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ABSTRACT 

Spatial and Temporal Investigation of Real World Crosswind 

Effects on Transient Aerodynamic Drag Losses in Heavy Duty 

Truck Trailers in the US 

Bharadwaj Sathiamoorthy 

 

Decreasing truck fuel usage and climate change gas production is of national and 
global importance. This study focuses on large, heavy-duty on-road tractor trailer 
combinations because of their impact in terms of fuel consumption levels, emissions, 
and their dominance in freight transportation in the United States, which offers 
substantial potential to improve efficiency of the transportation sector and reduce 
emissions. The US Department of Energy completed a study of this topic in 2009, 
and the EPA and NHTSA are both engaged in regulating truck efficiency. The 
Energy Information Administration (EIA) reported that more than 50 percent of the 
total diesel consumed was for transportation and this percentage will increase. With 
about 65 percent of the total engine-out energy consumed by a typical heavy-duty 
tractor trailer being spent on overcoming aerodynamic drag at highway speeds 
(55mph in the USA), improvements to aerodynamic performance offers a substantial 
avenue for reduction in fuel usage and emissions. Besides being directly related to 
fuel consumption, emissions, maximum speed and acceleration, aerodynamic 
phenomena also influence the stability characteristics of road vehicles, and their 
response to crosswinds. Crosswinds from any directions will affect the drag losses 
and will cause a significant change in pressure distribution along the truck body. The 
main objective of this research is to provide a better understanding of the influence 
of crosswinds on the aerodynamic performance of heavy-duty tractor trailers in the 
United States.  

A model to calculate on-road crosswinds for any temporal and spatial conditions 
from time-varying weather data, vehicle position and road data was developed. This 
transient model combined with drag data obtained from experimental, steady-state 
wind tunnel testing and numerical simulations for various tractor trailer 
configurations, the transient nature of coefficient of drag due to on-road crosswind 
conditions (from the model) was analyzed. Variations in yaw angle of up to 17 
degrees were observed in some cases where the average yaw angle was recorded 
at only 3 degrees. Relationships between wind speed, yaw angle, drag and overall 
truck efficiency were clearly established.  The research statistically measured the 
interaction between aerodynamic add-on devices, on-road crosswinds, and drag 
reduction efficiency. A region-based and time-based analysis was conducted to 
provide a better understanding of the aerodynamic performance of a baseline 



tractor-trailer configuration and aerodynamic add on devices. In several cases, the 
coefficient of drag varied as much as 60% on the routes analyzed and reductions in 
aerodynamic drag force up to 25% could realized by using the appropriate 
aerodynamic configurations. The application of these results will improve the 
estimation accuracy in fuel, emissions prediction models by allowing temporally and 
spatially disaggregated data input parameters. Finally, the study presented the 
different methods in which coefficient of drag is estimated and how these differences 
could play a role in misleading information about the aerodynamic characteristics of 
a tractor trailer. 
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CHAPTER I – Introduction, Objectives and Technical Tasks  

1.1. Introduction 

According to the American Transportation Research Institute (ATRI), fuel prices currently 

constitute the largest share of cost amongst trucking fleets with over 35 percent [1]. 

With the cost of diesel prices consistently growing with on-highway prices subject to 

increase due to increased vehicle population, it presents a major concern in the heavy-

duty trucking sector. In support to the other claims, the United States Energy 

Information Administration [EIA] has reported, ‘the energy demand for HDVs-including 

tractor trailers, vocational vehicles, heavy-duty pickups and vans, and buses will increase 

at an average annual growth rate of 0.8 percent, which is the highest among 

transportation modes.’ It is evident that heavy-duty trucks dominate fuel consumption 

levels in the transportation freight sector accounting for 17 percent of transportation oil 

use and 12 percent of all United States oil consumption [2]. Trucks deliver 64 percent of 

the goods transported across the United States [3], and as a result all measures to 

reduce fuel consumption are being considered. The driving instigation for this research 
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was that, a 2 - 10 percent increase in fuel economy percentages in this sector will result 

in substantial annual fuel cost savings; and consequently, energy savings and emissions 

reduction. 

The pollution effects of fuel use and the likely increases of fuel cost in the next few 

decades have increased the pressure of considering alternative energy sources for 

heavy-duty tractor trailers [4]. Large engines with high horsepower are used in heavy-

duty vehicles (HDVs) to provide sufficient capacity to counteract the resistive forces on 

truck movement. The horsepower of a HDV is an important factor of the truck’s overall 

design. The available power of a vehicle must equal or exceed the total of all resisting 

forces to maintain the desired speed.  The total resistance retarding the vehicles desired 

motion is the sum all external tractive forces, and internal chassis resistance forces 

which include, aerodynamic drag, rolling resistance, grade effect and 

transmission/engine losses [5]. Total resistance force is transferred to the engine 

through the crankshaft. This research focuses on exploiting the gains offered in reducing 

the aerodynamic drag losses of heavy-duty tractor trailers. For a better understanding of 

the context of sentences in this dissertation, it should be noted that the terms HDV 

(Heavy-duty vehicle), heavy-duty tractor trailer, heavy-duty truck, and truck are used 

interchangeably. 

Large articulated trucks are considered to be aerodynamically inefficient due to the 

design, size, and shape of their bluff body [6]. Studies conducted in the past have shown 

that wind blowing in the direction opposite to the direction of vehicle travel 

(crosswinds) substantially decreases the aerodynamic efficiency of tractor trailers. In 

1987, a study conducted at Kenworth Trucking Company [7] showed a 68 percent 

increase in CD on a Kenworth baseline tractor trailer configuration due to varying 

crosswinds in the direction opposite to the vehicle’s motion. A more recent study 

conducted at NASA [8] showed up to a 58 percent increase in CD (obtained from wind 
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tunnel experiments) on a Kenworth T600A baseline tractor trailer configuration for the 

same crosswind condition. This shows improvements to truck shapes over the years, but 

an inability to substantially reduce the impact of wind blowing in the direction opposing 

the direction of vehicle travel. Other studies conducted by Subrata Roy [9] showed the 

effectiveness of an improved truck geometry (in a tractor trailer configuration) resulting 

in a 30 percent reduction of CD (obtained from Computational Fluid Dynamic results). 

Other studies, such as those listed in [10], [11], have indicated the effectiveness of 

aerodynamic add-on devices for tractor trailers to reduce CD. The velocity based on 

which the coefficient of drag was calculated in these studies was not clearly defined. 

Although each study has its individual value, a direct comparison between one study 

results to another could not be made since there is no established definition for CD. The 

effectiveness of different aerodynamic devices either decrease or increase under varied 

crosswind conditions. Tractor trailers operating in different regions gain varied benefits 

from the same add-on devices. The trailer side skirts are more effective in cases of 

crosswinds rather than zero crosswind conditions; whereas, the effectiveness of a wind 

deflector decreases with the slightest impact of crosswinds [11]. The current generation 

of fuel and emission factor models, including the U.S. EPA’s Motor Vehicle Emissions 

Simulator (MOVES) are based on predetermined drag terms. The aerodynamic drag 

coefficients (CD) are fixed values which are binned based on vehicle type and class. 

However, it has been well established that the coefficient of drag of vehicles which are 

affected by crosswinds vary significantly [10] [11] [12]. There is a lack of realistic 

aerodynamic parameter representative of the vehicle activity regime.  In a simplified 

view, most of the aerodynamic developments, optimization and result validations are 

carried out in wind tunnels or a regulated test track but these results are expected to 

prove themselves on the road. 
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Several studies have been conducted in the area of heavy-duty tractor trailer 

aerodynamics examining different cases, but no study has effectively used the results 

obtained by regulated testing to predict the aerodynamic characteristics as realized 

under real-world operating conditions. A study to claim, “Predicting the real-world 

aerodynamic experience of heavy-duty tractor trailers” could never be successfully 

accomplished, primarily due to the prevailing weather conditions in the vehicle’s path of 

travel [13] [14], and also due to inconsistency in reference velocity used to calculate the 

coefficient of drag (CD). This study verifies the statement, ‘The efficiencies of 

aerodynamic add-on devices cannot be consistently realized by all heavy-duty tractor-

trailers operating in real-world conditions across the nation at different time frames’. In 

real-world operations, CD is a function of several factors and can no longer be 

represented in its conventional constant form.  

In this study, the subsonic wind tunnel, a low turbulence flow tunnel developed at West 

Virginia University was used to record drag values and test aerodynamic add-on devices 

on a scaled, conventional tractor trailer. This study utilized the drag measurement, flow 

analysis capabilities and the vast datasets that reside at the National Oceanic and 

Atmospheric Administration (NOAA), and combines them with an advanced transient 

yaw angle prediction model to predict power loss due to on-road aerodynamic drag 

force. The California Air Resource Board (CARB) has announced that, beginning Jan. 1, 

2013, all 2010 model year or newer tractors and trailers must comply with the tractor 

trailer greenhouse gas (GHG) regulation to reduce GHG emissions from long-haul tractor 

trailer combination vehicles operating in California. This includes retrofitting the tractor 

trailers with Smartway verified aerodynamic devices such as trailer skirts, and fairings in 

order for tractors to meet specified fuel efficiency improvements [15]. As a first 

attempt, the model built in this study uses values obtained from a 2007 model year 

tractor trailer configuration for all analyses.  
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1.2. Objectives 

The ultimate objective of this study was to develop and integrate a continuous drag 

coefficient prediction model with drag coefficient data obtained from experimental 

results to analyze spatial and temporal variation of aerodynamic performance and 

aerodynamic add-on device effectiveness. To achieve this objective it was necessary to 

perform data collection, validation, analysis of different tractor trailer configurations, 

including tests for aerodynamic add-on devices and analysis of flow regime around the 

model. The following tasks were necessary to accomplish these objectives: 

1. Obtain reliable drag measurements from wind tunnel experiments simulating 

highway operations and validate it using numerical simulations. 

2. Clearly establish, the different velocities and forces interacting with an on-road 

tractor trailer and a wind tunnel tractor trailer. 

3. Perform statistical analysis to determine the correlation between crosswinds and 

 coefficient of drag.  

4. Region-based and time-based efficiency analysis of all tested aerodynamic 

 devices. 

5. Employ spatial analysis techniques in GIS to formulate the drag coefficient 

 prediction model, with inputs being the vehicle position, trajectory, and NOAA 

 wind datasets. 

The major contribution of this study was aimed at explaining the significance of 

variations in aerodynamic performance and efficiencies of aerodynamic devices due to 

the region and time at which a truck operates.  
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1.3. Technical Tasks to Accomplish Objectives 

The above objectives were accomplished following the tasks in the phases described 

below:  

Phase-I: The first phase of the research focus was to develop a database of CD 

values corresponding to yaw angles which later acted as a lookup table. Wind tunnel 

experiments on a 1:15 scale 2007 Peterbilt 379 were conducted at the West Virginia 

University subsonic wind tunnel. The validation of data was provided by numerical 

simulations on corresponding model configurations and conditions. FloExpress, 

Solidworks and ICEM are commercially available simulation, design and meshing tools 

used for the purpose of numerical simulation. 

Phase-II: The second phase of the research focus was to establish a method to 

calculate the continuous yaw angles over any topographical region based on vehicle 

position, trajectory, and NOAA wind data sets. NOAA’s vast wind datasets, which give 

access to wind data in vector format over the Continental United States (CONUS), were 

used for this purpose. Geographical Information Systems developed by the Earth System 

Research Laboratory, is a commercially available, geoprocessing software that was used 

for the purpose of building this model.  

Phase-III: The third phase focused on integrating the model developed in phase I 

and the results obtained in phase II. The model built in phase II enabled the prediction 

of crosswind conditions as realized by a tractor trailer travelling any user-defined route. 

A code was written in Matlab (also a commercially available tool developed by 

Mathworks) to extract continuous CD values from the database generated in phase I 

corresponding to vehicle path of travel and the continuous yaw angle predicted in phase 

I.  
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Phase-IV: In the final phase of the research, several case studies were conducted to 

analyze how spatial and temporal variations affect the effectiveness of the tested 

aerodynamic add-on devices (from phase II). The correlation between on-road power 

consumption, emissions and crosswinds was established by comparing the results 

obtained from the model and results obtained from on-road testing.  

CHAPTER II – Definitions, Literature Review and Introduction to 

Wind Tunnel Setup 

2.1. Resistance Forces 

Internal combustion engines convert fuel energy to heat and mechanical energy. The 

efficiency of diesel engines is comparatively more than gasoline engines because they 

operate at higher compression ratios (which yields more work output on engine 

expansion stroke) [16]. In modern-day diesel truck engines, 53 percent of the fuel 

energy is lost as heat through exhaust and cooling systems, another 5 percent is lost in 

engine friction and pumping losses and only 42 percent is available as engine output 

[17]. This is the total available energy to overcome aerodynamic drag, rolling resistance, 

drivetrain friction, negotiate grade effects (inertial forces) and provide power to 

accessories such as cooling and heating units. The effect of these factors to energy and 

fuel consumption varies greatly depending on driving speed, truck weight, terrain, 

driving attitude, wind speed and angle, and pavement conditions [6]. Unlike other 

resistive forces, however, aerodynamic drag force increases steeply with velocity and 

becomes the largest source of energy loss at typical highway speeds. Being the highest 

contributor for power loss, it also provides the substantial potential for fuel savings. 
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2.1.1. Rolling Resistance 

The total force exerted by the tires of a vehicle on the road surface acting against the 

direction of movement is called rolling resistance. This is primarily caused by the 

deformation which occurs at the contact area between the tire and road surface. 

Studies have shown that rolling resistance accounts for about one-third of the engine 

power required to propel the HDV at highway speeds, and that the fuel consumption is 

inversely proportional to the coefficients of rolling resistance/constant [18].  However, 

surface adhesion is the result of several factors combined including the size of the tires, 

tire pressure, tire wear, tire temperature, and road surface. The general equation used 

to calculate rolling resistance,  

 

𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑓𝑟 ×𝑚 × 𝑔 

Where, 

Frolling resistance = rolling resistance force in N, 

fr = coefficient of rolling resistance, 

m = gross vehicle weight in kg, and 

g = acceleration due to gravity in m/sec2. 

The rate of increase in rolling resistance at highway speeds is not prominent in HDVs as 

compared to lighter vehicles. 

2.1.2. Road Grade Effect/Losses 

The force of vehicle weight acting at an angle is referred to as grade resistance. This 

usually occurs when the vehicle is making a climb at an angle. The magnitude of grade 

resistance is affected only by the vehicle weight and the angle of the climb [5], and is 

usually calculated as,  

𝐹𝑔𝑟𝑎𝑑𝑒 = 𝑚 × 𝑔 × sin 𝛼 

(1) 

(2) 
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Where, α is the grade angle in degrees. 

2.1.3. Drivetrain Frictional Losses/Transmission Losses/Chassis 

Resistance Forces 

The free motion of a HDV along its desired path at its desired speed is retarded by 

numerous other forces other than the above described external tractive forces, and is 

referred to as internal resistance forces. Chassis resistance forces, or drivetrain losses, 

are the primary contributor. Driveline resistance power losses occur in the transmission, 

universal joints, axle differentials, seals, and bearings due to mechanical friction and 

several other mechanical components which are involved in the power transmission 

system. The magnitude of the loss is related to the friction quality, lubrication efficiency 

between components, and wear. Other factors, which could also add to drivetrain 

losses, include ambient temperature and vehicle speed. Drivetrain losses generally 

account for less than 5 percent of the energy demand (at the wheel hub) at highway 

speeds [19] 

2.1.4. Aerodynamic Drag Losses 

Aerodynamic drag resistance is the air resistance or the force exerted on the vehicle by 

the pressure of air surrounding it. The general theory is, as the truck moves and gains 

speed, the resistance offered by the fluid (air) surrounding it increases and impedes the 

motion of the truck. This force exerted on the vehicle in motion is known as 

aerodynamic drag force. 

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝐴𝐶𝐷𝑉

2 

The magnitude of aerodynamic drag force is affected by the vehicle’s shape/design, 

frontal area (A), speed (V), drag coefficient (CD) and density of ambient air (ρ). Since 

aerodynamic drag force increases exponentially with velocity, it becomes the largest 

(3) 
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source of power consumption at typical highway speeds [6]. At 65mph, aerodynamic 

drag accounts for approximately 65 percent of the total shaft-out energy for a typical 

heavy-duty tractor trailer [19], [8]. This provided the driving instigation to research the 

factors influencing the major source of energy loss, and gain more insight into the 

dynamics of the on-road tractor trailers.  

2.1.5. Energy Loss to Tractive Forces from Past Studies 

Several studies have indicated energy loss percentages from heavy-duty tractor trailer 

configurations. Although the results from varying studies were slightly different, they all 

conferred on the fact that the energy loss due to aerodynamic drag was the most 

dominant among all tractive/resistance losses. 

 

 

Figure 1. Energy Loss in Typical Heavy-Duty Tractor Trailer [20] 

The U.S. DOE reported that the energy loss in tractor trailers travelling on the highway 

due to external tractive forces is highest in the form of aerodynamic drag loss at 21 

percent and that proposed efforts to increase fuel economy by reducing the 

aerodynamic drag on the vehicle [21]. In 2010, the National Academy of Sciences 

prepared a report assessing fuel economy technologies for medium-and heavy-duty 

vehicles. The assessment concluded that aerodynamic drag impacted fuel economy the 
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most and was reported to be dominant accounting for 55 percent of the total energy 

consumption at highway operating conditions [22]. Table 1 below depicts the energy 

consumption percentages between the various sources at both highway and urban 

operating conditions.  

 

Table 1. Engine Power Consumption by Source for Fully-Loaded Class 8 Tractor Trailer 

Source Urban Highway 

Drivetrain 10-15% 5-10% 

Inertia/Braking/Grade 35-50% 0-5% 

Rolling Resistance 20-30% 30-40% 

Auxiliary Loads  15-20% 2-10% 

Aerodynamic Losses 10-25% 35-55% 

 

 

 

 

 

 

 

 

 

 

Figure 2. EPA Estimated Energy Loss for Class 8 Trucks at 65mph and 80,000lb 
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The EPA certified GEM (Greenhouse Gas Emission Model) predicts 15-22 percent of the 

total energy is lost due to aerodynamic drag [23]. 

2.2. Vehicle Aerodynamics 

The behavior of fluid around a body may be described by considering the fluid as a 

continuous medium and not accounting for the motion of single molecules. The term 

‘fluid’ can be described in many different ways, but the general understanding is, it is a 

substance that deforms continuously under the action of tangential stresses. When no 

motion is present (in conditions of static equilibrium), the fluid particles are subject only 

to normal stresses, which are also referred to as pressure stresses. When studying the 

fluid dynamics with respect to a complex state such as a bluff body in motion, it is 

generally assumed that the fluid present is incompressible (which means that the 

density of the fluid is constant). It is also worthwhile to note that the variation in density 

of the fluid is significant only when the velocity of the moving body is comparable with 

the speed of sound. In terms of fluid dynamics, on-road tractor trailers are bluff bodies. 

Bluff body is the term used for objects which are not aerodynamically efficient, or as 

opposed to streamlined objects. In general the flow around a streamlined object 

remains attached, producing no boundary layer separation and comparatively smaller 

pressure drag. However, the flow around a non-aerodynamic body or bluff body 

separates, resulting in a region of high surface pressure on the front side and low 

surface pressure on the back side causing significant pressure drag [24]. The external 

geometries of tractor trailers are complex. The internal ducts, cavities, gaps and rotating 

wheels add further complexity to the exterior geometry.   
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Figure 3. Flow around Streamlined/Aerodynamic and Non-aerodynamic Shape Bodies [25] 

Figure 3 shown above provides an illustrated view of a flow around the streamlined airfoil which 

is referred to as aerodynamically shaped body where there is no boundary layer separation and 

comparatively small pressure drag. However, the flow around the circular cylinder which is 

considered to be less aerodynamic results in a region of high surface pressure and thus, 

significant pressure drag.   

2.2.1. Definitions and Properties of Incompressible Fluids 

Listed below in the following subjections, are definitions and properties needed to 

correctly ascertain the full meaning of fluid dynamics as they pertain to on-road tractor 

trailer aerodynamics. 

2.2.2. Density 

Fluid density (ρ) depends on pressure and temperature. The compressibility or the 

incompressibility property of the fluid is the tendency to vary in density due to changes 

in pressure and temperature. Tractor trailers in motion, are exposed to a free stream of 

fluid and always operate at speeds/velocities which are lower than 1/3rd of the speed of 
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sound. For this velocity range (55mph – 65mph), the variations in pressure and 

temperature in the flow field are small, and therefore the corresponding change in 

density is negligible and can be neglected. Thus, the fluid can be regarded as 

incompressible.  

2.2.3. Viscosity 

Viscosity is a measure of resistance caused by molecular friction between the fluid 

particles. In general, fluids would possess viscosity or internal resistance. According to 

Newton’s law, 

𝜏 = µ ×
𝑑𝑉

𝑑𝑦
 

The shear stress τ is proportional to the velocity gradient 
𝑑𝑉

𝑑𝑦
. The constant µ is a 

property of the fluid called dynamic viscosity and it generally depends on the 

temperature.  

𝜐 =
µ

𝜌
 

Where, υ is called kinematic viscosity which also depends on pressure and temperature. 

It should be noted that, for incompressible fluids, only temperature dependence exists 

for µ and υ [26]. 

2.2.4. External Flow Phenomenon  

The thickness of the layer of fluid dispersion as it flows over or around the surface of a 

body is known as boundary layer thickness. This dispersion is wide and breaks in the 

case of bluff body and this phenomenon is known as boundary layer separation; the 

flow is entirely governed by viscous effects.  In vehicle-fixed coordinates, the ground 

(4) 

(5) 



25 
 

plane is a surface with constant velocity, V or V∞ and no boundary layer is present at 

this surface.  

2.2.5. Fundamental Flow Characteristics  

The flow over a tractor trailer is three-dimensional. In general, the flow separation 

occurs and the boundary layers are turbulent. Typically for bluff bodies such as tractor 

trailers, pressure drag is the primary drag component overshadowing skin-friction drag.  

The flow around a moving HDV is generally governed by the dispersed boundary layer 

and the viscous effects.  Wherever an adverse pressure gradient is too severe, the flow 

separates from the contour and goes its own way. The boundary layer is present over 

wide regions of the surrounding space and is quite significant as compared to the 

characteristic length of the vehicle. The flow around bluff bodies is generally turbulent 

and this is characterized by the Reynolds number. 

2.2.6. Reynolds Number 

It is a dimensionless number and is a function of the velocity, V, dynamic viscosity, µ of 

the fluid, and the characteristic length, l. It is defined as the ratio of inertial forces to 

viscous forces. The character of the viscous flow around a body depends only on the 

body shape and the Reynolds number. The flow regime varies with variations in 

Reynolds number. When studying aerodynamics of road vehicles, experiments are 

conducted to mimic the real-world operating conditions to ensure valid results. Apart 

from achieving geometric similarities, it is important to also achieve dynamic similitude 

(matching dynamic properties as in the real application). The Reynolds number needs to 

be carefully assessed for a model-scale laboratory experiment involving fluid to be 

representative of full-scale conditions [27]. There is a transition in the flow regime from 
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laminar (where smooth, streamlined, constant viscous forces are dominant) to turbulent 

flow (where instable, irregular inertial forces are dominant).  

𝑅𝑒 = (𝜌 × 𝑉 × 𝑙)/µ 

2.2.7. Flow Regimes 

At low flow rates, fluids move in “layers.” The velocity of molecules contained within 

these layers does not cross the streamlines. This behaviour is called laminar flow. In 

pressure driven flows, laminar flow is predominant at low flow rates but at higher flow 

rates, the streamlined layers are disrupted by eddies moving in all directions. This is 

known as turbulent flow. The transition between laminar and turblent flow is complex 

and depends on many fluid flow parameters. This region of transition is only significant 

to discuss in cases where the flow is neither fully laminar nor fully turbulent.  

 

 

Figure 4. Laminar and Turbulent Flow (Top and Bottom Respectively) Around Pipe Posts. 
(Credit: Image Courtesy of University of Pennsylvania) 

(6) 
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In laminar flow or linear flow, there is a direct connection between the force applied to 

the fluid and how fast it moves. This implies, once the force applied is removed, viscous 

forces stop the fluid’s motion. However, this is not the case in turbulent flows which are 

more complex. The inertial forces (which are nonlinear in nature) have developed as 

part of the moving fluid, and keep the fluid moving even after the applied force is 

removed.  

2.3. Tractor Trailer Aerodynamics 

Fuel savings through aerodynamic drag reduction have been viewed as a potential area 

for energy and fuel savings since 1914 as the need for high-speed trucks and buses 

arose with the construction of more sophisticated roadways.  Reducing aerodynamic 

drag losses to improve fuel economy in heavy-duty vehicles has been an ongoing study 

for nearly 100 years, yet further research is needed before it can be completely 

exploited. During the first few decades after the introduction of long-haul vehicles such 

as busses and trucks, the focus was on power. The ability to transport goods, aesthetics, 

driver comfort and cargo loading capacity became of secondary importance. From 1997-

2003, the overall energy consumption by heavy trucks in the US increased by 3.7 

percent annually. Considering that the number of heavy-duty tractor trailers operating is 

relatively smaller compared to light duty and medium duty vehicles, the increase in 

energy consumption is significant [22]. As the gradual realization to decrease energy 

demand of these vehicles became more prevalent, steps were taken to optimize the 

shape and smart structural design was adopted to make the vehicles more energy 

efficient. Minimizing fluid-dynamic drag through redesigning and reshaping structures of 

boats and ships has been practiced for many hundreds of years. Similar theories have 

been applied to road vehicles, especially to bluff bodies.  
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The Society of Automobile Engineers and Department of Transportation were the first 

to attempt reshaping [28] the front ends which are the primary areas that provided 

large drag reductions. In trucking’s infancy, the edges of the tractors and trailers were 

sharp and square. While this design proved to be easy to manufacture, it was inefficient. 

The SAE and DOT program exploited this area of inefficiency by rounding the edges and 

corners which made the vehicle far more aerodynamically efficient by supporting a 

smooth flow of air around the corners, unlike earlier designs. Aerodynamic technologies 

were not developed for a tractor trailer configuration considering it as a single unit and 

much of the focus was on the truck/tractor aerodynamics alone. Different trailers would 

be hinged to one tractor and there was no one dedicated trailer for a tractor.  

 

Most of the earlier studies (mid 1970’s), expected fuel savings to be approximately on-

half of the percentage reduction in aerodynamic drag [29]. Before the oil crises of the 

1970’s, the University of Maryland in 1953 performed research on heavy-duty truck’s 

drag reduction by redesigning the shape. Tests were conducted in the University of 

Maryland’s Wind Tunnel Operations Department to explore methods of drag reduction 

for standard tractor trailer configuration. Various modifications were made to tractor 

trailer configurations to examine the effectiveness to reduce wind resistance. Over 

7,000 wind tunnel tests were carried out and they were all concerned with methods of 

streamlining to negotiate the boundary layer separation and keep it attached as air 

passes the trailer [30].  This introduced a detailed look at truck aerodynamics. In the 

1960’s Selden Saunders introduced the first aerodynamic add-on device, a drag reducer 

for a gap in land moving vehicle [31]. The device was aimed at stabilizing the stagnant 

air in the gap between a truck and its trailer. Figure 5 typifies the air deflector/drag 

reducer device invented by Saunders and Figure 6 show the difference in air flow caused 

by employing the air deflector.  
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Figure 5. Ground Vehicle with Cab-mounted Air Deflector/Add-on Device [32] 

 

Figure 6. Difference Between Standard Tractor Trailer and Tractor Trailer with Deflector [28] 

In the late 1970’s and early 1980’s, the U.S. DOT was actively engaged in improving fuel 

consumption through aerodynamic means, resulting in the reduced-drag fleets of today.  

The study was aimed at bringing awareness to the trucking industry that truck fuel 

consumption could be significantly reduced. For the first time, tractor trailers were 

tested both, separately and combined. The results were reported not based on the 

tractor alone, but also as a tractor trailer combination. Four pairs of trucks, two tractor 
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trailer combinations, and two straight trucks were tested. Each pair consisted of a 

standard truck and an identical partner equipped with the aerodynamic package to be 

tested. Comprehensive testing on track, road, and fleet service was conducted. Figure 7 

shows the different trucks involved in the testing [33]. 

 

Figure 7. SAE/DOT Study - Different Trucks Tested 

These tests also formed the basis of developing test technology for the laboratory and 

for the fleet. Other notable studies in the late 1970’s and early 80’s include the 3-year 

program to investigate aerodynamic means to reduce fuel consumption [33]. This was 

the first study conducted to examine effects of wind turbulence. Tests were conducted 

for national average wind conditions and, basic aerodynamic data was obtained. The 

results concluded that the wind turbulence effect causes full-scale drag reductions 

produced by retrofit devices to be less than what was recorded in the wind tunnel [34]. 
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The topic of edge rounding and base-drag reduction was revisited by Cooper in 1982 

[35]. Rectangular vehicle-like shapes and detailed scaled-model trucks were tested to 

define the optimum front and rear end geometries that minimize aerodynamic drag.  

Most of the recent studies conducted in the 1990’s and after 2000 were inspired from 

the concepts developed in the 70’s and 80’s. In the 1990’s, tractor models had a 

smoother profile from the hood region (the surface covering the engine block where 

boundary layer separation is prone to happen). 

 

Figure 8. The Aerodynamically Improved 1990's Truck with Fairings [32] 

Between 1990 and 2005 heavy truck registrations increased by 37 percent and annual 

fleet vehicle miles traveled increased by 52 percent. The U.S. Department of Energy 

(DOE) began the fuel efficiency project in contract with Georgia Tech Research Institute 

(GTRI). The initial study conducted at GTRI tested using simple scaled tractor trailer 

models, but the results were not accurate, so a detailed study was later conducted in 
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2000. The tests were aimed at evaluating the performance of pneumatic aerodynamic 

devices. The study concluded that the pneumatic devices employed at the back of the 

trailer yielded aerodynamic control, drag, and turbulence reduction [36].  

 

Figure 9. GTRI 0.065-Scale Wind tunnel Model  

Another study conducted by Subrata Roy [9] tested two aerodynamic designs at a 30mph 

crosswind condition to show a 30 percent reduction in CD for improved truck geometry. Richard 

Wood and Steven Bauer [10] tested two technologies, the Vortex Strake Device (VSD) and the 

Undercarriage Flow Device (UFD), to show a 30 percent reduction in CD (based on longitudinal 

force only) at 47.5mph. Flow structures and forces around a bluff body have been studied 
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generically under constant crosswind conditions to determine the effect of variation in vortex 

size and strength on the dynamic stability of the bluff body [37].  

  

Figure 10. VSD (left) and UFD (right) Treatment Devices Tested by Wood and Bauer 

In 2006, the NASA Ames Research Center and Lawrence Livermore National Laboratory 

conducted a study with the goal of examining methods to reduce aerodynamic drag in 

heavy-duty tractor trailers under a DOE project. The study was conducted on a 1:20 

scale model. The study revealed that the trailer bleeding decreased the amount of free-

stream flow entrained into gaps and reduced the CD value by 0.015 or 0.024 depending 

on the gap size [11]. The University of Tennessee SimCenter conducted a study to 

evaluate trailer base flaps in 2009 and estimated a drag reduction of about 15 percent.  
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Figure 11. Geometry of Trailer Base Flaps Tested at UT [38] 

In 2012, Yang and Tang studied several truck structure parameters and their sensitivity 

to CD [39]. The individual and combined sensitivity evaluation was studied on a tractor 

trailer model. A comprehensive optimization yielded a 15 percent reduction in 

aerodynamic drag [39]. There are several other studies that are not discussed in this 

literature which are also aimed at reducing aerodynamic drag by aerodynamic reshaping 

of tractor cab, reducing the drag on the trailer face, and adding aerodynamic fairings 

either to the tractor or the trailer [12], [40], [41], [42], [43].  There have been several 

other studies which have focused on controlling the flow near the wake of the tractor 

trailer using specialized drag reducing devices based on wake flow dynamics [41], [44]. 

Although several studies have been conducted for aerodynamic drag reduction 

technologies, these improvements have not been consistently realized under 

operational conditions.  

2.4. Current State of the Art Models 

There are several commercially available models which are used in the market to predict 

fuel consumption by fleet owners, engine manufacturers and other engineers around 
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the world. The input parameters which are used to determine the values predicted are 

sensitive and need to be respected carefully to predict at a significant level of accuracy 

(which is expected in terms of fuel consumption prediction models). Since this study 

deals only with aerodynamics of tractor trailers, focus is shifted towards the input 

parameters defining the aerodynamic force as experienced by the vehicle to predict the 

fuel consumption. The Environmental Protection Agency created the GEM for class 7 

and 8 tractor trailers and class 2b-8 vocational vehicles to verify their compliance with 

EPA’s GHG emissions and NHTSA’s fuel consumption vehicle standards. The EPA also 

developed the Motor Vehicle Emission Simulator which can now be used to develop 

state implementation plans and also for transportation conformity. Both of these tools 

are allowed to perform high-end regulation conformity verification tasks, preparing 

emissions inventories for conformity purposes [45]. These are sensitive and important 

from both the EMA (Engine Manufacturers’ Association) and the EPA’s perspectives.  

2.4.1. Greenhouse Gas Emissions (GEM) Model 

Input parameters govern the accuracy of predicted emissions and hence it is important 

that these values are fed correctly to the model. Among the several predefined input 

parameters, the coefficient of drag (CD) which is a common measure of aerodynamic 

efficiency was one of them [46]. Based on coast down testing methods (refers to a 

procedure where vehicle is accelerated to a specific speed and is let to decelerate owing 

to tractive forces on the vehicle), aerodynamic bins have been developed by the EPA. 

Predefined bins can be viewed as a database in several EPA reports. Although the EPA 

recognizes that wind effects have a significant effect on CO2 emissions, no efforts have 

been taken to incorporate these factors into the model [46]. The model only deals with 

values which represent zero wind conditions to avoid complexity and this presents a 

potential area where the values predicted could be misleading. There are five 
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aerodynamic bins described in the following federal regulations, which the user is 

allowed to choose an appropriate coefficient of the drag (CD) matching to his vehicle 

configuration [47]. The manufacturers are required to choose from one of these 

aerodynamic bins to demonstrate the vehicle’s aerodynamic performance, and they are 

required to be in compliance with the federal regulations without any discrepancies 

[46], [48].  

Table 2. Aerodynamic Bins Used as Inputs to the GEM Model [47] 

Frontal Area 

(m2) 

6.0 9.8 6.0 9.8 6.0 7.7 9.8 

Classic 0.85 0.75 0.85 0.75 0.85 0.80 0.75 

Conventional 0.80 0.68 0.80 0.68 0.80 0.75 0.68 

Smartway 0.75 0.60 0.75 0.60 0.75 0.70 0.60 

Advanced 

Smartway 

0.70 0.55 0.70 0.55 0.70 0.65 0.55 

Advanced 

Smartway II 

0.65 0.50 0.65 0.50 0.65 0.60 0.50 

 

The bins account for a comprehensive database of vehicles, but still fail to accurately 

represent the in-use drag force [48] because of the incapability to represent the drag 

coefficient (CD) of the vehicles when affected by crosswinds as in real-world operating 

Aerodynamic Drag Coefficients Used in GEM (CD) 
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conditions. The requirements for compliance [48] (aerodynamic performance) can still 

be met by adopting the standard test methods to get CD values under the range 

prescribed. However progressive calculations using these values to predict the 

aerodynamic force realized by the vehicle on the road, consequently the GHG emissions 

and fuel consumption over a period of time could be significantly inaccurate.  

2.4.2. Motor Vehicle Emission Simulator (MOVES) Model 

EPA’s official model for estimating on-road vehicle emissions is the MOVES model. The 

emissions rate and other values calculated by the model are based on a defined set of 

input parameters similar to the GEM model discussed above. The coefficient of drag (CD) 

values used as inputs to the MOVES model came from a comprehensive study (also 

referred to as Petrushov’s study [49], [50]) conducted on vehicles from the Euro-Russian 

fleet, which are not consistent with the US fleets [51]. For instance the European trucks 

typically do not represent the US conventional hood trucks. The drag coefficients 

obtained through this study for HDV’s was divided into three categories. The categories 

are single unit delivery trucks and long-haul tractor trailers where, single unit delivery 

trucks are further divided into two categories based on length. The aerodynamic 

parameters used in MOVES for the different categories are listed in the table below. 

Table 3. Mass Based Aerodynamic Parameter Inputs to the MOVES Model Developed in the 

Petrushov Study 

Road Load Coefficients for Heavy-Duty Trucks and Buses 
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The coefficients are all mass based (M) and are predefined. The aerodynamic 

coefficients employed in MOVES are lower than what might be expected in the U.S. 

fleet. The values imported from Petrushov’s study have an uncertainty of about 25 

percent and it has been proposed that the future version on the MOVES models will 

reflect the updated coefficients [51]. The uncertainty in the coefficients is primarily due 

to variation in the aerodynamic design between vehicles accounting for 17 percent of 

the uncertainty. The measurement error accounts for 5 percent variability. It should also 

be noted that all aerodynamic parameters used in MOVES correspond to zero crosswind 

conditions.  

Such discrepancies in sensitive model inputs could lead to inaccurate representations of 

on-road power consumption levels. A more detailed characterization of aerodynamic 

parameters is required to more accurately predict the power required by a HDV during 

on-road operating conditions. 

2.5. Introduction to Wind Tunnel Experimentation and WVU Setup 

Analyzing aerodynamic drag forms the basis of this entire study which consequently 

establishes several cause and effect relationships. Predominantly, aerodynamic 

development and optimization work are conducted either through wind tunnel 

experiments or Computational Fluid Dynamics (CFD-Numerical Simulation) [41]. To 

study forces and moments around tractor-trailers which determine stability and 

performance of the vehicle, it is important to replicate the scenario of actual air flow 

around the vehicle as closely as possible. For the speeds at which on-road vehicles 

(tractor-trailers) operate, compressibility effects can be neglected. A subsonic wind 

tunnel is the appropriate choice of tunnel for testing at such flow speeds. Wind tunnels 

provide a platform to simulate ambient conditions by the matching flow characteristics 

inside the tunnel. All wind tunnel studies start with a model, either small-scale or full-
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scale. By making careful measurements of the desired force on the model inside the 

tunnel at appropriate flow conditions, predictions for real-world conditions are 

extrapolated. In this study, the model used in the experiments was chosen to closely 

represent a typical tractor-trailer configuration. The accuracy of the data measured from 

the wind tunnel experiments depends primarily on the wind tunnel design used for the 

experimentation and the wind tunnel model. Scaled wind tunnel experimental testing 

can provide reliable insight into the flow characteristics around a three-dimensional 

object and provide reasonable simulations to real-world scenarios. Natural crosswind 

conditions were simulated in the wind tunnel in an idealized manner. The deviation 

from reality is quantified only in a statistical manner and this may induce an 

unknown/immeasurable magnitude of error in the values measure compared to reality. 

2.5.1. The Parts and Design of a Wind Tunnel and West Virginia 

University’s Closed Loop Wind Tunnel Setup 
The use of a wind tunnel is essential in several engineering studies involving model 

tests, research and development work. Understanding the different types of tunnels and 

their working principles helps choose the right design type which might best be suitable 

for specific testing. The two wide spread wind tunnel designs include open-circuit and 

closed-circuit wind tunnels. Both layouts are used in existing automotive wind tunnels.  

Open-Circuit Wind Tunnel: The main difference in layout from the other one is that the 

exhaust air is never rerouted back to the intake system. The air is sucked through the 

intake chamber and driven through the test section by a fan, and then expelled through 

the exhaust usually to the atmosphere since the exhaust and intake are not connected. 

The major drawback in this layout is the temperature of the air driven through the test 

section largely depends on the atmospheric temperature or the surrounding air 

temperature, whence the intake air enters. Furthermore, the flow quality can be 
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affected in the test section due to wind effects in case the intake air is sucked from the 

atmosphere. This can be controlled by using a filter screen in front of the intake nozzle 

to eliminate the influence of wind and turbulence intensity from the intake air. This 

would cause a loss in pressure and this decrease in pressure will have to be 

compensated with additional fan power depending on the speeds expected in the test 

section. This was not the preferred choice of wind tunnel in this study primarily because 

of the disadvantages mentioned. The implications of using an open-circuit wind tunnel 

for this study would have been worse since the flow pattern dealt with is not necessarily 

symmetrical with respect to the mid plane of the test section. In an open-circuit wind 

tunnel, the streamlines downstream of the model are deflected to a deviated path 

compared to free air during unsymmetrical flow conditions [41].  

 

Figure 12. Open-Circuit Wind Tunnel Schematic Diagram [52] 

Closed-Circuit Wind Tunnel: The closed-circuit or closed-return type tunnels are oval in 

the layout and recirculates the air around the same loop like a racetrack. The main 

advantage of this tunnel is that since there are not many chances of a pressure drop, 

variations in pressure inside the circuit, the blower or the fan requires lesser and 

consistent power as compared to the open-circuit tunnel. This also eliminates the 

chances of atmospheric effects on the flow quality. Thermal exchangers can be fitted to 

Nozzle exit 

Filter screen 

Nozzle 
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the system to conduct experiments which are sensitive to temperature or require 

thermal modeling.  

 

Figure 13. Schematic Diagram of a Closed-Circuit Wind Tunnel 

The WVU subsonic wind tunnel facility located at the aerodynamics laboratory is a 

Closed Loop Tunnel (CLT), and it serves as the Aerodynamics Laboratory main test 

facility for subsonic research. The air flow inside the two different wind tunnel layouts is 

shown in the Figures 12 and 13. As depicted in Figure 12 there is no recirculation of air 

inside the tunnel in the open circuit; whereas the closed circuit is equipped with a 

return duct which circulates the air inside the tunnel [53] [54]. There are some common 

and pivotal parts in both systems, such as axial fans (actuator fans or just fans). The 

driving unit section is the houses the axial fan/fans, which enables high-speed airflow 

inside the tunnel. The fans are always placed downstream of the test section, at the end 

of the tunnel, and never at the entrance. Axial fans were used in the 1970’s since they 

were cheap and did not occupy much space. Axial fans were later on replaced by electric 

motor-driven radial fans which offered better performance in terms of flow 
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characteristics [53]. Choosing a fan with adjustable pitch is preferred to fixed blades as it 

allows for a larger range of stable flow conditions and stalling problems can be avoided 

[55]. The WVU CLT wind tunnel has a variable pitch radial blade blower. The blower is 

rated at 5,800 CFM and flow possible is at 12 inches water.  

The next common component in both layouts is the test section. It is a pivotal 

component in the wind tunnel design where the highest velocity in the wind tunnel 

occurs [56]. It is characterized by two properties, the cross-sectional area of the nozzle 

at the test section entrance and the length between the nozzle entrance and nozzle exit. 

Apart from geometric and dynamic similitude inside the tunnel, kinematic similarity is 

also of equal importance. Having kinematic similitude confirms that the fluid flow 

pattern inside the tunnel matches with the fluid streamlines in real application on full-

scale models. The kinematic similarity is confirmed by conforming to blockage ratio 

standards.  

The SAEJ1252 [57] blockage standards were maintained for the experiments conducted 

in the wind tunnel. The WVU CLT’s test section is closed and is 3 × 4 ft. in size. Recent 

test section qualification results showed turbulence intensities of less than 0.2 percent 

which indicates minimal flow fluctuation from mean velocity inside the tunnel, highly 

uniform cross-sectional velocity profiles, and demonstrated flow directionality at the 

test section speeds up to Mach 0.2. Further directionality checks were conducted to 

verify if the free-stream at zero degrees remained the same during the course of all 

experiments.  



43 
 

 

Figure 14. Picture of 1:15 Scale Tractor-Trailer Model in the Test Section 

The wind tunnel diffuser/plenum section is the component right after the test section 

along the flow direction. It is used to reduce air stream/free-stream velocity while 

minimizing losses. The WVU CLT diffuser section widens out in a conical shape right 

after the test section. This slows the air velocity, smoothens and reduces the turbulence 

in the test section, and further prevents boundary layer separation downstream. 

The upstream section of the wind tunnel is the settling chamber. This section consists of 

multiple flow straightening elements including screens and honeycomb filters. The 

settling chamber inside the WVU-CLT consists of two turbulence mesh screens which 

help in smoothening flow and are used to create a uniform velocity profile across the 

cross section of the tunnel section. The screens break the larger eddies and their 
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primary function is to reduce the fluctuations in the stream wise component [56]. The 

number of mesh screens can be increased but this will reduce the free-stream velocity 

[58]. The honeycomb is used to straighten the flow. It is suggested that in order to 

straighten flow without impeding it or reducing its velocity, the number of cells should 

be 25,000 inside the honeycomb [59]. The flow is directed into each section of the wind 

tunnel through the corners where guided vanes are located to direct the flow in the 

desired direction.  

The last component in the wind tunnel structure through which the air passes through 

upstream before flowing into the test section is the contraction region. The contraction 

component increases the fluid/air velocity rapidly. While this process increases the free-

stream velocity significantly, it also minimizes flow separation, variability, and pressure 

loss. The rapid increase in the fluid velocity results in large streamwise strain, that 

reduces the mean flow variation. The larger the contraction ratio in this region, the 

larger the streamwise strain which leads to reduced mean flow variation in the test 

section. 

CHAPTER III – Fundamental Analysis, Experimentation, Modeling, 

Case Study and Conclusions 

3.1. Velocity Definition 

Generally velocity refers to the rate at which a body changes its current position to a 

different position. Since this dissertation deals with tractor-trailer velocities in different 

environments, it is vital for the study that velocity is clearly defined in each case and 

how they differ from one another. For instance in real-world operation, under zero 

crosswind condition, the vehicle speed changes its position along the road as it moves 
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but inside a wind tunnel, the same scenario is simulated and the model does not change 

position. The Plane of Reference (POR) relative to which the velocities are defined is the 

distinguishing factor. There arises a need to define all velocities independently and how 

they are relative to each other. 

Real-world Tractor-Trailer Velocity: When a tractor-trailer is operating in real-world 

conditions and is moving from one position on the road to another, there are multiple 

velocities that are associated with the vehicle that need to be defined. In this study, it is 

assumed that the direction of the tractor-trailer is always parallel to the direction of the 

road surface it is on. In other words, there is no angular difference between the tractor-

trailer and the road surface. 

 Raw wind speed (VW): The magnitude of wind velocity with respect to the road 

surface (POR).  

 Raw wind direction (Ѳ): The direction of the wind velocity with respect to the 

road surface (POR). 

 Tractor-trailer direction/Road angle/Road curvature (β): The direction in which 

the vehicle is travelling on the road or the direction of the road surface in 

Geographical Coordinate System (GCS). The degrees represented are always 

relative to due North. 

 Relative wind-truck angle (φ): The difference in angle between the tractor-

trailer/road surface and the raw wind direction. 

 Raw truck velocity (V): The magnitude of truck velocity with respect to the road 

surface. 

 Relative wind-truck speed (Vr): The magnitude of the wind velocity with respect 

to the truck speed. 

 Yaw angle (ψ): The angle between Vr and V. 
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Figure 15 shows a vehicle travelling in the direction of velocity, V, which is experiencing 

a head wind with raw wind velocity, VW. The same wind, VW makes an angle,Ѳ, with 

respect to the ground (where Ѳ is an angle due North, not shown in Figure 15). Figure 

15 illustrates a case where a road is straight without any curves or is oriented at 0 or 

360 degrees due North. 

 

Figure 15. Yaw Angle Diagrammatic Representation 

With the assumption that the vehicle is always parallel to the road surface, the direction 

of the raw wind, Ѳ relative to the ground will be equal to the direction of the wind with 

respect to the vehicle, φ. This is not the case during on-road vehicle operation. The 

roads are curvy and they are oriented at different angles due North. This affects the 

angle at which wind will impact the vehicle. In other words, when wind attacks a vehicle 

at a particular angle it could either be an effect of a road curvature, changing raw wind 

direction, or both simultaneously.  
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With Figure 15 as a reference, the generic calculations involved in obtaining the wind-

truck velocity and yaw angle are described below:- 

   𝑉𝑟 𝑖𝑛 𝑚𝑝ℎ = √𝑉2 + 𝑉𝑤2 − 2𝑉 𝑉𝑤  cos 𝜙 

𝑌𝑎𝑤 𝑎𝑛𝑔𝑙𝑒, 𝜓 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = sin−1{(𝑉𝑤 sin 𝜙)/𝑉𝑟} 

In Figure 16, raw wind direction was varied sinusoidally between -30 and +30 degrees, 

which translates as -30 to +30 degrees wind direction. 

 

Figure 16. Raw Wind Direction vs Yaw Angle 

In Figure 16, the raw wind direction is assumed to be equal to the wind direction with 

respect to the vehicle, suggesting zero road curvature. The variation in yaw angle can be 

observed as a factor of both raw wind speed and raw wind direction in this figure. If only 

average values were considered, then the average wind direction for the time period 

considered above would be zero. This will filter out all the variation in yaw angle actually 

induced during the time period and is not representative. 
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In Figure 17 the raw wind velocity was varied sinusoidally between -20 and +20 mph, 

where any positive value implied head wind and negative values will imply tail wind for 

the three raw wind directions illustrated. 

 

Figure 17. Raw Wind Velocity vs Yaw Angle 

The average wind velocity over the time period is zero which reflects no on-road 

crosswinds but it is evident that a vehicle in this time period will have actually been 

subjected to significant crosswinds. 

Averaging raw wind velocity or direction might lead to unrealistic results while 

computing the effects of wind on power [60]. One-minute Automated Surface Observing 

System (ASOS) data were obtained from the National Climatic Data Center database to 

elaborate wind variation over time in different regions. Wind data averaged at one 

minute intervals for values recorded at 5 second frequency/interval at 2-meter height 

are used in this illustration. This will smooth all the short, sharp gusts that might have 

occurred in the interval, which will not fully immerse the truck and cannot fully develop 

the flow field or the drag. The plots in Figures 18 and 19 show how raw wind speed and 
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raw wind direction differed significantly from one location to another over a period of 

time. Three places, Alban, NY, Wichita, KS and Abilene, TX were chosen at random 

across the United States for a fundamental study of wind speed and direction variation. 

 

 

 

 

 

 

 

 

 

 

Figure 18. Spatial and Temporal Wind Speed Variation [13] 

Figure 19. Spatial and Temporal Variation of Wind Direction [13] 
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In the above illustration, Figure 19, the average speed in Abilene, Texas was 6.8mph but 

from Figure 18, it is clear that this average is not representative of wind speeds 

recorded between 0000-0400 and 2200-2400. The average speed in Albany, NY was 

4.1mph, but this is not representative of wind speeds between 1400 - 1800. Similarly, 

changes in raw wind direction can have significant changes to the wind effects on a 

vehicle. Variations in raw wind direction will change the relative wind wind-truck angle 

(see definition) and consequently may or may not affect the yaw angle based on 

variation in raw wind speed (refer Equations (7) and (8)).  A change in raw wind 

direction on a road with zero curves or a road at 0 degrees due North, could change a 

tail wind to a head wind and vice versa if the change in direction is greater than 90 

degrees over time. For instance, the average wind direction in Wichita, KS is 146 

degrees, but this is certainly not representative most of the time through 06/30/2013. 

The average information on wind is very misleading in this case. The wind direction 

hovered between 300 and 360 degrees from 0100-0800, which itself provides ample 

variation to trigger changes in wind effects. This raises a need to employ wind data with 

higher resolution (in order of minutes or even seconds, if available).  

3.2. WVU Wind Tunnel Testing 

On-road aerodynamic drag testing on a full scale tractor trailer was not performed in 

this study. In this dissertation, results from wind tunnel studies were applied to real-

world scenarios and this extrapolation persuades the need to understand the wind 

tunnel set up, model configurations, operating parameters, and calculations in detail. 

Wind tunnel testing of tractor-trailers has been conducted for several decades to 

simulate real-world conditions in a controlled environment to study aerodynamics of 

the vehicle structure effectively. There are several ways to simulate truck operation in a 

wind tunnel and this depends on the wind tunnel structure and facility. Tests conducted 
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for this study were in the subsonic wind tunnel facility at West Virginia University (WVU) 

located in, Morgantown, WV. In order to define the velocities inside the wind tunnel, 

the wind tunnel setup is described in detailed to make relative references.  

Scaled Model Set-up inside CLT: It is always ideal to conduct tests on a full-scale tractor-

trailer geometry which would be representative of an on-road truck, but this is not 

always possible given the structural constraints posed by the facility, test section size, 

and most of all financial constraints, which is the case in this study. There are several 

manufacturers of tucks and a representative tractor-trailer model was chosen for all 

tests. The Peterbilt 379 with a box-type trailer was chosen based on the simplicity of the 

model and its representative geometry of trucks in general.  

The test section size is 45- by 32-inches in size and the wind tunnel is a single return 

closed-loop test section. This information combined with the blockage ratio to be 

maintained inside the test section provides certain inputs to decide the model size. The 

SAE J1252 recommends a blockage of less than 5 percent of the active test section area 

(the area above the ground board). The SAE J1252 also recommends that the model 

height should not exceed 0.3 of the test section height and frontal model width should 

not exceed 0.3 of the test section width. The model design is not only based on the 

having a similar geometry as in the case of a full scale, the kinematic similitude also 

needs to be considered as explained in chapter 2.5.1.  

In order to obtain a geometric similarity, the model is designed as detailed as possible 

with as many parts as in the full scale model. Importance was given to underbody 

structural details and to the parts which are located near regions of possible flow 

separation. On the other hand, to maintain kinematic similarity, the flow pattern or the 

dynamics of the flow inside the wind tunnel needs to be the same as the flow that 

would be around a full scale truck in real-world operation. To achieve kinematic 
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similarity, the Reynolds number of both trucks (operating in real-world conditions and 

inside the wind tunnel) need to be matched.  

From the Reynolds number Equation (6) in section 2.2.6, it is seen that, Reynolds 

number is governed by density (ρ), characteristic length (l), velocity and kinematic 

viscosity (υ). Density and kinematic viscosity are not operating parameters and are not 

available for variation unless tests are conducted inside an atmospheric wind tunnel. 

The only parameters that can be altered in the WVU CLT are the velocity inside the wind 

tunnel and the characteristic length of the model, but these both are subject to 

constraints, too. The Reynolds number of a truck operating on a road at highway speeds 

(55mph) is approximately 3.85×106 (using the width of a full scale truck, 102 inches as 

characteristic length) and to obtain this number inside the WVU CLT would be 

impossible due to structural constraints. The maximum possible speed inside the tunnel 

is 45m/sec and the dimensions of the model have to be designed at a level to keep the 

blockage minimized. With these factors in mind, a 1/14.5 scale model with a frontal 

width (from widest left to widest right of the model at zero yaw angle) of 7.1 inches was 

built to produce maximum Reynolds number while keeping the blockage at 4.7 percent. 

The blockage was maintained at <10 percent (of the cross section of the test section) for 

all tests to avoid any extraneous effects that may arise from the tunnel walls [34] [61]. 

The model included underbody details such as engine block, front and rear axles, drive 

shaft, underbody chassis, and frame. The cab details included rear view mirrors, exhaust 

stacks, door steps, tank fairings, head and tail lights. The model dimensions and part 

details are shown below. 

 

 

 



53 
 

 

 

Table 4. Scaled Wind Tunnel Model Dimensions 

Description Dimension/Length/Gap (in inches) 

Model Frontal Width (at zero yaw angle) 7.1 

Model height (from tire base to trailer top) 11.6 

Model total length (from front end to back 

end including trailer) 

53 

Tractor-trailer gap width (from back face 

of cab to front face of trailer) 

4.8 

Tire diameter 3.2 

Trailer length 36.5 

Tractor cab height (without any add-on) 8 

 

The bigger components including trailer walls, and cab structure were designed in 

Solidworks 2010 and were machined either using CNC machines or a 3D printer at West 

Virginia University, Wilson Works and Kraftwurx, Inc. The cab was made using ABS 

plastic, while the trailer frame and walls were made from stainless steel. The wheels, 

rear view mirrors, engine block, exhaust stack, and other underbody accessories were 

bought at scale size 1/14.5 from commercially available stores (McMaster-Carr, Tamiya 

America, Inc.). The model was constructed rigidly with sufficient detail to reproduce all 
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or most of the full-scale local flow disturbances. These efforts combined to achieve 

maximum possible geometric similitude with the full-scale Peterbilt 379 model.  

 

Figure 20. The 1:14.5 Scale Peterbilt 379 Wind Tunnel Model (Front and Rear View) 
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Figure 21. Underbody View of T-mount Model Support Uniting Tractor and Trailer 

 

Figure 22. Side View of 1:14.5 Scale Wind Tunnel Model 

Once the geometric similitude was satisfied, focus shifted on achieving kinematic 

similitude. A series of measurements was made above the test section ground plane 

with no model to define the characteristics of the flow in which tests would be 

conducted. These characteristics help in identifying the critical Reynolds number at 

which the transition from laminar to turbulent occurs. The flow angularity and the 

uniformity of the flow field were quantified. Tests revealed less than 0.2 percent 
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turbulence intensities and a highly uniform cross-sectional velocity profile. Directionality 

checks were performed before running each test with the model in the test section to 

confirm angular uniformity. A custom made uniaxial external force balance was used to 

measure the drag inside the wind tunnel. The 1:14.5 scale Peterbilt 379 tractor-trailer 

model rested on a T-mount model support system which also allowed controlling the 

yaw of the model.  

The T-bar was fixed along the length of the model as shown in the Figure 21 and this 

restricted the pivoting of the trailer with respect to the tractor. The model behaved as 

one rigid object and was controlled for yaw using an angle turner at the base of the 

support system. A linearly constrained 50lb stainless steel S-beam load cell was used in 

the direction of the force. The load cell was mounted to the tunnel floor using an open 

steel ball bearing, and a set screw shaft collar which allows the shaft to rotate freely 

using the angle turner. The output from the load cell was observed and recorded using a 

data acquisition (DAQ) system connected to a laptop. Labjack U3-LV was used as the 

DAQ system, and Labview 8.6 was used as the software to record data from the device. 

Since the voltage along the ranges of 0.02-0.03v at maximum load, a signal conditioning 

module, LJTick-inamp was used to amplify the signal from the S-beam load cell used in 

the force balance set-up. 
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Figure 23. S-Beam Load Cell Linearly Constrained and Mounted to tunnel Floor 

 

Table 5. S-Beam Load Cell Specifications 

Excitation Voltage 10 Vdc 

Output 3mV/V 

Linearity +/-0.01% FSO (0.05% 40K) 

Construction 17-4 PH Stainless Steel 

Electrical LC101: 4-Conductor Shielded Cable 
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Range +/- 50kgF 

 

Table 6. Labjack U3-LV Specifications 

Total Number of Digital I/O Ports 16 

USB Configuration USB 2.0/1.1 full speed interface 

Analog Outputs 2 (10-Bit, 0-5 volts) 

Command/Response Time < 1 Millisecond 

 

The model was carefully placed inside the wind tunnel and three pitot static probes 

were placed facing the flow direction in different places across the cross-section of the 

test section to get distributed static and dynamic pressure, which was measured using a 

manometer. 
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Figure 24. Probes Placed Across Test Section to Record Static and Dynamic Pressure 

 

Figure 25. Manometer Reading Water in Inches (Flow at Test Section) 

Probe 1 Probe 2 

Probe 3 
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The air speed inside the tunnel was calculated from the fluid displacement on the 

manometer. The model was set up inside the test section with the front end of the 

model facing oncoming air stream. Wind tunnel experiments were conducted for 

various configurations for a range of yaw angles between zero and thirteen degrees. The 

motivation to test several configurations came from the necessity to examine the 

effectiveness of different aerodynamic add-on devices under varied yaw conditions.  

The T-mount set up rested on the angle turner at the base where it was controlled for 

yaw angle turns. In order to replicate actual road conditions closely inside the CLT, the 

model should have been placed on a moving ground plane (like a conveyor belt) to 

mimic a moving vehicle on the road which was not possible given the financial and 

structural constraints. To simulate on-road wind inside the CLT, a secondary variable 

blower unit to provide secondary flow (to simulate wind speed and wind direction) is 

required, but this was not possible in this study either. An alternative technique to 

mimic these on-road scenes with the single, variable blower unit was considered and 

the model set up was accommodated accordingly. In the absence of a moving ground 

plane, the model was positioned 2inches above the tunnel floor as shown in Figure 24. A 

level bar was used to confirm if the model was at a uniform 2 inch distance above the 

floor across the length and width of the model. The load cell was constrained linearly to 

record only the force exerted in the flow direction. It should be noted that this setup 

does not directly translate to represent the coefficient of drag of an actual truck on the 

road because of the effects of other lateral forces, ground effects and these issues are 

addressed later in this dissertation. 
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Figure 26. Torpedo Level Bar to Check Model Balance on T-Bar 

Wind Tunnel Experiments and Calculations: The first operation performed once the 

test cell was set up was calibration. The S-beam load cell which was used to measure 

the force was calibrated using known weights. The calibration tests were done using one 

pound calibration weights. A five-point calibration was performed to calculate the 

response factor of the S-beam load cell used for the testing (see Appendix 1). 

Measurements for any test point were recorded for 30 seconds at 10Hz frequency and 

the average values over the entire time period were used for calculations. To also 

account for any error due to electrical noise in the tunnel, the calibrations were done 

with the blower running at 1200rpm, which is the set blower speed for all tests. The 

calibration tests were performed without knowing the precise location of the 

aerodynamic center [62] for the model; and so, an approximation was made for 

calculation purposes (see Appendix 1). The aerodynamic center for the model was 

assumed to be exactly at the center of the model (at 0.5 times the total height of the 

model). The calibration weights were loaded (1lb each) one at a time, 2 inches above 
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the tunnel floor and 7.5 inches below the assumed aerodynamic center. The 

measurements were recorded when each calibration weight was added and then 

measurements were recorded when each weight was unloaded. The zero reading was 

measured before and after the calibration with no flow and the blower running at 

1200rpm. The response factor was determined using the assumed aerodynamic center 

and it was found to be 18.93lbs/volt.  

𝐿𝑜𝑎𝑑 𝐶𝑒𝑙𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑓𝑟𝑜𝑚 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐𝑒𝑛𝑡𝑒𝑟)

= 18.93𝑙𝑏𝑠/𝑣𝑜𝑙𝑡 

Since all measurements made were in voltage, this response factor was used to convert 

voltage readings to force. It is important to finalize the initial conditions for testing, 

tunnel flow conditions. This research was aimed at studying the characteristics of a 

tractor-trailer operating at highway speeds.  
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Figure 27. Average Truck Speeds on Interstate Highways [63] 

From Figure 27 it can be seen that a significant portion of the highways in the United 

States have a minimum posted speed limit of 55mph. Assuming that the truck drivers 

adhere to speed limits, the average operating highway speed of trucks in the United 

States is 55mph. Using Equation 6, the Reynolds number was computed at 55mph and 

this was used as on-road Reynolds number through the dissertation. Following 

recommendations from SAE J1252, the frontal width of the truck is used as hydraulic 

diameter/characteristic length, ‘l’ in Equation 6.  The maximum width limit for 

commercial motor vehicles in the United States is set at 102 inches [64].   

𝑂𝑛 − 𝑅𝑜𝑎𝑑 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 𝑎𝑡 55𝑚𝑝ℎ = 3853354.45 

where, 
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Dynamic viscosity (µ) = 1.983×10-5 kg/ m-sec (dynamic viscosity of air at standard 

temperature and pressure). 

Density (ρ) = 1.2041 kg/m3 (density of air at standard conditions). 

Velocity (V) = 55 mph or 24.5872 m/sec (truck speed). 

Characteristic length (l) = 102 inches (maximum truck width allowed by regulations). 

However, it is impossible to simulate conditions to obtain Reynolds number of the order 

of approximately 3 million inside the CLT due to structural constraints and this is the 

primary reason, a scaled model was opted. The maximum Reynolds number which is 

possible inside the tunnel was determined at the maximum velocity inside the tunnel 

(blower at 1200 rpm) and the blade pitch fully open. A variable pitch controller was used 

to control the blade inside the tunnel, which in turn controlled the flow inside the 

tunnel. 
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Figure 28. West Virginia University-CLT Controller Setup 

The Reynolds number inside the tunnel was calculated using Equation 6. In this case, the 

hydraulic diameter/characteristic length used was the width of the scaled 14.5 Peterbilt 

tractor-trailer model, 7.1 inches. It should also be noted that the CLT does not have a 

moving ground plane. 

𝐶𝐿𝑇 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 (0 𝑦𝑎𝑤 𝑎𝑛𝑙𝑔𝑒) =
𝜌𝑡𝑢𝑛𝑛𝑒𝑙 𝑉∞−𝑤𝑖𝑛𝑑 𝑡𝑢𝑛𝑛𝑒𝑙 𝑙𝑡𝑢𝑛𝑛𝑒𝑙

µ
= 499,648.9 

Where, 

ρtunnel = Density of ambient air inside the test section =  1.18006 kg/m3. 

Variable Blade 

Pitch Control 

Motor RPM 

(Blower) 
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V∞-wind tunnel = Free stream velocity inside the tunnel (with respect to a stationary ground 

plane inside the test section) = 95.85 mph or 42.85 m/sec. 

Dynamic viscosity (µ) = 1.983×10-5 kg/ m-sec (dynamic viscosity corresponding to test 

section density). 

The manometer reading corresponding to test section velocity of 42.85 m/sec was 4.35 

inches of water and that was the maximum tunnel velocity at which all tests were 

performed. The tests were performed for a total of 8 configurations including the 

baseline which does not have any aerodynamic add-on. The Peterbilt model was based 

on the 2007 Peterbilt model blueprint. Two aerodynamic add-on devices, a wind 

deflector and tractor-trailer gap reduction fairings were tested individually and 

together. These choices came from the list of aerodynamic technologies proposed by 

the EPA Smartway in 2012 for commercial vehicles in the United States [15]. The load 

cell which measures the volts is linearly constrained as shown in Figure 23 and was 

always aligned in the direction of the tunnel flow. It should be noted that the free-

stream velocity is now the acting relative velocity (Vr) shown in Figure 15. All forces 

recorded by the load cell are directly aligned in the direction corresponding to the free-

stream velocity inside the tunnel or the acting Vr. There are two forces when a truck is 

yawed inside the tunnel or when there is a yaw angle due to on-road crosswinds; - one 

in the axial direction of the truck’s motion, and the other perpendicular to the direction 

of the truck’s motion (Fx and Fy, where the truck is travelling in the ‘x’ direction).  
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Figure 29. Diagrammatic Representation of Forces on a Truck (Including Side/lateral) 

Where, 

Fr – Ultimate resultant force. 

Fx’ – Force in the direction of Vr or force in the direction of free stream velocity, V∞-wind 

tunnel. 

Ψ – Yaw angle. 
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Now from Figure 29,  

𝐹𝑟⃗⃗  ⃗ = 𝐹𝑥′⃗⃗⃗⃗⃗⃗ + 𝐿𝑦′⃗⃗ ⃗⃗  ⃗ = 𝐹𝑥⃗⃗  ⃗ + 𝐹𝑦⃗⃗  ⃗  

𝜔 = tan−1
𝐹𝑦
𝐹𝑥
⁄  

𝛼 = 𝜔 − 𝜓 

𝜓 = tan−1
𝑉𝑦
𝑉𝑥
⁄  

𝐹𝑥′ =
𝐹𝑟
cos 𝛼⁄  

From Figure 29, it can be seen that the ultimate resultant force, Fr on the truck when a 

truck is yawed in a tunnel or is experiencing a yaw angle due to on-road crosswinds is 

not directly aligned in the direction of Vr. The ultimate force component takes into 

account side/lateral drag as well and is always perpendicular to the resultant velocity, Vr 

[65]. On the other hand, Fx’ is a force which is aligned with the resultant velocity, Vr but 

does not take side/lateral drag force into account. The measurements obtained in this 

study from the wind tunnel experiments only correspond to Fx’ and do not account for 

the side/lateral drag that could have influenced the total drag on the truck. From the 

derived Equations 12 and 13, it can be seen that the side/lateral drag reduces total drag 

or it can be insignificant when the truck is operating at low speeds, below 30mph and 

wind speed less than 5mph. From Equation 13, it can be seen that for small angles of ‘α,’ 

the ultimate resultant force is the same as the force measured in the direction of the 

resultant velocity, Vr but as ‘α’ grows larger, the difference between Fr and Fx’ increases. 

This difference is caused by the side/lateral drag, Ly’. 

𝐶𝐷(𝑤𝑖𝑛𝑑 𝑡𝑢𝑛𝑛𝑒𝑙) =
𝐹𝑥′

1
2𝜌𝑉𝑟

2𝐴𝑟𝑒𝑓

 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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CD (wind tunnel) is calculated from Fx’ as shown in Equation (14) with the reference velocity 

Vr, which is equal to the free stream velocity inside the tunnel, V∞-wind tunnel. The 

denominator in Equation (14) remained nearly the same for all tests, until a change in 

temperature and pressure in the test section caused the density to change in small 

increments. In most cases, there was no significant difference in the density recorded 

inside the test section. The 8 configurations were tested from 0 to a maximum of 13 

degree yaw angle at 1 degree or 0.5 degree increments. To identify the flow straightness 

with respect to the model position inside the test section or in other words, zero the 

yaw turn table, tests were carried out from -3 to +3 degree yaw angle for each 

configuration. It was assumed that the least amount of force would be measured by the 

load cell when the yaw angle is zero for tractor trailers [12] [66] [67]. Once the 

correctional angle was obtained, the values of CD calculated using Equation 14 were 

shifted such that the value of CD at zero yaw angle for a particular configuration would 

be the least CD value measured for that configuration. Tests were carried out for the 

remainder of the yaw angle range (up to +13 degrees) for the different configurations.  

Moment-Arm Correction: Once all the configurations were tested for yaw angles, a 

correctional setup was developed to refine the values obtained. The load cell response 

factor was calculated from an assumed aerodynamic center (refer Appendix 1) so it 

became necessary to identify the true aerodynamic centers for each configuration. The 

model was rested on 1:87.1 scale, nonmagnetic metal rollers (to avoid any resistance 

offered by the rollers during flow inside the tunnel), which in turn are placed on tracks 

that are fixed to the tunnel floor and aligned with the flow direction.  
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Figure 30. Peterbilt Model Resting on 1:87 Scale Rollers on Tracks. 

The alignment of the S-beam load cell was not modified and was still linearly 

constrained in the flow direction. This arrangement could not be considered for all tests 

since it would not facilitate change in yaw angles. From Figure 30, it can be seen that 

any load applied in the flow direction would directly be recorded by the load cell as 

drag. A new set of measurements were taken for all eight configurations at zero degree 

yaw angle. The correction factor was obtained and applied to get the corrected CD 

values for all configurations, at all yaw angles (refer Appendix 1). 

3.2.1. Wind Tunnel Results 
This chapter only summarizes the processed results obtained from the wind tunnel 

experiments. A total of seven configurations including the baseline was tested between 

0 and 13 degree yaw angles. The values used in the calculation of CD-wind tunnel from the 

Probe 3 

Tracks and rollers 

aligned with flow 

direction 
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load cell (recorded at 10Hz frequency for 30 seconds) were averaged over the time 

period to negate any errors to electrical noise. The first configuration that was tested 

was the baseline, which had no aerodynamic add-on devices. 

Table 7. Yaw Angle, Coefficient of Drag and Corresponding Test Section Reynolds Numbers for 

Baseline Model Configuration 

Yaw Angle (in degrees) CD-wind tunnel Test Section Reynolds 

Number (×105) 

0 0.88 4.93 

1 0.925 4.91 

2 0.984 4.93 

3 1.065 4.96 

4 1.124 4.95 

5 1.174 4.94 

6 1.217 4.93 

7 1.264 4.93 

8 1.2843 4.99 

9 1.348 4.97 

10 1.407 4.97 

11 1.478 4.96 

12 1.57 4.96 

13 1.684 4.96 
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Figure 31. Baseline Coefficient of Drag vs Yaw Angle Plot. 

 

Figure 32. Visualization of Flow Pattern on the Baseline Configuration 
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The second, third, and fourth configurations  were tested with the addition of a wind 

deflector to the existing baseline configuration. The wind deflector was attached on top 

of the day cab and was tested at three different angles of attack: - , 30, 45, and 60 

degrees. It was deduced from the resultant data, that different angle placements 

yielded different efficiencies for the same model.   

Table 8. Yaw Angle, Coefficient of Drag and Corresponding Test Section Reynolds Numbers for 

Baseline Model with Wind Deflector Placed at 30 degree Angle of Attack 

Yaw Angle (in degrees) CD-wind tunnel Test Section Reynolds 

Number (×105) 

0 0.794 4.95 

0.5 0.801 4.94 

1.5 0.890 4.94 

2.5 0.985 4.94 

3.5 1.038 4.94 

4.5 1.082 4.93 

5.5 1.129 4.93 

6.5 1.202 4.93 

7.5 1.274 4.93 

8.5 1.346 4.93 

9.5 1.45 4.93 

10.5 1.573 4.93 

11.5 1.667 4.93 

12.5 1.768 4.93 
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Figure 33. Coefficient of Drag vs Yaw Angle Plot (Wind Deflector – 30 degrees). 

Table 9. Yaw Angle, Coefficient of Drag and Corresponding Test Section Reynolds Numbers for 

Baseline Model with Wind Deflector Placed at 45 degree Angle of Attack 

Yaw Angle (in degrees) CD-wind tunnel Test Section Reynolds 

Number (×105) 

0 0.873 4.97 

1 0.933 4.97 

2 1.023 4.97 

3 1.091 4.96 

4 1.119 4.96 

5 1.152 4.96 

6 1.201 4.95 

7 1.27 4.95 

8 1.344 4.95 

9 1.437 4.95 
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10 1.527 4.95 

11 1.621 4.95 

12 1.717 4.93 

13 1.811 4.93 

 

 

Figure 34. Coefficient of Drag vs Yaw Angle Plot (Wind Deflector – 45 degrees). 

Table 10. Yaw Angle, Coefficient of Drag and Corresponding Test Section Reynolds Numbers 

for Baseline Model with Wind Deflector Placed at 60 degree Angle of Attack 

Yaw Angle (in degrees) CD-wind tunnel Test Section Reynolds 

Number (×105) 

0 0.988 4.96 

1 1.062 4.96 

2 1.153 4.94 

3 1.21 4.94 
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4 1.25 4.94 

5 1.275 4.94 

6 1.312 4.93 

7 1.392 4.93 

8 1.461 4.92 

9 1.554 4.92 

10 1.681 4.92 

11 1.781 4.92 

12 1.882 4.92 

13 1.975 4.92 

 

 

Figure 35. Coefficient of Drag vs Yaw Angle Plot (Wind Deflector – 60 degrees). 

The next set of results (aero configuration 4, 5 and 6) present the coefficient of drag 

obtained for the model equipped with a tractor trailer gap fairing in series with a wind 

deflector (30, 45 or 60 degrees) on the baseline configuration. 
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Table 11. Yaw Angle, Coefficient of Drag and Corresponding Test Section Reynolds Numbers 

for Aero Configuration 4 - Wind Deflector at 30 degrees and Tractor Trailer Gap Fairings 

Yaw Angle (in degrees) CD-wind tunnel Test Section Reynolds 

Number (×105)  

0 0.795 4.83 

1 0.849 4.83 

2 0.946 4.83 

3 1.044 4.83 

4 1.112 4.83 

5 1.177 4.83 

6.5 1.290 4.83 

8 1.466 4.82 

9 1.545 4.83 

10.5 1.681 4.82 

11 1.781 4.82 

12 1.857 4.82 

13 2.004 4.82 
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Figure 36. Coefficient of Drag vs Yaw Angle Plot (Wind Deflector – 30 degrees and Tractor 

Trailer Gap Fairings). 

 

Figure 37. Visualization of Flow Pattern on the Aero Configuration 4 - Wind Deflector at 30 

degrees and Tractor Trailer Gap Fairings. 
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Table 12. Yaw Angle, Coefficient of Drag and Corresponding Test Section Reynolds Numbers 

for Aero Configuration 5 - Wind Deflector at 45 degrees and Tractor Trailer Gap Fairings 

Yaw Angle (in degrees) CD-wind tunnel Test Section Reynolds 

Number (×105) 

0 0.872 4.9 

0.5 0.911 4.9 

1.5 1.017 4.9 

2.5 1.118 4.89 

3.5 1.182 4.88 

4.5 1.287 4.87 

5.5 1.343 4.88 

7 1.449 4.88 

8.5 1.613 4.88 

9.5 1.691 4.87 

11 1.874 4.87 

12.5 2.082 4.87 

13   2.162 4.88 
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Figure 38. Coefficient of Drag vs Yaw Angle Plot (Wind Deflector – 45 degrees and Tractor 

Trailer Gap Fairings). 

 

Table 13. Yaw Angle, Coefficient of Drag and Corresponding Test Section Reynolds Numbers 

for Aero Configuration 6 - Wind Deflector at 60 degrees and Tractor Trailer Gap Fairings 

Yaw Angle (in degrees) CD-wind tunnel Test Section Reynolds 

Number (×105) 

0 1.041 4.92 

0.5 1.05 4.92 

1 1.062 4.91 

2 1.154 4.91 

3.5 1.296 4.91 

5 1.393 4.90 

6 1.433 4.90 
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7.5 1.516 4.90 

9 1.681 4.90 

10.5 1.856 4.90 

12 2.055 4.90 

13 2.190 4.89 

 

 

Figure 39. Coefficient of Drag vs Yaw Angle Plot (Wind Deflector – 60 degrees and Tractor 

Trailer Gap Fairings). 
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Figure 40. Coefficient of Drag vs Yaw Angle Plot (Wind Deflector – 60 degrees and Tractor 

Trailer Gap Fairings). 

 

Figure 41. Integrated Plot with all 6 Aero Configurations and the Baseline Configuration. 
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A simple error analysis was conducted to show the variation the results due to measurement 

error. Since the values recorder using the load cell were all averaged values, the analysis was 

repeated for a variation of one standard deviation from the average value for each measured 

sample set. With one standard deviation difference in the load cell calibration/response factor, 

measurement at each yaw angle, load cell zero error, the average cumulative error in the CD 

calculated at each yaw angle was estimated to be ±1.32 percent.  

It can be seen from the results obtained from the wind tunnel tests and Figure 41 that different 

configurations are beneficial in different regions of the yaw angle curve with some of them 

evidently being not beneficial but detrimental. Configurations 1 and 4 display superior benefits 

at the lower end of the yaw angle curve (between 0 and 4 degrees). However, configuration 1 

proved to be better with increasing yaw angle and this is expected since configuration 4 includes 

tractor-trailer gap fairings and at higher degrees of yaw angle, it increases the drag due to 

increased cross sectional area of attack. Figure 32 and 37 shows how the air flow changes at 0 

degree yaw angle as a factor of the additional aerodynamic devices on the truck between the 

baseline and configuration 4. The addition of the wind deflector and the gap fairings reduces the 

low pressure region and diverts the air flow up and over this gap thus reducing the impact of the 

large vortices that are formed in this region. At higher angles of yaw (greater than 8 degrees), 

the baseline configuration proved to be more efficient than all other configurations. The results 

obtained for configurations 3, 5 and 6 shows that aerodynamic devices can be detrimental and 

are not beneficial across the yaw angle curve. The estimated percentage error margin is 

acceptable and the conclusions made from the results obtained are valid. The equations and 

method for error estimation are discussed in Appendix III. 
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3.3. Numerical Simulations to Validate Wind Tunnel Experimental 

Data 

Reynolds number is an important characteristic that needs to be respected when doing 

scaled wind tunnel studies. The data obtained from the wind tunnel experiments inside 

the CLT never matched the on-road Reynolds number. The CLT Reynolds number ranged 

from 4.8×105 to 5×105 for all tests, whereas, the on-road Reynolds number is in the 

range of 3.8×106 to 4.2×106. This provoked the necessity to validate the conditions in 

which tests were performed inside the tunnel. Generally bluff bodies enter turbulent 

flow regime at low ranges of Reynolds numbers [41] [68] [69].  For all 3D objects, once 

turbulent flow dominates, coefficient of drag is effectively a constant for the 

appropriate range of Reynolds number. The papers discuss effects of Reynolds number 

on drag coefficient for various shapes and the summary of conclusion is that coefficient 

of drag varies with an increase in Reynolds number for bluff bodies until it reaches 

critical Reynolds number. In 2001, tests were conducted on bluff bodies to identify the 

critical Reynolds number range and it was concluded that the coefficient of drag 

decreases with increasing Reynolds number up to 4×105, after which coefficient of drag 

remains constant as Reynolds number continues to increase [70]. Many studies have 

conducted on bluff body, tractor trailer aerodynamics between a Reynolds number 

range of 2×105 to 4.2×105 [71] [72] [73] [74].  The tests conducted at WVU-CLT were 

between 4.8×105 to 5×105 Reynolds numbers. Numerical simulations were considered 

and carried to provide validation to the statement, ‘the measurements made for lower 

values of Reynolds number inside the WVU CLT will match the measurements 

corresponding to highest values of Reynolds number on-road.’  

Numerical Model Setup: A 1:1 scale Peterbilt tractor-trailer 3D geometry was created in 

Solidworks 2012 and Ansys 13.0, both of which are commercially available tools. The 

model construction was based on the baseline configuration tested inside the CLT. 
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Exterior details such as exhaust stacks, mud flaps, rear view mirrors, tank fairings, 

underbody support rails, and side door steps were part of the model construction. 

Table 14. Dimensions of 1:1 Scale Baseline Peterbilt 379 Model for Numerical Simulations 

Description Dimension/Length/Gap (in inches) 

Model Frontal Width (at zero yaw angle) 102 

Model height (from bottom most to top 

most) 

159 

Model total length (from front end to back 

end including trailer) 

771 

Tractor-trailer gap width (from back face 

of cab to front face of trailer) 

65.2 

Trailer length 552 

Tractor cab height (without any add-on) 118 
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V∞-numerical  

 

Figure 42. 3D Geometry of the Peterbilt 379 Model used for Numerical Analysis. 

COSMOS-FloWorks, Solidworks and Ansys were the commercial tools which were 

employed to build and run the numerical simulations.  Two tests were simulated for the 

purpose of validation. 

1. Test 1:1 scale model at CLT test section Reynolds number. 

2. Test 1:1 scale model at highway speed Reynolds number. 

A computational domain is a rectangular prism which encompasses the model and the 

surrounding space within which all calculations are performed. This domain was defined 

based on the model dimensions. The domain was defined in such a way that it 

accounted for all perturbations around the model surroundings and covered the entire 

fluid volume. A trial and error based method was conducted to identify the definition of 

the computational domain (CPD). It should be noted that, as the volume of the 
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computational domain increases, the computation time increases substantially 

depending on the system configuration used to run the simulations. A conservative 

approach was used to identify the CPD volume by arbitrarily defining a length, height 

and width for the domain and then increasing each value by 3 percent until no 

difference was seen in the results.  The finalized CPD volume enclosed 3 times the width 

of the model on either side of the model, 0.75 times the length up to the front of the 

model (in the direction of the free-stream velocity V∞-numerical), and 1.5 times the length 

of the model, starting from the rear end of the model. The height of the CPD was 

finalized at 2 times the height of the model. 

The mesh type and size are very important factors while running numerical simulations 

[75] [76]. It is possible to improve accuracy and reliability of the results with extremely 

refined (small) mesh size and mesh type [77], but this will also increase the 

computational time. The tests were setup as steady state cases since only one fluid 

velocity needed to be analyzed at a time. Detailed studies have been conducted to 

analyze the sensitivity to mesh size and type, and it has been determined that 

acceptable accuracy can be obtained by maintaining a near vehicle cell size of 6mm or 

less [77]. COSMOS-FloWorks works with localized structured mesh refining options. By 

means of several refinement levels and mesh generation type, an initial mesh was 

created. This basic mesh structure was subject to 6 different types of refinement (small 

solid features refinement, curvature refinement, tolerance refinement, narrow channel 

refinement, square difference refinement and cell type refinement) by specifying 

geometry based criteria for each refinement category. Parametric simulations were 

done using cell sizes between 6 mm – 10 mm to confirm the sensitivity to accuracy with 

respect to the Peterbilt 379 model and a 7.1 mm cell size was defined globally through 

the CPD volume. All curved areas in the model were populated with a slightly complex 
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mesh structure compared to other areas with a (prism + cube). The solid/fluid interfaces 

are meshed finer compared to plain fluid interfaces in the mesh geometry.   

 

Figure 43. Finalized Mesh Geometry Shown as Cut-Sections in the X, Y, Z Planes. 
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Figure 44. Front View of the Cut Section Mesh Structure in the Z-plane. 

The free-stream was employed in the direction as shown in Figure 41. A fully turbulent, 

fully developed flow was simulated for both tests. The high Reynolds number k-ϵ (refer 

Appendix 2 for turbulence and dissipation rates) turbulence model is a very effective 

model and is well within an acceptable accuracy range of less than 1 percent with 

predicted drag coefficient [77] [78]. The modified k-ϵ (turbulence-energy dissipation) 

turbulence model which includes the Lam-Bremhorst modification (refer Appendix 2) 

was used in this study for the two numerical simulations. The governing equations of 

the modified k-ϵ model were solved on a spatially distributed mesh geometry design in 

Cartesian coordinates. Force in the direction of the free-stream velocity was measured 
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over several iterations and the iterations continue until the measured values for two 

consecutive iterations are within 1 percent difference between them (refer Appendix 2 

for more details). 

3.4. Numerical Simulation Results 
This section summarizes the processed initial test conditions and results obtained for 

the test cases. 

CASE 1 – Low Reynolds Number Test: This test case was set up with the 1:1 scale model 

at the CLT Reynolds number. This was done by computing variable input parameters in 

Equation 6 for Reynolds numbers to match CLT-Reynolds number range. The CLT 

Reynolds numbers were in the range of 4.8 × 105 to 5 × 105. A constant reference 

width/characteristic length of 102 inches was used to compute the Reynolds number for 

numerical simulations at a constant density and temperature of 1 kg/m3 and 293 K. The 

free stream velocity inside the CPD, V∞-numerical was lowered to 8.39 mph or 3.7506 

m/sec. 

𝑁𝑢𝑚𝑒𝑟𝑖𝑎𝑙 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐿𝑜𝑤 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 = 491,379.667 
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Figure 45. Velocity Profile in X-Z and Y-Z Planes. 

 

 

Figure 46. Velocity Profile in Y-Z Plane. 

The mesh setup and CPD setup remained the same for both tests and is as described in 

Chapter 3.3. 
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Table 15. Results of Numerical Simulation-Low Reynolds Number Test 

Goal Name Current Value 
(iteration n) (in 

Newtons) 

Value (n-1) 
Iteration (in 
Newtons) 

Averaged Value 
(in Newtons) 

Goal 
Convergence 

Criteria (in 
Newtons) 

Component of 
Force - Free 

Stream 

62.761 62.769 62.771 1 

Iterations to reach convergence:  1631 

 

The primary goal was to determine the drag on the 1:1 scale Peterbilt truck model in the 

direction of the free stream velocity, V∞-numerical inside the CPD volume. Based on 

Equation 14, the coefficient of drag for the 1:1 model was determined to be:-  

𝐶𝐷−𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙−𝐶𝐿𝑇(𝐶𝐿𝑇 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟) =
62.7710

0.5 × 3.752 × 1 × 10.47
= 0.852 

Where,  

Fx’ – Average Force (over all iterations) from Table 15, 62.77 N. 

Vr  = V∞-numerical = 8.38 mph or 3.75 m/sec. 

ρ = 1.00 kg/m3. 

T = 298 K.  

Reference Area, Aref = 102 inches × 159 inches = 16218 sq. inches = 10.47 sq. meters. 

The comparison of CD-numerical-CLT with CD-wind tunnel under the same conditions from Table 7 

(CD-wind tunnel at 0 degree yaw angle) showed a 3.2 percent difference in values.  

CASE 2 – On-Road Reynolds Number Test: The initial test conditions and setup 

remained the same as they were in case 1 except that case 2 was performed at on-road 
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Reynolds number described in Chapter 3.1. The free stream velocity inside the CPD 

volume was increased to match the on highway truck speed, 55mph or 24.5872 m/sec.  

𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑂𝑛 𝑅𝑜𝑎𝑑 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 = 3,212,330.06 

 

Figure 47. Velocity Profile in X-Z and Y-Z Plane. 

The mesh setup remained the same as it was for case 1. 

Table 16. Results of Numerical Simulation- On-Road Reynolds Number 

Goal Name Current Value 
(last iteration-

n) (in Newtons) 

Value (n-1) 
Iteration (in 
Newtons) 

Averaged Value 
(in Newtons) 

Goal 
Convergence 

Criteria (in 
Newtons) 

Component of 
Force - Free 

Stream 

2818.552 2818.549 2818.545 1 

Iterations to reach convergence:  1351 

 

The primary goal was to determine the drag on the 1:1 scale Peterbilt truck model in the 

direction of the free-stream velocity, V∞-numerical inside the CPD volume. Based on 
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Equation 14, the coefficient of drag for the 1:1 model (at on-road Reynolds Number) 

was determined to be:- 

𝐶𝐷−𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙−𝑂𝑅(𝑂𝑛 𝑅𝑜𝑎𝑑 𝑂𝑛 ℎ𝑖𝑔ℎ𝑤𝑎𝑦)⁄ =
2818.545

0.5 × 24.58722 × 1 × 10.47
= 0.888 

Where,  

Fx’ – Average Force (over all iterations) from Table 16, 2818.545 N. 

Vr  = V∞-numerical = 55 mph or 24.5872 m/sec. 

ρ = 1.00 kg/m3. 

T = 298 K. 

Reference Area, Aref = 102 inches × 159 inches = 16218 sq. inches = 10.47 sq. meters. 

The comparison of CD-numerical-OR with CD-wind tunnel under same conditions from Table 7 (CD-

wind tunnel at 0 degree yaw angle) showed a 0.8 percent difference in values.  

 

Figure 48. Chart Displaying Reynolds Number Effect on Coefficient of Drag. 
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The results from numerical simulations showed variation of 0.8 to 3.2 percent in CD 

values between the different tests for significant variations in Reynolds number. This 

validated the Reynolds number range in which tests were conducted in the WVU CLT 

and consequently validated the results obtained from it.  

3.5. On-Road Yaw Angle Prediction Model  
A method was established to calculate yaw angles over any specific topographical region 

which would be representative of the crosswind condition over that region. The crux of 

the study lay in obtaining reliable wind data and resolving them as wind speed relative 

to ground and wind direction over the specific region of interest.  

Geographic Information Systems Wind Data Characteristics: The dissertation was 

limited to Continental United States. Using Geographical Information Systems (GIS), high 

resolution (spatial and temporal) wind-grid data were imported over all of the United 

States as wind speed maps and wind direction maps. The data used in this study came 

from National Oceanic and Atmospheric Administration (NOAA) Earth System Research 

Laboratory/Global System Division [79]. The data type chosen was based on an 

intersection between multiple factors such as the time interval between which each 

data point was recorded. The smaller time interval means higher data resolution and so 

a high resolution data was considered to accurately represent the real wind conditions 

[60]. Data accountancy for wind gusts was important factor to be taken into 

consideration while choosing the wind data.  

In general the wind data recorded for any time interval is usually the average value of 

that specific data field over that time interval. If the data field is wind speed then the 

wind speed values recorded are averaged values of wind speed over the time intervals. 

It is important that these average values have also accounted for wind gusts recorded in 

that time interval since they could significantly change the average wind speed values. 
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An experimental version of the Weather Research and Forecasting (WRF) model called 

the High Resolution Rapid Refresh (HRRR) model run by NOAA's ESRL GSD laboratory is 

currently the best available data which meets the required data characteristics. The 

High Resolution Rapid Refresh model [80] is a 3-km resolution model nested inside the 

WRF Rapid Update Cycle/Rapid Refresh model. This provides wind speed, wind direction 

and wind gusts at 10 meter heights at a 15 minute granularity and a 15 minute 

frequency update, and it is converted into 2 meter heights in order synchronize the 

wind data to the height at which it would impact on-road vehicles (refer Appendix 3). 

The X-Y spatial resolution on the raw data obtained is 3 kilometer. However, the data is 

processed through the GIS model developed in this study and the X-Y grid is resolved 

between 0.016 – 0.32 Kilometers and the method used will be discussed later in this 

chapter. 

The HRRR model assimilates three-dimensional radar reflectivity data using a forward 

(diabatic) Digital Filter Reflectivity technique [81] which improves reflectivity forecasts. 

This technique avoids all spurious high frequency oscillations in numerical forecasts and 

is used as an initializing condition and is compatible with model discretization. The HRRR 

model is based on the WRF-RAP radar data assimilation through the lateral boundaries 

throughout the forecast and highly improved initial conditions. The high resolution of 

the HRRR model eliminates the need for convective parameterization [82] which further 

lessens the uncertainty of the forecast and allows the model to produce realistic 

convective structures which are the backbone of a more reliable and improved forecast. 

The HRRR model updates once an hour and generates forecasts up to 15 hours at a 3 km 

resolution and is available at a 15 minute time horizon frequency. For instance, the 

value forecasted by the model at 0015 hours is representative of the wind (speed and 

direction) between 0000-0015. Studies have proved that the forecasted data had a 

reasonable agreement with real time observations [83]. Since 2012 the HRRR grid is 
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1799×1059 over the continental United States domain with 50 vertical levels and the 

WRF-RAP boundary conditions were used as the parent model. The raw data obtained 

from the HRRR model are usually parsed in GRIB2 file format. It was decoded using the 

‘tkdegrib’ decoder [79].  

 

Figure 49. Screen Capture of the 'tkdegrib' Decoder Used for Parsing GRIB2 Format Wind Data. 

The respective fields in each data file were then viewed and obtained individually. Wind 

direction, wind gust and wind speed (at 10 meter heights) were available as individual 

data files when extracted from raw data, which was decoded and generated as shape 
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files (GIS map format). Each data file consisted of its respective field corresponding to its 

forecasted time. Data in each file is valid only for its corresponding forecasted time and 

is available as shape-files at 15 minute time intervals. Each file can be viewed as wind 

speed, wind direction and wind gust maps in ArcGIS.  

One of the basic and primary functions offered by ArcGIS is geoprocessing. By 

performing various operations on existing data, it provides a way to create objective 

oriented new information. However, geoprocessing tasks can be intensive since they 

have to be performed on large, voluminous datasets with numerous records. Scripting is 

an efficient method of automating geoprocessing tasks or running a tool many times, 

converting data and generating geodatabases with different parameters automatically. 

A Python script was written to automate geoprocessing tasks in ArcGIS. The 

geoprocessor allows access to all tools inside ArcGIS and it is compliant with the Python 

scripting language.  

GIS Model Pseudo Code: Python is an open source scripting language which supports 

object-oriented programming used to coordinate and execute geoprocessing tools in 

ArcGIS. The raw wind data from HRRR are always in vector format. ‘UGRD’ represents 

the magnitude of the North-South wind and ‘VGRD’ represents the magnitude of the 

East-West wind. The 15min HRRR wind data are available as U-component and V-

component of wind at 10m heights separately for each forecasted time reference. This 

wind data was first converted to wind at 2 meter heights (refer script in Appendix 3). 

There are different methods using which this adjustment [84] can be done and the most 

commonly used method is the simple Power Law method [85]. The method has been 

tested and found to compare favorably with the more elaborate method under near 

neutral atmospheric stability conditions. The Power Law conversion model was used in 

this study to convert 10 m wind profiles to 2 m wind profiles.  
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Once the method to convert raw wind data to a usable format was established, the yaw 

angle prediction model was built. The raw wind data from the HRRR model were 

processed into vector format. ‘UGRD’ represents the magnitude of the North-South 

wind and ‘VGRD’ represents the magnitude of the East-West wind. The 15 minute HRRR 

wind data were processed as U-component and V-component of wind at 2 meter 

heights. The yaw angle prediction model was constructed with several input 

parameters. The nature of these input parameters was based on-road curvature, vehicle 

position, vehicle trajectory and speed, time of travel and duration of travel. 

Commercially available tools, ArcGIS 10.1 and Python were both used to build the model 

(refer Appendix 3). 

 Convert Projection: Maps can be projected in several ways given the different 

coordinate system notations that exist, so it is important that all the files (wind 

maps and US road map) projected follow the same coordinate system, otherwise 

the data will be misaligned with respect to each other. NAD 1983 [86] was 

chosen as the coordinate system in which all maps and datasets were projected.  

 Unique Attribute Selection: The United States road map generically consists of all 

major roadways across the continental United States. Very rarely are roads 

straight (zero degrees due North) with zero curvature. This means most roads 

curve along their path. Each roadway was identified with its unique attributed 

name. For instance, Interstate 79-North is identified by the code as ‘I-79N’. With 

unique names allocated for each route, any route of interest can be analyzed by 

calling its attributed name. 

 Sampling route at vertices: The employed routes of study were all shaped as 

polylines. Any route that was chosen for the study was split at vertices, i.e. every 

segment between two consecutive vertices will behave as an independent line 

feature.  
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 Capturing Road Curvature: The angle of each line segment was then determined 

from the latitudinal and longitudinal coordinates of the vertices that contain 

each line segment. All angles calculated were due North.  

 

Figure 50. A cut section from Interstate I79 split at vertices. 
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Table 17. Angle, Length and Identification Code of Each Segment in I79 Curve in Figure 49 

 

Figure 49 shows a curved section of Interstate 79, where the dotted line marks the 

actual interstate and the blue section marks the curve after the original section was 

resolved at vertices. This figure shows how closely the curvature of the roads would be 

captured and resolved at high resolution using the model. It can be seen from Table 17, 

which shows the details of the Blue sectional curve in Figure 49, that the region was 

resolved into 25 segments and each given unique ID’-s (FID-54 to 79).  The total length 

of the curved region was 1.97 miles and this was split into 25 segments, defined with 

angles and lengths individually to capture the curve as accurately as possible. 

 Spatial Join: The values of UGRD and VGRD over each segmented or resolved line 

for each time stamp, HHMM at 15 minute intervals, was obtained by joining 

attributes from one feature to another based on a spatial relationship defined in 

FID Sectional Angle Sectional Length in Miles

54 41.709596 0.085123

55 17.155209 0.05953

56 -1.502315 0.139444

57 -6.484502 0.158381

58 1.584499 0.077097

59 14.365007 0.071111

60 25.886663 0.130034

61 40.620942 0.047318

62 48.567984 0.095121

63 56.797913 0.059181

64 62.391345 0.053663

65 69.971206 0.060661

66 77.136141 0.088761

67 86.253098 0.019096

68 83.856838 0.207475

69 74.582758 0.024592

70 66.68121 0.091948

71 48.831374 0.059436

72 40.561862 0.068158

73 35.69702 0.163137

74 55.196107 0.042473

75 63.648351 0.055754

76 70.066254 0.052837

77 75.250986 0.056265

78 87.849382 0.088201

79 89.391874 0.096844
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three-dimensional space. Data at each time stamp was extracted from three 

independent maps, UGRD, VRGD for that time stamp, which are in polygon 

shape and the United States road map with the employed route split at vertices 

which are in polyline segments. The features associated with the sample 

polylines which are spatially contained in the UGRD, VGRD polygons were joined 

to the corresponding UGRD and, VGRD features. Based on the number of sample 

lines (SL) created from the road and HH × 4 time stamps, a  [{HH×4} × ‘n’] 

dimensional matrix [M1] was identified. Where ‘n’ is the total number of sample 

lines created and ‘HH’ is the total number of hours in the analysis time frame.  

 [𝑀1] = [𝑢𝑔𝑟𝑑, 𝑣𝑔𝑟𝑑]𝑖,𝑗 

{𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑖𝑛𝑒, 1 𝑡𝑜 𝑛} 

{𝑗 = 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒, 0015 𝑡𝑜 𝐻𝐻 × 4} 

 Raw Wind Direction (Ѳ in degrees): Corresponding wind direction matrix [M2] 

was obtained from UGRD, VGRD values using Equation 16 below,  

[𝑀2] = [𝑊𝑖𝑛𝑑 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖,𝑗] =
180

𝜋
× tan−1 2(

(𝑢𝑔𝑟𝑑)𝑖,𝑗
(𝑣𝑔𝑟𝑑)𝑖,𝑗
⁄ ) 

 Relative Wind-Truck Angle (φ in degrees): With the assumption that the angle of 

the truck is equal to the angle of road (β), the relative wind-truck angle matrix 

[M3] was calculated using Equation 17 below,  

[𝑀3] = [𝜑𝑖,𝑗] = [𝛽𝑖]~[𝑀2] 

 Head Wind/Tail Wind Identification: Based on [M3] and [M2], the vehicle’s 

projected path of travel (given as input), the wind on the vehicle was established 

either as a head or tail wind (refer to Python code in Appendix 3).  

(16) 

(17) 
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 Raw Wind Speed (in meter/sec): The wind speed matrix was obtained from [M1] 

using Equation 18 below, 

[𝑀4] = [𝑉𝑤 (𝑖,𝑗)] =
√(𝑢𝑔𝑟𝑑)𝑖,𝑗

2 + (𝑣𝑔𝑟𝑑)𝑖,𝑗
2 × 3600

1609.34
⁄

 

 Relative Wind Truck Speed (Vr in m/sec): This is obtained from Equation 7 in 

m/sec.  

[𝑀5] =  𝑉𝑟 𝑖𝑛 𝑚/𝑠𝑒𝑐 = √𝑉2 + 𝑉𝑤2 − 2𝑉 𝑉𝑤  cos 𝜙 

 Yaw Angle (in degrees): This is obtained from Equation 8 in degrees. 

𝑌𝑎𝑤 𝑎𝑛𝑔𝑙𝑒, 𝜓 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = sin−1{(𝑉𝑤 sin 𝜙)/𝑉𝑟} 

𝑜𝑟, [𝜓𝑖,𝑗] = sin
−1(

[𝑀4] sin[𝑀3])
[𝑀5]⁄ ) 

The model looped through the model parameters one time step at a time to calculate 

the yaw angle at every point of the chosen route.  

 

 

 

 

 

 

 

 

 

(18) 

(19) 

(20) 
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Figure 51. Algorithm/Pseudo Code for GIS Yaw Angle Prediction Model. 
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Interstate 79 was chosen as one of the routes of interest which was examined in this 

study. The other route chosen was a cross country route which passes through several 

states including Missouri, Kansas, and Indiana to analyze the spatial impact apart from 

the temporal impact. The flow chart above shows the sequence of command used in the 

model, where red blocks refer to user input parameters, and blue indicates model 

calculated or estimated parameters. 

3.6. On-Road Yaw Angle Prediction Model Case Studies and Results 
A case study was conducted to show the modeling results and for this purpose 

Interstate 79 was employed as the route of interest. The transient yaw angles were 

predicted for the chosen route based on the method described in Chapter 3.5. The days 

of study were March 3rd and 4th, 2012 and March 1st and 2nd, 2013. The days chosen 

were at random at a 1 day and 1 year interval between them.  

 

Figure 52. Yaw Angle Variation through Interstate 79, WV on March 3rd 2012. 

Time (in hours) – March 3rd 2012 

I-79 Segmented 

Yaw Angle (in 

degrees) 
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Figure 53. Yaw Angle Variation through Interstate 79, WV on March 4th 2012. 

Higher peaks on the yaw graph were observed on 03/04/2012 mostly after 2 pm (1400) 

indicating that the conditions were comparatively windier than earlier that day. No 

tailwind was encountered on either day. By simply observing Figure 50 and Figure 51, 

the shift in the on-road yaw angle pattern on the same route can be seen due to 

variations in wind behavior and road curvature. The average on-road yaw angle for 

route on March 3rd, 2012 was 5.8 degrees but this is certainly not representative of yaw 

angles for several time periods through the day. The average yaw angle between 1500 

and 2000 was 7.2 degrees and it was 4.6 degrees between 0900 and 1300. Similarly, the 

average on March 4th, 2012 was 3.1 degrees through the route for the day, but the 

average during the time period 0000-1100 was 2.8 degrees and it was 5.6 degrees 

between 1330 and 2400 hours. To further elaborate the statement of temporal 

variations affecting the on-road yaw angles, another two days in March were chosen a 

year apart (in 2013).  

Time (in hours) – March 4th 2012 
I-79 Segmented 

Yaw Angle (in 

degrees) 
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Figure 54. Yaw Angle Variation through Interstate 79, WV on March 1st 2013. 

 

Figure 55. Yaw Angle Variation through Interstate 79, WV on March 2nd 2013. 
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The chosen days, March 1st and 2nd, 2013 were employed over the same I-79 segment to 

describe the variation in on-road yaw angle in the same season, over the same route. 

The average yaw angle on March 1st, 2013 was 3.65 degrees but the maximum on-road 

yaw angle experienced was 13.43 degrees. It should also be noted that these two days 

unlike 03/03/2012 and 03/04/2012 provided tail wind assistance to vehicles, although 

not substantial enough to negate the head wind, it still reduced the overall impact. The 

time period chosen for analysis was limited to 0000 to 1600 hours. The average was 

slightly on the higher side (4.6 degrees) for the first few hours (0000 – 0300 hours) on 

March 1st and stayed close to the average value after that time period. On March 2nd, 

2013, the average on-road yaw angle was 3.5 degrees. The average on-road yaw angle 

between 1630 and 1900 hours was 4.3 degrees. The obvious difference between the on-

road yaw angles between the days compared in 2012 and 2013 over the same region 

was the added tail wind conditions in 2013. Table 18 reflects the major differences 

between the days compared. The drag effects due to these differences in on-road yaw 

angles are discussed in the next chapter. 

Table 18. Major Differences in On-Road Yaw Angle Conditions Through I-79 for the Days 

Studied 

On-Road Yaw Angle-Full 

Route (in degrees) 

March 3rd, 

2012 

March 4th, 

2012 

March 1st, 

2013 

March 2nd, 

2013 

Average  5.8 3.1 3.65 3.5 

Average for high on-road 

yaw conditions 

7.2 5.6 4.6 4.3 

Tail wind No No Yes Yes 

Maximum yaw angle 17.1 16.08 13.43 11.67 
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Figure 56. I-79 Running Through West Virginia Layered over Wind Maps in ArcGIS 10.1. 

Figure 54 shows the route employed for the analysis and conclusions were made for 

vehicles travelling South bound from Morgantown towards Charleston. The analysis was 

done assuming a constant vehicle velocity of 55 mph. For the purpose of illustrating 

regional variations, a route across the country from the already employed, I-79 (marked 

in red) was chosen and utilized. This route chosen was based on a cross-country study 

West Virginia University conducted in 2011 [87], and so this route incorporated actual 

vehicle speed. 

I-79 through WV 

 

Morgantown 

 

I-68 

 

I-77 

 

I-70 

 

Charleston 

 



110 
 

 

Figure 57. Cross Country Route Employed (I-70) with Varying Vehicle Speeds. 

 

Figure 58. Yaw Angle Variation through Interstate 70 through Missouri and Kansas, October 
10th 2011. 
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The average on-road yaw angle experienced by the vehicle through this road segment 

on the cross country trip was 1.6 degrees. The vehicle travelled this route on October 

10th, 2011 between 1730 – 2100 hours covering 274 miles. From Figure 56 it is clear 

that, the average on-road yaw angle value is not representative of several regions or 

time periods on the travel route. Besides the several regions and time periods where 

the on-road yaw angle has climbed over 10 degrees, the average is low because it has 

been compensated by substantial tail wind. The vehicle travelled 110 miles in Missouri 

in 1.6 hours and entered Kansas (segments 113-347) after 1900 hours. The average on-

road yaw angle in Kansas through the time the vehicle travelled in the region was 4.4 

degrees and this can be seen in Figure 56 where the red peaks indicate the higher head 

wind conditions producing higher on-road yaw angles. 

3.7. Integrated Results and Discussion 

The on-road yaw angles for the various routes and time periods were obtained from the 

geo code and the coefficient of drag for the various configurations were obtained from 

the wind tunnel experiments. Now, the integration of these two databases would yield 

the on-road coefficient of drag corresponding to the wind conditions. Chapter 3.7 

describes the on-road effectiveness of the several configurations in conjunction with the 

routes employed in Chapter 3.6. The X-axis in Figures 59 – 93 represents time in hours 

(0000 – 2400), Y-axis represents road segments along I-79 and the color ramp 

represents coefficient of drag values from 0.7 to 2.5. 
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Figure 59. CD Variation on I-79, March 3rd 2012 for Baseline Configuration. 

 

Figure 60. CD Variation on I-79, March 3rd 2012 for Baseline with Wind Deflector Placed at 300. 



113 
 

 

Figure 61. CD Variation on I-79, March 3rd 2012 for Baseline with Wind Deflector Placed at 45o. 

 

Figure 62. CD Variation on I-79, March 3rd 2012 for Baseline with Wind Deflector Placed at 60o. 
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Figure 63. CD Variation on I-79, March 3rd 2012 for Baseline with Gap Fairings and Wind 

Deflector Placed at 30o. 

 

Figure 64. CD Variation on I-79, March 3rd 2012 for Baseline with Gap Fairings and Wind 

Deflector Placed at 45o. 
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Figure 65. CD Variation on I-79, March 3rd 2012 for Baseline with Gap Fairings and Wind 

Deflector Placed at 60o. 

Figures 57, 58, 59, 60, 61, 62 and 63, portray the coefficient of drag variation on March 

3rd, 2012 following the yaw angles in Figure 50 and CD for all configurations from Tables 

7 through 13. It can be seen from the figures that the effectiveness of the aerodynamic 

add on devices are varied. The aerodynamic configuration, truck equipped with the 

wind deflector at 30o (referred as Configuration A) shows higher effectiveness at lower 

yaw angles (marked in darker shades of blue, Fig. 58) but less effective compared to the 

baseline configuration (Fig. 57) at higher yaw angles (greater than 5.5 degrees). 

Aerodynamic configuration with a wind deflector placed at 45o (referred as 

Configuration B) resulted to more effective than the baseline configuration and less 

effective than Configuration A at lower yaw angles (0 – 5.5 degrees). However, at higher 

yaw angles, it is ineffective compared to both, baseline and Configuration B. The best 

configuration at lower levels of yaw angle (0 – 3 degrees) was the truck equipped with 

wind deflector with 30o and a gap fairing (referred as Configuration D) but does not 
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respond as effective as configurations, A, B or baseline at yaw angles higher than 3 

degrees. It can be concluded that configuration A would be the best option for the 

whole route evaluating the performance of the other configurations on the route 

chosen (I-79 shown in Figure 54) on March 3rd, 2012.  

 

Figure 66. CD Variation on I-79, March 4th 2012 for Baseline Configuration. 
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Figure 67. CD Variation on I-79, March 4th 2012 for Baseline with Wind Deflector Placed at 30o. 

 

Figure 68. CD Variation on I-79, March 4th 2012 for Baseline with Wind Deflector Placed at 45o. 
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Figure 69. CD Variation on I-79, March 4th 2012 for Baseline with Wind Deflector Placed at 60o. 

 

Figure 70. CD Variation on I-79, March 4th 2012 for Baseline with Gap Fairings and Wind 

Deflector Placed at 30o. 
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Figure 71. CD Variation on I-79, March 4th 2012 for Baseline with Gap Fairings and Wind 

Deflector Placed at 45o. 

 

Figure 72. CD Variation on I-79, March 4th 2012 for Baseline with Gap Fairings and Wind 

Deflector Placed at 60o. 
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The aerodynamic add on devices performed in similar fashion (as 03/03/2012) with 

configuration A being the most efficient through the day, for all regions on the route. 

From the analysis conducted, configuration A or D is recommended for trucks travelling 

the route between 0000 – 1200 hours on 03/04/2012 and the baseline configuration is 

recommended for vehicles travelling between 1200 – 2345 hours.  

Following the yaw angles obtained for 03/01/2013 and 03/02/2013 in Figures 52 and 53, 

CD values were derived similarly to observe the varied nature of wind effects on on-road 

vehicles and how significantly it differed at the same period of the month.  

 

Figure 73. CD Variation on I-79, March 1st 2013 for Baseline Configuration. 
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Figure 74. CD Variation on I-79, March 1st 2013 for Baseline with Wind Deflector Placed at 30o. 

 

Figure 75. CD Variation on I-79, March 1st 2013 for Baseline with Wind Deflector Placed at 45o. 
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Figure 76. CD Variation on I-79, March 1st 2013 for Baseline with Wind Deflector Placed at 60o. 

 

Figure 77. CD Variation on I-79, March 1st 2013 for Baseline with Gap Fairings and Wind 

Deflector Placed at 30o. 
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Figure 78. CD Variation on I-79, March 1st 2013 for Baseline with Gap Fairings and Wind 
Deflector Placed at 45o. 

 

Figure 79. CD Variation on I-79, March 1st 2013 for Baseline with Gap Fairings and Wind 

Deflector Placed at 60o. 
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The analysis concluded that fairings would not be effective on this route on March 1st, 

2013 unlike 2012, where configuration D was a considerably effective of aerodynamic 

configuration in several cases.  However, on March 1st, 2013, configuration A was the 

most efficient aerodynamic configuration with the wind deflector placed at 30 degrees. 

Configuration B was the second most efficient with a wind deflector placed at 45 

degrees. Clear differences can be seen in the recommended choice of aerodynamic 

configurations compared to the recommended configurations for March 3rd and 4th, 

2012. 

 

Figure 80. CD Variation on I-79, March 2nd 2013 for Baseline Configuration. 
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Figure 81. CD Variation on I-79, March 2nd 2013 for Baseline with Wind Deflector Placed at 30o. 

 

Figure 82. CD Variation on I-79, March 2nd 2013 for Baseline with Wind Deflector Placed at 45o. 



126 
 

 

Figure 83. CD Variation on I-79, March 2nd 2013 for Baseline with Wind Deflector Placed at 60o. 

 

Figure 84. CD Variation on I-79, March 2nd 2013 for Baseline with Gap Fairings and Wind 

Deflector Placed at 30o. 
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Figure 85. CD Variation on I-79, March 2nd 2013 for Baseline with Gap Fairings and Wind 

Deflector Placed at 45o. 

 

Figure 86. CD Variation on I-79, March 2nd 2013 for Baseline with Gap Fairings and Wind 

Deflector Placed at 60o. 
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The baseline configuration or configuration A was the recommended choice of 

aerodynamic configurations. From the analysis, it is concluded that configuration A 

would be more effective for the time period 0000 – 1100 and the baseline configuration 

would be effective for the rest of the day on March 2nd, 2013.  

The CD values were obtained for yaw angles in Figure 56 following the speed trace 

(Figure 55) obtained for the trip made between Missouri and Kansa for the cross 

country study.  

 

Figure 87. CD Variation in I-70 (Missouri-Kansas Cross Country Route), October 10th, 2011 for 

Baseline Configuration. 
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Figure 88. CD Variation in I-70 (Missouri-Kansas Cross Country Route), October 10th, 2011 for 

Baseline Configuration with Wind Deflector at 30o. 

 

Figure 89. CD Variation in I-70 (Missouri-Kansas Cross Country Route), October 10th, 2011 for 

Baseline Configuration with Wind Deflector at 45o. 
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Figure 90. CD Variation in I-70 (Missouri-Kansas Cross Country Route), October 10th, 2011 for 

Baseline Configuration with Wind Deflector at 60o. 

 

Figure 91. CD Variation in I-70 (Missouri-Kansas Cross Country Route), October 10th, 2011 for 

Baseline Configuration with Wind Deflector at 30o and Gap Fairings. 
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Figure 92. CD Variation in I-70 (Missouri-Kansas Cross Country Route), October 10th, 2011 for 

Baseline Configuration with Wind Deflector at 45o and Gap Fairings. 

 

Figure 93. CD Variation in I-70 (Missouri-Kansas Cross Country Route), October 10th, 2011 for 

Baseline Configuration with Wind Deflector at 45o and Gap Fairings. 
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Configuration A was the best recommendation given the yaw conditions on the route 

during this segment of the cross country travel. It is clear that the effect of on-road yaw 

angle differed between regions and time periods. This has a subsequent impact on the 

recommended aerodynamic configuration based on effectiveness. This analysis, using 

only two aerodynamic add on devices concluded that there are varied impacts for varied 

situations. Although configuration A was the recommended aerodynamic package in 

several situations, it is still less efficient compared to configuration B or the baseline 

configuration at higher yaw angles (7 – 14 degrees).  

For instance, a time based analysis for March 4th, 2012 was done assuming a vehicle 

which started at segment-560 on route I-79, travelling at 65mph for an hour. The 

transient yaw angle along its travel path was obtained. 

 

Figure 94. The Route Traced by the Vehicle with Input Starting Point and Vehicle Speed. 

Portion of I-79 

Route Travelled  
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Figure 95. The Yaw Angles Experienced by the Vehicle along its Travel Path. 

Configuration B or baseline configurations were the two aerodynamic package 

recommendations for this travel scenario. This implies that if more configurations were 

tested, the variations in individual and combined effectiveness of aerodynamic devices 

would be more varied with every device performing better than the other given its best 

spatial and temporal operating regime.  

This analysis shows how vehicles experience varied yaw angles and consequently 

aerodynamic drag forces spatially and temporally. It was concluded that by making an 

informed decision in choosing what route to operate, at what time of the day, combined 

with the right choice of aerodynamic add on device could yield significant benefits. By 

observing the average yaw angle values and their corresponding coefficient of drag 

values discussed in Chapter 3.6 proved that using generic coefficient of drag values 

based on vehicle type as described in GEM and MOVES models may result in predicting 

inaccurate fuel economy or savings. The model developed in this study was based on 
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the accuracy and frequency of the wind data provided by NOAA and it can be said that 

with improving wind forecasting models, this model can potentially be incorporated to 

predict continuously, accurate fuel consumption levels on vehicles. 

3.8. Impact of Variations in Velocity Used to Estimate Drag 

Coefficient 

Wind tunnel experiments are conducted at specified free-stream velocities and the drag 

coefficients are calculated based on these velocities. The velocity used to calculate the 

aerodynamic drag force or estimate drag coefficients in several studies [88] [89] [8] are 

used loosely and are not clearly defined causing a disguised barrier in interpretation. 

This means that the drag coefficient estimated could be under or overestimated. This 

reaffirms the importance to standardize the drag estimation methodology. The 

methodology used in this study is explained in this chapter using the forces described in 

Figure 29 and the accompanying illustration.  

This study used the velocity, Vr and force, Fx’ in all the calculations. However, the true 

resultant force, Fr is oriented differently and this is due to the force, Ly’. This force is also 

referred to as side/lateral force and it skews the resultant force by an angle of ‘α’ from 

Fx’. The problem at hand is, which velocity should be used to determine which force in 

order to describe the aerodynamics of the tractor-trailers. There is no unique solution or 

a standardized method to this problem but it could be agreed that the truck velocity or 

vehicle velocity should be used uniformly since that is the most easily accessible 

velocity. However, this study uses, Vr as reference velocity which factors both the 

vehicle speed and wind speed. The force measured is in the direction of the relative 

velocity Vr and it does not account for the side/lateral force. This means that the values 

measured and calculated in this study may be overestimated than the actual 

quantitative values but the qualitative analysis and the inferences made, would still be 
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accurate. To highlight the importance of this velocity issue, a few examples were made 

with arbitrary numbers. The components in Equation 7 and 8 were used for conducting 

the analysis in this study. Once this is available, the aerodynamic load aligned to the 

tractor-trailer’s direction of motion may be found as a component of the overall 

aerodynamic load on the tractor-trailer: 

 

Figure 96. Vector Representation for Forces Measured and Analyzed in the Study. 

With the assumption that the truck velocity and the wind velocity are known for on-

road conditions and if the coordinate system is always selected such that the x-axis is 

aligned directly opposing the direction of motion of the truck. Following which the 

calculations below were made: 

Example: 

�⃗� = 24.6888 
𝑚

𝑠𝑒𝑐
 𝑖  

𝜌 = 1.223 
𝑘𝑔

𝑚3
 

Frontal Area = 7.153 m2 

𝑉𝑤⃗⃗⃗⃗ = 6.096
𝑚

𝑠𝑒𝑐
𝑖 + 7.62

𝑚

𝑠𝑒𝑐
𝑗  

|𝑉𝑤⃗⃗⃗⃗ | = √(6.0962 + 7.622) = 9.75 𝑚/𝑠𝑒𝑐 
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Ѳ = cos−1
6.096

9.75
= 51𝑜  

𝑉𝑟 = �⃗� + 𝑉𝑤⃗⃗⃗⃗ = 30.7
𝑚

𝑠𝑒𝑐
𝑖 + 7.62

𝑚

𝑠𝑒𝑐
𝑗  

|𝑉𝑟| = √(30.72 + 7.622) = 31.63
𝑚

𝑠𝑒𝑐
 

ψ = sin−1 (
9.75

31.63
sin 51𝑜) = 14𝑜 

𝐹𝑎𝑒𝑟𝑜,𝑡𝑟𝑢𝑐𝑘 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = 𝐶𝐷(14
𝑜)(

1

2
)(1.223)(31.632)(7.153) cos 14𝑜   

Assuming a baseline configuration, the value is 1677 lbf. 

Based on the aerodynamic configuration chosen, this value could vary substantially. 

However, it should be noted that this is just one way to represent the aerodynamic drag 

force on the vehicle and it is not comprehensive. It can be clearly seen that the Faero, total 

would be bigger than this value. Above all, the force values calculated do not account 

for side/lateral force. The force in the direction of the truck calculated here is 

corresponding to Fx’ (perpendicular from Fx’ on to x-axis) in Figure 29. This value of force 

would be lesser in magnitude along the same axis (x- axis in Figure 29) if side/lateral 

force was taken into account. With the assumption that the coefficient of drag in the 

direction in Fy direction (Figure 29) is equal to 1.5 due to the side force, the net 

aerodynamic force accounting for the side force can be calculated.  

Cross sectional side area = 55.649 m2 

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝐹𝑥′ =
𝑑𝐹𝑦

𝑑𝐹𝑥
⁄ = −(tan−1 14𝑜) = −4.010 
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𝑑𝐹𝑦 = (𝐹𝑥′ sin 14) − ((1.5) (
1

2
) (1.223)(7.622)(55.649) = −248.293 𝑙𝑏𝑓 (where the 

wind speed in Y direction is 7.62 m/sec). 

𝑑𝐹𝑥 =
−248.293

−4.010⁄ = 61.918 𝑙𝑏𝑓 

This is a 3.7 percent decrease in the total in Faero, truck aligned. 

This shows that the side force reduces the total drag experienced by the vehicle. This is 

obviously subject to the wind speed impacting the vehicle but the fact that side force 

reduces total drag could be valuable for future aerodynamic research and development. 

This analysis also concludes that aerodynamic drag force can be defined in different 

ways and this could be misleading. For instance, the efficiency gain by reduction in CD 

values may not be as significant when side/lateral force is considered at higher yaw 

angles compared to aerodynamic drag reduction efficiency neglecting side/lateral force. 

In conclusion, defining aerodynamic drag force with respect to the vehicle and velocity 

used is very important. 

3.9. Conclusions and Recommendations 

This study conducted wind tunnel experiments, compared results using numerical 

analysis and obtained reliable coefficient of drag data. This data was used in conjunction 

with a spatial model built to predict on road yaw angle and the effects of on road wind 

and the benefits of different aerodynamic configurations were examined. The 

efficiencies of the different aerodynamic configurations were found to be dynamic. The 

truck employed with a wind deflector at 30 degrees angle (configuration 1) was 

observed to be very effective at low yaw angles (less than 4 degrees). Very similar 

efficiency was observed when a tractor-trailer gap fairing was added to configuration 1 
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but at higher degrees of yaw angle, the gap fairings were detrimental to the 

aerodynamic drag efficiency with the increasing cross sectional area of wind exposure.  

The analysis on the individual aerodynamic add on devices showed in almost all cases 

when the wind deflector is placed at an angle greater than 30 degrees, it has a 

detrimental effect on the aerodynamic efficiency of the vehicle. However, this does not 

mean placing a wind deflector at 35, 40 or 45 degrees is never useful. The observation is 

definitely subject to the truck (model) on which it is installed. Proper engineering 

analysis has to be considered to understand the most beneficial installation orientation. 

From the initial analysis of the data obtained from the wind tunnel results, the 

coefficient of drag values recorded increased with increasing yaw angles as expected. 

The rate at which the coefficient of drag increased with increasing yaw angles is 

noteworthy. The coefficient of drag increased at an average of 5.9 percent in the 0 – 5 

degrees yaw angle range and at 9.3 percent in the 10 – 13 degrees range for the 

baseline and aerodynamic configurations with just the wind deflector. However, the 

coefficient of drag increased at an average of 6.1 percent in the 0 – 5 degrees yaw angle 

range and at 12.4 percent in the 10 – 13 degrees range for the aerodynamic 

configurations with the wind deflector and gap fairings. Several case studies were 

conducted in this research to further understand the on road impacts of crosswinds 

using the yaw angle prediction model developed in this study.  

On road yaw angles which prevailed in the chosen times and areas of investigation were 

predicted and the corresponding coefficient of drag values were derived. The analysis 

concluded that yaw angles varied significantly both spatially and temporally which 

consequently the aerodynamic drag force experienced by the trucks travelling that 

route were significantly impacted. The analysis showed that the recommended choice of 

aerodynamic configurations varied depending on the day and time of travel and this 

depended on several influencing factors such as prevailing head and tail wind 
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conditions, efficiencies of aerodynamic devices, vehicle speed, travel direction and road 

curvature (north, south, east or west bound). By making an informed decision in 

choosing the route, time of operation combined with the right choice of aerodynamic 

device could yield significant benefits. Given the transient on road impact on 

aerodynamic drag, the analysis concluded that using generic coefficient of drag values 

based on vehicle class as described in GEM and MOVES may result in inaccurate fuel 

savings prediction. With the help of current and future development work in developing 

the resolution of wind forecasting models, the model developed in this study can 

potentially be incorporated to predict continuously, accurate fuel consumption levels on 

vehicles. Future studies can focus on correlating emissions to aerodynamic drag force 

and on road wind conditions and thus help understand how reducing aerodynamic drag 

on a truck can impact emissions reductions.  

The last and one of the most significant contributions of this study comes from chapter 

3.8. The importance of establishing the velocity based on which drag coefficients are 

calculated was analyzed to expose the disguised barrier it causes in under or over 

estimating the drag coefficient. With the help of numerical illustrations, it was 

concluded that there is more than one way to represent the aerodynamic force on a 

vehicle. Since the tests done only measured the force in the direction of the truck, the 

study is not comprehensive. The side force was not measured and this lead to another 

discovery on the significance of side force in estimating total drag force. Another 

numerical analysis was conducted to analyze the side force issue and it was observed 

that the side force reduced the overall drag experienced by the vehicle and the 

magnitude of reduction could vary depending on the yaw angle and the side wind 

velocity. A numerical analysis showed that the total drag force would be reduced by 3.7 

percent purely due to the lateral forces on the vehicle facing a 16mph wind at 14 

degrees. Detailed studies need be conducted in this area and quantify the extent of side 
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force impact at the different yaw angle ranges using wind tunnel experiments. These 

conclusions open new dimensions for research in the area of aerodynamic drag 

reduction devices. Future development studies should focus on determining the yaw 

angle range, wind velocity in which side force can maximize the overall drag reduction. 

Which can then create the platform for development of retractable aerodynamic 

devices to deploy based on threshold criteria. 
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APPENDIX I – Correction Factor for CD 

Load Cell Calibration: Calibration was done using 1 lb weight increments up to 5 lbs and 

at 1 lb decrements from 5 lbs back to 1 lb. A stabilization period of 15 seconds was 

allowed before recording the load cell response values for each loading.  

 

Figure 97. Force Diagram While Calculating the Load Cell Response Factor Based on Assumed 

Aerodynamic Center. 

LVoi = Voltage recorded at no load condition  

LV1i = Voltage recorded during load after stabilization period. 

WTi = Load applied (in lbs)  

The length and thickness follow the description in Figure 95. 

i = 1 to 5 lbs. 

The assumed response factor was then calculated using the formula below, 
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∑(
𝑊𝑇𝑖

(𝐿𝑉1𝑖 − 𝐿𝑉𝑜𝑖)
×
(𝑙1 + 𝑡1 + 𝑙2)

(𝑙1 + 𝑡1 + 𝑙3)
)

5

𝑖=1

 

The load cell response factor was calculated to be 18.93 lbs/volt. 

Wind Tunnel Correction Factor: The data obtained in all wind tunnel tests were subject 

to the correction factor obtained in this section since the correctional set up accounted 

for the actual aerodynamic center.  

 

Figure 98. Force Diagram While Calculating the Load Cell Response Factor Based on Actual 

Aerodynamic Center. 

The load cell response factor was calculated following the same procedure as before, 

but the response factor identified was defined as the response factor corresponding to 

the true aerodynamic center of the model following .  The coefficient of drag is further 

calculated using this formula in both cases using the appropriate load cell response 

factors. The correction factor was calculated using the CD values obtained at zero degree 

yaw angles for all configurations as follows, 

Actual response factor:    

∑ (
𝑊𝑇𝑖

(𝐿𝑉1𝑖−𝐿𝑉𝑜𝑖)
)5

𝑖=1  

𝐶𝐷 = (
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑇𝑒𝑠𝑡 𝑃𝑜𝑖𝑛𝑡 × 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟

𝑞 × 5.20235 × 𝑀𝑜𝑑𝑒𝑙 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑊𝑖𝑑𝑡ℎ
) 

(21) 

(22) 

(23) 
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The formula in Equation 23 was used with the assumed response factor to calculate the 

coefficient of drag for all configurations at all yaw angles and the same formula was 

used with the corrected response factor to calculate the coefficient of drag of all 

configurations at zero degree yaw angle. A coefficient of drag ratio was determined for 

each configuration using the CD values obtained only at zero degree yaw angle, and this 

correctional factor was applied to all subsequently tested yaw angles in each 

configuration.  
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APPENDIX II – Values Calculated for Numerical Simulation 

The numerical simulations were performed using COSMOS FloWorks, a commercial 

Computational Fluid Dynamics (CFD) package produced by Dassault Systems. The model 

used in this platform is referred to as Enhanced Turbulence Modeling (ETM) structure. 

The classical k-ϵ (turbulence-energy dissipation) turbulence model which includes the 

Lam-Bremhorst modification for better boundary layer profile fit when resolving 

boundary layers with computational meshes is integrated in this ETM structure. This is 

achieved by using a damping function and the modified turbulence model. The 

mathematical model can be viewed in COSMOS-FloWorks technical reference guide 

[90].  The initial turbulent kinetic energy, k, and its dissipation rate, ɛ, were calculated 

based on equations given below:- 

𝑘 =
3

2
(𝑈𝐼)2 

ɛ =
𝑐µ
3/4
𝑘3/2

𝑙ɛ
⁄  

U, is the velocity magnitude or free stream velocity. 

𝑙ɛ, turbulent length scale based on characteristic length. 

 

Where, I is the initial turbulence intensity (%) 

= 0.16(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟)
−1

8⁄  

Specified Reynolds number was equal to the Reynolds number values from Chapter 3.4, 

case I and II for low Reynolds number test and on-road Reynolds number test and free 

stream velocity corresponding to these Reynolds numbers were used as inputs to test 
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the two cases. In this steady-state problem, the force tends to oscillate during the 

iterations. In order to obtain stabilization on the value determined, a convergence 

criterion was specified, and the iterations were continued until this criterion was 

attained. It was determined that if the values of subsequent iterations lay within a 1 

percent difference then it would be passed a stabilized and valid result. 

Criterion Satisfied for Case 1 (Chapter 3.4): Low Reynolds number test,  

(62.761𝑛~62.769𝑛−1) ≤ (0.01 × 62.769𝑛−1)  

Criterion Satisfied for Case 1 (Chapter 3.4): On-Road Reynolds number test,  

(2818.552𝑛~2818.549𝑛−1) ≤ (0.01 × 2818.549𝑛−1) 
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APPENDIX III – ERROR ANALYSIS 

A simple error analysis was performed to check the validity of the results reported in 

this study. The values reported in this study are all derived from averaged numbers and 

for the purpose of analyzing the error due to electrical noise or any other random error 

which may have occurred due to measurement inconsistency or any other reason, one 

standard deviation was used as reference. There is a two phase error analysis. The first 

phase accounts for the error in the calibration and response factor. The second phase 

analyzes the error in the computed CD values as a factor of both the calibration factor 

error and the measurement error (error propagation). 

Equation 21 was recalculated with ±1 standard deviation (σi) for LV1i and LV0i. 

∑(
𝑊𝑇𝑖

(𝐿𝑉1𝑖 ± 𝜎𝑖) − (𝐿𝑉𝑜𝑖 ± 𝜎𝑖)
×
(𝑙1 + 𝑡1 + 𝑙2)

(𝑙1 + 𝑡1 + 𝑙3)
)

5

𝑖=1

 

The value obtained from Equation 24 varied from the average load cell response factor 

calculated in Equation 21 by ±0.36 percent. This deviation was then carried over to 

Equation 23 to calculate the total deviation with one standard deviation in the actual 

response factor used to calculate CD values. 

Now, in the seconds phase, Equation 23 was recalculated using one standard deviation 

for the load measured at each test point and the carried over ±0.36 percent deviation of 

the load cell response factor. Since there are a total of 91 (7 configurations × 13 yaw 

angles) datasets of test points, a worst case scenario was chosen to calculate and 

represent the deviation. It was assumed that the magnitude of deviation will be highest 

when the value of load measured by the load cell is highest inside the tunnel. This 

scenario was encountered for configuration 6.  

(24) 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑜𝑎𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡

= Max { (
𝜎𝑦

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑦
× 100)

𝑦=1

13

} = 3.4 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 

Now, using equations 23, 24 and 25, applying this maximum deviations to the average 

load measured at test point and the response factor, the deviation in CD was estimated, 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐶𝐷

= (

 
 
 
 

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑇𝑒𝑠𝑡 𝑃𝑜𝑖𝑛𝑡 ±
(0.034 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑇𝑒𝑠𝑡 𝑃𝑜𝑖𝑛𝑡)) 

× (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 ± (0.0036 × 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐹𝑎𝑐𝑡𝑜𝑟))
𝑞 × 5.20235 × 𝑀𝑜𝑑𝑒𝑙 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑊𝑖𝑑𝑡ℎ

)

 
 
 
 

𝐶𝐷
 

This value was estimated to be ±1.32 percent. 

 

 

 

 

 

 

 

(25) 

(26) 
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APPENDIX IV – Python Code for Calculating Transient Yaw Angles 

from User Defined Input Parameters 

The script was written in Python and was working in conjunction with MS-Excel, ArcGIS 

10.1, ArcCatalog 10.1. A geodatabase to store results, retrieve temporary files and 

access source files was created prior to running the script.  

 
## This script takes wind data, works on it one month/day/hour at a time and runs a 

series of spatial joins to merge 

## That data with a segmented version of any chosen route. 

import arcpy 

import math 

import csv 

 

#WORKSPACE-WIND SOURCE FILE LOCATION# 

#arcpy.env.workspace = "C:\\Users\\User\\Desktop\\template" 

arcpy.env.workspace = "C:\\Users\\User\\Desktop\\template" 

 

#OUTPUT STORAGE AND DATABASE SOURCE LOCATION# 

#ws = "C:\\Users\\User\\Desktop\\template" 

ws = "C:\\Users\\User\\Desktop\\template" 

 

#GEODATABASE LOCATION# 

outputWS = ws+"\\testing.gdb" 

 

#OUTPUT PREFIX# 

#prefix = "u2005" 

prefix = "u2013" 
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#ROUTE EMPLOYED BASED ON NAME ATTRIBUTED# 

i79 = outputWS+"\\I79Segments" 

#i79 = outputWS+"\\I70Segments_subset_4" 

 
arcpy.env.overwriteOutput = True 

allDatasets = arcpy.ListFeatureClasses() 

outputFDs = [] 

timePeriods = [] 

outputDirs = [] 

div = "-" 

shp = ".shp" 

i79counter = 1 

fileTypes = ["-u","-v"] 

selectedLine = outputWS+"\\selectedLine" 

windTemp = outputWS+"\\windTemp" 

yaw = 0 

 
outfile = ws+"\\output\\output.csv" 
 
output = open(outfile, "wb") 
 
csvOut = csv.writer(output) 
 
 
def makeWorkList(): 
 
    for dataset in allDatasets: 
 
        workingString = str(dataset) 
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        testOutputFD = workingString[5:9] 
 
        print "checking FD: "+testOutputFD 
 
        if testOutputFD not in outputFDs: 
 
            outputFDs.append(testOutputFD) 
 
        testTimePeriod = workingString[10:14] 
 
        print "checking TP: "+testTimePeriod 
 
        if testTimePeriod not in timePeriods: 
 
            timePeriods.append(testTimePeriod) 
 
 
 
def union(): 
 
    makeWorkList() 
     
    ## each outFD is 4 digits 

    for outFD in outputFDs: 

 

        print "I am working on outputFD: "+outFD 

 

        ## each timeP is 4 digits, military hours - HHHH 

        for timeP in timePeriods: 

 
            print "I am working on timePeriod: "+timeP 
 
            union1 = prefix+outFD+div+timeP+fileTypes[0]+shp 
 
            union2 = prefix+outFD+div+timeP+fileTypes[1]+shp 
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            #union3 = prefix+outFD+div+timeP+fileTypes[2]+shp 
 
            print "I am preparing to union: "+union1+", "+union2 
 
            currentOutput = str(outputWS+"\\mo"+outFD[0:2]) 
 
            if currentOutput not in outputDirs: 
 
                outputDirs.append(currentOutput) 
 
            arcpy.Union_analysis ([union1, union2], 

currentOutput+"\\mo"+outFD[0:2]+"d"+outFD[2:]+"_t"+timeP) 

 
 
def roadJoin(): 
 
    arInx = 0 
 
    arcpy.MakeFeatureLayer_management(i79, "i79_lyr") 
 
    whereClause = "" 
 
    allI79 = arcpy.SearchCursor("i79_lyr", whereClause) 
 
    i79List = [] 
 
    i79Angle = [] 
 
    cntInd = 0 
 
    for segment in allI79: 
 
        val = segment.OBJECTID 
 
        ang = segment.angle 
 
        i79List.append(val) 
 



152 
 

        i79Angle.append(ang) 
 
    for direct in outputDirs: 
 
        arcpy.env.workspace = direct 
         
        currDatasets = arcpy.ListFeatureClasses() 
 
        currDatasetsCopy = currDatasets[:] 
 
        firstLine = [] 
 
        firstLine.append("id") 
 
        firstLine.append("angle") 
 
        for temp in currDatasetsCopy: 
 
            workingString = str(temp) 
 
            firstLine.append(workingString) 
 
        csvOut.writerow(firstLine)     
 
        for idVal in i79List: 
 
            workingOutput = [] 
 
            whereClause = "OBJECTID = "+str(idVal) 
 
            arcpy.SelectLayerByAttribute_management("i79_lyr", "", whereClause) 
 
            arcpy.CopyFeatures_management("i79_lyr", selectedLine) 
 
            segAngle = i79Angle[cntInd] 
 
            cntInd += 1 
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            print "I am working on I-79 segment number "+str(idVal)+" which has an angle of 

"+str(segAngle) 

 
            workingOutput.append(idVal) 
 
            workingOutput.append(segAngle) 
 
            for dataset in currDatasets: 
 
                print "I am working on wind dataset "+dataset 
 
                arcpy.MakeFeatureLayer_management(dataset, "dataset_lyr") 
 
                arcpy.SelectLayerByLocation_management("dataset_lyr", "INTERSECT", 

selectedLine, "", "NEW_SELECTION") 

 
                prepretestval = arcpy.GetCount_management("dataset_lyr") 
 
                pretestval = prepretestval.getOutput(0) 
                 
                testval = int(pretestval) 
 
                arcpy.CopyFeatures_management("dataset_lyr", windTemp) 
 
                whereClause = "" 
 
                windTemp_sc = arcpy.SearchCursor(windTemp, whereClause) 
 
                print "I have selected "+str(testval)+" feature(s) from "+dataset 
 
                #if str(testval) == "1": 
 
                if testval == 1: 
 
                    for windTempFeat in windTemp_sc: 
 
                        #workingGust = windTempFeat.GUST 
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                        workingU = windTempFeat.UGRD 
 
                        workingV = windTempFeat.VGRD 
 
                        print "I found a UGRD of "+str(workingU)+", and a VGRD of "+str(workingV) 
                     
                else:  
 
                    print "I found multiple selections." 
                     
                    counter = 0 
 
                    tU = [] 
 
                    tV = [] 
 
                    summing = 0 
 
                    summing2 = 0 
 
                    for windTempFeat in windTemp_sc: 
 
                        workingU = windTempFeat.UGRD 
 
                        tU.append(workingU) 
 
                        print "I found this U: "+str(workingU) 
 
                        workingV = windTempFeat.VGRD 
 
                        tV.append(workingV) 
 
                        print "I found this V: "+str(workingV) 
 
                    for U in tU: 
 
                        summing += U 
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                        print "summing = "+str(summing) 
                         
                    workingU = summing/testval 
 
                    print "workingU = "+str(workingU) 
 
                    for V in tV: 
 
                        summing2 += V 
 
                        print "summing2 = "+str(summing2) 
 
                    workingV = summing2/testval 
 
                    print "workingV = "+str(workingV) 
 
                    print "I found a UGRD of "+str(workingU)+", and a VGRD of "+str(workingV) 
 
                calculateYaw(idVal, segAngle, workingU, workingV) 
 
                workingOutput.append(yaw) 
 
                print "calculated yaw angle = "+str(yaw) 
 
            csvOut.writerow(workingOutput) 
                 
def calculateYaw(idValue, angleVal, ugrdVal, vgrdVal): 
 
    print "I got this data; ID value: "+str(idValue)+" angle value: "+str(angleVal)+" U value: 

"+str(ugrdVal)+" V value: "+str(vgrdVal) 

 
    global yaw 
 
    #calculate wind speed and wind direction from u and v vectors 
     
    windSpeed = 

(math.sqrt((math.pow(ugrdVal,2)+(math.pow(vgrdVal,2))))*3600)/1609.34 
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    windDir = 57.29578 * (math.atan2(-ugrdVal, -vgrdVal)) 
 
    if (windDir < 0): 
 
        windDir = windDir + 360 
 
    #head/tailwind check - CASE I 
             
    if (angleVal >= 0): 
 
        if (90 >= abs(windDir - angleVal) > 270): 
 
           relWindRoad = windDir - angleVal 
 
           relWindTruck = math.sqrt((math.pow(55,2))+(math.pow(windSpeed,2))-

(2*55*windSpeed*(math.cos(relWindRoad)))) 

 
           yaw_pre = math.asin((windSpeed*math.sin(relWindRoad))/relWindTruck) 
 
           yaw_init = math.degrees(yaw_pre) 
 
           if (yaw_init > 0): 
 
               yaw = (-1) *(yaw_init) 
            
           else: 
             
                yaw = yaw_init 
 
        else: 
         
            relWindRoad = windDir - angleVal 
 
            relWindTruck = math.sqrt((math.pow(55,2))+(math.pow(windSpeed,2))-

(2*55*windSpeed*(math.cos(relWindRoad)))) 
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            yaw_pre = math.asin((windSpeed*math.sin(relWindRoad))/relWindTruck) 
 
            yaw_init = math.degrees(yaw_pre) 
 
            if(yaw_init < 0): 
               yaw = (-1)* yaw_init 
 
            else: 
 
               yaw = yaw_init 
                
 
    elif (angleVal < 0): 
 
        angleVal = angleVal + 360 
 
        if (abs(windDir - angleVal) > 90): 
 
            relWindRoad = windDir - angleVal 
 
            relWindTruck = math.sqrt((math.pow(55,2))+(math.pow(windSpeed,2))-

(2*55*windSpeed*(math.cos(relWindRoad)))) 

 
            yaw_pre = math.asin((windSpeed*math.sin(relWindRoad))/relWindTruck) 
 
            yaw_init = math.degrees(yaw_pre) 
 
            if(yaw_init > 0): 
 
                yaw = (-1) * (yaw_init) 
 
            else: 
 
                yaw = yaw_init 
 
        else: 
 
            relWindRoad = windDir - angleVal 
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            relWindTruck = math.sqrt((math.pow(55,2))+(math.pow(windSpeed,2))-

(2*55*windSpeed*(math.cos(relWindRoad)))) 

 
            yaw_pre = math.asin((windSpeed*math.sin(relWindRoad))/relWindTruck) 
 
            yaw_init = math.degrees(yaw_pre) 
 
            if(yaw_init < 0): 
 
                yaw = (-1) * (yaw_init) 
 
            else: 
 
                yaw = yaw_init 
 
                        
                 
##        #adjust road angle 
## 
##        roadAngleTestVal = angleVal + 360 
## 
##        if (roadAngleTestVal < 360): 
## 
##            angleVal = roadAngleTestVal 
##         
##        #relative wind road angle 
## 
##        if (angleVal > windDir): 
## 
##            relWindRoad = angleVal - windDir 
## 
##        else: 
## 
##            relWindRoad = windDir - angleVal 
## 
##        #relative wind truck speed 
## 
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##        relWindTruck = math.sqrt((math.pow(65,2))+(math.pow(windSpeed,2))-

(2*65*windSpeed*(math.cos(relWindRoad)))) 

##        #yaw angle 

## 
##        yaw_pre = math.asin((windSpeed*math.sin(relWindRoad))/relWindTruck) 
## 
##        yaw = math.degrees(yaw_pre) 
 
    print "Road angle value after check is: "+str(angleVal) 

    print "Wind direction after check is: "+str(windDir) 

    print "wind speed is: "+str(windSpeed) 

    print "relative wind/road angle is: "+str(relWindRoad) 

    print "relative wind/truck speed is: "+str(relWindTruck) 

    return yaw 
 
##main program 
 
union() 
roadJoin() 
output.close() 
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