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ABSTRACT 

Acute and Repeated Effects of Synthetic Cannabinoid Agonism and Cannabinoid Receptor 1 

Positive Allosteric Modulation 

Kristen R. Trexler 

Recent years have seen a rise in the diversity and use of synthetic cannabinoids. 

Currently, there is little known about the effects of specific synthetic cannabinoid compounds. 

As such, little research has been done evaluating the acute and chronic effects of synthetic 

cannabinoid administration or the development of tolerance and withdrawal. The present study 

aimed, in part, to evaluate the acute and repeated effect of a third-generation synthetic 

cannabinoid, AB-FUBINACA. Mice were treated with AB-FUBINACA (0.1-3 mg/kg, i.p.) or 

vehicle and were tested repeatedly in the tetrad battery of assays, which included tests of 

catalepsy, antinociception, hypothermia, and locomotor activity. A second group of mice was 

injected with AB-FUBINACA (3 mg/kg, s.c.) twice daily for 6 days and were tested daily in 

tetrad. On the 6th day, withdrawal was precipitated using the cannabinoid receptor antagonist 

rimonabant (3 mg/kg), and behavior was scored in the somatic signs of withdrawal tests. AB-

FUBINACA exhibited classic acute cannabinoid effects in the tetrad but showed a lack of 

tolerance and cross-tolerance to THC (50 mg/kg, i.p.). Further, precipitated withdrawal from 

AB-FUBINACA was of a much smaller magnitude than what is typical of other phyto- and 

synthetic cannabinoids. 

Another aspect of cannabinoid research that has been largely overlooked is the use of 

assays that are able to detect spontaneous (i.e., abstinence-induced) withdrawal. Previous 

research has demonstrated that spontaneous withdrawal can be detected with certain assays, like 

the somatic signs of withdrawal and tail suspension tests. To determine whether an anhedonia 

test would detect signs of spontaneous withdrawal, mice were trained to consume a sweetened 

condensed milk mixture over 9 days. During the final 6 days of training, mice were injected 

twice daily with THC (10 or 50 mg/kg, s.c.) or vehicle. On the 9th day, injections were stopped 

and mice were tested again at 12h and 36h abstinence. No changes were observed as a result of 

spontaneous withdrawal from THC.  

Despite recent increases in attention to cannabinoid use disorders, there remains a need 

for pharmacological interventions. ZCZ011 is a CB1 positive allosteric modulator that increases 

the effect of CB1 agonists bound at the orthosteric site. We hypothesized that ZCZ011 

significantly attenuates behavioral signs of cannabinoid withdrawal. Mice were administered ∆9-

THC (10 mg/kg, b.i.d., s.c.) or vehicle for six days, then withdrawal was precipitated using 

rimonabant (3 mg/kg, i.p.). As previously reported, ∆9-THC withdrawal induced paw tremors 

and head twitches. Acute ZCZ011 (≥10 mg/kg, i.p.) significantly attenuated paw tremors and 

head twitches. ZCZ011 (≥10 mg/kg, i.p.) was also administered to mice subjected to spontaneous 

THC withdrawal. ZCZ011 reduced spontaneous THC withdrawal-induced head twitches and 

paw tremors. An additional group of mice was injected with ZCZ011 (10 mg/kg, i.p.) or one of 

its enantiomers, ZCZ011 A or ZCZ011 B prior to precipitated THC withdrawal. Both ZCZ011 

10 mg/kg or either enantiomer alone attenuated paw tremors and head twitches. 
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1. Introduction

1.1 Endocannabinoid system 

Cannabinoids are molecules that (1) bind to and activate the cannabinoid (CB) receptors, 

or (2) share structural homology with known CB receptor ligands (Mechoulam & Parker, 2012). 

There are two cannabinoid G-protein coupled receptors, i.e., Cannabinoid receptor subtype 1 

(CB1) and Cannabinoid receptor subtype 2 (CB2), that affect intracellular signaling through the 

inhibition of adenylate cyclase (Howlett, 1985). CB1 is expressed primarily in the central 

nervous system, on GABAergic and glutamatergic neurons (Jacob et al., 2009; Steiner & 

Wotjak, 2008), whereas CB2 is expressed primarily in the periphery and also commonly 

expressed on glial cells and in the brainstem  (Finn, 2010). CB1 agonism is associated with 

psychoactive effects, including mild euphoria, relaxation, motor function disruption, and 

analgesia, typically reported during cannabis use. Conversely, CB2 is implicated in anti-

inflammatory and immunosuppressive effects that contribute to analgesia, which is a decrease in 

pain response (Lombard, Nagarkatti, & Nagarkatti, 2007). Both exogenous (i.e., externally 

administered) and endogenous (i.e., internally produced) cannabinoids bind to CB1 and CB2 

receptors with moderate to high affinity (Lombard et al., 2007; Singh et al., 2012). 

Activation of cannabinoid receptors leads to inhibition of adenylyl cyclase and the 

activation of mitogen-activated protein kinases, which ultimately cause inhibition of responses to 

stimuli that would normally depolarize the cell, and can decrease neurotransmitter release.  

(Freund, Katona, & Piomelli, 2003; Howlett, 2005; Mackie, 2008). Simultaneously, cannabinoid 

receptor activation closes N- and P/Q-type calcium (Ca2+) ion channels (Flores, Maldonado, & 

Berrendero, 2013; Steiner & Wotjak, 2008), and, due to freed Gβ/γ subunits and reduced cAMP, 

inward rectifying potassium (K+) channels are also activated (Deadwyler, Hampson, Mu, Whyte, 

& Childers, 1995; Mu, Zhuang, Kirby, Hampson, & Deadwyler, 1999). Together, these effects 

contribute to hyperpolarization of the presynaptic neuron, which inhibits neurotransmitter release 

and decreases excitatory post-synaptic potentials in the postsynaptic neuron.  

1.1.1 Phytocannabinoids 

Phytocannabinoids are compounds derived from the Cannabis plant. Over 60 different 

cannabinoids have been identified in cannabis, including the well-known and most tested Δ9-

tetrahydrocanabinol (THC) (Gaoni & Mechoulam, 1964). In addition to mild euphoria, THC can 
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cause cognitive deficits, such as memory loss and altered time perception (Mechoulam & Parker, 

2012; Morgan, Schafer, Freeman, & Curran, 2010).  

1.1.2 Endocannabinoids  

Endogenously produced cannabinoids (i.e., endocannabinoids) are produced in humans 

and are evolutionarily well preserved across vertebrates (Fisar, 2009). The two well-established 

endocannabinoids are 2-arachidonoyl glycerol (2-AG) and N-arachydonoylethanolamine, which 

is also known as anandamide for the Sanskrit word “ananda” meaning “bliss” (Devane et al., 

1992; Mechoulam et al., 1995). Endocannabinoid levels are comparable in most tissues except in 

the brain, where 2-AG is present in 100-fold higher levels than anandamide (Long et al., 2009). 

Both endocannabinoids bind to and activate CB1 and CB2 (Lu & MacKie, 2016; Mechoulam & 

Parker, 2012). Unlike neurotransmitters that are produced in the endoplasmic reticulum and 

stored in vesicles, endocannabinoids are synthesized de novo from lipid precursors, and rapidly 

released on demand.  

Endocannabinoid metabolism is tightly regulated by synthetic and catabolic enzymes. 

Although there is some controversy, a generally accepted synthetic pathway uses N-

Arachidonoyl-phosphatidylethanolamine specific phospholipase D (PLD) and phospholipase C 

(PLC) to convert N-Arachidonoyl-phosphatidylethanolamine (NArPE) into anandamide. 2-AG 

synthesis is more clearly delineated. 2-AG synthesis is more clearly delineated. Diacylglycerols 

(DAGs) are synthesized by diacylglycerol lipases α and β into 2-AG (Di Marzo, 2009; Flores, 

Maldonado, & Berrendero, 2013; Howlett, 2005). Anandamide is primarily catabolized by fatty 

acid amide hydrolase (FAAH) while 2-AG is primarily catabolized by monoacylglycerol lipase 

(MAGL), and the remaining ~15% is catabolized by the enzymes ABHD6, ABHD12, and 

cyclooxygenase (Blankman, Simon, & Cravatt, 2007; Cravatt et al., 1996; McKinney & Cravatt, 

2005). Chemical inhibition or genetic deletion of either FAAH or MAGL selectively increases 

anandamide or 2-AG levels, respectively. Enzymatic regulation of endocannabinoids by FAAH 

and MAGL is extremely efficient, effectively nullifying the exogenous administration of 

endocannabinoids. Thus, to study effects of the endocannabinoids in vivo, several compounds 

have been synthesized that act to selectively inhibit the activity of these catabolic enzymes, 

thereby indirectly increasing brain levels of anandamide or 2-AG.  

1.1.3 Synthetic cannabinoids 
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The term “synthetic cannabinoid” technically refers to any lab-produced compound that 

affects CB1 or CB2 function and includes receptor agonists and antagonists, inhibitors of 

enzymes mentioned in the previous paragraph, as well as allosteric modulators, which are 

detailed in section 1.4 (Hess, Schoeder, Pillaiyar, Madea, & Müller, 2016). Colloquially, 

"synthetic cannabinoid" refers to a CB1 or CB2 agonist, and for the remainder of this document 

such compounds will be referred to as synthetic cannabinoids. These compounds were originally 

synthesized for research purposes, such as receptor/ligand interaction studies, or to selectively 

agonize one receptor without affecting the other (Banister, Moir, et al., 2015; Banister, Stuart, et 

al., 2015; Huffman et al., 2005). Once the chemical structures of synthetic cannabinoids were 

published, clandestine chemists hijacked the compounds and produced so-called “safe” 

alternatives to cannabis (Jarbe & Raghav, 2016).  

Though some individuals ingest powdered forms of synthetic cannabinoids, the most 

common route of administration is inhalation of smoked or vaporized plant material treated with 

one or more of the synthetic cannabinoids (Seely, Lapoint, Moran, & Fattore, 2012). Solutions of 

one or more synthetic cannabinoids, in a solvent, are often sprayed onto inert plant material, 

including blue and pink lotus, skull caps, or rose hips, but may also be applied to plant material 

containing psychoactive alkaloids (de Havenon, Chin, Thomas, & Afra, 2011; Dresen et al., 

2010; EMCDDA, 2009; Seely et al., 2012). Sold under the broad umbrella term “Spice,” these 

synthetic cannabinoid preparations are labeled "not for human consumption" to avoid regulation 

by the Food and Drug Administration (Brents, Zimmerman, Saffell, Prather, & Fantegrossi, 

2013), despite their true intended use. 

Synthetic cannabinoids are broadly categorized into 7 families, based on chemical 

structure: cyclohexyl-substituted phenols (e.g., CP 47,497), naphtholindoles (e.g., AM-2201, 

JWH-018), benzoylindoles (e.g., 6 APB), tetramethylcyclopropylindoles (e.g.,UR-144, XLR 11), 

adamantoylindoles (e.g., AKB48), indazole carboxamides (e.g.,AB-FUBINACA, AB-PINACA), 

and quinolinyl esters (e.g., PB22) (Canazza et al., 2016; Ford, Tai, Fantegrossi, & Prather, 2017; 

Hess et al., 2016). Though their structures differ, many synthetic cannabinoids act as full 

agonists at CB1, and in some cases CB2 (Fantegrossi, Moran, Radominska-pandya, & Prather, 

2014; Ford et al., 2017; Hess et al., 2016). Whereas THC is a partial agonist of CB1 and CB2, 

synthetic cannabinoids often have a relatively lower Ki value, indicating higher binding affinity, 

and thus synthetic cannabinoids induce similar cannabimimetic effects to THC, but at relatively 
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lower doses (Hess et al., 2016; Wiley et al., 2015). In the “tetrad” battery of cannabinoid 

behavioral and physiological effects, both first generation (e.g., JWH-018, CP55,940) and later 

generation (e.g., AB-FUBINACA, AB-CHMINACA) synthetic cannabinoids induce catalepsy, 

antinociception, and hypothermia in mice (Paronis, Nikas, Shukla, & Makriyannis, 2012; Wiley 

et al., 2015). See Table 1 for examples of generational structure differences. Unlike THC, which 

has dose-dependent sedative effects in rodents, synthetic cannabinoids have inconsistent effects 

on locomotor activity. For instance, acute high and low dose AB-FUBINACA administration 

decreased locomotor activity in rats in one study (Kevin et al., 2017), but only high doses 

induced immobility in two other studies that used mice (Gatch & Forster, 2015; Schreiber et al., 

2018).  

Table 1. Structures of representative synthetic cannabinoids by generation. 

Generation Compound Structure Source 

First WIN55-212 

 

Banister, Stuart, 

et al., 2015 

 CP55,940 

 

Hess et al., 2016 

 JWH-018 

 

Canazza et al., 

2016 

 

Second AM2201 

 

Carlier et al., 

2018 

 6 APB 
 

Chan, Wood, 

Hudson, & 

Dargan, 2013 

Third AB-FUBINACA 

 

Castaneto et al., 

2014 
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While there are many issues associated with human synthetic cannabinoid use, one of the 

primary concerns is their ever-increasing diversity and the lack of regulation surrounding their 

creation and distribution. As of 2015, 160 independent synthetic cannabinoid compounds have 

been identified in samples obtained from shops and over the internet (EMCDDA 2016). 

Research into synthetic cannabinoids has expanded from exploring primarily pharmacological 

and behavioral outcomes to include studies of routes of administration, metabolism, and human 

patterns of synthetic cannabinoid use (Banister, Moir, et al., 2015; Chase et al., 2016; Fantegrossi 

et al., 2014; Lefever et al., 2017; Su, Seely, Moran, & Hoffman, 2015; Wiebelhaus et al., 2012). 

Though many synthetic cannabinoids are assumed to have abuse potential, little work has 

evaluated the development of tolerance and withdrawal of the newest families of cannabinoids. 

Further, much of the research done using synthetic cannabinoids rely primarily on physiological 

and gross behavioral outcomes (Banister, Moir, et al., 2015; Gatch & Forster, 2015; Kevin et al., 

2017), with little attention given to dependence and withdrawal effects. 

 

1.1.3.1 AB-FUBINACA 

AB-FUBINACA is a member of the indazole carboxamide family of synthetic 

cannabinoids that also includes AB-CHMINACA and AB-PINACA, both of which have been 

linked to deaths in the United States (Trecki, Gerona, & Schwartz, 2015). AMB-FUBINACA 

was responsible for a recent series of overdoses in Connecticut. In August of 2018 at least 71 

people presented to emergency services with loss of consciousness, vomiting and nausea, and 

lethargy but displayed no physiological abnormalities (https://www.cbsnews.com/news/new-

haven-overdoses-connecticut-new-haven-green-k2-synthetic-marijuana). This absence of AMB-

FUBINACA induced physiological effects is unusual, as most synthetic cannabinoids induce 

 AKB48 

 

Canazza et al., 

2016 

 5F-PB-22 

 

Diao et al., 2016 
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tachycardia, bradycardia, and/or elevated blood pressure in humans (Chinnadurai, Shrestha, & 

Ayinla, 2016; Davidson et al., 2017; Mir, Obafemi, Young, & Kane, 2011). In contrast, AB-

FUBINACA induces bradycardia in rats (Banister, Moir, et al., 2015). This interspecific 

difference is likely due to differences in dosing, or perhaps metabolism. 

AB-FUBINACA is one of the better characterized of the new generation of indazole 

carboxamide synthetic cannabinoids. AB-FUBINACA induces hypothermia and decreases 

locomotor activity in both mice (Schreiber et al., 2018) and rats (Banister, Moir, et al., 2015; 

Kevin et al., 2017) and does not affect nociception in mice (Schreiber et al., 2018) although the 

lack of antinociception has not been probed in rats. It is somewhat surprising that no data are 

available on AB-FUBINACA effects on catalepsy, given that catalepsy is a classic cannabinoid 

effect (Wiley et al., 2015). In a drug discrimination task, AB-FUBINACA fully substitutes for 

THC, although it also depresses response rate, with incomplete cross-tolerance between the two 

cannabinoids (Gatch & Forster, 2015).  

Cannabinoids have well-established effects on emotion in people, as well as in 

experimental animal models. AB-FUBINACA is similar to THC in that it elicits anxiolytic-like 

effects in low doses in the elevated plus maze, but it diverges from THC by producing 

anxiogenic-like effects in high doses, in mice (Schreiber et al., 2018). In addition, AB-

FUBINACA decreases struggling in the forced swim test at a low dose (Schreiber et al., 2018), 

which is generally indicative of a depressive-like effect, but increases struggling at a high dose, 

which is generally interpreted as anti-depressive-like or manic effect.  

1.2 Human synthetic cannabinoid use 

As mentioned in section 1.1.3, synthetic cannabinoids were initially developed for 

therapeutic purposes (Huffman et al., 2005) although many have been hijacked for recreational 

use. It is because of this unplanned human use and unpredictable negative effects that synthetic 

cannabinoids have gained such recent attention. Yet, it is important to keep in mind that, some 

synthetic cannabinoids have proven effective in attenuating disease states. For instance, JWH-

133, a selective CB2 agonist, and WIN55,212-2, a nonselective CB1 and CB2 agonist, both 

inhibit breast tumor growth and metastasis in vitro and in vivo (Olea-Herrero, Vara, Malagarie-

Cazenave, & Díaz-Laviada, 2009; Qamri et al., 2009). The therapeutic use of synthetic 

cannabinoids has been severely limited, however, by the presence of side effects in preclinical 

models, including abuse potential and seizure (Cooper, 2016; de Havenon et al., 2011; Schaefer 
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et al., 2013). Thus it is not surprising that, as of October 2018, 1,478 poison control calls 

regarding synthetic cannabinoid use have been reported (“American Assoication of Poison 

Control Centers: Synthetic Cannabinoids,” 2018). The following sections will focus on the acute 

and chronic effects of synthetic cannabinoid administration, with an emphasis on the effects in 

humans, because much of the research and literature on these drugs is effectively playing catch-

up with clinical reports of what is being used.  

1.2.1 Acute use 

Recreational use of synthetic cannabinoids has increased dramatically in recent years, and 

with increased use, there has been a concomitant increase in emergency department visits. Few 

assays currently detect synthetic cannabinoids in blood or urine (Islam et al., 2018; Muehlethaler, 

Leona, & Lombardi, 2016; Sobolevsky, Prasolov, & Rodchenkov, 2010), an issue that is 

compounded by the ever-changing synthetic cannabinoids used in spice compounds. Thus, it has 

been difficult to track exactly which synthetic cannabinoid(s) caused a given adverse health 

episode. Even determining the dose ingested can be difficult, because the plant materials often 

have “hot spots,” as a result of uneven distribution, and high inter- and intra-batch variability in 

quality and dose (Frinculescu, Lyall, Ramsey, & Miserez, 2017; Hudson & Ramsey, 2011; 

Marshell et al., 2014; van Amsterdam, Brunt, & van den Brink, 2015). Moreover, of the cases 

where the compounds involved are known, there is often more than one compound present 

(Musshoff et al., 2014). Thus, when evaluating the health outcomes of synthetic cannabinoids, 

they are often grouped together, irrespective of drug family. Regardless of this caveat, synthetic 

cannabinoids clearly differ from cannabis in their effects.  

 In humans, acute synthetic cannabinoid use can cause symptoms including: agitation, 

anxiety, hallucinations, tachycardia, bradycardia, hypotension, diaphoresis, diarrhea, vomiting, 

myocardia ischemia, and rhabdomyolysis (Benford & Caplan, 2011; Besli, Ikiz, Yildirim, & 

Saltik, 2015; Bhanushali, Jain, Fatima, Leisch, & Thornley-Brown, 2013; Clark, Georgekutty, & 

Berul, 2015; Durand, Delgado, Parra-Pellot, & Nichols-Vinueza, 2015). Several deaths and 

serious injuries have been reported following acute synthetic cannabinoid use, including self-

mutilation and several suicides, most of which have been attributed to hallucinations (Gay, 2010; 

Meijer, Russo, & Adhvaryu, 2014; Patton et al., 2013; Thomas, Kloner, & Rezkalla, 2014; 

Trecki et al., 2015). Psychosis induced by synthetic cannabinoid use is so common that some 

researchers have proposed referring to it as “spiceophrenia” (Papanti et al., 2013). In a study that 
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retroactively reviewed emergency room presentations from 16 different locations across Europe, 

approximately 15% patients presenting with psychosis reported using synthetic cannabinoid 

products (Vallersnes et al., 2016). However, these self-report measures are hampered by the 

inability of users to identify which specific drug(s) they may have ingested (again, spice products 

do not list ingredients), as well as polydrug use.  

The acute hallucinogenic effects of synthetic cannabinoids may be explained by their 

indirect effects on dopamine and serotonin, via GABA and glutamate modulation. For example, 

JWH-018 increases dopamine in the nucleus accumbens in a manner similar to schizophrenia, 

however, this effect is likely achieved by modulating glutamate and GABA, rather than acting 

directly on dopamine (El Khoury, Gorgievski, Moutsimilli, Giros, & Tzavara, 2012; Fantegrossi, 

Wilson, & Berquist, 2018). Additionally, synthetic cannabinoids can increase the formation of 

5HT2A-DA2 heterodimers in the prefrontal cortex in rats, which has been implicated as a possible 

mechanism for the positive symptoms of schizophrenia (Franklin & Carrasco, 2012). Thus, the 

presence of psychosis and hallucinations may be explained by synthetic cannabinoid interactions 

with dopamine and serotonin.  

 A particularly dangerous, yet poorly understood, side effect of acute synthetic 

cannabinoid use is seizure. Seizures induced by synthetic cannabinoid use may occur 

immediately (i.e., within minutes of use) or after a delay of several hours or even days (de 

Havenon et al., 2011; Schaefer et al., 2013). Although the physiological mechanism(s) are 

unknown, it is hypothesized that off-target effects, lack of quality control, toxicity (absence of 

mitigating phytocannabinoids and endocannabinoids), ligand bias, or active 

metabolites/degradants are likely contributing factors (Chimalakonda et al., 2012; Pertwee, 

2009). Further complicating mechanistic studies, the metabolites of many synthetic cannabinoids 

are active and bind to and activate CB receptors at similar affinities to the parent compound 

(Erratico et al., 2015; Fantegrossi et al., 2014). This is in contrast to THC, which has only one 

psychoactive metabolite, 11-OH-THC (Huestis, 2007; Matsuda, Lolait, Brownstein, Young, & 

Bonner, 1990).    

1.2.2 Chronic use  

Little is known about the effects of chronic synthetic cannabinoid administration. One 

case report indicates that repeated synthetic cannabinoid use may lead to relatively long-term 

psychosis (Durand et al., 2015). It is plausible that 5HT2A receptors mediate the psychogenic 
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effects of synthetic cannabinoids, because their upregulation in schizophrenia, and following 

repeated synthetic cannabinoid use, is mediated through CB1 activation (Fantegrossi et al., 2018). 

A more common effect of chronic drug use is dependence. There is evidence, in both preclinical 

models and from case reports, that repeated use of synthetic cannabinoids induces tolerance and 

dependence, as evidenced by withdrawal following cessation of use (Aceto, Scates, & Martin, 

2001; Nacca et al., 2013; Sampson, Bedy, & Carlisle, 2015; Trexler et al., 2018). The potential 

for dependence and withdrawal presents a major problem. Currently, cannabis is the most 

commonly used federally illicit substance for which individuals seek treatment, and there are few 

effective options for its treatment (Substance Use and Mental Health Services Administration, 

2015).  

1.3 Cannabis Use Disorder 

In addition to the acute health risks of cannabis use, such as increased risk of vehicular 

accidents (Hartman & Huestis, 2013), chronic use induces varying degrees of dependence. In 

clinical populations, cannabis dependence, also referred to as Cannabis Use Disorder (CUD), is 

now routinely tracked by health care professionals. Although only 2-6% of users are estimated to 

experience some level of CUD, the overall number of people with some level of CUD is 

expected to grow as cannabis becomes more widely available (Hasin et al., 2016). CUD is most 

often characterized by the presence of withdrawal symptoms following cessation of drug use.  

Withdrawal symptoms of CUD vary across individuals, but typically include anxiety, 

depression, sleep disturbances, and can include somatic symptoms, including gastric 

disturbances and headache (American Psychiatric Association, 2013). The presence of 

cannabinoid withdrawal symptoms can lead to relapse after cessation (Budney, Vandrey, 

Hughes, Thostenson, & Bursac, 2008; Haney et al., 2013). Cognitive behavioral therapies have 

seen modest short-term success in reducing CUD, with only 19-29% of individuals maintaining 

abstinence at a 12-month follow up (Budney, Vandrey, Hughes, Moore, & Bahrenburg, 2007; 

Ramesh & Haney, 2015). Unlike other commonly abused drugs, like opioids or nicotine, there 

are currently no FDA approved pharmacological therapies to relieve cannabinoid withdrawal 

symptoms (Allsop, Lintzeris, Copeland, Dunlop, & McGregor, 2015; Mason, Mustafa, Filbey, 

Brown, & Mason, 2016).  
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Presently, pharmacological treatments for CUD have focused on its symptoms (e.g., 

anxiety and depression) or oral administration of THC. For instance, anti-depressant and anti-

anxiety medications that act on noradrenergic, serotonergic and GABAergic targets have been 

used to treat specific aspects of withdrawal, but are not effective in attenuating withdrawal as a 

whole (Brezing & Levin, 2017). Several studies have attempted to treat cannabis withdrawal by 

administering THC or dronabinol (i.e., synthetically produced Δ9-THC, brand name Marinol), 

which were unsuccessful at preventing relapse, but did relieve depression associated with 

withdrawal (Haney et al., 2008, 2004). Combinations of cannabinoid and non-cannabinoid 

therapies have been effective in attenuating some symptoms of withdrawal, however,  they 

enhance other symptoms, like withdrawal-induced anorexia and sedation (Haney et al., 2008; 

Levin et al., 2016). 

The growing popularity of synthetic cannabinoids, coupled with their unpredictably 

psychogenic effects, raises concerns about the potential for dependence. Many individuals 

initiate synthetic cannabinoid use under the age of 25 and have a previous history of using 

cannabis (Monte et al., 2017; Morean, Kong, Camenga, Cavallo, & Krishnan-Sarin, 2015). 

Individuals who initiate cannabis use earlier in life are more likely to develop CUD (Budney et 

al., 2007). Thus, while the long-term effects of synthetic cannabinoid use are still largely 

unknown, case reports indicate that the withdrawal syndrome is similar to withdrawal from 

cannabis, but may be more severe, in one case producing multiple seizures on multiple cessation 

attempts (Nacca et al., 2013; Sampson et al., 2015). The growing, world-wide use of synthetic 

cannabinoids highlights the need for effective pharmacological interventions for cannabinoid 

dependence. 

1.4 Positive CB1 allosteric modulation  

An exciting, recently developed research tool that has shown promise in preclinical 

models is CB receptor allosteric modulation. Positive allosteric modulators (PAMs) bind to the 

allosteric (i.e., non-orthosteric) sites of receptors, and act to increase the efficacy and/or affinity 

of orthosteric ligands (Kenakin, 2013). Because they bind to allosteric site(s), rather than the 

orthosteric site, CB1 PAMs represent an alternative approach for treating cannabinoid-related 

disorders (Burford, Traynor, & Alt, 2015; Ross, 2007; Figure 1). For example, the synthetic CB1 

PAM, GAT211, is antinociceptive in acute mechanical and neuropathic pain models, but does 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

11 
 

not elicit cannabimimetic effects in mice (Slivicki et al., 2017). Our own data indicate that the 

CB1 PAM ZCZ011 attenuates THC withdrawal, without inducing cannabimimetic side effects, 

by increasing efficacy or affinity of endocannabinoids (Trexler, Eckard, & Kinsey, 2019).   

The present studies evaluated the behavioral effects of acute and repeated administration 

of a new generation of synthetic cannabinoid, AB-FUBINACA, and have evaluated both 

ZCZ011 and its enantiomers as therapeutic targets for THC withdrawal. The goals of these 

studies were to: 1. evaluate acute and chronic effects of AB-FUBINACA in the classic 

cannabinoid tetrad battery; 2. Evaluate the utility of anhedonia as a measure of spontaneous THC 

withdrawal; and 3. determine the utility of the positive allosteric modulator ZCZ011 and its 

enantiomers in attenuating THC withdrawal.  

2. Methods 

2.1 Animals 

Adult male and female C57BL/6J mice (N=589) (The Jackson Laboratory; Bar Harbor, ME) 

were group housed (4-5 per cage) in Polysulfone plastic cages with food and water available ad 

libitum. Mice were housed in a single temperature (20-22°C) and humidity (50 ± 5%) controlled 

room. Mice were kept on a 12:12 h light/dark cycle and were randomly assigned to each 

treatment group, such that each cage contained mice from at least two different treatment groups 
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(e.g., no cage contained only AB-FUBINACA-treated mice). Experiments that used male and 

female mice were stratified by sex before random assignment. All experiments were carried out 

by trained technicians who were blinded to treatment conditions. The Animal Care and Use 

Committee at West Virginia University approved all experimental protocols prior to the start of 

any experimental manipulation. 

 

2.2 Drugs 

 The cannabinoid receptor agonists AB-FUBINACA, ∆9-THC, JWH-018, and the 

selective CB1 receptor antagonist rimonabant (SR141716A) were generously provided by the 

National Institute on Drug Abuse (NIDA) Drug Supply Program (Bethesda, MD). ZCZ011 

was purchased from Axon Medchem (Reston, VA) or provided by a collaborator (Dai Lu, 

Texas A&M College of Pharmacy) who also provided the ZCZ011 racemates. All drugs were 

dissolved in a vehicle composed of 5% ethanol, 5% Kolliphor EL (Sigma-Aldrich, St. Louis, 

MO), and 90% normal saline (Kinsey & Cole, 2013). All solutions were warmed to room 

temperature before administration at a volume of 10 µl/g body mass.  

2.2.1 Precipitated withdrawal paradigm: Mice were weighed daily and injected subcutaneously 

(s.c.) with AB-FUBINACA (1 or 3 mg/kg) or vehicle every 12 h for 6 days, as described 

previously (Falenski et al., 2010; Schlosburg et al., 2009; Trexler et al., 2018). On the sixth day, 

all mice received a final injection of AB-FUBINACA or vehicle. After 30 min, mice received an 

intraperitoneal (i.p.) injection of rimonabant (3 mg/kg) (Lichtman, Fisher, & Martin, 2001; 

Trexler et al., 2018) to precipitate withdrawal. Control mice received a vehicle injection on test 

day.  

2.2.2 Spontaneous withdrawal paradigm: Mice were weighed daily and injected subcutaneously 

(s.c.) with either THC (10 mg/kg) or vehicle every 12 h for 6 days. Behavioral assessment in the 

anhedonia assay was conducted 36 h after the final injection. 

 

2.3 Behavioral Assessments 

2.3.1 Tetrad: The “Billy Martin tetrad” is a well characterized battery of four assays used to 

evaluate the effects of cannabinoid agonists (Kinsey & Cole, 2013; Lichtman et al., 2001; 

Schlosburg et al., 2010). It consists of: catalepsy, antinociception, core body temperature, and 

locomotor assessment. Catalepsy was assessed by gently laying the forepaws of individual mice 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

13 
 

over bar 3 cm above the benchtop. Total latency to move one or both forepaws off the bar was 

recorded, with a maximum cutoff of 60 s (Long et al., 2009). Antinociception was measured via 

immersing the distal tip of the tail (i.e., the last 1 cm) into a 56°C water bath (Falenski et al., 

2010). Latency to remove the tail from the water was recorded, with a maximum cutoff of 10 s. 

Hypothermia was assessed by taking rectal temperature using a micro probe thermocouple 

thermometer designed for use with mice (BAT-12, Physitemp Instruments Inc., Clifton, NJ, 

USA). Spontaneous locomotor activity was measured by placing individual mice into an empty 

test chamber (30 cm W x 40 cm L x 16 cm H) fitted with an overhead video camera, and 

locomotor activity was scored using ANY-maze video tracking software (Stoetling, Wool Dale, 

IL) for 5 min. In cases where mice were repeatedly tested a modified tetrad was used which 

includes only catalepsy, antinociception and hypothermia assessments, as mice habituate to 

locomotor testing. 

 

2.3.2 Somatic signs testing: Somatic signs of withdrawal were measured as described previously 

(Trexler et al., 2018). Each mouse was placed into an empty, plastic test chamber (20 cm W x 20 

cm L x 15 cm H) inside a sound-attenuating chamber outfitted with a fan and white LED 

lighting. The apparatus had three clear sides and one mirrored side that faced a video camera to 

allow for observation of behavior when the mouse faced away from the camera.  

 Mice were habituated to the test apparatus following final AB-FUBINACA or vehicle 

injection for 30 min and were then removed and injected with rimonabant or vehicle, as 

previously reported (Schlosburg et al., 2009). The boxes were cleaned between subjects using a 

paper towel moistened with distilled water. Each mouse was then be placed back into the test 

chambers and video recorded for 60 min.  

 Video files were deidentified and scored by a trained observer. A subset of videos were 

scored by a second observer to ensure inter-rater reliability (r2= .97). The dependent variables 

were incidences of paw tremors and head twitches (i.e., an incidence was scored for ‘paw 

tremor’ when the behavior was observed, not for each individual motion). Incidences were 

considered separate when either (1) another behavior occurred between the incidences, or (2) 

there was at least 1 s between incidences (Schlosburg et al., 2009).  
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2.3.3 Marble Burying Test: Marble burying was measured as previously described (Broekkamp, 

Rijk, Joly-gelouin, & Lloyd, 1986; Trexler et al., 2018), with minor changes. Plastic test 

chambers (30 cm W x 40 cm L x 16 cm H) filled with Teklad Aspen Sani-Chip (7090A; Envigo, 

Indianapolis, IN) wood bedding (5 cm deep) were placed inside sound-attenuating chambers 

outfitted with a fan and LED lighting. A 5 x 5 array of 25 clear glass marbles was laid across the 

top of the leveled bedding. Each mouse was placed into the chamber and allowed to freely 

explore for 20 min. At the end of the test, each mouse was quickly and carefully removed and the 

number of unburied marbles (≥1/3 of the surface showing) was recorded then subtracted from the 

25 total marbles. Marbles were counted by a trained individual. Locomotor activity was 

simultaneously recorded for the duration of the test by a camera mounted on the top of the test 

chamber. The video data was analyzed in real time using ANY-maze (Stoetling, Wool Dale, IL) 

video tracking software.  

 

2.3.4 Tail Suspension Test: The tail suspension test was run as previously described (Kinsey, 

Bailey, Sheridan, Padgett, & Avitsur, 2007; Steru, Chermat, Thierry, & Siman, 1985). Mice were 

suspended by the tail with adhesive tape from a horizontal bar placed approximately 40 cm 

above the benchtop and video recorded for 6 min. The total time the mice actively struggled was 

hand-scored using ANY-maze (Stoetling, Wool Dale, IL) video tracking software. Active 

struggling was operationally defined as one or more legs kicking repeatedly within one second, 

or arching of the spine, but not head movement.  

 

2.3.5 Light/Dark Box: The light/dark box test was conducted as described previously (Crawley & 

Goodwin, 1980). The apparatus consisted of two connected Plexiglas chambers, with a small 

passage hole at floor level. The larger chamber (30 cm W x 40 cm L x 30 cm H) was open and 

brightly lit by an overhead lamp, and the smaller chamber (30 cm W x 20 cm L x 30 cm H) was 

covered and constructed using dark red Plexiglas. Each apparatus was placed within a sound 

attenuating chamber outfitted with a fan and LED lighting. In addition, an infrared LED array 

(IR3, C&M Vision Technologies Inc, Houston, TX), along with a video camera (Logitech HD 

Pro Webcam C920) with the infrared filer removed, were used to visualize the mice. Each mouse 

was placed in the brightly lit area of the apparatus and allowed to freely explore for 5 min. 

Locomotor activity was analyzed in real time using ANY-maze software (Stoetling, Wool Dale, 
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IL). The dependent variables are total time spent in the dark box, latency to enter the dark box, 

time immobile, and total distance traveled. 

 

2.3.6 Open field: The open field test was conducted as previously described (Bailey, Kinsey, 

Padgett, Sheridan, & Leblebicioglu, 2009). The apparatus consisted of a (40 cm W x 40 cm L x 

30 cm H) box made of black Plexiglas with a white floor. Testing was carried out in individual 

sound attenuating chambers fitted with LED lighting, a fan, and an overhead video camera. Mice 

were individually placed into each apparatus and allowed to explore for 10 min. The field was 

divided evenly into 36 squares which were then divided into two zones: the perimeter, which was 

the space within 6 cm of the wall, and the center, which was the remaining 28 x 28 cm area not 

adjacent to the walls (Kinsey et al., 2007). Time spent in the center of the apparatus, distance 

traveled, and time immobile were quantified in real time using ANY-maze software (Stoetling, 

Wool Dale, IL). 

 

 

 

 

 

 

 

 

 

 

 

2.3.7 Novelty-induced hypophagia: Novelty-induced hypophagia testing was conducted as 

previously described (Gamble-George et al., 2013), with minor changes. Mice were single 

housed at least 7 days prior to training. Mice were trained to consume a mixture of 1:3 parts 

sweetened condensed milk and distilled water under dim light from sipper tubes placed in the 

home cage. Training took place for 3 days (Figure 2), or until each mouse achieved a threshold 

of consuming at approximately 1ml of the sweetened condensed milk mixture, whichever was 

longer.  

Figure 2. Time line for novelty-induced hypophagia. 
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On the first test day, mice were randomly assigned and tested for 30 min in either the 

home cage under dim light, or an aversive condition. The dim light condition was the same as the 

training condition (i.e., 2 lux red light in home cage). The aversive condition consisted of a 

novel, empty (i.e., no bedding) cage placed on a white floor and brightly lit (1348 lux). On the 

second test day, mice were tested in the counterbalanced condition. Drug treatments were 

constant across test days. The following day, each mouse was returned to the training condition 

and tested again, but without drug. The dependent variable was the volume of sweetened 

condensed milk consumed. The volume was quantified by subtracting the post-test mass of the 

bottle from the pre-test mass. A drip control (i.e., a bottle placed in a dummy cage that was not 

used for testing) was included with each test group to account to for leakage. The data presented 

represent the total volume consumed, controlled for the drip control for that day.   

(𝑚𝑎𝑠𝑠𝑝𝑟𝑒 − 𝑚𝑎𝑠𝑠𝑝𝑜𝑠𝑡)𝑡𝑒𝑠𝑡 − (𝑚𝑎𝑠𝑠𝑝𝑟𝑒 − 𝑚𝑎𝑠𝑠𝑝𝑜𝑠𝑡)𝑑𝑟𝑖𝑝 𝑐𝑜𝑛𝑡𝑟𝑜𝑙  

 

2.3.8 Anhedonia: Anhedonia is a reduced response to a reinforcer, often modeled as decreased 

drinking of a highly palatable substance. Training was identical to the training phase of novelty-

induced hypophagia. When used to evaluate withdrawal, mice were trained to consume the 

sweetened condensed milk mixture for 3 days prior to drug administration and continued daily 

training through the 6-day drug administration phase. On test day, each mouse was habituated to 

the dim room 35 h following final drug injection and tested 1 h later. Volume of sweetened 

condensed milk consumed was quantified, as in the novelty-induced hypophagia test. 

 

2.4 Statistical analyses 

For experiment 1, data were analyzed using a repeated measures analysis of variance (ANOVA) 

with dose as the within subjects variable. For experiment 2a, precipitated withdrawal data were 

analyzed using a one-way ANOVA. For the spontaneous THC withdrawal experiment, t tests 

were used to evaluate differences at training day 3, dosing days and 36 h abstinence. For 

experiment 3a, one-way ANOVAs were used, with the exception of novelty-induced hypophagia 

data, which were analyzed using a mixed design with day as the within subjects variable and 

drug treatment as the between subjects variable. For experiment 3b, marble burying and tail 

suspension data were analyzed using 2x3 ANOVAs. All other studies in experiment 3b were 

analyzed using one-way ANOVAs. Main or interaction effects were followed by Dunnet (e.g., 
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for dose-response curves, comparing to vehicle treatment) or Bonferonni post hoc tests, as 

appropriate. Differences were considered statistically significant if p < 0.05. 

3. Results 

The experiments in this study were designed to evaluate both acute and chronic effects of 

AB-FUBINACA, withdrawal from THC and attenuation of withdrawal from THC. Experiment 1 

evaluated acute and chronic AB-FUBINACA in the tetrad battery of tests. Experiment 2 

evaluated precipitated withdrawal from AB-FUBINACA. Finally, Experiment 3 evaluated the 

effects of acute ZCZ011, a CB1 positive allosteric modulator, and both of its enantiomers, and 

their ability attenuate the somatic signs of THC withdrawal. 

 

3.1 Experiment 1: AB-FUBINACA induces classic cannabinoid effects. To evaluate the acute 

effects of AB-FUBINACA, male and female mice were injected with AB-FUBINACA (0.1, 1, 2, 

or 3 mg/kg) or vehicle 30 min prior to testing. AB-FUBINACA (3 mg/kg) increased latency in 

both catalepsy [F(4,32)=6.6,p<.05; Fig. 3A] and tail immersion [F(3,35)=6.9,p<.05; Fig. 3B] 

tests. Mice treated with AB-FUBINACA (2 or 3 mg/kg) had decreased body temperature 

[F(34,35)=24.9,p<.05; Fig. 3C] and increased time immobile [F(4,35)=11.4,p<.05; Fig. 3D]. The 

antinociceptive (30 min), cataleptic (1 h), and hypothermic (2 h) effects of AB-FUBINACA 

abated quickly [Fig.3E-G], as compared with the same effects of THC (50 mg/kg). 

 In a separate experiment, male and female mice were dosed twice daily with AB-

FUBINACA (3 mg/kg) for 5 days and were tested daily in tetrad, to determine the degree to 

which AB-FUBINACA tolerance develops. Mice repeatedly administered AB-FUBINACA 

maintained increased latency in catalepsy [Main effect drug F(1,70)=31.8,p<.05;Fig. 4A] 

antinociception [Main effect drug F(1,70)=15.3,p<.05;Fig. 4B], and hypothermia despite 5 days 

of treatment [Main effect drug F(1,70)= 121.5,p<.05;Fig. 4C]. Similarly, when challenged with 

THC (50 mg/kg), mice treated with AB-FUBINACA for 5 days did not exhibit cross tolerance in 

catalepsy [p=.48; Fig. 4D], tail immersion [p=.87;Fig. 4E], or body temperature [p=.27;Fig. 4F]. 

 In the final experiment, male and female mice were injected twice daily with AB-

FUBINACA (1 or 3 mg/kg) for 5 days. On the 6th day, mice were injected with AB-FUBINACA 

and were injected with rimonabant 30 min later and were immediately tested in somatic signs of 

withdrawal. When rimonabant was administered, AB-FUBINACA (1 mg/kg) treated mice 

exhibited increased paw tremors [t(18)=3.8,p<.05;Fig. 4G] and head twitches 
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[t(18)=3.0,p<.05;Fig.4H] compared to vehicle treated mice. Similarly, AB-FUBINACA (3 

mg/kg) withdrawal increased both paw tremors [F(2,20)=9.7, p<.05;Fig.4I] and head twitches 

[F(2,20)=4.3, p<.05;Fig.4J]. It is important to note that the rimonabant-precipitated somatic 

signs of withdrawal from AB-FUBINACA are of a smaller magnitude than those elicited by 

THC (10 or 50 mg/kg) or JWH-018 (1 mg/kg) withdrawal (Trexler et al., 2018). 

 

3.2 Experiment 2: Spontaneous THC withdrawal does not affect feeding. Because gastric issues 

are a commonly reported somatic sign of cannabinoid withdrawal, mice were trained to drink a 

sweetened condensed milk mixture and were treated twice daily for 6 days with either JWH-018 

(1 mg/kg) or vehicle. Withdrawal was precipitated with rimonabant (3 mg/kg). Acute JWH-018 

depressed drinking [Main effect of JWH-018 F(1,28)=279.3,p<.05; Fig. 5A], which returned to 

baseline levels by day 5 [p=.54], indicating tolerance had developed. Rimonabant, per se, 

significantly decreased feeding in both JWH-018 and vehicle treated mice Main effect of 

rimonabant F(1,28)=95.1, p<.05]. Thus, the spontaneous THC (10 or 50 mg/kg) withdrawal 

model was used next. Both THC (10 mg/kg) and vehicle groups consumed the same baseline 

(training day 3)volume of milk [p=.53; Fig. 5B] and THC-treated (10 mg/kg) mice returned to 

baseline consumption levels before testing [p=.19], indicating that THC tolerance developed. 

Mice were tested 12 and 36 h after the final THC (10 mg/kg) or vehicle injection. Both THC (10 

mg/kg) and vehicle treated mice consumed the same amount on test day [p=.16], indicating that 

spontaneous THC has no effect on drinking.  

Mice in both the THC and vehicle treated groups showed decreased in consumption 

following the injection of the first day of dosing. It is likely that this decrease was due to the 

stress of being injected. In a follow up experiment, the same experimental design was used, 

however, mice were injected with either vehicle or THC (50 mg/kg) twice daily. Mice were 

habituated to injections during training and vehicle-treated mice did not exhibit the same 

decrease in drinking on the first day of dosing. Again, THC treatment caused a decrease in 

drinking initially [t(6)=6.2, p<.05; Fig. 5C], and again, consumption returned to baseline by the 

5th day of dosing [p=.61]. As with THC (10 mg/kg), THC (50 mg/kg) spontaneous withdrawal 

did not cause a decrease in consumption relative to baseline at 12h [p=.24] or 36h [p=.70] 

abstinence. In this experiment, the vehicle treated mice had continually increasing consumption, 

making comparison between vehicle- and THC (50 mg/kg)-treated mice on test days misleading.  
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3.3 Experiment 3a: Acute ZCZ011 does not have anxiolytic or anxiogenic effects. Cannabinoid 

orthosteric ligands, including THC, have anxiolytic properties. To determine possible anxiogenic 

or anxiolytic effects of ZCZ011, behavior was tested in the marble burying, light/dark box, open 

field, and novelty-induced hypophagia tests. Male mice were injected with ZCZ011 (2.5, 5, 10, 

20, or 40 mg/kg) or vehicle 75 min prior to testing in marble burying. Treatment with ZCZ011 

(40 mg/kg) decreased marbles buried [F(5,74)= 14.0, p<.05; Fig. 6A], but also increased 

immobility [F(95,1273)=1.7, p<.05; Fig. 6B], indicating that ZCZ011-suppressed marble 

burying may reflect a broader decrease in activity in the assay. The lowest tested doses of 

ZCZ011 (i.e., 2.5 and 5 mg/kg) did not produce any effects and were excluded from the 

following tests. 

Male and female mice were injected with ZCZ011 (10, 20, or 40 mg/kg, i.p.) or vehicle 

75 min prior to testing in Light/Dark box. ZCZ011 (40 mg/kg) increased time in the dark 

compared to vehicle controls [F(3,44)=2.9, p<.05; Fig. 6C]. Similarly, mice treated with 

ZCZ011 (40 mg/kg) had increased immobility in the light/dark box [F(3,44)= 9.3, p<.05; Fig. 

6D]. In addition, male and female mice were injected with ZCZ011 (10, 20, or 40 mg/kg, i.p.) or 

vehicle 75 min prior to testing in the Open field test. ZCZ011 (10, 20, or 40 mg/kg) did not affect 

time spent in the center of the apparatus [p=.39; Fig. 6E] or time spent immobile [p=.66; Fig. 

6F], but ZCZ011 (40 mg/kg) decreased number of rears [F(3,44)=3.5,p<.05;Fig. 6G]. 

Another group of male and female mice were trained to consume at least 1g of a 

sweetened condensed milk mixture for 3 days prior to testing. Mice were injected with ZCZ011 

(10, 20, or 40 mg/kg, i.p.) or vehicle 75 min prior to testing in either a dim light condition or an 

aversive condition in the presence or absence of ZCZ011, then in the opposite condition after 24 

h. Drug treatment did not change across days. All mice consumed less milk in the aversive 

condition [F(5,290)= 61.36, p<.05; Fig. 6H], and ZCZ011 (10, 20 or 40 mg/kg) did not affect 

volume consumed in the aversive condition [p=.78]. When retrained in the dim condition the 

following day, when no drug was administered, all mice, regardless of treatment or condition 

order, returned to baseline drinking levels [p=.99].  

A separate group of male and female mice was injected with either of the ZCZ011 

enantiomers, referred to here as “ZCZ011A” or “ZCZ011B”, and was tested in open field and 

marble burying tests. Neither compound affected time in the center of the open field [p=.08;Fig. 
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7A], time immobile in open field [p=.06;Fig 7B], or rearing (an exploratory behavior) in the 

open field test [p=.79;Fig. 7C]. Neither enantiomer affected marbles buried [p=.20;Fig. 7D], but 

ZCZ011A increased time immobile [F(2,33)=5.9,p<.05;Fig. 7E]. 

 

3.4 Experiment 3b: Somatic signs of THC withdrawal attenuated by ZCZ011. ZCZ011 (10 or 40 

mg/kg) attenuates somatic signs of THC withdrawal (Trexler et al., 2019). To determine whether 

ZCZ011 also attenuates withdrawal-induced changes in marble burying and tail suspension, mice 

were subjected to the rimonabant-precipitated THC withdrawal paradigm and injected with 

ZCZ011 (10 or 40 mg/kg) or vehicle 75 min prior to testing. ZCZ011 (10 or 40 mg/kg) did not 

attenuate THC withdrawal-suppressed marble burying [F(2,42)=12.2,p<.05;Fig. 8A] or 

withdrawal-induced struggling in the tail suspension test [Main effect THC 

[F(1,42)=89.4,p<.05;Fig.8B]. As in Exp. 3.3, ZCZ011 alone (40 mg/kg) increased immobility in 

marble burying [Main effect ZCZ011 [F (2,42)= 7.3,p<.05; Fig. 8C]. Surprisingly, but ZCZ011 

(≥10 mg/kg) increased immobility in mice subjected to precipitated THC withdrawal. 

 To determine ZCZ011 dose-dependent effects on attenuating somatic signs of 

withdrawal, mice were subjected to precipitated THC withdrawal, and injected with ZCZ011 (1, 

3.33, or 10 mg/kg) or vehicle. ZCZ011 (10 mg/kg) reduced both paw tremors 

[F(4,32)=6.8,p<.05;Fig.8D] and head twitches [F(4,32)=4.5,p<.05;Fig.8E]. Posts hoc analyses 

revealed that ZCZ011 (3.33 mg/kg) attenuated head twitches but had no effect on paw tremors.  

 The ability of the two enantiomers of ZCZ011, i.e., ZCZ011A and ZCZ011B, to attenuate 

precipitated THC withdrawal was evaluated. Mice were subjected with precipitated THC 

withdrawal and treated with ZCZ011A or ZCZ011B (0.55, 1.66, or 5 mg/kg) or vehicle 75 min 

prior to testing. Either ZCZ011A or ZCZ011B (5 mg/kg) attenuated paw tremors 

[F(4,35)=16.7,p<.05;Fig.8F] and head twitches [F(4,35)=10.8,p<.05;Fig.8G]. Neither ZCZ011A 

nor ZCZ011B (0.55 or 1.66 mg/kg) affected paw tremors [p=.28;Fig. 8H] or head twitches 

[p=.20;Fig. 8I].  

4. Discussion 

 The current project was designed to evaluate the acute and chronic effects of the synthetic 

cannabinoid AB-FUBINACA. It also evaluated the development of tolerance to and withdrawal 

from AB-FUBINACA. Additionally, sweetened condensed milk consumption was evaluated as a 
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potential new assay of spontaneous THC withdrawal. Finally, the acute anxiolytic effects of 

ZCZ011 and its enantiomers was probed and ZCZ011 and its enantiomers were further evaluated 

as a method of attenuating precipitated THC withdrawal. 

 AB-FUBINACA produced classic cannabinoid effects, including catalepsy, anti-

nociception, hypothermia, and hypolocomotion. Surprisingly, AB-FUBINACA has a 

significantly shorter timecourse than THC and previous generation synthetic cannabinoids. 

While a rapid onset, similar to the one observed here, has been reported previously, the tetrad 

effects in the present study abated more quickly than previously reported (Banister, Moir, et al., 

2015; Kevin et al., 2017). It is plausible that the differences in observed effect timecourse and 

magnitude are due to a species difference, as the previous studies were carried out in rats. 

Regardless, the rapid onset and relatively short timecourse are similar to those seen with other 

third-generation synthetic cannabinoids, including AB-CHMINACA delivered via inhalation 

(Lefever et al., 2017). A likely mechanism for the relatively quick recovery from these 

compounds is rapid metabolism. Previous studies have demonstrated that synthetic cannabinoids 

tend to be rapidly metabolized, and that more or less potent metabolites remain in the organism 

interacting with cannabinoid receptors (Brents et al., 2012). It has been further suggested that an 

alternate route of administration (e.g., inhalation) may be a better model of synthetic cannabinoid 

use because these compounds are generally administered in vapor (Lefever et al., 2017), which 

most closely resembles intravenous administration with regard to speed of delivery to brain. 

Moreover, the rapid timecourse of new generation drugs is even further accelerated in an inhaled 

aerosol model (Lefever et al., 2017). Regardless, the relatively short timecourse of AB-

FUBINACA reported here is novel and evident following intraperitoneal administration.   

 The lack of tolerance to AB-FUBINACA in the current experiments is in some ways 

surprising, as the dosing regimen is adequate to produce tolerance to both THC and other 

synthetic cannabinoids, like WIN55-212 and JWH-018 (Aceto et al., 2001; Lichtman, Fisher, & 

Martin, 2001; Schlosburg et al., 2009; Trexler et al., 2018). Additionally, AB-FUBINACA is a 

full CB1 agonist with higher potency than THC (Hess et al., 2016; Wiley et al., 2015). Thus, we 

expected tolerance to develop at the same rate, or perhaps even earlier, than with THC. However, 

the rapid timecourse of AB-FUBINACA metabolism may render the current dosing paradigm 

ineffective. Thus, it is plausible that, for tolerance to fully develop, mice must be dosed more 
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frequently, or perhaps ideally administered continuously, for example via osmotic minipump. 

But, such an approach has limited construct validity and does not reflect patterns of human 

cannabinoid self-administration. Regardless, the small effect of precipitated AB-FUBINACA 

withdrawal is not surprising, given the observed lack of tolerance in the tetrad battery. It was also 

expected that, given its relatively higher potency, AB-FUBINACA withdrawal would be of the 

same or perhaps larger magnitude than that of THC, but the observed withdrawal effects, while 

statistically significant, were relatively minor. This issue may also be resolved by adjusting the 

dosing regimen as outlined above, or perhaps other behavioral assays will reveal subtleties in 

AB-FUBINACA withdrawal that were not detectable with the present assays. 

 Generally, AB-FUBINACA exhibited cannabimimetic effects in the tetrad battery of 

assays, but has a much faster time course. To further explore the effects of AB-FUBINACA, 

future studies should include components evaluating brain, plasma, or urine analysis for 

metabolites of the drug over time. I anticipate that AB-FUBINACA is rapidly metabolized in 

vivo, and that patterns of brain levels will mirror those of the behavioral assays reported on here. 

Additional studies that challenge the effects of AB-FUBINACA, for example with the CB1 

inverse agonist rimonabant, will also be useful in determining whether all of the effects observed 

were CB1 mediated, or if AB-FUBINACA is acting, at least in part, through cannabinoid 

receptor independent mechanisms.   

 Due to the small effect of precipitated AB-FUBINACA withdrawal, THC was used to 

pilot the possible effects of cannabinoid withdrawal on sweetened condensed milk consumption. 

We evaluated spontaneous THC withdrawal effects on sweetened condensed milk consumption, 

a common anhedonia model. We chose a spontaneous withdrawal paradigm, because pilot data 

(Fig 5A) indicated that rimonabant, per se, suppresses drinking. In the present study, 

spontaneous THC withdrawal was evaluated 36 h after the final THC injection. This 36 h 

timepoint was selected because we have previously reported “peak” withdrawal signs at 36 h 

THC abstinence (Trexler et al., 2018). I hypothesized that mice would exhibit decreased 

sweetened condensed milk consumption during spontaneous withdrawal, but this effect was not 

observed. Given the lack of an effect of THC withdrawal, we chose not to test spontaneous AB-

FUBINACA withdrawal in this model. Because somatic signs of precipitated AB-FUBINACA 

withdrawal (i.e., Exp 2a) were of surprisingly small magnitude, and that effects of spontaneous 
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withdrawal are typically of a smaller magnitude than precipitated withdrawal models (Aceto et 

al., 2001;Trexler, Eckard, & Kinsey, 2019; Trexler et al., 2018), we concluded that spontaneous 

AB-FUBINACA withdrawal effects on sweetened condensed milk consumption are unlikely to 

be observed. 

In addition to measuring feeding behavior, sweetened milk drinking was chosen in this 

study because of its use in evaluating depressive-like effects (i.e., anhedonia), which humans 

frequently report as a symptom of cannabis withdrawal (American Psychiatric Association, 

2013). Because of the differences in type of symptomology (i.e, somatic symptoms versus 

emotionality-related symptoms), it is plausible that the onset of different behavioral changes 

occur at different times. For example, we have previously reported that both precipitated and 

spontaneous THC withdrawal increase struggling in the tail suspension test (Trexler et al., 2018). 

Coincident with spontaneous somatic withdrawal signs, the increase in struggling is evident at 36 

h abstinence. Thus, although we did not observe altered drinking at 12 or 36 h abstinence, 

expending the number of time points of sampling may reveal a withdrawal time course in this 

assay that differs from other models. Another approach would be to increase THC dosing, 

perhaps to 50 mg/kg twice daily, with the goal of increasing withdrawal effects. Although we 

have not observed differences between 10 and 50 mg/kg THC in somatic signs of withdrawal or 

tail suspension tests (Trexler et al., 2018), it is plausible that feeding is sensitive to such 

differences in dosing. 

 Acute ZCZ011 was evaluated in several anxiety-related assays because increased activity 

of the endocannabinoid system has anxiolytic effects (Kinsey, O’Neal, Long, Cravatt, & 

Lichtman, 2011; Moreira, Grieb, & Lutz, 2009). ZCZ011 decreased marble burying and 

decreased rearing in the open field test, which would typically be interpreted as an anxiolytic 

drug profile. In the light/dark box test, however, ZCZ011 increased time spent in the dark, which 

would typically be interpreted as an anxiogenic effect. But, the same dose of ZCZ011 (40 mg/kg) 

also elicited locomotor effects in both the marble burying and light/dark box tests, indicating that 

the decrease in marbles buried and increased time in the dark were likely due to sedative effects. 

This effect contrasts with findings showing the same dose of ZCZ011 does not produce 

locomotor suppression the spontaneous locomotor test (Ignatowska-Jankowska et al., 2015; 

Trexler et al., 2019). The light/dark box test relies on creating a conflict paradigm to evaluate 
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anxiety-like behavior (Crawley, 2007) and the marble burying test also been implicated as a 

stress-inducing paradigm (Abraham et al., 2018), so it is plausible that the locomotor effects of 

ZCZ011 are only observed in stressful or aversive conditions, which would not include the 

apparatus used in a spontaneous locomotor assessment. Thus, the assay dependent locomotor 

effects observed may be compounded by stress responsiveness.  

 Both enantiomers of ZCZ011, ZCZ011A and ZCZ011B, were evaluated independently in 

marble burying and open field assays. ZCZ011A caused decreased locomotion in the marble 

burying task, but did not cause a statistically significant reduction in number of marbles buried. 

We found no effects of either enantiomer in open field, which is consistent with the lack of effect 

of ZCZ011 in open field. The locomotor deficits observed in the marble burying and light/dark 

box tests are the result of ZCZ011A, rather than ZCZ011B, as evidenced by the locomotor 

deficit associated with ZCZ011A in the marble burying test. Future studies evaluating dose 

dependent effects of the individual enantiomers and evaluation in the light/dark box assay are 

needed to determine relative contributions of each enantiomer.  

Precipitated THC withdrawal was challenged with ZCZ011 in the marble burying and tail 

suspension tests. Interestingly, precipitated withdrawal-depressed marble burying and increased 

tail suspension struggling were not attenuated by ZCZ011 (10 and 40 mg/kg), which is similar to 

previous findings using the MAGL inhibitor JZL184 (Trexler et al., 2018), which increases brain 

levels of 2-AG by preventing its catabolism. Both ZCZ011 and JZL184 attenuate both 

precipitated and spontaneous somatic signs of withdrawal, but neither drug reverses withdrawal-

depressed marble burying or withdrawal-induced increases in struggling in the tail suspension 

test. Plasma levels of the stress hormone corticosterone increase during THC withdrawal, and the 

endocannabinoid system and stress circuitry are closely related (Hill & Gorzalka, 2005; Oliva et 

al., 2004; Patel, Roelke, Rademacher, & Hillard, 2005; Trexler et al., 2018). Thus, the decrease 

in marble burying and increase in struggling during THC withdrawal may be related to altered 

regulation of the hypothalamic-pituitary-adrenal (HPA) axis stress circuit caused by repeated 

CB1 activation. Interestingly, these effects are not attenuated by administration of a 

glucocorticoid antagonist, mifepristone, or a β-adrenergic antagonist, propranolol, indicating the 

effect is likely not mediated through those mechanisms (Trexler et al., 2018). Thus, future 

studies should target corticotrophin releasing factor as a stress mechanism that mediates the 

emotionality-related behavioral effects of cannabinoid withdrawal.  
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ZCZ011 attenuated somatic signs of THC withdrawal in a dose dependent manner. The 

lowest dose tested, 1 mg/kg, did not attenuate paw tremors or head twitches, and the moderate 

dose, 3 mg/kg, attenuated head twitches, but not paw tremors, and the highest dose tested, 10 

mg/kg, attenuated both paw tremors and head twitches, as previously published (Trexler et al., 

2019). It is noteworthy that, no locomotor effects of 10 mg/kg ZCZ011 are observed in any 

assays, which rules out possible sedative confounds. CB1 positive allosteric modulation is a 

relatively new area, but several PAMs have already shown demonstrated their anti-nociceptive, 

anti-inflammatory, and gastroprotective properties (Ignatowska-Jankowska et al., 2015; Slivicki 

et al., 2017; Trexler et al., 2019), so this approach has been fruitful, albeit using different 

endogenous target receptor systems. Further, the finding that either enantiomer of ZCZ011 

attenuates somatic signs of withdrawal is promising. Moreover, ZCZ011B not only attenuates 

withdrawal, but does so with no locomotor effects of its own. Taken together, the present data 

indicate that ZCZ011B, or a novel compound with similar properties, shows early promise as an 

option for development as a therapeutic agent to treat cannabis use disorder.  

 

5. Conclusion 

 The present studies revealed that AB-FUBINACA, a third-generation synthetic 

cannabinoid, has cannabimimetic effects that abate much more rapidly than the traditional 

phytocannabinoid, THC. Future studies into its metabolism will help to further understand the 

differences between AB-FUBINACA and THC. As human use of synthetic cannabinoids 

continues it will be increasingly important to use the information gained from experimental study 

to inform treatments for synthetic cannabinoids. Though spontaneous THC withdrawal is reliably 

observed in somatic and tail suspension models, it was undetectable in an anhedonia model. The 

exploration of additional timepoints may reveal that in the anhedonia model, THC withdrawal 

peaks at a different time. Finally, ZCZ011 has few acute effects on its own, and the effects it 

does have are likely driven by sedative effects, which appear to be caused entirely by one 

enantiomer, ZCZ011A. Further, ZCZ011 and each of its enantiomers attenuate THC withdrawal 

in a somatic model at doses that do not produce sedative effects. ZCZ011B may also be a 

therapeutic agent due to its ability to attenuate withdrawal and its lack of acute locomotor effects. 

Regardless of the individual contributions of either enantiomer, these data provide proof-of-
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concept that CB1 positive allosteric modulation is a viable strategy for reducing cannabis use 

disorder.  

  



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

27 
 

6. References 

Abraham, A. D., Fontaine, H. M., Song, A. J., Andrews, M. M., Baird, M. A., Kieffer, B. L., … 

Chavkin, C. (2018). κ -Opioid Receptor Activation in Dopamine Neurons Disrupts 

Behavioral Inhibition. Neuropsychopharmacology, 43, 362–372. 

https://doi.org/10.1038/npp.2017.133 

Aceto, M., Scates, S., & Martin, B. (2001). Spontaneous and precipitated withdrawal with a 

synthetic cannabinoid, WIN 55212-2. European Journal of Pharmacology, 416, 75–81. 

https://doi.org/10.1016/S0014-2999(01)00873-1 

Adams, A. J., Banister, S. D., Irizarry, L., Trecki, J., Schwartz, M., & Gerona, R. (2017). 

“Zombie” Outbreak Caused by the Synthetic Cannabinoid AMB-FUBINACA in New York. 

New England Journal of Medicine, 376(3), 235–242. 

https://doi.org/10.1056/NEJMoa1610300 

Allsop, D. J., Lintzeris, N., Copeland, J., Dunlop, A., & McGregor, I. S. (2015). Cannabinoid 

Replacement Therapy (CRT): Nabiximols (Sativex) as a novel treatment for cannabis 

withdrawal. Clin Pharmacol Ther, 97(6), 571–574. https://doi.org/10.1002/cpt.109 

American Association of Poison Control Centers: Synthetic Cannabinoids. (2018). Retrieved 

from https://www.aapcc.org/track/synthetic-cannabinoids 

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Health 

Disorders (5th ed.). Washington, D.C. 

Bailey, M. T., Kinsey, S. G., Padgett, D. A., Sheridan, J. F., & Leblebicioglu, B. (2009). Social 

stress enhances IL-1β and TNF-α production by Porphyromonas gingivalis 

lipopolysaccharide-stimulated CD11b+ cells. Physiology and Behavior, 98(3), 351–358. 

https://doi.org/10.1016/j.physbeh.2009.06.013 

Banister, S. D., Moir, M., Stuart, J., Kevin, R. C., Wood, K. E., Longworth, M., … Kassiou, M. 

(2015). Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-

FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-

ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chemical Neuroscience, 6(9), 1546–

1559. https://doi.org/10.1021/acschemneuro.5b00112 

Banister, S. D., Stuart, J., Kevin, R. C., Edington, A., Longworth, M., Wilkinson, S. M., … 

Kassiou, M. (2015). Effects of Bioisosteric Fluorine in Synthetic Cannabinoid Designer 

Drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. 

ACS Chemical Neuroscience, 6(8), 1445–1458. 

https://doi.org/10.1021/acschemneuro.5b00107 

Benford, D. M., & Caplan, J. P. (2011). Psychiatric Sequelae of Spice, K2, and Synthetic 

Cannabinoid Receptor Agonists. Psychosomatics, 52(3), 295. 

https://doi.org/10.1016/j.psym.2011.01.004 

Besli, G. E., Ikiz, M. A., Yildirim, S., & Saltik, S. (2015). Synthetic Cannabinoid Abuse in 

Adolescents: A Case Series. Journal of Emergency Medicine, 49(5), 644–650. 

https://doi.org/10.1016/j.jemermed.2015.06.053 

Bhanushali, G. K., Jain, G., Fatima, H., Leisch, L. J., & Thornley-Brown, D. (2013). AKI 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

28 
 

associated with synthetic cannabinoids: A case series. Clinical Journal of the American 

Society of Nephrology, 8(4), 523–526. https://doi.org/10.2215/CJN.05690612 

Blankman, J. L., Simon, G. M., & Cravatt, B. F. (2007). A Comprehensive Profile of Brain 

Enzymes that Hydrolyze the Endocannabinoid 2-Arachidonoylglycerol. Chemistry & 

Biology, 14(12), 1347–1356. https://doi.org/10.1016/j.chembiol.2007.11.006 

Brents, L K, Zimmerman, S. M., Saffell, A. R., Prather, P. L., & Fantegrossi, W. E. (2013). 

Differential drug-drug interactions of the synthetic Cannabinoids JWH-018 and JWH-073: 

implications for drug abuse liability and pain therapy. J Pharmacol Exp Ther, 346(3), 350–

361. https://doi.org/10.1124/jpet.113.206003 

Brents, Lisa K., Gallus-Zawada, A., Radominska-Pandya, A., Vasiljevik, T., Prisinzano, T. E., 

Fantegrossi, W. E., … Prather, P. L. (2012). Monohydroxylated metabolites of the K2 

synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) 

affinity and exhibit neutral antagonist to partial agonist activity. Biochemical 

Pharmacology, 83(7), 952–961. https://doi.org/10.1016/j.bcp.2012.01.004 

Brezing, C. A., & Levin, F. R. (2017). The Current State of Pharmacological Treatments for 

Cannabis Use Disorder and Withdrawal. Neuropsychopharmacology, (April), 1–71. 

https://doi.org/10.1038/npp.2017.212 

Broekkamp, C. L., Rijk, H. W., Joly-gelouin, D., & Lloyd, K. L. (1986). Major tranquillizers can 

be distinguished from minor tranquillizers on the basis of effects on marble burying and 

swim-induced grooming in mice. European Journal of Pharmacology, 126, 223–229. 

Budney, A. J., Vandrey, R. G., Hughes, J. R., Moore, B. a, & Bahrenburg, B. (2007). Oral delta-

9-tetrahydrocannabinol suppresses cannabis withdrawal symptoms. Drug and Alcohol 

Dependence, 86, 22–29. https://doi.org/10.1016/j.drugalcdep.2006.04.014 

Budney, A. J., Vandrey, R. G., Hughes, J. R., Thostenson, J. D., & Bursac, Z. (2008). 

Comparison of cannabis and tobacco withdrawal: Severity and contribution to relapse. 

Journal of Substance Abuse Treatment, 35(4), 362–368. 

https://doi.org/10.1016/j.jsat.2008.01.002 

Burford, N. T., Traynor, J. R., & Alt, A. (2015). Positive allosteric modulators of the μ-opioid 

receptor: A novel approach for future pain medications. British Journal of Pharmacology, 

172, 277–286. https://doi.org/10.1111/bph.12599 

Canazza, I., Ossato, A., Trapella, C., Fantinati, A., De Luca, M. A., Margiani, G., … Marti, M. 

(2016). Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, 

sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo 

pharmacological studies. Psychopharmacology, 233(21–22), 3685–3709. 

https://doi.org/10.1007/s00213-016-4402-y 

Carlier, J., Wohlfarth, A., Salmeron, B. D., Scheidweiler, K. B., Huestis, M. A., & Baumann, M. 

H. (2018). Pharmacodynamic Effects , Pharmacokinetics , and Metabolism of the Synthetic 

Cannabinoid AM-2201 in Male Rats. The Journal of Pharmacology and Experimental 

Therapeutics, 367(December), 543–550. https://doi.org/10.1124/jpet.118.250530 

Castaneto, M. S., Gorelick, D. A., Desrosiers, N. A., Hartman, R. L., Pirard, S., & Huestis, M. A. 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

29 
 

(2014). Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical 

implications. Drug and Alcohol Dependence, 144, 12–41. 

https://doi.org/10.1016/j.drugalcdep.2014.08.005 

Chan, W. L., Wood, D. M., Hudson, S., & Dargan, P. I. (2013). Acute Psychosis Associated with 

Recreational Use of Benzofuran 6- ( 2-Aminopropyl ) Benzofuran ( 6-APB ) and Cannabis. 

J. Med. Toxicol, (9), 278–281. https://doi.org/10.1007/s13181-013-0306-y 

Chase, P. B., Hawkins, J., Mosier, J., Jimenez, E., Boesen, K., Logan, B. K., & Walter, F. G. 

(2016). Differential physiological and behavioral cues observed in individuals smoking 

botanical marijuana versus synthetic cannabinoid drugs. Clinical Toxicology, 54(1), 14–19. 

https://doi.org/10.1111/jzs.12127 

Chimalakonda, K. C., Seely, K. A., Bratton, S. M., Brents, L. K., Moran, C. L., Endres, G. W., 

… Moran, J. H. (2012). Cytochrome P450-mediated oxidative metabolism of abused 

synthetic cannabinoids found in K2/Spice: Identification of novel cannabinoid receptor 

ligands. Drug Metabolism and Disposition, 40(11), 2174–2184. 

https://doi.org/10.1124/dmd.112.047530 

Chinnadurai, T., Shrestha, S., & Ayinla, R. (2016). A curious case of inhalation fever caused by 

synthetic cannabinoid. American Journal of Case Reports, 17, 379–383. 

https://doi.org/10.12659/AJCR.898500 

Clark, B. C., Georgekutty, J., & Berul, C. I. (2015). Myocardial Ischemia Secondary to Synthetic 

Cannabinoid (K2) Use in Pediatric Patients. Journal of Pediatrics, 167(3), 757-761.e1. 

https://doi.org/10.1016/j.jpeds.2015.06.001 

Cooper, Z. D. (2016). Adverse Effects of Synthetic Cannabinoids: Management of Acute 

Toxicity and Withdrawal. Curr Psychiatry Rep, 18(5). 

https://doi.org/10.1161/CIRCRESAHA.116.303790.The 

Cravatt, B. F., Giang, D. K., Mayfield, S. P., Boger, D. L., Lerner, R. A., & Gilula, N. B. (1996). 

Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. 

Nature, 384, 83–87. 

Crawley, J., & Goodwin, F. K. (1980). Preliminary Report of a Simple Animal Behavior Model 

for the Anxiolytic Effects of Benzodiazepines, 13, 167–170. 

Crawley, J. N. (2007). Mouse behavioral assays relevant to the symptoms of autism. Brain 

Pathology, 17(4), 448–459. https://doi.org/10.1111/j.1750-3639.2007.00096.x 

Davidson, C., Opacka-Juffry, J., Arevalo-Martin, A., Garcia-Ovejero, D., Molina-Holgado, E., & 

Molina-Holgado, F. (2017). Spicing Up Pharmacology: A Review of Synthetic 

Cannabinoids From Structure to Adverse Events. Advances in Pharmacology (1st ed., Vol. 

80). Elsevier Inc. https://doi.org/10.1016/bs.apha.2017.05.001 

de Havenon, A., Chin, B., Thomas, K. C., & Afra, P. (2011). The Secret “Spice”: An 

Undetectable Toxic Cause of Seizure. The Neurohospitalist, 1(4), 182–186. 

https://doi.org/10.1177/1941874411417977 

Deadwyler, S., Hampson, R., Mu, J., Whyte, A., & Childers, S. (1995). Cannabinoids in 

Hippocampal Modulate Voltage Sensitive Potassium Neurons Via a cAMP-Dependent. 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

30 
 

Journal of Pharmacology and Experimental Therapeutics, 273(2), 734–743. 

Devane, W., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Graeme, G., … 

Mechoulam, R. (1992). Isolation and Structure of a brain constituent that binds to the 

cannabinoid receptor. 

Di Marzo, V. (2009). The endocannabinoid system: Its general strategy of action, tools for its 

pharmacological manipulation and potential therapeutic exploitation. Pharmacological 

Research, 60(2), 77–84. https://doi.org/10.1016/j.phrs.2009.02.010 

Diao, X., Scheidweiler, K. B., Wohlfarth, A., Pang, S., Kronstrand, R., & Huestis, M. A. (2016). 

In Vitro and In Vivo Human Metabolism of Synthetic Cannabinoids FDU-PB-22 and FUB-

PB-22. The AAPS Journal, 18(2). https://doi.org/10.1208/s12248-016-9867-4 

Dresen, S., Ferreirós, N., Pütz, M., Westphal, F., Zimmermann, R., & Auwärter, V. (2010). 

Monitoring of herbal mixtures potentially containing synthetic cannabinoids as 

psychoactive compounds. Journal of Mass Spectrometry, 45(10), 1186–1194. 

https://doi.org/10.1002/jms.1811 

Durand, D., Delgado, L. L., Parra-Pellot, D. M. de la, & Nichols-Vinueza, D. (2015). Psychosis 

and Severe Rhabdomyolysis Associated with Synthetic Cannabinoid Use. Clinical 

Schizophrenia & Related Psychoses, 8(4), 205–208. 

https://doi.org/10.3371/CSRP.DUDE.031513 

El Khoury, M. A., Gorgievski, V., Moutsimilli, L., Giros, B., & Tzavara, E. T. (2012). 

Interactions between the cannabinoid and dopaminergic systems: Evidence from animal 

studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 38(1), 36–50. 

https://doi.org/10.1016/j.pnpbp.2011.12.005 

EMCDDA. (2009). European Monitoring Centre of Drugs and Drugs addiction. The state of the 

drugs problem in Europe. Annual report 2009. 

Erratico, C., Negreira, N., Norouzizadeh, H., Covaci, A., Neels, H., Maudens, K., & van Nuijs, 

A. L. N. (2015). In vitro and in vivo human metabolism of the synthetic cannabinoid AB-

CHMINACA. Drug Testing and Analysis, 7(10), 866–876. https://doi.org/10.1002/dta.1796 

Falenski, K. W., Thorpe, A. J., Schlosburg, J. E., Cravatt, B. F., Abdullah, R. A., Smith, T. H., 

… Sim-Selley, L. J. (2010). FAAH−/− Mice Display Differential Tolerance, Dependence, 

and Cannabinoid Receptor Adaptation After Δ9-Tetrahydrocannabinol and Anandamide 

Administration. Neuropsychopharmacology, 35(8), 1775–1787. 

https://doi.org/10.1038/npp.2010.44 

Fantegrossi, W. E., Moran, J. H., Radominska-pandya, A., & Prather, P. L. (2014). Distinct 

pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ 9 -THC : 

Mechanism underlying greater toxicity ? Life Sciences, 97(1), 45–54. 

https://doi.org/10.1016/j.lfs.2013.09.017 

Fantegrossi, W. E., Wilson, C. D., & Berquist, M. D. (2018). Pro-psychotic effects of synthetic 

cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug 

Metabolism Reviews, 50(1), 65–73. https://doi.org/10.1080/03602532.2018.1428343 

Finn, D. P. (2010). Endocannabinoid-mediated modulation of stress responses: Physiological and 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

31 
 

pathophysiological significance. Immunobiology, 215(8), 629–646. 

https://doi.org/10.1016/j.imbio.2009.05.011 

Fisar, Z. (2009). Phytocannabinoids and endocannabinoids. Current Drug Abuse Reviews, 

2(October), 51–75. https://doi.org/10.2174/1874473710902010051 

Flores, Á., Maldonado, R., & Berrendero, F. (2013). Cannabinoid-hypocretin cross-talk in the 

central nervous system: What we know so far. Frontiers in Neuroscience, 7(7 DEC), 1–17. 

https://doi.org/10.3389/fnins.2013.00256 

Ford, B. M., Tai, S., Fantegrossi, W. E., & Prather, P. L. (2017). Synthetic Pot: Not Your 

Grandfather’s Marijuana. Trends in Pharmacological Sciences, 38(3), 257–276. 

https://doi.org/10.1016/j.tips.2016.12.003 

Franklin, J. M., & Carrasco, G. A. (2012). Cannabinoid-induced enhanced interaction and 

protein levels of serotonin 5-HT2A and dopamine D2 receptors in rat prefrontal cortex. 

Journal of Psychopharmacology, 26(10), 1333–1347. 

https://doi.org/10.1177/0269881112450786 

Freund, T. F., Katona, I., & Piomelli, D. (2003). Role of endogenous cannabinoids in synaptic 

signaling. Physiological Reviews, 83(3), 1017–1066. 

https://doi.org/10.1152/physrev.00004.2003 

Frinculescu, A., Lyall, C. L., Ramsey, J., & Miserez, B. (2017). Variation in commercial 

smoking mixtures containing third-generation synthetic cannabinoids. Drug Testing and 

Analysis, 9(2), 327–333. https://doi.org/10.1002/dta.1975 

Gamble-George, J. C., Conger, J. R., Hartley, N. D., Gupta, P., Sumislawski, J. J., & Patel, S. 

(2013). Dissociable effects of CB1 receptor blockade on anxiety-like and consummatory 

behaviors in the novelty-induced hypophagia test in mice. Psychopharmacology, 228, 401–

409. https://doi.org/10.1007/s00213-013-3042-8 

Gaoni, Y., & Mechoulam, R. (1964). Isolation, structure, and partial synthesis of an active 

constituent of hashish. Journal of the American Chemical …, 86, 1646–1647. 

https://doi.org/10.1021/ja01062a046 

Gatch, M. B., & Forster, M. J. (2015). 9 -Tetrahydrocannabinol-Like Effects of Novel Synthetic 

Cannabinoids Found on the Gray Market Michael. Behavioral Pharmacology, 26(5), 460–

468. https://doi.org/10.1097/FBP.0000000000000150. 

Gay, M. (2010). Synthetic Marijuana Spurs State Bans. The New York Times, 2–5. Retrieved 

from http://www.nytimes.com/2010/07/11/us/11k2.html?_r=1 

Haney, M., Bedi, G., Cooper, Z. D., Glass, A., Vosburg, S. K., Comer, S. D., & Foltin, R. W. 

(2013). Predictors of marijuana relapse in the human laboratory: Robust impact of tobacco 

cigarette smoking status. Biological Psychiatry, 73(3), 242–248. 

https://doi.org/10.1016/j.biopsych.2012.07.028 

Haney, M., Hart, C. L., Vosburg, S. K., Comer, S. D., Reed, S. C., & Foltin, R. W. (2008). 

Effects of THC and Lofexidine in a Human Laboratory Model of Marijuana Withdrawal 

and Relapse. Psychopharmacology (Berl), 197(1), 157–168. 

https://doi.org/10.2217/nnm.12.167.Gene 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

32 
 

Haney, M., Hart, C. L., Vosburg, S. K., Nasser, J., Bennett, A., Zubaran, C., & Foltin, R. W. 

(2004). Marijuana Withdrawal in Humans: Effects of Oral THC or Divalproex. 

Neuropsychopharmacology, 29(1), 158–170. https://doi.org/10.1038/sj.npp.1300310 

Hartman, R. L., & Huestis, M. A. (2013). Cannabis effects on driving skills. Clinical Chemistry, 

59(3), 478–492. https://doi.org/10.1373/clinchem.2012.194381 

Hasin, D. S., Kerridge, B. T., Saha, T. D., Huang, B., Pickering, R., Smith, S. M., … Grant, B. F. 

(2016). Prevalence and correlates of DSM-5 cannabis use disorder, 2012-2013: Findings 

from the national epidemiologic survey on alcohol and related conditions-III. American 

Journal of Psychiatry, 173(6), 588–599. https://doi.org/10.1176/appi.ajp.2015.15070907 

Hess, C., Schoeder, C. T., Pillaiyar, T., Madea, B., & Müller, C. E. (2016). Pharmacological 

evaluation of synthetic cannabinoids identified as constituents of spice. Forensic 

Toxicology, 34(2), 329–343. https://doi.org/10.1007/s11419-016-0320-2 

Hill, M. N., & Gorzalka, B. B. (2005). Is there a role for the endocannabinoid system in the 

etiology and treatment of melancholic depression? Behavioural Pharmacology, 16, 333–

352. https://doi.org/10.1097/00008877-200509000-00006 

Howlett, A. C. (1985). Cannabinoid Biochemistry Inhibition of Adenylate in Neuroblastoma 

Cyclase Cell Membranes of the Response. Molecular Pharmacology, 27, 429–436. 

Howlett, A. C. (2005). Cannabinoid Receptor Signaling. In Cannabinoids (pp. 53–79). 

Hudson, S., & Ramsey, J. (2011). The emergence and analysis of synthetic cannabinoids. Drug 

Testing and Analysis, 3(7–8), 466–478. https://doi.org/10.1002/dta.268 

Huestis, M. A. (2007). Human cannabinoid pharmacokinetics. Chemistry and Biodiversity, 4, 

1770–1804. https://doi.org/10.1002/cbdv.200790152 

Huffman, J. W., Zengin, G., Wu, M. J., Lu, J., Hynd, G., Bushell, K., … Martin, B. R. (2005). 

Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid 

CB1and CB2receptors: Steric and electronic effects of naphthoyl substituents. New highly 

selective CB2receptor agonists. Bioorganic and Medicinal Chemistry, 13(1), 89–112. 

https://doi.org/10.1016/j.bmc.2004.09.050 

Ignatowska-Jankowska, B. M., Baillie, G. L., Kinsey, S., Crowe, M., Ghosh, S., Owens, R. A., 

… Ross, R. A. (2015). A Cannabinoid CB1 Receptor-Positive Allosteric Modulator 

Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects. 

Neuropsychopharmacology : Official Publication of the American College of 

Neuropsychopharmacology, 40(13), doi:10.1038/npp.2015.148. 

https://doi.org/10.1038/npp.2015.148 

Islam, S. K., Cheng, Y. P., Birke, R. L., Green, O., Kubic, T., & Lombardi, J. R. (2018). Rapid 

and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using 

surface enhanced Raman scattering (SERS). Chemical Physics, 506, 31–35. 

https://doi.org/10.1016/j.chemphys.2018.03.028 

Jacob, W., Yassouridis, A., Marsicano, G., Monory, K., Lutz, B., & Wotjak, C. T. (2009). 

Endocannabinoids render exploratory behaviour largely independent of the test 

aversiveness: Role of glutamatergic transmission. Genes, Brain and Behavior, 8(7), 685–



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

33 
 

698. https://doi.org/10.1111/j.1601-183X.2009.00512.x 

Jarbe, T. U., & Raghav, J. G. (2016). Tripping with Synthetic Cannabinoids (“Spice”): 

Anecdotal and Experimental Observations in Animals and Man. In Neuropharmacology of 

New Psychoactive Substances (NPS) (Vol. 32, pp. 263–281). https://doi.org/10.1007/7854 

Kenakin, T. (2013). Analytical pharmacology and allosterism: The importance of quantifying 

drug parameters in drug discovery. Drug Discovery Today: Technologies, 10(2), e229–

e235. https://doi.org/10.1016/j.ddtec.2012.07.006 

Kevin, R. C., Wood, K. E., Stuart, J., Mitchell, A. J., Moir, M., Banister, S. D., … McGregor, I. 

S. (2017). Acute and residual effects in adolescent rats resulting from exposure to the novel 

synthetic cannabinoids AB-PINACA and AB-FUBINACA. Journal of 

Psychopharmacology, 31(6), 757–769. https://doi.org/10.1177/0269881116684336 

Kinsey, S. G., Bailey, M. T., Sheridan, J. F., Padgett, D. A., & Avitsur, R. (2007). Repeated 

Social Defeat Causes Increased Anxiety-Like Behavior and Alters Splenocyte Function in 

C57BL/6 and CD-1 Mice. Brain Behavior and Immunology, 21(4), 458–466. 

https://doi.org/10.1038/nmeth.2250.Digestion 

Kinsey, S. G., & Cole, E. C. (2013). Acute Δ9-tetrahydrocannabinol blocks gastric hemorrhages 

induced by the nonsteroidal anti-inflammatory drug diclofenac sodium in mice. European 

Journal of Pharmacology, 715(1–3), 111–116. https://doi.org/10.1016/j.ejphar.2013.06.001 

Kinsey, S. G., O’Neal, S. T., Long, J. Z., Cravatt, B. F., & Lichtman, A. H. (2011). Inhibition of 

endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying 

assay. Pharmacology Biochemistry and Behavior, 98(1), 21–27. 

https://doi.org/10.1016/j.pbb.2010.12.002 

Lefever, T. W., Marusich, J. A., Thomas, B. F., Barrus, D. G., Peiper, N. C., Kevin, R. C., & 

Wiley, J. L. (2017). Vaping synthetic cannabinoids: A novel preclinical model of E-

cigarette use in mice. Substance Abuse: Research and Treatment, 11. 

https://doi.org/10.1177/1178221817701739 

Levin, F. R., Mariani, J. J., Pavlicova, M., Brooks, D., Glass, A., Mahony, A., … Choi, J. C. 

(2016). Dronabinol and lofexidine for cannabis use disorder : A randomized , 159, 53–60. 

https://doi.org/10.1016/j.drugalcdep.2015.11.025. 

Lichtman, A H, Fisher, J., & Martin, B. R. (2001). Precipitated cannabinoid withdrawal is 

reversed by Delta(9)-tetrahydrocannabinol or clonidine. Pharmacology, Biochemistry, and 

Behavior, 69(1–2), 181–188. https://doi.org/S0091-3057(01)00514-7 [pii] 

Lichtman, Aron H, Fisher, J., & Martin, B. R. (2001). Precipitated cannabinoid withdrawal is 

reversed by D 9 -tetrahydrocannabinol or clonidine, 69, 181–188. 

Lombard, C., Nagarkatti, M., & Nagarkatti, P. (2007). CB2 cannabinoid receptor agonist, JWH-

015, triggers apoptosis in immune cells: Potential role for CB2-selective ligands as 

immunosuppressive agents. Clinical Immunology, 122(3), 259–270. 

https://doi.org/10.1016/j.clim.2006.11.002 

Long, J. Z., Li, W., Booker, L., Burston, J. J., Kinsey, S. G., Schlosburg, J. E., … Cravatt, B. F. 

(2009). Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

34 
 

behavioral effects. Nature Chemical Biology, 5(1), 37–44. 

https://doi.org/10.1038/nchembio.129 

Lu, H. C., & MacKie, K. (2016). An introduction to the endogenous cannabinoid system. 

Biological Psychiatry, 79(7), 516–525. https://doi.org/10.1016/j.biopsych.2015.07.028 

Mackie, K. (2008). Cannabinoid Receptors : Where They are and What They do 

Neuroendocrinology, 20(11), 10–14. https://doi.org/10.1111/j.1365-2826.2008.01671.x 

Marshell, R., Kearney-Ramos, T., Brents, L. K., Hyatt, W. S., Tai, S., Prather, P. L., & 

Fantegrossi, W. E. (2014). In vivo effects of synthetic cannabinoids JWH-018 and JWH-

073 and phytocannabinoid Δ9-THC in mice: Inhalation versus intraperitoneal injection. 

Pharmacology Biochemistry and Behavior, 124, 40–47. 

https://doi.org/10.1016/j.pbb.2014.05.010 

Mason, B. L., Mustafa, A., Filbey, F., Brown, E. S., & Mason, B. L. (2016). Novel 

Pharmacotherapeutic Interventions for Cannabis Use Disorder. Current Addiction Reports. 

https://doi.org/10.1007/s40429-016-0094-y 

Matsuda, L. a, Lolait, S. J., Brownstein, M. J., Young, A. C., & Bonner, T. I. (1990). Structure of 

a cannabinoid receptor and functional expression of the cloned cDNA. Letters to Nature, 

346, 561–564. 

McKinney, M. K., & Cravatt, B. F. (2005). Structure and Function of Fatty Acid Amide 

Hydrolase. Http://Dx.Doi.Org/10.1146/Annurev.Biochem.74.082803.133450. 

https://doi.org/10.1146/annurev.biochem.74.082803.133450 

Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N., Schatz, A., … Vogel, 

Z. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that 

binds to cannabinoid receptors. Biochemical Pharmacology, 50(1), 83–90. 

Mechoulam, R., & Parker, L. a. (2012). The Endocannabinoid System and the Brain. Annual 

Review of Psychology, 64(1), 120717165617008. https://doi.org/10.1146/annurev-psych-

113011-143739 

Meijer, K. A., Russo, R. R., & Adhvaryu, D. V. (2014). Smoking Synthetic Marijuana Leads to 

Self-Mutilation Requiring Bilateral Amputations. Orthopedics, 37(4), e391–e394. 

https://doi.org/10.3928/01477447-20140401-62 

Mir, A., Obafemi, A., Young, A., & Kane, C. (2011). Myocardial Infarction Associated With 

Use of the Synthetic Cannabinoid K2. Pediatrics, 128(6), e1622–e1627. 

https://doi.org/10.1542/peds.2010-3823 

Monte, A. A., Calello, D. P., Gerona, R. R., Hamad, E., Campleman, S. L., Brent, J., … Carlson, 

R. G. (2017). Characteristics and Treatment of Patients with Clinical Illness Due to 

Synthetic Cannabinoid Inhalation Reported by Medical Toxicologists: A ToxIC Database 

Study. Journal of Medical Toxicology, 13(2), 146–152. https://doi.org/10.1007/s13181-017-

0605-9 

Morean, M. E., Kong, G., Camenga, D. R., Cavallo, D. A., & Krishnan-Sarin, S. (2015). High 

School Students’ Use of Electronic Cigarettes to Vaporize Cannabis. Pediatrics, 136(4), 

611–616. https://doi.org/10.1542/peds.2015-1727 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

35 
 

Moreira, F. A., Grieb, M., & Lutz, B. (2009). Central side-effects of therapies based on 

CB1cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best 

Practice and Research: Clinical Endocrinology and Metabolism, 23(1), 133–144. 

https://doi.org/10.1016/j.beem.2008.09.003 

Morgan, C. J. a, Schafer, G., Freeman, T. P., & Curran, H. V. (2010). Impact of cannabidiol on 

the acute memory and psychotomimetic effects of smoked cannabis: Naturalistic study. 

British Journal of Psychiatry, 197(4), 285–290. https://doi.org/10.1192/bjp.bp.110.077503 

Mu, J., Zhuang, S., Kirby, M. T., Hampson, R. E., & Deadwyler, S. A. M. A. (1999). 

Cannabinoid Receptors Differentially Modulate Potassium A and D Currents in 

Hippocampal Neurons in Culture 1, 291(2), 893–902. 

Muehlethaler, C., Leona, M., & Lombardi, J. R. (2016). Review of Surface Enhanced Raman 

Scattering Applications in Forensic Science. Analytical Chemistry, 88(1), 152–169. 

https://doi.org/10.1021/acs.analchem.5b04131 

Musshoff, F., Madea, B., Kern-Wighton, G., Bicker, W., Kneisel, S., Hutter, M., & Auwarter, V. 

(2014). Driving under the influence of synthetic phenethylamines: a case series. 

International Journal of Legal Medicine, 128, 59–64. https://doi.org/10.1007/s00414-015-

1150-1 

Nacca, N., Vatti, D., Sullivan, R., Sud, P., Su, M., & Marraffa, J. (2013). The Synthetic 

Cannabinoid Withdrawal Syndrome. Journal of Addiction Medicine, 7(4), 296–298. 

https://doi.org/10.1177/0192513X12437708 

Olea-Herrero, N., Vara, D., Malagarie-Cazenave, S., & Díaz-Laviada, I. (2009). Inhibition of 

human tumour prostate PC-3 cell growth by cannabinoids R()-Methanandamide and JWH-

015: Involvement of CB 2. British Journal of Cancer, 101(6), 940–950. 

https://doi.org/10.1038/sj.bjc.6605248 

Oliva, J. M., Servicio, S. O., Palomo, T., & Manzanares, J. (2004). Spontaneous cannabinoid 

withdrawal produces a differential time-related responsiveness in cannabinoid CB1 receptor 

gene expression in the mouse brain José. Journal of Psychopharmacology, 18(1), 59–65. 

https://doi.org/10.1177/0192513X12437708 

Papanti, D., Schifano, F., Botteon, G., Bertossi, F., Mannix, J., Vidoni, D., … Bonavigo, T. 

(2013). “Spiceophrenia”: a systematic overview of “Spice”-related psychopathological 

issues and a case report Duccio. Human Psychopharmacology Clin Exp, 28(3), 379–389. 

https://doi.org/10.1002/hup 

Paronis, C. A., Nikas, S. P., Shukla, V. G., & Makriyannis, A. (2012). 9-Tetrahydrocannabinol 

acts as a partial agonist/antagonist in mice. Behavioural Pharmacology, 23(8), 802–805. 

https://doi.org/10.1097/FBP.0b013e32835a7c4d 

Patel, S., Roelke, C. T., Rademacher, D. J., & Hillard, C. J. (2005). Inhibition of restraint stress-

induced neural and behavioural activation by endogenous cannabinoid signalling. European 

Journal of Neuroscience, 21(4), 1057–1069. https://doi.org/10.1111/j.1460-

9568.2005.03916.x 

Patton, A. L., Chimalakonda, K. C., Moran, C. L., Mccain, K. R., Radominska-Pandya, A., 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

36 
 

James, L. P., … Moran, J. H. (2013). K2 Toxicity: Fatal case of psychiatric complications 

following AM2201 exposure. Journal of Forensic Sciences, 58(6), 1676–1680. 

https://doi.org/10.1111/1556-4029.12216 

Pertwee, R. G. (2009). Emerging strategies for exploiting cannabinoid receptor agonists as 

medicines. British Journal of Pharmacology, 156(3), 397–411. 

https://doi.org/10.1111/j.1476-5381.2008.00048.x 

Qamri, Z., Preet, A., Nasser, M. W., Bass, C. E., Leone, G., Barsky, S. H., & Ganju, R. K. 

(2009). Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of 

breast cancer. Molecular Cancer Therapeutics, 8(11), 3117–3129. 

https://doi.org/10.1158/1535-7163.MCT-09-0448 

Ramesh, D., & Haney, M. (2015). Textbook of Addiction Treatment: International Perspectives. 

Textbook of Addiction Treatment: International Perspectives, 367–380. 

https://doi.org/10.1007/978-88-470-5322-9 

Ross, R. A. (2007). Allosterism and cannabinoid CB1receptors: the shape of things to come. 

Trends in Pharmacological Sciences, 28(11), 567–572. 

https://doi.org/10.1016/j.tips.2007.10.006 

Sampson, C. S., Bedy, S., & Carlisle, T. (2015). Withdrawal Seizures Seen In the Setting of 

Synthetic Cannabinoid Abuse. American Journal of Emergency Medicine, 33. 

https://doi.org/10.1016/j.ajem.2015.03.025 

Schaefer, N., Peters, B., Bregel, D., Kneisel, S., Schmidt, P. H., & Ewald, A. H. (2013). A fatal 

case involving several synthetic cannabinoids. Toxichem Krimtech, 80(January), 248–251. 

Schlosburg, J. E., Blankman, J. L., Long, J. Z., Nomura, D. K., Pan, B., Kinsey, S. G., … 

Cravatt, B. F. (2010). Chronic monoacylglycerol lipase blockade causes functional 

antagonism of the endocannabinoid system. Nature Neuroscience, 13(9), 1113–1119. 

https://doi.org/10.1038/nn.2616 

Schlosburg, J. E., Carlson, B. L. a, Ramesh, D., Abdullah, R. a, Long, J. Z., Cravatt, B. F., & 

Lichtman, A. H. (2009). Inhibitors of endocannabinoid-metabolizing enzymes reduce 

precipitated withdrawal responses in THC-dependent mice. The AAPS Journal, 11(2), 342–

352. https://doi.org/10.1208/s12248-009-9110-7 

Schreiber, S., Bader, M., Lenchinski, T., Meningher, I., Rubovitch, V., Katz, Y., … Pick, C. G. 

(2018). Functional effects of synthetic cannabinoids versus Δ9-THC in mice on body 

temperature, nociceptive threshold, anxiety, cognition, locomotor/exploratory parameters 

and depression. Addiction Biology. https://doi.org/10.1111/adb.12606 

Seely, K. A., Lapoint, J., Moran, J. H., & Fattore, L. (2012). Spice drugs are more than harmless 

herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids. 

Progress in Neuro-Psychopharmacology and Biological Psychiatry, 39(2), 234–243. 

https://doi.org/10.1016/j.pnpbp.2012.04.017 

Singh, U. P., Singh, N. P., Singh, B., Price, R. L., Nagarkatti, M., & Nagarkatti, P. S. (2012). 

Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10 -/- mice by attenuating 

the activation of T cells and promoting their apoptosis. Toxicology and Applied 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

37 
 

Pharmacology, 258(2), 256–267. https://doi.org/10.1016/j.taap.2011.11.005 

Slivicki, R. A., Xu, Z., Kulkarni, P. M., Pertwee, R. G., Mackie, K., Thakur, G. A., & Hohmann, 

A. G. (2017). Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses 

Pathological Pain Without Producing Tolerance or Dependence. Biological Psychiatry, 

011(26), 1–12. https://doi.org/10.1016/j.biopsych.2017.06.032 

Sobolevsky, T., Prasolov, I., & Rodchenkov, G. (2010). Detection of JWH-018 metabolites in 

smoking mixture post-administration urine. Forensic Science International, 200(1–3), 141–

147. https://doi.org/10.1016/j.forsciint.2010.04.003 

Steiner, M. A., & Wotjak, C. T. (2008). Role of the endocannabinoid system in regulation of the 

hypothalamic-pituitary-adrenocortical axis. Progress in Brain Research, 170(08), 397–432. 

https://doi.org/10.1016/S0079-6123(08)00433-0 

Steru, L., Chermat, R., Thierry, B., & Siman, P. (1985). The tail suspension test: A new method 

for screening antidepressant in mice. Psychopharmacology, 85(September), 367. 

Su, M. K., Seely, K. A., Moran, J. H., & Hoffman, R. S. (2015). Metabolism of Classical 

Cannabinoids and the Synthetic Cannabinoid JWH-018. Clinical Pharmacology and 

Therapeutics, 97(6), 562–564. https://doi.org/10.1002/cpt.114 

Substance Use and Mental Health Services Administration. (2015). Results from the 2015 

National Survey on Drug Use and Health: Detailed Tables,. 2015 National Survey on Drug 

Use and Health. Retrieved from https://www.samhsa.gov/data/sites/default/files/NSDUH-

DetTabs-2015/NSDUH-DetTabs-2015/NSDUH-DetTabs-2015.htm#tab5-1c 

Thomas, G., Kloner, R. A., & Rezkalla, S. (2014). Adverse cardiovascular, cerebrovascular, and 

peripheral vascular effects of marijuana inhalation: What cardiologists need to know. 

American Journal of Cardiology, 113(1), 187–190. 

https://doi.org/10.1016/j.amjcard.2013.09.042 

Trecki, J., Gerona, R. R., & Schwartz, M. D. (2015). Synthetic Cannabinoid–Related Illnesses 

and Deaths. New England Journal of Medicine, 373(2), 103–107. 

https://doi.org/10.1056/NEJMp1504912 

Trexler, K R, Eckard, M. L., & Kinsey, S. G. (2019). CB1 positive allosteric modulation 

attenuates Δ9-THC withdrawal and NSAID-induced gastric inflammatio. Pharmacology, 

Biochemistry and Behavior, 177(December 2018), 27–33. 

https://doi.org/10.1016/j.pbb.2018.12.009 

Trexler, Kristen R., Nass, S. R., Crowe, M. S., Gross, J. D., Jones, M. S., McKitrick, A. W., … 

Kinsey, S. G. (2018). Novel behavioral assays of spontaneous and precipitated THC 

withdrawal in mice. Drug and Alcohol Dependence. 

https://doi.org/10.1016/j.drugalcdep.2018.05.029 

Vallersnes, O. M., Dines, A. M., Wood, D. M., Yates, C., Heyerdahl, F., Hovda, K. E., … 

Dargan, P. I. (2016). Psychosis associated with acute recreational drug toxicity: A European 

case series. BMC Psychiatry, 16(293). https://doi.org/10.1186/s12888-016-1002-7 

van Amsterdam, J., Brunt, T., & van den Brink, W. (2015). The adverse health effects of 

synthetic cannabinoids with emphasis on psychosis-like effects. Journal of 



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

38 
 

Psychopharmacology, 29(3), 254–263. https://doi.org/10.1177/0269881114565142 

Wiebelhaus, J. M., Poklis, J. L., Poklis, A., Vann, R. E., Lichtman, A. H., & Wise, L. E. (2012). 

Inhalation exposure to smoke from synthetic “marijuana” produces potent cannabimimetic 

effects in mice. Drug and Alcohol Dependence, 126(3), 316–323. 

https://doi.org/10.1016/j.drugalcdep.2012.05.034 

Wiley, J. L., Marusich, J. A., Lefever, T. W., Antonazzo, K. R., Wallgren, M. T., Cortes, R. A., 

… Thomas, B. F. (2015). AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and 

Potency of Novel Synthetic Cannabinoids in Producing  9-Tetrahydrocannabinol-Like 

Effects in Mice. Journal of Pharmacology and Experimental Therapeutics, 354(3), 328–

339. https://doi.org/10.1124/jpet.115.225326 

 

  



Synthetic Cannabinoid Agonism and Positive Allosteric Modulation - Trexler 
 

39 
 

 

Figure 3. AB-FUBINACA has short-acting cannabinoid effects. Male and female mice were 

treated with AB-FUBINACA (0.1-3 mg/kg, i.p.) 30 min prior to testing in the tetrad battery. AB-

FUBINACA induced catalepsy (A) antinociception (B), hypothermia (C), and hypolocomotion 

(D), consistent with established cannabinoid effects. A second group of male and female mice 

was injected with AB-FUBINACA (3 mg/kg, i.p.) or THC (50 mg/kg) and tested repeatedly in a 

modified tetrad battery. The effects of AB-FUBINACA abated more quickly than the effects of 

THC in catalepsy (E), antinociception (F), and hypothermia (G). Data represent mean ± SEM 

(n=8[4m/4f]/group);*p<.05 v. vehicle or baseline. 
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Figure 4. Chronic effects of AB-FUBINACA. Mice were treated with twice daily with AB-

FUBINACA (3 mg/kg, i.p.) or vehicle for 5 days. Mice were assessed in a modified tetrad 

battery every morning approximately 30 min after injections. Mice treated with AB-FUBINACA 

did not develop tolerance to its effects in catalepsy (A), tail immersion (B), or body temperature 
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(C). On the 6th day, mice were baselined, then injected with THC (50 mg/k, i.p.) to evaluate 

cross-tolerance. Mice treated with AB-FUBINACA showed no cross tolerance to THC in 

catalepsy (D), antinociception (E), or hypothermia (F). To evaluate precipitated withdrawal from 

AB-FUBINACA, separate groups of mice were treated with AB-FUBINACA (1 or 3 mg/kg, i.p.) 

twice daily for 6 days. On the 6th day, mice were injected with rimonabant and then evaluated for 

somatic signs of withdrawal. AB-FUBINACA (1 or 3 mg/kg) increased paw tremors (G & I) and 

head twitches (H & J). Data represent mean ± SEM (n=8-10 [4-5m/4-5f] /group); *p<.05 v. 

vehicle or baseline; #p<.05 v. AB-FUB/vehicle. 
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Figure 5. Spontaneous THC withdrawal had no effect on feeding. Mice were treated twice daily 

with JWH-018 (1 mg/kg) or vehicle for 6 days and were then subjected to precipitated 

withdrawal. Rimonabant decreased drinking in both JWH-018 and vehicle treated mice (A). 

Mice were treated with twice daily with THC (10 mg/kg, i.p.) or vehicle for 5 days. Mice were 

assessed an anhedonia assay 12 h and 36 h after the final THC or vehicle injection  

(B). No effect of spontaneous THC (10 mg/kg) withdrawal was observed. Similarly, mice treated 

for 5 days with THC (50 mg/kg, i.p.) or vehicle did not show spontaneous withdrawal at 12h or 

36h (C). Data represent mean ± SEM (n=8 [4m/4f]/group) *p<.05 v. vehicle control; #p<.05 v. 

own baseline (Training 3). 
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Figure 6. Acute ZCZ011 decreased marble burying and increased immobility in a subset of tests. 

Separate groups of mice were treated with acute ZCZ011 (2.5-40 mg/kg, i.p.) or vehicle 75 min 

prior to testing. Mice treated with ZCZ011 (40 mg/kg) buried fewer marbles (A) and spent more 

time immobile in marble burying (B). Mice treated with ZCZ011 (40 mg/kg) spent more time in 

the dark (C) and more time immobile in the light/dark box test (D). Mice treated with ZCZ011 

(40 mg/kg) did not differ in time spent in the center of the open field (E) or time spent immobile 

(F) but reared less (G). ZCZ011 did not affect amount consumed in novelty-induced hypophagia 

(H). Data represent mean ± SEM (n=12-16[6-8m/6-8f]/group); *p<.05 v. vehicle or baseline. 
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Figure 7. Acute effects of ZCZ011 enantiomers. Mice were treated with either acute ZCZ011A 

(20 mg/kg, i.p.), ZCZ011B (20 mg/kg, i.p.) or vehicle 75 min prior to testing .Neither ZCZ011A 

nor ZCZ011B affected time in the center of the open field (A), time immobile during open field 

(B), or rearing (C). Neither ZCZ011A nor ZCZ011B affected marbled buried (D), but ZCZ011A 

increased time spent immobile in marble burying (E). Data represent mean ± SEM 

(n=12[6m/6f]/group); *p<.05 v. vehicle or baseline. 
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Figure 8. ZCZ011 attenuates somatic signs of precipitated THC withdrawal. Separate groups of 

mice were treated with THC (10 mg/kg, i.p.) or vehicle twice daily for 6 days. On the 6th day, 
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mice were injected with ZCZ011 (1-40 mg/kg) or vehicle, then injected with rimonabant and 

then evaluated in marble burying and tail suspension or somatic signs of withdrawal. ZCZ011 

(10 or 40 mg/kg) did not attenuate withdrawal-induced changes in marble burying (A) or tail 

suspension test (C). ZCZ011 (10 or 40 mg/kg increased immobility in mice subjected to 

withdrawal in marble burying (B). ZCZ011 (10 mg/kg) attenuated paw tremors (D) and head 

twitches (E). In a second set of experiments, mice were treated on the 6th day with ZCZ011A 

(0.55-5 mg/kg, i.p.), ZCZ011B (0.55-5 mg/kg, i.p.) or vehicle, then injected with rimonabant and 

evaluated for somatic signs of THC withdrawal. Both ZCZ011A (5 mg/kg) and ZCZ011B (5 

mg/kg) attenuated paw tremors (F) and head twitches (G). Neither ZCZ011A (0.55 or 1.66 

mg/kg) nor ZCZ011B (0.55 or 1.6 mg/kg) attenuated paw tremors (H) or head twitches (I). Data 

represent mean ± SEM (n=8 [4m/4f]/group); *p<.05 v. vehicle or baseline, #p<.05 v. 

THC/Vehicle. 
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Appendix A. Analysis of covariance (ANCOVA) for experiments 2, 3a, and 3b. 

 To standardize drinking across days in the anhedonia assays in experiment 2, an analysis 

of covariance (ANCOVA) was conducted using baseline as a covariate. Even when baseline 

consumption was considered, there was no difference in consumption between THC (10 mg/kg) 

and vehicle treated mice at 12h [p=.80] or 36h [p=.76]. When baseline was used as a covariate 

for THC (50 mg/kg) withdrawal, again, at 12h there was no difference in consumption [p=.07]. 

Interestingly, THC (50 mg/kg) withdrawal caused a significant decrease in consumption at 36h 

when analyzed using ANCOVA [F(1,11)=9.07, p<.05]. 

 I speculated that the decrease in marbles buried and increase in time spent in the dark 

observed in experiment 3a following ZCZ011 administration was due to increased immobility. 

To determine whether immobility affected marbles buried and time spent in the dark during 

light/dark box, separate ANCOVAs were done using time immobile as the covariate. Indeed, 

when analyzed with ANCOVA, the initial decrease in marbles buried is no longer significant 

[p=.17], nor is the increase in time spent in the dark during the light/dark box test [p=.08]. This 

indicates that the observed changes were related to increased immobility.  

 Finally, in experiment 3b, I speculated that the decrease in marbles buried in ZCZ011 

treated mice was due to increased immobility. Again, an ANCOVA was done to determine 

whether this was the case and again, the decrease in marbles buried was no longer significant 

when immobility was taken into account as a covariate [p=.86].  
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Appendix B. Table of post hoc analyses.  The post hoc analyses completed for the present experiments are listed in the 

table below. Bold indicates significance. 

  

  

Experiment 1: AB-FUBINACA induces classic cannabinoid effects         

Acute tetrad - compared via Dunnett's against 

vehicle control 

 Dose (mg/kg) 

mean 

difference 

critical 

difference   

Catalepsy 0.1 -0.234 6.331   

  1 -0.234 6.331   

  2 1.952 6.553   

  3 11.401 6.838   
       

 Tail immersion 0.1 -0.679 3.94   

  1 2.926 3.94   

  2 3.698 3.94   

  3 6.349 3.94   
       

 Body Temperature 0.1 -0.2 -1.92   

  1 -.537 -1.92   

  2 -4.15 -1.92   

  3 -5.75 -1.92   
       

 Locomotor 0.1 12.988 73.408   

  1 39.338 73.408   

  2 104.05 73.408   

  3 163.263 73.408   

       

Repeated dosing tetrad - compared via t-test 

against vehicle with Bonferroni correction 

(significant if p< 0.01); df:14 

 Group t value p value   

Catalepsy Day 1 1.296 0.2166   

 Day 2 7.164 <.0001   

  Day 3 2.424 0.0295   

  Day 4 4.105 0.0011   

  Day 5 3.514 0.0034   
       

 Tail immersion Day 1 2.986 0.0098   

  Day 2 2.146 0.0499   

  Day 3 1.998 0.0655   

  Day 4 3.08 0.0081   
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  Day 5 2.292 0.0379   
       

 Body Temperature Day 1 -10.413 <.0001   

  Day 2 -12.6 <.0001   

  Day 3 -3.98 0.0014   

  Day 4 -3.297 0.0053   

  Day 5 -4.276 0.0008   

       

AB-FUBINACA (3 mg/kg) precipitated 

withdrawal - compared via Bonferroni (significant 

if p< 0.0167) 

      

 Comparison 

Mean 

difference 

critical 

difference p value  

Paw tremors Vehicle v. AB-F 0.625 3.839 0.6751  

  Vehicle v. AB-F/Rim -5.518 3.974 0.0017  

  AB-F v. AB-F/Rim -6.143 3.974 0.0006  
       

 Head twitches Vehicle v. AB-F 0.25 2.652 .8.14  

  Vehicle v. AB-F/Rim -2.464 2.652 0.0248  

  AB-F v. AB-F/Rim -2.714 2.652 0.0146  

       

AB-FUBINACA and THC tetrad timecourse - 

compared via Dunnett against baseline 

  AB-FUBINACA THC 

 Timepoint 

Mean 

Difference 

Critical 

Difference 

Mean 

Difference 

Critical 

Difference 

 Catalepsy 0 min 0 18.715 0 15.823 

  15 min 36.881 18.715 13.755 15.823 

  30 min 25.327 18.715 16.585 15.823 

  1h 14.046 18.715 17.558 15.823 

  2h 0.748 18.715 14.134 15.823 

  4h 0.564 18.715 8.129 15.823 

  8h 0 18.715 0 15.823 

  12h 0 18.715 0.851 15.823 

  24h 0 18.715 0 15.823 

  48h 0 18.715 0 15.823 
       

 Tail immersion 5 min 1.357 2.897 0.643 3.082 

  20 min 5.279 2.897 5.248 3.082 

  35 min 6.731 2.897 6.309 3.082 
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  1h 2.865 2.897 5.978 3.082 

  2h 1.769 2.897 7.365 3.082 

  4h 0.549 2.897 8.053 3.082 

  8h 0.786 2.897 5.698 3.082 

  12h 0.226 2.897 3.569 3.082 

  24h 0.63 2.897 -0.153 3.082 

  48h 0.042 2.897 -0.314 3.082 
       

 Body Temperature 10 min -2.013 1.751 -1.088 1.185 

  25 min -6.913 1.751 -5.675 1.185 

  40 min -6.775 1.751 -6.45 1.185 

  1h -5.163 1.751 -6.838 1.185 

  2h -2.125 1.751 -7.137 1.185 

  4h -0.587 1.751 -6.213 1.185 

  8h -0.188 1.751 -3.913 1.185 

  12h 0.188 1.751 -2.45 1.185 

  24h -0.35 1.751 -0.35 1.185 

  48h -0.125 1.751 -0.1 1.185 

       

Experiment 2: Spontaneous THC withdrawal does not affect feeding      

JWH-018 spontaneous withdrawal - compared via 

ANOVA with Bonferroni correction (significant if 

p<0.005); df:1,28 

 Timepoint f value p value   

JWH-018 main effects Training day 1 0.088 0.7685   

 Training day 2 0.507 0.4822   

  Training day 3 0 0.9994   

  Dosing day 1 279.336 <.0001   

  Dosing day 2 52.732 <.0001   

  Dosing day 3 19.012 0.0002   

  Dosing day 4 7.002 0.0132   

  Dosing day 5 2.69 0.1122   

  Test day 0.057 0.8137   

  Reversal day 8.114 0.0081   
       

 

Rimonabant main 

effects Training day 1 0.016 0.9004   

  Training day 2 0.082 0.7766   
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  Training day 3 0.195 0.6626   

  Dosing day 1 0.463 0.5018   

  Dosing day 2 0.31 0.5823   

  Dosing day 3 1.023 0.3205   

  Dosing day 4 0.01 0.9204   

  Dosing day 5 1.189 0.2848   

  Test day 95.051 <.0001   

  Reversal day 0.358 0.5545   
       

 Interactions Training day 1 2.221 0.1474   

  Training day 2 0.48 0.494   

  Training day 3 0.686 0.4146   

  Dosing day 1 0.554 0.4629   

  Dosing day 2 5.39 0.0277   

  Dosing day 3 0.011 0.9188   

  Dosing day 4 0.269 0.6081   

  Dosing day 5 0.052 0.537   

  Test day 0.152 0.6999   

  Reversal day 0.401 0.5319   

       

THC spontaneous withdrawal - compared via t 

test with Bonferroni correction (significant if 

p<0.005); df:14 

 Timepoint t value p value   

THC (10 mg/kg) Training day 1 0.638 0.5337   

 Training day 2 0.831 0.199   

  Training day 3 0.652 0.5252   

  Dosing day 1 2.693 0.0184   

  Dosing day 2 2.408 0.0304   

  Dosing day 3 2.855 0.0127   

  Dosing day 4 2.825 0.0135   

  Dosing day 5 1.386 0.1891   

  12 h abstinence 0.485 0.652   

  36h abstinence 0.903 0.3817   
       

  Timepoint t value p value   

 THC (50 mg/kg) Training day 1 -0.168 0.8693   
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  Training day 2 -0.547 0.5929   

  Training day 3 -1.378 0.1915   

  Dosing day 1 5.905 <.0001   

  Dosing day 2 -3.196 0.0065   

  Dosing day 3 -4.134 0.001   

  Dosing day 4 -3.67 0.0025   

  Dosing day 5 -5.355 0.0001   

  12 h abstinence 0.115 0.9099   

  36h abstinence -0.159 0.8758   

       

3.3 Experiment 3a: Acute ZCZ011 does not have anxiolytic or anxiogenic effects     

ZCZ011 Marble burying dose response - 

compared via Dunnett against vehicle 

 Dose (mg/kg) 

Mean 

Difference 

Critical 

Difference   

Marble burying 2.5 4.57 4.808   

  5 3.07 5.276   

  10 1.373 4.593   

  20 -3.192 4.593   

  40 -10.513 4.808   
       

 Immobility 2.5 -0.636 5.618   

  5 0.849 5.815   

  10 0.589 5.308   

  20 4.921 5.308   

  40 21.009 5.308   

       

ZCZ011 Light/Dark Box dose response - 

compared via Dunnett against vehicle 

 Dose (mg/kg) 

Mean 

Difference 

Critical 

Difference   

Time in dark 10 9.3 39.072   

  20 21.342 39.072   

  40 45.025 39.072   
       

 Immobility 10 3.05 37.252   

  20 25.675 37.252   

  40 71.925 37.252   
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ZCZ011 Open field dose response - compared via 

Dunnett against vehicle 

 Dose (mg/kg) 

Mean 

Difference 

Critical 

Difference   

Number of rears 10 1.417 12.784   

  20 -3.5 12.784   

  40 -13.917 12.784   

       

ZCZ011 enantiomer marble burying immobility - 

compared via Dunnett against 1 min 

  ZCZ011 A ZCZ011 B 

 Minute (out of 20) 

Mean 

Difference 

Critical 

Difference 

Mean 

Difference 

Critical 

Difference 

 2 2.15 16.016 2.925 9.115 

  3 0.7 16.016 0.825 9.115 

  4 3.763 16.016 4.7 9.115 

  5 4.15 16.016 2.175 9.115 

  6 7.35 16.016 4.725 9.115 

  7 8.138 16.016 1.688 9.115 

  8 11.213 16.016 4.2 9.115 

  9 10.975 16.016 3.65 9.115 

  10 14.363 16.016 4.388 9.115 

  11 13.488 16.016 4.725 9.115 

  12 18.988 16.016 6.188 9.115 

  13 11.387 16.016 4.95 9.115 

  14 27.775 16.016 8.262 9.115 

  15 32.25 16.016 4.675 9.115 

  16 30.45 16.016 3.15 9.115 

  17 22.438 16.016 4.463 9.115 

  18 33.2 16.016 9.5 9.115 

  19 35.425 16.016 11.35 9.115 

  20 44.575 16.016 14.488 9.115 

       
3.4 Experiment 3b: Somatic signs of THC withdrawal attenuated by 

ZCZ011      

THC precipitated withdrawal with ZCZ011 

attenuation in marble burying - compared via 

 Comparison t value p value   

Marble burying Vehicle v. THC 3.466 0.0038   

 Vehicle v. THC+ZCZ 10 6.311 <.0001   
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planned t tests with Bonferroni correction 

(significant if p<0.0125); df:14  Vehicle v. THC+ZCZ 40 0.858 0.4051   

       

THC precipitated withdrawal with ZCZ011 

attenuation in somatic signs - compared via  

Bonferroni (significant if p<0.005) 

 Comparison 

Mean 

difference 

critical 

difference p value  

Paw tremors Vehicle v. THC -46.857 32.277 0.0001  

 Vehicle v. THC+ZCZ 1 -36.696 31.252 0.0012  

  Vehicle v. THC+ZCZ 3.33 37.286 32.277 0.015  

  Vehicle v. THC+ZCZ 10 -12.696 31.252 0.2296  

  THC v. THC+ZCZ 1 10.161 31.252 0.3343  

  THC v. THC+ZCZ 3.33 9.571 32.277 0.378  

  THC v. THC+ZCZ 10 34.161 31.252 0.0024  

  

THC+ZCZ 1 v. THC+ZCZ 

3.33 -0.589 31.252 0.975  

  THC+ZCZ 1 v. THC+ZCZ 10 24 30.192 0.0226  

  

THC+ZCZ 3.33 v. THC+ZCZ 

10 24.589 31.252 0.0239  
       

 Head twitches Vehicle v. THC -7.286 5.652 0.0005  

  Vehicle v. THC+ZCZ 1 -5.625 5.473 0.004  

  Vehicle v. THC+ZCZ 3.33 -3.286 5.652 0.0892  

  Vehicle v. THC+ZCZ 10 -2.875 5.473 0.123  

  THC v. THC+ZCZ 1 1.661 5.473 0.3671  

  THC v. THC+ZCZ 3.33 4 5.652 0.0406  

  THC v. THC+ZCZ 10 4.411 5.473 0.0209  

  

THC+ZCZ 1 v. THC+ZCZ 

3.33 2.339 5.473 0.2067  

  THC+ZCZ 1 v. THC+ZCZ 10 2.75 5.287 0.1267  

  

THC+ZCZ 3.33 v. THC+ZCZ 

10 0.411 5.473 0.8824  

       

THC precipitated withdrawal with ZCZ011 

enantiomer (5 mg/kg only) attenuation in somatic 

signs - compared via  Bonferroni (significant if 

p<0.005) 

 Comparison 

Mean 

difference 

critical 

difference p value  

Paw tremors Vehicle v. THC -38.625 16.135 <.0001  

 Vehicle v. THC+ZCZ 10 -1.875 16.135 0.7298  

 Vehicle v. THC+ZCZ A -10.375 16.135 0.0622  

  Vehicle v. THC+ZCZ B -8.375 16.135 0.1289  
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  THC v. THC+ZCZ 10 36.75 16.135 <.0001  

  THC v. THC+ZCZ A 28.25 16.135 <.0001  

  THC v. THC+ZCZ B 30.25 16.135 <.0001  

  THC+ZCZ 10 v. THC+ZCZ A -8.5 16.135 0.1235  

  THC+ZCZ 10 v. THC+ZCZ B -6.5 16.135 0.2355  

  THC+ZCZ A v. THC+ZCZ B 2 16.135 0.7126  
       

 Head twitches Vehicle v. THC -5.375 2.854 <.0001  

  Vehicle v. THC+ZCZ 10 -0.125 2.854 0.8963  

  Vehicle v. THC+ZCZ A -0.875 2.854 0.3645  

  Vehicle v. THC+ZCZ B -1.625 2.854 0.0968  

  THC v. THC+ZCZ 10 5.25 2.854 <.0001  

  THC v. THC+ZCZ A 4.5 2.854 <.0001  

  THC v. THC+ZCZ B 3.75 2.854 0.0004  

  THC+ZCZ 10 v. THC+ZCZ A -0.75 2.854 0.4363  

  THC+ZCZ 10 v. THC+ZCZ B -1.5 2.854 0.1243  

    THC+ZCZ A v. THC+ZCZ B -0.75 2.854 0.4363  
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