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ABSTRACT 

Analysis of Multi-Resolution Data Aggregation using Push-assisted Random Walks in Mobile   
Ad-hoc Networks (MANETs) 

Sowmya Srinivasapura Devaraja 

Data Aggregation in Mobile Ad-hoc Network (MANET) has proven challenging because of 

changing topology. Structure-based models like tree-based, cluster-based and chain-based have 

high maintenance cost. In earlier works, different forms of biased random walks have been 

verified to be effective without need for structure maintenance. The key idea in the protocol was 

to use one or more tokens that are circulated using biased random walks to effectively compute 

the data aggregation. One such protocol is EZ-AG that uses “Push-assisted Self-Repelling Random 

Walks”. 

A self-repelling random walk of a token on a graph is one in which at each step, the token 

moves to a neighbor that has been visited least often. While self-repelling random walks visit all 

nodes in the network much faster than plain random walks, they tend to slow down when most 

of the nodes are already visited. It’s verified that a single step push phase at each node can 

significantly speed up the aggregation and eliminate the slow down. Results have been verified 

that EZ-AG achieves aggregation in only O (N) time and messages.  

When the network is quite large, obtaining only one aggregate may not be sufficient. It 

will be more useful to provide distance-sensitive multi-resolution aggregates of data. The 

contribution in this project is, we have analyzed the “Hierarchical EZ-AG” proposed to provide 

multi-resolution results. We show that aggregates for nearby regions are obtained at faster rate 

in comparison to the farther region. The idea is to introduce the tokens in the network at distinct 

levels, execute EZ-AG protocol and obtain localized data aggregation output at distinct levels. 

Existing techniques for hierarchical aggregations require O (N log5.4 (N)) messages. Hierarchical 

EZ-AG outperforms these techniques by aggregating with only O (N log (N)) messages. We 

evaluate the performance of hierarchical EZ-AG considering message overhead, token messages, 

number of aggregations at distinct levels, node speed and mobility. Our results are validated 

using simulations in network simulator, ns-3 for network ranging from 100 to 4000 nodes under 

different node speeds and mobility models.
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Chapter 1 

 

Introduction 

 

1.1 Overview 
Mobile Ad-hoc Network (MANET) is a collection of two or more devices or nodes that can 

dynamically form a network. Nodes are low power devices, equipped with a radio and 

transmitter. They communicate wirelessly with its peers and/or base station using multi-hop 

traversals without the aid of any centralized administration.  Dense and large sensor networks or 

MANETs are likely to exchange a lot of redundant information with its neighbors or the base 

station. Also, nodes utilize a large amount of power in transmitting data. This increases the 

message overhead, transmission power and decreases lifetime of the nodes in the network. Data 

aggregation methods are useful to subside these impacts and obtain reliable data. Data 

aggregation is a technique of aggregating the data to eliminate redundant transmissions and 

provide consolidated data. 

Data aggregation can be broadly classified as: duplicate sensitive and duplicate insensitive 

data aggregation. Duplicate sensitive data aggregation (includes function like SUM and COUNT) 

are those whose outputs are altered when same input is incorporated more than once. Duplicate 

insensitive data aggregation (includes functions like MIN and MAX) are those whose output is not 

dependent on the repetitive inputs.  

For instance, consider {p1, p2} = {5, 4}  

SUM (p1, p2) = 9 is not equal to SUM (p1, p1, p2) = 14; (Duplicate sensitive) 

MAX (p1, p2) = 5 is equal to MAX (p1, p2, p2) = 5; (Duplicate insensitive) 

 For static sensor networks, the data aggregation protocols have been designed to obtain 

the data routing by forming a structure/backbone. The data is routed along the established path 

to obtain data aggregates. The various structure-based models are tree-based, cluster-based and 
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chain-based. However, if the underlying structure is changing constantly, these protocols will 

have scalability issues and high maintenance cost. Applying these models to MANETs is not a 

reliable option as the topology changes frequently. The link changes per node per second over 

different speed is indicated in table 1.1. It’s clear from the table that in the network, speed plays 

a vital role on how often the link between nodes break.  

Table 1.1 Mapping between speed and link change per node per second 

 

Many approaches have been proposed to obtain data aggregate without creating the 

structure. The various techniques are flooding, gossiping and using random walks. In flooding 

technique, node transmits the message/packet to its neighbors which is in turn 

forwarded/broadcasted to its neighbors either till the destination is reached or maximum hops 

are reached. This is called as blind flooding. If the number of neighbor increases, it directly affects 

the probability of collisions which in turn affects the performance and suffers from broadcast-

storm problem. Alongside, because of the broadcast messages in this method, the message 

overhead cost would be very high as O(N2).  

In gossiping technique, the receiving node will send the packet to a randomly picked 

neighbor, which further picks another random neighbor and the process continues till the entire 

network’s data is aggregated. The general types of gossip techniques are neighborhood gossips 

and spatial gossips. Unlike neighborhood gossiping, spatial gossips can choose any other node in 

the network and gossip the data. This scheme uses O(N*polylog(N)) messages to finish the 

aggregation. 
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 In the earlier work, the different forms of biased random walks has proven to be effective 

amongst the other structure-free techniques. The key idea in these protocols is to use one or 

more tokens that are circulated using biased random walks to effectively compute the data 

aggregations. One such protocol is EZ-AG that uses “Push-assisted Self-Repelling Random Walks”. 

This technique uses only O (N) messages and time to complete the data aggregation. 

A self-repelling random walk of a token on a graph is one in which at each step, the token 

is handed to a neighbor node that has been visited least often. Figure 1.1 shows the self-repelling 

random walk. The light circle indicates the unvisited node and dark circle indicates the visited 

node and the number of visits has been highlighted within the circle. The node carrying Token-1, 

is surrounded by nodes visited 0, 1 and 2 number of times. While transferring the token to 

continue random walk, we see that priority will be given to neighbor node visited least number 

of times.  

 
Figure 1.1 Token Transfers in Self Repelling Random Walk 

 

Self-repelling random walks visit all nodes in the network much faster than plain random 

walks, but they tend to slow down when most of the nodes are already visited because the token 
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gets trapped between visited nodes. In this condition, token takes multiple hops to visit an 

unvisited neighbor. It’s verified in [1] that a single-step push phase at each node before starting 

the self-repelling random walk can significantly speed up the aggregation and eliminate the slow 

down. Results have been verified that EZ-AG achieves aggregation in only O (N) time and 

messages. When the network is quite large, obtaining only one aggregate may not be sufficient. 

It will be more useful to provide distance-sensitive multi-resolution aggregates of data i.e., data 

aggregates for nearby regions are obtained at faster rate in comparison to the farther region. The 

extension to push-assisted self-repelling EZ-AG, “Hierarchical EZ-AG” has been proposed in [1]. 

The objective of this work is to implement and analyze the performance of push-

assisted self-repelling hierarchical EZ-AG to obtain multi-resolution distance-

sensitive data aggregation for duplicate-insensitive data. 

1.2 Summary of Contributions 

In this work, in-depth analysis has been done on the concept of hierarchical data 

aggregation. The idea of hierarchical EZ-AG is to introduce the tokens in the network at distinct 

levels, execute EZ-AG protocol and obtain localized data aggregation output at distinct levels. The 

result is nearer neighbors get the aggregate information more often than the farther neighbors.  

Existing techniques for hierarchical aggregations require O (N log5.4 (N)) messages. 

Hierarchical EZ-AG outperforms these techniques by aggregating with only O (N log (N)) 

messages. Thus, we see poly-logarithmic factor improvement in terms of message overhead. 

• We implemented and verified the hierarchical EZ-AG protocol which provides multi-

resolution aggregates to each node for duplicate in-sensitive data using only O (N log (N)) 

messages.  

• We analyze the performance of hierarchical EZ-AG using network simulator, ns3 for 

networks ranging from 100 to 4000 nodes under different node speeds and mobility 

models. 

• We compare hierarchical EZ-AG message overhead with the spatial gossip technique 

which provides multi-resolution outputs. 
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1.3 Outline 

The rest of the report is organized as follows. We discuss the prior work on structure-free 

data aggregation protocol, EZ-AG in chapter 2. We discuss hierarchical EZ-AG protocol in-depth 

and the implementation details in chapter 3. In chapter 4, we provide details regarding the 

system model (network model, different mobility models and the evaluation metrics), analyze 

the hierarchical EZ-AG protocol by presenting the simulation results obtained by ns-3 simulations, 

and compare with the existing hierarchical protocol results. After analyzing the results, we 

provide the conclusion in chapter 5. 
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Chapter 2 
 
Review of Prior Work 
 

In this chapter, we discuss the prior work done by applying random walk process to design 

an effective structure-free protocol to obtain data aggregates for MANETs. 

2.1 Random Walks 
Random walk is a process which operates without building an underlying structure. It can 

be exploited to be useful in data aggregation. The idea of random walks used in data aggregation 

can be summarized as follows: 

1. One or more tokens are created at randomly selected nodes termed as holder nodes. 

Number of tokens vary based on the requirement. 

2. Tokens are circulated to aggregate the data in the network by traversing through the 

nodes. Random walk strategy is employed to pass the token to the neighbors in the 

network. 

3. When a node is visited for the first time, its data will be aggregated into the token. 

Therefore, when all the nodes in the network have been visited the data aggregation will 

be terminated. 

4. To ensure there is no duplicate information, nodes keep track of number of times the 

token has visited. 

Random walks work efficiently for changing topology demanding very less information to 

be saved thus minimizing the memory overhead. However, the simple random walks have longer 

cover time as the token visits the same node multiple times before it covers all nodes in the 

network. To overcome the limitations, biased random walks have been employed. 

2.2 Biased Random Walks 
In order to avoid the slowdown in simple random walks, biasing strategies where 

employed. One such idea introduced was self-repelling random walk. A self-repelling random 
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walk of a token on a graph is one in which the token is passed to the nodes which is visited least 

number of times by the token. This helps in prioritizing the token movement towards the 

unvisited nodes. While self-repelling random walks visit all nodes in the network much faster 

than plain random walks, they tend to slow down when most of the nodes are already visited i.e., 

it takes multiple token transfers to visit the node in the unvisited region. This is shown in            

figure 2.1. The dark circles and light circle represent the visited nodes and unvisited nodes 

respectively. The blue oval indicates the island of unvisited nodes. When the token is trapped in 

the visited region, we show that it takes 3 token transfers to reach unvisited node. This varies 

with the number of visited and unvisited nodes in the network and where the token is trapped. 

To address the slow-down of self-repelling random walk, 2 ideas where proposed and verified. 

 
Figure 2.1 Self-repelling Random Walk showing multiple token transfers before visiting unvisited node 

   

2.2.1 Gradient Biased Random Walk 

 In this method, short multi-hop temporary gradients are introduced from the edge of the 

visited region to pull the token towards the unvisited nodes. The first step is to establish a path 

from unvisited nodes to the token holder. The token follows the shortest gradient path to reach 

the unvisited node.  
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Figure 2.2 Gradient pull towards the token 

 

Figure 2.2 shows the multi-hop gradient message towards the token node. The gradients 

will be set up periodically to attract the token towards the unvisited nodes. This method 

introduces a message overhead of O(N log(N)). However, it’s verified that the data aggregation 

will be achieved in O(N) messages and time, the message overhead is compensated by the 

reduced number of token transfers. 

2.2.2 Push-Assisted Random Walk (EZ-AG) 

 In this method, one-step PUSH phase was introduced before starting self-repelling 

random walk where information about the one-hop neighbors is learnt. Thus, all nodes carry its 

neighbor information throughout. Thus, the data aggregation is completed before visiting all the 

nodes in the network. Summarizing the complete idea of push-assisted, self-repelling random 

walks (EZ-AG) for a network of ‘N’ nodes:  

1. Node that needs aggregate value of the network floods the interest (aggregate request) 

in obtaining aggregation to all nodes in the network. This results in N messages. Nodes on 

receiving the interest message will pushes its data to neighbor nodes. 
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2. PUSH phase: All nodes in the network will broadcast its state/data to one-hop neighbors 

(within communication range, R). By the end of PUSH phase, all nodes will have its data 

along with its neighbor data. This step will also require N messages. 

3. The node (initiator/holder node) that sent out aggregation request will generate a token 

to start the self-repelling random walk. It adds its data into the TOKEN and will broadcast 

an ANNOUNCE message to other nodes in its communication range to pass the token and 

continue self-repelling random walk. 

4. The neighbor nodes that receives ANNOUNCE message will respond with REQUEST 

message including number of visits by the TOKEN. Priority is given to the nodes that have 

lesser TOKEN visits to respond to ANNOUNCE message.  

5. Holder nodes receive the REQUEST messages, transfers the token to node with least visits. 

(ties are broken at random) 

6. The TOKEN is transferred to selected node via TRANSFER message. The node that receives 

the token is now the holder node. 

The steps 3, 4, 5 and 6 are repeated till the aggregation of the network is complete. The 

aggregated value will be broadcasted to all the nodes in the network. It is also shown that the 

number of token transfers needed to achieve data aggregation reduces with the increase in 

mobility of the nodes. 

The results in [1] show that before self-repelling random walk slows down the aggregate 

is computed in only O(N) time and messages. This implies that, in terms of message overhead, 

the EZ-AG protocol outperforms the other existing structure-free data aggregation protocols by 

a factor of log (N). Table 2.1 shows the comparison of message overhead for data aggregation in 

structure free models.  
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Table 2.1 Comparison of message overhead for data aggregation (structure-free models) 

Structure-free Data 
Aggregation Method Message Cost 

Flooding O(N2) 
Standard Gossip O(N2) 
Spatial Gossip O(N polylog(N)) 
EZ-AG O(N) 

 

2.2.3 Hierarchical EZ-AG 

 When a network is large, it is not sufficient to only provide a single aggregate value for 

entire network. It is more beneficial to provide distance-sensitive, multi-resolution aggregate 

values for the nodes i.e., a node receives the aggregate information of the closer neighbors more 

often compared to that of distant neighbors. The idea was proposed and analyzed theoretically 

in [1] to obtain multi-resolution aggregates in the network in O (N log (N)) messages. 
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Chapter 3 
 
Hierarchical Aggregation 
 

3.1 Protocol Description 

The network area is divided into square cells at distinct levels (0, 1, … , M). The number of 

cells increase exponentially at each level (shown in Figure 3.1). At the lowest level (level 0), each 

cell is of side not less than  𝑅𝑅
√2

 , where R is the communication range for the node, and the diagonal 

of the cell represents R. Each level-0 cell has θ (log (N)) nodes with high probability. Such graphs 

are called as geo-dense geometric graphs. Four adjacent cells of level-0 constitute one level-1 cell 

and with high probability level-1 cell will have (4* θ (log (N))) nodes. Generalizing, four level-i 

cells combine to form one level-i+1 cell and number of nodes will be 4 times number of nodes in 

level-i cell. At the highest-level M, we will have only 1 cell covering the entire network. At any 

instant of time, a node will be part of one cell at each level. 

Figure 3.1 shows the hierarchical EZ-AG network sketch. We observe that the cell increases 

exponentially from highest level (Level-3) to lowest level (Level-0). Node ‘X’ would receive 

aggregate from cell ‘A’ (level-0), cell ‘B’ (level-1), cell ‘C’ (level-2) and cell ‘D’ (level-3). It receives 

cell A (level-0) aggregates at faster rate in comparison with cell D (level-3) aggregates. 

To obtain multi-resolution results, we introduce token at every cell at every level to execute 

the EZ-AG instance. At any instant, the token of a cell is transferred only to nodes within its cell 

boundary. Once the aggregation in the cell is complete, it floods the result to the nodes in its cell 

and adjacent cells. The computation and dissemination of data aggregates at different cells by 

EZ-AG instance are not time synchronized. Thus, we obtain the aggregates for cells at distinct 

levels at different time instants. Since the nodes are mobile, the aggregate it receives at any time 

instant belongs to the cell it is present at that time instant. 
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Figure 3.1 Hierarchical EZ-AG for multi-resolution data aggregation 
According to the theorems stated in [1], “For Hierarchical EZ-AG, at any level j (highest level 

indicated as j = 0), the Order and Duplicate Insensitive (ODI) data aggregate can be obtained in 

O(4jδ) time and messages, where δ represents the nodes with high probability in the cell”. This 

implies that the results at lowest level are obtained at exponentially faster and aggregates are 

disseminated to the nodes in its cell and adjacent neighbors. “Hierarchical EZ-AG can compute 

an Order and Duplicate Insensitive (ODI) aggregate for all cells at all levels using O(N log(N)) 

messages”.  The simulation results obtained as part of this project, supports the theorems 

proposed. 

Mathematical calculation on number of EZ-AG instances 

We know that at any level, the number of EZ-AG instances is same as the number of cells. 

Consider a case as in figure 3.1, where we have 4 levels (0,1,2,3). Level-0 indicates the cells at 

lowest level and level-3 indicates cells at highest level. Hence, we have 64 instances of EZ-AG at 

level-0, 16 instances of EZ-AG at level-1, 4 instances of EZ-AG at level-2 and 1 instances of EZ-AG 

at level-3. Mathematically, we have (64+16+4+1) = 85 instances of EZ-AG running in the network 

to obtain multi-resolution data aggregates. 
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3.2 Implementation 

Consider ‘N’ nodes randomly deployed in the network. The steps involved in obtaining multi-

resolution data aggregates are as follows: 

1. Network Division. 

2. Run EZ-AG instances on different cells at distinct levels. 

3. Disseminate the result to nodes in adjacent cells. 

4. Terminate the EZ-AG execution. 

Network Division 

The total size of the network is determined by two factors, number of nodes being deployed 

in the network and the density of the nodes.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝛼𝛼 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑

 

The network size increases as the number of nodes being deployed increases and decreases 

as we increase the density of the nodes in the area. We divided the network in hierarchical 

fashion such that levels in the network increase exponentially. The cells at distinct levels is 

numbered uniquely and is denoted by cellID. 

Run EZ-AG instances on different cells 

1. Node interested in aggregate information floods the interest message to all nodes in the 

network. Before the actual data aggregation starts, we have a one-step PUSH phase (to 

account for the slow-down of the self-repelling random walks) where the nodes push 

their information to all its current neighbors. EZ-AG instances start the data aggregation 

using tokens generated at random in all the cells for distinct levels. 

2. Node that holds the token is coined as starter or holder. It adds its information in the 

token and continues the random walk by passing token to one of its neighbors.  

3. The token is passed only if the following criteria is met 

a. The node is least visited amongst all the nodes requesting the token. 
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b. The requesting node must be in the same cell as the sender. 

(The ties are broken at random) 

4. Step 2 and 3 are repeated till the aggregation at a cell is complete, which is intermittently 

being verified. Once the aggregate is complete for the cell, the results will be 

disseminated to the neighbors.  

5. Steps 2, 3 and 4 are repeated at all the levels till the entire network’s data is aggregated 

at the highest level. 

Disseminate the result to adjacent neighbors  

The aggregated results at are disseminated (broadcasted) to its 8 adjacent cells at 

corresponding levels. Figure 3.2 (a) and Figure 3.2 (b) shows the cells to which the aggregate 

value will be disseminated at lowest two levels. In Figure 3.2 (a) we indicate the broadcast 

message from a node in cell X will be sent to all the nodes in cell X and all nodes in 8 adjacent 

cells of cell Y at level 0. 

 

Figure 3.2 (a) Data Aggregation Result Broadcast at lowest level (Level 0) 
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Figure 3.2 (b) Data Aggregation Result Broadcast at Level 1 

Terminate the EZ-AG Execution 

We terminate the EZ-AG execution when all the data has been aggregated once at the 

highest level (i.e., the entire network). There are no definite criteria to detect termination. 

However, as the number of nodes visited by the token increase, the ratio of token transfers to 

the visited nodes also increase. This ratio can be designed efficiently to detect token termination. 

Once the termination condition is met, the result at the highest level will be broadcasted to the 

entire network. 

3.3 Aggregation Results at Every Level 

Table 3.1 gives information about the number of aggregates expected at distinct levels for 

the network in figure 3.1. The analytical calculations are explained below. 
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Table 3.1 Analytical Results of Data Aggregation at distinct levels 

 

Consider the figure 3.1, where the network is divided into four levels (0-3). ‘A’ represents 

the smallest level cells and ‘D’ represents the largest level cells (entire network). We can deduce 

from the division that we have 1 level-3 cell, 4 level-2 cells, 16 level-1 cells and 64 level-0 cells. 

As and when the aggregation is completed at each level the results will be disseminated to its 8 

neighboring cells as indicated in section 3.2.  

Number of disseminations expected at Distinct Levels 

In the network, the number of tokens is directly related to the number of EZ-AG instances 

in that level. At level-3, we have only one cell which implies one EZ-AG instance and so 1 token 

to aggregate the value. Similarly, we have 4 level-2 tokens, one in each cell at level-2. By the time 

the level-3 token completes the aggregation one time, each level-2 token finishes the aggregation 

and dissemination 4 times. Hence, a total of 16 aggregations is expected. 

4 tokens * 4 cells = 16 aggregations (expected) 

Likewise, we have 16 level-1 tokens, one in each cell at level-1. By the time the highest-level 

token completes the aggregation one time, each level-1 token finishes the aggregation and 

dissemination 16 times. Hence, a total of 256 aggregations is expected. 

16 tokens * 16 cells = 256 aggregations (expected) 

From the aggregation results expected, we understand that the aggregates for cells at 

lower level is disseminated at exponentially faster rate in comparison to the cells at higher levels.  
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Chapter 4 
 
Setup and Results of Hierarchical EZ-AG 

In this chapter, we present the experimental system model we used and evaluate the 

results of hierarchical EZ-AG and compare them with EZ-AG (random walks with one-step PUSH 

phase) and gossip algorithm using simulations from network simulator, ns3.  

4.1 System Model 

4.1.1 Network Model 

We model the topology for MANET’s as described: placing ‘N’ nodes uniformly at random 

in the square region of side √R. Each node in the network has communication range of R i.e., it 

can listen and exchange messages with the nodes in the communication range, R. The network 

density of the deployed nodes is =  𝑁𝑁
𝑅𝑅 

 . 

Consider the network region being divided into square cells of side 𝑅𝑅
√2

 i.e. having the 

communication range as the diagonal R. Let R2 > 2𝑘𝑘 log (𝑁𝑁)
𝜌𝜌

, it’s proved that there exists a constant 

k > 1 such that each cell has 𝜃𝜃 (log(𝑁𝑁)) nodes at high probability. This implies that the degree of 

each node is 𝜃𝜃 (log(𝑁𝑁)). 

4.1.2 Mobility Model 

Mobility in nodes introduces many challenges in deploying the nodes, data forwarding, 

energy consumption, data aggregation, and scalability and so on. Mobility model gives 

information about the pattern of movement of the nodes in the network, how the position 

velocity changes with time. Mobility models are broadly classified as memory-based and 

memory-less. In memory-based models, the nodes make use of the previous history or move in 

correlated fashion, or movement of nodes is bounded by obstacles.  
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Unlike memory-based models, memory-less models don’t depend on the previous 

movement database. They move randomly without any restrictions. The destination, speed and 

direction are chosen at random without depending on other neighboring nodes. The distinct 

types of memory-less mobility models are random waypoint, random direction and random walk. 

Two different mobility models have been considered for our simulations are explained below. 

1. Random Waypoint Mobility Model 

In this model, the nodes randomly select a location in the simulation area as the destination 

and traverses with constant randomly chosen velocity from [Vl, Vh]. Vl represents the minimum 

velocity the node can move with and Vh represents the maximum velocity limit. The velocity and 

direction are chosen randomly independent to other nodes. On reaching the destination the 

node pauses for a duration called as “pause time”, Tpause. In our case we have maintained the 

Tpause to be 2 seconds. After the pause time next step is taken and proceeds in similar fashion. In 

Random Waypoint Mobility Model Vl, Vh and Tpause affect the mobility of the nodes. 

2. Random walk 2D Mobility Model 

In this model, the node picks a random direction θ(t) from the 2D space range (0, 2π] and a 

constant random velocity v(t) from [0, Vmax] to move to the next point. At the end of move, new 

pair of direction and velocity is determined. We can consider Random walk mobility model as a 

specific variation of Random Waypoint Mobility model with pause time = 0. If the node reaches 

the boundary of simulation field, the node will be bounced back in the direction θ(t) or π- θ(t). 

This is called as the border/boundary effect. 

The motion of the nodes in the network are independent to each other. The important 

characteristic of this model is that uniformity of the node distribution in the network is preserved 

over the time. 
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The key metrics that we consider for verifying hierarchical EZ-AG behavior in MANET’s is by 

checking the number of aggregations obtained at distinct levels by the token before the 

aggregation of entire network is done once by highest level token. Message overhead (inclusive 

of token announcements, token requests and token transfers) in the entire network for varying 

sizes and mobility are verified. We have checked the consistency of the results obtained over 10 

different simulations in ns-3 for varying the speeds and network size. 

4.2 Performance Evaluation 

We have set up a MANET network with nodes varying from 100 to 1000 using different 

mobility models discussed. The nodes are uniformly deployed in the network within a 

communication range of R2= 4∗log(𝑁𝑁)
𝛿𝛿

. The nodes are geo-densely placed i.e., at high probability 

each node has 2*log(N) neighbors. Also, the nodes in the network are moving at a speed varying 

between 3m/s to 21m/s. We have tested the above-mentioned network with varying mobility 

models: 2-D Random Walk and Random Waypoint. The network is hierarchically divided as 

described in chapter 4. 

In this section, we evaluate the performance of hierarchical EZ-AG considering message 

overhead, token messages, number of aggregations at distinct levels, node speed and mobility. 

4.2.1 Message Overhead 

In this section, we present the results for hierarchical EZ-AG message overhead. We have 

considered total messages in this case. Total messages include the token announcements, token 

requests and token transfers. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

= (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

Token announcements are messages sent out by the token holder nodes to all the nodes 

in its communication vicinity. Token requests are messages sent to the token holder node by the 

nodes requesting for the token (i.e., nodes which have received the token announcement 
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messages). Token transfer are messages resulting from the transfer of token to one of the nodes 

that requested for the token (that satisfies the criteria mentioned in chapter 4). 

 

Figure 4.1 Number of messages per node for EZ-AG and Hierarchical EZ-AG 

In Figure 4.1 we show total token message overhead of EZ-AG and hierarchical EZ-AG. In 

hierarchical EZ-AG, we have multiple instances of EZ-AG running at smaller network bound. To 

highlight log factor overhead we have plotted total token messages normalized by network size 

on y-axis and network size in x-axis. The results plotted are average obtained by 10 simulations. 

For EZ-AG, we see that total token messages remain almost flat / constant indicating that they 

grow linearly with network size indicating O(N) messages required to achieve data aggregation 

as values are normalized. In Hierarchical EZ-AG, we see total token messages following log(N) 

pattern indicating N log(N) required to achieve data aggregation.  
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4.2.1 Variance of Exploration Overhead 

 

Figure 4.2 Variance in message overhead for Hierarchical EZ-AG 

In Figure 4.2 and Figure 4.3 we show the variance in exploration overhead for hierarchical 

EZ-AG over 10 trials for different network sizes. We can also observe that the values are not highly 

varying across 10 simulations. 
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Figure 4.3 Variance in message overhead for Hierarchical EZ-AG over 10 trials 

4.2.3 Node Mobility and Speed 

 In Figure 4.5, we study the impact of node mobility and speed on the exploration 

overhead. We see that the performance of hierarchical EZ-AG improves as the node mobility 

increases. 
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Figure 4.4 Total Messages as a function of Network size for varying speeds 

 

4.2.4 Number of Aggregations at distinct levels 

Figure 4.6 shows the number of aggregate values disseminated for a network divided into 

2 levels. Level 0 represent the cells at lowest level and level 2 represent the cells at highest level. 

The cells at every level disseminate the results as and when the aggregation for that cell has been 

completed and it is not time synchronized. 

By the time the level 2 cell completes the data aggregation of the entire network once, 

on an average we have obtained 235 aggregations at level 0 and 13 aggregations at level 1. 
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Figure 4.5 Number of Aggregates at distinct level in Hierarchical EZ-AG 

 

4.3 Comparison with Gossip Techniques 

Figure 4.7 gives the information of total messages are required per node to complete the 

data aggregation for EZ-AG, hierarchical EZ-AG and projected message for spatial gossip 

technique. EZ-AG and Hierarchical EZ-AG has very small message overhead whereas spatial gossip 

has significantly large message overhead. We see that message overhead grows rapidly as 

network size increases. 

As described in [1], extension of spatial gossip technique requires O (N log5.4(N)) messages 

to obtain multi-resolution output whereas extension of EZ-AG requires only O (N log(N)). 
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Figure 4.6 Message Overhead comparison of Hierarchical EZ-AG with Spatial Gossip (projected) 
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Chapter 5 

 

Conclusion 
 

In this report, we have presented the extension of EZ-AG, hierarchical EZ-AG which is used 

for obtaining multi-resolution data aggregation of duplicate sensitive and duplicate insensitive 

data in MANETs. We see that hierarchical EZ-AG obtain the aggregates for lower levels cells faster 

than the aggregates of cells at the higher levels. This is useful in obtaining the local information 

of the nodes more frequently.  

We know that EZ-AG is a light weighted protocol. It makes minimal assumptions of 

underlying structure and requirements (it does not make any assumptions of the node locations 

or routing protocols used).  These properties of EZ-AG are inherited by hierarchical EZ-AG. 

We have showed that our protocol can achieve data aggregation in O (N log(N)) messages. 

In terms of message overhead, hierarchical EZ-AG outperforms the existing hierarchical 

technique by the factor of O(log4.4N). We notice that increasing the mobility to the nodes in the 

network, the number of messages exchanged for achieving the data aggregation is reduced. We 

have quantified the performance using ns-3 simulations under different node speeds and 

mobility models. 
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Appendix 

 
Network Simulator – 3 (NS3) 

NS-3 is an open-source and discrete-event based network simulator useful for research 

and educational purpose. NS-3 provides models of how data packets work, provides simulation 

engines for users to conduct experiments. The model sets available in NS-3 is useful to model 

how Internet protocols works, alongside non-Internet- based systems can also be simulated. NS-

3 is not a suitable platform to study real-time and highly controlled systems. 

 

Features in NS-3 

1. NS-3 is primarily used on Linux systems, it can also be used for Windows 

(Cygwin/FreeBSD) 

2. NS-3 consists of set of software libraries that can be combined with other external 

software packages. Data Visualization tools, animation tools can be used. User should 

work in the command line with C++ and/or python. 

 

ns-3 provides 

1. Nodes (used for managing the representations of computing devices in simulations), 

2. Channels for communications (CsmaChannel, PointToPointChannel and WifiChannel), 

3. Net device useful for communicating with other nodes via channel. 

4. Topology helpers useful for creating network/simulation topology i.e installing the nodes 

in the simulation area, applying mobility models and so on. 

 

Development Environment 

Scripting in ns-3 is done in C++ or Python. The ns-3 API’s are written in Python. Socket 

programming API’s are also provided in the ns-3 bundle. 
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Downloading NS-3 using tarball 

ns-3 has a complex system and many dependencies on other components. There is online 

wiki available to aid the process. The source code is available in Mercurial repositories on server 

http://code.nsnam.org. One can download the tarball release at 

http://www.nsnam.org/releases . 

Tarball is archive format where multiple files are bundled together and compressed. 

Downloading with tarball is very simple, choose the release download the compressed file and 

decompress it. 

$ cd 

$ mkdir workspace 

$ cd workspace 

$ wget http://www.nsnam.org/releases/ns-allinone- 3.17.tar.bz2 

$ tar xjf ns-allinone- 3.17.tar.bz2 

If we change to directory, ns-allinone- 3.17 we can see the following files: 

Bake   constants.py   ns-3.17    README 

build.py  netanim-3.103  pybindgen-0.16.0.825  util.py 

 

Building with Waf 

This is one of the tool useful for building ns-3 and supporting libraries. The working 

directory must be changes to ns-3 directory. The first command is not mandatory, but it’s a good 

practice to remove out the dependency files generated from the previous builds. The second 

command is used for re-configuring and dependencies are verified. 

$ ./waf clean 

$ ./waf -d optimized -- enable-examples -- enable-tests configure 

Some of the ns-3 libraries are not enabled by default, so we should run the below commands to 

enable the examples and tests. 

$ ./waf -d debug -- enable-examples -- enable-tests configure 

$ ./waf configure -d debug -- enable-sudo -- enable-examples -- enable-tests 

$ ./waf configure -d debug -o build/debug -- enable-examples -- enable-tests 

http://code.nsnam.org/
http://www.nsnam.org/releases


31 
 

Testing ns-3 

Unit tests of ns-3 are executed by running the following script. 

$ ./test.py -c core” script 

This script should result in test cases passed output. 

92 of 92 tests passed (92 passed, 0 failed, 0 crashed, 0 valgrind errors) 

 

Running a script 

We run the scripts in ns-3 under the control of waf which ensures that shared library paths 

are set correctly and available at run time. 

$ ./waf -- run hello-simulator 

Once ns-3 is setup we can build our functionality, use the packages provided as and when 

required. 
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