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ABSTRACT 

Simplified Interior Ballistics Analysis of a Tube Launched UAV Prototype 

Edward R. Jackson 

Structural analysis is a critical aspect in the successful design of tube launched projectiles, 
such as mortar rounds. Ongoing research conducted at West Virginia University has focused on 
a tube-launched, folding-wing UAV design inspired by mortars. This has driven the necessity of 
a structural analysis of the prototype design to provide vital feedback to designers to ensure 
that the UAV is likely to survive the act of launching. Due to the extreme accelerations during 
the launching phase, a typical mortar round experiences dramatic impulse loads for an 
extremely brief duration of time. Such loads are the result of the propellant combustion 
process. Thermodynamic-based interior ballistic computations have been formulated and were 
used to solve the dynamic equations of motion that govern the system. Modern ballistic 
programs solve these equations by modeling the combustion of the propellant. However, 
mathematical procedures for such analyses require complex models to attain accurate results. 
Consequently, the objective of this research is to create a ballistics program that can evaluate 
interior ballistics by using archived pressure-time data without having to simulate the 
propellant combustion in order to minimize the computational effort required. A program 
routine created for this purpose reduces the complexity of calculations to be performed, while 
maintaining a reasonable degree of accuracy for the motion dynamics results (temporal 
displacement, velocity, acceleration of the projectile) and thermodynamic results (combustion 
gas pressure and volume). Additionally, the program routine was used to produce a 
mathematical model describing the pressure as a function of time. Advanced simulations could 
then be conducted via explicit-dynamic finite element solvers such as ANSYS LS-DYNA using the 
ballistics code outputs as loading conditions to simulate the transient response and stress wave 
propagation of the prototype and individual payload components. Such simulations remove 
uncertainties related to the transient loads needed to assess the structural integrity of the 
projectile and its components. Results obtained from the simulations were compared for 
verification purposes to review the accuracy of the solutions. The program provided 
researchers with an effective design tool that may be used in the optimization of a successful 
structural design. The results obtained from the simulations will be examined in the context of 
this thesis. 
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CHAPTER 1: INTRODUCTION 

The purpose of this research was to analyze the interior ballistics of a tube launched UAV 

(TL-UAV) prototype inspired by traditional mortar rounds. The approach taken presented in this 

thesis involves the creation of a simplified interior ballistics simulation in MATLAB that replaces 

solid propellant combustion modeling with archived pressure-time data. Output results from 

the simulation could then be used as loading conditions in a more computationally intense 

finite element analysis (FEA) using ANSYS to simulate the transient response and stress wave 

propagation acting upon prototype components to predict the response and avoid failure. 

Result verification was conducted by comparing the simulated muzzle velocity obtained from 

each MATLAB model with performance data from public domain literature. 

1.1 – System Description 

Design of the TL-UAV was inspired by M721 60mm mortar rounds. These mortar rounds are 

utilized in the M224 60mm mortar system by the U.S. military. The M224 mortar system is a 

“muzzle-loaded, smooth-bore, high-angle-of-fire weapon” consisting of a M225 cannon, M170 

bipod, M7 baseplate, and M64-series sight unit that was introduced to the U.S. military in 1978 

(Cooke G. W., 2004). Images of the mortar and launcher assembly are provided figures 1.1 and 

1.2: 

 
Figure 1.1 – M721 Mortar Round (M721 60mm Illuminating Mortar Cartridge, 1998) 
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Figure 1.2 – M224 Mortar System (Cooke G. W., 2004) 

Specifications and performance data for the M721 mortar round and M224 mortar system 

retrieved from public domain sources are listed in table 1.1: 

Table 1.1 – Specifications and Performance Data M721 Round and M224 Cannon1,2,3,4 

 SI Units Imperial Units Source 

Cartridge Weight 1.71 kg 3.76 lbm Literature1 

Cartridge Diameter 60 mm 2.362 in Approximated 

Cartridge Length 421 mm 16.58 in Literature1 

Cannon Bore Diameter 60 mm 2.362 in Literature2 

Cannon Length 1024 mm 40.32 in Literature3 

Muzzle Velocity 124 m/s 407 ft/s Literature4 

Superficially, the prototype TL-UAV design closely resembles the appearance of the M721 

mortar round. Internally, however, the TL-UAV conceals an array of electronic components and 

mechanisms necessary to actuate internally-stowed wings to complete the transformation of 

the prototype from its initial mortar round orientation to its final UAV orientation. Due to ITAR 

restrictions, the actual geometry of the prototype cannot be displayed in the contents of this 

thesis. Therefore, the focus of this thesis will be on the procedure to be used for analysis of the 

                                                      
1 (Cooke G. W., 2004) – 60mm Mortar Ammunition and Fuzes 
2 (Cooke G. W., 2004) – M224 60mm Light Mortar 
3 (U.S. Army, 2009) 
4 (M721 60mm Illuminating Mortar Cartridge, 1998) 
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TL-UAV using an arbitrarily designed 60mm mortar resembling the M721 round. Results 

discussed in the context of this thesis have been non-dimensionalized due to export control 

regulations. 

1.2 – Motivation 

Structural analysis is a vital aspect of the design process for tube launched projectiles. 

During the act of launch, extreme impulse forces applied to the projectiles occur in a matter of 

milliseconds. Such forces can ultimately lead to structural failure and undesired damage of the 

projectile, particularly payload or projectile components. Determination of the forces acting 

upon the projectile required an interior ballistics analysis of the system to obtain physically 

representative loading conditions. This has driven the need for an interior ballistics model of 

the prototype that accurately represented the anticipated behavior of an actual launch. Results 

attained from the analysis will provide significant feedback to designers to ensure that the TL-

UAV projectile will survive the launch, or where modifications of the prototype may be required 

to prevent failure from occurring. With this in mind, certain considerations had to be made with 

respect to the analysis, namely minimizing simulation time of the analysis without dramatically 

compromising simulation accuracy.  

Simulation of the interior ballistics process was an important aspect of the structural 

analysis. Solutions attained from such simulations provided data which could be used in 

determining loading conditions for a FE model of the TL-UAV. Literature survey performed 

pertaining to interior ballistics revealed the complex programming necessary to effectively 

simulate the interior ballistic cycle. Taking this into consideration, it was considered that a more 

efficient method could directly evaluate archived pressure-time data. The basis of this 

conceptual approach was that the propellant combustion process was erratic and 

unpredictable on a microscopic level, yet somewhat uniform on a macroscopic level. Therefore, 

archived data could be implemented in place of the numerous and complex computations 

required to approximate the temporal pressure distribution of the combustion gas. 
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1.3 – Objectives 

Interior ballistics evaluates in-bore projectile motion caused by pressure changes resulting 

from energy addition due to solid propellant combustion. Prior to propellant combustion, at 

time t1=0, the projectile is not affected by pressure changes, as depicted in figure 1.3. After the 

initiation of propellant combustion, at time t2=t, exhaust gases expand causing an increase in 

pressure. The resulting pressure acts upon the projectile causing motion, as illustrated in figure 

1.4. The combustion gas continues to expand, forcing the projectile to move toward the exit of 

the cannon barrel. Once the projectile has reached the cannon exit, at time t3=texit, the 

combustion gases escape the system to seek equilibrium, as shown in figure 1.5. 

 

Figure 1.3 – Projectile Prior to Combustion at Time = 0 (Asfaw, 2008) 

 

 

Figure 1.4 – Projectile Motion from Exhaust Gas Expansion at Time = t (Asfaw, 2008) 
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Figure 1.5 – Projectile at Cannon Exit at Time = texit (Asfaw, 2008) 

Simulations of interior ballistics require numerous complex calculations to attain accurate 

results. Significant reduction in simulation time can be attained by implementation of archived 

pressure-time data in place of the tedious and lengthy computations required to model solid 

propellant combustion. Further simplification can be achieved by conducting the simulation 

one-dimensionally. Considering these points, the desired objectives for the simplified interior 

ballistisc code include: 

 Solving the equations of motion to determine the displacement, velocity, and 

acceleration of the projectile with respect to time within the cannon barrel and at the 

muzzle 

 Partial evaluation of the thermodynamics and thermochemistry to accurately predict 

the volume behind the projectile and to approximate the combustion gas temperature 

 Approximating the propellant burn rate to approximate propellant geometry during 

combustion 

 Evaluating the local speed of sound and Helmholtz resonance at the muzzle 

 Allow parameters to be modified via user input to extend the range of scenarios in 

which the code can be used to analyze launch dynamics 

To better analyze the structural integrity of the prototype, an explicit-dynamic, finite-

element simulation was desired to simulate the transient response and stress wave 

propagation of the mortar and individual UAV components. Such a simulation would utilize 
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ballistic code outputs as loading conditions. Solutions attained from the finite element 

simulation could then be compared to interior ballistics simulation results and public domain 

performance data for verification purposes. 

1.4 – Importance of Research 

The importance of this research resides on the applicability and usefulness of this type of 

analysis on the design and manufacturing of mortars in a variety of ways. It is desired that the 

results of this study will lead to an overall increase in the efficiency with respect to the design, 

fabrication, and economics of successful mortar prototypes. Furthermore, more extensive 

structural analyses can be performed on the proposed prototype design by means of an explicit 

dynamic solver such as LS-DYNA. The obtained results from the simplified ballistic code can be 

used as loading data for such explicit dynamic analyses, which can then be used as a pass/fail 

criterion for design considerations. 

1.5 – General Approach 

The base model of the ballistics code was used to analyze a 60mm mortar round, which 

consisted of the ignition cartridge and one solid propellant charge increment attached to the 

tail boom. Simulation of the interior ballistics of the system was performed via MATLAB. The 

following outline summarizes the general approach of the MATLAB simulation: 

 Input user defined variables and archived pressure-time data 

 Perform polynomial curve fit to archived pressure-time data 

 Simulate solid propellant geometry during combustion from burn rate equations 

 Solve the equations of motion of the projectile 

 Evaluate the thermodynamics of the system 

Figure 1.6 illustrates the general approach of the TL-UAV structural analysis by means of a 

flowchart. Individual processes of the flowchart are explained more thoroughly in Chapter 3, 

and are illustrated by means of flowcharts located in the appendix. 
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Figure 1.6 – Flowchart Outlining General Approach of Interior Ballistics Analysis5 

                                                      
5 - Character “n” used in flowchart denotes integer (n = 1, 2, 3, etc.) 

 

Start

Perform nth order polynomial curve fit 

Curve accurately 
represent data?

Modify order of 
polynomial curve fit

Compute time of propellant burnout

Solve projectile kinematics

Determine propellant mass/geometry 

Solve projectile thermodynamics

Evaluate Helmholtz Resonance

End

Import archived pressure-time data 

NO

YES

Generate Plots
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1.6– Scope of Research 

Interior ballistics simulation is of particular importance in the production of loading 

conditions necessary for an explicit-dynamic FE simulation. Typical interior ballistics simulations 

obtain pressure-time data by modeling the propellant combustion process. In this thesis, an 

effective approach to simulate interior ballistics without modeling the propellant combustion 

processes is presented. The simplified ballistics model proved to be an effective tool in regards 

to producing the desired loading conditions for FE simulations. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

2.1 – Background 

Internal structural integrity of projectiles is a critical aspect in a reliable design, but 

prediction of launch forces can be difficult to determine before experimentation. Ongoing 

design research conducted at West Virginia University has focused on tube launched folding-

wing UAV designs based on mortar ballistics. Due to extreme accelerations during the launching 

phase, a typical mortar round experiences dramatic impulse loads for an extremely brief 

duration of time. Modern ballistic models solve for the projectile dynamics by modeling the 

actual combustion of the propellant. Mathematical formulations for such analysis require 

complex modeling to obtain accurate results. Therefore, it was desired to create a ballistic 

model capable of accurately evaluating the interior ballistics of a projectile by using 

experimentally recorded pressure-time data without simulating propellant combustion. 

Conceptually, a model created in this manner reduces the complexity of calculations to be 

performed, while maintaining a reasonable degree of accuracy for the motion dynamics results 

(displacement, velocity and acceleration of the projectile as a function of time). 

2.2 – Mathematical Modeling of Interior Ballistics 

The science of interior ballistics has been defined to evaluate: the ignition and burning 

processes of the propellant, the pressure changes in the barrel, the onset of projectile motion 

in the barrel, the friction between the projectile and the barrel, the in-bore projectile dynamics, 

and the barrel dynamics (wave propagation, thermal expansion, etc.) during launch. The 

physical foundation of interior ballistics can be built upon gas laws that describe how the 

chemical energy of a propellant is exchanged into the kinetic energy of a projectile (Carlucci & 

Jacobson, 2007). For this reason, computer models that have been developed to simulate the 

interior ballistics of a projectile initialize by evaluating the gas laws associated with propellant 

combustion. 

Historical accounts reveal that solutions to interior ballistic problems have been attempted 

since the late 1700’s when Lagrange tried to solve for the pressure distribution, gas density, and 
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gas velocity with respect to time after the combustion process initiated. The research 

performed since are split into two broad categories: semi-empirical solutions and exact 

theories. The purpose of semi-empirical solutions was to obtain a solution that accurately 

predicted the peak chamber pressure and muzzle velocity of experimental data. Alternatively, 

exact theories aim to accurately simulate the interior ballistic process from formulating a 

mathematical model of the multiphase fluid flow (Shelton, Bergles, & Saha, 1973).  

Flow modeling has historically proven to be extremely challenging in applied mathematics 

and computational fluid dynamics (CFD). Two of the more significant approaches used to solve 

such problems are the Lagrangian approach and the Eulerian approach. The Lagrangian 

approach considered the fluid phase to be a continuum and “the particulate second phase” to 

be comprised of single particles. Trajectories of the particles in the fluid phase were predicted 

from forces interacting with the particles. The Eulerian approach considered the solid and gas 

phases as continuum and made use of conservation equations to obtain solutions (Acharya, 

2009). Advancements in the field of interior ballistics have been made possible through 

development of equations describing mathematical models of fluid motion. Furthermore, 

implementation of high performance computers has enabled the creation of highly detailed 

mathematical computer codes capable of simulating the interior ballistic process (Nyberg, 

2009). Such computer codes vary in detail and complexity.  

In 1973, a technical report created at the Georgia Institute presented findings from a study 

that focused on heat transfer and gun barrel erosion. In the report, an interior ballistic model 

was outlined that simulated solid propellant combustion, gas dynamics, and projectile 

dynamics. According to the report, an interior ballistic analysis involved the creation of a 

propellant combustion model via the conservation equations, “the boundary layer momentum 

integral equation”, and the thermodynamic equation of state for the combustion gas. Initially, 

five basic unknowns were evaluated in the propellant combustion model; the volume fraction 

of the solid propellant, as well as the density, one dimensional velocity, pressure, and 

temperature of the combustion gas. A summary of the necessary equation corresponding to 

each unknown is provided in table 2.1 (Shelton, Bergles, & Saha, 1973): 
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Table 2.1 – Summary of Unknown Variables and Corresponding Equations  

Unknown Equation 

Solid Volume Fraction Solid Continuity 

Gas Density Gas Continuity 

One-Dimensional Gas Velocity Conservation of Momentum 

Gas Pressure Conservation Of Energy 

Gas Temperature Thermal Equation of State 

 

Performing such an analysis required the conservation equations to be written in finite 

difference form, and implementation of numerical techniques to solve the coupled non-linear 

partial differential equations, since an analytical solution did not exist (Shelton, Bergles, & Saha, 

1973). Encoding of the numerical techniques so that they could be solved computationally 

demanded complex modeling to obtain realistic results. 

Once solutions had been obtained from the propellant combustion model, the dynamics of 

the projectile could be evaluated. This phase of the interior ballistic analysis entailed use of the 

equation of motion to determine the displacement, velocity, and acceleration of the projectile 

as a function of the computed combustion gas pressure. Unfortunately, the technique 

described was not applicable to the boundary points of the system, which in turn further 

complicated the analysis (Shelton, Bergles, & Saha, 1973). 

2.2.1 – XNOVAKTC Code and Extensions 

The XNOVAKTC interior ballistic computer code was introduced in 1990. The code was 

based on the Lagrangian approach to model the interior ballistic cycle based on numerical 

solutions for one-dimensional, multi-phased flow governing equations (Gough, 1990). 

Additional versions of the code enabled modeling of two and three-dimensional compressible 

flows, which ultimately led to the next generation interior ballistic code NGEN3 (Acharya, 

2009). NGEN3 enabled flame-spreading and combustion modeling of direct and indirect gun 

propulsion systems using a coupled Eulerian/Lagrangian approach, and effectively predicted the 

pressure load on the projectile as a result of propellant combustion (Ray, Newill, Nusca, & 

Horst, 2004). 
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One NGEN3 source reviewed discussed the connection between the interior ballistic code 

and structural analyses. According to the source, the mechanical response experienced by the 

projectile as a result of the pressure load was predicted via finite-element solid mechanics 

codes, one of which being DYNA3D (Ray, Newill, Nusca, & Horst, 2004). Review of this particular 

source reinforced the idea behind using pressure data retrieved from interior ballistic analyses 

as loading conditions in advanced explicit-dynamic finite-element simulations. 

2.2.2 – IBHVG2 Code and Extensions 

Another popular interior ballistic model is the IBHVG2 (Interior Ballistics High Velocity Guns 

version 2) code, which is a lumped parameter interior ballistic code developed by the Army 

Research Laboratory (ARL) as an updated version of a classic ballistic code (Schmidt, Nusca, & 

Horst, 2009). Lumped parameters are essentially discrete entities that are capable of 

exchanging energy with other entities (Voldman, 2007). The original use of the code was to 

evaluate “the interior ballistic cycle of the standard 5-Inch Propelling Charge Mk 67” (Erline & 

Fischer, 1996). The code operated by simulating the combustion of the ignition and propelling 

charges while computing several variables with respect to time including; average gas pressure 

and temperature, projectile acceleration and velocity, and the mass fraction of unburned 

propellant (Anderson & Fickie, 1987). However, the IBHVG2 code initially proved to be 

ineffective with respect to mortar simulations as a result of the complex nature of the 

combustion process associated with launching (Schmidt, Nusca, & Horst, 2009).  

Mortar combustion modeling requires evaluation of two chambers that contain propellant, 

which differs from single chamber combustion modeling associated with conventional gun 

configurations. Advancement made to the IBHVG2 code enabled two chamber modeling 

through a permeable canister mode to better represent mortar configurations (Schmidt, Nusca, 

& Horst, 2009). The permeable canister mode takes into consideration that ignition charges for 

mortars are contained in closed canisters located inside of the tail boom. Propellant 

combustion is initiated by burning the ignition charge in the closed canister. As a result, the 

pressure in the small volume canister increases rapidly. At high pressures, the combustion 

products in the canister escape into the larger chamber through burst vents, resulting in the 
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ignition of the external propellant charge, rapid expansion of combustion product gases, and 

acceleration of the projectile (Anderson, 2006).  

One controversial aspect of the IBHVG2 code is that it simulates the propellant combustion 

uniformly. Experiments have shown that the flame propagation is “neither complete nor 

instantaneous immediately after ignition” (Anderson & Fickie, 1987). As a result, the actual 

pressure is observed to initially lag behind the simulation results, as demonstrated in figure 2.1 

(Anderson & Fickie, 1987): 

 

Figure 2.1 – Illustration of Initial Lag in Pressure Observed in Comparison to IBHVG2 Solution 

2.2.3 – 3D-MIB Code and Extensions 

The most realistic interior ballistic model reviewed was created in a joint effort between 

The Pennsylvania State University and the Army Research and Development Engineering 

Center. This model, named 3D-MIB, was created to realistically simulate the three-dimensional 

interior ballistics of a 120-mm mortar system. Interior ballistic process simulations in this model 

were performed in a particular order. First, an empirical flash tube sub-model was used to 

determine the instantaneous energy and mass flux of the two-phase combustion products from 

the flash tube. Next, a mobile granular bed combustion sub-model was executed using the two-
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phase conservation equations, the equation of state for gas inside of the tail boom, propellant 

burn rate and surface temperature equations, and a relationship pertaining to the intragranular 

stress. Next, another sub model evaluated the flame propagation and two-phase properties 

inside the tail boom section, which included gas pressure, temperature, density, and velocity, as 

well as propellant burn rate and surface temperature. A fourth sub-model was then executed 

that examined the 3-D combustion of the propellant in the free volume between the projectile 

and launcher, and the pressure distribution behind the projectile. After considering these sub-

models, a final sub-model was used to predict the dynamics of the projectile. The solutions 

attained from the sub models were then integrated into a single model, which was then 

compared to experimental data for validation purposes. Years of research were put into the 

construction of the 3D-MIB model, which ultimately could only be used to simulate the interior 

ballistics of a 120-mm mortar system. However, work has been done to extend the application 

of the model to other mortar systems (Acharya, 2009).  

Extensive review of literature failed to provide a simplified interior ballistics model capable 

of accurately simulating projectile dynamics from archived pressure-time data. Instead, a 

variety of models were discovered that simulated the combustion process of solid propellants 

to obtain pressure-time data. Further review revealed that a majority of existing interior 

ballistic models were not capable of evaluating the complex combustion process that occurs 

during the act of launching a mortar. Observations made from an efficiency point of view 

motivated the desire to create a simplified model that could effectively be used for the 

structural analysis and design considerations of a tube-launched UAV prototype being 

developed at West Virginia University. The next chapter discusses the procedure used in the 

creation of the simplified interior ballistics model. 
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CHAPTER 3: METHODOLOGY 

3.1 – Simplified Interior Ballistics Code 

Creation of a ballistic code capable of solving motion dynamics and thermodynamics of the 

prototype was an important aspect of the structural analysis. As previously mentioned, a 

desired objective of the code was to maintain simplicity without compromising solution 

effectiveness. To simplify the interior ballistics code, some assumptions had to be made. The 

first assumption was that the burning process of the propellant was to be neglected by 

implementing archived pressure-time data. The second assumption was that the dynamic 

pressure at the nose of the round and frictional effects acting on the projectile were to be 

neglected. Incorporating an effective projectile mass enabled friction and resistive pressure 

effects to be accounted for by an addition to the mass of the projectile. Literature survey 

revealed the effective mass to be approximately equal to the projectile mass multiplied by 1.02 

(U.S. Army Materiel Command, 1964). Finally, it was assumed that accurate results could be 

attained by creating the model one-dimensionally. The steps taken in the creation of such a 

code are included in the following subsections.  

3.1.1– Data Retrieval 

Microsoft Excel was used to store the archived pressure-time data for the projectile. The 

data supplied occupied over a thousand cells of the spreadsheet per variable. For this reason, 

the MATLAB command “xlsread” was implemented in the ballistic code to automatically 

retrieve the data from the spreadsheet file rather than manually inserting the data directly into 

the code.  The original archived data supplied for the projectile consisted of a column 

containing the time in milliseconds, and the recorded gage pressure in pounds per square inch 

(psi). To ensure that data was imported properly to MATLAB, unit conversions of the data was 

performed in the Excel spreadsheet. The modified spreadsheet included two columns 

containing time steps in seconds and milliseconds, and four columns containing pressure data; 

gage pressure and absolute pressure in psi, and gage pressure and absolute pressure in Pascals 

(Pa). A sample of the created spreadsheet is included in table 3.1: 
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Table 3.1 – Excel Spreadsheet Example6 

A B C D E F 

time 
(ms) 

time 
(sec) 

Gage Pressure 
(psi) 

Absolute Pressure 
(psi) 

Gage Pressure 
(Pa) 

Absolute Pressure 
(Pa) 

0 0 0 14.7 0 101325 

To ensure proper function of the ballistic code, it is encouraged that spreadsheets created for 

importation purposes follow the format of table 3.1. It is also necessary to note that the 

spreadsheet file must be saved in the same folder as the ballistic code (Read Microsoft Excel 

Spreadsheet File). 

Input of the xlsread command required certain identification properties of the destination 

Excel file. The properties of interest were the file name, the sheet name, and the column 

identification letter associated with variable of interest. For example, the time data required for 

the code was saved under the Excel file named “P-t data.xlsx” in a sheet named “Data”. The 

column identification letter associated with the designated time data, as seen in table 3.1, was 

“B”. Use of the xlsread command in the MATLAB code can be observed in the appendices (Read 

Microsoft Excel Spreadsheet File).  

3.1.2– Data Curve Fitting 

A negative quality observed in the experimentally recorded data was a distinct oscillating 

behavior, as represented in figure 3.1. The behavior of the plot can be attributed to interactions 

between reflecting and refracting shock and rarefaction wave fronts inside of the cannon barrel 

(Williams, Brandt, Kaste, & Colburn, 2006). After solid propellant charges are ignited, the 

combustion gases expand rapidly, causing regions of extreme pressure gradients which lead to 

the formation of shock waves. Within milliseconds, the waves move and bounce off of solid 

boundaries within the control volume resulting in reflected shock and rarefaction waves. As 

these waves reflect and refract throughout the system, dozens of thermodynamically discreet 

zones are created. The pressure sensor used for recording data is affected, which results in the 

many peaks and valleys as seen in figure 3.1 (Carlucci & Jacobson, 2007). For the purposes of 

the ballistic code, an equation of pressure as a function of time was required to perform the 
                                                      
6
 The first row shaded gray represents the column identification letter from Microsoft Excel. 
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interior ballistic calculations. The equation was attained by performing a curve fit to the 

experimental data. Several curve fitting options were available via MATLAB; however, to 

maintain the simplicity of the ballistics code, a polynomial curve fit was selected.  Evaluation of 

the data through the MATLAB curve fitting tool, cftool, revealed that the best curve fit and most 

desirable R-square value was obtained from a 9th order polynomial curve fit. Note that lower 

order polynomial curve fits may be more appropriate for different scenarios. Archived data can 

be evaluated by use of the cftool command to summon the MATLAB Curve Fitting Toolbox 

(Open Curve Fitting Tool). 

 
Figure 3.1 - Arbitrary Plot of Pressure-Time Data 

Performing an nth order polynomial curve fit in MATLAB was accomplished via the polyfit 

command (Polynomial Curve Fitting). The 9th order curve fit used in the MATLAB code resulted 

in an equation of the form: 

        
     

     
     

     
     

     
     

          3.1 

The symbol Pcf in equation 3.1 denoted the curve fit pressure at time t, while the symbols pj 

(j=1, 2, 3, etc.) represented the coefficients obtained from the curve fit. The importance of this 
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equation was to enable integration and differentiation to be performed. However, the pressure 

equation could not be integrated by MATLAB in the form output from the polynomial curve fit 

since it was not a function of symbolic time. 

Resolving the issue pertaining to integration was combated by use of the MATLAB Symbolic 

Toolbox (Symbolic Math Toolbox). Using this toolbox, a symbolic time variable, t, was created 

via the sym MATLAB command (Creating Symbolic Objects). The symbolic time variable was 

then substituted into equation 3.1 resulting in an equation of pressure as a function of symbolic 

time. At this point, integration could be performed to the symbolic pressure polynomial via the 

int MATLAB command (Symbolic Integration). Once integration had been performed to the 

polynomial, the symbolic pressure expression could be reverted back to an expression of 

numerical time via the sym2poly MATLAB command (Symbolic-to-Numberic Polynomial 

Conversion). The sym2poly command was used to retrieve the coefficients associated with the 

symbolically integrated function, which were then used in the numerical calculations of the 

equations of motion. However, the next procedure undertaken was to evaluate the burn rate of 

the propellant using the approximated pressure expression. 

3.1.3– Propellant Burn Rate 

Prior to solving the burn rate computations, a few assumptions had to be made. First, the 

dimensions of the actual propelling charge to be used on the projectile could not be obtained 

due to export control regulations. Therefore, the charge was assumed to be a torus which 

encompassed the area between the tail-boom of the projectile and the inner wall of the 

cannon. Furthermore, the ignition cartridge of the propellant was neglected from the model. 

The initial volume of the charge was approximated to be the volume of a torus with the same 

geometry. Next, the initial mass was calculated by dividing the initial volume by the density of 

the solid propellant. The density of the charge was retrieved from a public domain source. With 

these assumptions in mind, the burn rate equations were then evaluated. 

A variety of burn rate equations can be used to describe how a solid propellant oxidizes. The 

most commonly used equation for the purpose of computer codes was discovered via research 

(Carlucci & Jacobson, 2007): 
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  3.2 

The left hand side of equation 3.2 represents the burn rate of the propellant, which can be 

defined as the “time rate of change of the web” (Carlucci & Jacobson, 2007). Note that the 

generic unit for the propellant burn rate was defined as length/time. The right hand side of the 

equation contains burn rate constants, β and n, which represented the burn rate coefficient 

and burn rate exponent respectively, and the curve fit pressure, Pcf. The burn rate equation was 

used to determine the rate of regression of the surfaces of the solid propellant. The data 

attained from the burn rate equation was then used to approximate the remaining volume of 

the solid propellant and the mass of solid propellant that had been combusted, which was an 

important factor in thermodynamic analyses. Computations were inserted into the ballistics 

code using burn rate properties discovered in public domain documents.  

The first step was to determine the time step in which all of the propellant had completely 

combusted, or burned out. This was accomplished by inserting the numerical values of the 

curve fit pressure into equation 3.2. The attained values were then multiplied by the time 

vector using the MATLAB array multiplication operator ‘.*’ (Matrix and Array Arithmetic ). 

Performing this computation resulted in the regression of the propellant web at each time step 

interval. Using the MATLAB cumsum command, the cumulative sum of interval regressions was 

calculated, which computed the total regression at each time step (Cumulative Sum). Next, the 

MATLAB command ones was used to create an equally sized vector as the cumulative sum 

vector with all values set equal to 1 (Create array of all ones). This array was then multiplied by 

the initial charge radius. The cumulative sum array was then subtracted from the array 

containing values of the initial charge radius, which effectively computed the remaining radius 

of the charge at each individual time step. Finally, the MATLAB find command was utilized to 

determine the index number in which the charge radius from the previous calculation became 

negative. The index number computed could then be used to identify the time in which the 

propellant had exhausted. This computational procedure is summarized by the flowchart 

illustrated by figure C1 in the appendix. 
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The next phase in the burn rate computations was to compute the charge volume and mass 

at each time step. The volume of the charge was approximated by calculating an equivalent 

length of the charge. This length was determined by use of equation 3.3: 

      
     

       
  3.3 

Where Leqv is the equivalent length of the charge, Vch,i is the initial volume of the charge, and 

rch,i is the initial radius of the charge. The volume of the charge, Vch, at each time step was then 

calculated from: 

              
  3.4 

Once the volume of the charge had been calculated, the mass of the charge remaining was 

easily computed by multiplying the volume by the solid propellant density: 

            3.5 

Where mch represents the charge mass and ρch is the solid propellant density. Subsequently, it 

was desired to solve for the mass of propellant that had been burned, denoted by the symbol 

N, which was formulated by subtracting the charge mass remaining from the initial charge 

mass: 

             3.6 

 Finally, the mass fraction, the percentage of charge mass that has oxidized, was 

computed by dividing the mass of burnt propellant by the initial charge mass: 

               
 

     
  3.7 

Figure C2 of the appendix summarizes the propellant mass/geometry computational procedure. 

Upon completing the propellant burn rate calculations, the next step in creating the ballistic 

code was to derive and compute the equations of motion. 

3.1.4– Equations of Motion 

Derivation of the equations of motion required the equations to hold true to Newton’s 

second law (Carlucci & Jacobson, 2007). For a closed system, Newton’s second law can be 
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expressed as force (F) equals mass (m) multiplied by acceleration (a) as illustrated in equation 

3.8 (Carlucci & Jacobson, 2007): 

      3.8 

Another useful relationship used in the derivation was the definition of pressure (P) (Moran & 

Shapiro, 2008): 

   
 

 
 3.9 

The symbol “A” used in equation 3.9 denotes the cross sectional area of the cannon barrel. 

Rearranging equation 3.9 yielded an alternate representation of force which was then 

substituted into equation 3.8. By once again rearranging the equation, a relationship was 

formed between the pressure and acceleration of a tube launched projectile (U.S. Army 

Materiel Command, 1964): 

         (
   

     
) 3.10 

The subscripts prj, cf, cb, and prch presented in equation 3.10 denoted references to the 

projectile, curve fit expression, cannon barrel, and combined projectile and propellant charge 

respectively. 

The projectile velocity was derived next from the mathematical relationship between 

acceleration and velocity (Hibbeler, 2007): 

 
  

  
   3.11 

By substituting equation 3.11 into equation 3.10 and integrating both sides with respect to 

time, the velocity of the projectile was determined to be: 

      (
   

     
) ∫       

     

 

 3.12 
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Note that the variable Acb was considered to be constant and therefore could be pulled out of 

the integrand. Additionally, the combined mass of the projectile and charge was assumed to be 

a constant despite the minor changes in mass resulting from propellant combustion.  

Next, the projectile displacement was derived using the mathematical relationship between 

velocity and displacement (Hibbeler, 2007): 

 
  

  
   3.13 

Following the same procedure used in the velocity derivation, the displacement of the 

projectile was calculated to be: 

      ∫        

     

 

 (
   

    
)∬          

     

 

 3.14 

Encoding the expressions above into MATLAB required only a few lines of code. The 

expression used to solve the projectile acceleration was the simplest to encode since the cross 

sectional area and mass were known constants, and an expression describing the pressure had 

been obtained from the curve fit. Accelerations at each time step were solved by use of the 

MATLAB array multiplication operator, as previously used in the burn rate computations 

(Matrix and Array Arithmetic ). Simply stated, the period placed before the multiplication 

symbol indicates that multiplication is desired to be performed at each time step. This operator 

was extensively used within the MATLAB routine. Solutions were then attained for the 

projectile velocity and displacement using the int command to symbolically integrate the 

pressure expression, the sym2poly command to change the integrated expression from a 

symbolic representation to a numerical representation, and the MATLAB array multiplication 

operator to record solutions for each time step. The flowchart illustrated in figure C3 in the 

appendix summarizes the projectile kinematics computational procedure. Once the motion 

dynamics of the system had been computed, the thermodynamics of the system were then 

evaluated. 



 23 

3.1.5– Thermodynamics 

Thermodynamic equations of state can be typically used to relate the pressure, volume (V), 

and temperature (T) within a system. Initially, the gas pressure (P) was the only of the three 

mentioned variables that had been accounted for, through the archived pressure data curve fit. 

The gas volume was the next variable to be evaluated. However, certain assumptions had to be 

made pertaining to the system: 

1. The initial chamber volume was defined as the free volume behind the projectile 

prior to propellant ignition. 

2. The gas created at the onset of propellant combustion instantaneously occupied the 

initial chamber volume. 

3. The gas was assumed to be evenly distributed within the free volume behind the 

projectile. 

Using these assumptions, the gas volume was obtained by multiplying the displacement of the 

projectile by the cross sectional area of the cannon barrel, which was then added to the initial 

chamber volume: 

                      3.15 

Implementation of equation 3.15 enabled the ballistic code to solve for the gas volume at each 

time step. The next phase was to solve for the temperature of the combustion gas. 

At first, solving for the gas temperature in the system was attempted through the use of an 

equation of state, such as the ideal gas or Nobel-Abel equations. However, the solutions 

obtained from this approach resulted in unrealistically high initial gas temperature that rapidly 

transitioned to unreasonably low gas temperatures. The reason behind the erroneous 

temperatures was discovered to be the result of poorly defined variables necessary for the 

computation, including the gas co-volume and specific volume (Johnston, The Noble-Abel 

Equation of State: Thermodynamic Derivations for Ballistics Modelling, 2005). Therefore, a 

different approach to the problem was explored. Research revealed that the gas temperature 

could be equated through an energy balance equation. This equation stated that the projectile 
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kinetic energy was equal to “the loss of internal energy of the gas”, which is summarized in the 

following equation (U.S. Army Materiel Command, 1964): 

  ∫       
 

 
        

 
  

 

 3.16 

In which N denoted the mass of propellant burned, cv represented the specific heat under 

constant volume, T was the temperature, Tf denoted the adiabatic flame temperature, mprj was 

the mass of the projectile, and Vprj represented the velocity of the projectile. To further simplify 

this equation, the specific heat quantity, cv, was assumed to be constant (U.S. Army Materiel 

Command, 1964): 

    (       )  
 

 
        

  3.17 

The absolute temperature in the system was then computed by rearranging equation 3.17: 

         
        

 

    
 3.18 

The temperatures output from this computation provided a more realistic representation of the 

temperature in the system. The same procedure involving the MATLAB array multiplication 

operator was used to implement the temperature expression into the ballistic code, as 

performed with other computations (Matrix and Array Arithmetic). The thermodynamics 

computational procedure is outlined in figure C4 of the appendix by means of a flowchart. 

Another variable of interest was the local speed of sound. This variable was needed for 

computing the Helmholtz resonance of the projectile. It should be noted that the Helmholtz 

resonance has been included due to speculation that it may be associated with premature 

projectile fragmentation at the cannon muzzle; however, this topic will not be included in the 

scope of this thesis.  

Research revealed that the local speed of sound was defined as (Carlucci & Jacobson, 2007); 

   √          3.19 
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Where c represented the local speed of sound, γ was the specific heat ratio, Rgas denoted the 

specific gas constant of the combustion gas, and Tgas was the gas temperature. Since all of the 

necessary variables were available from public domain literature, approximated, or solved for, 

the local speed of sound was easily computed. Results attained were then applied to the 

Helmholtz resonance equation (Browning, Transient Flow Characteristics of a High Speed 

Rotary Valve, 2009): 

    
 

     
 3.20 

The symbol fH was used for the Helmholtz Resonance, and Lcb denoted the depth of the cannon 

bore. These expressions were inserted into the ballistic code in the same manner as previous 

expressions, while making use of the MATLAB command sqrt to account for the square root in 

equation 3.19 (Square Root). The Helmholtz Resonance computational procedure is outlined by 

means of a flowchart in figure C5 of the appendix. 

3.1.6 – LS-DYNA Loading Conditions 

The solutions determined by the MATLAB routines can be used as loading conditions of an 

explicit, three-dimensional simulation via ANSYS LS-DYNA. The main loading condition revealed 

by the MATLAB routines would enable the inclusion of a pressure-time curve into ANSYS. Such a 

curve can be incorporated into ANSYS by a variety of methods, this simplest of which involves 

the creation of a function. 

In ANSYS, functions can be created by selecting parameters from the toolbar, then selecting 

functions, and clicking define/edit. Following this procedure will open the function editor. At 

this instance, the polynomial curve fit coefficients output from the MATLAB routines are 

needed. Creation of a pressure-time curve in ANSYS can now be performed by creating a 

function as illustrated in equation 3.1 in the input dialog box labeled ‘Result =’. The curve 

coefficients are implemented into the dialog box, and multiplied by the corresponding ‘Time’ 

variable, resulting in a 9th order polynomial. Figure 3.2 summarizes the outlined procedure, 

note that the variables ‘P1’ and ‘P2’ represent where the values for the polynomial curve fit 

coefficients would be included: 
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Figure 3.2 – ANSYS Function Editor Screenshot 
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CHAPTER 4: RESULTS and DISCUSSION 

4.1 – Data Curve Fitting 

MATLAB successfully produced a 9th order polynomial function in the form of equation 3.1 

that correlated well to the archived pressure-time data provided by ARDEC. The strong 

relationship between the curve fit and archived data can be observed by plotting the curve fit 

and archived data sets on the same plot. This plot is illustrated in figure 4.1. The fitted curve 

represents the bulk fluid behavior with a reasonable degree of accuracy. Further validation of 

the curve fitting process can be achieved through comparison of the equation of motion results 

with experimentally recorded performance data, which will be discussed further.  

 
Figure 4.1 –Curve Fit and Archived Pressure Data Comparison (Non-Dimensional) 

One additional note that must be addressed pertains to the precision of the polynomial 

curve fit coefficients. Experiments conducted on how rounding the coefficients impacted the 

accuracy of the polynomial curve fit data revealed significant deformation of the curves as the 
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number of significant digits was reduced. However, the degree of deformation varied 

considerably between the Imperial and SI data sets. For instance, if the polynomial curve fit 

coefficients were rounded to 3 decimal places in scientific notation, the corresponding curve fit 

for the Imperial units would exhibit minor deformation, as illustrated in figure 4.2: 

 
Figure 4.2 – Deformation of Imperial Curve Fit Plot Due to Rounding (Non-Dimensional) 

Observation of the curve revealed that a majority of the deformation occurred at the latter half 

of the data set. Further observation of the data revealed a maximum difference between the 

two plots which corresponded to an 11.06% difference. Conversely, evaluation of the SI 

polynomial curve fit data revealed more sizeable deformations between the data sets. This 

relationship is exhibited in figure 4.3: 

 
Figure 4.3 – Deformation of SI Curve Fit Plot Due to Rounding (Non-Dimensional) 



 29 

The relationship demonstrated in figure 4.3 is clearly not representative of the actual data set. 

Further examination of the data sets revealed a maximum deformation between the two plots 

which corresponded to a 3622% difference. 

With these findings in mind, the importance of the precision of the polynomial curve fit 

coefficients was clearly demonstrated. Since these coefficients are to be used in ANSYS for the 

creation of a pressure-time curve representative of archived data, it is essential that the 

precision of the coefficients be upheld, especially if the simulation is to be performed in SI 

units. As demonstrated, rounding errors prove to significantly alter the output of the 

polynomial function, which will ultimately result in non-representative loading conditions and 

unusable simulation results. 

4.2– Propellant Burn Rate 

Verification of the propellant burn rate results were difficult to provide. The reason behind 

this was due to the lack of quality sources pertaining to the propellant used in the system. A 

majority of the variables used in the burn rate calculations were either assumed or obtained 

from public domain literature, which was assumed to be a good approximation to the actual 

propellant data. Fortunately, the solutions obtained from the propellant burn rate section had 

very little impact on the results attained from the equation of motion and thermodynamic 

solutions. However, to conduct an accurate energy balance of the system, the propellant 

specifications used in the system would have to be representative of the true physical nature of 

the propellant to be used. Figure 4.4 was created to illustrate the change in the propellant 

charge’s mass during the combustion process: 
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Figure 4.4 – Predicted Propellant Mass (Non-Dimensional) 

Validation of the computational procedure used to create figure 4.4 was attained through 

comparison of the shape and trends of the curve to data reviewed in literature, such as figure 

4.5 (Heiser, 1991): 

 
Figure 4.5 – Hypothetical Mass Fraction (Heiser, 1991) 
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The system represented by figure 4.5 consisted of a 120 gram projectile being fired from a 

cannon with a bore diameter of 20 mm and length of 2 m. The mass fraction burnt denoted in 

figure 4.5 represents the percentage of propellant that has combusted. Conversion of the 

propellant charge mass used in figure 4.4 to mass fraction burnt was achieved by means of the 

equation 3.7. The resulting plot is illustrated in figure 4.6. 

 
Figure 4.6 – Mass Fraction (Non-Dimensional) 
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explained by the relationship between propellant burn rate and pressure, as noted in equation 

3.2. Because the shape and trends of the plot appear to be similar to the hypothetical scenario, 
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It must be noted that the actual solution may vary from those computed by the MATLAB 

routine, but can be easily updated by inserting more accurate burn rate coefficients into the 
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Closer examination of the Imperial and SI unit results of the mass fraction of propellant 

burnt simulations revealed significant agreement pertaining to propellant burnout time. The 

burnout times simulated by each MATLAB routine were found to be exactly the same. Due to 

the exactness of the solutions attained, the propellant burn rate computations performed by 

the MATLAB routines were considered to be accurate with respect to the public domain 

information used to simulate the propellant geometry. It must be noted, that the actual 

solutions may vary from those computed in the MATLAB routines, but can be easily updated by 

inserting the actual burn rate coefficients into the programs.   

4.3 – Equations of Motion  

Verification of the results attained by the ballistics code was achieved by comparison to 

results from public domain information. As previously mentioned, a M721 mortar round has an 

approximate muzzle velocity of 124 m/s or 407 ft/s. The muzzle velocities attained from the SI 

& Imperial compared extremely well. The corresponding percentage differences were 

calculated to be less than 1% from each simulation, which demonstrated a significant degree of 

accuracy.  

Additionally, the results attained from the interior ballistics simulation provided key 

information pertaining to the kinematics of the projectile during the act of launching. Plots 

generated by the MATLAB routine include results for projectile displacement, velocity, and 

acceleration versus time in both imperial and SI units. These results are displayed in figures 4.7 

through 4.9.  

Further computational procedure validation can be observed when comparing the projectile 

position at the muzzle and length of the cannon barrel from each MATLAB routine. First, 

however, it is important to note that the actual internal length of the cannon barrel could not 

be confirmed from public domain data, therefore it can only be safely assumed that this value is 

less than the external length of the cannon barrel, which was discovered to be 40.32 inches or 

1.024 m from a public domain source (M224, 60mm Mortar 60mm Lightweight Mortar, 2012). 

Furthermore, the length from the base of the projectile to the obturating ring was determined 

from a visual approximation of the mortar round utilizing the given projectile dimensions. With 
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this information the interior length of the barrel, according to the MATLAB routines, could be 

approximated by adding the distance traveled by the projectile at the muzzle to the previously 

mentioned lengths describing the distance between the projectile base and obturating ring. 

However, due to export control regulations, the results computed by the simulation cannot be 

revealed. Based off of the simulation results, it was decided that the data pertaining to the 

distance traveled by the projectile at the muzzle was viable, but without actual data 

representative of the true nature of the system, the results cannot be verified with 100% 

assurance. 

Figure 4.7 represents the simulated projectile non-dimensional displacement results. Note 

that the green star on the plots denotes the computed non-dimensional time at which the 

propellant has completely burned out. The actual projectile displacement results obtained from 

the simulations  cannot be displayed due to export control regulations.  

 
Figure 4.7 –Projectile Displacement (Non-Dimensional) 
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Figure 4.8 illustrates the computed projectile non-dimensional velocity results output by the 

simulation. As previously mentioned, verification of the computed muzzle velocities was 

achieved by comparison to performance data from public domain literature, which cited the 

muzzle velocities to be approximately 124 m/s or 407 ft/s. 

 
Figure 4.8 – Projectile Velocity (Non-Dimensional) 

Further validation of the simplified interior ballistics simulation was attained through 

comparison of the shape and trends of the dynamics plots to existing literature. Figure 4.9 

shows the non-dimensionalized dynamics results output by the simulation. Figure 4.10 displays 

projectile dynamics results from a 120-mm mortar round that was evaluated by a sophisticated 

three-dimensional interior ballistic simulation produced at Penn State University (Acharya, 

2009). 
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Figure 4.9 – Computed Projectile Dynamics (Non-Dimensional) 

 
Figure 4.10 – Computed Projectile Dynamics of a 120-mm Mortar Round (Acharya, 2009) 
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Comparison of figures 4.9 and 4.10 revealed a strong correlation between the shapes and 

trends exhibited by the curves. The strong agreement corroborates the results obtained from 

the simplified interior ballistics analysis. Furthermore, comparison of the plots fortified the 

accuracy of the simplified ballistics simulation and reinforced the belief that neglecting solid 

propellant combustion modeling would not compromise the degree of accuracy for the motion 

dynamics results. 

Figure 4.11 displays the non-dimensional acceleration of the projectile computed by the 

simulation. Comparison of the plots once again revealed a strong correlation between the 

Imperial unit and SI unit solutions. The maximum projectile accelerations from the Imperial unit 

and SI unit routines computed approximately the same number of g’s. However, these values 

cannot be provided due to export control regulations.  

 
Figure 4.11 – Projectile Acceleration (Non-Dimensional) 
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was anticipated due to the computational approach used to compute the acceleration, as 

displayed in equation 3.10. 

4.4– Thermodynamics 

Due to the lack of data available, the accuracy of the solutions attained from the 

thermodynamic portion of the MATLAB routines cannot be verified. Therefore, these solutions 

should be considered no more than approximations in the context of this paper. However, the 

behaviors exhibited by the obtained solutions can be validated through comparison of data 

examined in public domain literature with the output MATLAB results. 

Figure 4.12 illustrates the computed volume behind the projectile. The shape and trends 

exhibited by the plot was comparable to the shape and trends of the projectile displacement. 

This behavior was anticipated since to the method used to calculate the volume was based off 

of a constant multiplied by the projectile displacement. 

 
Figure 4.12 –Volume behind Projectile (Non-Dimensional) 
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Comparisons of the muzzle data and plots revealed a nearly perfect match between the 

imperial and SI MATLAB solutions. Taking this into consideration, the results obtained from the 

simulations were considered acceptable with respect to the data input into the MATLAB 

routines. 

Figure 4.13 illustrates the computed solutions for the non-dimensional combustion gas 

temperature behind the projectile. Results obtained for the temperature solution could not be 

verified by any physical data. However, the trends and order of magnitude of the curves output 

by the MATLAB routines could be compared to a curve discovered within public domain 

literature, displayed in figure 4.14 (Shelton, Bergles, & Saha, 1973). 

 
Figure 4.13 – Combustion Gas Temperature (Non-Dimensional) 
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Figure 4.14 – Hypothetical Combustion Gas Temperature (Shelton, Bergles, & Saha, 1973) 

Comparison of figure 4.13 to figure 4.14 revealed a distinct relationship pertaining to the 

shape of the curves, but a large variation in the ranges of temperatures observed. This is likely 

due to the scenarios represented by the plots. The plot of figure 4.14 represents a hypothetical 

scenario presented for the purposes of a study on heat transfer and gun barrel erosion 

(Shelton, Bergles, & Saha, 1973). Due to the hypothetical nature of the scenario, the actual data 

cannot be compared to any existing interior ballistic system; however, the shape of the plot can 

be used as a means of comparison since the system is theoretically based off of a propellant 

actuated interior ballistic system. With this in mind, the comparison of the hypothetical and 

computed plots shows very similar characteristics in describing the gas temperature of the 

system during the interior ballistic cycle. Therefore, it is assumed that the plots output by the 

MATLAB routines are representative of the nature of the systems based on the input data 

utilized in the routines.  

One additional note of interest observed in figure 4.13 was the change in plot behavior at 

the indicated point of projectile burnout. The point of burnout indicated in the plots appeared 

to occur near an inflection point in the curve. Unfortunately, speculation pertaining to the 
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cause of this occurrence cannot be made since the propellant burnout time was not verified 

with physical data.  

Approximations of the local speed of sound behind the projectile were computed by the 

program routines. Unfortunately, solutions obtained could not be verified with any physical 

data. Figure 4.15 illustrates the non-dimensional results obtained from the MATLAB simulation. 

Comparison of the solutions obtained from the Imperial Unit and SI Unit show a strong 

correlation in the trends exhibited by the plots, however, comparison of the physical data 

output by the plots revealed a percent difference of approximately 8.5% between the data sets. 

Considering the small variation between the minimum and maximum percentage differences, it 

was determined that the percent difference was the result of the specific gas constants used in 

the program routines. As previously mentioned, a majority of the data used in the program 

routines was obtained from public domain resources, and therefore could not be verified to be 

100% representative of the actual physical data. 

 
Figure 4.15 – Local Speed of Sound (Non-Dimensional) 
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The Helmholtz resonance was computed to be 185.2 Hz by the imperial unit routine and 

170.1 Hz by the SI unit routine. Considering that the units describing the Helmholtz resonance 

were the same based for each of the routines, the solution output by each simulation was 

anticipated to be approximately equal. However, the imperial unit routine computed a 

Helmholtz resonance that was 8.1% higher than the SI simulation. The observed variation 

between the solutions was the result of variations between the local speed of sound solutions. 
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CHAPTER 5: CONCLUSION 

Based upon the findings presented, an analysis conducted in the manner described in the 

context of this paper would prove to be beneficial by significantly simplifying the interior 

ballistics computations to obtain loading conditions for a highly efficient and highly accurate 

method to evaluate the integrity of the TL-UAV prototype. The interior ballistic model created 

in MATLAB will provide researchers with an effective design and optimization tool capable of 

evaluating the dynamics of the TL-UAV prototype from experimentally recorded pressure-time 

data. The contribution put forth in this thesis resides in the overall approach developed to 

produce effective simulation of the interior ballistics through a one-dimensional reduced order 

formulation of the thermodynamic-motion analysis of the projectile as described in the flow 

charts of figures C1 through C5 in the appendix. 

Future work based of the results from this paper will enable users to conduct an explicit, 

three-dimensional simulation of the TL-UAV prototype by means of ANSYS LS-DYNA. Results 

obtained from such an analysis can be verified by comparison to results output by the interior 

ballistics simulation outlined in this thesis. Furthermore, by performing minor alterations to the 

MATLAB routines presented in this thesis, a variety of different scenarios can be described as 

long as archived pressure-time data is available. Additional modifications made to the base 

code would enable users to; conduct energy balances of the system, accurately evaluate the 

gas temperature and local speed of sound of the combustion gases, evaluate the momentum of 

the projectile, and to examine the Helmholtz Resonance. As for the analysis method, additional 

efforts put into this work would enable users to; evaluate the entire ballistics process of the 

system by coupling the interior ballistics program to intermediate and exterior ballistics 

routines, conduct thermal analyses of the system based off of updated thermodynamics 

simulations, and to conduct modal analyses of the system based off of Helmholtz resonance 

simulations. 
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Appendix A – MATLAB Code (Imperial Units)7 

% The following code solves the Interior Ballistics of mortars from the input data 

clear all 

clc 

format long 

syms t 

  

% INPUT PARAMETERS DESCRIBING MORTAR 

prompt_IMP={'Cannon Bore Diameter [in]:','Length of Cannon Barrel [in]:','Projectile Mass 

[lb]:','Max Projectile Diameter [in]','Length from Base of Projectile to Obturating Ring 

[in]:','Volume of Projectile from Base to Obturating Ring [in^3]:','Initial Mass of Propelling 

Charge [lb]:','Initial Diameter of Propelling Charge [in]:','Propellant Web [in]:','Solid Density 

of Propelling Charge [lb/in^3]:','Specific Heat Ratio of Propellant:','Adiabatic Flame 

Temperature of Propellant [deg R]:','Covolume of Propellant [in^3/lb]:','Mean Molecular Weight of 

Combustion Products [lb/mol]:','Propellant Burn Rate Coefficient [in/s/(psi)^n]:','Propellant 

Burn Rate Exponent:','Ambient Pressure [psi]:','Ambient Temperature [deg R]:'}; 

ptitle_IMP='INPUT PARAMETERS FOR MORTAR INTERIOR BALLISTICS'; 

numlines_IMP=1; 

PROJECTILE_IMP={0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0',’14.7,'540'}; 

options.Resize='on'; 

options.WindowStyle='modal'; 

user_input_IMP=inputdlg(prompt_IMP,ptitle_IMP,numlines_IMP,PROJECTILE_IMP,options); 

%- - - - Launcher Properties - - - -% 

d_cb_IMP=str2double(user_input_IMP{1}); % Cannon Barrel Diameter 

L_cb_IMP=str2double(user_input_IMP{2}); % Cannon Barrel Depth 

%- - - - Mortar Properties - - - -%  

m_prj_IMP=str2double(user_input_IMP{3}); % Projectile Mass 

d_prj_IMP=str2double(user_input_IMP{4}); % Projectile Diameter - - - - - - - - - - - - - - - - - 

- - - - - - UNUSED!!! 

L_base_ob_IMP=str2double(user_input_IMP{5}); % Base to Obturating Ring Length 

V_base_ob_IMP=str2double(user_input_IMP{6}); % Volume of Projectile behind Obturating Ring 

%- - - - Propellant Properties - - - -% 

m_ch_i_IMP=str2double(user_input_IMP{7}); % Initial Charge Mass 

d_ch_i_IMP=str2double(user_input_IMP{8}); % Initial Charge Diameter 

web_IMP=str2double(user_input_IMP{9}); % Propellant Web - - - - - - - - - - - - - - - - - - - - - 

- - - - - UNUSED!!! 

rho_ch_IMP=str2double(user_input_IMP{10}); % Solid Propellant Density 

gamma_ch_IMP=str2double(user_input_IMP{11}); % Specific Heat Ratio 

Tf_ch_IMP=str2double(user_input_IMP{12}); % Adiabatic Flame Temperature 

b_ch_IMP=str2double(user_input_IMP{13}); % Covolume - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - UNUSED!!! 

M_gas_IMP=str2double(user_input_IMP{14}); % Molecular Weight 

%- - - - Propellant Burn Rate Data - - - -% 

beta_IMP=str2double(user_input_IMP{15}); 

n_IMP=str2double(user_input_IMP{16}); 

%- - - - Ambient Conditions - - - -% 

P_amb_IMP=str2double(user_input_IMP{17}); % Ambient Pressure 

T_amb_IMP=str2double(user_input_IMP{18}); % Ambient Temperature - - - - - - - - - - - - - - - - - 

- - - - - UNUSED!!! 

  

% CONSTANTS AND VARIABLE CALCULATIONS FROM INPUTS 

%- - - - Constants - - - -% 

g_IMP=12*32.174; % Acceleration due to gravity [in/s^2] 

R_univ_IMP=12*1545.38963; % Universal gas constant [in-lbf/(lb-mol*degR)] 

%- - - - Launcher Calculations - - - -% 

A_cb_IMP=(pi/4)*d_cb_IMP^2; % Cross sectional area of cannon barrel [in^2] 

V_cb_IMP=L_cb_IMP*A_cb_IMP; % Volume of empty cannon barrel [in^3] - - - - - - - - - - - - - - - 

- - - - - - UNUSED!!! 

%- - - - Propellant Calculations - - - -% 

V_ch_i_IMP=m_ch_i_IMP/rho_ch_IMP; % Initial volume of charge [in^3] 

r_ch_i_IMP=d_ch_i_IMP/2; % Initial radius of charge [in] 

L_ch_IMP=V_ch_i_IMP/(pi*r_ch_i_IMP^2); % Equivalent length of charge [in] 

%- - - - Combustion Gas Calculations - - - -% 

R_gas_IMP=R_univ_IMP/M_gas_IMP; % Specific gas constant for combustion products [in-lbf/(lb-

degR)] 

                                                      
7 Variable quantities used in computations that represented prototype have been deliberately omitted due to export control regulations 
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R_air_IMP=0; % Specific gas constant for air [in-lbf/(lb-degR)] - - - - - - - - - - - - - - - - - 

- - - - - - UNUSED!!! 

rho_air_IMP=0; % Density of air [lb/in^3] - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - UNUSED!!! 

Cp_gas_IMP=(gamma_ch_IMP*R_gas_IMP)/(gamma_ch_IMP-1); % Specific Heat at Constant Pressure - - - 

- - - - - - UNUSED!!! 

Cv_gas_IMP=R_gas_IMP/(gamma_ch_IMP-1); % Specific HEat at Constant Volume 

F_gas_IMP=Tf_ch_IMP*R_gas_IMP; % Impetus of combustion gas [in-lbf/lbm] 

V_gas_i_IMP=L_base_ob_IMP*pi/4*d_cb_IMP^2-V_base_ob_IMP-V_ch_i_IMP; % Initial chamber volume 

prior to combustion [in^3] 

  

% INPUT PRESSURE vs. TIME DATA 

t_exp_IMP=transpose(xlsread('P-t Data.xlsx','Data','B:B')); % Retrieval of Time Data from Excel 

File 

P_exp_IMP=transpose(xlsread('P-t Data.xlsx','Data','D:D')); % Retrieval of ABSOLUTE Pressure Data 

from Excel File 

  

% CURVE FITTING OF PRESSURE VS. TIME DATA 

[P_cf_IMP,R2_IMP]=polyfit(t_exp_IMP,P_exp_IMP,9); % Performs 9th order polynomial curve fit to 

data 

%- - - - Time Data - - - -% 

t_last_IMP=max(t_exp_IMP); % Finds maximum value of time from input data 

t_IMP=0:0.000002:t_last_IMP; % Creates the time vector from 0 seconds to maximum value of time 

from input data 

num_i_IMP=find(t_IMP,1,'last'); % Determines the number of time steps 

t_sym_IMP=[t^9 t^8 t^7 t^6 t^5 t^4 t^3 t^2 t^1 t^0]; % Symbolic time coefficents for integration 

purposes 

%- - - - Pressure Attained from Curve Fit - - - -% 

P_IMP=(P_cf_IMP(1).*t_IMP.^9+P_cf_IMP(2).*t_IMP.^8+P_cf_IMP(3).*t_IMP.^7+P_cf_IMP(4).*t_IMP.^6+P_

cf_IMP(5).*t_IMP.^5+P_cf_IMP(6).*t_IMP.^4+P_cf_IMP(7).*t_IMP.^3+P_cf_IMP(8).*t_IMP.^2+P_cf_IMP(9)

.*t_IMP+P_cf_IMP(10)); % Pressure [Pa] 

P_sym_IMP=dot(P_cf_IMP,t_sym_IMP); % Pressure as a function of symbolic time 

  

% PROPELLANT BURN RATE CALCULATIONS 

%- - - - Determination of Time of Propellant Burnout - - - -% 

TEST1_IMP=beta_IMP.*P_IMP.^n_IMP;       %| 

TEST2_IMP=TEST1_IMP.*t_IMP;            %| 

TEST3_IMP=cumsum(TEST2_IMP);          %|- Computations to determine time at which propellant is 

completely combusted 

TEST4_IMP=ones(1,num_i_IMP).*r_ch_i_IMP;  %| 

TEST5_IMP=TEST4_IMP-TEST3_IMP;         %| 

TEST6_IMP=find(TEST5_IMP>0,1,'last'); %| 

t_BRN_IMP=0:0.000002:((TEST6_IMP-1)*0.000002); % Creates time vector corresponding to burning 

propellant 

%- - - - Burn Rate Calculations - - - -% 

P_BRN_IMP=(P_cf_IMP(1).*t_BRN_IMP.^9+P_cf_IMP(2).*t_BRN_IMP.^8+P_cf_IMP(3).*t_BRN_IMP.^7+P_cf_IMP

(4).*t_BRN_IMP.^6+P_cf_IMP(5).*t_BRN_IMP.^5+P_cf_IMP(6).*t_BRN_IMP.^4+P_cf_IMP(7).*t_BRN_IMP.^3+P

_cf_IMP(8).*t_BRN_IMP.^2+P_cf_IMP(9).*t_BRN_IMP+P_cf_IMP(10)); % Pressure during propellant 

combustion [Pa] 

BR_IMP=beta_IMP.*P_BRN_IMP.^n_IMP; % Burn Rate computation for propellant [in/s] 

r_ch_delta_IMP=BR_IMP.*t_BRN_IMP; % Change in propellant radius per time step [in]  

r_ch_cumsum_IMP=cumsum(r_ch_delta_IMP); % Cumulative change in propellant radius [in] 

r_ch_i_vec_IMP=ones(1,TEST6_IMP).*r_ch_i_IMP; % Vector with values equal to initial charge radius 

r_ch_BRN_SI=r_ch_i_vec_IMP-r_ch_cumsum_IMP; % Radius of propellant during burning [in] 

r_ch_BO_IMP=zeros(1,(num_i_IMP-TEST6_IMP)); % Radius of propellant after burnout (NO PROPELLANT 

REMAINING) [in] 

r_ch_IMP=[r_ch_BRN_SI r_ch_BO_IMP]; % Radius of propellant at each time step [in] 

V_ch_IMP=L_ch_IMP.*pi.*r_ch_IMP.^2; % Volume of propelling charge at each time step [in^3] 

m_ch_IMP=rho_ch_IMP.*V_ch_IMP; % Mass of propelling charge at each time step [lbm] 

%- - - - Total Mass of Projectile and Charge Calculation - - - -% 

m_prch_IMP=m_prj_IMP+m_ch_IMP; % Combined mass of projectile and propellign charge at each time 

step [lbm] 

N_ch_IMP=m_ch_i_IMP-m_ch_IMP; % Mass of Propellant Burnt [lbm] 

m_fraction_IMP=(N_ch_IMP./m_ch_i_IMP); % Mass Fraction of Burnt Propellant [%] 

  

% KINEMATICS FROM CURVE FIT PRESSURE 

%- - - - Acceleration - - - -% 

a_IMP=g_IMP.*(A_cb_IMP./m_prch_IMP).*P_IMP; % Acceleration of Projectile w.r.t. time [in/s^2] 

a_ft_IMP=a_IMP./12; % Converts Acceleration to [ft/s^2] 

  

%- - - - Velocity - - - -% 
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v_cof_IMP=sym2poly(int(P_sym_IMP,t)); % Velocity coefficients 

v_IMP=g_IMP.*(A_cb_IMP./m_prch_IMP).*(v_cof_IMP(1).*t_IMP.^10+v_cof_IMP(2).*t_IMP.^9+v_cof_IMP(3)

.*t_IMP.^8+v_cof_IMP(4).*t_IMP.^7+v_cof_IMP(5).*t_IMP.^6+v_cof_IMP(6).*t_IMP.^5+v_cof_IMP(7).*t_I

MP.^4+v_cof_IMP(8).*t_IMP.^3+v_cof_IMP(9).*t_IMP.^2+v_cof_IMP(10).*t_IMP+v_cof_IMP(11)); 

v_ft_IMP=v_IMP./12; % Converts Velocity to [ft/s] 

  

%- - - - Position - - - -% 

x_cof_IMP=sym2poly(int(int(P_sym_IMP,t),t)); % Position coefficients 

x_IMP=g_IMP.*(A_cb_IMP./m_prch_IMP).*(x_cof_IMP(1).*t_IMP.^11+x_cof_IMP(2).*t_IMP.^10+x_cof_IMP(3

).*t_IMP.^9+x_cof_IMP(4).*t_IMP.^8+x_cof_IMP(5).*t_IMP.^7+x_cof_IMP(6).*t_IMP.^6+x_cof_IMP(7).*t_

IMP.^5+x_cof_IMP(8).*t_IMP.^4+x_cof_IMP(9).*t_IMP.^3+x_cof_IMP(10).*t_IMP.^2+x_cof_IMP(11).*t_IMP

+x_cof_IMP(12)); 

x_ft_IMP=x_IMP./12; % Converts Displacement to [ft] 

  

% THERMODYNAMICS FROM CURVE FIT PRESSURE 

V_gas_IMP=V_gas_i_IMP+x_IMP.*A_cb_IMP; % Volume available to combustion gas behind projectile 

[in^3] 

V_gas_ft_IMP=V_gas_IMP./1728; % Concverts Volume to [ft^3] 

T_gas_calc_IMP=Tf_ch_IMP-

((m_prch_IMP(2:end).*v_IMP(2:end).^2)./(2.*N_ch_IMP(2:end).*Cv_gas_IMP)); % Calculates 

Temperature of gas behind projectile !!!VALUE FOR INDEX 1 WILL BE NAN - NEED TO ACCOUNT FOR IN 

NEXT STEP 

T_gas_IMP=[Tf_ch_IMP T_gas_calc_IMP]; 

c_IMP=sqrt(gamma_ch_IMP.*R_gas_IMP.*T_gas_IMP); 

c_ft_IMP=c_IMP./12; 

  

% HELMHOLTZ RESONANCE 

f_helm_IMP=c_IMP(num_i_IMP)/(2*pi*L_cb_IMP) 

  

% GENERAL RESULTS 

v_muz_IMP=v_IMP(num_i_IMP) 

  

% GENERATION OF PLOTS 

figure 

plot(t_exp_IMP,P_amb_IMP+P_exp_IMP,'red',t_IMP,P_IMP,'blue',t_IMP(TEST6_IMP),P_IMP(TEST6_IMP),'g*

') 

legend('Archived Pressure Data','Curve Fit Pressure','Propellant Burnout') 

%title('Pressure vs. Time (Imperial Units)'); 

xlabel('Time (s)') 

ylabel('Pressure (psi)') 

  

figure 

plot(t_IMP,x_IMP,t_IMP(TEST6_IMP),x_IMP(TEST6_IMP),'g*') 

legend('Position','Propellant Burnout','Location','NorthWest') 

%title('Position vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Position (in)') 

  

figure 

plot(t_IMP,v_ft_IMP,t_IMP(TEST6_IMP),v_ft_IMP(TEST6_IMP),'g*') 

legend('Velocity','Propellant Burnout','Location','NorthWest') 

%title('Velocity vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Velocity (ft/s)') 

  

figure 

plot(t_IMP,a_ft_IMP,t_IMP(TEST6_IMP),a_ft_IMP(TEST6_IMP),'g*') 

legend('Acceleration','Propellant Burnout') 

%title('Acceleration vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Acceleration (ft/s^2)') 

  

figure 

plot(t_IMP,V_gas_IMP,t_IMP(TEST6_IMP),V_gas_IMP(TEST6_IMP),'g*') 

legend('Volume Behind Projectile','Propellant Burnout','Location','NorthWest') 

%title('Volume Behind Projectile vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Volume (in^3)') 

  

figure 

plot(t_IMP,T_gas_IMP,t_IMP(TEST6_IMP),T_gas_IMP(TEST6_IMP),'g*') 
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legend('Gas Temperature Behind Projectile','Propellant Burnout') 

%title('Gas Temperature Behind Projectile vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Temperature (degrees R)') 

  

figure 

plot(t_IMP,m_ch_IMP,t_IMP(TEST6_IMP),m_ch_IMP(TEST6_IMP),'g*') 

legend('Charge Mass','Propellant Burnout') 

%title('Charge Mass vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Mass (lbm)') 

  

figure 

plot(t_IMP(1:TEST6_IMP),m_fraction_IMP(1:TEST6_IMP)) 

%title('Mass Fraction of Propellant Burnt vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Mass Fraction Burnt') 

  

figure 

plot(t_IMP,c_IMP) 

%title('Local Speed of Sound vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Speed of Sound (in/s)') 

  

figure 

plot(t_IMP,c_ft_IMP) 

%title('Local Speed of Sound vs. Time (Imperial Units)') 

xlabel('Time (s)') 

ylabel('Speed of Sound (ft/s)') 
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Appendix B – MATLAB Code (SI Units)8 

% The following code solves the Interior Ballistics of mortars from the input data 

clear all 

clc 

format long 

syms t 

  

% INPUT PARAMETERS DESCRIBING MORTAR 

prompt_SI={'Cannon Bore Diameter [m]:','Length of Cannon Barrel [m]:','Projectile Mass 

[kg]:','Max Projectile Diameter [m]','Length from Base of Projectile to Obturating Ring 

[m]:','Volume of Projectile from Base to Obturating Ring [m^3]:','Initial Mass of Propelling 

Charge [kg]:','Initial Diameter of Propelling Charge [m]:','Propellant Web [m]','Solid Density of 

Propelling Charge [kg/m^3]:','Specific Heat Ratio of Propellant:','Adiabatic Flame Temperature of 

Propellant [K]:','Covolume of Propellant [m^3/kg]:','Mean Molecular Weight of Combustion Products 

[kg/mol]:','Propellant Burn Rate Coefficient [mm/s/(Mpa)^n]:','Propellant Burn Rate 

Exponent:','Ambient Pressure [Pa]:','Ambient Temperature [K]:'}; 

ptitle_SI='INPUT PARAMETERS FOR MORTAR INTERIOR BALLISTICS'; 

numlines_SI=1; 

PROJECTILE_SI={0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0',’101325,'300'}; 

options.Resize='on'; 

options.WindowStyle='modal'; 

user_input_SI=inputdlg(prompt_SI,ptitle_SI,numlines_SI,PROJECTILE_SI,options); 

%- - - - Launcher Properties - - - -% 

d_cb_SI=str2double(user_input_SI{1}); % Cannon Barrel Diameter 

L_cb_SI=str2double(user_input_SI{2}); % Cannon Barrel Depth 

%- - - - Mortar Properties - - - -%  

m_prj_SI=str2double(user_input_SI{3}); % Projectile Mass 

d_prj_SI=str2double(user_input_SI{4}); % Projectile Diameter - - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - UNUSED!!! 

L_base_ob_SI=str2double(user_input_SI{5}); % Base to Obturating Ring Length 

V_base_ob_SI=str2double(user_input_SI{6}); % Volume of Projectile behind Obturating Ring 

%- - - - Propellant Properties - - - -% 

m_ch_i_SI=str2double(user_input_SI{7}); % Initial Charge Mass 

d_ch_i_SI=str2double(user_input_SI{8}); % Initial Charge Diameter 

web_SI=str2double(user_input_SI{9}); % Propellant Web - - - - - - - - - - - - - - - - - - - - - - 

- - - - - - - UNUSED!!! 

rho_ch_SI=str2double(user_input_SI{10}); % Solid Propellant Density 

gamma_ch_SI=str2double(user_input_SI{11}); % Specific Heat Ratio 

Tf_ch_SI=str2double(user_input_SI{12}); % Adiabatic Flame Temperature 

b_ch_SI=str2double(user_input_SI{13}); % Covolume - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - UNUSED!!! 

M_gas_SI=str2double(user_input_SI{14}); % Molecular Weight 

%- - - - Propellant Burn Rate Data - - - -% 

beta_SI=str2double(user_input_SI{15}); 

n_SI=str2double(user_input_SI{16}); 

%- - - - Ambient Conditions - - - -% 

P_amb_SI=str2double(user_input_SI{17}); % Ambient Pressure 

T_amb_SI=str2double(user_input_SI{18}); % Ambient Temperature 

  

% CONSTANTS AND VARIABLE CALCULATIONS FROM INPUTS 

%- - - - Constants - - - -% 

g_SI=9.81; % Acceleration due to gravity [m/s^2] - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - UNUSED!!! 

R_univ_SI=8.3144621; % Universal gas constant [J/(mol*K)] 

%- - - - Launcher Calculations - - - -% 

A_cb_SI=(pi/4)*d_cb_SI^2; % Cross sectional area of cannon barrel [m^2] 

V_cb_SI=L_cb_SI*A_cb_SI; % Volume of empty cannon barrel [m^3] - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - - UNUSED!!! 

%- - - - Propellant Calculations - - - -% 

V_ch_i_SI=m_ch_i_SI/rho_ch_SI; % Initial volume of charge [m^3] 

r_ch_i_SI=d_ch_i_SI/2; % Initial radius of charge [m] 

L_ch_SI=V_ch_i_SI/(pi*r_ch_i_SI^2); % Equivalent length of charge [m] 

%- - - - Combustion Gas Calculations - - - -% 

R_gas_SI=R_univ_SI/M_gas_SI; % Specific gas constant for combustion products [J/(kg*K)] 

R_air_SI=287.058; % Specific gas constant for air [J/(kg*K)] - - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - UNUSED!!! 

                                                      
8 Variable quantities used in computations that represented prototype have been deliberately omitted due to export control regulations 
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rho_air_SI=1.225; % Density of air [kg/m^3] - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - UNUSED!!! 

Cp_gas_SI=(gamma_ch_SI*R_gas_SI)/(gamma_ch_SI-1); % Specific Heat at Constant Pressure - - - - - 

- - - - - - - - - - - - - - - - - - - - - - - - UNUSED!!! 

Cv_gas_SI=R_gas_SI/(gamma_ch_SI-1); % Specific HEat at Constant Volume 

F_gas_SI=Tf_ch_SI*R_gas_SI; % Impetus of combustion gas [J/kg] 

V_gas_i_SI=L_base_ob_SI*pi/4*d_cb_SI^2-V_base_ob_SI-V_ch_i_SI; % Initial chamber volume prior to 

combustion [m^3] 

  

% INPUT PRESSURE vs. TIME DATA 

t_exp_SI=transpose(xlsread('P-t Data.xlsx','Data','B:B')); % Retrieval of Time Data from Excel 

File 

P_exp_SI=transpose(xlsread('P-t Data.xlsx','Data','F:F')); % Retrieval of ABSOLUTE Pressure Data 

from Excel File 

  

% CURVE FITTING OF PRESSURE VS. TIME DATA 

[P_cf_SI,R2_SI]=polyfit(t_exp_SI,P_exp_SI,9); % Performs 9th order polynomial curve fit to data 

%- - - - Time Data - - - -% 

t_last_SI=max(t_exp_SI); % Finds maximum value of time from input data 

t_SI=0:0.000002:t_last_SI; % Creates the time vector from 0 seconds to maximum value of time from 

input data 

num_i_SI=find(t_SI,1,'last'); % Determines the number of time steps 

t_sym_SI=[t^9 t^8 t^7 t^6 t^5 t^4 t^3 t^2 t^1 t^0]; % Symbolic time coefficents for integration 

purposes 

%- - - - Pressure Attained from Curve Fit - - - -% 

P_SI=(P_cf_SI(1).*t_SI.^9+P_cf_SI(2).*t_SI.^8+P_cf_SI(3).*t_SI.^7+P_cf_SI(4).*t_SI.^6+P_cf_SI(5).

*t_SI.^5+P_cf_SI(6).*t_SI.^4+P_cf_SI(7).*t_SI.^3+P_cf_SI(8).*t_SI.^2+P_cf_SI(9).*t_SI+P_cf_SI(10)

); % Pressure [Pa] 

P_sym_SI=dot(P_cf_SI,t_sym_SI); % Pressure as a function of symbolic time 

  

% PROPELLANT BURN RATE CALCULATIONS 

%- - - - Determination of Time of Propellant Burnout - - - -% 

TEST1_SI=beta_SI.*(P_SI./1E6).^n_SI;           %| 

TEST2_SI=TEST1_SI.*t_SI;                       %| 

TEST3_SI=cumsum(TEST2_SI);                     %|- Computations to determine time at which 

propellant is completely combusted 

TEST4_SI=ones(1,num_i_SI).*(r_ch_i_SI.*1000);  %| 

TEST5_SI=TEST4_SI-TEST3_SI;                    %| 

TEST6_SI=find(TEST5_SI>0,1,'last');            %| 

t_BRN_SI=0:0.000002:((TEST6_SI-1)*0.000002); % Creates time vector corresponding to burning 

propellant 

%- - - - Burn Rate Calculations - - - -% 

P_BRN_SI=(P_cf_SI(1).*t_BRN_SI.^9+P_cf_SI(2).*t_BRN_SI.^8+P_cf_SI(3).*t_BRN_SI.^7+P_cf_SI(4).*t_B

RN_SI.^6+P_cf_SI(5).*t_BRN_SI.^5+P_cf_SI(6).*t_BRN_SI.^4+P_cf_SI(7).*t_BRN_SI.^3+P_cf_SI(8).*t_BR

N_SI.^2+P_cf_SI(9).*t_BRN_SI+P_cf_SI(10)); % Pressure during propellant combustion [Pa] 

BR_SI=beta_SI.*(P_BRN_SI./1E6).^n_SI; % Burn Rate computation for propellant [mm/s] 

r_ch_delta_SI=BR_SI.*t_BRN_SI; % Change in propellant radius per time step [mm]  

r_ch_cumsum_SI=cumsum(r_ch_delta_SI); % Cumulative change in propellant radius [mm] 

r_ch_i_vec_SI=ones(1,TEST6_SI).*(r_ch_i_SI.*1000); % Vector with values equal to initial charge 

radius 

r_ch_BRN_SI=r_ch_i_vec_SI-r_ch_cumsum_SI; % Radius of propellant during burning [mm] 

r_ch_BO_SI=zeros(1,(num_i_SI-TEST6_SI)); % Radius of propellant after burnout (NO PROPELLANT 

REMAINING) [mm] 

r_ch_mm_SI=[r_ch_BRN_SI r_ch_BO_SI]; % Radius of propellant at each time step [mm] 

r_ch_SI=r_ch_mm_SI./1000; % CONVERTS RADIUS OF PROPELLANT TO [m] 

V_ch_SI=L_ch_SI.*pi.*r_ch_SI.^2; % Volume of propelling charge at each time step [m^3] 

m_ch_SI=rho_ch_SI.*V_ch_SI; % Mass of propelling charge at each time step [kg] 

%- - - - Total Mass of Projectile and Charge Calculation - - - -% 

m_prch_SI=m_prj_SI+m_ch_SI; % Combined mass of projectile and propellign charge at each time step 

[kg] 

N_ch_SI=m_ch_i_SI-m_ch_SI; % Mass of Propellant Burnt [kg] 

m_fraction_SI=(N_ch_SI./m_ch_i_SI); % Mass Fraction of Burnt Propellant 

  

% KINEMATICS FROM CURVE FIT PRESSURE 

%- - - - Acceleration - - - -% 

a_SI=(A_cb_SI./m_prch_SI).*P_SI; % Acceleration of Projectile w.r.t. time 

%a_mSI=(A_cb_SI./m_prj_SI).*P_SI; 

  

%- - - - Velocity - - - -% 

v_cof_SI=sym2poly(int(P_sym_SI,t)); % Velocity coefficients 
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v_SI=(A_cb_SI./m_prch_SI).*(v_cof_SI(1).*t_SI.^10+v_cof_SI(2).*t_SI.^9+v_cof_SI(3).*t_SI.^8+v_cof

_SI(4).*t_SI.^7+v_cof_SI(5).*t_SI.^6+v_cof_SI(6).*t_SI.^5+v_cof_SI(7).*t_SI.^4+v_cof_SI(8).*t_SI.

^3+v_cof_SI(9).*t_SI.^2+v_cof_SI(10).*t_SI+v_cof_SI(11)); 

%v_mSI=(A_cb_SI./m_prj_SI).*(v_cof_SI(1).*t_SI.^10+v_cof_SI(2).*t_SI.^9+v_cof_SI(3).*t_SI.^8+v_co

f_SI(4).*t_SI.^7+v_cof_SI(5).*t_SI.^6+v_cof_SI(6).*t_SI.^5+v_cof_SI(7).*t_SI.^4+v_cof_SI(8).*t_SI

.^3+v_cof_SI(9).*t_SI.^2+v_cof_SI(10).*t_SI+v_cof_SI(11)); 

  

%- - - - Position - - - -% 

x_cof_SI=sym2poly(int(int(P_sym_SI,t),t)); % Position coefficients 

x_SI=(A_cb_SI./m_prch_SI).*(x_cof_SI(1).*t_SI.^11+x_cof_SI(2).*t_SI.^10+x_cof_SI(3).*t_SI.^9+x_co

f_SI(4).*t_SI.^8+x_cof_SI(5).*t_SI.^7+x_cof_SI(6).*t_SI.^6+x_cof_SI(7).*t_SI.^5+x_cof_SI(8).*t_SI

.^4+x_cof_SI(9).*t_SI.^3+x_cof_SI(10).*t_SI.^2+x_cof_SI(11).*t_SI+x_cof_SI(12)); 

%x_mSI=(A_cb_SI./m_prj_SI).*(x_cof_SI(1).*t_SI.^11+x_cof_SI(2).*t_SI.^10+x_cof_SI(3).*t_SI.^9+x_c

of_SI(4).*t_SI.^8+x_cof_SI(5).*t_SI.^7+x_cof_SI(6).*t_SI.^6+x_cof_SI(7).*t_SI.^5+x_cof_SI(8).*t_S

I.^4+x_cof_SI(9).*t_SI.^3+x_cof_SI(10).*t_SI.^2+x_cof_SI(11).*t_SI+x_cof_SI(12)); 

  

% THERMODYNAMICS FROM CURVE FIT PRESSURE 

V_gas_SI=V_gas_i_SI+x_SI.*A_cb_SI; % Volume available to combustion gas behind projectile 

T_gas_calc_SI=Tf_ch_SI-((m_prch_SI(2:end).*v_SI(2:end).^2)./(2.*N_ch_SI(2:end).*Cv_gas_SI)); % 

Calculates Temperature of gas behind projectile !!!VALUE FOR INDEX 1 WILL BE NAN - NEED TO 

ACCOUNT FOR IN NEXT STEP 

T_gas_SI=[Tf_ch_SI T_gas_calc_SI]; 

c_SI=sqrt(gamma_ch_SI.*R_gas_SI.*T_gas_SI); 

  

% HELMHOLTZ RESONANCE 

f_helm_SI=c_SI(num_i_SI)/(2*pi*L_cb_SI) 

  

% GENERAL RESULTS 

v_muz_SI=v_SI(num_i_SI) 

  

% GENERATION OF PLOTS 

figure 

plot(t_exp_SI,P_amb_SI+P_exp_SI,'red',t_SI,P_SI,'blue',t_SI(TEST6_SI),P_SI(TEST6_SI),'g*') 

legend('Archived Pressure Data','Curve Fit Pressure','Propellant Burnout') 

%title('Pressure vs. Time (SI Units)'); 

xlabel('Time (s)') 

ylabel('Pressure (Pa)') 

  

figure 

plot(t_SI,x_SI,t_SI(TEST6_SI),x_SI(TEST6_SI),'g*') 

legend('Position','Propellant Burnout','Location','NorthWest') 

%title('Position vs. Time (SI Units)') 

xlabel('Time (s)') 

ylabel('Position (m)') 

  

figure 

plot(t_SI,v_SI,t_SI(TEST6_SI),v_SI(TEST6_SI),'g*') 

legend('Velocity','Propellant Burnout','Location','NorthWest') 

%title('Velocity vs. Time (SI Units)') 

xlabel('Time (s)') 

ylabel('Velocity (m/s)') 

  

figure 

plot(t_SI,a_SI,t_SI(TEST6_SI),a_SI(TEST6_SI),'g*') 

legend('Acceleration','Propellant Burnout') 

%title('Acceleration vs. Time (SI Units)') 

xlabel('Time (s)') 

ylabel('Acceleration (m/s^2)') 

  

figure 

plot(t_SI,V_gas_SI,t_SI(TEST6_SI),V_gas_SI(TEST6_SI),'g*') 

legend('Volume Behind Projectile','Propellant Burnout','Location','NorthWest') 

%title('Volume Behind Projectile vs. Time (SI Units') 

xlabel('Time (s)') 

ylabel('Volume (m^3)') 

  

figure 

plot(t_SI,T_gas_SI,t_SI(TEST6_SI),T_gas_SI(TEST6_SI),'g*') 

legend('Gas Temperature Behind Projectile','Propellant Burnout') 

%title('Gas Temperature Behind Projectile vs. Time (SI Units)') 

xlabel('Time (s)') 
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ylabel('Temperature (K)') 

  

figure 

plot(t_SI,m_ch_SI,t_SI(TEST6_SI),m_ch_SI(TEST6_SI),'g*') 

legend('Charge Mass','Propellant Burnout') 

%title('Charge Mass vs. Time (SI Units)') 

xlabel('Time (s)') 

ylabel('Mass (kg)') 

  

figure 

plot(t_SI(1:TEST6_SI),m_fraction_SI(1:TEST6_SI)) 

%title('Mass Fraction of Propellant Burnt vs. Time (SI Units)') 

xlabel('Time (s)') 

ylabel('Mass Fraction Burnt') 

  

figure 

plot(t_SI,c_SI) 

%title('Local Speed of Sound vs. Time (SI Units)') 

xlabel('Time (s)') 

ylabel('Speed of Sound (m/s)') 
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Appendix C – Flowcharts of Computational Procedures 

  

Figure C1 – Flowchart of Propellant Burnout Time Computation 

 

Calculate burn rate from computed pressure

       

Compute  time dependent charge radius regression 
by multiplying computed burn rates by the 

corresponding time interval

         

Compile cumulative sum of charge radius 
regression

                  

Compute remaining charge radius by subtracting
cumulative radius regression sum from initial 

radius

              

Identify burnout time by using find command to 
determine index number where charge radius 

becomes less than or equal to zero

Compute time of propellant burnout
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Figure C2 – Flowchart of Propellant Mass/Geometry Computations 

Compute remaining chargevolume by multiplying 
effective length of charge by remaining cross 

sectional area 

            
 

Determine remaining chargemass by multiplying 
remaining charge volume by solid propellant 

density

          

Determine mass fraction by dividing mass of burnt 
propellant by initial mass of propellant

          
         

     
 

Determine propellant mass/geometry 
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Figure C3 – Flowchart of Kinematic Computations 

Convert pressure expression to a function of 
symbolic time 't' and integrate using int command

Compute projectile acceleration

     
   

    

 

Compute projectile velcoity

     
   

    

∫     

      

 

Convert integrated symbolic function to numerical 
representation using sym2poly command

Integrate symbolic  pressure function once again 
using int command and convert to numerical 

representation using sym2poly command

Compute projectile displacement

     
   

    

∬        

      

 

Solve projectile kinematics (displacement, 
velocity, acceleration)
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Figure C4 – Flowchart of Thermodynamic Computations 

 

 

Figure C5 – Flowchart of Helmholtz Resonance Computation 

 

Solve projectile thermodynamics (gas 
temperature and volume)

Compute gas volume behind projectile

                    

Compute gas temperature behind projectile

     
        

 

    

Solve for local speed of sound and 
Helmholtz Resonance

Compute local speed of sound in combustion gas

        

Compute Helmholtz Resonance
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