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ABSTRACT  

Chemotherapy-Induced Damage of the Bone Marrow Microenvironment 

Stephanie Lynne Rellick 

The bone marrow microenvironment is characterized as the anatomical site including 

specialized niches that support stem cells.  In addition, these niches also provide both soluble 

and physical cues leading to the differentiation of stem cells into all the cells of the blood.  The 

studies in this dissertation focus on two supportive niches in the bone marrow 

microenvironment, osteoblasts (HOB) and bone marrow stromal cells (BMSC), in the setting of 

high dose chemotherapy and the potential damage that chemotherapy treatment causes to the 

cells of the bone marrow microenvironment. 

 In the first study, we investigated the effects of melphalan and Etoposide (VP-16) 

treatment on osteoblasts.  Previous studies from our lab had shown that chemotherapy 

treatment increased the amount of active TGF-β secreted from BMSC, leading to decreases in 

the ability to support pro-B cells.  Here we describe the novel observation that osteoblasts pre-

treated with chemotherapy have increased active TGF-β and a decreased capacity to support 

human embryonic stem cells (hESC), CD34+ bone marrow derived cells and pro-B cells.  We 

also evaluated the effects of adding recombinant TGF-β (rTGF-β) to osteoblasts to mimic the 

autocrine and paracrine TGF-β in the microenvironment during chemotherapy treatment.  rTGF-

β treatment of osteoblasts increased TGF-β secretion and also led to a decreased ability to 

support hESC, CD34+ bone marrow derived cells and pro-B cells.  Microarray analysis of the 

cells treated directly with chemotherapy or rTGF-β or conditioned media from BMSC that were 

treated with chemotherapy suggested that many genes are changing in response to all of these 

treatment groups, indicating that osteoblasts are a vulnerable cell population that can be 

affected by high dose chemotherapy, potentially resulting in decreased hematopoietic support. 



 We also investigated Interleukin-6 (IL-6), a known hematopoietic factor important in both 

myeloid and lymphoid differentiation, acute and inflammatory immune responses and bone 

metabolism.  Neuroendocrine modulation of the bone marrow microenvironment is thought to be 

important in both hematopoiesis and immune regulation.  We investigated the roles of 

neurotrophins in the bone marrow and their effects on BMSC.  We show that BMSC express 

functional neurotrophin receptors and that treatment of BMSC with two neurotrophins, NGF or 

BDNF, led to an increase in IL-6 expression.  Increased IL-6 is associated with a number of 

inflammatory diseases and our data support the idea that increased neurotrophins in the bone 

marrow microenvironment could lead to dysregulated hematopoiesis. 

Additionally, we also evaluated the effects of chemotherapy treatment of BMSC and 

HOB, focusing on IL-6.  Previous data has suggested IL-6 to be involved in graft versus host 

disease and we investigated the effects of melphalan on IL-6 expression in BMSC and HOB.  

Interestingly, we determined that melphalan treatment led to a decrease in IL-6 mRNA and 

protein, and compared to other chemotherapeutic agents used in our studies, melphalan had 

the most pronounced effect.  We also evaluated the effects of recombinant IL-6 (rIL-6) in 

combination with melphalan and determined that the addition of rIL-6 restored both IL-6 mRNA 

and protein expression, suggesting that pathways associated with IL-6 expression may be 

disrupted.  The decrease in IL-6 could potentially affect hematopoiesis and further studies in 

vivo need to be completed.  Additionally, melphalan is used as first-line therapy in the treatment 

of multiple myeloma (MM).  IL-6 is a proliferative factor in MM, allowing for disease progression.  

The melphalan-induced decrease in IL-6 observed in our studies may, in part, contribute 

eradicating the tumor population by decreasing the potent proliferative factor, IL-6. 

Collectively, these data contribute to our understanding of alterations to the bone 

marrow microenvironment that occur during high dose chemotherapy and emphasize the 

importance of understanding the mechanisms that underlie the potential damage leading to 

altered ability to support normal hematopoiesis. 
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I.  Physical components of the bone marrow 

Hematopoiesis is the process by which all the cells of the blood are formed.  This 

process is dependent on multipotent hematopoietic stem cells (HSCs) which are found in the 

bone marrow of adults.  The bone marrow microenvironment is characterized as the anatomical 

site that includes specialized niches where stem cells are associated with other cells that 

influence their behavior1.  The function of these niches is to support hematopoietic progenitor 

cell proliferation and differentiation, self-renewal and provide a sanctuary for HSCs to remain 

quiescent.  Spangrude et al described different types of HSCs including both long-term and 

short-term repopulating HSCs which were capable of self-renewal and multipotent progenitors 

which have very low or no self-renewal capacity2. Human HSCs are characterized by their 

surface markers with a phenotype of CD34+, lineage-, CD38-, CD90+ and CD45RA-3.  In addition 

to self-renewal, HSCs must also be able to differentiate into all the cells of the blood in both the 

lymphoid and myeloid lineages.  

HSCs have a number of receptors and adhesion molecules that are necessary for 

homing, which is the process by which HSCs move through the blood, cross the endothelial cell 

layers and take up residence in a variety tissues or the bone marrow, and adhesion in the bone 

marrow, which is the physical tethering of HSCs to the adherent, supportive cells of the bone 

marrow microenvironment4.  Some examples of these interactions are the presence of the 

CXCR4 receptor on the surface of HSCs, which responds to CXCL12, a soluble factor produced 

by the bone marrow and osteoblasts to attract HSCs4.  Once in the bone marrow, VLA-4 and 

VLA-5 on HSCs, interact with VCAM-1 and fibronectin respectively on the surface of bone 

marrow stromal cells (BMSC), human osteoblasts (HOB) and bone marrow endothelial cells 

(BMEC), mediating cell adhesion and retention in the marrow5.   Some additional signaling 

pathways important for maintenance of HSCs in the BM are thrombopoietin (TPO)/Mpl and 

Tie2/Angiopoietin-1 (Ang-1)6-8.  The Notch/Jagged and TGF-β signaling pathways will be 

discussed later.  TPO is a factor that regulates platelet production by binding to its receptor, 
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Mpl, and stimulating the production of megakaryocytes6;9.  Recent studies have shown that TPO 

signaling may also have important roles in maintenance of quiescence.  Buza-Vidas et al 

showed that long-term repopulating HSCs had higher expression of Mpl9, and Qian et al, using 

a TPO knock-out mouse, showed that these mice gradually lost HSCs, having a 150 fold 

decrease in HSCs, decreased BM cellularity and multilineage defects by one year6.  

Additionally, Arai et al showed that TPO was produced by the bone cells in the endosteal niche, 

administration of Mpl neutralizing antibody to mice suppressed the quiescence of long-term 

repopulating cells and exogenous treatment with TPO restored the quiescent cell population7.  

Tie2/Angiopoietin signaling has also been associated with maintenance of quiescence.  Arai et 

al demonstrated that Tie2 receptors were found on quiescent HSCs and furthermore, these cells 

formed a “side population” of cells that were adherent to osteoblasts8.  The same group also 

showed that osteoblasts produced Ang-1, and that the interaction of Tie2/Ang-1 allowed for 

maintenance of long term repopulating HSCs8;10.  Some receptors on the surface of HSCs have 

important roles in the maintenance of quiescence such as Notch1 and TGF-β receptors11;12.  In 

order for normal hematopoiesis to occur, HSCs are dependent on the niches in the bone 

marrow for support and maintenance of signaling pathways to promote self-renewal as well as 

differentiation.  These niches are discussed in more detail in the following sections. 

The bone marrow has been described as having two hematopoietic support niches that 

are anatomically and functionally distinct13;14.  These include the endosteal niche consisting of 

mesenchymal stem cells, osteoblasts and bone marrow stromal cells (BMSCs)15-17 and the 

vascular niche consisting of bone marrow endothelial cells18-20.  Each of the cell types within 

these niches contribute to hematopoiesis and stem cell regulation through the expression of 

cellular adhesion molecules such as VCAM-1 and ICAM-1 and integrins like VLA-4 and VLA-5, 

extracellular matrix proteins including collagens, proteoglycans and glycoproteins, and 

production of soluble factors including TGF-β and Interleukin-6, which will be discussed in 

further detail as a focus of the current study.   
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Early studies by Lord and Gong showed that there are higher numbers of colony forming 

units (CFU) cells closer to the bone surface than to the center of the marrow cavity21;22.  Nilsson 

et al and others showed that while most cells enter the bone marrow through blood vessels in 

the center of cavity, stem cells are distributed closer to the bone in the endosteal niche, while 

committed progenitors were located closer to the center of the bone cavity23;24.  The spatial 

organization of the niche also correlates with the specific cell types found within it.  A precursor 

stem cell of osteoblasts and bone marrow stromal cells are mesenchymal stem cells (MSCs) 

and they were first characterized by Friedenstein as non-hematopoietic cells that have colony 

forming unit-fibroblast (CFU-F) activity, adherence to plastic and the potential to differentiate 

into multiple lineages such as osteoblasts, adipocytes, BMSCs and other supportive cells of the 

microenvironment25;26.  MSCs have a fibroblastic phenotype and express a variety of surface 

markers including VCAM-1, Stro-1 and ICAM-127;28.  MSCs are rare in the bone marrow, 

reported to represent 1 out of 10,000 nucleated cells29.  There are a number of studies that are 

examining the idea of co-transplanting MSCs with HSC transplantation30;31.  It is thought that 

this would help with hematopoietic recovery by providing a pool of supportive microenvironment 

cells that could help replace cells damaged by chemotherapy regimens.    

One of the major components of the endosteal niche are BMSCs that, in concert with 

other components of the microenvironment, support reconstitution of hematopoiesis.  BMSCs 

are described as fibroblastic reticular marrow cells that are located in the region between the 

bone and endothelial niche, also referred to as the subendosteal niche32;33.  Dorshkind 

described these cells as “nonhemopoietic, fixed tissue cells in the medullary cavity”34.  BMSC 

were defined by their ability to form colonies referred to as fibroblast colony forming units25;35.  

Another characteristic of BMSC is that they are able to maintain long-term bone marrow 

cultures36-39.  These cells, in part, form the cellular network that helps in the regulation of 

hematopoiesis.  These BMSCs have been characterized as expressing a variety of surface 

markers such as VCAM-1 that interacts with VLA-4 on the surface of B cell precursors, allowing 
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for their retention in bone marrow40;41.  VCAM-1 expression can be regulated through cytokines 

present in the marrow.  Dittel et al showed that TGF-β had the ability to decrease VCAM-1 

protein on the surface of BMSCs while Interleukin-1β and Interleukin-4 can increase VCAM-142.  

They also noted a correlation between the amount of VCAM-1 on the surface of the BMSC and 

the ability to support B cell precursors.  In addition to surface markers, BMSCs also express 

extracellular matrix proteins such as collagen I, III, IV, V, VI, fibronectin and laminin and a 

number of proteoglycans such as hyaluronic acid and heparin sulfate34;43-45.  Another important 

component of hematopoietic support is the production and secretion of soluble factors including 

SDF-1 (CXCL12), Interleukin-6 (IL-6), IL-3, IL-7, IL-11, granulocyte-macrophage colony 

stimulating factor (GM-CSF), stem cell factor (SCF) and flt-3 that not only allow for the homing 

of stem cells to the bone marrow but also support the differentiation and maturation of HSCs for 

reconstitution of the immune system as well as all the cells of the blood34;46;47.  BMSC also 

secrete factors that are negative regulators of hematopoiesis such as TGF-β and interferon-γ 

(IFN-γ)48;49.   

Another critical component of the endosteal niche are osteoblastic cells.  There are 

different types of osteoblasts.  There are spindle-shaped N-cadherin positive (SNO) osteoblasts 

as well as osteoblasts that are N-cadherin negative50.  Literature has suggested that it is the 

SNO cells that line the endosteal surface and that this is the location of the most primitive 

hematopoietic cells10;21;22;50;51.  One of the main roles of the osteoblastic niche is to maintain 

stem cell quiescence, which occurs through both soluble factors as well as cellular adhesion 

molecules52;53.  Work by Calvi and Zhang showed that osteoblasts are a target of parathyroid 

hormone in the bone marrow50;54.  In a mouse model where there was expression of osteoblast-

specific parathyroid hormone receptor, it was shown that these mice had increased bone mass 

and increased numbers of osteoblasts54;55.  Importantly, these transgenic mice also had 

increased Jagged1 expression, which is the ligand for the Notch signaling pathway11.  This 

increased Jagged1 expression also correlated with an increase in HSCs, suggesting that 
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osteoblasts have a critical role in the maintenance of Notch signaling and HSC expansion.  

Calvi et al also showed that the transgenic mice had increases in the N-cadherin positive 

population of osteoblasts11.  Another factor secreted by osteoblasts is osteopontin (Opn)56.  Opn 

has been reported to help HSCs home to the bone marrow and be retained in the endosteal 

niche.  When HSCs are transplanted into a healthy microenvironment, they reside specifically in 

the endosteal regions57.  In an Opn -/- mouse model, HSCs had a random distribution 

throughout the bone marrow57.  Additionally, Opn-/- mice also had increased BrdU incorporation 

in HSCs, suggesting Opn is a negative regulator of HSCs and is important in maintaining 

quiescence57.  Osteoblasts have also been characterized as having a number of different 

cellular adhesion molecules such as VCAM-1 and fibronectin58.  VCAM-1 is important for 

interaction with Very Late Antigen-4 (VLA-4) and Very Late Antigen-5 (VLA-5) interacts with 

fibronectin, both of which are found on hematopoietic progenitor cells and can help with homing 

to the bone marrow and adhesion once they are in the marrow space58;59.  

There is some controversy in the field of osteoblasts as components of the stem cell 

niche, specifically related to the presence of N-cadherin and its role in maintenance of stem 

cells through homotypic interactions with osteoblasts.  Kiel et al did not detect N-cadherin in 

purified HSCs using a variety of methods and suggested that it was the N-cadherin negative 

population of bone marrow cells that reconstituted irradiated mice60.  In a mouse model in which 

N-cadherin was conditionally deleted, it was shown that there was no effect on HSC 

maintenance or hematopoiesis, as the cellular composition of the bone marrow and the number 

of progenitor cells was not affected61.  The lack of N-cadherin also did not affect the ability of 

HSCs to reconstitute irradiated primary and secondary recipients61.  These studies suggest that 

N-cadherin expression by HSCs is not essential for regulation of the niche. 

Whether N-cadherin is necessary or not has yet to be determined, but osteoblasts are 

critical for HSCs to survive and maintain the niche.  Work by Visnjic et al showed deficits in 

hematopoiesis in mice where osteoblast deficiency was induced.  A transgenic mouse model 
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with herpesvirus thymidine kinase gene under the control of a collagen alpha 1 type I promoter 

allowed for lineage specific expression of the gene in osteoblasts62.  These mice lost lymphoid, 

myeloid and erythroid progenitors in the bone and had significantly decreased HSCs.  When 

osteoblasts were allowed to recover, hematopoiesis started to recover in the bone marrow62.  

Chitteti et al showed that CFU expansion was increased when HSCs were cultured with 

osteoblasts63.  This suggests that osteoblasts have critical roles in the regulation of 

hematopoiesis, most likely through both physical and soluble factors. 

 An additional niche of the bone marrow relevant to stem cell support is the endothelial 

niche.  The endothelial niche serves as the barrier separating the bone marrow from the blood, 

making it a critical component in a healthy bone marrow microenvironment18;64.  The main cells 

found in this niche are endothelial cells and hematopoietic cells.  Both of these cells come from 

a common precursor in the embryonic stage called the hemangioblast65.  The bone marrow 

endothelial cells (BMEC) make a network of thin-walled and fenestrated sinusoidal vessels that 

are unique to the bone marrow19.  The endothelial niche is important in two different roles within 

the microenvironment.  The first role is homing to the marrow and allowing HSCs to enter the 

bone marrow cavity where the cells then migrate to the endosteal niche18-20;64.  The second role 

is mobilization and egress of mature cells into the blood4;64.  Prior to entry into the blood, 

hematopoietic progenitor cells are supported by both BMSC and BMEC while they mature and 

differentiate66;67.  The most well studied cell type is the support of megakaryocytes through the 

secretion of factors such as FGF-4, SDF-1 and thrombopoietin (TPO), and through adhesion 

molecules like VCAM-1 while they mature and differentiate20;68;69.  Rafii et al showed the ability 

of BMEC to support multi-lineage differentiation68.  When hematopoietic progenitors were either 

in direct contact with BMEC or in transwells, the progenitors expanded 5-7 fold in one week and 

by two weeks in co-culture, 70-80% of the cells were myeloid and 14-19% were 

megakaryocytes.  They suggested this ability of BMEC to support progenitor cell differentiation 

was through the production of cytokines such as IL-6, GM-CSF, G-CSF and Kit-ligand20. 
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  The physical structure of the bone marrow vasculature has also been studied both in its 

support of progenitor cells as well as how progenitor cells can influence the recovery of the 

endothelial cells following chemotherapy treatment70.  Studies have shown that the integrity of 

the vessels is maintained by the surrounding hematopoietic cells, specifically megakaryocytes, 

which secrete vascular endothelial growth factor-A (VEGF-A)70.  Following treatment with 

cytotoxic agents or radiation, the vessels of the bone marrow are destroyed.  Post-treatment, 

there is a regeneration of the sinusoidal vessels and this is thought to occur through vascular 

progenitors and HSCs that are not affected by the therapy16.  One critical protein involved in this 

process is MMP-9.  Heissig et al showed that MMP-9 led to the release of Kit ligand allowing for 

progenitor cells to translocate to the vascular region71.  When mice that were MMP-9 deficient 

were treated with 5-FU, there was impaired “hemangiogenic” recovery in the bone marrow66.  

Additional studies by Avecilla et al showed that using neutralizing antibodies against VE-

cadherin following 5-FU treatment led to similar effects, including disruption of VCAM-1 and 

subsequently the lack of recovery of megakaryocytes66.  Other experimental results showing the 

close interaction between endothelial cells and HSCs was the identification of stimulated 

lymphocyte activating molecules (SLAM) markers on the surface of HSCs72.  Kiel et al showed 

that more than 50% of HSCs that expressed SLAM markers were found in the vascular region 

of the bone marrow, indicating that this niche is a supportive niche of HSCs.  Finally, work by 

Butler et al demonstrated that HSCs in contact with endothelial cells cultured under serum free 

conditions were still able to expand long-term repopulating HSCs both in vitro and in vivo73, 

providing further evidence that the endothelial niche is able to support HSCs and 

hematopoiesis.  

 Within all of these niches, there are a vast number of adhesion molecules and cytokines 

that must be present and tightly regulated to ensure proper support of hematopoietic stem cells.  

We have chosen to focus on the effects of chemotherapy on TGF-β and Interleukin-6 as two 

important cytokines in the bone marrow necessary for maintenance of quiescence and 
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differentiaion of hematopoietic stem cells. 

 

II. Factors influencing the niche 

 All of the supportive cells of the BM microenvironment, including BMSC, osteoblasts and 

BMEC secrete soluble factors that are critical for the maintenance of quiescence and self-

renewal as well as to promote differentiation of hematopoietic progenitor cells into all the cells of 

the blood including lymphoid cells (B cells, T cells and NK cells), myeloid cells (monocytes, 

megakaryocytes, macrophages, neutrophils, etc)74.  Chemotherapy exposure of the 

microenvironment during pre-transplant regimens has the potential to damage the supportive 

cells, and subsequently, can disrupt the secretion of soluble factors necessary for 

hematopoiesis.  We have chosen to examine the effects of chemotherapy treatment on two of 

these soluble factors, TGF-β as a mediator of HSC quiescence, and Interleukin-6 as factor 

important in the differentiation of both myeloid and lymphoid progenitors, and both of these 

factors and their role in the microenvironment will be described in detail. 

A. TGF-β 

One soluble factor that is critical in the BM microenvironment is TGF-β, which is secreted by 

BMSCs and HOB.  TGF-β is a factor that controls proliferation, cellular differentiation, apoptosis 

and hematopoiesis12;75.  There are three different isoforms, TGF-β1, TGF-β2 and TGF-β3, and 

all the isoforms have distinct functions75.  TGF-β1 has been shown to inhibit proliferation of 

hematopoietic progenitors and stem cells76;77.  TGF-β2 has been reported to positively regulate 

HSCs77 and TGF-β3 has been shown to have inhibitory effects on progenitors75.  TGF-β is a 

member of a superfamily of growth factors that are divided into two families which are 

characterized both by sequence similarity among members as well as the signaling pathways 

that each family activates75.  The first family is the TGF-β/ activin/ nodal family which primarily 

use Smad2 and Smad3 for signaling75.  The second family is the bone morphogenetic protein/ 

growth and differentiation factor/ Muellerian inhibiting substance and these factors mainly signal 
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through Smad1, Smad5 and Smad875.  TGF-β signaling occurs through TGF-β receptors on the 

surface of cells through a heteromeric receptor complex78.  TGF-β binds to TGF-β Type II 

receptors and the Type II receptors then recruit TGF-β Type I receptors and subsequently 

phosphorylates serine residues on the cytoplasmic domain.  This then allows for the 

phosphorylation of receptor Smads (R-Smads), which are Smads 1, 2, 3, 5 and 879.  The R-

Smads form dimers and then complex with Smad4.  This complex then translocates into the 

nucleus where it can regulate transcription of target genes.  In addition, inhibitory Smads (I-

Smads) also exist as a way to negatively regulate TGF-β signaling79.  I-Smads will compete with 

R-Smads for binding to Smad4.  I-Smads also tag the receptors for degradation by recruiting 

Smurf, an E3 ubiquitin ligase80. 

Several studies have shown the role of TGF-β1 in maintaining quiescence of HSCs.  

Massague et al showed that TGF-β1 is able to down regulate c-myc, which is a known growth 

promoting factor81.  Studies by Cheng and Scandura demonstrated the ability of TGF-β1 to 

induce cyclin dependent kinase inhibitors, which inhibit cell cycle progression82;83.  In addition to 

these factors, TGF-β has also been reported to affect the proliferation of HSCs by 

downregulating the receptors for granulocyte macrophage colony stimulating factor (GMCSF), 

Interleukin-3 (IL-3) stem cell factor (SCF) and IL-684-86. The levels of TGF-β1 in the 

microenvironment have been shown to be extremely important.  TGF-β at low, physiological 

levels is thought to induce CD34 antigen expression on stem cells, and this was sufficient to 

maintain hematopoietic immaturity86;87.  Pierelli et al supported this finding by demonstrating that 

TGF-β1 upregulated both CD34 mRNA and protein88.  They showed this led to Smad activation 

and decreased phosphorylation of p38, which may be another method of regulation of 

quiescence.  In addition to maintaining quiescence, Basu et al showed that TGF-β1, at low 

levels, modulates SDF-1 responsiveness of CD34+ cells to help with homing to the bone 

marrow89. In vivo studies to determine the exact mechanisms by which TGF-β1 regulates 

quiescence have been difficult as the TGF-β1 knock-out mouse is 50% embryonic lethal at 
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embryonic day (E)10.5 caused by defective hematopoiesis and yolk sac vasculogenesis90;91.  

For the mice that do survive, they die after 3 weeks due to inflammatory disease and wasting92.  

Yaswen et al were able to show that this defect was something inherent to the HSCs as this 

disease is transplantable93.  The TGF-βRII knock-out mouse has a phenotype identical to the 

TGF-β1 knock-out mouse, suggesting an important role for TGF-β signaling in early embryonic 

development94.  Capron et al used a conditional TGF-β1 -/- murine model95.  These mice had no 

evidence of inflammatory disease at 8-10 days and their studies demonstrated that these 

animals had impaired short and long term repopulating activity that correlated with decreased 

homing, suggesting TGF-β1 has an important role in homeostasis of HSCs, including homing to 

the marrow.   

  While TGF-β may play important roles in maintenance of quiescence, there are also 

studies that suggest TGF-β is not necessary in this capacity.  Larsson et al used a conditional 

knock-out of the TGF-βRI96.  In their first study, they showed that the TGF-βRI null mice had 

normal hematopoiesis with respect to cell numbers as well as the ability of the progenitor cells 

to differentiate.  The HSCs from the TGF-βRI null mice were also able to repopulate both 

primary and secondary recipients following bone marrow transplantation.  In additional studies, 

they treated both knock-out mice and controls with 5-fluorouracil (5-FU) and completed 

competitive transplantation assays97.  They found no difference in susceptibility of HSCs to 

damage and with serial transplants, recipients developed hematopoietic failure at the same 

time, regardless of the bone marrow from which they were derived.  They suggested this shows 

that TGF-β does not maintain the stem cell pool in vivo.   

TGF-β is not only involved in regulation of hematopoiesis as it has been implicated in a 

variety of other disease settings.  TGF-β has been associated with osteoporosis, atherosclerosis 

and tissue and organ fibrosis98.  TGF-β has also been implicated in cancer.  It has been shown 

to lead to increases in extracellular matrix production and increases in angiogenesis98;99.  

Additionally, TGF-β has been shown to have the ability to be immunosuppressive by 
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suppressing infiltrating immune cells100.  

 

B.  Interleukin-6 

IL-6 as a classic inflammatory cytokine 

Another factor of interest to our lab is interleukin-6 (IL-6), as a factor that has important roles in 

the hematopoietic system.  IL-6 is secreted from both BMSCs and osteoblasts and has both 

proliferative and anti-proliferative effects101;102.  It is a pro-inflammatory cytokine that is secreted 

by T-cells and macrophages in response to tissue injury or pathogens, leading to acute phase 

responses and fever101;102.  IL-6 also has important roles in bone metabolism by stimulating 

osteoclast formation. In the bone marrow microenvironment, IL-6 is important for inducing B-cell 

differentiation, stimulation of T-cells103, enhancement of hematopoietic colony formation and the 

maturation of megakaryocytes101.  IL-6 belongs to a family of cytokines that have redundant and 

overlapping signaling pathways due to the use of a common signal transducer, gp130102.  IL-6 

signaling occurs through a hexameric complex at the cell membrane104.  An IL-6 molecule 

interacts with a membrane-bound IL-6 receptor.  This interaction leads to an association with 

gp130, which is a glycoprotein also found in the membrane that allows for transduction of the 

signal105.  Upon stimulation with IL-6, gp130 becomes phosphorylated on tyrosine residues106 

leading to the activation of signal transducers and activators of transcription (STATs), including, 

STAT3.  The STAT proteins then interact with members of the Janus Kinase family (JAKs),107 

and IL-6 primarily activates JAK1 and STAT3.  IL-6 signaling can also lead to the activation of 

Ras signaling108.  The signaling cascades that begin in the cytoplasm can then signal to 

transcription factors which can enter the nucleus and regulate IL-6 expression. The promoter 

region of the IL-6 gene contains response elements that include binding sites for activator 

protein-1 (AP-1), Nuclear Factor-IL-6 (NF-IL6) and NF-κB109 that modulate IL-6 transcription.  

There are also factors that have been shown to be important in the negative regulation of IL-6 

signaling, including Suppressor of cytokine signaling (SOCS) proteins. 

 12



SOCS proteins are negative regulators of cytokine-mediated homeostasis110;111.  There 

are a number of SOCS proteins but SOCS3 has been shown to be a critical regulator of IL-6.  A 

SOCS3 knock-out is embryonic lethal and conditional knock-out leads to neutrophilia and 

inflammatory diseases, suggesting important roles for the protein in IL-6 associated 

inflammatory diseases. 

In addition to the membrane-bound IL-6 receptor, a soluble form of the receptor also 

exists.  There are two possible mechanisms that have been described that lead to the 

production of the soluble IL-6 receptor.  The first mechanism is through differential mRNA 

splicing, with the soluble IL-6 receptor lacking the trans-membrane domain112.  The second 

mechanism suggests that the soluble receptor is produced by cleavage of the membrane-bound 

receptor by an endogenous protease, although no endogenous protease has been identified113.  

The soluble IL-6 receptor binds to IL-6 molecules with a similar affinity to that of the membrane-

bound receptor and can interact with gp130 on the membrane, leading to IL-6 signaling in the 

same manner.  Gp130 is ubiquitously expressed throughout the body on a variety of cell types 

and tissues.  Hibi et al. suggested that the presence of the soluble IL-6 receptor/ IL-6 complex, 

and the ubiquitous expression of gp130, may allow cells that would not normally respond to IL-6 

to become responsive114.  This could potentially lead to a situation of systemic inflammation 

similar to graft-versus-host disease.   

 

Interleukin-6 and neurotrophins 

In addition to the regulation of hematopoiesis by the supportive cells of the bone marrow 

microenvironment, the neuroendocrine system is also thought to play important roles in the 

regulation of hematopoiesis and the immune system115.  While the most well studied effects of 

neurotrophins have been on cells of the nervous system, studies have also shown that cells of 

the bone marrow express neurotrophin receptors as well as secrete neurotrophins116.  Members 

of the neurotrophin family include nerve growth factor (NGF), brain-derived neurotrophic factor 

 13



(BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4) and neurotrophin-5 (NT-5)116.  The 

members of the neurotrophin family signal through Trk receptors, which are receptor tyrosine 

kinases, on the surface of cells.  The Trk receptors include TrkA, which binds NGF, TrkB which 

binds BDNF and NT4/5, and TrkC which binds NT-3.  There is also a low affinity neurotrophin 

receptor p75NTR that has no tyrosine kinase activity but can bind the neurotrophins and interact 

with the Trk receptors to enhance or, in some instances, inhibit signaling116.   

Studies have shown that NGF has roles in colony formation as well as synergistic effects 

with GM-CSF allowing for the differentiation of myeloid cells117.  It was also shown that leukemic 

cell lines expressed both neurotrophic factors as well as the receptors, suggesting potential 

roles for these receptors in normal hematopoietic cells118.  NGF has the ability to interact with 

other hematopoietic cytokines, such as interleukin-2 (IL-2), where Brodie et al, using B 

lymphocytes as a model, showed NGF and IL-2 could increase each other’s receptor 

expression119.  In a model of stromal cells isolated from the thymus, it was shown that NGF 

increased IL-6 expression120.  The role of BDNF in hematopoiesis was also studied using a 

BDNF knockout mouse121.  These mice had reductions in the number of B lymphocytes both in 

the spleen and the bone marrow, suggesting this neurotrophin factor has roles in B lymphocyte 

development.  These data provide strong evidence that factors commonly thought to regulate 

cells of the nervous system also have paracrine effects on cells of the hematopoietic system.   

Work by our lab has also shown the presence on neurotrophin receptors present on the 

surface of BMSC122.  BMSC respond to NGF and BDNF by increasing IL-6, and increases in IL-

6 are associated with a number of inflammatory diseases such as systemic lupus 

erythematosus and rheumatoid arthritis118.  The presence of both neurotrophins and their 

receptors on BMSC provide a possible mechanism of disruption of normal hematopoiesis if not 

tightly regulated (Chapter 2).   
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Interleukin-6 deficiency 

While most literature on IL-6 focuses on increased levels of IL-6, the interest of our lab is 

the impact of an IL-6 deficit in the BM microenvironment.  In order to study the different aspects 

of IL-6 signaling, a number of transgenic models have been used.  Gp130 knock-out is 

embryonic lethal so experiments to study this common signaling receptor use conditional 

deletions post-natally123-125.  This mutation still led to impaired acute phase immune response, 

thrombocytopenia, demyelination of nerves and the development of emphysema.  Efforts to 

study individual members of the IL-6 family have been more challenging as many of these 

family members are redundant in vivo102.  IL-6 knock-out mice are not embryonic lethals, 

indicating IL-6 is not critical for embryonic development.  However, IL-6 knock-out mice have 

hematopoietic deficiencies, decreased acute phase response, defective bone maintenance and 

an increase in susceptibility to infections with a variety of different pathogens126;127.  It has been 

documented that an IL-6 deficient environment decreases DNA synthesis in progenitor cells and 

excessive TGF-β production by BMSCs inhibits IL-6 production128;129.  Exogenous IL-6 has also 

been combined with some radiation therapies because the therapy causes a decrease in IL-6, 

and the addition of IL-6 as part of the therapy accelerates hematopoietic recovery130.  

Preliminary data from our lab suggests that chemotherapy treatment decreases IL-6 protein in 

vitro (Chapter 3).  Based on association of IL-6 deficits with sub-optimal hematopoietic recovery, 

further investigation of the mechanisms by which chemotherapy alters IL-6 expression is 

warranted. 

 

III.  Damage of the microenvironment by cancer therapies 

Myeloablative chemotherapy and total body irradiation are commonly used to prepare 

individuals for bone marrow or stem cell transplantation.  While the goal of these regimens is to 

eliminate tumor cells, the residual damage to the supportive cells of the microenvironment can 

affect the hematopoietic recovery of these patients long-term.  The earliest studies by 
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Chamberlin and Fried showed the effects of radiation and chemotherapy on hematopoietic 

stromal cells131;132.  In their studies, they observed that the hematopoietic cells (CFU) were able 

to recover, while the hematopoietic stroma did not recover in models where damaged femurs 

were transplanted into isogeneic hosts.  It is well documented that chemotherapy induces 

stromal cell damage. Patients receiving standard chemotherapy regimens had a reduced 

capacity to form confluent monolayers when BMSCs were isolated from aspirates133.  Stromal 

cells damaged by chemotherapy and radiotherapy can affect the ability of the BMSCs to self-

repair and can also lead to chronic states of osteoporosis by altered bone metabolism as well as 

a decreased number of functional mature cells in the blood134;135.  Galotto et al demonstrated 

that patients receiving allogeneic bone marrow transplants have serious and irreversible stromal 

damage as measured by CFU-F frequencies that did not recover to the levels of normal control 

patients even after 12 years136.  They reported that CFU-F frequencies were reduced by 60-90% 

in bone marrow transplant patients.  In another study, damage of the bone marrow was 

evaluated using cell culture assays137.  One year post-treatment, bone marrow samples were 

isolated from normal donors or patients that had received peripheral blood stem cell 

transplantation for a variety of different cancers including breast cancer, non-Hodgkin lymphoma 

and Hodgkin lymphoma.  The samples were analyzed using colony forming assays and long 

term bone marrow cultures (LTBMCs).  They determined that the numbers of committed 

progenitors were significantly reduced in all the groups that had received prior treatment.  A 

healthy stromal cell compartment should have cobblestone areas, adipocytes and support 

colony formation. The LTBMCs also showed that the adherent layer of cells from patients 

treated with chemotherapy did not have these properties and could not support progenitor 

cells137.   

Damage to MSCs, which have the ability to differentiate into multiple cell types such as 

osteoblasts, adipocytes or BMSC, have also been studied to understand how damage to the 

cells that can “reconstitute” the supportive cells of the bone marrow are affected by 
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chemotherapy and how hematopoietic recovery might be affected by this damage.  Kemp et al 

evaluated MSCs and how this population of cells is affected by high dose chemotherapy31.  

MSCs from patients with hematological malignancies were characterized and compared to 

untreated patients.  It was shown that the MSCs isolated from patients with hematological 

malignancies were not able to expand in culture, making them unable to be stimulated to 

determine if the cells had the capacity to differentiate into different cell types.  The cells also had 

decreased CD44 staining, which is a cellular adhesion molecule important for MSC interaction 

with HSCs.  These data suggest that co-transplantation with MSCs may be beneficial.   

Many efforts have been made to determine ways to help patients receiving transplants 

have more rapid hematopoietic recovery.  Some of the first factors investigated were 

recombinant human GM-CSF and G-CSF138.  The use of these factors showed increases in 

neutrophils and in a trial by Klumpp et al, it was demonstrated that administering G-CSF led to 

significant decreases in time to neutrophil engraftment, and the patients had decreased hospital 

stays, decreased treatment with antibiotics and a more rapid myeloid recovery139.  

Erythropoietin (EPO), another hematopoietic factor that controls red blood cell production and is 

commonly administered to patients to help with recovery from anemia138.  IL-6 was investigated 

to determine if giving it to patients post-transplant would help promote immune system 

recovery140.  This cytokine did provide some moderate effects by increasing megakaryopoiesis 

and thrombocytopoiesis, the cytotoxic effects, including fevers, chills, fatigue, anemia and 

erythema have made clinicians cautious about use of the cytokine post-transplant.  Some 

groups have also evaluated administering factors during chemotherapy to aide in hematopoietic 

recovery.  Matrosova et al demonstrated that 5-fluorouracil (5-FU) decreases hyaluronic acid 

(HA) in the bone marrow and HA has been shown to be important for hematopoiesis in vitro141.  

Mice given HA while being treated with 5-FU displayed a more rapid recovery of hematopoiesis.  

They showed increased hematopoiesis in the bone marrow of these mice, suggesting not only 

that HA had important roles in hematopoiesis but also that administering factors may help with 
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hematopoietic recovery.  While a variety of hematopoietic factors have been investigated to help 

with hematopoietic recovery, no individual factor or combination of factors has been identified 

that allows complete hematopoietic recovery. 

TGF-β, as an important factor in the microenvironment for maintenance of quiescence, 

has been previously described.  Although there are many studies that address the effects of 

chemotherapy on TGF-β, most of them describe increases in TGF-β as a negative prognostic 

factor.   In several reports, it has been documented that chemotherapy can lead to an increase 

in TGF-β levels. In a study by Butta et al, it was demonstrated that Tamoxifen led to an 

induction of TGF-β1 as seen in biopsy samples from patients with breast cancer142.  

Furthermore, TGF-β inhibitors are currently being used in both pre-clinical and clinical trials as 

well as neutralizing antibodies as a method to reduce cancer progression and to aid in 

hematopoietic recovery143.  TGF-β is also being used as a prognostic factor in radiotherapy for 

non-small cell lung cancer to determine which patients can receive escalated therapy. The 

higher the TGF-β levels were in the patient, the greater the toxicity144.  In a different cancer 

setting, it was shown that chemotherapy treatment for Acute Lymphoblastic Leukemia led to 

increased TGF-β levels, decreased ability of stromal cells to support hematopoiesis, and post-

treatment anemia145.  Based on the data describing increases in TGF-β in response to 

chemotherapy, one could deduce that this increase in TGF-β detrimentally affects the stem cell 

population in the bone marrow.  

Collectively, these observations emphasize the microenvironment as a site that is 

vulnerable to change imposed by diverse treatments.  The dynamic nature of the 

microenvironment is reflected, in part, by fluctuation in soluble factors produced by 

microenvironment cellular components.  Our model of chemotherapy-induced stromal damage, 

uses the chemotherapeutic agent melphalan, with VP-16 included in some experiments as an 

agent we have characterized to some degree previously.  VP-16 (Etoposide) is a topoisomerase 

II inhibitor, which leads to strand breaks in the DNA making it a popular anti-cancer agent.  It 
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has been used in Ewing’s sarcoma, lung cancer, lymphoma, leukemia and in pre-transplant 

regimens before bone marrow or stem cell transplants.  Melphalan belongs to the nitrogen 

mustard DNA alkylating class of drugs.  Its mechanism of action is to add alkyl groups to the 

guanine residue in DNA.  Melphalan is currently used as front-line therapy for the treatment of 

multiple myeloma, ovarian cancer, breast cancer as well as being used as part of a pre-

transplant chemotherapy regimen for autologous stem cell and allogeneic stem cell 

transplantations, making it a clinically relevant agent for our experiments146;147.  Studies by 

Down et al showed that melphalan was more toxic to early developing cobblestone area-forming 

cells.  In this study, mice were treated with melphalan or a number of other chemotherapeutic 

agents for 24 hours and the marrow compartment was isolated from femurs. Early and late 

cobblestone areas were then established in culture148.   

Based on all these data, more studies are necessary to understand the mechanisms by 

which high dose chemotherapy regimens lead to damage of the supportive components of the 

bone marrow microenvironment and how this damage leads to a decreased capacity to support 

both HSCs and hematopoietic progenitor cells. 
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Figure 1.  Architecture of the bone marrow microenvironment. 
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Figure 2:  Bone marrow microenvironment and cell differentiation 
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Figure 3: Hematopoietic hierarchy and characterization of stem cell markers 
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 Figure 4:  Soluble factors involved in cell differentiation 
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Figure 5:  HSC interaction with endosteal and vascular niches 
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Abstract :  
 

     Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a 

microenvironment niche capable of supporting both immature progenitors and stem cells with 

the capacity to differentiate and expand.  Osteoblasts comprise one important component of this 

niche. We determined that treatment of human primary osteoblasts (HOB) with chemotherapy 

resulted in increased phospho-Smad2, consistent with increased TGF-β  activity.  This increase 

was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and 

adherence.  The supportive deficit was not limited to committed progenitor cells, as human 

embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with 

chemotherapy or rTGF-β pre-treated HOB had profiles distinct from the same populations co-

cultured with untreated HOB. Functional support deficits were downstream of changes in HOB 

gene expression profiles following chemotherapy.  Chemotherapy induced damage of HOB  

suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-

transplant regimens and suggests that dose escalated chemotherapy may contribute to post-

transplantation hematopoietic deficits by damaging  structural components of this supportive 

niche.    
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 Introduction:   

       The stem cell niche hypothesis was first presented in 1978 by Schofield who suggested 

that stem cells were associated with accessory cells that influence their behavior 1.  Studies 

from several labs have expanded our appreciation of the unique anatomical niches within the 

marrow microenvironment and have characterized areas of optimal stem cell support 2. The 

niche’s  cellular components consist of  osteoblasts  (HOB), bone marrow stromal or 

mesenchymal stem cells (BMSC, MSC), and endothelial cells 3;4. Recent work has 

demonstrated the importance of the interaction of osteoblasts and stem cells in the niche, 

suggesting that hematopoietic stem cells (HSC) can regulate MSC differentiation into 

osteoblasts and that they, in turn, play an important role in the support of B lymphocytes and 

differentiation of HSC 5;6. Additionally, it has been shown that resting HSC are maintained in a 

quiescent state as a result of their close proximity to osteoblasts and that the number of HSCs 

change as a result of the number and type of osteoblasts present 7;8.  Studies describing BMSC 

have shown that damage by chemotherapy and radiotherapy can affect the ability of the BMSC 

to self-repair and leads to decreased numbers of functional immune system cells in the blood, 

with deficits persisting years after transplant 9;10.  The effects of chemotherapy on osteoblasts, 

and subsequently HSC and progenitor cell support, have not been as well characterized as 

those on BMSC, and warrant further investigation.  

       The stem cell niche is characterized, in part, by expression of specific cytokines, 

including TGF-β and CXCL12, to facilitate signaling between the niche components and HSC.  

Studies have demonstrated that chemotherapy increases the levels of active TGF-β resulting in 

decreased ability of BMSC to support HSC 11;12. It has also been shown that TGF-β has 

crosstalk with CXCL12 and can stimulate the differentiation of  progenitor cells to erythroid and 

myeloid cells resulting in a deficit of the primitive stem cell pool13.  The importance of CXCL12 is 

demonstrated by its requirement for homing of progenitor cells to the bone marrow following 

transplantation 14;15.  We have previously demonstrated that diminished levels of CXCL12 in the 
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supernatants of VP-16 treated BMSC results in loss of an optimal chemokine gradient to which 

CXCR4+ pro-B cells respond with CXCL12 subsequently shown to also be important in 

regulation of stem cell phenotype by Guo et al.  16;17.  Sugiyama et al showed that mice deficient 

in the CXCL12 receptor, CXCR4, had a reduction in HSC, in both vascular and endosteal 

niches, and increased sensitivity to myelotoxic stress compared to their wild-type counterparts 

18.  Other studies of CXCR4 in the HSC niche have shown that CXCR4 is essential to maintain 

quiescence and retention of stem cells 19.  In the current study, we investigate chemotherapy-

mediated damage of osteoblasts with emphasis on CXCL12 and TGF-β levels following 

chemotherapy.  Global changes in HOB gene expression in response to melphalan were 

investigated to determine the vulnerability of osteoblasts to genotoxic stress.  In addition, TGF-

β, CXCL12 and VCAM-1 were investigated as representative osteoblast proteins involved in 

three critical functions of the endosteal niche; support of pluripotency, homing and stem cell 

retention 20;21.   Our results indicate diverse changes in gene expression profiles following HOB 

exposure to melphalan, conditioned media from BMSC pre-treated with melphalan, and 

following exposure to rTGF-β as one of the factors elaborated by chemotherapy damaged 

stroma 11.  Coincident with altered gene expression profiles treated HOB had increased levels of 

active TGF-β,  reduced ability to support Oct-4 positive embryonic stem cell colonies, deficits in 

support of differentiation of CD34+ bone marrow cells, and reduced chemotactic support and 

adhesion of CXCR4+ pro-B cells.  These data suggest that the niche in which hematopoietic 

recovery occurs may be more vulnerable to damage than previously appreciated.   

 

Materials and Methods:   

Cell Lines and Reagents 

      Human osteoblasts (HOB) were purchased from Promocell (Heidelberg, Germany) and 

maintained in osteoblast growth media. The CXCR4+/VLA-4+  pre-pro-B leukemic cell line JM-1 
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was purchased from the ATCC (CRL-10423, Manassas, VA). The BMSC and IL-7 dependent 

murine pro-B cell line C1.92 was kindly provided by Dr. Kenneth Landreth and has been 

described in detail 22.  Human embryonic stem cells (H9, WiCell, Madison WI) were maintained 

on irradiated mouse embryo fibroblasts (MEF) and grown in DMEM-F12 media (Mediatech, 

Manassas, VA) supplemented with Knockout Serum Replacement (Gibco/Invitrogen, Carlsbad, 

CA), 2 mM L-glutamine (Mediatech), 0.05 µM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, 

MO), non-essential amino acids  and B-FGF solution. H9 cells were moved to HOB feeder 

layers where indicated.  CD34+ bone marrow cells (ALLCELLS, Emeryville, CA) were grown in 

RPMI-1640 supplemented with 10% fetal bovine serum.  Melphalan (Sigma-Aldrich) was 

reconstituted at a stock concentration of 2.5mg/ml or 50mg/ml immediately prior to use. VP-16 

(Etoposide, Bristol Myers Squibb, New York, NY) was stored at a concentration of 33.98mM and 

diluted immediately prior to use. Human rTGF-β (R&D, Minneapolis, MN) was used at a 

concentration of 10ng/ml. In all experiments that include rTGF-β, it was added to the culture 

every 6 hours based on its short half-life.  Human rIL-3 (R&D) was used at a concentration of 

100 ng/ml. 

 

      Adhesion Assay 

HOB were pre-treated with 50μg/ml melphalan, 50µM VP-16, or 10ng/ml rTGF-β for 24 

hours. C1.92 pro-B cells were stained with CellTracker Green (Invitrogen) according to the 

manufacturer’s instructions.  The HOB adherent layer was thoroughly rinsed following treatment 

and 1x105 fluorescently labeled C1.92 pro-B cells were added in co-culture for 24 hours. 

Subsequently, the media containing non-adherent C1.92 was aspirated and the cultures were 

gently rinsed.  Remaining HOB and adherent C1.92 were trypsinized and C1.92 cells were 

enumerated using a FACSCalibur flow cytometer (BD, Franklin Lakes, NJ) with events counted 
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for 30 seconds on high flow rate. Data were analyzed using WinMDI software. 

 

Chemotaxis Assays 

HOB were plated in the bottom chamber of a transwell at 100% confluence and were left 

either untreated or treated with 50 µg/ml melphalan, 50 µM VP-16, or 10 ng/ml rTGF-β  for 24 

hours. After 24 hours, 350 µL of supernatant was placed in the bottom of a transwell and JM-1 

cells (1x106 cells/mL) were added to the top chamber, and incubated at 37°C for 4 hours. JM-1 

cells migrated through the 5µm pores to the bottom chamber towards media supplemented with 

100 ng/mL CXCL12 (positive control), towards media alone (negative control), or towards media 

conditioned by the chemotherapy treated or non-treated HOB.  Cells were collected using a 

FACSCalibur flow cytometer (BD) with events counted for 30 seconds on high flow rate.  Data 

were analyzed by WinMDI software. 

   

     ELISA  

To complete the CXCL12 ELISA (R&D), HOB were plated at 100% confluence in a 96 

well plate and left untreated or treated with 10 ng/ml rTGF-β, 50 μg/ml melphalan or 50 μM VP-

16 for 24 hours.  The media was then removed, cells were rinsed and fresh serum-free media 

was added to each well. Following 24 and 48 hours of incubation supernatants were collected 

and analyzed for CXCL12 following the manufacturer’s instructions. The TGF-β ELISA (R&D) 

was completed using HOB plated at 100% confluence in serum free media and left untreated or 

treated with 10 ng/ml rTGF-β, 50 μg/ml melphalan or 50 μM VP-16 for 24 hours. The media was 

removed, cells were rinsed, and fresh serum-free media was added to each well. After 24 and 

48 hours supernatants were collected and analyzed for TGF-β following the manufacturer’s 

instructions. 
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Fluorescent Microscopy  

       HOB cells were cultured on coverslips and left untreated or treated with 50 µg/ml 

melphalan, 50 µM VP-16, or 10 ng/ml rTGF-β for 24 hours, washed thoroughly and H9 stem 

cells added. Stem cell colonies were monitored for 2 days and counts based on colony 

morphology were completed.  Cells were subsequently stained for Oct-4. To complete 

intracellular staining, cells were fixed in 4% paraformaldehyde and permeabilized with 0.5% 

Triton X-100.  After blocking for 30 minutes in 5% BSA/1X PBS, cells were incubated with 

mouse primary antibody (1µg) specific for human Oct-4 or the matched isotype control, in 5% 

BSA/1X PBS for 1 hour at RT. Coverslips were washed with 1X PBS, incubated with Alexa 

Fluor 488 labeled secondary α-mouse antibody (1 µg) at RT for 1 hour and mounted on glass 

microscope slides with ProLong Gold plus DAPI (Invitrogen).  Confocal images were acquired 

using a Zeiss LSM510 confocal system connected to a Zeiss AxioImager microscope 

(Thornwood, NY). Photographs of human embryonic stem cells were taken using a Nikon 

Coolpix 990 camera. To complete phospho-Smad2 staining, HOB cells were plated on 

coverslips and left untreated or treated for 4 hours with 100 µg/ml melphalan, 100 µM VP-16, or 

with conditioned media from BMSC that were untreated or treated with 100 µg/ml melphalan or 

100 µM VP-16 for 24 hours. Staining and imaging was completed as described above using a 

murine primary antibody (1.5 µg/coverslip), specific for human phospho-Smad2 (Cell Signaling 

Technology Inc., Danvers, MA) or matched isotype control.  

 

Microarray 

       HOB cells were left untreated, or treated with 50µg/ml melphalan, 10ng/ml rTGF-β or 

conditioned media from BMSC (treated with 50µg/ml melphalan for 24 hours) for 6 hours. Total 

RNA was isolated from HOB using the RNeasy RNA isolation kit (Qiagen,Valencia, CA) with 

quality assessed by electrophoretic analysis on an Agilent Model 2100 Bioanalyzer. RNA 
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samples had integrity numbers greater than 8.0 (8.4-10).  RNA (250 ng) was used as the 

template for synthesis of internally labeled cRNAs using the Agilent QuickAmp Labeling kit and 

cyanine 3-CTP and cyanine 5-CTP (Perkin Elmer, Waltham, MA) and a modified QuickAmp 

protocol 23. A total of 825 ng of cyanine 3- and cyanine5-labeled cRNAs was combined and 

hybridized onto Agilent Whole Human Genome 4 x 44 K microarrays at 65oC for 17 hours and 

washed according to the manufacturer’s protocol. Slides were scanned on an Agilent DNA 

Microarray Scanner. HOB treated with rTGF-β and conditioned media were competitively 

hybridized against untreated HOB in a balanced block design with six replicates. Melphalan 

treated HOB and untreated HOB were hybridized against Stratagene Universal Reference RNA 

(Agilent Technologies, Santa Clara, CA) in a universal reference design with four replicates. 

Intersections of groups and corresponding statistically significant fold changes (details 

described in the supplemental section) for each experiment were imported into Ingenuity 

Pathway Analysis (IPA) software v 2.6 (Ingenuity Systems ®, Redwood City, CA, 

www.ingenuity.com). We performed a core analysis in IPA, using default settings, to search for 

networks associated with these lists of genes. Complete microarray data may be accessed at 

the NCBI Gene Expression Omnibus (GEO) database (GSE17860). 

 

Real Time Reverse Transcriptase PCR  

       Total cellular RNA was isolated from HOB using the RNeasy RNA isolation kit (Qiagen). 

Real time RT-PCR was performed using 50ng RNA per reaction using the QuantiTech SYBR 

Green RT-PCR kit supplied by Qiagen. Primers specific for human CXCL12 were obtained from 

SuperArray (Frederick, MD) with 0.25µl used per reaction. Primers specific for TGF-β and the 

housekeeping gene (HPRT-1) were purchased from Real Time Primers, LLC (Elkins Park, PA).  

Samples were analyzed in triplicate using the Applied Biosystems 7500 Real-time PCR system 

(Foster City, CA). Amplification parameters included 50°C for 30 minutes, 95°C for 15 minutes, 

 42

https://exweb.hsc.wvu.edu/owa/redir.aspx?C=7aa10a49a7cb4aeb80adb079a3378407&URL=http%3a%2f%2fwww.ingenuity.com


94°C for 15 seconds (x 45 cycles), 58°C for 30 seconds, and 72°C for 45 seconds.  Changes in 

gene expression were determined using the Comparative Ct method and analysis of relative 

gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.  

 

HOB and CD34+ cell co-culture 

HOB were grown to confluence and were either untreated or treated with 25ug/ml 

melphalan or 10ng/ml rTGF-β1 for 24hrs.   Following treatment, the cells were rinsed and 

human CD34+ bone marrow cells were added.  Cultures were supplemented with recombinant 

IL-3 (100ng/ml) every 2 days.  CD34+ bone marrow cells were collected 2 and 6 day post co-

culture.  Viability was determined and staining for the following cell surface makers was 

completed using the indicated antibodies: phycoerythrin (PE)–conjugated CD4 (clone SK3), 

CD19 (4G7), phycoerythrin-Cy7 (PE-Cy7)–conjugated CD56 (NCAM16.2), CD34 (8G12), 

peridinin-chlorophyll protein-Cy5.5 (PerCP-Cy5.5)–conjugated CD3 (SK7), CD33 (P67.6), 

fluorescein isothiocyanate (FITC)–conjugated CD8 (SK1), CD71 (L01.1), allophycocyanin 

(APC)–conjugated CD14 (MφP9), CD3 (SK7), and allophycocyanin-Cy7 (APC-Cy7)–conjugated 

CD45 (2D1) ([BD], San Jose, CA).  The samples were stained in the following combinations: 

isotype controls and CD45, CD45, CD34, CD3, CD19, CD33, and CD71 and CD45, CD3, CD4, 

CD8, CD56, and CD14.  Data were acquired with a FACSCanto II (BD) flow cytometer with a 

minimum of 30,000 events for each sample and analyzed with FACSDiva software (BD).  Initial 

gating was based on forward (FSC)/ side scatter (SSC) to exclude debris and non-viable 

events.  Thresholds for positivity were set such that greater than 99% of events within the gated 

region were negative for each isotype-matched control antibody.  Positive events were back-

gated to ensure that they constituted a discrete population by CD45/SSC, confirming specificity 

of antigen binding. 
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Statistics 

       Data were analyzed using the Students–t test or ANOVA where appropriate with 

statistical significance of p≤.05 denoted by an asterisk (*). Microarray data analysis is described 

in the supplemental section. 

 

Results   

Melphalan,  or factors from chemotherapy damaged BMSC, affect TGF-β pathways in 

HOB.  

       Earlier observations have demonstrated that BMSC exposed to chemotherapy have 

higher levels of active TGF-β and diminished capacity to support pro-B cells and normal 

hematopoiesis 11-13;24.  Additionally, retrospective studies of patients that received allogeneic 

bone marrow transplants showed that they have serious and irreversible stromal damage as 

measured by CFU-F frequencies that did not recover to the levels of normal control patients 

even after 12 years, suggesting that the damage done to the supportive cells of the bone 

marrow is irreversible 25. 

       To determine if direct chemotherapy damage to HOB cells results in increased active 

TGF-β, HOB were treated with melphalan or VP-16 and the expression of total and active TGF-

β was assessed. Direct exposure to chemotherapy (Figure 1A) does not alter the expression of 

TGF-β mRNA but does result in increases in active TGF-β capable of signaling, reflected by 

increased phosphorylation of Smad2 protein.  However, direct treatment with rTGF-β (Figure 1 

B) increases both TGF-β mRNA and protein expression.  To mimic the indirect effects of soluble 

cues elaborated by damaged stroma on HOB, BMSC were treated with melphalan or VP-16, 

rinsed, and allowed to condition media that was then placed on HOB that had not been exposed 

to chemotherapy. HOBs exposed to conditioned media from damaged BMSC have higher levels 
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of phosphorylated Smad2 than their counterparts exposed to conditioned media from untreated 

stroma (data not shown).  

         

Chemotherapy or rTGF-β  diminishes HOB support of human stem cells and adhesion of 

pro-B cells. 

       One of the critical functions of osteoblasts in the endosteal niche is to support stem cells, 

and post-transplantation, osteoblasts are crucial to efficient and sustained hematopoietic 

reconstitution 26. Therefore, we investigated how chemotherapy or rTGF-β modulates the ability 

of osteoblasts to support human stem cells. Figure 2 shows that in the absence of treatment, 

osteoblasts support undifferentiated stem cell colonies characterized by morphology of dense 

round colonies with definitive, regular, cell borders. In contrast, after HOB pre-treatment with 

melphalan, VP-16 or rTGF-β, there is an increase in the number of differentiated stem cell 

colonies with irregular borders (Figure 2A).  Oct-4 staining was completed on stem cell colonies 

as a measure of pluripotency potential, with a decrease in the ability to support Oct-4 positive 

colonies observed in HOB that had been pre-treated with chemotherapy or rTGF-β (Figure 2B).   

 

Pre-treatment of HOB with rTGF-β or melphalan changes the differentiation pattern of 

CD34+ cells. 

We next investigated the effects of these treatments on the ability of HOB to support 

CD34+ hematopoietic stem/ progenitor cell self-renewal and lineage differentiation.  Figure 2C 

summarizes observations indicating that following exposure to rTGF-β or melphalan, distinct 

differentiation patterns of CD34+ bone marrow cells was supported.  Deficits in total 

lymphocytes, with specific alteration of B cell and NK cell differentiation were seen subsequent 

to treatment.  T-cells represented 0.1% of the lymphocyte cell population in the untreated group, 

while no T cells were detected in cultures that included HOB treated with rTGF-β or melphalan 
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(data not shown).  Additionally, melphalan treatment of HOB leads to a decreased granulocyte 

population, while exposure to rTGF-β enhances granulocyte differentiation and both rTGF-β and 

melphalan decreased erythrocyte progenitors.  There was no change in monocytes with rTGF-β 

treatment and a slight decrease in monocytes with melphalan treatment (data not shown) and 

viability among all groups was similar (82-87%).  Taken together, these data suggest that 

exposure of HOB to direct and indirect chemotherapeutic damage has functional consequences 

with respect to support of hematopoietic differentiation. 

Alterations in osteoblast function after aggressive treatment could impact transplant 

engraftment and hematopoietic reconstitution 8;20.   For technical ease we utilized CXCR-

4+/VLA-4+ C1.92 and JM-1 pro-B cells to investigate the effects of chemotherapy on the ability 

of HOB to support immature hematopoietic progenitor cell adhesion and chemotaxis.  

Experiments summarized in Figure 2D indicate that following HOB pre-treatment with 

chemotherapy or rTGF-β, C1.92 pro-B cells did not adhere as efficiently as they did to untreated 

controls.  To determine if alterations in adhesion molecule expression were associated with 

decreased adhesion between C1.92 and HOB, VCAM-1, CD44 and Hyaluronan expression 

were evaluated on the HOB in the presence and absence of chemotherapy. No modulation of 

these proteins was detected on the HOB during chemotherapy exposure (data not shown).  

 

     Chemotherapy or rTGF-β diminishes HOB expression of CXCL12.  

       Inhibition of CXCL12 in the bone marrow has been shown to have a negative impact on 

chemotaxis leading to deficits in HSC homing and engraftment 14;27.  To further investigate the 

impact of chemotherapy and rTGF-β treatment on expression of osteoblast derived CXCL12, 

real time RT-PCR and ELISA were completed as described. Pre-treatment of HOB with 

chemotherapy or rTGF-β decreased the amount of CXCL12 mRNA and protein detected by real 

time RT-PCR and ELISA, respectively (Figure 3A and B).  Jung et al have described how the 
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regulation of SDF-1 by osteoblasts can affect homing and reported that treatment of osteoblasts 

with TGF-β decreased SDF-1 secretion which is consistent with our results 28. Additionally, as a 

functional readout of a potential CXCL12 deficit in our model, chemotaxis of JM-1 cells toward 

HOB that were untreated or pre-treated with chemotherapy or rTGF-β was completed. Figure 

3C summarizes data indicating that chemotaxis of JM-1 cells toward adherent layers of HOB 

was impaired by melphalan or rTGF-β treatment.   

 

Direct and indirect chemotherapy induced damage results in global changes in HOB 

gene expression. 

To elucidate the global changes that occur in osteoblasts with direct and indirect insult 

from chemotherapy, HOB were exposed to either rTGF-β or melphalan.  In addition, HOB were 

exposed to conditioned media from BMSC that had been pre-treated with melphalan (drug 

removed prior to collection of conditioned media)  to recapitulate signaling that may occur in 

response not only to active TGF-β elaborated by BMSC, but also in response to the collective 

soluble factors elaborated by BMSC in response to chemotherapy induced stress.  Microarray 

analysis of gene expression was performed as described. The genes for which expression 

changed in each group individually, and common gene targets that overlap between treatment 

groups, are indicated in the Venn diagram (Figure 4A).  HOB exposure to recombinant TGF-β 

resulted in the highest number of genes influenced across the treatment groups evaluated, with 

melphalan exposure also resulting in a robust effect. Twenty-five common genes significantly 

changed when the intersection of all treatment groups was considered.  The Venn and network 

diagrams show the number of genes modulated due to treatment, and potential relationships 

between some of the responsive genes, as well as convergence on signaling molecules such as 

the NF-κB complex which emerged as a hub of signaling.  The genes that were commonly up-

regulated (red) or down-regulated (green) between treatment groups are shown and include: 4 
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up-regulated, 2 down-regulated (Figure 4, intersection of all 3 treatments), 16 up-regulated, 3 

down-regulated (Figure S1, CMM: melphalan), 26 up-regulated, 11 down-regulated (Figure S2, 

rTGF:CMM), and 97 up-regulated, 188 down-regulated (S3, rTGF: melphalan).  This summary 

can be compared with those genes that were influenced, but in opposing directions, between 

groups (S4).    

 

Discussion  

           Myelosuppressive and ablative therapies followed by stem cell transplantation is used to 

treat hematopoietic, breast, ovarian and brain tumors as well as childhood sarcomas, and 

immune deficiencies 29;30.    As the primary site of postnatal hematopoiesis, the functional 

integrity of the bone marrow microenvironment is critical for hematopoietic recovery.  Earlier 

reports have suggested that BMSC are vulnerable to functional damage imposed by aggressive 

chemotherapeutic agents 12;13;31.  These studies have focused largely on the ability of stromal 

cells to generate fibroblastic colonies (CFU-F) or to support survival or expansion of committed 

progenitor cells when isolated from patients following treatment of subsequent to in vivo drug 

exposures 32.     

Murine models of ablative treatment and stem cell transplant have shown long-term 

deficits in hematopoietic recovery and in vitro models have paralleled these documenting the 

inability of transplanted cells to migrate efficiently to the necessary anatomical niches for 

engraftment 33.  Observations of long-term hematopoietic deficits in bone marrow of 

transplantation patients suggest that the functionality of the developmental niches required for 

appropriate support of immature hematopoietic or stem cells may have been compromised by 

aggressive pre-transplant therapies. One study observed that at 1 year post transplant 61% of 

patients have subnormal values in one or more hematopoietic lineages 34.  Further, Nieboer et 

al. showed that at 5 years post transplant 15% of the patient population analyzed had low 

values in one or more hematopoietic cell lineages 35.  Investigation of the mechanisms that 

 48



underlie damage of the hematopoietic and stem cell niche is further encouraged by 

retrospective studies of patients that received allogeneic bone marrow transplants in which 

patient HSC did not recover to the levels of control patients, even after 12 years, as measured 

by CFU-F frequencies, suggesting that the damage of the structural, hematopoietic supportive 

cells of the bone marrow can be sustained 36.  

 In the current study we characterized the impact of direct and indirect damage on 

osteoblasts and their subsequent ability to support progenitor and stem cells. Following 

transplantation and during development, HSC home to the endosteal niche which acts as a 

critical regulator of stem cell quiescence, proliferation, and conservation of the stem cell pool. 

Direct contact between osteoblasts and HSC is required for HSC survival 7;8;37 with a dynamic 

relationship demonstrated by the ability of HSC to  regulate the cytokines expressed by 

osteoblasts in order to enhance their own survival. Studies by Calvi et al., and others, have 

shown that number of osteoblasts present in the niche directly modulates the numbers of HSC 

that can be supported by the niche 7;8;20.   

        Our data has shown that both direct exposure to chemotherapy as well as exposure to 

conditioned media from chemotherapy damaged BMSC increases the activity of osteoblast 

derived TGF-β, one of the known negative regulators of HSCs (Figure 1) 11-13.  Consistent with 

the literature suggesting that TGF-β activity leads to decreased expression of HSC surface 

cytokine receptors and a deficit in the stem cell pool,13;38 Figures 2 and 3 summarize data that 

show the decreased ability of chemotherapy damaged osteoblasts to interact with, and support, 

both human embryonic stem cells as well as more differentiated pro-B cells. Direct treatment of 

HOB with active TGF-β results in a comparable reduction in pro-B cell adhesion and chemotaxis 

as well as diminished ability to support Oct-4 positive stem cells.  In addition, HOB pre-treated 

with either rTGF-β or melphalan had a decreased ability to support differentiation of CD34+ 

bone marrow cells.  Deficits occurred in the lymphocyte population, with decreased B cells, NK 
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cells and T cells in addition to decreased erythroid and granulocyte progenitors.  Collectively, 

these data suggest that chemotherapy induced increases in active TGF-β, from damaged 

BMSC and HOB, could contribute to deficits in the reconstitution of the hematopoietic niche. 

           Another consideration when evaluating the dynamic balance of the niche is the role of 

adhesion molecules physically tethering progenitor cells to supportive cells of bone marrow, 

which provides signals for their maturation and survival.  Earlier reports have described the role 

of the VCAM-1/VLA-4 interaction in hematopoiesis. Ryan et al demonstrated that adhesion of B 

cell precursors to BMSC was dependent on this interaction and Dittel et al elucidated how 

cytokines could alter the surface expression of VCAM-1 39;40. 

In addition to the VCAM-1/ VLA-4 interaction, the CD44/ hyaluronan (HA) interaction has 

also been recognized for its role in hematopoiesis and homing of primitive cells to the bone 

marrow 41.   Avigdor et al demonstrated the important roles of CXCL12 with respect to the 

migration and anchorage of progenitors to the bone marrow through CD44/ HA 42.  It was based 

on these observations that we investigated the effects of chemotherapy on VCAM-1, CD44, and 

HA in our model of osteoblast damage.  Figure 2D shows that pro-B cells co-cultured with 

chemotherapy or rTGF-β pre-treated osteoblasts are unable to adhere to the osteoblasts 

efficiently.  However, investigation of the adhesion molecules VCAM-1, CD44 and Hyaluronan 

indicated no altered expression following either chemotherapy or rTGF-β exposure (data not 

shown).  These observations suggest that the deficit in hematopoietic support, in our model, 

may be the result of changes in a soluble factor acting in either an autocrine or paracrine 

manner to diminish optimal cell:cell interaction or that an unidentifiable adhesion molecule is 

influenced by the treatment we tested.  Paracrine effects could be modulated, in part, through 

alteration of integrin activity, which would not have been detected in our assay. These 

observations also suggest very specific effects of chemotherapy on stromal and osteoblast 

components of the niche, emphasizing the need to understand each population individually to 

understand the total response of the niche to therapy.  
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 We examined the effect of chemotherapy on osteoblast derived CXCL12.  Data in 

Figure 3 shows that both chemotherapy and rTGF-β decrease CXCL12 mRNA and protein in 

osteoblasts 43. The decrease in CXCL12 correlated with a decrease in chemotaxis of CXCR4+ 

JM-1 cells towards osteoblasts pre-treated with either melphalan or rTGF-β. However, in 

contrast to previous experiments in which we reported chemotactic deficits in VP-16 treated 

BMSC 16,  no  significant reduction in chemotactic support of CXCR4+ JM-1 cells was noted in 

the VP-16 treated HOB groups. These data suggest potential drug specific effects in which 

melphalan may target CXCL12 expression as well as other critical chemotactic factors in HOB, 

while VP-16 does not as globally affect chemotaxis regulators, allowing some maintenance of 

chemotactic support.  One such factor for future investigation would include stem cell factor 

(SCF), which has been shown to synergize with CXCL12 in homing of stem cells and retention 

in their developmental niche 44.   

Collectively, these data suggest that generation of active TGF-β in the endosteal niche 

can negatively affect production of CXCL12, thus impairing progenitor cells from homing to the 

bone marrow, engrafting, and reconstituting the patient’s immune system.  This observation of 

vulnerability of gene expression to genotoxic stress in HOB prompted us to investigate the 

magnitude of direct and indirect chemotherapy-induced damage to osteoblasts by microarray 

analysis. After 6 hours of treatment, the diverse changes observed in HOB gene expression 

alone allow for a better understanding of the significance of the potential damage to the niche 

and the subsequent impact on hematopoietic reconstitution that relies on balanced expression 

of several proteins.  Interestingly, all 3 HOB treatments (rTGF-β, melphalan and conditioned 

media from melphalan pre-treated BMSC) evaluated in the microarray analysis identified NF-κB 

as a point of convergence (Figure 4).  As with all gene expression pathway analysis, in the 

absence of targeted genetic manipulation or biochemical analysis, the interactions remain 

hypothetical.  The most pronounced value of these data in the current study is to provide a 

sense of the responsiveness of osteoblasts to genotoxic stress, as well as to factors such as 
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TGF-β, which may participate in both autocrine and paracrine signaling in the stem cell niche.  

Points of convergence, such as NF-κB, may then provide the focus for a more mechanistic 

investigation of cell signaling downstream of stress in the bone marrow microenvironment. 

             Central to our investigation was an interest in the influence of active TGF-β released 

from chemotherapy treated HOB as well as TGF-β that may be released from neighboring 

BMSC in a damaged microenvironment as just two potential sources of this growth factor. 

Studies by Batard et al have described the importance of low levels of TGF-β in the bone 

marrow microenvironment for maintenance of the stem cell pool through up-regulation of the 

CD34 antigen, a marker of primitive HSC 38.  Consistent with the need for rigorous control of 

total TGF-β levels, a number of studies have shown the benefit of TGF-β neutralization during 

therapy 45.  Lagneaux et al showed that stromal cells isolated from B-CLL patients had 

increased TGF-β production correlated with decreased colony-stimulating activity which was 

corrected by  neutralizing TGF-β activity 13.   Using a murine model of breast cancer, Biswas et 

al showed that radiation or doxorubicin treatment increased levels of TGF-β which correlated 

with increased circulating tumor cells and increased metastasis 46. These effects were  

abrogated by anti-TGF-β antibodies providing rationale for utilization of TGF-β inhibitors, such 

as GC1008 in clinical trials in the setting of renal cell carcinoma and malignant melanoma 47.  

Based on our observations, application of TGF-β neutralizing antibodies may have utility 

through influence on both hematopoietic cells and the niche in which they develop.   

Our observations indicate that osteoblasts are susceptible to genotoxic stress 

documented by alteration of gene expression profiles (Figure 4, S1-4) and functional deficits in 

hematopoietic cell support, including differentiation (Figure 2C). Further investigation will identify 

targets that may prove useful in augmenting hematopoietic recovery through “balancing” the 

stem cell niche following therapy-induced damage. Long-term hematopoietic deficits may, in 

fact, derive in part from the immediate changes in the niche that are imposed by aggressive 

therapeutic regimens.  This aspect of marrow function may highlight an area in which better 
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understanding could identify new therapeutic strategies to augment efficient patient recovery 

follow bone marrow transplantation. 
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Figure legends: 

Figure 1: Direct and indirect damage increase HOB levels of active TGF- β.  A) HOB were 

 treated with 50 μg/ml melphalan or 50 μM VP-16 for 24 hours and real time PCR completed (top) and 

HOB were treated directly for 4 hours with chemotherapy (100 μM VP-16 or 100 μg/ml melphalan), 

fixed and stained for detection of phospho-Smad2 (green), as a read-out of TGF-β activity (bottom) 

(DAPI stain for nuclei-blue).  B) HOB were treated with 10 ng/ml rTGF-β for 24 hours and real time 

PCR completed (left).  Additionally, HOB were treated with 10 ng/ml rTGF-β for 24 hours, the HOB 

layer was rinsed and new media was added and allowed to condition for 24 hours before being 

evaluated by ELISA to quantitate the amount of secreted TGF-β (right).  

 

Figure 2: Chemotherapy or rTGF-β exposure diminished the ability of HOB to support 

 human embryonic stem cells and  CD34+ bone marrow cells and treatment diminishes HOB  

interaction with pro-B cells.   HOB were pre-treated with 10 ng/ml rTGF-β, 50 μg/ml melphalan or 50 

μM VP-16 for 24 hours.  HOB were rinsed thoroughly and embryonic stem cells were co-cultured in 

complete media as recommended by WiCell. After 2 days of co-culture, stem cell colonies were 

counted, stained for Oct-4 as an indicator of potential for pluripotency (A) and designated as 

undifferentiated or differentiated based on classic morphology of well defined borders (B).  To evaluate 

osteoblast support of CD34+ bone marrow cells, HOB cells were treated for 24 hours with 10 ng/ml 

rTGF-β, or with 25 μg/ml melphalan.  After the 24 hour treatment, the HOB were thoroughly rinsed and 

8.8x10^5 CD34+ cells were added in co-culture.  Recombinant IL-3 (100 ng/ml) was added in all 

groups.  CD34+ cells were collected at 2 and 6 days after co-culture and samples were given to 

pathology for analysis.  Cellular populations were determined by the presence of surface markers (C).  

To determine if treatment of HOB affected pro-B cell adherence, HOB were treated with 10 ng/ml rTGF-

β, 50 μg/ml Melphalan or 50 μM VP-16 for 24 hours. Adherent layers of HOB were rinsed thoroughly 

and co-cultured with 1x105 fluorescently labeled pro-B cells. After 24 hours the media was aspirated 
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and non-adherent pro-B cells were gently rinsed. Remaining HOB and pro-B cells adherent to the HOB 

layer were then trypsinized and events within the easily distinguishable lymphoid gate, based on 

fluorescence and forward/side scatter, were counted on high flow rate for 30 seconds to enumerate 

number of pro-B cells attached to the HOB (D).  

 

Figure 3: Chemotherapy or rTGF-β diminishes HOB expression of CXCL12 and support of 

pro-B cell chemotaxis. A) HOB were treated with 10 ng/ml rTGF-β, 50 μg/ml melphalan or 50 

μM VP-16 for 24 hours. RNA was isolated and real time RT-PCR was performed for CXCL12. 

B) HOB were treated with 10 ng/ml rTGF-β, 50 μg/ml melphalan or 50 μM VP-16 for 24 hours. 

Growth factor or chemotherapy was removed and fresh media was added, allowed to condition 

for 24 or 48 hours, and then evaluated in a CXCL12 specific ELISA. C) HOB were treated with 

rTGF-β, 50 μg/ml melphalan or 50μM VP-16 for 24 hours. 350 μl of the supernatant was then 

removed and placed into the bottom chamber of a transwell.  1x105  JM-1 progenitor cells were 

placed in the top chamber and allowed to migrate for 4 hours. After 4 hours the cells migrated 

were read on high flow rate for 30 seconds on a flow cytometer.  

 

Figure 4: Intersection of global gene changes during direct and indirect chemotherapy.    HOB 

cells were treated for 6 hours with 10ng/ml rTGF-β, 50 μg/ml melphalan, or conditioned media from 

BMSC  (CMM) pre-treated with 50 μg/ml melphalan for 24 hours.  BMSC exposed to melphalan were 

rinsed and fresh media was place on adherent layers to condition and to remove drug prior to 

stimulating HOB.  After the 6 hour treatment, HOB RNA was isolated and microarray analysis was 

completed to evaluate global changes in gene expression. A) The Venn diagram summarizes the 

number of HOB genes that changed within each group as well as the changes between the groups.  B) 

A gene summary was made of  the genes that commonly were up-regulated (4, red) or down-regulated 

(2, green) for the intersection of all 3 treatments (rTGF-β:CMM:melphalan).  C) A network diagram was 
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generated for the intersection of all 3 treatment groups that highlights the convergence of potential 

pathways associated with those genes such as NF-κB. All genes listed were generated using a 2.5% 

FDR and 1.5 fold significant cut off.  
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Abstract 

Background:   The host’s response to infection is characterized by altered levels of 

neurotrophins and an influx of inflammatory cells to sites of injured tissue.  Progenitor cells that 

give rise to the differentiated cellular mediators of inflammation are derived from bone marrow 

progenitor cells where their development is regulated, in part, by cues from bone marrow 

stromal cells (BMSC).  As such, alteration of BMSC function in response to elevated systemic 

mediators has the potential to alter their function in biologically relevant ways, including 

downstream alteration of cytokine production that influences hematopoietic development.   

Methodology/Principle:  In the current study we investigated BMSC neurotrophin receptor 

expression by flow cytometric analysis to determine differences in expression as well as 

potential to respond to NGF or BDNF.  Intracellular signaling subsequent to neurotrophin 

stimulation of BMSC was analyzed by western blot, microarray analysis, confocal microscopy 

and real-time PCR. Analysis of BMSC Interleukin-6 (IL-6) expression was completed using 

ELISA and real-time PCR.  

Conclusion:  BMSC established from different individuals had distinct expression profiles of the 

neurotrophin receptors, TrkA, TrkB, TrkC, and p75NTR.  These receptors were functional, 

demonstrated by an increase in Akt-phosphorylation following BMSC exposure to recombinant 

NGF or BDNF.  Neurotrophin stimulation of BMSC resulted in increased IL-6 gene and protein 

expression which required activation of ERK and p38 MAPK signaling, but was not mediated by 

the NFκB pathway.  BMSC response to neurotrophins, including the up-regulation of IL-6, may 

alter their support of hematopoiesis and regulate the availability of inflammatory cells for 

migration to sites of injury or infection.  As such, these studies are relevant to the growing 

appreciation of the interplay between neurotropic mediators and the regulation of 

hematopoiesis.  
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Introduction 

Neurotrophins are a family of proteins which are best characterized by their modulation 

of survival, differentiation and apoptosis of cells in the nervous system.  This family includes 

NGF, BDNF, neurotrophin 3 (NT-3), and neurotrophins 4/5 (NT-4/5)1.  Neurotrophins signal 

through the high-affinity tyrosine kinase (Trk) receptors, TrkA, TrkB, TrkC, and the low-affinity 

receptor, p75NTR, a member of the tumor necrosis factor receptor family1;2.  

NGF is a survival factor essential for a large number of neuronal and non-neuronal cell 

types.  The importance of neurotrophin signaling is highlighted by neurodegenerative conditions 

such as Alzheimer’s disease, in which there is a dysregulation of pathways modulated by 

neurotrophic factors3;4.  In addition to its role in neurological pathways, neurotrophin signaling 

has an impact on innate and adaptive immunity5.  Alteration of NGF has been documented in 

autoimmune inflammatory diseases including multiple sclerosis6, psoriasis7, systemic lupus 

erythematosus8 and rheumatoid arthritis9.  Traumatic brain injury10, neuroectodermal tumors11 

and endocrine disorders12 are a few examples of many conditions also associated with 

increased neurotrophins. A positive correlation between NGF level and allergic asthma, airway 

hyperactivity, total IgE and the number of eosinophils in the serum has also been noted13.  

These observations suggest that neurotrophins may mediate hematopoietic responses to 

several clinically relevant conditions.  Importantly, NGF has the potential to act systemically on 

distant organs, including the bone marrow which serves as the primary site of postnatal 

hematopoiesis14;15.  

 BMSC provide the structural and physiological support for hematopoietic cell survival, 

proliferation and differentiation.  Resident stem and immature hematopoietic progenitor cells 

mature under the influence of the bone marrow microenvironment to functional, mature cells of 

diverse lineages14;15. As such, exposure of this microenvironment to circulating neurotrophins, 

cytokines and growth factors has the potential to alter its function, resulting in the generation of 

hematopoietic populations that are markedly different than those in healthy individuals. 
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In the current study, a cytokine that was consistently and significantly increased in 

BMSC exposed to NGF or BDNF was Interleukin-6 (IL-6).  IL-6 is a multifunctional cytokine16 

modulated by other factors including IL-1, TNF-α, growth factors, hormones, and viral or 

microbial products17-19.  Dysregulation of IL-6 production has been reported in the pathogenesis 

of several autoimmune diseases including rheumatoid arthritis (RA), systemic-onset juvenile 

chronic arthritis (JCA), autoimmune encephalomyelitis, psoriasis, antigen-induced arthritis (AIA), 

and Systemic Lupus Erythematosus16;20-22.  IL-6 is a critical factor for hematopoiesis through 

regulation of the entry of hematopoietic stem cells into the cell cycle, proliferation of cells 

committed to the myeloid and lymphoid lineage, and maturation of B-cells into antibody 

producing cells16;23-26.  Increased IL-6 expression in transgenic mice results in massive 

polyclonal plasmacytosis and malignant plasmacytoma26. In contrast, a reduction in 

hematopoietic progenitor cell support has been reported by IL-6 deficient bone marrow stromal 

cells27.  These observations suggest that changes in IL-6 levels could impact on the 

development of hematopoietic populations available to participate in inflammatory responses 

with the novelty of our current study derived from consideration of the potential of systemic 

neurotrophic factors to modulate IL-6 in the marrow microenvironment through direct stimulation 

of BMSC.  

Depending upon the cellular context, IL-6 transcription has been documented to be 

influenced by both NF-κB and MAPK (mitogen-activated protein kinase) cascades subsequent 

to NGF stimulation28;29.  Studies have shown that NGF activates NF-κB in rat 

pheochromocytoma PC12 cells30.  NF-κB is sequestered in the cytoplasm by the IκB family of 

proteins which become phosphorylated, and degraded by the proteasome with subsequent NF-

κB translocation to the nucleus31.  As a transcription factor involved in the control of 

inflammatory responses, cellular growth, and apoptosis31, NF-κB is involved in the pathology of 

several diseases, including cancers, arthritis, chronic inflammatory bowel disesse, asthma and 

neurodegenerative diseases32-36.  Neurotrophin stimulation of the MAPK pathway has been 
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documented in the PC12 cell line37, dorsal root ganglia, and transient receptor potential vanilloid 

1 (TRPV1) (the capsaicin receptor) model38.  Activation of the TrkA receptor by NGF in airway 

smooth muscle cells also leads to activation of the MAPK cascade including p38 MAPK, and 

extracellular-regulated protein kinase 1/2 (ERK1/2)39.  Following stimulation, the MAPK family of 

proteins activate several downstream factors involved in regulating inflammation37-39.      

Based on the diverse set of pathologic conditions associated with dysregulated 

neurotrophic factors, many of which involve inflammation as a central feature, we investigated 

the effects of NGF and BDNF on BMSC function as a critical influence on regulation of 

hematopoietic cell development.     

 

Materials and Methods 

Ethics Statement 

This study was conducted according to the principles expressed in the Declaration of 

Helsinki. The study was approved by the Institutional Review Board of West Virginia University.  

All patients provided written informed consent for the collection of samples and subsequent 

analysis. 

 

Cell culture and reagents 

P163, P164, PED299, PED604, PED62304 and GPBM 1-32 primary human bone 

marrow stromal cells (BMSC) were derived from consenting donors (written consent) with the 

approval of the West Virginia University Institutional Review Board.  Establishment of BMSC 

and their characterization have been previously described in detail40. Because the 

characteristics of BMSC can be influenced by preparative regimens, all lines were established 

identically and evaluated at comparable passage number in the experiments presented. BMSC 

were maintained in Minimum Essential Medium, Alpha (α-MEM) (Mediatech, Manassa, VA) 
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supplemented with 10% fetal bovine serum (FBS) (Hyclone, Pittsburgh, PA), 2mM L-glutamine 

(Mediatech) 100 mg/ml streptomycin, 100 IU/ml penicillin (Sigma, St. Louis, MO), and 5x10-5M 

2-β mercapthanol (Sigma), at 37˚C in 6% CO2.  Of note, the concentration of 2- β mercapthanol 

used is less than that published as having the potential to stimulate cells to neural 

differentiation41.  The adherent, fibroblastic BMSC utilized in all of our studies constitutively 

express VCAM-1, Fibronectin, SDF-1 (CXCL-12), VEGF, Thrombospondin and a variety of 

cytokines that influence both lymphoid and myeloid cell survival and expansion.   

 

Flow cytometric analysis 

Six different BMSC lines were grown to confluence (~106 cells), trypsinized, fixed in 10% 

formaldehyde for 30 minutes, and subsequently permeabilized in 70% EtOH for 30 minutes on 

ice.  To reduce non-specific antibody binding, BMSC were blocked in 3% BSA in PBS for 15 

minutes and subsequently incubated with 1μg per sample of rabbit polyclonal TrkA or TrKB, 

goat polyclonal p75NTR specific antibodies from Santa Cruz Biotechnology,Inc.  (Santa Cruz, 

CA). For detection of TrkC, TrkC-PE (FAB373P) and isotype control goat IgG-PE were acquired 

from R&D systems (Minneapolis, MN).  The additional isotype control antibody, rabbit IgG, was 

purchased from Southern Biotechnology (Birmingham, AL).  Primary antibody binding was 

detected by incubation with 1μg per sample fluorescein isothiocyanate (FITC)–conjugated goat 

anti-rabbit (Santa Cruz Biotechnology) for Trk A and TrkB and FITC–conjugated rabbit anti-goat 

IgG(H+L) (Southern Biotechnology) for p75NTR.  Data were acquired by counting 10000 events 

and analyzed using FACSCalibur (BD Biosciences, San Jose, CA).  One representative cell line 

from the six lines examined was chosen for completion of the remaining experiments in the 

manuscript unless indicated. 
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Western blot analysis 

Confluent BMSC were treated with 100 ng/ml mouse NGF 2.5 S (Roche Applied 

Science) or recombinant human BDNF (Invitrogen, Carlsbad, CA) for 5 minutes, 30 minutes, 1 

hour and 6 hours.  Following treatment, BMSC were lysed in complete cell lysis buffer (50 mM 

Tris-HCl [pH 7.4], 150 mM NaCl, 1% Triton X-100, 0.25% Na-deoxycholate, 1 mM EDTA, and 1 

mM NaF, 1 mM DTT, 1 mM PMSF, 1 mM activated Na3VO4, 1 μg/mL aprotinin, 1 μg/mL 

leupeptin, and 1 μg/mL pepstatin) on ice for 15 minutes.  Following centrifugation at 20,000x g 

for 15 minutes, supernatants were collected and protein concentration was determined using 

the bicinchoninic acid protein assay (BCA).  Proteins were resolved on SDS-PAGE and 

transferred to nitrocellulose membranes (Schleicher & Schuell Bioscience, Keene, New 

Hampshire).  Membranes were blocked in TBS/5% nonfat dry milk/0.1% Tween-20 at room 

temperature for 1 hour, and probed with the primary antibodies rabbit anti-phospho-Akt (Ser473) 

or rabbit anti-Akt, (Cell Signaling Technology, Inc, Danvers, MA).  Additional antibodies included 

rabbit Erk 1/2 (Cell Signaling Technologies) and anti-phospho ERK1/2 purchased from Promega 

Corporation (Madison, WI).  Mouse anti-GAPDH (Fitzgerald Industries International, Concord, 

MA) was used as a lane loading control.  Washes were in TBS/0.1% Tween-20 following 

incubation with horseradish peroxidase-conjugated secondary antibodies. Luminol (Santa Cruz 

Biotechnology) generated signal was detected on x-ray film.  Densitometric analysis was 

performed using the Fotodyne imaging system with Foto/Analyst version 5.00 software 

(FOTODYNE Inc., Hartland, WI) for image acquisition, and TotalLab version 2005 software for 

analysis. 

 

Cellular Fractionation and Western Blot Analysis 

BMSC were left untreated or treated with NGF (100ng/ml) for 30 min.  Cells were 

trypsinized, pelleted and cellular fractionation was completed using the NE-PER cytoplasmic 

and nuclear extraction kit (Pierce Biotechnology, Rockford, IL). Protein concentration was 
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determined using the bicinchoninic acid (BCA) protein assay (Pierce Biotechnology). 

Cytoplasmic and nuclear proteins were resolved on SDS-PAGE gels and transferred to 

nitrocellulose membranes. Membranes were blocked with 5% nonfat dry milk/ 1X TBS/0.1% 

Tween-20 and probed with a mouse monoclonal p65 specific antibody.  After incubation with 

anti-mouse HRP- conjugated secondary antibody, the signal was visualized using Immobilon 

chemiluminescence reagents (Millipore, Billerica, MA). 

 

RNA Isolation 

Total RNA was isolated from three BMSC lines treated with NGF or BDNF (100ng/ml) 

using the Qiagen RNeasy Mini kit following the recommendations of the manufacturer (Qiagen, 

Valencia, CA).  Pelleted BMSC were lysed by centrifugation through QIA shredder spin columns 

and RNA was treated with 1U DNAse for 15 minutes at 24°C.  Samples were quantified at 

260nm (GENESYS-10UV, Spectronic, Unicom) and protein contamination determined by 

evaluation at 280 nm. 

 

Microarray analysis 

Gene expression profiles of BMSC were assessed using the Human Neurotrophin and 

Receptor Gene Array HS-018 (SuperArray, Frederick, MD) as a representative, but not 

exhaustive, approach for screening of NGF or BDNF induced changes in gene expression.  

BMSC RNA from untreated control and NGF or BDNF treated cells was converted to 

biotinylated cDNA using the Ampolabeling-LPR kit (SuperArray).  Membranes were hybridized 

with cDNA probes overnight at 60°C with continuous agitation at 5–10 r.p.m and then washed 

as recommended by the manufacturer.  Signal was detected on X-ray film with images scanned 

and analyzed with GEArray Expression analysis suite software (SuperArray).  Signal intensities 

were normalized to GAPDH and beta-actin on each membrane.  Only those genes having a 3 

fold or higher change in expression were examined (GEO accession number GSE18537). 
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Real-time PCR 

To determine relative IL-6 expression, real-time PCR was used to validate data from 

microarray experiments.  The one-step QuantiTect SYBR Green RT-PCR Kit (Qiagen) was 

used as recommended by the manufacturer.  All reactions were performed in triplicate using 80 

ng of RNA per reaction, IL-6 gene primers (#PPH08958A; SuperArray) or the housekeeping 

gene GUSB (beta glucuronidase) (Real Time Primers, Elkins Park, PA).  Amplifications were 

completed using a 7500 real-time PCR system (Applied Biosystems, Foster City, CA).  

Amplification conditions included 50°C for 30 minutes, 95°C for 15 min, 45 cycles of 94°C for 15 

seconds, 55°C for 30 seconds, and 72°C for 45 seconds. The relative quantitative method 

(DDCT) was used to evaluate gene expression in experimental and control cells for each gene 

examined42. 

 

ELISA  

BMSC were cultured in a 96-well plate and serum deprived (1% FBS) for 24h before 

treatment with 100 ng/ml NGF or BDNF for 24 or 48 hours. Supernatants were collected and a 

human IL-6 ELISA completed (eBioscience, San Diego, CA) with 1/20 dilution of supernatants 

as recommended by the manufacturer.  For experiments in which the effects of MEK and MAPK 

inhibition were studied, 20µM of the MEK inhibitor U0126 or 10µM of the p38 MAPK inhibitor SB 

203580 (Promega) were added 2 hours before treatment with NGF or BDNF in select wells.  

Integrity of cell layers were confirmed prior to collection of supernatants.  

 

Immunostaining and confocal microscopy 

BMSC were grown to confluence on glass coverslips and treated with 100 ng/ml NGF, 

BDNF or rTNF-α (R&D Systems), for 5, 30 and 60 minutes.  Following treatment, BMSC were 

rinsed in phosphate-buffered saline (PBS) and fixed in 4% formaldehyde at room temperature 

for 30 minutes, followed by rinsing and fixing in acetone for 10 minutes.  Permeabilization of 
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cells was completed with 0.5% Triton X-100 for 30 minutes.  Nonspecific antibody binding was 

blocked by incubation of BMSC for 30 minutes in PBS/5% BSA.  NF-κB localization was 

evaluated by incubation of BMSC with 2 μg/coverslip of mouse anti-human monoclonal NF-κB 

p65 (Santa Cruz Biotechnology) in PBS/5% BSA for 1 hour.  Subsequently, Alexa Fluor 555 

donkey anti-mouse IgG(H+L) (Invitrogen), was applied at a 1 μg/coverslip for one hour.  

Coverslips were then inverted on slides and mounted with Prolong Gold antifade reagent with 4, 

6 diamidino-2-phenylindole (DAPI) (Invitrogen).  Images were collected using a Zeiss LSM510 

confocal on an AxioImager Z1 microscope (Carl Zeiss) with a 405-diode laser to excite DAPI 

and a 543 HeNe laser to excite the AlexaFluor 555-labeled secondary antibody.  Cells were 

visualized using a 40x/1.30 oil objective. All confocal images were adjusted equally using Adobe 

Photoshop. 

 

Statistical analysis 

Data presented were expressed as mean ± SEM for triplicate samples. Statistical 

analysis was performed by ANOVA (p 0.01 determined as significant) and Student t-test (p 

0.01 determined as significant). 

 

Results 

BMSC have distinct expression profiles for TrkA, TrkB, TrkC and p75NTR.  

To determine the expression pattern of neurotrophin receptors by BMSC, flow cytometry 

analysis of BMSC with antibodies specific for, TrkA, TrkB, TrkC and p75NTR was performed.  

While the levels of expression for a given receptor varied between stromal lines derived from 

different individuals, all BMSC lines used in this study expressed both the high and low affinity 

receptors to respond to neurotrophins (Figure 1).   
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BMSC demonstrate Akt phosphorylation following NGF or BDNF exposure. 

Activation of Akt occurs in response to a variety of stimuli, and relevant to the current 

study, is a well documented consequence of neurotrophin stimulation43. Therefore, while not a 

investigative focus in this work, the phosphorylation of Akt was utilized simply as a read-out to 

determine if BMSC could respond to neurotrophin binding to the Trk receptors.  Phosphorylation 

of Akt occurred rapidly following BMSC exposure to 100 ng/ml of NGF or BDNF. NGF treated 

BMSC Akt phosphorylation was detected as early as 5 minutes with the peak signal occurring at 

30 minutes.  Phosphorylated Akt began to diminish by 1 hour, and minimal signal was detected 

after 6 hours of exposure to NGF.  In BDNF treated cells, peak phosphorylation of Akt occurred 

at 5 minutes and gradually diminished over 6 hours (Figure 2).   

 

Exposure to NGF or BDNF increases IL-6 gene expression in the BMSC. 

To investigate the cytokine pattern of BMSC exposed to neurotrophic factors, RNA 

isolated from BMSC exposed to NGF and BDNF was analyzed by microarray as described.  

While many genes were increased, and fewer decreased, following NGF or BDNF exposure, 

with a cut-off of 3 fold-change compared to untreated controls, Fibroblast Growth Factor-2 

(FGF2) and IL-6 emerged as those genes markedly upregulated following NGF or BDNF 

treatment in this panel (Figure 3 A-B). In addition, the BDNF receptor (NTRK2) and CRH1 gene 

expression increased following NGF exposure, but did not meet the threshold cutoff in cells 

exposed to BDNF. IL-6 was chosen for further investigation to determine the signaling pathway 

that may underlie altered expression based on its well characterized role in hematopoiesis.  

To validate our IL-6 microarray data, relative transcript levels were determined by 

quantitative real-time PCR. Consistent with the microarray data, IL-6 mRNA increased in BMSC 

after exposure to both NGF and BDNF (Figure 3 C-D).  
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BMSC exposed to NGF or BDNF demonstrate increases in IL-6 protein consistent with 

gene expression changes 

To evaluate effects of NGF or BDNF on IL-6 protein, BMSC were serum deprived (1% 

FBS) for 24 hours and subsequently exposed to 100 ng/ml of NGF or BDNF for 24 or 48 hours 

in triplicate.  An IL-6 ELISA was performed on the supernatant collected from each time point to 

determine changes in the production of IL-6 protein.  Consistent with the up-regulation of IL-6 

message, exposure of BMSC to NGF and BDNF increased the level of IL-6 protein (Figure 4).  

To determine the optimal concentration of neurotrophins needed to induce NGF or BDNF 

signaling, resulting in IL-6 protein increase, a dose response curve was completed, using an IL-

6 ELISA with doses of neurotrophins ranging from 0-100 ng/ml.  A MTT assay was used to 

determine the concentrations of neurotrophins used were not toxic to the BMSCs (data not 

shown).  To determine if there is a role for the sIL-6R in our model, BMSC were left untreated or 

stimulated with NGF or BDNF (10-100ng/ml) for 24 hours and a sIL-6R ELISA was completed.  

There was no detectable sIL-6R present in the untreated cells or in those cells treated with NGF 

or BDNF (data not shown). 

 

Neurotrophins do not induce NF-κB signaling in BMSC 

In neurons, it has been established that neurotrophin stimulation activates signaling through NF-

κB30.  Additionally, NF-κB is a known transcription factor for IL-628.    Using 

immunofluorescence, we determined whether exposure of BMSC to neurotrophins induced 

nuclear translocation of the p65 subunit of NF-κB.  BMSC (one cell line) were exposed to either 

NGF or BDNF.  Subsequent to NGF or BDNF exposure, no nuclear translocation of the NF-κB 

p65 subunit was noted.  In contrast, rTNF-α, which was used as a positive control, induced rapid 

translocation of the p65 subunit from the cytoplasm to the nucleus in the BMSC (Figure 5A).  To 

confirm the lack of p65 translocation to the nucleus with NGF stimulation, BMSC were left 
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untreated or treated with NGF (100ng/ml) for 30 min.  Following treatment, cellular fractionation 

was completed and the fractions analyzed by western blot with p65 specific antibodies.  There 

was no detectable p65 in the nuclear fraction of untreated or NGF treated cells, while p65 was 

readily detected in the cytoplasmic fraction (Figure 5B).  GAPDH was used as a fraction 

contamination control (data not shown). 

 

NGF and BDNF induce MAPK ERK1/2 signaling pathway  

Stimulation of neuronal TrkA with NGF has been shown to activate the MAPK components 

ERK1/2 and p38 MAPK39.  To evaluate the role of neurotrophin induced MAPK signaling in 

BMSC, we analyzed phosphorylation of ERK1/2 as a read out of MAPK activation following 

BMSC exposure to NGF or BDNF.  Phosphorylation of ERK occurred rapidly and transiently in 

both NGF and BDNF treated groups while no phosphorylation was detected in untreated control 

cells (Figure 6).  

 

MAPK ERK1/2 pathway inhibitors blunted IL-6 production following NGF or BDNF 

exposure.   

As shown previously (Figure 4), treatment with NGF or BDNF increased IL-6 protein in BMSC 

supernatants. The increase in IL-6 protein with NGF or BDNF stimulation without any inhibitors 

was statistically significant (p=.001 for NGF and p=.002 for BDNF) (Figure 7).  To further 

investigate the role of ERK1/2 and p38 pathway in neurotrophin induction of IL-6, specific 

inhibitors targeting both pathways were utilized as discussed in methods.  Pre-treatment of 

BMSC with U0126 and SB 203580 in concentrations held low enough to maintain specificity of 

inhibition resulted in approximately a 50% decrease of IL-6 upon exposure to NGF or BDNF 

(Figure 7).  To investigate the role of the Akt pathway in neurotrophin induction of IL-6, BMSC 

were pre-treated as described above with Akt VIII, a specific Akt inhibitor, for 2 hrs prior to 
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stimulation with NGF or BDNF.  Akt inhibition did not decrease IL-6 protein detected in BMSC 

supernatants (data not shown). 

Discussion 

The purpose of this study was to determine if BMSC gene expression is responsive to 

NGF or BDNF as a means by which neurotrophic factors may indirectly influence 

hematopoiesis.  Many in vivo and in vitro studies have investigated the role of neurotrophins in 

hematopoiesis.  NGF has been demonstrated as an important factor for hematopoietic colony 

growth and differentiation44.  Previous work documents its ability to directly influence 

proliferation, differentiation, and maturation of myeloid progenitors along with induction of 

migration, survival and activation of mature hematopoietic cells45-47. NGF is also a chemotactic 

stimulus for human leukocytes and macrophages48;49.  Fewer studies have focused specifically 

on the response of BMSC to neurotrophic factors as the mechanism by which NGF or BDNF 

may indirectly influence hematopoiesis.  However, there have been previous reports that 

document the expression of NGF receptors on BMSC50 as well as the capacity of BMSC to 

produce and respond to NGF during normal hematopoiesis51. The role of BDNF on immune 

function and hematopoietic cell development is not as well defined as NGF, although impaired B 

cell development in bone marrow of BDNF deficient mice has been reported52.   

We have demonstrated expression of both high and low affinity receptors for 

neurotrophins by BMSC, with their level of expression varying between BMSC donors (Figure 1 

A-D).  While in some settings signaling through the low affinity receptor p75 following NGF 

exposure can result in apoptosis53, in the presence of TrkA the signals are predominantly 

reported to be anti-apoptotic54. Co-expression of both high and low affinity receptors by human 

BMSC appear to have favored the anti-apoptotic effects of neurotrophin signaling.   The 

neurotrophin receptors are functional as demonstrated by Akt-phosphorylation following 

stimulation of BMSC by NGF and BDNF (Figure 2 A-B). Phosphorylation of Akt, while it may 
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influence survival of BMSC consistent with its role in several settings, was not being 

investigated in its survival context in our model.  Rather, as a well characterized downstream 

target of neurotrophic signaling it was merely monitored as a measure of functionality of 

receptors in the absence of a clearly defined signal more immediately stimulated by NGF or 

BDNF in BMSC. 

Through microarray analysis we demonstrated that cytokine gene expression by BMSC 

changes in response to NGF or BDNF exposure (Figure 3 A, B).  Any focused panel of gene 

expression analysis is, by design, not an exhaustive evaluation of all the potential targets that 

respond to any stimulus.  As such, we chose a focused evaluation, and subsequently targeted 

IL-6 for follow up based on its diverse involvement in innate immunity, hematopoiesis, and 

inflammatory responses16.  Consistent with the microarray data, IL-6 gene and protein 

expression increased after exposure to both NGF and BDNF as determined by real-time PCR 

and ELISA respectively (Figure 3 C, D and Figure 4).   In addition to IL-6, FGF2 was 

increased more than three-fold that of matched controls by both BDNF and NGF.  Previous 

reports have indicated that elevated FGF2 decreased both stromal cell derived factor-1 (SDF-

1;CXCL12) mRNA and protein in vivo and also diminished the capacity of BMSC to support the 

expansion of peripheral blood derived stem cells55.    Uniquely, the Trk B receptor (NTRK2) was 

increased by NGF, but not BDNF, with the increase reaching our threshold cut-off of three times 

that of untreated cells.  This increase suggests a potential synergistic relationship between 

these two neurotrophic factors in which an NGF increase may position BMSC cells to more 

robustly respond to BDNF through modulation of TrkB receptor expression.  Consequently, 

subtle increases in circulating BDNF may have pronounced signaling potential when NGF 

increases have occurred previously.  

The significant role of IL-6 in inflammation has been demonstrated by the diminished 

ability of IL-6 knockout mice to respond to environmental air pollutants exposure compared to 

wild-type control56.  Of specific relevance to the current study, IL-6 overproduction in transgenic 
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animals resulted in an increase in the number of megakaryocytes, plasmacytosis formation and 

extramedullary hematopoiesis26;57, suggesting elevated IL-6 subsequent to circulating NGF or 

BDNF may contribute to dysregulated immune function. Of note, all reports are not consistent 

with a clear inflammatory response subsequent to increased NGF, with a recent study 

suggesting that NGF may, in fact, have anti-inflammatory actions via its regulation of calcitonin 

gene-related peptide (CGRP) in monocytes58.  This recent work highlights the necessity of 

interpreting data within the confines of the specific model being investigated.  

 Our data do not rule out the possibility of NGF or BDNF acting on gene expression in 

BMSC through one, or several, intermediate factors.  Increased expression or release of 

Substance-P following neurotrophic stimulation of cells has been described in diverse settings 

documenting its important role in the hematopoietic-neuro-immune axis in inflammation, as well 

as normal and malignant hematopoiesis59-64.  Relevant to our model, Substance-P has been 

shown to participate in upregulation of inflammatory cytokines in fibroblastic cells65;66 and more 

recently in a model of increased IL-6, IL-1β, and TNF-α in a model of burn-induced lung injury67.  

These reports raise the possibility that Substance-P may be an intermediate between 

neurotrophic factor exposure and altered gene expression in BMSC as well which has not been 

investigated.  Studies that include targeted knock-out of Substance-P will be intriguing, and are 

required to determine if it is a required mediator of signaling in BMSC.  However, regardless of 

outcome, the biological significance remains that functional changes in a critical component of 

the marrow microenvironment, BMSC, can be elicited by circulating NGF or BDNF.   

Different reports suggest several pathways mediate IL-6 induction and the 

immunomodulatory effects of neurotrophins based on the stimulus and cell type.  Our study 

demonstrated phosphorylation of ERK1/2 MAPK (Figure 6 A, B), with no nuclear translocation of 

NF-κB detected (Figure 5) following NGF or BDNF treatment of BMSC.  Furthermore, we 

observe that ERK1/2 and p38 MAPK pharmacological inhibitors (U0126 and SB203580) 

significantly reduced IL-6 production by BMSC during exposure to NGF or BDNF (Figure 7). 
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This observation is consistent with a recently reported model that included LPS stimulated 

BMSC in which SB-203580 inhibited IL-6 and IL-11 mRNA expression68. Our data suggest ERK 

and p38 MAPK pathways are required for optimal BMSC IL-6 induction by NGF and BDNF, with 

these pathways likely involved in baseline expression of IL-6 as a reduction in steady state 

expression was noted with both inhibitors in the absence of any neurotrophic stimulation. The 

inhibition noted following stimulation was approximately 50% suggesting that other pathways 

are also involved in NGF and BDNF stimulated IL-6 production.  While a dose response of 

increased inhibitor concentration could be completed to determine if more pronounced inhibition 

can be achieved, the approach is not valid based on the loss of specificity that will occur at 

higher doses.  Therefore, experiments were completed with the concentration limited to 

generate meaningful results.  

Collectively these data suggest BMSC can be modulated by neurotrophins in a manner 

consistent with influence on hematopoietic cell proliferation and differentiation, reflected by a 

significant IL-6 increase in this study.  As such, neurotrophins are positioned to regulate the 

availability of inflammatory cells derived from the marrow, through both direct44-47 and indirect 

mechanisms.  Taken together, our data suggest a central role for neurotrophins in the 

inflammatory process subsequent to infection and identify bone marrow stroma as a novel 

target for these factors.  Further, this study broadens the context in which we should consider 

the consequences of dysregulated neurotrophin expression. 
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Figure Legends 
 
 
Figure 1.  BMSC express neurotrophin receptors.  BMSC established from different 

individuals were stained for high affinity receptors (A) TrkA, (B) TrKB, (C) TrkC and the low 

affinity receptor (D) p75NTR with specific antibodies followed by flow cytometric evaluation.  

BMSC expressed distinct profiles of neurotrophin receptors.  Isotype matched controls are 

indicated by the solid histogram.  

 

Figure 2.  BMSC Akt phosphorylation increases following NGF or BDNF exposure.  

Following treatment with NGF or BDNF, BMSC were lysed and protein was resolved by SDS-

PAGE and transferred to nitrocellulose membranes. (A) Membranes were probed with 

antibodies specific for phospho-Akt and total Akt; GAPDH was used as a lane loading control. 

(B) Densitometry demonstrates an increase in phospho-Akt:Total Akt following NGF or BDNF 

exposure. 

 

Figure 3.  NGF or BDNF changes the gene expression profile of BMSC and increases IL-6 

mRNA.  BMSC were treated with 100 ng/ml of (A) NGF or (B) BDNF for 18 hours. The cells 

were collected, RNA was isolated, and microarray analyses were performed. Graphs 

summarize the panel of gene expression changes in the BMSC treated with NGF or BDNF 

compared to untreated control cells.  BMSC were treated with 100ng/ml of (C) NGF or (D) 

BDNF for 1, 2, 4 and 8 hours. The cells were collected, RNA was isolated and real time PCR 

was performed with the one-step QuantiTech SYBR Green kit as instructed by the 

manufacturer.  BMSC IL-6 expression in response to NGF or BDNF exposure compared to 

untreated control cells is shown.  Expression was normalized to the housekeeping gene GUSB.  

Statistical analysis was completed by ANOVA (P ≤ 0.0001) with significance indicated by an 

asterisk. 

 86



 

Figure 4.  BMSC treatment with NGF or BDNF increases IL-6 protein.  BMSC were exposed 

to 100 ng/ml of NGF or BDNF for 24 and 48 hours.  The supernatant was then collected and an 

IL-6 ELISA was performed.  An increase in BMSC IL-6 protein was noted in all treatment 

groups.  Statistical analysis was completed by ANOVA (P ≤ 0.01) with significance indicated by 

an asterisk. 

Figure 5.  Neurotrophins do not induce NF-κB signaling in BMSC.  BMSC were treated with 

100 ng/ml of NGF, BDNF, or TNFα for 5, 30 and 60 minutes. Following treatment, BMSC were 

fixed and probed with antibodies specific for NFκB p65 or its matched isotype control.  Analyses 

of samples by confocal microscopy indicate cytoplasmic p65 in untreated control and 

translocation of p65 to the nucleus upon stimulation with a known positive stimulus, TNF-α (A).  

The subcellular localization of p65 did not change in response to NGF or BDNF.  

Representative images from 30 minutes exposure to stimuli are shown (original magnifications 

×40).  (B) BMSC were left untreated or treated with NGF (100ng/ml) for 30 min. and subcellular 

fractionation and western blot analysis completed with p65 specific antibodies.  Treatment of 

BMSC with NGF did not change the subcellular localization of p65.   

 

Figure 6.  BMSC demonstrate activation of MAPK ERK following NGF or BDNF exposure.   

Following treatment with100 ng/ml of NGF or BDNF, BMSC were lysed and protein was 

resolved by SDS-PAGE and transferred to nitrocellulose membranes.  (A) Membranes were 

probed with antibodies specific for phospho ERK1/2 and total ERK; GAPDH was used as a lane 

loading control. (B) Densitometric quantitation of increase in phosphorylated Erk:Total Erk 

following NGF or BDNF exposure. 
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Figure 7.  ERK and p38MAPK pathway inhibitors blunted IL-6 protein increase during 

NGF or BDNF exposure.  A MEK1/2 inhibitor, U0126, and p38 MAPK inhibitor SB 203580 was 

introduced to BMSC cultures 2 hours prior to NGF or BDNF exposure.  BMSC were then 

exposed to 100 ng/ml of either NGF or BDNF for 24 hours and an IL-6 ELISA was performed on 

collected supernatants.  BMSC pre-treated with U0126 or SB 203580 demonstrated greater 

than 50% decrease in IL-6 protein upon exposure to NGF or BDNF. Statistical analysis was 

completed by ANOVA (P ≤ 0.01) with significance indicated by an asterisk. Groups that included 

inhibitor were compared to matched group with no inhibitors.  BMSC treated with NGF or BDNF 

without inhibitors had a significant increase in IL-6 protein (p=.001 and p=.002 respectively as 

determined by a Student’s t-test). 
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 Figure 2.  BMSC Akt phosphorylation increases following 

NGF or BDNF exposure.   
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Figure 3.  NGF or BDNF changes the gene expression 
profile of BMSC and increases IL-6 mRNA.  
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Figure 4.  BMSC treatment with NGF or BDNF increases IL-6 protein.  
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Figure 5.  Neurotrophins do not induce NF-κB signaling in BMSC.  
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Abstract 
 

Bone marrow stromal cells (BMSC) and osteoblasts are critical components of the 

microenvironment that support hematopoietic recovery following bone marrow transplantation.  

Aggressive chemotherapy not only affects tumor cells, but also influences structural and 

functional components of the microenvironment.  Successful stem cell or bone marrow 

transplantation following myeloablative chemotherapy is dependent on the cellular components 

of the microenvironment to maintain their functionality through secretion of soluble factors and 

expression of cellular adhesion molecules.  In the current study, we investigated the effects of 

chemotherapy treatment on BMSC and human osteoblast (HOB) expression of Interleukin-6 (IL-

6).  

IL-6 is a pleiotrophic cytokine which has diverse effects on hematopoietic cell 

development.  The treatment of BMSC or HOB with melphalan leads to decreases in IL-6 

protein expression.  The decreased IL-6 protein is the most pronounced with melphalan 

treatment compared to several other chemotherapeutic agents tested.  We also observed that 

melphalan decreased IL-6 mRNA and the addition of rIL-6 in combination with melphalan 

treatment restored both IL-6 mRNA and protein. Further investigation is necessary to determine 

the exact mechanism by which chemotherapy affects expression of IL-6, likely at a 

transcriptional level based on observations of decreased IL-6 mRNA with melphalan treatment.  

Collectively, these observations suggest that chemotherapy induced alteration of the bone 

marrow microenvironment, focusing on an IL-6 deficit, may result in decreased or defective 

hematopoietic support of early progenitor cells.  In addition, the decrease in IL-6 protein may be 

important for the use of melphalan as a therapeutic agent for multiple myeloma, where IL-6 

present in the bone marrow microenvironment is a proliferative factor and leads to disease 

progression. 
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Introduction 

The ability of the supportive cells of the bone marrow microenvironment, including bone 

marrow stromal cells (BMSC) and osteoblasts that comprise the endosteal niche, to maintain 

their functional integrity following chemotherapy or irradiation is vital for efficient reconstitution of 

hematopoiesis.  The importance of specialized niches within the marrow environment that 

support stem cell self-renewal and a supply of mature blood cells has been described in detail1-

4.   

Several groups have documented chemotherapy-induced stromal cell damage.  In 

addition, BMSCs isolated from patients receiving standard chemotherapy regimens had a 

reduced capacity to form confluent monolayers5.  Chemotherapy-induced damage diminishes 

the ability of the BMSCs to self-repair, ultimately leading to decreased numbers of functional 

mature blood cells6.  Galotto et al demonstrated that the patients receiving allogenic bone 

marrow transplants have irreversible stromal damage measured using functional assays that 

showed CFU-F frequencies did not recover to normal levels even after 12 years post-

transplant7.  These investigations emphasize the vulnerability of the components of the 

endosteal niche. 

Interleukin-6 (IL-6) is a pleiotropic cytokine that has important roles in expansion of 

hematopoietic progenitors, induction of acute-phase proteins for immune and inflammatory 

responses, and regulation of bone metabolism8;9.  IL-6 is secreted from BMSCs and 

osteoblasts, and has proliferative and anti-proliferative effects.  In the bone marrow 

microenvironment, IL-6 regulates B-cell differentiation and stimulation of T-cells, both necessary 

to maintain the immune system10.  An IL-6 deficiency in the microenvironment decreases DNA 

synthesis in normal hematopoietic progenitor cells11.  Long-term bone marrow cultures 

established from IL-6 knockout mice had delayed stromal cell layer development.  Additionally, 

reduced hematopoietic support activity, measured by CFU-GM, BFU-E, and cobblestone areas, 
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which are characteristic of active hematopoietic proliferation was noted in the absence of IL-6 as 

well 11.  Moreover, IL-6 deficient mice have impaired immune and acute-phase responses12.  IL-

6 deficient mice challenged with diverse viruses and pathogens demonstrated acute-phase 

inflammatory responses were compromised12.  Relevant to the current study, Patchen et al 

observed that IL-6 administration following radiotherapy accelerated multilineage hematopoietic 

recovery in a murine model13.  Based on the association of IL-6 deficits with sub-optimal 

hematopoietic recovery, we undertook investigation to determine whether chemotherapy 

dysregulates IL-6 expression in BMSC and osteoblasts as one factor involved in the 

dysregulated hematopoietic support capacity of the bone marrow microenvironment following 

dose-escalated chemotherapy.  

 In the current model of chemotherapy-induced damage we included the 

chemotherapeutic agents melphalan and VP-16.  Melphalan is extensively used in pre-

transplant chemotherapy regimens for autologous stem cell and allogeneic stem cell 

transplantations14;15.  As such, damage imposed by chemotherapy on the microenvironment is 

of pronounced clinical relevance.   

Our results indicated that BMSCs and osteoblasts express diminished IL-6 protein 

following chemotherapy treatment with melphalan and to a lesser extent, following VP-16 

exposure.  We also report chemotherapy-induced reductions of IL-6 mRNA that are not due to 

increased instability of mRNA in cells stressed by cytotoxic agents and are not associated with 

overt changes in three critical transcription factors.  Collectively, our data suggest that 

melphalan treatment induces an IL-6 deficit in BMSCs and osteoblasts of the endosteal niche, 

potentially contributing to diminished ability of the bone marrow microenvironment to support 

reconstitution of hematopoiesis following myeloablative chemotherapy and subsequent bone 

marrow or stem cell transplantation.  We also observed that recombinant IL-6, in combination 

with melphalan treatment, can help to restore IL-6 mRNA and protein levels suggesting that the 
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addition of IL-6 is potentially able to restore disrupted IL-6 expression, leading to transcription 

and subsequently, translation of IL-6.   

 

Materials and Methods 
 
Cell culture and reagents 
 

Primary human bone marrow stromal cells (BMSC) were derived from consenting 

donors with the approval of the West Virginia University Institutional Review Board.  The cells 

were maintained in alpha-modification of Eagle’s medium (α-MEM) supplemented with 2mM L-

glutamine, 10% fetal bovine serum (Hyclone, Logan, UT), 100mg/ml  streptomycin, 100 IU/ml 

penicillin and 5x10-5M 2-β mercaptoethanol at 37°C in 6% CO2. Primary human osteoblasts 

(HOB) were obtained from PromoCell (Heidelberg, Germany) and maintained in complete 

osteoblast growth media as recommended by the manufacturer.  Phenotype of the osteoblasts 

is confirmed by both alkaline phosphatase staining and bone mineralization assays.  In 

experiments that include chemotherapy treatment, melphalan (Sigma Aldrich, St. Louis, MO) 

was used at a concentration of [50 μg/ml].  Melphalan was dissolved in diluent at a 

concentration of 2.5 mg/ml immediately before use.  Etoposide (VP-16) (Bristol-Myers Squibb, 

New York, NY) was stored at a concentration of 33.98 mM and a final concentration of 50 μM 

was used in all experiments.  Methotrexate (Sigma) was used at [50 ug/ml], vincristine (Sigma) 

was used at [20 μg/ml], docetaxel (Sigma) was used at [50 μM] and carboplatin (Sigma) was 

used at [50 μM].   

 

ELISA 

BMSC and HOB were cultured in a flat bottom 96 well plate in α-MEM complete media 

or complete osteoblast growth media until confluent, and subsequently treated with melphalan 

[50μg/ml] for 24 hours. Following treatment, the media was replaced, supernatants collected at 

2, 4, 6, 8, 24, and 48 hours post-treatment and the confluent layers of BMSC and HOB were 
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lysed in RIPA buffer to allow quantitation of both supernatant and intracellular IL-6 protein 

levels.  Following collection of samples at all timepoints, an IL-6 ELISA (eBioscience, San 

Diego, CA) was completed.  BMSC and HOB were treated for 24hrs with melphalan [50ug/ml], 

VP-16 [50uM], methotrexate, vincristine, docetaxel or carboplatin.  Following treatment, the cells 

were rinsed, media replaced and supernatants collected at 2, 4, 6, 8, 24 or 48hrs post-treatment 

and and IL-6 ELISA completed (eBioscience).  

 

RNA Isolation and Real Time PCR 

Total RNA was isolated using the Qiagen RNeasy kit following the recommendations of 

the manufacturer (Qiagen Inc., Valencia, CA). RNA concentration was determined by 

NanoDrop.  To determine relative levels of IL-6 expression, real-time PCR was completed. All 

reactions were performed in triplicate using 50 ng of RNA per reaction and the one-step 

QuantiTect SYBR Green RT-PCT kit (Applied Biosystems, Foster city, CA). IL-6 gene primers 

(Real Time Primers, Elkins Park, PA) or the housekeeping gene beta-glucuronidase (GusB) 

(Real Time Primers) were used.  Amplifications were completed using a 7500 real-time cycler 

(Applied Biosystems). The amplification conditions were 50°C for 30 minutes, 95°C for 15 

minutes and 45 cycles of 94°C for 15 seconds, 55°C for 30 seconds, and 72°C for 45 seconds. 

The relative changes in gene expression were calculated using the Comparative Ct method16. 

 
 
Results 
 
Melphalan treatment of BMSCs and HOBs results in diminished IL-6 protein. 

To determine if melphalan disrupted IL-6 protein expression, BMSCs and HOBs were 

exposed to melphalan [50μg/ml] and an IL-6 ELISA completed using both cell supernatants and 

lysates.  Melphalan treatment led to decreased IL-6 protein detected in supernatants and 

lysates of both BMSCs and HOBs.  To determine if IL-6 protein detection was decreased due to 

expression of the soluble IL-6 receptor (sIL-6R), BMSCs and HOBs were treated with melphalan 
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and a sIL-6R ELISA completed.  No detectable levels of sIL-6R were detected in BMSCs or 

HOBs (data not shown).  Finally, to evaluate whether IL-6 protein was being degraded more 

rapidly in melphalan treated populations of cells, BMSCs and HOBs were treated with 

melphalan alone or in combination with cyclohexamide [100ug/ml].  Cycloheximide exposure 

resulted in the expected decrease in IL-6 protein over 24 hrs and the addition of melphalan did 

not lead to a more rapid degradation of IL-6 protein (data not shown).   

 

Melphalan treatment, compared to other chemotherapeutic agents, resulted in the most 

pronounced decrease in IL-6 protein. 

Based on the previous data, we investigated if the melphalan-induced decrease in IL-6 

protein was specific or if chemotherapeutic agents, in general, led to the same decrease.  While 

all the different chemotherapeutic agents investigated led to significant changes in IL-6 protein 

compared to untreated cells, melphalan treatment consistently led to the most pronounced 

decrease in IL-6.   

 

The IL-6 polymorphism does not affect how BMSC respond to melphalan. 

An IL-6 polymorphism has been well described in autoimmune and inflammatory 

diseases17-20.  To evaluate a potential correlation between of the G>C174 IL-6 SNP in BMSCs 

treated with melphalan to drug associated changes in IL-6 expression, primary BMSCs were 

first genotyped.  Two representative cell lines of each SNP were treated with melphalan 

[50ug/ml] and an IL-6 ELISA completed.  Regardless of genotype, all cell lines had decreased 

detection of IL-6 protein with melphalan treatment. 

 

Melphalan treatment decreased IL-6 mRNA 

Based on the observation that melphalan decreases IL-6 protein expression, we 

investigated changes in IL-6 mRNA expression with melphalan treatment.  To determine relative 
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IL-6 transcript levels, BMSC and HOB were treated with melphalan [50μg/ml]  and real-time 

PCR completed.  The levels of IL-6 mRNA transcripts increased initially with 4hrs of treatment, 

but overall, decreased with melphalan treatment at the 16hr time point.  To evaluate if 

melphalan treatment altered the stability of IL-6 RNA, BMSCs and HOBs were treated with 

melphalan alone or in combination with Actinomycin-D or α-amanitin.  Treatment of cells with 

Actinomycin-D or α-amanitin in combination with melphalan treatment did not decrease the 

stability of IL-6 mRNA (data not shown).  Additionally, BMSC and HOB were left untreated or 

treated with melphalan [50ug/ml] and cellular fractionation and western blot completed to 

determine if there were any changes in the cellular localization of p65, c-jun or C/EBP-β as 

transcription factors previously described to be required for optimal IL-6 gene expression8.  

There were no changes in the cellular localization of these proteins with melphalan treatment 

compared to untreated cells, using Histone 3 (H3) and heat shock protein 90 (Hsp90) as 

fractionation controls (data not shown). 

 

Recombinant IL-6 treatment restores IL-6 mRNA levels. 

Treatment of BMSC and HOB with melphalan leads to a decrease in IL-6 mRNA.  To 

evaluate if this decrease in mRNA could be restored, BMSC and HOB were treated with 

recombinant IL-6 alone or melphalan alone or in combination with recombinant IL-6.  While 

melphalan decreased IL-6 mRNA as described earlier, the addition of recombinant IL-6 restored 

IL-6 mRNA expression.     

 

Recombinant IL-6 treatment restores IL-6 protein levels. 

Based on the results that recombinant IL-6 restored IL-6 mRNA, we determined if the 

addition of recombinant IL-6 to melphalan treated BMSC and HOB would restore IL-6 protein 

expression.  BMSC and HOB treated with melphalan alone had decreased IL-6 protein as 

described earlier, and the combination of melphalan and recombinant IL-6 led to significant 
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increases in IL-6 protein, with the most pronounced increases at 24 and 48hrs post-treatment.  

Control experiments were completed to confirm that the recombinant IL-6 was completely was 

rinsed from the cells and not being detected in the ELISA as a residual factor (data not shown). 

 

Discussion 

 
In the current study we investigated the effects of chemotherapy on IL-6 expression in 

bone marrow stromal cells and human osteoblast as two representative supportive cells of the 

bone marrow microenvironment that influence stem and hematopoietic progenitor cell 

development3;21-23 .While the target of dose-escalated chemotherapy or irradiation is a tumor cell 

population, it is clear that additional cells are also vulnerable to therapy.  Successful stem cell or 

bone marrow transplantation following immuno-suppressive or myeloablative chemotherapy is 

dependent on the ability of diverse cellular components of the microenvironment to maintain 

their functionality, including secretion of soluble factors and expression of cellular adhesion 

molecules that are critical for the survival, proliferation, and differentiation of stem and immature 

progenitor cells24-29.  

Previously mentioned was the damage that bone marrow stromal cells are vulnerable 

during aggressive treatment.  There has also been much literature describing the effects of 

osteoblast functional deficiencies and how they impact hematopoiesis.  Work by Visnjic et al 

showed defects in hematopoiesis in mice where osteoblast deficiency was induced30.  Another 

model of osteoblast damage was in a transgenic mouse model using the herpesvirus thymidine 

kinase gene under the control of a collagen alpha 1 type I promoter, allowing for lineage specific 

expression of the gene in osteoblasts.  This targeting allowed for the specific ablation of 

osteoblasts by addition of ganciclovir.  These mice lost lymphoid, myeloid and erythroid 

progenitors in the bone and had significantly decreased HSCs.  When osteoblasts were allowed 

to recover, a coincident recovery in hematopoiesis occurred as well in the bone marrow.  Chitteti 
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et al showed that CFU expansion was increased when HSCs were cultured with osteoblasts31.  

This suggests that osteoblasts have critical roles in the regulation of hematopoiesis, most likely 

through both physical and soluble factors. 

We have shown that melphalan treatment decreases IL-6 protein in the absence of 

intracellular accumulation, suggesting melphalan induced changes in BMSC or osteoblasts is 

not causing dysregulated secretion of IL-6 (Figure 1).  IL-6 can signal through both its 

membrane receptor as well as a soluble receptor32-34.  To confirm that the decrease in IL-6 

protein was not due to decreased detection of IL-6, we evaluated if BMSC and HOB expressed 

the sIL-6R in culture and if the expression of the sIL-6R changed in response to melphalan.  

The sIL-6R was not detected in untreated cells or in cells treated with melphalan, suggesting the 

sIL-6R is not interfering with our detection of IL-6 protein in cell supernatants (data not shown).   

BMSC and HOB were treated with a variety of agents to determine if the effects of 

chemotherapy on IL-6 were specific to melphalan or if all chemotherapeutic agents of diverse 

classes resulted in comparable damage.  Heterogeneity in the drugs examined is reflected by 

VP-16 being a topoisomerase II inhibitor, methotrexate an anti-metabolite, vincristine a tubulin 

inhibitor, docetaxel an anti-microtubule agent and carboplatin a heavy metal DNA binding agent.  

While all these agents led to significant changes in IL-6 protein compared to cells that were 

untreated, melphalan had the most pronounced decrease in IL-6 protein in both BMSC and 

HOB (Figure 2).  Additional studies are required to determine if this effect is seen with other 

alkylating agents.  

In addition to our studies evaluating different classes of drugs and their effects on IL-6 

levels, we also investigated changes in IL-6 protein associated with an IL-6 polymorphism.  The 

174 G>C SNP has been well characterized in the setting of auto-inflammatory and autoimmune 

diseases and is somewhat controversial in whether or not the genotype is a prognostic factor17-

20;35.  In general, individuals with a genotype of G/C are thought to have “normal” levels of IL-6 in 

their serum and when presented with an immune challenge, IL-6 levels increase and then return 
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to normal.  Individuals with a G/G genotype are described as having high levels of serum IL-6 

and hyper-respond when presented with an immune challenge, while individuals with a C/C 

genotype are described as having very low levels of IL-6 in their serum and have a minimal 

inflammatory response when presented with an immune challenge20.  It was of interest to us if 

the genotype of an individual affected a person’s response to chemotherapy.  Two BMSC cell 

lines of each genotype were left untreated or treated with melphalan.  Our data show that 

regardless of genotype, all cell lines had decreased IL-6 protein in response to melphalan 

(Figure 3).  Additionally, the amount of IL-6 detected in untreated cells did not correlate with 

genotype as the BMSC genotyped as C/C had the highest levels of IL-6. 

Based on observed changes in IL-6 protein in response to chemotherapy, we next 

investigated whether the decrease in IL-6 protein was due to changes in mRNA.  Our data 

showed that melphalan decreased IL-6 mRNA in both BMSC and HOB (Figure 4), suggesting 

melphalan may be effecting IL-6 expression at a transcriptional level.  We evaluated if 

melphalan treatment was decreasing the stability of mRNA through experiments using 

actinomycin-D and α-amanitin and determined that melphalan treatment was not affecting the 

stability of IL-6 mRNA (data not shown).  We also investigated if any of the transcription factors 

known to positively regulate IL-6 transcription were being affected by melphalan treatment.  

BMSC and HOB were left untreated or treated with melphalan and cellular fractionation and 

western blot analysis completed looking at NF-κB (p65), AP-1 (c-jun) and C/EBP-β8.  It was not 

evident that any of these transcription factors are being affected based on cellular localization 

however, this does not address binding efficiently to the DNA during melphalan treatment, which 

still needs to be investigated. 

Finally, in an effort to evaluate if disrupted IL-6 expression can be restored, BMSC and 

HOB were treated with a combination of melphalan and rIL-6.  While melphalan treatment alone 

decreases IL-6 protein as discussed previously, the addition of rIL-6 with melphalan began to 

restore IL-6 mRNA and protein levels (Figure 5 and 6).  Administering rIL-6 to patients was 
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previously attempted following bone marrow transplant, but the toxicity associated with rIL-6 

treatment have prevented its use in a clinical setting36.  However, the connection between 

melphalan and IL-6 in a clinically relevant setting may be the use of melphalan as first-line 

therapy in treatment of multiple myeloma (MM).  IL-6, in the setting of MM, is a potent 

proliferative and survival factor37 and many attempts have been made to decrease IL-6 in the 

bone marrow microenvironment through the use of proteosome inhibitors and anti-IL-6 

neutralizing antibodies as part of the therapeutic strategy38.  Melphalan, as part of a 

chemotherapy regimen for MM, may initially decrease IL-6 in the bone marrow 

microenvironment, resulting in myeloma cell sensitivity to chemotherapeutic agents.  Work by 

Gupta et al and many others has shown that MM cells in contact with BMSC increase the 

secretion of IL-6 from the BMSC39-41.  By showing that IL-6 levels increase with the addition of 

rIL-6 (Figure 5 and 6), this may, in part, mimic what is happening in an in vivo setting, where 

MM cells have the ability to restore IL-6 signaling in the microenvironment through cell contact, 

thus contributing to relapse of disease. 

In conclusion, we have demonstrated that melphalan, more so than other 

chemotherapeutic agents tested in the current study, decreases IL-6 mRNA and protein with 

decreases not being due to instability of message.  We have also shown that the addition of rIL-

6 partially restores IL-6 mRNA and subsequently, IL-6 protein expression, possibly through 

stimulating IL-6 signaling pathways in BMSC or HOB.  This finding could be important in the 

setting of MM, where IL-6 present in the microenvironment acts as a potent proliferative factor 

and contributes to progression of the disease.  Additionally, understanding the decrease in IL-6 

in the microenvironment caused by chemotherapy treatment is important for normal 

hematopoietic and immune system recovery following bone marrow or stem cell transplantation, 

as IL-6 affects both myeloid and lymphoid lineages of cell differentiaion.  To increase the 

translational potential of these findings, the effects of melphalan in vivo need evaluated to 

determine if the effects on IL-6 protein are similar or if there is redundancy of the IL-6 family 

 107



members that overcome this deficit during treatment.  As previously mentioned, murine IL-6 

knock-out models have been described as having hematopoietic deficits, suggesting that the IL-

6 family members are not completely redundant and that optimal IL-6 levels are required to 

sustain hematopoiesis.  Overall, understanding the effects of chemotherapeutic agents on a 

molecular level can provide insight as to why these agents work in disease settings such as MM 

as well as provide an understanding as to why patients receiving treatment with these agents as 

part of myeloablative regimens prior to bone marrow or stem cell transplantation have long term 

hematopoietic deficits.   
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Figure Legends 

Figure 1.  Treatment of human BMSC and HOB with Melphalan decreases Interleukin-6 

secretion. BMSC (A,C) and HOB (B,D) cells were seeded into a 96 well plate in triplicate and 

left untreated or were treated with melphalan [50 μg/ml] in complete media for 24 hours.  After 

24 hours, the media was replaced with complete media and supernatants (A and B) or cells 

lysates (C and D) in RIPA buffer were collected at the time points above.  An Interleukin-6 

ELISA was performed to quantitate changes in the levels of IL-6 protein secreted following 

chemotherapy.   

 

Figure 2.  Melphalan treatments causes the most pronounced decrease in IL-6 protein.  

A). BMSC and B). HOB were treated with different chemotherapeutic agents for 24hrs.  After 

24hrs, the cells were rinsed, the media replaced, supernatants collected at 24 and 48hrs post-

treatment and an IL-6 ELISA completed.  The concentration of drug used was the highest 

tolerable dose without a decrease in cell viability (data not shown).  Melphalan treatment led to 

the most pronounced decrease in IL-6 protein in both BMSC and HOB. 
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Figure 3.  The IL-6 G>C174 SNP does not affect BMSC response to melphalan. 

BMSC were genotyped for the presence of the IL-6 polymorphism.  Two cell lines from each 

genotype were treated with melphalan [50ug/ml] for 24hrs.  Following treatment, cells were 

rinsed, supernatants collected 24hrs post-treatment and an IL-6 ELISA completed.  All BMSC 

lines had decreased IL-6 protein, regardless of genotype. 

 

Figure 4.  Treatment of BMSC or HOB with melphalan decreases IL-6 mRNA expression.  

A). BMSC or B). HOB treated with melphalan (50μg/ml) for 4 or 16 hours.  Following treatment, 

RNA was isolated and quantitated and real-time PCR completed to evaluate changes in IL-6 

mRNA expression in chemotherapy treated cells as compared to their untreated controls treated 

controls.  Melphalan treatment decreases IL-6 mRNA in both BMSC and HOB. 

 

Figure 5.  Addition of rIL-6 restores IL-6 mRNA expression in both BMSC and HOB.  A). 

BMSC or B). HOB were left untreated or treated with rIL-6 [10ng/ml], melphalan [50ug/ml] or a 

combination of rIL-6 and melphalan for 4, 8, 18 or 24hrs.  Following treatment, the cells were 

collected, RNA isolated and real-time PCR completed for IL-6 mRNA expression.  Melphalan 

treatment alone decreased IL-6 mRNA, while the combination of rIL-6 with melphalan restored 

IL-6 mRNA levels. 

 

Figure 6. Addition of  rIL-6 restores IL-6 protein expression in both BMSC and HOB.  A). 

BMSC and B). HOB were left untreated or treated with rIL-6 [10ng/ml], melphalan [50ug/ml] or a 

combination of rIL-6 and melphalan for 24hrs.  Following treatment, cells were rinsed, media 

replaced, supernatants collected at 2, 4, 6, 8, 24 and 48hrs post-treatments and an IL-6 ELISA 

completed.  Control experiments were completed to confirm the rIL-6 was being washed out and 

 112



 113

not detected by the ELISA assay (data not shown).  rIL-6  combined with melphalan began to 

restore IL-6 protein expression at 24 and 48hrs post-treatment compared to melphalan 

treatment alone. 

 

 



 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.  Treatment of human BMSC and HOB with Melphalan decreases 
Interleukin-6 secretion. 
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Figure 2.  Melphalan treatments causes the most pronounced decrease in 
IL-6 protein.  
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Figure 3.  The IL-6 G>C174 SNP does not affect BMSC response to 
melphalan. 
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Figure 5.  Addition of rIL-6 restores IL-6 mRNA expression in both BMSC 
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Figure 6. Addition of  rIL-6 restores IL-6 protein expression in both BMSC 
and HOB.  
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Chapter V 

 

General Discussion 

 

 

 

 

 

 

 

 



The idea of using bone marrow transplantation to cure disease was first described in 

1951 when Lorenz et al described how using an animal’s own marrow allowed for survival 

following total body irradiation1.  The first use of this procedure in humans occurred in 1959 

when Thomas and colleagues treated a leukemia patient with total body irradiation and 

subsequently provided that patient with an infusion of bone marrow from an identical twin2.  

These studies and many other provided the groundwork for using total body irradiation, later in 

combination with chemotherapy treatment, and bone marrow transplant for treatment of 

disease.  Currently, bone marrow or hematopoietic stem cell transplant is used for a variety of 

diseases such as multiple myeloma, leukemia, lymphoma, autoimmune diseases, aplastic 

anemia etc3.  The goal of most of these therapies is eradication of the tumor population, creating 

space for the transplanted cells.  While hematopoietic stem cell transplantation has a mortality 

rate of less than 2 percent for autologous transplant and less than 10 percent for allogeneic 

transplant, about 40 percent of patients that receive allogeneic transplants die from 

complications related to the transplantation including GVHD, veno-occlusive disease and 

infection, emphasizing the need to reduce toxicity of conditioning regimens3. 

While advances have been made in therapies to eradicate tumor, significantly less 

research has been done to address damage that occurs to the hematopoietic microenvironment 

following myeloablative chemotherapy regimens.  Studies describing BMSC have shown that 

damage by chemotherapy and radiotherapy can affect the ability of the BMSC to self-repair and 

leads to decreased numbers of functional immune system cells in the blood, with deficits 

persisting years after transplant4;5.  Additional studies observed that at 1 year post transplant 

61% of patients have subnormal values in one or more hematopoietic lineages6.  Further, 

Nieboer et al. showed that at 5 years post transplant 15% of the patient population analyzed 

had low values in one or more hematopoietic cell lineages7.  Galotto et al completed 

retrospective studies of patients that received allogeneic bone marrow transplants and 

determined patient BMSC did not recover to the levels of control patients, even after 12 years, 
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as measured by colony forming units-fibroblast (CFU-F) frequencies, suggesting that the 

damage of the structural, hematopoietic supportive cells of the bone marrow can be sustained8.  

Osteoblasts, another important structural component of the bone marrow in addition to BMSC, 

have also been studied for their importance in maintenance of hematopoiesis.  These studies 

have included transgenic models where osteoblast deficiency was induced by actively targeting 

and ablating the osteoblasts9 or using models where the osteoblast niche was manipulated by 

knock-out of critical factors such as osteopontin or the osteoblast niche was increased through 

the use of parathyroid hormone, leading to decreased and increased hematopoiesis, 

respectively10-12.   

The broad goals of the work presented in this dissertation were to gain a better 

understanding of chemotherapy-induced damage occurring to the cells of the bone marrow 

microenvironment and how this damage would affect hematopoietic recovery through evaluation 

of an in vitro co-culture model. 

Previous work by our lab has characterized damage to BMSC and has shown increases 

in active TGF-β following chemotherapy treatment13.  TGF-β, as previously discussed, is an 

important factor in supporting and maintaining quiescent hematopoietic stem cells14.  It has 

been proposed that this could lead to depletion of the stem cell pool.  We evaluated the effects 

of chemotherapy on osteoblasts to determine how both direct and indirect chemotherapy 

exposure may lead to damage of the osteoblast population.  As we discussed in Chapter 1, 

human primary osteoblasts were treated with melphalan and VP-16 and we evaluated changes 

in soluble factors, cellular adhesion molecules and overall support of both human embryonic 

stem cells and CD34+ bone marrow cells.  Treatment of osteoblasts with chemotherapy led to 

slight increases in TGF-β mRNA and active TGF-β, evaluated by phosphorylation of Smad2.  

Additionally, chemotherapy treatment led to decreases in CXCL12 mRNA and protein and 

decreased chemotaxis.  We also evaluated the effects of recombinant TGF-β (rTGF-β), to mimic 

both autocrine and paracine signaling associated with chemotherapy-induced changes.  
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Treatment of osteoblasts with rTGF-β led to increased TGF-β mRNA and protein and decreased 

CXCL12 mRNA and protein, coincident with decreased chemotaxis.  To determine functional 

changes in the ability of damaged osteoblasts to support stem cells, hESC and CD34+ bone 

marrow cells were cultured on osteoblasts pre-treated with chemotherapy or rTGF-β.  In both 

circumstances, hESCs did not retain Oct-4 expression, a marker of pluripotency, and CD34+ 

cells had deficits in their ability to differentiate into different hematopoietic cell lineages.  These 

data suggest that osteoblasts are a population of cells that are vulnerable to chemotherapy 

damage, and hematopoiesis could be negatively affected through damage to the 

microenvironment.  One way to help restore this environment might be through the use of co-

transplantation of MSCs as a mechanism to “rebuild” the microenvironment.  Additionally, one 

could speculate that factors leading to the differentiation of osteoblasts, BMSC and the other 

cell types of the microenvironment could be administered to stimulate differentiation of MSCs 

already present in the microenvironment to functionally supportive cells. 

Another soluble factor investigated in the studies presented was Interleukin-6 (IL-6) as a 

factor important in the differentiation of both myeloid and lymphoid lineages15.  Initially, we 

expected that chemotherapy treatment of BMSC or osteoblasts would lead to increases in IL-6, 

as it has been a factor associated with acute graft versus host disease16.  We actually 

determined that chemotherapy treatment, melphalan specifically, led to decreases in IL-6 

protein and mRNA in both BMSC and HOB (Chapter 3).  Compared to other chemotherapeutic 

agents evaluated in this study, melphalan had the most pronounced effect.  To evaluate if IL-6 

mRNA and protein levels could be restored in an autocrine fashion, we combined melphalan 

treatment with recombinant IL-6.  Both mRNA and protein levels were restored in these 

combination treatment groups.  This was an important observation relevant to multiple myeloma 

(MM).  In MM, IL-6 is a proliferative factor for the myeloma tumor cells and work by Gupta et al 

and Barille et al have shown that myeloma cells, directly in contact with BMSC and osteoblasts , 
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can upregulate IL-6 expression17;18 and Westendorf et al  described how myeloma cells 

themselves could secrete IL-6 and engage in autocrine signaling19.  Melphalan, along with other 

agents, is first-line therapy for the treatment of MM.  The decrease of IL-6 in BMSC and 

osteoblasts by melphalan could help to explain why this chemotherapeutic agent has effects in 

MM.  By decreasing IL-6 in the microenvironment, the myeloma cells may be more sensitive to 

chemotherapy.  By showing in vitro that that addition of rIL-6 could restore IL-6 levels, this may, 

in part, explain how in vivo, the tumor is able to restore IL-6 secretion in the bone marrow 

microenvironment allowing for relapse of disease.  The cytokine profile and recovery dynamics 

in vivo is important in understanding how prolonged the decrease in IL-6 and other 

hematopoietic cytokines is.  Studies by Testa et al have looked at hematopoietic growth factors 

(IL-3, SCF, IL-6, IL-8 and GM-CSF) in patient serum pre and post-chemotherapy, and have 

shown how these factors increase or decrease following chemotherapy20.  The 

chemotherapeutic agents used for these studies were busulphan and cyclophosphamide, so 

similar experiments in patients treated with a melphalan regimen would be useful in 

understanding differences in cytokine recovery profiles with different chemotherapy regimens to 

determine optimal schedules for infusion of hematopoietic stem and progenitor cells. 

Additional studies presented in this proposal related to IL-6 have a focus on the 

neuroendocrine modulation of the bone marrow21.  Studies have shown that NGF has roles in 

colony formation22;23 and in a model using stromal cells isolated from the thymus, it was shown 

that NGF increased IL-6 expression24.  The role of BDNF in hematopoiesis was also studied 

using a BDNF knockout mouse and it was demonstrated that the number of B lymphocytes both 

in the spleen and the bone marrow were decreased25.  These data suggest that neurotrophins 

have much broader paracrine effects than just in the central nervous system.  In chapter 2 of 

this dissertation, we have shown that primary BMSC express neurotrophin receptors and that 

these receptors can actively signal following stimulation with NGF or BDNF, and using 
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phosphorylated Akt as a read-out of signaling.  Treatment of BMSC with NGF or BDNF also led 

to increases in both IL-6 mRNA and protein and we determined that the mechanism of this 

increase of IL-6 by neurotrophins was through the MAPK pathway.  One could speculate that 

injury to the central nervous system, possibly by total body irradiation as part of a myeloablative 

pre-transplant regimen, could lead to the increase of the neurotrophic factors.  This potential 

increase in neurotrophins could have paracrine effects in the bone marrow, leading to increases 

in IL-6.  Increases in IL-6 are associated with a number of inflammatory diseases such as 

systemic lupus erythematosus and rheumatoid arthritis26 and IL-6 has also been implicated in 

acute graft versus host disease16 so it is possible that increased neurotrophins could lead to 

dysregulated hematopoiesis. 

 In conclusion, the data presented here have allowed for an appreciation of not only the 

complexity of the bone marrow microenvironment, but also the dynamic nature of the supportive 

cells, namely BMSC and HOB, and how chemotherapy affects other cell populations in addition 

to the tumor population.  While many studies have been done showing BMSC are affected by 

chemotherapy, very few, if any studies have attempted to understand the mechanisms by which 

that damage is occurring to another critical component, marrow osteoblasts.  Understanding the 

mechanisms by which chemotherapy damages the supportive cells of the bone marrow cells 

can help with the development of therapies that could help restore the microenvironment 

following aggressive chemotherapy, like the use of MSCs as a way to help “rebuild” the 

microenvironment.  While in vitro models provide a way to study mechanisms of damage, it is 

critical to complete additional experiments in an in vivo model to further understand if the effects 

of chemotherapy described are also present in vivo or if redundant signaling pathways blunt 

these effects.  Collaborations with clinicians are also vital to ensure that basic science questions 

are being addressed in such a way that they are translatable to a clinical setting.   
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