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ABSTRACT 
 

Development of a Minimally Invasive Sampling Technique to Estimate the Age of Living 
Birds       

 
Crissa K. Cooey 

 
Using pest species in initial studies of pentosidine (Ps) aging research for birds may be the 
catalyst to discovering more effective population control strategies for pest, invasive, and hard to 
manage birds.  Pentosidine is an irreversible, stable, fluorescent, collagen cross-link, created 
through the Maillard reaction, which has been found to accumulate throughout the lifetime of an 
organism in various body parts such as skin, lens crystalline, and dura matter.  Pentosidine assays 
are more accurate at determining the age of adult birds in comparison to plumage coloration, eye 
and mouth color, feather wear, and molt sequences due to the discovery that Ps accumulates with 
age in the skin of birds.  Past studies, however, have only taken place on deceased birds.  To be 
considered a more generally useful tool for wildlife management studies, a procedure to obtain 
skin samples from living birds is needed.  The objective of this project was to develop a 
minimally invasive sampling technique to age live birds through Ps analysis by 1) determining if 
differences exist in Ps concentration between the breast and patagium of black vultures 
(Coragyps atratus), monk parakeets (Myiopsitta monachus), and double-crested cormorants 
(Phalacrocorax auritus), 2) determining if differences exist in Ps concentration of 6 mm2 and 20 
mm2 skin samples, and 3) determining if healing rates differ between the breast and patagium 
and between wounds closed with tissue glue and wounds closed with sutures.  Pentosidine 
concentrations were similar between the breast (x̄ = 8.9 pmol/mg collagen, SE = 0.55) and 
patagium (x̄ = 8.9 pmol/mg collagen, SE = 0.51) of black vultures (P = 0.97) as well as the breast 
(x̄ = 11.2 pmol/mg collagen, SE = 1.10) and patagium (x̄ = 10.6 pmol/mg collagen, SE = 1.10) of 
deceased double-crested cormorants (P = 0.10).  Pentosidine, however, was significantly higher 
in the breast (x̄ = 15.9 pmol/mg collagen, SE = 1.30) than the patagium (x̄ = 11.5 pmol/mg 
collagen, SE = 1.10) of monk parakeets (P < 0.0001).  The Ps concentration was marginally 
higher in 6 mm2 skin samples (x̄ = 12.6 pmol/mg collagen, SE = 1.19) when compared to 20 
mm2 skin samples (x̄ = 11.3 pmol/mg collagen, SE = 1.23) of cormorants (P = 0.02).  Four new 
age curves were developed for cormorants (our linear breast skin age curve, our curvilinear 
breast skin age curve, our linear patagial skin age curve, and our curvilinear patagial skin age 
curve) and compared to the original Fallon age curve.  Age estimates and actual ages for 
cormorant breast and patagial skins were found to be similar when using our linear and 
curvilinear breast and patagial skin age curves, but there were significant differences between 
actual and estimated ages for breast and patagial skin when using the Fallon age curve (P 
<0.0001 and P <0.0001 respectively).  The mean estimated ages for all 5 age curves were found 
to be accurate to within approximately 1½ years (17.4 months).  For 6 mm2 skins, there was a 
marginal difference between real and estimated age when using our curvilinear patagial curve (P 
= 0.04), but real and estimated ages were similar for 6 mm2 skins using our linear patagial curve 
and 20 mm2 skins using our linear and curvilinear patagial curve.  The mean estimated ages for 
the 2 age curves were found to be accurate to within approximately 2½ years (28.3 months).  
Seven living cormorants were caught at Bluff Lake, part of Noxubee National Wildlife Refuge in 
Mississippi, and were used to test the live sampling protocol.  After a 6 mm2 biopsy was 
removed from the breast and patagium, the birds had their wounds closed with either tissue glue 



 
 

 
 

(n = 3) or sutures (n = 4).  Wounds closed with tissue glue (x̄ = 14.5 days, SE = 1.12) healed 
significantly faster than those closed with sutures (x̄ = 17.3 days, SE = 0.66) (P = 0.0003) but the 
healing rate was similar for the breast (x̄ = 15.9 days, SE = 1.36) and patagium (x̄ = 15.8 days, 
SE = 1.85) (P = 0.79).  Our finding is that live sampling can be safely done for live birds.  Our 
recommendations are to live sample birds from the patagium with a 6 mm2 biopsy punch and to 
close the wounds with tissue glue.  Use of this technique could provide insight into senescence, 
reproductive success, and behavioral changes for different adult age classes as well as improve 
management strategies for pest and endangered/threatened species.   
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2008 (day 17 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  The skin has completely healed. The sutures are still in place and the feather remains 

caught up in the sutures................................................................................................................146 
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RH: Cooey • Literature Review of a Bird Aging Technique 

Literature Review of Pentosidine Analysis as a Method of Estimating the Age 

of Birds 

CRISSA K. COOEY, Wildlife and Fisheries Resources, Division of Forestry and Natural  

     Resources, West Virginia University, Morgantown, WV, 26506, USA          

ABSTRACT  Using pest species in pilot studies of pentosidine aging research for birds may be 

the catalyst to discovering more accurate conservation strategies for endangered and threatened 

birds.  Three species of pest birds (black vultures [Coragyps atratus], double-crested cormorants 

[Phalacrocorax auritus], and monk parakeets [Myiopsitta monachus]) will be used to refine 

pentosidine assay techniques, as well as be used in a live sampling study.  Black vultures are 

considered a pest because of their numerous collisions with aircrafts and livestock depredation.  

Double-crested cormorants are pests mainly due to the damage they cause at aquaculture ponds 

in the southeast U.S.  The introduced monk parakeet will cause some damage to crops, but the 

nests they build are a nuisance and hazard to electrical companies.  Pentosidine assays are more 

accurate at determining the age of adult birds in comparison to plumage coloration, eye and 

mouth color, feather wear, and molt sequences and it takes a shorter amount of time to complete 

than banding studies.  Pentosidine is an advanced glycation end product created through the 

Maillard reaction.  It is an irreversible, stable, fluorescent, collagen cross-link that has been 

found to accumulate throughout the lifetime of an organism in various body parts such as skin, 

lens crystalline, and dura matter.  Past studies have discovered that pentosidine accumulates with 

age in the skin of birds, which makes it a promising biomarker that can be used to estimate the 

age of birds.  A minimally invasive sampling method will need to be created before live 

sampling birds for pentosidine assays takes place.  Considerations include the size of the skin 
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sample taken, the location of the biopsy site, and the closure method for the wound.  If 

pentosidine assays prove to be successful in aging living birds, this procedure could be valuable 

for research on migration, senescence, cooperative-breeding, life-table demographics, pest 

management, and conservation of birds.  The following studies will investigate the optimal 

location to take a skin sample and the minimal size of skin that can be taken.  Live sampling one 

of the pest species will also take place to determine if this is a feasible procedure to be used on 

living birds, as well as determine which closure method works the best for treatment of the 

wounds.   

KEY WORDS advanced glycation end products (AGEs), avian aging, breast skin, Coragyps 

atratus, Maillard reaction, Myiopsitta monachus, patagium, pentosidine, pest species, 

Phalacrocorax auritus, skin samples 

The Journal of Wildlife Management: 00(0): 000-000, 200X 

Determination of age in individual birds can provide important information with respect to their 

biology and behavior.  For example, zoologists working in captive breeding programs have been 

trying to identify factors in individuals important to enhancing the success of breeding programs.  

The oriental crested ibis (Nipponia nippon) captive breeding program was proven more 

successful when matched pairs had similar ages (Fulai et al. 1995).  Fulai et al. (1995) 

commented that the youngest matched pair was unsuccessful, because they may not have been at 

the correct breeding age.   

 Pest species may be the catalyst for developing aging models and refining methods 

including aging endangered or threatened species in Species Survival Programs (SSPs).  Certain 

methods of sampling for pentosidine (Ps) assay require destructive sampling of study subjects.  

Because some pest species are abundant and managed by lethal means, skin samples are 
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relatively easy to obtain.  Samples from these pest species provide an opportunity to compare 

skin sampling methods and to refine and evaluate the potential for non-lethal sampling.  If 

smaller non-lethal skin samples can be successfully obtained, then studies can be done in the 

future to determine the age structure of threatened and endangered species without being 

concerned that the sampling method will kill their study species.     

Once a pest species exceeds societal acceptance capacity, management may be initiated 

to control or reduce damages or other nuisance activities.  This wildlife damage management 

sometimes incorporates lethal control measures.  Age estimates prove useful in developing life 

tables, pre-management modeling and to determine how many birds need to be euthanized to 

maintain population levels within social acceptance capacities.  Bird banding studies often take a 

long time to acquire useable age structure data.  Aging a random sample of birds by analyzing 

pentosidine in their skin will give information on the age structure of the population quickly 

(within a matter of months instead of years).  

For the purpose of this study, we are using 3 pest species (black vultures [Coragyps 

atratus], double-crested cormorants [Phalacrocorax auritus], and monk parakeets [Myiopsitta 

monachus]) to determine if pentosidine assays are a viable aging method for living birds.  If it is, 

this method could be used to acquire an understanding of the biology of species of interest as a 

necessary precursor to the development of efficient and effective wildlife management and 

conservation strategies.   

STUDY SPECIES 

Black Vultures 

General Description.- Black vultures are New World vultures and are part of the Cathartidae 

family, opposed to the Old World vultures, which are part of the Accipitridae family (Proctor 
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and Lynch 1993).  They are found in the southeastern United States, ranging from Pennsylvania 

to Texas, with a separate range from southern Arizona into South America (Cornell Lab of 

Ornithology [CLO] 2007, U.S. Geological Survey [USGS] 2007a).   They are approximately 56 

cm long with a 137 cm wingspan (CLO 2007, USGS 2007a).  Black vultures are entirely black, 

with the exception of white outer primary feathers and a gray unfeathered head, neck, and legs 

(CLO 2007, USGS 2007a).  Both the juveniles and the adults have similar plumage (CLO 2007, 

USGS 2007a).  They also have a short, squared off tail and a dark, hooked beak (CLO 2007, 

USGS 2007a).  While soaring, typically in flocks (CLO 2007), they hold their wings flat (USGS 

2007a).  They will flap their wings more frequently in flight before soaring again, compared to 

turkey vultures (Cathartes aura) (Avery and Cummings 2004, CLO 2007, USGS 2007a).  The 

black vulture's call is described as hisses, grunts, or barks (CLO 2007, National Wildlife 

Federation [NWF] 2007).  Instead of retreating to individual nests, they form large communal 

roosts at night, throughout the year (Rabenold 1986).  Black vultures have been reported to live 

as long as 25 years (USGS 2007b).   

Reason for Study.- Breeding bird surveys (BBS) have indicated that black vultures have been 

steadily increasing at a rate of 2.99% yearly since 1967, but rates rose to 4.97% annually from 

1990 to 2002 (or 5.97% annually since 1990 according to the Christmas Bird Count [CBC]) 

(Avery 2004).  Black vultures are considered pest species because of the damage they do to 

homes and businesses from roosting (Fitzwater 1988), colliding with aircraft (Dolbeer et al. 

2000, DeVault et al. 2005), and depredating livestock and poultry (Avery and Cummings 2004).  

Black vultures like to roost on utility poles, power station transmitters, and private residences, 

making them undesirable “neighbors” (Fitzwater 1988).  Vultures favor airports because of 

abundant road kill on the tar mats and on the roads leading to the facility and because they like to 
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soar on thermals created by warm air rising from the runways at airports (Satheesan and 

Satheesan 2000).   In Fort Myers, FL, vultures perch on Low Level Wind-shear Alert Systems 

(LLWAS), often damaging the structures (Avery and Genchi 2004).  Black vultures create a live 

barrier while soaring in flocks; this combined with their body mass and poor reflexes make black 

vultures extremely dangerous to aircrafts (Satheesan and Satheesan 2000).  Black and turkey 

vultures are considered the top threat to civil and military aircraft collisions in the U.S. (Dolbeer 

et al. 2000).  Between 1955 and 1999, 33 aircraft crashes (27 military and 6 civil) were caused 

by collisions with 7 different species of vultures throughout the world (Satheesan and Satheesan 

2000).  In 11 of these crashes, 21 lives were lost (Satheesan and Satheesan 2000). In the U.S 

black vulture collisions with aircrafts result in $10-17 million in damage per incident (Satheesan 

and Satheesan 2000).   Although most collisions occur in the airfield environment (e.g., fighter 

jet crashes occurred most often during low level cruise [Satheesan and Satheesan 2000]), many 

collisions have been found to cause substantial damage during mid-flight (Dolbeer et al. 2000).  

This indicates that vulture populations need to be controlled not only at the airport, but also in a 

designated radius around the airport (e.g., removing food sources in a 200 km radius around a 

military airfield reduced populations of vultures in India) (Satheesan and Satheesan 2000).   

 Vultures not only feed on carrion, but they will attack, kill, and eat domestic animals 

(Avery and Cummings 2004).  Eighteen states reported black vulture depredations from 1997 to 

2002 (Avery and Cummings 2004).  Over half of the kills involved cattle, with many kills 

involving young and newborn calfs (Avery and Cummings 2004).  Kills typically involve 20-60 

black vultures (Avery and Cummings 2004).  Methods to keep vultures away from cattle include 

harassment by firing a .22 caliber rifle, removing dead livestock and road-killed animals from the 
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area, roost dispersal with effigies, trapping and relocation, and lethal control (Avery and 

Cummings 2004).  

Double-crested Cormorants 

General Description.- Double-crested cormorants (hereafter cormorants) range from Alaska, 

Manitoba, and Newfoundland south to Mexico and the Bahamas (CLO 2007, NWF 2007, USGS 

2007a).  They are approximately 69 cm long, with a wingspan of 127 cm (CLO 2007, USGS 

2007a).  They are a large bodied waterbird, with a long, thin neck, long, hooked bill, and long 

tail (USGS 2007a).  Adults are entirely black, with the exception of an orange throat patch, and 2 

black to partially or mostly white tufts of feathers (or crests) behind their eyes during the 

breeding season (CLO 2007, NWF 2007, USGS 2007a).  The plumage can appear to have a 

green tinge to it in certain lighting (CLO 2007).  Juveniles have brown plumage with a buffy 

breast, upper abdomen, and neck (CLO 2007, NWF 2007).  Cormorants are often seen perching 

with their wings spread, a behavior where they are trying to dry themselves (CLO 2007, USGS 

2007a).  While in flight, double-crested cormorants have a slight crook in their neck, which 

distinguishes them from the other species of cormorant (CLO 2007, NWF 2007).  Their call is 

described as a deep guttural grunt (CLO 2007, NWF 2007, USGS 2007a).  Cormorants are 

known to live as long as 22 years (USGS 2007b). 

 They nest in colonies in trees or on cliffs near lakes, rivers, swamps, or coasts (CLO 

2007, NWF 2007), or on the ground of isolated islands (CLO 2007).  Cormorants make their 

nests out of sticks, seaweed, and man-made materials such as rope, fishnets, and plastic debris 

(CLO 2007, NWF 2007).   

Reason for Study.- Cormorants were once a species of concern when environmental 

contaminants reached levels affecting cormorant populations regionally (Ludwig et al. 1989).  
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Consequently cormorants were placed under the protection of the Migratory Bird Treaty Act in 

1972 (Glahn et al. 2000b).  Regulatory protection from persecution, reduction in the use of 

pesticides (Tyson et al. 1999), and increased food availability, due to anthropogenic changes in 

the Great Lakes and man-made reservoirs, likely helped with a resurgence in cormorant numbers 

(Weseloh et al. 1995).  The cormorant nesting population in the Great Lakes increased from 89 

nesting pairs in 1970 to about 93,000 pairs in 1997 (Tyson et al. 1999).   During this time, 

cormorants started inhabiting areas south of their original range, eventually leading to their 

colonization of Mississippi, Louisiana, Arkansas, and other southern states (Post and Seals 

1991).   

 Sport fishermen in the Great Lakes are competing with cormorants for fish (Glahn et al. 

2000b), because cormorants feed primarily on fish (CLO 2007).  Wildlife managers are 

concerned with waterbird/cormorant competition over limited space and resources (Glahn et al. 

2000b). Along with increased aquaculture cultivation of channel catfish (Ictalurus punctatus), 

crawfish, and baitfish, cormorant numbers have increased significantly over the past 25 years 

(Glahn and Stickley 1995).  In 1998 there was an estimated 60,000 cormorants wintering in 

Mississippi (Werner and Hanisch 2003).  Glahn et al. (2000a) found that their numbers have 

increased by about 250% in the Mississippi Delta region over this past decade.  The production 

ponds for cultured fish in this area are highly susceptible to predation, especially by cormorants 

(Wywialowski 1999), with more foraging taking place at high density fish ponds (Werner and 

Dorr 2006).  Increased winter survival of juveniles from readily available catfish and higher fat 

reserves of spring migrating adults may have contributed to cormorant population growth (Glahn 

and Brugger 1995).   Glahn et al. (2002) estimated that cormorants are causing up to $25 million 

in damage annually from feeding at catfish aquaculture farms in the southeast United States.  
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Management practices, such as harassment, has proven difficult mainly because the result is only 

a temporary reduction in cormorant numbers (Mott and Boyd 1995).  The U.S. Fish and Wildlife 

Service (USFWS) expanded the 1998 Public Resource Depredation Order (50 CFR 21.47) to 

allow removal of individuals from roosts near the aquaculture facilities (USFWS 2003).   The 

only management method that has shown positive results so far is a combination of techniques, 

such as nest removal and harassment (Taylor and Dorr 2003). 

Monk Parakeets 

General Description.- Monk parakeets (also known as Quaker, cliff and gray-breasted parakeets) 

are a species of parrot that originated from central Bolivia, central Argentina and southern Brazil 

(Campbell 2000, Avery et al. 2002).  They are approximately 28 cm long with a 48 cm 

wingspan, and weigh about 100 grams (Campbell 2000, NWF 2007).  Females tend to be 10-

20% smaller than males (Campbell 2000).  They have bright green upperparts, their forehead and 

breast are gray, and the rest of the under parts are light green or yellow (Campbell 2000, NWF 

2007).  Their flight feathers are dark blue, and their tail is long and tapering (Campbell 2007, 

NWF 2007).  They also have an orange bill (NWF 2007).  Their call is a loud and throaty graaa 

or skveet (Campbell 2000, NWF 2007).  Monk parakeets can live upwards of 6 years in the wild 

and 12-15 years in captivity (Pruett-Jones et al. 2007). 

 The monk parakeet is the only parrot that builds a stick nest, in a tree or on a man-made 

structure, rather than using a hole in a tree (Campbell 2000, NWF 2007). This species often 

breeds colonially, building a single large nest with separate entrances for each pair (Campbell 

2000, Avery et al. 2002, Tillman et al. 2004, NWF 2007). In the wild, the nests can become quite 

large (i.e., 1- 4 m in diameter) (Campbell 2000, Avery et al. 2002, Tillman et al. 2004).  
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Reason for Study.- This species of bird has been used in the pet trade industry for at least the past 

50 years.  Because of that they have been introduced into the United States, beginning in the 

1960s, from accidental or purposeful releases from former owners and pet store workers (Avery 

et al. 2002).  In 1969, monk parakeets were reported as breeding in Miami, Florida (Stevenson 

and Anderson 1994).  From 1971 to 1995, Christmas Bird Count (CBC) surveys documented 

1,816 individuals from 76 populations in 15 states (van Bael and Pruett-Jones 1996).  Population 

dynamics for this species fit an exponential model of population growth after analyzing the data 

(van Bael and Pruett-Jones 1996).   

 Their increasing numbers alone isn't the only problem in relation to human and animal 

interactions.  They have the potential to spread Newcastle disease, but no literature has been 

published on this occurring in the U.S. (Fitzwater 1988).  In their native South America, they are 

heavily regarded as agricultural pests, feeding on a variety of foods, including fruits (Mott 1973).  

They cause little damage, however, to agriculture in the United States (Avery and Tillman 2005).  

Their nest locations have given them a reputation for being a pest species in the U.S.  They are 

especially fond of building nests on utility poles, transmission line support towers, and electric 

substations (Avery et al. 2002, Tillman et al. 2004).  The sheer size of the nest and the materials 

it’s made from can take its toll on the function of the transformers (i.e., the nest can result in 

arcing of current which causes damage to structures) (Avery et al. 2002).   Damage can also 

occur when the nest materials get wet and inadvertently cause a short circuit, which results in a 

power outage (Avery et al. 2002, Avery and Tillman 2005).  In 2001, monk parakeets created 

damages for electrical companies that totaled $585,000 (A. Hodges and C. Newman, 

unpublished data).  Direct economic damages brought on by monk parakeet nests includes: 1) 

lost profit during outages, 2) costs of repairing equipment and restoring power, 3) costs for 



11 Cooey  
 

mitigating monk parakeet populations, 4) indirect costs for personnel attending to the problem, 

and 5) costs to customers for loss of electricity (Avery et al. 2002).   

 Several remedies have been used to prevent monk parakeets from nesting on these man-

made electrical structures that have met some success: 1) nest and bird removal, 2) owl effigies, 

and 3) laser beams (Avery et al. 2002).   The introduction of an endemic protozoan parasite (i.e., 

Sarcocystis falcatula) may be a possible mitigation tool (Avery et al. 2002).  This protozoan is 

lethal to psittacines but is not harmful to native birds of Florida (Avery et al. 2002).  Another 

promising tool is feeding the parakeets the contraceptive diazacon (G. D. Searle Co., Omaha, 

Nebraska) (Yoder et al. 2007, Avery et al. 2008).  Diazacon laced food has been effective in 

reducing reproductive success of monk parakeets both in the laboratory (Yoder et al. 2007) and 

in the wild (Avery et al. 2008).  Most likely, some form of lethal removal will be necessary to 

control monk parakeet populations (van Bael and Pruett-Jones 1996).   

COMPARISON OF AVIAN AGING METHODS 

Researchers have developed several methods of aging birds, but they have proved to not 

be accurate past a certain age.  Heinrich and Marzluff (1992) studied the change in mouth and 

tongue color to age common ravens (Corvus corax) from hatchlings to adults (3+ years).  

Changes in iris color in the Cooper’s hawk (Accipiter cooperii) from yellow to orange to red 

have been used to age them as a juvenile or adult (Fagan 2008).  “Skulling” or looking at the 

development and fusion of the bones in the skull is a way to age passerine birds up to about 6 

months of age (Proctor and Lynch 1993).  Plumage coloration and molt patterns also help 

identify a bird's age.  For example, it takes approximately 5 years for the bald eagle (Haliaeetus 

leucocephalus) to develop a full white head (Dixon 1909).  Jackson et al. (1992) studied age 

specific plumage characteristics and annual molt schedules in hermit (Dendroica occidentalis) 
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and Townsend's warblers (Dendroica townsendi).  They observed that immature Townsend’s 

warblers had well defined shaft streaks on their throat while the adults had faint or no shaft 

streaks (Jackson et al. 1992).  If a certain species of bird will have 2 adult plumages in its 

lifetime, you can age these birds up to 3 years of age by looking at their plumage patterns 

(Amadon 1966, Jackson et al. 1992, Proctor and Lynch 1993, Thompson and Leu 1994).  For 

birds with 2 alternating adult plumages, a breeding and non-breeding, the only way to transition 

from one plumage to another is by molting (Amadon 1966, Thompson and Leu 1994). Johnson 

(1963) found that molt sequences and schedules are rarely the same in any 2 species, and may be 

different for northern and southern birds of the same species.  Along with comparing plumage 

coloration and molting patterns, some investigators look at feather wear to age birds (Saether et 

al. 1994).  The primary feathers are examined for nicks or missing tips and barbule and hook 

wear (i.e., ability to reconnect the barbs) (Saether et al. 1994).  This has been a reliable method 

of aging birds as either young or old (Saether et al. 1994).   A disadvantage of the 

aforementioned methods is they are only reliable between 1 year (in shorter lived birds) and 

about 5 years of age (in longer lived birds).   

Bird banding records can provide accurate ages for some, if not most, birds (Pollock and 

Raveling 1982, Sheaffer and Malecki 1995).  At the time of banding, the correct age of the bird 

needs to be recorded for accurate age estimates when recaptured seasons later (Pollock and 

Raveling 1982, Sheaffer and Malecki 1995, USGS 2003).  This is easiest to do when the birds 

are still juveniles (Nisbet 2001), but as mentioned above, aging is difficult to do for adult birds 

by looking at external features.  Obtaining accurate ages from banding records is time consuming 

(years of banding and recapturing), expensive (cost of supplies, equipment, salaries) (Pollock 

and Raveling 1982, Sheaffer and Malecki 1995), cannot always be done (few recaptures or band 
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loss) (Coluccy et al. 2002), may not always be accurate (misidentifying correct age at banding) 

(USGS 2003), and can only take place on living birds (Pollock and Raveling 1982, Sheaffer and 

Malecki 1995) but other data such as site fidelity, migration patterns, etc. also can be obtained 

simultaneously (Pollock and Raveling 1982).   

Alternative methods of aging birds have been studied over the past several decades.  

Focus has shifted from external examination to internal examination.  Biomarker research 

appears to be promising for aging birds.  Biomarkers, which show indications of biological age, 

correlate with chronological age (Ingram et al. 2001).  One study involved looking at the 

shortening of telomeres as an indication of age in birds (Haussmann and Vleck 2002, Haussmann 

et al. 2003, Juola et al. 2006).   Telomere restriction fragments (TRFs) have been documented to 

shorten with age in Adélie penguins (Pygoscelis adeliae), common terns (Sterna hirundo), tree 

swallows (Tachycineta bicolor), zebra finches (Taeniopygia guttata) (Haussmann and Vleck 

2002, Haussmann et al. 2003) and great frigatebirds (Fregata minor) (Juola et al. 2006) but 

lengthen with age in the Leach’s storm-petrel (Oceanodroma leucorhoa) (Haussmann and Vleck 

2002, Haussmann et al. 2003).  Unfortunately this method is not always reliable as no linear 

relation was found for TRF lengthening or shortening and time for the European shag 

(Phalacrocorax aristotelis) or wandering albatross (Diomedea exulans) (Hall et al. 2004).   

Non-renewable structures, such as collagen, typically have the most noticeable age-

related changes (Kohn and Schnider 1982).  With age, there is a loss of elasticity in skin, arteries, 

lungs, and joints due to structural change in collagen (Kohn and Monnier 1987). Collagen in 

these tissues becomes less soluble, less digestible by collagenase, less expandable, and more 

resistant to heat denaturation with increasing age (Schnider and Kohn 1982).  A more reliable 
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biomarker for bird aging may be a collagen crosslink.  One collagen crosslink, known as 

pentosidine, is created by the Maillard reaction.   

MAILLARD REACTION, ADVANCED GLYCATION END PRODUCTS (AGES), AND 

PENTOSIDINE  

 Louis Camille Maillard (1912) discovered that by slowly heating 1 part glycine and 4 

parts glucose together in water, the concoction turned a yellow-brown color after 10 minutes.  

This discovery led to the description of the Maillard, or nonenzymatic glycosylation, reaction.  

The Maillard reaction has been studied extensively to explain the occurrence of yellowing in 

long-lived proteins such as collagen and lens crystalline (Monnier and Cerami 1981).  The 

Maillard reaction begins when a sugar aldehyde or ketone and a free amino group react through 

nonenzymatic condensation (Monnier 1989).  A Schiff base with a free amine forms from this 

reaction, rearranging to create the Amadori product, a stable ketamine configuration (Monnier 

1989, Sell et al. 1998).  The Amadori product then undergoes a series of complex reactions, 

which leads to the formation of polymeric, yellowish, fluorescent, and crosslinking materials 

known as advanced glycation end products or AGEs (Sell et al. 1998).  These products are 

irreversible chemical modifications of protein (Sell and Monnier 1989b), thermodynamically 

stable, and accumulate in long-lived biological molecules (Monnier 1989).  At this point the 

Maillard reaction would be terminated in vivo, but if the Maillard reaction terminates in vitro, 

polymerization occurs, creating brown solutions, rich in melanoidins (Monnier 1989).   

 Pentosidine is a recently discovered fluorescent AGE, first isolated from human dura 

matter in 1989 (Sell and Monnier 1989a).  It is formed from the reaction of a sugar (i.e., glucose, 

fructose, or ascorbate) with a protein (Grandhee and Monnier 1991).  Glucose itself or Amadori 

adducts of glucose and protein also can be sources of pentosidine (Dyer et al. 1991).  
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Pentosidine’s structure consists of a ribose molecule crosslinked with a lysine and arginine 

residue (Figure 1) (Sell and Monnier 1989b).  Pentosidine has been found in a variety of tissues 

and organs, such as the lung, aorta, kidney glomeruli, trachea, heart muscle, dura matter, bone, 

lenses, human fibroblasts and glomerular mesangial cells (Monnier et al. 1993).  Pentosidine also 

has been found to accumulate with age in the skin of a variety of mammals, such as humans, 

shrews, dogs, cows, pigs, and monkeys (Sell et al. 1996), and more recently birds (Iqbal et al. 

1999, Chaney et al. 2003, Fallon et al. 2006a,b).  Recent research has shown that pentosidine has 

accelerated the aging process in diabetic humans (Sell and Monnier 1990, Sell et al. 1992, Sell et 

al. 1998).  Advanced glycation end products alter the structural properties of tissue proteins and 

reduce their susceptibility to catabolism (Sell and Monnier 1990).  These changes contribute to 

the aging of tissues, which cause the development of diabetic complications through 

advancement by hyperglycemia (Dyer et al. 1993). Diabetic patients had Ps concentrations above 

the 95% CI for nondiabetic patients of the same age (Sell et al. 1992).  All of this research 

suggests that Ps might be the key to the aging process (Iqbal et al. 1999) and has been proposed 

to serve as a senescence crosslink.   

PENTOSIDINE ACCUMULATION IN AVIAN SKIN 

Mammals have been reliably aged in the past through teeth wear, graying of hair, and 

wrinkling of skin (Finch 1976), and pentosidine concentration analysis only strengthened the age 

estimate.   Iqbal et al. (1999) proposed that birds could be aged through pentosidine 

concentration analysis from skin samples.  Iqbal et al. (1999) discovered that pentosidine 

accumulated in a linear fashion with age in euthenized broiler breeder chickens (Gallus gallus 

domesticus) skin, but noticed that Ps concentration in avian skin was 1,000 fold lower than in 

mammalian skin.  This observation could explain why birds live a lot longer than mammals of 
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similar size.   Birds have higher metabolic rates (2.5 times higher), higher body temperatures (3o 

C higher), and higher plasma glucose (2-6 times higher) than mammals, which typically 

accelerates the aging process (Iqbal et al. 1999).  Research by Chaney et al. (2003) found that 

pentosidine increased linearly with age in various species of wild birds (R2=0.73), further 

supporting Iqbal’s claims that pentosidine can be used as a biomarker for chronological age in 

birds.   

Verzijl et al. (2000) calculated that the first reasonable estimates of half-lives of cartilage 

collagen and skin collagen were 117 years and 15 years respectively. This suggests that 

pentosidine concentrations, being an irreversible protein modification that accumulates with age, 

can be determined from collagen years after an individual has been deceased.  Fallon et al. 

(2006a) were the first to investigate if Ps could be obtained from study skins.  Pentosidine 

concentrations obtained shortly after death were not significantly different from pentosidine 

concentrations obtained 1 year after the study skin was prepared (Fallon et al. 2006a).  Fallon et 

al. (2006a) also were the first to discover that pentosidine concentrations may vary in different 

body parts.  They discovered that Ps had higher concentrations in the thigh and wing compared 

to the breast (Fallon et al. 2006a).  Finally, Fallon et al. (2006b) discovered that pentosidine 

accumulates faster in shorter-lived birds and slower in longer-lived birds.  This suggests that an 

age curve must be created for each species, or at least each taxonomic order of birds to give 

accurate age estimates. It would not be wise to use an age curve for a ruffed grouse (Bonasa 

umbellus) (life span up to 10 years in captivity [Fallon et al. 2006a]) to age macaws 

(Anodorhynchus hyacinthinus) (life span up to 75 years, but average 40-50 years [Mijal 2001]).   
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MINIMALLY INVASIVE SAMPLING 

It is important for biologists to use a sampling technique that will be as minimally 

invasive as possible when sampling wildlife (Griffin and Gauthier 2004).  Sometimes the 

slightest change to an individual can cause drastic effects to occur.  The slightest damage to an 

appendage in males of certain species may result in poor or no reproductive success for that 

individual.  For example, black grouse (Tetrao tetrix) will select mates based on tail length 

(Rintamāki et al. 1997).  By damaging the symmetry of a particular individual, in this case 

damaging the tail feathers, it is possible to cause the most “fit” individual to not produce any 

offspring (Moller and Thornhill 1998).  This may result in next year’s age class having genetic 

phenotypes significantly different from their parent's age class phenotypic demographics. Birds 

have few sensory cells in their skin (Proctor and Lynch 1993), so taking a skin sample shouldn't 

cause a lot of pain.  Nonetheless, it is important to keep discomfort to a minimum when taking 

samples from living organisms.  Traumatized animals may show a change in their normal 

behavior, which can defeat the purpose of a particular study (Griffin and Gauthier 2004).  

Animals that experience pain when they are released may become weakened and less alert, 

making them an ideal target for most predators (Griffin and Gauthier 2004).   This could be 

detrimental to a study if it involves endangered or threatened species.  

A well thought out procedure will need to be developed before taking skin samples from 

living wild birds becomes a viable wildlife aging technique (Griffin and Gauthier 2004).  A 

variety of biopsy instruments can be used to obtain skin samples.  Karesh et al. (1987) 

investigated whether skin biopsies could be obtained from large mammals (e.g., gorillas [Gorilla 

gorilla]) in captivity, with no restraint of the animal, by shooting a biopsy instrument out of a 

dart pistol or rifle.  Silverman et al. (2007) took skin biopsies in dogs using monopolar 
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electrosurgery, CO2 laser, radiowave radiosurgery (RWRS), a scalpel, and biopsy punches.  Of 

these instruments, skin charring did not occur on samples taken with the scalpel or biopsy punch 

(Silverman et al. 2007).  For a study on birds, a biopsy punch may be the best instrument to use 

in sample collection.  Biopsy punches come in a variety of sizes (1 mm – 8 mm diameter) and 

take consistently sized circular pieces of skin every time, requiring no additional measuring.  

Biopsy punches are readily available and are economically priced for field research.  Using a 

biopsy punch to take a skin sample from wild birds will take only the required amount of skin 

needed for analysis.  Samples can be taken quickly and accurately, causing the least amount of 

stress and discomfort on the birds (Nett et al. 2003).  It is suggested that only a 6 mm2 sample of 

skin is needed to determine an accurate age for any given bird (J. A. Fallon West Virginia 

University, unpublished data).   

 Fallon et al. (2006a) found that pentosidine levels can vary in different parts of a bird's 

body.  Skin samples should be consistently taken from the same body part to eliminate variance 

in results.  Fallon et al. (2006a,b) aged birds from skin samples taken from the breast of deceased 

birds. If this sampling becomes a standard practice for living birds, little harm must be done to 

major muscle groups on the bird.  Damaging the pectoralis major muscle of the chest, which 

provides most of the force for a downward stroke in flight, could severely reduce flight 

capability (Proctor and Lynch 1993).  The patagium on the wing of the bird may be a better place 

to sample living birds. There are fewer muscles in the wing and the muscles used in flight are 

located around the sternum (Proctor and Lynch 1993).  There are four patagial areas on the wing: 

1) the prepatagium (hereafter patagium), 2) metapatagium, 3) post patagium, and 4) alular 

patagium (Figure 2) (Lucas and Stettenheim 1972).  The free edge of the patagium is directed 

anteriorly (Lucas and Stettenheim 1972).  The mediocaudal boundary is the anterior margin of 
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the biceps brachii and the distocaudal boundary is the forward edge of the extensor metacarpi 

radialis muscles (Lucas and Stettenheim 1972).  Some of the research will take place with skin 

from this region of the wing.  The patagium has often been used as a location to place permanent 

ID tags.  However, some problems have arisen from using these tags.  The Carnaby's cockatoo 

(Calyptorhynchus latirostris) has become depredated more easily because the tags make them 

more visible to predators (Saunders 1988).  Also, ruddy duck (Oxyura jamaicensis) males with 

patagial tags had fewer successful courtships than males without tags (Brua 1998).  Few birds 

have died from being fitted with a patagial tag (Chapman and Chapman 1990).  An American 

white pelican (Pelecanus erythrorhynchos) was found dead from emaciation when its bill got 

ensnared on the patagial tag (Chapman and Chapman 1990).  However, some species of birds 

have had no problem with being fitted with a patagial tag.  Smallwood and Natale (1998) state 

that the placement of patagial tags had no adverse effect on American kestrel (Falco sparverius) 

health. This suggests that the patagium may be an ideal location to take skin samples.  Patagial 

tags pierce through both layers of skin of the patagium.  A biopsy sample would only require one 

layer of the patagial skin to be removed. The patagium is made up of two layers of skin, some 

tendinous tissue, and the patagialis longus muscle (Proctor and Lynch 1993).  The patagialis 

longus muscle can easily be seen under the skin, so samples can be taken from that area without 

causing harm to that muscle. There are fewer blood vessels in the wing (Proctor and Lynch 

1993).  If the feathers are separated enough and the veins are clearly seen in the patagium, then a 

skin sample can be taken without causing much bleeding.  As with any type of surgery, 

morbidity and mortality can occur (Beal et al. 2000).   By sampling around the veins of the 

patagium, there will be less occurrence of an infection reaching the blood stream, which will 

reduce the chance the bird will die (Beal et al. 2000, Muza et al. 2000).     
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 Inflammation and infection are always risks when taking biopsy samples from any 

organism.  Calrson and Allen (1969) noticed chickens had acute inflammatory reactions occur on 

their wounds.  Typical signs of this response are heat, swelling and redness (Carlson and Allen 

1969).  As the inflammation subsides, lymphocytic hyperplasia may develop (Burke et al. 2002).  

The major concern during the surgical procedure is developing perioperative hypothermia.  

Perioperative hypothermia is known to reduce resistance to bacterial infection (Beilin et al. 1998) 

and increase blood loss (Schmied et al. 1996).  Two ways to avoid developing postoperative 

complications, such as infection, is to keep the surgical duration as short as possible and apply 

anesthesia before cutting into the skin (Brown et al. 1997).  Making the wound site as clean as 

possible also will prevent infection.  In a study of 1,255 dogs and cats, the infection rate was 

only 4.8% when the wounds were cleaned (Beal et al. 2000).  This is close to the 5% human 

infection rates from clean wounds (Cruse and Foord 1980).  If inflammation or infection 

develops, there are several topical medications available that have been used successfully in 

avian treatment.  These include silver sulfadiazine cream, nitrofurazone, gentamicin sulfate 

ointment, enzymatic debridement agents, yeast cell derivatives, camphor spirits, tincture of 

benzoin, and softening agents (Burke et al. 2002).  Medications that are poorly absorbed by 

wound tissues should be avoided if possible including bacitracin, neomycin, and polymixin 

(Burke et al. 2002).   

The biopsy site should also be closed before releasing the animal.  Surgical glue and 

dissolvable sutures (2-0 to 5-0) are two methods of treatment that have been used in fieldwork 

(Small et al. 2004, Schwagmeyer et al. 2005).  Small et al. (2004) used surgical glue to close the 

wound made to place a subcutaneous radio transmitter in white-winged doves (Zenaida asiatica).  

They found no adverse changes in the wounded birds when compared to the control birds (Small 
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et al. 2004).  Both surgical glue and dissolvable sutures were successfully used to close implant 

sites in house sparrows (Passer domesticus) (Schwagmeyer et al. 2005).  Superficial wounds in 

avian skin will heal typically in 10-14 days (Burke et al. 2002).  This information suggests that 

as long as the sampling sites are cleaned and anesthesia is applied beforehand, the procedure is 

done as quickly as possible, and the wounds are sealed afterwards, the researchers do not need to 

worry that many of their subjects will develop inflammation or infections from the wounds.   

IMPORTANCE OF KNOWING AGES IN BIRD STUDIES 

  Age has been a topic of study with migratory birds for years.  Migration is typically done 

more often by females and immature (first winter) birds, whereas males and adult birds (second 

winter and older) are more sedentary (Smith and Nilsson 1987).  Age can be a factor when it 

comes to early or late arrival after migration.  Moller and DeLope (1999) found that 1 year old 

and 5+ year old barn swallows (Hirundo rustica) arrived later from spring migration than the 

birds of ages 2-4 years.  Jones et al. (2002) found that for most species of migratory bird they 

sampled, there was no significant difference in the rate of mass gain at a stopover site with age.  

If the ages of the adult birds were known in this study, Jones et al. (2002) may have discovered a 

significant difference in rate of mass gain.  But for that study, they only grouped the birds as 

adults (AHY) or immature (HY) (Jones et al. 2002). Knowing the age structure of the 

populations in these studies could tell us whether age is the reason why there is a difference in 

body mass for migrants or if there are other factors that influence weight more.   

Cooperative-breeding birds are of interest for many studies. They have delayed 

reproduction, which is a characteristic of many long-lived birds (Brown 1987).  These birds will 

begin breeding at a variety of different ages (Brown 1987).  Knowing the age at their first 

breeding and then calculating their reproductive success over the years could explain if taking 
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several years to help raise other family member’s offspring is worth the sacrifice of not passing 

on their own genetic material.  This could be of great importance for threatened or endangered 

cooperative breeders.   

Studies on senescence in the wild is extremely difficult, especially for long-lived species 

(Nisbet 2001).  Birds are great subjects to use when studying senescence, because they live much 

longer than mammals of comparative size.   Senescence is the decrease in reproductive value and 

the increase in mortality rates with age (Holmes et al. 2001), thought to arise from the 

accumulation of deleterious mutation and/or the negative pleiotropic effects late in life of alleles 

with a beneficial effect during early life states (Hamilton 1966).  Hamilton (1966) wondered if a 

mutation occurring at a specific age in a bird’s life would have an influence in its evolutionary 

process, thus affecting the individual’s senescence.  Birds are known to exhibit gradual 

senescence with a definite life span (Holmes et al. 2001).  A decline in reproductive success can 

be seen in barn swallows (Moller and DeLope 1999).  Reproductive success increased from ages 

1-3 and then decreased slowly from 3-4 years, 4-5 years and even more with 5+ year olds 

(Moller and DeLope 1999).  However, reproductive senescence appears to have little influence 

on seabirds.  The common tern (Sterna hirundo), for example, is known to live up to 26 years 

and has reported to breed as old as 21 years (Nisbet et al. 1999).   Further research of seabirds 

may give some more insight to why birds naturally live longer than comparably sized mammals.   

Life-table demographics can be used in several ways in the conservation field: assess 

population status; diagnose the causes of poor population performance; to prescribe management 

tactics; and to make prognoses of population viability (Caswell et al. 2003).  Knowing age 

demographics of bird populations can provide researchers with information to help them prevent 
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native populations from dwindling and invasive species populations from growing at an 

exponential rate.  

The main value of a life table lies in what it tells us about the population's strategy for 

survival (i.e., life tables help us to understand the dynamics of populations) (Deevey 1947).  

Age-specific estimates of survival and reproduction are needed for assessments of population 

trends and population modeling (Caughley 1977).  Knowing the age classes of wild populations 

of birds is important when evaluating survival and recruitment rates (Moen et al. 1991). For 

example, the correct identification of sub-adults tells us the recruitment of young born the 

previous year (Moen et al. 1991).  Harris and Shepherd (1965) studied known-aged black brants 

(Branta bernicla orientalis) to determine their minimal age to start breeding and assess their 

reproductive potential.  They found that up to 1/3 of the females in the population begin to breed 

at age 2, but no firm evidence was found on when males first started breeding (Harris and 

Shepherd 1965).   

Numbers will fluctuate over time for any given population.  A general rule for organisms 

with well-defined generations is that recruitment or reproduction occurs only over a short period 

of time, while mortality occurs continuously (Podoler and Rogers 1975).  Because of this, 

changes in population density are often defined in terms of changes in mortality during particular 

stages of the lifecycle (Podoler and Rogers 1975). Knowing more about mortality rates at 

different ages will give researchers more insight into population fluctuations.   

Time-specific life tables are valuable to a manager of exploited populations because they 

show the existence of strong year classes or help identify weak age classes (Deevey 1947).   

Management practices for populations with high numbers focus on the exploitation or 

manipulation of a particular life-history stage (Nicoll et al. 2006).  An example of this is 
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harvesting eggs from nests, which will make reduced birth rates for the species immediately 

apparent (Nicoll et al. 2006).   Harvesting eggs from the age class that has the highest birth rate 

will reduce the population growth of the species.  However, this may only be a temporary 

solution to population regulation.  Life-history theory suggests that if a particular fitness trait, 

such as fecundity, is manipulated (i.e., egg harvesting) then other fitness traits may have benefits 

or costs applied to them (Nicoll et al. 2006).  By adjusting the natural balance of a population, 

individual life histories and population dynamics may become altered (Nicoll et al. 2006).   

Invasive species or pest control can be a hit or miss practice, sometimes resulting in total 

failure while other times producing the desired results (Frederiksen et al. 2001).  When pest 

control ends up failing, blame can be placed on a lack of understanding of population dynamics 

for the species being controlled (Frederiksen et al. 2001).  Having a better understanding of life-

cycle parameters such as survival, reproduction, etc., can be used to help predict how populations 

will respond to different treatments of eradication (Tuljapurkar and Caswell 1997). 

Frederiksen et al. (2001) compared different models created to predict the population 

changes of great cormorants (Phalacrocorax carbo sinensis).  Previous attempts to model 

cormorant population reactions to various management strategies were done by Lebreton and 

Gerdeaux (1996) and Bregnballe et al. (1997), but the only conclusions that they reached were 

that the cormorant population growth rate is more sensitive to changes in adult survival than in 

fecundity, and hunting or culling may reduce the population numbers and cause faster 

stabilization of the population if density-dependence is assumed to occur naturally.   Culling is a 

common eradication practice for pest species (Duncan 1978, Frederiksen et al. 2001).  This 

involves removing a large portion of the population, typically by lethal means (Duncan 1978, 

Frederiksen et al. 2001).   Culling can regulate or even eliminate target species if carried out in a 
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density-dependent manner (Frederiksen et al. 2001). For example, culling practices reduced the 

breeding density of herring gulls (Larus argentatus) from 11.1 pairs per 100 m2 to 2.3 pairs per 

100 m2 on the Isle of May in Scotland (Duncan 1978).  When pest species are regulated by 

density-dependence at levels high enough to cause management problems, culling may have less 

effect than expected because reductions in population size are compensated for by increases in 1 

or more life-cycle parameters (Frederiksen et al. 2001).    

GOALS AND OBJECTIVES 

 The overall goal of our research is to assess the feasibility of applying the pentosidine 

aging technique to living birds.  In Chapter 2, “Pentosidine Concentration Comparisons of the 

Breast and Patagium of Birds,” we address the following objectives: 1) compare the 

concentrations of Ps in the breast and patagium for each individual bird tested and 2) determine 

if there is a significant difference in estimated age between the locations.  We hypothesize that 

there is no significant difference in Ps concentrations between the breast or patagium for each 

individual bird, and there is no significant difference in estimated age generated for the locations.   

 In Chapter 3, “An In Vivo Pentosidine Aging Technique Evaluation for Double-crested 

Cormorants,” we address the following objectives: 1) compare pentosidine levels in the breast 

and patagium of known-age cormorants, 2) develop and evaluate accuracy of aging models of 

known-aged cormorant samples taken from the breast and patagium, 3) compare pentosidine 

levels between a 6 mm2 sample and a 20 mm2 sample of skin from cormorants, and 4) compare 

the healing rate of 6 mm biopsy samples from the breast and patagium of living cormorants by 

suture closure or application of tissue glue.  We hypothesize that there is no significant 

difference in Ps concentrations between the breast and patagium for the cormorants, there is no 
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significant difference in Ps concentration between the two different skin sizes, and there is no 

significant difference in the healing rate of skin from the 2 wound closure methods.   

LITERATURE CITED 

Amadon, D.  1966.  Avian plumages and molts.  Condor 68:263-278.  

Avery, M. L.  2004.  Trends in North American vulture populations.  Proceedings of 

 the Vertebrate Pest Conference 21:116-121.  

Avery, M. L., and A. C. Genchi.  2004.  Avian perching deterrents on ultrasonic sensors  

 at airport wind-shear alert systems.  Wildlife Society Bulletin 32:718-725.  

Avery, M. L., C. A. Yoder, and E. A. Tillman.  2008.  Diazacon inhibits reproduction in invasive  

 monk parakeet populations.  Journal of Wildlife Management 72:1449-1452. 

Avery, M. L., and E. A. Tillman.  2005.  Alien birds in North America – challenges for 

 wildlife managers.  Proceedings of the Wildlife Damage Management Conference 

 11:82-89. 

Avery, M. L., E. C. Greiner, J. R. Lindsay, J. R. Newman, and S. Pruett-Jones.  2002.  Monk  

 parakeet management at electric utility facilities in south Florida.  Proceedings of the  

 Vertebrate Pest Conference 20:140-145. 

Avery, M. L., and J. Cummings.  2004.  Livestock depredations by black vultures and 

 golden eagles.  Sheep and Goat Research Journal 19:58-63.   

Beal, M. W., D. C. Brown, and F. S. Shofer.  2000.  The effects of perioperative   

 hypothermia and the duration of anesthesia on postoperative wound infection rate  in  

 clean wounds: a retrospective study.  Veterinary Surgery 29:123-127.  

Beilin, B., Y. Shavit, J. Razumovsky, Y. Wolloch, A. Zeidel, and H. Bessler.  1998.   

Effects of mild perioperative hypothermia on cellular immune responses.  



27 Cooey  
 

Anesthesiology 89:1133-1140. 

Bregnballe, T., J. D. Goss-Custard, and S. E. A. Durell.  1997.  Management of  

 cormorant numbers in Europe: a second step towards a European conservation  

 and management plan.  Pages 62-122 in C. van Dam and S. Asbirk, editors.  

 Proceedings of cormorants and human interests: workshop towards an  

 international conservation and management plan for the great cormorant  

 (Phalacrocorax carbo), Lelystad, The Netherlands. 

Brown, D. C., M. G. Conzemius, F. Shofer, and H. Swann.  1997.  Epidemiologic evaluation  

of postoperative wound infections in dogs and cats.  Journal of the American  

Veterinary Medical Association 210:1302-1306.  

Brown, J. L.  1987.  Helping and communal breeding in birds: ecology and evolution.  

Princeton University Press, Princeton, New Jersey, USA. 

Brua, R. B.  1998.  Negative effects of patagial tags on ruddy ducks.  Journal of Field  

 Ornithology 69:530-535.  

Burke, H. F., S. F. Swaim, and T. Amalsadvala.  2002.  Review of wound management in  

raptors.  Journal of Avian Medicine and Surgery 16:180-191. 

Campbell, T. S.  2000.  The monk parakeet, (Myiopsitta monachus Boddaert 1783).   

 Institute for Biological Invasions webpage.   

 <http://invasions.bio.utk.edu/invaders/monk.html>. Accessed 10 June 2008.    

Carlson, H. C., and J. R. Allen.  1969.  The acute inflammatory reaction in chicken skin:  

blood cellular response.  Avian Diseases 15:533-550.  

Caswell, H., R. Lensink, and M. G. Neubert.  2003.  Demography and dispersal: life table 

 response experiments for invasion speed.  Ecology 84:1968-1978.  



28 Cooey  
 

Caughley, G.  1977.  Analysis of vertebrate populations.  John Wiley and Sons, New  

 York, New York, USA. 

Chaney, Jr., R. C., K. P. Blemings, J. Bonner, and H. Klandorf.  2003.  Pentosidine as a  

measure of chronological age in wild birds.  Auk 120:394-399.  

Chapman, B.R., and S. S. Chapman.  1990.  Patagial tag causes white pelican death.  

 North American Bird Bander Jan-Mar:17.  

Coluccy, J. M., R.D. Drobney, R. M. Pace, and D. A. Graber.  2002.  Consequences from 

 neckband and legband loss from giant Canada geese.  Journal of Wildlife 

 Management 66:353-360.  

Cornell Lab of Ornithology (CLO).  2007.  CLO webpage.  All about birds.   

 <http://www.birds.CLO.edu/AllAboutBirds/BirdGuide/>. Accessed 18 July  

 2008. 

Cruse, P. J. E., and R. Foord.  1980.  The epidemiology of wound infection: a 10-year  

prospective study of 62,939 wounds.  The Surgical Clinics of North America  

60:27-40. 

Deevey, E. S., Jr.  1947.  Life tables for natural populations of animals.  Quarterly  

 Review of Biology 22:283-314.  

DeVault, T. L., B. D. Reinhart, I. L. Brisbin, Jr., and O. E. Rhodes, Jr.  2005.  Flight  

 behavior of black and turkey vultures: implications for reducing bird-aircraft  

 collisions.  Journal of Wildlife Management 69:601-608.  

Dixon, J.  1909.  A life history of the northern bald eagle.  Condor 11:187-193. 

Dolbeer, R. A., S. E. Wright, and E. C. Cleary.  2000.  Ranking the hazard level of  

 wildlife species to aviation.  Wildlife Society Bulletin 28:372-378.  



29 Cooey  
 

Duncan, N.  1978.  The effects of culling herring gulls (Larus argentatus) on recruitment  

 and population dynamics.  Journal of Applied Ecology 15:697-713. 

Dyer, D. G., J. A. Blackledge, S. R. Torpe, and J. W. Baynes.  1991.  Formation of  

pentosidine during nonenzymatic browning of proteins by glucose: identification  

of glucose and other carbohydrates as possible precursors of pentosidine in vivo.  

Journal of Biological Chemistry 266:11654-11660. 

Dyer, D. G., J. A. Dunn, S. R. Thorpe, K. E. Bailie, T. J. Lyons, D. R. McCance, and J.  

W. Baynes.  1993.  Accumulation of Maillard reaction products in skin collagen  

in diabetes and aging.  Journal of Clinical Investigation 91:2463-2469. 

Fagan, D.  2008.  Desert USA webpage.  The Cooper’s hawk.   

< http://www.desertusa.com/mag06/jan/hawk.html>.  Accessed 17 July 2008. 

Fallon, J., W. J. Radke, and H. Klandorf.  2006a. Stability of pentosidine concentrations  

 in museum study skins.  Auk 123:148-152. 

Fallon, J. A., R. L. Cochrane, B. Dorr, and H. Klandorf.  2006b. Interspecies comparison  

of pentosidine accumulation and its correlation with age in birds.  Auk  

123:870-876.  

Finch, C. E.  1976.  The regulation of physiological changes during mammalian aging. 

 Quarterly Review of Biology 51:49-83.  

Fitzwater, W. D.  1988.  Solutions to urban bird problems. Proceedings of Vertebrate  

 Pest Conference 13:254-259.   

Frederiksen, M., J. D. Lebreton, and T. Bregnballe.  2001.  The interplay between culling  and  

 density-dependence in the great cormorant: a modeling approach.  Journal of  

 Applied Ecology 38:617-627.  



30 Cooey  
 

Fulai, L., L. Bin, S. Seming, W. Jengrong, and L. Lingyun.  1995.  First captive breeding  

of the oriental crested ibis (Nipponia nippon).  Colonial Waterbirds 18:23-29. 

Glahn, J. F., and A. R. Stickley, Jr.  1995.  Wintering double-crested cormorants in the  

 delta region of Mississippi: population levels and their impact on the catfish  

 industry.  Colonial Waterbirds 18 (Spec. Publ. 1):137-142. 

Glahn, J. F., D. S. Reinhold, and C. A. Sloan.  2000a. Recent population trends of  

 double-crested cormorants wintering in the delta region of Mississippi: responses  

 to roost dispersal and removal under a recent depredation order.  Waterbirds  

 23:38-44. 

Glahn, J. F., and K. E. Brugger.  1995.  The impact of double-crested cormorants on the  

 Mississippi Delta catfish industry: a bioenergetics model.  Colonial Waterbirds 

 18:168-175. 

Glahn, J. F., M. E. Tobin, and B. F. Blackwell, editors.  2000b. A science-based  

 initiative to manage double-crested cormorant damage to southern aquaculture.  

 USDA Animal and Plant Health Inspection Service, Wildlife Services National  

 Wildlife Research Center, Fort Collins, CO, APHIS 11-55-010.  

Glahn, J. F., S. J. Werner, T. Hanson, and C. R. Engle.  2002.  Cormorant depredation  

 losses and their prevention at catfish farms: economic considerations.  Pages 74- 

 82 in J. Hone, J. A. Shivik, R. A. Watkins, K. C. VerCauteren, and J. K. Yoder,  

 editors.  Human Conflicts with Wildlife: Economic Considerations Conference,  

 Fort Collins, Colorado, USA. 

Grandhee, S. K., and V. M. Monnier.  1991.  Mechanism of formation of the Maillard  

protein cross-link pentosidine: glucose, fructose, and ascorbate as pentosidine  



31 Cooey  
 

precursors.  Journal of Biological Chemistry 266:11649-11653.  

Griffin, G., and C. Gauthier.  2004.  Incorporation of the principles of the three Rs in  

 wildlife research.  Alternatives to Laboratory Animals 32:215-219.   

Hall, M. E., L. Nasir, F. Daunt, E. A. Gault, J. P. Croxall, S. Wanless, and P. Monaghan.  2004.   

 Telomere loss in relation to age and early environment in long-lived birds.  Proceedings  

 of the Royal Society of London, Series B 271:1571-1576. 

Hamilton, W. D.  1966.  The moulding of senescence by natural selection.  Journal of  

Theoretical Biology 12:12-45. 

Harris, S. W., and P. E. K. Shepherd.  1965.  Age determination and notes on the  

 breeding age of black brant.  Journal of Wildlife Management 29:643-645.   

Haussmann, M. F., and C. M. Vleck.  2002.  Telomere length provides a new technique for aging  

 animals.  Oecologia 130:325-328. 

Haussmann, M. F., D. W. Winkler, K. M. O’Reilly, C. E. Huntington, I. C. T. Nisbet, and C. M.  

 Vleck.  2003.  Telomeres shorten more slowly in long-lived birds and mammals than in  

 short-lived ones.  Proceedings of the Royal Society of London, Series B 270:1387-1392. 

Heinrich, B., and J. Marzluff.  1992.  Age and mouth color in common ravens.  Condor 

 94:549-550.  

Holmes, D. J., R. Fluckiger, and S. N. Austad.  2001.  Comparative biology of aging in  

birds: an update.  Experimental Gerontology 36:869-883. 

Ingram, D. K., E. Nakamura, D. Smucny, G. S. Roth, and M. A. Lane.  2001.  Strategy for  

 identifying biomarkers of aging in long-lived species.  Experimental Gerentology  

 36:1025-1034. 

Iqbal, M., L. L. Probert, N. H. Alhumadi, and H. Klandorf.  1999.  Protein glycosylation  



32 Cooey  
 

and advanced glycosylated endproducts (AGEs) accumulation: an avian solution?  

Journal of Gerontology: Biological Sciences 54A:B171-B176.   

Jackson, W. M., C. S. Wood, and S. Rohwer.  1992.  Age specific plumage characters  

 and annual molt schedules of hermit warblers and Townsend's warblers.  Condor 

 94:490-501.  

Johnson, N. K.  1963.  Comparative molt cycles in the tyrannid genus Empidonax.  

 Proceedings of the International Ornithology Congress 13:870-883.  

Jones, J., C. M. Francis, M. Drew, S. Fuller, and M. W. S. Ng.  2002.  Age-related  

differences in body mass and rates of mass gain of passerines during autumn  

migratory stopover.  Condor 104:49-58.  

Juola, F. A., M. F. Haussmann, D. C. Dearborn, and C. M. Vleck.  2006.  Telomere shortening in  

 a long-lived marine bird: cross-sectional analysis and test of an aging tool.  Auk  

 123:775-783.   

Karesh, W. B., F. Smith, and H. Frazier-Taylor. 1987.  A remote method for obtaining  

skin biopsy samples.  Conservation Biology 1:261-262. 

Kohn, R. R., and S. L. Schnider.  1982.  Glycosylation of human collagen.  Diabetes  

 31:47-51. 

Kohn, R. R., and V. M. Monnier.  1987.  Normal aging and its parameters. Pages 3-30 in  

 C. G. Swift, editor.  Clinical pharmacology in the elderly.  Marcel Dekker, New  

 York, New York, USA. 

Lebreton, J. D., and D. Gerdeaux.  1996.  Gestion des populations de grand cormorant  

 (Plalacrocorax carbo) sejournant en France.  Unpublished report. CEFE/CNRS, 

 Montpellier, France. [In French] 



33 Cooey  
 

Lucas, A. M., and P. R. Stettenheim.  1972.  Avian anatomy: integument. Volume 1. 

US Government Printing Office, Washington D. C., USA.  

Ludwig, J. P., C. N. Hull, M. E. Ludwig, and H. J. Auman.  1989.  Food habits and feeding 

ecology of nesting double-crested cormorants in the Upper Great Lakes, 1986- 

1989.  Jack-Pine Warbler 67:115-127 

Maillard, L. C.  1912.  Action des acides amines sur les sucres; formation des  

 melanoidies par voie methodique.  Comptes Rendus de 1 Academie des Sciences  

 154:66-68. [In French] 

Mijal, M.  2001.  Animal Diversity Web.  Ara macao.   

< http://animaldiversity.ummz.umich.edu/site/accounts/information/Ara_macao.html>. 

Accessed 18 August 2008. 

Moen, C. A., A. B. Franklin, and R. J. Gutierrez.  1991.  Age determination of subadult 

 northern spotted owls in northwest California.  Wildlife Society Bulletin 19:489-493. 

Moller, A. P., and F. DeLope.  1999.  Senescence in a short-lived migratory bird: age- 

dependent morphology, migration, reproduction and parasitism.  Journal of  

Animal Ecology 68:163-171. 

Moller, A. P., and R. Thornhill.  1998.  Bilateral symmetry and sexual selection: a meta- 

 analysis.  American Naturalist 151:174-192.  

Monnier, V. M.  1989.  Toward a Maillard reaction theory of aging.  Progress in Clinical  

and Biological Research 304:1-22.  

Monnier, V. M., and A. Cerami.  1981.  Nonenzymatic browning in vivo: possible  

 process of aging of long-lived proteins.  Science 211:491-493.  

Monnier , V. M., D. R. Sell, and R. H. Nagaraj.  1993.  Pentosidine as a probe for the  



34 Cooey  
 

aging process.  Recent Advances in Aging Science: the XVth Congress of the  

International Association of Gerontology 2:245-251.  

Mott, D. F.  1973.  Monk parakeet damage to crops in Uruguay and its control.   

 Proceedings of the Bird Control Seminar 6:79-81. 

Mott, D. F., and F. L. Boyd.  1995.  A review of techniques for preventing double-crested  

 cormorant depredations at aquaculture facilities in the southeastern U. S.  Colonial  

 Waterbirds 18 (special publication 1):176-180. 

Muza, M. M., E. H. Burtt Jr., and J. M. Ichida.  2000.  Distribution of bacteria on feathers 

 of some eastern North American birds.  Wilson Bulletin 112:432-435.  

National Wildlife Federation (NWF).  2007.  NWF webpage.  eNature: America's  

 Wildlife Resource.  

 <http://www.enature.com/fieldguides/intermediate.asp?curGroupID=1>.  

 Accessed 25 May 2008. 

Nett, C. S., E. C. Hodgin, C. S. Foil, S. R. Merchant, and T. N. Tully.  2003.  A modified  

 biopsy technique to improve histopathological evaluation of avian skin.  

Veterinary Dermatology 14:147-151. 

Nicoll, M. A. C., C. G. Jones, and K. Norris.  2006.  The impact of harvesting on a  

 formerly endangered tropical bird: insights from life-history theory.  Journal of  

 Applied Ecology 43:567-575.  

Nisbet, I. C. T.  2001.  Detecting and measuring senescence in wild birds: experience  

 with long-lived seabirds.  Experimental Gerontology 36:833-843.  

Nisbet, I., C. T. Finch, N. Thompson, E. Russek-Cohen, J. A. Proudman, and M. A.  

Ottinger.  1999.  Endocrine patterns during aging in the common tern (Sterna  



35 Cooey  
 

hirundo).  General and Comparative Endocrinology 114:279-286. 

Podoler, H., and D. Rogers.  1975.  A new method for the identification of key factors  

 from life-table data.  Journal of Animal Ecology 44:85-114. 

Pollock, K. H., and D. G. Raveling.  1982.  Assumptions of modern band-recovery  

 models, with emphasis on heterogeneous survival rates.  Journal of Wildlife  

 Management 46:88-98. 

Post, W., and C. A. Seals.  1991.  Breeding biology of a newly-established double-crested 

cormorant population in South Carolina, USA.  Colonial Waterbirds 14:34-38. 

Proctor, N. S., and P. J. Lynch.  1993.  Manual of ornithology: avian structure and  

function.  Yale University Press, New Haven, Connecticut, USA.  

Pruett-Jones, S., J. R. Newman, C. M. Newman, M. L. Avery, and J. R. Lindsay.  2007.   

Population viability analysis of monk parakeets in the United States and examination of 

alternative management strategies.  Human-Wildlife Conflicts 1:35-44. 

Rabenold, P. P.  1986.  Family associations in communally roosting black vultures.  Auk  

 103:32-41.  

Rintamāki, P. T., R. V. Alatalo, J. Hōglund, and A. Lundberg.  1997.  Fluctuating  

 asymmetry in ornamental and non-ornamental traits in relation to copulation  

 success in black grouse.  Animal Behavior 54:265-269. 

Saether, S. A., J. A. Kalas, and P. Fiske. 1994.  Age determination of breeding shorebirds: 

 quantification of feather wear in the lekking great snipe. Condor 96:959-972.  

Satheesan S. M., and M. Satheesan.  2000.  Serious vulture-hits to aircraft over the world.  

 International Bird Strike Committee IBSC25/WP-SA 3:113–126.  

Saunders, D. A.  1988.  Patagial tags - do benefits outweigh risks to the animal.  



36 Cooey  
 

 Australian Wildlife Research 15:565-569.  

Schmied, H., A. Kurz, D. I. Sessler, S. Kozek, and A. Reiter.  1996.  Mild hypothermia  

increases blood loss and transfusion requirements during total hip arthroplasty.   

Lancet 347:289-292. 

Schnider, S. L., and R. R. Kohn.  1982.  Effects of age and diabetes mellitus on the  

 solubility of collagen from human skin, tracheal cartilage and dura mater.   

 Experimental Gerontology 17:185-194. 

Schwagmeyer, P. L., H. G.  Schwabl, and D. W. Mock.  2005.  Dynamics of biparental care  

 in house sparrows: hormonal manipulations of paternal contributions.  Animal  

 Behavior 69:481-488. 

Sell, D. R., A. Lapolla, P. Odetti, J. Fogarty, and V. M. Monnier.  1992.  Pentosidine  

formation in skin correlated with severity of complications in individuals with  

long-standing IDDM.  Diabetes 41:1286-1292.   

Sell, D. R, M. A. Lane, W. A. Johnson, E. J. Masoro, O. B. Mock, K. M. Reiser, J. F.  

 Fogarty, R. G. Cutler, D. K. Ingram, G. S. Roth, and V. M. Monnier.  1996.   

 Longevity and the genetic determination of collagen glycoxidation kinetics in  

 mammalian senescence.  Proceedings of the National Academy of Science  

 93:485-490. 

Sell, D. R., M. Primc, I. A. Schafer, M. Kovach, M. A. Weiss, and V. M. Monnier.  1998.  

Cell-associated pentosidine as a marker of aging in human diploid cells in vitro  

and in vivo.  Mechanisms of Ageing and Development 105:221-240.  

Sell, D. R., and V. M. Monnier.  1989a. Isolation, purification and partial  

 characterization of novel fluorophores from aging human insoluble collagen-rich  



37 Cooey  
 

 tissue.  Connective Tissue Research 19:77-92. 

Sell, D. R., and V. M. Monnier.  1989b. Structure elucidation of a senescence cross-link  

from human extracellular matrix: implication of pentoses in the aging process.   

Journal of Biological Chemistry 264:21597-21602.  

Sell, D. R., and V. M. Monnier.  1990.  End-stage renal disease and diabetes catalyze the  

formation of a pentose-derived crosslink from aging human collagen.  Journal of  

Clinical Investigation 85:380-384.  

Sheaffer, S. E., and R. A. Malecki.  1995.  Waterfowl management: recovery rates, 

 reporting rates, reality check!  Wildlife Society Bulletin 23: 437-440.  

Silverman, E. B., R. W. Read, C. R. Boyle, R. Cooper, W. W. Miller, and R. M.  

McLaughlin.  2007.  Histologic comparison of canine skin biopsies collected  

using monopolar electrosurgery, CO2 laser, radiowave radiosurgery, skin biopsy  

punch, and scalpel.  Veterinary Surgery 36:50-56. 

Small, M. F., R. Rosales, J. T. Baccus, F. W. Weckerly, D. N. Phalen, and J. A.  

Roberson.  2004.  A comparison of effects of radiotransmitter attachment  

techniques on captive white-winged doves.  Wildlife Society Bulletin 32:627- 

637. 

Smallwood, J. A., and C. Natale.  1998.  The effects on patagial tags on breeding success  

 in American kestrels.  North American Bird Bander 23:73-78. 

Smith, H. G., and J. A. Nilsson.  1987.  Intraspecific variation in migratory pattern of a  

 partial migrant the blue tit (Parus caeruleus): an evaluation of different  

hypotheses.  Auk 104:109-115. 

Stevenson, H. M., and B. H. Anderson.  1994.  The birdlife of Florida.  University of  



38 Cooey  
 

 Florida Press, Gainesville, Florida, USA.  

Takahashi, M.  2006.  Pentosidine, an advanced glycation endproduct, and arthritis.  

 Current Rheumatology Reviews 2:319-324. 

Taylor, J. D., Jr., and B. S. Dorr.  2003.  Double-crested cormorant impacts to  

 commercial and natural resources.  Proceedings of the Wildlife Damage  

 Management Conference 10:43-51. 

Thompson, C. W., and M. Leu.  1994.  Determining homology of molts and plumages to 

 address evolutionary questions: a rejoinder regarding emberizid finches.  Condor 

 96:769-782.  

Tillman, E. A., A. C. Genchi, J. R. Lindsay, J. R. Newman, and M. L. Avery.  2004.   

 Evaluation of trapping to reduce monk parakeet populations at electric utility  

 facilities.  Proceedings of Vertebrate Pest Conference 21:126-129.  

Tuljapurkar, S., and H. Caswell.  1997.  Structured-population models in marine,  

 terrestrial and freshwater systems.  Chapman and Hall, New York, New York,  

 USA. 

Tyson, L. A., J. L. Belant, F. J. Cuthbert, and D. V. C. Weseloh.  1999.  Nesting  

 populations of double-crested cormorants in the United States and Canada.  Pages  

 17-26 in M. E. Tobin, technical coordinator.  Symposium on double-crested  

 cormorants: population status and management issues in the Midwest. U. S.  

 Department of Agriculture, Animal and Plant Health Inspection Service Technical  

 Bulletin 1879, Washington, D.C., USA. 

U. S. Fish and Wildlife Service (USFWS).  2003.  Final environmental impact statement  

 (DEIS) on double-crested cormorant management.  Washington, D. C., USA. 



39 Cooey  
 

U.S. Geological Survey (USGS).  2003.  USGS webpage.  Patuxent wildlife research  

 center team, About aging and sexing birds.   

 <http://www.pwrc.usgs.gov/BBL/resources/aboutage.htm>.  Accessed 12 March  

 2008. 

U. S. Geological Survey (USGS).  2007a.  USGS webpage. Patuxent bird  

 identification infocenter.  

 <http://www.mbrpwrc.USGSa.gov/id/framlst/infocenter.html>. 

 Accessed 25 June 2008 . 

U.S. Geological Survey (USGS).  2007b.  USGS webpage.  Patuxent wildlife research  

 center team, Longevity records.  

< http://137.227.245.162/BBL/homepage/longvlst.htm>.   Accessed 4 June 2008.  

van Bael, S., and S. Pruett-Jones.  1996.  Exponential population growth of monk  

 parakeets in the United States.  Wilson Bulletin 108:584-588. 

Verzijl, N., J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. J.  

Bijlsma, F. P. J. G. Lafeber, J. W. Baynes, and J. M. TeKoppele.  2000.  Effect of  

collagen turnover on the accumulation of advanced glycation end products.  Journal of 

Biological Chemistry 275:39027-39031.  

Werner, S. J., and B. S. Dorr.  2006.  Influence of fish stocking density on the foraging  

 behavior of double-crested cormorants, Phalacrocorax auritus.  Journal of the  

 World Aquaculture Society 37:121-125.   

Werner, S. J., and S. L. Hanisch.  2003.  Status of double-crested cormorant  

 Phalacrocorax auritus research and management in North America.  Vogelwelt  

 124:369-374. 



40 Cooey  
 

Weseloh, D. V., P. J. Ewing, J. Struger, P. Mineau, C. A.  Bishop, S. Postupalsky, and J.  

 P. Ludwig.  1995.  Double-crested cormorants of the Great Lakes: changes in  

 population size, breeding distribution and reproductive output between 1913 and  

 1991. Colonial Waterbirds 18 (Special Publication 1):48-59. 

Wywialowski, A. P.  1999.  Wildlife-caused losses for producers of channel catfish  

 (Ictalurus punctatus) in 1996.  Journal of the World Aquaculture Society 30:461- 

 472. 

Yoder, C. A., M. A. Avery, K. L. Keacher, and E. A. Tillman.  2007.  Use of DiazaCon™  

 as a reproductive inhibitor for monk parakeets (Myiopsitta monachus).  Wildlife  

 Research 34:8-13. 

 

  



41 Cooey  
 

FIGURES 

 

Figure 1.  Molecular structure of pentosidine.  It is comprised of a ribose compound connected to 

a lysine and arginine residue (Takahashi 2006). 
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Figure 2.  Anatomy of a bird’s wing highlighting the 4 patagial areas of the wing: 1) 

prepatagium; 2) metapatagium; 3) post patagium; and 4) alular patagium (Lucas and Stettenheim 

1972).  The skin samples will be removed from the prepatagium.  
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ABSTRACT Accurate aging of birds is useful for evaluating reproductive success, life-table 

demographics, and senescence.  Until recently, only banding studies have provided accurate ages 

for birds after they reach adulthood, although on occasion sample records are not completely 

accurate.  Measurement with breast tissue pentosidine (Ps) from deceased birds can provide age 

estimates of unknown-aged birds.  To be considered a more generally useful tool for wildlife 

management studies, a procedure to obtain skin samples from living birds is needed.   For this 

reason, we investigated the patagium as a location to obtain a skin sample as an alternative to the 

breast. Our main objectives were to determine if Ps concentrations varied significantly between 

the breast and patagium of black vultures (Coragyps atratus) and monk parakeets (Myiopsitta 

monachus) and if age curves generated from breast skin can be used to estimate age for samples 

obtained from patagial skins.  The Ps concentration for the breast (x̄ = 8.9 pmol/mg collagen, SE 

= 0.55) and patagium (x̄ = 8.9 pmol/mg collagen, SE = 0.51) of vultures were similar, but in 
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parakeets, Ps concentrations were higher in the breast (x̄ = 15.9 pmol/mg collagen, SE = 1.30) 

than the patagium (x̄ = 11.5 pmol/mg collagen, SE = 1.10).  This indicates that a skin sample 

from either body part will reliably give the same estimated age for vultures but not for parakeets.  

Known and minimal ages for parakeets (n = 41) were compared to estimated ages, and for at 

least 88% of known-aged parakeets estimated ages were within 6 months of the actual ages when 

using the wild bird age curve generated from a previous study, suggesting that the Ps differences 

found between the breast and patagium in parakeets may not be biologically important.  Overall 

our findings indicate that either sampling site can be used for Ps measurement to age living birds, 

but we recommend that the patagium be used to minimize stress to the bird.  

KEY WORDS bird age, black vulture, breast skin, Coragyps atratus, monk parakeet, Myiopsitta 

monachus, patagium, pentosidine. 

The Journal of Wildlife Management: 00(0): 000-000, 200X 

Knowing the age of birds is valuable for studies on reproductive success (Brown 1987), 

increasing success in captive breeding facilities (Fulai et al. 1995), increasing accuracy of life-

table demographics (Moen et al. 1991), and improving the understanding of senescence in birds 

(Hamilton 1966).  Age specific traits, such as plumage colors or patterns (Amadon 1966, Jackson 

et al. 1992, Proctor and Lynch 1993, Thompson and Leu 1994), eye color (Dixon 1909), and 

mouth color (Heinrich and Marzluff 1992), can be different in juvenile and adult birds.  

However, estimating ages of sexually mature birds has proven difficult.     

 If the correct age of a bird is noted at the time of first capture (Pollock and Raveling 

1982, Sheaffer and Malecki 1995), banding studies can provide a reliable age estimate (Sumner 

1940, Pollock and Raveling 1982, Sheaffer and Malecki 1995).  However, there are some 

limitations to banding studies.  They are time consuming and expensive (Sumner 1940, Pollock 
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and Raveling 1982, Sheaffer and Malecki 1995), have numerous band losses and few recaptures 

(Coluccy et al. 2002), may not always be accurate (Moen et al. 1991), and can only take place on 

living birds (Sumner 1940, Pollock and Raveling 1982, Sheaffer and Malecki 1995).  Age 

determination is limited to birds that have been previously banded.   

Pentosidine (Ps) analysis can reliably age birds throughout their entire lifespan (Iqbal et 

al. 1999, Chaney et al. 2003, Fallon et al. 2006a,b).  Pentosidine measurement also estimates age 

in a much shorter time span than it takes to complete a banding study.  The Ps assay is a 

standardized objective procedure, but to date this tool has not been adapted to sample living 

birds, with the uncertainty of its use being a drawback.     

Species-specific age curves developed from Ps analysis have been created for ruffed 

grouse (Bonasa umbellus), double-crested cormorants (Phalacrocorax auritus) (Fallon et al. 

2006a), and bald eagles (Haliaeetus leucocephalus) (J. A. Fallon, Virginia Tech and C. K. 

Cooey, West Virginia University, unpublished data).  Moreover, a general wild bird curve was 

developed from known-age birds of 29 different species (Chaney et al. 2003).  To have a better 

understanding of how Ps varies for different orders, families, and genera of birds, more species-

specific age curves need to be developed.   

 Most of the previous avian aging studies through Ps analysis have taken place with breast 

skin from deceased birds. To use Ps analysis as a wildlife tool for aging living wild birds, there is 

a need to create a minimally invasive sampling technique.  Because the breast contains the major 

flight muscles for birds (Proctor and Lynch 1993), sampling skin from the breast could seriously 

impair flying ability.  Marking birds with patagial tags has been a standard technique for many 

years (Marion and Shamis 1977, Wallace et al. 1980).  Performed properly, insertion of a marker 

through the patagium has no deleterious effects on the health or flying ability of the bird 
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(Sweeney et al. 1985).  The patagium also contains few veins (Proctor and Lynch 1993), 

decreasing the chance of bacteria entering the blood stream and causing an infection (Muza et al. 

2000).  The patagium, therefore, seems like a suitable location for obtaining skin samples from 

live birds.   

 A previous study by Fallon et al. (2006b) indicated that Ps concentrations in 6 ruffed 

grouse varied for different sampling sites and were higher in the patagium compared to the breast 

(Fallon et al. 2006b).  The skin samples were approximately 2 cm2, a size which would not be 

feasible to take from living birds, especially those that are small (e.g., most passerines).  Before 

live sampling wild birds can be attempted, it is necessary to determine if age curves from breast 

skin can be used to estimate ages for patagial skins or if new curves need to be developed based 

on patagial skin.  In addition it is also essential to determine the amount of skin that can be taken 

for analysis.  Using the Fallon et al. (2006b) procedure, Ps concentrations of the breast and 

patagium were determined in monk parakeets (Myiopsitta monachus) and black vultures 

(Coragyps atratus).    

Monk parakeets (also known as Quaker, cliff and gray-breasted parakeets, hereafter 

parakeets) are small omnivorous birds that were introduced to the United States via the pet trade 

from South America in the 1960s (Long 1981).  Banding studies in their native range indicate a 

potential lifespan of at least 6 years, but age structures of invasive populations in the USA are 

unknown (Spreyer and Bucher 1998).  Black vultures (hereafter vultures) are long-lived birds 

with a potential life span in excess of 20 years (Buckley 1999).  Population age structures and 

key aspects of their life history such as age of first breeding remain unknown, because these 

birds cannot be aged reliably (Blackwell et al. 2007).  Thus, for each of these species, 

development of a verifiable age estimation method is warranted.  Based on the Fallon et al. 
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(2006b) original finding, we hypothesize that the concentration of Ps will be significantly higher 

in the patagium of the wing compared to the breast.   

METHODS 

In 2004, we collected 30 vultures as road kills (n = 1) or as part of a vulture population 

management program (n = 29; U.S. Department of Agriculture [USDA] Wildlife Services 2003).  

We collected approximately 150-mg skin samples from the breast of the vultures at necropsy, 

froze samples in distilled water, and overnighted them to West Virginia University (WVU), 

Morgantown, WV, USA in 2004 for analysis.  We retained the carcasses at the USDA National 

Wildlife Research Center (NWRC) field station in Gainesville, FL, USA where they were frozen.  

In December 2006, we thawed the carcasses and collected patagial skin samples using a 6-mm 

diameter Sklar Tru-Punch disposable biopsy punch (Sklar, West Chester, PA).  We overnighted 

these skin samples to WVU for analysis.  Based on the Fallon et al. (2006b) finding that 

pentosidine remained stable for at least 1 year in museum study skins, we assumed that 

pentosidine remained stable for at least 1 year while frozen.    

In January 2007, we collected skin samples from parakeets at the USDA NWRC field 

station in Gainesville, FL.   Known-age birds were those that had either been raised in captivity 

or had been collected in the field as juveniles.  Others were collected or trapped as adults and 

therefore only a minimum age estimate was possible. We allowed the parakeets (n = 97) to thaw 

for 30 minutes – 1 hour before skin samples were collected.  We removed skin samples (~ 150 

mg) from the breast, as well as the entire patagium from the left wing, from each parakeet and 

placed them in labeled plastic bags, which were frozen until analysis.  

 The breast samples of the vultures were analyzed in a previous study from 2004 (J. A. 

Fallon, West Virginia University, unpublished data).  We compared Ps concentrations from the 
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patagial skin samples to the initial Ps concentrations from the breast.  In the previous study, Ps 

concentrations from 4 different sized samples (4 mm2, 6 mm2, 8 mm2, and 20 mm2) of vulture 

breast skin were compared.  Initial findings indicated that there was no significant difference in 

Ps concentrations which suggests that a 6 mm2 skin sample could be accurately aged from an age 

curve generated from the 20 mm2 skin data.  In view of this observation we collected 6 mm2 skin 

samples from the patagium of the vultures and compared then to the 6 mm2 breast skins 

previously analyzed to determine differences in Ps concentration between the breast and 

patagium.   

For parakeets, we processed skin samples of approximately 40 mg (20 mm2) to determine 

if differences exist between Ps concentrations in breast and patagial sampling sites.  We prepared 

all skin samples as described by Iqbal et al. (1999).   

Skin Preparation 

 We allowed skin samples from the freezer to thaw overnight in the refrigerator or for 30 

minutes – 1 hour on the lab bench.  We scraped the skins with a scalpel blade to remove any 

remaining feathers, feather shafts, epidermal layers, muscle, and adipose tissue, until the skins 

were almost transparent, and then minced.  We placed approximately 40 mg of the minced skin 

into a properly labeled 12 x 100 mm capped glass tube.  We placed the tubes in the freezer if 

delipidation was not going to occur immediately.  

Delipidation      

 We performed delipidation to remove any remaining fat.  We added a 

chloroform/methanol (C/M) solution (2 parts chloroform to 1 part methanol) (5 ml) to each tube 

and then we placed the samples on a 360° rotating agitator in a 4° C cold room for 18 - 24 hours. 
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First Rehydration 

 We carefully suctioned off the C/M solution and then added 2 - 3 ml of a 50% methanol 

solution (50% methanol/50% distilled [ddi] water) to each tube, which were left at 20° C for 2 

hours.  Afterwards we carefully suctioned off the methanol and water solution.   

Acid Hydrolysis 

 To each tube we added, 1 ml of nitrogen flushed 6N hydrochloric acid per 10 mg of skin.   

Next, we cooked the tubes for 18 hours in a 110° C oven, cooled them, and placed them in a 

Speed-Vac centrifuge dryer (Savant Instruments, Farmingdale, New York) set at continuous 

run/high temperature until all the acid evaporated.   

Second Rehydration 

 We added ddi water (500 µl) to each tube to reconstitute the sample, which was then 

vortexed.  We placed this solution in a 2 ml Costar Spin-X centrifuge tube filter (Corning Costar, 

Cambridge, Massachusetts) and centrifuged at 10,000 rpm for 10 – 13 minutes.  We removed the 

tubes from the centrifuge and stored them in the freezer at approximately -10° C until required 

for hydroxyproline or HPLC analysis.   

Hydroxyproline Assay 

 We estimated collagen content in the skin samples using a modified Stegemann and 

Stalder (1967) procedure.  We assumed that hydroxyproline makes up 14% of the total collagen 

(Maekawa et al. 1970).   

We made fresh color reagent solution (Appendix A, Table 2) the day hydroxyproline 

assays were run, along with a standard curve of hydroxyproline samples (n = 8) with a 

concentration range from 0 to 40 μg collagen/ml water.  We added samples (10 μl) from the 

second rehydration to 990 µl of ddi H2O and vortexed the solution for 5 - 10 seconds.  We added 
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1 ml of Buffer B (Appendix A, Table 5) to both the standard curve and sample tubes and 

vortexed.  Afterwards, we added 1 ml of Chloramine T solution (Appendix A, Table 1) to all 

tubes and vortexed them immediately after addition of the solution.  We let the tubes incubate at 

20° C for 10 minutes.  At this time we added 1 ml of color reagent solution to each tube, 

followed immediately by vortexing and capping.  We placed the tubes in a 60° C water bath for 

20 minutes, followed by transfer to a cold water bath for 5 minutes.  We then allowed the 

samples to incubate at 20° C for 90 minutes.   

 After incubation, we determined absorbency readings, in duplicate, on the 

spectrophotometer set at a 564 nm wavelength.  If any absorbency reading was > 3.0, we diluted 

the sample (i.e., 8 μl sample to 992 μl water) and prepared them again for hydroxyproline 

analysis.    

HPLC Assay 

 We estimated Ps concentration by reverse phase high performance liquid chromatography 

(HPLC) (Iqbal et al. 1997).  We prepared samples in duplicate for HPLC analysis.  One tube 

contained a mixture of sample plus a pentosidine spike (6.68 pmol/mg collagen).  We required 

the spiked sample to ensure identification of Ps peaks.  We created a standard curve (n = 7) 

ranging from 0.21 to 26.70 pmol/mg collagen.   

 We measured Ps concentrations using a Waters 2690 (later upgraded to a Waters 2695) 

HPLC separation module workstation (Waters Corporation, Milford, Massachusetts) with a 

Waters 474 in-line fluorescence detector (excitation: 310 nm, emission: 385 nm) (Waters 

Corporation, Milford, Massachusetts).  We obtained elution off the C-18 column (YMC OCS-

AQ 4.6 x 250 mm) using a linear gradient of 5 - 28% acetonitrile in water with 0.01 M 

heptafluorobutyric acid from 0 to 35 minutes.  We cleaned and equilibrated the column for 18 
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and 12 minutes, respectively.  We integrated peaks using the Millennium 32, version 3.05.01 

software package (later upgraded to Empower 2 software) (Waters Corporation, Milford, 

Massachusetts).   

Bird Age Estimates 

 We calculated age estimates for vultures using the double-crested cormorant age curve 

developed from breast skin (Fallon et al. 2006a).  Double-crested cormorants are comparable in 

size to vultures (69 cm long with a 127 cm wingspan and 56 cm long and 137 cm wingspan 

respectively; Cornell Lab of Ornithology [CLO] 2007) and have approximately the same life 

span (22 years and 25 years respectively; U.S. Geological Survey [USGS] 2007).  The double-

crested cormorant age curve has the logistic equation: y = 0.1914x + 6.6701 (R2 = 0.93), in 

which y = Ps concentration and x = estimated age in months (Fallon et al. 2006a).   In addition, 

we estimated the vultures’ ages using the general wild bird curve.  The logistic equation for this 

age curve was: y = 0.2047x + 7.4725 (R2 = 0.73) (Chaney et al. 2003).  We calculated age 

estimates for the breast data and the patagial data.   

 We determined age estimates for parakeets using the wild bird age curve (Chaney et al. 

2003).  We only used the wild bird curve because parakeets are different in size from cormorants 

(28 cm long with a 48 cm wingspan; National Wildlife Federation [NWF] 2007 v.s. 69 cm long 

with a 127 cm wingspan; CLO 2007) and do not have the same longevity as cormorants (6 years 

in the wild for parakeets [Spreyer and Bucher 1998, Pruett-Jones et al. 2007] vs. 22 years in the 

wild for double-crested cormorants [USGS 2007]).  Forty-one parakeets had either known-ages 

(n = 17) or were held in captivity for a specified amount of time, where they were at least a 

minimum age (n = 24).  We then compared the estimated ages for the parakeets to the known and 

minimum ages for these birds to determine the accuracy of the estimated ages.   
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Statistical Analysis 

We determined that tests were significant using an α value of 0.05.  There was a missing 

value for the Ps concentration from the breast skin of vulture 10 and vulture number 5 was 

determined to be an outlier (by regression analysis using SAS version 9.1 [SAS Institute, Cary, 

North Carolina]), so we removed them from all analyses.   

 We ran a paired t-test with SAS to determine if there were any significant differences in 

Ps concentrations between the breast and patagium.  Our dependent variable was the Ps 

concentration and the independent variable was the body part.  We tested data for normality by 

evaluating box plots (g1 = -0.22 [vultures], g1 = -0.17 [parakeets]) and homogeneity of variances 

by Bartlett’s test for homogeneity (χ2 = 0.17 [vultures], χ2
 = 2.87 [parakeets]).  Data met these 2 

assumptions so we did not transform data.  We hypothesized that the true mean difference in Ps 

concentration between paired observations equaled zero.   

We also used a paired t-test to compare estimated age for vultures and parakeets.  For 

vultures we completed 2 comparisons: 1 using age estimates determined from the double-crested 

cormorant age curve and 1 using age estimates determined from the wild bird age curve.   For 

parakeets we only used the wild bird curve for the estimated age comparison.  Our dependent 

variable was the value for the age and the independent variable was the source of the ages 

(known or estimated).  We tested data for normality by evaluating box plots (g1 = 0.25 

[cormorant curve for vultures], g1 = -0.22 [wild bird curve for vultures], g1 = -0.17 [parakeets]) 

and homogeneity of variances by Bartlett’s test for homogeneity (χ2 = 0.17 [cormorant curve for 

vultures], χ2 = 0.17 [wild bird curve for vultures], χ2
 = 2.87 [parakeets]).  Data met these 2 

assumptions so we did not transform data.  We hypothesized that the true mean difference in age 

between paired observations equaled zero.   
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We determined the accuracy of the age estimates for vultures by comparing them to the 

estimated age determined from physical characteristics.  Biologists with the USDA categorized 

each vulture as juvenile, sub-adult, or adult based on the amount of feathering (adults have fewer 

feathers) and the amount of wrinkles on the head (adults have more wrinkles) (CLO 2007).  We 

confirmed the accuracy of the estimated ages for parakeets by comparing the estimated ages to 

the known (n = 17) and minimum (n = 24) ages for 41 parakeets. 

RESULTS 
 
Black Vultures 

Vulture Ps concentrations were similar between breast (x̄ = 8.9 pmol/mg collagen, SE = 

0.55) and patagial (x̄ = 8.9 pmol/mg collagen, SE = 0.51) skin samples (n = 28, t27 = 0.04, P = 

0.967).  The pentosidine concentrations varied for each individual vulture (Figure 1).  Some 

individuals had concentration values close to each other for each body part (e.g., vulture 7) while 

others had some discrepancy in their calculated concentrations (e.g., vulture 2).  The Ps 

concentration was higher in the patagium than the breast for 61% of the birds (n = 28).    

Using the cormorant curve, no significant differences were found when age estimates 

were compared between breast (x̄ = 11.6 months, SE = 2.85) and patagial (x̄ = 11.9, SE = 2.64) 

data for individual vultures (n = 28, t27 = -0.09, P = 0.932).  The breast (x̄ = 7.0 months, SE = 

2.70) and patagial (x̄ = 7.1 months, SE = 2.49) skins produced similar estimated ages when using 

the wild bird curve (n = 28, t27= -0.04, P = 0.969).  The estimated ages for the vultures from the 

double-crested cormorant age curve ranged from 0 to 41 months for breast skins and 0 to 35 

months for the patagial skins, while the wild bird curve produced estimated ages as 0 to 35 

months for breast skins and 0 to 29 months for patagial skins (Appendix B, Table 1).  Birds with 

age estimates less than 0 months were assumed to actually be <1 – 6 months old.  Based on 
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physical characteristics alone, the age estimates for the vultures were 78% accurate (i.e., age 

estimate within 6 months of age class [juvenile, sub-adult, adult]) when compared to the age 

estimates from the cormorant and wild bird curves.   

Monk Parakeets 

 Pentosidine concentrations varied between the breast (x̄ = 15.9 pmol/mg collagen, SE = 

1.30) and patagial (x̄ = 11.5 pmol/mg collagen, SE = 1.10) skin samples for parakeets (n = 105, 

t104 = -5.14, P <0.0001) (Figure 2).  Again, some individuals had concentration values close to 

each other (e.g., parakeet 1) while there was greater discrepancy for others (e.g., parakeet 101).  

Unlike the vultures, however, the parakeets more often had higher Ps concentrations in the breast 

(72% of the samples, n = 105).  

The results indicate that there were significant differences when age estimates were 

compared between breast (x̄ = 41.0 months, SE = 6.34) and patagial (x̄ = 19.8 months, SE = 

5.37) data for individual parakeets (n = 105, t104 = -5.16, P <0.0001).  The estimated ages for the 

parakeets from the wild bird age curve ranged from 0 to 255 months for breast skins and 0 to 191 

months for the patagial skins (Appendix C, Table 1).  Birds with age estimates less than 0 

months were assumed to actually be <1 – 6 months old.   

Using the breast skin data, 16 (94%) of the known-age birds had age estimates within 6 

months of their actual age and 100% of the birds that had a minimum age had age estimates 

higher than the length of time they spent in captivity (Appendix C, Table 1).  With the patagial 

skin data, 15 (88%) of the known-age birds had age estimates within 6 months of their actual age 

and 22 (92%) of the birds that had a minimum age had age estimates higher than the length of 

time they spent in captivity (the other 2 birds had age estimates only 2 and 12 months lower than 

their captive holding time).   
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DISCUSSION 

This study confirmed previous research studies on Ps accumulation with age.  Similar to 

ruffed grouse, double-crested cormorants (Fallon et al. 2000a), wild birds (Chaney et al. 2003), 

and chickens (Iqbal et al. 1999), pentosidine was found to accumulate with age in parakeets.     

The data from these studies suggest that an age curve generated from patagial skin of 

vultures could reliably estimate the age of a vulture from a skin sample taken from the breast.  

This was confirmed when the age estimations were compared from patagial and breast skin.  If 

live sampling of vultures becomes a wildlife tool then the patagium will most likely be the 

location to obtain a skin sample.   

Both the cormorant and wild bird curve produced similar age estimates, suggesting that 

either one of these curves will adequately estimate an accurate age for vultures.  When 

comparing age estimates based on physical characteristics to the ones determined from the age 

curves (Appendix B, Table 1), we find that with the exception of vultures 2 and 8, these age 

estimates appear to correspond.  Vulture 2 had an age estimation of less than 1 year old and 

vulture 8 had an age estimate of 11-20 months old using Ps analysis.  Despite placing the birds in 

a different age class, we find that the age estimations were only off by several months.   

The parakeet study produced similar results to the Fallon et al. (2006b) findings for Ps 

concentration differences, although in the parakeet study the Ps concentration was higher in the 

breast.  These data suggest that known-age curves for parakeets will need to be developed for 

specific body parts.  One explanation as to why Ps was higher in the patagium of grouse (Fallon 

et al. 2006b) and higher in the breast of parakeets can be attributed to the flight ability of the 

species.  Parakeets often fly, whereas ruffed grouse, are mainly land-based birds and seldom fly, 

except for short distances.  We argue that more oxidative stress occurs in the flight muscles of 
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parakeets.  This argument can be expanded to include the vultures.  Vultures also fly a lot, but 

they often glide on air currents and soar during migration, which requires little flapping with 

their wings (Rappole 2006), thus not relying on their flight muscles as much.  Because ruffed 

grouse don’t often fly and vultures glide and soar, oxidative stress does not occur as much in 

their breast muscles.  Oxidative stress has been found to increase for muscles that go through 

excessive exercise (Ji 1999).  Advanced glycation endproducts, such as Ps, are highly associated 

with oxidative stress in birds (Iqbal et al. 1999, Klandorf et al. 1999).  A future study could 

examine breast skin of migratory and non-migratory birds of the same species to see if the level 

of use of flight muscles (i.e., oxidative stress) could influence the concentration of Ps in skin.   

The differences in parakeet age estimations can be attributed to the differences in Ps 

concentrations for skin locations.  When comparing the estimated ages to the known-ages of the 

parakeets, most age estimates were accurate to within 6 months.  This suggests that despite a 

significant difference in estimated age, both estimated ages could still be accurate to within a 

reasonable period.  For example, parakeet H18 had an age estimate of 1 month from the breast 

skin and 7 months from the patagial skin, but the true age was 2 months.  Because of the high 

accuracy of estimated ages (i.e., within 6 months) for both body parts of parakeets, this may be 

one of the cases where significant findings (i.e., significant differences between Ps 

concentrations and estimated ages) may not be biologically important.   

The variance in Ps concentrations for vultures and parakeets may occur based on their 

taxonomy.  Parakeets and vultures are completely different species of birds, in different 

taxonomic orders (order Psittaciformes for parakeets and order Ciconiiformes for vultures 

[Rappole 2006]).   Further investigations will need to take place to see if differences are more 

pronounced based on genus, family, or order or if it occurs randomly by individual species.  
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Pentosidine differences also may occur based on oxidative stress.  There may be differences in 

vasculature of the body regions of vultures and parakeets.  If one region contains more 

capillaries, it will become perfused with blood, which may cause more oxidative stress, resulting 

in higher Ps concentrations.   

MANAGEMENT IMPLICATIONS 

The logical next step would be to apply the measurement of Ps in living birds.  

Consideration for their health and welfare must be of utmost importance.  Avian anatomy 

literature states that the breast is a more sensitive area in regards to flight, than the wing.  

Because this study indicates that Ps concentrations are generally the same for the breast and 

patagium of birds, it is our recommendation that skin samples be collected from the patagium of 

living birds.  However, if there truly is a difference in Ps concentration for parakeets, then a 

patagial skin curve will need to be developed for this species once older known-aged individuals 

become available.  For vultures, either skin location can be used to create an age curve.   
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FIGURES 

 
 
Figure 1.  Distribution of pentosidine (Ps) concentrations for patagial and breast skin of 28 black 

vultures from Gainesville Florida, USA.  Pentosidine concentrations were higher in the patagium 

more often than the breast.  The majority (89%) of the vultures have Ps concentrations within 5 

pmol Ps/mg collagen for both locations.   
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Figure 2.  Distribution of pentosidine (Ps) concentrations for breast and patagial skin of 105 

monk parakeets from Gainesville Florida, USA.  Pentosidine concentrations were higher in the 

breast more often than the patagium.  The majority (72%) of the parakeets have Ps 

concentrations within 10 pmol Ps/mg collagen for both locations.   
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ABSTRACT  A live sampling protocol for birds to age them by measuring pentosidine (Ps) 

concentration in the skin has never been attempted.   Considerations include the location of the 

skin biopsy, the amount of skin to process, and the closure method of the wound.  We 

investigated the development of a minimally invasive protocol for live sampling birds as well as 

the results of using this protocol in a live sampling study.  Double-crested cormorants 

(Phalacrocorax auritus) are an optimal species to study because of the need to understand age 

demographics of this species due to their real or perceived impacts to commercial and natural 

resources.  The patagium from known-aged cormorants (n = 63) was selected as the preferable 

location to take skin biopsies, although the standard age curve for cormorants was created with 

data from breast skin.  Comparison of Ps concentrations between the patagium (x̄ = 10.6 

pmol/mg collagen, SE = 1.10) and the breast (x̄ = 11.2 pmol/mg collagen, SE = 1.10) of known-
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aged cormorants revealed that there were no significant differences between those locations (P = 

0.10).  Pentosidine concentration was marginally higher in 6 mm2 (x̄ = 12.6 pmol/mg collagen, 

SE = 1.19) than the 20 mm2 (x̄ = 11.3 pmol/mg collagen, SE = 1.23) patagial skin samples (P = 

0.02).  In addition, new age curves (our breast skin age curve and our patagial skin age curve) 

were developed from known-aged cormorants (n = 58) and compared to the age curve used in a 

previous study (Fallon age curve).  Our age curves were more accurate in predicting age and 

were determined to estimate age within 14 - 30 months of the actual age.  In a seperate study, we 

took 6 mm2 biopsy samples in vivo from both the breast and patagium of 7 wild-caught 

cormorants (3 juveniles, 4 adults) from Bluff Lake, Noxubee National Wildlife Refuge in 

Mississippi. Wounds were closed with dissolvable sutures for 4 birds while the remaining 3 were 

closed with tissue glue.  No significant differences occurred between the Ps concentrations of the 

breast (x̄ = 14.7 pmol/mg collagen, SE = 2.70) and patagium (x̄ = 12.2 pmol/mg collagen, SE = 

1.82) of the living cormorants (P = 0.20).  Healing time was similar between the breast (x̄ = 15.9 

days, SE = 1.36) and patagium (x̄ = 15.8 days, SE = 1.85) (P = 0.79) but the wounds closed with 

tissue glue (x̄ = 14.5 days, SE = 1.12) healed significantly faster than those closed with sutures 

(x̄ = 17.3 days, SE = 0.66) (P = 0.0003).  These cormorants’ ages were estimated using the same 

age curves, and the accuracy of the curves were determined using known-age data (n = 1) and 

juveniles identified through plumage coloration and lack of sexually mature reproductive organs 

(n = 4).  In this analysis the Fallon age curve had the most accurate age estimate for the known 

aged cormorant.  Live sampling birds for Ps analysis is a viable technique and estimates age with 

a 4.5 year confidence limit, suggesting that this technique can be useful for aging long-lived 

birds.  We recommend taking 6 mm2 skin samples from the patagium and the wounds closed 

with tissue glue.  
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The past 3 decades have seen a population resurgence of double-crested cormorants 

(Phalacrocorax auritus, hereafter cormorants) in North America, with doubling-times of < 5 

years for cormorants in some areas (Hatch and Weseloh 1999, Glahn et al. 2000a, Taylor and 

Dorr 2003). Increases in cormorant numbers have resulted in both perceived and documented 

impacts to recreational fisheries (Taylor and Dorr 2003, Rudstam et al. 2004), sensitive 

vegetation (Hebert et al. 2005), other colonial-nesting birds (Jarvie et al. 1999), and channel 

catfish (Ictalurus punctatus) aquaculture (Wywialowski 1999, Glahn et al. 2000b, Glahn and 

Dorr 2002, Glahn et al. 2002).  

 Increased numbers of cormorants, particularly for the interior population, concomitant 

with increased concerns over possible negative impacts to commercial and natural resources 

have resulted in management efforts aimed at mitigating those impacts (Taylor and Dorr 2003). 

Management practices, such as harassment, have proven difficult due to regional increases in 

cormorant numbers and because they provide only a temporary and local reduction in cormorant 

numbers (Mott and Boyd 1995, Glahn et al. 2000b).  In response to the perceived declining 

effectiveness of these programs, various local- and regional-level depredation management 

efforts were initiated (Dorr et al. 2008).  These efforts include establishment of the 1998 

Depredation Order specific to aquaculture (U. S. Fish and Wildlife Service [USFWS] 1998) and 

in 2003, establishment of a Public Resource Depredation Order, which allows various agencies 

to conduct cormorant control, including lethal take, on affected natural resources in 24 states 

including Mississippi (USFWS 2003, Dorr et al. 2008). This regulatory movement towards 
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cormorant management including lethal control has resulted in an acknowledged gap in basic 

understanding of how management may affect the interior cormorant population. Knowing age 

demographics for this species is vital for modeling and linking of management information to 

demographic response of the cormorant population (Frederiksen and Bregnballe 2000, Glahn et 

al. 2000a). 

Analysis of pentosidine (Ps) concentrations in the skin has been identified as an aging 

tool for deceased birds (Iqbal et al. 1999, Chaney et al. 2003, Fallon et al. 2006a), including 

those that have been prepared as museum mounts (Fallon et al. 2006b).  However, before age 

estimates from Ps analysis becomes a viable aging tool for living birds, a minimally invasive 

technique needs to be developed.  Previous Ps age curves were developed from breast skin, 

however, the breast may not be the best location to take a skin sample from living birds.  If the 

biopsy punch is pressed too hard, the pectoralis major muscle may be damaged and reduce flight 

capability (Proctor and Lynch 1993).  For this reason, the patagium on the wing of the bird may 

be a better location to sample live birds. Fewer muscles in the wing (Proctor and Lynch 1993) 

and visibilty of veins in the patagium allows for skin collection to occur with minimal bleeding 

(Smallwood and Natale 1998).  By avoiding the veins, there is also a smaller chance of infection 

reaching the blood stream, thereby minimizing any complications associated with the sampling 

procedure (Beal et al. 2000, Muza et al. 2000).     

Other considerations when working with the breast and patagium are the concentration of 

Ps in those body parts and the size of the skin sample needed.  Fallon et al. (2006b) determined 

that Ps concentrations varied between skin locations of ruffed grouse (Bonasa umbellus).  In 

ruffed grouse, Ps concentrations were significantly greater in the patagium than the breast 

(Fallon et al. 2006b).  In another study, when comparing 4 mm2, 6 mm2, 8 mm2, and 20 mm2 
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skin sizes from black vultures (Coragyps atratus), no significant differences in Ps concentration 

was found to occur (J. A. Fallon, West Virginia University, unpublished data).  Skin biopsies 

from birds can be taken with readily available 6 mm diameter biopsy punches (Nett et al. 2003).  

Minimizing the area of skin samples reduces invasiveness.  To age living cormorants with a skin 

sample taken from the patagium, it must be determined if Ps concentrations vary between the 

breast and patagium, and if there are differences between 6 mm2 and 20 mm2 skin samples. 

Finally, the most effective wound closure method should be employed when sampling 

live birds.  Surgical glue (tissue glue) and dissolvable sutures are 2 closure methods that have 

been successfully used to close wounds on birds (Small et al. 2004, Schwagmeyer et al. 2005).  

When tissue glue is applied to a wound site as a liquid, it polymerizes to a firm, pliable film that 

binds to the skin and holds the edges of the wound together (Hollander and Singer 1999).   

Comparatively, sutures close dead space, support and strengthen the wound until healing 

increases its tensile strength, and minimize the risk of bleeding and infection (MacKay-Wiggan 

and Ratner 2007).  The simple interrupted suture stitch, the most commonly used stitch in 

cutaneous surgery, optimally distributes tension on the wound, achieves eversion, and has less 

potential for causing wound edema and impaired cutaneous circulation, although it takes longer 

to complete in comparison to other suture techniques (MacKay-Wiggan and Ratner 2007).  

Tissue glue is faster to apply than sutures (Trott 1997), but no literature has been found that 

indicates which of these methods is more effective in allowing the wound to heal.   

The objectives of our studies are to 1) compare Ps concentrations from the breast and 

patagium of known-age cormorants, 2) compare Ps concentrations between 6 mm2 and 20 mm2 

skin sizes, and 3) test the efficacy of a minimally invasive sampling protocol on 7 living 

cormorants.  Based on the results of Fallon et al. (2006b), we hypothesize that there will be a 
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significant difference in Ps concentrations between the breast and patagial skin.  Based on the 

results of the skin size study with black vultures (J. A. Fallon, West Virginia University, 

unpublished data), we predict that there will be no significant differences in Ps concentrations for 

these 2 skin sizes.  Finally, we hypothesize that there will be no significant difference in healing 

rate between sample sites as a function of the closure method.    

STUDY AREA 

Banded cormorants were lethally collected from their wintering grounds in Mississippi, 

western Alabama, and eastern Arkansas, and from their breeding grounds on Lake Huron and 

Lake Michigan in the upper peninsula of Michigan from November 1999 to March 2007.  Live 

cormorants were captured from Bluff Lake in Noxubee National Wildlife Refuge in east-central 

Mississippi, about 22 km south of Starkville, MS in January 2008.  The 19,500 ha refuge was 

established in 1940 and serves as a resting and feeding area for migratory birds (U.S. Fish and 

Wildlife Service [USFWS] 2008).  Bluff Lake is a 324 ha lake (USFWS 2008) with vegetation 

including bald cypress (Taxodium distichum), water tupelo (Nyssa aquatica), and buttonbush 

(Cephalanthus occidentalis). 

METHODS 

Skin samples from 63 deceased, known-age cormorants were procured at necropsy at the 

National Wildlife Research Center’s (NWRC) Mississippi Field Station.  Cormorants were 

banded as juveniles, and their ages were calculated using banding records from the USGS Bird 

Banding Laboratory.  Approximately 100 mg of breast and patagial skin from each cormorant 

was procured at necropsy.  All skins were placed in plastic vials containing distilled water.  The 

containers were frozen and shipped overnight to West Virginia University (WVU) in 

Morgantown, West Virginia, USA for Ps analysis.   
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Study 1: Breast and Patagium Ps Concentration Comparison 

 We prepared samples (20 mm2 or about 40 mg) from both the breast and patagial skins 

for each known-age cormorant for analysis.  We processed samples as described by Iqbal et al. 

(1999).  Briefly, this process involved skin cleaning, delipidation, rehydration, acid hydrolysis, 

and a second rehydration.  We determined collagen content through spectrophotometric 

hydroxyproline analysis using a DU 640 spectrophotometer (Beckman Coulter, Fullerton, CA) 

with a 564 wavelength, assuming 14% of collagen to be hydroxyproline (Maekawa et al. 1970).  

We measured Ps concentrations through reverse-phase High Performance Liquid 

Chromatography (HPLC).  We analyzed Ps samples in duplicate, where one sample was spiked 

with a Ps standard to determine elution time.  Integration of peaks was done with Millennium 32, 

version 3.05.01 software (Waters Corporation, Milford, MA) (later upgraded to Empower 2 

software [Waters Corporation, Milford, MA]).   

Cormorant Age Curves. – We developed 2 age curves for the cormorants using the age data 

obtained from banding records and the Ps concentrations measured for the patagium and breast 

skin (n = 58).  We developed a breast skin age curve (hereafter our breast skin age curve) and a 

patagial skin age curve (hereafter our patagial skin age curve).  We fit the age curves with a 

linear and curvilinear (power) regression line.   

Actual and Estimated Age Comparison. – We determined actual ages for the deceased 

cormorants based on band records (n = 63).  We then calculated an estimated age for each 

cormorant using the linear and curvilinear regression equations from our breast and our patagial 

skin age curves.  We calculated 2 estimated ages per cormorant (1 for the breast skin and 1 for 

the patagial skin).  We also calculated an estimated age for the breast and patagial skins for each 
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cormorant using the cormorant age curve generated by Fallon et al. (2006a, hereafter Fallon age 

curve).   

Study 2: Skin Size Ps Concentration Comparison 

 We used skins from 50 of the same 63 cormorants in study 1 to compare Ps 

concentrations between 6 mm2 and 20 mm2 skin sizes.  We used a 6 mm diameter disposable 

biopsy punch (Miltex Inc., York, PA) to take a skin sample from the patagial skins of each bird.  

We compared the Ps concentration from these samples to the 20 mm2 patagial Ps concentrations 

determined in Study 1.   

Comparison of Estimated Ages for Different Skin Sizes. – Because skin samples were taken from 

the patagium only, we estimated ages for the 50 cormorants using our linear and curvilinear 

patagial skin age curve.   

Actual and Estimated Age Comparison. – After obtaining estimated ages from the 2 different 

sized skins using our linear and curvilinear patagial skin age curves, we compared actual and 

estimated ages. 

Study 3: Live Cormorant Sampling 

Cormorant Capture. – We traveled to Bluff Lake in the Noxubee National Wildlife Refuge in 

January 2008 for cormorant capture.  We captured cormorants using the method as described by 

King et al. (1994).  We traveled in pairs 30 minutes after sunset, via motorized jon-boats (4.6 m 

length, 0.6 m high bow rail, padded bow seat for kneeling, 25-hp outboard, and 3 500-W 

floodlights).  One of us piloted the boat and scanned the water for cormorants with a spotlight.  

The other sat at the bow of the boat with a large dip net (0.8 m diameter and 1.2 m deep with a 2-

3 m handle).   
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When a large group or “raft” of cormorants was found on the surface of the water, we 

blinded the cormorants with the floodlights to disorient them.  As the boat approached the birds, 

we attempted to capture a cormorant with the dip net before it flew away or dove beneath the 

water’s surface.  In all, we captured 7 cormorants and transported them by vehicle to the USDA 

NWRC Mississippi Field Station aviary located adjacent to Mississippi State University in 

Starkville, MS.   

Holding Facilities and Quarantine. – We weighed the birds the same night of capture.  

Cormorants were individually housed in pens (304.8 cm x 304.8 cm x 182.9 cm) with 200 L 

diving pools. The pools were equipped with ramps for perching and the birds were provided 

continuous accessibility to water with a recirculating water system containing bio-filters and 

particulate waste filters to maintain water quality.  

We held the cormorants in quarantine for 2 weeks before skin samples were taken.  

During this time, we monitored birds for any signs of illness, disease, or severe stress that would 

exclude them from the study.  Cormorants were fed an ad-libitum diet of between 600-800 g of 

live channel catfish fingerlings daily.  We provided fish to each bird in their respective 200 L 

diving pools.  We removed uneaten catfish from the pools each day and weighed them to 

determine the average mass of food each individual cormorant consumes daily and cleaned the 

pens daily.  

Skin Sample Collection. – On 5 February 2008 we collected skins using a modified technique 

from the U. S. Department of Agriculture (2007) with a veterinarian present to oversee the 

sampling procedure.  We removed the cormorants from their holding pens, one at a time, and 

took them into the workshed within the aviary.   
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 At the sampling site, skin was first disinfected with isopropyl alcohol.  We then 

administered a subcutaneous injection of lidocaine (1-4 mg/kg diluted 1:10 with 0.9% Normal 

saline [Paul-Murphy and Ludders 2001]) to anesthetize the local area.  We used a sterile, 

disposable 6 mm diameter biopsy punch (Miltex Inc., York, PA) to obtain a skin sample.  Using 

a clockwise/counterclockwise rotation (Nett et al. 2003), we penetrated the skin with the biopsy 

punch.  If the skin was still attached to sub-dermal layers, we used a pair of surgical scissors to 

cut away the skin sample.  We then placed the skin sample in a container filled with distilled 

water.   

 After removing any blood from the sample site with sterile gauze, we closed the incision 

with either Vetbond Tissue Adhesive (3M, St. Paul, MN) or Coated Vicryl Violet Braided 6-0 

absorbable sutures (Ethicon Inc., New Brunswich, NJ). Three of the cormorants had their 

wounds closed with tissue glue while the remaining 4 had them closed with dissolvable sutures.  

If the wound was closed with tissue glue, one of us pinched the wound so only a slit was visible.  

After applying tissue glue to the wound and allowing a few seconds for drying, we used forceps 

to secure the closure by pinching the tissue glue onto the wound.  We applied more tissue glue (if 

needed) until the wound was completely sealed. If sutures were used to seal the wound, then we 

applied 2-3 sutures, using the simple interrupted stitch, to close the wound.  We froze the 

containers holding the skin samples and then shipped them overnight to WVU for analysis.   

Age Estimates. – We estimated ages for each of the living cormorants using their Ps 

concentration and the 5 age curves discussed in Study 1.  One live-cormorant captured was 

banded and its age was determined from banding records.  We also determined accuracy of the 

age estimates through Ps analysis by aging the birds by their plumage (Hatch and Weseloh 1999) 
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and examining gonadal development (Sherwood et al. 2005) after euthenization at the end of the 

study. 

Wound Monitoring. - Average healing time for superficial wounds on birds is 10-14 days (Burke 

et al. 2002), so we inspected the wounds on days 2, 6, 9, 14, and 17 post-sampling.  We took 

photographs at each wound check to document the healing progression (Appendix F).  No 

infection occurred, but if it did, we would have applied a topical medication.  We also weighed 

the cormorants at each monitoring session to determine if they lost mass post-sampling.  Any 

mass loss or development of anorexia may be an indicator that the bird developed septicemia (Xi 

et al. 2007). 

Statistical Analysis 

We determined significant differences using an α value of 0.05.  We tested data for 

normality by evaluating box plots for skewness and outliers (Connolly 1989) and by evaluating 

normal probability plots (Chambers et al. 1983), and we tested data for homogeneity of variances 

with Bartlett’s test for homogeneity (Mudholkar et al. 1993) before analyzing the data.  All data 

met the assumptions, so we did not transform the data.  All data analyses were completed using 

SAS software (SAS Institute, Cary, NC).   

Study 1. - We used a paired t-test to determine if there were any significant differences in Ps 

concentrations between the breast and patagium of the known-age cormorants.  We used 

Studentized residuals (cut off values < -2 and > 2) to determine outliers for the actual ages for 

the Ps data (Cook 1982).  We omitted all outliers when developing a known-age cormorant 

curve.  We also used a paired t-test to determine if there were significant differences between 

actual and estimated ages for the known-age cormorants using all 5 age curves and used an upper 
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and lower 95% Confidence Limit around the mean estimated age to determine the accuracy of 

the estimated ages.  

Study 2. –We used a paired t-test to determine if there were any significant differences in Ps 

concentrations between the 2 skin sizes of known-aged cormorants.  We also used a paired t-test 

to determine if there were any significant differences between estimated ages for each skin size 

of the cormorants.  We determined the accuracy of the age estimates by producing upper and 

lower 95% Confidence Limits around the mean estimated age.   

Study 3. - We ran a paired t-test to determine if there were any significant differences in Ps 

concentrations between the breast and patagium samples from living cormorants, in estimated 

ages determined for each cormorant from the sampling site data, in healing rates between 

locations, and in healing rates between closure methods.  We also used a 2-way analysis of 

variance (ANOVA) to determine if the effect of closure method on healing rate was influenced 

by the sampling site location.  The dependent variable was the healing time and the independent 

variables were the body part and the closure method.   

RESULTS 

Study 1: Breast and Patagium Ps Concentration Comparison 

Pentosidine concentrations sampled from each location varied for each individual 

cormorant (Figure 1).  Concentrations of Ps were not significantly different (t 62 = 1.66, P = 0.10) 

in the breast (x̄ = 11.2 pmol/mg collagen, SE = 1.1) and patagium (x̄ = 10.6 pmol/mg collagen, 

SE = 1.1) of cormorants. However, for 65% of the samples (n = 63), the Ps concentration was 

greater in the breast. 

A curvilinear regression line provided the best fit for both the breast (Figure 2, R² = 

0.7806) and patagial skins (Figure 3, R² = 0.8164).  Both of these curves suggest that the 
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cormorants accumulate Ps quickly when they are young, and then begin to accumulate Ps at 

slower rates once they reach the age of approximately 25 months.  The mean estimated age using 

our breast skin age curve produced an age estimate of 73.5 months ± 17.4 months, while the 

mean estimated age using our patagial skin age curve was 62.4 months ± 13.5 months.   

The linear regression equations for our breast (y = 0.0973x + 4.8997, R² = 0.7108; Figure 

2) and our patagial age curves (y = 0.1005x + 4.1671, R² = 0.7575; Figure 3) were similar.  The 

age curves from our breast and our patagial skins indicated that cormorants accumulate Ps at a 

rate of approximately 0.10 (pmol/mg collagen)/month.  The mean estimated age using our breast 

skin age curve was 62.0 months ± 15.1 months, while the mean estimated age from our patagial 

skin age curve was 67.2 months ± 14.7 months.   

For the breast and patagial skins of the 63 known-age cormorants, the ages estimated 

using our curvilinear patagial skin age curve were most accurate (i.e., the closest age estimate 

from all 5 age curves to the actual age) for 33% of the samples (breast and patagial samples 

combined, Appendix D).  For example, cormorant 42 was actually 14 months old when it died; 

the age estimate for cormorant 42’s breast skin from the Fallon age curve was -8 months (22 

month difference), our linear breast skin age curve was 3 months (11 month difference), our 

linear patagial skin age curve was 10 months (4 month difference), our curvilinear breast skin 

age curve was 11 months (3 month difference), and our curvilinear patagial skin age curve was 

14 months (0 month difference).  Our linear breast skin age curve produced the least number of 

closest age estimates to real ages (11% of samples).   

There were significant differences in actual and estimated ages for breast and patagial 

skins of the known-age cormorants when using the Fallon age curve to estimate ages (Table 1).  
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However, actual and estimated ages were similar when using our linear and curvilinear breast 

and patagial skin age curves to age the cormorants.   

Study 2: Skin Size Ps Concentration Comparison 

Pentosidine concentrations varied for each individual cormorant when the 2 different skin 

sizes were compared (Figure 4).  Generally most individuals had concentration values close to 

each other for each skin sample (i.e., cormorant 1), although, for 64% of the samples the Ps 

concentration was higher in 6 mm2 skin size sample than in the 20 mm2 sample.  For 84% of the 

samples, the Ps concentration difference between the 2 skin sizes was less than 5 pmol Ps/mg 

collagen.  For only 2 samples, the difference between skin size Ps concentrations was over 10 

pmol Ps/mg collagen, which likely reflects a methodological error.  Pentosidine concentrations 

were marginally higher in 6 mm2 (x̄ = 12.6 pmol/mg collagen, SE = 1.19) skins compared to 20 

mm2 (x̄ =11.3 pmol/mg collagen, SE = 1.23) skins (t49 = -2.42, P = 0.02).   

Mean estimated ages for 6 mm2 skins using our linear and curvilinear patagial skin age 

curves were x̄ = 83.5 months ± 23.8 months and x̄ = 90.0 months ± 27.5 months respectively.  

Similarly, the mean estimated ages for 20 mm2 skins using the same linear and curvilinear curves 

were x̄ = 70.6 months ± 24.6 months and x̄ = 79.6 months ± 28.3 months respectively.  There 

was a marginal significant difference between the real and estimated ages determined from 6 

mm2 skins using our curvilinear patagial skin age curve, but real and estimated ages were similar 

for the 6 mm2 skins using our linear patagial skin age curve as well as the 20 mm2 skins using 

our linear and curvilinear patagial skin age curves (Table 2).   

Study 3: Live Cormorant Sampling 

The tissue glue took approximately 1 minute to adequately seal the biopsy site.  The 

sutures took approximately 3-4 minutes to close the wounds of the cormorants.   
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Pentosidine concentrations varied for each individual living cormorant when 2 different 

body parts were compared (Figure 5).  Most individuals had concentration values within 3 pmol 

Ps/mg collagen for each body part (e.g., cormorant 2) while 1 had a concentration difference of 

12.5 pmol Ps/mg collagen (i.e., cormorant 1).  For 71% of the birds, the Ps concentration was 

higher in breast skin. No significant difference was found when the Ps concentrations were 

compared between the breast (x̄ = 14.7 pmol/mg collagen, SE = 2.70) and patagium (x̄ = 12.2 

pmol/mg collagen, SE = 1.82) of the living cormorants (t6 = -1.43, P = 0.20).   

Cormorant AJL was 32 months old at the time of capture, and the Fallon age curve was 

most accurate in estimating its age through Ps analysis of the patagial skin (estimate of 30 

months, Table 3).  The Fallon and our linear patagial skin age curves generally produced the 

youngest and oldest age estimates, respectively.  The youngest and oldest cormorants appear to 

be birds 18 and 86, respectively, based on all 5 age curve age estimations. 

No significant difference occurred for the sample site × closure method interaction (F1 = 

2.14, P = 0.17).  This indicates that the effect of the closure method does not depend on the body 

part.  Healing time was significantly shorter for wounds closed with tissue glue (x̄ = 14.5 days, 

SE = 1.12) compared to sutures (x̄ = 17.3 days, SE = 0.66) (F1 = 26.10, P = 0.0003).  There was 

no significant difference in healing time for the breast (x̄ = 15.9 days, SE = 1.36) and patagium 

(x̄ = 15.8 days, SE = 1.85) of the living cormorants (F1 = 0.07, P = 0.79).   

DISCUSSION 

Study 1: Breast and Patagium Ps Concentration Comparison 

 Concentrations of Ps varied between locations.  In order to determine if this difference is 

due to methodological error or location on the body, multiple skin samples could be collected, 

analyzed, and compared in the future.  
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There was no significant difference in Ps concentration between sampling sites.  This 

finding differs from the one discovered by Fallon et al. (2006b), where Ps concentrations were 

higher in the patagium compared to the breast of ruffed grouse, a non-migratory bird.  For this 

study, the higher Ps concentration in the breast skin of 65% of birds may be explained by the 

cormorant’s flight habits.  Cormorants are migratory birds (Hatch 1995, Werner and Dorr 2006).  

Because of migration they may have an increased vasculature and exposure to oxidative stress 

(Madamanchi et al. 2005) around their flight muscles, resulting in higher Ps concentrations in the 

breast skin. An experiment comparing Ps concentrations in the breast skin of migratory and non-

migratory birds of the same species would need to be done to support this theory.   

Both curvilinear regression lines for our breast and our patagial skin age curves had a 

better fit of the data than a linear regression.  All previous aging analyses for cormorants have 

been done with the Fallon age curve, which uses a linear curve.  Research by Fallon et al. 

(2006a), Chaney et al. (2003), and Iqbal et al. (1999) suggested that Ps continues to accumulate 

over the lifetime of the birds and never levels out.  This study suggests, however, that Ps 

accumulates rapidly the first 2 years of life and then slows down in production rate.   

Our linear and curvilinear breast and patagial skin age curves produced similar estimated 

ages (within several months of each other).   Our curvilinear patagial skin age curve proved to be 

more accurate in predicting age than the original Fallon age curve.  The difference between the 

Fallon age curve and our breast and patagium age curves may be due to differences in laboratory 

analyses.  Also, the Fallon age curve was generated with data from 19 cormorants, whereas our 

breast and patagium age curves used over 3 times as many samples.  On further examination of 

the age estimates, our curvilinear age curves were identified to be most accurate in predicting 

ages for younger birds, while our linear age curves were more accurate in estimating the age of 
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older cormorants (Appendix D).  A combination of the linear and curvilinear age curves may 

need to be done to produce more accurate estimated ages.  Until this is done, we suggest using 

our curvilinear age curves to estimate age in cormorants, because our data suggest that 

cormorants accumulate Ps more rapidly when they are young and all age estimates calculated a 

positive age (as opposed to a negative age estimate from our linear breast and patagium age 

curves).  

The age estimates from our curvilinear breast and patagial age curves produced age 

estimates that were calculated to be accurate to within approximately 1 ½ years (17.4 months) of 

the actual age.  An age estimate as accurate as this for long lived species, such as cormorants, 

could provide valuable insight on senescence, reproductive success, and behavioral changes for 

different adult age classes.  If avian members of the Species Survival Program (SSP) could be 

aged to within 1½ years of their actual age, reproductive success in captive breeding programs 

may increase when similarly aged individuals are paired together (Fulai et al. 1995).   

Study 2: Skin Size Ps Concentration Comparison 

The results from this study were counterintuitive.  The concentrations of Ps were 

marginally greater in the smaller skin size sample, concurring with the observation that Ps 

accumulation in the skin is not uniform (Fallon et al. 2006b).  Depending on the network of 

vascularity in a particular region, the collagen may be exposed to differential oxidative stress and 

this accumulates Ps at slightly different rates.  As a result differences in Ps concentration were 

found to occur between the 2 skin sizes, which in turn gave age estimates that were also different 

from actual ages when using our curvilinear patagial skin age curve.  Our linear patagial skin age 

curve calculated no significant differences between actual and estimated ages for the 2 skin sizes 

of cormorants, which suggests that the difference in Ps concentration may not be biologically 
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important.  Additional studies on other long-lived species need to be conducted to determine if 

Ps differences between skin sizes influence age estimates.   The confidence limits suggest that  

using our breast and patagial skin age curves will produce age estimates within approximately 

2½  years (28.3 months) of the actual age.   

Study 3: Live Cormorant Sampling 

Captive birds that had skin excised for Ps measurement did not develop an infection.  

Although the birds were maintained in a restricted environment, it is likely that birds released to 

the wild are unlikely to develop an infection as well.  This indicates that both tissue glue and 

sutures are effective against infection development, however, research with rats (Rattus 

norvegicus) found that wounds closed with sutures had a greater chance of developing abscesses 

or minor inflammation when compared to wounds closed with tissue glue (Vanholder et al. 

1993).  Tissue glue helps prevent infection and is known to promote healing (Spotnitz et al. 

1997).   In a study of testosterone-regulating implants in house sparrows (Passer domesticus), 

none were reported to have developed infection or died from complications at the implantation 

site (Schwagmeyer et al. 2005).  These birds also had their wounds closed with sutures and tissue 

glue (Schwagmeyer et al. 2005).  We recommend that tissue glue be used to close the wounds, 

due to ease of use, and literature indicating that tissue glue results in fewer cases of infection. 

Similar to Study 1, the Ps concentration was found to be numerically greater in the breast 

of living cormorants, but was not significantly different from Ps concentrations in patagial skin.  

The lack of a significant difference between Ps concentrations in the breast and patagium of the 

living cormorants supports the results obtained in Study 1.  Because the data from the living 

cormorants was similar to the findings obtained from deceased known-age cormorants, we can 

make the assumption that living and deceased birds of the same species will produce similar 



84⏐ Cooey et al. 

pentosidine results (i.e., no significant differences in Ps concentrations for body parts).   

However, our results should be interpreteted with caution as we had a small (n = 7) sample size 

for live birds. 

Based on the rates of healing, the water-resistant tissue glue (Hollander and Singer 1999), 

allowed the wounds to heal faster.  Because wounds closed with sutures should remain dry for 

the first 24-48 hours to prevent infection development (Heal et al. 2006, Noe and Keller 1988) 

this technique may limit its usefulness for aquatic birds.  Cormorants released back into their 

holding pens were all seen swimming in their tanks within an hour of suture application.  The 

chance of infection for the sutured birds could possibly be higher than for the cormorants with 

wounds closed with tissue glue, especially if there were bacteria in the water.  The water 

exposure may have also kept the wounds wet which increased the clotting time.  Birds in general 

have a slower clotting time in comparison to higher mammals (5-30 minutes and 1-14 minutes 

respectively) (Bigland and Triantaphyllopoulos 1960).  If the cormorants with sutures took 

longer for their wounds to clot, they would not be able to begin healing at the same rate as the 

cormorants with tissue glue applied, thus increasing total healing time.   

Black ducks (Anas rubripes) (Harms et al. 1997) and Florida sandhill cranes (Grus 

canadensis pratensis) (Klugman and Fuller 1990) were found to concentrate preening at their 

suture location, shortly after transmitter implantation.  Similar observations were found with the 

living cormorants; cormorant 3 was observed preening the biopsy site on the breast within 

minutes of being released back into its holding pen.  This bird had its wounds closed with tissue 

glue and no bleeding occurred during the healing process, despite preening the biopsy site.  

Wounds closed with sutures and subsequently preened may have allowed the wound to open 

slightly.  This may have happened with cormorant 86.  On day 2 post-sampling, the wound 
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seemed to have remained closed and no blood was present (Appendix F, Figure 3), whereas on 

day 6 post-sampling there was blood present and the wound appeared larger (Appendix F, Figure 

7).  Cormorant 86 may have pulled on the sutures while preening and opened up the wound.   

The tissue glue was faster to apply and permitted the wound to heal faster than sutures.  

Sutures take longer to apply (Trott 1997), the wounds have a greater chance of developing 

infection (Vanholder et al. 1993), and the tools needed to apply sutures also pose a threat to the 

individual suturing the bird.  Sharp-tipped sutures cause 51-77% of percutaneous injuries for 

human surgeons (Department of Health and Human Service 2007).  Typically human patients 

remain still while they are being sutured, whereas birds are known to struggle while being 

handled (Maechtle 1998).  This would greatly increase the chance that a biologist might get a 

percutaneous injury.   Birds are a carrier of West Nile virus in the U. S. and within the past few 

years there has been a threat of a HPAI virus strain, H5N1 subtype, of avian influenza outbreak 

in North America (McLean 2007) and either of these diseases could infect biologists if they get a 

percutaneous injury.   

The breast and patagium was found to heal at the same rate.  With this in mind, it can be 

argued that the patagium is the more suitable location to take a skin sample.  As mentioned 

previously, there are fewer blood vessels located there, decreasing the chance of an infection 

reaching the blood stream (Beal et al. 2000, Muza et al. 2000), and there are fewer muscles 

involved in flight that could be damaged from a skin sample biopsy (Proctor and Lynch 1993).   

MANAGEMENT IMPLICATIONS 

 Now that an aging study has been completed we can critique the procedure to make it 

more humane for the birds and easier for the biologist.  We recommend that for future studies the 

Ps skin samples should be taken from the patagium only since there is less of a chance of flight 
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muscle injury and infection.  Tissue glue is quick to apply, effective, and should be used to close 

skin biopsy wounds in the future.  To prevent infection from occurring, an antibiotic may be used 

to treat the wound before the bird is released.  Taking that into consideration, we believe that 

wild birds could easily be sampled in the field and released without concern that they will 

develop complications post-biopsy.   

 This aging method has numerous applications for wildlife management.  It could aid in 

any study where age is a factor.  The age curves were found to produce age estimates to within 

1½ - 2½ years of actual ages.  Aside from long term banding studies, no other aging method has 

produced age estimates to this precision after the bird has reached adulthood.  Within a matter of 

months an entire population could be sampled and age demographics could be calculated.  This 

could be incredibly useful for assessing population status, diagnosing the causes of poor 

population performance, prescribing management tactics, and making prognoses of population 

viability.  Knowing age demographics of bird populations can provide researchers with 

information to help them prevent native populations from dwindling and invasive species 

populations from growing at an exponential rate.  For pest species, such as cormorants, and 

endangered and threatened species, such as California condors (Gymnogyps californianus), 

obtaining age demographics for a population could provide insight into what management 

practice works best for different age classes.  This could not only produce healthier populations, 

but also create better human/wildlife interactions.   
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TABLES 

Table 1.  Statistics for known-aged cormorant breast and patagial skins (n = 63) when estimated ages were calculated with 5 different 
age curves and compared to actual ages.  

                                                         Breast Skin            Patagial Skin 
Curve P Valuea t62 Value x̄ (months) SE P Value t62 Value x̄ (months) SE 
Fallon et al. (2006b)  <0.0001   6.36 37.6 5.9  <0.0001   7.33 40.9 5.6 
Our linear breast skin    0.62  -0.49   3.6 7.3    0.70   0.38   2.6 6.7 
Our linear patagial 
skin    0.22  -1.24   8.7 7.1    0.22  -1.24   2.7 6.5 
Our curvilinear breast 
skin    0.12 

   
  1.59 14.5 9.2    0.27   1.12   9.7 8.7 

Our curvilinear 
patagial skin    0.07   1.86 16.1 8.6    0.17   1.37   8.3 6.0 
     aP values were compared to an alpha value of 0.05. 
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Table 2.  Statistics for known-aged cormorant 6 mm2 and 20 mm2 patagial skins (n = 50) when estimated ages were calculated with 
our patagial skin age curves and compared to actual ages.  

                                                               6 mm2 Skins                          20 mm2 Skins 
Curve P Valuea t49 Value x̄ (months) SE P Value t 49 Value x̄ (months) SE 
Our linear patagial 0.08 -1.74 11.7 6.8 0.87   0.16 1.2 7.5 
Our curvilinear   0.04 -2.07 18.2 8.8 0.43 -0.80 7.8 9.8 
     aP values were compared to an alpha value of 0.05. 
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Table 3.  Estimated ages (months) determined from breast and patagial skins using the Fallon et al. (2006a) breast skin age curve, our 

linear and curvilinear breast skin age curve, and our linear and curvilinear patagial skin age curve for each of the 7 living cormorants 

captured at Noxoubee National Wildlife Refuge, Mississippi, 2008. 

Bird 

 
 
 
Sexually 
Mature 

 
 
 
 
Gender Location 

Pentosidine 
concentration 
(pmol Ps/mg 
collagen) 

Estimated 
age 
(months) 
Fallon age 
curve 

Estimated 
age 
(months) 
our breast 
skin age 
curve 
(linear) 

Estimated 
age 
(months) 
our 
patagial 
skin age 
curve 
(linear) 

Estimated 
age (months) 
our breast 
skin age 
curve 
(curvilinear) 

Estimated 
age (months) 
our patagial 
skin age 
curve 
(curvilinear) 

Actual 
age 
(months) 

AJL Yes Female Breast 24.93 95a 206 207 242 236 32  
AJL   Patagium 12.43 30b   77   82   60   66  
   3 No Male Breast   8.60 10   38   44   29   34 Uc 
   3   Patagium   8.82 11   40   46   30   36  
18 No Male Breast   6.92   1   21   27   19   23 U 
18   Patagium   6.89   1   20   27   19   23  
32 Yes Male Breast 16.43 51 118 122 105 110 U 
32   Patagium 13.85 38   92   96   76   82  
34 No Male Breast 15.03 44 104 108   88   94 U 
34   Patagium 14.10 39   95   99   78   84  
37 No Female Breast   8.46   9   37   43   28   33 U 
37   Patagium   8.49 10   37   43   28   33  
86 Yes Male Breast 22.49 83 181 182 198 196 U 
86   Patagium 21.12 75 167 169 174 174  
     aEstimated ages were determined by placing the Ps concentration into the y value of the regression equations and solving for x. 
 

     bThe largest difference in age estimates for all 5 age curves were from the breast and patagium of bird AJL.   
 
     cU = Unknown.
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FIGURES 

 

Figure 1.  Distribution of pentosidine (Ps) concentrations for deceased cormorants from the 

breeding and wintering grounds in the U.S. in 2008.  Pentosidine concentrations were higher in 

the breast (65% of the samples) more often than the patagium.  The majority (78%) of the 

different body parts had Ps concentrations within 5 pmol Ps/mg collagen of each other.  Only 2 

birds (birds 41 and 52) had a Ps concentration difference over 10 pmol Ps/mg collagen for its 

body parts.   
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Figure 2.  Cormorant age curve generated from breast data (n = 58)  from deceased cormorants 

collected from the breeding and wintering grounds in the U.S. in 2008.  Known-aged cormorants 

ranged from 5 to 229 months old.  The youngest birds have the lowest concentration of 

pentosidine (Ps) and the oldest bird has the highest concentration of Ps.  There is a lack of 

known-age birds from 77 to 131 months old.  A positive linear relation is apparent.  The 

curvilinear regression (R2 = 0.7806 ) has a better fit to the data compared to the linear regression 

(R2 = 0.7108).   
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Figure 3.  Cormorant age curve generated from patagial data (n = 58) from deceased cormorants 

collected from the Mississippi Delta region in Mississippi in 2008.  Known-aged cormorants 

ranged from 5 to 229 months old.  The youngest birds have the lowest concentration of 

pentosidine (Ps) and the oldest bird has the highest concentration of Ps.  There is a lack of 

known-age birds from 77 to 110 months old.  A positive linear relation is apparent.  The 

curvilinear regression (R2 = 0.8164) has a better fit to the data compared to the linear regression 

(R2 = 0.7575).   
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Figure 4.  Pentosidine (Ps) concentration comparisons for 6 mm2 and 20 mm2 patagial skin 

samples from deceased cormorants from the Mississippi Delta region in Mississippi in 2008.  

Cormorants 1-10, 14, 39, and 40 were not processed for 2 different skin sizes.  The majority of 

the birds (66%) had higher Ps concentrations in the 6 mm2 skins.  For 84% of the birds, there 

was less than a difference of 5 pmol Ps/mg collagen between the 2 skin sizes.  Birds 32 and 47 

had the highest differences of Ps concentration (10.779 pmol Ps/mg collagen and 13.057 pmol 

Ps/mg collagen respectively).   
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Figure 5.  Distribution of pentosidine (Ps) concentrations for the breast and patagium of 7 living 

cormorants captured from Mathews Break National Wildlife Refuge, Mississippi, in 2008.  For 

71% of the birds, the Ps concentration was higher in the breast.  The majority of the cormorants 

(86%) had a difference in Ps concentration less than 3 pmol Ps/mg collagen.  Cormorant 1 had 

the largest difference in Ps concentrations (12.5 pmol Ps/mg collagen). 
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APPENDIX A. CHEMICAL SOLUTIONS FOR HYDROXYPROLINE ASSAY 

Table 1.  Chloramine T solution. 
Chemical 25 Samples 50 Samples 100 Samples 
Chloramine T buffer   0.087 g 0.175 g   0.350 g 
ddi H2O   2.5 ml 5.0 ml 10.0 ml 
n-Propanol   2.5 ml 5.0 ml 10.0 ml 
Buffer A 20.0 ml 40.0 ml 80.0 ml 
 

 

 

 

 

 

 

 

 

 

 

 



103 Cooey et al.  
 

Table 2.  Color reagent solution. 
Chemical 25 Samples 50 Samples 100 Samples 
p-dimethylamino-benzaldehyde   3.75 g   7.5 g 15.0 g 
n-Propanol 15.0 ml 30.0 ml 60.0 ml 
60% Perchloric acid   6.5 ml 13.0 ml 26.0 ml 
n-Propanol   3.5 ml   7.0 ml 14.0 ml 
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Table 3.  Stock hydroxyproline buffer. 
Chemical Amount 
Citric acid monohydrate-analytical grade   50 g 
Acetic acid (96%)   12 ml 
Sodium acetate trihydrate-analyical grade 120 g 
Sodium hydroxide   34 g 
ddi H2O to 1000 ml 
Toluene   10 drops 
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Table 4.  Buffer A solution. 
Chemical Amount 
Stock hydroxyproline buffer 500 ml 
ddi H2O 100 ml 
n-Propanol 150 ml 
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Table 5.  Buffer B solution. 
Chemical Amount 
Buffer A 100 ml 
ddi H2O 400 ml 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 Cooey et al.  
 

APPENDIX B.  EXTRA TABLE FROM THE BLACK VULTURE DATA 

Table 1.  Pentosidine concentrations, estimated ages (months) from the double-crested cormorant and the wild bird curve, and 

difference in estimated ages (months) from the 2 age curves for breast and patagial skins of 30 black vultures from Gainesville, FL, 

USA in 2007. 

Bird 
number Location Age class 

Ps concentration 
(pmol Ps/mg 
collagen)  

Estimated age 
(months) from 
cormorant curve 

Estimated age 
(months) from 
wild bird curve 

Difference in 
age estimate 
(months) 

1 Breast Adult   6.33   -2a   -6 4 
1 Patagium Adult   9.74  16  11 5 
2 Breast Sub-adult   3.52 -16 -19 3 
2 Patagium Sub-adult   8.84  11    7 5 
3 Breast Adult   7.69    5    1 4 
3 Patagium Adult 11.33  24  19 6 
4 Breast Adult   5.83   -4   -8 4 
4 Patagium Adult   6.18   -3   -6 4 
6b Breast Adult   8.93  12    7 5 
6 Patagium Adult 12.72  32  26 6 
7 Breast Adult   6.26   -2   -6 4 
7 Patagium Adult   6.09   -3   -7 4 
8 Breast Juvenile 10.52  20  15 5 
8 Patagium Juvenile   9.81  16  11 5 
9 Breast Adult 14.55  41  35 7 
9 Patagium Adult 10.57  20  15 5 
11 Breast Adult 10.38  19  14 5 
11 Patagium Adult 11.18  24  18 5 
12 Breast Adult   7.22    3   -1 4 
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12 Patagium Adult   8.70  11    6 5 
13 Breast Juvenile   9.18  13    8 5 
13 Patagium Juvenile   5.71   -5   -9 4 
14 Breast Adult   5.93   -4   -8 4 
14 Patagium Adult   6.77    1   -3 4 
15 Breast Juvenile   8.26    8    4 4 
15 Patagium Juvenile   5.47   -6 -10 4 
16 Breast Juvenile 10.45  20  15 5 
16 Patagium Juvenile   5.30   -7 -11 3 
17 Breast Sub-Adult 11.51  25  20 6 
17 Patagium Sub-Adult 11.93  27  22 6 
18 Breast Sub-Adult 11.55  26  20 6 
18 Patagium Sub-Adult 12.92  33  27 6 
19 Breast Adult   5.53   -6 -10 4 
19 Patagium Adult 10.48  20  15 5 
20 Breast Adult 12.84  32  26 6 
20 Patagium Adult 13.41  35  29 6 
21 Breast Juvenile   6.38   -2   -5 4 
21 Patagium Juvenile   4.48 -11 -15 3 
22 Breast Adult 14.17  39  33 6 
22 Patagium Adult   8.40    9    5 5 
23 Breast Adult   6.63    0   -4 4 
23 Patagium Adult   8.68  11    6 5 
24 Breast Adult 11.15  23  18 5 
24 Patagium Adult 12.42  30  24 6 
25 Breast Adult 12.40  30  24 6 
25 Patagium Adult 10.22  19  13 5 
26 Breast Adult   6.93    1   -3 4 
26 Patagium Adult   7.11    2   -2 4 
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27 Breast Adult 12.58  31  25 6 
27 Patagium Adult   8.24    8    4 4 
28 Breast Adult   8.60  10    6 5 
28 Patagium Adult 10.11  18  13 5 
29 Breast Adult   7.91    6    2 4 
29 Patagium Adult   9.07  13    8 5 
30 Breast Juvenile   6.20   -2   -6 4 
30 Patagium Juvenile   4.19 -13 -16 3 
     aBirds with negative estimated ages were aged as being <1 – 6 months old. 

     bVultures 5 and 10 were removed from all analyses because one was an outlier and one was missing a Ps value.
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APPENDIX C.  EXTRA TABLE FROM THE MONK PARAKEET DATA 

Table 1.  Pentosidine concentrations (pmol Ps/mg collagen), actual ages (months) and estimated ages (months) for breast and patagial 

skins of 105 monk parakeets from Gainesville, FL, USA in 2007. 

Bird Location Ps Concentration (Ps/mg collagen) Actual age (months) Estimated age (months) 
A003 Breast 22.83 60+a   75 
A003 Patagium 25.07 60+   86 
A008 Breast 20.13 42+   62 
A008 Patagium 24.06 42+   81 
A012 Breast 37.53 54+ 147 
A012 Patagium 35.51 54+ 137 
A018 Breast 24.19 42+   82 
A018 Patagium 13.63 42+   30 
A026 Breast 30.13 60+ 111 
A026 Patagium 35.49 60+ 137 
A040 Breast 31.95 54+ 120 
A040 Patagium 18.15 54+   52 
A042 Breast 32.51 54+ 122 
A042 Patagium 26.02 54+   91 
A048 Breast 24.81 54+   85 
A048 Patagium 32.48 54+ 122 
A050 Breast 43.78 60+ 177 
A050 Patagium 26.75 60+   94 
A053 Breast 23.65 60+   79 
A053 Patagium 32.26 60+ 121 
A054 Breast 59.62 60+ 255 
A054 Patagium 23.59 60+   79 
A055 Breast 36.37 60+ 141 
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A055 Patagium 37.85 60+ 148 
A057 Breast 33.98 42+ 129 
A057 Patagium 20.25 42+   62 
A058 Breast 19.72 36+   60 
A058 Patagium 42.64 36+ 172 
A066 Breast 24.32   82 
A066 Patagium 14.15   33 
A070 Breast 19.12 54+   57 
A070 Patagium 18.54 54+   54 
A072 Breast 19.81 54+   60 
A072 Patagium 18.54 54+   54 
A074 Breast 26.66 24+   94 
A074 Patagium 13.82 24+   31 
A082 Breast 25.12 54+   86 
A082 Patagium 28.55 54+ 103 
A088 Breast 31.71 42+ 118 
A088 Patagium 16.44 42+   44 
A090 Breast 45.93 54+ 188 
A090 Patagium 29.55 54+ 108 
A100 Breast 35.34 24+ 136 
A100 Patagium 16.17 24+   42 
A113 Breast 23.37 36+   78 
A113 Patagium 46.59 36+ 191 
A115 Breast 19.92 42+   61 
A115 Patagium 25.12 42+   86 
A116 Breast 22.17 42+   72 
A116 Patagium 39.44 42+ 156 
A120 Breast 10.11 18   13 
A120 Patagium   7.45 18    0 
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C16 Breast 45.48 186 
C16 Patagium 24.19   82 
C17 Breast 24.42   83 
C17 Patagium 23.46   78 
C18 Breast 22.56   74 
C18 Patagium 16.08   42 
C19 Breast   6.50   -5 
C19 Patagium   1.39 -30 
C20 Breast   5.42 -10 
C20 Patagium   2.35 -25 
C21 Breast   5.19 -11 
C21 Patagium   5.61   -9 
C22 Breast 49.20 204 
C22 Patagium 32.11 120 
C23 Breast 46.57 191 
C23 Patagium 35.45 137 
C24 Breast 10.91   17 
C24 Patagium   5.40 -10 
C25 Breast   3.49 -19 
C25 Patagium   2.83 -23 
C26 Breast   7.53    0 
C26 Patagium   4.55 -14 
C27 Breast 20.02   61 
C27 Patagium   4.37 -15 
C29 Breast 17.26   48 
C29 Patagium 11.76   21 
C30 Breast 20.38   63 
C30 Patagium   8.65    6 
C31 Breast   6.81   1   -3 
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C31 Patagium   2.59   1 -24 
C32 Breast   6.84   1   -3 
C32 Patagium   3.89   1 -18 
C33 Breast 11.21   1   18 
C33 Patagium   5.66   1   -9 
C34 Breast   5.12   1 -12 
C34 Patagium   4.35   1 -15 
C92 Breast 22.57   74 
C92 Patagium 15.94   41 
C93 Breast 10.40   14 
C93 Patagium   6.75   -4 
C94 Breast   4.72 -13 
C94 Patagium   2.12 -26 
C95 Breast 12.03   22 
C95 Patagium   8.98    7 
C96 Breast   9.01     8 
C96 Patagium 13.43   29 
C97 Breast   4.22 -16 
C97 Patagium   2.99 -22 
C98 Breast 13.73   31 
C98 Patagium   6.45   -5 
C99 Breast   5.44 -10 
C99 Patagium   3.38 -20 
D1 Breast 17.14   47 
D1 Patagium   6.95   -3 
D2 Breast   9.84   12 
D2 Patagium   5.50 -10 
D25 Breast   5.04 -12 
D25 Patagium   1.50 -29 
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D26 Breast   3.70 -18 
D26 Patagium   2.03 -27 
D27 Breast 10.61   15 
D27 Patagium   4.73 -13 
D28 Breast 31.21 116 
D28 Patagium 12.26   23 
D3 Breast   3.23 -21 
D3 Patagium   2.08 -26 
D35 Breast   3.55 -19 
D35 Patagium   1.27 -30 
D36 Breast   2.77 -23 
D36 Patagium   2.08 -26 
D37 Breast 39.46 156 
D37 Patagium 17.93   51 
D38 Breast 16.47   44 
D38 Patagium   9.90   12 
D39 Breast   5.50 -10 
D39 Patagium   1.62 -29 
D4 Breast   7.52    0 
D4 Patagium   5.63   -9 
D61 Breast 23.18   77 
D61 Patagium 11.35   19 
D62 Breast 41.60 167 
D62 Patagium 13.76   31 
D63 Breast   4.15 -16 
D63 Patagium   1.68 -28 
D64 Breast   2.57 -24 
D64 Patagium   2.16 -26 
D65 Breast   4.10 -16 
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D65 Patagium   1.59 -29 
D66 Breast   4.62 -14 
D66 Patagium   1.62 -29 
D67 Breast   5.76   -8 
D67 Patagium   1.79 -28 
D68 Breast   3.23 -21 
D68 Patagium   1.51 -29 
D69 Breast   4.76 -13 
D69 Patagium   1.73 -28 
D70 Breast 21.25   67 
D70 Patagium 11.36   19 
D71 Breast 23.78   80 
D71 Patagium 11.27   19 
D72 Breast 24.02   81 
D72 Patagium 10.25   14 
D73 Breast   4.44 -15 
D73 Patagium   3.49 -19 
D74 Breast   8.73    6 
D74 Patagium   2.95 -22 
D75 Breast   3.81 -18 
D75 Patagium   3.12 -21 
D76 Breast   5.42 -10 
D76 Patagium   3.61 -19 
D77 Breast 19.71   60 
D77 Patagium   8.93    7 
D78 Breast   4.74 -13 
D78 Patagium 16.36   43 
D79 Breast   4.72 -13 
D79 Patagium   2.24 -26 
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D80 Breast   4.64 -14 
D80 Patagium   1.83 -28 
D81 Breast   4.59 -14 
D81 Patagium   3.42 -20 
D82 Breast   4.28 -16 
D82 Patagium   1.78 -28 
D83 Breast   5.16 -11 
D83 Patagium   3.70 -18 
D84 Breast 27.22   96 
D84 Patagium 15.44   39 
D85 Breast 30.87 114 
D85 Patagium 17.67   50 
D86 Breast   4.32 -15 
D86 Patagium   2.59 -24 
D87 Breast   4.10 -16 
D87 Patagium   2.06 -26 
D88 Breast 10.89   17 
D88 Patagium   2.25   -26 
H15 Breast   6.15   2   -6b 
H15 Patagium 10.06   2   13 
H16 Breast   4.99   2 -12 
H16 Patagium   8.29   2    4 
H17 Breast   8.72   2    6 
H17 Patagium   4.15   2 -16 
H18 Breast   8.84   2    7 
H18 Patagium   7.62   2     1 
H26 Breast   2.36   4.5 -25 
H26 Patagium   5.76   4.5   -8 
H30 Breast   4.89   4 -13 
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H30 Patagium   4.10   4 -16 
H31 Breast   2.72   4 -23 
H31 Patagium   1.41   4 -30 
H33 Breast   4.35   5 -15 
H33 Patagium   2.53   5 -24 
H34 Breast   2.96   5 -22 
H34 Patagium   1.49   5 -29 
H35 Breast   3.13   5 -21 
H35 Patagium   0.97   5 -32 
H36 Breast   3.25   5 -21 
H36 Patagium   4.64   5 -14 
H38 Breast   4.07   5 -17 
H38 Patagium   0.91   5 -32 
     aBirds that had a known-age of (#)+ were a minimum of that many months old.   

     bBirds with negative estimated ages were aged as being <1 – 6 months.
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APPENDIX  D.  ESTIMATED AGES FOR THE DECEASED CORMORANTS USING BREAST AND PATAGIAL SKINS 

Table 1. Comparison of estimated ages (months) determined from breast and patagial skins using the Fallon et al. (2006a) age curve, our linear 

and curvilinear breast skin age curves, and our linear and curvilnear patagial skin age curves to real ages determined by banding records for 

cormorants collected from the breeding and wintering grounds in the U.S. in 2008. 

Bird number Location Estimated age 
(months) 
Fallon et al. age 
curve 

Estimated age 
(months) our 
breast skin age 
curve (linear) 

Estimated age 
(months) our 
patagial skin 
age curve 
(linear) 

Estimated age 
(months)  
our breast skin 
age curve 
(curvilinear) 

Estimated age 
(months) our 
patagial skin 
age curve 
(curvilinear) 

Actual age 
(months) 

  1 Breast   58a 131 134 122 126   53 
  1 Patagium   51 119 123 106 111   53 
  2 Breast   75 166 168 173 173   65 
  2 Patagium   57 131 134 122 126   65 
  3 Breast   33   84   88   67   73   41 
  3 Patagium   38   93   97   76   82   41 
  4 Breast  -12b    -6     1     7   10     5 
  4 Patagium  -18  -16    -9     5     6     5 
  5 Breast  -16  -12    -5     6     7     5 
  5 Patagium  -21  -23  -15     3     4     5 
  6 Breast  -19  -19  -11     4     5     5 
  6 Patagium  -13    -7     1     7   10     5 
  7 Breast   96 206 207 243 237   41 
  7 Patagium   65 146 148 142 145   41 
  8 Breast   28   72   77   56   62   41 
  8 Patagium   38   93   97   76   82   41 
  9 Breast  -21  -24  -16     3     4     5 
  9 Patagium  -21  -23  -15     3     4     5 
10 Breast  -22  -24  -16     3     4     5 
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10 Patagium  -18  -18  -10     4c     6     5 
11 Breast  -12    -5     3     8   11     5 
11 Patagium  -17  -15    -8     5     7     5 
12 Breast   27   71   76   54   60   17 
12 Patagium   22   62   67   47   53   17 
13 Breast    -8     2     9   10   13     5 
13 Patagium    -8     3   10   11   14     5 
14 Breast  -12    -5     2     8   10     5 
14 Patagium  -21  -22  -14     3     4     5 
15 Breast  -17  -15    -7     5     7     7 
15 Patagium     5   28   34   23   27     7 
16 Breast    -1   17   24   17   21     6 
16 Patagium  -24  -29  -21     2     3     6 
17 Breast     3   24   31   21   25     6 
17 Patagium  -12    -5     2     8   10     6 
18 Breast     1   21   28   19   23     7 
18 Patagium     1   21   27   19   23     7 
19 Breast   15   47   53   35   41     6 
19 Patagium     8   34   40   27   31     6 
20 Breast   86 187 188 208 205 151 
20 Patagium 110 235 235 300 287 151 
21 Breast  -24  -29  -21     2     3     5 
21 Patagium  -24  -29  -21     2     3     5 
22 Breast    -6     6   13   12   15     5 
22 Patagium  -22  -26  -18     2     3     5 
23 Breast  -16  -14    -6     5     7     6 
23 Patagium  -20  -21  -13     3     5     6 
24 Breast  -20  -22  -14     3     4     6 
24 Patagium  -22  -25  -17     2     4     6 
25 Breast    -3   13   20   15   19   13 
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25 Patagium    -8     2     9   11   13   13 
26 Breast 151 314 312 490 449 229 
26 Patagium 145 304 302 463 426 229 
27 Breast   14   47   52   35   40   15 
27 Patagium  -11    -3     5     9   11   15 
28 Breast   53 123 126 111 116   51 
28 Patagium   37   91   95   74   80   51 
29 Breast  -14    -8    -1     7     9     9 
29 Patagium  -20  -22  -14     3     4     9 
30 Breast 100 215 215 240 251   65 
30 Patagium 119 253 252 339 321   65 
31 Breast  -24  -29  -21     2     3     6 
31 Patagium  -26  -33  -25     1     2     6 
32 Breast   80 175 177 188 187 140 
32 Patagium   39   96 100   79   85 140 
33 Breast  -17  -15    -7     5     7     8 
33 Patagium    -8     3   10   11   14     8 
34 Breast 120 254 253 341 322 110 
34 Patagium   81 177 179 191 190 110 
35 Breast  -13    -8    -1     7     9   14 
35 Patagium  -10    -1     6     9   12   14 
36 Breast  -17  -14    -7     5     7   14 
36 Patagium  -12    -6     1     7   10   14 
37 Breast     4   26   33   22   26   26 
37 Patagium    -7     5   12   12   15   26 
38 Breast   24   64   70   49   55   77 
38 Patagium   49 115 119 101 107   77 
39 Breast  -18  -17    -9     4     6     5 
39 Patagium  -18  -17    -9     4     6     5 
40 Breast  -16  -13    -6     5     7     5 
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40 Patagium  -21  -22  -14     3     4     5 
41 Breast   26   70   75   54   59 147 
41 Patagium   68 153 155 153 155 147 
42 Breast    -8     3   10   11   14   14 
42 Patagium  -10    -1     6     9   12   14 
43 Breast   42 100 104   84   90   49 
43 Patagium   40   97 101   81   87   49 
44 Breast   77 171 172 180 180 169 
44 Patagium   89 194 195 221 217 169 
45 Breast   98 210 211 250 243 147 
45 Patagium 118 250 250 333 316 147 
46 Breast   23   64   69   49   55 160 
46 Patagium   14   46   51   34   40 160 
47 Breast   20   57   63   43   49   44 
47 Patagium   13   44   49   33   38   44 
48 Breast   97 209 209 248 241 143 
48 Patagium   87 189 190 211 208 143 
49 Breast   92 198 199 228 223 131 
49 Patagium   61 139 141 132 136 131 
50 Breast  -23  -28  -20     2     3     9 
50 Patagium  -22  -26  -18     2     3     9 
51 Breast   24   65   70   49   55 155 
51 Patagium   40   97 101   80   86 155 
52 Breast   79 173 175 184 184 178 
52 Patagium   81 177 179 192 191 178 
53 Breast   51 118 122 105 110 212 
53 Patagium   50 117 121 104 109 212 
54 Breast   51 118 121 105 110 191 
54 Patagium   44 104 108   89   94 191 
55 Breast   16   50   56   38   43   40 
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55 Patagium     8   34   40   27   31   40 
56 Breast    -9     1     8   10   13   20 
56 Patagium  -10    -2     5     9   11   20 
57 Breast  -21  -22  -14     3     4     9 
57 Patagium  -24  -28  -20     2     3     9 
58 Breast   21   60   65   45   51 179 
58 Patagium   22   62   67   47   53 179 
59 Breast    -1   17   24   17   21   33 
59 Patagium  -14  -10    -2     6     8   33 
60 Breast   32   81   85   64   70   43 
60 Patagium     5   29   35   23   28   43 
61 Breast   82 179 181 195 193 205 
61 Patagium   73 162 164 166 167 205 
62 Breast   18   53   59   40   45 168 
62 Patagium   35   87   92   70   76 168 
63 Breast   74 164 166 170 171 135 
63 Patagium   66 148 151 146 149 135 
     aBold text represent estimated ages closest to the real age. 

     bThe negative ages are representative of birds that are less than 6 months old. 

     cSome birds had estimated ages that were tied as the closest to the actual age.
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APPENDIX E.  ESTIMATED AGES FOR THE DECEASED CORMORANTS USING 6mm2 and 20mm2 SKIN SAMPLES 
 
Table 1. Estimated and actual ages (months) determined from 6 mm2 and 20 mm2 skin samples using our linear and curvilinear patagial skin age 

curves and banding records for cormorants collected from the breeding and wintering grounds in the U.S. in 2008. 

Bird number Skin size 

Estimated age (months) our 
patagial skin age curve 
(linear) 

Estimated age (months) 
our patagial skin age 
curve (curvilinear) Actual age (months) 

11 6mm2    -7a 7b     5 
11 20mm2    -7 7     5 
12 6mm2   84 68   17 
12 20mm2   84 53   17 
13 6mm2    -1 9     5 
13 20mm2    -1 14     5 
15 6mm2   33 26     7 
15 20mm2   33 27     7 
16 6mm2  -12 5     6 
16 20mm2  -12 3     6 
17 6mm2    -5 7     6 
17 20mm2    -5 10     6 
18 6mm2   14 16     7 
18 20mm2   14 23     7 
19 6mm2     7 12     6 
19 20mm2     7 32     6 
20 6mm2 162 164 151 
20 20mm2 162 287 151 
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21 6mm2  -15 4     5 
21 20mm2  -15 3     5 
22 6mm2   11 14     5 
22 20mm2   11 3     5 
23 6mm2   15 16     6 
23 20mm2   15 5     6 
24 6mm2   17 17     6 
24 20mm2   17 4     6 
25 6mm2     3 10   13 
25 20mm2     3 13   13 
26 6mm2 290 400 229 
26 20mm2 290 426 229 
27 6mm2   15 16   15 
27 20mm2   15 11   15 
28 6mm2   96 81   51 
28 20mm2   96 80   51 
29 6mm2  -16 4     9 
29 20mm2  -16 5     9 
30 6mm2 262 341   65 
30 20mm2 262 321   65 
31 6mm2     1 10     6 
31 20mm2     1 2     6 
32 6mm2 207 237 140 
32 20mm2 207 85 140 
33 6mm2     4 11     8 
33 20mm2     4 14     8 
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34 6mm2 162 164 110 
34 20mm2 162 190 110 
35 6mm2   36 28   14 
35 20mm2   36 12   14 
36 6mm2   25 22   14 
36 20mm2   25 10   14 
37 6mm2   43 33   26 
37 20mm2   43 15   26 
38 6mm2   82 66   77 
38 20mm2   82 107   77 
41 6mm2 200 225 147 
41 20mm2 200 155 147 
42 6mm2   15 16   14 
42 20mm2   15 12   14 
43 6mm2   88 72   49 
43 20mm2   88 87   49 
44 6mm2 224 268 169 
44 20mm2 224 217 169 
45 6mm2 198 222 147 
45 20mm2 198 316 147 
46 6mm2   91 75 160 
46 20mm2   91 40 160 
47 6mm2 179 191   44 
47 20mm2 179 38   44 
48 6mm2 130 121 143 
48 20mm2 130 208 143 
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49 6mm2 167 172 131 
49 20mm2 167 136 131 
50 6mm2     9 13     9 
50 20mm2     9 4     9 
51 6mm2 113 100 155 
51 20mm2 113 86 155 
52 6mm2 144 139 178 
52 20mm2 144 191 178 
53 6mm2 131 122 212 
53 20mm2 131 109 212 
54 6mm2 111 97 191 
54 20mm2 111 94 191 
55 6mm2   71 56   40 
55 20mm2   71 31   40 
56 6mm2     5 11   20 
56 20mm2     5 11   20 
57 6mm2  -10 6     9 
57 20mm2  -10 3     9 
58 6mm2 157 158 179 
58 20mm2 157 53 179 
59 6mm2   62 48   33 
59 20mm2   62 8   33 
60 6mm2   50 39   43 
60 20mm2   50 28   43 
61 6mm2 171 178 205 
61 20mm2 171 167 205 
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62 6mm2 159 160 168 
62 20mm2 159 76 168 
63 6mm2 199 223 135 
63 20mm2 199 149 135 
     aThe negative ages are representative of birds that are less than 6 months old. 

     bBold text represent estimated ages closest to the real age.
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APPENDIX F.  PHOTOGRAPHS OF SKIN BIOPSY WOUNDS CLOSED WITH TISSUE 

GLUE AND SUTURES FROM 2 CORMORANTS AS THEY HEALED 

 

Figure 1: Photograph of cormorant 3’s breast wound closed with tissue glue on 7 February 2008 

(day 2 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

The wound is hidden by a mass of glue and feathers, as pointed out with the arrow.  The breast 

shows no sign of residual bleeding.   

 



129 Cooey et al.  
 

 

Figure 2: Photograph of cormorant 3’s patagial wound closed with tissue glue on 7 July 2008 

(day 2 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

The wound is still covered with glue but can be seen easily.  There is no indication that the 

wound opened up and began bleeding again.   
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Figure 3: Photograph of cormorant 86’s breast wound closed with sutures on 7 February 2008 

(day 2 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

The wound remains to be held shut with the sutures.  The wound is difficult to see (dark spot 

pointed out by arrow).  There is no indication that the wound started bleeding again.   
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Figure 4: Photograph of cormorant 86’s patagial wound closed with sutures on 7 February 2008 

(day 2 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

There is a large scab that formed on the wound.  There is some blood on the base of the feathers 

surrounding the wound, indicating that the wound opened back up.   
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Figure 5: Photograph of cormorant 3’s breast wound closed with tissue glue on 11 February 2008 

(day 6 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

The glue is still holding the wound shut and it seems to be healing well.   
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Figure 6: Photograph of cormorant 3’s patagial wound closed with tissue glue on 11 February 

2008 (day 6 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  The wound is still held shut by the tissue glue.  It doesn’t appear that the wound has 

healed much in 4 days.   
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Figure 7: Photograph of cormorant 86’s breast wound closed with sutures on 11 February 2008 

(day 6 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

There is a lot of blood present, indicating that the wound has opened back up.  The wound is 

really noticeable now.   
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Figure 8: Photograph of cormorant 86’s patagial wound closed with sutures on 11 February 2008 

(day 6 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

There is no sign of bleeding, suggesting that the wound has finally closed and began healing.  It 

appears that a feather has been caught up in the suture.   
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Figure 9: Photograph of cormorant 3’s breast wound closed with tissue glue on 14 February 2008 

(day 9 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

The wound is still healing well.  The glue has not worn off.     
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Figure 10: Photograph of cormorant 3’s patagial wound closed with tissue glue on 14 February 

2008 (day 9 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  There has been much improvement in healing over the last 3 days.  A lot of the glue has 

worn away.   
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Figure 11: Photograph of cormorant 86’s breast wound closed with sutures on 14 February 2008 

(day 9 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

There is still some blood present around the wound, but it appears to be slowly healing.   
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Figure 12: Photograph of cormorant 86’s patagial wound closed with sutures on 14 February 

2008 (day 9 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  The sutures are still holding strong and the wound is healing well.  It is noticeable that a 

feather has been caught up in the sutures.   
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Figure 13: Photograph of cormorant 3’s breast wound closed with tissue glue on 19 February 

2008 (day 14 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  There is still some glue on the breast.  The wound is almost completely healed.   
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Figure 14: Photograph of cormorant 3’s patagial wound closed with tissue glue on 19 February 

2008 (day 14 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  There is a small red spot in the area where the biopsy was taken but the skin has 

completely healed.  There is a little bit of glue remaining near the biopsy site (just above the 

arrow).   
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Figure 15: Photograph of cormorant 86’s breast wound closed with sutures on 19 February 2008 

(day 14 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

The wound continues to heal.  The bleeding appears to have stopped, but there are some blood 

stains on the base of some feathers.   
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Figure 16: Photograph of cormorant 86’s patagial wound closed with sutures on 19 February 

2008 (day 14 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  The wound continues to heal.  The feather is still caught up in the sutures.   
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Figure 17: Photograph of cormorant 3’s breast wound closed with tissue glue on 22 February 

2008 (day 17 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  The skin has completely healed, and no scarring has appeared to have taken place.  The 

remaining glue was cut away from the area to assess the wound.   
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Figure 18: Photograph of cormorant 86’s breast wound closed with sutures on 22 February 2008 

(day 17 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, USA.  

The skin has completely healed.  The sutures have come loose and have nearly been pulled out 

(most likely from preening).  There appears to be no scar where the biopsy took place.  There are 

still some blood stains on the base of a few feathers.   
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Figure 19: Photograph of cormorant 86’s patagial wound closed with sutures on 22 February 

2008 (day 17 post sampling) at the USDA Wildlife Services holding facility in Starkville, MS, 

USA.  The skin has completely healed. The sutures are still in place and the feather remains 

caught up in the sutures.   
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