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KEYWORD:  UNMANNED AERIAL VEHICLES



Abstract 
 

Comparison of Partially Decoupled and Combined Methods of Path 
Planning and Task Allocation 

 

Jennifer Beth Hazelton 

 

 

Developing autonomous unmanned aerial vehicles (UAVs) reduces the risks to which 
soldiers are subjected by enabling the UAVs to make efficient decisions, regardless of the 
situation.  This requires each group of UAVs to be proficient in planning their own paths 
and assigning tasks in a way that minimizes the total cost of the mission.  Two methods 
are presented for doing this, the partially decoupled approach and the combined 
approach.  After comparing two methods, the partially decoupled approach costs an 
average of 3.0 meters less than the combined approach, while taking an average of 0.327 
seconds longer to complete.  This indicates that the partially decoupled method should be 
chosen if the main concern is the cost of the mission and the combined approach should 
be chosen if computational time is the main concern.   
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Nomenclature  

Variable  Description      Units 
 
A   constraint coefficient matrix,     --- 

state space system matrix 
 
B   state space input matrix    --- 
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dist   distance      m 
 
ε   weighting factor     --- 
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J   objective function utility    --- 
 
M   number of segments     --- 
 
m   index of M      --- 
 
N   number of       --- 
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t    overall mission completion time step   ---   
 
v   velocity      m/s 
 
W   target matrix      --- 
 
x   x-location, decision variable vector   m 
 
x�    velocity in x-direction     m/s 
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y   y-location      m 
 
y�    velocity in y-direction     m/s 

 
Z   no-fly zone matrix     m 
 
 
Subscript  Description      Units 
 
i   target designation     --- 
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t   time,        s 

time step designation    --- 
 
v   vehicles      --- 
 
w   targets       --- 
 
z   no-fly zones      --- 
 
0   time step = 0      --- 
 
1   first of a set, x-position    --- 
 
1:4   locations 1 through 4 in relation    --- 

to the no-fly zones 
 
2   second of a set, y-position    --- 
 
 
Acronym  Description      Units 
 
AMPL   A Modeling Language for Mathematical   --- 

Programming 
 

CPU   central processing unit    --- 
 
MILP   mixed-integer linear program    --- 
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MMKP  multi-dimensional multiple-choice    --- 

knapsack problem 
 

POK   probability of kill     --- 
 
UAV(s)  unmanned air vehicle(s)    --- 
 
VRT   virtual reality toolbox     --- 
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Chapter 1:  Introduction 

1.1 Thesis Objective 
 
 The United States’ military has assumed a more physical role in the world’s 

affairs, with Operation Enduring Freedom and Operation Iraqi Freedom.  These 

operations are intended to make the world safer; however, soldiers’ lives are still at risk.  

One way to decrease the risks to which soldiers are subjected is increasing the use of 

unmanned air vehicles (UAVs).  Currently, UAVs only exist as remotely piloted 

platforms.  The amount of manpower required for operation decreases as the level of 

autonomous control increases.9

 In the future, it is desirable to have UAVs capable of providing reconnaissance 

information and delivering ordnance to specified targets independently.  Autonomous 

UAVs are capable of making decisions efficiently.  They do not suffer from the stresses 

that affect humans and their decision making abilities.  This enables the vehicles to 

respond quickly to rapidly changing environments.  Each UAV task force will be capable 

of cooperative path planning and task allocation.  Ideally, UAVs will make cooperative, 

optimal decisions to minimize the total cost of the mission.   

This thesis discusses and compares two methods that provide the UAVs with the 

tools necessary for path planning and task allocation.  The paths must be known before 

any tasks can be assigned.  However, the paths cannot be planned unless the UAV knows 

which task it must complete.  The task allocation refers to assigning each vehicle a 

specific target to visit.  Solving these problems in a partially decoupled manner involves, 

first, generating the cheapest paths from each UAV to every target.  Then, the tasks are 

allocated to minimize the overall cost of the mission while ensuring every target is 
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visited.  The costs of the paths may include fuel cost, related to distance traveled, and 

threat risk cost, associated with the threats on the battlefield.  A second approach to 

solving the path planning and task allocation problem maintains the combined 

relationship between them.  The paths are planned and tasks are assigned simultaneously.   

Five scenarios, each involving two UAVs, two targets, and one no-fly zone are 

investigated.  Each scenario is evaluated with the partially decoupled approach and the 

combined approach.  The two approaches have the same input data and produce 

comparable plots indicating the paths the UAVs will take to complete their tasks.  The 

results will indicated which method costs more to complete and/or is more 

computationally intensive.  

1.2 Survey of Previous Work 

 Many approaches for path planning and task allocation have been investigated.  

These include different types of trajectory generators, such as using visibility grids and 

Voronoi diagrams, and different types of solution methods, including hierarchical, 

partially decoupled, and combined methods.  The results from previous efforts indicate 

that completely autonomous UAVs are not far in the future.  For the purposes of this 

thesis, one trajectory generation approach and three complete approaches were found to 

be most applicable.   

The trajectory generation approach presented here involves work by Timothy W. 

McLain and Randal W. Beard at Brigham Young University and McLain with Phillip R. 

Chandler, Steven Rasmussen and Meir Pachter at Wright-Patterson Air Force Base.  

McLain and Beard present a method for generating flyable trajectories that minimize the 

risk to the UAVs.  To minimize the risk further, the targets are attacked simultaneously.  
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The locations of the UAVs (initially), threats, and targets are known.  Tasks are assigned 

prior to the trajectory generation; specifically, each UAV knows the target it is to attack.  

A Voronoi diagram, based on threat locations, provides paths that minimize the threat 

risk to the UAVs as they travel to the targets.  However, the Voronoi diagram does not 

have an internal mechanism to attach the UAVs, at their initial locations, or the targets to 

the diagram.  Therefore, these UAV positions and target locations are connected to the 

respective three closest nodes of the diagram.  Costs, based on threat risk and fuel 

consumption, are assigned to each edge of the Voronoi diagram.  Dijkstra’s algorithm 

searches the Voronoi diagram to determine the least expensive paths from each UAV to 

its particular target.16  

The UAVs are given the same, constant velocities.  These velocities are the 

maximum that each UAV can achieve, enabling the UAV to reach the target as quickly as 

possible.  Because each UAV has the same velocity, the length of each path can 

determine the order of target visitations.  To accurately compare the lengths of the initial 

paths, they are divided into fixed length segments.  Adding an appropriate number of 

segments to the shorter paths equalizes the path lengths.  These segments modify the 

costs of the paths.  However, they do not change the mission completion time.  Instead, 

they organize the target visitations to all occur at the same time.16  

Then, the paths need to be made flyable.  The sharp corners in the paths are 

smoothed until the vehicles’ dynamics are capable of making the turns.  The paths are 

smoothed with a method similar to straightening a chain.  Each path segment is 

represented by a link in the chain.  The threats apply repulsive forces to the chain 

ensuring that the path does not approach too close to the threats.  Internal forces in the 
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chain act to straighten it.  This results in a minimal risk, smooth path for the UAVs to 

follow when attacking their targets.16  

The McLain, Chandler, et al approach is based on the McLain and Beard method 

of trajectory generation.  Instead of using Dijkstra’s cheapest path algorithm, this 

approach utilizes Eppstein’s k shortest paths algorithm.  It extends the mission of the 

UAVs by requiring them to travel to a specified location after simultaneously attacking 

the targets.   An estimated time until arrival at the rendezvous location is cooperatively 

decided upon in a manner that minimizes the threat risk to the entire team.  This method 

may result in one or more UAVs being dismissed from the mission and sent to a 

predefined location away from the battlefield.  A UAV is only sent home when the 

remaining UAVs can complete all of the tasks in a way that reduces the overall mission 

time.  This method provides a cooperative control algorithm for UAVs attacking 

predefined targets and rendezvousing at a predetermined location.15  

When the tasks are not assigned prior to the trajectory generation, a complete 

approach must be used.  The first complete approach uses a hierarchical approach for task 

allocation and searches for objects, such as targets, within an assigned area, as researched 

at the Wright-Patterson Air Force Base by Chandler and Pachter.  This approach divides 

the path planning and task allocations into three levels.  The top-level team agent must 

ensure that the mission objectives are met.  It must define the objectives and assign the 

tasks for each sub-team.  A sub-team consists of the number of UAVs to accomplish a 

particular task.  The mid-level sub-team agent assigns tasks to individual UAVs.  These 

tasks may include target verification, attacking the target, battle damage assessment, and 

rendezvous coordination, among others.  The lower level vehicle agent contains 
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information about the terrain, threats, and targets.  The vehicle agent is responsible for 

path planning and trajectory generation for each vehicle, independently.  After an 

assignment algorithm has defined the sub-teams, new targets and vehicles are allocated to 

these teams using a market analogy based assignment algorithm.5  

 This approach has no specified leader.  The algorithms must be contained on each 

vehicle, enabling all vehicles to arrive at the same decisions using the same, shared 

information.  This redundancy makes the system fault tolerant; if one vehicle is 

destroyed, the others can continue with the mission.5  

 The simulation for this hierarchical method begins with the vehicles in formation, 

following a serpentine search pattern.  Tasks are assigned as objects are detected.  When 

a vehicle attacks a target, it is destroyed.  The UAVs are essentially flying bombs.  After 

targets are attacked and assessed, the remaining vehicles continue the search pattern.  The 

results of these simulations indicate that the sub-team agents reduce the amount of 

necessary communication, although with some reduction in the optimality of the results.  

Also, large numbers of vehicles benefit from the market based analogy algorithm when 

the assignments remain decoupled.5  

The second complete approach involves partially decoupling the path planning 

and task allocation of the problem.  John Bellingham, Michael Tillerson, Arthur 

Richards, and Jonathan P. How have developed this approach at Massachusetts Institute 

of Technology.   The basic problem requires a team of UAVs to visit a set of targets 

while avoiding specified no-fly zones.  Path planning and task allocation are strongly 

coupled.  It is difficult to assign tasks without knowing the UAV to target assignments.  

Similarly, paths cannot be planned until each UAV knows which tasks it is to perform at 
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which targets.  Path planning and task allocation can be partially decoupled.  First, rough 

paths from each UAV’s initial location to every target are created.  Then, tasks are 

allocated based on these paths. 3   

The initial paths from the UAV’s starting position to every target, while avoiding 

no-fly zones, are found with a visibility grid.  This visibility grid provides straight-line 

paths from the starting positions through obstacle vertices to the targets.  Many 

permutations exist for a single UAV to visit multiple targets, especially when the 

visitation order is not specified.  To find the shortest paths within the visibility grid, a 

shortest path algorithm, such as the Floyd-Warshall All-Pairs Shortest Path algorithm, is 

applied.3

These shortest paths are then provided to the task allocation portion of this 

approach.  A multi-dimensional multiple-choice knapsack problem (MMKP) provides a 

clear, useful method for assigning tasks.  One path must be chosen for each vehicle from 

the available permutations from UAV to targets.  The combination of chosen paths must 

minimize the cost for the mission and follow the appropriate conditions placed on the 

ordering of targets.  These conditions force the MMKP to be solved as a mixed-integer 

linear program (MILP).  The resulting information indicates which target, and in what 

order, the UAVs are to attack.  After the tasks are assigned, the paths become flyable, 

detailed trajectories.3  

This approach has the ability to react to a dynamic environment in two ways.  The 

first is a local repair, where the vehicle that detects the change adapts to the change.  If a 

new target is discovered, then the target is added to the vehicle’s list of tasks.  If a new 

no-fly zone is discovered, then the vehicle modifies its trajectory to avoid the obstacle.  
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The second reaction is a sub-team solution, where vehicles capable of adapting to the 

change are included in the reassignment of tasks and/or modification of trajectories.  

Although this approach provides suboptimal solutions to the path planning and task 

allocation problem, the partially decoupled approach is not computationally intensive and 

can quickly provide solutions.  It may also exist on multiple vehicles, providing fault 

tolerant systems.3   

The third complete approach involves a combined solution for path planning and 

task allocation, as developed by Richards, How, et al.  The problem is formulated in a 

manner that allows one MILP, using a branch-and-bound algorithm, to solve the path 

planning and task allocation problems simultaneously.  The vehicles are assumed to be 

flying at a constant altitude with constant speed.  The locations of the UAVs’ starting 

points, the no-fly zones, and the targets must be known.  Constraints limiting the vehicles 

paths and capabilities must be defined using linear equations.  These constraints include 

vehicle dynamics, maximum vehicle velocities, maximum forces the vehicle can 

withstand, collision avoidance, and minimum time trajectories.  After carefully defining 

the constraints, the problem is ready to be solved.  The results of the MILP are optimal 

trajectories to complete the assigned tasks.  However, this approach is extremely 

computationally intensive. 3,18,19,20   
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Chapter 2:  Partially Decoupled Approach 
 

The partially decoupled approach is investigated due to the results presented in 

“Coordination and Control of Multiple UAVs20” and “Multi-task Allocation and Path 

Planning for Cooperating UAVs3.”  The basic outline for creating a partially decoupled 

simulation for path planning and task allocation is described by these papers.  This 

approach generates paths prior to allocating tasks.  After allocating the tasks, the paths 

are improved to reduce the overall mission cost.  The process followed to generate paths 

and assign tasks using a partially decoupled method is explained in this chapter.   

2.1  Generating Initial Paths 

The first step in this approach is to determine the initial paths to be used when 

assigning tasks.  To do this, certain values must be known: UAV number, starting 

locations, altitudes, velocities; no-fly zone number, locations, and radii; target number, 

locations, values, and states; and threat number, locations, effective ranges, probabilities 

of kill (POK), and states.  The simulation user supplies all of this information.  The 

UAVs’ altitudes and velocities do not change in this simulation. At this point in the 

simulation, the states of the targets and threats indicate whether the object is static or 

dynamic.  A static object is known at the beginning of the simulation.  A dynamic object 

appears at a specified time during the simulation.  The effective ranges and POK for the 

threat are dependent on its type.  The threats in the partially decoupled approach 

include17: 
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• KS-19 100mm Antiaircraft Artillery - Range 4000 meters, 40% POK 
• SA-7 Grail - Man-Portable SAM - Range 5000 meters, 50% POK 
• Crotale SAM - Range 10,000 meters, 80% POK 
• SA-2 - Range 30,000 meters, 80% POK 

The path planning portion requires an initial path generation.  These initial paths 

need to completely avoid the no-fly zones, and minimize risk associated with the threats.  

A Voronoi diagram, as shown in McLain and Beard’s work, provides a simple way to 

create paths while avoiding threats and no-fly zones.  To create a Voronoi diagram, a set 

of nodes to be avoided are located on a plane22.  Polygons are then created around each 

node using Delaunay triangulation22.  The vertices of the polygon are closer to its central 

node than to any other node22.  This produces Voronoi edges that are halfway between 

the two closest nodes22.  The Voronoi diagram used in the initial path planning is based 

on the known threat locations, no-fly zone locations3,16, and nodes placed around the 

outer edge of the battlefield.  There are four nodes, equally spaced, on each edge of the 

rectangular battlefield.  These nodes are incorporated because the number of threats and 

no-fly zones do not provide enough nodes to generate a useful Voronoi diagram.  These 

nodes also guarantee a path that does not intersect any threats or no-fly zones exists 

around the outer edge of the battlefield.  The UAV starting locations and the target 

locations must then be connected to the diagram.  These locations are connected to the 

three respective closest nodes16.  Figure 1 shows a Voronoi diagram, with the vehicles 

and threats connected to it. 
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Figure 1: Voronoi diagram based on UAVs, targets, threats, and no-fly zones 

 Next, the cheapest paths for all of the permutations of UAVs to targets need to be 

determined.  Several shortest path algorithms were reviewed, including Floyd-Warshall 

All-Pairs Shortest Path algorithm, Eppstein’s k shortest paths algorithm, Bellman-Ford 

algorithm, and Dijkstra’s shortest path algorithm.  Dijkstra’s algorithm is chosen for this 

simulation due to its simplicity and the availability of code for use with MATLAB, written 

by Michael G. Kay12.  This algorithm requires a directed graph with positive weights, or 

costs, associated with each segment4,10.  The starting node (UAV) and finishing node 

(target) must be specified4,10.  The path’s cost is the summation of each segment’s 

weight10.  The algorithm works by beginning at a UAV node, selecting the cheapest path 

segment, moving to the next vertex, selecting the cheapest path segment, and repeating 
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until the appropriate target node is reached4,9,10.  Before Dijkstra’s algorithm can be 

applied, the direction and cost for each path segment must be defined.  This direction 

indicates the tail and head of each segment.  The vehicles only travel from the tail to the 

head.   

 A simple example of Dijkstra’s algorithm is illustrated by Figure 2.  The starting 

node is A, while the finishing node is D.  The cheapest path from A to D is determined by 

looking at the path from A directly to D, with a cost of 10, and the path from A to B to C 

to D, with a cost of 6.  The resulting cheapest path is from A to B to C to D.   

10
A D 

2 2 

C 
2

B 

 

Figure 2:  Example of Dijkstra’s algorithm 
 

For the UAV path planning, the vehicles may travel in either direction along a 

segment.  Therefore, all edges are specified in both directions.  Since all of the UAVs are 

assumed to be flying at constant speeds, the length of each edge represents how long it 

will take to travel that distance and represents fuel consumption.  Therefore, the costs 
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representing time and fuel consumption are comparable.  In this approach, costs are 

generated for each Voronoi edge, representative of fuel consumption.  Each edge’s cost is 

determined using Equation 1,   

( ) ( )2
21

2
21cost yyxx −+−=       (1) 

where x1 and y1 indicate the x- and y-location of the beginning of the edge and x2 and y2 

indicate the x- and y-location of the end of the edge.   

Then, the costs of the edges are updated to include the costs for intersecting no-fly 

zones and threats.  The cost due to a collision with a no-fly zone is described in Equation 

2.   

      (2) fuel
30

NFZ cost*101cost ×=

This makes the cost of traveling along a segment that intersects a no-fly zone so 

expensive that it is never chosen.  The cost for intersecting a threat and/or its effective 

range is related to the POK, as shown in Equation 3.   

fuelthreat cost100*POKcost +=      (3) 

The POK is a percentage value associated with the particular type of threat.  The total 

cost for each segment is then defined as Equation 4. 

threatNFZfueltotal costcostcostcost ++=      (4) 

At this point, Dijkstra’s algorithm is implemented to find the cheapest paths for each 

permutation from UAV to targets.  Figure 3 contains the cheapest paths from the Voronoi 

diagram.    

 12



 

 

Figure 3:  The selected paths from the Voronoi diagram 

 Dijkstra’s algorithm produces the cheapest, but not necessarily the best, paths that 

a UAV could take to reach its target.  Upon inspection, the Voronoi diagram gives paths 

that tend to have many unnecessary turns.  To eliminate these excess turns, line-of-sight 

paths are investigated.  The Voronoi edges are first divided into ten segments, to provide 

more nodes used for path shortening.  The nodes are located at the vertices of the path 

segments.  Starting from a UAV and going directly to a target, a straight line is drawn 

and checked for intersections with threats and no-fly zones.  If the line does not intersect 

any threats or no-fly zones, then it becomes the new path for this particular permutation.  

If a threat or no-fly zone is intersected, then a straight line from the UAV to the node 

prior to the target is drawn and checked for intersections.  If no intersections exist, this 
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straight line is the new path.  Otherwise, a straight line is drawn from the UAV to the 

next previous node.  This process is repeated until a straight line is found without any 

intersections.  The node corresponding to the end of this straight line becomes the new 

starting point.  Straight lines from this new starting point to the target are checked for 

intersections following the same logic as from the UAV to the target.  This process is 

complete when the target is reached.  The results are shorter, simpler paths from the 

UAVs to the targets.   

 These shortened paths may still have some sharp corners that violate the 

minimum turning radius of the UAV, making them impossible for the UAVs to follow.  

To make the paths flyable, fillets are placed in the corners that are too sharp.  These 

fillets have a radius equivalent to the minimum turning radius of the UAV.  The fillet is 

placed as close to the vertex as possible, using the law of cosines to determine where the 

fillet intersects the existing path.  The fillet then becomes part of the path, replacing the 

corner.  The UAV must correct its heading angle to follow the changes in direction from 

these paths.  The simulation ensures that the heading angle is recorded and properly 

modified to allow for all turns required by the mission.  Figure 4 shows the shortened 

paths from each UAV to each target.   
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Figure 4:  Shortened paths for each UAV to target permutation 

 Most paths change significantly from those produced by the Voronoi diagram.  

For this reason, the costs of the paths are updated at this point to accurately reflect the 

shortened, smoothed paths.  Knowing the costs for the best paths from UAVs to targets, 

the tasks can now be assigned.   

2.2  Task Allocation 

In [3], the partially decoupled problem formulates its task allocation problem as a 

multi-dimensional multiple-choice knapsack problem (MMKP).  The MMKP is a classic 

problem that requires one item, having a value and a resource requirement, to be chosen 

from each group.  Several groups exist, each containing several items.  The value 
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indicates the benefit of choosing a particular item, while the resource indicates a 

restriction on which combination of items may be chosen.  The combined value of the 

items chosen from the groups must be maximized while adhering to the resource 

constraints.2,3,13   

The UAV task allocation problem presented here has a number of groups equal to 

the number of UAVs.  Each group consists of the paths corresponding to a particular 

UAV to each of the targets.  A constraint on this problem says that a vehicle may only 

have one path assigned to it.  Also, every target must have a vehicle assigned to it.  Every 

target is visited, even if the importance of visiting a particular target is much greater than 

that of another target.  The goal of the problem is to minimize the total cost of the 

mission.     

A simple example of how the MMKP works involves three vehicles and three 

targets.  The data given to the MMKP is displayed in Table 1. 

Table 1:  MMKP example costs, in meters, for each vehicle to visit each target 

 UAV 1 UAV 2 UAV 3

Target 1 100m 110m 150m 

Target 2 280m 225m 250m 

Target 3 500m 550m 575m 

 

Each target must be visited, and each vehicle must have a task assigned to it.  These 

constraints must be met, while still finding the cheapest combination of paths and tasks.  

The resulting combination that provides the lowest cost has UAV 1 visiting target 3, 

UAV 2 visiting target 1, and UAV 3 visiting target 2.  The total cost of this mission is 
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860 meters.  Any other combination of vehicles and targets results in a higher mission 

cost.   

In this simulation, the minimum mission cost is determined by finding all of the 

permutations from UAV starting locations to targets.  Then, the total cost for each 

permutation is calculated.  The permutation with the lowest cost indicates which set of 

paths will allow the UAVs to accomplish their mission of destroying all targets while 

minimizing risk and cost.  The selected paths with the lowest mission cost are shown in 

Figure 5.  

 

Figure 5:  Selected paths with the lowest mission cost 
 

All of the steps up to this point assume that the number of UAVs equals the 

number of targets and the environment is static.  When the number of UAVs is greater 
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than the number of targets, the simulation places a duplicate target at the same location of 

the target with the greatest value.  The duplicate target is assigned a value of zero, and 

cannot be classified or destroyed.  This target causes a second UAV to visit the most 

valuable target to help ensure its destruction.  Duplicate targets are created until the 

number of targets equals the UAVs.  With each new duplicate target, the values of the 

original targets are halved.  This allows a target that is more than twice as valuable as the 

next valuable target to have three vehicles sent to it.  By doing this, the extra UAVs help 

destroy the targets in the order of value.   

When the number of targets is greater than the number of UAVs, the excess 

targets with the lowest values are hidden.  This is done until the number of targets equals 

the number of UAVs.  When a visible target is destroyed, the most valuable target of 

those hidden is displayed and involved in the simulation.  

The change in visible targets causes a replan to be signaled.  When a replan is 

signaled, the entire program is repeated to recalculate paths and reallocate tasks based on 

the new information.  Other changes in the simulation environment also cause replans.  

These changes include a UAV crash, a change in the state of a target, and a target or 

threat appearing.   

A UAV crash occurs when it flies into a no-fly zone.  A vehicle may also be 

removed from the simulation when it intersects a threat’s effective range.  When a UAV 

enters a threat’s range, the threat always fires.  The UAV’s chance of survival is random, 

based on a value supplied by MATLAB.  The UAV survives when its chance of survival is 

greater than the threat’s POK.  Otherwise, it is shot down.  Once a threat fires, it is 
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considered no longer active, and removed from the simulation.  If a particular threat is 

known to fire more than once, the simulation can be modified accordingly. 

A target state begins as unclassified.  The first time a UAV passes over a target, 

the target is considered classified.  There is a ten percent chance, based on a random 

number from MATLAB, the target has been previously misidentified and should not be 

destroyed.  If this occurs, then that target is dismissed from the active environment, 

signaling a replan.  If the target is perceived to be real, then its state changes to classified.  

This also signals a replan.  The UAVs know that they are allowed to attack the classified 

targets.  There is a fifteen percent chance, based on a random number from MATLAB, that 

the target is not destroyed when it is attacked.  This is detected during the battle damage 

assessment of the target.  The assessment of the target signals a replan.  After a UAV 

verifies that a target has been destroyed, the target is removed from the active 

environment.   

UAVs that complete the mission of destroying all targets return to the origin of 

the battlefield.  These return paths must still avoid threats and no-fly zones.  This 

represents a specified rendezvous location that the UAVs must reach when they complete 

their tasks.   

This simulation was originally created in MATLAB.  Then, when the MATLAB files 

worked properly, the simulation was transferred to a SIMULINK environment.   During the 

simulation, a list of the events signaling replans and the time at which they occur are 

displayed in the MATLAB command window.  Plots, displaying the locations of the 

UAVs, threats, no-fly zones, and targets, can appear while the simulation is running.  

These plots are created each time a replan occurs.  The data is also saved so the 
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simulation may be played, paused, and viewed more than once, upon completion.  Data 

necessary to view the simulation using MATLAB’s Virtual Reality Toolbox (VRT) is also 

saved.  After the simulation is complete, the VRT can be used to display it.  The main 

MATLAB codes are included in Appendix A, while the main SIMULINK block diagrams are 

included in Appendix B.   
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Chapter 3:  Combined Approach 
 
 The combined path planning and task allocation problem was approached from 

the direction of Richards, How, et al’s work18,19,20.  The combined problem, when 

formulated as a mixed integer linear program, produces optimal solutions.  The paths and 

tasks are planned and allocated concurrently.  These solutions can serve as a benchmark 

to evaluate the performance of suboptimal routines.  MILP problems are solved using a 

variety of methods, including simplex and branch and bound1,7.  These solution methods 

apply to many different applications of linear programming, including scheduling and 

vehicle routing1.  The simplex solution method is used in this research because it is the 

method employed by the free student version of AMPL/CPLEX11.   

3.1  Classic Mixed Integer Linear Program (MILP) 

 A classic example of a simple MILP problem has an objective function that must 

be minimized (or maximized) subject to several constraints.  Equation 5 is an example of 

an objective function. 

xcJ *min =         (5) 
 

J is the utility to be minimized, c is a row vector containing the objective function 

coefficients, and x is a column vector containing the decision variables for which MILP is 

solving.  The constraints are in the form of Equation 6.   

bxA ≤*         (6) 
 

A is the coefficients matrix of the constraints and b is the column vector containing the 

values that limit the constraints.   
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 The decision variables are constrained by upper and lower bounds, thereby 

limiting the number of possible solutions.  This decreases the amount of computational 

time required to reach the solution.  The path planning and task allocation problem must 

be formulated in this classical way before it can be solved. 

 A simple MILP example involves two vehicles and two targets.  The specific data 

given is shown in Table 2. 

Table 2:  MILP example costs, in meters, for each vehicle to visit each target 

 UAV 1 UAV 2

Target 1 10m 20m 

Target 2 15m 10m 

 

The specific objective function for this example is shown in Equation 7, 

22211211 10201510min xxxxJ +++=     (7) 

where xuav target.  The constraints placed on the decision variables are in Equations 8 and 9.  

Equation 8 enables only one path to be chosen for each vehicle.  Equation 9 requires each 

target to be attacked. 

1
1

2221

1211

≤+
≤+

xx
xx

        (8) 

 

1
1

2212

2111

=+
=+

xx
xx

       (9) 

Equations 8 and 9 are written in such a way that the decision variables, x, are binary 

variables.  This creates a simple integer linear problem, as opposed to a mixed integer 

linear problem.  A mixed integer problem builds on this basic integer problem, by adding 
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decision variables whose values will not be integer.  The solution to this example has 

UAV 1 visiting target 1 and UAV 2 visiting target 1, with a cost of 20 meters.   

3.2  Path Planning and Task Allocation MILP 

 The goal of the path planning and task allocation MILP is to minimize the overall 

mission completion time.  Before the objective function can be explicitly written, the 

constraints on the system must be defined.  The problem begins with the following 

items18,19,20 being specified by the simulation user:   

• number of vehicles, Nv 
• number of targets, Nw 
• number of time steps, Nt 
• mass of each vehicle, mass 
• maximum internal force of the vehicles, fmax 
• maximum velocity of the vehicles, vmax 
• maximum size of the battlefield, distmax 
• starting locations of the UAVs, ( )00 , pp yx  
• initial vehicle velocities, ( )00 , pp yx ��  

• target locations,  ( )21, ii WW
• size and location of the no-fly zones, ( )4321 ,,, jjjj ZZZZ  

 

The first constraint on this system represents the vehicle dynamics.  The dynamics 

determine the positions, ( )ptpt yx , , and velocities, ( )ptpt yx �� , , of vehicle p at time t.  These 

values are incorporated into a state vector, spt, as shown in Equation 1018,19,20.   

[ ]Tptptptptpt yxyxs ��=       (10) 

 
The inputs that affect the state vector are control forces, fpt, represented by Equation 

1118,19,20. 

( )
ptpt yxpt fff ,=        (11) 
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Together, the state vector and the force vector create the state space model of the system.  

This constraint is shown in Equation 1218,19,20. 

[ ] [ ]
( ) ptpttp

tv

BfAss
NtNp

+=
+∈∀∈∀

+1

10,1 ……
     (12) 

The vehicles are approximated as point masses moving at constant altitudes.  The 

matrices A and B are known from previous work on point mass dynamics14,18.  They are 

represented in Equation 1314,18 for the continuous system.  
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00

,

0000
0000
1000
0100

   (13) 

 
For use in Equation 12, and this simulation, the matrices of Equation 13 must be 

discretized.  The discretization is done using the MATLAB command “c2d.”  The decision 

variables in Equation 12 are spt and fpt.  The initial conditions, sp0, must be defined by the 

user.18   

 The aircraft’s velocities and the forces on it are limited by their maximum values.  

These constraints should be nonlinear equations.  However, to maintain the linear 

formulation, some approximations are made.  To determine the magnitude of the total 

velocity, or force, it is necessary to combine the x and y components.  The magnitude 

constraint should be a complete, continuous circle.  A necessary approximation requires 

the circle to be divided into M segments.  The locations of the segment vertices around 

the circle are represented with sine and cosine terms.  The velocity and force magnitude 

constraints can now be written as in Equations 1416,18,19 and 1516,18,19.  
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The sine and cosine terms represent nonlinearities.  To avoid this problem, the sine and 

cosine terms are reduced to constant numerical values prior to writing the constraints in 

the model file.16,18,19 

 Next, the UAVs must be concerned with avoiding no-fly zones.  The UAV’s 

position must not be within the boundaries of a no-fly zone at any time t.  For simplicity, 

the no-fly zones are modeled as rectangles.  The lower left vertex and upper right vertex 

are represented by ( )21, jj ZZ  and ( )43 , jj ZZ , respectively.  The no-fly zone avoidance 

constraint is described by Equation 1618,20.   

[ ] [ ] [ ]
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d
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Rdx
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NjNpNt ………

    (16) 

 
In addition to xpt and ypt, djkpt is a decision variable.  Unlike the previous decision 

variables, djkpt is a binary variable equaling one if the vehicle is potentially within the 

boundaries of a no-fly zone.  The k represents the four directions:  

( YYXX )−=+=−=+= 4,3,2,1 .  The R in Equation 16 helps relax the constraint if djkpt 
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equals one.  The value of R is a positive number much greater than any position or 

velocity to be encountered in the problem.18  The summation of the djkpt’s ensures that no 

more than three of the constraints are relaxed.18,20   

 The UAVs’ mission is to visit known targets.  To do this, the position of a UAV 

must exactly equal that of a target at a particular time step.  The location of a target is 

defined as ( .  Equation 1718,19,20 shows how this target constraint is defined. )21, ii WW

[ ] [ ] [ ]
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Similar to the partially decoupled method, each UAV is capable of visiting every target.  

Another binary decision variable, bipt, is introduced.  If vehicle p visits target i at time 

step t, then bipt equals one.  R is the same number as used in the no-fly zone constraint, 

Equation 16.  This target constraint requires the vehicles to pass directly over the target.  

If desired, this constraint may be relaxed to allow the vehicle to pass within a certain 

distance of the target.18,19,20 

While Equation 17 indicates when a target has been reached, it does not explicitly 

require this visitation.  Equation 18 specifies that each target must be visited.   

[ ] [ ] [ ]

gb

NiNtNp
v tN

p

N

t
tpi

wtv

=
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∑∑
= =1 1

,,

1,1,1 ………
    (18) 

The integer value g indicates the number of times the targets must be visited, as required 

to complete the mission.  When g equals one, the targets are simply visited.  To classify, 

attack, and assess a target, g is set to three.     
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 Next, it is necessary to know at which time step a target is visited.  To do this, a 

constraint as shown in Equation 1918,20 is added. 

 

[ ] [ ]

∑
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t
iptp
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NiNp

1

1,1 ……
      (19) 

The additional variable, tp, represents the time step at which vehicle p visits target i.  This 

constraint ensures that tp is the time at which the last target is visited.18,20   

 The overall mission complete time, t , must be determined.  This value must be 

greater than or equal to the longest completion time among the vehicles.  Equation 2018 

shows this constraint.18,20   

[ ]
p

v

tt
Np

≥
∈∀ …1

       (20) 

 
 After formulating these constraints, the objective function is written.  The goal of 

the objective function is to minimize the overall mission completion time.  Equation 

2118,20 explicitly states the objective function.   

tJ
dbfs

=
,,,

min         (21) 

 
The decision variables s, f, b, and d are the values that determine tp, which directly affects 

t .18,20 

 Solution aids can be added to this objective function as shown in Equation 2218,20.  

∑
=

+=
vN

p
pdbfs

ttJ
1

1,,,
min ε        (22) 

 
The small weighting factor ε1 decreases the computation time.  This weighting factor 

requires the minimum time path to be chosen for each vehicle.  If this factor is omitted, 

then only the vehicle with the longest finishing time will be directly minimized.18,20   
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 After specifying the upper and lower bounds for all of the decision variables, the 

MILP is ready to be solved.  The resulting values for the decision variables indicate the 

paths and tasks assigned to the UAVs.  The objective function value is calculated based 

on the values of the decision variables.   

Following the recommendations of [3], [6], [19], and [20], the combined problem 

is formulated for use with AMPL/CPLEX.  The student version of AMPL/CPLEX has 

limitations of 300 decision variables and 300 constraints.  The constraints, upper and 

lower bounds, and objective function are written in a model file.  The input data, such as 

Nv, Nw, Nt, Nz, and locations, are included in a data file.  These files are developed 

following the examples and descriptions provided by AMPL, A Modeling Language for 

Mathematical Programming8. The results are plotted in MATLAB to visualize the assigned 

paths and tasks.  The code for the model file is included in Appendix C and the data file 

is included in Appendix D. 
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Chapter 4:  Comparison between the Partially Decoupled and 
Combined Approaches 

4.1  Simulation Parameters Defined 

A comparison of the partially decoupled approach and the combined approach 

yields information on how the approximations used to decouple the path planning and 

task allocation degrade the optimality of the solution.  For an accurate comparison, the 

input data provided to each simulation must be the same.  The common input data 

consists of the number and starting positions of the UAVs; the number and locations of 

the targets; and the number, locations, and sizes of the no-fly zones.  Additionally, the 

partially decoupled simulation requires a threat, its effective range, probability of kill, 

state, and location, and the targets’ values and states.  Because threats do not exist in the 

combined approach due to constraint limitations, a single threat is located outside the 

edge of the battlefield and given a POK of zero.  This is done to minimize the effect the 

threat has on the scenario.  It influences the Voronoi diagram slightly, but not the costs of 

the path segments.  The combined simulation is not capable of giving targets any type of 

value or precedence; therefore, all target values are set to 100 in the partially decoupled 

simulation.  The partially decoupled simulation is stopped after the first path planning 

and task allocation assignment, due to the inability of the combined approach to react to 

dynamic situations.  Accordingly, the targets are only visited once.   

The combined approach additionally requires the UAVs’ starting velocities, 

maximum velocities, maximum force loadings, and masses to be inputs.  The combined 

approach is based on no-fly zones that are rectangular, rather than the circles used in the 

partially decoupled approach.  To match the circular no-fly zones of the partially 

 29



 

decoupled method, three rectangles are layered on top of each other to approximate a 

circle.  Equation 16 was not modified to represent a circle due to the excessive increase in 

constraints.  Figure 6 shows how rectangles placed inside a circle can approximate it.   

 

Figure 6:  Circular no-fly zone approximated with rectangles 

These rectangles have angles chosen such that the difference in area covered by the 

rectangles is about 10% less than the area covered by the circle. 

4.2 Results from the Comparison 

 For this comparison, five scenarios are investigated.  They involve altering the 

initial locations of the vehicles.  The limits imposed by the student version of 

AMPL/CPLEX restrict the scenarios to two vehicles, two targets, and one no-fly zone.  
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Additionally, in the combined method, only three time steps are available.  The battlefield 

must be small enough to allow the vehicles to avoid the no-fly zones and reach the targets 

in three time steps, each time step equaling one second.  The scenarios are designed for a 

50 m x 50 m battlefield.  The initial locations for the first scenario can be seen in Figure 

7.  The partially decoupled simulation additionally has a threat located at (55, 55) m. 

 

Figure 7:  Initial setup of the battlefield, scenario 1 
 
This method has a constant vehicle speed of 13.41 m/s, and a minimum turning radius of 

6.5 m.  The combined approach has the UAVs’ limiting velocities set at 13.41 m/s, 

limiting allowable forces of 2.35 N, and masses of 0.085 kg17.   

±

±

 After entering the data using the graphical user interface for the partially 

decoupled approach, the simulation is executed until the first path planning and task 
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allocations are complete.  At this point, the data is saved and plotted.  The chosen paths 

and assigned tasks are shown in Figure 8. 

 

Figure 8:  Results for scenario 1 using the partially decoupled method 

 A data file containing the input information is created for the combined approach.  

The input information is the same as used for the partially decoupled approach.  Also, the 

number of segments, M, from Equations 14 and 15, for approximating a circle, is set to 

ten.  The relaxation constant, R, from Equations 16 and 17 has a value of 100,000.  The 

weighting factor, ε1, equals 0.001.  These values are specified in the data file.  Upon the 

completion of the combined simulation, a plot is created using the locations of the 

vehicles at each time step.  Figure 9 displays the paths the vehicles take to reach the 

targets.   
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Figure 9:  Results for scenario 1 using the combined method 

Scenarios two through five have the same parameters as scenario one, except for 

the initial vehicle location and velocity.  The changes in the locations affect the Voronoi 

diagrams, and the initial direction the UAVs need to be going, hence, modifying the 

initial velocity.  The initial locations for scenario two are shown in Figure 10.   
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Figure 10:  Initial setup of the battlefield, scenario 2 

The results from the partially decoupled method are displayed in Figure 11, while the 

combined method results are in Figure 12.   
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Figure 11:  Results for scenario 2 using the partially decoupled method 

 

Figure 12:  Results for scenario 2 using the combined method 
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The initial locations for scenario three are shown in Figure 13.   

 

Figure 13:  Initial setup of the battlefield, scenario 3 

The results from the partially decoupled method are displayed in Figure 14, while the 

combined method results are in Figure 15.   
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Figure 14:  Results for scenario 3 using the partially decoupled method 

 

Figure 15:  Results for scenario 3 using the combined method 
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The initial locations for scenario four are shown in Figure 16.   

 

Figure 16:  Initial setup of the battlefield, scenario 4 

The results from the partially decoupled method are displayed in Figure 17, while the 

combined method results are in Figure 18.   
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Figure 17:  Results for scenario 4 using the partially decoupled method 

 

Figure 18:  Results for scenario 4 using the combined method 
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The initial locations for scenario five are shown in Figure 19.   

 

Figure 19:  Initial setup of the battlefield, scenario 5 

The results from the partially decoupled method are displayed in Figure 20, while the 

combined method results are in Figure 21.   
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Figure 20:  Results for scenario 5 using the partially decoupled method 

 

Figure 21:  Results for scenario 5 using the combined method 

 41



 

The total cost for each scenario and method is found during the respective 

simulations.  The cost for each method is the fuel cost, calculated using Equation 1, the 

distance formula.  The results are shown in Table 3.   

Table 3:  Mission cost, in meters, for each method and scenario 

 partial (m) combined (m) difference (m) 
scenario 1 41.5 42.3 -0.9 
scenario 2 59.8 65.8 -6.0 
scenario 3 38.4 39.0 -0.6 
scenario 4 30.6 33.5 -2.9 
scenario 5 55.6 60.4 -4.8 

 

The results in Table 3 indicate that the partially decoupled method paths are less 

expensive than the combined method paths.  Table 4 contains the central processing unit 

(CPU) times necessary to solve each scenario by each method.  This time does not 

include the initial setup of the simulations, nor the time necessary to generate plots.   

Table 4:  CPU time, in seconds, for each method and scenario 

  partial (s) combined (s)  difference (s) 
scenario 1 0.391 0.050 0.341 
scenario 2 0.401 0.050 0.351 
scenario 3 0.360 0.050 0.310 
scenario 4 0.361 0.060 0.301 
scenario 5 0.381 0.050 0.331 

 
The results in Table 4 show the combined method to take significantly less time to solve 

than the partially decoupled method.  The computer being used to run these simulations is 

a Pentium® 4 CPU, 2.00 GHz, with 512 MB of RAM.   
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Chapter 5:  Conclusions and Recommendations 
 

Creating software that enables UAVs to attack specific targets while minimizing 

the associated risks is a goal for many researchers.  Presented in this thesis are two 

methods for the desired path planning and task allocation.  The first is a partially 

decoupled method.  The second is a combined method.  The two scenarios evaluated in 

Chapter 4 indicate that the partially decoupled method costs an average of 3.0 m less than 

the combined method, while taking an average of 0.327 s longer.   

The cost results are due to the limitations of the student version of 

AMPL/CPLEX.  More available times steps would allow the locations and velocities of 

the vehicles to be checked more frequently.  This would allow more opportunities to 

change the velocities and provide smoother, more efficient paths to the targets.   

Additionally, a full version of AMPL/CPLEX would allow for a larger battlefield, 

with more vehicles, targets, and no-fly zones.  The no-fly zones would no longer have to 

be approximated with three rectangles, and the number of segments, M, for restricting 

forces and velocities could be expanded.   As the number of constraints increases, the 

solution time is expected to increase.   

The availability of additional variables and constraints provides the opportunity to 

add options to the combined method so it better parallels the partially decoupled method.  

For example, constraints defining the role of threats could be added.  The tasks the UAVs 

are required to complete could be expanded to include classifying and assessing targets.  

Precedence, or importance, could be assigned to the targets.  Rendezvous locations may 

also be defined to ensure the vehicles safely exit the combat zone.  Vehicles of varying 

size and requirements may be incorporated.   
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In conclusion, as currently modeled, the partially decoupled method has many 

advantages over the combined method, while solving slightly slower.  These advantages 

include larger scenarios, inclusion of threats, reactions to dynamic situations, final 

rendezvous locations, and available software.   
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Appendix A:  Main MATLAB files for the Partially Decoupled 
Simulation 

 

define_battlefield.m 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file is representative of the information necessary to input to the partially decoupled 
scheme.  This information may also be entered using graphical user interface menus. 
 
function[UAVS,TARGETS,THREATS,ZONES,n_uav,n_targ,n_zones,n_threats]= 

define_battlefield 
 
UAVS=zeros(4,9); 
TARGETS=zeros(4,9); 
THREATS=zeros(4,15); 
ZONES=zeros(3,10); 
 
n_uav=menu('Enter the number of UAVs for this simulation','                                      1                        
',... 
    '2','3','4','5','6','7','8','9');                                                                                                                      
n_targ=menu('Enter the number of TARGETs for this simulation','                        
1                                       ',... 
    '2','3','4','5','6','7','8','9');                                                                                                                                
n_zones=menu('Enter the number of NO-FLY ZONEs for this simulation','                        
1                                      ',...    
    '2','3','4','5','6','7','8','9','10');                                                                                                  
n_threats=menu('Enter the number of THREATs for this simulation','                        
1                                       ',...      
    '2','3','4','5','6','7','8','9','10','11','12','13','14','15');                                                                                   
 
Vel_UAV=0.13;   
menu('Using the crosshairs and clicking on the plot','Place UAVs at desired positions'); 
axis([5 200 5 200]); 
grid on; 
 
for i=1:n_uav 
    [UAVS(1,i),UAVS(2,i)]=ginput(1); 
    plot(UAVS(1,i),UAVS(2,i),'bd'); 
    text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b'); 
    axis([5 200 5 200]); 
    grid on; 
    UAVS(3,i)=2; 
    UAVS(4,i)=Vel_UAV ; 
    hold on; 
end 
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hold on; 
 
menu('Using the crosshairs and clicking on the plot','Place TARGETs at desired 
positions'); 
for i=1:n_targ 
    tar=menu('Select Target Value - Scale 10-
100','10','20','30','40','50','60','70','80','90','100'); 
    TARGETS(3,i)=10*tar; 
    TARGETS(4,i)=1; 
    [TARGETS(1,i),TARGETS(2,i)]=ginput(1); 
    plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0,.4,0]); 
    text(TARGETS(1,i)+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]); 
    axis([5 200 5 200]); 
    grid on; 
    hold on; 
end 
 
hold on; 
 
menu('Using the crosshairs and clicking on the plot','Place NO-FLY ZONEs at desired 
positions'); 
 
for i=1:n_zones 
    ZONES(3,i)=9; 
    [ZONES(1,i),ZONES(2,i)]=ginput(1); 
    axis([5 200 5 200]); 
    grid on; 
    t_nfz = (1/16:1/16:1)'*2*pi; 
    x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i); 
    y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i); 
    fill(x_nfz,y_nfz,'k'); 
end 
 
menu('Using the crosshairs and clicking on the plot','Place THREATs at desired 
positions'); 
hold on; 
 
for i=1:n_threats 
    thr=menu('Select Threat Type','KS-19 100mm AntiAircraft Artillery - Range 4000 
meters, 40% Probability of Kill',... 
        'SA-7 Grail - Man-Portable SAM - Range 5000 meters, 50% Probabilty of Kill',... 
        'Crotale SAM - Range 10,000 meters, 80% Probability of Kill',... 
        'SA-2 - Range 30,000 meters, 80% Probabilty of Kill'); 
    if thr == 1 
        THREATS(3,i)=4; 

 48



 

        THREATS(4,i)=.4; 
    end 
    if thr == 2 
        THREATS(3,i)=5; 
        THREATS(4,i)=.5; 
    end 
    if thr == 3 
        THREATS(3,i)=10; 
        THREATS(4,i)=.8; 
    end 
    if thr == 4 
        THREATS(3,i)=30; 
        THREATS(4,i)=.8; 
    end 
    [THREATS(1,i),THREATS(2,i)]=ginput(1); 
    plot(THREATS(1,i),THREATS(2,i),'r*'); 
    text(THREATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r') 
    axis([5 200 5 200]); 
    grid on; 
    t_threat = (1/32:1/32:1)'*2*pi; 
    x_threat = THREATS(3,i)*sin(t_threat)+THREATS(1,i); 
    y_threat = THREATS(3,i)*cos(t_threat)+THREATS(2,i); 
    plot(x_threat,y_threat,'r.'); 
    hold on; 
end 
 

path_planning.m   
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file is the main file that takes the input data and determines the paths and allocates 
tasks. 
 
function [out]=path_planning(in) 
 
UAVS_long=in([1:36],1); 
UAVS_long=reshape(UAVS_long,4,9); 
TARGETS_long=in([37:72]); 
TARGETS_long=reshape(TARGETS_long,4,9); 
ZONES_long=in([73:102]); 
ZONES_long=reshape(ZONES_long,3,10); 
THREATS_long=in([103:162]); 
THREATS_long=reshape(THREATS_long,4,15); 
TIME=in(163); 
n_plots=in(164); 
HEADING_ANGLE=in([165:173]); 
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uavs_existing=zeros(1,9); 
for i=1:9 
    if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26 
        uavs_existing(1,i)=1; 
   end 
end 
[UAVS]=filter_zeros(UAVS_long,9); 
n_uav=size(UAVS,2); 
 
targ_existing=zeros(1,9); 
for i=1:9 
    if TARGETS_long(3,i)~=0, 
        targ_existing(1,i)=1; 
   end 
end 
[TARGETS_temp]=filter_zeros(TARGETS_long,9); 
TARGETS=[TARGETS_temp(1,:);TARGETS_temp(2,:)]; 
n_targ=size(TARGETS,2); 
 
[ZONES]=filter_zeros(ZONES_long,10); 
n_zones=size(ZONES,2); 
 
threats_existing=zeros(1,15); 
for i=1:15 
    if THREATS_long(3,i)~=0 
        threats_existing(1,i)=1; 
   end 
end 
[THREATS]=filter_zeros(THREATS_long,15); 
n_threats=size(THREATS,2); 
 
ZONES_REAL=ZONES; 
THREATS_REAL=THREATS; 
 
ZONES(3,:)=1.15*ZONES_REAL(3,:); 
THREATS(3,:)=1.15*THREATS_REAL(3,:); 
 
split_seg=10; 
min_turn=1; 
[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES, 

THREATS); 
[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs,UAVS, 

TARGETS,ZONES,THREATS); 
[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos, 

ZONES,THREATS,min_turn,split_seg,n_uav,n_targ,HEADING_ANGLE); 
[Selected_Paths_x,Selected_Paths_y,mincost]=mmkp_task_allocation(totalcost, 
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Shortened_Paths_x,Shortened_Paths_y,n_uav); 
[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,
 Selected_Paths_y,UAVS,min_turn*2); 
keyboard 
if n_plots~=0, 
    plot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long,uav_path_x, 

uav_path_y,n_plots,uavs_existing,targ_existing,threats_existing); 
end 
 
disp(sprintf('Path Planning ran at time %d. \n',round(TIME))); 
 
bestcomb=zeros(1,9); 
for i=1:n_uav, 
    for j=1:n_targ, 
        if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &  

round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10) 
            bestcomb(1,i)=j; 
            break 
        end 
    end 
end 
 
 
%Making into vector 
uav_x=zeros(9,100); 
uav_y=zeros(9,100); 
uav_time=zeros(9,100); 
uav_alt=zeros(9,100); 
selected_targets=zeros(9,1); 
szpath=size(uav_path_x,2); 
counter=1; 
for i=1:9, 
    if uavs_existing(1,i)==1 
        selected_targets(i,1)=bestcomb(1,counter); 
        uav_x(i,[1:szpath])=uav_path_x(counter,:); 
        uav_y(i,[1:szpath])=uav_path_y(counter,:); 
        uav_time(i,[1:szpath])=time_uav(counter,:)+TIME; 
        uav_alt(i,[1:szpath])=altitude_uav(counter,:); 
        counter=counter+1; 
    end 
end 
sys_temp=[]; 
for i=1:9; 
    sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)]; 
end 
out=[sys_temp,selected_targets']; 
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vrn_diag_gen.m 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file generates the Voronoi diagram based on the locations of the threats and no-fly 
zones. 
 
function[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS, 

ZONES,THREATS) 
%INPUTS: 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
%initial x position of the UAVs, the second row is the initial y position 
%of the UAVs, the third row is the initial altitude of the UAVs, and  
%the fourth row is the initial Velocity of the UAVs. 
% 
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row 
%is the x position of the targets and the second row is the y position of 
%the targets. 
% 
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the no-fly zones. 
% 
%THREATS - is a 4xn matrix where n is the number of threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
% 
%OUTPUTS: 
% 
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points, 
%uav points, and target points.  Where the first row is the x position and 
%the second row is the y position of all of these unique points. 
% 
%all_lines_x - is a 2xn matrix where n is the number of all of the lines 
%for the Voronoi, UAVs, and targets.  The first row is the ending point's  
%x position for the nth line and the second row is the starting point's 
%x position for the nth line. 
% 
%all_lines_y - is a 2xn matrix where n is the number of all of the lines 
%for the Voronoi, UAVs, and targets.  The first row is the ending point's  
%y position for the nth line and the second row is the starting point's 
%y position for the nth line. 
% 
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%all_costs - is a 1xn row where n is the number of all of the lines 
%for the Voronoi, UAVs, and targets.  This row is the costs for all of the 
%lines of all_lines_x and all_lines_y 
 
max_x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])+25; 
min_x=min([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])-25; 
max_y=max([TARGETS(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])+25; 
min_y=min([TARGETS(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])-25; 
 
VRNPTS=[ZONES([1,2],:) THREATS([1,2],:) ... 
    [(min_x)*ones(1,4);(((max_y-min_y)*[1:4]/4)+min_y)] ... 
    [(max_x)*ones(1,4);(((max_y-min_y)*[1:4]/4)+min_y)] ... 
    [(((max_x-min_x)*[1:4]/4)+min_x);(min_y)*ones(1,4)] ... 
    [(((max_x-min_x)*[1:4]/4)+min_x);(max_y)*ones(1,4)]]; 
 
[vx,vy] = voronoi(VRNPTS(1,:),VRNPTS(2,:)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Taking unique numbers from vx and vy 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[vxyn]= 1e-6*unique(round(1e6*[vx(:),vy(:)]),'rows'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Connecting UAV's into Voronoi  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS([1,2],:)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Connecting the targets into the Voronoi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[line_cost_targ,targx,targy]=connect_vrn(vxyn,TARGETS([1,2],:)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Generation for Voronoi line costs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nvlines=size(vx,2); 
line_cost_vrn=zeros(1,nvlines); 
for i=1:nvlines, 
    line_cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Stacking unique positions, lines for x and y, and costs of those lines 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
all_pos=[UAVS([1,2],:) vxyn(:,[1,2])' TARGETS([1,2],:)]; 
all_lines_x=[uavx([1,2],:) vx([1,2],:) targx([1,2],:)]; 
all_lines_y=[uavy([1,2],:) vy([1,2],:) targy([1,2],:)]; 
all_costs=[line_cost_uav(1,:) line_cost_vrn(1,:) line_cost_targ(1,:)]; 
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connect_vrn.m 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file is called in the vrn_diag_gen.m file to connect the UAVs and the targets to the 
Voronoi diagram. 
 
function [line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS) 
 
%Inputs: 
%vxyn - is a nx2 matrix with first column defining all of the unique x 
%positions of the Voronoi diagram or grid and the second column defining 
%all of the unique y positions of the Voronoi diagram or grid. 
% 
%UAVS - is a 2xn matrix with the first row defining the x position of the 
%UAV and the second row defining the y position of the UAV. 
% 
%Outputs: 
% 
%line_cost_uav - is a vector containing the cost of the lines of connecting  
%the UAV's into the Voronoi diagram or grid 
% 
%uavx - is a 2xn matrix with first row defining ending point and second row 
%defining starting point for the x coordinates. 
% 
%uavy - is a 2xn matrix with first row defining ending point and second row 
%defining starting point for the y coordinates. 
% 
nuav=size(UAVS,2); 
nvxynpts=size(vxyn,1); 
du=zeros(1,nvxynpts-1); 
uavx=zeros(2,nuav*3); 
uavy=zeros(2,nuav*3); 
line_cost_uav=zeros(1,nuav*3); 
for k=1:nuav, 
    for j=2:nvxynpts, 
        du(1,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))^2+(UAVS(2,k)-vxyn(j,2))^2);        
    end 
    mdu=sort(du,2); 
    for i=1:3, 
        mdu_loc=find(du==mdu(1,i)); 
        uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1); 
        uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2); 
        uavx(2,3*(k-1)+i)=UAVS(1,k); 
        uavy(2,3*(k-1)+i)=UAVS(2,k); 
        line_cost_uav(1,3*(k-1)+i)=mdu(1,i); 
    end 
end 
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cheapest_paths.m 
Authored by Michael G. Kay, [H] 
This file finds the cheapest paths for each permutation of UAV to target.  It uses 
Dijkstra’s algorithm. 
 
function[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs, 

UAVS,TARGETS,ZONES,THREATS) 
% 
%INPUTS: 
%  
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points, 
%uav points, and target points.  Where the first row is the x position and 
%the second row is the y position of all of these unique points. 
% 
%all_lines_x - is a 2xn matrix where n is the number of all of the lines 
%for the Voronoi, UAVs, and targets.  The first row is the ending point's  
%x position for the nth line and the second row is the starting point's 
%x position for the nth line. 
% 
%all_lines_y - is a 2xn matrix where n is the number of all of the lines 
%for the Voronoi, UAVs, and targets.  The first row is the ending point's  
%y position for the nth line and the second row is the starting point's 
%y position for the nth line. 
% 
%all_costs - is a 1xn row where n is the number of all of the lines 
%for the Voronoi, UAVs, and targets.  This row is the costs for all of the 
%lines of all_lines_x and all_lines_y. 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
%initial x position of the UAVs, the second row is the initial y position 
%of the UAVs, the third row is the initial altitude of the UAVs, and  
%the fourth row is the initial Velocity of the UAVs. 
% 
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row 
%is the x position of the targets and the second row is the y position of 
%the targets. 
% 
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the no-fly zones. 
% 
%THREATS - is a 4xn matrix where n is the number of threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
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% 
%OUTPUTS: 
% 
%stored_paths - is a mxn matrix where m is the number of UAVs times the 
%number of targets and n is the length of the longest path.  The first row 
%being the first path for the first UAV and the last row being the last 
%path for the last UAV. The paths are output by node numbers coming from 
%the implementation of Dijkstra’s algorithm [H]. 
%  
%totalcost - is a mxn matrix where m is the number of UAVs and n is the 
%number of possible paths for each UAV.  The element (m,n) of this matrix 
%is the cost for the mth UAV to take the nth path. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Making THC matrix for Dijkstra’s algorithm [H] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Cost Assignment for all lines 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[THC]= c_assign(all_pos,THC,ZONES,THREATS); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Adding the reverse of the THC matrix onto the end, so that the  
%reverse of the lines is possible 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
THC=[THC(:,[1,2,3]); THC(:,[2,1,3])]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Implementing Dijkstra's algorithm [H] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nuav=size(UAVS,2); 
ntarg=size(TARGETS,2); 
A = list2adj(THC); 
totalcost=zeros(nuav,ntarg); 
for i=1:nuav, 
    for j=1:ntarg, 
        [totalcost(i,j),path] = dijk(A,i,size(all_pos,2) - j + 1); 
        stored_paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]); 
    end 
end 
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c_assign.m 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file assigns the costs for each segment of the Voronoi diagram.  These costs must be 
assigned before the cheapest paths can be determined. 
 
function [THC]= c_assign(all_pos,THC,ZONES,THREATS) 
% 
%INPUTS: 
%  
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points, 
%UAV points, and target points.  Where the first row is the x position and 
%the second row is the y position of all of these unique points. 
% 
%THC - is a nx3 matrix where n is the number of possible lines to be chosen 
%the first column is the tail of the line or starting point, the second 
%column is the head of the line or the ending point, and the third column 
%is the cost of the line. 
% 
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the no-fly zones. 
% 
%THREATS - is a 4xn matrix where n is the number of threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
% 
%OUTPUTS: 
% 
%THC - is a nx3 matrix where n is the number of possible lines to be chosen 
%the first column is the tail of the line or starting point, the second 
%column is the head of the line or the ending point, and the third column 
%is the cost of the line. With updated costs due to no-fly zones and 
%threats. 
 
szthc=size(THC,1); 
nzones=size(ZONES,2); 
nthrts=size(THREATS,2); 
 
for i=1:szthc, 
    start=THC(i,1);finish=THC(i,2); 
    SF=sqrt(((all_pos(1,finish)-all_pos(1,start))^2)+((all_pos(2,finish)-
all_pos(2,start))^2));    % cost associated with length of each segment 
    for j=1:nzones, 
        SC=sqrt(((ZONES(1,j)-all_pos(1,start))^2)+((ZONES(2,j)-all_pos(2,start))^2)); 
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        FC=sqrt(((ZONES(1,j)-all_pos(1,finish))^2)+((ZONES(2,j)-all_pos(2,finish))^2)); 
        SN=(SC^2+SF^2-FC^2)/(2*SF); 
        if SN<SF & SN>0,PC=sqrt(SC^2-SN^2); 
        else 
            if SC<FC,PC=SC; 
            else 
                PC=FC; 
            end 
        end 
        if PC < ZONES(3,j),THC(i,3)=1e30*THC(i,3);  

 % cost associated with intersecting a no-fly zone 
        end 
    end 
    for j=1:nthrts, 
        SC=sqrt(((THREATS(1,j)-all_pos(1,start))^2)+((THREATS(2,j)-
all_pos(2,start))^2)); 
        FC=sqrt(((THREATS(1,j)-all_pos(1,finish))^2)+((THREATS(2,j)-
all_pos(2,finish))^2)); 
        SN=(SC^2+SF^2-FC^2)/(2*SF); 
        if SN<SF & SN>0,PC=sqrt(SC^2-SN^2); 
        else 
            if SC<FC,PC=SC; 
            else 
                PC=FC; 
            end 
        end 
        if PC < THREATS(3,j),THC(i,3)=(THREATS(4,j)*100)+THC(i,3); 
 % cost associated with intersecting a threat and/or its effective range 
        end 
    end    
end        
 
 
path_shrtng.m 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file looks for line-of-sight paths to reduce the costs of the mission.  It also provides 
fillets for sharp corners and the proper heading angles for the entire path.  After these 
elements are taken care of, the costs are updated to reflect the changes. 
 
function[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths, 

all_pos,ZONES,THREATS,min_turn,split_seg,nuav,ntarg,HEADING_ANGLE) 
 
%INPUTS: 
% 
%stored_paths - is a mxn matrix where m is the number of UAVs times the 
%number of targets and n is the length of the longest path.  The first row 
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%being the first path for the first UAV and the last row being the last 
%path for the last UAV. The paths are output by node numbers coming from 
%the implementation of Dijkstra’s algorithm. 
%  
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points, 
%UAV points, and target points.  Where the first row is the x position and 
%the second row is the y position of all of these unique points. 
% 
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the no-fly zones. 
% 
%THREATS - is a 4xn matrix where n is the number of threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
% 
%min_turn - minimum turning radius for the UAVs 
% 
%split_seg - number of segments to Split the Voronoi lines into for the  
%purpose of a more near-optimal solution 
%  
%nuav - number of UAVs 
% 
%ntarg - number of targets 
 
%OUTPUTS: 
% 
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs multiplied by the number of targets.   
%The element (nxmx1) x position of the mth UAV at point n.  The element  
%(nxmx2) y position of the mth UAV at point n.  
%  
%totalcost - is a mxn matrix where m is the number of UAV and n is the 
%number of possible paths for each UAV.  The element (m,n) of this matrix 
%is the cost for the mth UAV to take the nth path. 
% 
%Stored_Pos - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs multiplied by the number of targets.   
%The element (nxmx1) x position of the mth UAV at point n.  The element  
%(nxmx2) y position of the mth UAV at point n.   
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Splitting the Voronoi lines into more segments for the purpose of a more  
%near-optimal solution 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
szpths=size(stored_paths,2); 
 split_vect=[(0:(1/split_seg):(1- 1/split_seg))]'; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Finding the corresponding x and y coordinates of the smaller segments 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Stored_Pos_x=ones(szpths,nuav*ntarg); 
Stored_Pos_y=ones(szpths,nuav*ntarg); 
stored_paths(:,szpths+1)=0; 
for i=1:nuav*ntarg, 
    mnz=min(find(stored_paths(i,:)==0)); 
    Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))'; 
    Stored_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))'; 
    Stored_Pos_x(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))'; 
    Stored_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))'; 
end  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Stored_Pos_x_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg); 
Stored_Pos_y_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg); 
for k=1:nuav*ntarg, 
        j=1; 
    for i=1:(szpths -1), 
          Stored_Pos_x_new([j:(j + (split_seg -1))],k)= 
           ones(split_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-        
          Stored_Pos_x(i,k)); 
          Stored_Pos_y_new([j:(j + (split_seg -1))],k)=  
           ones(split_seg,1)*Stored_Pos_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)- 
          Stored_Pos_y(i,k)); 
          j=j+ split_seg; 
    end 
    Stored_Pos_x_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_x(szpths,k); 
    Stored_Pos_y_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_y(szpths,k); 
end 
 
Shortened_Paths_x_end=ones(500,1)*Stored_Pos_x(szpths,:); 
Shortened_Paths_y_end=ones(500,1)*Stored_Pos_y(szpths,:); 
Shortened_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end]; 
Shortened_Paths_y=[Stored_Pos_y_new;Shortened_Paths_y_end]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Shortening the paths 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:nuav*ntarg, 
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[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten_paths(Shortened_Paths_x(:,i),S
hortened_Paths_y(:,i),ZONES,THREATS,Stored_Pos_x(:,i),Stored_Pos_y(:,i)); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Putting fillets into the shortened paths 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:nuav*ntarg, 
[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shor
tened_Paths_y(:,i)],min_turn); 
end 
 
Shortened_Paths_x_old=Shortened_Paths_x; 
Shortened_Paths_y_old=Shortened_Paths_y; 
Shortened_Paths_x=[]; 
Shortened_Paths_y=[]; 
for j=1:size(Shortened_Paths_x_old,1)-1, 
    if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &  
        Shortened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:), 
        Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:); 
        Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:); 
        break 
    else 
       Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:); 
       Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:); 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Updating the Costs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
szsp_perm=size(Shortened_Paths_x,2); 
permcost=zeros(nuav*ntarg,1); 
for z=1:szsp_perm, 
[permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Paths_y(:,z)], 
THREATS); 
end 
totalcost=reshape(permcost,ntarg,nuav)'; 
 
 
shorten_paths.m 
Authored by Zachary Spritzer, and Matthew Lechliter 
This file actually shortens the paths. 
 
function [shr_x,shr_y]=shorten_paths(sp_x,sp_y,Z,T,spo_x,spo_y) 
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%INPUTS: 
% 
%sp - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs.  The element (nxmx1) x position of the 
%mth UAV at point n.  The element (nxmx2) y position of the mth UAV at 
%point n. 
% 
%Z - is a 3xn matrix where n is the number of no-fly zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the no-fly zones. 
% 
%T - is a 4xn matrix where n is the number of threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
% 
%spo - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs.  The element (nxmx1) x position of the 
%mth UAV at point n.  The element (nxmx2) y position of the mth UAV at 
%point n. This matrix is the original matrix without the Voronoi segments 
%split up. 
% 
%OUTPUTS: 
% 
%shr - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs.  The element (nxmx1) x position of the 
%mth UAV at point n.  The element (nxmx2) y position of the mth UAV at 
%point n. 
spo=[spo_x,spo_y]; 
sp=[sp_x,sp_y]; 
SC=0;FC=0;SF=0;SN=0; 
for j=1:size(T,2), 
    PC=[]; 
    for i=1:size(spo,1)-1, 
        SC=sqrt(((T(1,j)-spo(i,1))^2)+((T(2,j)-spo(i,2))^2)); 
        FC=sqrt(((T(1,j)-spo(i+1,1))^2)+((T(2,j)-spo(i+1,2))^2)); 
        SF=sqrt(((spo(i+1,1)-spo(i,1))^2)+((spo(i+1,2)-spo(i,2))^2)); 
        SN=(SC^2+SF^2-FC^2)/(2*SF); 
        if SN<SF & SN>0 
            PC(i)=sqrt(SC^2-SN^2); 
        else 
            if SC<FC 
                PC(i)=SC; 
            else 
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                PC(i)=FC; 
            end 
        end 
        mPC=min(PC); 
        if  mPC< T(3,j), 
            T(3,j)=mPC*.995; 
        end 
    end 
end 
 
ZT=[Z([1:3],:) T([1:3],:)]; 
szzt=size(ZT,2); 
szsp=size(sp,1); 
shr=ones(szsp,2); 
for i=1:2, 
    shr(:,i)=sp(szsp,i); 
end 
shr(1,:)=sp(1,:); 
a=1; 
PC=zeros(1,szzt); 
while shr(a,:)~=sp(szsp,:), 
    for i=1:szsp, 
        if shr(a,:)==sp(i,:) 
            pck=i; 
            break 
        end 
    end 
    for i=szsp:-1:pck+1, 
        SF=sqrt(((shr(a,1)-sp(i,1))^2)+((shr(a,2)-sp(i,2))^2)); 
        for j=1:szzt, 
            SC=sqrt(((ZT(1,j)-shr(a,1))^2)+((ZT(2,j)-shr(a,2))^2)); 
            FC=sqrt(((ZT(1,j)-sp(i,1))^2)+((ZT(2,j)-sp(i,2))^2)); 
            SN=(SC^2+SF^2-FC^2)/(2*SF); 
            if SN<SF & SN>0 
                PC(1,j)=sqrt(SC^2-SN^2); 
            else 
                if SC<FC 
                    PC(1,j)=SC; 
                else 
                    PC(1,j)=FC; 
                end 
            end 
        end 
        if PC(1,:)>ZT(3,:), 
            a=a+1; 
            shr(a,:)=sp(i,:); 
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            break 
        end 
    end 
end 
shr_x=shr(:,1); 
shr_y=shr(:,2); 
 

fillet_path.m 
Authored by Jennifer Hazelton, and Matthew Lechliter 
This file places fillets in the corners of the paths. 
 
function[Shortened_Paths_fillet_x,Shortened_Paths_fillet_y]=fillet_path 

(Shortened_Paths,min_turn) 
 
%INPUTS: 
% 
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs multiplied by the number of targets.   
%The element (nxmx1) x position of the mth UAV at point n.  The element  
%(nxmx2) y position of the mth UAV at point n.   
% 
%min_turn - minimum turning radius for the UAVs 
 
%OUTPUTS: 
% 
%Shortened_Paths_fillet - is a nxmx2 matrix where n is the length of the  
%longest path with the addition of fillets ((2*old size)-1) and m is the  
%number of UAVs multiplied by the number of targets.  The element (nxmx1)  
%x position of the mth UAV at point n.  The element (nxmx2) y position of  
%the mth UAV at point n.   
 
Shortened_Paths_fillet=Shortened_Paths*0; 
Shortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1); 
Shortened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2); 
Shortened_Paths_fillet(1,:)=Shortened_Paths(1,:); 
 
fillet_counter=2; 
for j=2:size(Shortened_Paths,1)-1, 
    if Shortened_Paths(j,:)==Shortened_Paths(j+1,:), 
        break 
    end 
    start=Shortened_Paths(j-1,:); 
    middle=Shortened_Paths(j,:); 
    finish=Shortened_Paths(j+1,:); 
    SM=sqrt(sum((middle-start).^2)); 
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    MF=sqrt(sum(((finish-middle).^2))); 
    SF=sqrt(sum(((finish-start).^2))); 
    alpha=acos((SM^2+MF^2-SF^2)/(2*SM*MF)); 
    Fillet=min_turn/tan(alpha/2); 
    if Fillet>=SM 
        Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:); 
    else 
        Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j- 

1,:)+(Shortened_Paths(j,:)-Shortened_Paths(j-1,:))*((SM-Fillet)/SM); 
    end 
    if Fillet>=MF, 
        Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j+1,:); 
    else  

Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+ 
(Shortened_Paths(j+1,:)-Shortened_Paths(j,:))*(Fillet/MF); 

    end 
    fillet_counter=fillet_counter+2; 
end 
Shortened_Paths_fillet_x=Shortened_Paths_fillet(:,1); 
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2); 
 
 
mmkp_task_allocation.m 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file calls the functions necessary to assign tasks to each of the UAVs in a manner 
that minimizes the overall mission cost. 
 
function [Selected_Paths_x,Selected_Paths_y,mincost]=mmkp_task_allocation(totalcost, 

Shortened_Paths_x,Shortened_Paths_y,nuav) 
 
%INPUTS: 
% 
%totalcost - is a mxn matrix where m is the number of UAVs and n is the 
%number of possible paths for each UAV.  The element (m,n) of this matrix 
%is the cost for the mth UAV to take the nth path. 
% 
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs multiplied by the number of targets.   
%The element (nxmx1) x position of the mth UAV at point n.  The element  
%(nxmx2) y position of the mth UAV at point n.  
% 
%nuav - number of UAVs 
 
%OUTPUTS: 
% 
%Selected_Pos - is a nxmx2 matrix where n is the length of the longest 
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%path and m is the number of UAVs.  The element (nxmx1) x position of the 
%mth UAV at point n.  The element (nxmx2) y position of the mth uav at 
%point n.   
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%MMKP algorithm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[bestcomb,mincost]=mmkp_new(totalcost); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Taking the results from mmkp 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Selected_Paths_x=zeros(size(Shortened_Paths_x,1),nuav); 
Selected_Paths_y=zeros(size(Shortened_Paths_x,1),nuav); 
for i=1:nuav, 
    Selected_Paths_x(:,i)=Shortened_Paths_x(:,(nuav)*(i-1)+bestcomb(1,i)); 
    Selected_Paths_y(:,i)=Shortened_Paths_y(:,(nuav)*(i-1)+bestcomb(1,i)); 
end 
 
 
mmkp_new.m 
Authored by Jennifer Hazelton, Zachary Spritzer, Matthew Lechliter, and Elena Lucchi 
This file finds the permutation from UAVs to target associated with the minimum cost. 
 
function [bestcomb,mincost]=mmkp_new(totalcost) 
 
%Inputs: 
% 
%totalcost - is a nxm matrix where n is the total number of UAVs and m is 
%the total number of targets or paths. Where the element nxm is the cost 
%associated with UAV "n" choosing target or path "m". 
% 
%Outputs: 
% 
%bestcomb - is a 1xn row with n equal to the number of UAVs where each 
%element of the row represents which path the UAV should select to give the 
%optimal solution. 
% 
%mincost - is a scalar number which is sum of the optimal costs for all 
%the UAVs paths. 
 
nuav=size(totalcost,1); 
mincost=inf; 
C_new=perms(1:nuav); 
for j=1:size(C_new,1), 
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    sc=0; 
    for i=1:nuav, 
        sc=sc+totalcost(i,C_new(j,i)); 
    end 
    if sc < mincost  
        bestcomb=C_new(j,:);  
        mincost = sc; 
    end 
end 
 
 
vrt_sim_convert.m 
Authored by Zachary Spritzer 
This file converts all of the data necessary for creating a VRT simulation. 
 
function[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y, 

UAVS,distpast) 
% 
%INPUTS: 
% 
%shr - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs.  The element (nxmx1) x position of the 
%mth UAV at point n.  The element (nxmx2) y position of the mth UAV at 
%point n. 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
%initial x position of the UAVs, the second row is the initial y position 
%of the UAVs, the third row is the initial altitude of the UAVs, and  
%the fourth row is the initial Velocity of the UAVs. 
% 
% 
%OUTPUTS: 
% 
%uav_path_x - is a mxn matrix where m is the number of UAVs and m is the 
%length of the longest path. These are the x coordinates of the paths. 
% 
%uav_path_y - is a mxn matrix where m is the number of UAVs and m is the 
%length of the longest path. These are the y coordinates of the paths. 
% 
%time_uav - is a mxn matrix where m is the number of UAVs and m is the 
%length of the longest path. These values correspond to the time at which 
%the uavs are at coordinates x and y in uav_path_x and uav_path_y. 
% 
%altitude_uav - is a mxn matrix where m is the number of UAVs and m is the 
%length of the longest path. These values correspond to the altitudes that 
%the UAVs are at when they are at coordinates x and y in uav_path_x and 
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%uav_path_y. 
% 
%Threat_range_vrt - is a 1xn vector where n is the number of threats, where 
%the first row is the range of the threats at the altitude where the UAVs 
%are flying. 
% 
%Zone_range_vrt - is a 1xn vector where n is the number of zones, where 
%the first row is the range of the zones at the altitude where the UAVs 
%are flying. 
 
nuav=size(shr_x,2); 
szshrpth=size(shr_x,1); 
shr_x=[[shr_x];[shr_x(szshrpth,:)]]; 
shr_y=[[shr_y];[shr_y(szshrpth,:)]]; 
uav_path_x=zeros(nuav,szshrpth+1); 
uav_path_y=zeros(nuav,szshrpth+1); 
for i=1:nuav, 
    for j=1:szshrpth, 
        if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j,i)] | j==szshrpth, 
            lst_pnt_x=shr_x(j,i); 
            nxtlst_pnt_x=shr_x(j-1,i); 
            lst_pnt_y=shr_y(j,i); 
            nxtlst_pnt_y=shr_y(j-1,i); 
            dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+((lst_pnt_y-nxtlst_pnt_y)^2)); 
            last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(distpast/dist_pnts)); 
            last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(distpast/dist_pnts)); 
            uav_path_x(i,[j+1:szshrpth+1])=last_x; 
            uav_path_y(i,[j+1:szshrpth+1])=last_y; 
            uav_path_x(i,j)=shr_x(j,i); 
            uav_path_y(i,j)=shr_y(j,i); 
            break 
        else 
            uav_path_x(i,j)=shr_x(j,i); 
            uav_path_y(i,j)=shr_y(j,i); 
        end 
    end 
end 
 
%Initializing matrixes 
time_uav_temp=zeros(nuav,szshrpth+1); 
time_uav=zeros(nuav,szshrpth+1); 
altitude_uav=zeros(nuav,szshrpth+1); 
 
%Time matrix 
for i=1:nuav, 
    for j=1:szshrpth, 
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        shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))^2+(uav_path_y(i,j)- 
uav_path_y(i,j+1))^2); 

        time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i); 
    end 
    time_uav(i,[2:szshrpth+1])=sum(time_uav_temp(i,:)); 
    for j=2:szshrpth+1, 
        time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j); 
    end 
end 
 
time_uav=time_uav*1.01; 
 
%Altitude matrix 
for i=1:nuav, 
    for j=1:szshrpth+1, 
        altitude_uav(i,j)=UAVS(3,i); 
    end 
end 
 

plot_uav.m 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
This file will plot the locations of the UAVs and their environment each time the method 
replans, during the simulation, if the plots are enabled. 
 
functionplot_uav(UAVS,TARGETS,ZONES,THREATS,uav_path_x,uav_path_y, 

n_plots,uavs_existing,targ_existing,threats_existing) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plotting results 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(n_plots); 
hold on; 
for i=1:2, 
    subplot(1,2,i), 
    for i=1:size(UAVS,2) 
        if uavs_existing(1,i)==1 
            plot(UAVS(1,i),UAVS(2,i),'bd'); 
            text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b'); 
            axis([5 200 5 200]); 
            hold on; 
        end 
    end 
    for i=1:size(TARGETS,2) 
        if targ_existing(1,i)==1 
            plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0,.4,0]); 
            text(TARGETS(1,i)+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]); 
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            axis([5 200 5 200]); 
            hold on; 
        end 
    end 
    for i=1:size(THREATS,2) 
        if threats_existing(1,i)==1 
            plot(THREATS(1,i),THREATS(2,i),'r*'); 
            text(THREATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r') 
            axis([5 200 5 200]); 
            hold on; 
        end 
    end 
    hold on; 
end  
 
%Plotting threats and range 
for i=1:size(THREATS,2) 
    if threats_existing(1,i)==1 
        t_threat = (1/32:1/32:1)'*2*pi; 
        x_threat = THREATS(3,i)*sin(t_threat)+THREATS(1,i); 
        y_threat = THREATS(3,i)*cos(t_threat)+THREATS(2,i); 
        for i=1:2, 
            subplot(1,2,i),plot(x_threat,y_threat,'r.');hold on; 
        end 
    end 
end 
 
%Plotting No fly Zones 
for i=1:size(ZONES,2) 
    t_nfz = (1/16:1/16:1)'*2*pi; 
    x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i); 
    y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i); 
    for i=1:2, 
        subplot(1,2,i),fill(x_nfz,y_nfz,'k');hold on; 
    end 
end 
 
%Plotting shortened paths 
for i=1:size(uav_path_x,1) 
    subplot(1,2,2),plot(uav_path_x(i,:),uav_path_y(i,:),'b-');hold on; 
end 
subplot(1,2,1),title('Initial Positions');hold on; 
subplot(1,2,2),title('Shortened Selected Paths');hold on; 
for i=1:2, 
    subplot(1,2,i),axis([-25 250 -25 250]);hold on; 
end 

 70



 

Appendix B:  Main SIMULINK diagrams for the Partially 
Decoupled Simulation  

 
This model is the top level for the partially decoupled simulation.  The GUI Inputs, User 
Defined Battlefield, and Pre-defined Battlefield all offer different ways to input the 
necessary data.  The Plot Simulation button will show the paths the vehicles actually take 
in their quest to fulfill the mission.   
 
pathplan.mdl 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
The main model for the path planning and task allocation simulation of the partially 
decoupled system. 
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pathplan/ PATH PLANNING 
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter 
The path planning subsystem calls the path_planning.m file. 
 
 

 
 
pathplan/SIGNAL REPLAN 
Authored by Zachary Spritzer, and Matthew Lechliter 
This code is called every time a replan is signaled. 
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pathplan/TARGETS MANAGER 
Authored by Zachary Spritzer, and Matthew Lechliter 
The target manager subsystem is responsible for identifying when a target changes state 
and signaling an appropriate replan. 
 

 
 
pathplan/TARGETS CLASSIFIER 
Authored by Zachary Spritzer, and Matthew Lechliter 
The targets classifier subsystem determines when a target is classified and signals 
appropriate replans. 
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pathplan/ADD WAYPOINTS 
Authored by Jennifer Hazelton,  Zachary Spritzer, and Matthew Lechliter 
When the number of targets is less than the number of vehicles, the ADD WAYPOINTS 
subsystem adds targets with a value of zero until the targets equal the vehicles in number. 

 
 
pathplan/THREATS MANAGER 
Authored by Zachary Spritzer, and Matthew Lechliter 
The threats manager subsystem, in Figure 15, determines when a threat fires and signals a 
appropriate replans.   
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pathplan/UAV MANAGER 
Authored by Zachary Spritzer, and Matthew Lechliter 
The UAV Manager subsystem determines when a vehicle has been destroyed and signals 
appropriate replans. 

 
 
pathplan/UAV CRASH 
Authored by Zachary Spritzer, and Matthew Lechliter 
The UAV crash subsystem determines if a UAV’s path intersects a no-fly zone.  If it 
does, then the vehicle is considered lost. 
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pathplan/UAV DOWN 
Authored by Zachary Spritzer, and Matthew Lechliter 
The UAV down subsystem detects whether a vehicle has been shot down by a threat. 
 

 
pathplan/UAV DOWN 
Authored by Zachary Spritzer, and Matthew Lechliter 
The UAV intercepted subsystem determines whether a threat hits a vehicle.   
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Appendix C:  Model file for the Combined Method 
Authored by Jennifer Hazelton 
### Combined path planning and task allocation UAV problem ### 
### used for each scenario ### 
 
# sets of data, corresponding to indices 
set Nv;  # number of vehicles 
set Nw; # number of targets 
set Nz;  # number of no-fly zones 
set Nk;  # number of corners on a no-fly zone 
set Pos; # x-position, y-position of targets 
 
# parameters, data for the model 
param Nt  >0; # number of time steps 
param posmax >0; # maximum position of vehicle from origin 
param vmax  >0; # maximum velocity of vehicle 
param fmax  >0;  # maximum force on vehicle 
param sigma1  >0;  # weighting factor 
param sigma2  >0;  # weighting factor 
param x0 {Nv}; # initial values of x-location 
param y0 {Nv}; # initial values of y-location 
param xdot0 {Nv}; # initial values of x-velocity 
param ydot0 {Nv}; # initial values of y-velocity 
param Z {Nz,Nk}; # locations of NFZ 
param R;  # relaxation value in NFZ and target constraints 
param W {Nw,Pos}; # locations of targets 
param attack;  # number of times to attack each target 
 
# decision variables 
var tp {p in Nv} integer >=0, <=30;   # vehicle completion time 
var tbar integer >=0, <=35;    # overall mission completion time 
var b {i in Nw, p in Nv, t in 1..Nt} binary;  # target state indicator 
var d {j in Nz, k in Nk, p in Nv, t in 1..Nt} binary; # no-fly zone indicator 
var x {p in Nv, t in 0..Nt} >= 0, <= posmax;  # x-location of vehicle  
var y {p in Nv, t in 0..Nt} >= 0, <= posmax;  # y-location of vehicle 
var xdot {p in Nv, t in 0..Nt} >= -vmax, <= vmax; # x-velocity of vehicle 
var ydot {p in Nv, t in 0..Nt} >= -vmax, <= vmax; # y-velocity of vehicle 
var fx {p in Nv, t in 0..Nt} >= -fmax, <= fmax; # x-force on vehicle 
var fy {p in Nv, t in 0..Nt} >= -fmax, <= fmax; # y-force on vehicle 
 
# objective function 
minimize mission_time: tbar+ sigma1*(sum {p in Nv} tp[p]);  
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# constraints 
 
# initial condition 
subject to initial_cond1 {p in Nv}: x[p,0]     = x0[p]; 
subject to initial_cond2 {p in Nv}: y[p,0]     = y0[p]; 
subject to initial_cond3 {p in Nv}: xdot[p,0] = xdot0[p]; 
subject to initial_cond4 {p in Nv}: ydot[p,0] = ydot0[p]; 
 
# constraint 1 
subject to state_vector_1 {p in Nv, t in 0..Nt-1}:  

x[p,t+1]   = x[p,t]+xdot[p,t]+5.8824*fx[p,t]; 
subject to state_vector_2 {p in Nv, t in 0..Nt-1}:   

y[p,t+1]   = y[p,t]+ydot[p,t]+5.8824*fy[p,t]; 
subject to state_vector_3 {p in Nv, t in 0..Nt-1}: xdot[p,t+1] = xdot[p,t]+11.765*fx[p,t];  
subject to state_vector_4 {p in Nv, t in 0..Nt-1}: ydot[p,t+1] = ydot[p,t]+11.765*fy[p,t]; 
 
# constraint 2, one line for every m in 1..M  
subject to max_force_1  {p in Nv, t in 0..Nt}:  

fx[p,t]*0.58779    + fy[p,t]*0.80902   <= fmax; 
subject to max_force_2  {p in Nv, t in 0..Nt}:  

fx[p,t]*0.95106    + fy[p,t]*0.30902   <= fmax; 
subject to max_force_3  {p in Nv, t in 0..Nt}:  

fx[p,t]*0.95106    + fy[p,t]*(-0.30902)  <= fmax; 
subject to max_force_4  {p in Nv, t in 0..Nt}:  

fx[p,t]*0.58779    + fy[p,t]*(-0.80902)  <= fmax; 
subject to max_force_5  {p in Nv, t in 0..Nt}:  

fx[p,t]*0               + fy[p,t]*(-1)   <= fmax; 
subject to max_force_6  {p in Nv, t in 0..Nt}: 

 fx[p,t]*(-0.58779) + fy[p,t]*(-0.80902)  <= fmax; 
subject to max_force_7  {p in Nv, t in 0..Nt}:  

fx[p,t]*(-0.95106) + fy[p,t]*(-0.30902)  <= fmax; 
subject to max_force_8  {p in Nv, t in 0..Nt}:  

fx[p,t]*(-0.95106) + fy[p,t]*0.30902   <= fmax; 
subject to max_force_9  {p in Nv, t in 0..Nt}:  

fx[p,t]*(-0.58779) + fy[p,t]*0.80902   <= fmax; 
subject to max_force_10  {p in Nv, t in 0..Nt}:  

fx[p,t]*0                + fy[p,t]*1   <= fmax; 
 
# constraint 3 
subject to max_velocity_1  {p in Nv, t in 0..Nt}:  

xdot[p,t]*0.58779    + ydot[p,t]*0.80902   <= vmax; 
subject to max_velocity_2  {p in Nv, t in 0..Nt}:  

xdot[p,t]*0.95106    + ydot[p,t]*0.30902   <= vmax; 
subject to max_velocity_3  {p in Nv, t in 0..Nt}:  

xdot[p,t]*0.95106    + ydot[p,t]*(-0.30902)   <= vmax; 
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subject to max_velocity_4  {p in Nv, t in 0..Nt}:  
xdot[p,t]*0.58779    + ydot[p,t]*(-0.80902)   <= vmax; 

subject to max_velocity_5  {p in Nv, t in 0..Nt}:  
xdot[p,t]*0               + ydot[p,t]*(-1)    <= vmax; 

subject to max_velocity_6  {p in Nv, t in 0..Nt}: 
 xdot[p,t]*(-0.58779) + ydot[p,t]*(-0.80902)  <= vmax; 

subject to max_velocity_7  {p in Nv, t in 0..Nt}:  
xdot[p,t]*(-0.95106) + ydot[p,t]*(-0.30902)   <= vmax; 

subject to max_velocity_8  {p in Nv, t in 0..Nt}:  
xdot[p,t]*(-0.95106) + ydot[p,t]*(0.30902)   <= vmax; 

subject to max_velocity_9  {p in Nv, t in 0..Nt}: 
  xdot[p,t]*(-0.58779) + ydot[p,t]*0.80902   <= vmax; 
subject to max_velocity_10 {p in Nv, t in 0..Nt}:  

xdot[p,t]*0                + ydot[p,t]*1    <= vmax; 
 
# constraint 5 
subject to noflyzone_1 {t in 1..Nt, p in Nv, j in Nz}: x[p,t] - Z[j,'xr'] >= -R*d[j,'xl',p,t]; 
subject to noflyzone_2 {t in 1..Nt, p in Nv, j in Nz}: Z[j,'xl'] - x[p,t] >= -R*d[j,'yl',p,t];  
subject to noflyzone_3 {t in 1..Nt, p in Nv, j in Nz}: y[p,t] - Z[j,'yr'] >= -R*d[j,'xr',p,t]; 
subject to noflyzone_4 {t in 1..Nt, p in Nv, j in Nz}: Z[j,'yl'] - y[p,t] >= -R*d[j,'yr',p,t]; 
subject to noflyzone_5 {t in 1..Nt, p in Nv, j in Nz}:  sum {k in Nk} d[j,k,p,t] <= 3; 
 
# constraint 6 
subject to target_1 {p in Nv, t in 1..Nt, i in Nw}: x[p,t] - W[i,'xpos'] <= R*(1-b[i,p,t]); 
subject to target_2 {p in Nv, t in 1..Nt, i in Nw}: x[p,t] - W[i,'xpos'] >= -R*(1-b[i,p,t]); 
subject to target_3 {p in Nv, t in 1..Nt, i in Nw}: y[p,t] - W[i,'ypos'] <= R*(1-b[i,p,t]);  
subject to target_4 {p in Nv, t in 1..Nt, i in Nw}: y[p,t] - W[i,'ypos'] >= -R*(1-b[i,p,t]); 
 
# constraint ensure targets are hit, right hand side indicates how many times the vehicle 
#must be hit 
subject to hit_target1: sum{p in Nv} (sum {t in 1..Nt} b['targ1',p,t]) = attack; 
subject to hit_target2: sum{p in Nv} (sum {t in 1..Nt} b['targ2',p,t]) = attack; 
 
# constraint 7 
subject to vehicle_completion_t {p in Nv, i in Nw}: tp[p] >= sum {t in 1..Nt} t*b[i,p,t]; 
 
 
# constraint 8  
subject to mission_completion_t {p in Nv}: tbar >= tp[p];
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Appendix D:  Data file for the Combined Method  
Authored by Jennifer Hazelton 

Scenario 1 
#### Data file for path planning and task allocation #### 
 
# sets of data, or the indices explicitly 
set Nv:= uav1 uav2;  # number of UAVs 
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones 
set Nk:= xl yl xr yr;  # corners of a no-fly zone 
set Nw:= targ1 targ2;  # number of targets 
set Pos:= xpos ypos;  # x- and y-location of targets 
 
param Nt := 3;  # number of time steps 
param posmax := 70;   # m, maximum position value of a UAV 
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s) 
param fmax := 2.35; # N, Roskam 
param sigma1 := 0.001; # weighting factor 
param attack := 1;  # number of times to attack each target 
param R := 100000; # relaxation value in NFZ and target constraints 
 
param : x0 y0 xdot0 ydot0  := 
 uav1 15 14 10 1  
 uav2 12 17 5 3 ; 
 
param Z: xl yl xr yr := 
  nfz1  16.4 17.5 21.6 20.5 
  nfz2  17.5 16.4 20.5 21.6 
  nfz3  16.88 16.88 21.12 21.12;   
 
param W: xpos ypos := 
  targ1  30 27 
  targ2  27 30 ; 
 
Scenario 2 
#### Data file for path planning and task allocation #### 
 
# sets of data, or the indices explicitly 
set Nv:= uav1 uav2;  # number of UAVs 
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones 
set Nk:= xl yl xr yr;  # corners of a no-fly zone 
set Nw:= targ1 targ2;  # number of targets 
set Pos:= xpos ypos;  # x- and y-location of targets 
 
param Nt := 3;  # number of time steps 
param posmax := 70;   # m, maximum position value of a UAV 
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param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s) 
param fmax := 2.35; # N, Roskam 
param sigma1 := 0.001; # weighting factor 
param attack := 1;  # number of times to attack each target 
param R := 100000; # relaxation value in NFZ and target constraints 
 
param : x0 y0 xdot0 ydot0  := 
 uav1  10 5 12 1  
 uav2  5 10 2 9.25 ; 
 
param Z: xl yl xr yr := 
  nfz1  16.4 17.5 21.6 20.5 
  nfz2  17.5 16.4 20.5 21.6 
  nfz3  16.88 16.88 21.12 21.12;   
 
param W: xpos ypos := 
  targ1  30 27 
  targ2  27 30 ; 
 
Scenario 3 
#### Data file for path planning and task allocation #### 
 
# sets of data, or the indices explicitly 
set Nv:= uav1 uav2;  # number of UAVs 
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones 
set Nk:= xl yl xr yr;  # corners of a no-fly zone 
set Nw:= targ1 targ2;  # number of targets 
set Pos:= xpos ypos;  # x- and y-location of targets 
 
param Nt := 3;  # number of time steps 
param posmax := 70;   # m, maximum position value of a UAV 
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s) 
param fmax := 2.35; # N, Roskam 
param sigma1 := 0.001; # weighting factor 
param attack := 1;  # number of times to attack each target 
param R := 100000; # relaxation value in NFZ and target constraints 
 
param : x0 y0 xdot0 ydot0  := 
 uav1  18 12 6 7  
 uav2  12 18 1 4 ; 
 
param Z: xl yl xr yr := 
  nfz1  16.4 17.5 21.6 20.5 
  nfz2  17.5 16.4 20.5 21.6 
  nfz3  16.88 16.88 21.12 21.12;   
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param W: xpos ypos := 
  targ1  30 27 
  targ2  27 30 ; 
 
Scenario 4 
#### Data file for path planning and task allocation #### 
 
# sets of data, or the indices explicitly 
set Nv:= uav1 uav2;  # number of UAVs 
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones 
set Nk:= xl yl xr yr;  # corners of a no-fly zone 
set Nw:= targ1 targ2;  # number of targets 
set Pos:= xpos ypos;  # x- and y-location of targets 
 
param Nt := 3;  # number of time steps 
param posmax := 70;   # m, maximum position value of a UAV 
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s) 
param fmax := 2.35; # N, Roskam 
param sigma1 := 0.001; # weighting factor 
param attack := 1;  # number of times to attack each target 
param R := 100000; # relaxation value in NFZ and target constraints 
 
param : x0 y0 xdot0 ydot0  := 
 uav1  20.5 15 13.41 0  
 uav2  15 20.5 0 13.41 ; 
 
param Z: xl yl xr yr := 
  nfz1  16.4 17.5 21.6 20.5 
  nfz2  17.5 16.4 20.5 21.6 
  nfz3  16.88 16.88 21.12 21.12;   
 
param W: xpos ypos := 
  targ1  30 27 
  targ2  27 30 ; 
 
Scenario 5 
#### Data file for path planning and task allocation #### 
 
# sets of data, or the indices explicitly 
set Nv:= uav1 uav2;  # number of UAVs 
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones 
set Nk:= xl yl xr yr;  # corners of a no-fly zone 
set Nw:= targ1 targ2;  # number of targets 
set Pos:= xpos ypos;  # x- and y-location of targets 
 
param Nt := 3;  # number of time steps 
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param posmax := 70;   # m, maximum position value of a UAV 
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s) 
param fmax := 2.35; # N, Roskam 
param sigma1 := 0.001; # weighting factor 
param attack := 1;  # number of times to attack each target 
param R := 100000; # relaxation value in NFZ and target constraints 
 
param : x0 y0 xdot0 ydot0  := 
 uav1  6 12 2 10  
 uav2  12 6 13 0 ; 
 
param Z: xl yl xr yr := 
  nfz1  16.4 17.5 21.6 20.5 
  nfz2  17.5 16.4 20.5 21.6 
  nfz3  16.88 16.88 21.12 21.12;   
 
param W: xpos ypos := 
  targ1  30 27 
  targ2  27 30 ;

 83


	Comparison of partially decoupled and combined methods of path planning and task allocation
	Recommended Citation

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Chapter 1:  Introduction
	1.1 Thesis Objective
	1.2 Survey of Previous Work

	Chapter 2:  Partially Decoupled Approach
	2.1  Generating Initial Paths
	2.2  Task Allocation

	Chapter 3:  Combined Approach
	3.1  Classic Mixed Integer Linear Program (MILP)
	3.2  Path Planning and Task Allocation MILP

	Chapter 4:  Comparison between the Partially Decoupled and C
	4.1  Simulation Parameters Defined
	4.2 Results from the Comparison

	Chapter 5:  Conclusions and Recommendations
	References
	Appendix A:  Main Matlab files for the Partially Decoupled S
	Appendix B:  Main Simulink diagrams for the Partially Decoup
	Appendix C:  Model file for the Combined Method

		2004-05-06T10:37:36-0400
	John H. Hagen
	I am approving this document




