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Abstract 

THE ROLE OF RX IN EMBRYONIC RETINOGENESIS: DETERMINING GENETIC 
INFLUENCES ON OPTIC VESICLE FORMATION AND PHOTORECEPTOR CELL 

FATE. 

Helen M. Rodgers 

Eye development is a dynamic and complex process that is controlled by the interactions of 

transcription factors, signaling pathways, and growth factors. Disruption of the developmental 

process can result in ocular malformations or retinal diseases, which can cause blindness.  

Developing tools to study embryonic retinogenesis and understanding the molecular 

mechanisms involved are important for increasing our understanding of neural development, 

understanding ocular malformations such as anophthalmia, and may improve or lead to new 

treatments for eye diseases including blindness. This work aims to develop new tools for 

studying early eye development and explore genes associated with optic vesicle development 

and photoreceptor cell fate. In Study 1, we sought to identify and characterize markers of 

embryonic cone photoreceptors. We identified that two genes involved in phototransduction, 

phosducin and cone transducin , are expressed in developing cones. We characterized the 

temporal and spatial profile of both genes and their associated proteins over the developmental 

timeline of retinogenesis. Further, we determined their colocalization with known cone and 

photoreceptor markers and thus established them as useful markers for further studies of early 

cone histogenesis. In Study 2, we assessed the role of the homeobox gene, Rx, in progenitor 

proliferation and cell fate determination in the mouse retina using a conditional knockout. 

Deletion of Rx in retinal progenitors led to a loss of retinal lamination, depletion of the retinal 

progenitors and in the mature retina showed changes in retinal cell types. Late-born cells (rods, 

bipolar cells, and Müller glia) were absent, likely due to the depleted progenitor pool. Cones (an 

early-born retinal cell type) were also absent; examination of cone histogenesis showed Rx is 

necessary for cone photoreceptor generation. Finally, in Study 3 we identified an effective gene 

knockdown method for 3D optic vesicle organoid culture that is useful for studying gene 

expression and early retinal development. Using this method, we assessed the roles of three 

candidate genes in optic vesicle development and identified one gene that warrants further 

investigation in vivo.  Collectively these studies provide new tools for studying early 

embryogenesis and further our knowledge of the genetics underlying optic vesicle development 

and cone photoreceptor formation. 
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Approximately 1.02 million Americans are blind and another 3.22 million have visual 

impairments and those numbers are expected to double in the next 40 years (Varma et al., 

2016).  Among the causes of blindness are retinal diseases and ocular malformations.  Retinal 

diseases include age-related macular degeneration and inherited retinal dystrophies like retinitis 

pigmentosa. Ocular malformations include microphthalmia (small eyes) and anophthalmia (a 

complete absence of eyes). Ocular malformations are a less common cause of blindness with 

an incidence rate of one in 5300 in the USA (Parker et al., 2010).  Studying the genetic and 

molecular mechanisms involved in eye development will provide valuable information that will 

aid our understanding of neural development, and provide knowledge that could enhance 

current therapies, while potentially being a step toward developing new strategies to treat retinal 

diseases including blindness.  

Eye development is a dynamic and intricate process that is controlled by a highly organized 

sequence of interactions between signaling pathways, growth factors and transcription factors. 

Disruption of the developmental process can lead to ocular malformations and retinal diseases.  

This review chapter begins with a focus on eye development and its regulation by transcription 

factors.  Next, the expression, function and clinical significance of one of the main transcription 

factors in eye development, Rx, will be discussed.  Finally, stem cells and stem cell-derived 

retinal neurons will be examined, including the development of three-dimensional (3D) optic 

vesicles in culture and their potential for studying retinal development. 

Overview of eye development  

The eyes develop as an extension of the developing forebrain.  Development begins early in 

embryogenesis and consists of several overlapping stages starting with the induction of neural 

tissue and the formation of the anterior neural plate. In the second stage the anterior neural 

plate is subdivided into fields, one of which is the eye field that subsequently splits from the 

developing forebrain. The third step is the generation and patterning of bilateral optic vesicles. 
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Stage four includes the formation of the lens and formation and regionalization of the optic cup. 

The optic cup is a bilayered structure, the inner layer of the optic cup becomes neural retina and 

the outer layer becomes retinal pigmented epithelium (RPE).  The final stage is the 

differentiation of retinal neurons and glia.  

As the optic cups form, the first retinal neurons (retinal ganglion cells) are born from retinal 

progenitors, followed by the remaining differentiated retinal cell types in a characteristic 

sequence. The cells align in distinct layers, forming the outer nuclear layer, the inner nuclear 

layer and the retinal ganglion layer. Synapses form between the cellular layers in what are 

called the plexiform layers of the retina.  Visual signaling starts in the retina at postnatal day 

(P)13-14 in mice (Hoffpauir et al., 2009).  Figure 1 displays a schematic of the major events in 

eye development.  A more detailed discussion of eye development follows with a specific focus 

on the formation of optic vesicles and development of photoreceptors during neurogenesis. The 

regulation of these two stages of development involves the interaction of many factors, but this 

discussion will primarily focus on transcriptional regulation.  

Early eye development - optic vesicle formation 

In mice, the first visible stage of eye development is the formation of bilateral optic vesicles 

beginning with the appearance of optic sulci or optic pits at embryonic day (E) 8 (Heavner and 

Pevny, 2012).  Regulation of early eye development occurs through an interaction of extrinsic 

signaling factors and intrinsic transcription factors. Early in embryogenesis, neural induction of 

the dorsal ectoderm occurs with the inhibition of bone morphogenetic protein (BMP) signaling 

via antagonists such as, Noggin, Follistatin, Chordin, Cerberus, and Xnr3 (Weinstein and 

Hemmati-Brivanlou, 1999; Gestri, 2005) and suppression of BMP signaling by Wnt and 

fibroblast growth factor (FGF) signaling (Graw, 2010). The induction of neural tissue is followed 

by specification of the anterior neural plate.  The formation of the anterior neural plate is 

accomplished via the inhibition of the Wnt and/or Nodal signaling pathways by either actions of 
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Lefty, Cerberus or Dickkopf-1 (Dkk1) (Bouwmeester et al., 1996; Glinka et al., 1998; Branford 

and Yost, 2002). These pathways are responsible for organization of left-right axial structures in 

early embryonic development. A transcription factor, Six3, has also been proposed as playing a 

role in anterior neural plate specification through promotion of cell proliferation and inhibition of 

BMP (Graw, 2010).  

The anterior neural plate is then subdivided into fields along the anterior-posterior axis, one of 

which is the eye field. Interactions of Cerberus, Dkk1, Chordin and Noggin, as well as 

components of the Wnt, Nodal, FGF and insulin-like growth factor (IGF) signaling pathways, 

work together to generate the appropriate regionalization of the fields of the anterior neural plate 

(McFarlane et al., 1998; Piccolo et al., 1999; Pera et al., 2001; Houart et al., 2002; Lagutin et al., 

2003).  Eye field formation requires a series of inductive events including the expression of a 

combination of transcription factors, known as eye field transcription factors (EFTFs). The 

expression of the EFTFs are induced by the actions of noggin and Otx2 (Zuber et al., 2003). 

The anterior neuroectoderm begins to express the transcription factors Otx2 and Sox2, which in 

combination prime the anterior neural plate for eye field specification and activate the 

transcription of a crucial EFTF, Rx (Danno et al., 2008). Rx is required for the proliferation of 

retinal progenitors and leads to an increase in transcription of other transcription factors 

including Pax6, Six3, Lhx2, and Six6 (also known as Optx2) (Bailey et al., 2004). This group of 

transcription factors, including Rx, make up the EFTFs, which are expressed in slightly different 

but overlapping areas of the eye field (Zuber et al., 2003). Otx2 is repressed as the EFTFs are 

expressed (Zuber et al., 2003). Disruptions during early eye development can lead to ocular 

malformations such as anophthalmia (absence of eyes) or microphthalmia (small eyes). 

Mutations in Sox2, Otx2, and Rx are all associated with ocular malformations (Gonzalez-

Rodriguez et al., 2010; Williamson and FitzPatrick, 2014). Studies utilizing models of over-
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expression and deletion have shown that transcription factors, such as Otx2, Rx, Pax6, Six3 

and Lhx2 all play an important role in early eye development (Andreazzoli, 2009).  

After eye field specification, the neuroectoderm divides in two. Separation at the midline is 

controlled by a combination of the activation of sonic hedgehog (Shh) (Chiang et al., 1996) by 

Six3 expression (Geng et al., 2008; Jeong et al., 2008) and signaling factors such as Ndr2 

(Rebagliati et al., 1998).  Disruptions in Shh, Six3, or Ndr2 expression result in midline defects 

such as holoprosencephaly (HPE) that can include the formation of a single eye, cyclopia 

(Belloni et al., 1996; Roessler et al., 1996; Rebagliati et al., 1998; Muenke and Cohen, 2000; 

Geng et al., 2016).  At approximately E8.5 in the mouse, the walls of the diencephalon form 

evaginations called optic vesicles. Studies suggest that Rx, Pax6 and tll are involved in the 

evagination of the optic vesicles (Bailey et al., 2004; Chow & Lang, 2001; Hollemann, Bellefroid, 

& Pieler, 1998;  Loosli et al., 2001;  Loosli et al., 2003; Rembold, Loosli, Adams, & Wittbrodt, 

2006). The optic vesicles contain retinal stem cells that will eventually give rise to all the 

neuroectoderm-derived cells of the eye (Heavner and Pevny, 2012). 

Prior to optic cup formation, the optic vesicle undergoes patterning along the dorsal-ventral axis 

and along the naso-temporal axis. This patterning results in the formation of regions that 

correspond to the presumptive neural retina (distal region), RPE (dorsal proximal region) and 

optic stalk (ventral proximal region). Regulation of optic vesicle patterning involves the 

expression of several transcription factors in specific regions that are important for the formation 

of a specific cell type. The presumptive neural retinal in the dorsal region expresses Vsx2 

(previously called Chx10) and Pax6 (Adler & Canto-Soler, 2007; Liu et al., 1994), the dorsal 

proximal region that will become RPE expresses the basic helix-loop-helix (bHLH) transcription 

factor Mitf, along with Otx2, and Pax6. Pax2 is expressed in the ventral proximal region of the 

optic vesicle, which is the presumptive optic stalk (Nornes et al., 1990; Hodgkinson et al., 1993).  

In addition, extrinsic signals including members of TGFβ, FGF, and Wnt families and Shh are 
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involved in optic vesicle patterning prior to it forming the optic cup (Heavner and Pevny, 2012).  

Once the optic vesicle is formed, it interacts with the overlying ectoderm and will invaginate to 

create a bilayered optic cup. Figure 2 is a diagram of the events surrounding optic vesicle 

development, including key transcription factors and signaling pathways that are involved.  

Neural Retina Formation – Photoreceptor Development 

The stepwise process of retinal neurogenesis begins early with FGF and Shh signaling along 

with the expression of transcription factors, Pax6, Pax2, Vax, Rx, Mitf, and Otx2 directing the 

regionalization of the optic cup (Yang, 2004).  The optic cup forms a bilayered structure, where 

the inner layer will become the retina and the outer layer will become RPE. As the optic cup is 

forming, the generation of the differentiated retinal cell types begins.  The retina contains seven 

principal cell types, six different neuronal cells (including retinal ganglion cells, amacrine cells, 

bipolar cells, horizontal cells, cone photoreceptors, and rod photoreceptors) and one glial cell 

type, Müller glia. All of the different retinal cell types are formed from a common multipotent 

retinal progenitor (Turner and Cepko, 1987; Holt et al., 1988; Turner et al., 1990). 

Proliferation of Retinal Progenitors 

Retinal progenitors are highly proliferative, multipotent cells produced in the neuroblastic layer 

of the optic cup.  Proliferation and cell cycle exit of retinal progenitors is tightly regulated during 

development to ensure that there is a sufficient pool of progenitors to form all retinal cell types in 

the appropriate ratios (Dyer and Cepko, 2001) and to maintain proper eye size.  Early in 

development, the retinal progenitors divide symmetrically to increase the number of progenitor 

cells. Proliferation is regulated by several transcription factors including Hes1, Pax6, Vsx2, Rx, 

Lhx2, Prox1 and Sox2 (Dyer et al., 2003; Ohsawa and Kageyama, 2008; Sigulinsky et al., 2008; 

Agathocleous and Harris, 2009; Wall et al., 2009), as well as by neurotransmitters, such as 

dopamine (Martins and Pearson, 2008) and extrinsic signals, such as Hedgehog signaling 
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(Cwinn et al., 2011). Disruption in the regulation of proliferation can result in deficits, which can 

lead to loss of retinal neurons, alterations in eye size or a complete absence of eyes.   

Once a sufficient pool of progenitors forms, the retinal progenitors undergo asymmetric 

divisions, producing one daughter cell that will differentiate and one daughter cell that will 

continue to divide as a progenitor.  When neurogenesis is near completion, both daughter cells 

of the dividing retinal progenitor will terminally differentiate and are likely to form Müller glia, 

depleting the entire retinal progenitor pool. In mouse, the final mitotic divisions occur around 

P10. The retinal progenitors, although starting off as multipotent, go through a series of stages 

whereby the range of cell types produced is restricted (Marquardt & Gruss, 2002). This 

restriction results in a heterogeneous pool of progenitors with overlapping subpopulations that 

have a semi-restricted cell fate (Trimarchi et al., 2008), and these progenitors are often called 

committed progenitors (Wong and Rapaport, 2009).  The progression of cell fate determination 

from multipotent progenitor to a differentiated neuron is shown in Figure 1C. 

The birth of neurons from progenitors follows a conserved temporal pattern in vertebrates with 

two distinct but overlapping phases (Young, 1985; Rapaport et al., 2004).  The retinal cells born 

during the early phase include retinal ganglion cells, amacrine cells, cone photoreceptors and 

horizontal cells.  The late-born retinal cell types include rod photoreceptors, bipolar cells and 

Müller glia.  In the mouse, the early phase of cell birth starts with retinal ganglion cell formation 

at E10.5, followed by amacrine cells, cone photoreceptors and horizontal cells that start at 

approximately E11.5.  The majority of early born cells are generated before birth, whereas the 

majority of late born cells are generated postnatally, however the formation of the late-born cells 

starts during embryogenesis. The late-born cells start with rod photoreceptor generation at 

E13.5, followed by bipolar cell birth that starts at E15 and finally Müller glia, which are formed 

starting at approximately E16.5 (See Figure 3C for a schematic showing the time period for the 

generation of each cell type).  



8 
 

In addition to the characteristic temporal pattern of retinal cell development, there is also a 

spatial pattern followed during retinogenesis. The development of the central and peripheral 

retina shows a difference in timing between these regions (See Figure 1C). The differentiation of 

retinal neurons occurs first in the central retina and spreads to the periphery (Young, 1985). 

Regulation of retinal neurogenesis is controlled by both extrinsic factors (morphogens and 

growth factors) and intrinsic factors (transcription factors).  Transcriptional regulation of the 

differentiation of retinal neurons generally involves a combination of two main types of 

transcription factors, homeobox (hb) and basic helix-loop-helix (bHLH), which can act as 

activators or repressors for certain cell types.  Specification of cell fate for a specific retinal cell 

type results from the combination of actions of activators and repressors. Activators direct a cell 

toward one fate while the repressors prevent the cell from adopting a different fate.  The 

specification of each retinal cell type requires a unique group of repressors and activators to 

guide the cell to the appropriate cell fate. Alterations in transcription factors during retinogenesis 

can lead to changes in cell fate, such that a cell that would become one cell type switches and 

becomes another.  For example, deletion of Pax6 leads to the development of amacrine cells at 

the expense of all others (Marquardt et al., 2001).  A discussion of the transcriptional regulation 

of each cell type formed during retina development is beyond the scope of this introduction; 

therefore, the discussion will be limited to the formation of photoreceptors.   

Formation of Photoreceptors 

Photoreceptors are the highly specialized cells that form the outer nuclear layer of the retina and 

are responsible for phototransduction. There are two types of photoreceptors, rods and cones. 

Each photoreceptor type is responsible for processing different types of light. Rods are highly 

sensitive, and mediate vision in dimly lit conditions via the photopigment, rhodopsin. Cones 

mediate vision in brightly lit conditions. There are different subtypes of cones. In mice, the two 

primary subtypes are S-cones and M-cones, whereas humans contain a third cone type, L-
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cones. Each cone subtype is maximally responsive to a different wavelength of light thus 

allowing color vision. The photopigments in cones are the opsins. In mice, M-cones primarily 

express M-opsin (Opn1mw), which has a peak sensitivity to medium wavelength or the green 

region of the light spectrum. S-cones predominantly express S-opsin (Opn1sw), which has a 

peak sensitivity to short wavelength or blue region of the light spectrum.  Opsin expression in 

mice occurs in opposing gradients, such that most cones expression both S- and M-opsin but in 

differing levels (Szél et al., 1996; Applebury et al., 2000). M-opsin is expressed at highest 

concentrations dorsally and S-opsin ventrally (Szél et al., 1996; Applebury et al., 2000).  In 

humans, cones express one opsin (either L, M or S) per cone subtype.  

Photoreceptors display distinct morphology containing 1) an outer segment that is filled with 

photopigments (opsins) and interacts with the RPE; 2) an inner segment, which is connected to 

the outer segment via a narrow connecting cilium; 3) a nucleus; and 4) a synaptic terminal. See 

Figure 3B for a diagram of photoreceptor morphology.  Disruption of the factors that regulate 

photoreceptor development can affect formation, survival and function of photoreceptors, which 

can lead to vision loss.   

The formation of a differentiated and fully functioning photoreceptor is a stepwise process that 

begins with the proliferation of the multipotent progenitor cells. Next, is the restriction of the 

competency of the retinal progenitor cells, followed by the cell fate specification and 

commitment to becoming a photoreceptor.  Next, the cell will express photopigment-specific 

genes, and finally there is a period of synapse formation and the outer segment formation.   This 

process is regulated by the combination of many transcription factors.  For an overview of the 

process and the transcription factors involved, see Figure 4.   

One of the earliest identified transcription factors involved in photoreceptor formation is Otx2 

(Nishida et al., 2003). Conditional deletion of Otx2 in mice results in a loss of photoreceptors 
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(rods and cones), and bipolar cells (Nishida et al., 2003; Koike et al., 2007). Activation of Otx2 in 

progenitors leads to the activation of other transcription factors involved in photoreceptor cell 

fate determination.  Within the Otx2-positive population of progenitors, the expression of Blimp1 

(also known as Prdm1) helps to determine whether the cells will become photoreceptors or 

bipolar cells. The deletion of Blimp1 in a conditional knockout (CKO) model leads to a decrease 

in photoreceptor numbers and an increase in bipolar cells (Brzezinski et al., 2010; Katoh et al., 

2010).  Blimp1 promotes photoreceptor cell fate through the repression of Vsx2, which is 

required for bipolar cell formation (Brzezinski et al., 2010; Katoh et al., 2010).  

Downstream of Otx2 is the transcription factor Crx (Cone-rod homeobox) (Nishida et al., 2003). 

Crx is expressed in developing and mature photoreceptors in mice starting at E12.5 (Furukawa, 

Morrow, & Cepko, 1997). Mice with a Crx deletion still develop photoreceptors, but they fail to 

express photoreceptor-specific genes, such as the opsins, and they fail to form outer segments 

(Furukawa, Cepko, Morrow, Li, & Davis, 1999). Eventually, Crx-deficient mice suffer from retinal 

degeneration (Furukawa et al., 1999). CRX mutations in humans are associated with cone-rod 

dystrophy, retinitis pigmentosa and Leber’s congential amaurosis (Freund et al., 1997; Sohocki 

et al., 1998). At later stages of photoreceptor development, Crx acts in concert with Rx to 

transactivate rhodopsin and opsin promoters and thus promote the expression of photoreceptor-

specific genes (Irie et al., 2015). This result suggests that Crx is important in photoreceptor 

development, playing roles in outer segment formation, photoreceptor gene expression and 

photoreceptor survival, but it alone does not specify photoreceptor cell fate.  

The determination of rod photoreceptor fate is largely mediated through the expression of the 

transcription factor, Nrl (Neural retina leucine zipper) (Mears et al., 2001).  Nrl is preferentially 

expressed in rod photoreceptors (Swaroop et al., 1992) and when deleted in mice, results in a 

loss of rods that instead have adopted a S-cone-like photoreceptor fate and display abnormal 

outer segments (Mears et al., 2001).  Nrl transactivates several genes involved in rod 
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development including Nr2e3 (Oh et al., 2008) and Rorβ (Fu et al., 2014). Ectopic expression of 

Nrl in photoreceptor precursors leads to the induction of rod-like characteristics and suppresses 

cone-specific gene expression (Oh et al., 2007). In humans, NRL mutation is associated with 

retinitis pigmentosa (Bessant et al., 1999; Martinez-Gimeno et al., 2001). Together these 

studies provide evidence that Nrl is critical in specifying rod photoreceptor fate.  

Another transcription factor involved in the development of photoreceptors is Rorβ (retinoid-

related orphan receptor beta), an orphan nuclear receptor that is expressed in the developing 

retina with high expression in the presumptive photoreceptor layer (Schaeren-Wiemers et al., 

1997; Srinivas et al., 2006).  Rorβ-null mice, similar to Nrl-null mice, lack rods and have excess 

S-cone-like photoreceptors, which fail to form outer segments and do not express S-opsin 

(Srinivas et al., 2006; Jia et al., 2009).  Nrl and Nr2e3 are down-regulated in Rorβ-null mice 

suggesting that Rorβ acts upstream of Nrl (Jia et al., 2009). There is also feedback interaction 

whereby Nrl can activate Rorβ and thus reinforce the commitment to rod fate (Fu et al., 2014). 

Another important transcription factor in rod cell fate determination is Nr2e3, an orphan nuclear 

receptor that is activated by Nrl (Oh et al., 2008). Nr2e3 mutants display an up-regulation of 

cone-specific genes and a down-regulation of rod-specific genes (Peng et al., 2005). Nr2e3 acts 

in concert with Crx to specify rod fate through its repression of cone-specific genes, and it also 

has the ability to activate certain rod-specific genes, such as rhodopsin (Chen, Rattner, & 

Nathans, 2005; Cheng et al., 2004, 2006; Peng et al., 2005). 

Whereas the transcriptional network responsible for rod photoreceptor cell fate determination 

and development is fairly well studied, much less is known about cone photoreceptor 

specification, and currently there are very few cone-specific markers that have been identified 

and characterized in embryonic retinogenesis.   
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Based off of the evidence from current studies, a model of photoreceptor development has been 

proposed whereby photoreceptors originate from a common photoreceptor precursor that has 

been specified by Otx2, Crx and Rorβ and, without additional regulatory signals (such as Nrl or 

Trβ2), will follow a default pathway and develop as an S-cone. This hypothesized model is 

called ‘transcriptional dominance’ (Swaroop, Kim, & Forrest, 2010).   

Several transcription factors have been identified that act on cone photoreceptors to activate 

opsin expression. Thyroid hormone receptor β2 (Trβ2) is expressed transiently in developing 

cones during embryonic cone histogenesis (Applebury et al., 2007; Ng et al., 2009). NeuroD1 

regulates Trβ2 in developing cones (Liu et al., 2008).  Deletion of Trβ2 causes a loss of M-

cones with an increase in S-cones, and it disrupts the characteristic gradient of opsin 

expression in the mouse retina (Ng et al., 2001). This phenotype indicates that the green cone 

subtype (M-opsin) requires Trβ2 activity. Since cones are still born but the green subtype is lost 

in the Trβ2 mutant, this result suggests that Trβ2 is not required for the initiation of cone 

formation but is necessary for cone subtype specification. 

Other transcription factors work in concert with Crx to activate opsin expression. Rorβ, a 

transcription factor that is important in early rod formation also acts in cooperation with Crx to 

activate S-opsin expression in cone photoreceptors (Srinivas et al., 2006). Another nuclear 

receptor, Rorα, also works synergistically with Crx to activate S-opsin and M-opsin expression in 

postnatal cones (Fujieda et al., 2009).  

Another transcription factor, Rxr is expressed in developing cones and retinal ganglion cells 

(Mori et al., 2001). Deletion of Rxrdoes not affect the initiation of cone development, but all 

cones express S-opsin, while M-opsin expression is unaffected (Roberts et al., 2005). This 

phenotype suggests that Rxr is not necessary for M-opsin regulation but instead functions to 
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suppress S-opsin in the dorsal portion of the retina and therefore helps to form the opsin 

gradient found in the mouse retina.  

Homeobox Genes in Eye Development 

Each step in eye development is regulated by the collaboration of transcription factors, growth 

factors and signaling pathways. Several of the transcription factors involved in eye development 

have been identified through their expression patterns, and their functions revealed by 

mutations, gene knockouts, and overexpression studies. These transcription factors can be 

classified into three gene families, homeobox, basic helix-loop-helix, and forkhead box. 

Homeobox genes encode transcription factors that contain a specific DNA sequence of 60 

amino acids known as the homeodomain. The DNA binding homeodomain canonically binds to 

core TAAT/ATTA motifs (Gehring et al., 1994). In addition to the homeodomain, there are 

unique flanking domains which impart specificity (Gehring et al., 1994). Homeobox genes can 

be classified based on the presence of these additional domains, for example those containing 

paired or LIM domains. Homeobox genes are known to play a critical role in numerous aspects 

of development including eye formation. Homeobox genes are involved with the specification of 

the eye field, progenitor proliferation, cell fate determination, and retinal neuron differentiation 

(Zagozewski, Zhang, Pinto, Wigle, & Eisenstat, 2014). Many of these genes play multiple roles 

throughout eye development, and mutations affecting these genes can lead to a number of 

ocular defects. The following are some of the main homeobox genes that play key roles in 

regulating eye development. 

Otx2 

One of the earliest transcription factors expressed in eye development, Otx2 (Orthodenticle 

homeobox 2), belongs to the orthodenticle-related family of transcription factors.  The 

orthodenticle-related family of genes includes the Drosophila orthodenticle (otd) and the 

vertebrate Otx1 and Otx2 genes. The orthodenticle-related family genes encode bicoid-like, 



14 
 

homeodomain-containing transcription factors that play important roles in development.  Otx2 is 

expressed very early in mouse development, as in situ hybridization with an Otx2 probe shows 

wide spread expression at E5.5 in the embryonic ectoderm (Simeone et al., 1993).  As 

development proceeds, this expression become restricted to anterior regions that correspond to 

forebrain and midbrain areas, including the eye field (Simeone et al., 1993; Simeone, 

Acampora, Gulisano, Stornaiuolo, & Boncinelli, 1992).  As the optic vesicle is formed, Otx2 is 

expressed throughout; however, later in development expression become restricted to the 

dorsal portion of the optic vesicle (presumptive RPE) (Bovolenta et al., 1997).  Around the 

beginning of neural retinogenesis, Otx2 is expressed strongly in the RPE of the optic cup and 

weakly in the neural retina (Nishida et al., 2003).  By E12.5, the intensity of Otx2 expression has 

increased in the neural retina and continues to robustly label the RPE (Nishida et al., 2003).  

Otx2 expression at E17.5 is concentrated in the outer aspect of the neuroblastic layer, which is 

the location of the photoreceptors in mature retinas (Nishida et al., 2003). In addition to 

developing photoreceptors, transient expression of Otx2 occurs in ganglion, amacrine, and 

horizontal cells in mouse embryos (Baas et al., 2000), in contrast to embryonic otx2 expression 

in the chick, which transiently labels differentiating neuroblasts of all retinal cell types (Bovolenta 

et al., 1997). Postnatally, as retinogenesis is nearing completion, Otx2 expression decreases in 

the RPE and is restricted to the bipolar cells within the inner nuclear layer by P6 (Baas et al., 

2000; Nishida et al., 2003).  

Corresponding to its very early expression pattern in the developing embryo, Otx2 plays an 

important role in brain development, Otx2-null mice die early in embryogenesis, and they lack 

presumptive forebrain and midbrain structures (Ang et al., 1996; Matsuo, Kuratani, Kimura, 

Takeda, & Aizawa, 1995). Due to a loss of the presumptive forebrain region from which the eye 

develops in Otx2-null mice, functions of Otx2 in eye development have been gleaned primarily 

from clinical studies, other vertebrate models such as Xenopus and conditional knockout mice.  



15 
 

Otx2 is critical very early in eye development. Heterozygous mutations of OTX2 in humans are 

associated with severe ocular malformations, including anophthalmia (Ragge et al., 2005; Wyatt 

et al., 2008). The splitting of the eye field in the anterior neural plate leads to the formation of 

the optic vesicles. Eye field formation requires a series of inductive events, including the 

expression of a combination of transcription factors, EFTFs. The expression of the EFTFs are 

induced by the actions of noggin and Otx2 (Zuber et al., 2003). Otx2 is repressed as the EFTFs 

are expressed (Zuber et al., 2003). Once the eye field is formed, Otx2 in combination with Sox2 

interacts to regulate Rx expression in the optic vesicle (Danno et al., 2008).  Mutations in Otx2, 

Sox2 and Rx are all associated with ocular malformations in humans (Gonzalez-Rodriguez et 

al., 2010). 

A second function for Otx2 in eye development is its role in retinal neuron cell fate decisions.  

Conditional deletion of Otx2 in the developing retina results in many changes, including 

microphthalmia and changes in retinal cell fate.  Developing photoreceptors in the Otx2 CKO 

retina instead become amacrine-like cells (Nishida et al., 2003).  Expression of the cone-rod 

homeobox (Crx) gene is absent in the Otx2 CKO, suggesting that Otx2 is controlling 

photoreceptor cell fate by being a direct upstream regulator of Crx (Nishida et al., 2003). Otx2 is 

expressed in the final cell cycle of photoreceptor precursors (Muranishi et al., 2011). The 

regulatory locus directing Otx2 expression in photoreceptor precursors has been identified 

(called embryonic enhancer locus for photoreceptor Otx2 transactivation; EELPOT) (Muranishi 

et al., 2011).  Otx2 retinal expression was found to be dramatically reduced in Rx CKO mice, 

and in retinal progenitors, Rx interacts with the EELPOT enhancer to transactivate Otx2 during 

the final cell cycle (Muranishi et al., 2011). Otx2 is expressed in the progenitors of both 

photoreceptors and bipolar cells, with transient expression of Blimp1 in a subset of precursors 

directing their fate towards photoreceptors and preventing them from becoming bipolar cells 

(Brzezinski et al., 2010). 
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Sox2 

Another transcription factor, Sox2 belongs to the Sox (sex determining region Y-box) gene 

family, which includes approximately 20 genes. The Sox family is grouped according to their 

amino acid identity. Sox2 is in the B1 group, which contains a high-mobility-group domain and a 

C-terminal transactivation domain (Hever et al., 2006).  Sox2 is widely expressed very early in 

embryonic development. Homozygous germline deletion of Sox2 shows normal development to 

the blastocyst stage but is embryonic lethal at the peri-implantation stage (Avilion et al., 2003). 

Sox2 expression in eye development appears at the earliest stages. Sox2 is expressed in the 

anterior neural plate and as development proceeds, in the optic cup  it eventually becomes 

restricted to the neuroblastic layer (Uwanogho et al., 1995; Uchikawa et al., 1999; Inoue et al., 

2007).  Retinal progenitor cells in the neuroblastic layer express Sox2 until they exit the cell 

cycle to become differentiated neurons (Taranova et al., 2006). Sox2 expression is also found in 

Müller glia and a subset of amacrine cells within the mature retina (Le et al., 2002; Lin et al., 

2009).  

The functions of Sox2 are well studied and include stem cell pluripotency, progenitor 

maintenance, cell fate determination and cancer (Feng and Wen, 2015).  Sox2 is critical for 

maintaining the pluripotency of embryonic stem cells (Masui et al., 2007) and is often used as a 

marker for neural stem cells and progenitors. The role of Sox2 in stem cell maintenance is 

supported by its use in reprogramming differentiated cells in the generation of induced 

pluripotent stem cells (Takahashi and Yamanaka, 2006). Sox2 is also important for the induction 

of neural fate. In embryonic stem cells, Sox2 can promote a neuroectodermal fate (Foshay and 

Gallicano, 2008).  Sox2 induces neural fate through the repression of regulators of mesodermal 

fates, such as Brachyury (Zhao, Nichols, Smith, & Li, 2004).  Deletion of Sox2 in retinal 

progenitors of the optic cup results in a cell fate switch from neuronal cell types to non-neural, 

ciliary body epithelium fate (Matsushima et al., 2011). Taranova et al. (2006) showed that Sox2 
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controls retinal progenitor cell proliferation through the activation of Notch1.  An additional role 

for Sox2 was identified in its ability to transactivate Rx in combination with Otx2 during eye field 

specification (Danno et al., 2008). Sox2 also plays a role in lens formation and is expressed in 

the ventral surface ectoderm prior to lens placode formation (Chow and Lang, 2001). 

Dominant mutations in Sox2 are associated with severe ocular defects, such as anophthalmia 

and microphthalmia (Hever et al., 2006).  Sox2 mutations are one of the main genetic causes of 

these ocular defects. The eye phenotype associated with Sox2 mutations is variable, ranging 

from bilateral anophthalmia to bilateral microphthalmia (Hever et al., 2006).  

Pax2/ Pax6 

Several homeobox genes have been identified that contain a paired domain. These genes 

belong to the paired box (Pax) gene family that encodes transcription factors important in 

development.  Two of these genes, Pax2 and Pax6, have established roles in eye development. 

Pax6 protein contains two DNA binding regions, the paired domain and a homeodomain, 

whereas Pax2 contains only a paired domain.  While both Pax2 and Pax6 are expressed in the 

developing eye, they have different expression patterns. Pax6 is expressed early, starting at the 

end of gastrulation in the anterior neural plate (Kenyon et al., 2001). As development continues, 

Pax6 expression becomes restricted to the dorsodistal optic vesicle and presumptive lens 

ectoderm (Grindley et al., 1995). As the optic cup forms, Pax6 is expressed throughout this 

structure; however, in the differentiated retina, Pax6 expression is limited to ganglion and 

amacrine cells (Belecky-Adams et al., 1997). In addition to its expression in the developing eye, 

Pax6 is also expressed in the other developing tissues, including the brain (Grindley et al., 

1997), lacrimal gland (Makarenkova et al., 2000), pancreas (St-Onge et al., 1997) and nasal 

epithelium (Hogan et al., 1986). Pax2 expression starts later at E9 in the optic vesicle (Nornes 

et al., 1990). During the formation of the optic cup, Pax2 is expressed in the ventral portion and 

in the optic stalk, and as development proceeds, expression is restricted to the optic disc and 
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along the optic nerve (Nornes et al., 1990). At E18, in addition to optic nerve expression, a thin 

layer of cells on the inner border of the neuroblastic layer also expresses Pax2 (Nornes et al., 

1990).  

Pax6 has numerous important functions in eye development that are highly conserved between 

Drosophila and vertebrates (Quiring et al., 1994). Because of this, Pax6 was once proposed to 

be the master control gene of eye development (Gehring, 1996).  Mutations in Pax6 lead to 

ocular defects. The Small eye (Sey) phenotype occurs in mice and rats that are heterozygous 

for a semi-dominant mutation of Pax6 (Hill et al., 1991; Hogan et al., 1986; Matsuo et al., 1993), 

which is characterized by microphthalmia, iris hypoplasia, and cataractogenesis.  Similar 

mutations in humans are associated with aniridia, an absence of the iris (Ton et al., 1991; 

Glaser et al., 1992; Lee and Colby, 2013). Additionally, microphthalmia/anophthalmia is 

associated with mutations in PAX6 (Deml et al., 2016).  Mice that are homozygous for the Sey 

mutation have anophthalmia, lack nasal cavities and die around birth (Hogan et al., 1986; 

Grindley et al., 1995). In Sey/Sey mutants, the optic vesicle forms but is abnormally broad and 

fails to constrict proximally (Grindley et al., 1995). The optic vesicle contacts the overlying 

ectoderm, but the lens placode fails to thicken in these mutants (Grindley et al., 1995). An optic 

cup-like structure eventually forms; however, it lacks the characteristic differentiated layers that 

correspond to the presumptive neural retina and RPE (Grindley et al., 1995). Studies have 

shown that Pax6 gene dosage is important for normal eye formation. Transgenic mice with 

additional copies of Pax6 display eye defects, but the introduction of a single copy of Pax6 can 

rescue the Sey mutant phenotype in mice with a heterozygous Pax6 mutation (Schedl et al., 

1996). A role for Pax6 in retinogenesis was discovered in a conditional deletion model of Pax6. 

In this model, Pax6 was inactivated in the distal retina using cre-lox recombination. The deletion 

restricted the potential of retinal progenitors, leading to an overexpression of non-glycinergic 

amacrine cells at the expense of other retinal cell types (Marquardt et al., 2001). More recently, 
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Pax6 was identified as being downstream of suppressor of fused (Sufu), a regulator of 

hedgehog signaling (Cwinn et al., 2011). Conditional deletion of Sufu leads to a decrease in 

Pax6 expression and a loss of multipotency in retinal progenitors (Cwinn et al., 2011). These 

studies indicate that Pax6 is important in maintaining the multipotency of retinal progenitors 

during retinal development. Pax6 has another important role in eye development; along with 

Pax2, it is important for patterning of the optic vesicle for optic cup formation. The boundary 

between the presumptive neural retina and optic stalk forms through the reciprocal actions of 

Pax6 and Pax2 (Schwarz et al., 2000). Without Pax2, Pax6 expression expands ventrally into 

the optic stalk, and the tissue develops into neural retina. In Pax6 mutants, Pax2 expression 

expands dorsally (Schwarz et al., 2000). Pax2 and Pax6 proteins can reciprocally bind to each 

other’s promoter elements and inhibit the other’s activity (Schwarz et al., 2000). 

Lhx2 

Lhx2 (LIM homeobox protein 2) encodes a homeodomain transcription factor that is important in 

eye development. Lhx2 is a member of the LIM-homeodomain subfamily, which in addition to 

the homeodomain contains two zinc finger-like LIM domains that are involved in protein-protein 

interactions (Porter et al., 1997). Expression of Lhx2 starts early, appearing in the presumptive 

eye field of the anterior neural plate (Tétreault et al., 2009). Lhx2 belongs to the group of 

transcription factors called EFTFs and along with Rx is one of the earliest expressed 

transcription factors in the eye field (Zuber et al., 2003; Tétreault et al., 2009). Lhx2 is observed 

in the optic vesicle by E8.5 in mouse (Porter et al., 1997), and its expression continues as the 

optic cup is formed where it is localized to the optic stalk and retinal progenitors (Gordon et al., 

2013). As the retina matures, Lhx2 expression is limited to the inner nuclear layer and is 

detected in a subset of amacrine cells and in Müller glia (de Melo et al., 2012; Gordon et al., 

2013). 
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Lhx2 is important in many developmental processes and can function as a transcriptional 

activator or repressor (Zagozewski, Zhang, & Eisenstat, 2014).  In mice, homozygous deletion 

of Lhx2 is lethal late in embryogenesis and results in anophthalmia and cerebral cortex 

abnormalities (Porter et al., 1997). The optic vesicle develops in Lhx2-null mutants, but the optic 

cup fails to form (Porter et al., 1997), suggesting a critical role for Lhx2 in the formation of the 

optic cup.  Few incidences of human mutations of LHX2 have been identified and while there 

are some implications LHX2 mutations may result in anophthalmia, they are not a frequent 

cause of anophthalmia in humans (Desmaison et al., 2010). Evidence for a role of Lhx2 in very 

early eye development showed Lhx2 inactivation delayed the expression of three EFTFs– Rx, 

Pax6 and Six3 (Tétreault et al., 2009). In addition, Lhx2 can activate Rx, Pax6 and Six3 in the 

presumptive eye field and, in combination with Pax6, can transactivate Six6 (Tétreault et al., 

2009).  Lhx2 also plays a role in the regionalization of the optic vesicle as it develops into the 

optic cup. Lhx2-mutant optic vesicles fail to express factors important in patterning the optic 

vesicle (Vsx2 and Mitf), and eye development arrests at the optic vesicle stage (Yun et al., 

2009). Conditional deletion of Lhx2 has identified functions beyond optic cup formation.  Lhx2 

conditional knockout retinas show a depleted retinal progenitor pool that results in excess retinal 

ganglion cell formation at the expense of other cell types (Gordon et al., 2013). Conditional 

deletion of Lhx2 later in retinogenesis results in excess formation of rods (Gordon et al., 2013). 

Recently, Lhx2 has been shown to have a role in maintaining mature Müller glia in a nonreactive 

state (de Melo et al., 2012). 

Vsx2 (Chx10) 

Vsx2 (Visual system homeobox 2), which was previously referred to as Chx10, encodes a 

transcription factor that belongs to the paired-like (prd) class of homeobox proteins. Vsx2, in 

addition to containing a homeodomain, also has a CVC domain and an OAR domain (Liang and 

Sandell, 2008).  Expression of Vsx2 starts at approximately E9.5 in mouse in the distal wall of 
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the optic vesicle that is in close contact with the overlying surface ectoderm (Liu et al., 1994). 

This expression is the earliest of transcription factors expressed specifically in tissue that will 

become the neuroblastic layer of the developing optic cup (presumptive neural retina).  As the 

optic cup forms, Vsx2 is expressed in the outer neuroblastic layer in retinal progenitors, and this 

expression is down-regulated when the progenitors exit the cell cycle (Liu et al., 1994).  Later in 

development and in the mature retina, Vsx2 expression is limited to the inner nuclear layer 

where it is expressed in bipolar cells and a subset of Müller glial cells (Liu et al., 1994; Rowan & 

Cepko, 2004).  

Vsx2 has a role in patterning of the optic vesicle, where it is expressed in what will become 

presumptive neural retina in the optic cup. In mice with a Vsx2 null allele (orJ/orJ mice), Mitf is 

upregulated and there is a transdifferentiation of neural retina into RPE (Horsford et al., 2005; 

Rowan et al., 2004). A recent study of optic vesicles formed using human induced pluripotent 

stem cells (IPSCs) from a patient with a VSX2 mutation showed a subset of components of the 

Wnt signaling pathway were misexpressed and upregulated (Capowski et al., 2016). Thus, 

these studies suggest that Vsx2 confers neural retina identity through the repression of Mitf 

(Horsford et al., 2005) and regulation of Wnt signaling (Capowski et al., 2016). 

In humans, VSX2 mutations are associated with autosomal recessive microphthalmia (Reis et 

al., 2011) and non-syndromic microphthalmia/anophthalmia (Bar-Yosef et al., 2004; Ferda 

Percin et al., 2000; Zhou et al., 2008). The ocular retardation (orJ) mouse is the result of a 

premature stop codon in the Vsx2 gene creating a null allele (Burmeister et al., 1996). Mice 

homozygous for the orJ allele showed no Vsx2 expression, a reduction of retinal progenitors and 

a lack of bipolar cells (Burmeister et al., 1996). These changes lead to mice with 

microphthalmia, thin retinas and optic nerve aplasia (Burmeister et al., 1996). These changes as 

a result of the Vsx2 mutation suggest important functions for Vsx2 in progenitor proliferation and 
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the generation of bipolar cells. Further support for the role of Vsx2 in bipolar cell fate comes 

from a study of Vsx2 knockdown in postnatal retinas using shRNA, which resulted in a 

significant decrease in bipolar cells (Green et al., 2003). There is evidence to suggest the 

mechanism through which Vsx2 influences bipolar cell fate is via the repression of 

photoreceptor-inducing factors.  The conditional knockout of Blimp1, a transcription factor 

important for photoreceptor cell fate, leads to an increase in Vsx2 and bipolar cells at the 

expense of photoreceptors (Brzezinski et al., 2010; Katoh et al., 2010).   

Six3/ Six6 (Optx2) 

The sine oculis homeobox (Six) family of genes was first identified in Drosophila as being 

important in eye development (Kumar, 2009).  Several orthologs have been identified in 

vertebrates, two of which are important in eye development– Six3 and Six6 (also called Optx2).  

Six3 and Six6 encode transcription factors that contain two conserved domains, the DNA-

binding homeodomain and the Six domain, which is involved in protein-protein interactions 

(Kumar, 2009). Six3 and Six6 are expressed multiple times during eye development. Six3 is first 

expressed in the anterior neural plate around E6.5 in mouse (Oliver et al., 1995; Bovolenta et 

al., 1998) and is commonly used as an anterior neural plate marker. Six3 is one of the identified 

EFTFs that are found in the developing eye field of the anterior neural plate (Oliver et al., 1995; 

Bovolenta et al., 1998; Zuber et al., 2003). Six3 expression continues in the optic vesicles and, 

as the optic cup forms, is expressed in the neural retina and optic stalk (Bovolenta et al., 1998; 

Loosli, Köster, Carl, Krone, & Wittbrodt, 1998; Oliver et al., 1995).   As development proceeds, 

there is differential expression in the neuroblastic layer with strong labeling in the inner portion 

and weak labeling in the outer neuroblastic layer where progenitors reside; by E18 in mice, the 

only remaining expression is in the inner neuroblastic layer (Oliver et al., 1995).  In the fully 

differentiated adult eye, Six3 expression is maintained in the inner nuclear layer and in select 

retinal ganglion cells (Granadino et al., 1999).  In addition to its expression in the developing 
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eye, Six3 is also expressed in the ventral diencephalon, olfactory placodes, and Rathke’s pouch 

(Oliver et al., 1995).   

Similar to Six3 expression, Six6 is expressed in the eye field of the anterior neural plate and is 

considered an EFTF (Toy et al., 1998; Toy and Sundin, 1999; Zuber et al., 2003). Expression of 

Six6 continues in the optic vesicles and through the optic cup stage, where it is expressed in the 

neuroblastic layer and the optic stalk (Toy et al., 1998; Jean et al., 1999; Toy and Sundin, 

1999).  In mice at E13.5, Six6 is expressed in the neural retina nearest the RPE, and at birth 

expression is undetectable (Toy and Sundin, 1999). However, in adults Six6 expression in mice 

is observed in the inner nuclear and ganglion cell layers (Toy and Sundin, 1999), which differs 

from the expression in chickens, where it is also found in mature photoreceptors (Toy et al., 

1998).  

Mutations in SIX3 in humans are associated with holoprosencephaly (Wallis et al., 1999; 

Lacbawan et al., 2009; Solomon et al., 2009; Ribeiro et al., 2011).  Holoprosencephaly (HPE) is 

a cephalic disorder of varying severity that results when the embryonic forebrain fails to 

separate properly. Clinically, HPE presents as craniofacial anomalies that, when severe, can 

include microcephaly, cyclopia, anophthalmia, microphthalmia, formation of a proboscis, and 

cleft lip/palate (Solomon et al., 2009). Studies show that Six3 is necessary to activate Shh, 

which normally induces the separation of the embryonic forebrain (including the eye field) and 

when this process is disrupted, the result is HPE (Geng et al., 2008; Jeong et al., 2008). The 

brain defects (microcephaly) and eye defects (microphthalmia, anophthalmia, and cyclopia) 

associated with Six3 mutations provide support that Six3 plays an important role in the 

development of the anterior neural plate and the eye.  Inactivation of Six3 in the mouse provides 

further support; Six3-null mutants die at birth, lack forebrain structures, eyes and nose (Lagutin 

et al., 2003). Six3 represses Wnt signaling, which is required for forebrain development, and 

injections of Six3 can rescue the headless mutation in zebrafish (Lagutin et al., 2003).  These 
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results show that Six3 acts on Wnt signaling to help form the anterior neural plate and on Shh 

for midline separation. Both are important to eye development. Six3 may also play a role in 

retinal determination, as misexpression of Six3 in Medaka results in regions of the midbrain 

converting to optic-cup like structures (Loosli, Winkler, & Wittbrodt, 1999). Six6 may also be 

involved in retinal determination, since overexpression of Six6 in Xenopus at low concentration 

increases eye size and at higher concentrations can induce the formation of ectopic eyes and 

transform the midbrain into retina (Bernier et al., 2000).   

Retinal Homeobox Gene (Rx) 

The retinal homeobox gene, Rx (also called Rax) is arguably one of the most vital homeobox 

genes in eye development.  Rx was first identified in 1997 by three independent labs as a novel 

homeobox gene expressed in developing forebrain and eye (Casarosa, Andreazzoli, Simeone, 

& Barsacchi, 1997; Furukawa, Kozak, & Cepko, 1997; Mathers, Grinberg, Mahon, & Jamrich, 

1997).  Casarosa et al. (1997) first reported the isolation of Rx from a stage 24/25 Xenopus 

cDNA library that was screened with fragments of the murine Orthopedia gene. Mathers et al. 

(1997) isolated Rx by screening a cDNA library made from ammonium chloride-treated Xenopus 

ectoderm with degenerate primers and then identified homologues in human, mouse, zebrafish 

and Drosophila. Furukawa et al. (1997) isolated Rx from screening a mouse P0-P3 eye cDNA 

library with a Rx cDNA fragment obtained from using degenerate primers to amplify sequences 

from E18 and P4 rat retina.  

Structure 

Rx is a paired–like homeobox gene that is located in the distal region of chromosome 18 in mice 

(Furukawa et al., 1997). The identified Rx nucleotide and amino acid sequence show two 

possible translation initiation codons in the same reading frame as the homeodomain (Casarosa 

et al., 1997; Furukawa et al., 1997; Tucker et al., 2001). Rx encodes a 342 amino acid 

transcription factor with four conserved motifs. The amino acid sequence of Rx shows it has a 
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highly conserved homeodomain capable of DNA binding that shares a high degree of homology 

with the homeodomain of the paired-like homeobox gene Vsx2 (Casarosa et al., 1997; 

Furukawa et al., 1997). Rx has the octapeptide domain that is characteristic in paired-box 

genes, but Rx does not encode a paired-box motif and is classified as paired-like (Casarosa et 

al., 1997; Furukawa et al., 1997; Mathers et al., 1997). The carboxy-terminal end contains a 

stretch of 15 amino acids that are homologous to other homeodomain proteins such as Vsx2. 

This conserved region is known as the OAR region (or paired tail)(Furukawa et al., 1997; 

Mathers et al., 1997). Additionally, an area between the OAR region and the homeodomain is 

proline-, serine- and threonine-rich and is a potential activation domain (Casarosa et al., 1997; 

Furukawa et al., 1997).  

Rx genes have been identified in many species from Drosophila to humans and are 

evolutionarily well conserved.  The number of Rx genes varies between species.  In mice, a 

single Rx gene has been identified (Furukawa et al., 1997; Mathers et al., 1997), likewise in 

Drosophila (Mathers et al., 1997; Eggert et al., 1998; Davis et al., 2003) and in Astyananax 

mexicanus, the cavefish (Strickler et al., 2002).  Two Xenopus genes (Xrx1 and Xrx2) have 

been identified with expression patterns that appear to be identical (Casarosa et al., 1997; 

Mathers et al., 1997). In addition, a Rx-like gene was identified in Xenopus, Rx-L, which shares 

homology with Rx at the homeodomain, OAR and Rx domain but does not have an octapeptide 

motif (Pan et al., 2006). A single Rx gene was identified in humans (Mathers et al., 1997), but 

like Xenopus, a Rx-like gene was also identified, called QRX, which is also found in bovine 

(Wang et al., 2004). In chickens a Rx gene (cRax) was identified (Ohuchi et al., 1999), as was a 

Rx-like gene, termed cRaxL (Chen & Cepko, 2002; Ohuchi et al., 1999). In medaka, two Rx 

genes have been identified (Rx2 and Rx3) that display differing expression patterns in the 

forebrain and eye during development (Deschet, Bourrat, Ristoratore, Chourrout, & Joly, 1999; 

Loosli et al., 2003). Three Rx genes have been identified in zebrafish (Zrx1/2/3) (Mathers et al., 
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1997).  Zrx1 and Zrx2 show identical expression patterns in the developing eye, but Zrx3 is 

mostly limited to the early eye field and ventral forebrain (Mathers et al., 1997; Chuang et al., 

1999).  

Expression 

The expression of Rx has been well studied and is found in three main areas, early in the 

developing neural plate, the eye, and in the brain. This expression is conserved in vertebrates, 

including those with multiple Rx gene numbers, where the combined expression pattern of the 

genes together is similar to that of species with a single Rx gene. In Drosophila, Rx (drx), which 

has a very similar homeodomain to vertebrates, expression is similar and shown in the 

procephalon, a region that gives rise to the presumptive eye primordia and brain hemispheres 

(Eggert et al., 1998).  Starting early in embryonic development, Rx can be detected by in situ 

hybridization in mice at E7.5 in the cephalic neural fold (head fold), which is the presumptive 

forebrain and midbrain territory (Furukawa et al., 1997). By E8.5 there is strong expression in 

the anterior neural plate, which is the prospective forebrain/optic vesicle region (Furukawa et al., 

1997; Mathers et al., 1997). Expression of Rx is confined to the optic vesicles and developing 

optic cup, optic stalk and the ventral diencephalon on E9.5-E10.5 (Furukawa et al., 1997; 

Mathers et al., 1997). As the development of the eye proceeds from E11.5 to E18.5, Rx 

expression within the eye is restricted to the neural retina (Furukawa et al., 1997; Mathers et al., 

1997). During retinogenesis, expression of Rx within the neural retina corresponds to the 

location of the retinal progenitors and is down-regulated in areas at approximately the same 

time that progenitors exit the cell cycle (Furukawa et al., 1997; Mathers et al., 1997).  

Postnatally (at P6), Rx expression is limited to the photoreceptor layer and inner nuclear layer 

(Mathers et al., 1997).  At P9, expression of Rx is restricted to the Müller glia in the inner 

nuclear layer (Furukawa et al., 2000).  Expression of Rx during adulthood in mice has been 

found in the ciliary body, an area containing multipotent retinal progenitor-like cells (Lord-
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Grignon et al., 2006). Despite widespread expression in the developing eye, Rx signal has not 

been detected in the developing lens or cornea (Furukawa et al., 1997). In addition to 

expression in the eye, Rx is also expressed in the brain. In the developing forebrain at E10.5 

and E12.5, Rx is expressed in the hypothalamus and the posterior pituitary (Mathers et al., 

1997; Lu et al., 2013). In the adult brain, Rx is expressed in the posterior pituitary, pineal gland, 

and the hypothalamus (Asbreuk et al., 2002; Rhode et al., 2011).  

Mutations and Clinical Significance 

Mutations in Rx have been identified in mice, medaka, zebrafish, Xenopus, and humans. These 

mutations are associated with several eye defects, most notably small eyes or a complete lack 

of eyes.   

In mice, the eyeless mutation (ey1) was identified in the 1940s and has been used as a model 

of spontaneous human anophthalmia (Chase and Chase, 1941; Tucker et al., 2001). The 

eyeless phenotype consists of severe eye defects (ranging from a complete lack of eyes, which 

is most common, to small eyes), and hypothalamic abnormalities (Tucker et al., 2001). During 

development in eyeless mice, the optic vesicles evaginate normally but are smaller in size and 

connect poorly with the overlying ectoderm. These mice have a mutation in Rx that results in the 

removal of an alternate start codon (M10L), which leads to a reduction in Rx protein expression 

(Tucker et al., 2001).  

Another eyeless mutant has been described, the eyeless mutation in medaka. This is a 

temperature-sensitive recessive mutation that affects eye development and results in death at 

the early larval stage (Winkler et al., 2000). In eyeless medaka mutants, optic vesicle 

evagination does not occur, and as a result, eyes do not form (Winkler et al., 2000). The gene 

affected by the eyeless mutation was identified as Rx3 (Loosli et al., 2001). It was shown that 
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there was an intronic insertion of a transposon in Rx3 that lead to a disruption of Rx protein 

formation (Loosli et al., 2001).  

Similar to the eyeless mutation in medaka, zebrafish chokh mutants lack eyes from early stages 

of development (Kennedy et al., 2004; Loosli et al., 2003; Winkler et al., 2000). Optic vesicles 

fail to form, and although the chokh mutants hatch, they die at 3-4 weeks (Loosli et al., 2003). 

The chokh mutation is a nonsense point mutation that results in a premature stop codon in the 

homeodomain of Rx3, creating a null allele (Loosli et al., 2003). The loss of Rx3 leads to a 

reduction in Rx1 and Rx2 in these mutants, but Pax6 and Six3, two other important genes in 

eye development, are unaffected (Loosli et al., 2003). Injection of medaka Rx3 mRNA was able 

to rescue the chokh phenotype (Loosli et al., 2003).  

Analogous to the mutation in fish, a Rx mutant has been identified in Xenopus. A nonsense Rx 

mutation that led to a premature stop codon after the octapeptide domain was identified in a 

Xenopus mutant with an eyeless phenotype (Fish et al., 2014). In these mutants, eye formation 

is halted before the optic vesicle is formed, and the tissue that was fated to become retina 

instead develops diencephalon and telencephalon characteristics (Fish et al., 2014).    

In humans, mutations of RAX have been identified in patients with severe ocular disorders, 

including microphthalmia, anophthalmia and coloboma (MAC disorders). Severe ocular defects 

are rare, occurring in approximately 1 in every 5300 live births in the USA (Parker et al., 2010). 

Anophthalmia is characterized by the absence of either one or both eyes, whereas in 

microphthalmia, the eyes are present but one or both are abnormally small. Coloboma, similar 

to microphthalmia and anophthalmia, can affect one or both eyes and is characterized by a hole 

in one or more of the structures of the eye, including cornea, iris, retina, choroid, optic disc and 

ciliary body (Onwochei et al., 2000). To date, there are six reports of human mutations in RAX, 

identifying 12 patients with a MAC phenotype. In the first report of a human genetic mutation of 
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RAX, a compound heterozygous RAX mutation was identified in a patient with anophthalmia of 

the right eye and sclerocornea and retinal detachment in the left eye (Voronina et al., 2004). 

Two mutations, a truncated allele (Q147X) and a missense mutation (R192Q), both in the DNA 

binding homeodomain of RAX, were found (Voronina et al., 2004). Lequeux et al. (2008), 

reported a novel heterozygous RAX mutation in a patient with bilateral anophthalmia. Two 

mutations in exon 3 of RAX were identified. A frameshift deletion and a nonsense mutation both 

created premature stop codons, which would create a truncated RAX protein that is predicted to 

lack the OAR domain and thus be nonfunctional (Lequeux et al., 2008). Another report of 

human RAX mutations identified a patient with a retinal coloboma of the right eye (London et al., 

2009). Molecular analysis revealed this patient had a novel missense mutation in exon 1 of RAX 

and two polymorphisms (E44/D44 and Q294Q) that were previously identified by Voronina et 

al., 2004 (London et al., 2009). Additional novel human RAX mutations were found in a report 

that identified two patients, one with right anophthalmia and one with right microphthalmia, both 

had novel heterozygous RAX mutations (R110G and T50P) (Gonzalez-Rodriguez et al., 2010).   

Three patients with autosomal recessive bilateral anophthalmia from two unrelated 

consanguineous families were identified. Molecular analysis showed a novel homozygous 

splicing mutation affecting the last exon of RAX in these patients that was predicted to result in 

a truncated RAX protein (Abouzeid et al., 2012).  Recently, a large screening of 150 

microphthalmic/anophthalmic patients identified four individuals (3% of those screened) with 

homozygous or compound heterozygous mutations in RAX (Chassaing et al., 2014). Three of 

the patients had bilateral anophthalmia and one had bilateral microphthalmia. The mutations in 

three of the patients affected the homedomain of RAX (Chassaing et al., 2014). In addition to 

RAX, several gene mutations have been linked with a MAC phenotype (See Bardakjian & 

Schneider, 2011 for a review of the genetics of ocular malformations). In the report above, they 

screened seven genes (GDF6, FOXE3, OTX2, PAX6, SOX2, RAX, VSX2) in 150 patients and 

had a mutation detection rate of 21% (Chassaing et al., 2014), which highlights the small 
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number of known genes responsible for the MAC phenotype, suggesting these conditions are 

heterogeneous. There are likely many putative genes that have yet to be identified whose 

mutations lead to ocular defects, and despite the relative rarity of these disorders, identifying the 

role that these genes play in optic vesicle development is important because of the severity of 

these disorders and to further understand normal eye development and ocular malformations.  

Function 

The conserved expression pattern of Rx during embryogenesis combined with evidence from 

reports of Rx mutations suggest a role for Rx in anterior neural plate patterning, eye 

development, forebrain development and the proliferation of progenitors. This discussion will 

focus on the role of Rx in development as it relates to eye formation.  

Eye Development 

The importance of Rx in eye development was first established in 1997 with its identification and 

the first functional study of Rx in a generated mouse Rx-null mutant (Mathers et al., 1997). The 

Rx-null allele was generated from the targeted deletion of Rx by the homologous recombination 

of a 2.7-kb portion of the mouse Rx locus with a 1.8-kb neomycin selection gene. The deleted 

portion included exons 1 and 2, which code for the protein initiation site, the octapeptide, and 

the N-terminal end of the homeodomain. Homozygous Rx-null mutants are born without eyes, 

have varying degrees of forebrain defects, and exhibit perinatal lethality; whereas mice 

heterozygous for the Rx-null allele appear phenotypically normal. Phenotypic differences in the 

Rx mutant become apparent as early as E8.5, when the optic pit, the beginning of optic 

vesicles, fails to form, demonstrating that Rx is required for eye formation during the earliest 

stages. 

Since then the functions of Rx in eye development have been studied in many vertebrate 

species and in Drosophila.  Like the expression of Rx, the importance of Rx in eye formation is 
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also conserved in vertebrates, but that is not the case in Drosophila. While the Drosophila Rx 

gene shows a similar expression pattern to that found in vertebrates, it is not necessary for the 

development of the Drosophila visual system, but does play a role in the development of the 

brain and clypeus (Davis et al., 2003). The following will review the role of Rx in multiple stages 

of eye development using studies from a variety of vertebrate species.  

Rx is involved in anterior neural plate patterning and eye field formation 

The earliest function of Rx in eye development is in eye field formation. Patterning of the 

anterior neural plate leads to the formation of the eye field from which the optic vesicles are 

produced. Specification of the anterior neural plate requires the activation of several homeobox 

transcription factors. Studies of Rx expression initially detect it in the anterior neural plate 

(Zhang, Mathers, & Jamrich, 2000). Rx belongs to a group of transcription factors that are 

expressed in the eye field (EFTF). In Xenopus, eye field specification occurs through the 

expression of these transcription factors (Zuber et al., 2003). Overexpression of the EFTFs 

along with Otx2 leads to the formation of secondary eye fields that develop into ectopic eyes 

(Zuber et al., 2003). The Xenopus Rx mutant provides further evidence of the role of Rx in eye 

field specification. The expression of the other EFTFs was initially normal, suggesting they did 

not require Rx for their initial activation and gene analysis showed a down-regulation of genes 

important in eye development and an up-regulation in those involved in forebrain development 

(Fish et al., 2014). These results suggest that Rx is involved in the specification of the eye field 

through the repression of genes involved in patterning the forebrain and in activating eye field-

promoting genes (Fish et al., 2014). A similar conclusion was drawn from whole transcriptomic 

sequencing data of zebrafish rx3 -/- mutants showing genes involved in eye development were 

downregulated and genes involved in brain formation were upregulated (Yin et al., 2014).  

The importance of Rx in anterior neural plate patterning and eye field specification has also 

been shown in mice. The Rx-null mouse mutant phenotype is the earliest known eye 
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development defect, showing no optic vesicle formation and preceding other 

microphthalmic/anophthalmic mutant phenotypes, including Pax6 mutations. Forebrain 

abnormalities are also a characteristic of the Rx-null mutant phenotype (Mathers et al., 1997).  

Rx in optic vesicle development. 

Evagination of the optic pits is considered the first morphological sign of eye development.  

Deletion of Rx in mice leads to a complete lack of optic vesicle formation resulting in 

anophthalmia (Mathers et al., 1997). Studies in medaka provide additional evidence of the 

function of Rx in optic vesicle development. The eyeless mutation in medaka (Loosli et al., 

2001) leads to a failure of the optic vesicles to evaginate despite the presence of retinal 

progenitor cells (Winkler et al., 2000).  In vivo imaging at single-cell resolution showed retinal 

progenitor cells in Rx3 eyeless mutants adopt a migration pattern similar to forebrain 

progenitors. In addition, this aberrant migration pattern could be rescued by individual wild-type 

cells; thus, the chimeras show optic vesicle evagination (Rembold et al., 2006). These data 

suggest that Rx is involved in cellular movement that is necessary for evagination.  Nlcam 

(neurolin-like cell adhesion molecule) was identified as a potential target for Rx3 (Brown et al., 

2010). In Rx3 mutants, Nlcam is up-regulated, and overexpression of Nlcam results in smaller 

eyes and midline migration of progenitors (Brown et al., 2010), suggesting that Rx is repressing 

Nlcam for the appropriate migration of cells during optic vesicle evagination. 

Rx in retinal progenitor proliferation. 

One of the first observations when Rx was identified was its localization with retinal progenitors 

(Furukawa et al., 1997; Mathers et al., 1997). Since then, several studies have shown that Rx is 

important for retinal progenitor proliferation and multipotency. Studies of the overexpression of 

Rx in Xenopus embryos show ectopic RPE, and hyperproliferation of retinal progenitors, neural 

tube and retinal cells (Mathers et al., 1997; Casarosa et al., 2003; Andreazzoli et al., 1999).  

Xhmgb3 (Xenopus high mobility group B3 gene) was identified as a downstream target of Rx 
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that regulates proliferation in the developing eye (Terada et al., 2006). Overexpression of Rx in 

Xenopus embryos did not change the proportion of cell types formed, suggesting a possible role 

for Rx in maintaining the multipotency of retinal progenitors (Casarosa et al., 2003).  Inhibition of 

Rx in Xenopus results in decreases in brain and eye size, likely due to reduction in progenitor 

proliferation (Casarosa et al., 2003; Andreazzoli et al., 2003).  

Several species (frogs, chickens and fish) have the capacity for retinal regeneration (Martinez-

De Luna et al., 2011). A study of Xenopus laevis showed that following an injury retinal 

progenitors expressing progenitor marker genes, including Rx, are found at the site of injury. If 

Rx expression is lost due to gene knockdown, the capacity for retinal regeneration is impaired 

(Martinez-De Luna et al., 2011).  The impaired regeneration suggests that Rx is necessary for 

retinal regeneration in Xenopus and may be required for the generation of retinal progenitors for 

this regeneration.  

Additionally, Rx, functioning through the transcriptional activation of Hes1 and Notch1, is 

important for Müller glia formation (Furukawa et al., 2000). Müller glia in zebrafish can act as 

radial glia-like neural stem cells, express low levels of multipotent progenitor markers and can 

proliferate at low frequency in uninjured retinas (Bernardos et al., 2007). If injury does occur, the 

Müller glia can dedifferentiate to form retinal progenitors to generate the missing neurons 

(Bernardos et al., 2007; Lenkowski and Raymond, 2014). 

Rx in photoreceptor cell fate determination 

Studies in zebrafish, chicken, and humans provide evidence that Rx and the Rx-like gene play a 

role in photoreceptor development. In zebrafish, morpholino knockdown of Rx1 during retinal 

neurogenesis leads to a decrease in photoreceptor-specific genes (rod opsin, cone opsins and 

transducin), and knockdown of Rx2 during the same time period resulted in a decrease in a 

select subset of photoreceptor genes (rod opsin, red opsin and transducin) (Nelson et al., 2009). 
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Combined knockdown of Rx1 and Rx2 decreased development of both rods and cones but did 

not affect the expression of Crx or NeuroD (Nelson et al., 2009). These data suggest a function 

for Rx in photoreceptor development and suggest that zebrafish Rx1 and Rx2 may have 

different roles in photoreceptor formation or different downstream targets. In chickens, the Rx-

like gene, cRaxL, is expressed in cells migrating to the photoreceptor layer, and introduction of 

a dominant-negative allele of cRaxL into the developing chick eye leads to a decrease in the 

expression of photoreceptor markers and an increase in cell death within the retina (Chen & 

Cepko, 2002). In mammals, a homologue of chicken cRaxL is QRX in humans.  QRX is 

expressed in the inner and outer nuclear layers of the retina and has an almost identical 

homeodomain to RX/RAX (Wang et al., 2004). QRX can transactivate the Ret-1 element in the 

rhodopsin promoter in the presence of Crx and NRL, and QRX interacts with Crx (Wang et al., 

2004). No Rx-like gene has been identified in mice, which leads to the possibility that the single 

murine Rx gene has similar functions to the Rx-like gene in photoreceptor development.  

Human RAX can transactivate photoreceptor-specific gene promoters, including IRBP and PCE-

1 (Kimura et al., 2000).  In mice, Rx can regulate Otx2 through interactions with the EELPOT  in 

the final cell cycle of retinal progenitor cells, and conditional deletion of Rx at E11.5 decreases 

Otx2 and Crx expression (Muranishi et al., 2011).  Rx, in cooperation with Crx, can transactivate 

photoreceptor genes, such as rhodopsin and cone opsin (Irie et al., 2015). Finally, conditional 

deletion of Rx in maturing photoreceptors leads to a decrease in photoreceptor-specific genes 

and an increase in cell death in the postnatal mouse retina (Irie et al., 2015), suggesting that Rx 

is necessary for photoreceptor maturation and survival. The above data provide evidence of a 

role for Rx-like genes in photoreceptor development and mouse Rx in photoreceptor maturation 

and survival; the necessity of Rx in photoreceptor histogenesis in mice is not well understood, 

but will be addressed below in Chapter 3.  
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Regulation of Rx 

Despite its initial discovery almost two decades ago, the regulation of Rx and the downstream 

targets of Rx are still not completely understood. Regulation of Rx early in development was first 

studied in Xenopus.  Activation of Rx expression in Xenopus embryos can be achieved by 

chordin, noggin, Hedgehog, and wnt pathways (Andreazzoli et al., 2003; Rasmussen et al., 

2001; Zuber, Perron, Philpott, Bang, & Harris, 1999), whereas neurogenin and retinoic acid can 

repress Rx (Andreazzoli et al., 2003). Additionally, the interaction of Sox2 and Otx2 via a 

conserved non-coding sequence (CNS1) acts as an upstream transcriptional activator of Rx in 

Xenopus embryos (Danno et al., 2008).  Recently, in Xenopus tadpoles it was shown that Rx 

transcription in the ciliary marginal zone (area containing progenitors) is controlled, in part, by 

autoregulation (Kelly et al., 2016). In mice conditionally deleted of Sufu, a regulator of hedgehog 

signaling, Rx expression is decreased (Cwinn et al., 2011a), suggesting that, similar to 

Xenopus, hedgehog signaling may be an upstream regulator of Rx.  

Both Xenopus laevis and X. tropicalis contain a cis-regulatory element in the 5’ upstream 

regions of Rx that directs Rx expression (Hirsch et al., 2002; Zhang, Fu, & Barnstable, 2002).  

The regulation of Rx in mice is less well studied.  However, Swindell et al. (2006) showed that 

Rx regulatory sequences are conserved among vertebrates with their creation of a transgenic 

mouse using the 4kb DNA fragment 5’ upstream of medaka Rx, showing similar temporal and 

spatial patterns to that of endogenous mouse Rx. 

Several downstream targets of Rx in early development have been identified in Xenopus, 

including Otx2, Six6, Pax6, TLE1, Hes4 and Hmgb2 (Andreazzoli, Gestri, Angeloni, Menna, & 

Barsacchi, 1999; Massimiliano Andreazzoli et al., 2003; Giannaccini et al., 2013; Terada, 

Kitayama, Kanamoto, Ueno, & Furukawa, 2006; Zuber et al., 2003). Additionally, Nlcam was 

identified as a downstream target of Rx in Zebrafish (Brown et al., 2010). 
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Some of the downstream targets of Rx later in eye development have been discerned. Rx binds 

with PCE-1 elements (Pan et al., 2010; Kimura et al., 2000), which are found in photoreceptor 

genes. Rx can transactivate promoters for the arrestin and IRBP (interphotoreceptor binding 

protein) genes, and Rx can weakly transactivate cone opsins and can interact with Crx to 

synergistically transactivate rhodopsin and S- and M-opsin (Irie et al., 2015). Additionally, Rx 

can regulate Otx2 (Muranishi et al., 2011). In rat retina, during glial formation, Rx 

overexpression leads to the transcriptional activation of the Hes1 and Notch1 promoters 

(Furukawa et al., 2000). 

Stem Cell-Generated Retinal Tissue  

Stem cells have three unique characteristics including the capacity for self-renewal, an 

undifferentiated state, and the ability to develop into many different cell types (NIH, 2009).  

These characteristics make their use in biomedical research and medical treatment appealing. 

Currently there are two types of pluripotent stem cells available to researchers, either embryonic 

or induced pluripotent, and each has their own benefits and challenges. Embryonic stem cells 

(ESCs) are derived from the inner cell mass of embryos at the blastocyst stage. They are 

pluripotent cells that are capable of long-term growth and self-renewal. They were first derived 

from mice in 1981 (Martin, 1981) and later from humans in 1998 (Thomson et al., 1998).  

Human ESCs offer promise for treatment and research, but ethical concerns make their use 

challenging. More recently, the development of induced pluripotent stem cells (IPSCs) in 2006 

by Takahashi and Yamanaka helps to avoid some of the ethical challenges and immunological 

rejection issues associated with ESCs. IPSCs were originally generated using the viral 

transduction of four genes Oct4, Sox2, Klf4, and c-myc to reprogram differentiated cells into 

cells with ESC-like properties (Takahashi & Yamanaka, 2006).  Researchers have been refining 

the protocol for the induction of IPSCs, and now they can be generated without the use of c-myc 

(an oncogene) (Nakagawa et al., 2008), and there are alternatives to viral induction (Kaji et al., 
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2009; Kim et al., 2009; Okita, Nakagawa, Hyenjong, Ichisaka, & Yamanaka, 2008; Zhou et al., 

2009; Zhou & Freed, 2009). 

Both ESCs and IPSCs have great potential for research and clinical applications because of 

their ability to develop into multiple cell types. Researchers have capitalized on this 

characteristic and developed protocols to generate many different cell types from stem cells. 

Early reports of retinal cells grown in monolayer culture derived from ESCs showed an 

infrequent expression of photoreceptor markers and problems with internal structures and 

cellular morphology (Hirano et al., 2003; Zhao, Liu, & Ahmad, 2002). Improving upon the earlier 

protocols, combinations of WNT and Nodal signaling antagonists on serum-free cultures of 

mouse ESC aggregates showed the ability to generate photoreceptors, although at low 

efficiency, in a stepwise fashion that was similar to in vivo retinogenesis (Ikeda et al., 2005). 

With refinement of the protocol, improved efficiency was demonstrated and the procedure was 

shown to work using monkey and human ESCs in addition to mouse ESCs (Osakada et al., 

2008, Osakada et al., 2009). Other protocols using human ESCs and Wnt antagonists also 

showed generation of retinal cells; however, the timeline of development was accelerated 

compared to in vivo retinogenesis (Lamba, Karl, Ware, & Reh, 2006). The functionality of these 

ESC-derived cells was demonstrated by their ability to integrate into retinal explants (Lamba et 

al., 2006) and in vivo mouse retina, where they integrated into the correct retinal layers (Lamba, 

Gust, & Reh, 2009). Additionally, these ESC-derived retinal cells can partially restore the ERG 

(electroretinogram) of Crx-/- mice (Lamba et al., 2009). Generation of retinal cells has also been 

shown using IPSCs (Hirami et al., 2009; Lamba et al., 2010). Key protocols in the development 

of retinal cells from stem cells in monolayer cultures are shown in Figure 5.  

These two-dimensional (2D) monolayer culture methods generated retinal neurons, which is 

beneficial for cell replacement therapies, but did not allow the formation of 3D tissues in culture, 

which limits their usefulness in studying development and other potential applications. A large 
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step forward in generating 3D tissues occurred with the use of cell culture inserts to generate 

retinal cells in 3D laminar structures that included RPE (Nistor et al., 2010). A large 

breakthrough in stem cell technology was the creation of self-organizing organoids, which are 

organs generated in 3D stem cell culture. Organoids have tremendous potential for research, 

including as a method to model human disease, study development and for drug screening, 

among others. A wide range of tissues have now been generated as organoids including brain, 

retina, kidney, testes, liver, stomach and intestines (Eiraku and Sasai, 2011; Eiraku et al., 2011; 

Koo et al., 2011; Finkbeiner et al., 2015; Little and Takasato, 2015; Flanagan et al., 2016; 

Pendergraft et al., 2017). An innovative study in retinal generation from stem cells was a 

protocol for 3D formation of self-organizing optic vesicles/retina developed by Sasai and 

colleagues (Eiraku et al., 2011). This protocol used mouse ESCs that had GFP knocked into the 

Rx locus to label retinal induction. The Rx-GFP ESCs were plated on a low-adhesion, 96-well 

plate, which allowed them to form floating aggregates, which were then cultured starting at day 

1 with growth factor-reduced matrigel. These conditions lead to the formation of retinal 

neuroepithelia (labeled with GFP) that on Culture Day 7 evaginate and form optic vesicle 

organoids. If left in culture, these vesicles will invaginate and form a bilayered optic cup-like 

structure. Isolating the optic cups and culturing for an additional two weeks results in the 

formation of a retinal organoid that is laminated and contains the appropriate retinal cell types 

(Eiraku and Sasai, 2011). The culture conditions for this protocol are shown in Figure 5.  The 

formation of these retinal organoids goes through a stepwise developmental process that is 

similar to in vivo eye development, making this the first paper to demonstrate in cell culture the 

process of retinal development including morphogenesis from stem cells (Eiraku and Sasai, 

2011; Eiraku et al., 2011).  

Since this seminal paper on the formation of self-organizing retinal organoids was published, 

there have been many publications involving the formation of optic vesicles, optic cups and 
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stratified retinal tissue as organoids (Chen, Kaya, Dong, & Swaroop, 2016; Eiraku et al., 2011; 

Eiraku & Sasai, 2011; Meyer et al., 2011; Nakano et al., 2012; Ohlemacher, Iglesias, Sridhar, 

Gamm, & Meyer, 2015; Völkner et al., 2016; Zhong et al., 2014). These protocols use a variety 

of defined culture conditions to promote retinal differentiation (Figure 5). A common component 

in all of these protocols is the use of extracellular matrix proteins (matrigel or lamnin), which are 

necessary to support the maintenance of continuous neuroepithelial structures. In addition to 

mouse ESCs, organoids are being formed from human ESCs that are proportionally larger than 

those from mouse ESCs (Nakano et al., 2012), and optic vesicle/retinal organoids have now 

also been generated with human IPSCs (Meyer et al., 2011; Zhong et al., 2014; Ohlemacher et 

al., 2015; Chen et al., 2016). 

The ability to use stem cells to generate retinal neurons has progressed rapidly within the last 

decade, going from simple monolayer culture using mouse ESCs to the formation of retinal 

organoids and the ability to use ESC or IPSCs from either mouse or human sources. These 

techniques are being tested for clinical applications such as cell replacement therapy, for drug 

screening and for studying embryonic development. This development process in optic 

vesicle/retinal organoids shows similar morphology, timing and cellular marker expression to in 

vivo development (Eiraku et al., 2011), which makes it an excellent model for studying 

embryonic eye development. Researchers are already using optic vesicle/retinal organoid 

cultures generated from patient-derived IPSCs to create disease models from a specific gene 

mutation and explore their development (Meyer et al., 2011; Capowski et al., 2014; Phillips et 

al., 2014; Lukovic et al., 2015; Ohlemacher et al., 2016). The potential to use these cultures to 

study retinal development is just beginning. Researchers are already using them to study the 

dynamics of tissue morphogenesis during eye development (Eiraku et al., 2012), and the 

transcriptomics of photoreceptor development (Kaewkhaw et al., 2015).  Using this system to 
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study other areas of eye development or examine the effects of gene knockdown has not yet 

been explored but shows strong potential. 

Objectives 

To better understand eye development my dissertation focused on developing new tools to 

studying early eye formation and then using those tools to investigate which genes, in addition 

to Rx, are important for optic vesicle formation and to explore the role of Rx in eye development 

following optic vesicle initiation. First, we sought to identify and characterize embryonic cone 

markers. Then using a Rx conditional knockout model we designed a series of experiments to 

explore the functions of Rx in proliferation and cell fate specification during retinogenesis 

following neural retina induction. We also sought to determine if Rx has a specific role in cone 

formation. Finally, we tested methods for exploring gene function in early optic vesicle 

development using 3D optic vesicle organoid cultures and employed this method to test 

potential candidate genes for their involvement in optic vesicle formation.  
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Figure Legends 

 

Figure 1. The main stages of vertebrate retinal development 

(A) Early eye formation starts with the generation of the eye field in the anterior neural plate and 

its subsequent split into two optic primordia. (B) Formation of bilateral optic vesicle from the 

evagination of the walls of the diencephalon, which occurs around E8.5-E9 in the mouse.  When 

the optic vesicles reach the overlying surface ectoderm at approximately E9.5 in the mouse, 

they invaginate, forming the bilayered optic cup, and the surface ectoderm forms the lens 

placode.  The layers of the optic cup will form the neural retina and the retinal pigmented 

epithelium. The lens placode will go on to form the lens vesicle and eventually the crystalline 

lens. (C) Development of the neural retina begins as the optic cup is forming. Retinal progenitor 

cell proliferation creates a pool of progenitors, which go through a series of steps during cell fate 

determination; multipotent retinal progenitors become committed progenitors before they go on 

to form one of the differentiated retinal cell types.  This process starts in the central retina and, 

as development proceeds, extends to the periphery. (Adapted from Bilitou and Ohnuma, 2010). 

Figure 2. Regulation of optic vesicle development 

The factors involved in the regulation of early eye development from formation of the eye field in 

the anterior neural plate through patterning of the optic vesicle include extracellular molecules 

(shown in blue) and transcription factors (shown in red).   

Figure 3. Retinal anatomy and the time course of retinal cell birth 

(A) Organization of the mature retina. The retinal pigmented epithelium (RPE) borders the highly 

organized neural retina. The neural retina consists of six neuron types and one glial cell type. 

The cells capable of phototransduction are photoreceptors, rods (R; shown in blue) and cones 

(C; shown in purple), which reside in the outermost layer of the retina. The nuclei of 

photoreceptors make up the outer nuclear layer. The photoreceptors synapse in the outer 
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plexiform layer with interneurons, bipolar cells (B; shown in light teal) and horizontal cells (H; 

shown in pale pink), which are located in the inner nuclear layer. Bipolar cells synapse at the 

inner plexiform layer with retinal ganglion cells (G; shown in royal blue), which reside in the 

ganglion cell layer. Amacrine cells (A; shown in grey) are found in the inner nuclear layer and 

some are displaced in the ganglion cell layer. The sole type of glia, Müller glia (M; shown in light 

green), spans the width of the retina. (Adapted from Sung & Chuang, 2010). (B) Photoreceptors 

show highly polarized morphology. The discs (in rods) and folds (in cones) in the outer segment 

are responsible for capturing light. The outer segment connects to the inner segment via a thin 

connecting cilium.  Photoreceptor axons extend from the cell body containing the nucleus to the 

synaptic terminals in the outer plexiform layer. Synaptic terminals are typically larger and 

multisynaptic in cones (adapted from (Wilson-Pauwels, 2010). (C) The timing of cell cycle exit 

(cell birth) during mouse retinogenesis shows a group of early-born retinal cells, including cone 

photoreceptors, that are primarily born during the embryonic period, and a group of late-born 

cells, including rod photoreceptors, that are primarily born postnatally (adapted from Ohsawa & 

Kageyama, 2008).  

Figure 4. Transcriptional regulation of photoreceptor development 

In retinogenesis, retinal progenitors become restricted in their competence, such that they can 

give rise to photoreceptors or non-photoreceptor retinal cells. This pool of cells will become 

further restricted such that the cells can give rise to either rod or cone photoreceptors, and 

finally the cone photoreceptors will further differentiate based on opsin expression. Several 

transcription factors play a crucial role in photoreceptor cell fate and development. Otx2 is 

necessary in forming lineage-restricted cells that can form photoreceptors, Blimp1 is necessary 

to promote photoreceptor precursor formation over bipolar cell formation.  Expression of Nrl, 

Rorβ and Nr2e3 specifies rod photoreceptor cell fate. Currently, the model of cone formation 

suggests that S-cones are the default pathway, and without regulatory signals directing the cell 
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to become a rod or an M-cone, the photoreceptor precursor will develop as an S-cone. Signals 

involved in M-cone formation and opsin patterning in mice include Trβ2, Rxr, Rorα, and Rorβ. 

Figure 5. 2D and 3D retinal differentiation protocols 

Schematic diagram comparing protocols for the induction of retinal cells from stem cells in 

monolayer (2D) and organoid (3D) cultures. Protocols listed represent key publications in retinal 

differentiation protocols in the last decade. Adapted from Jayakody, Gonzalez-Cordero, Ali, & 

Pearson, 2015. 
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Figure 1. The main stages of vertebrate retinal development 
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Figure 2. Regulation of optic vesicle development 
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Figure 3. Retinal anatomy and the time course of retinal cell birth 
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Figure 4. Transcriptional regulation of photoreceptor development 
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Figure 5. 2D and 3D retinal differentiation protocols 
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Abstract 

Purpose- Photoreceptor cells are born in two distinct phases of vertebrate retinogenesis. In the 

mouse retina, cones are born primarily during embryogenesis, while rod formation occurs later 

in embryogenesis and early postnatal ages. Despite this dichotomy in photoreceptor birthdates, 

the visual pigments and phototransduction machinery are not reactive to visual stimulus in either 

photoreceptor cell until the second postnatal week. Several markers of early cone formation 

have been identified, including Otx2, Crx, Blimp1, NeuroD, Tr2, Ror and Rxr, and all are 

thought to be involved in cellular determination. However, little is known about the expression of 

proteins involved in cone visual transduction during early retinogenesis. Therefore, we sought to 

characterize visual transduction proteins that are expressed specifically in photoreceptors 

during mouse embryogenesis.  

Methods- Eye tissue was collected from control and phosducin-null mice at embryonic and 

early postnatal ages. Immunohistochemistry and quantitative reverse transcriptase-PCR (qPCR) 

were used to measure the spatial and temporal expression patterns of phosducin (Pdc) and 

cone transducin  (Gngt2) proteins and transcripts in the embryonic and early postnatal mouse 

retina.  

Results- We identified the embryonic expression of phosducin (Pdc) and cone transducin  

(Gngt2) that coincides temporally and spatially with the earliest stages of cone histogenesis. 

Using immunohistochemistry, the phosducin protein was first detected in the retina at embryonic 

day (E)12.5 and cone transducin was observed at E13.5. The phosducin and cone transducin 

 proteins were seen only in the outer neuroblastic layer, consistent with their expression in 

photoreceptors. At the embryonic ages, phosducin is coexpressed with Rxr, a known cone 

marker, and with Otx2, a marker of photoreceptors. Pdc and Gngt2 mRNAs were detected as 

early as E10.5 with qPCR, although at very low levels.   
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Conclusions- Visual transduction proteins are expressed at the earliest stages in developing 

cones, well before the onset of opsin gene expression. Given the delay in opsin expression in 

rods and cones, we speculate on the embryonic function of these G-protein signaling 

components beyond their roles in the visual transduction cascade.
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Introduction 

Over the past two decades, components of the vertebrate visual transduction cascade have 

been characterized, and their functions in light-regulated signaling are well established.  Visual 

signaling in the mouse retina does not begin until postnatal day (P) 13-14 (Hoffpauir et al., 

2009). Correspondingly, the onset of expression for rhodopsin and the cone opsins precedes 

eye opening and visual signaling by several days. However, rod and cone histogenesis begins 

even earlier, occurring in two distinct phases in vertebrate retinogenesis, with cones born 

embryonically and rods formed primarily during late embryogenesis and the postnatal period in 

rodents (Carter-Dawson and LaVail, 1979; Rapaport et al., 2004).  

One of the mysteries of vertebrate retinogenesis is the lag between cone histogenesis and cone 

opsin expression. A similar lag exists between rod histogenesis and rhodopsin expression, 

although the delay is not as extended and occurs postnatally (al-Ubaidi et al., 1990). In mouse 

cone development, the earliest cones become postmitotic around embryonic day (E)11.5 while 

cone opsin transcription starts days later, with S-cone opsin mRNA being expressed by E15.5 

(Fei, 2003; Applebury et al., 2007) followed by faint mRNA expression for M-cone opsin around 

P7 (Fei, 2003; Fujieda et al., 2009).  Cone histogenesis and cone opsin protein expression 

shows an even greater lag, with S-cone opsin protein expression detected at P0 (Applebury et 

al., 2007) and M-cone opsin protein expression detected around P14 (Glaschke et al., 2010; 

Katoh et al., 2010).  

Several genes involved in photoreceptor fate specification and differentiation are expressed 

during early cone histogenesis, including Otx2, NeuroD, Blimp1, Ror and Crx (Chen et al., 

1997; Morrow et al., 1999; Baas et al., 2000; Martinez-Morales et al., 2001; Nishida et al., 2003; 

Roberts et al., 2006; Samson et al., 2009; Brzezinski et al., 2010), but these factors are all 

expressed in both rods and cones. Early determinants of cone differentiation include, Rxr and 
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Tr2, though again these factors are thought to regulate cone cell fate (Ng et al., 2001, 2009; 

Roberts et al., 2005; Applebury et al., 2007). Alternatively, proteins involved in visual 

transduction (potential markers of differentiated cones) are expressed at or slightly preceding 

the onset of cone opsin expression, which is still days before the onset of visual transduction. 

However, one cone marker involved in visual transduction is expressed embryonically; cone 

transducin  expression was detected at E15.5 in mice (Sakagami et al., 2009). 

Transducin is a heterotrimeric G-protein found in rod and cone photoreceptors. Transducin is 

composed of three subunits, designated as Gt111 and Gt238 in rods and cones, 

respectively. The genes encoding the transducin subunits in cones are Gnat2, Gnbt2, and 

Gngt2. Transducin is an essential component of the phototransduction cascade. When photons 

are absorbed by either rhodopsin or cone opsin, transducin is activated. Once activated, 

transducin separates into  and  -subunits. The -subunit subsequently activates 

phosphodiesterase 6, which, in turn reduces the intracellular cGMP levels and leads to 

hyperpolarization. The -subunit forms a complex with phosducin, a cytosolic phosphoprotein 

expressed in rods and cones (Lee et al., 1987, 1988, 1990; von Schantz et al., 1994; Gaudet et 

al., 1996; Loew et al., 1998). Phosducin is involved in the translocation of transducin within 

photoreceptors during light adaptation (Sokolov et al., 2004). 

We sought to characterize the expression of visual transduction proteins that are active 

embryonically during cone histogenesis.  We report that phosducin and cone transducin  are 

expressed early in cone histogenesis, with phosducin expression detected at E12.5 and cone 

transducin  at E13.5. Here, we show the spatial and temporal profiles for expression of these 

two genes and their corresponding proteins during the embryonic and postnatal periods.  
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Materials and Methods 

Animals and Tissue Collection 

Embryonic and postnatal eyes were collected from time-pregnant FVB/N females that had been 

mated with C57Bl/6J male mice to prevent the retinal degeneration (rd1/rd1) present in the 

FVB/N strain (Sidman et al.; Taketo et al., 1991; Yang et al., 2015). Eyes from mice at selected 

ages (E13.5 and P0) were also collected from pure C57Bl/6J mice (to test for strain differences) 

and from a phosducin-null strain (Sokolov et al., 2004) (to test for antibody and primer 

specificity). Midnight of the mating date was considered embryonic day (E)0. The day of birth 

was counted as postnatal day (P)0. For mouse pups E10.5-E17.5, the mother was euthanized 

by cervical dislocation, fetuses were then surgically dissected from the uterus and decapitated. 

Newborn mouse pups (P0) were euthanized via decapitation following induced hypothermia and 

P21 pups were euthanized by cervical dislocation followed by decapitation. Following 

euthanasia, whole eyes were removed from the orbit using either a 26g beveled needle (E10.5-

E13.5) or forceps (E15.5-P21). Eyes for immunohistology were fixed as whole heads (E10.5-

17.5) or just eyes (P0-P21) in a 4% paraformaldehyde solution of phosphate-buffered saline (1x 

PBS; 150 mM NaCl, 1.06 mM KH2PO4, 2.97 mM Na2HPO4-7H2O, pH 7.4) at 4°C overnight, and 

cryoprotected in 30% sucrose, 1x PBS. The eyes for quantitative reverse-transcriptase-PCR 

(qPCR) analysis were frozen on dry ice in pairs. All animal procedures were approved by the 

West Virginia University (WVU) Institutional Animal Care and Use Committee and followed the 

guidelines set out by the Association for Research in Vision and Ophthalmology.  

Immunohistochemistry and Immunofluorescence 

Cryoprotected eyes (n = 6 for each age) were mounted in TBS tissue freezing media (Triangle 

Biomedical Sciences, Durham, NC), frozen and sectioned on a Leica CM3050S cryostat 

(Buffalo Grove, IL) at 10m thickness, then transferred to glass slides. Before the antibody 

processing, as part of our standard protocol, samples were subjected to an antigen retrieval 
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procedure of 0.1M Tris pH 9.5 incubation at 95°C for 20 min. Test runs with and without antigen 

retrieval showed similar labeling for phosducin and cone transducin antibodies. Following 

antigen retrieval, sections were blocked with normal serum and treated with primary and 

secondary antibodies, following our published procedure (Howell et al., 2007). The primary 

antibodies used in this study were: anti-phosducin (as previously described by Sokolov et 

al.(Sokolov et al., 2004; 1:1000); anti-cone transducin (rabbit; CytoSignal, Irvine, CA; 1:500-

1000); anti-S cone opsin (rabbit; Chemicon, Temecula, CA; 1:100); anti-mouse cone arrestin 

(mouse; gift from Dr. Cheryl Craft; 1:500); anti-retinoid X receptor  (rabbit; Santa Cruz 

Biotechnology, Dallas, TX; 1:1000); anti-cone phosphodiesterase (rabbit; Thermo Fisher 

Scientific, Waltham, MA; 1:500) and anti-Otx2 (rabbit; Millipore, Billerica, MA; 1:1000). 

Secondary antibodies were anti-sheep, anti-mouse, or anti-rabbit antibodies that were either 

biotin-labeled for Elite-ABC reactions (Vector Laboratories Inc; Burlingame, CA) or fluorophore-

tagged for immunofluorescence (Molecular Probes, Eugene, OR).  Images were captured on an 

Olympus AX70 microscope (Olympus, Center Valley, PA) equipped with a MicroFire digital 

camera (Optronics; Goleta, CA) or a Zeiss 710 confocal microscope (Carl Zeiss, Inc.; 

Thornwood, NY).  

Quantification of Co-Labeled Cells 

Eyes from E13.5, E15.5, E17.5 and P0 mouse pups were sectioned at 12m thickness. 

Immunofluorescence following the above protocol was performed on the retinal sections using 

anti-phosducin and anti-cone transducin antibodies and propidium iodide as a nuclear 

counterstain. Three animals per age, with multiple quadrants of at least three sections per 

animal, were imaged on a Zeiss 710 confocal microscope. Labeled cells were counted within 

the imaged Z-stacks using the cell counter plugin of Fiji imaging software (Madison, WI) 

(Schindelin et al., 2012).  All labeled cells were counted and designated as colabeled, 

phosducin only or cone transducin only. Percentage of labeled cells was then calculated by 
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dividing the number of cells in each category by the total number of labeled cells for each age. 

Data are presented as percentage ± standard deviation (SD) for each category. 

Quantitative reverse transcriptase-PCR 

Total RNA was isolated from pairs of eyes from three mice at each age according to the 

manufacturer’s instructions using either the Absolutely RNA Miniprep kit (Agilent Technologies, 

Inc.; Santa Clara, CA) with modifications for small samples for E13.5-P8 or the Absolutely RNA 

Nanoprep kit (Agilent Technologies) for E10.5-12.5. Each RNA sample was double DNase-

treated, and the RNA concentration was quantified with a Nanodrop ND-1000 

spectrophotometer (Thermo Scientific; West Palm Beach, FL). Select RNA samples were also 

analyzed on Bioanalyzer chips (Agilent Technologies). Fifty ng of total RNA were reverse 

transcribed using oligo(dT) primers and the AffinityScript QPCR cDNA Synthesis kit (Agilent 

Technologies), and cDNA samples originating from the same animals were pooled. Primers 

were designed using GenBank mouse mRNA sequences so that the amplimer would cover an 

exon-exon boundary.  The following primer sequences were synthesized and high-performance 

liquid chromatography (HPLC)-purified by Integrated DNA Technologies (IDT; Coralville, IA); 

phosducin (Pdc) (5'-GCA CAC AGG ACC CAA AGG AGT AAT-3' and 5'-ACA CAA ACC CAT 

ACC TAG GCC CAA-3'), cone transducin (Gngt2) (5'-GGA AGT GAA GAA CCC ACG TGA 

TCT GA-3' and 5'-AGC ACA CAA GTG CCT TTC TCC TTG-3'), hypoxanthine-guanine 

phosphoribosyltransferase (Hprt) (5’-CAG GCC AGA CTT TGT TGG AT-3’ and 5’- GGA CGC 

AGC AAC TGA CAT T-3’).  Before beginning, primer concentrations were optimized for each 

forward and reverse primer. The qPCR reaction efficiencies for each pair were confirmed to be 

within a range of 90-110%. Reactions were prepared in technical triplicate using Brilliant SYBR 

Green QPCR Master Mix (Agilent Technologies), including reference dye, and 5 ng of each 

cDNA with 100 nM of each forward and reverse primer.  Reactions were incubated at 95°C for 

10 min, and then cycled at 95°C for 30 s, 55°C for 60 s, and 72°C for 60 s using a Stratagene 
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(San Diego, CA) Mx3000P real-time PCR system.  A melting curve analysis was added at the 

end to verify a single product from each reaction, and the fluorescence was recorded during 

every PCR cycle at the annealing step (55°C) and the extension step (72°C).  Finally, select 

PCR products were also verified by size on agarose gels to ensure single band amplifications. 

The final relative quantities of Pdc and Gngt2 expression were determined after normalization to 

Hprt by the MxPro™ QPCR software version 3.00 (Stratagene).  In addition, three reference P0 

samples were run in triplicate on every plate so that interplate variations could be controlled. As 

a result, the data presented are also normalized to P0 expression levels.   

Results 

Expression of phosducin in the developing mouse retina 

Phosducin (Pdc) expression is known to be specific to photoreceptors in the retina, with 

expression found in rods and cones (Lee et al., 1988; von Schantz et al., 1994). Previous 

studies have shown phosducin expression primarily in the early postnatal and adult retina (Lee 

et al., 1990; Babila et al., 1992; Brown et al., 2002), but the expression of phosducin during 

embryogenesis has not been explored. Using a well-characterized sheep antibody against 

phosducin (Sokolov et al., 2004; Krispel et al., 2007; Song et al., 2007), we identified phosducin 

expression in sections of embryonic mouse retina (Figure 1). This prompted us to perform a 

developmental series of phosducin expression, covering the earliest stages of mouse 

retinogenesis (E10.5) until after the maturation of rod photoreceptors (P21, Figure 1I). No 

phosducin protein expression was detectable at E10.5 or E11.5 (Figure 1A,B). Starting at E12.5, 

a small number of cells expressing phosducin protein were present in the central retina (arrows 

in Figure 1C). Most reactive cells were present in the outer neuroblastic layer (Figure 1D). This 

location is consistent with the position of the future outer nuclear layer, where differentiated 

photoreceptors will reside. Given the ventricular location of these phosducin-positive cells and 

the reported expression specificity of phosducin (Lee et al., 1988; von Schantz et al., 1994), the 
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labeled cells likely represent photoreceptors that have either fully or nearly completed migration 

into their mature location within the neural retina.  

As development proceeds, a rapid increase in the number of phosducin-expressing cells 

occurred between E12.5 and E13.5 (compare Figure 1C,D). As might be expected from the 

central to peripheral gradient of retinal differentiation (Young, 1985), no phosducin-positive cells 

are found in the distal retina at this age. From E13.5 to E15.5, a gradual increase in the number 

of phosducin-reactive cells was observed, with the further progression of stained cells toward 

the distal retina. By E17.5, the number of phosducin-positive cells increased, and this trend 

continued through the last stage tested, P21 (Figure 1F-I). To demonstrate that the staining 

observed in these images accurately represents the expression of phosducin protein, retinal 

sections from a phosducin knockout mouse line (Sokolov et al., 2004) were processed and 

reacted with anti-phosducin antibody. No reactivity was observed anywhere within the 

phosducin-knockout retinas at either E13.5 (Figure 2A) or P0 (Figure 2B), demonstrating that 

the antibody shows no cross-reactivity in the retina at embryonic or neonatal ages. For positive 

controls, phosducin-knockout retinas and similarly aged controls were colabeled with anti-

phosducin and either anti-Otx2 at E13.5 or anti-cone transducin  at P0. Expression of Otx2 

(Figure 2A) and cone transducin Figure 2B) was observed in the control and phosducin-

knockout retinas, whereas phosducin expression was lacking in the phosducin-knockout retinal 

sections. 

Colocalization of phosducin and photoreceptor markers 

Examination of the coexpression of phosducin with a known photoreceptor marker, 

orthodenticle homeobox 2 protein (Otx2) and a known cone-specific marker, retinoid X receptor 

gamma (Rxr, was performed to determine the cellular specificity of phosducin labeling in the 

embryonic retina. Otx2 is important for cell fate determination of photoreceptors and is 
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expressed in photoreceptors and the RPE until P6 (Nishida et al., 2003). Expression of Otx2 is 

seen in migrating and post-migratory developing photoreceptors. We used immunofluorescence 

to determine whether phosducin and Otx2 are expressed in the same cells.  Both proteins 

localize to the ventricular surface with a large amount of colocalization (Figure 3A).   Phosducin-

positive cells almost always expressed Otx2; however, not all Otx2-positive cells expressed 

phosducin.  Otx2 is expressed prominently in migrating (arrows in Figure 3A) photoreceptor 

precursors and post-migratory photoreceptor cells. Thus, these expression patterns support the 

supposition that phosducin labels post-migratory photoreceptors during embryonic ages.  

Rxr is involved in the formation of the S-opsin gradient of cone photoreceptors and is 

expressed in the embryonic neural retina in postmitotic cones and retinal ganglion cells with 

peak expression at E17.5 (Mori et al., 2001; Roberts et al., 2005). To examine the cellular 

specificity of phosducin expression in developing cones, we performed immunofluorescence 

with anti-phosducin and anti-Rxrantibodies in E17.5 retinal sections. Both proteins were 

expressed along the ventricular border of the retina and colocalized (Figure 3B), suggesting that 

the majority of phosducin-labeled cells in the embryonic retina, up to and including E17.5, are 

cones.  

Expression of cone transducin  in the developing mouse retina 

Since phosducin is known to interact with transducin  and cone transducin  is expressed 

embryonically (Sakagami et al., 2009), we sought to determine the earliest age at which cone 

transducin  could be detected. Similar to the results seen for phosducin expression, cone 

transducin  is expressed in the outer neuroblastic layer of the embryonic mouse retina (Figure 

4). Cone transducin protein cannot be detected through E12.5 (Figure 4 A-C), but is detected 

at E13.5 (Figure 4D). As with phosducin expression, cone transducin -immunoreactive cells 

were observed only along the ventricular edge of the retina. The expression timing and limited 
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expression domain suggest that cone transducin may only be expressed in differentiated 

cones once they have fully migrated into position, similar to phosducin. Expression continued to 

expand from the central retina into the periphery over the course of embryonic retinal 

development (Figure 4D-F), similar to the pattern seen with phosducin expression (Figure 1). 

Unlike the expression pattern of phosducin, cone transducin -reactive cell numbers appear to 

remain fairly constant from E17.5 to P21 (Figure 4F-I), consistent with the findings that 95% of 

cones are born by the day of birth (Carter-Dawson and LaVail, 1979; Rapaport et al., 2004).  

Colocalization of phosducin and cone transducin protein expression 

Given the similar embryonic localization patterns seen between phosducin and cone transducin 

, we used immunofluorescence to determine whether these two proteins colocalize in retinal 

cells. Examination of the expression of both proteins from E13.5 to P8 (Figure 5A-E) showed 

they were distributed widely across the retina along the central to peripheral axis, but are 

restricted to the ventricular layer. Prominent colocalization of phosducin and cone transducin 

was seen in coronal eye sections at all ages examined. Using E13.5-P0 retinal sections, we 

quantified the amount of coexpression by determining the percentage of cells that were labeled 

with phosducin only, cone transducin only and those colabeled with phosducin and cone 

transducin .  At E13.5, 97% (±0.4%; SD) of the labeled cells in the retina were colableled. The 

percentage of colabeled cells dropped at E15.5 and E17.5 to 88% (±1.1%; SD) and 87% 

(±2.4%; SD) respectively, and by P0, the percentage of colabeled cells was 79% (±6.2%; SD) 

(Figure 5F). This quantification of colocalization suggests that most phosducin-labeled cells are 

cones at most embryonic ages, although rod histogenesis has begun by this time (Carter-

Dawson and LaVail, 1979; Rapaport et al., 2004).  
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Phosducin and cone transducin  mRNA expression levels show different dynamics 

After early detection of phosducin and cone transducin  expression in the developing mouse 

retina with immunohistochemistry (E12.5; Figure 1C and E13.5; Figure 4D), we sought to 

explore phosducin and cone transducin gene expression. We analyzed mRNA expression 

levels for phosducin (Pdc) and cone transducin (Gngt2) by qPCR, using gene-specific primer 

sets. Samples were tested from littermates used for the immunolocalizations presented above 

for consistency. A minimum of three biologic replicates were analyzed and averaged for each 

age. Pdc expression above threshold was detected at both E10.5 and E11.5, but these levels 

are only 0.4% and 0.2% that of P0 levels, respectively (Figure 6A). The extremely low 

expression levels and relative decrease from E10.5 to E11.5 suggest that these values may 

reflect the sporadic phosducin-positive protein staining seen at E12.5, and that decreases 

between E10.5 and E11.5 could represent stochastic variations in small numbers. No values 

above threshold were detected in samples from either the E13.5 or P0 phosducin-knockout 

animals, suggesting that other cellular RNAs do not contribute a background signal and that 

these extremely low levels of phosducin expression at E10.5 and E11.5 may represent real 

expression.  

The relative Pdc expression levels increased dramatically at E12.5, with levels six-fold higher 

than E11.5 and approximately 1.3% those of P0 samples (Figure 6A). Given that the phosducin 

protein is first detected at this stage, this would seem to be a minimum age at which Pdc 

expression can reliably be demonstrated, but earlier expression is certainly a distinct possibility. 

Dramatic increases in Pdc mRNA levels were observed between E13.5 (3.7% of P0 levels) and 

E15.5 (19.7% of P0 levels). While E17.5 levels for Pdc were roughly one-third those of P0, the 

levels at P8 were more than 9-fold greater than P0 levels. This large increase in postnatal 

phosducin levels is consistent with the increase seen in phosducin protein expression and could 

reflect the fact that rod photoreceptors are primarily formed during postnatal stages of mouse 
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development (Carter-Dawson and LaVail, 1979; Young, 1985) and rods represent about 97% of 

the photoreceptors in the mouse retina (Carter-Dawson and LaVail, 1979; Jeon et al., 1998).   

As with Pdc gene activation, expression of Gngt2 mRNA was detected at E10.5 with qPCR, with 

levels at 1.4% of those values at P0 (Figure 6B). A similar decrease was observed for Pdc and 

Gngt2 from E10.5 to E11.5, with levels jumping up 2.6-fold by E12.5. A steady increase in 

Gngt2 expression occurs from E12.5 to P0. However, unlike the situation with Pdc in which a 

large increase in mRNA expression occurs between P0 and P8, relative Gngt2 levels at P8 

decrease to 61.5% of those seen at P0. This decrease potentially reflects an overall dilution of 

cone photoreceptor cell contribution to the total RNA pool with the rapid growth of the retina 

during the postnatal time period and the paucity of new cone histogenesis that takes place 

postnatally.  

Discussion 

Embryonic photoreceptor-specific expression for visual transduction proteins 

We present evidence that proteins important for phototransduction are expressed early in 

embryonic photoreceptors.  We show the onset of phosducin protein expression at E12.5, which 

precedes earlier reports by nearly 2 weeks (E12.5 vs. P5; (Lee et al., 1990; Brown et al., 2002), 

and cone transducin  protein expression at E13.5, preceding the earliest reported detection by 

2 days (Sakagami et al., 2009). Expression of both these proteins is nearly 3 weeks before the 

onset of M-opsin protein expression at P14 and nearly 1 week before to S-opsin protein 

expression at P0 (Applebury et al., 2007; Katoh et al., 2010).   

We infer that the embryonic expression of phosducin and cone transducin  is labeling cone 

photoreceptors. Several lines of evidence support this inference.  First, in the postnatal retina, 

cone transducin  is specific for cones, and phosducin is specific for photoreceptors (Lee et al., 

1988; Ong et al., 1995). Second, cone transducin - and phosducin-positive cells reside along 
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the ventricular border, the location of photoreceptors. Additionally, immunofluorescence showed 

phosducin and cone transducin  to be coexpressed in cells. Given the regionalized expression 

and colocalization of these proteins, these findings suggest that cone transducin and 

phosducin are expressed in photoreceptors that have migrated into their adult location, similar 

to the expression pattern seen for early photoreceptor markers, Crx (Chen et al., 1997; 

Furukawa et al., 1997) and Tr2 (Ng et al., 2001; Brzezinski et al., 2010). Third, colocalization of 

phosducin with Otx2 and Rxr known markers for photoreceptors and cones respectively, 

suggests cone-specific labeling of phosducin at embryonic ages.  Quantification of 

colocalization data suggests that, at E13.5, virtually all of phosducin-labeled cells are cones and 

by E17.5, most labeled cells (87%) are still cones, as they are phosducin- and cone transducin 

-positive. 

Rapid increases in phosducin, but not cone transducin  in the postnatal retina 

 From P0 to P8, we observed a nine-fold increase in Pdc mRNA expression with qPCR.  This 

increase likely reflects the massive production of rod photoreceptors that occurs during early 

postnatal development, such that 50% of all retinal cells and 97% of all mouse photoreceptors 

are rods (Carter-Dawson and LaVail, 1979; Jeon et al., 1998). The possibility also exists that, in 

addition to a dramatic increase in rod cell number during this period, the expression levels of 

phosducin within each photoreceptor could be increasing. With this caveat in mind, however, 

the magnitude of change for phosducin expression was consistent with the increase in rod cell 

number during early postnatal retinal development (Rapaport et al., 2004).  

Potential functions for visual transduction proteins in the embryonic retina 

Surprisingly, the temporal pattern of phosducin and cone transducin  was coincident with the 

expression of early cone-determining transcription factors, suggesting that photoreceptor 

precursor cells are fully committed to a cone differentiation pattern at these early ages. Since 
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the phototransduction process is weeks removed from this expression, these visual transduction 

factors likely play other functional roles in the embryonic photoreceptor cell. We observed an 

absence of other visual transduction proteins (mouse cone arrestin, cone phosphodiesterase 

and S-cone opsin) in the mouse retina at E15.5. Although visual transduction proteins have 

been found embryonically in primate retina (Sears et al., 2000; Ross et al., 2015), this 

expression is at a stage of development that matches the postnatal period in rodents, 

suggesting that cone transducin  and phosducin may have specific functions in the embryonic 

retina unrelated to their roles in visual transduction. 

As a result, we sought clues in the literature to identify potential activity of cone transducin  and 

phosducin in the embryonic mouse retina, if any. Previous studies on phosducin show that it can 

interact with Crx in cultured cells, where it acts to inhibit Crx-mediated transcription at the 

interphotoreceptor retinoid-binding protein (IRBP) promoter (Zhu and Craft, 2000a). In addition, 

phosducin possesses a transcriptional activation domain at its C-terminal end (Zhu and Craft, 

2000b), although this would appear to conflict with the reported repression of Crx transcriptional 

activity (Zhu and Craft, 2000a). Previous studies have yielded conflicting information regarding 

the localization of phosducin. Whereas Zhu et al. (2000a) demonstrated that phosducin 

colocalized to the nucleus when coexpressed with Crx in Cos7 cells and in the adult bovine 

retina (where phosducin shows nuclear and cytoplasmic localization), the same group (Zhu and 

Craft, 2000b) and others  (Schulz et al., 1998; Wehmeyer and Schulz, 1998) found phosducin to 

be cytoplasmic. If phosducin localized to the nucleus, this finding would suggest a possible role 

in transcription; however, the cytoplasmic localization seen in our study would suggest that 

perhaps there is an additional function for embryonic phosducin beyond any transcriptional 

activities.  
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Another possible function for embryonic phosducin expression is that phosducin may interact 

with cone transducin as phosducin does postnatally (Willardson and Howlett, 2007). This 

possibility would lead to the obvious question regarding the potential function for G protein  at 

embryonic ages. Although the transducin  complex is only known to function in 

phototransduction, the function of the transducin  complex during embryonic stages has not 

been explored to our knowledge. Given the large number of G protein-coupled receptors 

(GPCRs) and their expression in multiple tissues and cell types, it is conceivable that the 

transducin  complex has additional functions during embryonic retinal development that have 

yet to be fully understood or explored. Some potential GPCR signaling pathways involved in 

retinal function include dopamine signaling (Reis et al., 2007; Deming et al., 2015), hedgehog 

(Hh) signaling (Levine et al., 1997; Stenkamp et al., 2000), and Wnt signaling (Westenskow et 

al., 2009), along with others (Odani et al., 2007; Perry et al., 2010). Wnt signaling in the retina 

appears to function primarily in the RPE at embryonic ages (Westenskow et al., 2009), and 

therefore is unlikely to involve phosducin and cone transducin  activity in photoreceptor cell 

differentiation. Dopamine signaling appears to occur at later embryonic and postnatal stages 

than seen for the earliest phosducin and cone transducin expression (Reis et al., 2007). Hh 

signaling plays a significant role in retinal progenitor cell proliferation (Wallace, 2008), and 

factors induced by Hh signaling (e.g.- Gli1) overlap both spatially and temporally with the 

expression for phosducin shown above (Wang et al., 2005). However, functional manipulation of 

Hh signaling (Wang et al., 2005; Yu et al., 2006; Cwinn et al., 2011) suggests that it either 

antagonizes cone photoreceptor specification or has a transient role in cone differentiation. 

Therefore, further work will be necessary to elucidate the early functions for phosducin and cone 

transducin  in the developing retina and their potential roles in photoreceptor cell differentiation.  
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Figure Legends 

Figure 1. Developmental expression of phosducin protein in the embryonic and postnatal 

retina.  

Immunohistochemcial staining was performed on coronal sections starting at (A) E10.5 (before 

cone birth) through (I) P21. Anti-phosducin antibody labeled photoreceptors starting at E12.5 

(arrows in C) and continued through all time points tested. Arrowhead indicates RPE. Scale 

bars = 100 µm. 

Figure 2. Comparison of PdcKO and control retinas.  

Immunofluorescence was performed on coronal sections of control and phosducin knockout 

(PdcKO) mice at ages E13.5 (A) using anti-Pdc and anti-Otx2 antibodies and P0 (B) using anti-

Pdc and anti-cone transducin Gngt2) antibodies. Pdc expression is seen in control retinas and 

is absent in the PdcKO retinas whereas Otx2 and Gngt2are expressed in both control and 

PdcKO retinas. Scale bars = 100 µm. 

Figure 3. Colocalization of phosducin with known photoreceptor markers in the 

embryonic retina.  

A: Fluorescent imaging of coronal sections of mouse retina at E15.5 shows the colocalization of 

phosducin and Otx2, a photoreceptor marker, along the ventricular surface. Otx2 shows RPE 

labeling (arrowheads) in addition to photoreceptor labeling.  Otx2-positive, Pdc-negative 

migrating cells are also seen interior to the ventricular surface (arrows).  B: Immunofluorescent 

imaging of retinal sections at E17.5 for phosducin and the cone marker, Rxrshows consistent 

colocalization along the ventricular surface of the retina. Scale bars = 50 µm.  
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Figure 4. Developmental expression of cone transducin  protein in the embryonic and 

postnatal retina.  

Immunohistochemcial staining was performed in coronal sections starting at (A) E10.5 (before 

cone birth) through (I) P21. Beginning at E13.5, cone transducin  expression is observed in 

cells along the ventricular surface (arrows in D), and this expression continues through all ages 

tested. Scale bars = 100 µm. 

Figure 5. Colocalization of phosducin and cone transducin  expression in the retina.  

Fluorescent imaging of coronal sections of mouse retina from E13.5-P8 (A-E) was performed 

using anti-phosducin and anti-cone transducin antibodies.  Both markers localize almost 

exclusively to the ventricular surface at all ages tested. Scale bars = 50µm. Quantification of the 

colabeled cell for ages E13.5-P0 (F) shows a high percentage of colabeled cells (97% ±0.4%; 

SD) at E13.5 that progressively decreased with age (E15.5 was 88% ±1.1%; E17.5 was 87% ± 

2.3%; P0 was 79% ±6.2%).  Phosducin-only cells comprised 2.4% ±1.1% at E13.5, 11.3% 

±1.3%, at E15.5, 12.3% ±2.2% at E17.5 and 20% ±6.6% at P0. Cone transducin -only cells 

constituted 0.8% ±0.7% at E13.5, 1% ±0.04% at E15.5, 1% ±0.4% at E17.5 and 1.2% ±0.7% at 

P0. Blue bars indicate cells that are colabeled, the phosducin-only cells are shown in red, cone 

transducin -only cells appear in green, and error bars represent standard deviations.  

Figure 6. mRNA expression across developmental ages measured with qPCR.  

A:Pdc expression above the threshold was detected with qPCR at E10.5 and E11.5, but at 

extremely low levels. The relative Pdc expression levels increase at E12.5, which is consistent 

with protein expression (see Figure 1). Expression increases gradually through P0, and then at 

P8 there is a dramatic increase in Pdc mRNA levels. B: Expression of Gngt2 mRNA is detected 

with qPCR at E10.5 and E11.5, but similar to phosducin, at low levels. A steady increase in 

Gngt2 expression occurs from E12.5 to P0. The Gngt2 levels at P8 decrease slightly relative to 

P0 values. All numbers are expressed relative to P0 and normalized to Hprt levels in each 
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sample and graphed on a log scale. At each age, three independent samples were collected, 

and each of these samples was run in triplicate as technical replicates. Red lines indicate the 

average for that age group; black circles are individual samples at each age group. 
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Figure 1. Developmental expression of phosducin protein in the embryonic and postnatal 
retina. 
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Figure 2. Comparison of PdcKO and control retinas. 
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Figure 3. Colocalization of phosducin with known photoreceptor markers in the 

embryonic retina. 
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Figure 4. Developmental expression of cone transducin  protein in the embryonic and 

postnatal retina. 
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Figure 5. Colocalization of phosducin and cone transducin  expression in the retina. 
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Figure 6. mRNA expression across developmental ages measured with qPCR. 
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Abstract 

The Retinal homeobox gene (Rx; also Rax) plays a crucial role in the early development 

of the vertebrate eye. Germline deletion of Rx in mice results in the failure of optic 

vesicle formation, leading to anophthalmia. Studying the role of Rx in subsequent eye 

development, therefore, requires the use of a conditional knockout strategy in mice. 

Recent research using conditional mouse knockout models provide some clues to the 

role of Rx in eye development following optic vesicle formation.  However, the functions 

of Rx in embryonic retinogenesis are still not fully understood.  We investigated the 

function of Rx in the mouse neural retina using a conditional knockout where the Pax6-

Cre driver deletes Rx in early retinal progenitors. The deletion of Rx causes a loss of 

retinal lamination, a depletion of retinal progenitors, and a change in retinal cell fate in 

our conditional knockout model. The deletion of Rx leads to an absence of late-born 

retinal neurons (rods, bipolar cells) and Müller glia at postnatal ages, as well as a loss of 

the early-born cone photoreceptors. Decreased BrdU and PCNA labeling in the Rx-

deleted portion of the retina suggests a loss of retinal progenitors via early cell cycle 

exit, which likely prevents the formation of late-born cells. Cone photoreceptors are born 

early and therefore, are not as dependent on progenitor proliferation and should not be 

as affected by early cell cycle exit. However, embryonic cone photoreceptor labeling is 

also markedly reduced in Rx-deleted retinas. Together these data support and extend 

earlier findings of the involvement of Rx in photoreceptor formation, specifically in cones 

and demonstrate the importance of Rx for retinal progenitor proliferation. 
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Introduction 

Vertebrate eye development begins with the formation of the optic vesicles at embryonic 

day (E) 8.5 in the mouse. The optic vesicle folds inward forming the optic cup, with the 

innermost layer becoming the neural retina. The neural retina is a highly organized 

structure arranged in layers of specific cell types. Generation of the retinal cells types 

follows a conserved developmental pattern in vertebrates. Retinal progenitor cells 

generate neural retinal cells in a biphasic temporal order, resulting in early- and late-

born retinal cell types. Birthdating studies show the first cell type to be generated is 

retinal ganglion cells around E10.5 followed by horizontal cells, cones, and amacrine 

cells (Young, 1985; Rapaport et al., 2004). All early-born cells are primarily born during 

the embryonic period, whereas late-born cell generation starts in the embryonic period 

but the majority of cells are born postnatally, including rods, bipolar cells and Müller glia 

(Carter-Dawson and LaVail, 1979; Young, 1985; Rapaport et al., 2004). Many factors 

regulate cell proliferation, specification and differentiation for retinal formation, including 

the transcription factors, Pax6, Six3, Otx2, and Rx (also known as Rax)(Zagozewski et 

al., 2014).  

The Rx homeobox gene is highly conserved among vertebrates and plays multiple 

important roles in eye development (Bailey et al., 2004).  Mice have a single Rx gene 

(Furukawa et al., 1997; Mathers et al., 1997), whereas the number of Rx genes is 

variable among other species.  Germline deletion of Rx in mice leads to anophthalmia 

(no eyes) as a result of a failure of the optic vesicles to form (Mathers et al., 1997).  In 

humans, RAX has been associated with anophthalmia, microphthalmia (small eyes) and 

coloboma (Voronina et al., 2004; Lequeux et al., 2008; London et al., 2009; Gonzalez-
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Rodriguez et al., 2010; Abouzeid et al., 2012; Chassaing et al., 2014). Due to the very 

early requirement for Rx activity at the optic vesicle/cup stages, there is a relative 

paucity of information on the role Rx plays following mammalian eye initiation. 

Conditional alleles for the embryonic inactivation of the Rx gene in mice allows the 

investigation of Rx gene function during this time period (Muranishi et al., 2011; 

Voronina et al., 2005).  Embryonic conditional knockout (CKO) of Rx was briefly 

explored using a Chx10-Cre driver to inactivate Rx in retinal progenitors at E11.5 and 

using an inducible Crx-CreERT2 to inactivate Rx at E14.5 (Muranishi et al., 2011). 

Decreases in Otx2 and Crx were observed in both CKO models at E15.5 suggesting a 

possible role for Rx in the formation of photoreceptors (Muranishi et al., 2011). An 

inducible conditional knockout model that deleted Rx postnatally showed that Rx, along 

with Crx, is important for photoreceptor maturation and survival during the postnatal 

period of retinal development (Irie et al., 2015). 

The role of Rx in embryonic retinal development from optic vesicle formation through 

birth is still not well understood. Using an embryonic conditional deletion of Rx in mice, 

we sought to assess its role following initial eye development, specifically examining 

retinal progenitor proliferation and cell fate decisions. We focused on progenitor 

proliferation and cell fate decisions for several reasons. Research shows Rx expression 

correlates with proliferation (Furukawa et al., 1997; Mathers et al., 1997; Rohde et al., 

2011), and Xenopus Rx is important for both proliferation and multipotency of retinal 

progenitors (Andreazzoli et al., 2003; Casarosa et al., 2003). However, whether Rx is 

necessary for retinal progenitor proliferation in mammals has not yet been established.  
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Studies also suggests a role for Rx in photoreceptor determination. Embryonic 

conditional deletion models of Rx in mice showed decreases in Crx and Otx2 and 

showed that Rx can transactivate Otx2 (Muranishi et al., 2011).  Postnatal conditional 

deletion of Rx showed that Rx is necessary for photoreceptor survival (Irie et al., 2015). 

Further, evidence for a role of Rx in photoreceptor development is provided in studies of 

other species such as Xenopus (Pan et al., 2010). Despite this evidence, several 

questions remain unclear in the functions of Rx during retinogenesis including its effects 

on cell fate beyond photoreceptors, possible differences in the functions of Rx between 

cone and rod photoreceptor development, and whether Rx is necessary for 

photoreceptor generation or just maturation and survival. 

In the present study, we performed an embryonic conditional deletion of Rx using 

Pax6α-Cre to delete Rx in very early retinal progenitors, and assessed the effects on 

retinal development.  We show that Rx is important in maintaining the proliferative state 

of retinal progenitors in mice, and therefore indirectly important for the development of 

late-born retinal neurons, which are lost in the Rx conditional knockout.  Finally, we 

show that Rx has a direct role in the development of cone photoreceptors.  

Methods 

Animals and Tissue Collection 

All animal procedures were approved by the WVU Institutional Animal Care and Use 

Committee and followed the guidelines set out by the Association for Research in Vision 

and Ophthalmology. Conditional deletion of Rx was achieved using Rxflox transgenic 

mice (as described in Voronina et al., 2005).  In these mice exon 2 of the Rx gene is 

flanked by loxP sites. In the presence of Cre recombinase, exon 2 is then excised, thus 
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creating a nonfunctional allele. Two strains of reporter mice were used, from Jackson 

Laboratory (Bar Harbor, ME), Rosa26R and Rosa26EGFP (Soriano, 1999; Mao et al., 

2001).  Rxflox mice were mated with reporter mice to generate a strain in which either β-

galactosidase or EGFP activity is activated upon exposure to Cre-recombinase, thus 

allowing us to visualize cells where Rx has been inactivated. Our conditional knockout 

was generated using mice expressing Cre recombinase under the control of Pax6α 

enhancer (supplied by P. Gruss, Max-Planck) that were crossed with Rx null (Rx∆1,2) 

mice (Mathers et al., 1997).  The Pax6α enhancer is active in the distal neural retina 

only starting at embryonic day (E)10.5 (Marquardt et al., 2001).  Thus, the final cross for 

our Rx conditional deletion was homozygous Rxflox; Rosa (EGFP or LacZ) mice crossed 

with mice heterozygous for α-cre; Rx ∆1,2. From this cross we used Pax6α Cre/+; 

Rxflox/Rx-null; Rosa/+ mice, the conditional knockout mice hereafter called Rx CKO, and 

Pax6α Cre/+; Rxflox/+; Rosa/+ mice were used as controls.  Tail DNA was collected for 

genotyping by PCR using the primers described in Voronina et al. (2005).  

Eyes were collected at a variety of time points: E12.5, E13.5, E14.5, E16.5, E17.5, 

E18.5, postnatal day (P) 0 and P21. Following euthanasia, whole eyes were removed 

from the orbit and fixed in a 4% paraformaldehyde solution of phosphate-buffered saline 

(1x PBS) overnight at 4°C. After fixation, eyes were cryoprotected in 30% sucrose in 

PBS. Cryoprotected eyes were frozen in TBS tissue freezing media (Triangle 

Biomedical Sciences, Durham, NC), and sectioned on a Leica CM3050S cryostat at a 

thickness of 12µm, then transferred to Super Frost plus-coated glass slides (Thermo 

Fisher Scientific, Waltham, MA).  
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BrdU Labeling  

Timed pregnancies were determined by the presence of a vaginal plug the morning 

after mating; noon the day after mating was considered E0.5.  Time-mated female mice 

received an intraperitoneal injection of BrdU at a dose of 50mg/kg bodyweight and then 

were sacrificed 2 hours later. Heads (E12.5) or whole eyes (E14.5 and E18.5) were 

collected and processed as described below for immunofluorescence. To calculate the 

percentage of BrdU-positive cells, the total number of cells (labeled by propidium iodide) 

and the number of BrdU-labeled cells were counted in three separate slices from at 

least four eyes of both control and Rx CKO mice. 

Histology 

Frozen sections were stained with either hematoxylin and eosin or X-gal. For 

hematoxylin and eosin staining (H & E staining), slides were processed by the 

Pathology/Histology Core Facility at West Virginia University. 

For X-gal staining, frozen sections were rinsed with 1x PBS and incubated with X-gal 

staining solution as described in Marrs et al., 2013.  After histological staining, images 

were visualized using an Olympus AX70 microscope (Olympus, Center Valley, PA) 

equipped with a MicroFire digital camera (Optronics; Goleta, CA) 

Immunofluorescence 

Sections were subjected to an antigen retrieval procedure of 0.1M Tris pH 9.5 

incubation at 95°C for 20 min prior to antibody processing. Following antigen retrieval, 

sections were blocked with normal serum at room temperature and treated with primary 

and secondary antibodies, following our published procedure (Howell et al., 2007). 
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Additionally, select retinas were counterstained with propidium iodide (Molecular 

Probes, Eugene, OR; 1:200). 

Primary antibodies used were: anti-activated caspase 3 (Sigma-Aldrich, St Louis, MO; 

1:600), anti-BrdU (Abcam, Cambridge, MA: 1:10), anti-Brn3b (Santa Cruz 

Biotechnology, Dallas, TX; 1:50), anti-blue cone opsin (Chemicon, Temecula, CA ; 

1:100), anti-calbindin (Swant, Marly, Switzerland; 1:2000), anti-cone transducin  

(CytoSignal, Irvine, CA; 1:500), anti-Chx10 (Exalpha Biologicals, Shirley, MA; 1:1000), 

anti-CRALBP (Abcam; 1:1000), anti-GFP (chicken; Abcam; 1:1500), anti-GFP (rabbit; 

Abcam; 1:1000), anti-neurofilament 165kD (Hybridoma bank, Iowa City, IA; 1:1000), 

anti-Otx2 (Millipore, Billerica, MA; 1:1000), anti-proliferating cell nuclear antigen (PCNA; 

Dako, Santa Clara, CA; 1:200), anti-phosducin (as previously described by Sokolov et 

al., 2004; 1:1000), anti-red/green cone opsin (Chemicon; 1:100), and anti-syntaxin 1A 

(Sigma-Aldrich; 1:1000). Secondary antibodies were fluorophore-tagged for 

immunofluorescence (Molecular Probes).  Images were captured on an Olympus AX70 

microscope (Olympus, Center Valley, PA) equipped with a MicroFire digital camera 

(Optronics; Goleta, CA), an LSM 510 Meta confocal microscope (Carl Zeiss, Inc.; 

Thornwood, NY) or an LSM 710 confocal microscope (Carl Zeiss, Inc.; Thornwood, NY).  

Results 

Rx deletion results in histological changes in the retina 

To study the functions of Rx during retinogenesis, we generated a retinal specific 

conditional knockout using the Pax6α-Cre driver (Marquardt et al., 2001) to induce 

recombination in retinal progenitors of the distal retina. The resulting Cre recombination 

excises exon 2 of Rx at approximately E10.5, the beginning of retinal neurogenesis.   
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X-gal staining to detect β-galactosidase activity from the Rosa26R reporter shows Rx 

deletion results in a decreased area of X-gal staining in the distal retina in Rx CKO mice 

compared to control mice (Figure 1A). Further histological analysis shows that deletion 

of Rx leads to a disruption in retinal lamination and creates an expanded mass in the 

distal portion of the P21 retina as shown by H & E staining in comparison to control 

(Figure 1B).  However, the central retina (the non-deleted portion) in Rx CKO mice 

appear normal and show well defined layers and normal retinal thickness.  

Deletion of Rx in the embryonic retina does not increase cell death  

Next, we assessed if the reduction in X-gal labeling upon Rx deletion was caused by 

cell death in the retina. To determine the role of apoptosis in the Rx CKO phenotype, we 

performed immunolabeling using the cell death marker, activated caspase-3 and GFP, 

which labels cells that have undergone Cre recombination and thus Rx deletion. 

Examination of retinal sections across various ages (E13.5- P21; Figure 2 shows P0 

labeling as a representative sample) shows no differences between Rx CKO and control 

retinas at any of the ages tested. Counting the activated caspase-3- and GFP-positive 

cells showed an average of 1.5 ±0.5 (SD) activated caspase 3-positive cells in the 

control and 2.1 ± 1.4 (SD) activated caspase 3-positive cells in the Rx CKO, t-test 

analysis was nonsignificant (p>0.05). The limited activated caspase-3 labeling in the Rx-

deleted portion of the retina indicates that the embryonic loss of Rx in the retina does 

not significantly increase cell death.  
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Rx is important for retinal progenitor proliferation 

The reduction in the X-gal-labeled domain of Rx CKO mice combined with previous 

research that proposes a role for Rx in proliferation (Furukawa et al., 1997; Mathers et 

al., 1997; Casarosa et al., 2003) suggests a possible decline in the number of retinal 

progenitors.  Therefore we sought to determine whether deletion of Rx affects retinal 

progenitors and proliferation.  To assess changes in proliferation in the Rx-deleted 

retina, we used two proliferation markers, BrdU incorporation and immunoreactivity for 

proliferating cell nuclear antigen (PCNA), and compared Rx CKO mice with littermate 

controls.  For BrdU immunostaining, which labels cells in the S phase of mitosis, we 

counterstained with the nuclear marker, propidium iodide (PI), at three ages (E12.5, 

E14.5 and E18.5, see Figure 3).  We observed an age-related decrease in the 

percentage of BrdU-positive cells in the Rx CKO distal retina compared to controls 

(Figure 3). At E12.5, there is no significant difference in BrdU incorporation in the distal 

retina of Rx CKO and control mice (Figure 3A-C). By E14.5, a significant difference 

emerges such that the percentage of BrdU-positive cells in the control retinas is 37.0  

2.1% and in the Rx CKO is 34.3  2.1% (P < 0.05) (Figure 3D-F). Finally, at E18.5 the 

percentage of BrdU-positive cells in the controls is 33.9 1.4% , and the central retina of 

Rx CKO mice is comparable at 34.4  2.3%, whereas the distal, deleted portion of the 

Rx CKO shows a drastic reduction (P <0.001), with only 3.6 1.1%  BrdU-positive cells 

(Figure 3G-J).  An overview of a whole retinal section at E18.5 shows the dramatic 

decrease in BrdU labeling in the distal regions of the Rx CKO retina compared to control 

(Figure 4A). Examining the expression of GFP and BrdU incorporation in the Rx CKO 

(Figure 4B) allows the determination of proliferation within the areas of the distal retinal 
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that have undergone Rx deletion. The non-GFP labeled areas show robust BrdU 

expression whereas the GFP-positive region shows a paucity of BrdU labeling (Figure 

4B). To further analyze Rx-dependent proliferation effects, we performed 

immunostaining with another proliferation marker, PCNA, which labels retinal 

progenitors in all phases of the cell cycle and decreases upon cell cycle exit (Barton and 

Levine, 2008). Immunostaining for PCNA and GFP at P0 shows strong PCNA labeling 

in the control and central portion of the Rx CKO retina (Figure 4C), indicating an 

abundance of retinal progenitors. The Cre-recombined portion of the Rx CKO retina 

shows a sharp decrease in PCNA labeling compared to control (Figure 4C), similar to 

that seen in our BrdU-labeled Rx CKO retina at E18.5 (Figure 4A). Taken together, the 

BrdU and PCNA results suggest that Rx is important in maintaining mouse retinal 

progenitor proliferation and that deletion of Rx results in a decrease in the progenitor 

pool likely due to early cell cycle exit. 

Rx deletion alters cell fate specification 

Since the loss of Rx significantly reduces the number of retinal progenitors and affects 

retinal lamination, we sought to determine if there are any changes in cell fate 

specification in the Rx-deleted portion of the Rx CKO retina. To determine the identity of 

cells in the deleted portion of the Rx CKO retina, we conducted immunolabeling studies 

using retinal cell-specific markers in mature retinas. Comparing control and Rx CKO 

retinas at P21, we observed GFP- and Brn3b-colabeled cells, indicating the presence of 

ganglion cells in the Rx-deleted distal retina (Figure 5A,B). Immunolabeling with 

syntaxin 1A shows extensive labeling in the distal (GFP-positive) portion of the Rx CKO 

retina, suggesting an increase in amacrine expression in the Rx-deleted retina (Figure 
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5D) compared to control retinas (Figure 5C). The presence of horizontal cells was 

detected using immunolabeling of calbindin 28kD and neurofilament 165 kD. Co-

labeling of these markers with GFP indicates the presence of horizontal cells in both 

control retinas (Figure 5E,G) and portions of the retina where Rx is deleted (Figure 

5F,H).  Examination of P21 retinal sections using cone-specific markers (S-opsin, and 

M-opsin) shows opsin expression within the control retinas (Figure 6A,C) and a marked 

decrease in labeling in the distal retina of Rx CKO mice (Figure 6B,D). Labeling with 

GFP shows the GFP-positive region overlapping with the region lacking cone 

photoreceptors.  The results of immunolabeling for early-born retinal cell types in the Rx 

CKO retina revealed a reduction in cone photoreceptors and an apparent increase in 

amacrine cell labeling. 

Due to the reduction in the retinal progenitor pool, we hypothesized that the late-born 

retinal cell types would be affected by the loss of Rx. To test this prediction, we 

performed immunolabeling on P21 Rx CKO and control retinas with antibodies against 

rhodopsin, Chx10 and CRALBP, which label rod photoreceptors, bipolar cells and 

Müller glia, respectively. Labeling for all three cell types was observed in the control 

retinas (Figure 7 A,C,E) and in the central region of the Rx CKO retina (Figure 7 B,D,F). 

Examining the area of Cre recombination in the Rx CKO, as demarcated by GFP 

expression, shows an absence of rhodopsin, Chx10 and CRALBP labeling (Figure 7 

B,D,F), demonstrating a total loss of the late-born retinal cell types in the Rx-deleted 

region.  

 



109 
 

Deletion of Rx directly affects cone photoreceptor generation 

The loss of the late-born cell types is consistent with Rx expression in the retinal 

progenitor pool (Furukawa et al., 1997; Mathers et al., 1997; Andreazzoli et al., 2003; 

Casarosa et al., 2003). The loss of the early-born cones was suggested in previous Rx 

CKO models showing a lack of Crx and Otx2 activity. However, the loss of cones is 

unlikely to be solely the result of a premature cell cycle exit phenotype. There are two 

possible explanations for the loss of cones- 1) Rx is necessary for cone histogenesis; or 

2) the cones are initially formed but subsequently degenerate, suggesting a role for Rx 

in embryonic cone survival similar to the role of Rx in postnatal cones (Irie et al., 2015).  

To test these possibilities, we sought to explore the expression of cone markers in 

embryonic retinogenesis to determine if cones were being born normally in the Rx-

deleted retina. Cone histogenesis begins around E11.5 and is complete just prior to 

birth (Carter-Dawson and LaVail, 1979; Young, 1985; Rapaport et al., 2004). During 

retinogenesis, cells are first born in the central retina and then a wave of differentiation 

progresses to the periphery. The Pax6α-Cre expression domain is in the distal retina; 

therefore, the earliest we could examine cone generation in this model and expect to 

find cones in the periphery is during late cone histogenesis (Young, 1985; Rodgers et 

al., 2016). Since cone opsins are not expressed in the embryonic retina, we used the 

markers phosducin and cone transducin  A previous study showed phosducin at 

E17.5 shows 87% co-expression with the cone specific marker, cone transducin  thus 

making them useful markers of embryonic cones (Sakagami et al., 2009; Rodgers et al., 

2016).  Immunolabeling with phosducin and GFP at E17.5 and P0 shows robust 

phosducin labeling along the entire length of the retina at the ventricular surface in 
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control samples (Figure 8A,C).  In the Rx CKO retina, the central portion of the retina 

displays phosducin, but the expression is greatly reduced in the distal portion of the 

retina (Figure 8B,C). To determine the location of the Rx deletion in the CKO retina in 

relation to phosducin labeling, we examined GFP expression from the Rosa26EGFP 

reporter. We observe mosaic GFP expression in the distal retina, and in the GFP-

labeled areas, there is a sharp decrease in phosducin-positive cells compared to non 

GFP-labeled areas of the Rx CKO distal retina (Figure 8). Phosducin and cone 

transducin  expression in the Rx CKO shows strong co-labeling of the cone markers in 

the control and central retina of the Rx CKO and reduced expression in the distal Rx 

CKO retina (Supplemental figure 1). To further test our findings, we next examined the 

expression of Otx2. Otx2 is known to label photoreceptors in the embryonic retina; 

however, it is not photoreceptor-specific. Immunolabeling using Otx2 and GFP in E17.5 

retinal sections of control and Rx CKO show strong Otx2 expression in the control 

(Figure 9A) and central portion of the Rx CKO (Figure 9B). In the distal portion of the Rx 

CKO retina, there is sharp decline in Otx2-labeled cells (Figure 9B), with GFP-labeled 

cells indicating those cells have undergone recombination and thus Rx deletion.  Taken 

together, the cone marker immunolabeling data suggest that there is a large decrease 

in cone expression during cone histogenesis. Based off of the lack of cell death and the 

presence of other early-born cell types it is probable that Rx is necessary for cone 

photoreceptor generation.  

Discussion  

The role of Rx in retinogenesis following optic vesicle/cup initiation is not well 

understood. Here, we investigated the functions of Rx during embryonic neural retinal 
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formation. Our data indicates that Rx plays multiple roles in eye development during 

retinal formation.  

Rx is required for appropriate retinal morphology 

Conditional deletion of Rx at E10.5 in the Pax6α-Cre-mediated Rx CKO leads to several 

abnormalities in the postnatal retina. The first noted difference was a decrease in the 

clone size of Cre-marked lineage domain in the Rx CKO, which complements the 

finding in other embryonic Rx CKO mice that showed a decrease in eye size (Muranishi 

et al., 2011). Additional histological examination reveals that Rx deletion leads to an 

enlarged disorganized retina that had lost its typical lamination at postnatal ages. The 

enlargement of the disorganized region starts around P0 and becomes very prominent 

by P21.  Disruptions in retinal lamination are seen in conditional knockout models of 

Sufu, a regulator of hedgehog signaling (Cwinn et al., 2011), and Pax6, Lhx2, and Otx2, 

retinal transcription factors (Marquardt et al., 2001; Nishida et al., 2003; Gordon et al., 

2013). Similar to our Rx CKO mice, these models all show alterations in cell type 

specification, including a loss of photoreceptors. Koike et al. (2005) showed that aPKC 

lambda in differentiating photoreceptors is necessary for proper retinal lamination, 

suggesting that the loss of photoreceptors may have resulted in the abnormal retinal 

lamination seen in our Rx CKO mice and the other models. However, mice with a 

Chx10 (Vsx2) homeobox null allele (Burmeister et al., 1996) show a disruption in normal 

retinal lamination and a lack of bipolar cells but retain their photoreceptors, 

demonstrating the possibility that the disruption in lamination may not solely be due to a 

lack of photoreceptors.  
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Rx maintains mouse retinal progenitors 

Our study extends previous studies showing that Rx is expressed in retinal progenitors 

(Furukawa et al., 1997; Mathers et al., 1997; Casarosa et al., 2003) by providing 

evidence that Rx is necessary in maintaining the murine retinal progenitor pool. Using 

two markers of proliferation, BrdU and PCNA, we show a decrease in retinal progenitors 

in the Rx-deleted retina.  We propose that deletion of Rx from the retinal progenitors at 

E10.5 causes premature cell cycle exit. Assessment of the retinal cell types found in the 

Rx-deleted portion of the retina show a loss of all late-born cell types, suggesting that 

the loss of the progenitor pool prevented their formation while allowing the generation of 

the early-born cell types. In addition, the decrease in retinal progenitors explains the 

decrease in clone size of the Cre-marked lineage domain in the Rx CKO as observed 

by X-gal staining (Figure 1). Further, the difference in activated caspase-3 labeling 

between control and Rx CKO retinal sections is too small to account for the changes 

seen in the retina, suggesting apoptosis is not the reason for the reduction in the Cre 

recombination domain or loss of retinal progenitors in the Rx CKO. 

Several genes have been associated with decreases in the retinal progenitor pool, 

including Pax6, Ldb1, and Lhx2 (Marquardt et al., 2001; Gordon et al., 2013; Gueta et 

al., 2016). Rx is necessary for functional Pax6 expression (Zhang et al., 2000), and 

conditional knockout of Pax6 does not affect expression of retinal progenitor markers, 

including Rx (Marquardt et al., 2001), suggesting that Rx functions upstream of Pax6 in 

its role in progenitor proliferation. Conditional knockout of Ldb1/Ldb2 (Lim domain 

binding 1/2) decreases Rx expression, suggesting that Rx may be downstream of the 
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Ldb-Lhx2 complex in the maintenance of the retinal progenitor pool (de Melo et al., 

2016; Gueta et al., 2016).  

Early deletion of Rx in retinal progenitors leads to alterations in cell type in the 

postnatal retina 

Deletion of Rx in retinal progenitors at E10.5, the very beginning of neural retinal cell 

birth, leads to many changes in cell type in the postnatal retina. Late-born cell types 

were absent, along with early-born cone photoreceptors; in addition, amacrine cells, an 

early-born cell type, were increased. Previous studies of conditional Rx deletion in 

retinal progenitors did not explore cell types in the postnatal retina, however, they did 

show ectopic Pax6 expression in the embryonic Rx CKO retina which labels amacrine 

cells and retinal progenitors (Muranishi et al., 2011), which fits with our finding of 

increased amacrine marker labeling at postnatal ages.  

These alterations in cell type follow a pattern seen in other homeobox gene knockouts 

that show changes in cell fate specification, where some cell types are decreased and 

others are increased. Conditional knockout of Otx2 results in an increase in amacrine 

cells, a decrease in rods and an absence of cones (Nishida et al, 2003) similar to what 

is seen in our Rx CKO. However, unlike our Rx CKO, Müller glia are unaffected in the 

Otx2 CKO and there is a large amount of cell death (Nishida et al., 2003). Lhx2 

conditional knockout at E10.5 shows an overproduction of retinal ganglion cells and a 

decrease in all other cell types (Gordon et al, 2013). Conditional deletion of Pax6 allows 

only amacrine cells, with all other cell types absent (Marquardt et al, 2001). 
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Similarly, changes in cell fate are observed in the conditional knockout of the 

transmembrane receptor, Notch1 (Jadhav et al., 2006; Yaron et al., 2006). Notch1 CKO 

mice generated with Pax6α-Cre display altered retinal morphology, decreased retinal 

progenitors and an increase in cone photoreceptor at the expense of other early born 

cell types (Yaron et al., 2006). A similar phenotype was observed in Notch1 CKO mice 

generated using Chx10 Cre; Notch1 CKO mice showed alterations in retinal 

morphology, a decrease in retinal progenitors and an increase in rod and cone 

photoreceptors (Jadhav et al., 2006).   

The absence of all late-born cell types within the early Rx-deleted retina at postnatal 

ages coupled with the large decrease in proliferation suggests an indirect effect of Rx 

deletion on these late-born cell types. Changes in proliferation are known to affect the 

type of cell generated; late-born cells require a sufficient pool of progenitors for their 

formation (Dyer and Cepko, 2001). Therefore, the absence of the late-born cells is likely 

due to the loss of the progenitor pool in our Rx CKO model.   

Rx is important for the formation of cone photoreceptors 

Previous studies on Rx suggest it has a function in photoreceptor development. In our 

model, the loss of rods is likely due to the lack of progenitors so we chose to specifically 

focus on further studying cone photoreceptors. The loss of cone photoreceptors in the 

Rx CKO at P21 could be the result of a lack of cone formation, suggesting a role in cone 

cell fate, or degeneration suggesting a role in cone survival. Thus, we proceeded to 

investigate cone histogenesis in the Rx CKO. Our results show that deletion of Rx leads 

to a large decrease in the birth of cone photoreceptors without increases in cell death.  
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Our study did not show a complete absence of cones in the distal portion of the Rx 

CKO. The few cells that were labeled with cone markers could be the result of the 

mosaic nature of Pax6α-Cre expression.  

We propose that Rx is necessary for cone histogenesis because we observe a lack of 

cones in embryonic Rx-deleted retina with no evidence of increased cell death 

suggesting that the absence of cones is due to a failure to form and not due to 

degeneration.  A possible role of mouse Rx in early photoreceptor development was 

previously suggested in a study using two conditional knockout models of Rx (Muranishi 

et al., 2011).  Conditional deletion of Rx at E11.5 and E14.5 results in reduced levels of 

Otx2 and Crx expression at E15.5 (Muranishi et al, 2011), which is similar to our results 

showing decreased levels of Otx2. However, our results show a less dramatic Otx2 

decrease possibly due to the mosaic nature of the Pax6α-Cre expression.  Our results 

are consistent with those previous findings showing decreases in the embryonic retina 

of photoreceptor markers. We extended those findings by studying cell death in the Rx 

CKO models and more fully exploring proliferation and specific cell types produced.  

Postnatal conditional deletion of Rx showed decreases in photoreceptor markers and 

increases in cell death, suggesting Rx is necessary for maturation and survival of 

photoreceptors during the postnatal time period (Irie et al., 2015). Taken together the 

results of the Rx conditional knockout models suggest that Rx has multiple roles in 

photoreceptor development including the formation of cones and survival of 

photoreceptors.  

The mechanism of action for Rx in photoreceptor development has been partially 

explored. In Xenopus and humans, Rx can bind with PCE-1, a conserved element found 
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in the promoter regions of photoreceptor-specific genes (Kimura et al., 2000; Pan et al., 

2010).  Further, the expression of Rx in Xenopus co-localizes with red opsin and 

rhodopsin promoters in photoreceptors (Pan et al., 2010).  A group of genes 

phylogenetically related to Rx have been identified, termed Rx-like. Rx-like genes, are 

found in humans, frogs, and chickens and are expressed in photoreceptors and activate 

photoreceptor genes (QRX: Wang et al., 2004; Rx-L: Pan et al., 2006 and RaxL; Chen 

and Cepko, 2002). Mice have a single Rx gene and lack Rx-like genes, suggesting that 

the single Rx gene may play a similar role to the multiple Rx and Rx-like genes found in 

other species in photoreceptor development. Studies in mice show that Rx can 

transactivate Otx2 and along with Crx can transactivate photoreceptor genes (Irie et al., 

2015; Muranishi et al., 2011).  

Further studies are needed to fully determine if Rx plays separate roles in rod versus 

cone photoreceptor development. In chickens, RaxL, plays a role in cone differentiation 

(Chen and Cepko, 2002) and the results of our study suggest that murine Rx has a 

direct role in cone photoreceptor development.  

In summary, the data presented here suggests multiple roles for Rx during neural 

retinogenesis, including proper retinal lamination, maintenance of retinal progenitors 

and cone photoreceptor generation.  
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Figure Legends 

 

Figure 1.  Deletion of Rx leads to a reduced Cre-lineage domain and a loss of lamination.   

(A) X-gal staining of P21 retinal sections from control (Pax6α Cre/+; Rx-flox/+; R26R/+) and Rx 

CKO mice (Pax6α Cre/+; Rx-flox/Rx-null; R26R/+) show a reduction in the lineage of Cre-

recombined cells in the Rx-deleted retina. Scale bar is 400 µm (B) H & E staining on P21 retinal 

sections of control and Rx CKO mice demonstrate a loss of lamination and an expansion in the 

distal portion of the Rx CKO retina. Light eosin staining is likely indicative of cellular processes 

rather than cell bodies. Scale bar is 200 µm. 

Figure 2. Levels of apoptosis are unaffected by deletion of Rx.   

Retinal sections at P0 from control mice (A) immunolabeled with the programmed cell death 

marker, activated capase-3, and GFP show similar numbers of activated caspase-3- and GFP- 

co-labeled cells compared to Rx CKO mice (B). Dashed line indicates the approximate region of 

Rx deletion based on GFP-positive cell labeling. Arrows indicate cells that are labeled for both 

GFP and caspase-3. Scale bars are 100 µm.  

Figure 3. Rx deletion reduces the retinal progenitor pool in an age-dependent manner. 

The distal region of retinal sections from control and Rx CKO mice were labeled with the nuclear 

marker, propidium iodide, and the progenitor marker, BrdU, at E12.5 (A,B), E14.5 (D,E) and 

E18.5 (G,I). The central (non Rx-deleted) region of E18.5 retinas were examined (H) as an 

internal control in an otherwise Rx-deleted retina.  Scale bars are 50 µm. Quantitative analysis 

of progenitor cells at E12.5 (C), E14.5 (F), and E18.5 (J) in retinal sections show a decrease in 

the percentage of BrdU-positive cells in the Rx CKO distal region. The decrease in progenitors 

was age dependent. There was no detectable difference between control and Rx-deleted 

retinas at E12.5, but at E14.5 a small difference emerged and at E18.5 there was a drastic 

reduction in progenitors in the Rx-deleted region.  Open bars represent control retinas and 
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closed bars represent Rx CKO distal retinas.  The grey bars in J represents Rx CKO central 

retinas.  All bars are the mean ± SD of 3 retinal slices from at least 4 separate eyes. Statistical 

significance is based on t-test analysis between percentages from control and Rx CKO distal 

region and is indicated by asterisks (* indicates p<0.05 and ** indicates p<0.001).   

Figure 4. BrdU- and PCNA-labeled progenitors are reduced in Rx-deleted regions of the 

Rx CKO retina.  

(A) Sections from control and Rx CKO mice showing the span of the retina were labeled with 

the progenitor marker, Brdu, at E18.5 showing the decrease in retinal progenitors in the distal 

region of the Rx CKO. (B) Higher magnification images including GFP labeling (marking Cre 

activity) in the retina show BrdU expression throughout the control section but predominantly in 

areas lacking GFP expression within the Rx CKO indicating the loss of progenitors in the Rx 

CKO mice occurs within the Rx-deleted regions. (C) Immunolabeling of proliferating cell nuclear 

antigen (PCNA), another progenitor marker, and GFP was performed in control and Rx CKO 

retinal sections at P0. PCNA labeling shows a decrease in progenitor proliferation in Rx-deleted 

regions of the retina. Dashed lines represent the approximate boundary of the Rx-deleted region 

in the Rx CKO retina. Scale bars are 100 µm in A and C and 50 µm in B. 

Figure 5. Rx deletion leads to changes in a subset of early-born cells found in the adult 

retina.  

Immunolabeling for Brn3b and GFP in retinal sections from control (A) and Rx CKO (B) shows 

the presence of retinal ganglion cells in the control and Rx-deleted retina. Arrows indicate 

examples of Brn3B-expressing cells.  An abundance of amacrine cells in the Rx-deleted portion 

of the Rx CKO retina (D) is shown by the labeling of synataxin 1A and GFP compared to control 

retinal sections (C).  Calbindin and GFP immunolabeling in retinal sections of control (E) and Rx 

CKO (F) show the presence of amacrine and horizontal cells in both control retina and in Rx 

CKO. (D) Co-labeling of neurofilament 165 kD and GFP shows the presence of horizontal cells 
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in the Rx CKO retina (G) as well as in control retinal sections (H). Dashed lines indicate the 

approximate boundary of the Rx-deleted portion in the Rx CKO retina. Scale bars are 100 µm. 

Figure 6. Early-born cone photoreceptors are lost in the Rx-deleted P21 retina.  

Co-labeling with GFP and M-opsin shows expression of M-cones along the ventricular surface 

of the control retina (A) and the central portion of the Rx CKO retina (B); however, the Rx-

deleted portion of the Rx CKO retina shows a lack of M-opsin labeling (B). The presence of S-

cones using S-cone opsin co-labeled with GFP shows normal cone expression in the control (C) 

and central region of the Rx CKO retina (D), whereas the distal portion of the Rx CKO (D) 

labeled with GFP shows a lack of S-opsin expression. Dashed boxes indicate a region that was 

magnified by 2x in the lower left hand corner of the opsin images. Dashed curved lines indicate 

the approximate boundary of the Rx-deleted region in the Rx CKO retina. Scale bars are 100 

µm. 

Figure 7. Absence of late-born cell types with the deletion of Rx in P21 retinal sections.  

Immunolabeling against Chx10 shows the presence of bipolar cells in the control (A) and central 

region of the Rx CKO (B), whereas co-labeling with GFP shows a loss of bipolar cells in the Rx-

deleted portion of the Rx CKO retina (B). Retinal sections labeled with CRALBP and GFP show 

Müller glia in the control (C) and central part of the Rx CKO (D). The region of the Rx CKO (D) 

where Rx deletion occurred (labeled with GFP) shows a loss of Müller glia.  Labeling with 

rhodopsin displays rod photoreceptors throughout control retinal sections (E) but only in the 

central portion in the Rx CKO retina (F). Co-labeling with GFP shows a lack of rhodopsin 

expression in the GFP-labeled region of the Rx CKO, which demarcates where Rx has been 

deleted. Dashed lines represent the approximate boundary of the Rx-deleted portion of the 

retina. Scale bars are 100 µm. 
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Figure 8. Phosducin expression is reduced in embryonic and early postnatal Rx CKO 

retina. 

Co-labeling with phosducin and GFP, to visualize the regions of the Rx CKO retina (B) where 

Rx deletion occurred shows a decrease in phosducin-labeling at E17.5 compared to control (A). 

Similarly at P0, co-labeling with GFP and phosducin shows a decrease in phosducin expression 

in the Rx-deleted portion of the Rx CKO retina (D) compared to control (C). Phosducin-labeled 

cells in the distal retina are primarily in regions that have not undergone Cre-mediated 

recombination (i.e. –GFP-negative). Dashed lines represent the approximate region of Rx 

deletion. Scale bars are 100 µM. 

Figure 9. Decreased Otx2 expression in embryonic Rx CKO retina. 

(A) Immunolabeling in control retinal sections with GFP and Otx2 (labeling photoreceptors) 

shows strong Otx2 labeling along the length of the retina at E17.5. (B) Retinal sections of E17.5 

Rx CKO mice show strong Otx2 labeling in the central portion of the retina, but decreased 

labeling in the distal region that corresponds with the area labeled by the GFP reporter. Scale 

bars are 100 µm. 
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Figure 1.  Deletion of Rx leads to a reduced Cre-lineage domain and a loss of lamination.   
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Figure 2. Levels of apoptosis are unaffected by deletion of Rx. 
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Figure 3. Rx deletion reduces the retinal progenitor pool in an age-dependent manner. 
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Figure 4. BrdU- and PCNA-labeled progenitors are reduced in Rx-deleted regions of the 

Rx CKO retina. 
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Figure 5. Rx deletion leads to changes in a subset of early-born cells found in the adult 

retina. 
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Figure 6. Early-born cone photoreceptors are lost in the Rx-deleted P21 retina.  

 



131 
 

 

Figure 7. Absence of late-born cell types with the deletion of Rx in P21 retinal sections.  
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Figure 8. Phosducin expression is reduced in embryonic and early postnatal Rx CKO 

retina. 
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Figure 9. Decreased Otx2 expression in embryonic Rx CKO retina. 
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Supplementary Figures 

 

Supplemental Figure 1. Phosducin and cone transducin  labeling are reduced during 

retinogenesis in Rx-deleted retina.  

(A) Colabeling with early cone markers, phosducin and cone transducin , in E17.5 retinal 

sections shows strong co-expression along the ventricular border in the control (A) and central 

portion of the Rx CKO retina (B). Expression in the distal portion of the Rx CKO retina (B), 

where Rx was presumably deleted, shows a large reduction in both phosducin and cone 

transducin  expression.  Retinal sections immunolabeled for phosducin and cone transducin  

at P0 show similar pattern of expression to E17.5 with strong co-expression in control (C) and 

central retina of the Rx CKO retina (D) and greatly reduced labeling in the distal region of the Rx 

CKO retina (D). Scale bars are 100 µm. 
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Abstract 

The development of organoids (stem cell-generated organs) has opened up new 

avenues for research, including the possibility of using organoids to study gene function during 

development. Using organoids to study development offers the advantages of cell culture 

manipulations while still displaying morphological patterning.  We chose to compare two 

antisense-mediated gene knockdown techniques, Vivo-morpholinos (vMO) and Accell siRNA in 

optic vesicle organoid cultures.  We assessed general toxicity, efficiency of gene knockdown 

and whether experimental manipulation, the addition of an antisense oligo, would affect the 

development of the optic vesicle organoids. Both vMOs and Accell siRNA were successfully 

delivered to cells via bath application. Addition of either standard negative control vMOs or 

Accell siRNA nonsense control oligomers did not alter the development of optic vesicles. To 

explore the possibility of using antisense-mediated gene knockdown in these cultures, the first 

genes we chose to test were GFP and the Rx homeobox gene, an important regulator of optic 

vesicle formation. In the embryonic stem cells used, GFP expression is under the control of the 

Rx promoter. Therefore, GFP labels retinal induction.  Expression of GFP is significantly 

reduced in cultures treated with vMOs against GFP.  Conversely, addition of Accell siRNA 

against GFP results in no change in GFP expression regardless of concentration. Therefore, in 

the remaining studies we chose to use only vMOs for gene knockdown. The Rx knockdown 

cultures show a significant decrease in Rx-controlled GFP expression in comparison to controls.  

Having established that vMOs are effective at gene knockdown in organoid cultures, we tested 

three genes that are candidates for being necessary for optic vesicle development (previously 

determined through microarray comparison of Rx-mutant and control tissue).  Knockdown of 

those genes results in three different phenotypes, one of which indicates a possible role in optic 

vesicle development. Thus, we have established that the ability to use knockdown techniques to 

reduce gene expression in organoids is a promising tool for studying gene expression during 

early eye development. 
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Introduction 

Ocular malformations, including micropthalmia, anophthalmia, and coloboma (MAC), result from 

defects in eye development and are a prevalent cause of childhood blindness (Ragge et al. 

2007; Williamson and FitzPatrick 2014). One in every 5300 babies born in the USA is born with 

either microphthalmia or anophthalmia (Parker et al. 2010). Several gene mutations have been 

linked with a MAC phenotype including SOX2, PAX6, CHX10, RAX, and OTX2 (See Bardakjian 

and Schneider 2011 for a review of the genetics of ocular malformations). However, mutations 

in these genes only account for a small portion of patients with MAC suggesting that these 

conditions are genetically heterogeneous. There are likely putative genes that have yet to be 

identified whose mutations lead to ocular defects. Identifying the role these genes play in optic 

vesicle development is important to further understand ocular malformations, such as MAC.  

To determine the genes and molecular mechanisms of early embryonic development requires 

techniques that allow for spatially and temporally precise specific inhibition of gene function.  

Traditionally, researchers have used germline and conditional knockout models, and gene 

knockdown techniques to study gene function during embryogenesis. Each of these techniques 

have their own benefits, limitations and disadvantages, most notably they tend to be time-

intensive and expensive, especially if multiple genes are to be studied. In addition, they may not 

allow for the precise temporal or spatial control needed to get a clear understanding of gene 

function during development. Some of these challenges have been overcome with the 

development of CRISPR/Cas9 mouse genome editing (Cong et al. 2013; Mojica and Montoliu 

2016), which is more precise, less expensive and faster than previous methods. However, the 

creation of mutations, even with CRISPR/Cas9 genome editing, is a less desirable method for 

screening candidate genes because it requires generating and maintaining multiple mutations 

(Wang et al. 2014). Prior to developing mutant models, it would be beneficial to be able to 

rapidly screen for possible effects of gene candidates involved in development.  
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Recent advances in stem cell technology have led to the development of tissue/organs grown 

from stem cells in 3D culture, termed organoids (Huch and Koo 2015; Kretzschmar and Clevers 

2016; Völkner et al. 2016). These organoids are opening new and exciting possibilities for 

research, including the study of embryonic development and may be useful as a model for rapid 

gene screening. 

Multiple different organ systems allow successful generation of organoids, including: the 

nervous system, the urinary system, reproductive system, and the gastrointestinal system 

(Eiraku and Sasai 2011; Koo et al. 2011; Sasai et al. 2012; Finkbeiner et al. 2015; Little and 

Takasato 2015; Pendergraft et al. 2017). Several groups have used organoids to study the 

formation of optic vesicles, optic cups and stratified retinal tissue (Eiraku and Sasai 2011; Eiraku 

et al. 2011; Meyer et al. 2011; Nakano et al. 2012; Sasai et al. 2012; Zhong et al. 2014; 

Ohlemacher et al. 2015; Chen et al. 2016; Völkner et al. 2016). In the development of these 

organoids, researchers have noted some interesting characteristics that make them ideal to 

studying eye development.  The developmental progression from stem cells to 3D-organoid 

follows a similar morphological pattern and timing to that of in vivo neural development. The first 

noted development of optic vesicle/retinal organoids used mouse embryonic stem cells (ESCs) 

with GFP inserted into the Rx locus to label presumptive retinal tissue. The method for organoid 

formation involves plating the Rx-GFP stem cells on a low adhesion plate where they form 

aggregates, then on Day 5 in culture GFP-labeled regions form and on Day 7 those regions 

evaginate and thus form optic vesicle organoids (Eiraku and Sasai 2011; Eiraku et al. 2011). 

With further experimental manipulation, researchers show that these optic vesicle organoids can 

go on to form optic cups and eventually stratified retina (Eiraku et al., 2011; Eiraku & Sasai, 

2011). A similar procedure has also been done using the organoids formed from human ESCs. 

These human retinal organoids are proportionally larger than those from mouse ESCs (Nakano 

et al. 2012). Additionally, optic vesicle/retinal organoids have now also been generated with 
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human induced pluripotent stem cells (IPCs) (Meyer et al. 2011; Zhong et al. 2014; Ohlemacher 

et al. 2016). 

These organoids offer the possibility of studying gene function during development with some 

advantages over embryological investigations in that they have the benefits of cell culture, 

including the ease of genetic manipulation and relative low cost, while still displaying the 

morphological patterning and timing of natural embryonic development.  In order to establish 

gene knockdown in optic vesicle organoids as a method for studying development, several 

issues need to be addressed including transfection, toxicity and whether the technique would 

affect the development of optic vesicles. 

Currently, the only methods of studying gene expression in organoid cultures is viral 

(retroviral/lentiviral) transfection in endodermal (stomach/intestine) organoids (Koo et al. 2011, 

2013; Van Lidth de Jeude et al. 2015) and a CRISPR/Cas9-mediated knockout in cerebral 

organoids (Wang et al., 2017). To our knowledge, other methods of gene knockdown have not 

been studied in organoids, and no gene knockdown method has been investigated in optic 

vesicle/retinal organoid cultures.   

In this study, we assessed two antisense-mediated gene knockdown techniques in optic vesicle 

organoid culture. Organoids are structurally more complex than monolayer or suspension cell 

culture; therefore, transfection may be difficult.  To address this issue, we chose two techniques: 

Accell siRNAs (Dharmacon) and Vivo-morpholinos (vMOs, GeneTools), that have been 

modified to cross cell membranes without the need for transfection reagents or electroporation 

and are often used for in vivo applications. Our observations suggest that both Accell siRNA 

and vMOs readily enter the cells without adversely affecting development of the organoids; 

however, in our assessment only vMOs achieved a significant gene knockdown. Here we show 
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the potential of using vMOs in 3D-organoid culture as a rapid screen for candidate genes 

required for optic vesicle formation.  

Methods 

Mouse embryonic stem cell (mESC) culture 

Mouse ES cells (Rx-GFP K/I EB5) from Riken (AES0145) were maintained under feeder-free 

conditions following a modified protocol of Eiraku and Sasai (2011).  Maintenance media was 

prepared as follows: Glasgow minimum essential medium (GMEM; Gibco) supplemented with 

10% Knockout Serum Replacement (KSR; Invitrogen), 1% FBS (fetal bovine serum; Gibco), 1 

mM sodium pyruvate (Sigma-Aldrich), 0.1 mM nonessential amino acids (Sigma-Aldrich), and 

0.1 mM 2-Mercaptoethanol (2-ME,  Sigma-Aldrich). Additionally, leukemia inhibitory factor (LIF, 

1:250, EMD Millipore Corporation), and blasticidin (1:500, Invitrogen) were added to 

maintenance media immediately prior to use.  Cells were maintained on gelatin-coated 60mm 

cell culture dishes and passaged every 3 days.  

Optic vesicle formation in 3D culture 

To differentiate stem cells into retinal tissue, the protocol described by Eiraku and Sasai (2011) 

was followed.  SFEBq (serum-free floating culture of embryoid body–like aggregates with quick 

reaggregation) culture was used to promote the differentiation of ESC into neuroepithelial tissue 

(Eiraku & Sasai, 2011).  While SFEBq promotes differentiation, it does not support the formation 

of 3D structures; therefore, matrigel was added to allow the formation of 3D structures in culture.  

Retinal differentiation media was prepared as follows: G-MEM supplemented with 1.5% KSR, 1 

mM sodium pyruvate, 0.1 mM nonessential amino acids, and 0.1 mM 2-ME. 

Cultured mESC were dissociated to single cells using .25% trypsin-EDTA (Gibco) and were 

quickly reaggregated in differentiation media by plating on low-adhesion, 96-well plates 

(Lipidure®-Coat Plate A-U96, NOF) at 4000 cells/100µl/well. The day of plating is defined as 

Day 0 in culture. For a diagram of the events of development in culture, see Figure 1.  On Day 
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1, growth factor-reduced Matrigel (Corning®Matrigel®Basement Membrane Matrix High 

Concentration Growth Factor-Reduced) was added to the media of each well at a final 

concentration of 2% (vol/vol). Following addition of matrigel, cells continue to be incubated for 6 

days at 5% CO2.  Knockdown manipulations occurred on Day 4 (see below). On Day 7, GFP-

positive outpockets (optic vesicles) are visible on the aggregates (See Figure 1B).  A timeline of 

events occurring in culture and experimental manipulations is shown in Figure 2.  On Day 7, 

aggregates were collected for imaging and transferred from the 96-well plate to a 35mm petri 

dish, and washed twice with 1x phosphate buffered saline (PBS).    

Antisense-mediated gene knockdown 

To assess the ability for successful gene knockdown in optic vesicle organoid cultures, two 

different antisense-mediated techniques, siRNA and morpholinos, were used.  Due to the 

increased structural complexity of 3D culture, techniques that have been designed to easily 

cross the cell membrane for use in in vivo procedures were chosen.  These techniques 

included:  Accell siRNA and vMO oligomers.   

Accell siRNA 

Accell siRNA (Dharmacon; Lafayette, CO) is modified to readily cross the cell membrane and 

therefore is designed to be used without the use of transfection reagents, viruses or 

electroporation.  This modification made it an ideal candidate to test in 3D culture.  To assess 

Accell siRNA uptake in the aggregates, DY-547-labeled non-targeting control Accell siRNA 

(Accell mouse control siRNA kit- Red, Dharmacon) was used at concentrations of .25µM to 

1µ

Accell eGFP pool siRNA (D-001940-10-05, Dharmacon) was used to knockdown GFP in the 

aggregates. The sequences in the pool were as follows: GCCACAACGUCUAUAUCAU, 

GCAAAGACCCCAACGAGAA, CCAUCUUCUUCAAGGACGA, GCAUCGACUUCAAGGAGGA.  
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A non-targeting Accell siRNA control pool was also used (D-001910-10-05; Dharmacon).  Accell 

siRNA was applied to aggregates via bath application and added directly to the serum-free 

differentiation media on Day 4. A concentration range of .25µM to 3 µM was tested for non-

targeting control and eGFP pool siRNAs. The rationale for this concentration range was to 

assess the effectiveness of concentrations both above and below the manufacturer’s 

recommended concentration of 1µM. 

Vivo-morpholinos (vMOs) 

Another antisense-mediated gene knockdown technique tested was vMOs (Gene Tools, LLC; 

Philomath, OR).  vMOs are morpholino oligomers that have been covalently linked to an 

octaguanidine dendrimer delivery moiety (Morcos et al. 2008). This modification allows it to 

cross cell membranes, thus making it a good choice for 3D culture.  Morpholinos can be 

designed to block either translation or splicing.  The majority of vMOs tested were translation 

blocking; however, one splice-blocking vMO was also tested.  GFP-targeted control vMOs and 

standard negative control vMOs were used in the experiments below. In addition, custom vMOs 

were designed to target Rx (translation and splice-blocking), Alx1, Edn1, and Rpl37 (all 

translation blocking).  Sequences of vMOs used are listed in Table 1. The vMOs were diluted 

from sterile PBS stock solution (0.5mM) to the appropriate concentration with differentiation 

media and then added directly to the aggregates in culture.  Vivo-morpholinos were tested in 

concentrations ranging from 3μM to 7.5μM. To determine optimal timing for morpholino addition, 

vMOs were added to separate wells on Days 3, 4, 5, 6 or 7.  After the initial timing experiment, 

all further experiments added morpholinos on Day 4.   

Selection of Optic Vesicle Test Genes 

To identify genes involved in early optic vesicle formation, we previously conducted a differential 

microarray between control and optic vesicle-deficient (Rx-null) embryos at E8.5. In mice, the 

deletion of the Rx homeobox gene results in a failure of the optic vesicles to form and blocks 



143 
 

subsequent eye development (Mathers et al. 1997), and human RX gene mutations are 

associated with anophthalmia and microphthalmia (Voronina et al. 2004). Affymetrix mouse 

exon arrays were probed with RNA from both control and Rx-null embryos. The analysis 

showed numerous genes with differential expression between the genotypes. Thirteen of those 

genes were then confirmed using qPCR. Three genes that showed differential expression were 

then selected to test for knockdown in the 3D optic vesicle organoid cultures, these genes 

included: Alx1, Rpl37, and Edn1. The genes were down-regulated in the microarray and were 

selected because their p-value and fold-changes were significant. Of the candidate genes, Alx1 

and Edn1 have a known function in craniofacial development, but their involvement in eye 

development is unknown. 

Immunofluorescence 

Aggregates were mounted in TBS tissue-freezing media (Triangle Biomedical Sciences, 

Durham, NC), and sectioned on a Leica CM 3050S cryostat (Leica Biosystems, Buffalo Grove, 

IL) at 10-micron thickness, then transferred to glass slides. Samples were subjected to an 

antigen retrieval procedure of 0.1M Tris pH 9.5 incubation at 95ºC for 20 min. Following antigen 

retrieval, sections were blocked with serum and treated with primary and secondary antibodies, 

following a published procedure (Howell et al. 2007). Primary antibodies used in this study were 

anti-GFP (chicken; Abcam; 1:1500), and anti-Pax6 (mouse; Santa Cruz; 1:150). Secondary 

antibodies were fluorophore-tagged for immunofluorescence (Molecular Probes, Eugene, OR).  

Images were captured on a LSM 710 confocal microscope (Carl Zeiss, Inc.; Thornwood, NY). 

Imaging of aggregates 

After being washed, aggregates were transferred to a new 35mm petri dish containing 1x PBS. 

Epifluorescent images were then captured on a Leica MZFLIII fluorescence stereomicroscope 

(Leica Biosystems; Buffalo Grove, IL) equipped with a MicroFire digital camera (Optronics; 

Golenta, CA). For confocal imaging, washed aggregates were transferred to a 35mm petri dish 
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containing 500nM MitoTracker Deep Red FM (Molecular Probes Eugene, OR) in 1x PBS and 

placed in a 37°C incubator for 1 hour. After incubation in MitoTracker, aggregates were washed 

with 1x PBS and transferred to a glass-bottomed 35mm/10mm well fluorodish (World Precision 

Instruments; Sarasota, FL) with 1x PBS. Z-stack images were captured on a Zeiss 510 confocal 

microscope (Carl Zeiss Inc; Thornwood, NY). 

Results 

Successful transfection via bath application of Accell siRNA fails to knockdown gene 

expression 

In order to determine if bath application of Accell siRNA is a viable method of transfection in the 

stem cell aggregates, we used red non-targeting control siRNA labeled with DY-547 to allow 

visualization of siRNA uptake into the aggregates. In addition, we ran a concentration series 

using the red non-targeting control siRNA ranging from 0.25 µM to 1 µM to assess the optimal 

concentration of siRNA for transfection. Addition of Accell siRNA to the culture media on Day 4 

resulted in visible uptake at all concentrations tested (Figure 3A). The amount of siRNA 

incorporated into the aggregates increased as the concentration increased. The manufacturer’s 

recommended concentration of 1 µM showed a large amount of siRNA was transfected into the 

stem cell aggregates suggesting that bath application is a viable transfection method for Accell 

siRNA into aggregates in 3D culture.  Next, we wanted to examine the ability of Accell siRNA to 

knockdown gene expression in the 3D organoid culture. Since these aggregates produce GFP 

expression with the induction of retinal tissue, we choose to test gene knockdown using an 

eGFP pool of Accell siRNA. We tested a total of 5 different concentrations (ranging from 0.25 

µM-3 µM), to determine the optimal siRNA concentration for gene knockdown.  The 

concentrations were chosen based on their known ability to be successfully transfected into the 

aggregates and included three concentrations below and one above the manufacturer’s 

recommended amount of 1 µM.  Addition of GFP siRNA (n=8/concentration) via bath application 
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on Culture Day 4 was compared to nonsense siRNA controls (n=8) at the same concentrations 

and untreated controls (n=8).   No toxic effects were noted at any of the concentrations tested, 

and there were no detectable changes in morphology. GFP expression, however, was not 

notably reduced at any of the concentrations tested using Accell siRNA (Figure 3B).  

vMOs successfully knockdown GFP expression in optic vesicle organoid cultures 

The next knockdown technique we tested in organoid cultures was application of vMOs.  

Incorporation of vMOs could not be tested in a similar manner to the labeled-siRNA because the 

vMOs are not available fluorescently tagged; therefore, we went directly to testing the ability of 

vMOs to successfully knockdown genes in developing optic vesicles. We opted to first test the 

GFP translation-blocking vMO since GFP is expressed with the induction of retinal tissue and 

thus provides a visual measure of the success of GFP knockdown in these cultures.  A 

concentration series (ranging from 1 µM-10 µM) was performed using bath application of GFP 

translation-blocking vMOs (n= 18 per concentration) and standard negative control vMOs (n= 18 

per concentration) at culture day 4.  A comparison of GFP translation-blocking vMOs, negative 

control vMOs, with untreated organoids across the concentration range shows no detectable 

signs of toxicity or alterations in morphology as a result of vMO addition (Figure 4A). Negative 

control vMOs did not affect GFP expression or optic vesicle formation.  Examining the effects of 

GFP translation-blocking vMOs showed that at the lowest concentrations (1 and 3 µM) of GFP 

translation-blocking vMOs did not alter GFP expression, suggesting a failure to effectively 

knockdown GFP. At 4 µM GFP translation-blocking vMO, there was a decrease in GFP 

expression compared to negative and untreated control suggesting a partial knockdown of GFP. 

The four highest concentrations (5, 6, 7.5, and 10 µM) all resulted in undetectable GFP 

expression in the aggregates, suggesting that at those concentrations, GFP translation-blocking 

vMOs are effective at gene knockdown.  To confirm the loss of GFP after the addition of GFP 

translation-blocking vMO (5 µM), we performed immunofluorescence on sectioned aggregates 
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using an anti-GFP antibody. Labeled sections showed a drastic decrease in GFP expression 

compared to the standard negative control vMO treated aggregate and untreated aggregate 

(Figure 4B).  In addition, to confirm that optic vesicle development was not affected by the 

knockdown, we used an anti-Pax6 antibody along with anti-GFP to label aggregate sections. 

Pax6 and GFP both label optic vesicles in the untreated and negative control vMO aggregates, 

however, in the aggregate treated with the GFP translation-blocking vMO, Pax6 labeling is 

unaffected, suggesting the presence of optic vesicles (Figure 4B).  

Next, to determine optimal timing of vMO addition for gene knockdown in these cultures, we 

tested bath application of the GFP translation-blocking vMO at a concentration of 5 µM on days 

3, 4, 5, 6 or 7 (n=6 per time point) and then assessed GFP expression on day 8.  Visual 

examination of GFP expression in the cultures showed a complete loss of GFP expression with 

the addition of GFP translation-blocking vMOs at days 3 and 4 compared to untreated and 

standard negative control conditions. Addition at days 5 and 6 of the GFP translation-blocking 

vMOs showed partial GFP expression in the stem cell aggregates compared with standard 

negative control and untreated conditions, whereas addition at day 7 showed no change in GFP 

expression compared with controls. Therefore, we used day 4 as the time point for all 

subsequent transfections.  

vMO knockdown of the retinal homeobox gene (Rx) decreases GFP expression 

Next, we tested the ability of vMOs to knockdown the Rx gene in 3D-organoid cultures. Rx is 

important for the initial formation of optic vesicles during eye development and deletion of Rx in 

mice leads to a failure of optic vesicle formation (Mathers et al., 1997). Therefore, we 

hypothesized that knockdown of Rx in these cultures should prevent optic vesicle formation. We 

tested both translation-blocking (n=30) and splice-blocking vMOs (n=30) targeting Rx at a 

concentration of 5 µM.  Additionally, as a third Rx condition, we combined each of the Rx-

targeted morpholinos at 2.5 µM (n=15) to minimize off target effects and check for synergism. 
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For comparison, along with the Rx conditions we ran untreated, standard negative control 

vMOs, and GFP translation-blocking vMOs on the same plate.  The results show aggregates of 

similar size in all conditions (Figure 5) with no apparent toxic effects of vMO addition. 

Morphology and GFP expression were normal in untreated and standard negative control vMO 

conditions. Since there is no effective commercially available Rx antibody, we used GFP 

expression as an indirect measure for the efficacy of the vMO Rx knockdown. This was possible 

because the Rx vMOs disrupt the Rx promoter-driven GFP expression within the aggregates. 

As expected, GFP expression was lost in the GFP translation-blocking vMO condition.  In all 

three Rx knockdown conditions, GFP expression was lost. Confocal imaging using Red 

MitoTracker to visual all cells of the aggregate in addition to the GFP expression of the vesicles 

allowed for a more detailed look at the aggregates (Figure 6).   

Screening potential gene candidates in 3D organoid culture 

After confirming that vMOs could successfully knockdown gene function in the stem cell 

aggregates and demonstrating the expected phenotype after Rx knockdown in these cultures, 

we began using vMOs to investigate the role of the identified candidate genes on optic vesicle 

development.  Translation-blocking vMOs targeting Alx1, Edn1, and Rpl37 were added at 5 µM 

to aggregate cultures on day 4; then on day 8, we assessed GFP expression and the 

morphology of aggregates in comparison to untreated and standard negative vMO controls. The 

knockdown of the three candidate genes resulted in three distinctly different phenotypes in the 

aggregates (Figure 7).  Edn1 knockdown (n=12) showed robust GFP expression in aggregate 

outpockets very similar to the untreated (n=12) and control (n=12) conditions. Rpl37 knockdown 

(n=12) resulted in a loss of GFP expression, a failure of outpockets to form and a large 

reduction in overall aggregate size. The knockdown of Alx1 (n=12) led to a loss of outpocket 

formation, but retained normal overall aggregate size. In addition, in the Alx1 knockdown 

aggregates, there was an alteration of GFP expression. Instead of being confined within 
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discrete outpocket regions, GFP expression was shown in small punctate regions within the 

aggregate.   

Discussion 

The development of 3D-organoid cultures has led to new possibilities for research. Organoid 

culture has some distinct advantages over traditional cell culture in that it allows morphological 

patterning. In optic vesicle organoid culture, the morphological and temporal development 

matches that seen in vivo. We wished to take advantage of this system to develop a rapid 

screen to test genes during development.  Here, to enable the rapid screening of genes, we 

identified a method of gene knockdown (vMOs) that was easily transfected, nontoxic, and did 

not affect morphological development of the organoids adversely. Further, we tested a gene 

(Rx) with a known optic vesicle phenotype and three genes with unknown roles in optic vesicle 

development.  

vMOs are superior to Accell siRNA for gene knockdown in 3D-organoid culture 

Due to the increased complexity of tissue in 3D culture compared to cell culture, we chose to 

test two antisense-mediated techniques, Accell siRNA and vMOs, that have modifications for 

crossing the cell membrane. The Accell eGFP siRNA failed to knockdown GFP expression at 

any of the concentrations tested, including three times the manufacturer’s recommended 

working concentration. The results suggest that despite being easily transfected and nontoxic, 

Accell siRNA is not effective as a method for gene knockdown in these 3D-organoid cultures. 

However, vMOs proved to be a viable and effective method for gene knockdown. Addition of 

vMOs via bath application was effective in achieving gene knockdown with no toxic effects nor 

effects on the developing optic vesicles (for controls).  
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3D optic vesicle organoid culture is well suited to gene knockdown by vMOs  

Four issues have been identified with the traditional use of vMOs: 1) difficulty in injecting precise 

volumes in small embryos; 2) difficulty in verifying efficacy; 3) the possibility of off-target effects; 

and 4) toxicity leading to death (Eisen and Smith 2008; Ferguson et al. 2014).  In the 3D-

organoid culture, we demonstrate that bath application is a viable method for transfection within 

these cultures and thus does not require injections into aggregates and issues of precision and 

reproducibility with small injections.  Another challenge with the use of vMOs that is not an issue 

in 3D optic vesicle organoid culture is toxicity. In vivo application of vMOs has been associated 

with a problem in toxicity that leads to death in the animals that is hypothesized as being due to 

oligonucleotide hybridization leading to lethal blood clots (Ferguson et al., 2014), which is not a 

concern in 3D organoids. No toxicity was noted in any of our cultures that were treated with 

vMOs, nor were any adverse effects noted on development, suggesting that toxicity is not a 

concern when vMOs are used following our methods in optic vesicle organoids. Determining 

knockdown efficiency is important and can be achieved directly using a reliable antibody to 

assess protein loss or indirectly using a marker such as GFP. We demonstrate the high 

efficiency of vMO gene knockdown using immunofluorescence on aggregates that were 

transfected with GFP translation-blocking vMO compared to standard negative control. The 

issue of verifying efficacy is lessened in our organoid cultures because the stem cells have GFP 

knocked in at the Rx locus and thus allows a visualization of retinal induction. Therefore, 

measuring endogenous GFP expression in these cultures gives us an indirect measure of 

knockdown for genes that effect optic vesicle formation. The ability for this indirect measure is 

important especially in cases where there is no reliable antibody to test the protein loss for the 

gene being targeted.  

The challenge of minimizing off-target effects is present for the use of vMOs whether they are 

used in vivo or in 3D organoid cultures. There are several ways to minimize off-target effects for 
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morpholinos. Eisen and Smith (2008) suggest this is the most important issue with the use of 

vMOs, and therefore it is essential to use control vMOs with all experiments. For our test 

experiments, we included a standard negative control condition and a positive GFP-control 

condition. In addition, to minimize off-target effects, it is recommended to use both splice-

blocking and translation-blocking vMOs separately and then in combination at lower 

concentrations (Eisen and Smith, 2008). This helps to ensure that the resulting phenotype is the 

product of the target gene being knocked down and not an off-target effect.  For the Rx gene, 

we tested splice- and translation-blocking vMOs independently and in combination and 

observed the same phenotype, a loss of Rx-GFP expression in all conditions, suggesting the 

effect was due to the targeted Rx knockdown. Another suggestion to assess possible off-target 

effects is to compare the resulting phenotype with that of a known mutation (Eisen and Smith, 

2008). Our Rx-targeting vMOs are consistent with the Rx mouse mutant phenotype (Mathers et 

al., 1997), in that both show a lack of retinal induction at the optic vesicle stage, which further 

supports that the phenotype is not the result of off-target effects.  

3D organoid culture has potential as a screening method for genes involved in 

organogenesis  

Organogenesis in many systems has now be modeled in organoids (Eiraku and Sasai 2011; 

Eiraku et al. 2011; Koo et al. 2011; Finkbeiner et al. 2015; Little and Takasato 2015; Chen et al. 

2016). These organoids offer the potential to be used as a rapid screening tool for gene 

candidates to identify genes for subsequent study. To test this possibility, we assessed the 

effect of vMOs targeted to three different gene candidates in 3D-organoid culture. Translation-

blocking vMOs were created to target Alx1, Edn1 and Rpl37 protein production. Three different 

phenotypes emerged. Edn1 knockdown showed a similar phenotype to controls, suggesting 

that, although it showed differential expression between Rx-knockouts and controls, it is unlikely 

absolutely required for optic vesicle formation or alternatively that that knockdown was not 
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efficient enough to reduce the protein level a point where a phenotype would appear. The 

knockdown of Rpl37 decreased overall aggregate size and lacked GFP expression. Therefore, 

despite the failure of retinal induction, it is unlikely that Rpl37 has specific optic vesicle effects 

because the decrease in aggregate size would suggest that Rpl37 has more global effects on 

development. Translation-blocking vMO knockdown of Alx1 led to dispersed and punctate GFP 

expression, suggesting that retinal induction occurred but the appropriate morphology is lost. 

These observations suggest that Alx1 may be involved in the morphological development of the 

optic vesicle. Evidence supporting this possibility comes from a study showing a human 

mutation of Alx1 is associated with microphthalmia (Uz et al. 2010).  

The addition of vMOs targeted to candidate genes resulted in three independent phenotypes, 

which suggests that effects observed in the organoids are not the result of non-specific 

morpholino addition, but instead the effect of specific gene knockdown. Verification studies 

using a reliable antibody to detect protein levels should be performed to confirmation efficacy of 

the gene knockdown, especially with Edn1 to rule out failure to sufficiently decrease protein 

expression as a reason for the lack of difference seen between control and Edn1 vMO 

aggregates. Further studies using the splice-blocking variant and combinations of the splice- 

and translation-blocking vMOs targeted to the candidate genes are needed to ensure the 

phenotypes generated were not the result of off-target effects. General similarity between the 

ALX1 human mutation and our studies would suggest that the Alx1 knockdown was not due to 

off-target effects. 

In conclusion, this study provides evidence that vMOs are well suited to gene knockdown in 

optic vesicle organoid culture, with few of the limitations for their use in vivo, and provide a good 

model for rapidly screening genes involved in development. Vivo-morpholinos have the potential 

to be a useful tool for rapid gene screening, not only in optic vesicle organoids but also possibly 

in other organoid systems, although further investigation in those systems is necessary. 
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Table 1: Sequences of vMOs 

Gene Type Sequence 
Standard Vivo Control Negative control 5’ – CCTCTTACCTCAGTTACAATTTATA – 3’ 

GFP Translation blocking 5’ – ACAGCTCCTCGCCCTTGCTCACCAT – 3’ 

Rx Translation blocking 5’ – CTCGATGCCCGGTTCCCTTCTCCTC – 3’ 

Rx Splice blocking 5’ – CAATCCAAGAGCTTACTTACCTGGA – 3’ 

Alx1 Translation blocking 5’ – CTTCTCGCTCAGAAACTCCATAATC – 3’ 

Edn1 Translation blocking 5’ – ATCACGGGAAAATAATCCATTCTGC – 3’ 

Rpl37 Translation blocking 5’ – GACGTTCCCTTCGTCATCTTGCTTC – 3’ 
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Figure Legends 

 

Figure 1. Formation of vesicles expressing Rx-GFP in 3D culture from mouse embryonic 

stem cells (mESCs).  

(A) Schematic of optic vesicle formation from stem cells in 3D culture over the course of 7 days. 

Adpated from Eiraku et al., 2011. (B) 3D reconstruction from confocal Z-stacks on Day 7 of stem 

cell aggregates labeled with MitoTracker (red) showing optic vesicle organoid formation 

expressing Rx-GFP (green).  

Figure 2. Schematic of the methods and events in 3D stem cell culture that results in 

optic vesicle formation.  

Adapted from Eiraku & Sasai (2011) to include the gene knockdown studies presented here.  

Figure 3. Accell siRNA treatment in 3D optic vesicle organoid culture.  

(A) Incorporation of fluorescently-tagged Accell siRNA (red) on Day 7 into 3D stem cell 

aggregates after bath application on Day 4 at four concentrations. (B) Comparison of the 

expression of Rx-GFP in optic vesicle organoids following the addition of either nonsense 

control Accell siRNA or Accell GFP siRNA on Day 4 across a concentration range of 0.25 µM to 

3 µM shows no effects on optic vesicle formation or GFP expression. An untreated aggregate is 

shown for reference.  

Figure 4. Day 7 optic vesicle aggregates after the addition of GFP vMO 

(A) Comparison of Rx-GFP expression in optic vesicle organoids after Vivo-morpholino (vMO) 

addition on day 4. GFP translation-blocking vMOs and a negative control were tested over a 

range of concentrations from 3 µM to 7.5 µM. Aggregates transfected with the negative control 

show GFP expression similar to the untreated cultures. Addition of the GFP translation-blocking 

vMOs resulted in a reduction in GFP expression that was undetectable at concentrations of 5 
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µM and higher. (B) Immunofluorescence on sectioned Day 7 aggregates using anti-GFP and 

anti-Pax6 on untreated, negative control and GFP vMO aggregates. GFP labeling shows GFP 

expression in optic vesicles in the untreated and negative control vMO conditions but 

undetectable GFP signal with the addition of a GFP translation-blocking vMO at 5µM. Pax6 

labeling shows expression in the GFP-positive outpockets in the untreated and negative control 

vMO conditions. In the aggregate treated with GFP translational-blocking vMOs, Pax6-labeled 

cells appear in outpockets suggesting the presence of optic vesicles. 

Figure 5. Comparison of Day 7 Rx-GFP expression in optic vesicle organoids after 

addition of 5 µM vMOs targeting either GFP or Rx on Day 4.  

Phase + Rx-GFP and Rx-GFP fluorescent images are presented to allow the assessment of 

GFP expression and overall morphology of the aggregate. Aggregates in all conditions appear 

to be similar in size. Untreated and negative control vMOs show GFP expression within optic 

vesicles. GFP translation-blocking vMOs show a lack of GFP signal, as do all three Rx Vivo-

morpholino conditions. (T) indicates a translation-blocking vMO, (S) indicates a splice-blocking 

vMO and (S&T) indicates a combination of splice and translation-blocking vMOs, each at 2.5 M 

concentration.  

Figure 6. Imaging of Day 7 optic vesicle organoids after addition of 5 µM vMOs on Day 4.  

Rx-GFP expression labeling the optic vesicles is shown in green and MitoTracker is shown 

labeling the aggregate in red. Untreated and negative control vMO conditions show strong Rx-

GFP expression within vesicles. No Rx-GFP expression is observed within the GFP vMO, Rx 

splice-blocking vMO, Rx translation-blocking vMO or the combination of Rx splice- and 

translation- blocking vMO. (T) indicates a translation-blocking vMO, (S) indicates a splice-

blocking vMO, and (S&T) indicates a combination of splice and translation-blocking vMO. 
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Figure 7. Day 7 optic vesicle organoids after Day 4 addition of 5 µM vMOs targeting 

candidate genes for optic vesicle development.  

Phase and Rx-GFP fluorescent images are presented to allow the assessment of GFP 

expression and overall morphology of the aggregate. In comparison to untreated and negative 

control vMO, aggregates that received Alx1-targeted vMOs are similar in size but show 

scattered, punctate Rx-GFP expression (arrows indicate areas of punctate Rx-GFP expression). 

Addition of Rpl37-targeting vMOs to aggregates resulted in a loss of Rx-GFP expression and 

decrease in overall aggregate size.  Aggregates that were transfected with Edn1-targeted vMOs 

show similar Rx-GFP expression and overall aggregate size to untreated and control conditions. 

All vMOs tested here were translation-blocking (T) at 5 µM.  
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Figure 1. Formation of vesicles expressing Rx-GFP in 3D culture from mouse embryonic 

stem cells (mESCs). 
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Figure 2. Schematic of the methods and events in 3D stem cell culture that results in 

optic vesicle formation. 
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Figure 3. Accell siRNA treatment in 3D optic vesicle organoid culture. 
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Figure 4. Day 7 optic vesicle aggregates after the addition of GFP vMO 
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Figure 5. Comparison of Day 7 Rx-GFP expression in optic vesicle organoids after 

addition of 5 µM vMOs targeting either GFP or Rx on Day 4. 
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Figure 6. Imaging of Day 7 optic vesicle organoids after addition of 5 µM vMOs on Day 4.  
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Figure 7. Day 7 optic vesicle organoids after Day 4 addition of 5 µM vMOs targeting 

candidate genes for optic vesicle development. 
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This dissertation presents studies that examine embryonic retinogenesis.  Developing tools to 

study early eye development and understanding the molecular mechanisms involved are 

important for 1) increasing our understanding of neural development; 2) understanding ocular 

malformations, such as anophthalmia; 3) improving cell replacement therapies for retinal 

diseases; and 4) potentially developing new treatments for eye diseases and blindness. This 

collection of studies presents two new tools for studying embryonic retinogenesis. In the second 

chapter, we characterized two new markers of embryonic cone photoreceptors and used these 

markers in the third chapter to analyze cone specification in the conditional Rx-deletion retina. In 

the fourth chapter, we identified an effective gene knockdown method for 3D optic vesicle 

organoid culture that is useful for studying gene expression and early retinal development.  

Early photoreceptor retinogenesis, especially of cone photoreceptors, is not well understood 

despite its importance. This paucity of information is partially due to a lack of well-characterized 

cell markers for embryonic cone photoreceptors. Previously, two cone markers were identified, 

Trβ2 and Rxr. Both are regulatory proteins involved in opsin expression (Applebury et al., 

2007; Mori, Ghyselinck, Chambon, & Mark, 2001; Ng, Ma, Curran, & Forrest, 2009; Roberts, 

Hendrickson, McGuire, & Reh, 2005). The data presented here in Chapter 2 indicates that two 

proteins involved in phototransduction, phosducin and cone transducin , label cones as early 

as E12.5 and E13.5 respectively and show robust expression in the developing photoreceptor 

layer. The identification and characterization of these markers is important as it increases the 

number of markers available to study embryonic cones, and these newly identified markers do 

not require specific antibody-labeling conditions for their use (unlike Trβ2 and Rxr), making 

them reliable and easy to use tools.  Interestingly, both proteins, while expressed early, are 

involved in phototransduction. When we examined other proteins involved in the 

phototransduction cascade, such as cone phosphodiesterase, we did not see embryonic 

expression at E15.5.  Since the mouse retina is not capable of phototransduction until P13-14 
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(Hoffpauir, Marrs, Mathers, & Spirou, 2009), weeks after we see the initial phosducin and cone 

transducin  expression, it leads to a question of the function of phototransduction-related 

proteins early in retinogenesis. Studies have shown that phosducin may have some 

transcriptional regulation abilities (Zhu & Craft, 2000a, 2000b) and cone transducin  is part of a 

heterotrimeric G protein complex. Several G protein-coupled receptor signaling pathways are 

involved in eye development (Reis, Ventura, Kubrusly, de Mello, & de Mello, 2007; Stenkamp, 

Frey, Prabhudesai, & Raymond, 2000). The possibility of a role for phosducin and cone 

transducin  during early cone histogenesis will require further studies. Phosducin-null mice 

retain functional photoreceptors although in mature photoreceptors there is a decrease in 

transducin translocation (Sokolov et al., 2004), suggesting that if phosducin is playing a role 

during embryogenesis, it is likely part of a redundant mechanism in early photoreceptor 

development. Unlike the phosducin-null mouse, there is currently no cone transducin  knockout 

mouse available. Generation of either a germline cone transducin  knockout mouse or a 

conditional knockout might help determine possible functions during early retinogenesis. 

Additionally, the combined knockout or knockdown of cone transducin  and phosducin in retinal 

progenitors could help to ascertain if both proteins in concert have a role in early photoreceptor 

development.  Alternatively these proteins may have no role in early retinogenesis and are just 

waiting for the remaining phototransduction proteins to be generated.  

Using these newly identified early cone markers, we explored the role of Rx in photoreceptor 

development using a Cre-driven conditional knockout model of Rx.  The use of a conditional 

knockout model was necessary because the Rx-null mutant fails to form optic vesicles (Mathers, 

Grinberg, Mahon, & Jamrich, 1997), and this ocular defect precludes the study of later eye 

development. Functions of Rx beyond optic vesicle formation have been briefly studied using 

conditional knockouts of Rx in retinal progenitors and show a loss of Otx2 and Crx labeling 

(Muranishi et al., 2011) Postnatal conditional deletion of Rx, showed Rx is involved in the 
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maturation and survival of postnatal photoreceptors (Irie et al., 2015), and has the ability to 

transactivate genes such as Otx2 (Muranishi et al., 2011). These studies provide preliminary 

evidence of a role for Rx in photoreceptor development but did not fully explore the functions of 

Rx during retinogenesis. In Chapter 3, we explored the functions of the Rx mouse gene during 

retinogenesis, including in progenitor proliferation and in the generation of embryonic 

photoreceptors, specifically cones.  Our conditional knockout was driven by a Pax6α cre 

promoter, which induces deletion of Rx in the distal portion of the retina starting at E10.5 

(Marquardt et al., 2001), the earliest age of retinal cell birth. This deletion leads to changes in 

retinal lamination, proliferation and cell fate determination. There is a significant reduction in 

retinal progenitors at E18.5 in portions of the retina that undergo Rx deletion, and examination 

of cell types at P21 showed a loss of cone photoreceptors, rod photoreceptors, bipolar cells and 

Müller glia. The loss of rods, bipolar cells and Müller glia in the Rx-deleted retina are likely the 

result of the reduction in the number of retinal progenitors, which is probably the result of early 

cell cycle exit in the retinal progenitors. Rods, bipolar cells and Müller glia are born in the 

second phase of retinal cell birth (Rapaport, Wong, Wood, Yasumura, & LaVail, 2004; Young, 

1985), making their generation far more susceptible to a decrease of retinal progenitors (Dyer & 

Cepko, 2001). Interestingly, cone photoreceptors are also reduced in the Rx-deleted portion of 

the retina. Cone photoreceptors are in the early-born phase of retinal birth, and their formation is 

therefore less likely to be affected by decreasing numbers of progenitors at later embryonic 

ages. These findings suggest that cones may require Rx for their initial formation. To explore 

this possibility, we looked at cone photoreceptor formation at embryonic ages. The data 

presented in Chapter 3 show a reduction in embryonic cones as evidenced by decreases in the 

expression of phosducin, cone transducin gamma and Otx2 in the Rx-deleted retina. The 

decrease in Otx2 expression is similar to that shown in other Rx CKO models (Muranishi et al., 

2011). Examination of cell death using activated-caspase 3 shows no elevation in apoptosis in 

the Rx-deleted portions of the retina, suggesting that the reduced cone numbers were not the 
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result of Rx-deleted cells dying. The loss of cone photoreceptors in the conditional knockout 

was not complete, possibly due to the mosaic nature of the Pax6α cre deletion. Therefore, 

further studies using different cre promoters would be necessary to fully determine if loss of Rx 

leads to a complete loss of cones. A recent study suggests that cone subtype may be 

determined as early as E12-E15 despite that opsin expression has not begun (Aavani et al., 

2017), therefore it is possible that Rx is affecting the generation of one specific cone subtype, 

however, examination of both opsins at P21 in our Rx CKO mice show an absence of cones, 

suggesting both subtypes require Rx. Additional studies are needed to fully determine the 

function of Rx in photoreceptor generation. Studies of the overexpression of Rx in mouse retinal 

progenitors would help determine if Rx is sufficient for cone photoreceptor generation.  

Currently, the model of cone photoreceptor development proposes a very early role for Rx on 

Otx2, as Rx can transactivate Otx2 via binding to the EELPOT (Muranishi et al., 2011a).  This 

model proposes that Rx activation of Otx2 leads to the development of both rod and cone 

photoreceptors (Muranishi et al., 2011b).  Otx2 is transiently expressed in many retinal cell 

types (Baas et al., 2000), and evidence shows that Otx2-positive cells can go on become 

photoreceptors or bipolar cells (Brzezinski, Lamba, & Reh, 2010). However, Otx2 lineage 

analysis has yet to be done so the full range of cell types that can be generated from Otx2-

positive cells is not yet known. Lineage studies on Otx2 using inducible Cre expression under 

the control of the Otx2 promoter, with induction starting at E11.5, would help determine the 

potential of Otx2-positive cells and allow us to better understand cell fate decisions associated 

with Otx2.  Blimp1 expression in Otx2-positive cells determines if the cell becomes a bipolar cell  

or either a rod or cone photoreceptor (Brzezinski et al., 2010; Katoh et al., 2010). If Rx is 

involved specifically in cone generation as opposed to broadly regulating photoreceptor 

formation via actions on Otx2, this raises the question if perhaps Rx then also has a role later in 

this pathway after the activation of Blimp1 to specify cone instead of rod fate. Previous 
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conditional deletion models of Rx embryonically did not fully assess cell type, cell death or 

proliferation. Therefore, using different cre lines (such as Chx10 or Crx) or an inducible 

conditional knockout to delete Rx at different embryonic ages and assessing proliferation, cell 

type, and cell death would help to further understand functions of Rx in retinogenesis and which 

points in the pathway of photoreceptor generation that Rx plays a role. Additionally 

overexpression of Rx in photoreceptor precursors may help determine if Rx plays a specific role 

directly in all photoreceptor (rod and cone) generation or solely cone photoreceptor generation. 

In Chapter 4, we assessed potential methods for gene knockdown within optic vesicle organoid 

cultures and then used the best-suited method to examine the effects of candidate genes for 

optic vesicle development on these optic vesicle organoids.  In these cultures, optic vesicles are 

generated from pluripotent stem cells in a stepwise process that mimics in vivo development in 

both timing and morphology (Eiraku et al., 2011; Eiraku & Sasai, 2011).  We compared Accell 

siRNA and vMOs, which are two methods for antisense-mediated gene knockdown that contain 

modifications for in vivo applications.  Both antisense oligomers were incorporated into our 

cultures after bath application, but only vMOs were able to effective knockdown our test gene, 

GFP. Addition of these test vMOs did not affect development of the optic vesicle nor were there 

any toxic effects. Next, we used vMOs targeting Rx transcripts to analyze gene knockdown 

functionally. Rx is necessary for optic tissue induction and evagination. Retinal tissue induction 

was lost using translation-blocking and splice-blocking vMOs targeted to the Rx transcript, 

similar to the Rx knockout mouse (Mathers et al., 1997). These data suggest that vMOs in optic 

vesicle organoid culture are effective for exploring gene function during optic vesicle 

development. Using vMOs, we screened three candidate genes that were identified in a 

microarray comparing control vs. optic vesicle-deficient forebrains. Three separate phenotypes 

emerged from the knockdown of these genes. Organoids where Edn1 is knocked down appear 

similar to controls, suggesting that manipulation of Edn1 has no effect on optic vesicle 
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development or potentially that the concentration used was not high enough to achieve a 

significant knockdown. Organoid cultures where Rpl37 was knocked down show much smaller 

aggregates and no optic vesicle outpockets, suggesting a more global effect on the cultures 

than an optic vesicle-specific effect. Alx1 knockdown in organoid cultures results in a change in 

the distribution of retinal tissue (as marked by the Rx-driven GFP expression), suggesting that 

Alx1 may be involved in optic vesicle development. Further studies are warranted to confirm 

these findings. Immunofluorescence of Alx1 on control and Alx1 knockdown organoids using an 

Alx1 antibody should be performed to confirm that Alx1 was successfully knocked down. In 

addition, use of both translational and splice blocking vMOs independently and together to help 

ensure that the resulting phenotype is the product of Alx1 knockdown and not an off-target 

effect.  Germline knockout of Alx1 leads to severe craniofacial defects, and therefore, creating a 

conditional knockout mouse model would be necessary to investigate eye-specific effects. 

Further, to get a better understanding of how the knockdown affected optic vesicle 

development, quantification of GFP as a measure of retinal induction and labeling of cell types 

would be beneficial.  Overall the results of Chapter 4 suggest that vMOs can be used 

successfully in optic vesicle organoid cultures and can be used as a rapid screen for genes 

involved in optic vesicle formation. This work may have implications beyond studying the 

genetics of optic vesicle development in that the ability to use vMOs for gene knockdown in 3D 

culture may extend to other organoids, such as differentiated retina, brain or liver. Currently, 

gene knockdown in other organoids has only been done with viral vectors (Koo et al., 2011, 

2013), which is more expensive and time-intensive then bath application of vMOs. This method 

may prove to be a very useful tool for studying gene function in developing organs, although 

further testing is necessary to ensure no developmental or toxic effects occur in other organoid 

cultures.  
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