the best individual classifier in the ensemble.

2.4.1 Generating Ensembles

In order to provide sufficiently generalized coverage of the hypothesis space to address the repre-

sentational limitation of single classifiers, ensembles are created, generally using some variation in

the type or amount of data which is used as input to the classifier algorithm. The intent of this

manipulation is to allow the use of a single data set to generate multiple classifiers which vary

sufficiently in the types of errors they make. Typically this is achieved either by restricting which

cases are selected for input, or by selecting a subset of the full attribute set A onto which each case

in the data set is projected before being used as input. Ho refers to the former method of varying

particular cases selected as training set subsampling, while referring to the latter method which he

pioneered as the random subspace method [19].

Bootstrapping is a training set subsampling technique which seeks to vary the particular cases

selected as input to the classifier generator. Boostrapping, also often referred to as bagging for

Bootstrap AGGregatING, involves pseudorandom sampling with replacement possibly up to a

training set size equal to the size of the full data set [10]. Through bagging it is hoped that by

varying the cases which are excluded from the training set, the classifiers produced will exhibit

sufficiently different errors to allow mutually complementary combination. Even slight changes in

the data set used as input can often cause classification differences in the resulting classifiers created

with unstable learning algorithms. Data set manipulation is a technique found to work well with
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such unstable learning algorithms [15][10]. Duin has found in his ensemble learning research that

data set manipulation with the same classifier produced a more accurate ensemble than using the

same data set with different classifier algorithms [11]. Wang has also found that in constructing

neural net classifiers, such manipulations of the input data set produced more performance im-

provement than perterbations of other values such as weightings or learning rates [35].

In Ho’s random subspace method a particular number of features is selected (Ho chooses half

of the total, selected pseudrandomly) and all cases are projected onto this feature subspace. The

resulting data set is then used as input to C4.5 in order to produce a single decision tree classifier.

This process is then repeated to produce an ensemble of decision trees, each classifier produced

using a pseudorandomly selected feature subspace. Fischer also utilized Ho’s random subspace

method and found that this technique outperformed both similar ensembles with unmodified data

sets and the single best classifier [15].

2.4.2 Combination Techniques

Ensemble combination can be effective provided that individual classifiers have less than 50% error

rates, and that the classifiers tend to make diverse errors [17], meaning that their errors should

be relatively independent. Classifiers with higher than 50% error will simply propagate their er-

rors when combined, and classifiers making the same errors, regardless of error rate, will reinforce

those erroneous classifications in direct correlation with the number of classifiers containing the

same error. For this reason it may be beneficial to combine classifiers of multiple types, such as

decision trees and neural networks, using a combination method such as majority vote, or simply

use multiple algorithms which generate the same type of classifier.
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While multiple classifier types can be combined, such as decision trees and neural networks, it

is necessary to normalize their classification outputs before they can be combined [11]. For exam-

ple, a continuous-range classifier may require mapping into a discrete categorical space to permit

combination with other categorical classifiers. As mentioned earlier, Duin [11] found that modifica-

tions to the input data set used as input to the same classification algorithm to produce an ensemble

outperformed using the same data set as input to multiple algorithms, therefore the author has

chosen to restrict his investigation to the simpler method of combining the results from the same

classification algorithm.

Duin presents 3 classes of combination [11]:

1) Parallel combining where the same classification algorithm is applied to different feature sets and

then combined with some single combination rule. The different feature sets typically represent

wholly different types of data, such as sound and vision, and are not merely subsets of an original

feature set.

2) Stacked combining where the classifiers are produced over the same feature space but may

be of different types (e.g. neural nets and decision trees).

3) Combining weak classifiers (like DTs). Often these weak classifiers are first produced utiliz-

ing one of the previously mentioned data set manipulations.

Ho also discusses combination approaches in the context of the construction of decision forests
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[20]. Ho describes parallel combining as an inter-tree combination of decision trees, perhaps uti-

lizing his random subspace data set manipulation, which differs significantly with Duin’s parallel

combining, but is consistent with Duin’s description of combining weak classifiers. In addition Ho

also discusses serial combination, which is the intra-tree combination of classification information

[20].

While all authors surveyed utilized Ho’s parallel approach of decision combination (Duin’s third

type), the author has devised an approach which seeks to integrate both inter- and intra-tree de-

cision combination utilizing this parallel combination technique, by attempting to consolidate the

internal classification information inside each decision tree produced before aggregating that infor-

mation across the entire ensemble. Duin reports that decision trees can be combined in almost any

way to achieve some improvement over their individual estimates [11].

2.4.3 Combination Functions

There are two types of decision combination functions [11, pp. 21]:

1) Fixed combination function: a well-defined function which is independent of the particular en-

semble used.

2) Trained combination function: a training strategy which, when operated over a given ensemble,

provides a specialized combination function specific to that ensemble or domain.

Among common fixed combination functions are: maximum, median, mean, minimum, product,

majority vote [11]. Fixed combination functions tend to apply a mathematical rule to the aggregate
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classification decisions of each member of the ensemble. The aggregation is typically either discrete,

such as with majority vote where each classifier’s vote for the correct classification is aggregated

and the majority decision is used, or real-valued, as in using the sum of the estimated posterior

probabilities or confidences for each class given by each classifier, with the classification with the

maximum total estimated confidence selected as the correct classification.

Trained combination functions directly utilize posterior probabilities as an intermediate feature

space on which some combination technique operates. Such techniques include Bayes algorithms,

nearest mean, and nearest neighbor [11]. However, techniques which rely on estimates of posterior

probability can in practice be very sensitive to errors in these estimations [11]. Duin notes that

combining classifications given by techniques utilizing posterior probability estimation techniques

which make dissimilar errors can possibly counteract the problems imposed by making such esti-

mates. In addition, while trained combination strategies have been shown in cases to outperform

generic fixed combination functions, they require training of the combination function which may

require more expert knowledge within the KDD process than simpler fixed functions.

Although they require no training and much less expert knowledge, even simple fixed combina-

tion functions have been shown to produce accuracy gains over single classifiers. Kittler combined

ensembles generated from the same dataset using various fixed techniques and found improvement

using even the simple fixed combination functions of sum and majority vote [23]. In addition, Duin

found fixed majority vote obtained the best error rates in 5 of the 6 data sets used, and in the

sixth the best method was trained Nearest Mean. Ho used a simple majority vote and found that

using the same classifier method on a modified feature set produced better results than combining
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different types of classifiers produced over the same feature set [19]. Fischer also found better

accuracy utilizing a majority vote combination of an ensemble of decision trees compared to the

best single decision tree produced [15].

2.4.4 Empirical Results of Ensemble Learning

Fischer utilized decision forests of C4.5 trees to classify diatoms (unicellular algae). Microscopic

images were analyzed to obtain data on various features of the subject in question which might

be used as a basis of discriminating between various classes of diatoms. The task of identifying

diatoms is inherently difficult, as it is estimated that some 100,000 distinct species exist and that

another 100,000 may yet be discovered [15]. The 149 features used as input to C4.5 were: moment

invariants (11), fourier descriptors (126), scalar shape descriptors (5), symmetry (1), geometric

properties (4), diatom specific features (2).

Fischer employs three experimental approaches. First single decision trees were constructed us-

ing the full data sets. The second approach utilized the bagging bootstrapping method to augment

the data sets. In the third method, 100 random subsets of exactly one half of the available features

were used for constructing the decision trees. The second and third methods then utilized a ma-

jority voting technique for making the final decision.

In calculating classification accuracy, Fischer considered whether the technique correctly classi-

fied a case within its top six ranked candidates. The actual implementation of Fischer’s technique

provided these selections to the domain user who would then make the final determination. Fig-

ure 2.2 shows the classification accuracy in percent correct classifications for first rank, as well as
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for the accuracy plateau rank. The accuracy of the best single decision tree was always significantly

less than the random subspace ensemble, with only minor gains in accuracy when considering suc-

cessive classification decisions. Both ensemble techniques achieved higher accuracy in their first

choices, with significant gains in accuracy when considering successive alternate choices.

data set 1 data set 2
method rank 1 % max acc %, rank rank 1 % max acc %, rank
single best ≈ 91 93.33, 3 65.53 ≈ 70, 1
bagging 92.5 99.17, 2 77.13 95.74, 5
subspace ≈ 95 100, 3 79.26 96.81, 5

Table 2.2: Empirical Results of Fischer’s Combined Classifiers

Duin and Ho perform similar experiments involving combination of different feature sets. Duin

provides a more comprehensive application of different trained and fixed combining rules applied

to individual feature sets and the entire feature set. In his experiment different standard image

analysis techniques were applied to images of handwritten numerals found on Dutch utility maps.

In all there were 649 features measured. There were 10 classifiers used utilizing such techniques

as decision trees, Bayes analysis, nearest mean, neural networks. There were also 6 fixed combin-

ing techniques: maximum, median, mean, minimum, product, majority, and 4 trained combiners:

Bayes-normal-2, Bayes-normal-1, nearest mean, and nearest neighbor.

Duin [11] found that the best results came from combining across differing feature sets rather

than combining the 10 different classifiers produced from one feature set. This is in agreement with

Ho’s findings regarding combining across differing feature sets. In both types of analyses, fixed

combining rules tended to produce the lowest error more often than trained combining rules.
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The worst results overall in classification error were exhibited with decision trees where the single

best error rate using only decision trees was 102%, achieved combining decision trees produced

from the individual feature sets using the nearest mean combination function. This result however

is a significant improvement from the 480% error for the decision tree method applied to the entire

feature set. In addition, most combination methods resulted in significant reductions in error, with

all but two combination functions reducing error by more than half. Decision tree, however, was

not the only approach which exhibited such large errors. The best neural network approach showed

896% error using the entire feature set. Unlike decision tree, however, neural network combination

using trained combination functions achieved error rates below 50%.

The decision tree was not the only method which performed poorly when applied to the image

processing metrics used in Duin’s experiment. It is noteworthy that all combination techniques

yielded significant reductions in the error rates of the resulting combined decision tree classifica-

tion, even when the inputs trees exhibited such large errors.

Ho [19] compares his random subspace method for constructing ensembles with both single C4.5

decision trees and with bootstrapping methods of subsampling. The decision trees constructed are

fully split, such that if there are no ambiguities in the training data, each training case is correctly

classified. To populate the decision forest, Ho constructed 100 trees pseudorandomly selecting half

of the full feature set for each tree. The trees were fully split such that they would produce no errors

given unambiguous data. The risk of overtraining posed by fully-split trees was addressed through

the generation of an ensemble of such trees. He then combined the class conditional probabilities

of each tree using a mean fixed combination function. The final classification of a combined forest
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was then the class which had the maximum mean conditional probability.

Ho conducted his experiments using four data sets which contained no missing values. The number

of features in the data sets varied from a low of 9 to a high of 180. Ho found that his method of

selecting half of the features to use for each tree of the ensemble did not demonstrate significant

improvement over a single tree when applied to the data set of 9 features. Although Ho does not

provide specific numerical data, the approximate misclassification rates of the various methods can

be determined from his supplied graphs, and is given in Figure 2.3. In all trials, using a combined

ensemble of trees produced gains in accuracy over the use of the best single C4.5 tree, and in all

trials the random subspace method produced the highest levels of accuracy.

Ensemble Technique
data set features single bootstrap boost random subspace
dna 180 92.5 ≈ 94.5 ≈ 95 ≈ 95.5
letter 16 ≈ 89 ≈ 93 ≈ 93 >96
satimage 36 ≈ 86 ≈ 90 ≈ 90 ≈ 91
shuttle 9 ≈ 99.96 ≈ 99.96 NA > 99.98

Table 2.3: Empirical Results of Ho’s Random Subspace Method [19]

In conclusion, Duin has reported that almost any of the combination functions increase perfor-

mance given lower than 50% error in the average member of the ensemble with simple majority

vote showing consistent benefits. Kittler, Ho, Fischer, and Duin have found improvement using

either sum or majority vote. Consistent with the problem statement which requires a human end

user in the loop who is not expected to be a KDD or data analysis expert, the author has chosen to

restrict his explorations to using a simple fixed combination function which is both easy to explain

and understand, and is easy to implement. This approach will be outlined in Section 3.2.
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2.5 Interestingness

The definition of KDD requires that discovered knowledge be “interesting”, meaning that this

must supply the user with some new or surprising information [26]. This implies that the infor-

mation may also contradict existing beliefs. Finding a statistical deviation is not enough to satisfy

this KDD requirement. The task of discovering interesting knowledge involves selecting particular

pieces from the potentially large number of the deviations discovered. These pieces are judged on

how well they meet the entire definition of the KDD process. Thus, while much research has been

focused on refining strictly mathematical measures of interestingness, many of which are defined

in [18], these measures fail to meet the requirements of comprehension and actionability stated in

the definition of the KDD process in Section 2.3.

Interestingness is closely related to the other requirements of the KDD process, especially that

of actionability. While an actionable item of knowledge may not be interesting to the end user, an

interesting item of knowledge must be actionable to be interesting in any practical sense. Knowing

that if one could change some immutable factor one would see desirable results is less than useful

information to the real-world user facing short-term decision making, and while interesting in an

academic sense is not interesting from the point of view of the KDD process. The goal of the KDD

process, in industry, is not merely to find interesting knowledge, but to do so in a manner which

provides the user some competitive advantage [26]

In addition to being actionable, to be interesting knowledge must also be understandable, which is

to say the end user must comprehend the given representation to an extent which allows actions

to be taken as a result of the discovered knowledge. This implies that it is preferable to have more
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easily understood representations even if that may result in some loss of accuracy. James empha-

sizes that in some cases “the presentation of a classification rule is as important as its performance

and a comprehensible classifier is preferred as long as its error rate is reasonable” [21, pp. 183].

And Simoudis says, “the quality of each rule is measured by its discriminating power, its generality,

and its interestingness.” [32] And so it is necessary to include both accuracy and comprehensibility

in knowledge representations, without relying purely on subjective measures of comprehension.

While there may be no psychologically well-founded definition of comprehensibility [16], this does

not mean that to address comprehensibility we must rely exclusively on subjective measures of com-

prehension. Matheus suggests using a user-defined utility measure to weight the interestingness

of discovered knowledge to combine objective and subjective measures of interestingness [26]. For

example, the user could weight the relative institutional costs of changing certain features, where

not all costs are purely objective. Findings could then be weighted by the net benefit of taking

advantage of the discovered knowledge. In situations of limited resources, discovered knowledge

could then be ranked such that preference is given to those items of knowledge which have highest

domain or institutional utility.

In conclusion, measures of interestingness for discovered knowledge must be interesting to the

end user who may not be a KDD expert versed in mathematical descriptions of information. We

may define interestingness by the general statement,

. . . a pattern is interesting relative to some belief system if it “affects” this sytem, and

the more it “affects” it, the more interesting the pattern is [31].



Chapter 3

The Approach

3.1 Introduction

To address the problem presented by the accuracy-comprehensibility constraint on presenting dis-

covered knowledge in a human-comprehensible representation we developed an approach utilizing

an ensemble of multiple classifiers, combined in such a way that the user is presented with an

“importance table” showing the feature ranges found to be the most significant in changing the

classification from one outcome to a significantly different, and generally preferential one. The

purpose of this table is to provide a scalable representation of elicited knowledge which is not cir-

cumscribed by the accuracy-comprehensibility constraint when modeling complex representations

in highly-dimensional and large data sets.

33
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3.2 Analysis Technique

3.2.1 Overview

The following lessons learned from the literature review of machine learning, knowledge discovery,

and ensemble learning give structure to the author’s experimental approach.

Knowledge Requires Understanding Discoveries qualify as knowledge only insofar as they are

understood by the human end-user.

Knowledge Must Be Actionable Knowledge discoveries which are interesting yet cannot be

acted upon in the target domain have little practical interest to the end-user seeking aid in

the decision making process.

Ensembles Work Coverage optimization using generic classifiers to approximate h∗ can improve

predictive accuracy over single trees while remaining consistent with the requirements of the

definition of KDD.

Ensembles Can Be Homogenous Parallel combination (as from Ho) using multiple classifiers

of the same type has been used to improve predictive accuracy while not requiring the ability

to successfully combine classifiers of different types.

Simple Combination Functions Work Fixed combination functions, while often giving slightly

less predictive accuracy than trained functions, still improve accuracy while remaining con-

sistent with the problem statement which requires the KDD methodology be able to be

understood and implemented by an end-user not expert in data analysis or KDD methodol-

ogy.
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For the purposes of the experiment, it was necessary to simulate the environment described in the

problem statement where a data glut exists and some end-user who is a non-expert in data analysis

seeks to use this data as an aid in decision making and resource allocation. To this end, a popular

software cost risk estimation model was obtained and pseudo-randomly exercised to produce sim-

ulated data sets which could be used as surrogates for data collected through a real-world KDD

process.

3.2.2 Experimental Setup

The COCOMO 2.0 Heuristic Risk Estimator, was obtained in the form of C source code and mod-

ified to allow command-line parameter input for all atttributes. The inputs to the COCOMO 2.0

Risk model were allowed to vary within their full valid ranges, with the exception of Source Lines

Of Code (SLOC) which was allowed to vary within certain specified ranges of interest, and was

allowed to take on only a certain number of evenly-spaced values within that range. The output

from the COCOMO 2.0 Risk model is a numerical risk estimate which is also classified linguistically

which allowed direct translation into input for C4.5. Both risk scales for Expert COCOMO 2.0 can

be found in Figure 4.2 on page 56

Once datasets were generated for each particular virtual scenario, the popular C4.5 decision tree

inducer created by Ross Quinlan [28] was used to produce decision trees from these datasets. Source

code for C4.5 was obtained and modified to execute on a personal computer with a Microsoft Win-

dows NT1 operating system (the native environment of the supplied version of C4.5 was a Sun
1Windows NT is a registered Trademark of Microsoft Corp.
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outlook = sunny :
humidity = high : N (4.0/1.0)
humidity = normal : P (2.0)
outlook = overcast : P (6.0/1.0)
outlook = rain :
windy = true : N (2.0)
windy = false : P (3.0)

Figure 3.1: C4.5 Decision Tree Without Level Spacing

Solaris2 operating system, and no Makefile compiler file was supplied to allow compilation in other

environments). No internal C4.5 heuristics were modified, however the tree output parameters were

modified so that the visual alignment string “| ” would not be printed to designate each successive

level of depth at a node. Due to this modification, which alternately could have been done with

a text file post-processor if access to C4.5’s source code had not been possible, the example C4.5

decision tree in Figure 2.3 is saved to file as shown in Figure 3.1. Because the tree is stored in a

consistent recursive format, no level designation characters are required.

We write the decision tree analysis program (TREE) which accepts a command-line parameter list

of C4.5 trees to analyze as a single ensemble. If a simplified tree is included in the same file as

the original, the simplified tree is used. Each tree is converted into disjunctive normal form [37,

pp. 114]. In this form, a decision tree is expressed as a disjunction of feature vectors [12]. Each

feature vector is simplified such that each attribute appears only once, followed by the set of values

which are valid within that vector. The result of this simplification will be referred to as simple

disjunctive normal form.

Recall from Section 2.2 that a feature vector consists of a conjunction of a non-empty set of
2Solaris is a registered Trademark of Sun Microsystems Inc.
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attribute-value pairs (a, v) where a ∈ A, the set of all valid attributes, and v ∈ VA, the set of valid

values for attribute A. Recall also that each branch of a decision tree, or each path from root to

leaf node, can be thought of as a feature vector and its implied classification at the leaf, and that

each branch can be thought of as a decision rule. As each tree is read and transformed into simple

disjunctive normal form, a combinatorial intra-tree comparison is executed between all R rules,

where R is the number of leaf nodes l. This results in an upper-bound of l-choose-2 combinations,

or C l
2 = l × (l − 1)/2 comparisons. The algorithmic complexity of TREE will be addressed in

Section 3.2.6.

Search space is reduced by comparing only those feature vectors of significantly different classi-

fication values. For example, two feature vectors, both of classification “High Risk” would not be

compared. Feature vectors of classifications “High Risk” and ”Medium Risk”, separated by one

ordinal position only, would also not be compared, as the stated goal of the investigation is to

present a mechanism for finding the most significant factors. If a factor was found to be significant

only within one ordinal position, then it would possess limited domain utility, and the significance

of the result could undermine its usefulness.

The decision of what constitutes a significant difference is subjective, and domain specific, yet this

is precisely what the problem statement gives as being a necessary aspect of real-world use of the

KDD process. The end-user would be necessarily involved in setting parameters for what would be

considered an interesting change. For the COCOMO 2.0 Heuristic Risk Model, a difference in risk

of two ordinal positions or more was considered by this author to be significant.
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When two rules are are found to differ significantly in outcome, an attribute-by-attribute compari-

son is made between them, searching for differences in the values of attributes they both include. If

the aim of the study is to discover what is important in discovering what can determine a low risk

project instead of a high risk one, the set of values from the high risk rule would be subtracted from

the values of the low risk rule, for shared attributes. This is the equivalent of asking the question:

“What values of an attribute, ceteris parabus, will change my risk classification from that of the

worse rule to that of the better rule?” An importance table is a frequency table of all such instances

of an attribute’s value existing in this set difference. The importance table answers the question:

“How often, ceteris parabus, can an attribute’s value possibly determine whether the classification

Attribute 1 2 3 4 5 6
SLOC 0 216 187 96 103 188
PREC 70 71 60 75 93 0
FLEX 72 46 42 47 57 0
ARCH 84 29 27 32 51 0
TEAM 75 86 157 238 295 0
PMAT 360 265 587 896 1355 0
RELY 8073 7221 6476 3736 5653 0
DATA 0 48 36 32 74 0
CPLX 14700 13845 12675 10643 8600 7624
RUSE 0 9912 9512 8237 4316 4486
DOCU 50 32 25 21 77 0
TIME 0 0 16418 14482 9214 10170
STOR 0 0 5369 4349 3012 2722
PVOL 0 356 262 141 265 0
ACAP 12150 10497 27575 32439 34214 0
PCAP 12556 11468 27855 33213 34552 0
PCON 45 12 19 42 105 0
AEXP 2356 2548 4352 6557 7078 0
PEXP 621 532 1045 1382 2077 0
LTEX 1872 2003 4659 5974 6780 0
TOOL 3139 4382 7523 9062 10122 0
SITE 108 66 52 57 62 109
SCED 12464 9144 31954 35102 39280 0

Table 3.1: Example Importance Table
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is of the ‘better’ class as opposed to the ‘worse’ class?”

If R2 has the more desirable classification, and R1 has the less desirable classification, then the

changes set, ∆2,1, is the set difference va2/va1 for all attributes a which exist in both R2 and R1:

∆1,2 = {(a, v) : a ∈ R1 ∧ a ∈ R2, va2\va1} (3.1)

Once a particular tree’s importance table has been completed, the values are added to the ensemble

importance table of the same dimensions. This step implements a simple sum fixed combination

function, although not quite in the same inter-tree parallel combination approach as the authors

surveyed, since it is neither a sum of posterior probabilities nor is it a sum of votes for particular

classifications. Since the operation involved is a simple sum, the single-tree importance table

could be eliminated saving a small amount of memory and ©(A × V ) execution time. However,

maintaining a separate table allows for easy future modification of either function. For example, the

individual importance table may be weighted by the tree’s overall estimated predictive accuracy,

giving less weight to knowledge gleaned from less accurate trees, and the addition of a tree’s

importance table to the ensemble importance table could be weighted by the overall accuracy of

that particular tree. Figure 3.1 shows a typical single-tree importance table using a tree generated

by C4.5 using Expert COCOMO 2.0 data.
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3.2.3 Implementation

Step 1: Parse the C4.5 Trees

The first step of TREE involves reading in C4.5 ASCII trees and converting them into a linked list

of rules.

In this stage, the decision test at each C4.5 node is fully preserved. So, a node with test “ACAP

> 4” would be preserved in a record data structure with three values: attribute, operation, value.

For simplicity, inclusive operators such as “>=” are transformed into exclusive operators like “>”

and the test value is incremented in the least significant digit. For the models studied in the ex-

periment these values were integers, but TREE was designed to increment or decrement the least

significant digit of strings expressing decimal point values. Note that this assumes the decision tree

will express precision in floating point comparisons, such that “>= 3.2” and “>= 3.20” are both

possible and not equivalent comparisons.

Since C4.5 stores trees in a consistent depth-first representation (right- or left-recursive is indis-

tinguishable so long as the vertical order of the expansion is consistent), a depth-first recursive

algorithm can be used to efficiently convert the C4.5 file into a set of rules in a single pass through

the tree file without look-ahead.

Step 2: Rule Simplification

In the second stage, the rules are transformed into simple disjunctive normal form (see page 36).

The first part of this process involves sorting rules by attribute name. This is accomplished by a
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simple bubble sort applied to each rule.

In Step 1, rules are stored as a linked list of records which contain three atoms: {attribute, op-

erator, value}. The operator can take on the following values: “>”, “=”, “<”. This is the logical

equivalent of expressing a set of values in the ordinal list of valid values for the attribute. For

example, {“ACAP”, “>”, “2” } expresses the set defined by the range [3, max(VACAP )]. Resolving

this tuple with {“ACAP”, “<”, “5” } then involves finding the set intersection between these two

implied sets.

To express the conjunction of multiple ranges, the tuple is transformed into an attribute range

record of three atoms: {attribute, vmin, vmax}. No branch of the decision tree produced by C4.5

can contain unsatisifiable contradictions between decision tests as it then has no cases classified

and is pruned with 100% confidence. Each additional decision test tuple of the same attribute

then either expresses the same values set, a superset, or a subset of the current set intersection. A

superset results in no change to the set intersection, as does an equivalent set. The only possible

change made by the additional record in the intersection is a restriction in one or both of the range

endpoints. And so the previous two records are resolved as follows:

{“ACAP′′, “>′′, “2′′} ∩ {“ACAP′′, “<′′, “5′′} = {“ACAP ′′, 3, 4} (3.2)

At the end of this step, each rule will contain at most |A| attributes, with each attribute appearing

at most once in any given rule.
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Step 3: Rule Comparison

After rules are transformed into simple disjunctive normal form, a combinatorial comparison takes

place between all rules. The useful comparisons have been declared to be those between rules with-

out outcome classifications which differ by more than one ordinal position, however comparisons

involving all classifications are still performed to determine the ordinal distance between classes.

When two rules are found to differ in classification by more than one ordinal position, TREE

traverses the linked list of the destination, or “better” rule, and for each attribute found there it

searches for that attribute in the linked list of the origin, or “worse” rule. Since both rules are

sorted alphabetically by attribute name, the position pointer in the origin rule need only be ad-

vanced to perform each search, and will never need to restart or revisit any entries. If an attribute

lexicographically greater than the search parameter is found in the origin, the search is terminated

and the current pointer in the destination linked list remains in that position for the next search.

If a match is found, TREE creates a changes set record, which is an attribute range record as

described in the previous step, by subtracting from the values set in the destination rule the val-

ues set of the origin rule. This is accomplished by pair wise comparisons of the minimums and

maximums of the values set ranges. The larger of the two minimums and the smaller of the two

maximums is written to the changes set attribute range values. The change is then written to

the tree’s importance table by incrementing the matrix entry corresponding to each value in the

changes set for that particular attribute. The changes set is included as a potentially unnecessary

step in this process to preserve the possibility of future alterations to the combination function

with minimal source code modification.
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Step 4: Update Ensemble Importance Table

The final step is a pair-wise addition of identical matrix indecies, adding each tree importance ta-

ble entry to its corresponding ensemble importance table entry. This step requires a simple nested

loop. As with the changes set of the last step, a potentially unnecessary tree importance table is

preserved to allow easy future modification of the combination function.

Since the only information retained between processing of each tree is the ensemble importance ta-

ble, the only scalability limit on the number of trees which can be processed is total execution time

and the size of required variable storage in the importance table (MAX INT or equivalent system-

dependent value). The storage restriction could be addressed through programming strategies. The

execution time constraint, while reduced to a low polynomial, would still be significant if processing

large numbers of very complex trees.

3.2.4 Proof of l = 1
2
(n + 1)

It is possible to prove inductively that the relationship between the number of total nodes and the

number of leaf nodes in a full binary tree is completely independent of height and tree structure,

and that this relationship is l = 1
2(n + 1).

Consider the base case of n = 1, or a lone root node. Trivially, in this case n1 = l1 = 1, as

the root is both the only node, and is a leaf node.

Now consider the next largest full binary tree, n = 3. This results from the addition of two

nodes, and the net addition of one leaf node as the root changes from a leaf to an internal node.
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Adding two nodes then results in the following ratio:

n3

l3
=

n1 + ∆n1

l1 + ∆l1
=

1 + 2
1 + 1

=
3
2

(3.3)

Now consider the first non-trivial case, where n = 5. We must choose one of the two descendants

of the root to populate. Regardless of choice, we add two more nodes, and one more net leaf node.

Again, the addition is in the same ratio:

n5

l5
=

n3 + ∆n3

l3 + ∆l3
=

3 + 2
2 + 1

=
5
3

=
n5

1
2(n5 + 1)

(3.4)

Consider the case of n = k. From the final denominator of Equation 3.4 we can state the inductive

hypothesis of l as a function of n:

lk =
1
2
(k + 1) (3.5)

Now consider the inductive case of n = k + 2, the next largest binary tree. Substituting into

Equation 3.5:

lk + ∆l = lk+2

1
2
(k + 1) + ∆l =

1
2
((k + 2) + 1)

k + 1
2

+ 1 =
k + 2 + 1

2
k + 3

2
=

k + 3
2

(3.6)



CHAPTER 3. THE APPROACH 45

Figure 3.2: Adding Children in a Full Binary Tree

3.2.5 Proof of Worst-Case Total Rule Size

Consider the construction of a full binary tree such that |R| is the sum of the paths to the leaf

nodes. In a trivial case of a root with two children, |R| = 4, since each leaf forms a path of size

2 with the root. With this tree of size n = 3, there is no difference in |R| between adding two

children to one leaf node or the other. In both cases, adding two children results in the subtraction

of a path of size 2, replacing it with two paths of size 3. The result is then |R| = 4− 2 + 6 = 8.

The tree just described is shown in Figure 3.2. Nodes B and C are those added from the previous

step. Now consider adding two more children, which must be added either at A, B, or C. If children

are added to A, the following total path change results:

∆|R| = 2(|A|+ 1)− |A| = |A|+ 2 (3.7)

where |A| represents the path length of node A. The path lengths |B| and |C| are equivalent, and
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Figure 3.3: A Perfectly Incomplete Full Binary Tree. Numeric labels at leaf nodes indicated —R—
at that node.

adding children at B results in the following change:

∆|R| = 2(|B|+ 1)− |B| = |B|+ 2 (3.8)

However, |B| = |A|+ 1. By substitution in Equation 3.8, the change from adding to B or C is:

∆|R| = 2(|A|+ 1 + 1)− (|A|+ 1) = |A|+ 3 (3.9)

Therefore, the maximum size of |R| comes from creating a tree by always adding new children to a

node of maximal depth, resulting in a tree which has two nodes at each level below the root. The

author terms this tree structure a perfectly incomplete binary tree.

We can now determine the size of ¯|R|, the mean path size. In a perfectly incomplete binary tree,

there is a leaf node at every depth below the root, and two at the maximal depth, h. Such a tree

is shown in Figure 3.3, where the leaf nodes are labeled with their path lengths. The total path

size |R| is found by taking the sum of all such leaf path weights. Since at each depth d below the
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root, |R| = d + 1, and there is one additional path at the maximal depth which has size h + 1, we

can express the total path length of the worst-case tree:

|R| =
h∑

d=1

(d + 1) + (h + 1)

=
h∑

d=1

(d) + h + (h + 1)

|R| =
1
2
h(h + 1) + 2h + 1 (3.10)

For a perfectly incomplete full binary tree, l = h + 1, as there is a leaf node at every depth below

the root, with an additional leaf node at the maximum depth. Substituting into Equation 3.10:

|R| =
1
2
(l − 1)(l − 1 + 1) + 2(l − 1) + 1

|R| =
1
2
l(l − 1) + 2l − 1 (3.11)

It is then possible to find the mean rule length |R̄|, by dividing Equation 3.11 by l, the number of

rules:

|R̄| =
1
2 l(l − 1) + 2l − 1

l

|R̄| =
1
2
(l − 1) + 2− 1

l
(3.12)

We can then substitute Equation 3.5 into Equation 3.12 to express |R̄| as a function of n:

|R̄| =
1
2
(
1
2
(n + 1)− 1) + 2− 1

1
2(n + 1)

=
1
4
(n + 1)− 1

2
+ 2− 2

n + 1

|R̄| =
1
4
(n + 1) +

3
2
− 2

n + 1
(3.13)
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3.2.6 Complexity Analysis

The execution analysis of TREE will be expressed in terms of tree size, quantified as the number

of nodes n. From Equation 3.5, the size of a full binary tree may be expressed either in terms of

nodes or leaf nodes, and is irrespective of the height or structure of the tree, and the relationship

n = 2l − 1 holds for all such trees.

Step 1: Parse the C4.5 Trees

Since each line of the ASCII tree contains exactly one node of the tree, and each node requires at

most one line, the execution time of this conversion is on the order of Θ(n).

T1(n) ∈ Θ(n) (3.14)

Step 2: Rule Simplification

The implementation of the set intersection of multiple tuples involves first sorting the list of deci-

sion test tuples by attribute. A standard bubble sort is utilized on the linked list, requiring ©(m2)

on m objects. The sort is two nested loops, the outer executes m times, while the inner executes m

minus the number of completed outer loops. This gives a sum of the first m integers as the number

of executions of the innermost statements:
∑k

i=1 i = 1
2n(n + 1).

In this case however , n is the number of nodes for the entire tree, which is not sorted. Rather,

each rule is sorted, and if |R̄| is the number of nodes in each rule, the total sort time would then be

©(l×|R̄|). As proven in Section 3.2.4, regardless of tree structure, for a full binary tree l = 1
2(n+1).

Sorting the l rules is then done on the order of ©(1
2(n + 1)× |R̄|). Substituting Equation 3.13, we
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can express the sorting execution time as a function of n:

T2(n) = ©(
1
2
(n + 1)× (

1
4
(n + 1) +

3
2
− 2

n + 1
))

T2(n) ∈ ©(
1
8
(n + 1)2 +

3
4
(n + 1)− 1) (3.15)

Bubble sort is an inefficient sorting technique, and is not generally advised for lists of more than

one hundred items. Its use in this case for reasons of simplicity is justified by considering that the

sort is not actually being conducted on n, but rather is being done with l rules of varying size. This

gives a range for the general sort time for any particular rule, which has the minimum of a complete

binary tree, Ω((log2(
n+1

2 ))2), and the maximum of a perfectly incomplete binary tree, ©((n+1
2 )2).

An absolute upper bound could then be placed on the sort procedure by assuming all rules have

length n+1
2 , where the number of rules is l = n+1

2 , which would give an unreachable upper bound

for sorting the entire tree as n+1
2 × (n+1

2 )2 = (n+1
2 )3.

Step 3: Rule Comparison

Since every rule is compared to every other, the minimum execution time for this step is binomial

and is C(l, 2):

T3(n) = ©(
l!

2!(l − 2)!
)

T3(n) = ©1
2
l(l − 1))
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and, by substitution of Equation 3.5:

T3(n) = ©(
1
2
(
1
2
(n + 1))(

1
2
(n + 1)− 1))

= ©(
1
4
(n + 1)(

1
2
n +

1
2
− 1))

= ©(
1
4
(n + 1)

1
2
(n− 1))

= ©(
1
8
(n + 1)(n− 1))

T3(n) ∈ ©(
1
8
(n2 − 1)) (3.16)

Step 4: Update Ensemble Importance Table

The ensemble importance table is a master table which contains the sum of frequency counts

of changes found in each tree. The dimensions of all tables are the same, which is the number

of attributes by the maximum number of values possible from all attributes. For example, the

COCOMO 2.0 trees contained 23 attributes, with a maximum of 6 values, resulting in a 23×6

matrix. This execution time is independent of tree size, and so is only a small constant addition

to the total execution time:

T4(n) = Θ(c) (3.17)
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3.2.7 Total Execution Time

The total execution cost from these four stages is then:

T (n) = T1(n) + T2(n) + T3(n) + T4(n)

= Θ(n) +©(
1
8
(n + 1)2 +

3
4
(n + 1)− 1) +©(

1
8
(n2 − 1)) + Θ(c)

= ©(n) +©(
1
8
(n + 1)2 +

3
4
(n + 1)) +©(

1
8
(n2 − 1))

= ©(n) +©(n2) +©(n2)

T (n) ∈ ©(n2) (3.18)



Chapter 4

Case Study: Expert COCOMO 2.0

4.1 Introduction

Accurately predicting the costs of software projects has been notoriously difficult [7]. The specific

difficulty with this task is that estimating the costs of software projects, and the related risk of

cost overrun, is significantly determined by organization-specific attributes [22], and the estimate

is done prior to the start of the project, at a time when many if not most relevant factors are

still unknown [2]. Not only does this make data collection of known factors difficult, no model can

include all factors which affect the effort of a software project [22]. As late as 1998 the Air Force

Research Laboratory reported that estimation models’ predictive accuracy of software project cost,

schedule, and effort on U.S. Department of Defense software projects were found to be within 25

percent of actuals only around 50 percent of the time [14].

In addition to often having large inaccuracies, estimates are merely attempts to identify the out-

come which has a mean probability of being correct. This means that the output of a software

52
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effort prediction tool includes an implicit range of possible values centered around the estimate (in

the case of normally distributed errors). In addition, errors in measurement and errors in model

behavior are additive [22]. Therefore, project managers are faced with a situation where they face

a seemingly impossible task of trying to estimate the cost, and cost risk, of a particular software

project before that project has begun. While the estimates of such software cost tools cannot gen-

erally be well-trusted at this stage of unique projects, project managers could benefit from knowing

which specific aspects of their software development environment could most effectively reduce the

risk of cost overruns, without needing to be able to specifically quantify such risks or risk reduc-

tions. The method outlined in Section 3 seeks to provide such resource allocation information in

order to provide this domain utility to the software project manager.

4.2 COCOMO

Software cost tools have often been parametric in nature, created by empirically investigating what

factors of influence should be measured as cost metrics, and using statistical techniques to form

equations involving these metrics [5]. Such models, often derived through a statistical regression

to determine the coefficient values, resemble the form Effort = A · (Size)B [6]. Barry Boehm

developed the parametric software cost tool COCOMO, the COnstructive COst MOdel1, in 1981,

by utilizing the project information of 64 software projects of varied types and industry [4]. In

Boehm’s COCOMO family, A includes the effect of cost drivers while B includes scale factors.

As of USC COCOMO II’s Post-Architectural model, this amounted to 17 cost drivers and 5 scale

factors [6]. An abbreviated explanation of these attributes can be found in Appendix B, and on
1COCOMO, the original model, is currently referred to as COCOMO81. The COCOMO project is located at

http://sunset.usc.edu/research/COCOMOII/index.html
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the WWW2.

The basic mathematical form of the COCOMO II cost model is:

PM = α · (KSLOC(1.01+
∑5

i=1 SFi)) · (
17∏

j=1

EMj) (4.1)

where PM is effort in person-months, KSLOC is thousands of source lines of code, and α is a

constant [6]. The SFi are the scale factors which affect effort as an exponential function of size,

and the EMj are the cost drivers. All attributes in the COCOMO model except source lines of

code can take on a maximum of six values, ranked ordinally as the integers 1-6. The direction of

“goodness” varies, and most attributes have a range of less than six values.

COCOMO II was adapted by Ray Madachy to estimate software project cost risk, defined as

being the probability of a loss multiplied by the cost of the loss [25]. In the domain of software

development, cost is associated with effort in person-months. Madachy utilized the COCOMO

II cost model along with risk heuristics in a tool3 he named “Expert COCOMO 2.0 with Risk

Heuristics” [25]. These risk heuristics include what Madachy terms joint risk matrices between

select pairs composed of the various scale factors and cost drivers (the EMj of Equation 4.1). For

example, if the time schedule cost driver SCED has a value less than the estimated nominal time,

and programmer capability PCAP is low, then this indicates a high risk contribution. In addition, if

applications experience AEXP of the developers is low, then the relationship of AEXP with SCED

also has a high risk contribution. Figure 4.1 gives one such joint risk matrix. The figure gives the
2Descriptions of the COCOMO II scale factors and cost drivers can also be found at

http://sunset.usc.edu/research/COCOMOII/expert cocomo/drivers.html
3As of the time of writing, Expert COCOMO 2.0 can be found and executed at

http://sunset.usc.edu/research/COCOMOII/expert cocomo/expert cocomo2000.html
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internal weightings of joint risks and illustrates their non-linearity.

Attribute 1
Attribute 2 Very Low Low Nominal High Very High Extra High
Very Low 1 2 4
Low 1 2
Nominal 1
High
Very High

Table 4.1: Example of an Expert COCOMO 2.0 Joint Risk Matrix

Expert COCOMO 2.0 implements a rule base of 94 rules as its risk heuristics, and covers 600 risk

conditions [25]. The risks are divided into 6 categories: schedule, product, platform, personnel,

process, and reuse. The joint risk matrices are representations of the 94 risk rules which are in-

cluded within at least one and possibly multiple risk categories.

As input the tool asks for the standard COCOMO 2.0 scale factors and cost drivers, as well as the

estimated source lines of code, as shown in Figure 4.1, a screen capture of the input screen of the

online tool. Expert COCOMO 2.0 outputs a normalized total risk estimate on a scale of 0-100,

with 100 as the highest risk, as well as the individual risk estimates for the 6 categories, and for

the 94 individual joint risk pairs from which the total risk was computed. To achieve a risk level of

100 would require each individual cost factor within the given category as being rated at its riskiest

level within each joint risk matrix (each joint risk factor would have to be 4).

Madachy categorizes his risk output according to Figure 4.2. These risk categories were used

directly to prepare data for C4.5, by considering the upper range, with the exception of 100, as

being an exclusive range. Therefore, 5 would be classified as Medium risk, 15 as High risk, and 50
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Figure 4.1: Example Expert COCOMO Input Screen

as Very High risk.

Risk
Output Category
0-5 Low
5-15 Medium
15-50 High
50-100 Very High

Table 4.2: Expert COCOMO 2.0 Risk Categories [25]

The output screen resulting from executing the WWW Expert COCOMO 2.0 tool with the inputs

shown in Figure 4.1 can be seen in Figure 4.2.
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Figure 4.2: Example Expert COCOMO Output Screen

4.3 Experimental Design

Expert COCOMO 2.0 was selected to produce simulated software project data primarily for two

reasons. Firstly, it is a mathematically-based deterministic model and as such would allow valida-

tion of the experimental results. Secondly, the model is designed to be used by a project manager

for prediction of project cost risk and as such is perfectly aligned with the goal of the experimen-

tal technique which is to aid in resource allocation. However, the COCOMO family of software

project cost models are based on relatively small sets of project data, and any conclusions reached

from our analysis relate to the Expert COCOMO 2.0 model used to generate the data sets analyzed.
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We received the source code for Expert COCOMO 2.0 from Ray Madachy, in the form of a C-

language program. The program was modified to execute a given number of times in a pseudo-

random fashion, printing to file the set of inputs followed by the numerical total risk output. Given

the existing linguistic classifications in Expert COCOMO 2.0, shown in Figure 4.2, preparing the

data file for use by C4.5 required only minor data processing. The model was designed to accept

command-line input, allowing either pseudo-random generation of input values, or the explicit in-

put of specific attribute values:

Randomized cocomo -r <# of cases> <min SLOC> <max SLOC>

Semi-Randomized cocomo [-attr value]∗

The modified Expert COCOMO 2.0, referred to here as COCOMO* first “seeds” the random num-

ber generator by using the current system time, and proceeds through # of cases iterations of

Expert COCOMO 2.0, supplying it with pseudo-randomly generated input values. Because SLOC

is the only continuous Expert COCOMO 2.0 input and has range {10000,∞}, it is necessary to

specify the range over which to vary it. Because software projects are generally classified into lin-

guistic size categories, such as small, medium, and large, the experimental approach involved using

COCOMO* to produce data files with SLOC in four specific SLOC ranges, starting at COCOMO’s

minimum project size: 10K-50K, 50K-100K, 100K-250K, 250K-500K.

To determine a suitable number of cases, C4.5 was executed with data sets of varying sizes pro-

duced using COCOMO*. Figure 4.3 gives the average predicted error rates in the C4.5 trees created

from these data sets. A sample size of 10,000 cases was selected as giving acceptable error rates

with significantly smaller tree sizes than larger sample sizes.
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Samples Tree Nodes Predicted Error (%)
5000 1147 5.5

10000 2035 4.2
15000 2877 3.9
25000 4451 3.6
50000 7927 3.1

100000 14339 2.8

Table 4.3: C4.5 Tree Error by Expert COCOMO 2.0 Test Set Size

Next, 10 data files of 10,000 cases each was created for each SLOC range. Since it was possible to

stochastically generate as many cases as desired, bagging was not necessary to ensure sufficiently

large data sets.

Once 10,000 cases were generated for a particular project size range, the SLOC values were cat-

egorized into 5 equally-sized bins. For example, the 10K-50K range contained the following bins:

10K-18K, 18K-26K, 26K-34K, 34K-42K, 42K-50K, where the upper bound is exclusive except for

50K. The rationale for this change is that it is impossible to guide such large software projects so

closely as to control their lines of code with the arbitrary specificity that could be achieved in a

stochastic simulation. This approach is similar to the ranges of other COCOMO factors, such as

Programmer Experience (PEXP), which gives a small number of experience ranges measured in

years, and not experience measured in months or weeks. Although C4.5 can process continuous

variables, and TREE could easily be modified to accomodate thousands of possible values for an

attribute, it would eventually be necessary to present this list of frequency counts of changes in a

manner more easily processed by the human mind. In essence a summary of the summary would

need to be created. The author chose to institute this change prior to using C4.5 in order to simplify

node splits on SLOC, and to simplify the programming in TREE, as well as to reduce the number
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of samples required.

Once 10 data sets were created for each SLOC range, C4.5 was used to create a decision tree

for each data set. Using an automation script, the following command was issued to create each

tree:

> c4.5 -f <data set> -c 100 > <data set>.t

The -f <data set> parameter merely tells C4.5 what file stem to use to look for the necessary

input files. The -c 100 parameter instructs C4.5 to not attempt to prune the decision tree pro-

duced unless it has 100% confidence in that pruning. In effect, this parameter restricts C4.5 from

increasing the error rate of the decision tree in order to reduce its size. The > <data set>.t

parameter redirects the ASCII tree normally printed to STDOUT to a text file for later processing

by TREE.

The set of 10 trees created for each SLOC range were used as an input ensemble to TREE. An

automation script was used to issue the following command for each of the four SLOC ranges:

> tree <t1> <t2> <t3> <t4> <t5> <t6> <t7> <t8> <t9> <t10>

where <tn> is the file name (with extension) of each tree in the ensemble. TREE displays sum-

mary information for each tree processed, and produces an ASCII text file named TREE.txt which

contains the importance table generated from the input ensemble. The automation script renamed

this file to correspond to the SLOC range used in each execution.
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4.4 Results and Conclusions

A total of four importance tables were produce in our experiment. The raw importance tables for

each SLOC range can be found in Appendix A. As stated in Section 1, a requirement of the KDD

process as well as the goal of our research is to present interesting knowledge in a representation

which is easily understood by a human who can utilize this knowledge to take actions with domain

utility. Therefore, two more easily understood representations will be used for our findings: a

histogram of relative magnitude and a table of rankings.

Because Expert COCOMO 2.0 is fundamentally based on a regression equation, a linear regression

was performed with SPSS4 on a single 10,000 case data set from each SLOC range to determine

the standardized beta coefficient for each attribute. These beta coefficients will be used to evaluate

the effectiveness of our approach.

For each SLOC range, the relative importance was found for each attribute value by express-

ing each as a percentage of the maximum importance in the table. Similarly, each standardized

beta coefficient was expressed as a percentage of the absolute magnitude of the maximum coeffi-

cient. This transformation preserves relative magnitude while allowing comparison between the two

metrics. In addition, the highest magnitude among all values for each attribute in the importance

table was ranked, giving a ranking scale from highest to lowest of 1 to 23. The beta coefficient was

similarly ranked, allowing a second method of comparison of the relative magnitude of importance

found for each attribute by both methods.

4SPSS is a trademark of SPSS Inc.
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Each histogram shows the relative magnitudes of both the importance of each attribute value,

as well as the relative magnitude of the standardized beta coefficient for each attribute. As men-

tioned previously, not all attributes have the same range of valid values, and so not all attributes

have histogram plots for all possible vaues in the range of 1 to 6. With each histogram is a table

giving the comparison between the rankings and relative magnitudes found by our method and by

standardized beta coefficients from linear regression in SPSS.

As can be seen in Figures 4.3 through 4.6, the ranks of attributes as given by their importance

values is consistent across project size. The comparison between ranking methods can be seen most

clearly in Tables 4.4 through 4.7. The rankings given by TREE’s importance tables correlate closely

with the standardized beta values, with correlations between importance rank and beta coefficient

rank for all SLOC ranges at 0.96 or greater.

Figure 4.3: Relative Importance and Relative Standardized Beta, 10K-50K SLOC
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Figure 4.4: Relative Importance and Relative Standardized Beta, 50K-100K SLOC

Figure 4.5: Relative Importance and Relative Standardized Beta, 100K-250K SLOC

Both rank and relative magnitude values are useful in interpreting TREE’s results. The rank for

each attribute gives a clear measure of which attributes are most important, while the relative
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Figure 4.6: Relative Importance and Relative Standardized Beta, 250K-500K SLOC

magnitude value shows how much more or less important some attributes are compared to others.

As can be seen in the graphs and tables of TREE’s importance findings for Expert COCOMO

2.0, attributes such as documentation (DOCU), development flexibility (FLEX), team cohesion

(TEAM), and even the size of the program within the general program size range (SLOC) are

ranked in importance much lower than the consistently-highest ranked attributes: development

schedule (SCED), analyst capability (ACAP), programmer capability (PCAP), and execution time

constraints (TIME). As can be seen by their relative magnitude values, these attributes have little

impact on the project risk output. Only these last four attributes are consistently above fifty

percent of maximum importance.
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Rank Relative
Attribute Imp Beta Imp Beta

SCED 1 1 100.0 100.0
ACAP 2 2 89.5 91.8
PCAP 3 3 84.2 82.2
TIME 4 4 45.0 59.3
CPLX 5 5 36.4 47.8
RUSE 6 6 30.8 44.5
TOOL 7 7 22.7 38.6
RELY 8 8 21.2 38.4
AEXP 9 9 20.0 36.2
STOR 10 10 15.5 34.0
LTEX 11 11 14.4 29.3
PMAT 12 12 4.9 19.4
PEXP 13 13 3.8 17.2
PVOL 14 14 0.9 8.5
TEAM 15 15 0.4 8.0
SLOC 16 21 0.3 1.2
PREC 17 22 0.3 1.0
DATA 18 18 0.3 2.6
PCON 19 17 0.3 2.6
SITE 20 16 0.3 2.9

DOCU 21 20 0.3 1.9
FLEX 22 23 0.2 0.1
ARCH 23 19 0.2 2.3

Table 4.4: Importance and Beta by
Attribute for SLOC range: 10-50K

Rank Relative
Attribute Imp Beta Imp Beta

SCED 1 1 100.0 100.0
ACAP 2 2 90.7 91.9
PCAP 3 3 84.3 82.5
TIME 4 4 47.0 57.3
CPLX 5 5 38.1 44.8
RUSE 6 6 29.6 43.1
TOOL 7 8 22.7 36.1
RELY 8 7 20.0 39.4
AEXP 9 9 18.7 34.5
LTEX 10 11 15.8 33.4
STOR 11 10 15.4 34.3
PMAT 12 12 4.0 20.5
PEXP 13 13 3.5 18.6
PVOL 14 14 0.8 10.3
TEAM 15 15 0.4 8.4
SLOC 16 16 0.4 2.2
DOCU 17 22 0.3 0.5
DATA 18 19 0.3 1.1
PREC 19 17 0.3 2.1
ARCH 20 21 0.2 1.0
SITE 21 18 0.2 2.1
FLEX 22 23 0.2 0.3
PCON 23 20 0.2 1.1

Table 4.5: Importance and Beta by
Attribute for SLOC range: 50-100K
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Rank Relative
Attribute Imp Beta Imp Beta

SCED 1 1 100.0 100.0
ACAP 2 2 85.4 87.6
PCAP 3 3 80.1 80.6
TIME 4 4 46.8 58.3
CPLX 5 5 36.8 46.0
RUSE 6 6 26.6 44.8
TOOL 7 8 21.5 37.2
RELY 8 7 21.1 37.5
AEXP 9 9 18.4 35.5
STOR 10 10 13.8 34.9
LTEX 11 11 13.5 32.8
PEXP 12 13 4.4 18.4
PMAT 13 12 4.2 19.7
PVOL 14 14 0.8 8.6
TEAM 15 15 0.5 5.0
DATA 16 21 0.4 0.6
SLOC 17 17 0.4 1.0
SITE 18 22 0.3 0.2
PCON 19 16 0.3 1.2
FLEX 20 20 0.2 0.6
DOCU 21 18 0.2 1.0
PREC 22 19 0.2 1.0
ARCH 23 23 0.2 0.0

Table 4.6: Importance and Beta by
Attribute for SLOC range: 100-250K

Rank Relative
Attribute Imp Beta Imp Beta

SCED 1 1 100.0 100.0
ACAP 2 2 85.3 88.1
PCAP 3 3 78.5 81.2
TIME 4 4 43.5 54.9
CPLX 5 5 33.6 44.8
RUSE 6 6 27.8 41.0
RELY 7 7 23.8 38.6
TOOL 8 8 22.9 35.7
AEXP 9 10 18.7 32.6
STOR 10 9 14.3 33.0
LTEX 11 11 12.6 30.4
PMAT 12 12 3.9 20.4
PEXP 13 13 3.3 17.6
PVOL 14 14 0.7 8.9
TEAM 15 15 0.5 6.0
SLOC 16 17 0.3 1.5
FLEX 17 18 0.3 0.6
PREC 18 21 0.3 0.5
DATA 19 20 0.3 0.5
ARCH 20 23 0.3 0.0
PCON 21 22 0.3 0.2
SITE 22 16 0.3 2.2

DOCU 23 19 0.2 0.6

Table 4.7: Importance and Beta by
Attribute for SLOC range: 250-500K
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4.5 Possible Improvements

Due to its overall low-polynomial runtime, the algorithm presented here was not modified in a few

identified ways which could have reduced the constant multiple factor of that runtime. In addition,

many variations of combination function could have been performed and their results compared.

This was not within the scope of the investigation, but the possibility was identified and will be

discussed here.

A reduction in Step 2, rule sorting, could be achieved by implementing a more efficient sorting

technique. Bubble sort is an easily implemented yet inefficient sorting technique. It’s execution

time is less than that of the cost of Step 3, and this runtime was deemed acceptable by the author.

The reduction of the sorting step runtime to that of a quicksort might be a significant reduction

when coupled to a simultaneous reduction in the cost of Step 3, rule comparison.

In Step 3, all rule classifications are compared, and those with what the author designates a

significant difference have their rules compared as described in Section 3. This full combinatorial

comparison is not necessary if the list of rules is sorted by classification. Again, the use of a sorting

technique like quicksort could keep this additional sorting cost below ©(n2). Once sorted, |C|

pointers can be used to keep track of the first instance of each classification, if any such rules

exist. The comparison time is then reduced to a sum of comparisons between groups which have

significantly different classifications.

Finally, the importances determined by TREE may be modified by some weighting function. An

obvious possibility is a function of the accuracy of the rules being compared. Another obvious pos-
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sibility is adding a tree accuracy weighting to the ensemble combination function. Each tree could

have its values multiplied by a tree accuracy weighting. In the case where trees vary significantly

by error rate, this would place less emphasis on knowledge gleaned from less accurate trees.



Chapter 5

Summary and Conclusions

To be considered useful, that is to be considered to have domain utility, knowledge must be both

understandable and actionable. While automated learning techniques may discover interesting fea-

tures of the data on which they operate, they do not always employ knowledge representations

which satisfy these knowledge requirements. Decision trees are one such representation which rely

on the extraordinary human ability to comprehend the knowledge contained in graph-based struc-

tures. However, the human mind is quickly overcome by the complexity of even moderately large

trees, especially when the branches of those trees contain differing sets of attributes used in the

node decision tests. This unfortunate constraint on machine learning with decision trees is com-

pounded by considering that typically the tree accuracy improves relative to tree size, as incorrectly

classified cases can be correctly classified by increasing tree complexity.

We have described this conundrum with the introduction of two new definitions of the constraints

on the use of decision trees (page 5). The accuracy-complexity constraint, combined transitively

with the complexity-understandability constraint, leads to an accuracy-understandability constraint.

69
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We have presented a novel ensemble learning technique which provides a knowledge representation

which is completely scalable, can summarize the knowledge contained in decision trees as an im-

portance ranking of attributes, and which can be used as a means of guidance for activities like

resource allocation and data collection.

Our importance table displays the frequency count of the instances where an attribute value,

ceteris paribus, would lead to a better outcome classification than the outcome of another rule

containing the same attribute. This gives an indication of the relative importance of the attributes

in the underlying data set. Although the case study presented involved the use of a data-generating

model, this approach would not be intended for situations where a well-defined model already ex-

ists. The intended application of the approach would be in a domain where data can be collected

and analyzed within the KDD process, yet for which there exists no clearly defined, accurate model,

and where descriptive statistics fails in its assumptions. It is our opinion that the technique pre-

sented here would in such a case provide beneficial information which can help guide organizational

decision makers.

We have presented a case study which utilized simulated data sets created by a popular regression-

based model. The output of our approach has been presented and compared with a standardized

linear regression beta coefficient. Our approach has yielded a correlation of importance rankings

with the standardized beta coefficient rankings of 0.96 or greater for all trials. It is our belief that

our approach can be utilized just as effectively in problem domains for which such a statistical

analysis would be either less effective, or would require a level of statistical expertise to achieve

required accuracy which would violate the given requirements of the KDD process. By contrast,
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our approach requires no expert guidance and produces a knowledge representation which is easily

understood by human users without requiring specific expert knowledge to interpret. Our tech-

nique results in an ordinal ranking and a relative magnitude for each attribute which can be used

to guide such efforts as resource allocation, metrics data collection, and model validation.
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Appendix A

Case Study 1: Importance Tables

Attribute 1 2 3 4 5 6
SLOC 0 1435 915 573 792 1499
PREC 1394 1010 682 706 1187 0
FLEX 1092 858 593 613 921 0
ARCH 1069 678 618 715 1005 0
TEAM 1092 798 856 1190 1740 0
PMAT 4608 5787 12074 16892 21547 0
RELY 93073 83557 70298 42181 61586 0
DATA 0 1317 641 631 1326 0
CPLX 160255 150959 141705 119696 75673 107800
RUSE 0 135270 126377 108764 64226 62362
DOCU 853 607 412 585 1104 0
TIME 0 0 197708 169151 111323 101896
STOR 0 0 68351 53928 34002 36362
PVOL 0 3867 2383 1433 2220 0
ACAP 137410 117473 313370 371199 393566 0
PCAP 133157 119329 298984 345663 370228 0
PCON 758 534 447 653 1296 0
AEXP 27344 27171 56839 75432 88061 0
PEXP 4891 5589 9976 12944 16827 0
LTEX 15965 20606 42599 55660 63365 0
TOOL 35739 40421 73941 88939 99850 0
SITE 983 753 663 657 811 1277
SCED 142823 111008 343691 415834 439808 0

Table A.1: Importance Table for 10-50K SLOC
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Attribute 1 2 3 4 5 6
SLOC 0 1016 623 461 877 1556
PREC 1345 933 694 712 1060 0
FLEX 882 579 400 413 620 0
ARCH 1055 682 469 524 717 0
TEAM 956 612 634 956 1637 0
PMAT 5697 6189 11125 14723 17690 0
RELY 87493 78837 67443 39111 61627 0
DATA 0 853 441 542 1404 0
CPLX 167215 159925 149247 123357 80935 113487
RUSE 0 129790 119538 102493 68088 60603
DOCU 1057 723 565 825 1443 0
TIME 0 0 206208 171634 110599 115021
STOR 0 0 67466 52354 33215 35415
PVOL 0 3674 2467 1643 2722 0
ACAP 142976 112653 318243 379211 397551 0
PCAP 127670 119267 288482 351083 369818 0
PCON 761 358 268 456 784 0
AEXP 25667 26229 58150 72465 81934 0
PEXP 5267 4676 8551 12140 15448 0
LTEX 16899 19775 44904 60351 69437 0
TOOL 33747 39781 73934 89966 99596 0
SITE 759 530 520 572 667 1035
SCED 134986 110937 346470 420930 438438 0

Table A.2: Importance Table for 50-100K SLOC
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Attribute 1 2 3 4 5 6
SLOC 0 1212 757 616 1061 1637
PREC 1018 745 618 657 999 0
FLEX 989 638 584 667 1090 0
ARCH 789 528 450 506 811 0
TEAM 967 753 943 1360 2110 0
PMAT 5240 6100 10994 15087 18816 0
RELY 95670 87068 72241 41686 60475 0
DATA 0 1454 672 784 1675 0
CPLX 166663 154721 146329 121776 73145 105729
RUSE 0 120562 112034 92841 54819 56079
DOCU 616 407 335 550 1072 0
TIME 0 0 211958 177066 114670 118034
STOR 0 0 62299 49204 33871 37898
PVOL 0 3633 2441 1430 2224 0
ACAP 130245 113720 310974 369588 386682 0
PCAP 123196 115173 295208 340929 362698 0
PCON 976 556 540 877 1448 0
AEXP 25032 24891 56717 74509 83152 0
PEXP 7588 5460 11455 15447 19924 0
LTEX 15769 17866 39432 51711 61169 0
TOOL 35199 38905 73425 88589 97473 0
SITE 731 476 475 682 994 1525
SCED 141770 110675 348977 428067 452572 0

Table A.3: Importance Table for 100-250K SLOC
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Attribute 1 2 3 4 5 6
SLOC 0 1460 1013 630 725 1580
PREC 1437 925 774 826 1290 0
FLEX 1506 1025 705 785 993 0
ARCH 1321 767 652 653 1023 0
TEAM 1255 955 1230 1688 2322 0
PMAT 4902 5624 11454 15123 17953 0
RELY 109588 98646 81020 50400 65178 0
DATA 0 1148 551 737 1412 0
CPLX 154631 148713 140805 116411 79568 99612
RUSE 0 128052 119363 98144 62150 65537
DOCU 955 536 494 730 1141 0
TIME 0 0 199967 167869 107499 124071
STOR 0 0 65918 54999 34699 37837
PVOL 0 3210 2068 1317 2047 0
ACAP 135427 122393 309784 373530 392257 0
PCAP 131194 113357 286029 340160 361155 0
PCON 781 563 488 726 1291 0
AEXP 27829 30248 58775 73767 86188 0
PEXP 4563 4365 8383 12339 15357 0
LTEX 15592 16189 36542 49401 57894 0
TOOL 38314 41237 80947 93465 105248 0
SITE 1015 747 640 563 808 1179
SCED 142595 113599 355355 432774 459913 0

Table A.4: Importance Table for 250-500K SLOC



Appendix B

COCOMO 2.0 Factors

Attribute Range
SLOC 10,000-inf
PREC 1-5
FLEX 1-5
ARCH 1-5
TEAM 1-5
PMAT 1-5
RELY 1-5
DATA 2-5
CPLX 1-6
RUSE 2-6
DOCU 1-5
TIME 3-6
STOR 3-6
PVOL 2-5
ACAP 1-5
PCAP 1-5
PCON 1-5
AEXP 1-5
PEXP 1-5
LTEX 1-5
TOOL 1-5
SITE 1-6
SCED 1-5

Table B.1: Valid Values for Expert COCOMO 2.0 Attributes

79
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