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ABSTRACT 

 
Charge Transfer Dissociation Mass Spectrometry of Biomolecules 

 
Pengfei Li 

 

Recent advances in many biological disciplines are closely related to the 
development and application of new mass spectrometry techniques. The investigation of 
gas-phase ion activation techniques is one of the active research fields. Although 
researchers have developed a variety of ion activation techniques, they all suffer from 
certain intrinsic limitations—either limited in the types of fragment ions, or limited by the 
inefficiency with low charge-state precursor ions. Most of the ion activation techniques 
are not commercially available, and are at their developing stages. 

As an attempt to explore new possibilities of fragmenting a gas-phase ion, charge 
transfer dissociation (CTD) was developed by the Jackson group. CTD is not only 
workable with low charge state precursor ions (1+ and 2+), but also is workable with 
highly charged precursor ions (4+, 5+, and 6+). For peptide analysis, CTD produces 
extensive backbone fragment ions, including a/x, b/y, and c/z ions. Additionally, CTD 
generates characteristic amino acid side-chain losses, which can complement the 
sequence information from backbone fragments. An interesting phenomenon of CTD 
reaction is that the type of predominant fragment ions shifts from a/x to c/z as the 
precursor charge state increases from 1+ to 3+, or more.  

For intact insulin analysis, CTD enables the oxidation through a one-electron 
(dominant) or two-electron (minor) oxidation pathway, which increased the charge state 
of the intact protein by 1 or 2, respectively. Direct CTD produces a few fragment ions 
outside the loop defined by disulfide linkages together with charge-increased/charge-
decreased species. The MS3-level CID fragmentation of the charge-increased species 
shows the capability of breaking disulfide linkages, thus provides enhanced structural 
information. Making use of the ability of being workable with 1+ precursor ions, CTD 
was employed to fragment phospholipids with various degree of unsaturation. CTD 
extensively fragments the C-C single bonds within lipid acyl chain, and provides 
information regarding C=C double bond location. For lipids with various head groups, 
CTD shows the capability of fragmenting the acyl chains to some extent, but the 
efficiencies are not suitable for on-line HPLC experiments at this time. CTD was also 
applied to structural characterization of a methylated linear oligosaccharide, generating 
both extensive between-ring and cross-ring cleavages. Given the similarity in radical 
nature between CTD and ETD, CTD was integrated into a HDX workflow to probe the 
gas-phase conformation of ubiquitin. CTD shows comparable performance to ETD, 
which demonstrated the potential of CTD in pinpointing the secondary structural 
elements of gas-phase proteins/peptides. 

In addition to the exploration to CTD technique, some efforts were devoted to 
examine the fragmentation behavior of radical cations generated from metastable atom-
activated dissociation (MAD) reactions. ESI-generated protonated, sodiated and 
potassiated POPC ions were firstly subjected to MAD reactions, and then the resulting 



	
   	
  

 

[POPC]+� ions were further mass-selected and subjected to MS3-level CID reactions 
respectively. The resulting mass spectra are almost identical—independent of the first 
generation adducting species. Moreover, the MS3 CID experiment produced extensive 
fragmentation along the lipid acyl chain, providing valuable structural information 
associated with C=C double bond positioning.  
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CHAPTER 1: INTRODUCTION 

1.1 Goals of the Project 

The overall goal of this project was to develop a novel tandem mass spectrometry 

(MS/MS) fragmentation technique—charge transfer dissociation (CTD)—that could be 

implemented on a commercial quadrupole ion trap (QIT). We wanted to characterize the 

application of CTD to the structural analysis of biomolecules such as peptides, lipids and 

oligosaccharides, and to reveal the pros and cons of CTD by comparing the results with 

current/state-of-the-art MS/MS fragmentation techniques. The dissociation of 

biomolecules has been an active research field in which a variety of MS/MS techniques 

have been employed, including kinetic-based, electron-based and photon-based methods. 

This comparison provided some information about the fragmentation behavior of CTD—

the types of bonds that can be cleaved in biomolecules. In addition, we wanted to provide 

some mechanistic insight into the possible dissociation channels of CTD. The behavior 

and mechanistic understanding of this technique should facilitate the interpretation of 

CTD spectra in the future, expand the scope of CTD applications, and enrich the 

knowledge base of tandem mass spectrometry.  

Collision-induced dissociation (CID) is the most common method for fragmenting 

biomolecules in tandem mass spectrometers. CID is a slow-heating process, which tends 

to break the weakest bond of a gas-phase biomolecule, such as amide bonds of peptides 

and glycerol backbone bonds of lipids. Given the high initial kinetic energy and high 

potential energy involved in CTD process, we expected CTD to adopt high-energy 

fragmentation pathway that could provide unique fragment ion information to 

complement the results from CID experiments. Because of the radical-directed high-
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energy pathways, CTD experiments were expected to exhibit similar dissociation features 

that are often observed in other high-energy fragmentation techniques, such as high-

energy collision-induced dissociation (HE-CID), electron ionization dissociation (EID) 

and 193nm ultraviolet photodissociation (UVPD). CTD was therefore expected to induce 

multiple cleavages in a more variety of bonds in biomolecules, such as Cα-C bond, C-N 

bond, N-Cα bond in peptides, or C-C bonds within acyl chains of lipids.  

One significant feature of the aforementioned high-energy dissociation techniques 

is that they typically produce characteristic amino acid side-chain losses from the target 

peptide. These side-chain losses are of diagnostic value because they can provide 

secondary confirmation of the presence of some amino acids, which can 

complement/verify the sequence information from the backbone fragments. Side-chain 

cleavages are typically not obtainable via CID because it tends to generate meaningless 

small losses (e.g. water and ammonia). For this reason, another goal of this research was 

to investigate whether or not CTD is capable of producing such amino acid-specific side-

chain losses, and if so, determine the extent of this capability compared to existing high-

energy dissociation techniques. 

As a novel fragmentation technique, it is important to understand the 

mechanism/dissociation channels of CTD. The type of bonds that can be cleaved during 

CTD and the type of side-chain losses that could be generated via CTD were carefully 

compared with the kinetic-based, electron-based and photon-based dissociation 

techniques, as well as high-energy and low-energy dissociation techniques. These 

comparisons were taken into account together with the experimental setup of CTD in 

order to carry out a comprehensive assessment of the mechanism of this technique—what 
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dissociation channels are involved in CTD and which category CTD falls into. On one 

hand, the clarification of these questions would provide superior insight into the 

correlation between mass spectral peaks and biomolecule structures. On the other hand, 

this would help explore the possibility of using CTD to solve the existing bioanalytical 

problems, such as the differentiation of leucine/isoleucine, the localization of labile 

modifications, the determination of C=C double bond location(s) in lipid acyl chains. 

1.2 Project Overview 

The project began by implementing CTD onto a Bruker amaZon three-

dimensional quadrupole ion trap mass spectrometer, which is detailed in the experimental 

section in Chapter 2. The first report of CTD in our group was conducted by Drs. 

Hoffmann and Jackson and was carried on a Thermo dual pressure linear ion trap 

instrument, so moving the helium source to the 3D trap was not a trivial undertaking. The 

fact that CTD capability can be readily transferred between different instrument 

platforms is a demonstration of its robustness and potential for future upgrade.  

The next step was to optimize CTD for the structural analysis of substance P and 

bradykinin at charge states of 1+, 2+ and 3+. This is an extension of our first CTD 

publication, which was centered on the analysis of 1+ substance P. Substance P and 

bradykinin are considered “benchmark” peptides for the performance assessment of a 

variety of MS/MS techniques at their developing stages. The setup facilitated the follow-

up comparison between CTD and current MS/MS techniques. Both backbone and side-

chain fragmentations were observed in this CTD study, the details of which are 

summarized in Chapter 2.  
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The next step was to integrate CTD into a “top-down” proteomic workflow. A 

relatively small-sized protein—bovine insulin—was subjected to CTD fragmentation. 

CTD of intact bovine insulin produced some fragments around the disulfide linkage-

protected regions. Moreover, the CTD-generated single insulin chain cations were further 

isolated and subjected to MS3 CID. This combination produced more structural 

information compared to MS2-level experiments. The relevant results are summarized in 

Chapter 3. 

The fourth step was to utilize CTD for structural analysis of lipids with varying 

acyl chain length (16 to 20 carbons), varying degree of unsaturation (0 to 4 C=C double 

bonds) and varying head groups. The structural investigation of phospholipids is 

summarized in Chapter 4. The analysis of lipids with alternative head groups is included 

in the first part of Chapter 6.  

In addition to the investigation of CTD fragmentation, we also compared and 

contrasted the new CTD results with metastable atom-activated dissociation (MAD). In 

this study we investigated CTD, MAD and CID of protonated, sodiated, and potassiated 

adducts of POPC. We also investigated the ability to collisionally activate an abundant 

un-fragmented product ion of CTD,  [POPC]+•. The oxidized product ions [POPC]+• were 

subjected to collisional activation at the MS3 level. The MS3 CID spectra from different 

adducting lipids showed enormous fragmentation features in common between CID and 

MAD, which are summarized in Chapter 5. 

In addition to showing additional CTD data of lipids, Chapter 6 also shows CTD 

mass spectra of a methylated oligosaccharide.  Moreover, the third par of Chapter 6 

describes the attempt of integrating CTD into an HDX workflow of the interrogation of 
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gas-phase conformation of a ubiquitin ion—a collaborative project with Dr. Stephen 

Valentine’s group in the department of chemistry at WVU. 

 1.3 Quadrupole Ion Trap Mass Spectrometry 

1.3.1 Instrument Construction 

The three-dimensional (3D) quadrupole ion trap (QIT) was co-invented by 

Wolfgang Paul and Hans Georg Dehmelt. Due to the remarkable contribution of 

quadrupole theory, and it’s application to physical and chemical measurements of 

quadrupole devices, Paul and Dehmelt shared half of the 1989 Nobel Prize in Physics [1]. 

The QIT generally performs two functions: (1) it can serve as an ion storage device that 

confines gas-phase ions for a certain amount of time, during which manipulations such as 

mass-selection, fragmentation, photoactivation of chemical reaction can be carried out; (2) 

it can serve as a mass analyzer by scanning ions out of the trap to a detector during a 

mass instability scan. QITs are comprised of three electrodes—two end-cap electrodes 

sandwiching one ring electrode in the middle, as shown in Figure 1.1. The two end-cap 

electrodes look quite similar, but they sometimes differ in the number of small apertures 

that let the ions in or out. For example, the Bruker amazon has one ~3 mm hole in the 

entrance end cap and seven ~1.5 mm ion apertures in the exit end cap. 

Trapping of ions is accomplished by applying a radiofrequency voltage on the 

order of 1 MHz and 200-10,000 V to the ring electrode, while grounding the end-cap 

electrodes. By increasing the rf amplitude or decreasing the rf frequency, ions become 

help with less and less force, and eventually become unstable. The holes in the exit end-

cap enable the ions to pass through the end-cap instead of neutralizing on its surface. 
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Figure 1.1. Exhibition of three electrodes: one ring electrode being sandwiched by two 
end-cap electrodes. Reproduced from reference [1] with permission. 
 

Figure 1.2 shows a cutaway schematic of QIT. The asymptotes originating from 

the geometry of the ion trap form an angle of 53°34ʹ′ with respect to the cylindrical axis 

(z-axis) of the ion trap. For an ideal QIT, r0 and z0 obeys the following relationship: 

𝑟!! = 2𝑧!! (1) 

where, z0 is dependent on r0 according to equation (1). For most commercial QIT 

instruments on the market, r0 is either 1.00 cm or 0.707 cm [1]. This ‘stretching’ ensures 

that ions always exit the trap axially, towards the detector, and vastly improves the 

detection efficiency.   
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Figure 1.2. Cutaway schematic of a 3D ion trap device. Reproduced from reference [1] 
with permission. 
 

1.3.2 Quadrupole Theory 

To facilitate the mathematical deduction, we will start from a linear quadrupole 

mass analyzer, as shown in Figure 1.3. 

 
 

Figure 1.3. Cutaway schematic of a linear quadrupole. Reproduced from reference [2] 
with permission. 
 

The electric potential (ϕ) at any given point (x, y, z) is given by: 
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𝜙 = 𝐴 𝜆𝑥! + 𝜎𝑦! + 𝛾𝑧! + 𝐶  (2) 

where, A = rf + dc potential, and C is a constant. The terms λ, σ and γ are weighting 

constants. The first derivative of the electric potential (ϕ) with respect to x, y, and z 

provides the electric in each dimension, and the second derivative provides the electric 

force in each dimension, which is given by the following second derivatives: 

!!!
!"!

= 2𝜆𝐴   !!!
!"!

= 2𝜎𝐴 !!!
!"!

= 2𝛾𝐴 (3) 

To satisfy Laplace condition (∇2ϕ = 0): 

∇!𝜙 = 2𝐴 𝜆 + 𝜎 + 𝛾 = 0   (4) 
 

Since A cannot be zero: 

𝜆 + 𝜎 + 𝛾 = 0     (5) 
 

For a 2D mass filter and linear ion trap: 

𝜆 = −𝜎 = 1, 𝛾 = 0    (6) 

For a 3D ion trap: 

𝜆 = 𝜎 = 1, 𝛾 = −2    (7) 

According to equation (2), we can obtain: 

𝜙 = 𝐴 𝑥! + 𝑦! − 2𝑧! + 𝐶   (8) 

Due to equation (8), the electric potentials for x pair and y pair can be derived 

respectively: 

𝜙!  !"#$ = 𝐴 𝑟!! + 𝐶    (9) 

𝜙!  !"#$ = 𝐴 −𝑟!! + 𝐶   (10) 

ϕ0 is the electric potential difference between x pair and y pair: 

𝜙! = 𝜙!  !"#$ − 𝜙!  !"#$ = 2𝐴𝑟!!  (11) 

Since ϕ0 = 2[U+Vcos(Ωt)]: 
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𝐴 = !!! !"#!!
!!!

     (12) 

Due to equation (8), we know: 

𝜙!,! = 𝐴 𝑥! − 𝑦! + 𝐶 (13) 

At zero potential, C=0, so: 

𝜙!,! =
!!! !"#!!

!!!
(𝑥! − 𝑦!) (14) 

In the quadrupole, the ion experiences the force, F: 

𝐹 = 𝑚𝑎 = 𝑚 !!!
!"!

 (15) 

𝐹 = 𝐸𝑞 = −𝑒 !"
!"

 (16) 

Substituting equation (15) into equation (16), we get: 

𝑚 !!!
!"!

= −𝑒 !"
!"

 (17) 

Firstly, let’s consider the field in the x-direction: 

From equation (14), we have: 

𝜙! =
!!! !"#!!

!!!
(𝑥!)  (18) 

!!!
!"!

= (−𝑥)(!!"
!!!!

+ !!" !"#!!
!!!!

)  (19) 

Likewise, in the y-direction we should have: 

!!!
!"!

= (𝑦)(!!"
!!!!

+ !!" !"#!!
!!!!

)  (20) 

While confined in a quadrupole field, the movement of ions can be 

mathematically described by the solutions to the Mathieu equation [3]: 

!!!
!!!

+ a! − 2q! cos 2ξ u = 0 (21) 

In the x-direction, equation (19) can be converted into: 
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!!!
!"!

+ 𝑥(!!"
!!!!

+ !!" !"#!!
!!!!

) = 0  (22) 

Provided that  cosΩ𝑡 = cos 2𝜉, compare equation (21) with equation (22), we 

obtain the trapping parameters: 

a! =
!!"#
!!!!!!

 ; q! =
!"#

!!!!!!
  (23) 

For a ‘stretched’ ion trap, the trapping parameters are as follows: 

a! =
!!"#

!(!!!!!!!!)!!
 ; q! =

!"#
!(!!!!!!!!)!!

 (24) 
 

 
 

Figure 1.4. Mathieu stability diagram regulating the stability of an ion in the quadrupole 
field. Reproduced from reference [1] with permission. 
 

Figure 1.4 shows the diagram indicating a stable trajectory versus an unstable 

trajectory in the quadrupole field. In quadruple ion traps, we typically do not use dc 

potentials at all, the stability parameter a=0 and the ions can only move along the qz axis. 
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The stability boundary intersects with the qz axis at qz=0.908. All the ions with a qz value 

between 0 and 0.908 maintain a stable trajectory in the quadrupole field, i.e. are stored in 

the field. Ions with a qz value outside this range possess an unstable trajectory, i.e. are 

ejected from the quadrupole field. An ion with a stability parameter qz=0.908 is the one 

with the lowest m/z value that could be confined in the quadrupole field, thus this special 

working point is called low mass cut-off (LMCO). 

1.3.3 Ion Storage and Ejection 

 
 

Figure 1.5. Illustration of depths of trapping potential well. Reproduced from reference 
[1] with permission. 
 

In a quadrupolar field, the electric field increases linearly as one approaches an 

electrode and the relative stability of the ions can be thought of as a trapping potential 

well inside a trapping device—aka the Dehmelt pseudo-potential well, 𝐷--shown in 

Figure 1.5. The ions maintaining a stable trajectory are stored in the ion trap, but they are 

not equally stable. For ions with different qz values, it takes different amount of energy to 

kick them out. 
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Figure 1.6 shows the relative “residing point” of an ion with a given m/z value on 

the qz axis. The ions with greater m/z value reside closer to qz=0 side, while the ions with 

smaller m/z value reside closer to qz=0.908 side. The ion with qz≈0.67 reside at the 

deepest point of the trapping potential well, thus it is the one with the greatest “stability” 

in the trapping device, i.e. it takes the most amount of energy to remove this ion from the 

trapping device. 

 
 

Figure 1.6. (a) Representation of working points in the stability diagram for a series of 
ions stored in the trap. (b) The corresponding depth of each ion in the trapping well; the 
ladder indicates the relative stability of ions with different m/z values. Reproduced from 
reference [1] with permission. 
 

The successive ejection of the ions confined in the trapping device is called 

analytical scan, as shown in the “scan” segment in Figure 1.7. The quadrupole field is 

ramped up linearly, causing the elevation of qz values of all the trapped ions. As the qz 

values of each ion exceed 0.908, they will be progressively ejected through the exit end-



	
   	
  

 13 

cap to the detector. Ions at different qz values have difference frequencies of oscillation in 

the trap, typically between 50-Ω/2, where Ω is the drive (rf) frequency on the ring 

electrode. Holding an ion at a fixed qz value provides the ion with a unique oscillatory 

frequency. One can then apply a matching supplementary frequency to the end-cap 

electrodes to resonantly excite the ion of interest. Resonantly exciting ions at low 

amplitudes (e.g. ~1-2 V)—i.e. “tickling” them—causes the ions to accelerate, collide 

with the helium bath gas, transfer kinetic to internal energy, and increase their vibrational 

energy.  

With enough “tickling”, precursor ions can be selectively fragmented in this 

manner. With larger amplitudes of resonance excitation (e.g. >3 V), ions can be 

resonantly ejected from the trap. This capability can easily be used to isolate a desired 

precursor ion from a wide mixture of ions, subject the precursor to resonance excitation, 

and then scan the products out the trap for mass analysis. This process is termed 

collisional activation, which is one of the corner stones of tandem mass spectrometry [4]. 

 
 

Figure 1.7. The scan functions of mass-selective instability mode for an ion trap mass 
spectrometer. Reproduced from reference [2] with permission. 
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1.4 Mass Spectrometric Techniques for Peptides 

1.4.1 Introduction to Tandem Mass Spectrometry 

Mass spectrometry (MS) has become an indispensible tool for the study of 

biomolecules. Mass spectrometric analysis of biomolecules is started with electron 

ionization mass spectrometry (EI-MS) [3]. In an EI source, the analyte molecule is 

bombarded with an electron at ~70 electron volts (eV). This bombardment results in both 

ionization and fragmentation—the formation of molecular ion and the formation 

fragment ions [5]. However, the molecular ions are oftentimes absent in the resulting EI 

spectrum, making it difficult to obtain the molecular weight information. The advent of 

matrix-assisted laser desorption ionization (MALDI) [6] and electrospray ionization (ESI) 

[7] in 1990s offers a solution to circumvent this problem. On one hand, these soft 

ionization techniques preserve intact molecular ions to a much greater extent, so that the 

molecular weight information is obtainable. On the other hand, they do not produce 

fragment ions, thus no useful structural information. To enhance the obtainable structural 

information, tandem mass spectrometry (MSn) experiments are often conducted. In an 

MS2 experiment, the analyte precursor ions are first generated from MALDI or ESI 

source. Then, the target ion is mass-selected and subjected to an ion activation technique 

(i.e. MS/MS fragmentation technique). A certain amount of potential energy will be 

imparted into the precursor ion, causing it to break apart into small fragments. Then, all 

the ions are mass analyzed. The MS2 experiment seems to be more complicated than a 

single stage MS experiment, but it can provide both molecular weight and fragment ion 

information, the combination of which can greatly facilitate the structural identification 

of the target molecule. 
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Figure 1.8. Nomenclature of peptide fragment ions: (a) a/x, b/y, and c/z ions; (b) d, v, and 
w ions. 
 

Figure 1.8 illustrates the widely accepted nomenclature for peptide fragment ion 

fragmentation in tandem mass spectrometry [8]. Figure 1.8a shows the fragment ions 

resulting from backbone cleavages: Cα-C bond cleavage generates a/x ions; C-N bond 

cleavage generates b/y ions; N-Cα bond cleavage generates c/z ions. Figure 1.8b 

illustrates the fragment ions resulting from the simultaneous cleavage of both backbone 

and side-chain: d ion originates from the side-chain loss from the a ion; v ion from the y 

ion; w ion from the z ion.  

1.4.2 Collision-Based Dissociation 

Collision-induced dissociation (CID) is the most widely used MS/MS 

fragmentation technique [7]. CID activates a selected ion through collisions with a buffer 

bath gas (e.g. He, Ar, N2, etc). The collision energy can range from several eV in triple 

quadrupole instruments or trapping instruments, to kilo-eV (keV) in sector instruments or 

tandem time of flight (TOF) instruments [9]. The former is called low energy collision-

induced dissociation (LE-CID), while the latter is called high-energy collision-induced 

dissociation (HE-CID).  
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LE-CID is commonly classified as a “slow-heating” process [11], in which tens or 

hundreds of collisions happen at pressures of ~10-3 Torr, with relative long intervals 

(hundreds of microseconds) between successive collisions. In this context, dissociation 

and isomerization chemistry can happen in between collisions. A significant attribute of 

LE-CID is that after the kinetic energy is converted into internal energy, the internal 

energy has time to redistribute over all vibrational degree of freedom of the target 

molecule. Because of this redistribution, the fragment ions have enough time to 

isomerize/rearrange before fragmenting, which sometimes make spectral interpretation 

more challenging.  

Due to the wide involvement in bioanlytical studies, the mechanism of LE-CID 

has been widely studied on a near-exhaustive array of precursor molecules. One popular 

mechanism for peptides is shown in Scheme 1.1. LE-CID is extensively described in the 

“mobile proton model” [12] wherein a protonated peptide generated from the ESI source 

starts with a finite number of ionizing protons that initially reside on the most basic sites, 

i.e. N-terminus, side-chain of histindine, lysine or arginine. Upon collisional activation, 

 
 
Scheme 1.1. Proposed mechanism for the formation of b/y ions [10].  
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these protons can relocate to less basic sites, as shown in Figure 1.9. The dissociation will 

eventually occur in the vicinity of the charge-side, which is often referred to as charge-

site directed dissociation. 

 
 
Figure 1.9. Proton relocating to less basic sites during slow heating, LE-CID [12]. 
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Surface-induced dissociation (SID) is another type of collision-based dissociation. 

In SID, precursor ions are accelerated to smash into a surface to induce fragmentation 

[13]. The surfaces are typically fluorinated self-assembled monolayers on gold to provide 

a relatively immovable surface as the collision target. For this reason, the amount of 

energy deposited by SID is far greater than by any form of CID. Another difference is 

that SID is a fast, single-step activation process, whereas LE-CID involves multiple steps 

of collisional activation. As an energetic activation technique, SID is widely employed to 

study the behavior of gas-phase protein complexes, which, because of their massive 

number of degrees of freedom, are impervious to fragmentation via CID.  

1.4.3 Electron-Based Dissociations 

Electron capture dissociation (ECD) was developed by McLafferty and coworkers 

in 1998 [14]. ECD is mostly carried out on a Fourier transform ion cyclotron resonance 

mass spectrometers (FT-ICR MS). Electrons are generated from a heated filament 

installed outside of the ICR cell. The filament is carefully regulated to ensure the 

resulting electrons are of low electron energy (< 0.2 eV), which in turn guarantees the 

occurrence of an effective ECD reaction [2]. ECD is very effective in fragmenting 

multiply charged peptides and even proteins. With the excellent mass resolving power 

and mass accuracy of FT-ICR platform, ECD is widely adopted in top-down proteomic 

workflows. 

However, FT-ICRs are incredibly expensive (>$ 1M) and are high-maintenance, 

which significantly limits the availability of ECD to most research laboratories. To 

combat this issue, electron transfer dissociation (ETD) was introduced by Hunt and 

coworkers [15] in 2004. In ETD, a singly charged reagent radical anion transfers an 
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electron to a multiply charged precursor cation, causing an ECD-like fragmentation. The 

fragmentation pattern and the adopted pathway highly resemble ECD, but ETD can be 

carried out on a relatively low-cost instrument platform, such as a 3D quadrupole ion trap 

(QIT) or linear ion trap (LIT). The ability to achieve ECD-like performance on a cheaper 

mass spectrometer accounts for the more widespread utilization of ETD. ECD/ETD 

reactions primarily cleaves N-Cα bond of peptide backbone, while keeping labile post-

translational modifications (PTMs) intact to a greater extent than traditional CID 

technique [16]. 

Several mechanisms have been proposed to account for the fundamentals of 

ETD/ECD reactions. Scheme 1.2 illustrates the critical steps in the Cornell mechanism 

proposed by McLafferty et al. The Utah-Washington mechanism is another popular 

suggestion about the pathways of ETD/ECD reactions, which has been well presented in 

 
 
Scheme 1.2. Proposed fragmentation pathway for ETD/ECD [15].  
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reference [16]. Despite the broad utilization and commercial implementation of ETD and 

ECD, a significant drawback is that the performance of ETD and ECD shows strong 

dependence on precursor charge state [17]. ETD and ECD decrease the charge state of 

the precursor ion by 1, so they cannot work with 1+ precursor ions. For 2+ precursor ions, 

their performance is greatly compromised compared to that of 3+ precursor ions. 

Additional details and example experimental results and discussions are provided in 

Chapter 2. 

Electronic excitation dissociation (EED) was developed by Zubarev and 

coworkers in 2003 [18]. MALDI-generated singly protonated peptide was irradiated by 

electrons that were accelerated to 17-21 eV, which produced ionized species ([M+H]2+•). 

The ionized species then captured a low-energy electron to form an electronically excited 

species ([M+H]+*). The electronically excited species can further dissociate into a and c′ 

ions. Substance P and bombesin were both tested using EED [18]. In addition to the said 

backbone cleavages, some side-chain cleavages were also observed. 

In an extension of the idea of using energetic electrons to fragment peptides, 

Zubarev’s group also developed electron ionization dissociation (EID) [19]. In EID 

electrons with kinetic energies on the order of 20~80 eV are used to irradiate peptide 

cations. The irradiation results in extensive fragmentation along the peptide backbone, 

with singly ionized species, doubly ionized species as well as a variety of amino acid 

side-chain losses. As with other electron-based methods (ECD/EED), EID is almost 

exclusively limited to FT-ICR mass spectrometers, which puts the instrument out of the 

range of most academic and analytical labs. 
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1.4.4 Photon-Based Dissociations 

Infrared multiphoton dissociation (IRMPD) is a photon-based ion activation 

technique that is also traditionally conducted on FT-ICR platforms. Similar to LE-CID, 

IRMPD falls within the “slow-heating technique” family. Tens or hundreds of infrared 

photons (~0.1 eV) have to be absorbed to raise the internal energy of a precursor ion 

above it’s threshold for dissociation [20]. Due to the stepwise energy deposition, energy 

redistribution is as common in IRMPD as it is in LE-CID. Analogous to LE-CID, IRMPD 

primarily breaks amide bonds in peptides, generating b and y fragment ions. 

Different from IRMPD, ultraviolet photodissociation (UVPD) relies on the 

absorption of UV photons [21]. Absorption of a single UV photon can offer much greater 

energies (e.g. 193 nm=6.4 eV), so high-energy fragmentation pathways can be activated 

in UVPD experiments. As a result, extensive a/x ions from peptide backbone can be seen 

in UVPD results [22]. 

Femtosecond laser-induced ionization/dissociation (fs-LID) employs ultrashort 

(<35 fsec) laser pulses for energy deposition and fragmentation [23]. Different from 

IRMPD and UVPD, fs-LID does not require a suitable chromophore for photon 

absorption. The energetic activation nature of fs-LID results in the production of charge-

increased odd-electron species ([M+H]2+•) as well as extensive backbone fragment ions, 

from which a greater sequence coverage can be obtained than LE-CID. 

The idea of irradiating precursor ions with tunable photon energy is the domain of 

action spectroscopy, which is often carried out by coupling a linear ion trap mass 

spectrometer to the synchrotron radiation beamline facilities [24]. The photon energy can 

from range 5.2 eV (238 nm) to 20 eV (62 nm), which allows a continuous covering of all 
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major wavelengths of interest. For 1+ substance P, the photon-dissociation mainly 

produces a ions. As the photon energy increases from 7.8 eV to 18 eV, increased odd-

electron species ([M+H]2+•) and amino acid side-chain losses begin to show up. The 

fragmentation patterns provide insight into the thresholds for the appearance of certain 

fragments, and provide very useful sequence information. 

1.4.5 Ion/Neutral Reactions 

The idea of fragmenting peptide cations/anions with a beam of metastable atoms 

was firstly introduced by Zubarev and coworkers in 2005 [25]. This fragmentation 

technique was firstly carried out in a modified QIT platform, and then implemented on a 

modified linear ion trap-TOF mass spectrometer by Berkout and coworkers in 2006 [26-

28]. A few years later, the Jackson research group implemented this technique on a 3D 

QIT instrument platform, and they devoted significant efforts to the mechanistic 

investigation and further application of this ion activation technique [29-33]. 

This fragmentation technique is termed metastable-induced dissociation of ions 

(MIDI) or metastable atom-activated dissociation (MAD). The metastable atoms are 

produced from a fast atom bombardment (FAB) gun and introduced into a trapping 

device to interact with the selected precursor ions. For 1+ and 2+ substance P or 

bradykinin, extensive backbone fragmentation with all the six types of fragment ions (a, 

b, c, x, y and z ions) was observed. Moreover, for precursor ions with charge state ≥ 2+, 

MAD produces both charge-increased and charge-decreased species. The former is 

believed to originate from Penning ionization (PI) process, while the latter originates 

from charge-reduction (CR) process (similar to ETD/ECD) [30]. These two pathways 

correspond to the possible competing dissociation channels occurring during MAD. A 
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third possible channel could be a kinetic-based dissociation pathway, which can account 

for the generation of significant amount of b/y fragment ions. 

To date, MAD has been carried out in a variety of studies associated with 

biomolecular structures, including multiply charged peptide cations and anions, 1+ 

peptide and lipid cations, phosphorylated peptide cations, disulfide bonds and cleaving 

the amide ring structure of proline [29-33]. MAD shows intriguing features: extensive 

cleavages on peptides and phospholipids, capability of working with 1+ and negative 

precursor ions, remarkable preservation of the PTMs and the capability of differentiating 

leucine/isoleucine residues in the modified peptides. More results concerning MAD 

fragmentation of phospholipids are presented in Chapter 4. 

1.5 Mass Spectrometric Techniques for Lipids 

Lipids are important biomolecules that perform critical functions in the 

biochemistry of living organisms [34]. Phospholipids are an important sub-class of lipids ; 

they not only builds up cellular membranes, but also play crucial roles in signal 

transduction, intercellular adhesion, and energy storage in biological systems [118, 119]. 

The structure of glycerophospholipids is shown in Figure 1.10. The fatty acyl/fatty 

ether/fatty vinyl ether substitute connected to sn-1 position is called R1 chain; the fatty 

acyl substitute connected to sn-2 position is called R2 chain; the head group resides on the 

sn-3 position of the glycerol backbone. 
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Figure 1.10. Structural illustration of a glycerophospholipid [34]. 
 

1.5.1 Collision-Based Dissociations of Lipids 

As the most widely used ion activation technique, CID has been extensively 

performed on phospholipids. In a typical phospholipid CID spectrum, the most abundant 

fragment peak is at m/z 184.0, which corresponds to the phosphocholine head group. 

Several less abundant fragment peaks are associated with the loss of entire acyl chains. 

Figure 1.11 shows the typical cleavages induced by LE-CID.  

 
 

Figure 1.11. Fragment ion map for ion trap CID of POPC (PC, 16:0/18:1(9Z)). 
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acyl chain are more labile than those at sn-1 acyl chain, which accounts for the general 

preference for sn-2 elimination in LE-CID experiments. They have also conducted 

multistage mass spectrometry (MSn) upon lithiated lipid adduct ions as an attempt to 

maximize the structural information obtainable via CID [36]. When they performed 

MS3(or 4)-level experiments, they could obtain the fragment ion pairs that reveal the 

location of C=C double bond.   

1.5.2 Electron-Based Dissociations of Lipids 

ETD and ECD decrease the charge state of the precursor ion. It is quite 

challenging to ETD/ECD experiments on lipids because electrospray source primarily 

forms singly charged lipid adduct ions. McLuckey and coworker lowered the ESI 

interface voltage gradient and produced doubly charged (sodiated) lipid ions [37]. These 

lipid ions were exposed to azobenzene radical anions to effect ETD reaction. In the 

resulting spectrum, they observed product ions associated with both sodium-transfer and 

electron-transfer processes. This ETD reaction only produced fragments corresponding to 

entire acyl chain losses, thus provide limited structural information, but it is nonetheless 

an interesting attempt for assessing ETD performance on lipids.  

Electron impact excitation of ions from organics (EIEIO) employs energetic 

electrons (~10 eV) for the irradiation of precursor ions. Campbell and Baba reported the 

structural characterization of phospholipids using EIEIO [38]. EIEIO not only produced a 

near-complete fragmentation pattern on phospholipids, but also produced diagnostic 

fragment ions that reveal unique structural features. The fragment associated with the 

cleavage of C1-C2 glycerol bond can be used to differentiate sn-1/sn-2 positional isomers. 

The differential cleavage efficiency on the C=C double bond and neighboring C-C single 
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bond leads to a “V” shape dent on the EIEIO spectrum, which indicates the C=C double 

bond location. 

Electron-induced dissociation (EID) is another electron-based technique 

introduced for lipid characterization [39]. Similar to EIEIO fragmentation, EID cleaves 

most C-C and C-O bonds on the precursor lipid, including glycerol backbone and two 

acyl chains. Such an extensive fragmentation provides enriched structural information, on 

top of which C=C double bond location and acyl chain positioning information could be 

provided as well. 

1.5.3 Photon-Based Dissociations of Lipids 

Unlike ETD/ECD reactions, IRMPD and UVPD do not have a precursor charge-

state barrier. Phosphatidylinositol phosphate species were fragmented using IRMPD [40]. 

The major fragments observed are related to the cleavages around the phosphate group. 

Brodbelt and coworkers carried out the dissociation of a serious of lipid A species using 

193 nm UVPD [41]. Compared with CID results, 193 nm UVPD exhibited a better 

efficiency in cleaving C-C bond between the amine and carbonyl groups. 

1.5.4 Ion/Ion (Neutral) Reactions 

McLuckey and coworkers reported a gas-phase ion/ion reaction for structural 

characterization of phospholipids, which is also named charge inversion reaction [42]. On 

a modified triple-quadrupole/linear ion trap mass spectrometer, lipid cations and 1,4-

phenylenedipropionic acid anions are alternately introduced into the ion trap. Followed 

by a mutual confinement of 1000 ms, the two types of ions reacted via proton/methyl 

group transfer. The result is that the lipid cations were converted into anion species. A 
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further collisional activation of this anion species produced considerably more structural 

information than a direct CID experiment. 

Blanksby and coworkers recently implemented ozone oxidation into MS/MS 

experiment for structural determination of phospholipids [43]. Ozone was introduced into 

the ESI chamber to interact with the charged lipid species exiting the spray needle, and 

then the whole mixture was sampled into a triple quadrupole mass spectrometer. In the 

resulting OzESI (ozone-induced ESI) spectrum, the pairs of product ions separated by 48 

Da localize the C=C double bond. OzESI shows great performance for the analysis a pure 

lipid molecule, but the spectrum gets too complicated with a multiple lipid-containing 

mixture. 

To overcome this issue, Blanksby and coworkers further developed this method 

into OzID (ozone-induced dissociation), which was conducted on a linear ion trap 

instrument (Thermo LTQ) [44].  In OzID, the ESI-generated lipid ions are firstly mass-

selected in the ion trap, and then exposed to an ozone vapor to effect a gas-phase ion-

molecule reaction, which can generate the aforesaid diagnostic fragment pairs. OzID can 

be further combined with trap CID reaction, either in parallel or in tandem. Such a 

combination can further increase the extent of cleavages, thus enhance the obtainable 

structural information. 

1.6 Charge Transfer Dissociation Mass Spectrometry 

1.6.1 Background 

As discussed in the previous part, in the field of gas-phase ion activation (MS/MS 

fragmentation), the way to impart energy into a selected ion is either via collision with 

gas molecule (CID)/surface (SID), or interaction with electron (ECD, EED, 
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EID)/electron-donating reagent (ETD), or interaction with photon (IRMPD, UVPD, fs-

LID, action spectroscopy). For negative ion mode experiments, ion activation can be 

realized via electron detachment dissociation (EDD) [45] and negative electron transfer 

dissociation (NETD) [46]. For the ion activation techniques relying on the interaction 

with electron/electron-donating reagent/electron-accepting reagent (NETD), they share 

the common feature—all effected via the interaction of two oppositely charged species—

if one positive then the other one must be negative. Then there is an interesting argument 

worth thinking: is it feasible to effect ion activation via the interaction between two 

homo-polarity species.  

Hakansson and coworkers first reported a gas-phase ion activation technique 

employing electrons with energy ~3.5-6.5 eV to interact with peptide anions to induce 

fragmentation, which is termed negative-ion electron capture dissociation (niECD) [47]. 

Due to the capture of an electron by a negative ion, charge-increased odd-electron species 

([M-H]2-•) were observed, along with a series of c/z fragment ions. This proves the 

feasibility of effecting the ion activation via negative-negative interaction. Then what 

about positive-positive interaction? 

Zubarev and coworkers were apparently the first to obtain reasonable quality data 

in positive ion mode; they reported the pioneering work of fragmenting peptide cations 

via the activation with a beam of high-energy cations [48]. A microwave plasma gun was 

employed for the production of the cation beam, which is introduced into the HCD cell of 

an Orbitrap mass spectrometer (Thermo Scientific Q Exactive). The trapped peptide 

cations were first exposed to a beam of air plasma cations, and then dissociated into a/x, 

b/y and c/z fragment ions. Compared to the results from a conventional CID experiment, 
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the results of this work are more structurally informative. However, this experimental 

setup is not flawless. There are non-negligible flaws that need to be solved. As the 

authors mentioned in their publication, the composition of the air plasma is very 

complicated and it includes positive, negative and neutral species—electrons, metastables, 

radicals and clusters. Due to the complex nature of plasma, it is hard to define the 

potential energy brought about by such an interaction. What’s more, it is almost 

impossible to sort out the origin of the resulting fragments. Does this fragment originate 

from an intermediate or directly from the precursor? Does this fragment come from an 

electron-transfer process, proton-transfer process or positive-positive interaction? It is 

also possible that some fragments may originate from oxygen atom or OH radical 

attachment/detachment that will lead to spectral misinterpretation. Zubarev’s group does 

not appear to be pursuing this research at this time, so answers to these questions will 

likely go unanswered. 

1.6.2 Previous Research in the Jackson Group 

At the same time that Zubarev’s group published on the possibility of cation-

cation reactions, the Jackson research group was also looking into similar novel gas-

phase ion activation techniques. Dr. William Hoffmann (former postdoc) and Dr. Jackson 

were attempting to use helium ions to abstract an electron from precursor cations, to 

induce gas-phase ion chemistry and provide high activation energies. Because the 

proposed mechanism involves the transfer of charge from a precursor ion to a reagent 

cation, they termed the technique charge transfer dissection (CTD) [49]. Instead of the 

complex microwave air plasma used by Zubarev’s group, Drs. Hoffmann and Jackson 

used a beam of pure helium cations, and instead of the Orbitrap platform, they used a 
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relatively low-cost linear ion trap (LIT) mass spectrometer. With the installation of a 

saddle field fast ion/fast atom source (ion gun), helium cations with kinetic energy of 

more than 6 keV were produced and introduced into the ion trap to fragment the selected 

ions. The keV-level initial kinetic energy is more than sufficient to overcome the 

Coulombic repulsion between the two cationic species. The helium cation has an electron 

affinity (EA) of 24.6 eV, which far exceeds the ionization energy (IE ≈ 10.6 eV) of 1+ 

substance P [50]. Aside from the kinetic energy required to overcome the activation 

barrier, the excess energy (>13 eV) should be more enough to break any bonds along 

peptide backbone (Bond Dissociation Energy: Cα-C≈3.6 eV, C-N & N-Cα≈3.2 eV). The 

reaction between the 1+ precursor and helium cation is summarized as follows [49]: 

[M+ H]! + He! → [M+ H]!!∙∗ + He! → Fragments (21) 

In their first demonstration of the technique, helium cation irradiation of 1+ 

substance P produced charge-increased odd-electron species ([M+H]2+•) along with an 

extensive backbone fragmentation pattern [49]. As shown in Figure 1.12, the backbone 

fragments nearly covered the whole peptide sequence. A series of a ion predominates the 

product ion spectrum. This pattern showed great consistency with the results from 193 

nm UVPD, action spectroscopy and fs-LID experiments. This is a strong indicator that 

CTD process adopts high-energy fragmentation channels analogous to the said techniques 

[49]. 
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Figure 1.12 CTD spectrum of [substance P+H]+. Reproduced from reference [49] with 
permission. 
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CHAPTER 2: CHARGE TRANSFER DISSOCIATION (CTD) MASS 
SPECTROMETRYOF PEPTIDE CATIONS: CHARGE STATE DEPENDENCE AND 

SIDE-CHAIN LOSSES 

 
Reproduced in part with permission from Pengfei Li, Glen P. Jackson, J. Am. Mass 
Spectrom. 2017, DOI : 10.1007/s13361-016-1574-y 
 

2.1 Introduction 

In recent years, mass spectrometry (MS) has become an indispensable tool for the 

study of biological molecules such as lipids [51], oligosaccharides [52], peptides [53, 54], 

proteins [55], and DNA [56]. With the development of soft ionization methods such as 

fast atom bombardment (FAB), matrix-assisted laser desorption/ionization (MALDI) and 

electrospray ionization (ESI), single-stage MS plays an important role in the molecular 

weight determination of an intact molecule of interest [9]. However, interrogation of 

detailed structural information of a gas-phase molecule usually requires multiple stages 

of MS or tandem mass spectrometry (MS/MS) [57].  

A variety of MS/MS fragmentation methods have been developed and 

implemented on modern mass spectrometric instruments, the most common of which is 

collision-induced dissociation (CID) [58]. Collisional activation tends to break the 

weakest bonds of gas-phase peptides and proteins—such as amide bonds—and produces 

b/y ions for the deduction of peptide sequence information. However, CID can also result 

in the loss of weakly bound post-translational modifications (PTMs), which has been 

shown to limit its usefulness [30, 59].  

Electron capture and electron transfer dissociation (ECD/ETD or ExD) are two 

alternative MS/MS techniques that can overcome the aforementioned limitations [16]. 

Unlike CID, ExD cleaves peptide backbone N–Cα bonds to produce c/z ions with a more 
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extensive peptide/protein sequence coverage than CID [47]. In addition, ExD retains 

PTMs to a much greater extent than CID, which facilitates the elucidation of PTMs site 

information [16]. However, the fact that ExD relies on charge reduction makes it 

incompatible with 1+ precursor ions, and its performance is compromised for 2+ 

precursor ions [17]. The inefficiency with peptide dications can be problematic for 

implementing ExD with enzymatic digestion workflows, because many tryptically 

digested peptides are doubly charged [60]. 

To combat these issues, significant interest has been placed in the development of 

new ion activation methods, such as electronic excitation dissociation (EED) [18], 

electron ionization dissociation (EID) [61], ultraviolet photodissociation (UVPD) [62, 63], 

femtosecond laser-induced ionization/dissociation (fs-LID) [23], action spectroscopy 

(synchrotron radiation) [24], and metastable atom-activated dissociation (MAD) [26, 64]. 

These fragmentation methods all possess a common feature—the capability of 

dissociating low charge state (1+ & 2+) precursor ions, thus providing complementary 

structural information to ETD/ECD. Some methods (e.g. EID) even show almost equal 

fragmentation efficiency and sequence coverage between the dissociation of 1+, 2+and 

multiply-charged precursor ions [61], which makes them promising for a proteomic 

workflow. 

Charge transfer dissociation (CTD) is another alternative ion activation method 

for MS/MS experiments [65]. Contrary to the common ion/ion dissociation methods, 

CTD utilizes the interaction between homo-polarity ions such as peptide cations and 

helium cations, which, in the case of 1+ substance P, results in a dominant series of a 

ions. It has been widely reported that the fragmentation pattern of MS/MS techniques 



	
   	
  

 34 

shows certain dependence on the charge state of precursor ions and the type of mass 

analyzer [17, 63, 66]. To investigate this dependence, CTD fragmentation of substance P 

and bradykinin at different charge states (1+, 2+ and 3+) was carried out in a 3D ion trap 

mass spectrometer. Various types of cleavages were observed—including backbone and 

side-chain cleavages—which provide mechanistic insight into the fragmentation channels 

involved in CTD process. Although our preliminary studies were conducted on a 2D ion 

trap [65], the current work was accomplished on a 3D ion trap, which shows some subtle 

differences in the resulting fragmentation patterns. The somewhat improved capabilities 

of the current 3D trap configuration probably stem from the closer proximity between the 

helium ion gun and the trapping volume.  

2.2 Experimental 

2.2.1 Instrumentation 

Helium CTD (He-CTD) fragmentations of substance P and bradykinin were 

carried out using a modified Bruker amaZon ETD mass spectrometer (Bruker Daltronics, 

Bremen, Germany). A saddle field ion/fast atom source (VSW/Atomtech, Maccles field, 

UK) installed with the ion gun anode lens was interfaced onto the top cover of 3D ion 

trap via a home-built metal cover [65]. The source installation, connection between 

electronic components and the working principle are similar to our previous instrumental 

setup on LTQ Velos Pro and experimental setup of MAD-MS [58, 65].  
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Figure 2.1. Schematic of installation of saddle field ion source onto Bruker amaZon ETD 
mass spectrometer. 
 

2.2.2 Materials 

Substance P and bradykinin were purchased from Sigma-Aldrich (St Louis, MO) 

and used without further purification. The peptides were reconstituted into a water/ 

methanol/acetic acid mixture (49.5:49.5:1 v/v/v), aiming for a final concentration of 60 

µM and were electrosprayed using a standard Bruker Apollo source [58]. 

2.2.3 Method 

Experiments were performed in the MS/MS mode on the 3D ion trap instrument, 

and the saddle field ion source was switched on during the section of scan function that is 

typically reserved for CID. The peptide solutions were infused using an electronic 

syringe pump (#1725, Hamilton Company Reno, Nevada, NV) at a flow rate of 160 µL/h. 

Precursor ions were isolated using an isolation window of 2 Da, after which they were 

irradiated with the helium cation beam. The low mass cut-off (LMCO) value was 

typically set to be m/z 150 for the removal of ionized pump oil fragments. A +6 kV 
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square wave with a pulse width of 25 ms was supplied to the saddle field ion source 

anode for the generation of reagent helium cations. The helium gas flow was controlled 

via a variable leak valve and the pressure read-out was obtained from the ion trap gauge 

in the main vacuum region. Using this indirect measurement, the helium gas supply was 

adjusted to provide a main vacuum pressure of ~1.20×10-5 mbar for all the experiments, 

which is only slightly above the base pressure around 8 x 10-6 mbar. All the CTD mass 

spectra presented in this work were time-averaged for 0.5-2 minutes to improve the 

signal-to-noise ratio (S/N).  

For section 2.3.5, the ESI source was switched to negative mode, so the detector 

only picks up signals from possible product anions. The ESI voltages were set to be +800 

V and – 500 V. All the following mass spectra were collected under “enhanced resolution 

mode”. The LMCO value was set to be m/z 70. The saddle field ion source conditions and 

data acquisition times are the same as previous section. 

2.3 Results and discussion 

2.3.1 Substance P: 1+, 2+, and 3+ Charge States 

He-CTD was performed on singly, doubly and triply protonated substance P respectively, 

as shown in Figure 2.2. Upon the interaction with helium cations, the 1+, 2+, and 3+ 

precursors of substance P gave oxidized product ions (charge-increased species) at m/z 

673.9, m/z 450.4 and m/z 337.8, corresponding to product ions [M+H]2+�, [M+2H]3+�, and 

[M+3H]4+� respectively. Gas-phase oxidation, or increasing the charge state of gas-phase 

ions has been observed in a variety of fragmentation methods, including He-MAD [48, 

58], EID and EED [18, 61], and photon-based dissociation methods [23, 24]. 
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Charge-increased species mainly originate from the electron detachment of 

precursor ions, i.e. charge transfer. Helium cations have an electron affinity of ~24.6 eV, 

and given that they are generated from a 6 kV saddle field ion source, there is more than 

enough energy to overcome the Coulombic repulsion barrier to enable charge transfer to 

occur [24, 48, 50, 57, 65]. In addition to charge-increased species, charge-reduced 

product ions were observed in He-CTD spectra of 2+ and 3+ substance P cations. These 

hydrogen-rich charge-reduced species correspond to m/z 1349.8 ([M+2H]+�) and m/z 

675.0 ([M+3H]2+�) respectively, which are commonly observed in electron-based 

methods (e.g., ECD/ETD). It seems unreasonable for He+ to serve as an electron transfer 

reagent for such charge reduction reactions, so we performed several experiments to 

investigate the source of the electron-donating reagents. 
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Figure 2.2. He-CTD spectrum of (a) singly, (b) doubly and (c) triply protonated substance 
P. The m/z ranges of interested have been multiplied by factors of 17, 50 and 6, 
respectively, for clarity. Precursor ions are indicated by blue arrows. The inset in panel 
(a) shows the color-coding scheme of peptide sequencing used throughout this work. 
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Despite the fact that the CTD source is designed to operate as an efficient cation 

source, a wide range of negative ions are observed in the background CTD spectrum 

when the trap is operated in negative ion mode (vide infra). Although we are unsure of 

the exact mechanism(s) of negative ion formation, the CTD source is apparently able to 

form negative ions from background impurities in the trap, and these anions can be 

trapped and used as reagent anions for ETD. One of the more abundant background ions 

has a mass-to-charge ratio of 184 (see Figure 2.8, for example), does not fragment using 

CID and reacts with residual oxygen to form adducts at M+16 (m/z 200) and M+32 (m/z 

216). CID of the M+16 and M+32 adducts re-forms the original reagent anion at m/z 184, 

indicating that the reagent is probably polycyclic/aromatic and almost certainly a radical 

(vide infra) [67-69].  

Figure 2.2c shows that these reagent anions are reasonably effective at forming c 

and z ions from the 3+ precursor of substance P. Fortunately, this charge reduction 

mechanism can be minimized by raising the LMCO during CTD activation to prevent the 

co-accumulation of reagent anion, with the caveat that increasing the LMCO also limits 

the observable range of product ions for CTD. The same CTD experiment with an 

elevated LMCO is shown in Figure 2.11. The intensity of charge-reduced species, 

[M+2H]+�, decreased dramatically with increasing LMCO, with no significant change in 

the intensity of other product ions. 

A series of a ions was observed in the He-CTD spectrum of singly protonated 

substance P, which is consistent with our previous experimental results on a 2D ion trap 

[65]. The current work shows additional low-mass fragment ions (e.g. a2, b2 and c2) that 

were not observed on the 2D ion trap, but weaker signal-to-noise (S/N) for fragments in 
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the range from m/z 700 to m/z 1300. Reilly et al. [63] have reported that the 

fragmentation of ions observed in UV photodissociation can be affected by the type of 

mass analyzer, and we suspect that the observed differences between the 2D trap results 

and 3D trap results are cause by experimental differences. These differences could be 

minimized by raising the LMCO value and increasing the CTD time on the 3D ion trap to 

make the conditions more similar to the experiments on the 2D ion trap. 

Similar to electron-based fragmentation methods [17, 66], CTD of substance P 

also shows certain charge state-dependence on fragmentation. Product ion spectra of He-

CTD of 2+ and 3+ substance P produced more than twice the number of fragment ions 

than the 1+ precursor, mainly because of the addition of c and z ions. Additional doubly- 

and triply-charged fragment ions were also observed from the higher charge state 

precursor ions. For example, the He-CTD spectrum of 2+ substance P (Figure 2.2b) is 

dominated by both a and b ions, with a few c, y and z ions, but the He-CTD spectrum of 

3+ substance P is dominated by c ions. The near-complete series of a ions for the 1+ 

precursor is commonly observed in high-energy dissociation methods, and suggests the 

involvement of a high-energy fragmentation channel [65]. The existence of b/y and c/z 

fragment ion series mainly originates from vibrational excitation (e.g. CID) and charge-

reduction processes, respectively, which clearly become more dominant than oxidation as 

the charge state of the precursor increases. 

To probe the relationship between CTD and ETD, ETD fragmentation of 2+ and 

3+ substance P was conducted on the same instrument. Results are in Figure 2.3. ETD of 

2+ substance P produced only six c ions, covering half of the peptide sequence. In 
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contrast, ETD of 3+ substance P produced almost complete sequence coverage of c ions, 

along with some a, b and z ions.  

 

 

 
Figure 2.3. ETD spectra of (a) doubly and (b) triply protonated substance P. 
 

2.3.2 Side-Chain Losses from Substance P 

In addition to the aforementioned backbone fragmentation, side-chain cleavages 

were observed for substance P, as shown in Figures 2.4 and 2.5. Amino acid side-chain 

losses have been well-noted and referred to as (M� - X) regions in variety of tandem MS 
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approaches, including UVPD [62, 63], action spectroscopy [24], fs-LID [23], EID [61], 

EED [18], ECD [14, 70-76], ETD [77], CID [78] and MAD [58].  

Figure 2.4 provides zoomed-in regions of the same spectra from Figure 2.2 to 

show more clearly the side-chain losses from the ionized product ions. The oxidized 

cations are often referred to as hydrogen-deficient species in other studies [61]. For the 

He-CTD spectrum of 1+ substance P, diagnostic side-chain losses from [M+H]2+� were 

observed, including even-electron rearrangements and radical losses. These observations 

are consistent with commonly-observed neutral losses from [M+H]2+�, including: 1 Da 

(�H) [61], 15 Da (�CH3from Met) [24], 47 Da (�SCH3 from Met) [24], 58 Da 

(�CH2CONH2 from Glu) [24, 78], 61 Da (�CH2SCH3 from Met) [57], 71 Da 

(CH2=CHCONH2from Gln) [78], and 74 Da (CH2=CHSCH3 from Met) [18, 57]. 

An interesting ion at m/z 689.9 was also observed and is tentatively assigned as an 

oxygen adduct of the oxidized product ion, i.e. [M+H+O2]2+�. This ion is accompanied by 

an ion 44 Da less at m/z 667.8, which probably corresponds to [M+H+O2-CO2]2+� 

probably forms from the oxidation of the [M+H-CO2]2+� product [57, 61]. Radical ions 

have been observed to react with residual oxygen during their confinement in 

electrodynamic ion traps, which was also noted for the ETD-generated z� ions [67, 68] 

and MAD-generated [POPC]+� radical ions [69].  
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Figure 2.4. Zoomed-in He-CTD spectra of (a) 1+, (b) 2+, and (c) 3+ precursor ions of 
substance P, showing m/z ranges corresponding to the (M� - X) ranges of oxidized 
(charge-increased) product ions. 
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When the charge state of substance P precursor increases to 2+ and 3+, fewer 

side-chain losses from ionized species were observed. Observed losses include: 17 Da 

(NH3) [24], 74 Da (CH2=CHSCH3 from Met) [18] and 92 Da (CH3(C6H5) from Phe) [24] 

were lost from [M+2H]3+�. 17 Da (NH3) [24], 74 Da (CH2=CHSCH3 from Met) [18] and 

99 Da (CH2=CH(CH2)NHC(CH2)=NH from Arg) [78] were lost from [M+3H]4+�.  

Figure 2.4a shows CTD of the 1+ precursor ion. In this spectrum, the product ion 

at m/z 673.4 ([M]2+) likely results from an H� loss from the oxidized product ion, 

[M+H]2+�. Whereas the loss of 1 Da neutrals (�H) from charge increased (oxidized) 

products likely involves the loss of H radicals, the same loss of 1 Da from charge-reduced 

species, such as in Figure 2.5a, most likely originates from a competitive proton transfer 

processes during the reactions. 
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Figure 2.5. Head-to-tail zoomed-in spectra of reduced (charge-decreased) product ions of: 
(a) He-CTD versus ETD of 2+ substance P, (b) He-CTD versus ETD of 3+ substance P, 
and (c) 1+ product ions from ETD of 3+ substance P. Each spectrum is normalized to the 
tallest peak within the (M� - X) range of charge-reduced product ions. 
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Zoomed-in m/z regions of charge-reduced species from He-CTD spectra of 2+ 

and 3+ substance P precursors are shown in top panels of Figure 4a and 4b. ETD spectra 

of 2+ and 3+ substance P are magnified to show the (M� - X) regions, which are listed as 

bottom panels in Figure 2.5a, 2.5b and an individual panel in Figure 2.5c.  

The CTD spectrum in top panel of Figure 2.5a shows several neutral losses from 

[M+2H]+�, including 18 Da (H2O or �H+NH3) [61, 79-81], 46 Da (�H+HCONH2 from Gln) 

[79, 80], 60 Da (�H+�NHC(NH2)=NH2
+ from Arg) [14, 79-81], 75 Da (�H+CH2=CHSCH3 

from Met) [72, 81] and 101 Da (�(CH2)3NHC(NH2)=NH2
+from Arg) [72]. Similar neutral 

losses from the ETD product [M+2H]+� are also observed [77]. Two exceptions are the 75 

Da side-chain loss, which is unique to CTD, and the 29 Da loss, which is only observed 

in the ETD product ion spectrum. In the absence of high mass accuracy, the 29 Da loss is 

tentatively assigned as �H+CO [79].  

Compared to the low abundance and small neutral losses from the [M+2H]+� 

product ion, neutral losses from the [M+3H]2+� product ion are more abundant for both 

CTD and ETD. Moreover, the types of neutral losses from the radical dication [M+3H]2+� 

are also different from that of [M+2H]+�. The observed neutral losses in the CTD 

spectrum and their tentative assignments are: 15 Da (�CH3) [81], 18 Da (H2O or 

�H+NH3)[61, 79, 81], 43 Da (�C(NH2)=NH from Arg or �C(CH3)2 from Leu) [61, 78], 45 

Da (�H+HCONH2 from Gln) [79, 80], 59 Da (�NHC(NH2)=NH2
+ from Arg or 

CH3CONH2 from Gln) [14, 79-81], 71 Da (CH2=CHCONH2 from Gln) [78, 81], 74 Da 

(CH2=CHSCH3 from Met) [78, 81] and 91 Da (�CH2(C6H5)) [24]. Interestingly, the CTD 

spectrum has a unique small loss of 91 Da, and the ETD spectrum has a unique loss of 34 

Da (2(NH3) from Arg) [77].  
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Unlike CTD, ETD of 3+ substance P precursor also produced the singly charged 

ETnoD product ([M+3H]+��), whose (M� - X) region shows the same small losses as those 

observed for [M+2H]+� and [M+3H]2+�. Similar neutral losses have also been observed in 

ECD experiments [79].   

In general, the CTD and ETD spectra show many similarities in the (M� - X) 

regions of both [M+2H]+� and [M+3H]2+�. The similar neutral losses between the two 

activation methods are indicative of similar fragmentation mechanism, which adds more 

confidence of our previous hypothesis that electron-based fragmentation mainly accounts 

for the fragments located in the high mass end of CTD spectrum. The similarity in CTD 

and ETD spectra of multiply charged precursor ions suggests that the ExD-like fragments 

in CTD experiments originate from the interaction with ETD-like reagent anions, such as 

negative ions derived from vacuum pump oil or other common contaminants.  

By operating the trap in negative ion mode, the CTD source and trap conditions 

can be shown to produce multiple anions in the region m/z 180-220 (see Section 2.3.5). 

One particularly abundant anion exists at m/z 184. Isolation of this abundant background 

anion showed two interesting properties: 1) the anion could reversibly add O and O2, 

which indicates the anion is a radical; and 2) the anion is resistant to collisional activation, 

which indicates it may contain fused ring systems. Section 2.3.5 will provide more details 

about the interrogation of the background anion in CTD. Background anions generated 

by the CTD gun are present at most m/z values below m/z 200, and they can be easily 

excluded from the trap to prevent electron transfer reactions by raising the LMCO 

value >220 Da. Charge reduction (e.g. ETD-like activation) is still observed, even when 

the co-storage of anions and cations is minimized, which indicates that a second 
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mechanism must also exist to explain the charge reduction of multiply-protonated peptide 

cations. It is possible that the He cation beam contains a fraction of helium metastable 

atoms, which have relatively low ionization potentials and could serve as an electron 

transfer reagents.  

2.3.3 Bradykinin:1+, 2+ and 3+ Charge States 

He-CTD was also conducted on 1+, 2+, and 3+ bradykinin cations, and the results 

are shown in Figure 2.6. Upon irradiation with helium cations, charge-increased product 

ions were observed for all the three charge states. Charge-reduced product ions could 

only be observed for 2+ and 3+ precursors of bradykinin, as expected. These observations 

are in good agreement with the observations for CTD of substance P [65], and the 

previous study by Zubarev and coworkers [48]. Unlike CTD of 1+ substance P, CTD of 

1+ bradykinin produces an abundant series of x ions in addition to the previously 

observed a ions. CTD of 1+ bradykinin also produces more b, y, c and z ions. The 

coexistence of a/x ion pairs provides greater confidence in sequencing and more 

confidence that the a ions are formed via direct C-CO cleavage and not from CO losses 

from intermediate b ions.  

Consistent with He-CTD results of 2+ and 3+ substance P, fewer a/x ions and 

more b/y and c/z ions are observed for 2+ and 3+ bradykinin. And similar to CTD of 3+ 

substance P, the product ion spectrum for CTD of 3+ of bradykinin is dominated by c/z 

ions. The abundant c/z ions again point to the domination of an ETD-like mechanism for 

the higher charge state precursors in CTD. 
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Figure 2.6. He-CTD spectrum of (a) singly, (b) doubly and (c) triply protonated 
bradykinin. Different m/z ranges of interested have been multiplied by a factor of 11, 200 
and 8, respectively, for clarity. 
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2.3.4 Side-Chain Losses from Bradykinin 

As shown in Figure 2.7a, He-CTD of 1+ bradykinin precursor produced five 

significant fragments corresponding to small neutral losses from [M+H]2+�. Similar to the 

(M� - X) regions of substance P, an oxygen adduct ion at m/z 546.3 as well as an 

accompanying ion at m/z 524.3 (formed through CO2 loss) are observed.  

As might be expected, significant differences in small neutral losses of bradykinin 

and substance P are observed. For example, bradykinin in Figure 2.7a shows four 

different small losses: 30 Da (HCHO) [61], 44 Da (�C(NH2)=NH2
+ from Arg) [24], 62 Da 

(�C(NH2)=NH2
++H2O) [24] and 91 Da (�CH2(C6H5) from Phe) [24], two of which are of 

significantly higher intensity compared to that in CTD experiment of 1+ substance P. The 

appearance of fragments corresponding to side-chain losses from Phenylalanine and 

Arginine in the (M� - X) region of [M+H]2+� is consistent with the fact that bradykinin 

possesses twice the amount of phenylalanine and arginine residues, and that these 

residues are at or adjacent to the C-terminus in bradykinin.  

He-CTD of 2+ bradykinin cations produced many small losses within the (M� - X) 

region of [M+2H]+� (Figure 2.7b), and a few small losses within the (M� - X) region of 

[M+3H]2+� (Figure 2.7c). Most of the small losses for bradykinin are similar to those 

observed in the same (M� - X) region of charge-reduced species from CTD of 2+ and 3+ 

of substance P. The similar neutral losses include: 16 Da (�H+�CH3), 17 Da (NH3), 18 Da 

(H2O or �H+NH3), 28 Da (CO), 43 Da (�C(NH2)=NH from Arg), 59 Da 

(�NHC(NH2)=NH2
+ from Arg), 101 Da (�(CH2)3NHC(NH2)=NH2

+from Arg). Different 

small losses are observed as well. For example, bradykinin shows losses corresponding to: 

19 Da (�H+H2O) [81], 31 Da (�H+HCHO) [61], 44 Da (�C(NH2)=NH2
+ from Arg) [81],  
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Figure 2.7. Zoomed-in He-CTD spectra of (a) singly protonated bradykinin showing (M�-
X) regions of [M+H]2+� (oxidized product ion), (b) doubly and (c) triply protonated 
bradykinin showing (M� - X) regions of [M+2H]+� and [M+3H]2+� (charge-reduced 
product ions) respectively. 
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60 Da (�H+�NHC(NH2)=NH2
+ from Arg) [77], 88 Da (�H+CH3CH2NHC(NH2)=NH from  

Arg) [81] and 99 Da (CH2=CH(CH2)NHC(NH2)=NH from Arg) [79]. Compared to 

substance P (RPKPQQFFGLM), bradykinin (RPPGFSPFR) has a higher composition of 

arginine residues, which could possibly account for the more frequent observation of 

arginine side-chain losses in bradykinin. A similar observation was observed in the ECD 

study of bradykinin methyl ester (RPPGFSPFROCH3) [79]. Upon ECD, bradykinin with 

a C-terminal methyl ester showed a predominance of arginine-specific losses in the (M� - 

X) region of [M+2H]+�. 

2.3.5 Origin of Charge-Reduced Species 

With the ESI source off, saddle field ion source was turned on, so the “empty” 

eletrodynamic quadrupole ion trap was irradiated with helium cations. Aside from the 

generation of helium cations, a high flux of electrons was also produced in the saddle 

field ion source. Hypothetically, the “un-removed” electron beam sputters on the pump 

oil deposited on the inside surface of the quadrupole ion trap, which would then undergo 

a desorption process, generating aromatic anions. As electron carriers, these aromatic 

anions would transfer electrons to the isolated precursor cations to generate ETD-like 

product ions. 

Figure 2.8c shows the oxygen (O2) attachment to the ion at m/z 184. Upon 

collisional activation, a reverse process—oxygen (O2) detachment was observed in 

Figure 2.8e. This “reversible” process proves the occurrence of oxygen attachment, 

which indicates the radical nature of the ion at m/z 184 (i.e. [M]-�). Accordingly, 
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Figure 2.8. (a) CTD spectrum of pump oil residue at MS2. (b) Isolation spectrum of ion at 
m/z 184 at MS3. (c) Product ion spectrum after 300 ms trap confinement at MS3. (d) 
Isolation spectrum of ion at m/z 216 at MS4. (e) CID spectrum of ion at m/z 216 at MS4 
with an activation voltage of ~0.5 V. 
 
the ion at m/z 216 was assigned to be [M+O2]-�. To explore the identity/chemical 

composition of M (m/z 184), this ion was further isolated and subjected to collisional 

activation (vide infra). 

In Figure 2.9b, the ion at m/z 184 ([M]-�) was subjected to a CID activation 

voltage of ~1.0 V, but it still didn’t fragment. This fact further suggests the highly stable 

structure of M, which could be a polycyclic/aromatic hydrocarbon. 

With limited structural details could be drawn from the above experimental data, 

the most likely candidate at present is a naphthalene derivative at m/z 184 ([M]-�). 

Vacuum pump oil contains a large proportion of saturated hydrocarbons, but because 

hydrodreated paraffinic oils are derived from medium/heavy petroleum distillates, they 

also contain polycyclic and aromatic constituents. The ion at m/z 184 seems to have eight 

double bond equivalents, so could be a negatively charged substituted naphthalene 

radical, [C14H16]-�, as shown in Figure 2.10. This structure would be consistent with the 

apparent resistance to collisional activation. Based on the expected elemental 
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composition of the precursor anion at m/z 184, it must have fewer double-bond 

equivalents than the popular reagent anion fluoranthene. 

 

 

 
 
Figure 2.9. (a) Isolation spectrum of ion at m/z 184 at MS3. (b) CID spectrum of ion at 
m/z 184 at MS3 with an activation voltage of ~1.0 V. 
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Figure 2.10. The proposed possible structures of the ion at m/z 184. 
 

Another, less likely possibility, is that the background anions are fluorinated 

compounds. Fluorinated compounds could originate from the decomposition of 

fluoroelastomer from Viton, which is used in most LC systems in the pumps. Scheme S1 

shows hypothetical chemical structure of the ion at m/z 184; (2), derived from reference 

[82], or; (3), derived from reference [83]. However, we expect that thee fluorinated 

compounds would provide some observable product ions under collisional activation, but 

none were observed.  

The formation of adducts with O2 has been well noted for polyaromatics [84, 85] 

and halogenated compounds [86]. And a resonance electron capture mechanism was 

proposed for the generation of such adducts [85]. 

He-CTD of [bradykinin+2H]2+ was carried out at various low mass cut-off 

(LMCO) values: m/z 150, m/z 200, m/z 250, m/z 300, , m/z 350 and m/z 400. The rest of 

the experimental parameters were the same as described in the “Experimental” part. 

Relative intensity of each product ion (i.e. b4, (a8-H2O)2+, c5, z6, x6, y8, [M+H]+, 

[M+2H]+�) is calculated as follows: 

F2C CF

O

N

N N

N
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F2
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F
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CF3

OH OH
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Relative  Intensity =
Intensity  of  one  product  ion

Precursor  ion leftover + All  product  ions 

The plot of relative intensity versus LMCO is shown in Figure 2.11. 

 

 

 
 

Figure 2.11. Relative intensity of product ions from He-CTD of [bradykinin+2H]2+ is 
plotted versus LMCO. (a) Plot for b4, (a8-H2O)2+, c5, z6, x6, y8, [M+H]+, [M+2H]+� 
product ions. (b) “Zoomed-in” plot for b4, (a8-H2O)2+, c5, z6, x6, y8 product ions. 
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2.4 Conclusions 

Charge transfer dissociation of singly, doubly and triply protonated substance P 

and bradykinin was conducted in a 3D ion trap mass spectrometer. The charge state of the 

precursor ions significantly impacted the number and the types of ions produced—a/x 

versus c/z—correlates with the relative contributions of oxidative versus reductive 

mechanisms, respectively. Consistent with our previous experimental results, CTD of 

singly charged precursors produces an abundance of a/x fragments, and the distribution 

of charge between complementary a/x ion pairs is dependent on the relative basicity of 

the peptide termini. CTD of doubly and triply charged precursors produced additional b/y 

ions and c/z ions. The type of fragment ions provides helpful hints on possible 

fragmentation channels that CTD adopts: high-energy, and ETD-like (i.e. radical) 

pathways. Accompanying side-chain losses were also observed in CTD spectra, which 

are in good agreement with the previous results from photo-activated, collisionally 

activated, and electron-based dissociation experiments. The side chain losses can provide 

valuable diagnostic information about amino acid composition to support the backbone-

sequencing ions. The enriched structural information obtainable via CTD, along with the 

relative low-cost of 3D ion instrument platform, makes this approach a promising tool for 

the interrogation of gas-phase biomolecules. 
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CHAPTER 3: TOP-DOWN CHARGE TRANSFER DISSOCIATION (CTD) OF GAS-
PHASE INSULIN: EVIDENCE OF A ONE STEP, TWO-ELECTRON OXIDATION 

MECHANISM 

Reproduced in part with permission from Pengfei Li, Iris, Kreft, Glen P. Jackson, J. Am. 
Mass Spectrom.in submission. 
 

3.1 Introduction 

B-cells in Langerhans of the pancreas produces insulin, which not only maintains 

the blood glucose levels from getting too high or too low, but also regulates the amino 

acid uptake and inhibits the breakdown of glycogen, protein and fat [87]. Analogous to 

many polypeptide species, insulin contains multiple disulfide linkages for stabilizing its 

three-dimensional structure, and these disulfide bonds ensure the correct biological 

function. The multiple disulfide linkages form a cyclic structure in insulin, the presence 

of which inhibits the structural analysis of insulin via tandem mass spectrometry 

approaches. To retrieve the primary sequence information within the cyclic structure in 

these molecules, certain techniques have been employed to disrupt disulfide linkages.  

Mass spectrometry (MS) shows high selectivity and sensitivity, and the capability 

of performing a variety of experiments, which makes it an appealing technique for 

analyzing biological molecules [16]. Due to the advent of soft ionization methods such as 

electrospray ionization (ESI) [88] or matrix-assisted laser desorption ionization (MALDI) 

[89], biomolecules can be formed intact for the purposes of molecular weight 

determination. The development of tandem mass spectrometry (MS/MS or MS2) has 

greatly advanced the application of MS to the structural characterization of biomolecules 

[57]. 

Disulfide linkage-containing polypeptides have been extensively examined during 

the past few decades using various MS/MS techniques, including collision-induced 
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dissociation (CID) [90-93], post-source decay (PSD) [89], electron capture dissociation 

(ECD) [94-96], electron transfer dissociation (ETD) [93, 97-101], electron induced 

dissociation (EID) [102], electron detachment dissociation (EDD) [103], infrared 

multiphoton dissociation (IRMPD) [103] and ultraviolet photodissociation (UVPD) [104-

108]. As the most widely used ion activation technique [11], CID makes use of 

ion/molecule collisions to convert kinetic energy to internal energy for the purpose of 

fragmenting the target ion. For peptides, CID mainly gives rise to b and y fragment ions 

from backbone amide bond cleavages. Insulin, at various charge states of 1+, 2+, 3+, 4+ 

and 5+ has investigated with CID, and the fragmentation efficiency is strongly dependent 

on the precursor charge state [92]. One particular limitation of CID is that little or limited 

sequence information within the cyclic structure could be retrieved [92]. Electron-based 

ion activation methods, like ECD, has shown the capability to cleave disulfide bonds, but 

ECD exhibited a relatively low dissociation efficiency [109]. Julian and coworkers 

combined UV activation with ECD to fragment insulin, which broke all three-disulfide 

bonds of insulin and exhibited a more extensive backbone fragmentation than ECD alone 

[108]. In other work, Loo and coworkers employed sulfolane as the supercharging 

reagent in protein solution, and the resulting supercharged protein ions exhibited elevated 

ECD efficiency and S-S bond dissociation efficiency [110]. 

Charge transfer dissociation (CTD) using helium is an alternative MS/MS 

technique developed by the Jackson research group [65], and is very similar in energy 

and mechanism to metastable atom-activated dissociation (MAD) [27-29, 59, 111-113]. 

CTD employs helium cations with kiloelectronvolt kinetic energies to bombard the target 

peptide cations, which can produce a nearly complete set of a ions from 1+ substance P 
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[65] and also promotes radical ion fragmentation of peptides and oligosaccharides [114, 

115]. In the present work, we explore the possibility of integrating CTD into a top-down 

workflow for small proteins by fragmenting the 4+, 5+ and 6+ charge states of bovine 

insulin with CTD. Whereas the resulting fragmentation pattern is very similar to ETD 

fragmentation demonstrated by others, we demonstrate the occurrence of an unexpected 

one-step, two-electron oxidation pathway, which highlights the unprecedented high 

energy that is available through CTD. We also characterize the difference between 

radical fragmentation pathways and even electron pathways for hydrogen deficient and 

hydrogen rich radical cations. 

3.2 Experimental 

3.2.1 Instrumentation 

All experiments were performed on a modified Bruker (Bruker Daltonics, Bremen, 

Germany) equipped with a saddle field fast ion gun installed on the top of ring electrode 

[58, 65]. Briefly, a 2-mm hole was drilled in the ring electrode for the permission of 

helium cations into the trap. The Saddle field fast ion was used as the helium source. The 

ion source was installed onto a three-dimensional quadrupole ion trap (QIT) mass. The 

instrument modification is described in detail elsewhere [114]. 

3.2.2 Materials 

Bovine insulin was purchased from Sigma-Aldrich (St. Louis, MO) and used 

without further purification. The insulin solution was prepared with a final concentration 

of approximately 20 µM in 49.5/49.5/1 (v/v/v) methanol/water/glacial acetic. Methanol 

(HPLC-grade) and glacial acetic acid were purchased from Fisher Scientific (Waltham, 
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MA). Water was obtained from an in-house Milli-Q purification system with >18 MΩ 

salt content. 

3.2.3 Methods 

Mass spectrometry measurement 

All mass spectra were collected in positive mode with an ESI voltage of 4.5 kV, 

capillary voltage of 8 V, capillary temperature of 250°C, and a heated ESI source 

temperature of 60°C. The helium trap pressure, as measured in the main vacuum chamber, 

was 1.2 x10-5 mbar. Full mass spectra were collected at different operating m/z ranges 

depending on the precursor ion.  

Collision-induced dissociation measurements 

The precursor ion of interest was isolated using a selection window of ±4 Da 

relative to the selected centroid m/z value. The ion current control (ICC) module was 

deactivated and the accumulation time (injection time) was typically 1.0 ms. The low 

mass cutoff (LMCO) was typically set to be approximately ∼¼ of the precursor mass. 

E.g., for 5+ insulin (m/z 1148.0), the LMCO was set to be m/z 300. The CID amplitude 

was set to be ∼0.30 V and “SmartFrag” mode was disabled. A typical CID experiment 

used 1.5-minutes of averaging spectra. 

Charge transfer dissociation measurements 

CTD experiments were conducted similarly to CID experiments, except that the 

QIT injection time was set to be 50 ms. A variable leak-valve was used to control the 

flow of the helium (1.20 x 10-5 mbar) through the ion gun. CTD was performed by the 

introduction of helium cations into the three-dimensional quadrupole ion trap. A 

waveform generator was synchronized with the period reserved for CID fragmentation. 
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The waveform generator was triggered by a TTL signal from the mass spectrometer, the 

details of which are provided elsewhere [65]. A typical CTD experiment consists of a 

2.5-minute period of product ion accumulation spectra and a 2.0 min-period of 

background accumulation spectra (i.e. helium beam on but ESI off). The time-averaged 

background spectrum was subtracted from the time-averaged product ion spectrum. In the 

MS3 CID experiments, CTD-generated product ions were isolated and subjected to a CID 

amplitude of 0.25 V at the MS3 level. The follow-up isolation/ion storage experiments 

(MS4 level) were carried out using a similar procedure. At the MS4 stage, the isolation 

window was 10 Da and the LMCO was 500. 

Resonance Ejection 

Resonance ejection experiments were conducted for the investigation of 

dissociation pathways. The precursor ions of interest were isolated and subjected to 

helium irradiation at the MS2 level. A particular product ion could then be resonantly 

ejected during the CTD reaction through the application of a relatively large CID 

amplitude (~2.5 V) at a frequency that corresponded to the desired intermediate. The 

experiment was repeated three times, and all the product ion spectra were averaged for 

final analysis. The experiment was repeated with the CID amplitude set to 0 V to ensure 

that the factor of scattering losses due to prolonged storage was independent of the factor 

of resonance ejection. 

3.3 Results and Discussion 

3.3.1 Insulin: 4+, 5+ and 6+ Charge States 

CTD spectra of [insulin+4H]4+, [insulin+5H]5+, and [insulin+6H]6+ are shown in 

Figure 3.1. In Figure 3.1a, when the 4+ insulin precursor ion was subjected to helium 
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cation irradiation, two types of radical cations are generated; [insulin+4H]5+�, the charge-

increased or oxidized product ion (CTnoD); and [insulin+4H]3+�, the charge-decreased or 

reduced product ion (ETnoD). The proposed pathway of [insulin+4H]5+� formation is 

shown in Equation (1): 

[𝑀 + 4𝐻]!! + 𝐻𝑒!(!"#$) → [𝑀 + 4𝐻]!!� + 𝐻𝑒!(!"#$) (1) 

Similar charge-increased product ions were also observed in the CTD spectra of 

insulin 5+ and 6+ charge states. The formations of the two charge-increased species are 

proposed in Equation (2) and (3). 

[𝑀 + 5𝐻]!! + 𝐻𝑒!(!"#$) → [𝑀 + 5𝐻]!!� + 𝐻𝑒!(!"#$) (2) 

[𝑀 + 6𝐻]!! + 𝐻𝑒!(!"#$) → [𝑀 + 6𝐻]!!� + 𝐻𝑒!(!"#$) (3) 

The presence of charge-reduced product ions indicates that a side channel of 

ETD-like behavior is occurring. We recently described an attempt to characterize the 

potential reagent anions [115], which showed that the reagent anions originate from 

background contamination, are radical anions and are highly unsaturated. The reagent 

negatives ions appear to comprise a homologous series, which maximizes in abundance 

around m/z 184-220. The CTD activation of large mass precursor like insulin permitted 

the LMCO to be raised to m/z 300 to prevent the co-accumulation of the background 

reagent anions, and thereby reduce the extent of ETD. The benefit of operating with an 

elevated LMCO is that the ETD pathway is minimized and the oxidized products of 

insulin are generally more abundant than the charge-reduced product ions, as shown in 

Figure 3.1a. 
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Figure 3.1. CTD spectra of isolated (a) [M+4H]4+, (b) [M+5H]5+ and (c) [M+6H]6+ ions 
derived from bovine insulin. 
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The close-ups of Figure 3.1a, Figure 3.1b and Figure 3.1c are shown in Figure 3.2, 

Figure 3.4 and Figure 3.5, respectively. The identified fragments are annotated on the 

protein structure in Scheme 3.1. As shown in Figure 3.2, only a few fragments were 

induced from CTD of 4+ insulin, and these included two low-intensity fragment ions 

(By6 and By11
2+) arising from the cleavage on the C-terminus of chain B. No evidence for 

separation of the two chains was observed in the CTD spectrum of 4+ insulin. One 

possible cause of the limited number of observed fragmentation products is the limited 

signal-to-noise (S/N) ratio of the precursor; the 4+ charge state is simply a low abundance 

charge state and it is difficult to obtain a large precursor ion signal (ESI spectrum of 

insulin is given in Figure 3.3).  
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Figure 3.2. CTD spectrum of insulin 4+ ranging from (a) m/z 400-1000, and (b) m/z 
1000-2000. 
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Scheme 3.1. Dissociation channels observed in CTD of insulin at charge states of 4+, 5+ 
and 6+. Key for peptide sequencing: black line, product ions observed in charge state 1+; 
red line, product ions observed in charge state 2+; blue line observed in charge state 3+; 
fragment ion with another chain attached are marked with a green line. 
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Figure 3.3. ESI spectrum of insulin. 
 

Figure 3.4 shows an expanded CTD spectrum of 5+ insulin. Only four fragment 

ions were identified, all of which originated from the cleavage of the C-terminus of chain 

B, outside the cyclic structure defined by the disulfide linkages. No cleavages inside the 

cyclic structure were observed. Similar to the 4+ insulin spectrum, there is no evidence 

for the separation of the two chains. 

 

 
 

Figure 3.4. CTD spectrum of 5+ insulin. 
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Compared with the results from 4+ and 5+ insulin, CTD of 6+ insulin produced 

many more fragment ions, as shown in Figure 3.5. In contrast to CID [91], ETD [98] and 

ECD [94], CTD of 6+ insulin produced a set of contiguous z ions; i.e. Bz4, Bz5 and Bz6 (in 

red font). Similar to the CTD results of 5+ insulin, these fragments arise from the 

cleavage of C-terminus of chain B and outside the cyclic region. One fragmentation 

product of chain A was observed (Aa4), which originates from the cleavage of the N-

terminus of chain A: again, outside the cyclic region.  

 

 

 
 

Figure 3.5. Zoomed in CTD spectra of 6+ insulin ranging from (a) m/z 300-800, and (b) 
m/z 800–1500. 
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A set of doubly charged contiguous y ions from chain B; i.e. By10
2+, By11

2+, 

By12
2+,By13

2+ and By14
2+  (blue font), was also observed from the 6+ precursor. 

Fragmentation in these region appears rather unique to CTD, since most techniques (CID 

[91, 92], ETD [98], ECD/AI ECD [108]) struggle to induce fragmentation in this region. 

The By10
2+ and By11

2+ fragments are be formed from the cleavage of C-terminus of chain 

B, outside the cyclic region, but the formation of By12
2+,By13

2+ and By14
2+ requires 

breakage of both inter-chain disulfide linkages in addition to the backbone cleavage. 

Similarly, the ions Ba10, Ba11
2+ and Ba12 also require the cleavage of both disulfide 

linkages. Additionally, this set of internal-fragment ions are also distinguishes CTD from 

the other techniques, despite the otherwise remarkable similarity between CTD and ETD 

[98] for exocyclic cleavages. All the above observations indicate that CTD can directly 

cleave backbone and disulfide linkages in a single activation step, and is thereby capable 

of providing some primary sequence information within the cyclic structure. 

The above CTD results have also show a dependence of CTD behavior on the 

charge state of the precursor ions. The dependence of CTD behavior upon low precursor 

charge states (1+, 2+ and 3+) of smaller peptides has been studied in our previous work 

[115]. In this study, as the precursor charge state increases from 4+ to 6+, an increase in 

the number of fragment ions was observed. This means more bonds and a greater variety 

of bonds were cleaved at higher precursor charge states, which is consistent with previous 

studies using ETD [98]. However, unlike ETD, CTD is not expected to become more 

efficient or more exothermic as the charge state of the precursor increases. In fact, one 

would expect the efficiency and efficacy of cation-cation reactions in CTD to decrease as 

the charge sate of the precursor ion increases. It therefore seems possible that the 
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improvement in product ions observed through CTD of the 6+ precursor could in fact be 

due to unwanted ETD side reactions. Another possibility is that the increase in charge 

state of the 6+ precursor enhances the extent of protein unfolding, thus making the 

protein more susceptible to fragmentation when interacting with helium cations.  

The backbone cleavages preferentially occur near the C-terminus of chain B—

which is consistent with the ECD and ETD work of others [92, 94, 98, 108]—and in 

regions close to aromatic residues, like tyrosine, which also has been noted by others 

[109]. Compared to ETD, CTD does not produce as many fragment ions near the N-

terminus of chain B for 6+ insulin precursor. ETD excels in retrieving primary sequence 

information outside the cyclic structure, but only occasionally provides backbone 

information within the cyclic structure [98, 109]. In CID experiments of 5+ insulin [90, 

92], all the cleavages occur in regions external to the disulfide bonds and no structurally 

informative fragments were obtained from within the cyclic region. To increase the 

sequence coverage and probe the fragmentation mechanism, we therefore used 

supplemental collisional activation to fragment the primary product ions that underwent 

oxidation with dissociation; i.e. the CTnoD product ions.  

3.3.2 MS3 CTD/CID Experiments upon Insulin 

Figure 3.6 shows the MS3 CID spectrum of the CTnoD product ion 

[Insulin+6H]7+�derived from CTD of [Insulin+6H]6+. The MS3 CID spectrum is 

dominated by a wide range of y ions derived from the cleavage of chain B and the 

separation of chain A. In the low mass range (m/z 400-1000), one set of doubly charged 

contiguous y ions were observed, namely By11
2+, By12

2+ and By13
2+ (in red font). In the 

high mass range (m/z 1000-1400), fragment ions originating from the cleavages of chain 
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B with the entire chain A attached (i.e. ABb22
4+, ABb24

4+,ABc28
4+ and ABz24

4+ in blue 

font) were observed. 

 

 
 

Figure 3.6. MS3 CID spectrum of [Insulin+6H]7+� ranging from (a) m/z 400-1000, and (b) 
m/z 1000-1400. 
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Scheme 3.2. Dissociation channels observed in (a) MS3 CID of [Insulin+4H]5+� derived 
from CTD [Insulin +4H]4+, (b) MS3 CID of [Insulin+5H]6+� derived from CTD 
[Insulin+5H]5+ and (c) MS3 CID of [Insulin +6H]7+�derived from CTD [Insulin+6H]6+. 
Key for peptide sequencing: black line, product ions observed in charge state 1+; red line, 
product ions observed in charge state 2+; fragment ion with another chain attached are 
marked with a green line. 
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Figure 3.6a shows a fragment ion at m/z 680.2, corresponding in mass to the 5+ 

Chain B product ion ([Chain B]5+, green font). The complementary 2+ Chain A product 

ion shows up at m/z 1168.0 ([Chain A]2+, inset in Figure 4b, green font). The [Chain A]2+ 

fragment is rarely observed in regular CID experiments [92], but it is more often 

observed in radical activation methods [108]. As shown in the fragment map for MS3 

CTD/CID (the bottom panel in Scheme 2), the formation of [Chain A]2+ requires the 

cleavage of both disulfide bonds. One mechanism for the cleavage of a disulfide bond is 

proposed in Scheme 3.3. It is also reasonable to assume that the disulfide bond(s) cleaves 

after the amino acid backbone cleavage through previously described hydrogen or radical 

transfers [94, 108]. Cleavage of two inter-chain disulfide bonds was also observed in MS3 

CTD/CID experiments of [Insulin+4H]5+� and [Insulin+5H]6+�, shown below. 

 
 

Scheme 3.3. Proposed mechanism for the cleavage of S-S bond. 
 
The CID spectrum of the CTnoD product [Insulin+4H]5+� derived from CTD of 

[Insulin+4H]4+ is shown in Figure 3.7. In the low mass range (m/z 400-1000), only three 

low-abundance fragments were generated. In the high mass range (m/z 1000-1400), more 

fragment ions with higher abundances were produced. Most of the fragments were in the 

4+ charge state, originating from the cleavage of the B-chain, outside the cyclic structure, 

with the A-chain still attached. A few 5+ fragment ions were observed (vide infra), 
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including (ABb29-NH3)5+ and (ABa29-NH3)5+, and a dominant ammonia loss from an 

intact insulin ion, (Insulin-NH3)5+, which is rarely observed in common MS/MS 

experiments. Two contiguous ion sets (ABb22
4+, ABb23

4+, ABb24
4+ and ABb25

4+ (in red 

font)) and (ABb23
3+, ABb24

3+ and ABb25
3+ (in blue font)) were also observed. 

 

 

 
 

Figure 3.7. MS3 CID spectrum of [Insulin+4H]5+� ranging from (a) m/z 400-1000 and (b) 
m/z 1000-2000. 
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To examine the congested area in Figure 3.7, a narrow region of the spectrum 

(m/z 1110-1180) is expanded in Figure 3.8. Analogous to MS3 CTD/CID experiment of 

[Insulin+6H]7+�, a complementary chain adduct ion pair—[Chain A]2+ and [Chain B]3+—

was also observed for [Insulin+4H]5+�. It is noteworthy that intact Chain A is always 

formed in the 2+ charge state, regardless of the precursor charge sate undergoing CTD.  

Moreover, the sum of the charge states of the two individual chain adduct ions equals that 

of the precursor insulin adduct ion. The distribution of product ion charge states agrees 

closely with the results from CID reaction of gold-cationized insulin [91]. In the gold-

adducted insulin studies, McLuckey and coworkers also observed complementary chain 

adduct pairs ((B-chain)4+/(A-chain)1+ and (B-chain)3+/(A-chain)2+) in their MS3 ETD/CID 

experiment of [insulin+5H]5+/[insulin+6H]5+� [98]. They reasoned that the radical nature 

of [M+6H]5+� could account for the insulin chain separation in this MS3 experiments [98]. 

The analogous charge-state split of precursor ions—asymmetric pattern—has also been 

widely reported in low-energy CID experiments of other protein complex ions [13, 116].  

 
 

Figure 3.8. MS3 CID of [insulin+4H]5+� derived from CTD of [insulin+4H]4+. 
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To determine whether the individual chain adduct ions ([Chain A]2+ and [Chain 

B]3+) are radical species or even-electron species, each of them was isolated at MS4-level 

and stored in the ion trap for 200 ms to react with background oxygen (Figure 3.9 and 

3.10). It has been reported that when the radical species are stored in the electrodynamic 

ion trap at room temperature, they often react with residual oxygen. The addition of O or 

O2 to distonic radical cations has been observed in ETD [67], fs-LID [68], He-MAD 

[117], and He-CTD [115]. However, oxygen-attachment was not observed for either 

[Chain A]2+ or [Chain B]3+, indicating that the two types of individual chain adduct ions 

are more likely to be even-electron species, or that the radical resides on the sulfur atoms 

and does not undergo the typical oxygen addition.  
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Figure 3.9. (a) Isolation spectrum of [Chain A]2+ at MS4 level, following MS3 CID of 
[M+4H]5+� derived from MS2 CTD of  [M+4H]4+. (b) The same condition as (a) except an 
extra ion storage time of 200 ms. 
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Figure 3.10. (a) Isolation spectrum of [Chain B]2+ at MS4 level, following MS3 CID of 
[M+4H]5+� derived from MS2 CTD of  [M+4H]4+. (b) The same condition as (a) except an 
extra ion storage time of 200 ms. 
 

The fragmentation behavior of the individual chain adduct ions have been well 

documented in literature. For example, Zubarev and coworkers observed doubly charged 

peptide monomers due to the cleavage of an S-S bond in UVPD experiments [104]. In 
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similar work, Wongkongkathepa et al [108] showed that ESI-generated 6+ insulin could 

be mass-selected and irradiated by 266 nm UV laser to provide the individual Chain A/B 

fragments. McLafferty and coworkers have reported singly charged peptide monomers 

corresponding to the breakage of an S-S bond in ECD experiments [94].  

Different from ETD/ECD, which are dominated by charge-reduction and 

hydrogen rich radical cations, CTD is dominated by charge increased and hydrogen 

deficient radical cations, with a smaller contribution of charge-decreased products [115]. 

Given the previous discussions on the charge-increased product [Insulin+4H]5+�, MS3 

CID spectrum of the charge-decreased product [Insulin+6H]5+� derived from CTD of 

[Insulin+6H]6+ was collected as well (Figure 3.11). Analogous to MS3 CID experiment 

for charge-increased species ([Insulin+4H]5+�), complementary chain adduct ion pair—

[Chain A]2+ and [Chain B]3+—was also observed from CID of the charge-reduced species 

([Insulin+6H]5+�). This observation is consistent with the aforementioned McLuckey and 

coworkers’ publication [98], which involved ETD as the source for generating of 

[Insulin+6H]5+�. The consistency indicates a robust similarity between the radical 

intermediates that seems independent of a hydrogen transfer mechanism.  
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Figure 3.11. MS3 CID spectrum of [insulin+6H]5+� from (a) m/z 400 - 1000. (b) m/z 1000 
– 2000 (CID amplitude = 0.3 V). 
 

The CTD-generated [Insulin+5H]6+� was also isolated and subjected to collisional 

activation. The resulting MS3 CID spectrum (Figure 3.12) provided greater fragmentation 

efficiency and better signal-to-noise (S/N) ratio than [Insulin+4H]5+�. CID of 

[Insulin+5H]6+� produced more y ions outside the cyclic structure on the C-terminus of 
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chain B. Consistent with the above CID results of the CTnoD products, CID of 

[Insulin+5H]6+� also produced individual chain adduct ion pair: [Chain A]2+ and [Chain 

B]4+�. 

 

 

 
 

Figure 3.12. MS3 CID (amplitude = 0.25) spectrum of [Insulin+5H]6+� ranging from (a) 
m/z 300-1000 and (b) m/z 1000-1500. 
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3.3.3 Resonance Ejection Experiments upon Insulin 

Figure 3.13 shows an expanded region of the same spectrum in Figure 3.1b for 

CTD of the precursor [M+5H]5+. Figure 3.13a shows straightforward CTD and 6b shows 

the same experiment, but with concurrent resonant ejection on the primary product, and 

possible intermediate, [M+5H]6+�. This resonance ejection experiment was conducted to 

investigate the mechanism of formation of the doubly ionized species [M+5H]7+��, which 

can form via two possible pathways: (1) directly from the precursor ion (Pathway A) via 

a one step, two electron oxidation mechanism; or (2) through two consecutive reactions 

(Pathway B) involving the generation of an intermediate ([M+5H]6+�), from which the 

product ion [M+5H]7+�� is formed from a second helium cation. 

A. [𝑀 + 5𝐻]!! + 𝐻𝑒! →      [𝑀 + 5𝐻]!!∙∙ + 𝑒! + 𝐻𝑒    (4) 

B. [𝑀 + 5𝐻]!! + 𝐻𝑒! →   𝐻𝑒 + 𝑀 + 5𝐻 !!∙  

[𝑀 + 5𝐻]!!∙ + 𝐻𝑒! → [𝑀 + 5𝐻]!!∙∙+  2𝑒! (5) 

Figure 3.13a shows a regular CTD spectrum of the [M+5H]5+, in which both 

[M+5H] 6+� and [M+5H]7+�� were present. In Figure 3.13b, the first-generation product 

ion, and possible intermediate, [M+5H]6+� was resonantly ejected during CTD. Figure 

3.13b clearly shows that even in the presence of simultaneous ejection of [M+5H]6+�, the 

product ion [M+5H]7+�� is still readily observable. Quantitation of the peak heights using 

three sets of alternating spectra of CTD with and without resonance ejection 

(supplemental Figure 3.15) showed no significant decrease in the product ion abundance. 

These results clearly demonstrate that the formation of [M+5H]7+�� is not affected by the 

immediate removal of [M+5H]6+� and that [M+5H]7+�� is therefore a direct product of the 

two-electron oxidation pathway provided pathway A (eqn. 4).   
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Figure 3.13. (a) CTD spectrum of 5+ insulin, (b) CTD spectrum of 5+ insulin, with 
resonance ejection on the possible intermediate [M+5H]6+�. 
 

To confirm the result, a similar experiment was repeated using the [M+6H]6+ 

precursor and resonantly ejecting the [M+6H]7+� product ion (Figure 3.14). The relevant 

reactions in this case are:  
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A. [𝑀 + 6𝐻]!! + 𝐻𝑒! →      [𝑀 + 6𝐻]!!∙∙ + 𝑒! + 𝐻𝑒    (6) 

B. 𝑀 + 6𝐻 !! + 𝐻𝑒! →   𝐻𝑒 + 𝑀 + 6𝐻 !!∙  

𝑀 + 6𝐻 !!∙ + 𝐻𝑒! → [𝑀 + 6𝐻]!!∙∙+  2𝑒! (7) 

 

 

 
 

Figure 3.14. The statistic calculation is given in supporting information (a) CTD 
spectrum of insulin 6+, (b) the same experiment with [M+6H]7+� is being resonantly 
ejected. 
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Consistent with the previous result, when [M+6H]7+� was resonantly ejected 

during CTD of [M+6H]6+, the intensity of two-electron oxidation product [M+6H]8+�� 

was also unaffected by the removal of the potential intermediate (Figure 3.14). These 

resonance ejection experiments verify that the doubly ionized ion is formed directly from 

the protonated precursor ion via a one-step two-electron process. The changes in the peak 

intensities in Figure 6 and Figure 3.14 are statistically verified in Table 3.1, Table 3.2 and 

Figure 3.15. 

 
Table	
  3.1.	
  Intensities	
  and	
  relevant	
  calculations	
  of	
  fragment	
  ions	
  at	
  m/z	
  820.0,	
  m/z	
  
956.6	
  and	
  m/z	
  1148.0,	
  during	
  CTD	
  of	
  [insulin+5H]5+.	
  
m/z	
   820.0	
  	
  

[M+5H]7+��	
  
956.6	
  
[M+5H]6+�	
  

1148.0	
  
[M+5H]5+	
  

Intensity	
  of	
  #1	
   36877	
   165540	
   633618	
  
Intensity	
  of	
  #2	
   21596	
   90570	
   546083	
  
Intensity	
  of	
  #3	
   23369	
   130784	
   576564	
  
Average	
   27280.67	
   128964.67	
   585422	
  
Standard	
  deviation	
   8357.82	
   37518.10	
   44434.65	
  
	
  

Table	
  3.2.	
  Intensities	
  and	
  relevant	
  calculations	
  of	
  fragment	
  ions	
  at	
  820.0,	
  m/z	
  956.6	
  
and	
  m/z	
  1148.0,	
  during	
  CTD	
  of	
  [insulin+5H]5+,	
  while	
  resonantly	
  ejecting	
  m/z	
  
856.6	
  	
  [Insulin	
  +5H]6+�.	
  
m/z	
   820.0	
  

[M+5H]7+��	
  
956.6	
  
[M+5H]6+�(Ej)	
  

1148.0	
  
[M+5H]5+	
  

Intensity	
  of	
  #1	
   16627	
   49	
   483226	
  
Intensity	
  of	
  #2	
   19495	
   69	
   611897	
  
Intensity	
  of	
  #3	
   14300	
   40	
   746016	
  
Average	
   16807.33	
   52.67	
   613713	
  
Standard	
  deviation	
   2602.19	
   14.84	
   131404.4	
  
T-­‐Test	
   0.107>0.05	
   	
   0.396>0.05	
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Figure 3.15. The averaged intensity of [insulin+5H]7+�� with error bar. The blue dot: 
regular CTD experiment; red dot: CTD experiment with resonant ejection of possible 
intermediate [insulin+5H]6+�. 
 

The ability to perform a one-step removal of two electrons (double ionization) has 

been reported once before by Zubarev and coworkers in their electron ionization 

dissociation (EID) experiments [19] in an FT-ICR. Zubarev et al were able to produce 

doubly ionized species, [M+nH](n+2)+, by bombarding peptide cations ([M+nH]n+, n≥1) 

with ≥ 40 eV electrons. However, these species from 1+ and 2+ precursors were hard to 

discern in the FT-ICR than ≥ 3+ precursors because of their overlap with the third and 

second parasitic harmonics of the precursors. To our knowledge, such high-energy 

activation (≥ 40 eV ) barriers have only been reported in the high-energy EID 

experiments on a FT-ICR platform, which makes it all the more unusual to replicate the 

capability on a low-cost QIT mass spectrometer.  



	
   	
  

 89 

To further probe the behavior of the doubly ionized species, two follow-up 

experiments were conducted. Firstly, [insulin+5H]7+�� (or [insulin+6H]8+��) generated 

from CTD of [insulin+5H]5+ (or [insulin+6H]6+) was isolated at the MS3 level and 

confined in the ion trap for an extra 200 ms to see if it would react with residual oxygen 

in a manner that distonic radical cations are prone.  The isolation spectra are shown in 

Figure 3.16a and 3.17a, respectively, and show the successful mass-selection at MS3 level. 

However, with the addition of a 200 ms reaction period between [insulin+5H]7+�� or 

[insulin+6H]8+�� with residual oxygen, neither charge state resulted in any oxygen 

attachment. As discussed in the previous sections, oxygen attachment is commonly 

observed for certain radical cations. But the absence of oxygen attachment could not 

exclude the possibility of [insulin+5H]7+�� and [insulin+6H]8+�� being radical cations. We 

reasoned that there is a slight possibility that these doubly ionized species are radical 

cations, but their structure/configuration somehow prevent them from reacting with 

residual oxygen in the electrodynamic ion trap.  
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Figure 3.16. (a) Isolation spectrum of [insulin+5H]7+�� at MS3 level. (b) 200 ms ion 
storage of [insulin+5H]7+�� following isolation at MS3 level. 
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Figure 3.17. (a) Isolation spectrum of [insulin+6H]8+�� at MS3 level. (b) 200 ms ion 
storage of [insulin+6H]8+�� following isolation at MS3 level. 
 

Secondly, [insulin+5H]7+�� was mass-selected in the same way as shown in Figure 

3.16a. Instead of ion storage, [insulin+5H]7+�� was fragmented with a CID amplitude of 

0.3 V at MS3 level (Figure 3.18). Seven fragment ions were observed, most of which 

originate from the cleavage of B-chain. Only one fragment ion originates from the 
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cleavage of A-chain. For comparison purpose, CID spectrum of ESI-generated 

[insulin+7H]7+ was collected as well (Figure 3.19). Thirteen B-chain fragment ions were 

observed, among which a contiguous ion set (By3, By4, By5) was generated. Similar to 

MS3 CTD/CID spectrum, only one A-chain fragment ion was observed. The fragment 

map comparison of the above experiments is shown in Scheme 3.4. Although MS3 CID of 

the doubly ionized species ([insulin+5H]7+��) produced fewer fragment ions and higher 

noise level, it interesting to attempt an interrogation of this rarely reported species. 

 

 
 

Figure 3.18. MS3 CID spectrum of [insulin+5H] 7+�� derived from CTD of [insulin+5H]5+ 

(CID amplitude = 0.30 V). 
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Figure 3.19. Zoomed-in CID spectrum of [insulin+7H]7+ from (a) m/z 300 - 1000. (b) m/z 
1000 – 1400 (CID amplitude = 0.3 V). 
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Scheme 3.4. Fragment map of (a) MS3 CID of [insulin+5H]7+��, (b) CID of 
[insulin+7H]7+. 
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3.4 Conclusions 

ESI-generated insulin cations (at charge states of 4+, 5+ and 6+) were subjected 

to helium-cation irradiation, producing both charge-increased species and charge-

decreased species. These species are accompanied by a few fragment ions, the number 

and relative abundances of which are highly dependent on the precursor charge state. 6+ 

insulin produced the maximum number of fragment ions, most of which originates from 

the cleavages of B-chain outside the cyclic structure defined by the disulfide linkages. 

The charge-increased product ions from CTD process were further mass-selected and 

subjected to CID reaction at MS3 level. This approach effectively broke disulfide linkages, 

showing the capability of producing more fragment ions than a single CTD experiment. 

Resonance ejection experiments were conducted during CTD experiments to prevent 

consecutive CTD reactions. Instead of the commonly observed one-electron oxidation 

pathways, an interesting one-step two-electron oxidation pathway for the formation of 

[M+nH](n+2)+�� was revealed, which has an activation barrier of at least 20 eV. The di-

radical nature of the doubly oxidized product could not be confirmed through reaction 

with residual oxygen or by CID. The above results, along with the low-cost instrument 

platform, indicate that CTD is an intriguing high-energy fragmentation method for the 

structural interrogation of gas-phase biomolecules. 
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CHAPTER 4: CHARGETRANSFER DISSOCIATION (CTD) OF 
PHOSPHOCHOLINES: GAS-PHASE ION/ION REACTIONS BETWEEN HELIUM 

CATIONS AND PHOSPHOLIPID CATIONS 

 
Reproduced in part with permission from Pengfei Li, Glen P. Jackson, J. Mass Spectrom. 
in revision. 
 

4.1 Introduction 

Lipids are essential components of cellular membranes in living cells [118, 119]. 

In addition to serving as a “container” for the cell, lipids also show remarkable 

involvement in a range of lipid-lipid and lipid-protein interactions, thus acting as key 

players with distinctive biochemical roles and biophysical properties [3]. A detailed 

description of all lipids and their functions at the cellular level would greatly facilitate the 

understanding of signaling, lipid metabolism, and membrane vesicle trafficking. However, 

the full structural characterization and quantitation of all lipids in a given system remains 

a formidable challenge to biochemists [34].  

Mass spectrometry (MS) has emerged as an indispensable analytical tool for the 

structural characterization of lipids. Soft ionization techniques, such as electrospray 

ionization (ESI) [34] and matrix-assisted laser desorption/ionization (MALDI) [120], 

help ionize lipids in their native states, without requiring derivatization and without 

causing decomposition, thereby enabling the unequivocal determination of molecular 

weights. These soft ionization techniques are typically used in conjunction with tandem 

mass spectrometry (MS/MS) to provide structural detail and to help resolve constitutional 

isomers. Low energy collision-induced dissociation (CID) is the most prevalent MS/MS 

technique, and it has been employed for the structural analysis of a wide variety of lipid 

classes, including sphingomyelin (SM) [7], phosphatidylglycerol (PG) 
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[121],glycerophosphoethanolamine (GPE) [122], glycerophosphocholine (GPC) [35], and 

glycerophosphatidic acid (GPA) [36]. 

Low-energy collisional activation of lipids mainly produces fragments 

corresponding to the loss of entire fatty acyl substituents, like neutral ketenes and fatty 

acids, and is thus not informative enough for full structure characterization [123]. To 

enhance the amount of obtainable structural information, a variety of MS/MS techniques 

have been explored as the alternative for the structural interrogation of lipids, including 

high-energy (HE) CID [124, 125], ion/molecule reactions such as Paternò-Büchi 

reactions [126], OzESI/OzID [44, 127-131]), ion/ion reactions [42, 132], ion/photon 

reactions(e.g. UVPD [41], IRMPD [40]), electron-based reactions(e.g. ETD [37], EIEIO 

[38], EID [39, 133]) and radical-directed dissociation (RDD) [134, 135]. 

In OzESI/OzID, the exposure of unsaturated lipids to ozone molecules results in 

an ozonide, which then dissociates into fragment ion pair(s) with diagnostic mass 

separation that enables an unambiguous identification of sites of unsaturation [44, 128]. 

McLuckey, Blanksby and coworkers have shown that gas-phase ion/ion reactions can be 

used to convert lipid cations into their anion form, thereby providing incredible 

selectivity toward certain lipid classes [42, 132]. When combined with low energy CID, 

ion/ion reactions could provide enhanced structural information, such as acyl chain 

lengths and degrees of unsaturation [42, 132]. Whereas the current state of the art in 

tandem mass spectrometry has a variety of approaches to target certain functional groups 

and chemistries, the communities interested in lipid characterization and lipidomics 

would stand to benefit from additional, complementary or more-universal approaches to 

tandem mass spectrometry.   
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Charge transfer dissociation (CTD) is a possible alternative to the aforementioned 

MS/MS techniques, and it proceeds via exposure of gas-phase precursor cations to a 

kiloelectronvolt beam of helium cations [49]. Upon the interaction with helium cations, 

peptide cations decompose via radical-driven pathways that are significantly different 

from low energy CID, but analogous to other high-energy fragmentation methods [49]. 

CTD has the ability to increase the number of positive charges on a precursor ion and is 

workable with singly charged precursor ions, unlike ETD and ECD. The activation 

energy in CTD is determined by both the electron affinity of the helium cation (~24.6 eV) 

and kinetic energy, and can drive reactions with appearance potentials greater than 24 eV 

[49, 136].  

In this study, we demonstrate the utility of CTD as a means of structural 

characterization for phosphatidylcholines. Helium-cation irradiation of protonated lipids 

produces highly extensive cleavage along lipid acyl chains (i.e. POPC, PSPC) and 

charge-increased ion series for lipids containing multiply carbon-carbon (CC) double 

bonds (i.e. 9E- and 9Z-DOPC). The 12-Da peak spacing feature and ratio change in 

fragment ion intensity in the vicinity of the C=C double bond are closely related to the 

position and geometry of C=C double bond(s), which leads toward a near-complete 

characterization of lipid structures.  

4.2 Experimental 

4.2.1 Instrumentation 

All mass spectra (CID, CTD and MAD) were collected on a Bruker amaZon ETD 

mass spectrometer (Bruker Daltronics, Bremen, Germany), which has been modified to 

perform lipid cation/helium cation or lipid cation/metastable atom reactions. Installation 
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of saddle field fast ion/fast atom source (VSW/Atomtech, Macclesfield, UK), connection 

between electronic components and working principle are highly analogous to those 

described for Thermo Fisher LTQ Velos Pro instrument [49] and experimental setup of 

MAD-MS [137]. 

4.2.2 Materials 

All the lipids used in this experiment were purchased from Avanti Polar Lipids 

(Alabaster, AL). The involved lipids and their shorthand designations are as follows: 1-

hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine (PSPC, 16:0/18:0), 1-

hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (POPC, 16:0/18:1(9Z)), 

1,2-di-(9E-octadecenoyl)-sn-glycero-3-phosphocholine (9E-DOPC, 18:1/18:1(9E,9E)), 

1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (9Z-DOPC, 18:1/18:1(9Z, 9Z)), 

1,2-di-(5Z,8Z, 11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine (DAPC, 

20:4/20:4), and sphingomyelin (SM, d18:1/18:0). Lipid analytes were prepared at a 

concentration of ~60 µM in a solution of 49.5/49.5/1 (v/v/v) methanol/water/acetic acid 

prior to positive electrospray ionization (ESI). 

4.2.3 Method 

Each lipid solution was continuously infused into the ESI source with an 

electronic syringe pump (#1725, Hamilton Company Reno, Nevada, NV) at a flow rate of 

160 µL/h. The skimmer was at ground potential and the electrospray needle was set at 4.5 

kV. The temperature of the heated capillary was 220°C. The [M+H]+ or [M+Na]+ ions 

were mass-selected using an isolation window of 1.0 or 4.0 Da depending on the need for 

isotope information. The saddle field ion source was only switched on during an MS2 

scan function in which the isolated ions were stored at a desired low mass cut-off (e.g. 
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150) with the excitation amplitude for CID set to zero volts. A 6 kV square wave with a 

pulse width of 25 ms was applied to the saddle field ion source for the generation of 

reagent helium cations. The helium flow was controlled via a variable leak valve, and the 

pressure read-out was obtained from pressure monitor of the ion trap gauge in the main 

vacuum region. Using this indirect measurement, the helium gas supply was adjusted to 

provide a reading of ~1.20×10-5 mbar for all the experiments, which was barely above the 

base pressure of ~8×10-6 mbar in the main vacuum chamber. A typical low mass cut off 

(LMCO) value of m/z 150 was used for the removal of ionized residual background 

compounds. All the mass spectra (CID, CTD and MAD) were accumulated in the profile 

mode, with up to 4 minutes of averaging to improve the signal-to-noise ratio (S/N). 

4.3 Results and Discussion 

4.3.1 Protonated POPC: CTD vs. MAD vs. CID 

Helium irradiation of protonated POPC results in a range of fragments, as shown 

in Figure 4.1a. The CTD spectrum looks generally similar to the MAD spectrum (Figure 

4.1b), but both differ greatly from traditional CID (Figure 4.1c) [123] or electron 

ionization (EI) spectra [138, 139]. All fragmentation methods give a dominant fragment 

ion at m/z 184.0, which is a diagnostic fragment of the phosphocholine head group [140, 

141]. The CTD spectrum also shows a doubly charged fragment at m/z 380.4, which 

corresponds to the charge-increased product [POPC+H]2+�, which is similar to the 

Penning ionized product ion observed in MAD [141]. CTD shows three major fragments 

at m/z 478.4, m/z 496.4 and m/z 521.4, which are associated with entire acyl chain losses. 

These fragments resemble closely the MAD fragmentation pattern, but greatly differ from 
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that of CID. Helium-CTD also shows an extensive dissociation along two acyl chains 

ranging from m/z 550 to m/z 732, which is also similar to MAD. 

Helium-CTD of sodiated POPC produces a fragmentation pattern that highly 

resembles that of MAD spectrum of [POPC+Na]+, as shown in Figure 4.2. In addition to 

the phosphocholine head group fragment at m/z 184.0 and the ionized species [M+Na]2+� 

at m/z 391.5, CTD produced a variety of fragments related to cleavages of the glycerol 

backbone and its vicinity. Examples include the loss of trimethylamine (N(CH3)3) at m/z 

723.5, the entire head group at m/z 599.5, sn-1/sn-2 acyl chains  at m/z 526.5 and m/z 

500.5, and simultaneous loss of two units, such as at m/z 441.4 and m/z 467.5. The 

cleavage of the C1-C2 bond within the glycerol backbone at m/z 513.5 was observed, 

which is observed in CTD and MAD spectra, but not CID. The CTD spectra of 

protonated POPC and sodiated POPC show different product ion distributions, as has 

been observed in low energy CID [7, 35, 123] and post source decay (PSD) experiments 

[120]. The distinction in PSD spectra for the two adduct forms is attributed to the 

different binding of H+ and Na+ to lipid head group [120].   
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Figure 4.1. (a) CTD spectrum of [POPC+H]+ (16:0/18:1). (b) MAD spectrum of 
[POPC+H]+(16:0/18:1). (c) CID spectrum of [POPC+H]+(16:0/18:1). The diagram insets 
show possible cleavages and theoretical masses for fragmentations without hydrogen 
rearrangements. 
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The results in Figure 4.1.and 4.2 indicate that the CTD process involves both 

CID-like even-electron fragmentation pathways and MAD-like radical-induced 

fragmentation pathways [141]. Ionization of 1+ precursor ions by Penning ionization or 

charge transfer are expected to be different in energy by the ionization potential of a 

helium metastable atom, which is about 4.77 eV [142]. Although this difference seems 

significant, He metastable atoms and He cations are both more than 19.8 eV above the 

ground state, so both have more than enough energy to ionize most 1+ precursor ions, 

which typically have ionization energies of around 10 eV [50]. 
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Figure 4.2. (a) CTD spectrum of [POPC+Na]+ (16:0/18:1). (b) MAD spectrum of 
[POPC+ Na]+ (16:0/18:1). (c) CID spectrum of [POPC+ Na]+ (16:0/18:1). 
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A more detailed comparison between CTD and MAD spectra of [POPC+H]+ is 

given using the zoomed-ins in Figure 4.3a and 4.3b, and Figure 4.5a and 4.5b.  

 

 
 

Figure 4.3. Zoomed-in regions from m/z 470-540: (a) MAD spectrum of [POPC+H]+ 
(16:0/18:1); (b) CTD spectrum of [POPC+H]+ (16:0/18:1); (c) CTD spectrum of 
[PSPC+H]+ (16:0/18:0) with a precursor isolation window width=4.0; (d) CTD spectrum 
of [PSPC+H]+ (16:0/18:0) with a precursor isolation window width=1.0. 

 
The CTD spectrum of [POPC+H]+ shows strong similarity to the MAD spectrum 

in the region from m/z 470-540 (Figure 4.3a and 4.3b). The common features include 

neutral ketene losses at m/z 522 (sn-1) and m/z 496 (sn-2), as well as elimination of sn-2 

fatty acid at m/z 478 [141]. Because the same batch of purchased POPC sample was used 

for both MAD and CTD experiments, the same set of contamination peaks at m/z 493.4 

(loss of C(18:0) chain) and m/z 524.4 (loss of C(16:1) chain) were observed [141], 

possibly originating from the isomerization of POPC during its synthesis process [38, 
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143]. The spectrum in Figure 4.3d is a replicate experiment of Figure 2c, but with a much 

narrower isolation window (width = 1.0 Da). The exclusion of the 13C contribution in 

Figure 2d helps to confirm the peak assignments in Figure 4.3c.  

Different from the CID spectrum of PSPC (Figure 4.4), the CTD spectrum in 

Figure 2c shows two sets of fragments associated with sn-1/sn-2 ketene losses: odd-

electron fragments at m/z 495.5 and m/z 523.5, and even-electron fragments at m/z 496.5 

and m/z 524.5. For both POPC and PSPC, the CTD spectra show preferential neutral 

ketene loss over neutral fatty acid loss, which resembles radical-induced EID [39] but 

significantly differs from even-electron CID (Figure 4.4). 

As for the even-electron fragments in Figure 4.3c, CTD does not show a 

distinctive preference in the formation of m/z 496 (sn-2 ketene loss) or m/z 522/524 (sn-1 

ketene loss), which compromises its ability to differentiate between the sn-1 and sn-2 

ketene losses. In this regard, CTD is slightly less informative than CID, which 

preferentially produces sn-2 ketene loss over sn-1 ketene loss (m/z 496 >m/z 522 or 524) 

(Figure 4.4) [35, 39, 140]. In contrast to this general preference for sn-2 ketene loss over 

sn-1 ketene loss, Ho and Huang show no such preference for sn-2 ketene loss in LE-CID 

experiments in a quadrupole ion trap [123] and Jones et al. observed a slight preference 

for sn-1 ketene loss over sn-2 ketene loss in the EID fragmentation of phospholipids [39].  
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Figure 4.4. Zoomed-in regions from m/z 470-540 of CID spectra of (a) [POPC+H]+ 
(16:0/18:1) and (b) [PSPC+H]+ (16:0/18:0). 
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The odd-electron fragments in Figure 4.3c were also observed in MAD [141] and 

EID [39] spectra of the same lipid, which suggests analogous fragmentation pathways 

among CTD, MAD and EID. The odd-electron fragments must be generated via the 

introduction of radical species during the fragmentation process, indicating the 

involvement of radical cleavages in CTD [141]. Interestingly, the fragment at m/z 495.5 

(sn-2 position) is more abundant than the one at m/z 523.5 (sn-1 position). This trend 

agrees with that from the said EID results: the more favorable formation of radical cation 

associated with sn-2 position [39]. This coincidence, along with the more favorable 

neutral ketene loss over fatty acid loss in CTD, is indicative of high resemblance of CTD 

in its mechanistic nature to that of EID.  

4.3.2 CTD: POPC vs. PSPC 

For ease of discussion, the two spectra in Figure 4.5a and 4.5b are labeled in three 

sections.  The section labeled “I” shows the acyl cleavages close to the ω-end of the lipid 

chains. The CTD spectrum of [POPC+H]+ (Figure 3b) shows extensive fragmentation 

along the two acyl chains in this region, such as the even-electron fragments at m/z 730.5, 

m/z 716.5, m/z 702.5, m/z 688.5, m/z 676.5 and m/z 662.5, which correspond to the 

neutral loss of CnH2n+2 molecules. In the same region, odd-electron fragments at m/z 

731.5, m/z 717.5, m/z 703.5, m/z 689.5, m/z 675.5 and m/z 661.5 were observed (green 

font), which corresponding to neutral loss of CnH2n+1
� alkyl radicals. Almost the same 

even-/odd-electron fragment series were observed in both MAD (Figure 3a) and EID 

spectra reported elsewhere [39]. 
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Figure 4.5. Zoomed-in regions from m/z 540-750: (a) MAD spectrum of [POPC+H]+ 
(16:0/18:1); CTD spectra of (b) [POPC+H]+ (16:0/18:1) and (c) [PSPC+H]+ (16:0/18:0). 
The green font shows the CnH2n+1

�-type losses. 
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4.3.3 9E/9Z-DOPC: CID vs. CTD 

The ladder-like patterns of even-electron fragments are separated by 14.0 Da units, 

which is a commonly observed pattern in EI [138, 139] and HE-CID [144] as well as the 

recently reported electron-based MS/MS experiments on lipids, EIEIO [38] and EID [39]. 

The accompanying odd-electron fragments associated with the losses of alkyl radicals 

were also reported in other high-energy MS/MS experiments [38, 39, 144]. Others have 

proposed that the serial neutral loss of CnH2n+2could either be the neutral loss of an alkane 

or be the neutral loss of an alkene+H2 (i.e. 1,4-cyclic elimination) [39, 145]. In most 

general respects, CTD fragmentation can therefore be rationalized through radical 

mechanisms proposed by others [144, 146]. 

In section II, the vinyl bond vicinity, CTD-generated fragments exhibit identical 

nominal masses to that of MAD, but distinctive differences were also observed between 

MAD and CTD. For example, MAD shows reduced intensities at the CC double bond site 

along with the elevated ion intensity corresponding to distal allyl cleavages—the most 

prevalent dissociation pattern of unsaturated acyl chains, which has been widely reported 

in FAB [147], HE-CID [146], EIEIO [38] and EID [39] experiments. In CTD, this 

vicinity looks slightly different and contains a distinctive pair of peaks at m/z 620.5 and 

m/z 632.5, whose spacing is a diagnostic 12 Da. This characteristic peak spacing has been 

well studied and documented as the diagnostic value for localization of CC double bonds. 

Mass spectrometric experiments involving EI [148], HE-CID [149], RDD [134, 135], 

MAD-MS3 CID [69] have made use of this diagnostic feature for the determination of 

double bond positioning in unsaturated fatty acid derivatives and phospholipids. 
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Similar to MAD, CTD only produces a few fragments in section III, the α-end of 

the acyl chain, including contributions from both sn-1 and sn-2 acyl chain cleavages. It is 

generally rare to observe dissociation in this region of the lipid, but the fragments 

observed for CTD are analogous to EID results of [POPC+H]+ [39].  The fragment at m/z 

577.6 could possibly be attributed to cleavage related to head group loss.  

Consistent with CTD results of POPC, CTD of PSPC (Figure 4.5c) also produces 

extensive dissociation along two acyl chains, with an even greater extent of 

fragmentation. PSPC is structurally different from POPC in that it contains two fully 

saturated acyl chains (16:0/18:0). Consequently, a more extensive ladder-like dissociation 

pattern can be seen from m/z 718.6 to m/z 550.5, which corresponds to the mutual 

contribution of sn-1 and sn-2 acyl chains. Moreover, the fragment ion intensities appear 

to be more uniform along the entire saturated acyl chains [38]. It is worth noting that the 

nominal masses from m/z 592.5 to m/z 718.6 are in one-to-one correspondence with those 

in EID of PSPC [39]. A difference between POPC and PSPC is that CTD of PSPC does 

not produce the aforementioned odd-electron fragment series. The lack of odd-electron 

fragments in PSPC is analogous to EID experiments [39]. A very abundant peak at m/z 

578.5, which corresponds to cleavage of C3-C4 bond, was observed in the CTD spectrum 

of PSPC, which could originate from either the C3-C4 bond on C(16:0) acyl chain or the 

C5-C6 bond on C(18:0) acyl chain [39]. 
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4.3.3 9E/9Z-DOPC: CID vs. CTD 

CID and CTD spectra of protonated 9E-DOPC (18:1/18:1) are shown in Figure 

4.6a and 4.6b. Collisional activation of this lipid only produces three fragments, as we 

reported before [141]. But CTD of the same lipid produces a much more extensive 

fragmentation coverage, which includes head group losses at m/z 184.0, m/z 521 for the 

sn-1/sn-2 alkyl ketene loss and m/z 505 for the sn-1/sn-2 fatty acid loss. CTD also 

produces charge-increased, or oxidized, product ions such as [9E-DOPC+H]2+� at m/z 

393.5, [9E-DOPC+H-C9H19]2+� at m/z 330.5, and acyl chain cleavages spanning the CC 

double bond. This pattern is almost identical to a previously reported MAD spectrum of 

[9E-DOPC+H]+ (18:1/18:1) [141]. The close similarity of the two ion activation methods 

suggests a similar mechanistic nature in them, which can help evidence mechanistic 

hypothesis in the fragmentation pathway of CTD.  

The middle panels (c and d) of Figure 4.6 compare the range m/z 500-530 for CID 

and CTD results of 9E-DOPC. The bottom panels (e and f) show CID and CTD spectra 

of 9Z-DOPC. In CTD, the peak patterns around m/z 521 and m/z 505 resemble MAD 

[141], but vastly differ from that of CID. CID mainly proceeds through even-electron 

rearrangements, yielding even-electron fragments. The zoomed-in CTD spectrum of cis-

double bond lipid (9Z-DOPC) looks very similar to that of trans-double bond lipid (9E-

DOPC), which agrees with the reported difficulty in differentiating cis- and trans-

geometry of double bonds [150]. For CTD of both 9E- and 9Z-DOPC, the preference in 

ketene loss (m/z 522.5) over fatty acid loss (m/z 506.5) is in contrast to CID spectra. This 

preferential ketene loss in CTD is consistent with the aforesaid trend for POPC and PSPC. 

The reproducible feature across lipids with different acyl chain combinations further 
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Figure 4.6. (a) CID spectrum of [9E-DOPC+H]+ (18:1/18:1). (b) CTD spectrum of [9E-
DOPC+H]+ (18:1/18:1). Zoomed-in regions from m/z 500-530: (c) CID spectrum of [9E-
DOPC+H]+ (18:1/18:1); (d) CTD spectrum of [9E-DOPC+H]+ (18:1/18:1); (e) CID 
spectrum of [9Z-DOPC+H]+ (18:1/18:1); (f) CTD spectrum of [9Z-DOPC+H]+ 
(18:1/18:1). The orange font in panel (d) and (f) shows the CnH2n-2-type losses and their 
tentative assignments. 
 
confirms the distinctive mechanistic nature of CTD, which should be different from that 

of even-electron CID, but is close to radical dissociation feature of MAD, EIEIO and EID. 
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 Figure 4.7a and 4.7b show magnified CTD spectra of [9E-DOPC+H]+and [9Z-

DOPC+H]+ from m/z 530-750. In contrast to PSPC, which has two saturated acyl chains, 

9E- and 9Z-DOPC both contain two unsaturated acyl chains. Consistent with CTD results 

of POPC and PSPC, a ladder-like fragmentation pattern was observed in CTD spectra of 

both 9E- and 9Z-DOPC. Different from the CTD results of POPC and PSPC, fewer 

fragments were observed for 9E- and 9Z-DOPC. The lack of C-C singly bonds cleavages 

closer to ω-end was also seen in EID spectra of 9Z- and 6Z-DOPC [39]. It seems that the 

presence of multiple CC double bonds obstructs the propensity of fragmentation in CTD 

and other radical-induced approaches. 

Consistent with the CTD results of POPC, the diagnostic peak spacing of 12 Da 

was also observed in the double bond region for both 9E- and 9Z-DOPC, which offers an 

unambiguous localization of CC double bonds in both lipids. The consistency in this 12 

Da spacing demonstrates the reproducibility of CTD in producing this double bond-

specific feature. These results also indicates the promising potential of CTD for the 

diagnosis or differentiation of sites of unsaturation in lipids, or further possible extension 

into other biomolecules with unsaturated olefinic chains, such as fatty acids methyl esters 

(FAMEs). 
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Figure 4.7. Zoomed-in regions from m/z 530-750 of CTD spectra of (a) [9E-DOPC+H]+ 
(18:1/18:1); (b) [9Z-DOPC+H]+ (18:1/18:1). The orange font shows the CnH2n-2-type 
losses and their tentative assignments. 
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In contrast to the CTD spectra of POPC and PSPC, CTD spectra of 9E- and 9Z-

DOPC show a unique neutral losses, including: m/z 508 (-C20H38), m/z 522 (-C19H36), m/z 

536 (-C18H34), m/z 550 (-C17H32), m/z 564 (-C16H30) and m/z 578 (-C15H28) (orange font in 

Figure 4c, 4d, 5a and 5b). The tentative assignments are shown in parentheses, above. 

This type of CnH2n-2 neutral loss is consistent with the observation in EID experiments, 

which could be attributed to the mutual cleavages of both unsaturated acyl chains [39].  

Figure 4.8 compares the unique doubly charged ion series in CTD of [9E-

DOPC+H]+and [9Z-DOPC+H]+, which shows a peak spacing of 7.0 Da instead of 14.0 

Da. To our best knowledge, this 7.0 Da-ladder pattern was rarely reported in gas-phase 

ion activation experiments. Nevertheless, this pattern was also observed in MAD spectra 

of 9E- and 9Z-DOPC [141], again suggesting a significant mechanistic similarity 

between CTD and MAD. The doubly charged ion series almost covers the entire acyl 

chain. 9E- and 9Z-DOPC spectra not only exhibit a similar extent of chain cleavage, but 

also show a similar fragment ion intensity distribution. Noticeably, the most abundant 

peaks are at m/z 330 and m/z 337 corresponding to cleavages at or next to the site of 

unsaturation in both lipids.  
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Figure 4.8. Zoomed-in regions from m/z 265-380 of CTD spectra of: (a) [9E-DOPC+H]+ 
(18:1/18:1); (b) [9Z-DOPC+H]+ (18:1/18:1). 
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In the spectrum for 9E-DOPC (Figure 4.8a), the peak at m/z 330 is more abundant 

than m/z 337; while in 9Z-DOPC spectrum, the trend appears to be reversed. The 

variation in fragment ion intensities seems to be sensitive to the geometry of double bond. 

Since 9E- and 9Z-DOPC only differ in double bond geometry, identical fragments are 

generated for both lipids. Given the similar dissociation pattern and lack of diagnostic 

fragments, the most common way to discriminate them is to track the changes in relative 

abundances of certain fragments. This concept has been reported and utilized in the 

differentiation of geometrical isomers of FAMEs using low-energy electron ionization 

mass spectrometry [150]. 

4.3.4 CTD: Sphingomyelin and DAPC 

Figure 4.9 shows the comparison between CTD and CID spectra of protonated 

sphingomyelin. Collisional activation of sphingomyelin produces very few fragments: 

m/z 184.0, associated with phosphocholine head group loss, and m/z 713.6, associated 

with a neutral water loss [141]. The inefficiency of CID in producing structurally 

informative fragments is consistent with literature reports [7, 147, 151].  

However, CTD of the same precursor of sphingomyelin is capable of producing a 

few additional fragments, including a characteristic charge-increased product ion 

([M+H]2+�) at m/z 365.9 and two fragments at m/z 447.4 and m/z 491.4 corresponding to 

the entire acyl chain losses. These distinctive product ions are only observed in CTD and 

not observed in MAD of the same species [141]. Sphingomyelin is structurally different 

from the other tested phospholipids: one fatty acyl group is alkylated to the lipid 

backbone, with the other fatty acyl group being connected to sphingosine via an amide 
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bond [147]. The absence of the two ester-connections could possibly make a less “fragile” 

molecule, resulting in a less efficient dissociation pattern of MS/MS techniques.  

 

 
 
Figure 4.9. (a) CID spectrum of [SM+H]+ (d18:1/18:0). (b) CTD spectrum of [SM+H]+ 
(d18:1/18:0). 
 

CID and CTD spectra of [DAPC+H]+ are shown in Figure 4.10. Upon collisional 

activation, [DAPC+H]+mainly produces fragments corresponding to head group loss, sn-

1/sn-2 fatty acid and alkyl ketene losses, which is quite similar to the pattern of CID of 

[9E-/9Z-DOPC+H]+. CTD of DAPC produces the same cleavages, but also produces 1+ 

and 2+ fragments in the vicinity of the four double bonds. The charge-increased product 

ion [M+H]2+�at m/z 415.4 was generated, as was the case for all the examined 

phospholipids. The zoomed-in region from m/z 500 to 850 shows a relatively poor S/N 

ratio, which is inferior to that of MAD spectrum [141]. Consistent with MAD of DAPC, 

CTD of DAPC also produces quite limited cleavages. The rationale offered in MAD 

experiment [141] could possibly account for this inefficient fragmentation of CTD too. 
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Figure 4.10. (a) CID spectrum of [DAPC+H]+ (20:4/20:4). (b) CTD spectrum of 
[DAPC+H]+ (20:4/20:4). (c) Zoomed-in region of CTD spectrum of [DAPC+H]+ 
(20:4/20:4). 
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4.4 Conclusions 

Charge transfer dissociation mass spectrometry (CTD-MS) has previously been 

shown as a promising alternative for structure interrogation of gas-phase peptide ions and 

complex carbohydrates [136]. Herein, we report CTD-MS on a different set of 

biomolecules—phospholipids, gives rise to helpful CID-like fragments, but also produces 

extensive dissociation within lipid acyl chains, which provides information that is not 

achievable through CID. The additional structural information includes the CC double 

bond positioning, and possible the stereochemistry. Importantly, the diagnostic spacing of 

ion pairs is preserved across a range of lipids with varying acyl chain lengths and number 

of CC double bonds. If tested on a larger pool of lipids, CTD could be exploited to probe 

the structure of other classes of lipids or to the gas phase chemistry of other biomolecules. 

The quite poor signal to noise and spectral complexity make CTD less appealing than 

OzID or other radical-induced methods, but improvements in efficiency and signal to 

noise could make CTD more appealing for lipid analysis in the future. 
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CHAPTER 5: MULTISTAGE MASS SPECTROMETRYOF PHOSPHOLIPIDS USING 
COLLISION-INDUCED DISSOCIATION (CID) IN TANDEMWITH METASTABLE 

ATOM-ACTIVATED DISSOCIATION (MAD) 

 
Reproduced in part with permission from Pengfei Li, William D. Hoffmann, Glen P. 
Jackson, Int. J. Mass Spectrom. 2016, 403, 1 – 7. 
 

5.1 Introduction 

Lipids are the major building blocks of cellular membranes and possess crucial 

relevance in signal transduction and the storage of energy in biological systems [88]. 

Changes in lipid profiles and distribution are found to be closely related to many 

pathological conditions such as Alzheimer’s disease, Down syndrome, and diabetes [6]. 

Because of the biological relevance of lipids in organisms, substantial efforts have been 

devoted to the study of lipids or lipidomics [3, 152]. 

Mass spectrometry is a powerful method that has become an indispensable tool in 

the study of biomolecules. Mass spectrometric applications in lipid analysis started with 

electron ionization mass spectrometry (EI-MS) [153, 154]and fast atom bombardment 

mass spectrometry (FAB-MS) [155], before matrix-assisted laser desorption ionization 

mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-

MS) became available in the 1990s [6, 156]. Being soft ionization techniques, MALDI 

and ESI analysis of phospholipids exhibits a sensitivity 2 to 3 orders of magnitude greater 

than that achieved by FAB-MS [156]. 

The aforementioned soft ionization techniques excel in preserving intact 

molecular ions, at the expense of useful structural information, i.e. molecular ions but no 

fragment ions. To enhance the structural information, tandem mass spectrometry (MSn) 

experiments are often performed. As the most widely used tandem MS method, collision-
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induced dissociation (CID) has been widely used in structural elucidation of lipids[121, 

156-159]. CID-based mass spectra of phospholipids are typically dependent on the adduct 

form of precursor ion: i.e. the CID spectrum of protonated adducts are dominated by a 

phosphocholine ion at m/z 184, whereas CID of alkali metal-adducted ions produces 

several fragment ions that allow elucidation of the identities and positions of fatty acid 

substituents [157]. CID of proton bound dimers has recently been shown to distinguish 

cis and trans isomers of double bonds, in addition to their position in the acyl chains 

[160].  

In addition to CID, other methods of tandem mass spectrometry—such as post 

source decay (PSD) [161], ozone induced dissociation (OzID) [43, 44, 128, 130, 162, 

163]—have also been applied in lipid analysis. In OzID, mass-selected lipid cations are 

exposed to ozone vapor to initiate the gas-phase ion-molecule reaction. Ozonolysis 

results in diagnostic fragment ions that can unambiguously identify C=C double bond 

location(s). Radical-involved fragmentation methods, such as infrared multiphoton 

dissociation (IRMPD) [40], ultraviolet photodissociation (UVPD) [164], electron transfer 

dissociation (ETD) [165] and electron impact excitation of ions from organics (EIEIO) 

[38] were also recently employed in the characterization of glycerolipids. These high 

energy and radical-based methods typically activate more pathways than even electron, 

low energy rearrangements, so provide complementary fragments to conventional CID 

[166]. 

Metastable-atom activated dissociation (MAD) is another developing tandem MS 

fragmentation method [25, 28, 31, 32, 137, 167, 168]. To date, MAD has been used in a 

variety of studies concerning peptide structures, including multiply charged cations and 
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anions, 1+ cations, phosphorylated cations, disulfide bonds, to cleave the amide ring 

structure of proline and to differentiate isoleucine from leucine [31, 32, 137]. In addition 

to fragmenting peptides, MAD has recently been carried out on lipid cations [169]. In 

contrast to CID, which exclusively proceeds through even-electron mechanism, MAD 

produces both even-electron and odd-electron fragments.  

To explore the unique features of MAD, we herein demonstrate the ability to 

acquire CID spectra of radical cations that are independent of the charging adduct ions.  

Isolated, even-electron adduct ions ([M+H]+, [M+Na]+, [M+K]+) are first converted to 

odd-electron molecular ions [M]+� through MAD. Low-energy collisional activation of 

the isolated radical cations ions then induces extensive fragmentation along the acyl 

chains of the lipids through mechanisms that are not achievable from CID of even-

electron precursor ions. Distinctive radical fragments are also observed and described, 

which illustrate the potential utility of this type of gas-phase ion manipulation. 

5.2 Experimental 

5.2.1 Instrumentation 

All experiments were performed on a modified Bruker amaZon ETD mass 

spectrometer (Bruker Daltonics, Bremen, Germany). The modification method, the 

connection between electronic components and the working principle are described 

elsewhere[137, 169].  

5.2.2 Materials 

The lipid used in this study was 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-

3-phosphocholine PC(16:0/18:1(9Z)), which is abbreviated as POPC. POPC was diluted 

to a final concentration of 60 µM using a 9:1 (v/v) mixture of methanol to water 
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containing 1% (v/v) acetic acid for protonated form or 0.05 M NaCl (or KCl) for metal-

adducted form. Ultra high purity helium (Airgas, Parkersburg, WV) was used with the 

FAB gun and further purified using a noble gas purifier (HP2, VICI, Houston, TX). 

5.2.3 Method 

Singly charged lipid precursor ions were generated through electrospray 

ionization (ESI) using an electronic syringe pump (#1725, Hamilton Company Reno, 

Nevada, NV) with a flow rate of 160 µL/h. The ion of interest was isolated using an 

isolation window of 4 Da before exposing them to the helium metastable beam. The low 

mass cut off (LMCO) during MAD was typically m/z 155 to prevent the accumulation of 

Penning ionized pump oil. The metastable beam was pulsed on for 30ms at an anode 

voltage of 7 kV. The FAB gun is attached to the main vacuum chamber lid, so the FAB 

gas pressure is indirectly measured by reading on the pressure monitor of the ion trap 

gauge in the main vacuum region. In all the experiments, the FAB gas supply was 

adjusted to provide a reading of ~1.20×10-5 mbar. 

A typical MS2 MAD experiment included 0.5 minutes of isolation of precursor 

ion, 2 minutes of He-MAD of the precursor ion and 0.5 minutes of He-MAD background 

signal (ESI source off while MAD source on). A typical MS3MAD/CID experiment 

consisted of an additional 0.5 minutes of isolation of precursor ion at MS3 stage and 4 

minutes of CID reaction at MS3 stage with an amplitude of 0.35V. AnMS2 CID 

experiment included 0.5 minutes of isolation of precursor ion and 4 minutes of CID 

reaction. All the mass spectra collected during the isolation period or fragmentation 

period were averaged to improve the signal to noise ratio (S/N). The averaged 
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fragmentation spectra additionally underwent background subtraction for the removal of 

unwanted background noise. 

5.3 Results and Discussion 

5.3.1 MAD of POPC in Protonated, Sodiated and Potassiated Forms 

Figure 5.1 shows the Helium MAD (He-MAD) spectra of the protonated, sodiated 

and potassiated forms of POPC. Upon the interaction with metastable helium atoms, the 

protonated form of POPC produces a variety of cleavages along the acyl chains. The 14 

Da increments resemble high-energy CID (HE-CID) spectra, which suggests that a 

charge-remote-like mechanism is taking place in this process [169-171]. Conversely, 

MAD of the metal-adducted forms rarely cleaves the acyl chains, but instead forms 

abundant fragment ions arising from the glycerol backbone and head group. These results 

show how the adducting species of the precursor ion has a significant influence on the 

MAD fragmentation patterns, as has been observed qualitatively for CID of 

phosphocholines [158, 159]. Relative to the protonated precursor, the presence of metal 

adducts (i.e. Na+ or K+) appears to restrict the number of fragments within the acyl chains 

(i.e. in the region m/z 550-750). 

He-MAD spectra of all the three forms show a predominant peak at m/z 184.0 (or 

184.1), corresponding to the formation of the low-energy phosphocholine ion [159]. 

Distinctive peaks at m/z 380.2 and 391.5 are observed from both protonated and sodiated 

forms of POPC, respectively, which are the characteristic 2+ Penning ionized product 

ions [137, 169]. The 2+ Penning ionized product is not observed in the He-MAD 

spectrum of potassiated POPC. 
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Figure 5.1. He-MAD spectra of (a) protonated form of POPC, (b) sodiated form of 
POPC, (c) potassiated form of POPC. Insets show possible cleavages and theoretical 
masses for fragmentations without hydrogen rearrangements. 
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In the He-MAD spectrum of protonated POPC, ions at m/z 478.4, 496.5 and 521.4 

are also observed, which correspond to the loss of the sn-2 fatty acid (18:1, -282 Da) as 

well as the loss of acyl chains as ketenes from sn-2 (18:1, -264 Da) and sn-1 (16:0, -

239Da) positions, respectively. These fragments are commonly observed in low energy 

CID experiments [159], but also observed in the lipidomic analysis using a LC-MSE 

approach [172]. He-MAD of metal-adducted POPC produces similar sn-1 and sn-2 

cleavages as well. In addition, MAD product ions corresponding to two covalent 

cleavages are also observed, such as the simultaneous loss of the sn-2 acyl chain and 

either trimethylamine (N(CH3)3) or phosphocholine head group for both sodiated and 

potassiated POPC. 

He-MAD of the sodiated and potassiated precursors of POPC both give strong 

molecular ions at m/z 759.6. The [POPC]+� molecular ion is not readily observable in the 

product ion spectrum of the protonated precursor, which could be due to several reasons: 

1) the mass resolution is compromised because of the space charge effects of the 

abundant precursor ion at m/z 760.6 [1], and 2) the loss of a hydrogen is far less favorable 

than the loss of sodium or potassium. Although the product at m/z 759.6 ([POPC]+�) is 

obscured by the more-dominant ([POPC+H]+) at m/z 760.6 in the He-MAD spectrum of 

[POPC+H]+, the product ion at m/z 759.6 could be effectively isolated using the standard 

isolation procedure of the Bruker ion trap. Mass isolation uses slower scan speeds than 

mass acquisition, so achieves superior mass resolution. Evidence for the formation of 

[POPC]+� from [POPC+H]+, via the loss of H�, is presented in Figure 5.2a. The reaction 

presumably proceeds via the following mechanism: 

𝐻𝑒! +    [𝑃𝑂𝑃𝐶 + 𝑋!]!   → 𝐻𝑒! + 𝑃𝑂𝑃𝐶!⋅ + 𝑋⋅ !∙∙ → 𝑃𝑂𝑃𝐶!⋅ + 𝑋⋅ (1) 
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where X = H, Na or K; 𝐻𝑒! is the helium metastable atom and 𝐻𝑒! is the helium ground 

state atom. In reaction 1, the electron released from Penning ionization of the lipid is 

effectively captured by the charging cation, which subsequently dissociates because of 

the significantly reduced bond strength.  

Reaction (1) is also in competition with straightforward Penning ionization 

product shown in reaction (2): 

𝐻𝑒! +    [𝑃𝑂𝑃𝐶 + 𝑋!]!   → 𝐻𝑒! + 𝑃𝑂𝑃𝐶!⋅ + 𝑋! !!⋅ + 𝑒! (2) 

The 2+ product ions of reaction (2) are a prominent feature in the He-MAD 

spectra when X = H+ and Na+, but is not observed when X = K+. The preference for 

reaction (1) vs. reaction (2) is probably dependent on the combined effects of electron 

affinity, electron capture cross section and bonding energy.  The potassiated adduct 

clearly favors internal electron capture through reaction (1), despite the fact that it has the 

lowest electron affinity of the three cations. At present, we can only speculate that the 

binding energy of the cations is a dominant factor in these reactions [173] and 

conformational differences being a possible secondary factor [174]. Potassium has the 

lowest binding affinity for POPC of the three cations and is most readily lost [173].  

Isolation and collisional activation of 𝑃𝑂𝑃𝐶!⋅ + 𝑁𝑎! !!⋅ at m/z 391.5 resulted in 

charge separation and a dominant radical molecular ion of [POPC]+� at m/z 759.6, as 

shown in reaction (3). 

𝑃𝑂𝑃𝐶!⋅ + 𝑁𝑎! !!⋅         !"#         𝑃𝑂𝑃𝐶!⋅ + 𝑁𝑎!  (3) 

Collisional activation of the protonated radical dication at m/z 380.2 yielded many 

abundant fragments, but did not provide the radical molecular ion through reaction (3). 

These observations indicate that a variety of competing reactions occur during He-MAD, 
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and the adducting cations show evidence of both capturing and not capturing the free 

electron from Penning ionization of the lipid. Potassium seems to have the largest 

electron capture cross section despite its smallest electron affinity. 

5.3.2 MAD-MS3 CID of POPC in Protonated, Sodiated and Potassiated forms 

Figure 5.2a shows the isolated [POPC]+� product peak at m/z 759.6 following He-

MAD of [POPC+H]+. The observation of a “companion” product ion at m/z 791.5 in the 

isolation spectrum of [POPC]+� is evidence for the oxidation of the radical cation with 

background oxygen in the trap. McLuckey and coworkers have documented the enhanced 

reactivity of radical peptide cations towards oxidation with residual oxygen [175]. The 

observation of ([POPC]�+O2)+ ion is indicative of a distonic radical ion structure for a 

certain population of [POPC]+�, in which the radical is distributed among a variety of 

locations that are “far” away from the charge site. Scheme 1 shows 4 examples of the 

possible isomeric structures of [POPC]+� ion. Blanksby and coworkers [135, 166] have 

reported the study of lipids and fatty acid derivatives using radical-directed dissociation 

(RDD), in which a variety of radical sites were proposed to rationalize various fragments 

arising from radical-directed processes, e.g. isomeric structure (1) rationalizes the 

formation of the fragment at m/z537.5; isomeric structure (2) rationalizes the fragment at 

m/z 550.5; (3) and (4) are consistent with the formation of fragment ion pair at m/z 632.5 

(α-allylic H-abstraction pathway) and m/z634.4 (ω-allylic H-abstraction pathway), vide 

infra [135, 166]. 
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Figure 5.2. Panel (a): Example of an isolation spectrum for the [POPC]+� cation at m/z 
759.6 from He-MAD of protonated form of POPC. Inset in panel (a) shows the magnified 
spectrum of the m/z range of interest. Panel (b): Waterfall plot to show the similarities of 
the MS3 CID spectra of the same intermediate in panel a from the protonated, sodiated 
and potassiated forms of POPC. 
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Scheme 5.1. Examples of possible isomeric structures of radical ion at m/z 759.6. 
 

Different from their adducted parent ions, intermediates at m/z 759.6 produce 

almost indistinguishable fragmentation patterns at the MS3level of fragmentation, 

regardless of whether the intermediate originates from the protonated, sodiated or 

potassiated forms of POPC (Figure 5.2b). The similarities in the CID spectra of the m/z 

759.6 intermediate indicate that the intermediates are constitutionally similar radical 

cations. Whereas the adduct ions clearly affect the distribution of first-generation 

fragment ions in MAD (Figure 5.1), the isolated [POPC]+� ions produced via MAD 

apparently have almost no memory of the original adducting species.  

5.3.3 MAD-MS3 CID of [POPC+Na]+ vs. MAD of [POPC+H]+ 

Figure 5.3a is a magnification of the MAD spectrum of sodiated POPC in Figure 

5.2b and serves as an exemplar CID spectrum of [POPC]+� (m/z 759.6). Figure 5.3b 

shows the He-MAD spectrum of [POPC+H]+ (m/z 760.6), without CID. The two spectra 

are similar in that they both display fragmentation within the acyl chains, but distinct in 

that the relative abundance distribution of fragments is vastly different. The series of 

peaks labeled in black font from m/z 646.5 through 730.5 show clear 14 Da increments, 

and both acyl chains can contribute to these fragment ions. The double bond at the Δ9 
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Figure 5.3. MS3 CID spectrum of [POPC+H]2+�derived from He-MAD of protonated 
POPC is shown in panel (a). The m/z ranges of interest are magnified and shown in panel 
(b) and (c). 
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 position of the sn-2 acyl chain makes the acyl fragments differ in mass below m/z 646.5, 

so the fragments can be linked to each acyl chain. For example, the fragments labeled in 

blue font correspond to the losses from the saturated sn-1 chain, and the fragments 

labeled in green are for the unsaturated sn-2chain. This very pattern has also been 

observed in EIEIO spectra of phosphatidylcholines reported by Baba and coworkers [cite 

new EIEIO of lipids]. For the saturated sn-1 chain, the near complete fragmentation 

pattern was highly analogous to that of collisional activation of [FAMEs]+� derived from 

EI [176]. The only difference lies in the lack of cleavage of the C4-C5 bond and the 

appearance of McLafferty rearrangement-type fragment at m/z 563.4. For the unsaturated 

sn-2 chain, alkylene moiety fragments at m/z 620.5 and 632.5 are characteristically 

spaced by 12 Da, while the rest of the acyl chain fragments exhibit a spacing of 14 Da. 

This diagnostic feature (the discrepancy in spacing between fragment derived from 

saturated and unsaturated moieties) serves an unambiguous identification of the double 

bond location, which has been long and widely utilized in elucidating unsaturation and 

branching sites in lipids and fatty acid derivatives [135, 166]. An interesting fragment ion 

pair at m/z 632.5 and 634.4 was observed, corresponding to 127 Da neutral loss of 

saturated �C9H19 and 125 Da neutral loss of unsaturated �C9H17) radicals respectively. The 

similar “doubled peak” pairs have been reported in the study using RDD for 

differentiation of lipid isomers, the formation of which has been rationalized via 1,4-

hydrogen transfer, 1,6-elimination and β-scission [135, 166]. 

The MS3 CID spectrum of [POPC]+� is dominated by fragments of the sn-2 

unsaturated chain, including peaks at m/z 477.4, 478.5, 550.5 and 606.6. The peak at m/z 

550.5 is consistent with a 1,4-hydrogen shift and gamma cleavage relative to the sn-2 
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carbonyl group (Scheme 5.2). The peak at m/z 537.5 originated from McLafferty 

rearrangement of the proposed radical structure (2) in Scheme 5.1. The corresponding 

fragmentation pathway is shown in Scheme 5.3 and equation (4). The two similar 

products from the saturated acyl chain in the sn-1 position were observed as well (m/z 

576.4 and m/z 563.4). 

 
Scheme 5.2. Proposed fragmentation pathways for the formation of product ion at m/z 
550.5. 
 

 
Scheme 5.3. Proposed fragmentation pathway for the formation of product ion at m/z 
537.5. 
 

𝑃𝑂𝑃𝐶! + 𝑁𝑎!
        !"#        

< 𝑃𝑂𝑃𝐶!⋅ + 𝑒! +   𝑁𝑎! >
        !"#        

𝑃𝑂𝑃𝐶!⋅ + 𝑁𝑎∙ (4) 

In contrast to CID of the radical ion [POPC]+�, the He-MAD spectrum of 

[POPC+H]+ shows dominant sn-1 and sn-2 glycerol backbone cleavages at m/z 496.5 and 

521.4, which have been described elsewhere [169]. It is noteworthy that the MS3 He-
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MAD/CID spectrum in Figure 5.4a has superior signal-to-noise ratio than the MS2 He-

MAD spectrum in Figure 5.4b. The MS3 He-MAD/CID spectrum selectively promotes 

radical-induced fragmentations over background noise and competing 

mechanisms/pathways. 

 

 
Figure 5.4. Magnified spectra of (a) MS3 CID of radical cation at m/z 759.6 from He-
MAD of sodiated form of POPC, (b) He-MAD of protonated form of POPC. 
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5.3.4 MAD-MS3 CID of [POPC+Na]+ vs. CID of [POPC+H]+ 

Figure 5.5 compares a CID spectrum of the radical cation of POPC with a CID 

spectrum of even-electron [POPC+H]+ cations at two different amplitudes. Using a CID 

amplitude of 0.35 V, the odd-electron [POPC]+� precursor produced near-complete 

fragmentation of the lipid (as discussed in Figs 5.2 and 5.3). However, using the same 

CID amplitude of 0.35 V, the even electron [POPC+H]+ precursor only produced two 

weak product ions: the loss of trimethylamine (N(CH3)3) and the loss of entire head group. 

Using a CID amplitude of 0.38 V (Fig 5.4c), the even-electron [POPC+H]+ ion 

dissociated into more fragment ions with better efficiency, but with a significantly 

different distribution of product ions from the radical intermediate. When subjected to 

collisional activation, the odd-electron ion clearly has a significantly lower activation 

barrier than the even-electron precursor. Similar differences in collisional activation 

energies have been observed for the radical [M+2H]+� precursors versus even-electron 

[M+H]+ precursors of peptide ions [177]. 
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Figure 5.5. (a) MS3 CID spectrum of the radical cation at m/z 759.6 from He-MAD of 
sodiated POPC ([POPC+Na]+); (b) CID spectra of protonated form of POPC 
([POPC+H]+) with the same activation voltage (0.35 V)* as that in (a); (c) same as (b), 
but with higher activation voltage (0.38 V). *See experimental for details. 
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Figure 5.6 shows the magnified mass spectra of both MS3 CID of [POPC]+� and 

CID of [POPC+H]+. When starting with even-electron precursor [POPC+H]+ (Fig 5.6b), 

CID only produces even mass even electron fragments in this region. The commonly 

observed fragments at 478.4 and 496.4 are from sn-2 cleavages and the fragments at m/z 

504.4 and 522.4 are from sn-1 cleavages. CID of the radical precursor [POPC]+� provides 

similar cleavages around sn-1 and sn-2 positions, but with the presence of odd 

mass/radical fragments. In the case of potassiated and sodiated POPC, the more 

complicated spectra and poorer signal to noise ratios in the MS3 spectrum makes 

conventional CID a superior tool for assessing the acyl chain lengths and degrees of 

unsaturation. However, the ability to first convert the protonated, sodiated and potassiated 

precursor ions to a generic radical molecular ion intermediate, then perform CID to 

fragment within the acyl chains provides a rather unique gas-phase ion manipulation tool 

for the structural interrogation of phospholipids. 
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Figure 5.6. Magnified mass spectra corresponding to (a) MS3 CID of [POPC]+� from 
MAD of sodiated POPC, (b) CID of [POPC+H]+. 
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CHAPTER 6: APPLICATION OF CHARGE TRANSFER DISSOCIATION (CTD) TO 
OTHER BIOANALYTICAL STUDIES 

6.1 Charge Transfer Dissociation (CTD) of Lipids with Varying Head Groups 

6.1.1 Introduction 

Due to the critical biological relevance of phospholipids, enormous efforts have 

been put into the development and application of novel techniques and methodologies for 

obtaining their structural information (see Chapters 2 and 4). In addition to phospholipids, 

researchers have also investigated the structural analysis of lipids with other head groups, 

which have different biological and biochemical functions. Hsu and Turk showed that the 

lipid head group greatly affects CID fragmentation pattern in low-energy collision-

induced dissociation experiments [36, 122]. McLuckey and coworkers made use of 

differential reactivity of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) 

during a gas-phase ion/ion reaction to successfully separate the two lipid classes into 

distinct m/z ranges. The ability to manipulate the charge state of the lipid class according 

to their head group significantly improved the signal-to-noise (S/N) ratio for the detection 

of PCs and PEs [132]. Performance evaluation of charge transfer dissociation (CTD) on 

phosphocholine (PC) lipids was presented in Chapter 4, so this chapter is solely devoted 

to the investigation of CTD behavior of lipids with other head groups— phosphatidic 

acid (PA), phosphatidylserine (PS), phosphatidylglycerol (PG) and phosphatidylinositol 

(PI). 

6.1.2 Experimental 

The instrumentation and acquisition method were the same as detailed in Chapter 

4. 
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All the lipids used in this experiment were purchased from Avanti Polar Lipids 

(Alabaster, AL). The involved lipids and their shorthand designations are as follows: L-α-

phosphatidic acid (Egg, Chicken) (sodium salt)—PA, L-α-phosphatidylserine (Brain, 

Porcine) (sodium salt)—PS, L-α-phosphatidylglycerol (Egg, Chicken) (sodium salt)— 

PG, and L-α-phosphatidylinositol (Soy) (sodium salt)—PI. Lipid analytes were prepared 

at a concentration of ~60 µM in a solution of 49.5/49.5/1 (v/v/v) methanol/water/acetic 

acid or 49.5/49.5 (v/v) methanol/water with NaCl (final concentration aiming at ~1×10-

3mol/L) prior to positive electrospray ionization (ESI). 

6.1.3 Results and Discussion 

Figure 6.1 shows the structures of lipids that were subjected to CTD experiments 

in this section. To investigate the relationship between the adducting form of precursor 

ions and CTD fragmentation pattern, three adducting forms of PA solutions was prepared 

by adding acetic acid to protonate PA or sodium chloride to form the sodiated adduct. 

The three adduct species studied were [PA-Na+2H]+, [PA+H]+, and [PA+Na]+. 

After being directly infused into the Bruker mass spectrometer, the three adducting forms 

were mass-selected respectively, with each being exposed to collisional activation or 

Helium CTD. The corresponding MS/MS spectra are presented in Figure 6.2. CID of PA 

hardly produces any fragment ions, regardless of the charging adduct, except for a few 

cleavages solely on the glycerol backbone. For [PA-Na+2H]+ and [PA+H]+, CID broke 

the same C3-O bond, inducing an entire head group loss. For [PA+Na]+, CID broke the 

C1-O and C2-O bonds, inducing the entire sn-1 and sn-2 acyl chain losses. 
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Figure 6.1. The structure of lipids involved in this study. 
 

Different from the CID results, CTD produced a more enriched fragmentation 

pattern of the three adducting forms. CTD not only produced cleavages on the glycerol 

backbone, but also generated cleavages on the two acyl chains. The extent of acyl chain 

cleavage is dependent on the adducting form. Most cleavages were observed on [PA+H]+, 

whereas fewer cleavages were observed for [PA+Na]+. In addition to these fragment ions, 

a characteristic charge-increased product ion ([PA+H]2+�) was observed in the 

[PA+H]+spectrum. This product originates from gas-phase oxidation, which was also 

observed in CTD of peptides (Chapter 2), CTD of bovine insulin (Chapter 3), and CTD 

of phosphocholine (PC) lipids (Chapter 4). 
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Figure 6.2. CID spectra of lipid PA: (a) [PA-Na+2H]+, (c) [PA+H]+, (e) [PA+Na]+. CTD 
spectra of PA: (b) [PA-Na+2H]+, (d) PA+H]+, (f) [PA+Na]+. The insets show possible 
fragment ions assuming no hydrogen rearrangements. 
 

Given that the protonated-adducting form produced the most cleavages under 

CTD, the following CID/CTD examinations on PS, PG, and PI were all preformed on the 

protonated form of each lipid. The corresponding MS/MS spectra are shown in Figure 6.3, 

Figure 6.4, and Figure 6.5. 
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CID of [PS+H]+ (Figure 6.3a) produced three cleavages around the lipid head 

group. The fragment ion at m/z 645.5 was accompanied by two fragment ions at m/z 

627.5 (645.5-H2O) and at m/z 605.5 (645.5-Na-H2O). CTD of [PS+H]+ (Figure 6.3b) 

 

 

 
Figure 6.3. (a) CID spectrum of [PS+H]+; (b) CTD spectrum of [PS+H]+. 
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produced two cleavages around the lipid head group, which are analogous to the CID 

spectrum. The fragment ion pair at m/z 627.5 and at m/z 604.5 (627.5-Na) shows 

consistency with that observed in the CID spectrum. 

CID of [PG+H]+ (Figure 6.4a) produced two cleavages around the lipid head 

group. Similar to the CID spectrum of [PS+H]+, a fragment ion set at m/z 617.6, m/z 

599.6 (617.5-H2O), and at m/z 577.6 (617.5-Na-H2O) were also observed. CTD of 

[PG+H]+ (Figure 6.4b) produced one cleavage on the glycerol backbone as well as 

several cleavages on the lipid acyl chains, which greatly differs from CTD spectrum of 

[PS+H]+. Consistent with CTD spectrum of [PA+Na]+, the gas-phase oxidation product 

ion at m/z 385.0 ([PG+H]2+�) was observed, which confirms the oxidative mechanism is 

occurring. 
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Figure 6.4. (a) CID spectrum of [PG+H]+;(b) CTD spectrum of [PG+H]+. 
 

Analogous to CID results of [PS+H]+ and [PG+H]+, CID of [PI+H]+ (Figure 6.5a) 

produced two cleavages around the lipid head group, along with a fragment ion set at m/z 

615.6, m/z 597.6 (615.6-H2O), and at m/z 575.6 (615.6-Na-H2O). Similar to CTD of 

[PG+H]+, CTD of [PI+H]+ (Figure 6.5b) also produced one cleavage on the glycerol 
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backbone as well as a few cleavages on the lipid acyl chains. In agreement with CTD 

spectra of [PA+Na]+ and [PG+Na]+, the gas-phase oxidation product ion at m/z 429.0 

([PI+H]2+�) was also observed.  

 

 

 
 

Figure 6.5. (a) CID spectrum of [PI+H]+; (b) CTD spectrum of [PI+H]+. 
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6.2 Charge Transfer Dissociation (CTD) of a Methylated Oligosaccharide 

6.2.1 Introduction 

One important aspect of oligosaccharides are that they comprise one of the most 

widespread post-translational modifications, including glycolipids, glycoproteins, etc. [52] 

Due to the critical biological relevance of oligosaccharides, researchers have developed a 

variety of strategies for their structural elucidation. Tandem mass spectrometry (MS/MS) 

is one of the fastest-developing techniques to fulfill this purpose.  

As the most widely used MS/MS technique, low energy collision-induced 

dissociation (LE-CID) has been widely applied for characterization of oligosaccharides. 

LE-CID mainly produces between-ring cleavages, and its performance generally 

deteriorates with increasing oligomer size. Another drawback of LE-CID is the lack of 

cross-ring cleavages of oligosaccharides, which greatly limits the obtainable information 

regarding to branching pattern between the subunits [52]. LE-CID also tends to provide 

internal fragments, such as the loss of sugar residues form the reducing and non-reducing 

termini of the chain. LE-CID also results in abundant water losses and modification 

losses, such as methylated or sulfated groups. 

To combat these issues with CID, photon-based and electron-based techniques 

have been investigated in detail. Using 193 nm ultraviolet photodissociation (UVPD), 

extensive between-ring and cross-ring cleavages are observed, along with double-

cleavages, which provides valuable information for identification of oligosaccharides 

[52]. Electron detachment dissociation (EDD) produces abundant glycosidic and cross-

ring cleavages, along with sufficient information for locating sites of sulfation [178].  
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Charge transfer dissociation (CTD) is a newly emerged MS/MS strategy, and has 

been successfully employed for the structural characterization of peptides and 

phospholipids. To assess its performance upon other biomolecules, an oligogalacturonan 

(DP5DM3) was subjected to a beam of helium cations. The resulting CTD spectra were 

discussed and compared with that of LE-CID and extreme ultraviolet photodissociation 

(XUVPD) in the following section [114]. 

6.2.2 Experimental 

The XUVPD spectrum was collected by our collaborator, Dr. David Ropartz 

(INRA, UR1268 Biopolymers Interactions Assemblies, F-44316 Nantes, France). His 

group used a modified linear ion trap mass spectrometer (LTQ XL, Thermo Fisher), 

which was coupled with a synchrotron beamline at the SOLEIL synchrotron radiation 

facility in France. The LE-CID spectrum was also acquired on the same linear ion trap 

instrument. The experimental setup is detailed elsewhere [114]. 

The oligogalacturonan (DP5DM3) was provided by Dr. David Ropartz. A 

concentration of 10 µg/mL analyte solution was directly infused into the mass 

spectrometer, and all the resulting spectra were averaged for further analysis. 

6.3.3 Results and Discussion 

LE-CID mainly generated between-ring cleavages along the straight oligomer 

chain, most of which corresponds to fragments containing the reducing end of the 

oligosaccharide, as shown in the top panel of Figure 6.6. LE-CID only produced five 

cross-ring cleavages, three of which are 0,2X fragment ions. Similar fragmentation pattern 

has been observed in CID results reported by Brodbelt et al. [52], Rogniaux et al. [179], 

etc. The lack of cross-ring fragmentation not only precludes the identification of sites of 
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post-translational modifications (PTMs), but also presents the potential limitation in 

elucidating the branching pattern of highly branched oligosaccharide samples in the 

future. 

 

 
 

Figure 6.6. MS/MS spectra and fragment maps of (top) LE-CID, (middle) XUVPD, and 
(bottom) CTD upon [DP5DM3+Na]+. Reproduced from reference [114] with permission. 
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The scenario is completely different when subjecting [DP5DM3+Na]+ to extreme 

ultraviolet photon activation at 69 nm (photon energy = 18eV) or a beam of ~6 keV 

helium cations (electron affinity = 24.6 eV). In the second and third panels of Figure 6.6, 

XUVPD and CTD spectra greatly resemble each other, but significantly differ from that 

of LE-CID. Both techniques produced an enriched cross-ring fragmentation pattern, 

along with extensive between-ring fragmentation pattern. With this feature, XUVPD and 

CTD can provide more structural information for the unambiguous identification of 

oligosaccharides. Another highlight is the significant reduced number of dual-cleavages 

(i.e. double fragmentation) during XUVPD and CTD. LE-CID spectrum shows an 

abundant fragment ion at m/z 537.1, which may originate from the simultaneous cleavage 

of 0,2A4/Y5 or 0,2A5/Y4 (Figure 6.7). This ambiguity can be completely eliminated in 

XUVPD and CTD experiments.  

 
 

Figure 6.7. The possible dual-cleavages for the generation of m/z 537.1:0,2A4/Y5 (top) and 
0,2A5/Y4 (bottom).  
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The remarkable similarity between XUVPD and CTD not only lies in the 

analogous dissociation pattern, but also lies in that fact that they produced the same 

charge-increased product ion at m/z 472.6 ([DP5DM3+Na]2+�). The former could be 

explained by the fact that they both can impart > 18 eV energy into the oligosaccharide 

precursor. The latter indicates that they could adopt similar gas-phase oxidation channel. 

  



	
   	
  

 154 

6.3 Integration of Charge Transfer Dissociation (CTD) into an Hydrogen-Deuterium 
Exchange (HDX) Workflow 

6.4.1 Introduction 

Proteins are important biomolecules for every living organism, which perform 

numerous biological functions, such as DNA replication, molecular transportation and 

biocatalysis [180]. One critical factor that ensures proteins perform these functions 

properly is their biologically active conformations. Hydrogen deuterium exchange mass 

spectrometry (HDX-MS) is one of the important ongoing strategies for the examination 

of protein conformations [181].  

As the most widely used tandem mass spectrometry (MS/MS) techniques, 

collision-induced dissociation (CID) has been included in several HDX-MS workflows 

and has achieved some positive results [182, 183]. However, due to its slow-heating 

nature, CID often facilitates hydrogen scrambling. When scrambling occurs, the 

measured deuterium uptake level is different from the “true” value, which hinders 

researchers from obtaining the original protein conformation. Electron transfer 

dissociation (ETD) [184] and electron capture dissociation (ECD) [185] are higher 

energy techniques that proceed through a “fast” process, both of which precede proton 

mobilization. Thus, they can yield the “true” deuterium uptake, and are not subjected to 

hydrogen scrambling. 

Encouraged by the high-energy and fast ion activation in CTD of peptides, 

phospholipids and oligosaccharides, we incorporated CTD into an HDX-MS workflow. 

An ETD experiment was conducted in parallel to enable a side-by-side comparison with 

CTD in this workflow. 
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6.4.2 Experimental 

Figure 6.8 shows the experimental setup for the HDX-MS workflow. Ubiquitin 

sample and related experimental supplies were provided via the collaboration with Dr. 

Gregory Donohoe and Dr. Stephen Valentine in the Department of Chemistry at West 

Virginia University (WVU, Morgantown, WV, USA). The sample preparation is 

described elsewhere [186]. 

 
 

Figure 6.8. Experimental setup for HDX-MS workflow. Reproduced from reference 
[187] with permission. 
 

CTD and ETD measurements were both performed using modified Bruker 

amaZon ETD mass spectrometer (Bruker Daltronics, Bremen, Germany), which has been 

detailed in Chapter 2. As an attempt to preserve the protein conformation, the 

temperature of ESI source and voltages on ion optics were carefully tailored according to 

reference [184]. 
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6.4.3 Results and Discussion 

The eluents from the microfluidic setup (Figure 6.8) were direct introduced into 

the modified Bruker mass spectrometer. The deuterium-labeled 

[MQIFVKTLTGKTITL+3H]3+ ions were first mass-selected at the MS2 level, then 

exposed to ETD-reagent anion or a beam of ~6 keV helium cations (CTD examination). 

The corresponding results from the two techniques were extracted and calculated using 

an in-house algorithm in the Valentine group, which establishes the extent of deuterium 

retention at each residue. The results are presented in a bar plot in Figure 6.9. The N-

terminal region of ubiquitin consists of three regions: (1) a beta-strand (residues M1-T7); 

(2) unstructured region (L8-G10); (3) second beta-strand from (G10-L15). 

 

 
 

Figure 6.9. The total deuterium content level was plotted against per residue from ETD 
(red bars) and CTD (blue bars) of deuterium-labeled [MQIFVKTLTGKTITL+3H]3+ ion 
(ubiquitin digest), respectively. Each n level was calculated from the cn-1 product ion. 
Reproduced from reference [187] with permission. 
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The ETD results (red bars) showed an excellent correspondence with the 

secondary structural confirmation of the MQIFVKTLTGKTITL sequence [183, 188]. As 

determined from the c ions, the deuterium retention started increasing from I3-T7, 

corresponding to the first beta-strand. Deuterium retention leveled off from L8-G10, 

corresponding to the unstructured region. Deuterium retention started increasing from 

K11-L15, corresponding to the second beta-strand. 

The CTD results (blue bars) showed a deuterium retention trend that is highly 

analogous to the above ETD trend. As determined by the c ions, the deuterium retention 

level in CTD is slightly lower than that in ETD in general. CTD didn’t produce any 

detectable deuterium retention (i.e. no c-ions) between at L8 and from T12-L15. However, 

CTD did produce a and x ions in this region and we are currently investigating the use of 

a ions or x ions to calculated the deuterium uptake.  Currently, for the c-ions, CTD 

exhibits deuterium retention ability that is comparable to the well-known ETD 

experiments. This strongly indicates that the potential utility of CTD in the HDX-MS 

workflow. If a and x ions are consistent with this result, CTD could offer the unique 

ability to fragment singly charged peptides in a fast process which mitigates hydrogen 

scrambling. Such a capability could open up the number and types of peptides that could 

be structurally characterized via H/D exchange. 
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6.4 Conclusions 

CTD of PA, PS, PG and PI was carried out and described in this chapter. The 

CTD pattern is highly dependent on the adducting form of the precursor lipid. Compared 

with [M-Na+2H]+ and [M+Na]+, CTD of [M+H]+ produced three times the amount of the 

fragment ions. With the same protonated lipid form, CTD of PA produced the most 

fragment ions—forming a near-complete fragmentation pattern, while CTD of PS 

produced the fewest and least abundant fragment ions. Compared with phosphocholine 

(PC) lipids in Chapter 4, CTD showed an inferior performance upon PA, PS, PG and PI. 

Nevertheless, CTD has exhibited a superior performance over CID in general, which 

presents the undeniable advantage of CTD in the MS/MS fragmentation tool kit. 

DP5DM3 was also analyzed using LE-CID, XUVPD and CTD in this chapter. 

Compared with LE-CID, XUVPD and CTD induced an enhanced array of cross-ring 

cleavages, which offers more valuable information for the structural elucidation of 

oligosaccharides. The enriched cross-ring fragmentation makes XUVPD and CTD 

superior techniques over the traditional LE-CID. A significant limitation of XUVPD is 

the strong dependence on synchrotron beam facility. Given that CTD was carried out on a 

bench-top ion trap mass spectrometer modified with a fast ion source, CTD should see a 

more widespread utilization for glycan identification in the future. 

CTD was also integrated in a microfluidic system, composed of HDX and pepsin 

digestion. CTD results showed remarkable similarity with that of ETD in maintaining the 

deuterium retention level for [MQIFVKTLTGKTITL+3H]3+ ion. This capability greatly 

facilitates the mapping of the secondary structural elements in protein conformation. This 

potential, along with the relatively low-cost instrument platform, makes CTD a powerful 
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new adjunct to the existing HDX-MS techniques, and it should find broader applications 

regarding protein conformations, folding, dynamics, and interactions. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

Collision-induced dissociation (CID), electron transfer dissociation (ETD) and 

electron capture dissociation (ECD) are the most successfully commercialized ion 

activation techniques, the implementation of which has become a “standard configuration” 

for most mass spectrometry instrumentation on market. However, they all have certain 

deficiencies for real-life bioanalytical studies, and neither one is a ‘silver bullet’. 

This dissertation demonstrates that charge transfer dissociation (CTD) is capable 

of ionizing and fragmenting gas-phase biological ions in a manner that is highly 

beneficial for their structural elucidation. In this proof of concept study, we have 

demonstrated some of the first cation-cation reactions in the gas phase and demonstrate 

intriguing features for the investigation of peptides, proteins (insulin), lipids, and 

oligosaccharide structures. We also proved a one-step two-electron oxidation mechanism 

for 5+ and 6+ insulin, but reaction with oxygen at MS4 level could not confirm the 

presence of one or two radicals on the doubly oxidized product ions. 

For peptide analysis CTD is workable with 1+, 2+, and 3+ peptide precursors, 

with excellent performance for lower precursor charge states and slight performance 

decay for higher precursor charge states. CTD of peptides produces enriched amino acid 

side-chain losses that can complement peptide-sequencing information from backbone 

fragments. The type and the number of CTD fragment ions are dependent on the 

precursor charge states; i.e. a/x ions are more dominant from 1+ precursor ions and c/z 

ions become more as the charge state increases. These differences show that different 

mechanisms are dominant for different charge states. MS3 CTD/CID experiments on 
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insulin produces enhanced structural information via the capability of cleaving disulfide 

linkages. 

For lipid analysis, CTD produces extensive fragmentation along lipid acyl chains 

with varying length and degree of unsaturation. The adducting form of lipids (protonated 

versus sodiated) strongly influences the extent of CTD cleavages. CTD produces 

diagnostic fragment ion pairs that can yield information associated with C=C double 

bond positioning, and CTD shows significant fragment abundance change when 

examining lipids with acyl chains with C=C double bond geometry difference—cis 

versus trans—which could possibly be used to pinpoint stereochemistry information. 

Another benefit of CTD is the ease of implementation and cost-effective on both the 

saddle field ion source and mass spectrometric platform. 

Despite the exciting achievements with CTD investigation, more work can be 

carried out in the future for the further development and evaluation of this technique. The 

first aspect is to enlarge the sample pool for CTD experiments. Most of the CTD results 

presented here were only conducted upon the samples from a narrow sample pool. For 

further CTD performance evaluation, more peptides, lipids, and oligosaccharides should 

be examined to validate the generality of the aforementioned fragmentation behaviors. 

For peptides, customized peptides, such as KAAAAXAAAAK (X represents one of the 

twenty amino acids) should be studied to achieve more mechanistic insight into CTD. For 

lipids, other lipid classes (cholesterol, free fatty acids, triglyceride, etc.) and other metal 

adducting forms (e.g. lithium, potassium and manganese) could be included in CTD 

experiments. For oligosaccharides, this bench-top CTD technique showed intriguing 

fragmentation pattern upon the linear pentamer. Given the promising CTD results, 
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oligosaccharides with different modifications (sulfation, acetylation, etc.) and branched 

structures should be included in the future CTD experiments. 

Chapter 6 outlined some preliminary results of including CTD into an on-line 

HDX microfluidic system. CTD showed ETD-like suppression in hydrogen scrambling 

for the liquid phase HDX experiment. More protein molecule (other than ubiquitin) can 

be tested in such experiments. Some efforts can also be devoted to the integration of CTD 

into gas phase HDX workflows. 

In another area of future work, the mass spectrometric platform (Bruker 3D ion 

trap) on which CTD is currently implemented possesses limited resolving power and 

mass accuracy, which greatly restrict the amount of obtainable structural information. A 

proper upgrade of the instrument platform to high-resolution mass spectrometers could 

remarkably facilitate the investigation of CTD. A Shimadzu IT-TOF, Thermo Scientific 

Orbitrap series or Waters Synapt G2 could be possible platforms for the implementation 

of CTD technique in the future. With improved resolving power and mass accuracy, CTD 

could be extended to the analysis of large proteins/glycans or possibly being included in 

top-down proteomic workflows. What’s more, some of the said mass spectrometers 

offers extra functionalities, thus more sophisticated ion manipulations can be conducted 

in combination with CTD technique, which could be beneficial for furthering mechanistic 

studies of CTD or possibly leading to some more powerful “combined methods” for gas-

phase ion activation. 

Chapter 5 has presented some research work regarding MAD investigation. Since 

MAD has been studied in our group for more than 7 years, more biomolecule models 

have been examined with MAD than with CTD. Along with the previous publications 
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from Zubarev group and Berkout group, we have developed a better understanding of 

MAD than CTD. But there is still room for future investigation upon MAD. The future 

work on MAD could follow the aforesaid suggestions for CTD. One exception is that 

MAD showed great performance with peptide anions, following which more 

biomolecular anions (e.g. peptide and lipid anions) should be examined using MAD. 

Since MAD has not been tried on oligosaccharide sample, it should be a good idea to 

subject oligosaccharides to MAD fragmentation. Given the remarkable similarities 

observed in MAD and CTD spectra for the POPC sample (provided in Chapter 4), we 

have every reason to expect that MAD could produce mass spectra as informative as (or 

not worse than) CTD results for oligosaccharides. 
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