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ABSTRACT 
 

Evaluation of weaning regimen and seminal plasma biology on reproductive 
management in cattle 

 
John F. Odhiambo 

 
The goal of any reproductive management system in cattle is to ensure that cows breed at 
the earliest opportune time and maintain their pregnancy to term. However, delayed 
resumption of postpartum ovarian cyclic activity in primiparous beef cows and pregnancy 
losses in dairy cows continue to impede progress in obtaining sound reproductive 
efficiency in these species. Three studies were designed to test the following hypotheses: 
1) Does removal of lactational stress in beef cows by early weaning of calves improve 
cow energy profile and postpartum reproductive performance? 2) Does artificial 
insemination (AI) with adjunctive seminal plasma (SP) or transforming growth factor 
beta-1 (TGF-β1) improve conception rates in lactating dairy and beef cows? 3) Does 
seminal plasma of dairy bulls differ in expression of proteins that might be used as 
potential biomarkers of male fertility? In experiment 1, pregnant and lactating beef cows 
(n = 408) were assigned randomly to wean calves either at 180 d of age (early weaning) 
or 45 d later (normal weaning). Body energy status was evaluated by periodic 
measurements of body weight (BW), body condition score (BCS), rib and rump fat. 
Reproductive performance was determined by calving intervals (CI), intervals from 
breeding to calving (BCI), retention in herd, and adjusted 205-d weaning weight of the 
subsequent calf. In experiment 2, lactating beef (n = 1090) and dairy (n = 800) cows 
received 0.5 mL SP, 40 ng recombinant human TGF-β1, or 0.5 mL bovine serum 
albumin (BSA) or were left untreated at insemination. Pregnancy was determined by 
transrectal ultrasonography 35 to 40 d post insemination or from records of calves born in 
the subsequent calving season. In experiment 3, seminal plasma from high (n = 8) and 
low (n = 6) fertility bulls at Select Sires Inc. (Plains City, OH) were assayed for TGF-β1 
content, and subsequently analyzed by 2-D fluorescence difference gel electrophoresis 
(2-D DIGE) for presence of potential biomarkers of male fertility. Early weaning and 
cow age improved (P < 0.001) energy partitioning and production efficiency in beef 
cows. Rump fat measurements predicted body energy status better than BW or BCS (P < 
0.001). Inseminations with SP and/or TGF-β1 numerically increased (P = 0.07) 
conception rates in beef and dairy cows. Concentrations of TGF-β1 in seminal plasma 
were numerically greater (P = 0.25) in high fertility dairy bulls than those of low fertility. 
Expression of fertility associated proteins did not differ (P > 0.05) between high and low 
fertility bulls. However, their expression patterns were altered by semen processing. In 
conclusion, reproductive efficiency in primiparous beef cows can be improved by 
removal of lactational stress during mid to late pregnancy, while in dairy cows 
inseminations with adjunctive SP and/or incorporation of some seminal plasma proteins 
into semen during processing might improve conceptions rates after AI.  
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Evaluation of weaning regimen and seminal plasma biology on reproductive 

management in cattle 

Introduction 

Current status of production practices in the dairy and beef industry in the 

United States  

The major goal of beef production is to enhance the efficiency of feed/forage 

utilization to produce abundant beef for increasingly health-conscious consumers and to 

improve the quality of human life. Beef herds in the United States and worldwide are 

managed under diverse conditions from confinement cow-calf production units to the 

more common open grazing systems in which quality of forages and roughages is often 

poor, particularly in dry and winter seasons (Wu et al., 2006). In recent years, the U.S. 

beef industry has lost a significant portion of its historically dominant market share due to 

changes in consumer preferences and to an increase in the price of beef relative to pork 

and poultry (Wachenheim and Singley, 1999). Changes in the beef industry to improve 

its competitive position have been slow and relatively unsuccessful for two reasons: First, 

biological realities dictate a much longer industry response time to changes in consumer 

demand, e.g., birth of the calf until it reaches market weight can take 1 to 1.5 years. 

Second, the nature of the beef production process, which includes cow ownership and up 

to 9 to 12 months on pasture, requires enormous capital and land investment, resulting in 

a very large pool of independent producers. These biological and economic differences 

make it unlikely that the beef industry could successfully adopt the integrated marketing 

channel structure of the poultry industry (Wachenheim and Singley, 1999). 
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Nutrient requirements of the beef cow and nutrient availability in the forage-based 

production system fluctuate throughout the year. Maintenance represents 75 to 85% of 

the total requirement in pregnant dams because of substantial increases in maternal body 

tissue weight as well as metabolic rate. Nutrient requirements of the cow increase 

substantially after calving and continue to increase through peak lactation, which is 

generally attained by 45 to 46 days post calving. At the same time reproductive function 

must be supported in order to remain on an annual calving schedule. Management 

strategy would involve fluctuating body weight through nutritional manipulations to 

adequately suit the times that nutrients are available to cows. Alternatively, shifting 

calving seasons may influence the most appropriate time of weaning for optimal 

production. Several options from partial and temporary weaning to complete weaning are 

available for cattle producers to use time of weaning as a management tool to manipulate 

cow body condition (Whittier et al., 1995). Perhaps the most favorable months to change 

body condition in spring calving cows are September, October and November. Prior to 

these months, the demand for milk production is high and makes it difficult to increase 

cow condition. After these months, the impact of colder temperatures also makes it 

difficult to add condition because expensive and, often times, lower quality processed 

feeds are being fed. 

The dairy industry in the United States has experienced significant progress in 

genetics and management resulting in a smaller number of dairy cows producing the bulk 

of the milk consumed. As a consequence, dairy farms are larger and fewer with nearly 

30% of dairy cows on farms with 500 or more cows (Lucy, 2001). Selection for higher 

milk yield has negatively impacted fertility due in part to negative energy balance in the 
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immediate post partum period (Butler, 2000) and/or increased plasma concentrations of 

somatotropin and prolactin, which are stimulators of lactation, and decreased insulin 

(Nebel and McGilliard, 1993). Insulin is antagonistic to lactation, but may be important 

for normal follicular development. Lower concentrations of blood progesterone and 

insulin-like growth factor-1 and greater embryonic losses also have been attributed to 

genetic selection for milk production (Lucy et al, 1998, Lucy, 2001). Although the 

relative contribution of individual factors leading to infertility can be debated, the 

cumulative effect erodes the efficiency and profitability of the dairy industry (Lucy, 

2001). 

The current study was designed to answer the following questions: 

1. Can weaning in the first half of mid-gestation (August-September 

vs. October-November) alter metabolic status of the cow (from early-weaning) 

and translate into improved cow efficiency in reproduction and production? 

Specifically, are the subsequent postpartum intervals, pregnancy rates, weaning 

rates, and calf growth rates improved by early weaning? 

2. Can suppression of inflammatory response to seminal antigens by 

treatment of cows with TGF-β1 or seminal plasma at AI improve conception rates 

in lactating dairy and beef cows? 

3. Can differences in fertility of dairy bulls be predicted by profiles of 

their seminal plasma proteins?  

4. Does semen processing affect seminal plasma protein profile after 

cryopreservation?  
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Review of literature 
 

Reproductive physiology of the postpartum beef cow 

Resumption of estrous cycles within a relatively short time-frame following 

parturition has long been recognized as a major milestone that must be reached for a cow 

to achieve optimal reproduction (Hess et al., 2005). Mechanisms associated with the 

acquisition and subsequent maintenance of reproductive competence in the postpartum 

beef cow result from functional integration of the hypothlamo-hypophyseal-ovarian axis. 

The brain centers of the reproductive axis are structured such that neurosecretory 

neurons from the preoptic area and the medial basal hypothalamus (MBH) terminate in 

the stalk median eminence where they deliver gonadotropin releasing hormone (GnRH) 

to the hypophyseal portal blood system. The GnRH is then transported to the anterior 

pituitary and stimulates secretion of gonadotropins (FSH and LH). Tonic secretion of 

GnRH from the neurosecretory cells of the MBH stimulates the secretion of hypophyseal 

LH with surges occurring every 1 to 2 hours.  Early follicular growth and development is 

initiated by FSH, while LH aids in the final maturation of the dominant preovulatory 

follicle. Production of estradiol by ovarian follicles eventually reaches a threshold level 

causing neurosecretory neurons in the preoptic area to release a surge of GnRH, which in 

turn causes a high-amplitude surge release of LH leading to ovulation. Subsequently, the 

follicular cells are reorganized into a corpus luteum (CL) that secretes progesterone, 

which in turn suppresses GnRH release from the hypothalamus. Luteal regression and the 

accompanying decrease in serum concentrations of progesterone allow the process to be 

repeated. Maintenance of the CL caused by maternal recognition of pregnancy results in 

continued negative feedback effects of progesterone and anestrus throughout pregnancy. 



 5

The anestrus continues into the postpartum period, even though the CL of pregnancy has 

reorganized into a syncytial structure and no longer secretes progesterone. 

The three phases of the postpartum period  

The three phases of the postpartum period have been reviewed extensively by 

Inskeep (1995), Jolly et al. (1995) and Macmillan et al. (1996). Gestational steroids, 

mainly progesterone and estrogens, have a suppressive effect on secretion of hormones 

from the hypothalamus and pituitary gland just as they do in cyclic animals (Lucy, 2003). 

Thus, the first phase involves recovery of the hypothalamus and pituitary gland from the 

effects of the previous pregnancy and resumption of FSH secretion and pulsatile LH 

release. The LH surge mechanism must also be re-established. This phase is relatively 

short, and cows normally have pulsatile secretion of LH within 1-2 weeks after 

parturition and recover the LH surge mechanism shortly thereafter. The second phase 

involves the process of uterine involution, a rapid process usually completed within 30-

40 days post partum. The timing of uterine involution coincides with recovery of fertility. 

Thus, most investigators consider uterine involution as the initial block to the re-

establishment of normal fertility (Casida et al., 1968). The third phase is ovarian 

recovery, the most intensely studied area of reproduction in the postpartum cow. 

Follicular growth continues during pregnancy, but the diameter of the dominant follicles 

decreases perhaps due to a decrease in LH pulsatility during late gestation. Therefore, the 

first dominant follicle post partum will undergo one of three fates: 1) ovulation, 2) 

atresia, which is followed by a new wave of follicular emergence (turnover) or 3) cyst 

formation followed by atresia (Beam and Butler, 1999). The mechanisms that dictate 

these events are of keen interest to reproductive biologists. 
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Factors affecting postpartum fertility 

After parturition, cows are infertile for a variable period of time. Several factors 

contribute to that infertility. These include: 1) uterine involution, 2) short estrous cycles, 

and 3) postpartum anestrus. 

1. Uterine involution 
 

 Casida et al. (1968) defined uterine involution as complete when the uterus 

returned to its normal nonpregnant position and when the two horns were similar in 

diameter and showed normal consistency and tone. The process of uterine involution was 

later described by Kiracofe (1980) to involve the reduction in size of the uterine horns, 

sloughing of tissue, and regeneration of the uterine epithelium. The entire process appears 

to be complete between 30 and 40 days post partum and 10 to 15 days earlier in the 

previously nongravid uterine horn (Wagner and Hansel, 1969).  

An involuting uterus is a temporary barrier to fertility. Parturition is followed by a 

period when conception is not possible: one week in sows and about 3 weeks in cows and 

ewes. Estrus and ovulation seldom occur together during this period and, if fertilization 

occurred and the embryo reached the uterus, placentation would be virtually impossible 

(Kiracofe, 1980). Uterine involution is influenced by many factors: uterine infections, 

retained fetal membranes, and other parturient diseases delay the normal process 

(Morrow et al., 1966; Kiracofe, 1980). Suckling has been found to promote uterine 

involution (Casida et al., 1968; Riesen et al., 1968), delay uterine involution (Wiltbank 

and Cook, 1958) or have little effect on the rate of uterine involution (Wagner and 

Hansel, 1969; Oxenreider and Wagner, 1971). Age or parity influences uterine involution 

variably: involution might take a few days longer in pluriparous cows than in primiparous 
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cows (Morrow et al., 1966; Gier and Marion, 1968; Arije et al., 1974) or not be  affected 

by age or parity at all (Tennant et al., 1967).  Season of the year has been reported to 

affect rate of uterine involution, with a slower rate occurring in fall than in spring 

(Kiracofe et al., 1969). Energy and protein levels of the diet only slightly affected the rate 

of uterine involution but drastically affected the interval from parturition to resumption of 

estrous cycles (Wiltbank et al., 1962; Dunn et al., 1969; Clemente et al., 1978). Uteri of 

cows fed high-energy diets after calving involuted three days sooner than uteri of cows 

fed moderate energy diets. However, protein levels in the diets affected the rate of uterine 

involution (Kiracofe et al., 1969). 

Studies on ovulation and conception rates indicated that at the first estrus, the 

degree of uterine involution (as expressed by uterine horn diameter) is more of a fertility 

factor if ovulation occurs on the gravid horn than on the nongravid side (Casida et al., 

1968; Foote and Peterson, 1968). In contrast Bridges et al. (2000) found greater success 

in the previously gravid horn. Short et al. (1974) found similar fertilization rates in cows 

bred before and after 20 days postpartum by surgical deposition of semen at the tip of the 

uterine horn and concluded that infertility during the first 20 days after calving is caused 

by a physical barrier to sperm transport and not by any inherent defect in the ova or other 

physiological mechanisms. 

2. Short estrous cycles 
 

Short estrous cycles contribute to postpartum infertility during the first 30 to 40 

days after calving. Most estrous cycles after 40 days have normal length, although 

evidence exists that short estrous cycles will occur later (Lishman et al., 1979). The short 

estrous cycle phenomenon was one of the first abnormalities observed in the postpartum 
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cow (Foote and Hunter, 1964; Casida, 1971; Short et al., 1972; Smith et al., 1987; 

Inskeep, 1995). The short-estrous-cycle syndrome is a practical beef cattle problem, 

because some cows exhibit estrus and are bred during the period that these estrous cycles 

occur, especially in more intensive operations, in which postpartum intervals are short 

and estrous synchronization is used (Short et al., 1990). 

Ovulations following estrus destined to start a short cycle are normal with ova 

released that can be fertilized. However, no pregnancies were detected, apparently 

because the corpus luteum (CL) regressed before the ovary received a signal from the 

uterus that pregnancy existed (Graves et al., 1968; Short et al., 1972, 74; Odde et al., 

1980; Ramirez-Godinez et al., 1982b). The first ovulation after calving generally occurs 

without estrus (Lamming et al., 1981; Alberio et al., 1987; Murphy et al., 1990; Mukasa-

Mugerwa et al., 1991) and is followed by a short cycle (8 to 12 days) in the majority of 

cows (King et al., 1976; Williams and Williams, 1989; Murphy et al., 1990; Perry et al., 

1991; Day et al., 1993).  

Short cycles are common after ovulation induced by weaning (Odde et al., 1980; 

Ramirez-Godinez et al., 1982a; Copelin et al., 1987; Zollers et al., 1993; Breuel et al., 

1993a), weaning plus GnRH  (Williams, 1989), a single injection of GnRH (Foster et al., 

1980; Copelin et al., 1988; Jagger et al., 1987), intermittent injections of GnRH (Wildeus 

et al., 1987; Jagger et al., 1987), continuous infusion of GnRH (Lofstedt et al., 1981), a 

single injection of hCG (Garcia-Winder et al., 1986; Johnson et al., 1992), and after first 

ovulation at puberty (Donaldson et al., 1970; Berardinelli et al., 1979). The short cycle is 

accompanied by a single follicular wave, a CL that is of smaller diameter than that during 

a normal cycle and subluteal concentrations of circulating progesterone (Yavas and 



 9

Walton, 2000). Conception rate from artificial insemination at the first estrus postpartum 

was higher (76 vs. 41 %) if estrus was preceded by a short cycle (Werth et al., 1996). 

Prostaglandin F2α (PGF2α) appears to be the normal physiological signal whereby 

the uterus secretes PGF2α, which causes regression of the CL at the end of the estrous 

cycle. During the early postpartum period, high concentrations of PGF2α probably 

prolong the interval to normal function of CL, because hysterectomy reduced systemic 

PGF2α concentrations and restored normal function of CL (Lindell et al., 1982; Madej et 

al., 1984; Copelin et al., 1987). The early postpartum uterus produces and metabolizes 

large amounts of PGF2α, and suppression or infusion of PGF2α, which prolonged or 

shortened the lifespan of the CL, further implicates its role in the control of CL function 

in the postpartum cow (Guilbault et al., 1984). Therefore, the functional capabilities of 

the early-postpartum CL might be normal, but the CL is caused to regress prematurely by 

abnormally high PGF2α concentrations from the uterus (Short et al., 1990). Normal CL 

function during an early postpartum estrous cycle can be obtained by pretreatment with a 

progestin (Ramirez-Godinez et al., 1982b; Breuel et al., 1993b). The mechanism 

associated with the progestin effect involves a reduction in PGF2α with the effect 

mediated via the ovary rather than the pituitary (Short et al., 1990). Further clarification 

of this mechanism was provided by Kieborz-Loos et al. (2003), who showed that 

progestin priming permits estradiol 17β and progesterone to induce adequate endometrial 

progesterone receptors so that secretion of PGF2α is programmed to occur later in the 

luteal phase. 

3. Postpartum anestrus  
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Postpartum anestrus is commonly measured or quantified as the interval from 

parturition to first estrus (PPI). In cattle, the average PPI in different studies ranged from 

30 to 104 days (Short et al., 1990). This interval was prolonged by calf suckling with a 

more pronounced effect in beef cattle than in milked dairy cattle. It was longest following 

calvings in the winter, shortest in the summer, and intermediate in spring and autumn 

(Hammond, 1927). Ovulations without estrus occurred before the first expressed estrus in 

approximately 60% of the cows; suckling increased the number these events per cow in 

beef cows- probably more than in dairy cows (Casida, 1971). 

 In sows, postpartum estrus occurs in approximately 50% of sows within 4 days 

after parturition. This estrus is usually anovular with very little follicular development. 

Removal of pigs early postpartum is followed by ovulatory estrus near 12 days 

postpartum in approximately three-fourths of the sows, and ova are fertilizable at this 

time (Casida, 1971). In sheep, PPI is longest for ewes lambing from March to June, 

shortest for those lambing in September to December, and intermediate for January to 

February and July to August. Suckling of lambs prolonged the interval beginning any 

time in the year (Casida, 1971).  

I. Establishment of the first ovulation postpartum 
 
A period of anovulatory anestrus of varying duration is observed in milked and 

suckled cows following parturition. In milked dairy cattle the interval from parturition to 

first ovulation is typically between 19 and 22 days (Fonseca et al., 1983; Stevenson et al., 

1983; Darwash et al., 1997). Under pasture-based management systems the mean interval 

is 43 days (McDougall et al., 1995) and in suckled cows it can vary between 20 to 86 

days (Lamming et al., 1981; Murphy et al., 1990). 
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 Concentrations of gonadotropins are very low in late pregnancy due to strong 

negative feedback from progesterone and estrogens. After calving, concentrations of FSH 

increase within 5 to 10 days in both milked and suckled cows, whereas circulating LH 

concentrations generally start to increase between 10 to 20 days postpartum (Rhodes et 

al., 2003). Pulsatile episodes of LH release are first detected around this time in milked 

dairy cows, but are delayed in suckled beef and dairy cows, with frequency of pulses of 

LH release being correlated with the interval to first ovulation (Lamming et al., 1981; 

Beam and Butler, 1997; Crowe et al., 1998).  

Growth and development of ovarian follicles, which can be detected by 

ultrasonography, commences within 1 or 2 days of the first significant rise in plasma FSH 

concentrations after calving (Beam and Butler, 1997; Crowe et al., 1998). A single large 

or dominant ovarian follicle commences growth around 10 to 14 days postpartum in both 

milked and suckled cows (Murphy et al., 1990; Savio et al., 1990; McDougall et al., 

1995). This follicle may fully mature and ovulate, or become atretic and be replaced by 

one or more subsequent dominant follicles, or may continue growth and become cystic. 

Ovulation of the dominant follicle occurs when production of estradiol by the follicle is 

sufficient to stimulate a preovulatory surge of LH and FSH. Estradiol production is in 

turn dependent on sufficient gonadotropic support in terms of LH pulse frequency, and 

elevated plasma concentrations of insulin growth factor (IGF) -1 (Lamming et al., 1981; 

Stagg et al., 1998; Beam and Butler, 1999). Both IGF-1 and insulin, which are in greater 

concentration in plasma of cows receiving proper nutrition than in those not, are potent 

stimulators of steroidogenesis and proliferation of bovine granulosal and thecal cells in 

vitro, acting synergistically with FSH or LH (Rhodes et al., 2003). 
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II. Establishment of the first normal-length luteal phase 
 
The first postpartum ovulation is associated not only with absence of estrous 

behavior but also is often followed by a short luteal phase (Webb et al., 1980; Murphy et 

al., 1990; McDougall et al., 1995). Premature release of PGF2α by the uterus, rather than 

inadequate luteal development is the main cause of the shortened life span of the first 

corpus luteum (Copelin et al., 1987; Zollers et al., 1989; Webb et al., 1980; Kieborz-Loos 

et al., 2003). Low or negligible concentrations of progesterone preceding the first 

postpartum ovulation result in lower numbers of progesterone receptors and greater 

numbers of oxytocin receptors in endometrial cells, allowing early development of the 

positive feedback loop between oxytocin and PGF2α (Zollers et al., 1993). Low 

preovulatory concentrations of estradiol probably are involved in increasing the numbers 

of endometrial oxytocin receptors, thus allowing binding of oxytocin and premature 

release of luteolytic PGF2α (Mann and Lamming, 2000).  Oxytocin induced secretion of 

PGF2α metabolite (PGFM) in cattle on day 5 of a short estrous cycle, and total PGF in in-

vitro cultured day 5 endometrium from cows expected to have short luteal phases (Zollers 

et al., 1989; 1991). 

A short period of elevated concentrations of progesterone during the postpartum 

period, from either endogenous or exogenous sources, is important for the expression of 

estrus as well as a subsequent normal luteal function (Henricks et al., 1972; Ramirez-

Godinez et al., 1982; McDougall et al., 1995). Treatment of anestrous cows with 

progesterone is followed after withdrawal by greater concentrations of estradiol in 

follicular fluid and plasma, increased pulsatile release of LH, and increased numbers of 

receptors for LH in granulosal and thecal cells in preovulatory follicles (Garcia-Winder et 
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al., 1986; Inskeep et al., 1988; Rhodes et al., 2003). Estradiol and progesterone secreted 

by the preovulatory follicle may induce adequate production of uterine progesterone 

receptors that inhibit premature secretion of PGF2α ; hence a normal length luteal phase is 

established (Kieborz-Loos et al., 2003). 

III. Risk factors for a prolonged postpartum interval  
 

Three categories of anovulation have been defined by using ultrasonography to 

observe ovarian follicular growth patterns: 1) Anovulation with follicular growth not 

progressing beyond the emergence stage of development may be observed in animals 

subject to severe nutritional restrictions, especially in Bos indicus breeds of cattle. This 

condition includes absence of any ovarian follicles >8 mm in diameter, associated with 

inadequate or infrequent pulsatile release of LH (Jolly et al., 1995; Rhodes et al., 1995). 

2) Anovulation with follicular growth to less than ovulatory follicular size has been 

observed in most cows that display a prolonged PPI and is the usual condition exhibited 

by postpartum suckled beef cows and dairy cows managed in pasture-based systems 

(Murphy et al., 1990; McDougall et al., 1995). This type of anovulation is associated with 

a relatively low frequency of pulsatile LH release and increased sensitivity to the 

negative feedback effects of estradiol on gonadotropin release. 3) Anovulation with 

follicular growth to larger than ovulatory follicle size (follicular cysts) may be observed 

in lactating dairy cows, but is uncommon in beef cows (Wiltbank et al., 2002). This 

category of anovulation covers a variety of physiological conditions and can be 

associated with an absence or excess of sexual behavior. It is thought to be related to 

increased release of LH with an insensitivity to estradiol positive feedback. The 
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following portion of the review will mainly discuss factors related to the second category 

of anovulation. 

Factors affecting efficiency of the postpartum beef cow 

Evolution has produced a multitude of adaptations to ensure reproductive success 

in mammalian species. These adaptations include strategies for responding to a variety of 

external cues including photoperiod, food availability, ambient temperature, behavioral 

interaction, and tactile stimulation (Williams, 1990). In beef cattle production, 

reproductive performance is five times (Harpster et al., 1998) as important as growth of 

animals in the economics of the cow-calf enterprise. Unlike growth, there is little or no 

economy of scale with reproduction (Harpster et al., 1998), and, therefore, management 

should have a goal of maximizing reproduction. Reproductive success is linked to the 

three phases of animal production, which under usual management occur in an annual 

fashion: 1) calving and lactation, 2) breeding, and 3) gestation. Under the assumption that 

a cow produces a calf every 12 months and normal gestation is 9 months, it follows that 

the breeding season cannot exceed 3 months in length. This constraint of 90 days 

between calving and rebreeding limits reproductive efficiency and is influenced highly by 

nutrition of the cow over a longer period of time, particularly precalving (Wiltbank et al., 

1962; Bellows and Short, 1978; Richards et al., 1986), as well as by suckling (Casida, 

1971; Short, 1976; Edgerton, 1980), season (Hansen and Hauser, 1984; Hauser, 1984; 

Tortonese and Inskeep, 1992), and age/parity (Short et al., 1990). Although the limitation 

induced by each factor has independent influence, the factors co-exist and can therefore 

exacerbate the effects of one another. However, postpartum cows are anestrus because of 
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two primary reasons: 1) lactational anestrus caused by suckling stimulus or 2) nutritional 

anestrus caused by inadequate energy stores (Short et al., 1990).  

1. Suckling 
 
Suckling is one exteroceptive stimulus that plays a major role in governing 

reproductive cycles in female mammals (Edgerton, 1980; Williams, 1990). Suckling has 

a limited but intensive effect on cow reproductive performance. Its chronic presence 

during lactation has important biological and economic implications in a variety of 

species including swine, cattle, certain breeds of sheep, the laboratory rat, and the human 

being (Williams, 1990). Biological effects in farm species range from near total blockage 

of ovulation in the domestic sow to little or no impact in the seasonally breeding ewe, in 

which external cues for reproduction are derived from changes in photoperiod 

(Hammond, 1944; Kenneway et al., 1987; Goodman, 1988). Although the beef cow holds 

an intermediate position within this ranking, because of its economic importance, it has 

commanded extraordinary attention for studying postpartum anestrus in general and 

suckling-induced anestrus in particular (Edgerton, 1980; Wettemann, 1980, Williams, 

1990). 

Suppression of cyclic ovarian activity during the early postpartum period is 

characteristic of the suckled beef cow (Stagg et al., 1998). Both dietary energy restriction 

(Dunn and Kaltenbach, 1980; Browning et al., 1994) and poor body condition (Rutter and 

Randel, 1984) exacerbate this effect. Mean intervals from parturition to first ovulation in 

suckled cows range from 50 to 100 days (Casida, 1971; Oxenreider and Wagner, 1971; 

Wettemann et al., 1986; Williams 1990). Intervals to first estrus averaged 65 to 104 days 

(Graves et al., 1968; Wiltbank, 1970; Casida, 1971), and factors that contributed to this 
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variability included breed, environment, disease, and nutritional status. The cow-calf 

interaction is critical in prolonging postpartum anestrus in beef cows (Lamb et al., 1997; 

Stagg et al., 1998). A cow must bond to her naturally-born calf or establish a new bond 

with an unrelated calf before the associated suckling will maintain anestrus. When cows 

nursed unrelated calves continuously (established a new cow-calf bond) or nursed an 

unrelated calf continuously in the presence of their own non-suckling calves (still bonded 

to own calf), their intervals to first ovulation were similar to those of cows nursing their 

own calves, and each (interval to first ovulation) was greater than that of cows from 

which calves had been weaned (Lamb et al., 1997). In addition, masectomized cows 

maintained with their non-suckling calves from parturition to weaning had longer 

intervals to first ovulation than masectomized cows whose calves were weaned within 24 

h after birth (Viker et al., 1993; Stevenson et al., 1994). Neither muzzling (Macmillan, 

1983) nor nose-plating (Mukasa-Mugerwa et al., 1991) calves shortened anestrus in their 

non-suckled dams. Therefore, a cow’s perception of a calf suckling the inguinal region 

with or without an intact mammary gland is enough stimulus to prolong anestrus. 

Nursing frequency, intensity and duration have been considered to be the primary 

determinants of the length of postpartum anestrus. Clearly, exaggerated suckling stimuli 

lengthen the postpartum interval in most mammals (Wettemann et al., 1978). However, in 

two other studies, variation in suckling frequency by single calves was unrelated to 

rebreeding activity in their dams (Williams et al., 1984b; Day et al., 1987). Frequent 

milking of beef cows (5 times/d) in the presence of their calves failed to simulate the 

mechanisms associated with suckling-induced anovulation (Lamb et al., 1999). In dairy 

cows, frequent milk removal by milking 3 times, 6 times or 3 times milking plus 3 times 
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suckling prolonged the interval to first ovulation, with suckling plus milking having the 

greatest effect (Stevenson et al., 1997). However, delaying suckling for up to 8 h after 

milking increased the proportion of cows ovulating within 100 d of calving and shortened 

the calving to first ovulation interval in dual purpose cows (Perez-Hernandez et al., 

2002).   

The most overriding cause of anestrus in suckled beef cows is chronic suppression 

of LH release, which prolongs the suppressed pattern found immediately after calving 

due to the effects of gestational steroids (Moss et al., 1981; Stagg et al., 1998). Indeed, 

even after these steroids have been cleared from the circulation, the presence of ovarian 

factors (primarily estradiol) play a major role in the ability of suckling to limit release of 

gonadotropins (Acosta et al., 1983; Garcia-Winder et al., 1984; Chang and Reeves, 

1987). This may occur as a result of increased sensitivity to negative feedback effects of 

estradiol, as well as to a relative inability to respond to positive estradiol feedback within 

the first three weeks postpartum (Short et al., 1979). 

Management approaches to diminish the suppressive effects of suckling on 

ovarian activity have been proposed. These include temporary calf removal (Smith et al., 

1979), once daily suckling (Bell et al., 1998) and early weaning (Arthington and 

Kalmbacher, 2003). Temporary calf removal requires that cows calve in a body condition 

score (BCS) ≥ 5 to be effective (Smith et al., 1979). However, the beneficial effects of 

once daily suckling and early weaning likely could be negated by extra costs in providing 

alternative feed to the calves and by calf welfare issues involved. 

2. Nutrition 
 



 18

Nutrition is a major factor affecting cow reproductive efficiency. Animals become 

anestrus when they lose on average 22 to 24% of their initial body weight (Diskin et al., 

2003). The effects of nutrition have been measured most commonly using energy as a 

variable. Other nutrients may affect reproduction, but their effects are not as well 

documented. The postpartum return to estrus is a complex combination of endocrine and 

environmental events that is mediated largely by the nutritional status of the cow 

(Harpster et al., 1998). Nutrients are partitioned for various body functions in an 

approximate order of priority. Basal metabolism, activity, growth, and basic energy 

reserves have priority over reproductive processes, such as onset of cyclicity, and 

establishment and maintenance of pregnancy (Short et al., 1990; Yavas and Walton, 

2000). The relative priority of these functions can change depending on production status 

of the animal. During periods of reduced nutrient demand, e.g. late lactation and dry 

period in dairy cows and post-weaning period and mid-gestation in beef cows, excess 

nutrients are stored in the body in the form of fat. The amount of fat deposits in animals 

can be quantitatively or visually expressed as BCS ranging from 1 (thin) to 9 (obese) as 

described by Wagner et al. (1988) and is likely a good indicator of metabolic status of the 

animal. The stored nutrients can be retrieved later to maintain production during periods 

of negative energy balance (Grimard et al., 1995), such as the postpartum period, when 

nutrient demand exceeds voluntary feed intake, or periods of limited nutrient availability, 

e.g. during drought, mid-late summer, or winter.  

The effect of energy on reproductive performance was studied in a classical work 

by Wiltbank and colleagues (1962) in mature Hereford cows fed two levels of energy:  9 

lbs of total digestible nutrients (TDN) per head per day (High) and 4.5 lbs of TDN per 
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head per day (Low) prior to calving. After calving, one-half of the cows on the high 

ration and one-half of the cows on the low ration received 16.0 lbs of TDN per head daily 

(high-high and low-high). The remaining cows received 8.0 lbs of TDN per head daily 

(high-low and low-low).  Cows maintained on low energy diets (low: low) showed longer 

intervals to estrus and lower pregnancy rates (52d, 20%) than cows switched from high to 

low energy diets at calving (43d, 77%). They concluded that the  level of dietary energy 

provided to cows in the prepartum period was relatively more important than that 

provided after calving.  

Conception rates of 32% in cows receiving low protein intake compared to 74% 

in cows with higher protein intake receiving isocaloric diets in both pre-and postpartum 

periods were reported by Sasser et al. (1988). In the same study, first service conception 

rates were suppressed (25 vs. 71%) in beef cows receiving inadequate protein diets 

compared to adequately fed herd mates. Kaim et al. (1983) reported that fertility was 

impaired more by feeding excess protein to dairy cows in their fourth or later lactation 

than for younger cows. However, protein supplements with high potential for rumen 

escape, undegradable intake protein (UIP), and positive profile of essential amino acids 

have been shown to improve reproduction when fed in excess of NRC recommendations 

(Triplet et al., 1995). In that study, when postpartum first-calf heifers and mature cows 

were fed 56% of their supplemental protein as UIP, first-service conception rates 

increased by 28% over herd mates fed 38% UIP.  The percentage of first-calf heifers 

showing normal first postpartum estrus (with CL formation) and milk production also 

was increased. The increased milk production increased average daily gain (ADG) of 

calves, resulting in heavier weaning weights (Triplet et al., 1995). 



 20

3. Biostimulation 
 

The role played by males in reproductive function in addition to mating is well 

documented. In many species, association with males triggers neuroendocrine reflexes 

that alter reproduction (negatively or positively) in females. The Bruce effect, in which 

pregnant mice abort if exposed to a male mouse of a different strain or even if placed in a 

cage that was recently vacated by such a male, provides an example of a negative effect 

of males on reproduction. A positive example is induced ovulation in the domestic cat or 

rabbit, where copulation is requisite for ovulation (Clemens and Christensen, 1975). 

Biostimulation is a term that describes the stimulatory effect of a male on estrus 

and ovulation through genital stimulation or possibly through pheromones. Factors that 

affect the response of postpartum anestrous cows to the biostimulatory effect of the bull 

are not well understood. However, exposing postpartum, anestrous, primiparous suckled 

beef cows to close physical contact with bulls (Berardinelli and Tauck, 2007) or 

androgenized cows (Burns and Spitzer, 1992) accelerated the resumption of ovarian 

activity. In one study, in which multiparous cows were exposed to bulls within 3 days of 

parturition, onset of estrus was advanced by about 20 days compared to cows isolated 

from bulls until 53 days postpartum (Zalesky et al., 1984). In prepubertal heifers, 

biostimulation has yielded inconsistent results. Exposure of prepubertal heifers to 

vasectomized bulls for 18 to 30 days (Berardinelli et al., 1978) or from 9.5 to 15 mo of 

age (152 d) (Roberson et al., 1987) failed to elicit any effects on advancement of puberty.  

However, the majority of heifers exposed to bulls from 11.5 to 14 mo (76 d) had initiated 

ovarian activity by the time of breeding at 14 mo of age (Roberson et al., 1991). 
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Olfactory and auditory signals have been implicated as possible cues for 

biostimulation, as have been direct genital contact and allelomimetic behavior. Nuzzling, 

nudging or licking of the perineal region of a female by a bull might initiate estrous 

behavior (Spitzer, 1998). Pheromonal stimuli excreted in urine or feces are involved in 

the mechanism of the biostimulatory effect of the bull (Berardinelli and Joshi, 2005). 

Subsequent findings that close physical contact between cows and bulls enhanced the 

biostimulatory effects added another factor to this mechanism, thus, the intensity of the 

stimuli (i.e. frequency, duration of exposure, and quantity of the stimuli) provided by the 

bull is integral (Berardinelli and Tauck, 2007). Hence, failure of biostimulatory response 

in studies that utilized intermittent contact (Fernandez et al., 1996) and fence line contact 

across a 6-8 m alleyway (Shipka and Ellis, 1998, 1999) could have been caused by less 

intensity of signal from the bulls. 

Manipulation of postpartum metabolic status 

Reproduction is a major component of production efficiency for the cow-calf 

system. When nutrient intake is inadequate and energy reserves are depleted, interval 

from calving to first estrus is extended (Wiltbank et al., 1962, 64; Morrison et al., 1999). 

In dairy cows, a closer relationship was found between BCS and days open at first 

artificial insemination (AI) than at parturition, because at first AI, most cows are 

recovering from postpartum metabolic stress (Lopez-Gatius et al., 2003). Postpartum 

metabolic stress can be minimized when cows are allowed to calve in moderate BCS, 

because mobilization of body fat stores might be limited in thin cows and considerable in 

fat cows (Lopez-Gatius et al., 2003; Jorritsma et al., 2003; 2005).  
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Energy intake and body energy stores influence concentrations of energy 

substrates and hormones in the blood of cattle; chronic and acute alterations in substrates 

(mainly glucose and nonesterified fatty acids) and metabolic hormones (insulin, IGF-1 

and leptin) might signal the hypothalamic-pituitary-ovarian (HPO) axis about metabolic 

status of the animal (Wettemann et al. 2003). Macronutrients or their metabolites regulate 

gene expression and influence growth and body functions in addition to their roles as 

sources of energy. While circulatory concentrations of these macronutrients in the 

postpartum cow are related to BCS at calving, reduced nutrient intake and suckling 

exacerbate their negative effects on the HPO axis (Wettemann et al., 2003). Several 

studies have used varying nutritional treatments (pre- and peri-partum) and other 

management practices (early weaning) to effect change in postpartum metabolic status of 

cows (Wiltbank et al., 1962; Houghton et al., 1990; Osoro and Wright, 1992; Morrison et 

al., 1999). 

1. Prepartum nutrition 

 The study by Wiltbank et al. (1962) on effects of varying nutritional regimens on 

postpartum reproduction contributed notably to the present understanding that postpartum 

metabolic status is conditioned by pre-partum nutritional status of gestating cattle. 

Morrison et al. (1999) examined the influence of prepartum BCS on postpartum 

reproductive performance of multiparous cows. Six months before the beginning of 

calving season, cows were blocked by body weight and BCS and randomly assigned to 

two equal groups: a) Gain group, weaned and stocked on high-quality pasture plus 

supplemental feed to gain 1 to 2 units of BCS; b) Restricted group, grazed low-quality 

pastures at increased stocking rates or fed restricted amounts of hay and continued to 
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suckle their calves past the usual weaning date to lose 1 or 2 units of BCS. 

Approximately 90 d before calving, cows were regrouped by BCS (BCS ≤ 4, group 1; 

BCS = 5 to 6, group 2; BCS ≥ 7, group 3) and managed so that each cow would calve at a 

BCS of 5 to 6. Cows in group 1 were fed good quality hay or corn silage plus 

supplemental protein ad libitum, while group 3 cows’ nutrient intake was restricted by 

limiting hay intake or grazing fescue pastures at high stocking rate to limit forage 

availability. After parturition, all cows were managed together as one group. 

 Body weight and condition scores of gain- and restricted-groups were different at 

90 d prepartum, but not at parturition. Prepartum BCS change did not affect pregnancy 

rates at 20, 40, or 60 d of the breeding season. Mean interval from calving to conception 

was 87 d and was not affected by prepartum BCS changes. Birth weights of calves were 

not affected by prepartum changes in body weight of the cow. Pregnant cows tended to 

buffer the adverse effects of undernutrition on their developing fetuses by utilizing body 

energy reserves, thus losing weight and body condition. These findings further 

substantiate the concept of a target BCS at calving and indicate that a minimum BCS of 5 

in multiparous beef cows will ensure that body energy reserves are adequate for 

acceptable postpartum reproductive performance.  

In contrast, primiparous cows required greater BCS (≥ 6) at calving than mature 

cows to optimize subsequent reproductive performance (DeRouen et al., 1994; Spitzer et 

al., 1995). This is necessitated by higher demands placed on the body stores of nutrients 

for young cows (DeRouen et al., 1994). In the latter study, primiparous cows calving at 

BCS ≥ 6 had shorter intervals from calving to pregnancy (74 vs. 82 d) and higher 
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pregnancy rates ( 87 vs. 71%) than their contemporaries calving at BCS of 5. Thus, at 

BCS of 5, energy reserves in young cows were not adequate for optimum rebreeding. 

2. Peripartum nutrition 
 

  The initial portion of this section presented a discussion of metabolic adaptations 

that occur in the dairy cow around the time of parturition. The same mechanisms may be 

observed in the beef cow at lesser magnitudes due to genetic differences in lactational 

performance.  

Dairy cows experience an enormous metabolic challenge during the peripartum 

period due to increased preparturient energy and nitrogen demand by the conceptus and 

lactogenesis (Bell, 1995). Fetal energy requirements on Day 250 of pregnancy have been 

calculated to be 2.3 Mcal/d for Holstein cows (Ingvasrtsen and Andersen, 2000). These 

energy and accompanying nitrogen requirements of the ruminant conceptus are met 

almost exclusively by placental uptake of glucose and amino acids from the maternal 

circulation (Bell, 1995; Ingvasrtsen and Andersen, 2000). Therefore, maternal adaptation 

to the increased nutrient demand by the conceptus involves an increase in hepatic 

gluconeogenesis or decreased glucose utilization by peripheral tissues and an increase in 

reliance of maternal tissues on non-esterified fatty acids (NEFA) and ketones for 

oxidative metabolism (Bell, 1995; Ingvasrtsen and Andersen, 2000).  The onset of 

lactation imposes dramatic increases in requirements for glucose, amino acids, and fatty 

acids that cannot be met by dietary intake. These shortfalls are met by major metabolic 

adaptations that include total suppression of lipogenesis and enhancement of lipolytic 

responses in adipose tissue and enhanced hepatic gluconeogenesis (Bell, 1995; 

Ingvasrtsen and Andersen, 2000; Jorritsma et al., 2003). These metabolic changes evoked 
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by the difference in energy uptake and energy requirements, frequently referred to as 

negative energy balance (NEB), often have repercussions on subsequent fertility 

(Jorritsma et al., 2003; 2005).  Therefore, nutritional goals at this time should be to 

maintain intake, or in the event of depressed intake, energy intake must be maximized 

(Grummer et al., 2004). These adjustments may be more beneficial if initiated in the 

prepartum period rather than in the immediate peripartum period. 

Nutritional stresses associated with late gestation and early lactation are expressed 

by elevated concentrations of growth hormone and NEFA and decreased concentrations 

of insulin in plasma and  can be alleviated by protein supplementation in the prepartum 

period. Sletmoen-Olson et al. (2000) showed that cows fed low-quality prairie grass hay 

for the last three months of gestation and first three months of lactation or supplemented 

with low undegraded intake protein (UIP) mobilized their adipose tissue to meet nutrient 

requirements more than their contemporaries supplemented with moderate or high UIP. 

Dry matter intake (DMI) and energy balance of postpartum cows can be improved by 

increasing energy density of prepartum diets (Doepel et al., 2002). In that study, cows fed 

high energy (HE) diets (1.65 Mcal/kg NEL) for the last 21 days of gestation had greater 

postpartum DMI and more positive energy balance than cows fed low energy (LE) diets 

(1.30 Mcal/kg NEL). Consistent with the improved energy balance of the HE cows, 

concentrations of NEFA in plasma and hepatic triglyceride content were higher relative 

to LE cows. However, increased protein content of the prepartum diets had no beneficial 

effects in the postpartum metabolic variables other than reducing muscle protein 

degradation, as evidenced by a shift in peak plasma 3-methylhistidine concentration from 

calving to one week postpartum in cows on low protein diets than in cows on high protein 
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diets. In a previous related study, Marston et al. (1995) reported that cows fed energy-rich 

diets in the prepartum period gained more bodyweight and lost less BCS before calving 

than cows fed protein-rich diets. The advantage in BCS was continued through the 

breeding season and was measurable at weaning time. This observation led them to 

conclude that high energy feeding prepartum may have permitted cows to mobilize 

greater amounts of fat after calving or rather to have larger amounts of glycogen reserves 

available for early lactation. 

Roche et al. (2005) allocated 52 prepartum dairy cows to treatments of 5.4, 8.2, 

10.0, or 11.0 kg/d of pasture dry matter per cow per day for 27 days before calving. 

Precalving concentrations of glucose, IGF-1 and leptin in plasma increased quadratically 

with increasing pasture intake. They observed an associated linear decline in precalving 

plasma concentrations of growth hormone, and quadratic declines in concentrations of 

NEFA and β-hydroxybutyrate (BHBA) with increasing DMI. After calving, 

concentrations of these metabolites in plasma showed no lasting effect of precalving 

feeding. They concluded that cows that consumed less DM precalving had higher 

postpartum DMI and experienced less negative energy balance in early lactation. 

3. Early weaning 
 

Shifting weaning dates can improve cow-calf performance (Houghton et al., 1990; 

Grimes and Turner, 1991; Story et al., 2000; Arthington and Kalmbacher, 2003).  Most 

reports indicate that improvements in steer weaning weights can be achieved with early 

weaning (Houghton et al., 1990; Grimes and Turner, 1991; Myers et al., 1999a,b) and 

that subsequent improvement in cow weight gain and BCS result from removal of 

lactation requirements for the early-weaned cows (Story et al., 2000; Arthington and 
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Kalmbacher, 2003).  Removing calves  from cows at 30 to 45 days postpartum 

(Houghton et al., 1990) or 80 to 150 days postpartum (Grimes and Turner, 1991; Story et 

al., 2000; Arthington and Kalmbacher, 2003) might be considered in some production 

systems to improve overall efficiencies when forage quality and (or) quantity are 

inadequate to support lactation and optimal calf performance. In these instances, it may 

be more efficient and economical to feed early-weaned calves directly rather than to 

provide expensive supplemental feed to support lactation in cows (Houghton et al., 

1990). Myers et al. (1999b) reported increasing cow weights and BCS as weaning age 

decreased from 215 d to 90 d and concluded that lactating cows responded to increased 

lactational demands by mobilizing their body energy reserves. An earlier study by 

Whitman (1975) indicated possible interactions among nutritional status, body condition 

of the cow and suckling. He reported that when energy intake is marginal, suckling and 

subsequent nutritional stress of lactation might reduce the energy available for 

reproduction. This was confirmed later in the study by Houghton et al. (1990a), in which 

early weaning of calves at 30 days postpartum increased estrous activity of cows within 

60 days postpartum compared with normal-weaned cows. An additional advantage was 

expressed in cows that received adequate postpartum energy. 

4. Fat supplementation 
 

The use of fat supplementation in manipulating postpartum metabolic status and 

ovarian cyclic activity in dairy and beef cows has yielded inconclusive results. Whether 

these inconsistencies are caused mainly by animal stress levels or by type of fatty acids 

included in diets have necessitated current studies and may influence future studies too. 

Pre- or postpartum supplementation of beef cows with whole corn germ meal for 45 d did 



 28

not have any effect on BCS or bodyweight change during late gestation, early lactation or 

in the subsequent grazing season (Martin et al., 2005). Postpartum supplementation did 

not affect ovarian activity before onset of breeding season, pregnancy rate nor subsequent 

calving interval in that study. Neither did supplementation with rice bran or lasalocid 

affect postpartum body weight or BCS in multiparous Brahman cows (Webb et al., 2001). 

However, in first-calf beef heifers supplemented with 4.7, 3.8 and 5.1% fat in diet for the 

65 days of gestation, pregnancy rates were 94, 90 and 91% compared to 79% in control 

heifers receiving isocaloric diets with 2.4% added fat (Bellows et at., 2001, reviewed by 

Funston, 2004). Supplementation with 5.5% fat in diet from whole cottonseed 30 days 

before the breeding season increased the number of cows with BCS 4 cycling at the start 

of breeding season by 18% compared to control diet without added fat (Wehrman et al., 

1991). 

Elucidating how supplemental fat can influence reproductive function has been 

difficult. Currently, research is inconclusive on exactly how supplemental fat improves 

reproductive performance beyond the energy contribution (Funston, 2004).  

Supplemental fat stimulated programmed growth of a preovulatory follicle, increased 

total number of follicles, and increased the size of the preovulatory follicle (Mattos et al., 

2000). Increased size of the preovulatory follicles may be due in part to increased 

concentrations of plasma LH, which stimulate the latter stage of follicular growth. Thus, 

ovulation of larger follicles may result in formation of larger corpora lutea with increased 

steroidogenic capacity resulting in greater progesterone production. Increased 

progesterone concentrations may improve pregnancy rates in animals fed supplemental 

dietary fat. 
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Increased pregnancy rates observed with fat supplementation may be mediated by 

reduced PGF2α secretion from the uterus and decreased sensitivity of the corpus luteum to 

PGF2α (Mattos et al., 2000). Suppression of PGF2α action and maintenance of the corpus 

luteum are obligatory steps for establishment of pregnancy in cows, and failures in this 

process can cause the loss of up to 40% of pregnancies (Thatcher et al., 1994). Dietary 

polyunsaturated fatty acids can decrease PGF2α synthesis by decreasing the availability of 

precursor arachidonic acid, increasing the concentration of fatty acids that compete with 

arachidonic acid for processing by prostaglandin H synthase (PGHS), and inhibiting 

PGHS (Mattos et al., 2000). 

Measures of metabolic status of beef cows 

Metabolic status of cattle can be assessed by measurement of concentrations of 

metabolites in plasma (Wettemann et al., 2003; Ciccioli et al., 2003; Lents et al., 2005). 

Alternatively, noninvasive techniques such as BCS, body weight, and ultrasonic scanning 

of fat thickness (Rastani et al., 2001) provide relevant information about the metabolic 

status of cattle. In this portion of the review, the relevance of BCS in predicting 

metabolic status of beef cows is discussed. 

For many years, progressive cow-calf producers have recognized an important 

relationship between physical appearance of their cow-herd and reproductive 

performance. Body condition scoring merely formalizes this time-practiced procedure by 

placing a quantitative score on the relative degree of fatness or energy reserves that can 

be observed or palpated. The nutritional status or balance of an animal, evaluated through 

BCS, reflects the body reserves available for basal metabolism, growth, lactation and 

activity, and body fat indicates stored energy (Montiel and Ahuja, 2005). 
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Body condition score is a subjective method based on visual and tactile appraisal 

of metabolic energy stored as subcutaneous fat and muscle in the back and pelvic regions 

of an animal and is usually scored on a scale of 1 to 5 in dairy cows (Pryce et al., 2001, 

Montiel and Ahuja, 2005) and 1 to 9 in beef cows (Wagner et al., 1988; Table 1). Cattle 

generally deposit subcutaneous fat in the body in the following order:  back or loin, ribs, 

tailhead, brisket, flank, vulva and/or rectum, udder or mammary gland. When 

requirements exceed nutrient intake and subcutaneous fat is broken down, it is utilized in 

the reverse order (Encinias and Lardy, 2000).  Body condition score changes throughout 

lactation in the dairy cow, responding to changes in energy balance (Coffey et al., 2003). 

As milk yield peaks and demand for energy exceeds intake, the cow mobilizes her lipid 

reserves and gets thinner, thereby compromising her condition (Banos et al., 2004).  

Research has shown a strong correlation between the current scoring system and 

actual fat deposition in the animal. The present scoring system takes into account 80 to 90 

percent of the total variation in fat of a beef cow (Wagner et al., 1988; Hardin, 1990). 

Lents et al. (2005) found positive correlations between BCS and plasma concentrations of 

IGF-1, insulin and leptin at day-109 postpartum in gestating beef cows. Previously, 

Ciccioli et al. (2003) had demonstrated that inadequate nutrition uncoupled the GH-IGF-1 

axis, leading to a decline in BCS and when nutritional status was reversed, BCS increased 

concurrent with plasma concentrations of IGF-1 and insulin. Interestingly, several studies 

reviewed by Wettemann et al. (2000) indicated that relationships between these 

metabolites (IGF-1, insulin and leptin) and BCS varied with nutrient intake. When cows 

were in a fed state, a stronger relationship between BCS and the metabolites existed, 

whereas, when cows were fasted, the relationship was not evident. Therefore, it would be 
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rational to conclude that plasma concentrations of IGF-1, insulin and leptin may signify 

transient metabolic status whereas, BCS may provide a more stable estimate of cow 

metabolic status. 

For consistent herd evaluations, a single individual should score cattle over 

successive years, because the subjectivity of the scoring system usually results in 

variation among individuals assigning scores. According to Encinias and Lardy (2000), 

important factors to consider when scoring cows include age, breed, and frame size. 

Older cows tend to carry less condition over their top than younger cows. Fat deposition 

varies with breed or type of cattle; dairy- and Brahman-influenced cattle carry less 

subcutaneous fat and more internal fat than British or Continental type cattle. Small- to 

moderate-framed cattle (Angus and Hereford) are often scored higher than larger cattle. 

Evaluators are encouraged to use palpation in situations in which cows exhibit thick hair 

coats, are shrunk, or are in late stages of pregnancy. Shrink can alter the appearance and 

feel of cows by as much as one score, while late pregnancy will tend to make a cow look 

fuller and fatter (Blasi et al., ND). 

However, the predictive nature of the BCS system and individual variability in 

assigning scores may make it less accurate in measuring metabolic status of cows. 

Therefore, a combination of BCS and body weight or backfat depth could be used to 

correct for discrepancies obtained by using BCS alone. Direct relationships between BCS 

and body weight have been demonstrated (Houghton et al., 1990b; Buskirk et al., 1992; 

Tenant et al., 2002). However, Rastani et al. (2001) reported breed differences among 

dairy cows in the relationship between BCS and fat thickness, and they suggested that a 
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third variable (week of lactation or milk composition) be used in estimating metabolic 

status of dairy cows. 
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Table 1: Body condition scoring system 
Score Description 

 
1 Severely Emaciated. All ribs and bone structure easily visible and 

physically weak. Animal has difficulty standing or walking. No external fat 
present by sight or touch. 
 

2 Emaciated. Similar to 1 but not weakened. 
 

3 Very Thin. No palpable or visible fat on ribs or brisket. Individual muscles 
in the hind quarter are easily visible and spinus processes are very apparent. 
 

4 Thin. Ribs and pin bones are easily visible and fat is not apparent by 
palpation on ribs and pin bones. Individual muscles in hind quarter are not 
apparent. 
 

5 Moderate. Ribs are less apparent than 4 and have less than 0.2 inches of fat 
on them. Last two or three ribs can be felt easily. No fat in the brisket. At 
least 0.4 inches of fat can be palpated on the pin bones. Individual muscles in 
the hind quarter are not apparent. 
 

6 Good. Smooth appearance throughout. Some fat deposition in the brisket. 
Individual ribs are not visible. About 0.4 inches of fat on the pin bones and 
on the last two to three ribs 
 

7 Very Good. Brisket is full, tailhead and pin bones have protruding deposits 
of fat on them. Back appears square due to fat. Indentation over the spinal 
cord due to fat on each sides. Between 0.4 and 0.8 inches of fat on last two to 
three ribs. 
 

8 Obese. Back is very square. Brisket is distended with fat. Large protruding 
deposits of fat on tailhead and pin bones. Neck is thick. Between 1.2 and 1.6 
inches of fat on last two to three ribs. Large indentation over spinal cord. 
 

9 Very Obese. Description of 8 taken to greater extremes. 
 

Adapted from Wagner et al. 1988. 
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Measures of reproductive efficiency 

Reproduction is a major component of the productive efficiency for a cow-calf 

system (Wiltbank et al., 1961; Short et al., 1990; Montiel and Ahuja, 2005). The number 

of calves born per year per cow exposed to breeding was identified as one of the key 

components of reproductive efficiency in beef herds (Osoro and Wright, 1992). This 

factor is in turn influenced by calving interval, conception rate, and embryonic survival 

(Wiltbank et al., 1961) as well as prolonged postpartum anestrus (Short et al., 1990, 

Montiel and Ahuja, 2005). Duration of postpartum anestrus is affected mainly by 

nutritional status (Short et al., 1990; Randel, 1990; Harpster et al., 1998; Diskin et al., 

2003) and suckling status (Edgerton, 1980; Wettemann, 1980, Williams, 1990). Other 

factors such as uterine involution and age interact with the above mentioned factors and 

further influence reproductive efficiency of cows (Casida et al., 1968; Kiracofe, 1980; 

Short et al., 1990). 

From a meta-analysis of the effects of BCS and change in BCS on reproductive 

performance of lactating dairy cows, Lopez-Gatius et al. (2003) made the following 

observations: 1) pregnancy rate at first AI was reduced for cows calving in poor condition 

compared to those calving in intermediate condition, 2) cows with a low BCS at 

parturition remained open for approximately 6 days longer than cows in the intermediate 

category, 3)  severe loss of BCS (a drop in score of over 1 unit) during early lactation led 

to a significant increase of 10.6 days open relative to animals undergoing a slight loss in 

body condition, and  4) cows in poor condition at first AI needed 12.2 more days to 

become pregnant compared to cows in the intermediate BCS category. 

Role of the male in reproduction 
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The traditional role of the male in reproduction has undoubtedly remained 

unchallenged. Other than provision of germ cells required for fertilization, there is no 

other significant role attached to the male in the reproductive process in mammals. 

However, in some aquatic species, male pregnancy, extended male parental care, and 

monogamy exist (Jones et al., 2003). 

As discussed in the previous section, biostimulatory effects of the male have been 

exploited to accelerate the onset of puberty in females, to stimulate resumption of cyclic 

activity in females undergoing seasonal or lactational anestrus, and also to alter times 

associated with estrus and ovulation (Clemens and Christensen, 1975; Chenoweth, 1983). 

Genital stimulation of the female by the male prepared the female genital tract for 

optimal gamete transport (VanDemark and Hays, 1952) and tactile stimulation improved 

conception rates to AI in cows but not in yearling heifers (Randel et al., 1975). 

Seminal plasma proteins 
 
Seminal plasma proteins have been classified into two main categories based on 

their binding properties: 1) Spermadhesins or heparin-binding proteins predominant in 

boar, stallion and ram, and 2) proteins that contain fibronectin type II (Fn-2) domains 

generally referred to as bovine seminal plasma (BSP-A1/A2 and BSP-A3) proteins 

(Maxwell et al., 2007).   

The BSPs are closely related proteins which exhibit multiple binding and 

functional properties. Upon ejaculation, they bind to the choline phospholipids of the 

sperm and prevent premature capacitation. They also bind to sperm capacitation factors, 

namely heparin and high-density lipoproteins (HDL), as the spermatozoa reach the 

oviduct, thus mediating capacitation. Hence, Fn-2 domain proteins are thought to perform 
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protective and restoring roles to ejaculated spermatozoa. Among the BSP proteins, BSP-

30-kDa is the best mediator of sperm capacitation induced by heparin or HDL on 

epididymal spermatozoa, and its presence on the sperm membranes corresponds to 

increased fertility of bulls (Bellin et al., 1998; Moura et al., 2006).  

 Spermadhesins are a group of 12 to 16 kDa proteins with carbohydrate-binding 

activity that constitute the majority of secretions by the seminal vesicles in the pig and 

horse.  Because of their known interactions with heparin and zona pellucida, they may be 

involved in capacitation and oocyte recognition (Einspanier et al., 1994; Jonakova et al., 

1998; Reinert et al., 1996).  Spermadhesin 1, commonly referred to as acidic seminal 

fluid protein (aSFP), found in seminal plasma from bulls, also stimulates cell division and 

secretion of progesterone from granulosal cells in vitro, which could ultimately influence 

ovulation (Einspanier et al., 1991). However, some spermadhesins might inhibit the 

normal signaling pathway associated with initiation of capacitation and/or mask zona 

pellucida ligands in the sperm surface. The porcine spermadhesin heterodimer, porcine 

seminal plasma protein-I/II (PSP-I/PSP-II) is able to preserve viability and acrosome 

integrity and block oocyte penetration by frozen-thawed but not fresh boar spermatozoa 

(Caballero et al., 2004). Low fertility of dairy bulls has been associated with higher 

expression of Spermadhesin Z13 isoforms in accessory gland fluid (Moura et al., 2006).  

Phospholipase A2 (PLA2) comprises a family of ubiquitous calcium ion-

dependent enzymes capable of hydrolyzing the sn-2-position of phospholipids, releasing 

free fatty acids and lysophospholipids. Most PLA2 characterized to date belong to either 

one of the two main groups: high (85-kDa) and low (14-20-kDa) molecular mass PLA2. 

In the reproductive system, PLA2 has been localized on the surface of ejaculated sperm 
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(Ronkko, 1992) and is widely accepted to play a major role in the late maturational 

events of spermatozoa, particularly in the acrosomal reaction. The sperm PLA2 is also 

implicated in sperm-egg fusion. A secreted form of PLA2 has been purified from seminal 

plasma of various mammalian species (Soubeyrand et al., 1997). The secreted PLA2 is 

believed to stimulate cytokine release by immune cells and exert a potent antimicrobial 

action in the seminal plasma (Moura et al., 2006). 

There have been attempts to correlate fertility potential of bulls with proteins 

present in seminal plasma. Four proteins were proposed by Killian et al. (1993). These 

proteins were later identified as Osteopontin (Cancel et al., 1997), Phospholipase A2 

(Manjunath et al., 1994), Spermadhesin Z13 and BSP-30kDa (Moura et al., 2006). The 

usefulness of these correlations as a basis for assessment of individual males or of their 

ejaculates, and their application in semen processing and preservation, is yet to be 

determined. The possibility of fertility associated proteins on the sperm surface has also 

been considered (Sutovsky, 2003; Peddinti et al., 2008). An active molecular mechanism 

of sperm quality control has been linked to epididymal sperm ubiquitination (Baska et al., 

2008). Therefore, defective spermatozoa would be targeted for proteolytic degradation 

making ubiquitin identification a potential biomarker of sperm quality. 

Fahmi et al. (1995) reported that bovine seminal plasma is immunosuppressive 

and cytotoxic to bovine lymphocytes. Transforming growth factor (TGF)-β1 was purified 

and reported to be the active immune modulatory factor in seminal plasma (Tremellen et 

al., 1998). Studies in infectious diseases have concluded that TGF-β plays this essential 

role by down-regulating the production of potentially pathogenic proinflammatory 

cytokines such as interferon-γ, tumor necrosis factor-α or interleukin 12 (Omer et al., 
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2003). Hostile immune responses to seminal antigens would be incompatible with the 

maintenance of fertility and would prevent the female tract from tolerating future 

exposure to semen (Robertson, 2005). There would also be consequences for pregnancy, 

because the conceptus shares paternal antigens with those in semen (Thaler 1989). 

However, the immune activation elicited by semen does not activate the rejection of male 

antigens, because of the presence, in seminal plasma, of several powerful immuno-

regulatory molecules, such as PGE and TGFβ, which prevent the destructive Type-1 

(cell-mediated) immune responses (Letterio and Roberts, 1998; Weiner, 2001). Thus, the 

female tract immune response to semen conversely appears to result in a state of 

functional immune tolerance to male antigens (Robertson, 2005). 

Conclusion and statement of the problem 
 

This review has demonstrated that: 1) the timely resumption of estrous cycles 

within a defined breeding season is a hallmark that initially dictates whether a beef cow 

will produce a calf on an annual basis. 2) Return to estrus is orchestrated via an 

integration of multiple signals within the hypothalamo-hypophyseal-ovarian axis. 3) 

Energy balance, which is perceived by the reproductive axis as a variety of nutritionally 

induced cues, has a profound effect on the duration of the postpartum anestrus. 4) 

Seminal plasma proteins might evoke their immune-modulatory or membrane stabilizing 

activity in the female tract in support for fertilization and pregnancy maintenance. 

Over 40 years ago, failure to conceive or early embryonic death accounted for the 

largest loss in calf crop in beef production (Wiltbank et al., 1961). Three decades later, 

failure to conceive during the breeding season was reported to account for the greatest 

production loss in the cow-calf segment of the beef industry (Bellows and Short, 1994). 
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Most recently (Geary, 2003), the most common reproductive problem facing beef 

producers is getting first calf heifers re-bred. In most operations, pregnancy rates of either 

2- or 3-year-old cows are the lowest in the herd. Logically then, reducing the lactational 

stress in the pregnant younger cow, which is still growing, by early weaning might lead 

to increased body energy reserves at calving and minimize the effects of negative energy 

balance on her postpartum interval and breeding performance.   

In the dairy industry, poor oocyte quality (Ahmad et al., 1995; Perry et al., 2007) 

and failure of attachment (Starbuck et al., 2004; Rhinehart et al., 2008) account for the 

largest pregnancy losses. In a recent review of embryonic death in cattle, Inskeep and 

Dailey (2005) reported that about 10% of pregnancy failures in cows occur due to factors 

associated with the male. However, little attention has been paid to contributions in 

pregnancy failures due to male factors. Whether proteins present in the seminal plasma of 

ruminants could be characterized and utilized as additives to improve fertility of females 

after AI should be considered in the context of new research. 

Experiment 1: Effect of weaning regimen on energy profiles and reproductive 

performance of beef cows 

Introduction 
 

The role of prepartum nutrition in reproductive performance of beef cows was 

demonstrated by the pioneer work of Wiltbank et al. (1962). Subsequent researchers 

modified their designs to include changes in duration of feed restriction at different stages 

of gestation (Morrison et al., 1999) and cow ages (DeRouen et al., 1994; Spitzer et al., 

1995), but the outcome has been very consistent. Thus, a minimum body condition score 

of 5 (multiparous beef cows) or 6 (primiparous beef cows) on a 9-point scale (Wagner et 
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al., 1988) at calving is recommended for timely resumption of estrous cycles within a 

defined breeding season to produce annual calf crops.  Return to estrus is orchestrated via 

integration of multiple signals within the hypothalamo-hypophyseal-ovarian axis; energy 

balance, which is perceived by the reproductive axis as a variety of nutritionally induced 

cues, has a profound effect on the duration of postpartum anestrus (Hess et al., 2005). 

Nutrient requirements of beef cows increase during pregnancy, but in temperate 

environments nutrient availability may be inadequate during the latter portion of 

pregnancy, when requirements increase most rapidly. In that case, cows catabolize body 

tissue to support conceptus growth. With inadequate supplementation programs, such 

cows will calve at lower body condition and may experience an extended postpartum 

anestrus. Supplementing grazed forages with harvested feed during pregnancy should 

prevent the cow from losing body tissue. However, there are costs associated with 

supplemental feeding, including cow feed efficiency and specific feed cost. Freetly and 

Neinaber (1998) reported that time of the annual reproductive cycle when feed resources 

are offered can be altered with minimal effect, thus allowing for flexibility in managing 

feed resources. Geary (2003) reported that nutritionally, the most affected age groups are 

the primiparous cows, and in most beef herds, getting these first-calf heifers to re-breed 

has been problematic. Hence, pregnancy rates of 2- or 3-year-old cows are often the 

lowest in the herd, and the effect is carried over to the 2nd calving (Ottobre and Lewis, 

1983). Logically then, reducing the lactational stress by earlier weaning might lead to 

increased body energy reserves at calving and minimize the effects of negative energy 

balance on their postpartum intervals and breeding performance.  This alternative 

management practice has the potential to decrease postpartum interval, increase 
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pregnancy rates and longevity within a cow herd. Therefore, the objectives of this study 

were to evaluate the effect of shifting time of calf weaning on 1) cow body energy 

profiles throughout the production cycle, and 2) postpartum reproductive efficiency. 

 
Materials and methods 

Study location, animals and management 
 
The study was conducted using a State-owned commercial beef herd in 

Huttonsville, WV. The farm is located in the Tygart Valley in Randolph County, West 

Virginia, adjacent to the Monongahela National Forest (38° 53' N, 79° 51' W). The 

climate of the county is generally cooler than most parts of the eastern United States. The 

average mean annual temperature at the Elkins-Randolph County Airport is 9.5º C. Three 

months have average mean temperatures below freezing with January’s -2.7º C being the 

coldest. Four months have average mean temperatures in the teens, while July’s 20.4º C 

is the warmest. The elevation is about 625 m above sea level. The nearby Elkins airport 

receives on average, 1137 mm of precipitation annually, including 942 mm of rainfall 

and another 196 mm from melting of frozen precipitation. 

The breed composition in the herd was predominantly Angus with about 1/3 

Hereford and Charolais crosses.  Average cow age in the herd was 4 to 5 yr, but   ranged 

from 2 to 12 years of age. Cows were managed on natural pastures all year round and 

supplemented with harvested forages during winter months. Forage species present in the 

pastures were primarily orchard grass (Dactylis glomerata L.), tall fescue (Lolium 

arundinaceum), white and red clover (Trifolium repens L. and T. pratense L.), and, in 

less proportion, Kentucky bluegrass (Poa pratensis) and timothy (Phleum pratense L.).  

Data were collected from 135 (year 1) and 150 (years 2 and 3) spring-calving cows 
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whose calves averaged 6 mo of age in September. Peak calving season occurred in March 

but began in early February and lasted till early April. Breeding season lasted 60 d during 

the study period beginning mid-May till mid-July. Cows were maintained in separate 

breeding age groups (2-, 3-4-, ≥ 5-yr old) during the breeding season. Bull to cow ratio 

was maintained at approximately 1:20.  

Cows were stratified by age, and by sex and weight of their calves and assigned 

randomly into two treatment groups: early weaning at approximately 180 d of calf age 

(early weaning, n = 90 yr 1, and 100 yr 2 and 3) and normal weaning 45 d later (control, 

n = 45 yr 1, and 50 yr 2 and 3) with weaning groups stratified to cow ages. The study was 

conducted over a 12-month period beginning at first weaning in September (early 

weaning) and ending at weaning of the next calf in September of the subsequent year and 

replicated for 3 yr. Time points of interest were: 1) early weaning, 2) normal weaning, 3) 

pre-calving (average 3 weeks before start of calving season), 4) postpartum (average 60 

days after start of calving season), 5) breeding (average 30 days after end of calving 

season), and 6) end of breeding (60 d after start of breeding season). Cows were managed 

as one herd and reassigned among treatment groups each subsequent year. 

Measurements and data collection 
 

All experimental procedures were approved by the West Virginia University 

Animal Care and Use Committee. Body weights were recorded and BCS were assigned 

to the cows by visual appraisal by a single evaluator at each weighing period based on a 

scale of one to nine (1 = thin and 9 = obese, Wagner et al., 1988). Fat thickness was 

measured by a certified ultrasound technician over the rump and rib using an Aloka® 500 

ultrasound console and a 5.0 MHz probe (Aloka America, Willingford, CT). The 
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transducer was placed above the interface between the biceps femoris and the gluteus 

medius muscles for rump fat, and on the intercostal region between the 12th and 13th rib 

for rib fat.  The ultrasound images were analyzed at the National Centralized Ultrasound 

Processing (CUP) Laboratories. Pregnancy diagnosis was performed at the end of each 

breeding period by transrectal ultrasonography using an Aloka® 900 console with a 7.0 

MHz probe (Aloka America, Wallingford, CT). Calving interval was calculated as the 

interval from one calving to the next.  Days from breeding to calving (BCI) were 

calculated as the number of days from start of breeding season to actual calving date. 

Calving and weaning rates in subsequent years were used as indicators of production 

efficiency in the herd. Cow retention pattern in the herd was indicated by the frequency 

of calving and weaning within the 3-yr study period. 

Statistical analysis 
 
Data on cow weights, BCS, rib and rump fat, and composition scans were 

analyzed as repeated measures in a split plot design using the mixed procedures of SAS 

(SAS Inst. Inc., Cary, NC). The subject for repeated measures was cow within age and 

treatment. Main plot variables included cow age, treatment, and the interaction term. 

Subplot variables included period, and its 2- and 3-way interaction terms with cow age 

and treatment. Linear, quadratic, and cubic contrasts were tested for age and period 

effects. Effects of cow age on BW and rump fat were further evaluated using the GLM 

procedures of SAS in a second model that adjusted the variables to a constant BCS (5.0). 

The model statement included BW and rump fat as dependent variables, age as a class 

variable and BCS as a covariate. Differences among least squares means were determined 

by Tukey’s multiple comparison tests. 
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Reproductive performance was evaluated in terms of 1) retention in the herd,  

which was obtained from proportion of cows that weaned calves (×100 = % retention) of 

those present at previous breeding season, 2) number of days from start of breeding 

period until calf birth (BCI), 3) calving interval (CI), and 4) performance of the 

subsequent calf. Cows that calved and subsequently weaned that calf were assigned a 

value of 1, and those that had no calf were assigned a value of 0. Calf performance was 

evaluated by adjusted 205-d weaning weight. Analyses for BCI, CI and calf performance 

were evaluated using PROC GLM in SAS according to the following model: 

Yijkl =µ + Ti + Ck + TCik + Bj(i) +eijkl 

Where 

Yijkl = the lth cow of the jth year in the ith treatment in the kth age group; 

µ = overall mean; 

Ti = effect of the ith treatment; 

Ck = effect of the kth age group; 

TCik = interaction term for the ith treatment and kth age group; 

Bj(i) = effect of the jth year in the ith treatment; and  

eijkl = random error associated with Yijkl. 

Least squares mean differences were determined by Tukey’s LSD at α = 0.05. 

Retention pattern was analyzed by contingency tables using JMP (SAS Institute, Cary, 

NC). Relationships between BCI, CI, cow age, BCS, rib and rump fat were determined 

by polynomial analysis using JMP. Pairwise correlations were performed among all 

energy variables with reproductive variables at selected periods using JMP. 
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Results and discussion  

Complete data sets were available for 408 cows for BW, BCS, rib and rump fat 

analysis, 314 cows for CI and BCI analysis, and 252 cows for evaluation of subsequent 

adjusted 205-day calf weaning weights. 

Cow weight 
 

Weaning treatment did not influence (P = 0.34) overall cow weight profile, 

however, an interaction of treatment with period (P < 0.001) affected weight at normal 

weaning time (data not shown). Hence, upon cessation of suckling, cows were able to 

compensate for reduced weight gain during the interval from early to normal weaning. A 

linear response (P < 0.001) for cow age by weight indicated increased weight gain from 2 

to 4 years of age and marginal gains thereafter (Table 2). Age of the cow affected weight 

at each measurement (P < 0.001). Body weights at normal weaning and pre-calving were 

greatest in cows 4 years of age or older and least in 2 year-old cows (P < 0.001). 

Postpartum weights remained low from calving to breeding but recovered at end of 

breeding to early weaning levels. In a second model, the variability in cow weights with 

age was evaluated at a constant BCS. Similar to the unadjusted weights, a linear trend 

was observed for weights adjusted for age at BCS = 5.0 (Figure 1). Previous reports 

indicated that a BCS of 5.0 at calving and increasing BCS at breeding are important for 

improved reproductive efficiency in postpartum beef cows (Houghton et al., 1990a,b).  

 Renquist et al. (2006) monitored weight changes in fall-calving-beef cows at four 

periods (calving, breeding, weaning and mid-gestation) and reported that growth from 3 

to 5 years of age caused differences of 28, 46 and 18 kg weight between 3- and 4-, 3- and 

5-, and 4- and 5-yr-old cows, respectively. Other investigators have shown that cow 
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weight changed with age, however, the age at which mature body weight was reached 

and the existence of a subsequent decline in body weight have been subject to debate. 

Northcutt at al. (1992) and Tennant et al. (2002) showed that maximum weight accretion 

occurred between ages 5 and 6 years. In contrast, Marlowe and Morrow (1985), Choy et 

al. (2002) and Renquist et al. (2006) reported that mature BW is attained at 7 to 8 years of 

age. Furthermore, Northcutt et al. (1992), Tennant et al. (2002) and Renquist et al. (2006) 

found that cow weight declined after 11 yr of age. The present results agree with the 

latter studies.  

Body condition score (BCS) 
 

Profiles of BCS followed a similar pattern as BW (Table 2). A quadratic increase 

in BCS was observed with age and maximum BCS was achieved at 4 yr of age. Periodic 

fluctuations were observed and BCS peaked prior to calving while nadir BCS occurred 

after calving in all age groups. Body condition fell by at least one full point from pre-

calving to postpartum followed by a gradual increase at breeding. Maximum BCS was 

observed in ≥ 5-yr-old cows at pre-calving, whereas minimum BCS was observed in 2-

yr-old cows in the postpartum period. Weaning treatment and age by treatment 

interactions affected (P < 0.001) BCS pattern. Early weaned cows had greater BCS than 

control cows at 3- and 5-years of age, whereas no differences occurred in other age 

groups (data not shown).  

A similar profile in BCS was reported by Renquist et al. (2006) with differences 

occurring between ages 3 and 4, 4 and 5, 5 and 6, 7, and 8 years. They also reported a full 

point BCS decline across all age groups after calving, as in the present study. The close 

link between BCS and BW profiles is consistent with previous findings, in which BCS 



 47

reached a plateau at ages 5 (Marlowe and Morrow, 1985), and 6 to 8 yr (Choy et al., 

2002), respectively. The finding that weaning can influence BCS at calving is consistent 

with previous published reports and might provide an alternative management strategy to 

improve reproductive performance of beef cows. Previous investigators have reported 

that BCS at calving is the single most important determinant of resumption of ovarian 

cyclicity (DeRouen et al., 1994; Spitzer et al., 1995; Morrison et al., 1999). Thus, the 

additional cost in supplementing cows in low BCS to achieve modest BCS at calving 

might be saved if a similar objective can be achieved by weaning calves prior to 

traditional weaning times. Such programs might have significant financial implications to 

livestock producers. 

Rib fat 

Rib fat thickness followed a quadratic trend with cow age (Table 3; P < 0.001); it 

was least in 2- and 3-yr-old cows, peaked when cows were 4 yr-old, and declined by 5 yr 

of age. Weaning treatment and its interactions with age and with period affected (P < 

0.006) rib fat thickness. Early weaned cows of at least 4 yr of age had greater (P < 0.001) 

rib fat thickness as opposed to 2- and 3-yr-old cows (data not shown). Because impetus 

for fat accretion occurs in the later stages of growth, nutrient homeorrhesis in younger 

cows could have been targeted preferentially to protein accretion (Hornick et al., 2000). 

Therefore, the impact of early weaning might not be detected by fat scans in this age 

group. The periodic pattern of rib fat profile followed a similar pattern as those of BCS 

and weight. Maximum values were observed pre-calving whereas minimum values were 

observed postpartum in all age groups. The percentage declines in rib fat between pre-
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calving and postpartum periods were 58, 62, 76, 67 and 61% for 2-, 3-, 4-, 5-, and ≥ 6-yr-

old cows respectively. 

Rump fat 
 

Rump fat thickness was affected by age, weaning treatment, period and their 2- (P 

< 0.05) and 3-way interactions (P < 0.001). The profile for rump fat was nearly identical 

to that of rib fat. Early weaning increased (P < 0.001) cow rump fat thickness from 

weaning to pre-calving period and maintained a numerical advantage post calving over 

the control. This trend was consistent in all age groups except the 2-yr-old cows (Table 

4). Thus, rump fat was the only objective measurement with detectable changes across all 

levels of independent factors. This finding indicates that rump fat might be the most 

important non-invasive determinant of beef cow energy status. Adjustment of rump fat to 

an average BCS (5.0) displayed a quadratic trend with least, intermediate, and peak 

values at 2-, 3-, and 4 yr and later ages, respectively (Figure 2). 

Mobilization of adipose tissue is quantitatively a more important source of energy 

than body protein or liver glycogen (Schroder and Staufeniel, 2006). Consequently, 

adipose tissue seems suitable to assess energy balance, because the amount of mobilized 

body fat approximates the energy demand that is required for milk production and 

maintenance. Several attempts have been made to correct the variability in using BCS as 

a measure of energy status in beef and dairy cows due to regional and individual score 

systems. Wagner et al. (1984) and Buskirk et al. (1992) reported that a 38 kg change in 

weight was associated with each unit change in BCS. Ferrell and Jenkins (1996) found a 

change of 51 kg empty BW per unit BCS, while Tennant et al. (2002) reported that 

weight adjustments to BCS varied among time periods of the production cycle. These 
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variations in weight per unit BCS among studies prompted an examination of alternative 

approaches in predicting energy status in cattle. An ultrasonic technique has been 

established to predict carcass quality in beef cattle (Brethour, 1992). A new aspect would 

be the application of ultrasound as a monitoring tool for nutritive status in herd 

management. Measurement of rump fat by ultrasound might be an added value compared 

to other condition scoring systems because of the objectivity and precision associated 

with the procedure.  Repeatability of ultrasound measurements (Brethour, 1992) indicated 

reliability of ultrasound for predicting energy status in beef cows. The repeatability 

between consecutive measurements in that study was 0.975 with an absolute difference of 

0.72 mm. Robinson et al. (1992) reported an average standard deviation of 0.43 mm in 

repeated ultrasound measurements of fat within individual operators, and approximately 

1 mm when comparing measurements between different operators. Because of the 1-mm 

metering precision of the ultrasound technique, even slight changes in body condition 

that may not be appreciable using the BCS system can be determined and computed on 

an individual or herd basis. These data can be related to production variables to evaluate 

the effects of negative energy balance (Schroder and Staufeniel, 2006). 

Reproductive performance 

Reproductive performance was evaluated using calving interval (CI), days from 

breeding to calving (BCI), and calving pattern. Mean calving interval was 372.4 days, 

which varied (P < 0.001) with year and tended (P = 0.06) to be affected by cow age 

(Table 5), but not by weaning treatment (P = 0.42). Relationship of CI (y) to cow age (x) 

was explained by polynomial fit:  Y = 321.9 + 11.2X + 6.3X2 - 4.0X3 (R2 = 0.16, P < 

0.001). Two-year-old cows had the longest calving intervals (375.4 ± 1.9 d) while 3-yr-
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old cows, surprisingly, had the shortest calving intervals (364.1 ± 3.3 d). Calving 

intervals were highly variable in 4-yr-old cows. Calving interval was negatively 

correlated (r = -0.21, P < 0.01) to rib fat thickness at breeding (Table 6).  

Interval from breeding to calving differed (P < 0.001; Table 5) between 2- and 3-

yr-old cows (303.5 ± 1.6 vs. 292.5 ± 2.8 days, respectively) but not among cows ≥ 4 yr of 

age. Relationship of BCI (y) to cow age (x) was explained by polynomial fit:  Y = 280.4 

+ 2.9X + 4.5X2 -1.8X3 (R2 = 0.12, P < 0.001). Interval from breeding to calving was 

highly, but negatively correlated to pre-partum rump fat (r = -0.27, P < 0.001; Table 6) 

and to BCS at breeding (r = -0.27, P < 0.001; Table 6). These relationships were greater 

(P < 0.001) than those of BCI to any of the remaining energy variables at breeding or 

before calving.  

Because adequate reproductive performance is essential to profitability, the effect 

of age on CI and BCI has a significant impact in beef cattle production. The longer CI 

and BCI between the first calving at 2 yr-old and calving at 3 yr of age was likely due to 

increased postpartum anestrous intervals in primiparous cows. Previous researchers have 

noted an association of age and longer postpartum interval (Neville et al., 1990; Morris et 

al., 2006; Renquist et al., 2006) and attributed it to postpartum loss of weight and BCS in 

primiparous cows. The relationships described above and energy profiles described in 

preceding sections support that hypothesis and indicate that losses in rump fat might be 

more accurate markers of energy status relevant to longer postpartum intervals than 

weight or BCS losses. Therefore, preferentially managing younger cows to minimize rib 

and rump fat losses up to their second calving as 3-yr-olds and subsequent rebreeding 

might shorten CI and BCI. Dystocia is more common in first-calf heifers and is presumed 
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to delay rebreeding by delaying uterine involution (Laster et al., 1973; Bellows and Short, 

1978). However, Bridges et al. (2000) found that subsequent pregnancies were more apt 

to occur in the previously gravid than the previously non-gravid uterine horn, which casts 

some doubt on that assumption. Although, calving difficulty was not monitored, this 

might explain the longer CI and BCI in 2-yr-old cows. After 3 years of age, there was 

little change in calving interval and BCI. These results indicate that once cows calve a 

second time, the effects of age on reproductive efficiency become minimal. Interactions 

of age with time of year of calving affected length of calving interval (Ottobre and Lewis, 

1983). In that study, cows that calved from December to February had longer calving 

intervals that those that calved from March to April. Consistent with our findings, the 

effect was more pronounced in 2- and 3-yr-old cows than in older cows.  

Retention pattern in the herd was analyzed by contingency tables as percent cows 

exposed to breeding that successfully reared a subsequent calf to weaning following the 

first and second breeding seasons. A total of 314 cows were exposed to breeding. 

Retention pattern differed (P < 0.05) with treatment and age (Table 7), and averaged 55.2 

and 66.5 % for control and early-weaned cows, respectively. Cows that did not calve or 

wean a calf the subsequent year and were eventually culled (Retention pattern = 0) 

accounted for 28% of the total observations and were mainly 2-yr-old cows. Cows that 

calved and weaned a calf the subsequent year, but not the third year (Retention pattern = 

1) accounted for 42.4% of total observations and were mainly 2-, and 3-yr-old cows. 

Lastly, cows that calved and weaned calves after both breeding seasons (Retention 

pattern = 11) accounted for 29.6% of the total observations and were mainly cows ≥ 4-yr-

old. 
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Retention in the herd was a function of pregnancy, calving and culling rates. 

Being pregnant at the end of the breeding season, calving within the designated calving 

season, and successfully rearing a calf to weaning were requisites for cows to be retained 

in the herd. Cows were culled from the herd due to other reasons such as still birth, low 

calf weight at weaning, and poor body condition at breeding. However, these culling 

decisions were made independent of treatment. Early weaning decreased the proportion 

of cows culled by 11.3 percentage points or about 25%, from 44.8 to 33.5%. Body 

condition at breeding was an important factor in cow retention in the subsequent breeding 

season. Because more control cows exhibited poor condition at breeding, they were 

subsequently culled from the herd. The high culling pressure practiced at the farm 

favored cows with greater body condition and might have influenced the differences in 

persistence among the two treatment groups despite both having similar pregnancy rates 

at end of breeding. Grings et al. (2005) reported that season of calving and age at 

weaning affected weight and BCS dynamics of beef cows, but did not change the 

proportion of cows that became pregnant after natural breeding. However, those authors 

did not evaluate persistence in their herd and were not able to detect differences due to 

weaning age or season of calving. 

Weaning weights 

Calf weaning weights in the subsequent year were affected by their dams’ 

previous weaning treatment, age, and year (P < 0.001). Calves from early-weaned cows 

were heavier at weaning (225.2 ± 3.1 kg) than their contemporaries from control cows 

(216.7 ± 4.1 kg), and from ≥ 4 yr-old cows than from 2- and 3-yr-old cows (P < 0.001; 

Figure 3). Weaning weights increased in yr 2 by 8% over yr 1 and might have been 



 53

influenced by increased culling or potentially better management during the study (data 

not shown). As expected (Richardson et al., 1978; Baker and Boyd 2003), steer calf 

weights at weaning were greater (P < 0.001) than those of heifer calves (226.4 vs. 215.5 

kg).  

The effect of age of the dam on calf weaning weight has been reported (Melton et 

al., 1967; Vargas et al., 1999; Baker and Boyd, 2003) and might be explained by lower 

birth weights and milk production in 2-yr-olds. Primiparous cows are usually bred to low 

birth weight bulls to avoid the effects of dystocia on postpartum intervals. This in turn, 

lowers birth and weaning weights of their calves. Vargas et al. (1999) attributed low 

weaning weights of calves from primiparous cows to the latter’s small frame size and low 

body condition. In the current study, energy profiles of 2-yr-old cows were persistently 

low throughout and were not affected by treatment. This observation confirmed the 

finding of Vargas et al. (1999) and indicated that while calving ease might be 

advantageous in beef cattle management, it might limit profitability as it progressively 

lowered weaning weights in calves. Low milk production in primiparous cows also 

limited weaning weights of their calves (Melton et al., 1967; Baker and Boyd, 2003). In 

the latter study, weaning weights of calves from 5- and 6-yr-old cows exceeded those of 

2-yr-old cows by about 36 kg across two genetic lines. 

Little is known about the effect of early weaning of cows on subsequent calf 

weaning weight. Most studies have been directed to its effects on weaning weight of the 

current calf with minimal attention to birth weight of the subsequent calf. Weaning 

weight of the subsequent calf is needed to fairly compare the producing ability of the 
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cow, because this measure is taken at the end of the period over which she exerts her 

maximum influence on growth of her calf.  

Richardson et al. (1978) reported that weight gained by cows after weaning 

between 120 and 210 d postpartum was associated with increased calving difficulty the 

following year but did not affect weights of the subsequent calves. Pate et al. (1985) 

evaluated the effects of weaning calves at 8.5 vs. 10.5 mo of age on subsequent cow 

performance and obtained a 6.6 kg improvement in weaning weight of the subsequent 

calves by earlier weaning. That outcome was comparable to the 8.6 kg difference in the 

current study. Therefore, an early weaning age can offer significant advantages in cow-

calf production that should be of economic importance. 

Conclusion 
 

Early weaning improved energy partitioning and production efficiency in beef 

cows. The significant effects of age on BW, BCS, rib and rump fat, CI, BCI and calf 

weaning weights demonstrate the importance that herd age profiles might have on the 

profitability of beef cattle enterprises. First and 2nd parity cows should be managed to 

minimize BW and BCS losses after calving to improve their reproductive efficiency. 

Discrepancies with utilizing BCS to predict energy status in beef cows might be 

minimized by ultrasonic measurement of rump fat. Therefore, further research is required 

to determine its use in nutritional management. 
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Table 2: Least squares means ± SE of BW and BCS of cows 2 to ≥ 6 years of age1 

 
                                                 
1 Early weaning, Normal weaning, Precalving, End of calving, Breeding and End of breeding were periodic 

measurements taken in September, October, January, April, and May, respectively. 

2 BCS (1 = severely emaciated to 9 = obese). 

LS means ± SE within columns differed, a vs. b, c, or d (P < 0.001).  

 

Cow age 
 
n Early Weaning Normal Weaning Precalving End of Calving Breeding End of Breeding 

 
BW, kg 

2 
 
175 477.0 ± 4.1 a 499.0 ± 4.2 a 522.6 ± 4.7 a 453.1 ± 4.8 a 443.4 ± 7.0 a 503.5 ± 5.7 a 

3 
 
88 506.6 ± 5.8 b 532.5 ± 6.1 b 559.3 ± 7.0 b 494.7 ± 6.8 b 509.9 ± 9.8 b 541.3 ± 8.7 b 

4 
 
28 556.2 ± 10.1 c 573.7 ± 10.5 c 622.7 ± 21.4 c 526.4 ± 11.9 bc 536.3 ± 17.4 bc 589.2 ± 24.0 bc 

5 
 
42 594.1 ± 8.5 d 612.5 ± 8.9 d 650.3 ± 9.3 c 554.6 ± 10.2 c 555.6 ± 14.6 bc 606.7 ± 10.5 c 

≥ 6 
 
75 593.4 ± 6.0 d 614.0 ± 6.2 d 649.8 ± 7.0 c 557.2 ± 7.2 c 573.4 ± 10.6 c 584.7 ± 8.0 c 

 
BCS2 

2 
 
175 5.4 ± 0.1 a 5.6 ± 0.1 a 5.5 ± 0.1 a 4.6 ± 0.1 a 5.0 ± 0.1 a 5.6 ± 0.1 a 

3 
 
88 5.4 ± 0.1 a 5.8 ± 0.1 ab 5.9 ± 0.1 b 5.0 ± 0.1 b 5.4 ± 0.1 b 5.8 ± 0.1 ab 

4 
 
28 5.9 ± 0.1 b 6.2 ± 0.1 b 6.0 ± 0.3 bc 5.4 ± 0.1 b 5.8 ± 0.1 c 5.9 ± 0.3 ab 

5 
 
42 5.8 ± 0.1 b 6.4 ± 0.1 b 6.3 ± 0.1 c 5.1 ± 0.1 b 5.5 ± 0.1 bc 6.0 ± 0.1 b 

≥ 6 
 
75 5.8 ± 0.1 b 6.2 ± 0.1 b 6.4 ± 0.1 c 5.2 ± 0.1 b 5.5 ± 0.1 bc 5.9 ± 0.1 ab 
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 Table 3: Least squares means ± SE for rib and rump fat of cows 2 to ≥ 6 years of age1 
Cow age, yr n Early Weaning Normal Weaning Precalving End of Calving Breeding 

 
Rib Fat, mm 

2 
 
175 2.8 ± 0.2 a 3.4 ± 0.2 a 3.5 ± 0.2 a 1.6 ± 0.1 a 1.9 ± 0.1 a 

3 
 
88 2.9 ± 0.2 a 4.4 ± 0.3 b 5.3 ± 0.4 b 2.0 ± 0.2 ab 2.4 ± 0.2 ab 

4 
 
28 5.4 ± 0.4 c 7.6 ± 0.5 d 11.3 ± 1.1 d 2.5 ± 0.3 bc 2.7 ± 0.3 bc 

5 
 
42 3.9 ± 0.3 b 6.0 ± 0.4 cd 6.9 ± 0.5 c 2.9 ± 0.2 c 3.0 ± 0.2 c 

≥ 6 
 
75 3.1 ± 0.3 ab 5.3 ± 0.3 bc 6.9 ± 0.4 c 2.6 ± 0.2 c 2.9 ± 0.28 c 

 
Rump Fat, mm 

2 
 
175 4.0 ± 0.3 a 5.0 ± 0.4 a 4.6 ± 0.3 a 1.4 ± 0.2 a 1.9 ± 0.2 a 

3 
 
88 4.1 ± 0.4 ab 6.5 ± 0.5 a 7.1 ± 0.5 b 2.1  ± 0.2 b 2.7 ± 0.3 ab 

4 
 
28 6.7 ± 0.7 c 9.8 ± 0.9 b 10.7 ± 1.6 bc 3.0 ± 0.4 bc 3.3 ± 0.5 bc 

5 
 
42 6.5 ± 0.7 c 9.3 ± 0.7 b 9.5 ± 0.7 c 3.4 ± 0.3 c 4.1 ± 0.4 c 

≥ 6 
 
75 5.3 ± 0.5 bc 8.7 ± 0.6 b 10.2 ± 0.5 c 3.3 ± 0.2 c 4.0 ± 0.3 c 

 
 
                                                 
1 Early weaning, Normal weaning, Precalving, End of calving, Breeding and End of breeding were periodic 

measurements taken in September, October, January, April, and May, respectively. 

LS means ± SE within columns differed, a vs. b, c, or d (P < 0.001).  
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Table 4: Least squares means ± SE rump fat (mm) for age by treatment and by period1  

  Early Weaning Normal Weaning Pre-calving Postpartum 
 

Breeding 

Age 
 

n Control EW Control EW Control EW Control EW Control EW 

2 
 

175 4.2 ± 0.4 3.8 ± 0.3 4.6 ± 0.4 5.4 ± 0.3* 4.2 ± 0.4 5.1 ± 0.3 1.5 ± 0.4 1.5 ± 0.3 2.1 ± 0.4 2.0 ± 0.3 

3 
 

88 5.1 ± 0.6 4.8 ± 0.4 6.0 ± 0.6 8.0 ± 0.4** 6.9 ± 0.6 8.0 ± 0.4* 1.7 ± 0.6 2.2 ± 0.4 2.5 ± 0.6 3.0 ± 0.5 

4 
 

28 5.0 ± 0.9 7.6 ± 0.9* 6.8 ± 0.9 13.4 ± 0.9** 6.4 ± 1.7 12.6 ± 1.0** 1.9 ± 0.9 4.1 ± 0.9* 2.0 ± 1.0 4.2 ± 0.9* 

5 
 

42 4.2 ± 1.1 6.3 ± 0.6* 4.9 ± 1.1 10.1 ± 0.6** 6.6 ± 1.1 10.3 ± 0.6** 2.0 ± 1.2 3.4 ± 0.6 2.6 ± 1.2 4.3 ± 0.6 

≥ 6 
 

75 5.3 ± 0.7 5.8 ± 0.5 5.8 ± 0.7 10.5 ± 0.5** 7.9 ± 0.7 12.0 ± 0.5** 2.8 ± 0.7 3.8 ± 0.5 3.9 ± 0.8 4.5 ± 0.5 
 
 
                                                 
1 Early weaning, normal weaning, precalving, end of calving, and breeding are periodic measurements taken in September, October, January, 

April, and May, respectively. 

* LS means ± SE among treatments within periods differed, (P < 0.05). 

** LS means ± SE among treatments within periods differed, (P < 0.01). 
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Table 5: Least squares means ± SE calving intervals (CI) and breeding to calving interval 
(BCI) of cows with age, year and treatment1 

Age n CI2 BCI3 
2 143 375.4 ± 1.9 a 303.5 ± 1.6 a 

3 
 

68 364.1 ± 3.3 b 292.5 ± 2.8 b 

4 
 
6 373.5 ± 8.4 ab 286.8 ± 6.4 ab 

5 
 

38 373.7 ± 3.2 ab 297.9 ± 2.8 ab 

≥6 
 

59 372.3 ± 2.5 ab 298.5 ± 2.1 ab 
Year  

2005-2006 159 378.3 ± 2.5 a 297.4 ± 2.0 

2006-2007 
 

155 365.2 ± 2.5 b 294.3 ± 2.0 
Treatment  

Control 96 372.9 ± 2.8 295.6 ± 2.3 

Early Weaned 
 

218 370.7 ± 2.1 296.1 ± 1.6 
 
                                                 
1a vs. b, LS means within columns different (P < 0.05) 

2CI: number of days from previous calving to next calving 

3BCI: number of days from start of breeding to next calving. 
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Table 6: Pairwise correlations of beef cow energy variables at selected  
periods with reproductive variables1 

Calving interval, d 

Variable n Pre-calving n Breeding 

BCS 145 -0.02 ns 144 -0.09 ns 

Rib fat 154 -0.05 ns 155 -0.21** 

Rump fat 153 -0.11 ns 155 -0.12 ns 

Weight 155 -0.09 ns 155 -0.07 ns 

Interval from breeding to calving, d 

BCS 159 -0.17* 158 -0.27*** 

Rib fat 168 -0.25** 169 -0.23** 

Rump fat 166 -0.27*** 169 -0.22** 

Weight 169 -0.18* 169 -0.21** 
 
                                                 
1 *P < 0.05 

**P < 0.01 

***P < 0.001 

n.s. non significant. 
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Table 7: Comparison of retention pattern (%) among cow age groups during the study 

  Retention Pattern1 

Age n 0 1 11 

2 143 41.3 45.5 13.2 

3 68 8.8 61.8 29.4 

4 & 5 44 31.8 20.5 47.7 

≥6 59 15.3 28.8 55.9 
 

  
                                                 
1Retention pattern 0: Cows that did not wean a subsequent calf during the study period. 

Retention pattern 1: Cows that weaned a calf once during the study. 

Retention pattern 11: Cows weaned calves in both subsequent years of study. 
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Figure 1: Least squares means (± SE) for cow weight (kg) adjusted to average body 

condition score (BCS = 5.0) for every age category. 

a,b, c, d LS means without common superscripts differ (P < 0.0001).  

n = 175, 88, 28, 42, and 75 for 2, 3, 4, 5, and ≥ 6- yr-old cows respectively. 
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Figure 2: Least squares means (± SE) for cow rump (mm) fat thickness adjusted to 

average body condition score (BCS = 5.0) for every age category. 

a,b, c, d LS means without common superscripts differ (P < 0.0001).  

n = 175, 88, 28, 42, and 75 for 2, 3, 4, 5, and ≥ 6- yr-old cows respectively. 
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Figure 3: Least squares means ± SE for calf adjusted 205-d weaning weights (kg) by 

cow age. 

*Weaning weights increased (P < 0.0001) in calves from cows ≥ 4 yr of age. 

n = 106, 58, 20, 26, and 42 for 2, 3, 4, 5, and ≥ 6- yr-old cows respectively. 

 

 

  

180.0

190.0

200.0

210.0

220.0

230.0

240.0

250.0

2 3 4 5 ≥6

C
al

f w
ea

ni
ng

 w
ei

gh
t (

kg
)

Age of cow

* *

*



 64

Experiment 2: Pregnancy outcome in dairy and beef cattle after artificial 

insemination with adjunctive seminal plasma or transforming growth factor beta-1  

 
Introduction 
 
The role of post-mating inflammatory response and whether or how it may impact 

pregnancy success is not clear. Exposure of the uterine lumen and tissue to seminal 

plasma induces a cascade of cellular and molecular events characteristic of an 

inflammatory response (Robertson et al. 1996; O’Leary et al., 2004). Most prevalent of 

these are infiltrations of macrophages and MHC class II+ cells into the endometrium, and 

granulocytes into the luminal fluid (O’Leary et al., 2004). This inflammatory reaction to 

semen was observed first in rabbits but has since been described in several other species 

(Fahmi et al., 1985; Robertson, 2007a). Although inflammatory response dissipates by 

the time the embryo is implanted (O’Leary et al., 2004; Robertson, 2007a), exposure to 

seminal fluids could proactively influence subsequent events in the female tract to 

promote conception and progression of pregnancy (Robertson et al., 2006; Robertson, 

2007a). Studies in rodents (Pang et al., 1979; Queen et al., 1981) provided compelling 

evidence that seminal fluid influenced sperm survival and competence and that absence 

of seminal fluid at mating resulted in impaired fertility and/or reduced fertilization. In 

golden hamsters, slower cleavage rates during embryonic development and increased 

embryonic losses were reported following mating with males that had their accessory sex 

glands removed surgically (O et al., 1988; Chow et al., 2003).  

Pro-inflammatory signals in the seminal fluid have been associated with sperm 

and/or seminal plasma depending on animal species (Bischof et al., 1994; Rozeboom et 

al., 1999; O’Leary et al., 2004). Transforming growth factor (TGF)-β1, which is abundant 
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in seminal plasma, was identified as the active inflammatory-inducing moiety derived 

from the seminal vesicles (Tremellen et al., 1998; Robertson et al., 2002), and likely 

accounts largely for the immunosuppressive activity of seminal plasma. Because seminal 

antigens are shared with the conceptus, seminal TGF-β1 may act to facilitate induction of 

maternal immune tolerance to conceptus antigens and thereby promote implantation 

success. Perturbations in concentrations of TGF-β1 might, in some instances, be 

insufficient or inappropriate for immune adaptation leading to implantation failure or 

other pathologies of pregnancy (Von Linsigen et al., 2005). 

Strategies that incorporate immuno-stimulatory molecules at artificial 

insemination might improve reproductive efficiency in domestic ruminants. For example, 

intrauterine infusion with seminal and sperm antigens prior to breeding increased litter 

size in pigs (Murray et al., 1983). However, a recent study failed to elicit a beneficial 

effect of recombinant TGF-β1 administered at artificial insemination on total or live 

implantation rate at day 80 of pregnancy in gilts (Rhodes et al., 2006). Subsequent review 

of that work by Robertson et al. (2006) indicated that it did not have enough statistical 

power to detect small changes in litter size expected on the basis of previous studies with 

seminal plasma. 

Few well-designed studies have evaluated seminal fluid exposure on pregnancy 

outcome in domestic animals. The objective of the current study was to extend the 

developing hypothesis to dairy and beef cattle by examining the influence of pre-

sensitization, before or at breeding, of the uterus with seminal antigens on pregnancy 

outcome. Thus, the null hypothesis was that treatment of cows and heifers with 
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intrauterine deposition of TGFβ-1 will not improve pregnancy outcome more than 

treatment with seminal plasma. 

Materials and methods 
 
Animals 

 Beef cows (n = 1090) in herds at three locations at West Virginia University, in a 

commercial herd in West Virginia, and in a herd in Montana were used during May 

through July each year from 2003 to 2006.  Hereford, Angus and their crosses were the 

predominant breed compositions in all herds.  Cows ranged from yearling heifers to 7-yr-

old at treatment and averaged about four years of age.  Cows used in more than one year 

were reassigned at random among treatments in the subsequent year.  Lactating Holstein 

dairy cows (n = 800) in 8 commercial herds located in Ohio or western Pennsylvania 

were used in the study.  Neither technician nor bulls were restricted except that only 

semen from three dairy sires of known fertility (average) was used in the dairy herds.  

Dairy cows were inseminated artificially between fall (November) 2005 and spring 

(March) 2006. All procedures were performed with the approval of the West Virginia 

University Animal Care and Use Committee (ACUC No. 05-1104). 

Experimental protocol 
 

Estrus synchrony 

Beef cows were synchronized for estrous activity and thereafter assigned 

randomly among treatments. Estrus was synchronized using a seven-day progesterone 

CIDR® (EAZI-BREED™, DEC International, Hamilton, New Zealand) insert followed 

by 25 mg PGF2α (Pharmacia Animal Health, Pfizer, Inc., Kalamazoo, MI) at CIDR® 

removal. A subset of cows in 2004 were synchronized to allow for timed artificial 
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insemination by including administration of estradiol cypionate and progesterone at 

CIDR® insertion and administration  of estradiol cypionate 24 hours after CIDR® 

removal. Timed insemination was approximately 30 hours after CIDR® removal.  Heifers 

in the same period were synchronized by a modified version of the first protocol that 

included administration of estradiol benzoate 18 hours post CIDR® removal and timed 

breeding at 30 hours. 

Treatments 

Treatments were prepared and packaged in 0.5 mL bovine insemination straws by 

Select Sires, Inc. (Plain City, OH). Color-coded straws contained either 0.5 ml seminal 

plasma (SP), 40 ng/0.5 ml recombinant human transforming growth factor-β1 (rh-TGF-

β1, Sigma-Aldrich, St Louis, MO) suspended in bovine serum albumin (BSA, Sigma-

Aldrich, St Louis, MO), or 0.5 ml BSA.  For the beef cow trials, SP was collected by 

artificial vagina from a single vasectomized bull, which had a pre-surgery history of 

average fertility. In the dairy cow trial, SP was obtained from a heterogeneous mixture of 

seminal plasma aspirated from ejaculates of 6 mature Holstein sires of average or better 

fertility following centrifugation of ejaculates at approximately 1000× g for 10 minutes. 

In both studies, seminal plasma was extruded through a 0.45 micron capsule filter. The 

straws were frozen and stored in liquid nitrogen.  Artificial insemination technicians were 

blind to treatment codes.  At treatment, straws were thawed, loaded into insemination 

guns, and delivered into the uterus by normal artificial insemination procedures. 

Artificial insemination 
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In 2003 and 2004, treatments were administered to beef cows at the onset of 

estrus with inseminations at 12 hours (AM-PM rule) after treatments. In timed-bred 

animals, treatments were administered 12 hours before insemination. In subsequent trials 

(2005 and 2006, beef and dairy cows), treatments were administered at insemination. In 

that case, treatment was administered first and then semen was deposited using a second 

insemination gun. The target site of deposition for both treatment and semen was the 

uterine body immediately anterior to the internal cervical os. Pregnancy diagnosis was 

performed 35 to 40 days after insemination using transrectal ultrasonic imaging (Aloka 

America, Willingford, CT) or palpated per rectum in West Virginia herds and the dairy 

herds. Pregnancy data for Montana cattle were extrapolated from calving records in 

subsequent calving seasons.  

Statistical analysis 
 
Data for beef and dairy cows were analyzed separately by least squares analysis 

of variance using the GLM procedures of SAS (SAS Institute, Cary, NC). Fixed effects in 

the beef cow model included: herd, treatment, time of treatment (12 h before 

insemination or at insemination), age of the cow, year of study and their second and third 

order interactions. Fixed effects in the dairy cow model included: location, treatment, 

parity (primiparous vs. multiparous), post-partum interval, sire and their second and third 

order interactions. A Chi square model was used in the final analysis after removal of 

non-significant interactions. Values were declared significant at α = 0.05 unless stated 

otherwise. 

Results 

Beef Cows 
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 Neither timed breeding versus breeding after estrus, age of the cow, nor 

geographic location differentially affected the responses (P > 0.05). Therefore, data were 

combined and evaluated for the effects of treatments and trials. Pregnancy outcomes were 

similar among treatments but differed (P < 0.05) among trials (Table 8). Overall 

pregnancy rates were 53.1 ± 5.3, 54.7 ± 5.3, and 54.8 ± 5.9% for BSA, SP and TGFβ1, 

respectively.  A gradual decline in pregnancy rates from 69.8 ± 6.7, 52.5 ± 5.3, to 40.3 ± 

4.6% was observed among trials 1, 2 and 3 that corresponded to years 2003-2005, 

respectively. There was a tendency (P < 0.07) for an effect of treatments within trials. 

TGF-β1 treatment increased pregnancy rates when overall fertility was compromised in 

trial 3 (Trial 3; Table 8). 

In succeeding trials, TGFβ1 (trial 4) and BSA (trial 5) were excluded from the 

treatments. Pregnancy rates did not differ (P > 0.05) and averaged 59.4 ± 4.8 and 67.0 ± 

4.8 % for BSA and SP, respectively (Trial 4; Table 9). In the subsequent trial (5), 

pregnancy rates were numerically higher in cows treated with seminal plasma than 

control cows. Average pregnancy rates were 61.4 ± 5.6 vs. 52.4 ± 5.2% for SP and 

control, respectively (Trial 5; Table 9).  

Dairy Cows 
 

Pregnancy rates in dairy cows were generally lower than those observed in beef 

cows (36.6 % versus 54.2%). Treatment with seminal plasma or TGFβ-1 had no (P > 

0.05) significant effect but numerically increased pregnancy rates by about 10 % over 

control (Trial 6;Table 9). 

Discussion 
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These studies were designed to evaluate the presumed effect of inducing a post-

mating inflammatory response by treatment with seminal plasma or TGFβ-1 on 

pregnancy outcome in lactating beef and dairy cattle. Under natural conditions, mating 

occurs at estrus whereas ovulation occurs 12 hours after onset of estrus. Therefore, the 

female genital tract is exposed to seminal fluids and would probably initiate an 

inflammatory response long before ovulation and fertilization. An inflammatory reaction 

was detected within 30 minutes post insemination in mares (Katila, 1996). Scott et al. 

(2005) reported peak concentrations of neutrophils at 6-18 hours and macrophages at 18-

24 hours in the posterior cervix and uterine lumen of ewes after mating. Leukocyte 

infiltration into the endometrium of sows occurred within hours after mating (Bischof et 

al., 1994; Rozeboom et al., 1998).  

The post insemination inflammatory reaction in the cow has not been thoroughly 

studied. In addition, there does not appear to be a study on the effects of seminal plasma 

proteins on modulating this inflammatory response in cattle. Therefore, the initial studies 

were designed to mimic natural conditions by delivering treatments at the onset of estrus 

and allowing time for initiation of the inflammatory response before insemination. 

Treatments with TGF-β1 or seminal plasma were expected to provide a counter-active 

response to the inflammatory reaction and allow for fertilization and progression of 

pregnancy. The data provided no statistical evidence for an effect of any of the treatments 

examined on pregnancy outcome. Although seminal plasma TGF-ß1 had been suggested 

to play a sperm-protecting role in the female reproductive tract of other species 

(Tremellen et al., 1998; Robertson et al., 2002), the current study was unable to 

conclusively determine that role at least in the bovid.  A recent study also failed to find 
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any beneficial effect of recombinant TGF-ß1 administered at AI on total or live 

implantation rate at d 80 of pregnancy, however, placental efficiency (mass of fetus/mass 

of placenta) was improved in pregnancies established in gilts treated with TGF-β1 

(Rhodes et al., 2006). This lack of effect of TGF-β1 might have occurred due to lack of 

concurrent activity of several synergizing and inhibitory cofactors regulated by other 

receptor signaling pathways. It has been noted that the presence of other cytokines drive 

the actions of TGF-β1 (Letterio and Roberts, 1998). 

 Although not statistically significant, inseminations with adjunctive seminal 

plasma provided numerically greater pregnancy rates consistently over other treatments 

overall.  However, the exact nature of how this effect was achieved remains to be 

identified. It was reported at least in the gilt, that seminal plasma enhanced the rate of 

disappearance of uterine inflammation following breeding by suppressing leukocyte 

(polymorphonuclear neutrophiles (PMN)) migration into the uterus (Rozeboom et al., 

1999). In mares stimulated to develop uterine inflammation prior to breeding, seminal 

plasma reduced sperm-leukocyte (PMN) binding indicating an important sperm-

protecting role of seminal plasma (Alghamdi et al., 2004). Alternatively, seminal plasma 

might have trophic effects on the embryo that culminate in increased pregnancy rates. 

The impact of seminal plasma on embryonic development might occur through secretion 

of embryotrophic factors in response to changes in the endometrial tissue or altered 

immune environment. Prior exposure of pig uteri to seminal plasma altered the uterine 

environment and ultimately increased embryonic viability and growth (Murray et al., 

1983; O’Leary et al., 2004).  A principal cytokine, GM-CSF has been shown to promote 
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viability of the pre-implanted embryo by inhibiting apoptosis and regulating glucose 

uptake (Robertson et al., 2001; Robertson, 2007b). 

Increased milk yield has contributed to the historical decline in fertility of 

lactating dairy cows despite adequate fertilization rates and controlled preovulatory 

follicular development. Increased embryonic losses due to retarded development or 

failure of attachment might explain this decline in fertility (Dailey et al., 2002).  Certain 

strategies for increasing fertility in dairy cows have already been examined. These 

include manipulation of the somatotropin-insulin-like growth factor 1 axis (Moreira et al., 

2000, 2001; Starbuck et al., 2006), and use of embryo transfer to bypass the effects of 

heat stress on oocyte function and early embryonic development (Block and Hansen, 

2007). Pregnancy rates of lactating dairy cows were increased by addition of recombinant 

bovine somatotropin (rbST) to the Ovsync protocol (Moreira et al., 2000). This effect of 

rbST on dairy cow fertility might have occurred through its effects on oocyte maturation, 

embryonic development, and/or altered oviduct/uterine functions (Moreira et al., 2001). 

Starbuck et al. (2006) reported enhanced pregnancy in dairy cows treated with a single 

dose of rbST at insemination. The effect was observed specifically in high producing 

cows that were > 100 days in milk. In heat-stressed lactating cows, transfer of in vitro 

produced embryos that were cultured with IGF-1 increased pregnancy and calving rates. 

However, beneficial action of IGF-1 on embryo survival was dependent upon heat stress 

in recipient cows (Block and Hansen, 2007). Strategies that incorporate immuno-

stimulatory molecules at artificial insemination might improve reproductive efficiency in 

dairy cattle. In pigs these strategies have yielded mixed results.  
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In conclusion, the data presented did not provide any conclusive evidence for the 

overall effect of either TGFβ-1 or seminal plasma to influence pregnancy outcome in 

lactating beef and dairy cattle. However, the numerical advantage provided by 

inseminations with adjunctive seminal plasma and/or TGF-β1 on pregnancy rates in dairy 

cattle require further evaluation or might inspire future studies to increase our 

understanding of how this might affect and enhance fertility in dairy cows. 
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Table 8: Least squares ± SE mean pregnancy rates for beef cattle inseminations evaluating the 
effects of TGF-β1, SP and BSA treatments on pregnancy outcome1 
Trial BSA SP TGFβ1 Mean Pregnancy 

 n = 267 n = 296 n = 200  

1 60.7 ± 11.2 78.1 ± 11.2 70.6 ± 11.2 69.8 ± 6.7 a 

2 60.0 ± 7.9 52.9 ± 7.9 44.6 ± 11.2 52.5 ± 5.3 ab 

3 38.4 ± 7.9 33.1 ± 7.9 49.2 ± 7.9† 40.3 ± 4.6 b 

Average 53.1 ± 5.3 54.7 ± 5.3 54.8 ± 5.9   

 

1Treatments were administered 12 hours before insemination in trials 1 and 2, and at 0 

hours in trial 3 following estrous synchronization with CIDR® and PGF2α. Pregnancy 

diagnosis was performed at 35-40 days post insemination in West Virginia herds. 

Records were kept of calves born in Montana herds. 

†Treatment within trial tended to differ (P = 0.07). 

Least squares means ± SE differed between years, a vs. b (P < 0.05). 
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Table 9: Comparison of pregnancy rates (%) among studies in beef and dairy cattle 
  Treatments % Increase/Decrease 

Trial N Control SP TGF-β1 SP TGF-β1 

1-3a 763 55.1 58.8 51.0 6.7 -7.1 

4a 206 59.5 67.0 . 12.6 . 

5b 167 52.4 61.4 . 17.2 . 

6bc 800 33.2 37.8 36.3 13.9 9.4 

 

aControl = Treated with 0.5 ml BSA before artificial insemination. 

bControl = Left untreated during artificial insemination. 

cDairy cattle study. 
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 Experiment 3: Analysis of seminal plasma proteins in cryopreserved semen 
 
Introduction 
 
Secretions from the accessory sex glands are mixed with sperm at ejaculation and 

contribute to the majority of semen volume and components. However, during 

cryopreservation, most seminal plasma is replaced with semen extenders, mainly egg 

yolk or milk proteins. Seminal fluid contains signaling agents that influence female 

reproductive physiology to improve chances of conception and pregnancy success. These 

factors include cytokines, sex hormones and prostaglandins (Robertson, 2007). 

Experiments in rodents and pigs show that seminal plasma is the second most vital 

component of the ejaculate, absence of which at mating reduced fertilization and 

increased fetal loss after implantation (O et al, 1998). High concentrations of TGF-β 

cytokines have been detected in boar seminal fluid (O’Leary et al., 2002) and their 

characteristic immunosuppressive activity was associated with protein fractions of 

appropriate size in boar seminal fluid (Claus, 1990 reviewed by Robertson, 2007). In the 

preceding study (Exp. 2), artificial inseminations with adjunctive seminal plasma 

consistently tended to have little or no effect on pregnancy outcome. The precise nature 

of active constituents that might influence pregnancy and their relative amounts remain 

unknown. However, four proteins (osteopontin, spermadhesin Z13, bovine seminal 

plasma protein (BSP) 30 kDa and phospholipase A2) have been identified as markers of 

fertility in dairy bulls (Moura et al., 2006; 2007). In those studies, Moura et al. (2006; 

2007) visualized proteins with Coomassie brilliant blue staining after 2-D gel separation, 

which may not reveal some of the low abundance proteins that might be present in 

seminal plasma. 
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Therefore, a broader approach was instituted to identify seminal plasma proteins 

using more sensitive protein detection techniques. These included 2-D fluorescence 

difference gel electrophoresis (2-D DIGE) and enzyme linked immunosorbent assays 

(ELISA) that were expected to broaden the number of markers included in the assay and 

grant more robust predictions of biomarkers for bull fertility. The objectives of this study 

included 1) large scale identification and differential expression of seminal plasma 

proteins between high and low fertility bulls, 2) correlation of expression of specific 

proteins to fertility phenotype, and 3) comparison of the expression patterns pre- and 

post-cryopreservation.  

 

 Materials and methods 
 

Semen samples were obtained from Select Sires Inc. (Plain City, Ohio) from 16 

dairy bulls. Samples were assigned to two groups based on assigned fertility score 

expressed as the percentage point deviation (PD) of the bull’s non-return rate (NRR) 

from the average NRR of all bulls in the Select Sires Inc. reproductive management 

program. Group 1 (high fertility bulls, n = 8) 1.9 ≤ PD ≤ 2.7% and group 2 (low fertility 

bulls, n = 8) -6.5 ≤ PD ≤ 1.8 %.  

Seminal plasma ELISA 

Frozen semen samples from 0.5 ml insemination straws were thawed at room 

temperature and centrifuged in three 15-minute cycles at 40C to obtain seminal plasma.  

Relative centrifugal force (RCF) equaled 400, 800, and 1200 × g per cycle, respectively. 

Concentrations of TGF-β1 in seminal plasma samples were analyzed by the DuoSet® 
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ELISA protocol (R & D Systems, Minneapolis, MN). Seminal plasma samples were 

assayed with 2.5 N acetic acid/ 10 M urea activation to determine total TGFβ-1 (active 

plus latent contents). A 3 × dilution factor, CV < 20%, 12-point standard curve and R2 

(0.99) were used. 

Electrophoresis 
 

Frozen samples of seminal plasma were thawed at room temperature and 

centrifuged at 10,000 × g for 60 min at 40C. The supernatant was processed by 2-D 

Clean-UP protocol (GE Healthcare, Piscataway, NJ) to remove impurities such as nucleic 

acids, lipids and salts. Samples were then assayed for protein content (Lowry et al., 1951) 

using BSA as standards, and aliquots frozen at -800C. Samples for electrophoresis were 

thawed at room temperature, concentrated to 1-10 mg/ml and labeled with cyanine dye 

(CyDye) DIGE Fluor Cy3/5 at a ratio of 50 µg protein to 400 pmol fluor and 

counterbalanced across the sample groups. A pooled internal standard was created from 

equal aliquots of each sample and labeled with Cy2 dye. Samples were separated by 

isoelectric focusing on an Ettan™ IPGphor™ apparatus using 24 cm  Immobiline 

DryStrip gels (GE Healthcare, Piscataway, NJ) containing a mixture of ampholytes with 

pH from 3 to 10.  

Following isoelectric focusing, strip gels were transferred to 24 cm Tris-Tricine 

gradient gels mounted on low-fluorescence glass plates and proteins separated by 

molecular mass  in the second dimension using Ettan™ Dalt II Electrophoresis System 

(GE Healthcare, Piscataway, NJ). Dalt gels were scanned using a Typhoon 9400 Variable 

Mode imaging densitometer (GE Healthcare, Piscataway, NJ) at 100 µm resolution. A 



 79

fully automated image analysis software, Progenesis SameSpots™ (Nonlinear Dynamics, 

Durham, NC), was used to analyze the protein expression data. 

Statistical analysis 

Data on concentration of TGF-β1 were examined by analysis of variance using 

PROC GLM procedures of SAS (SAS Institute, Cary, NC). The model statement 

included the fixed effects of fertility group, collection and random effect of bull. Post hoc 

analyses (t-test and Tukey’s LSD) were used to evaluate significant differences in 

samples means at probability ≤ 0.05. 

 
The internal standard was essential for assessing biological and experimental 

(between gels) variations and increasing the robustness of statistical analysis. Individual 

protein data from sample groups (Cy3 or Cy5) were normalized against the Cy2 labeled 

sample. Scanned images of the labeled proteins were sequentially analyzed by differential 

in-gel analysis (DIA) that performed Cy3/Cy5:Cy2 normalization, and then by biological 

variation analysis (BVA) that performed inter-gel statistical analysis to provide relative 

abundance in various groups. Log abundance ratios were then compared between sample 

groups using ANOVA and t-test in Progenesis SameSpots. The analyzed spots were 

ranked by their probability values and then grouped into high and low CF for further 

evaluation. Principal component analysis (PCA) was used to determine the presence of 

outliers in that data and also to compare how well the samples fitted to the experimental 

groups. The expression profiles of the selected proteins were then examined by 

correlation analysis. 
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Protein identification  
 

 A list of protein spots of interest (pick-list) was generated by the image analysis 

software and exported directly into a Spot Picking Ettan™ Spot Handling Workstation 

(GE Healthcare, Piscataway, NJ) equipped to automatically pick spots from the Dalt gels. 

Selected protein spots were washed by 50 mM ammonium bicarbonate/50% (vol/vol) 

methanol in water, dried by vacuum centrifugation, and incubated overnight at 370C in 

140 ng of sequencing grade trypsin (Koc et al., 2001). Tryptic digests were analyzed by 

capillary liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry 

(CapLC-MS/MS).  Proteins were identified by MS/MS ion searches performed on the 

processed spectra against the SwissProt and NCBI protein databases using a Bioworks 

Browser 3.1 (Thermo Finnigan, San Jose, CA) search engine. The identification of 

protein was confirmed when the Bioworks confidence interval was greater than 95% 

(Figure 10). The protein mass and pI accuracy on the 2D gel was used as a guide to 

confirm protein identification (Table 10). 

 

Results 
 
Seminal plasma TGF-β1 
 
Concentrations of TGF-β1 in seminal plasma differed (P = 0.001) among bulls 

but were not affected by time of collection (P = 0.3) or by the interaction of fertility 

group and time of collection (P = 0.48, Figure 4). Concentrations of TGF-β1 in seminal 

plasma did not differ (P = 0.35) between bulls with high and low fertility scores (61.7 ± 

15.1 vs. 39.3 ± 16.2 pg/ml, Figure 5) because of high variability among bulls.  

Seminal plasma proteome 
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Distribution of protein spots in seminal plasma of dairy bulls 

Three patterns of protein expression were consistently observed in seminal plasma 

samples of cryopreserved semen (Figure 6). Spot volume analysis and peptide 

identification indicated a higher expression of proteins from semen extender at the 

molecular weight range between 30 to 60 kDa accounting for 55% of protein spots by 

Coomassie staining. A “train” of spots was visible within the 20 to 25 kDa range 

accounting for about 35% of the spot volume while the remaining spots (10%) were 

expressed below the 20 kDa range (Figure 7). Surprisingly, there was a two-fold 

difference in total protein content between extended and non-extended seminal plasma 

(41.6 ± 2.3 vs. 19.5 ± 2.1ng/mL, respectively). 

Expression patterns between treatment groups 

There was no difference (P > 0.05) in the expression pattern of proteins in 

cryopreserved seminal plasma of high vs. low fertility bulls, therefore, subsequent 

analyses were done between cryopreserved (processed) and non-cryopreserved 

(unprocessed) seminal plasma of low fertility bulls. A total of 54 spots differed (P < 

0.001) in their expression pattern between processed vs. unprocessed seminal plasma. 

The spots were then examined by principal component analysis and clustered into two 

groups: those that were highly expressed in processed seminal plasma but not in 

unprocessed seminal plasma and vice versa (Figure 8). Approximately 31 spots (57.4%) 

were highly expressed in seminal plasma of unprocessed semen. The remaining 23 spots 

(42.6%) were highly expressed in seminal plasma of processed semen. 

Protein identification 
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A reference image was generated from the expression data and used to pick spots 

for protein identification (Figure 9). Extender derived proteins, mainly chicken 

vitellogenin-2 (MW 20.5 kDa), fibrinogen β chain (MW 52.70) and chicken albumin, 

were predominantly identified from spots above 20 kDa in seminal plasma of processed 

semen. These proteins masked identification of any bovine seminal plasma proteins 

within this range. Below 20 kDa range, greater amounts of spermadhesin (SPAD1 and 

Z13) isoforms were expressed than the major bovine seminal plasma proteins (PDC-109 

and BSP-A3). 

 In the absence of extender proteins in unprocessed seminal plasma, several spots 

above 20 kDa were positively identified (Table 10). Notable among these proteins were 

nucleobindin-1, clusterin, phospholipase A2 isoforms, seminal plasma protein BSP-30 

kDa, metalloproteinase inhibitor-2 and cathepsins (B and D). Below the 20 kDa range in 

unprocessed seminal plasma, major seminal plasma proteins (PDC-109 and BSP-A3) 

predominated over the spermadhesins (Figure 9).  

Discussion 
 

Analysis of seminal plasma TGF-β1 content 

Transforming growth factor-β is a cytokine with an unusually broad range of 

functions. Cell proliferation, regulation of apoptosis and matrix formation are some of the 

key effects of the cytokine on cells. Systemic effects include regulation of immune 

system, development, tissue homeostasis and repair. Another unusual component of 

TGF-β biology is the fact that it is secreted in a latent form and that activation of the 

latent form is required before signaling can occur (Munger et al., 1997). Secreted TGF-β 

is noncovalently associated with latency associated peptide (LAP) which in turn has a 
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disulfide link with latent TGF-β binding protein (LTBP). Signaling agents in seminal 

plasma influence the physiology of the reproductive tract of females and improve 

conception and pregnancy rates in rodents, human beings and pigs (Pang et al., 1979; 

Murray et al., 1983; Robertson et al., 2002). Immediately after mating, seminal plasma 

triggers an acute inflammatory response – involving recruitment of antigen presenting 

cells and controlled cytokine (e.g. GM-CSF, chemokines) production. The response is 

proposed to initiate the tolerance response to paternal antigens (Robertson et al., 1997; 

Johansson et al., 2004). Transforming growth factor-β1 is a major constituent of seminal 

plasma in rodents and human beings and appears to be a major contributor to these 

actions (Tremellen et al., 1998; Robertson et al., 2002).  

The aim of the present study was to investigate whether total concentrations of 

TGF-β1 (latent + free form) in seminal plasma of dairy bulls might be used as potential 

indicators of their fertility. The results implied that there was no indication of relationship 

between concentrations of TGF-β1 in seminal plasma of bulls and their fertility 

phenotypes. In addition, the amount of TGF-β1 in seminal plasma was not influenced by 

the interaction of time of semen collection and fertility phenotype. However, due to high 

variability in the amount of TGF-β1 among bulls within fertility phenotype and among 

collections within bull, it is not possible to determine whether the results were true 

biological observations or experimental errors.  Bioactive TGF-β peptides are rapidly 

inactivated in living cells and consequently not usually detectable in tissues, body fluids, 

or supernatants from cultured cells (Tesseur et al., 2006). However, latent TGF-β in such 

samples can be activated with acids, heat, or other methods (Mazzieri et al., 2000). 

Greater concentrations of TGF-β1 have been reported in serum and cerebrospinal fluid of 
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patients with neurodegenerative diseases (Ilzecka et al., 2002). However, little or no data 

has been reported on concentrations of TGF-β1 in seminal plasma of domestic animals. 

Holaskova (2007) sampled blood and semen from rams and beef bulls to determine the 

relationships of their TGF-β1 content to sperm characteristics (% motility and normal 

morphology). No relationships were observed between concentrations of TGF-β1 in 

serum and seminal plasma nor were there any relationships between seminal plasma 

TGF-β1 content and sperm characteristics. Men with spinal cord injuries exhibited 

inflammation-related infertility, but concentration of TGF-β1 was found to be lower in 

their seminal plasma (Basu et al., 2004). Concentrations of TGF-β1 (latent or free form) 

in seminal plasma were not different between normal and infertile human subjects. 

Furthermore, no differences were observed between subjects with high or normal plasma 

FSH concentrations, implying that most seminal plasma TGF-β1 is not of testicular origin 

(Loras et al., 1999). 

Analysis of seminal plasma proteome  

 An altered pattern of protein expression in seminal plasma of cryopreserved and 

non-cryopreserved dairy bull semen was demonstrated by this study. Consistent with 

previous reports, fertility associated proteins were identified in seminal plasma of low 

fertility bulls. These observations imply that semen processing might impact fertility of 

sperm from bulls that could have been of normal fertility phenotype. 

During cryopreservation, major seminal plasma proteins are diluted out and 

replaced with extender proteins. However, the effect of cryopreservation on seminal 

plasma protein expression patterns has not been examined. Most artificial inseminations 

in cattle involve use of processed semen, and as a consequence, most fertility data have 
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been derived from inseminations with processed semen. Therefore, it was prudent to 

utilize cryopreserved semen in this study to examine changes in its protein profile 

between low and high fertile bulls, and to compare processed and unprocessed semen. 

 Abundant low molecular weight bovine seminal plasma proteins were diluted out 

during cryopreservation and replaced by high molecular weight extender-derived chicken 

structural proteins. Major bovine seminal plasma proteins PDC-109 (BSP-A1/A2), BSP-

A3 and BSP-30 kDa play important roles in fertility by maintaining sperm in an 

appropriate state in the female tract until the oocyte reaches the site of fertilization 

(Thérien et al., 1997, 1998; Yu et al., 2003; Gwathmey et al., 2006). It is unclear whether 

the effect of processing that decreased the abundance of these BSP proteins by more than 

half would render them ineffective in preventing premature capacitation and acrosome 

reaction of sperm from normal fertility bulls in the female tract. Spot volume data 

indicated that removal of the major seminal plasma proteins exposed less abundant low 

molecular weight proteins like spermadhesins, especially spermadhesin Z 13 which has 

been identified as an antifertility factor (Killian et al., 1993; Moura et al., 2006) in bovine 

seminal plasma. Whether this altered protein profile after processing might impact 

fertility of semen from otherwise fertile bulls remains to be explored. 

Killian et al. (1993) suggested that four bovine seminal plasma proteins were 

associated with fertility. These proteins were later characterized as Osteopontin and BSP-

30 kDa in high fertility bulls and Spermadhesin Z 13 in low fertility bulls (Moura et al., 

2006). In the present study, seminal plasma protein expression did not differ between 

high and low fertility dairy bulls. A difference in protein expression between fertility 

groups had been demonstrated in a previous study (Moura et al., 2006). It was anticipated 
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that by utilizing the multiplexing ability of the 2-DIGE technology, experimental errors 

would be minimized, and a more robust analysis would be achieved as opposed to the 

densitometric analysis utilized in the former study. The discrepancy in outcome between 

the two studies can be attributed to sample type utilized or fertility grouping, or both. 

Samples in the present study were from insemination straws as opposed to direct seminal 

plasma samples utilized in the previous study. Therefore, differential expression of 

proteins in samples examined in this study might have been affected by semen 

processing. Inadequate sample availability also impeded the classification of semen 

samples into distinct high and low fertile groups as was done in the previous study 

(Moura et al., 2006).  Bulls used in the present study had percentage point deviations 

(PDs) from the average of +2.7% to -6.5%. In contrast, the previous study had PDs from 

+7.7% to -18.1%. Consequently, low and high fertility groups in the present study 

corresponded to the intermediate fertility groups in that study. Because the previous 

authors reported no differences in expression levels of Osteopontin, Spermadhesin Z13, 

Phospholipase A2 and BSP 30kDa among these two groups, it was not surprising that the 

groups did not differ in their seminal plasma protein profile in the present study. 

Seminal plasma proteins have been characterized by other investigators and their 

association with male fertility continues to be explored (Mortarino et al., 1998; 

Gwathmey et al., 2003; Jobim et al., 2004; Moura et al., 2006; 2007).  Functions of sperm 

that may be affected by seminal plasma proteins include capacitation, acrosome reaction, 

motility, DNA integrity and interaction with the oocyte (Moura et al, 2007).  

Major BSP proteins (BSP-A1/A2, A3 and BSP-30 kDa) are known to influence 

capacitation by their ability to modulate membrane cholesterol. Phospholipase A2 (PLA2) 
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and osteopontin are involved in acrosome reaction and sperm-oocyte interaction and 

possibly early embryonic development (Morura et al., 2007). Proteins that might be 

associated with interaction and modulation of extracellular matrix (ECM) components are 

TIMP-2, clusterin and cathepsins. These functions may be important during fertilization 

when the sperm is required to interact with and cross barriers established by the cumulus 

cells, zona pellucida and oocyte membrane. Albumin, aSFP and clusterin are involved 

either directly or indirectly in mechanisms aimed at preventing damage to sperm 

membrane, oxidative stress and immune attack. Proteins associated with sperm motility 

in the female reproductive tract include BSP A1/A2, aSFP, PLA2 and ecto 5'-

nucleotidase (5'-NT). Spermadhesin Z13 might also be included in the motility associated 

group because it shares 50% homology with aSFP. However, expression of spermadhesin 

Z13 in seminal plasma of dairy bulls was inversely related to fertility (Moura et al., 

2006). 

Conclusion 
 
Fertility studies in non-bovine animals provided evidence that low abundance 

proteins might provide useful markers of male fertility. Some of these proteins might not 

be detected by traditional 2-D electrophoresis. These studies will lead to more complete 

view of seminal plasma proteins and enhance our understanding of their role in animal 

fertility.  
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Figure 4: Concentrations of TGF-β1 in seminal plasma of dairy bulls. 
Effect tests: 

* Bull (P = 0.001) 
* Collection (P = 0.30) 
* Collection × fertility index (P = 0.48) 
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Figure 5: Concentrations of TGF-β1 in seminal plasma of dairy bull of known fertility

phenotypes (P = 0.35). 

*Fertility score was expressed as the percentage point deviation (PD) of the bull’s non-return

rate (NRR) from the average NRR of all bulls in the Select Sires Inc. reproductive management

program. High fertility bulls (n = 8) 1.9 ≤ PD ≤ 2.7%, and low fertility bulls (n = 6) -6.5 ≤ PD ≤

1.8 %.  
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Figure 6: Reference gel depicting distribution of protein spots in seminal plasma of dairy 

bulls.  

Protein spots were characterized as: 1) probable extender-derived proteins, 2) probable 

medium and high molecular weight seminal plasma proteins, and 3) major bovine 

seminal plasma proteins. 
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Figure 7: Analysis of distribution of protein spots by volume in seminal plasma of 

cryopreserved dairy bull semen. 

Proteins spot were characterized as: 1) probable extender-derived proteins, 2) probable

medium and high molecular weight seminal plasma proteins, and 3) major bovine seminal

plasma proteins. 
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Figure 8: Cluster analysis of protein expression in seminal plasma of dairy bulls. 

Reference gel (a) depicting protein spots that differed (P < 0.001) and their 

standard expression profiles (b) in processed (Red outlines) and unprocessed 

(Green outlines) semen. 
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Figure 9: Pick list for protein spots that differed between seminal plasma from processed 

and unprocessed dairy bull semen. Thirty spots from this list were picked and digested 

for protein identification by MALDI-TOF and LC-MS/MS mass spectrometry. 
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Figure 10: Mass ion spectrum of a positively identified protein by MALDI-TOF mass 

spectrometer. Colored bars indicate complemetary peptide matches with the protein 

sequence  in database. Grey bars indicate no matching with data base sequences. 
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Gel ID 
Fold 

Increase*  Protein ID 
Accession 
number 

Coverage 
% 

Molecular 
weight pI 

Membrane stabilizing proteins 
1 95.4 Spermadhesin Z13 P82292 44 15.2 6.3

19 30.2 Spermadhesin Z13‡ P82292 43.3 15.2 6.3
3 54.4 Spermadhesin 1 P29392 78.4 15 5.1

20 30.1 Epididymal 
secretory protein 
E1 

P79345 55 16.6 8.4

ECM interacting proteins 
6 38.8 Cathepsin B P07688 16.1 36.7  

26 27.3 CathepsinD P80209 5.1 42.5  
43 20.4 Clusterin P17697 31.4 51.1 6
12 33.9 Metalloproteinase 

inhibitor 2 
P16368 42.7 24.3 7.8

Capacitation/acrosome reaction proteins 
9 37.3  BSP-A1/A2 P02784 44.8 15.5 4.9

19 30.2 BSP A1/A2† P02784 44.8 15.5 4.9
34 24.6 BSP-30kDa P81019 27.9 21.3 5.9
51 17.1 Phospholipase A2 IPI00760435.1 47.1 50.1 6.5
90 7.9 Platelet-activating 

factor 
acetylhydrolase 

Q28017 53.2 50.1 6.5

100 5.5 Nucleobindin-1 Q0P569 63.1 54.9 5.2
Ubiquitination proteins 

14 33.3 Kelch-like protein 9 Q2T9Z7 24.5 153.6 8.8
Motility associated proteins 

30 26.4 Fast myosin heavy 
chain extraocular 

IPI00829549.2 30.6 186.1 5.7

 
Table 10:  Proteins identified from corresponding spots in figure 9.   

*Spot volumes differed in relative amounts compared to internal standard. 

†Protein was identified at this spot only in unprocessed semen. 

‡Identification at this spot was enhanced by semen processing.  
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General discussion 
 

Reproductive efficiency is the hallmark of any profitable cattle operation because 

of the reliance on annual calf crop in the beef industry and the requirement of parturition 

to renew lactation in dairy cows. Therefore, the goal of any reproductive management is 

to ensure that cows breed at an opportune time and maintain their pregnancy to term. 

Over forty years ago, failure to conceive or early embryonic death accounted for 

the largest losses in calf crop in beef production (Wiltbank et al., 1961). Thirty years 

later, failure to conceive during the end of the breeding season was reported to account 

for the greatest production loss in the cow-calf segment of the beef industry (Bellows and 

Short, 1994). Today (Geary, 2003), the most common reproductive problem facing the 

beef industry is getting first-calf heifers rebred. In the dairy industry, poor oocyte quality 

(Ahmad et al., 1995; Perry et al., 2007) and failure of attachment (Starbuck et al., 2004; 

Rhinehart et al., 2008) account for the largest pregnancy losses. In a recent review of 

embryonic death in cattle, Inskeep and Dailey (2005) reported that about 10% of 

pregnancy failures in cows occur due to factors associated with the male. However, little 

attention has been paid to contributions in pregnancy failures due to male factors. 

The series of studies reported here were designed with the aim of improving 

reproductive management in beef and dairy cattle. In experiment one, lactational stress in 

the pregnant younger cows was considered an impediment to postpartum reproductive 

efficiency in beef cattle. Therefore, the effect of an intervention by an early weaning 

regimen on body energy metabolic profile and reproductive performance was examined 

in a beef herd. Cow response to weaning treatment was determined to a greater extent by 

her age/parity. Consequently, the importance of age profiles in a herd cannot be 
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overemphasized when designing management strategies for improving reproductive 

efficiency in cattle. The utility of ultrasonic scans of rump fat was identified as a viable 

alternative to body condition scores in evaluating or managing nutritional status of cows 

during the production cycle. 

In experiment two, the impact of stimuli expected to cause a post-mating 

inflammatory response on pregnancy outcome was examined in beef and dairy cows. 

Because previous studies in rodents, humans and pigs have indicated the need for seminal 

plasma proteins for successful pregnancies to occur in these species, a study was 

designed to extend this developing hypothesis in cattle. Inseminations with adjunctive 

seminal plasma numerically improved conception rates consistently in dairy and beef 

cattle, irrespective of whether they were timed bred or bred after synchronized estrus, and 

whether the treatments were applied at breeding or 12 hours before breeding. 

Inseminations with adjunctive TGF-β1 were only effective in cases where fertility were 

compromised, for example in dairy cows. These observations when combined with 

previous strategies that incorporated treatments with  recombinant bovine somatotropin 

(Starbuck et al., 2006) at insemination in cows greater than 100 days in milk, or transfer 

of in vitro produced embryos to heat-stressed lactating cows (Block and Hansen, 2007) 

might provide practical applications in managing reproductive efficiency in dairy cows. 

In experiment three, examination of the role of male factors in ensuring 

reproductive competence was extended to investigate the existence of potential 

biomarkers of fertility in seminal plasma. Divergent views exist on whether these 

biomarkers are located on the sperm surface (Sutovsky, 2003; Peddinti et al., 2008), or 

are associated with sperm DNA (Wu and Chu, 2008) or in seminal plasma (Cancel et al, 
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1997; Moura et al., 2006; 2007). Comparisons were carried out in seminal plasma from 

processed or unprocessed semen to evaluate the effect of semen processing on expression 

patterns of established biomarkers in seminal plasma. Altered expression profiles of the 

fertility-associated bovine seminal plasma proteins were observed in processed semen. A 

reduction in total protein content of seminal plasma from the processed semen also was 

observed. Taken together, these observations might imply that semen processing might 

impact fertility of sperm from bulls that could have otherwise been considered fertile. 

However, the mechanism by which these seminal plasma proteins might impact 

pregnancy outcome remains unexplored. 

Conclusions 

Reproductive efficiency in primiparous beef cattle can be improved by modulating the 

effects on lactational stress during mid to late pregnancy. Early weaning improved 

reproductive performance in 2- and 3-yr-old beef cows than in the older age groups. 

Ultrasonic rump fat scan offered a better alternative measure of nutritional status of cows 

compared to BCS or body weight. Inseminations with adjunctive seminal plasma proteins 

or their incorporation into semen during processing might improve reproductive 

performance in dairy cows. Alteration of seminal plasma proteome during semen 

processing might compromise fertility of sperm from bulls that could have otherwise 

been considered fertile. These observations add to several other alternative options that 

producers have in choosing the right strategy to fit to their reproductive management 

programs. 
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