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ABSTRACT 

OPTIMIZATION OF DESIGN AND MANUFACTURING PROCESS OF FUSION FILAMENT 

FABRICATION (FFF) 3D PRINTING 

Jaeyoon Kim 

 

Fused Filament Fabrication (FFF) is one of the most common Additive Manufacturing (AM) 

technologies for thermoplastic materials. Generally, AM enables to fabricate parts with more complex 

geometry. Structural optimization including topology and shape optimization has become more powerful 

to be used for the design of AM parts. Moreover, with the material advancement such as development of 

carbon fiber reinforced polymer (CFRP) filament for FFF, AM parts with improved strength and 

functionality can be realized. However, due to the anisotropic mechanical properties of AM parts induced 

by manufacturing process and intrinsic material characteristics, design methodology for AM engineering 

parts remains an active research area. In this research, a systematic optimization of design process of FFF 

3D printing methodology is proposed for CFRP. Starting with structural optimization that reduces volume 

and finds the best geometry under the prescribed loading and boundary conditions. Standard coupon 

specimen tests including tensile, bending, and creep tests are carried out to obtain mechanical properties 

of CFRP. Finite element analyses (FEA) are conducted to find principal directions of the AM part and 

computed principal directions are utilized as fiber orientations. Then, the connecting lines of principal 

directions are used to develop a customized tool-path in FFF 3D printing to extrude fibers aligned with 

principle directions. Since current available infill-patterns in 3D printing cannot precisely draw 

customized lines, a specific tool-path algorithm has been developed to distribute fibers with the desired 

orientations. To predict/assess mechanical behavior of the AM part, 3D printing process was simulated 

followed by FEA to obtain the anisotropic mechanical behavior induced by the customized tool-path. To 

demonstrate the design/manufacturing methodology, lattice structure, stress concentration plate and spur 

gears of a ball milling machine were selected as case studies and carbon fiber reinforced nylon filament 

was chosen as the AM materials. Relevant tests were numerically and physically conducted to assess their 

performances.  
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Chapter 1 INTRODUCTION 

 Motivation / Objective 

Additive manufacturing (AM) technologies have been rapidly advancing and widening its applicability 

to complex geometries and range of material choice. Since complex geometry can be easily realized by 

AM, structural optimization (SO) technique has become a powerful tool to generate optimal design for 

AM parts. Researchers have achieved unprecedented success in integrating AM technology with 

conventional SO techniques to design and manufacture engineering parts with reduced weight and 

optimal performance. However, due to the inherent nature of AM process, there has been a limitation for 

SO to be fully applied to the design of AM parts. Layer by layer manufacturing induces anisotropic 

mechanical properties. SO technique is not able to control this anisotropic mechanical property by itself 

when it designs AM parts. In this research, a novel methodology integrating SO, fiber placement theory, 

and tool-path development theory to design and manufacture AM parts is proposed. Fused filament 

fabrication (FFF) 3D printing method was chosen as AM tech for research. FFF is one of the most widely 

used in AM technologies for thermoplastic material. Carbon fiber reinforced polymer (CFRP) was chosen 

as material with intrinsic anisotropy. For CFRP, extensive research has been carried out to investigate the 

anisotropic mechanical properties of CFRP including ABS, PLA, and nylon. Generally the anisotropic 

structural property of FFF parts is highly dependent on the building direction. The study of the building 

direction has been highlighting only the selection of its orientation. For FFF 3D printing, slicer programs 

provide several limited infill patterns to choose a building direction. Once a pattern is selected, it is not 

allowed to edit its tool-path. This is because tool-path for FFF was originally developed to control the 

movement of CNC machine cutter. When the tool-path algorithm was developed for FFF, it was for 

printing process improvement, doesn’t consider the structural strength enhancement of final products. 

The proposed design methodology starts with an FEA stress analysis. From on the output principal 

directions, customized tool-path was developed. Tensile tests and selective electron microscope (SEM) 

for CFRP-nylon was performed to investigate mechanical properties and fiber orientations. Structural 

performances of FFF parts built by the proposed tool-path method was verified by both computational 

and physical experiments. The framework for this methodology is shown in Figure 1-1.  
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Primary contributions are as follows:  

(1) A novel design methodology for FFF parts assisted by finite element analysis (FEA) 

(2) A customized tool-path algorithm for FFF that maximize the effect of fiber reinforcement under 

the given loading and boundary conditions.  

  

 

 

 

 

 

 

 

 

 

  

Figure 1-1  Workflow of design approach 
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 Research Workflow 

Step 1: Conduct FEM analysis with isotropic material under given loading conditions.  

ABAQUS 6.14 is utilized.  

Step 2: Perform topology and shape optimization with certain constraints (e.g volume, natural 

frequency or displacement). In this step, ABAQUS Topology Optimization Module is utilized.  

Step 3: Compute elemental principle directions using the output from ABAQUS. Then, determine the 

optimal fiber orientations of individual elements.  

Step 4: Divide printing sections with the identical fiber orientations. Next, develop customized toolpath 

for each section. Finally, generate g-codes. For step 3&4, program coding is established by 

MATLAB 2016 and Simplify3D 4.0. 

Step 5: In ABAQUS assign anisotropic materials with optimal orientations to the divided sections from 

Step 3.  

Step 6: Convert the g-codes from Step 4 into python in ABAQUS. Then, simulate FFF 3D printing 

process to evaluate the residual stress of final products induced during the manufacturing. 

GENOA 8.0 is utilized for g-codes conversion.  

Step 7: Perform FEM analysis again with the updated and optimally designed structure to assess the 

improvement.  

Step 8:  Fabricate 3D printed products and perform scanning electron microscope (SEM) analysis to see 

fiber distribution and control voids.  

Step 9: Verify the performance of the printed products. Replace the original gear parts of a planetary 

ball milling machine with newly printed parts, check its durability. Moreover, three points 

bending tests for optimized lattice structures are carried out to evaluate the effect of the optimal 

fiber mapping.  
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Chapter 2 STRUCTURAL OPTIMIZATION 

 Topology Optimization  

AM processes require the development of new design theories. Current design theories were developed 

prior to AM suited to traditional manufacturing. These theories constrain the complexity of solutions 

achieved. With traditional manufacturing, this can be advantageous as it can minimize manufacturing 

difficulties whereas this is not the case for AM. Topology optimization (TO), however, provides greater 

potential for AM, since it is capable of achieving solutions for complex geometries.  

Topology optimization is one of the types of structural optimization that seeks the optimum layout of a 

design by determining the number of members (elements) required in the design [1]. Algorithms 

developed for TO include homogenization[1],[2], solid isotropic microstructure with Penalization 

(SIMP)[3]–[5] and evolutionary structural optimization (ESO)[6],[7], Stochastic algorithms used in the 

broader field of optimization have also been adopted for TO, including genetic algorithms[8],[9] and ant 

colony optimization[10]. From these theories, bi-directional evolutionary structural optimization (BESO) 

[11] which is an advanced version of ESO is applied to this research. In this chapter, the principle concept 

of SIMP theory is briefly discussed. Then, BESO and its applications are reviewed in detail. 

 

 Solid Isotropic Material Penalization (SIMP)  

SIMP method was developed in the 1980s. It is called “material interpolation”, “artificial material”, 

“power law”, or “density” method, but “SIMP” is now used fairly universally. The term “SIMP” stands 

for Solid Isotropic Microstructure (or Material) with Penalization for intermediate densities. The basic 

idea of this approach was proposed by Bendsoe [12], while the term “SIMP” was named later by Rozvany 

et al [3]. In SIMP approach, the design domain is discretized into small rectangular elements. Within each 

discretized element, material properties are assumed constant and isotropic and the design variable is the 

element density. The SIMP approach penalizes intermediate density for binary topology patterns using a 

penalization factor to assign lower stiffness values as shown Figure 2-1.  
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Considering structures built from one material and void, there's a basic assumption of relationship 

between stiffness tensor Eijkl(𝑥𝑒) and relative density of the element 𝑥𝑒 :  

 
 Eq 2-1 

where E𝑖𝑗𝑘𝑙
0  is the stiffness tensor of a solid element. The penalty factor p is key feature of the SIMP 

algorithm. Based on the assumption of Eq 2-1, a topology optimization problem based on the SIMP 

approach where the objective is to minimize compliance can be written as 

 

 

Eq 2-2 

where x represents design variables. U and F are the global displacement and force vectors. respectively. 

K represents the global stiffness matrix, 𝑢𝑒 and 𝑘0 represents the element displacement vector and the 

element stiffness matrix. N represents the number of elements. V(x) and 𝑉0 is the material volume and 

design domain volume, respectively. And f is the prescribed volume fraction. Then, Sensitivity of 

objective function can be easily calculated as 

 

 
Eq 2-3 

Figure 2-1  Normalized stiffness vs density relations in topology optimization methods [104]   
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 Bidirectional Evolutionary Structural Optimization (BESO) 

One of the most recent, advanced and widely used TO approach for AM is bi-directional evolutionary 

structural optimization (BESO)[6][13][14][15][16][17]. This is a finite element (FE)-based TO method, 

where inefficient material is iteratively removed from a structure while efficient material is 

simultaneously added to the structure. BESO is introduced as an algorithm for minimizing the strain 

energy, C, of the aerospace part at two volume fraction constraints, V. Two optimization parameters are 

varied systematically. The general methodology is to develop a FE-based model of the system under load 

and then to seek the optimal design for a given set of conditions. BESO[16][17] requires a number of 

steps, involving both finite element analysis (FEA), filtering and optimization. Key steps are shown in 

the flowchart given in Figure 2-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2-2  BESO flow chart to minimize C for a target 𝑉∗ 
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For a load F, causing displacement u, the problem can be mathematically expressed as 

 

 

Eq 2-4 

where 𝐹𝑡 is the transpose of the force vector, 𝑉0 is the initial volume of a design and 𝑉𝑖 is the volume 

of a design at iteration, i, computed by summing the volume, 𝑉𝑎 of each element, a, at this iteration. P 

is the total number of elements in a mesh. 

From Step 2 in the flowchart, the elemental sensitivities, 𝜆𝑎  are equivalent to the elemental strain 

energies. These elemental strain energies are filtered in two stages. First, a volume weighting of the 

sensitivities of the elements connected to a node, b, is computed as shown Figure 2-3 

Second, a longer wave-length elemental sensitivity, 𝜆𝑐̅, is calculated by finding nodes d whose distance 

r to the center of an element c is less than or equal to the filter radius, R. Figure 2-5 illustrates the 

computation.  

Figure 2-3  Nodal Sensitivity 
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This step eliminates the occurrence of undesired checkerboard patterns as shown in Figure 2-4 

In Step 3, volume fraction (𝑉𝑖 /  𝑉0,) of the design is checked iteratively against 𝑉∗. At each step, if it 

is greater than 𝑉∗, then a new target volume, 𝑉𝑖+1, is computed from  

 

 

Eq 2-5 

Figure 2-4  Checkerboard effect for two-phase field and the associated filtered fields [11] 

Figure 2-5  Wave- length elemental sensitivity 
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After 𝑉𝑖+1 is computed, all elements are ranked in descending order of 𝜆𝑐̅ . The first listed elements, 

whose total volume equals 𝑉𝑖+1, are marked for retention. Therefore, 𝜆𝑐̅ of the last element in this list 

is labelled as 𝜆𝑑𝑒𝑙. Solid elements having sensitivity values below 𝜆𝑑𝑒𝑙 are then marked for deletion 

from the design domain. Deletion is achieved by assigning the element to a void property as the TO 

progresses, where this void property is defined as having a significantly reduced stiffness to that of a solid 

element. Young’s modulus of void elements in this research was defined as 1.50x10−4 times that of solid 

elements  𝐸𝑠 . Void elements with sensitivities above the threshold,  𝜆𝑎𝑑𝑑 , are reclassified as solid 

elements, bringing the volume of solid elements at i to 𝑉1. This step is skipped at the first iteration since 

the TO starts from a fully solid design domain. One of examples of this step is described in Figure 2-6. 

where 𝑉0 = initial volume; v = evolution rate; 𝑉∗ = Target volume; 𝑉1 = Output volume at iteration 1; 

Figure 2-6  Element removal & addition 
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𝑉3 = Output volume at iteration 3.  

Lastly, in Step 5 the TO cycle is then repeated until change of strain energy ΔC is less than u, and 𝑉∗ is 

obtained. ΔC is computed using 

 

 

Eq 2-6 

where T=5, and k is the sequence of integers from 1 to T. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 shows an example of BESO method for cantilever beam where the final topology is shown in 

Figure 2-7 (d). The BESO parameters are target volume = 50%, evolution rate = 1%, R = 3mm and ΔC 

=0.01%. 

 

Figure 2-7  An example of BESO method (a) inital, (b) iteration 300, (c) iteration 45, (d) final 

topology. [16] 
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2.1.2.1   Displacement-Related Structural Designs 

In mechanical engineering, for some structures such as an aircraft wing, the exterior surface should 

undergo minimal shape change under deformation in order to maintain the aerodynamic performance[18]. 

In civil engineering, some design criteria regulate the maximum displacements to guaranteed 

serviceability of the structure. In such cases, the displacements of a group of local nodes are of concern, 

the displacement limit is addressed as a global constraint. The common way of obtaining the displacement 

sensitivity is to apply a unit virtual load on the original model and get the displacement vector from the 

virtual system[17]. The displacement k th component can be obtained by multiplying the displacement 

vector with a unit virtual load vector F𝑘, of which the k th component is unity while all other components 

are zero. 

 

 
Eq 2-7 

With the virtual load F𝑘 and the applied load P being constant, differentiating the k th displacement 

component with respect to the i th element and substituting P=KU gives the following 

 

 

Eq 2-8 

where 𝑢𝑘 = 𝐾−1𝐹𝑘 is system response in the displacement field under the unit virtual load. Substituting 

the material interpolation in K = ∑ 𝑥𝑖
𝑝𝐸𝑖

0
𝑖  into the above derivative gives finally the element sensitivity 

for the k th displacement vector with respect to the i th element  

 

 
Eq 2-9 

where 𝑢𝑖
𝑘,𝑇

 and 𝑢𝑖  are the element displacement vector under the unit virtual load and the real load 

conditions respectively. 

An example addresses the topology optimization of a cantilever shown in Figure 2-8. A uniform 

distributed load is applying on the top non-designable deck illustrated in dark grey. This example aims to 
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minimize the volume while the maximum absolute displacement is not allowed to exceed a limit of 1.48 

× 10−6m 

 

 

 

 

 

 

 

 

Final designs with displacement constraint and with optimal stiffness are shown in Figure 2-9 and Figure 

2-10, respectively. The difference between these two final topologies is obvious by observing the 

deformed shapes. The two final solutions have a significant difference in the maximum displacement: 

with the same volume fraction, the maximum displacement of the stiffness design is 24% higher than that 

of the displacement design. 

  

 

 

 

 

 

2.1.2.2   Design of Structural Natural Frequency 

Frequency optimization is of great importance in many engineering fields e.g. aeronautical and 

automotive industries. Modified SIMP model using a discontinuous function has been used and applied 

Figure 2-9  Final topology of the cantilever 

with displacement constraint (V = 49.8%, dmax = 

1.478×10−6 m) [105] 

Figure 2-10  Final topology from stiffness 

optimal design (V = 49.8%, dmax = 1.834×10−6 

m) [105] 

Figure 2-8  Cantilever with non-designable deck: design domain [105] 
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successfully to solve the frequency optimization problems[19][20]. In the finite element analysis, the 

dynamic behavior of a continuum structure can be represented by the following general eigenvalue 

problem.  

  Eq 2-10 

where K is the global stiffness matrix and M is the global mass matrix. ω𝑖 is the i th natural frequency 

and u𝑖  is the eigenvector corresponding to ω𝑖 . The natural frequency ω𝑖  and the corresponding 

eigenvector u𝑖 are related to each other by Rayleigh quotient. 

 

 
Eq 2-11 

In order to maximize the i th natural frequency of vibrating continuum structures, for a solid-void design, 

the optimization problem can be stated as 

 

 

Eq 2-12 

where V𝑖 represents the volume of an individual element and 𝑉∗ is the target volume. N is the total 

number of elements in the structure. The binary design variable x𝑖 represents the density of the i th 

element and small value xmin is used to represent a void element. 

The derivatives of the global mass matrix M and stiffness matrix K for the finite element analysis behind 

the optimization can be calculated by 

 

 

Eq 2-13 

where 𝑀𝑖
1 and 𝐾𝑖

1 are the elemental mass matrix and stiffness matrix for solid elements. According to 

Eq 2-11 the sensitivity of the objective function, xi can be expressed by 

 
Eq 2-14 

Substituting the derivatives of the matrices K and M and assuming that the eigenvector 𝑢𝑖 is normalized 

with respect to the mass matrix M, the sensitivity of the i th natural frequency for solid-void designs can 
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be found as  

 

Eq 2-15 

In the BESO method, only two discrete values xmin for void elements and 1 for solid elements are used.  

Figure 2-11 shows an example of a 2D structure to maximize its fundamental frequency for a target 

volume fraction 𝑉𝑓=50% [20]. 

 

 

 

 

In BESO a simple way to solve this problem is to taking average of the two sensitivities[21]. The optimal 

design and first two eigenmodes of the optimal design are given in Figure 2-12.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11  Design domain of the simply supported beam [11] 

Figure 2-12  The first two eigenmodes of the optimal design: (a) the first eigenmode (b) the 

second eigenmode [11] 
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  Shape Optimization 

In the conventional shape optimization, the adequate boundary representation and design variables are 

required for the success of the optimization. In the early days of shape optimization, the coordinates of 

the boundary nodes of a finite element model were used as design variables[22]. Using nodal coordinates 

as design variables is very intuitive and directly related to the finite element method. However, such 

design variables lead to unrealistic designs due to irregular boundaries, difficulty for maintaining 

adequate finite element mesh and the excessive number of design variables[23][24][25][26]. In order to 

guarantee the smoothness of boundaries, many researchers tried to apply polynomial functions to 

boundaries[27][28]. The coefficients of polynomials were used as design variables in their approaches. 

Although the polynomial boundary representation gives sufficient smoothness, oscillatory boundaries 

were observed in higher order polynomial such as Lagrange polynomial. Splines such as B-spline and 

NURBS could eliminate the oscillatory boundary and be locally controlled with high degree of 

smoothness. Thus, the spline boundary representation became the most popular geometrical 

representation in shape optimization.  

 

  B-Splines 

The shape of a spline may be controlled by a number of control vertices. However, the degree of a B-

spline is not determined by the number of control vertices. B-spline of degree p with n + 1 control vertices 

is defined as 

 
Eq 2-16 

where the p th degree B-spline basis functions 𝑀𝑖,𝑝 are defined as 

 

Eq 2-17 

The given scalars 𝑢0, 𝑢1, . . . , 𝑢𝑚 are called knots. The number of knots, m + 1, equals p +n+2. In order 
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for the curve to starts at 𝑉0 and ends at 𝑉𝑛, the first p +1 knots are put to 0, and the last p + 1 knots are 

put to 1. A knot vector U containing the knots is defined as 

 
Eq 2-18 

If the knots in the interior of the curve, i.e. those strictly greater than 0 and strictly smaller than 1, are 

evenly spaced, the knot vector is said to be uniform. In Figure 2-13 the splines corresponding to two 

different knot vectors one uniform and the other non-uniform are plotted. 

 

 

 

 

 

 

 

 

 

 

 B-Spline Surface Mesh 

Next, a B-spline surface is defined as 

 
Eq 2-19 

where the B-spline basis functions 𝑀𝑖,𝑝 and 𝑀𝑖,𝑞 using the knot vectors 

Figure 2-13  Effect of knot spacing. Solid line: uniform knot vector. Dotted line: non-uniform knot 

Vector [106] 
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Eq 2-20 

Finite element nodes are created by evaluating r(u, v) for the u-values 𝑢0
𝑛, . . . , 𝑢𝑛𝑢

𝑛 , where 0 = 𝑢0
𝑛< 

𝑢1
𝑛 < · · · < 𝑢𝑛𝑢−1

𝑛   <𝑢𝑛𝑢
𝑛  = 1, and the v-values 𝑣0

𝑛  , . . . , 𝑣𝑛𝑣
𝑛  , where 0 = 𝑣0

𝑛 < 𝑣1
𝑛 < · · · < 𝑣𝑣𝑢−1

𝑛  

<𝑣𝑛𝑣
𝑛 = 1, Each curve in the mesh corresponds to a constant value of u or v. An example is shown in Figure 

2-14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  Sensitivity Analysis 

In shape optimization, it assumes that the shape of some boundary curves is controlled by a number of 

design variables α
𝑖
, i = 1, 2, . ., i as seen in Figure 2-15 

Figure 2-14  B-spline surface mesh for a case (n=3, p =2,m=2, q =1, U ={0, 0, 0, 1/2, 1, 1, 

1}, V ={0, 0, 1/2, 1, 1}) [107] 
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Then, the nested optimization problem may be written 

 

Eq 2-21 

Obtain the sensitivity of the strain displacement matrix B, ∂B/∂αj using the direct analytical method. Get 

the sensitivity of the element stiffness matrix and the element applied force vector from Eq 2-22: 

 

Eq 2-22 

where 

 

Eq 2-23 

Use Eq 2-24 to calculate the required sensitivities of the objective function and the constraints: 

 

 

 
Eq 2-24 

Figure 2-16 shows an example of B-spline mesh with 6 × 2 control vertices, 2nd-degree curves in the u-

direction, and 1st-degree curves in the v-direction. 

 

Figure 2-15  Shape optimization of a sheet. [108] 
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 Design of Fiber Reinforcement 

The DMO (Discrete Material Optimization)[29] [30], SFP (Shape Functions with Penalization)[31], and 

BCP (Bi-value Coding Parametrization)[32] are the most recent optimization methods for optimized 

discrete fiber angle selection. DMO method obtains the optimized angles through an optimization 

approach based on a material model formed by combining multiple elasticity tensors considering different 

fiber orientations. SFP is simpler than the DMO and utilizes a smaller number of design variables with 

fast convergence speed. However, it considers fiber angles 0˚, ±45˚ and 90˚. BCP utilizes a 

parameterization by using interpolation functions with penalties and it is capable of solving optimization 

problems subjected to constraints such as buckling load factors, limited displacement, among others. 

These methods were proposed as alternatives to the CFAO (Continuous Fiber Angle Optimization) which 

solution is highly dependent on the initial fiber configuration.[29]. In this research, DMO is applied since 

it is FE-based and output data from structural optimization can be used. 

The classical method to find optimal orientation of orthotropic materials was to use the local orientation 

as design variables. As shown in Figure 2-17, each arrow represents the 1st principal material direction 

in a finite element framework. The design variables are then the continuous parameters, θ𝑚 , The 

optimization problem can be stated as  

Figure 2-16  Initial mesh and optimized shape (10 iterations) of a cantilever plane sheet  [108] 
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Eq 2-25 

where θmin and θmax typically represent −90˚ and +90˚, respectively. 

 

 

 

 

 

 

The basic idea in the DMO is essentially an extension of the ideas used in structural topology optimization 

but instead of choosing between solid and void we want to choose between any distinct number of fiber 

angles. The element constitutive matrix, 𝐶𝑒, is expressed as a weighted sum of candidate materials, each 

characterized by a constitutive matrix, 𝐶𝑖 . This can be expressed as a sum over the element number of 

candidate materials, 𝑛𝑒: 

 
Eq 2-26 

The single most important requirement for the DMO method is that every element must have one single 

weight of value 1 and all other weights of value 0. To illustrate the methodology for fiber angle 

optimization solving the example in Eq 2-26 using DMO with the same orthotropic material oriented at 

12 different angles 0˚, ±15˚, ±30˚, ±45˚, ±60˚, ±75˚, 90˚ as the candidate materials in Figure 2-18(a) The 

possible material constitutions are all combinations of the 12 candidate materials for two elements, These 

are marked by white triangles in Figure 2-18(b) where the obtained optimum solution 30/−45◦ is marked 

by the large black dot. This solution is the ‘best fit’ to the global optimum solution 24.2/−41.6◦ obtained 

with CFAO.  

Figure 2-17  Illustration of the concept of orientation optimization in a finite element analysis [109] 
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As an example, the cantilever beam with distributed top load is chosen for a standard test. The beam 

consists of 768 shell elements. The DMO setup 12 candidate materials in each element, it results in a 

model having 9216 (12 x 768) design variables in total. 

 

 

 

 

 

 

Collecting design variables in sections reduces the number of total design variables by merging several 

design variables from different sections and elements into a single variable. To illustrate the methodology, 

the cantilever problem has been solved using 48 patches of 4 × 4 elements, which reduces the number of 

design variables to 576. The resulting optimal fiber angle distribution is shown in Figure 2-20. This 

method ultimately allows easy setting of toolpath for individual sections in additive manufacturing.   

Figure 2-18  Test example objective function: (a) the candidate materials at 12 angles, i ; and (b) the 

white triangles mark possible combinations of candidate materials [109] 

Figure 2-19  Optimal fiber angle distribution using 768 elements and a single candidate material 

at [90,±75,±60,±45,±30,±15, 0◦][109] 
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Figure 2-20  Optimal fiber angle distribution using 768 elements in 48 patches of 4 × 4 elements [109] 
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Chapter 3 ADDITIVE MANUFACTURING  

Additive manufacturing is sometimes called rapid prototyping and what is popularly called 3D Printing. 

The basic principle of AM technology is initially generated using a three-dimensional computer-aided 

design system. AM technology certainly significantly simplifies the process of producing complex 3D 

objects directly from CAD data.  

There are couple ways to classify AM technologies. The first method is to classify according to 

fundamental technology such as laser or extrusion. [33][34]. Another method is to classify according to 

the type of raw material input such as metal or thermoplastics [35]. Recently Pham suggested a 

comprehensive classification method [36], which uses a two-dimensional classification method as shown 

in Figure 3-1 

 

 

 

 

 

 

 

 

 

 

 

 Fused Filament Fabrication (FFF) 

Since RepRap was released as open-source, [37][38][39] 3D printing has been more available for people 

[40]. Up to now, the majority type of 3D printing system is Fused filament fabrication (FFF) [41]. 

Engineers are working on geometry-free manufacturing using FFF in many countries [42][43]. Previous 

studies have shown FFF 3D printing not only allows for a lower cost of goods for the consumer [44], but 

Figure 3-1  Layered manufacturing (LM) processes [110] 
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a lower impact on the environment as well [45]. To be specific, the system only needs filaments, this lead 

to not leave any wastes when compared with other manufacturing. It has been proven to be an 

economically beneficial purchase [46][47][48]. 

FFF can be visualized as similar to cake icing, the material is forced out through a nozzle when pressure 

is applied. Nozzle diameter will remain constant and the material being extruded must be in a semisolid 

state when it comes out of the nozzle. This material must fully solidify while remaining in that shape. 

Furthermore, the material must bond to material that has already been extruded so that a solid structure 

can be built. Once a layer is completed, the machine must move the part downwards, so that a further 

layer can be produced. 

   Extrusion 

Extrusion in 3-D printing using material extrusion consists of cold end and hot end. The cold end is part 

of an extruder system that pulls and feeds the material from the spool, and pushes it towards the hot end. 

The cold end is mostly gear-based supplying torque to the material and controlling the feed rate by a 

stepper motor. Figure 3-2 illustrates typical extruder system of FFF-based 3D printer. The hot end is the 

active part which also melts the filament. It allows the molten plastic to exit from the small nozzle to form 

a thin bead of plastic. Typical size of diameter is ranging from 0.3 mm to 1.0 mm. Different types of 

nozzles and heating methods are highly dependent on the material to be printed.   

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2  FFF based-3D printer Extruder [110] 

https://en.wikipedia.org/wiki/Extrusion
https://en.wikipedia.org/wiki/Bobbin
https://en.wikipedia.org/wiki/Stepper_motor
https://en.wikipedia.org/wiki/Molten_plastic
https://en.wikipedia.org/wiki/Nozzle
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   Limitations of FFF 

There are some disadvantages of FFF in terms of build speed, accuracy, and material density. FFF layer 

thickness normally is 0.1 mm, this level of precision leads to longer build times. Also, shape of nozzles 

is circular, it is impossible to draw sharp external corners. Lastly, products built by FFF exhibit anisotropic 

mechanical properties. This has been proven not to be huge for thermoplastic polymer materials [49], but 

in almost every case the strength in the z-direction is less than the strength in the x–y plane. Thus, for 

parts which undergo stress in a particular direction it is best to build the part such that the major stress 

axes are aligned with the x–y plane.  

 

 Carbon Fiber Reinforced Polymer 

Researchers have attempted to mix different types of fillers into the polymer matrix to improve material 

properties. These fillers include Titanium Dioxide [50], Jute Fibers [50], metal [51], glass fibers [52] 

thermotropic liquid crystalline polymer fibrils [53], vapor-grown carbon fiber [54], graphene 

nanoplatelets [55] and continuous fibers [56][57]. Another viable candidate is short carbon fibers. It is 

well known that short carbon fibers blended with unfilled thermoplastic polymers significantly improve 

the strength of the polymer material. These filaments are now commercially available by manufacturers 

such as CarbonX, Matterhackers, and ColorFabb. Figure 3-3 illustrates a printing extrusion of short fiber 

reinforced filament.  

 

 

 

 

 

 

 

 

 Figure 3-3  Short fiber alignment during the extrusion process [111] 
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   Fiber Orientation Distribution 

The fiber orientation distributions have been measured experimentally using various methods. The 

polished cross-sections have been most commonly used to determine the distribution in the past 

decades. Fakirov et al. [58] measured the average angle of the fibers with respect to the flow direction 

using micrographs of the polished cross-section of samples. In their research, they assumed a two 

dimensional fiber distribution in the case of injection-molded polyethylene terephthalate. Vincent et 

al. [59] measured the scalar orientation factor in a molded disk of a polyamide using optical microscopy. 

Fischer et al. [60] used an image analyzer to measure the orientation factors of polished cross-sections of 

samples with 3D dimensions combining the in-plane and out-plane directions. They demonstrated that 

the degree of out-of-plane orientation was small. Tucker et al. [61] measured angles of fibers 

perpendicular to the section plane. Using the projected area, fiber orientation could be determined by 

second-order tensor. Zak et al. [62] used a two-section-based method for determining the three-

dimensional (3D) fiber orientation distribution. Eberhardt et al. [63] used a confocal laser scanning 

microscopy to measure the fiber orientation distributions in composites. Then they compared them with 

the distribution obtained using 2D image analysis. McGee et al. [64] utilized radiography method to 

obtain high-contrast primary images with 2D fiber orientation. This method worked for composites with 

low filler content, or for thin sections of high-filler-content composites. Kim et al. [65] analyzed X-ray 

images to determine the fiber orientation distribution of composites. The approximately 94% of precision 

was achieved. Also, the method was not useful for thick fiber composites. Shen et al. [66] measured the 

fiber orientation in 5 wt% short-glass-fiber-reinforced phenolic foam using micro-computed tomography 

(CT). 3D fiber distribution of the foam was constructed from the obtained micro-CT images, and Auto-

CAD was used to determine the spatial length and orientation of the individual fibers based on the 

imported 3D fiber distribution information. However, this technique had difficulties to be applied to high 

fiber content composites. Although these methods have been used in the past decades, problems to find 

fiber orientation distribution clearly in CFRP composites still remain unsolved. It is difficult to distinguish 

fibers from resin, clearly on X-ray CT images, because carbon fibers and resin have similar radiodensities. 

Djukic et al. [67], [68] tried to improve the contrast between carbon fibers and resin by impregnating the 

fibers by coating the carbon fibers with metal. However, it was reported that these techniques affect the 

microstructure of the composites. Scott et al. [69] used synchrotron radiation computed tomography to 

obtain extremely clear section images. In their research, the influence of voids on damage was evaluated. 
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Although this technique can successfully distinguish fibers from resin, synchrotron accelerator is very 

expensive and not easy to use it.  

Tekinalp et al investigated fiber orientation measurements of composites manufactured by FFF-based 3D 

printer [70]. The method used by Bay and Tucker [61] was followed to characterize the fiber orientation 

of samples. Samples were fabricated with different weight % of fiber. For the comparison, compression 

molded samples were tested as well. Components of second-order orientation tensors for each sample are 

given in Table 3-1 

Table 3-1 Components of the second-order orientation tensor of ABS/CF composites [70] 

Carbon Fiber (wt%) a11 a12 a13 a22 a23 a33 

Compression-molded(CM) samples 

10 0.241 -0.023 0.042 0.03 0.084 0.729 

20 0.493 -0.059 -0.054 0.023 0.046 0.484 

30 0.454 -0.034 0.062 0.023 0.064 0.523 

40 0.386 -0.043 -0.049 0.036 0.095 0.578 

       

FFF-printed samples 

10 0.055 0.005 0.038 0.03 0.127 0.915 

20 0.064 0.004 0.024 0.028 0.121 0.909 

30 0.06 -0.002 -0.006 0.039 0.143 0.901 

40 0.093 -0.005 -0.018 0.038 0.139 0.869 

 

Components a11, a22, and a33 show orientation in the direction of x1, x2, and x3, respectively as seen in 

Figure 3-4. The dominant orientation tensor components for CM samples are a33 and a11. In contrast, 

the dominant component of the orientation tensor for FFF samples is only a33, and its nearly 1.0 value 

indicates that practically all fibers are oriented in the x3-direction. From a mechanical performance point 

of view, orientation in the x3-direction is of most interest because it is the load-bearing direction. These 

results emphasize the inherent characteristic of gaining high orientation by FFF process. Because of its 

nature, the FFF process produces samples not only with higher fiber orientation, but also with higher 

molecular orientation in matrix materials such as thermoplastics compared with CM and injection 

molding. 
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   Tensile Properties 

Tensile property is generally the most representative information on mechanical properties of materials. 

Since carbon fiber-reinforced filament was developed, tensile properties of carbon fiber reinforced 

polymer have been investigated by many researchers, as shown Table 3-2.  

Table 3-2 Previous tensile tests of composites produced by FFF and injection molding (IM)  

Authors, year Matrix Reinforcement Process Comments 

Zhong et al., 2001 [52] ABS GF short FFF, IM 
Tests fiber weight fractions (15e20%).  

Unidirectional tests in two perpendicular axes 

Ahn et al., 2002 [71] ABS - FFF, IM 
Unidirectional tests in two perpendicular axes 

Tests influence of FFF parameters 

Bellini and Güçeri, 2003 

[72] 
ABS - FFF   

Shofner et al., 2003 [54] ABS 
CF short 

(FL 100 mm) 
FFF   

Tekinalp et al., 2014 [70] ABS 
CF short 

(FL 200 to 400) 
FFF, IM Tests fiber weight fractions (10e40%). 

Love et al., 2014 [73] ABS CF short FFF Tests properties out of printing plane 

Ning et al., 2015 [74] ABS 
CF short 

(FL 100 and 150) 
FFF 

Evaluates several material constants and 

fiber weight fractions (3e15%). 

Ning et al., 2016 [75] ABS CF short FFF 
Tests influence of FFF parameters on 

properties 

Melenka et al., 2016 [76] Nylon Kevlar cont. FFF Uses a process adapted from FFF. 

Klift et al., 2016 [57] Nylon CF cont. IM Tests different fiber volume fractions 

Anwer and Naguib, 2016 

[77] 
PLA 

CF nano 

(FL <4mm) 
IM 

Tests weight fractions (1e15%), thermal 

and dynamical properties. 

Figure 3-4  Sketch of a dog-bone sample showing orientation directions [70] 
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Jaszkiewicz et al., 2016 

[78] 
PLA GF and NF short FFF 

Investigates manufacturability of short NF and 

GF. 

Li et al., 2016 [79] PLA CF cont. FFF Uses a new process adapted from FFF. 

Tian et al., 2016 [80] PLA CF cont. FFF 
Uses a process adapted from FFF, investigates 

several parameters 

Tian et al., 2017 [81] PLA CF cont. FFF 
Uses a process adapted from FFF w/recycled 

CF. Evaluates impact properties. 

Yao et al., 2017 [82] PLA CF cont. FFF Investigates CF in structural-health monitoring 

Ferreia et al., 2017 [49] PLA CF short. FFF 
Unidirectional tests in two perpendicular axes 

Shear properties and Poisson ratios 

 

In reference [49], a PLA reinforced with short carbon fibers were experimentally characterized by 

performing ASTM 638 and ASTM D3518 as shown Figure 3-5 and Figure 3-6, respectively. This 

composite has a weight fraction of 15% of carbon fibers whose length was estimated in about 60 mm. 

 

 

Figure 3-5  Stress vs strain data for PLA and PLA+CF printed at 0˚ [49] 
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From the results in Table 3-3, the average value of E1 tensile modulus for the PLA+CF was more than 

twice (2.2 times) higher than the same property for the PLA. The E2 tensile modulus for the PLA+CF 

was about 1.25 times higher than the same property for the PLA, a difference not as big as found for E1. 

These results show that short carbon fibers provided the highest increase in stiffness for the PLA+CF 

tested in the printing direction. Besides, it is interesting to notice that E1 for the PLA is only slightly 

higher than E2 for the same material. Therefore, for the PLA, the printing orientation did not influence 

the material stiffness that much. 

Table 3-3 Mechanical properties of PLA and PLA+CF [49] 

 

In reference [70], tensile strength and modulus of dog-bone specimens prepared by both FFF and CM 

methods were measured as shown in Figure 3-7. The results show that tensile strength increases with 

Figure 3-6  Stress vs strain data for PLA and PLA+CF printed at 90˚ [49] 
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increasing fiber content in both processes. The standard deviations in tensile strength measurements for 

the FDM samples were significantly lower than those for the CM samples. This result suggests that the 

FDM process not only increases the orientation of the polymer, but also improves fiber uniformity. The 

increase in fiber content doesn’t increase much in tensile strength at higher fiber loadings as shown Figure 

3-7(a). Figure 3-7(b) shows the Young’s modulus measurements of all samples. Differently with tensile 

strength, the moduli of FDM and CM samples overlap and increase almost linearly with increasing fiber 

content. The modulus value of the CM composite is increased by nearly an order of magnitude at 40 wt% 

fiber loading.  

 

 

 

 

 

 

 

 

 

 

 Density 

The density of an additive manufactured part is crucial for its mechanical properties. For FFF parts, 

printing in the proper orientation with beads as close together as possible throughout the entire part is 

required to achieve stronger parts. These highly dense parts are expected to be stronger than parts printed 

by regular filled pattern on the inside. But even a part printed with beads alongside each other can vary 

in density. This density is determined by the voids between adjacent beads. The density defined within 

this study is called solidity ratio (SR). Figure 3-8 shows an illustration of a printed parts’ cross-section as 

well as its expansion. SR determines the porosity or solidity of the part. The SR is a normalized density 

where a theoretical minimum is shown by an ellipsoid bead shape π/4 which results in large voids 

between beads. Figure 3-8 (b) up to a fully solid part with the SR of 1.0 and no voids. The SR is calculated 

Figure 3-7 Effect of fiber content and preparation process on (a) tensile strength, and (b) modulus, 

of ABS/CF composites. [70] 
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by the area of the bead divided by the potential maximum reticular area between the beads, indicated by 

the box around the bead. This maximum area is bounded by the width of the bead and the layer height. 

The width of the bead is thereby usually the diameter of the nozzle. Therefore, SR is controlled by the 

layer height and designated nozzle diameter. As beads are laid closer to each other the shape of the bead 

changes from an ellipsoid to a rectangle. The increasing density thus increases the welding area between 

beads which leads to higher part strength. Conclusively, it can be said that a larger welding area affects 

the tensile strength positively.  

 

 

 

 

 

The detection of porosity in a composite is not straightforward. Many techniques have been employed to 

estimate the void content of composite parts such as ultrasonic analysis, thermography, micro-tomography, 

microscopy observation and acid digestion [83], [84]. Costa et al. [83] utilized an ultrasonic failure 

detector to characterize voids on carbon/epoxy. They used water squinters to transport the ultrasonic 

beams to reduce surface losses. The probes were transported by an automation system that generates a 

quantized C-scan record of samples. Daniel et al. [85] combined ultrasonic attenuation with image 

analysis to figure out a correlation between the ultrasonic attenuation and porosity. They treated values 

derived from optical microscope image analysis as a reference. Kite et al. [86] and Zhu et al. [87] also 

employed optical microscope image analysis to obtain statistical information about amount, shape, size, 

and orientation of voids in carbon/epoxy and glass/ epoxy systems. In their work, Kite et al. [86] showed 

that void content might be misestimated with more than 1% difference between image analysis and acid 

digestion in pre-impregnated fabrics. Further, the difference of results may increase in unidirectional 

laminate because of oblong, cigar-form voids. Kastner et al. [88] used X-rays micro CT scanning for the 

measurement of voids in composite laminates. They showed that a correct measurement could be carried 

out if proper threshold values are selected in the analysis. However, the threshold choice was the critical 

issue, and some calibrations are required for effective measurements. In addition, long scanning times 

and complicated volume reconstruction procedures are required to obtain high-resolution results. 

Figure 3-8 Cross-section of beads with lower (a) and higher (b) SR[112]  

a) b) 
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Somewhat different estimated void contents according to the measure/calculation method adopted is thus 

to be expected. 

 

 Toolpath Development  

Tool path generation for 3D printers originally derived from the computer numerical control (CNC) 

milling problem. Current path planning algorithms for 3D printers utilize the adaptive and non-adaptive 

iso-planar tool path generation techniques. Various techniques for deciding layer height based on a 

geometric characterization of the part called adaptive slicing have been proposed [89][90]. A 

comprehensive review of slicing techniques was published by Pandey et al [91]. 

Since tool-path strategy is closely associated with the fabrication quality, most initial research about tool-

paths was restricted to issues related to the manufacturing quality. Han et al.[92] proposed a deposition 

planning approach based on a grouping and mapping algorithm. Kao et al. [93] presented a shape 

optimization algorithm, which was implemented to allow high-quality spiral deposition paths. Yang et al. 

[94] introduced an equidistant path generation algorithm to improve the fabrication efficiency. Later, Yang 

[95] and Wah [96] transformed tool-path optimization in AM technology. Jin [97] proposed a mixed tool-

path generation algorithm that is the most commonly accepted in the industry. From the algorithm, zigzag 

tool-paths of the internal area of the layer were employed to simplify the computing processes.  

  Methodologies of Tool-path Generation   

The tool-path required for material extrusion in AM is a predefined trajectory along which the nozzle is 

driven to deposit fabrication material and to form the surface layer by layer. Because the deposition 

quality features such as surface roughness, dimensional accuracy, and part strength are influenced by the 

tool-path, many efforts have been made to optimize tool-path planning. Up to now, contour-parallel-based 

and direction-parallel based filling strategies are mainly employed in AM. The contour-parallel tool-path 

comprises a series of contours, which move parallel to the boundaries of the two-dimensional cross-

sections [98], thus this type of fabrication accuracy is greater and more satisfactory. However, its main 

problem is the implementation of the offset algorithm, which is computationally expensive and complex. 

Figure 3-9 illustrates the difference between direction parallel and contour parallel tool-path. By contrast, 

direction-parallel paths contain many path segments, which correspond to back and forth motion in a 

fixed direction within the boundary that needs to be filled up in the interior region. This approach is 
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obviously simple and fast to implement, but at the expense of fabrication precision. In order to exploit 

the merits of these two approaches, A recent study [97] described a fitting algorithm to establish the 

NURBS-based contour curve on the boundaries initially, the interior area of the model was fabricated 

subsequently using the direction-parallel tool-path.  

 

 

 

 

 

 

 

 

 

  G-codes 

G-code stands for “Geometric Code”. Its main function is to instruct a machine head how to move 

geometrically in 3 dimensions. However, it can also instruct a machine to do non-geometric things. G-

code can tell a 3D printer to extrude material at a specified extrusion rate or change its bed temperature. 

G-code is basically a numerical control programming language. It is easy to use and does not have 

advanced commands like variables, conditionals, and loops. Each line tells the printer to do a specific 

task. The printer executes the line one by one until it reaches the end. Normally several major g-codes 

govern the entire script. In this section, G0, G1 and G2 will be reviewed for fundamental study. 

3.4.2.1   Principle of G0 command 

Figure 3-10 shows the principle of G0 command. It tells the print head to move at maximum travel speed 

from the current position to the coordinates specified by the command. The head will move in a coordinate 

system, the nozzle will not extrude any material. This command is usually used to bring the nozzle rapidly 

to some desired coordinates at the start of the print or during the print. 

 

 

Figure 3-9  Comparison of different tool-path generation strategies; (a) Direction parallel path , 

(b) Contour parallel path [114] 

(b) (a) 
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3.4.2.2  Principle of G1 command 

Figure 3-11 shows the principle of G1 command. G1 tells the print head to move at specified speed. The 

speed is specified by the Feed rate parameter F. The printer can extrude material while executing this 

command at an extrusion rate specified by the Extrusion rate parameter E. More than 90% of G codes is 

composed of G1.  

 

 

 

 

 

 

 

 

 

3.4.2.3  Principle of G2 command 

Lastly, G2 tells the machine to move clockwise starting from its current location. The endpoint is specified 

Figure 3-10  Principle of G0 command [115] 

Figure 3-11  Principle of G1 command [115] 
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by the coordinates X and Y. The center of rotation is specified by the parameter I, which denotes the X 

offset of the current position from the center of rotation. J denotes the Y offset of the current position 

from the center of rotation. Figure 3-10 illustrate the principle of G2 command. 

 

 

 

 

 

 

 

 

 

 Post-Processing for FFF printed parts  

One of the best ways to increase the strength and stiffness of FFF printed objects is by annealing them.  

Annealing is an ancient process, originally used in metallurgy to increase the strength of metal objects. 

Annealing is one of several “heat treatments” that are used to change the physical properties of metal 

without changing the metal’s existing shape. In essence, annealing increases the desirable characteristics 

of a given metal. The fundamentals of the annealing process have been adapted by for use with plastics 

to also increase their strength after an object has been formed.[99] Primarily an industrial plastics 

technique used as a finishing process, annealing can also be used by access to a kitchen oven to harden 

3D prints. Figure 3-13 shows typical annealing process. 

Figure 3-12  Principle of G2 command [115] 

Figure 3-13 Annealing process. A) initial cold state, B) Heating: high stress areas dissipate, C) 

Recrystallization forms, D) Recrystallization forms[116] 
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With plastics, the process is essentially the same with metal annealing. FDM printing necessarily involves 

heating the print material so that it can be extruded. Once extruded, the material then cools to form the 

printed object. Plastic is a fairly poor conductor of heat. This means that heated plastic tends to cool 

unevenly. This uneven cooling introduces stress into a printed object. Most thermoplastics used in FDM 

printing are polymers. A polymer consists of two or more substances. Each substance is made up of long 

molecular chains. Heating the plastic, extruding and cooling it reorganizes this structure into a more 

organized crystalline form. These crystals tend to be large, broadly similar to those that exist in metal 

after initial heating and cooling. The large crystalline-like structure of the plastic makes it prone to failure 

along the lines between each crystal. Also, uneven cooling due to poor heat conduction results in the 

polymer shrinking in different ways. This, in turn, causes different tensile forces and compression forces 

building up in the polymer structure. Annealing plastic involves gently reheating the substance to at its 

glass transition temperature or just above, but below its melting temperature, and then slowly allowing it 

to cool, this reheating and cooling increases the amount of crystalline structures in the plastic. 

Nylon 12 is stronger and less brittle than either PLA or ABS. Its melting temperature is lower than ABS 

and is comparable with PLA. Like PLA, it has a low glass transition temperature which makes it easier 

to anneal. In addition, annealing can significantly increase its heat deflection temperature. When it 

combines this with its high strength, annealed Nylon 12 makes a great choice for applications where heat 

and durability are issues. The glass transition temperature of Nylon 12 is a surprising 41C (105F). 

However, it’s melting temperature is a respectable 178C-181C (352F to 358F).  Because of this, oven 

temperature to 130C-140C (266F to 284F) is high enough to allow the material to soften which will 

release the stress caused by extrusion while increasing crystallization. As is always the case when 

annealing plastics, it is also low enough so that the material will not melt, flow or significantly deform. 
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Chapter 4 DESIGN METHODOLOGY 

 

 

 

 

 

 

 

To extrude fibers aligned with principal directions, FEA stress field was computed. Figure 4-1 shows 

element based principal stresses and directions of a cantilever beam under uniform distributed load. 

Centroids of elements are connected to create printing path. Rectangular shell elements were applied to 

make the path simple and to cover elements with the shortest path. The size of shell element was 

determined based on the diameter of printing extruder. Small size of elements guaranteed more precise 

printing path, however if it is much smaller than diameter of extruder, printing width may invade or cover 

other element sections. precise printing path, however if it is much smaller than diameter of extruder, 

printing width may invade or cover other element sections. Figure 4-2 shows workflow for the optimized 

tool-path development.  

 

 Tool-path development 

Step 1 – Finite element analysis 

In order to compute principle directions of each element, FEA stress analyses were carried out. As 

mentioned previously, principal direction is adapted in the determination of fiber orientation. Using the 

stress field output from ABAQUSTM, principal directions of individual elements are computed. Then, 

centroids of individual elements are computed using the X,Y coordinate information on individual nodes 

in input file. 

 

 

Figure 4-1 Principal directions of elements 
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Step 2 – Radius filter and candidate elements. 

 Angles of lines connecting centroids of each element are computed. This is called as location angle. [α]i 

x i Then, a circle with a specific radius is defined. The centroid of the starting element is defined the center 

of the circle. The radius is the minimum length covering centroids of elements around the starting element. 

Elements whose centroid is located within the circle are called as candidate elements. Figure 4-3 

illustrates the concept. 
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Figure 4-2 Optimized tool-path flow chart 

Figure 4-3 Concept of element connection 



40 

Step 3 – Angle difference filter 

Next, angle differences of location angles of candidate elements and the principal direction of the starting 

element are computed. Any elements whose angle difference is less than 45 degrees are selected as final 

candidate elements. To make paths not go back to elements already selected, cosine trigonometrical 

function is applied to the first, Second, and third quadrant and sine function is applied to the fourth 

quadrant for the location angle computation. These trigonometrical functions make location angles of 

some of candidate elements which already are selected large enough so that the angle difference filter 

screens those elements. Through this step, only two elements survive from eight candidate elements. 

Figure 4-4 shows the angle difference filter. Red boundary line indicates last survived two elements.  

 

 

 

 

 

 

 

 

 

 

Step 4 – Create path and sections 

 From the last two candidate elements, the element with larger principal stress is selected to connect the 

path. If there is no candidate element which has angle differences less than 45 degrees, the path stop 

connecting. A set of connecting lines creates sections. contour-parallel or direct-parallel printing method 

is applied based on principal directions of elements. If the path continuously goes and reaches the edge 

of the section, contour-parallel method is applied. otherwise, direct-parallel method is applied. In this 

case, the angle of infill pattern is statistically determined. To avoid overlapping path, if an element is 

chosen multiple times, principal stresses of previous elements on each path are checked. Then, only one 

path with the previous element showing the largest principal stress is selected. Elements covered by 

β
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3332

22
34

α23,3445°

Figure 4-4 Concept of angle difference filter 



41 

identical patterns create one section. Printing path of Elements having the end of the path create 

boundaries. Figure 4-5 shows workflow of section and printing path generation. 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, if an element is not chosen by any path, groups of these elements are merged into 

neighborhood sections. They are printed by the same pattern used in neighborhood sections. In this section 

consists of not chosen elements, stress level is much lower than other sections. Therefore, any printing 

pattern is allowed because it has a low impact on the strength of resulting objects. The other reason for 

this way is that the tool-path basically should focus on reducing cutting points so that extruding doesn’t 

stop frequently to move other points which lead to reduce possible voids during the manufacturing. To 

guaranteed the bonding, 5% overlapping is applied. Figure 4-6 shows the complete optimized tool-path 

for the plate.  

 

 

 

 

 

Figure 4-5 Principle of path and section development 
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 Finite Element Modeling 

A complete tool-path generates g-codes. Extract g-codes for outer wall printing to draw a part in 

ABAQUSTM. X, Y coordinate information of G1 codes is translated into a part drawing X, Y coordinates 

of ABAQUSTM input file. Next, C3D8 element is constructed with the uniform size. The size of the 

element is determined by a division parameter. If division value for X and Y axis is 50 for each, 

10000=100x100 elements are created to construct a part. Small size of elements may model the part more 

precisely but the computation time may increase. Figure 4-7 illustrates the comparison of modeling with 

a different number of elements.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 Comparison of modeling between different 

number of total elements; 100*100 of left, 50*50 of right 

Figure 4-6 Optimized tool-path 
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Once elements are created, material orientations are applied to elements individually by using G-codes. 

G1 codes provide angle values between X, Y coordinates. This angle value directly converted into 

material orientation. Figure 4-8 illustrates the method to determine material orientation. Lastly, 

orthotropic material properties from the experimental data are applied to the model. In this work, since 

the part size is hand-size residual stress induced during the manufacturing is ignored.  

 

 

 

 

 

 

 

 

  Figure 4-8 Determination of material orientation 
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Chapter 5 MATERIAL CHARACTERIZATION 

 Tensile Test 

Specific material characteristics were measured, respective to the material plane 1-2 in Figure 5-1, using 

specially oriented specimens. The direction 1 (red color) is FFF line deposition and direction 2 is 

perpendicular to this line deposition. From the specimens oriented at 0˚, the tensile modulus in the 

deposition direction E1, the Poisson ratio ν
12

 and the tensile strength S1 were determined. From the 

specimens oriented at 90˚, the tensile modulus perpendicular to the deposition direction E2, the Poisson 

ratio ν
21

 and the tensile strength S2 were determined. From the specimens oriented at ±45˚, the shear 

modulus at the 1-2 plane 𝐺12 and the shear strength S12 were determined. Three specimens per sample 

were tested for each one of the three orientation cases and for each printing material, totalizing 9 test runs. 

 

 

 

 

 

 

 

 

 

Here, standards for polymers and laminated composite materials were followed in adaptation, as the 

example from the literature [100]. For the determination of stiffness and strength properties at material 

directions 1 and 2 it was chosen the standard ASTM D638-10 [101], devoted to tensile tests of polymers. 

The specimen shape employed was the I-type (“dog bone”), with outer length and width respectively of 

165 mm and 19 mm, as shown in Figure 5-2 (a). The nominal thickness was 3.3 mm reached with 11 

printed layers, which were deposited either at 0˚ or 90˚ along the tensile direction. Therefore, the 

Figure 5-1 Illustration of printing orientations (0˚, 90˚ and ±45˚) 
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stacking sequences for the specimens were respectively [0˚]11 and [90˚]11. To obtain the 1-2 plane shear 

stiffness and strength properties of the printed material, it was used the standard ASTM D3518-13[102], 

specific for polymer matrix composite materials. The specimens employed were rectangular and had 25 

mm×200 mm, as illustrated in Figure 5-2(a). The nominal thickness was 4.8 mm, reached with 16 printed 

layers whose stacking sequence was [±45˚]4s  (symmetric), as imposed by the followed standard. The 

test specimens were produced by Ultimaker 2+, with a printing envelope of 215 mm× 210 mm×180 mm, 

nozzle diameter of 0.4 mm. The printing parameters employed were: nozzle extrusion temperature of 260

˚C, heat bed temperature of 110˚C, deposition line (layer) height 0.3 mm, printing speed of 20 mm/sec. 

The CarbonX-Nylon was used as carbon-fiber nylon filament manufactured by 3DXtech, and is made 

from the 4043D resin reinforced with chopped short carbon fibers in a weight fraction of 10%. The 

diameter of the 3D printer filaments employed was 2.85 mm. The experiments were performed using an 

SHIMAZU AGS-X HC universal testing machine, with a load cell of capacity of 10 kN as shown Figure 

5-2(b). All the specimens were loaded up to material failure at a displacement rate of 1 mm/min. The data 

acquisition rate was 10 Hz for displacements and loads measured.  

 

 

 

 

 

 

 

 

 

 

  

Figure 5-2 Employed specimens (a): tensile (“dog bone”, lower) and shear (rectangular, upper) and 

SHIMAZU tensile machine (b) 
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The material properties required for FEM simulation were extracted from the stress–strain curves. To find 

the trend in stress-strain curve more clearly, curve fitting was computed as shown Figure 5-3. Figure 5-4 

shows the stress–strain curves for the three identical specimens printed along directions 0˚, 90˚, 

respectively. The deviation in the elastic moduli and yield strength values are less than 3%. Thus, the 

material properties are consistent within a given orientation. However, when the parts are printed in 

different directions significant differences are observed in the material properties. The tensile properties 

were calculated in accordance to the standard ASTM D638-10 [101]. The specimens were loaded at the 

direction x, perpendicular to y, according to Figure 5-1. Tensile moduli E𝑖 (E1; E2) and Poisson’s ratios 

ν𝑖𝑗 (ν12; ν21) were calculated by: 

 
Eq 5-1 

In Eq 5-1, 𝜀𝑥
𝑘 are longitudinal normal strains of value k% (close to 0.05% and 0.25% in the case), 𝜀𝑦

𝑘 

are transverse normal strains at the level of 𝜀𝑥
𝑘  and 𝜎𝑥

𝑘  are tensile stresses corresponding to 𝜀𝑥
𝑘 . 

Therefore, both E𝑖 and ν𝑖𝑗 are given by chordal values obtained from the data gathered. The tensile 

stresses 𝜎𝑥
𝑘 are given by: 

 
Eq 5-2 

In Eq 5-2 P𝑘 is the tensile load at 𝜀𝑥
𝑘 and A is the cross sectional area of a specimen. Finally, considering 

Figure 5-3 raw data (a) and curve fitting (b) of strain stress curve of CFRP-nylon printed at 0˚ direction  
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that P𝑚𝑎𝑥 is the maximum load applied to a specimen, the tensile strengths 𝑆𝑖
∗ (𝑆1

∗,𝑆2
∗) were calculated 

by: 

 
Eq 5-3 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 show the stress–strain curves of the specimen printed along the direction ±45˚. The shear 

properties were calculated in view of the standard ASTM D3518-13. Again, the specimens were loaded 

at the direction x, the applied load P was measured and strains ε𝑥  and ε𝑦  were computed by using 

displacement data. The shear modulus 𝐺12 was calculated by: 

 
Eq 5-4 

In Eq 5-4, 𝛾12
𝑙  are shear strains of value l % (close to 0.2% and 0.6% in the case) and 𝛾12

𝑙  are shear 

stresses corresponding to 𝛾12
𝑙 . Therefore, G12 is obtained as a chordal modulus. The shear strains 𝛾12

𝑙   

are calculated using: 

 Eq 5-5 

Eq 5-5 regards the measured strains in the outer layers of the shear specimens (oriented at 45˚) and implied 

coordinate transformation relations. The 𝜀𝑥
𝑙  and 𝜀𝑦

𝑙  are the measured normal strains (longitudinal and 

Figure 5-4 Stress vs Strain data for CarbonX-Nylon printed at 0˚ and 90˚ 
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transverse, respectively) when 𝛾12
𝑙  happens. Based on transformation relations for stresses, the shear 

stresses 𝜏12
𝑙  are given by: 

 
Eq 5-6 

In Eq 5-6, A is the cross-sectional area of the specimen and Pl is the applied load when 𝛾12
𝑙  happens. 

Finally, the shear strength 𝑆12
∗  was calculated using: 

 
Eq 5-7 

In Eq 5-7, 𝑃𝑚𝑎𝑥
𝑠  is the maximum load at or below 𝛾12

5  (shear strain equal to 5%), as ASTM D3518-13 

recommends.  

 

 

 

 

 

 

 

 

 

 

With the same experimental procedure above, tensile tests of Nylon 12 were performed as shown in Figure 

5-6. Figure 5-7 show the stress–strain curves for specimens printed along directions 0˚, 45˚, and 90˚, 

respectively. The material properties are consistent within a given orientation. However, when the parts 

are printed in different directions, significant differences are observed in the material properties. The 

deviation in the elastic moduli and yield strength values are less than 5%. Detailed test results show up 

in Appendix. It shows no difference between stiffness of samples. However, directional dependency of 

failure strength was revealed. Samples printed at 0˚ direction shows 30% and 87% higher failure strength 

Figure 5-5 Stress vs Strain data for CarbonX-Nylon printed at ±45˚ 
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than samples printed at 45˚ and 90˚ directions. This is because FFF built parts behave like laminated 

materials, made by orthotropic layers whose principal direction of highest stiffness is the printing 

orientation direction. This can be assumed due to some facts. At first, specimens were 3D printed only 

using rectilinear infill with volume fraction of 100%, which means that fused material lines were 

deposited only parallel to each other, forming layers which are placed on top of each other to build a 

specimen. Second, the 3D printing parameters of deposition line height and width were kept the same in 

all specimens. Therefore, it can be considered as the experiments were all made upon a material of 

constant microstructure, placed at specific orientations, following the FFF deposition. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5-6 Tensile tests of Nylon 12. 
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Table 5-1 shows the comparison of mechanical properties from test results and book value of CarbonX-

Nylon and Nylon 12. Young modulus from experimental results shows approximately 94% of theoretical 

value. Theoretical values of CarbonX-Nylon and Nylon 12 are shown in Appendix. Poisson coefficients 

were a lot different for the CarbonX-Nylon, with 𝜈12  about 2.0 times higher than 𝜈21 . This can be 

explained by the differences found for 𝐸1 and 𝐸2 for CarbonX-Nylon, which shows that it is much 

more difficult to stretch the material at the direction 1 (printing direction) than at the direction 2, a typical 

behavior found in polymer composites reinforced with unidirectional carbon fibers. From the results in 

Table 5-1, it can be noticed that the material strength 𝑆1
∗ for the pure isotropic Nylon 12 and 𝑆1

∗ for the 

CarbonX-Nylon were about the same, indicating that the short carbon fibers did not change substantially 

those properties. However, the CarbonX-Nylon had lower strains at failure as can be seen from Figure 

5-4, indicating a more brittle behavior than that seen in the Nylon 12. It can be noted that the short carbon 

fibers in CarbonX-Nylon favored the known naturally brittle behavior of Nylon 12. 

 

Figure 5-7 Tensile test result of Nylon 12 samples printed at various angles 
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Table 5-1 Comparison of mechanical properties between isotropic pure Nylon 12 and CarbonX-Nylon 

Property Direction 
CFRP-nylon Nylon 12 

ASTM  
Experimental Theoretical Experimental Theoretical 

Young's  

Modulus 

0˚ 4.14 GPa 
4.39 GPa 

1.73 GPa 
1.70 GPa D638 

90˚ 2.15 GPa 1.61 GPa 

Shear Modulus  ±45˚ 1.12 GPa - 0.591 GPa - D3518 

Tensile  

Strength  

0˚ 56.6 MPa 
63.9 MPa 

54.1 MPa 
48 MPa D638 

90˚ 28.3 MPa 27.MPa 

Shear Strength  ±45˚ 11.9 MPa - 10.5 MPa - D3518 

Elongation  
0˚ 2.30% 

4.00% 
5.30% 

15.00% D638 
90˚ 1.59% 2.10% 

Poisson's ratio 
ν12 0.391 - 0.341 - 

D638 
ν21 0.203 - 0.331 - 

 

 Creep Test 

 

 

 

 

 

 

 

 

 

Flexural creep behavior of CFRP and Nylon 12 was investigated. Test method was followed by ASTM 

D2990 [9]. Rectangular plates with dimensions 120mm X 12mm X 20mm were used. 0˚, 45˚, and 90˚ 

of fiber orientations were applied to manufacturing for comparison. Also, nylon 12 specimens printed at 

0˚ direction were used to see the material advantage of CFRP. To set up the test platform, two 20 lbf steel 

Figure 5-8 Creep test method for CFRP and Nylon 12 
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blocks were prepared to apply dead load and a digital deflectometer was installed on the bottom to 

measure the displacement as shown in Figure 5-8. 

Displacement at the middle of specimen was measured with the following approximate time schedule: 1, 

6, 12, and 30 min; 1, 2, 5, 20, 50, and 100 hours. The maximum fiber stress for each specimen was 

calculated as follows: 

 S =
3𝑃𝐿

2𝑏𝑑2
 Eq 5-8 

Where: S=Stress, P=load, L=span, b=width, d=depth.  

The maximum strain at the mid-span was calculated as follows: 

r =
6𝐷𝑑

𝐿2
 Eq 5-9 

Where: r= maximum strain, D=maximum deflection at mid-span 

Figure 5-9 Creep test results of CFRP and Nylon 12with different fiber orientations 



53 

The experimental data from the creep tests were plotted to analyze the flexural creep response of CFRP 

and Nylon 12. Figure 5-9 shows the experimental creep curves for CFRP with 0˚,45˚, and 90˚ fiber 

orientation and Nylon 12 test specimens under two different stress levels, respectively.  It is found that 

a significant creep strain was noticed, especially at higher stress levels. In general, the creep strain 

increases as the angle of the fiber direction with the loading axis increases. Because the elastic modulus 

of the 0˚ specimen is higher than that of the 45˚ specimen, the creep strain of the 0˚ specimen is less than 

that of the 45˚ specimen. Figure 5-10 shows the comparison of creep response Nylon 12 and CFRP with 

three different fiber orientations. It is noted that CFRP with 90˚fiber orientation shows slightly lower 

creep strain than those of Nylon 12. This is because fibers of the specimen don’t fully contribute to the 

strength.   

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5-10 Comparison of creep response for CFRP and Nylon 12 
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 Fiber orientation distribution of CFRP 

The fiber orientation created during 3D printing determines the properties of CFRP. Figure 5-11 shows 

an optical microscope image of CFRP with cylindrical fiber that appears on the section as an ellipse. In 

this research, the method used by Bay and Tucker [61] was followed to characterize the fiber orientation 

of samples. For manual digitization, MatlabTM was used to process images. It digitizes four endpoints of 

the major and minor axes as shown in Figure 5-12 (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11 Sample micrographs of a polished specimen obtained from optical microscope  

a) Cross section at 0˚(printing direction), magnitude 50x; b) cross-section at 0˚, magnitude 20x; c) cross 

section at 90˚, magnitude 50x; d) cross-section at 90˚, magnitude 20x 

20 um 50 um 

50 um 20 um 

(c) 

 

(d) 

 

(b) 

 

(a) 
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Assuming the length and diameter of fibers are uniform as approximately 100um and 5um, the 

measurement was processed finding only the ends of the major axis. The image was broken into pixels; 

each pixel has a value corresponding to the intensity of light at its location on X,Y Cartesian coordinate 

system. These digital images are first subjected to a thresholding operation, making each pixel either 

black or white as shown in Figure 5-13. 

 

 

 

 

 

 

 

 

 

The next step is to identify the group of pixels representing each fiber and determines the relevant 

dimensions. It measured the chord length in several directions and then take the maximum and minimum 

values as the major and minor axes, respectively. Using the cross-sectional area and major/minor 

Figure 5-12 (a) Elliptical cross section of cylindrical fiber showing definition of axes’ endpoints and in-

plane angle Ф, (b) Cross sections of a fiber inclined 0 from the 3-axis. [70] 

(b) 

(a) 

Figure 5-13 fiber capture converting pixels into black and white. 
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diameters, check if each cross section is roughly elliptical. If those fibers whose cross sections are not 

elliptical, they would be broken fibers. Those fibers will be filtered as shown in Figure 5-14.   

 

 

 

 

 

 

 

 

In order to determine three-dimensional fiber orientation from microscope images, a computational image  

The third step is to determine the components of p for each fiber as shown in Figure 5-15. The spatial 

orientation of a single rigid, axisymmetric fiber is easy to describe. 

 

 

 

 

 

 

 

 

Angles ɵ and Ф are used to define its orientation. Alternately, a unit vector p can be used; the Cartesian 

components of p are 

Figure 5-14 Process of broken fibers filtering 

Figure 5-15 Definition of Eulerian angles showing components of unit vector p.[70] 
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Eq 5-10 

Unless stated otherwise, the image section was taken as 1-2 plane, and the 3-axis to be normal to the 

plane. If the data are collected as the coordinates of the four endpoints, the minor axis m is the diameter 

of the fiber: 

 
Eq 5-11 

X and Y were defined as 

 Eq 5-12 

Then the major axis M is given by 

 Eq 5-13 

From the geometry of Figure 5-12, the relevant functions of ɵ and Ф are 

 

Eq 5-14 

The value of 𝑝𝑖 and 𝑝𝑗 is denoted for the nth fiber as (𝑎𝑖𝑗)𝑛,. The values of (𝑎𝑖𝑗)𝑛,. in terms of major 

and minor axis, anthe d distance of X and Y axis expressed as M, m, X, and Y show up in Table 5-2. m, 

X, and Y are treated as independent variables, but M is a function of X and Y. Since other scalar measures 

of orientation such as the Hermans orientation function are defined in terms of trigonometric functions of 

ɵ and ф, they can also be expressed as functions of m, M, X, and Y. Table 5-2 shows components of 

second-order orientation tensor for CFRP fibers. 𝑎11 is dominant orientation tensor for CFRP. 

Table 5-2 Second-order orientation tensor values for CFRP fibers 

Orientation Equation % 

a11 
 

0.825 

a12 
 

0.123 

𝑠𝑖𝑛2ɵ𝑐𝑜𝑠2ɸ 

𝑠𝑖𝑛2ɵ𝑐𝑜𝑠ɸ𝑠𝑖𝑛ɸ 
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a13 
 

0.082 

a22 
 

0.03 

a23 

 

0.004 

a33 
 

0.0056 

 

The full Matlab codes to perform this analysis are attached in Appendix. Histograms of fiber orientation 

tensor 𝑎11, 𝑎12, and 𝑎13 were established as shown in Figure 5-16, Figure 5-17, and Figure 5-18, 

respectively. 40 number of microscope images analyzed and 10,000 number of fiber orientations were 

computed. To see how many fibers are aligned with printing direction, 𝑎11, 𝑎12, and 𝑎13 of tensors 

were computed. Once histograms were established, average tensor values were computed. those values 

are 0.82, 0.12, and 0.08 for 𝑎11, 𝑎12, and 𝑎13, respectively. Table 5-2 shows the orientation tensor 

matrix of fibers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-16 Fiber orientation distribution of 𝑎11 component 

sinɵcosɵ𝑐𝑜𝑠ɸ 

𝑠𝑖𝑛2ɵ𝑠𝑖𝑛2ɸ 

𝑠𝑖𝑛ɵ𝑐𝑜𝑠ɵ𝑠𝑖𝑛ɸ 

𝑐𝑜𝑠2ɸ 
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Figure 5-17 Fiber orientation distribution of 𝑎12 component 

Figure 5-18 Fiber orientation distribution of 𝑎13 component 
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 Density measurement 

To investigated densities of parts, Nylon 12 samples printed by different layer heights and nozzle 

diameters were tested. Since 0.4mm, 0.6mm, and 0.8mm of nozzle diameters and 0.1mm, 0.15mm, and 

0.2mm of layer heights are most commonly used parameters in 3D printing, samples printed by 

combinations of these parameters were examined. 3 samples of each case were printed for the 

repeatability; total 27 samples were prepared in the test as shown in Figure 5-19. 

 

 

 

 

 

 

 

 

 

Archimedes’s density method were applied. Ethanol was used as liquid. The size of samples was 10mm^3 

cubic. Samples were presumed as not isolated porous which means they have open voids. The procedure 

was as follows: 

1. Measure dried weights of samples. 

2. Submerge in ethanol (0.789g/cc) and vacumme the air . 

3. Measure suspended the weight of samples. 

4. Wipeout ethanol with wet gauzes.  

5. Measure the saturated weight of samples.  

6. Compute density of samples using the equation  

7. Compute relative density of samples  

 

Figure 5-20 shows the step 3 of Archimedes’s density method. 

Figure 5-19 Cubic samples of Nylon 12 
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Figure 5-21 shows relative densities of samples printed by various nozzle diameters and layer heights.  

Samples printed by 0.8mm nozzle shows the highest density ranging from 85% to 97%. Samples printed 

by 0.6mm and 0.4mm nozzle diameters show approximately 74% and 70% of densities, respectively. It 

is noted that samples printed by larger nozzle size increase densities. For the layer height, 0.15mm shows 

the highest density for samples printed by 0.2mm nozzle diameter. For the 0.4mm nozzle size, however, 

0.1mm layer height shows the highest density. This means each nozzle size has its specific suitable layer 

height. Generally, low layer height reduces density because parts relatively need more layers when 

compared with the same size of parts. For high layer heights, however, parts need the small number of 

layers, but it may be hard to make rectangular cross-sections of beads as shown in Figure 3-8(b). Suitable 

layer heights are more required for large nozzle sizes such as 0.8mm as illustrated in Figure 5-21. Table 

5-3 shows experimental raw data of Archimedes’s density test to support Figure 5-21. 

   

 

 

Figure 5-20 Archimedes’s density measurement  
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Table 5-3 Experimental data of Archimedies’s density test 

  ND=0.4mm, LH=0.2mm ND=0.6mm, LH=0.2mm ND=0.8mm, LH=0.2mm 

W_d(g) 0.857 0.857 0.888 0.79 0.823 0.788 1.004 1.008 1.023 

W_susp 0.158 0.151 0.192 0.171 0.18 0.16 0.241 0.244 0.245 

W_sat 1.02 0.982 0.997 0.968 1 0.958 1.055 1.081 1.068 

p_bulk 0.78 0.81 0.87 0.78 0.79 0.78 0.97 0.95 0.98 

Density 68.81% 71.38% 76.35% 68.60% 69.46% 68.34% 85.37% 83.35% 86.03% 

  ND=0.4mm, LH=0.15mm ND=0.6mm, LH=0.15mm ND=0.8mm, LH=0.15mm 

W_d(g) 0.866 0.919 0.9 0.847 0.814 0.796 1.155 1.154 1.136 

W_susp 0.177 0.186 0.18 0.16 0.153 0.136 0.339 0.339 0.344 

Figure 5-21 Relative densities of samples printed by various nozzle size and layer height 
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W_sat 1.009 1.052 1.032 0.953 0.986 0.921 1.162 1.141 1.158 

p_bulk 0.82 0.84 0.83 0.84 0.77 0.80 1.11 1.14 1.10 

Density 72.04% 73.45% 73.11% 73.92% 67.63% 70.18% 97.13% 99.59% 96.59% 

  ND=0.4mm, LH=0.1mm ND=0.6mm, LH=0.1mm ND=0.8mm, LH=0.1mm 

W_d(g) 0.861 0.904 0.91 0.803 0.839 0.813 1.036 1.063 1.038 

W_susp 0.162 0.17 0.175 0.052 0.17 0.047 0.27 0.258 0.26 

W_sat 0.977 1.025 1.027 0.824 0.938 0.862 1.11 1.091 1.087 

p_bulk 0.83 0.83 0.84 0.82 0.86 0.79 0.97 1.01 0.99 

Density 73.12% 73.18% 73.92% 71.99% 75.61% 69.04% 85.36% 88.32% 86.87% 

 

In order to visually verify the difference of densities between various conditions, SEM image of samples 

were captured. Samples printed by 0.4mm, 0.6mm, and 0.8mm nozzle diameters with suitable layer 

heights were prepared. ‘suitable’ means layer heights showing the best density for each nozzle diameter. 

For example, 0.15mm layer height works with 0.8mm nozzle size based on the data from Figure 5-21. 

Liquid nitrogen and dynamic hammer were utilized to see the fracture surface clearly without tensile 

deformation. Figure 5-22 shows a sample and the dynamic hammer used to break samples. Also, the same 

magnitude of 70x was applied to visually compare void contents between samples accurately.   

 

 

 

 

 

 

 

 

 

 
Figure 5-22 samples for SEM and dynamic hammer 
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Figure 5-23, Figure 5-24, and Figure 5-25 show SEM images of samples printed by 0.4mm, 0.6mm, and 

0.8mm of nozzles, respectively. They show details of the periodic microstructure of the part, including 

triangular shaped voids left by the process. As shown, samples printed by smaller nozzles show some 

small voids for the same area of one spot. For samples printed by 0.8mm nozzle, however, it shows the 

small number of tiny voids. These SEM images support the test results of bulk density experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-23 SEM image of a sample printed by 0.4mm nozzle with 0.1mm layer height 
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Figure 5-24 SEM image of a sample printed by 0.6mm nozzle with 0.15mm layer height 

Figure 5-25 SEM image of a sample printed by 0.8 mm nozzle with 0.15mm layer height 
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Tensile tests were performed to see how densities correlate with mechanical properties of parts produced 

by FFF. Figure 5-26 shows stress-strain curves from tensile tests of samples printed by various nozzle 

sizes. The test result shows no big difference in stiffness between samples. However, samples printed by 

0.4mm and 0.8mm nozzles show approximately 27% and 10% lower failure strength compared with 

samples printed by 0.6mm. In addition, as nozzle size increases, the higher plastic strain shows up. For 

samples printed by 0.8mm nozzle, it shows the highest elongation which is very close with the theoretical 

value of Nylon 12. Figure 5-14 shows the failure of one of samples printed by 0.8mm nozzle. Even if 

using 0.8mm nozzle diameter takes an advantage in elongation and shows better density, 0.8mm nozzle 

can’t print parts precisely if the object is handy size. This may cause a lots of defects. That’s the reason 

why 0.6mm nozzle size is preferred in 3D printing industry. However, if the object is big enough (20 cm 

x 20cm x 20cm), 0.8mm nozzle may better work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-26 Tensile test results of samples printed by various nozzle sizes 
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 Microstructure of CFRP 

Figure 5-28 and Figure 5-29 are micrographs obtained by SEM, showing the cross-section of a sample of 

the CFRP-nylon with printing direction 0˚. From Figure 5-28 with a magnification of 150x, it is possible 

to see the round shape of the carbon fiber cross-section, whose nominal diameter 6 um. In Figure 5-29, 

with a magnification of 250x, it is possible to notice the same elements found in the previous micrographs: 

carbon fibers, voids left by fiber pull-outs and other voids. It is clearly seen that the filament has the short 

carbon fibers mostly oriented with the direction of its length. Therefore, it can be safely assumed that the 

carbon fibers were aligned within the feeding filament and remained aligned in the tested specimens 

produced by the FFF process. This behavior can be explained by the fact that, during 3D printing, the 

nylon is meltdown by the extrusion nozzle and the fibers inside the deposited material have a trend to 

become aligned with the extrusion direction of the molten thermoplastic. This behavior was already 

reported in the literature [70][54] for ABS reinforced with short carbon fibers, and is now also observed 

for nylon. However, in an injection molded nylon with the addition of very short carbon nanofibers at [77] 

this was not observed, leading to conclude that this alignment is a function of the production process and 

possibly of the fibers geometry. The voids that are not related to fiber pull-outs are also seen in the CFRP 

filament, the reason for the appearance of these voids is possibly due to a manufacturing defect during 

the 3D printing.  

Figure 5-27 Tensile failure of a specimen printed by 0.8mm nozzle 
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Figure 5-28 SEM image of CFRP specimen printed at 0˚ direction (150x) 

Figure 5-29 SEM image of CFRP specimen printed at 0˚ direction (250x) 
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Figure 5-30 and Figure 5-31 show the SEM images of the CFRP specimens that the short carbon fibers 

dispersed in the nylon matrix showed up to be highly oriented with the printing directions 45˚ and 90˚, 

respectively. This is the fact that explains the differences in stiffness noticed in the results of Table 5-1 It 

can be concluded that the CFRP-nylon printed material has a stiffness behavior similar to unidirectional 

fiber reinforced composites, once it is indeed a composite reinforced with short fibers which ended up 

highly oriented with the printing direction after production by FFF. Therefore, it concluded that the fiber 

orientation could be fully controlled by extruding, not is already oriented in the filament loaded in 3D 

printer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-30 SEM image of CFRP specimen printed at 45˚ direction 

Figure 5-31 SEM image of CFRP specimen printed at 90˚ direction 
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Chapter 6 CASE STUDY 

 Case Study I - Lattice Structure 

    Introduction 

From the literature in Chapter 2.1, it is noted that final topologies of structural optimizations are mostly 

some kind of lattice structures. Those lattice structures with complex geometries now can be easily 

manufactured by additive manufacturing. Up to now, a wide variety of industrial applications for lattice 

structures has been achieved. Figure 6-1 shows an unmanned aerial vehicle (UAV) with an optimized 

frame. Four arms of the quad-copter are optimized as truss structures. UAV design generally requires 

lightweight and high structural performance. In this chapter, structural optimization of a simply supported 

beam under bending loading is reviewed, and a novel manufacturing method of FFF 3D printing with 

fiber reinforcement is developed.  

 

 

 

 

 

 

 

 

 

    Structural Optimization 

Figure 6-2 shows an example considering stiffness optimization of a simply-supported beam under a 

concentrated loading. The design domain has length 100mm, height 10mm, and thickness 1mm, the force 

is applied downward in the middle of the beam with the magnitude of 100 N. The material has Young’s 

modulus of 100GPa and Poisson’s ratio of 0.3, and the available material can only cover 40% volume of 

the design domain. BESO starts from the full design which is subdivided using a regular mesh of size 

100×10, totaling 1000 four-node quadrilateral elements. The BESO parameters are evolution rate = 1%, 

R = 3mm and tolerance = 0.01%.  

Figure 6-1  Quad-copter with an optimized frame [117] 
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Figure 6-3 shows the evolution histories of the mean compliance and the volume fraction. The mean 

compliance increases as the material is gradually removed from the design domain. It is noted that 

apparent couple bumps in the mean compliance are caused by the significant effect of a change of the 

topology resulting from bar elimination. Thereafter, the mean compliance is quickly recovered and 

assures that the topology develops in the right direction. After the volume reaches the objective volume, 

the mean compliance is convergent to a constant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4 shows the evolution of topology where the final topology is shown in Figure 6-4(c). The 

optimization procedure will be stopped after 14 iterations. 

Figure 6-2 An example of topology optimization for a simply-sported beam subjected to three 

points bending 

Figure 6-3  Evolution history of volume fraction and global stiffness 
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    Determination of Fiber Orientations 

Once structural optimization finished, principal directions of individual elements using stress tensor 

output from ABAQUS were computed. Figure 6-5 shows an example of optimal fiber angle distribution. 

Using statistics from the information on principal directions several representative fiber angles can be 

determined. In this research, +45˚, 0˚, -45˚ were chosen as representative fiber angles for simplicity. Any 

elements that have the difference of angle value within ±45/2˚ with the computed representative angles 

create a section and nodes boundaries are generated. This procedure was numerically carried out by 

MathLAB 2016. Figure 6-6 describes a model of section division. The computed representative fiber 

angle values will be utilized as inclinations of infill pattern in the tool-path development.  

 

 

 

 

 

 

 

 

 

Figure 6-5  An example of optimal fiber angle distribution [109] 

Figure 6-4 Evolution of the topology: (a) iteration 5, (b) iteration 11 and (c) final topology. 

(a) 

(b) 

(c) 
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 Tool-path Development 

As previously mentioned, there are two different types of infill patterns. In this case, direct parallel tool-

path method is applied to achieve the designed fiber distribution with optimal orientations. The direction-

parallel tool-path is one of the most common tool-paths employed in current FFF techniques. This method 

fills an area line-by-line in a specified direction. After determining the inclination of the reference lines, 

a series of line segments (along the predefined inclination) connected with small turn segments are 

generated as the tool-paths as shown Figure 6-7 

 

 

 

 

 

 

 

 

In this manufacturing step, basically two different requirements must be satisfied. The first is the fiber 

orientation. The second is product quality. In order to meet the first requirement, nozzles with small 

diameter should be used to shorten the length of turn segment. However, the presence of vast numbers of 

Figure 6-7  Illustration showing a direction-parallel tool-path segments [118] 

Figure 6-6  Section division for customized tool-path 
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small turn segments in the tool-paths can degrade the fabrication quality and efficiency to some extent. 

Also, small size nozzles like 0.25mm and 0.4mm don’t fully work for carbon fiber reinforced filaments. 

Those nozzles are frequently clogged with filaments since fibers are not melted during the extrusion. 

Since carbon fiber filament manufactures don’t specify recommended nozzle sizes, information from 

some 3D printer communities based on engineers’ experience was used. In this research 0.6mm is utilized 

throughout the manufacturing. In Figure 6-8, horizontal boundary of material deposition indicates nozzle 

diameter.  

 

 

 

 

 

 

 

 

 

 

Figure 6-9 shows a captured image of the tool-path simulation for the optimized structure with desired 

fiber orientations. Red line indicates extruder moving. This job was performed by open-source software 

Simplify3D 4.0.  

 

 

 

 

 

 

 

Figure 6-8  Material deposition scheme of FFF 3D printing for a section  

Material deposition  

Tool-path 

Nozzle diameter 

Figure 6-9  Customized tool-path for the optimized structure 
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    FE modeling and test simulation  

 

 

 

 

 

 

  

 

 

The orthotropic mechanical properties of CFRP from the experimental data was applied to the optimized 

beam. As discussed previously, G-codes of outer shell tool-path was used to draw the part. 200 division 

number of X and Y coordinates and only one layer were applied to reduce computation time. Total 

200*200=40,000 number of elements were generated. Material orientation ranging from -90˚ to +90˚ 

was applied to individual elements. Since part size is handy, residual stress was not analyzed. Figure 6-10 

shows FE modeling of the optimized beam. Structural performances of optimized structures with different 

fiber reinforcements are reviewed by 3 points bending test. For the comparison, structures with uniform 

fiber orientations 0˚, 45˚, 90˚ were analyzed, respectively. Moreover, in order to verify the advantage of 

structural optimization, analysis result of the original rectangular geometry with isotropic nylon was 

compared. 1 mm downward displacement of the indenter was applied on the top of the beam as shown 

Figure 6-11 (b). Figure 6-11 (a) shows the result of FEM analysis. The corresponding load for the 

displacement of each case was measured. The optimized structure reinforced by the optimal fiber 

orientation shows the highest stiffness response which was approximately as 132 N/mm. 9% 

improvement was observed when compared with0˚ uniform tool-path. For other case, the structure with 

isotropic nylon shows 110 N/mm of stiffness. These numerical results were verified by performing 

physical 3 points bending test. 

 

Figure 6-10 FE modeling of the optimized beam 
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    Manufacturing  

The optimized beam structure was fabricated as shown in Figure 6-12. The printing parameters employed 

were: nozzle diameter of 0.6mm, filament diameter of 2.75mm, nozzle extrusion temperature of 260˚C, 

build plate temperature of 110˚C, layer height of 0.2mm and printing speed of 20mm/s. Therefore, the 

total building time for one product was 5 hours.  

 

For the material of nozzle, Olsson ruby nozzle was used because abrasive carbon fibers may wear out the 

original nozzle materials such as bronze and steel. Figure 6-14 shows an example of nozzle damage and 

Olsson ruby nozzle. FFF based 3D printer Ultimaker 2+ was used to fabricate the structure as shown in 

Figure 6-13. In order to achieve better bonding with the plate and avoid a warping, yellow Kapton tape 

was applied to the build plate of Ultimaker 2+.   

Figure 6-12  Optimized beam with carbon fiber reinforcement by FFF 3D printing 

Figure 6-11 Comparison of maximum failure load between uniformly aligned and optimally distributed 

fiber reinforcement 
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 Three points bending test 

 

 

 

 

 

 

 

 

 

 

 

 

Three-point bending test is conducted to validate the FEA simulations of CFRP beam printed at optimized 

tool-path. For the comparison, beams uniformly printed at 45˚, 90˚, and 0˚were tested as well to see the 

advantage of customized tool-path. universal mechanical test machine SHIMAZU AGS-X HC was used 

Figure 6-14  An example of nozzle damage and 

ruby nozzle. 
Figure 6-13  Upgraded Ultimaker 2+ in 

Dr. Kang’s lab. 

Figure 6-15 Three points bending test for the optimized beam 



78 

to measure load from the indenter. A digital diflectometer was installed on the bottom of the machine 

platform to measure the displacement at the middle of beam. The diameter of the load indenter was 10 

mm and loading rate was 2mm/min determined by ASTM D790 using the equation R =
𝑍𝐿2

6𝑑
. Parameters 

are as follows: L= support span, d= Depth of beam, and Z = Rate of straining of the outer fiber 

(0.01mm/mm/min). Figure 6-15 shows three points bending test platform.  

Figure 4.4 shows load vs displacement curve for each model. Three different test data were averaged. For 

the repeatability of the test results, three samples of each were tested and variation was less than 1%. 

Detailed test results were attached in Appendix. The beam with the optimized tool-path shows the highest 

stiffness response and failure load 110 N/mm and192 N, respectively. This is 7% and 10% improvement 

in stiffness response and failure strength when compared with beam printed at uniformly 0˚ 

  

 

 

 

 

 

 

 

 

 

 

 

 Conclusions and Discussions 

Figure 6-17 shows the comparison of results between FEA simulation and experimental tests. 

Experimental tests exhibit approximately 15% lower values compared with FEA simulation results, 

possibly due to manufacturing defects such as voids, missed alignment, or residual stress. For optimized 

beam, the difference of results shows about 17%. This is because the customized tool-path has several 

Figure 6-16 Comparison of load vs displacement curves of beams with different printing pattern  
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cutting points, which means more frequently stop the extruding and move to different locations. cutting 

points could generate voids because of this mechanism.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 Case Study II. – Stress concentration plate  

 Problem statement 

 

 

 

 

 

 

 

Stress concentration in plate with a hole was chosen to describe the advantage of the customized tool-

Figure 6-17 Comparison of results between FEA and Experimental tests 

Figure 6-18 (a) Stress flow and (b) a FFF built CFRP sample of stress concentration plate 
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path method. Mathematical analysis and experimental measurement show that in a loaded structural 

member, near changes in the section, distributions of stress occur in which the peak stress reaches much 

larger magnitudes than does the average stress over the section. This increase in peak stress near holes, 

grooves, notches, sharp corners, cracks, and other changes in section is called stress concentration. The 

section variation that causes the stress concentration is referred to as a stress raiser. Figure 6-18 shows 

stress flow and a CFRP sample of stress concentration plate. 

 

 Finite element analysis 

 

 

 

 

 

 

 

In order to compute principle directions of each element, FEA stress analyses were carried out. In this 

work, ABAQUSTM was utilized. 2D shell element was applied for simplicity. As described previously, 

reticular elements were employed to connect elements in order to generate a tool-path. Height, width, and 

radius of the hole are 120mm, 40mm, and 10mm, respectively. Figure 6-19 illustrates the example model. 

 

 

 

 

 

 

 

Figure 6-20 shows stress field and the corresponding principal directions of individual elements. as 

Figure 6-19 Stress concentration plate 

a) b

Figure 6-20 (a) stress field and (b) principal directions of stress concentration plate 
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expected, high stress occurred around the center hole and their principal directions are aligned with the 

hole. Also, blue color in Figure 6-20 (a) indicates low stress region, in Figure 6-20 (b) shows this region 

as short length of arrow.  

 

 Tool-path development 

 

 

 

 

 

 

 

 

 

 

Figure 6-21 shows the section division of the plate for tool-path using the proposed method. Each element 

is connected to create sections. Different tool-path is generated to each section based on principal 

directions of elements in sections. For example, the tool-path around the center hole is aligned with the 

circle as principal directions are parallel to the circle. Moreover, low stress region in Figure 6-20 (a) has 

0˚ uniform tool-path which is the same with tool-path in other major regions. Figure 6-21 (b) shows the 

complete tool-path development of the whole plate.  

  

Figure 6-21 (a) Section division for tool-path and (b) complete optimized tool-path of stress 

concentration plate 

a) 

b) 
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 FE modeling 

 

 

 

 

 

 

Figure 6-22 shows the stress distribution of the plate with the updated orthotropic material properties 

induced by the customized tool-path. High stresses still occurred around the hole, but relatively were 

more distributed in larger area compared with the plate with the initial isotropic material. 180 and 60 

division number of X and Y coordinates were applied to generate square elements to reduce computation 

time. Total 180*60=10,800 number of elements were generated. For the stress concentration plate printed 

by 0˚ tool-path as shown in Figure 6-24 (a), shear strain reached the failure first, which is 0.00854 as 

tensile load increased. The corresponding tensile loading was about 3600N. The corresponding tensile 

strain was 0.0145 that is still in elastic range. On the other hand, for the plate printed by customized tool-

path, under the same tensile loading 3600N, shear and tensile strain were 0.00765 and 0.0151, respectively. 

9% was lower in shear strain compared with 0˚ case. This means printing aligned with the center circle 

take an advantage to resist shear stress around the hole. Figure 6-23 shows shear strain distributions of 

these two cases from FEA simulations. 

 

 

 

 

 

 

 

 

   
Figure 6-24 (a) 0˚ uniform; (b) customized 

tool-path 

(a) 

(b) 

Figure 6-23 shear strain distribution of 

samples printed by (a) 0˚ uniform; (b) 

customized tool-path 

(a) 

(b) 

Figure 6-22 Stress distribution of the plate printed by the optimized tool-path 
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 Tensile tests  

 

 

 

 

 

 

 

 

 

Relevant tensile test for stress concentration plates was performed to validate FEA simulation results. It 

was measured by a load cell attached to SHIMAZHU universal machine. Tracking sticker was attached 

to plates as an extensometer in order to measure displacements as shown in Figure 6-25 (a). Loading rate 

was 1mm/min and the data was recorded at every 0.01sec. Using the force and displacement data, stiffness 

response was computed. Figure 6-25 (b) shows load vs displacement curves for each case. Averaged test 

results of each case are shown in Table 6-1.  

Table 6-1 Tensile test results of stress concentration plate printed by various tool-path 

  
Stiffness Response 

(N/mm) 

Failure Strength 

 (N) 

Max Disp  

(mm) 

Direct-parallel (0˚) 2544.0 3087 1.39 

Contour-parallel 2161.7 2592 1.30 

Direct-parallel (±45˚) 1983.4 2262 1.25 

Optimized 2687.0 3349 1.50 

Nylon 12 1690.0 3343 3.60 

 

The plate printed by the optimized tool-path shows the highest stiffness response and failure strength. For 

Figure 6-25 (a) tensile test and (b) test result of stress concentration plate 

a) b) 
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stiffness response, it is approximately 6% higher than direct-parallel (0˚) case, 151% higher than the gear 

made by Nylon 12, respectively. For the failure strength, optimized plate shows 3349 N which shows 8% 

higher than direct-parallel (0˚). It is noted that failure strength of optimized plate is almost the same with 

the plate made by Nylon 12.  

Figure 6-26 shows the comparison of stiffness response results between FEA simulations and physical 

tensile test. As similar with other case studies, approximately 5 ~ 10% difference in stiffness response 

showed up.  

 

 

 

 

 

 

 

 

 

 

 Figure 6-26 comparison of stiffness response between FEA simulations and physical experiments 
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 Case Study III. - Spur Gear   

  Introduction 

Gears are mechanical components used for transmitting motion and torque from one shaft to another. 

Along with modern high speed manufacturing industry development, gears are now used widely in many 

applications ranging from automotive, robot and aerospace engines. Various types of gears are currently 

being manufactured for different industrial purposes. Spur gear is the most common type of gear. For the 

power or motion transmission, the tooth region generally experiences high stresses and are prone for 

failure and the hub region experiences less stresses. Figure 6-27 shows a failure of spur gear system in 

ball-milling machine in Dr. Kang’s lab at WVU.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the Figure, gears were manufactured with nylon. The ball-milling machine was designed so that nylon 

Figure 6-27 Spur gear damages of the ball-milling machine 

(a) (b) 

(c) 



86 

spur gears are failed first to prevent a damage of the central main motor. The machine normally operates 

at 400 rpm, the tooth section of medium size gears experience high dynamic loading and fatigue. As 

shown in Figure 6-27(c) teeth were damaged, those were replaced with new set regularly. From the need 

for gears with improved durability, in this research a novel methodology of design and manufacturing for 

spur gears with carbon fiber reinforcement is introduced.  

   Finite Element Analysis 

6.2.2.1   Spur Gear Design 

In order to design the replacement spur gear, several critical geometries were measured. Since there is no 

information on parameters of the gear design in our ball-milling machine from the manufacturer, only 

outside diameter and number of teeth were measured and other parameters were computed using 

equations in Table 6-2. Figure 6-28 shows the required parameters for spur gear design.  

 

 

 

 

 

 

 

 

 

 

 

Table 6-2 list of design parameters for spur gear 

Definition Symbol Values 

Number of teeth z 24 

Pressure angle (˚) a 20 

Figure 6-28 Parameters of spur gear design 



87 

Module m 3 

Circular pitch (mm) P = ∏*m 9.42 

Pitch circle diameter (mm) d = m*z 72.00 

Outside diameter (mm) do = d+2*m 78.00 

Base circle diameter (mm) db = d-(2+∏/z)*m 65.61 

Root diameter (mm) dr =d*cos(a) 67.66 

 

6.2.2.2   Numerical analysis 

Numerical analysis was carried out to find high-stress regions and principal directions of individual 

elements in those regions. Two identical spur gears were imported from the AutoCAD product which was 

designed in the previous chapter. From the Figure 6-29, right shaft is treated as driven gear (gear) and left 

shaft is treated as drive gear (pinion). Since the material of the central shaft is metal and stiffness ratio of 

metal and nylon is approximately 100:1, it was assumed that right shaft is rigid and stationary throughout 

the operation and no displacement will occur in the shaft. 

 

 

 

 

 

 

 

 

 

In Figure 6-29, right shaft with grey color indicates rigid. For the other shaft part, on the other hand, 

mechanical properties of Nylon 12 from Table 5-1 were applied. Young modulus was 1.7 GPa and 

Figure 6-29  Stress analysis of spur gear 
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Poisson’s ratio is 0.3. Since the gear was additively manufactured layer by layer, 4-node CPS4R shell 

elements were applied for the simplicity. For the contact modeling between the driven gear (grey color) 

and drive gear, a general standard contact model was used. The friction in the contact surfaces of the gear 

teeth was disregarded. A torque of 10 N m was applied to the left shaft. Failure occurs due to the excessive 

bending stresses or contact stresses at the tooth root as shown Figure 6-30. 

 

 

 

 

 

 

 

 

 

 Determination of Fiber Orientations 

Based on the information from the stress analysis, principal directions can be computed. Principal 

directions play a crucial role in the design of fiber orientation. Figure 6-31 shows principal directions of 

individual elements in tooth region(a) and center region(b), respectively.  

Figure 6-30  Maximum stress index for isotropic gear pairs 

Figure 6-31  Principle directions of elements 

(a) (b) 
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 Tool-Path Development – Spur Gear 

Using ABAQUSTM, stress field was computed for the pre-described geometry under loading and 

boundary conditions. main gear which is made of steel was considered as rigid in the analysis. The 

isotropic material was applied to compute principal directions. The highest stress region showed up in 

tooth region. 

 

 

 

 

 

 

 

 

 

Figure 6-32 shows principal directions and section division for the printing. Different printing patterns 

were applied to individual sections. It is noted that principal directions of elements in tooth region are 

oriented along the gear tooth profile. Theoretically, ideal way to reinforce the gear is to align fibers with 

the tooth profile in the high-stress region. Figure 6-33 shows the optimized tool-path for the gear.  

 

 

 

 

 

 

 

 

 

Figure 6-32 Section division of spur gear for tool-path 

Figure 6-33 Optimized tool-path for spur gear 
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 FE Modeling – Spur Gear 

 

 

 

 

 

 

 

 

 

 

In order to apply orthotropic material properties caused by customized tool-path. X,Y coordinate 

information from G-codes was utilized. Division numbers for X and Y coordinates were 150, respectively 

and only initial 8 layers were considered to reduce computation time. Total 150*150*180,000 was used 

for gear modeling. After the gear was modeled, compression test platform was set up to see the advantage 

of the optimized tool path as shown in Figure 6-34 (b). Principal stresses of gears with the optimal fiber 

orientations, [±45˚]s and unidirectional orientation with [0˚] were analyzed to compare the structural 

performance, respectively. Gears made by Nylon 12 was tested as well to see the advantage of CFRP 

material. Vertical displacement 1.0 mm was applied and high stresses were generated at tooth root region. 

A PC with a 2.4GHz Core CPU and 8GB RAM was used. Total computation time was approximately 23 

hours. 

  

 

 

 

 

Figure 6-34 FE modeling (a) and compression test simulation (b) 

(a) (b) 
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Figure 6-35 shows a comparison of FEM results. The principal stresses at the critical location of each 

case were measured and stiffness response was computed. The gear with the optimal fiber orientation 

shows the highest stiffness response of 981 N/mm. For other cases, contour-parallel, [±45˚]s, [0˚] 8, and 

Nylon 12 showed 894N/mm, 847 N/mm, 682 N/mm, and 539 N/mm. respectively. Approximately 9% 

and 82% improvement of in stiffness was observed when compared with contour-parallel tool-path and 

Nylon 12 respectively.  

 Compression Test – Spur Gear 

 

 

 

 

 

 

 

 

 Figure 6-36 Spur gear stiffness test for CFRP (a) and Nylon 12 (b) 

(a) (b) 

Figure 6-35 Spur gear stiffness test results 
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In order to validate the FEA simulation results, relevant compression test for spur gear was performed. 

As previously discussed, high stress was generated in teeth region. Therefore, compressive force is 

applied to the tooth region as shown in Figure 6-36. It was measured by a load cell attached to 

SHIMAZHU universal machine. The corresponding displacement was measured by a digital 

deflectometer which has 0.0001 mm accuracy. Loading rate is 1mm/min and the data was recorded at 

every 10sec. For the repeatability, tooth in three different locations were tested as indicated in Figure 6-36. 

Using the force and displacement data, stiffness response was computed.   

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-37 shows load vs displacement curves for each case. Averaged test results at three different 

locations are shown in Table 2.4. For the repeatability of the test results, three different locations of each 

were tested and variation was less than 1%. Detailed test results were attached in Appendix.  

Table 6-3 test results of stiffness response of CFRP and Nylon 12 

  
Stiffness Response 

(N/mm) 

Failure Strength 

 (N) 

Max Disp  

(mm) 

Contour 778.6 1330 2.18 

Optimized 834.6 1430 2.19 

Figure 6-37 Load vs Displacement curves of CFRP spur printed by various tool-path 
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[±45]s 754.6 1287 2.10 

0˚ only 607.0 1073 1.87 

Nylon 12 475.1 1250 3.94 

 

The gear printed by the optimized tool-path shows the highest stiffness response and failure strength. It 

shows approximately 7% higher in stiffness response than the gear printed at contour-parallel and 175% 

higher than the gear made by Nylon 12, respectively. For the failure strength, optimized gear shows 1430 

N which shows 8% higher than contour-parallel. It is noted that those made by CFRP shows brittle 

behavior. Once the internal stress reaches the failure level, teeth was taken out immediately. For Nylon 

12 however, it was plastically deformed after yield stress, doesn’t show fracture failure. Figure 6-38 

illustrates the deformed gear.        

 

 

 

 

 

 

 

 

 Conclusions and discussions 

Figure 3.4 shows the comparison of stiffness response results between FEA simulation and physical 

experiment. Approximately 10% difference in stiffness response showed up between FEA results and 

experimental tests. This is because of manufacturing defect such as voids, miss alignment, and residual 

stress.  

 

 

 

 

Figure 6-38 Deformed teeth of Nylon 12 spur gear 
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 Part Application for Ball-Milling Machine.  

 

 

 

 

 

 

 

 

 

 

 

To validate structural performance of the 3D printed gear, original nylon spur gear parts of ball-milling 

machine was replaced with CFRP 3D printed gears as shown in Figure 6-40(b). Since the maximum 

dynamic force was generated from the main motor gear at the center of machine, only medium size gears 

were replaced to have them directly experience the maximum force. The dynamic force is approximately 

530 N. Considering the maximum yield strength from the compression test, the safety ratio is about 2.7. 

Figure 6-40 Gear set of ball milling machine, (a) damaged original gears (b) replacement of CFRP gears 

(a) (b) 

Figure 6-39 Comparison of results between FEA simulation and experimental tests 
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The detailed calculation was attached in Appendix. The machine operated at 400 rpm, one cycle was 40 

hours.  

Figure 6-41 shows the failure of gears from the first trial. After 17 cycles (680 hours), one of the gears 

was failed. Failure mechanism was investigated. If the gear slightly tilts during the operation shear and 

tensile stress are generated. As shown in Table 5-1, CFRP parts are prone to shear or tensile stress between 

layers because of inherent nature of layer by layer manufacturing. Once it reaches the failure stress, parts 

of the gear are catastrophically taken out, not deformed since it is brittle. That was the reason for that 

ball-milling doesn’t show any signals of failure such as abnormal noise. If one of jars doesn’t spin during 

the operation, the only thing to recognize the failure was debris on the floor under the machine. Relatively 

low shear and bonding strength and brittleness are obviously disadvantages of CFRP 3D printed parts. 

Despite of those, several advantages in part application for ball-milling were observed. Once one of gears 

failed, the corresponding jar doesn’t spin anymore but others still works properly. This means one failed 

gear doesn’t affect other gears because of its brittleness. 

 

 

 

 

 

 

 

 

 

 

 

For pure nylon gears however, they show high ductility, once one of gears failed, it deformed. Then the 

deformed gear cause unbalanced operation of ball-milling but still the operation sounds normal. Finally, 

all other gears are damaged once initial failure starts as shown in Figure 2.4. Therefore, in economic point 

of view, CFRP gears are better options considering that only one damaged gear is replaced.  

Figure 6-41 First trial of the application of CFRP gear set 
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 Post-Processing – Spur Gear 

Annealing was performed for CFRP spur gear as a post-processing after 3D printing to improve structural 

properties. The method for thermoplastic 3D printed part recently has been developed by Stratasys [103]. 

However, the method for CFRP has not been developed. In this research, since the resin material of CFRP 

is Nylon 12, several annealing procedures for Nylon 12 were followed. The glass transition temperature 

of Nylon 12 is 141˚C and melting temperature is 178~181˚C. Therefore, recommended annealing 

temperature has been determined as 140~160˚C to have the material remove internal voids and release 

residual stress caused by manufacturing. The gear was placed on an oven safe surface for two hours to 

allow polymers chain realignment and recrystallization. 

Relevant compression test for spur gear was performed again to see structural improvement by annealing.  

Figure 6-42 shows stiffness test results of gears after annealing with two different processing conditions.  

Failure strength, stiffness, and elongation were improved when compared with the original as 9%, 10%, 

and 8%, respectively. However, 20˚C difference in annealing temperature doesn’t play a role in the 

improvement.  

  

Figure 6-42 Stiffness test results of spur gears after post-processing 
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Chapter 7 CONCLUSIONS AND FUTURE WORKS 

In this research, a novel methodology integrating SO, fiber placement theory, and tool-path development 

theory to design and manufacture AM parts has been successfully established through FEA and 

experimental validations. It starts with SO to reduce volume and determine the best geometry under the 

prescribed loading and boundary conditions. Then, stress field and principal directions were computed 

and optimal orientations of fibers were determined for individual elements. Using the output data from 

AbaqusTM, a tool-path optimization algorithm to maximize the effect of fiber reinforcement of CFRP was 

developed for FFF parts. Finally, finite element modeling was developed in order to apply orthotropic 

material properties which were determined from related lab coupon tests. 

The proposed methodology demonstrates that the optimized tool-path extrudes fibers aligned with 

principal directions with high accuracy. Flow distribution of printed fibers was verified by SEM, which 

showed that approximately 83% of fibers were oriented as intended. Both numerical and experimental 

case study results show that CFRP parts printed by the optimized tool-path achieved approximately 8% 

improvement in structural performance over parts printed at uniform printing direction and showed 180% 

improvement over parts made of Nylon 12, respectively. However, physical experiments show 10% lower 

stiffness responses than those from FE simulations. To figure out this difference, voids and defects were 

characterized through microstructure analysis. In summary, assisted by SO and FEA, a customized 3D 

printing tool-path for CFRP has been developed with three different case studies to verify the proposed 

AM design methodology. 

The proposed methodology can be extended for other materials especially for continuous fiber reinforced 

thermoplastic. Also, with the development of dual extruder system, dual material optimization would be 

an interesting topic in SO step. From the test result of actual application of CFRP engineering parts to a 

ball-milling machine, advantage and disadvantage of 3D printed CFRP parts caused by its brittleness 

were observed. Therefore, controlling the brittleness of CFRP in FFF manufacturing step can be another 

research area. Moreover, to predict its durability more accurately, fatigue tests are required. Due to the 

limitation of current FFF printing system, only in-plane tool-path optimization has been allowed in this 

research. However, if AM with tilted bed is fully developed, it may provide research opportunities for 3D 

tool-path optimization. 
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APPENDIX 

A. Tensile test results –Nlyon 12 

  

  

Figure 7-2 Strain vs stress - specimens printed 45˚ 

Figure 7-1 Strain vs stress - specimens printed 90 
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Figure 7-3 Strain vs stress - sepcimens printed 0˚ 
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B. Matlab codes - Tool-path development 
 

% load Abaqus output file 

A=load('principal direction sheet.csv') 
S11=A(:,3); 
S22=A(:,4); 
S12=A(:,5); 
S_Prin=A(:,1); 
S_Prin=A(:,2); 
for i=1:length(S11); 
Prin_direc(i)=2*S12(i)/(S11(i)-S22(i)); 
end 
Prin_direc_d=radtodeg(atan(Prin_direc)/2); 

  
% extract nodes and elements information from Abaqus input file 
fname = 'tool-path drawing.inp' ; 
fid = fopen(fname,'rt') ; 
S = textscan(fid,'%s','Delimiter','\n'); 
S = S{1} ; 
%% Get the line number of mises  
idxS = strfind(S, 'Node'); 
idx1 = find(not(cellfun('isempty', idxS))); 
idxS = strfind(S, 'Element'); 
idx2 = find(not(cellfun('isempty', idxS))); 
idxS = strfind(S, 'Nset'); 
idx3 = find(not(cellfun('isempty', idxS))); 

  
% pick  nodes  
nodes = S(idx1+1:idx2-1) ; 
nodes = cell2mat(cellfun(@str2num,nodes,'UniformOutput',false))  
% pick elements  
elements = S(idx2+1:idx3(1)-1) ; 
ele = cell2mat(cellfun(@str2num,elements,'UniformOutput',false)) 

  
 % compute X,Y coordinates of element centroids 
node_x=nodes(:,2); 
node_y=nodes(:,3); 
idx_ele=ele(:,1); 
ele_node_1=ele(:,2); 
ele_node_2=ele(:,3); 
ele_node_3=ele(:,4); 
ele_node_4=ele(:,5); 
coordi_1=node_x(ele_node_1(i)); 
coordi_2=node_y(ele_node_1(i)); 
coordi_3=node_x(ele_node_2(i)); 
coordi_4=node_y(ele_node_2(i)); 
coordi_5=node_x(ele_node_3(i)); 
coordi_6=node_y(ele_node_3(i)); 
coordi_7=node_x(ele_node_4(i)); 
coordi_8=node_y(ele_node_4(i)); 
centroid=[(coordi_1+coordi_3+coordi_5+coordi_7)/4 

(coordi_2+coordi_4+coordi_6+coordi_8)/4]; 
radius=nodes(2,2)*1.5; 
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 % compute distance between element centroids 
for i=1:length(S11); 
    for j=1:length(S11); 
    distance(i,j)=sqrt((centroid_x(i)-centroid_x(j)).^2+(centroid_y(i)-

centroid_y(j)).^2); 
    end 
end 
% compute angle direction between elements 
for  i=1:length(S11); 
    for j=1:length(S11); 
        if centroid_x(i)<centroid_x(j)  
            angle(i,j)=acosd((centroid_x(i)-centroid_x(j))/distance(i,j)); 
        end 
        if centroid_y(i)<centroid_y(j) 
            angle(i,j)=atand((centroid_y(i)-centroid_y(j))/(centroid_x(i)-

centroid_x(j))); 
        end 
        if centroid_x(i)<centroid_x(j) & centroid_y(i)<centroid(j) 
            angle(i,j)=acosd((centroid_x(i)-centroid_x(j))/distance(i,j)); 
        end 
    end 
end 

  
Prin_direc_d=Prin_direc_d(:,1); 

  
% compute angle difference between angle directions and principal directions 
 for  i=1:length(S11); 
     for j=1:length(S11); 
         angle_diff(i,j)=angle(i,j)-Prin_direc_d(j);    
    end 
 end 
% determine candidate elements  
 for i=1:length(S11) 
      for j=1:length(S11); 
          if distance(i,j)>=radius 
              angle_diff(i,j)=180; 
          end 
      end 
 end 

  
for i=1:length(S11) 
      for j=1:length(S11); 
          if abs(angle_diff(i,j))<=45 
              angle_row(i,j)=i; 
          end 
          if abs(angle_diff(i,j))>45  
              angle_row(i,j)=0; 
          end 
          if i==j 
              angle_row(i,j)=0; 
          end 
      end 
end 
% take principal stress of candidate elements 
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for i=1:length(S11) 
      for j=1:length(S11); 
          if angle_row(i,j)>0 
             s_can(i,j)=abs_S_Prin(i); 
          end 
          if angle_row(i,j)==0 
             s_can(i,j)=0; 
          end 
      end 
end 

  
% determine elements to be connected 
for i=1:length(S11) 
      for j=1:length(S11); 
          if j==1 
              smax=max(s_can); 
          end 
      end 
end 
smax=transpose(smax); 

  
% connect elements to create a tool-path 
ele_sel=zeros(1,50); 
for i=1:length(S11) 
      for j=1:length(S11); 
          if smax(i)==abs_S_Prin(j) 
              ele_sel(i)=j; 
          end         
      end 
end 
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C. CFRP-nylon material properties 
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D. Nylon 12 material properties 
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E. SEM images of Nylon 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-4 SEM image of a sample printed by 0.4mm nozzle 

Figure 7-5 SEM image of a sample printed by 0.4mm nozzle 



114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-6 SEM image of a sample printed by 0.6mm nozzle 

Figure 7-7 SEM image of a sample printed by 0.6mm nozzle 
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Figure 7-8 SEM image of a sample printed by 0.8mm nozzle 

Figure 7-9 SEM image of a sample printed by 0.8mm nozzle 
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F. Matlab codes - Fiber orientation tensor computation  
 

 
% Error tolerance for fibre cross sections (check that they are elliptical) 
err_tol=0.8; 

  
% Find image files 
img_files=glob('*.tif'); 

  
img1=imread(img_files{1}); 

  
% cropping 
cropping_pixels=[10 10 10 10]; %top bottom left right 
img1=img1(cropping_pixels(1):end-cropping_pixels(2),cropping_pixels(3):end-

cropping_pixels(4)); 

  
figure(1) 
imshow(img1) 

  
% convert to black and white 
level1=graythresh(img1); 
imgbw1=im2bw(img1,1.6*level1); 
figure(2) 
imshow(imgbw1) 

  
imgbw1=bwareaopen(imgbw1,500); 
figure(3) 
imshow(imgbw1) 

  
% identify fiber cross sections 
cc1=bwconncomp(imgbw1); 

  
% visualize fiber cross sections 
labeled1=labelmatrix(cc1); 
RGB_label1=label2rgb(labeled1,@spring,'c','shuffle'); 
figure(4) 
imshow(RGB_label1) 

  
% compute cross sectional area, find the centroid, major axis length, minor 
% axis length, and in-plane orientation of cross section 
fibre_data1=regionprops(cc1,'Area','Centroid','MajorAxisLength','MinorAxisLength','

Orientation'); 

  
% save each characteristic in each cross section separately 
area1=[fibre_data1.Area]; 
centroid1=[fibre_data1.Centroid]; 
major1=[fibre_data1.MajorAxisLength]; 
minor1=[fibre_data1.MinorAxisLength]; 
orientation1=[fibre_data1.Orientation]*pi/180; % convert from degrees to radians 

  
% check that each cross section is roughly elliptical using the cross 
% sectional area and major/minor diameters 
j=1; 
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for i=1:length(area1) 
    abs((area1(i)-pi*major1(i)*minor1(i))/(pi*major1(i)*minor1(i))); % remove 

suppression semicolon to see the relative area for elliptical shape printed to the 

command window, useful for setting the error tolerance above (line 17) 
    if abs((area1(i)-pi*major1(i)*minor1(i))/(pi*major1(i)*minor1(i)))<err_tol 
        good_fibre_data1(j,:)=[area1(i) centroid1(:,2*i-1) centroid1(:,2*i) 

major1(i) minor1(i) orientation1(i) acos(minor1(i)/major1(i))]; 
        good_fibre_data1_indices(j)=i; 
        j=j+1; 
    end 
end 

  
% Redraw figure 4 showing only fibers that have cross sections that are 
% approximately elliptical 
cc1B.Connectivity=cc1.Connectivity; 
cc1B.ImageSize=cc1.ImageSize; 
cc1B.NumObjects=length(good_fibre_data1_indices); 
for index_cc1=1:length(good_fibre_data1_indices) 
    

cc1B.PixelIdxList{index_cc1}=cc1.PixelIdxList{good_fibre_data1_indices(index_cc1)}; 
end 
labeled1B=labelmatrix(cc1B); 
RGB_label1B=label2rgb(labeled1B,@spring,'c','shuffle'); 
figure(5) 
imshow(RGB_label1B) 

  
% orientation tensor diagonal for image 1 (only need one cross section) 
% generate plot of tensor components  
% this really needs to be parameterized... 
size_img1=size(img1); 
for thickness_index=1:Number_sections_thickness 
    k{thickness_index}=1; 
    for i=1:length(good_fibre_data1) 
        if 

good_fibre_data1(i,3)<=size_img1(1)*thickness_index/Number_sections_thickness && 

good_fibre_data1(i,3)>=size_img1(1)*(thickness_index-1)/Number_sections_thickness 
            in_plane{thickness_index}(k{thickness_index},1)=good_fibre_data1(i,6); 
            out_plane{thickness_index}(k{thickness_index},1)=good_fibre_data1(i,7); 
            k{thickness_index}=k{thickness_index}+1; 
        end 
    end 
    

p{thickness_index}=[sin(out_plane{thickness_index}).*cos(in_plane{thickness_index}) 

sin(out_plane{thickness_index}).*sin(in_plane{thickness_index}) 

cos(out_plane{thickness_index})]; 

  
    % second order orientation tensor  
    for i=1:3 
        for j=1:3 
            

a2{thickness_index}(i,j)=sum(1./sin(abs(out_plane{thickness_index})).*p{thickness_i

ndex}(:,i).*p{thickness_index}(:,j))./sum(1./sin(abs(out_plane{thickness_index}))); 
        end 
    end 
end 
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for thickness_index=1:Number_sections_thickness 
    a2_11(thickness_index)=a2{thickness_index}(1,1); 
    a2_22(thickness_index)=a2{thickness_index}(2,2); 
    a2_33(thickness_index)=a2{thickness_index}(3,3); 
end 

  
% Plot 2nd order orientation tensor diagonal  
figure(6) 
plot(linspace(1,Number_sections_thickness,Number_sections_thickness)/Number_section

s_thickness,a2_11,... 
    

linspace(1,Number_sections_thickness,Number_sections_thickness)/Number_sections_thi

ckness,a2_22,... 
    

linspace(1,Number_sections_thickness,Number_sections_thickness)/Number_sections_thi

ckness,a2_33) 
title('Fibre orientation tensor components’) 
ylabel('Tensor component') 
legend('x-component','y-component','z-component') 
grid on 
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G. Matlab image analysis process for fiber orientation computation 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 7-10 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x)  

Figure 7-11 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x)  
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Figure 7-12 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x)  

Figure 7-13 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x)  
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Figure 7-14 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x)  

Figure 7-15 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-16 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 

Figure 7-17 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-18 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 

Figure 7-19 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-20 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 

Figure 7-21 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-22 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 

Figure 7-23 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-24 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 

Figure 7-25 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-26 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 

Figure 7-27 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-28 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 

Figure 7-29 Fiber orientation computation process of a microscope image (cross-section of 0˚ direction, 20x) 
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Figure 7-30 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-31 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-32 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-33 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-34 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-35 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-36 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-37 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-38 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-39 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-40 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-41 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-42 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-43 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-44 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x)  

Figure 7-45 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-46 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-47 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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Figure 7-48 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 

Figure 7-49 Fiber orientation computation process of a microscope image (cross-section of 90˚ direction, 20x) 
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H. Bending Test Results 

I. 

Figure 7-50 Three points bending test results of the beam printed at Optimized, 0˚, 45˚, and 90˚, 

respectively 
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I. Gear test results 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 7-51 Load vs displacement for the gear printed at the optimized tool-path 

Figure 7-52 Load vs displacement for the CFRP gear printed at ±45˚ 
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Figure 7-53 Load vs displacement for the CFRP gear printed at 0˚ only 

Figure 7-54 Load vs displacement for the Nylon 12 gear printed at optimized tool-path 
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Figure 7-55 Load vs displacement for the CFRP gear after annealing under 140 ˚C 

Figure 7-56 7-57 Load vs displacement for the CFRP gear after annealing under 140˚C 
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J. Strain stress curves of samples printed various nozzle diameters 

 

  

Figure 7-58 Tensile stress vs strain of samples printed by 0.4mm nozzle 

Figure 7-59 Tensile stress vs strain of samples printed by 0.6mm nozzle 
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Figure 7-60 Tensile stress vs strain of samples printed by 0.8mm nozzle 
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K. Gear Force computation 

Definition Equation Value 

Horse power P = 0.75kw  1.006 hp 

Torque 

 

18 kN*mm 

Transmitted force  

 

494.3 N 

Resultant Force 

 

526.0 N 

 

 

 

 

𝐹𝑡 =
2 ∗ 𝑇

𝑑
 

𝐹𝑟 =
𝐹𝑡

𝐶𝑜𝑠(ɵ)
 

𝑇 =
60000 ∗ 𝑃

𝑟𝑝𝑚
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