
Graduate Theses, Dissertations, and Problem Reports

2004

Comparison of partially decoupled and combined methods of Comparison of partially decoupled and combined methods of

path planning and task allocation path planning and task allocation

Jennifer Beth Hazelton
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Hazelton, Jennifer Beth, "Comparison of partially decoupled and combined methods of path planning and
task allocation" (2004). Graduate Theses, Dissertations, and Problem Reports. 1437.
https://researchrepository.wvu.edu/etd/1437

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1437?utm_source=researchrepository.wvu.edu%2Fetd%2F1437&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Comparison of Partially Decoupled and Combined Methods of Path
Planning and Task Allocation

Jennifer Beth Hazelton

Thesis submitted to the
College of Engineering and Mineral Resources

 at West Virginia University
 in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

Marcello Napolitano, Ph. D., Chair
Gary Morris, Ph. D.
Jacky Prucz, Ph. D.

Department of Mechanical and Aerospace Engineering

Morgantown
West Virginia

2004

KEYWORD: UNMANNED AERIAL VEHICLES

Abstract

Comparison of Partially Decoupled and Combined Methods of Path
Planning and Task Allocation

Jennifer Beth Hazelton

Developing autonomous unmanned aerial vehicles (UAVs) reduces the risks to which
soldiers are subjected by enabling the UAVs to make efficient decisions, regardless of the
situation. This requires each group of UAVs to be proficient in planning their own paths
and assigning tasks in a way that minimizes the total cost of the mission. Two methods
are presented for doing this, the partially decoupled approach and the combined
approach. After comparing two methods, the partially decoupled approach costs an
average of 3.0 meters less than the combined approach, while taking an average of 0.327
seconds longer to complete. This indicates that the partially decoupled method should be
chosen if the main concern is the cost of the mission and the combined approach should
be chosen if computational time is the main concern.

Table of Contents

Abstract ... ii

Table of Contents... iii

List of Tables ... iv

List of Figures ... v

Nomenclature... vi

Chapter 1: Introduction .. 1

1.1 Thesis Objective ... 1

1.2 Survey of Previous Work.. 2

Chapter 2: Partially Decoupled Approach ... 8

2.1 Generating Initial Paths ... 8

2.2 Task Allocation.. 15

Chapter 3: Combined Approach .. 21

3.1 Classic Mixed Integer Linear Program (MILP)... 21

3.2 Path Planning and Task Allocation MILP ... 23

Chapter 4: Comparison between the Partially Decoupled and Combined Approaches... 29

4.1 Simulation Parameters Defined ... 29

4.2 Results from the Comparison ... 30

Chapter 5: Conclusions and Recommendations .. 43

References... 45

Appendix A: Main MATLAB files for the Partially Decoupled Simulation 47

Appendix B: Main SIMULINK diagrams for the Partially Decoupled Simulation............ 71

Appendix C: Model file for the Combined Method... 77

Appendix D: Data file for the Combined Method ... 80

 iii

List of Tables

Table 1: MMKP example costs, in meters, for each vehicle to visit each target 16

Table 2: MILP example costs, in meters, for each vehicle to visit each target......... 22

Table 3: Mission cost, in meters, for each method and scenario 42

Table 4: CPU time, in seconds, for each method and scenario.................................. 42

 iv

List of Figures

Figure 1: Voronoi diagram based on UAVs, targets, threats, and no-fly zones........ 10

Figure 2: Example of Dijkstra’s algorithm ... 11

Figure 3: The selected paths from the Voronoi diagram ... 13

Figure 4: Shortened paths for each UAV to target permutation............................... 15

Figure 5: Selected paths with the lowest mission cost .. 17

Figure 6: Circular no-fly zone approximated with rectangles................................... 30

Figure 7: Initial setup of the battlefield, scenario 1 .. 31

Figure 8: Results for scenario 1 using the partially decoupled method.................... 32

Figure 9: Results for scenario 1 using the combined method 33

Figure 10: Initial setup of the battlefield, scenario 2 .. 34

Figure 11: Results for scenario 2 using the partially decoupled method.................. 35

Figure 12: Results for scenario 2 using the combined method 35

Figure 13: Initial setup of the battlefield, scenario 3 .. 36

Figure 14: Results for scenario 3 using the partially decoupled method.................. 37

Figure 15: Results for scenario 3 using the combined method 37

Figure 16: Initial setup of the battlefield, scenario 4 .. 38

Figure 17: Results for scenario 4 using the partially decoupled method.................. 39

Figure 18: Results for scenario 4 using the combined method 39

Figure 19: Initial setup of the battlefield, scenario 5 .. 40

Figure 20: Results for scenario 5 using the partially decoupled method.................. 41

Figure 21: Results for scenario 5 using the combined method 41

 v

Nomenclature

Variable Description Units

A constraint coefficient matrix, ---

state space system matrix

B state space input matrix ---

b constraint values vector ---

c objective function coefficients vector ---

dist distance m

ε weighting factor ---

f force, force vector N

g number of times a target must be visited ---

J objective function utility ---

M number of segments ---

m index of M ---

N number of ---

R relaxation factor ---

s state vector ---

t time, s

time step ---

t overall mission completion time step ---

v velocity m/s

W target matrix ---

x x-location, decision variable vector m

x� velocity in x-direction m/s

 vi

y y-location m

y� velocity in y-direction m/s

Z no-fly zone matrix m

Subscript Description Units

i target designation ---

j no-fly zone designation ---

k direction ()YYXX −=+=−=+= 4,3,2,1 ---

max maximum ---

p vehicle designation ---

t time, s

time step designation ---

v vehicles ---

w targets ---

z no-fly zones ---

0 time step = 0 ---

1 first of a set, x-position ---

1:4 locations 1 through 4 in relation ---

to the no-fly zones

2 second of a set, y-position ---

Acronym Description Units

AMPL A Modeling Language for Mathematical ---

Programming

CPU central processing unit ---

MILP mixed-integer linear program ---

 vii

MMKP multi-dimensional multiple-choice ---

knapsack problem

POK probability of kill ---

UAV(s) unmanned air vehicle(s) ---

VRT virtual reality toolbox ---

 viii

Chapter 1: Introduction

1.1 Thesis Objective

 The United States’ military has assumed a more physical role in the world’s

affairs, with Operation Enduring Freedom and Operation Iraqi Freedom. These

operations are intended to make the world safer; however, soldiers’ lives are still at risk.

One way to decrease the risks to which soldiers are subjected is increasing the use of

unmanned air vehicles (UAVs). Currently, UAVs only exist as remotely piloted

platforms. The amount of manpower required for operation decreases as the level of

autonomous control increases.9

 In the future, it is desirable to have UAVs capable of providing reconnaissance

information and delivering ordnance to specified targets independently. Autonomous

UAVs are capable of making decisions efficiently. They do not suffer from the stresses

that affect humans and their decision making abilities. This enables the vehicles to

respond quickly to rapidly changing environments. Each UAV task force will be capable

of cooperative path planning and task allocation. Ideally, UAVs will make cooperative,

optimal decisions to minimize the total cost of the mission.

This thesis discusses and compares two methods that provide the UAVs with the

tools necessary for path planning and task allocation. The paths must be known before

any tasks can be assigned. However, the paths cannot be planned unless the UAV knows

which task it must complete. The task allocation refers to assigning each vehicle a

specific target to visit. Solving these problems in a partially decoupled manner involves,

first, generating the cheapest paths from each UAV to every target. Then, the tasks are

allocated to minimize the overall cost of the mission while ensuring every target is

 1

visited. The costs of the paths may include fuel cost, related to distance traveled, and

threat risk cost, associated with the threats on the battlefield. A second approach to

solving the path planning and task allocation problem maintains the combined

relationship between them. The paths are planned and tasks are assigned simultaneously.

Five scenarios, each involving two UAVs, two targets, and one no-fly zone are

investigated. Each scenario is evaluated with the partially decoupled approach and the

combined approach. The two approaches have the same input data and produce

comparable plots indicating the paths the UAVs will take to complete their tasks. The

results will indicated which method costs more to complete and/or is more

computationally intensive.

1.2 Survey of Previous Work

 Many approaches for path planning and task allocation have been investigated.

These include different types of trajectory generators, such as using visibility grids and

Voronoi diagrams, and different types of solution methods, including hierarchical,

partially decoupled, and combined methods. The results from previous efforts indicate

that completely autonomous UAVs are not far in the future. For the purposes of this

thesis, one trajectory generation approach and three complete approaches were found to

be most applicable.

The trajectory generation approach presented here involves work by Timothy W.

McLain and Randal W. Beard at Brigham Young University and McLain with Phillip R.

Chandler, Steven Rasmussen and Meir Pachter at Wright-Patterson Air Force Base.

McLain and Beard present a method for generating flyable trajectories that minimize the

risk to the UAVs. To minimize the risk further, the targets are attacked simultaneously.

 2

The locations of the UAVs (initially), threats, and targets are known. Tasks are assigned

prior to the trajectory generation; specifically, each UAV knows the target it is to attack.

A Voronoi diagram, based on threat locations, provides paths that minimize the threat

risk to the UAVs as they travel to the targets. However, the Voronoi diagram does not

have an internal mechanism to attach the UAVs, at their initial locations, or the targets to

the diagram. Therefore, these UAV positions and target locations are connected to the

respective three closest nodes of the diagram. Costs, based on threat risk and fuel

consumption, are assigned to each edge of the Voronoi diagram. Dijkstra’s algorithm

searches the Voronoi diagram to determine the least expensive paths from each UAV to

its particular target.16

The UAVs are given the same, constant velocities. These velocities are the

maximum that each UAV can achieve, enabling the UAV to reach the target as quickly as

possible. Because each UAV has the same velocity, the length of each path can

determine the order of target visitations. To accurately compare the lengths of the initial

paths, they are divided into fixed length segments. Adding an appropriate number of

segments to the shorter paths equalizes the path lengths. These segments modify the

costs of the paths. However, they do not change the mission completion time. Instead,

they organize the target visitations to all occur at the same time.16

Then, the paths need to be made flyable. The sharp corners in the paths are

smoothed until the vehicles’ dynamics are capable of making the turns. The paths are

smoothed with a method similar to straightening a chain. Each path segment is

represented by a link in the chain. The threats apply repulsive forces to the chain

ensuring that the path does not approach too close to the threats. Internal forces in the

 3

chain act to straighten it. This results in a minimal risk, smooth path for the UAVs to

follow when attacking their targets.16

The McLain, Chandler, et al approach is based on the McLain and Beard method

of trajectory generation. Instead of using Dijkstra’s cheapest path algorithm, this

approach utilizes Eppstein’s k shortest paths algorithm. It extends the mission of the

UAVs by requiring them to travel to a specified location after simultaneously attacking

the targets. An estimated time until arrival at the rendezvous location is cooperatively

decided upon in a manner that minimizes the threat risk to the entire team. This method

may result in one or more UAVs being dismissed from the mission and sent to a

predefined location away from the battlefield. A UAV is only sent home when the

remaining UAVs can complete all of the tasks in a way that reduces the overall mission

time. This method provides a cooperative control algorithm for UAVs attacking

predefined targets and rendezvousing at a predetermined location.15

When the tasks are not assigned prior to the trajectory generation, a complete

approach must be used. The first complete approach uses a hierarchical approach for task

allocation and searches for objects, such as targets, within an assigned area, as researched

at the Wright-Patterson Air Force Base by Chandler and Pachter. This approach divides

the path planning and task allocations into three levels. The top-level team agent must

ensure that the mission objectives are met. It must define the objectives and assign the

tasks for each sub-team. A sub-team consists of the number of UAVs to accomplish a

particular task. The mid-level sub-team agent assigns tasks to individual UAVs. These

tasks may include target verification, attacking the target, battle damage assessment, and

rendezvous coordination, among others. The lower level vehicle agent contains

 4

information about the terrain, threats, and targets. The vehicle agent is responsible for

path planning and trajectory generation for each vehicle, independently. After an

assignment algorithm has defined the sub-teams, new targets and vehicles are allocated to

these teams using a market analogy based assignment algorithm.5

 This approach has no specified leader. The algorithms must be contained on each

vehicle, enabling all vehicles to arrive at the same decisions using the same, shared

information. This redundancy makes the system fault tolerant; if one vehicle is

destroyed, the others can continue with the mission.5

 The simulation for this hierarchical method begins with the vehicles in formation,

following a serpentine search pattern. Tasks are assigned as objects are detected. When

a vehicle attacks a target, it is destroyed. The UAVs are essentially flying bombs. After

targets are attacked and assessed, the remaining vehicles continue the search pattern. The

results of these simulations indicate that the sub-team agents reduce the amount of

necessary communication, although with some reduction in the optimality of the results.

Also, large numbers of vehicles benefit from the market based analogy algorithm when

the assignments remain decoupled.5

The second complete approach involves partially decoupling the path planning

and task allocation of the problem. John Bellingham, Michael Tillerson, Arthur

Richards, and Jonathan P. How have developed this approach at Massachusetts Institute

of Technology. The basic problem requires a team of UAVs to visit a set of targets

while avoiding specified no-fly zones. Path planning and task allocation are strongly

coupled. It is difficult to assign tasks without knowing the UAV to target assignments.

Similarly, paths cannot be planned until each UAV knows which tasks it is to perform at

 5

which targets. Path planning and task allocation can be partially decoupled. First, rough

paths from each UAV’s initial location to every target are created. Then, tasks are

allocated based on these paths. 3

The initial paths from the UAV’s starting position to every target, while avoiding

no-fly zones, are found with a visibility grid. This visibility grid provides straight-line

paths from the starting positions through obstacle vertices to the targets. Many

permutations exist for a single UAV to visit multiple targets, especially when the

visitation order is not specified. To find the shortest paths within the visibility grid, a

shortest path algorithm, such as the Floyd-Warshall All-Pairs Shortest Path algorithm, is

applied.3

These shortest paths are then provided to the task allocation portion of this

approach. A multi-dimensional multiple-choice knapsack problem (MMKP) provides a

clear, useful method for assigning tasks. One path must be chosen for each vehicle from

the available permutations from UAV to targets. The combination of chosen paths must

minimize the cost for the mission and follow the appropriate conditions placed on the

ordering of targets. These conditions force the MMKP to be solved as a mixed-integer

linear program (MILP). The resulting information indicates which target, and in what

order, the UAVs are to attack. After the tasks are assigned, the paths become flyable,

detailed trajectories.3

This approach has the ability to react to a dynamic environment in two ways. The

first is a local repair, where the vehicle that detects the change adapts to the change. If a

new target is discovered, then the target is added to the vehicle’s list of tasks. If a new

no-fly zone is discovered, then the vehicle modifies its trajectory to avoid the obstacle.

 6

The second reaction is a sub-team solution, where vehicles capable of adapting to the

change are included in the reassignment of tasks and/or modification of trajectories.

Although this approach provides suboptimal solutions to the path planning and task

allocation problem, the partially decoupled approach is not computationally intensive and

can quickly provide solutions. It may also exist on multiple vehicles, providing fault

tolerant systems.3

The third complete approach involves a combined solution for path planning and

task allocation, as developed by Richards, How, et al. The problem is formulated in a

manner that allows one MILP, using a branch-and-bound algorithm, to solve the path

planning and task allocation problems simultaneously. The vehicles are assumed to be

flying at a constant altitude with constant speed. The locations of the UAVs’ starting

points, the no-fly zones, and the targets must be known. Constraints limiting the vehicles

paths and capabilities must be defined using linear equations. These constraints include

vehicle dynamics, maximum vehicle velocities, maximum forces the vehicle can

withstand, collision avoidance, and minimum time trajectories. After carefully defining

the constraints, the problem is ready to be solved. The results of the MILP are optimal

trajectories to complete the assigned tasks. However, this approach is extremely

computationally intensive. 3,18,19,20

 7

Chapter 2: Partially Decoupled Approach

The partially decoupled approach is investigated due to the results presented in

“Coordination and Control of Multiple UAVs20” and “Multi-task Allocation and Path

Planning for Cooperating UAVs3.” The basic outline for creating a partially decoupled

simulation for path planning and task allocation is described by these papers. This

approach generates paths prior to allocating tasks. After allocating the tasks, the paths

are improved to reduce the overall mission cost. The process followed to generate paths

and assign tasks using a partially decoupled method is explained in this chapter.

2.1 Generating Initial Paths

The first step in this approach is to determine the initial paths to be used when

assigning tasks. To do this, certain values must be known: UAV number, starting

locations, altitudes, velocities; no-fly zone number, locations, and radii; target number,

locations, values, and states; and threat number, locations, effective ranges, probabilities

of kill (POK), and states. The simulation user supplies all of this information. The

UAVs’ altitudes and velocities do not change in this simulation. At this point in the

simulation, the states of the targets and threats indicate whether the object is static or

dynamic. A static object is known at the beginning of the simulation. A dynamic object

appears at a specified time during the simulation. The effective ranges and POK for the

threat are dependent on its type. The threats in the partially decoupled approach

include17:

 8

• KS-19 100mm Antiaircraft Artillery - Range 4000 meters, 40% POK
• SA-7 Grail - Man-Portable SAM - Range 5000 meters, 50% POK
• Crotale SAM - Range 10,000 meters, 80% POK
• SA-2 - Range 30,000 meters, 80% POK

The path planning portion requires an initial path generation. These initial paths

need to completely avoid the no-fly zones, and minimize risk associated with the threats.

A Voronoi diagram, as shown in McLain and Beard’s work, provides a simple way to

create paths while avoiding threats and no-fly zones. To create a Voronoi diagram, a set

of nodes to be avoided are located on a plane22. Polygons are then created around each

node using Delaunay triangulation22. The vertices of the polygon are closer to its central

node than to any other node22. This produces Voronoi edges that are halfway between

the two closest nodes22. The Voronoi diagram used in the initial path planning is based

on the known threat locations, no-fly zone locations3,16, and nodes placed around the

outer edge of the battlefield. There are four nodes, equally spaced, on each edge of the

rectangular battlefield. These nodes are incorporated because the number of threats and

no-fly zones do not provide enough nodes to generate a useful Voronoi diagram. These

nodes also guarantee a path that does not intersect any threats or no-fly zones exists

around the outer edge of the battlefield. The UAV starting locations and the target

locations must then be connected to the diagram. These locations are connected to the

three respective closest nodes16. Figure 1 shows a Voronoi diagram, with the vehicles

and threats connected to it.

 9

Figure 1: Voronoi diagram based on UAVs, targets, threats, and no-fly zones

 Next, the cheapest paths for all of the permutations of UAVs to targets need to be

determined. Several shortest path algorithms were reviewed, including Floyd-Warshall

All-Pairs Shortest Path algorithm, Eppstein’s k shortest paths algorithm, Bellman-Ford

algorithm, and Dijkstra’s shortest path algorithm. Dijkstra’s algorithm is chosen for this

simulation due to its simplicity and the availability of code for use with MATLAB, written

by Michael G. Kay12. This algorithm requires a directed graph with positive weights, or

costs, associated with each segment4,10. The starting node (UAV) and finishing node

(target) must be specified4,10. The path’s cost is the summation of each segment’s

weight10. The algorithm works by beginning at a UAV node, selecting the cheapest path

segment, moving to the next vertex, selecting the cheapest path segment, and repeating

 10

until the appropriate target node is reached4,9,10. Before Dijkstra’s algorithm can be

applied, the direction and cost for each path segment must be defined. This direction

indicates the tail and head of each segment. The vehicles only travel from the tail to the

head.

 A simple example of Dijkstra’s algorithm is illustrated by Figure 2. The starting

node is A, while the finishing node is D. The cheapest path from A to D is determined by

looking at the path from A directly to D, with a cost of 10, and the path from A to B to C

to D, with a cost of 6. The resulting cheapest path is from A to B to C to D.

10
A D

2 2

C
2

B

Figure 2: Example of Dijkstra’s algorithm

For the UAV path planning, the vehicles may travel in either direction along a

segment. Therefore, all edges are specified in both directions. Since all of the UAVs are

assumed to be flying at constant speeds, the length of each edge represents how long it

will take to travel that distance and represents fuel consumption. Therefore, the costs

 11

representing time and fuel consumption are comparable. In this approach, costs are

generated for each Voronoi edge, representative of fuel consumption. Each edge’s cost is

determined using Equation 1,

() ()2
21

2
21cost yyxx −+−= (1)

where x1 and y1 indicate the x- and y-location of the beginning of the edge and x2 and y2

indicate the x- and y-location of the end of the edge.

Then, the costs of the edges are updated to include the costs for intersecting no-fly

zones and threats. The cost due to a collision with a no-fly zone is described in Equation

2.

 (2) fuel
30

NFZ cost*101cost ×=

This makes the cost of traveling along a segment that intersects a no-fly zone so

expensive that it is never chosen. The cost for intersecting a threat and/or its effective

range is related to the POK, as shown in Equation 3.

fuelthreat cost100*POKcost += (3)

The POK is a percentage value associated with the particular type of threat. The total

cost for each segment is then defined as Equation 4.

threatNFZfueltotal costcostcostcost ++= (4)

At this point, Dijkstra’s algorithm is implemented to find the cheapest paths for each

permutation from UAV to targets. Figure 3 contains the cheapest paths from the Voronoi

diagram.

 12

Figure 3: The selected paths from the Voronoi diagram

 Dijkstra’s algorithm produces the cheapest, but not necessarily the best, paths that

a UAV could take to reach its target. Upon inspection, the Voronoi diagram gives paths

that tend to have many unnecessary turns. To eliminate these excess turns, line-of-sight

paths are investigated. The Voronoi edges are first divided into ten segments, to provide

more nodes used for path shortening. The nodes are located at the vertices of the path

segments. Starting from a UAV and going directly to a target, a straight line is drawn

and checked for intersections with threats and no-fly zones. If the line does not intersect

any threats or no-fly zones, then it becomes the new path for this particular permutation.

If a threat or no-fly zone is intersected, then a straight line from the UAV to the node

prior to the target is drawn and checked for intersections. If no intersections exist, this

 13

straight line is the new path. Otherwise, a straight line is drawn from the UAV to the

next previous node. This process is repeated until a straight line is found without any

intersections. The node corresponding to the end of this straight line becomes the new

starting point. Straight lines from this new starting point to the target are checked for

intersections following the same logic as from the UAV to the target. This process is

complete when the target is reached. The results are shorter, simpler paths from the

UAVs to the targets.

 These shortened paths may still have some sharp corners that violate the

minimum turning radius of the UAV, making them impossible for the UAVs to follow.

To make the paths flyable, fillets are placed in the corners that are too sharp. These

fillets have a radius equivalent to the minimum turning radius of the UAV. The fillet is

placed as close to the vertex as possible, using the law of cosines to determine where the

fillet intersects the existing path. The fillet then becomes part of the path, replacing the

corner. The UAV must correct its heading angle to follow the changes in direction from

these paths. The simulation ensures that the heading angle is recorded and properly

modified to allow for all turns required by the mission. Figure 4 shows the shortened

paths from each UAV to each target.

 14

Figure 4: Shortened paths for each UAV to target permutation

 Most paths change significantly from those produced by the Voronoi diagram.

For this reason, the costs of the paths are updated at this point to accurately reflect the

shortened, smoothed paths. Knowing the costs for the best paths from UAVs to targets,

the tasks can now be assigned.

2.2 Task Allocation

In [3], the partially decoupled problem formulates its task allocation problem as a

multi-dimensional multiple-choice knapsack problem (MMKP). The MMKP is a classic

problem that requires one item, having a value and a resource requirement, to be chosen

from each group. Several groups exist, each containing several items. The value

 15

indicates the benefit of choosing a particular item, while the resource indicates a

restriction on which combination of items may be chosen. The combined value of the

items chosen from the groups must be maximized while adhering to the resource

constraints.2,3,13

The UAV task allocation problem presented here has a number of groups equal to

the number of UAVs. Each group consists of the paths corresponding to a particular

UAV to each of the targets. A constraint on this problem says that a vehicle may only

have one path assigned to it. Also, every target must have a vehicle assigned to it. Every

target is visited, even if the importance of visiting a particular target is much greater than

that of another target. The goal of the problem is to minimize the total cost of the

mission.

A simple example of how the MMKP works involves three vehicles and three

targets. The data given to the MMKP is displayed in Table 1.

Table 1: MMKP example costs, in meters, for each vehicle to visit each target

 UAV 1 UAV 2 UAV 3

Target 1 100m 110m 150m

Target 2 280m 225m 250m

Target 3 500m 550m 575m

Each target must be visited, and each vehicle must have a task assigned to it. These

constraints must be met, while still finding the cheapest combination of paths and tasks.

The resulting combination that provides the lowest cost has UAV 1 visiting target 3,

UAV 2 visiting target 1, and UAV 3 visiting target 2. The total cost of this mission is

 16

860 meters. Any other combination of vehicles and targets results in a higher mission

cost.

In this simulation, the minimum mission cost is determined by finding all of the

permutations from UAV starting locations to targets. Then, the total cost for each

permutation is calculated. The permutation with the lowest cost indicates which set of

paths will allow the UAVs to accomplish their mission of destroying all targets while

minimizing risk and cost. The selected paths with the lowest mission cost are shown in

Figure 5.

Figure 5: Selected paths with the lowest mission cost

All of the steps up to this point assume that the number of UAVs equals the

number of targets and the environment is static. When the number of UAVs is greater

 17

than the number of targets, the simulation places a duplicate target at the same location of

the target with the greatest value. The duplicate target is assigned a value of zero, and

cannot be classified or destroyed. This target causes a second UAV to visit the most

valuable target to help ensure its destruction. Duplicate targets are created until the

number of targets equals the UAVs. With each new duplicate target, the values of the

original targets are halved. This allows a target that is more than twice as valuable as the

next valuable target to have three vehicles sent to it. By doing this, the extra UAVs help

destroy the targets in the order of value.

When the number of targets is greater than the number of UAVs, the excess

targets with the lowest values are hidden. This is done until the number of targets equals

the number of UAVs. When a visible target is destroyed, the most valuable target of

those hidden is displayed and involved in the simulation.

The change in visible targets causes a replan to be signaled. When a replan is

signaled, the entire program is repeated to recalculate paths and reallocate tasks based on

the new information. Other changes in the simulation environment also cause replans.

These changes include a UAV crash, a change in the state of a target, and a target or

threat appearing.

A UAV crash occurs when it flies into a no-fly zone. A vehicle may also be

removed from the simulation when it intersects a threat’s effective range. When a UAV

enters a threat’s range, the threat always fires. The UAV’s chance of survival is random,

based on a value supplied by MATLAB. The UAV survives when its chance of survival is

greater than the threat’s POK. Otherwise, it is shot down. Once a threat fires, it is

 18

considered no longer active, and removed from the simulation. If a particular threat is

known to fire more than once, the simulation can be modified accordingly.

A target state begins as unclassified. The first time a UAV passes over a target,

the target is considered classified. There is a ten percent chance, based on a random

number from MATLAB, the target has been previously misidentified and should not be

destroyed. If this occurs, then that target is dismissed from the active environment,

signaling a replan. If the target is perceived to be real, then its state changes to classified.

This also signals a replan. The UAVs know that they are allowed to attack the classified

targets. There is a fifteen percent chance, based on a random number from MATLAB, that

the target is not destroyed when it is attacked. This is detected during the battle damage

assessment of the target. The assessment of the target signals a replan. After a UAV

verifies that a target has been destroyed, the target is removed from the active

environment.

UAVs that complete the mission of destroying all targets return to the origin of

the battlefield. These return paths must still avoid threats and no-fly zones. This

represents a specified rendezvous location that the UAVs must reach when they complete

their tasks.

This simulation was originally created in MATLAB. Then, when the MATLAB files

worked properly, the simulation was transferred to a SIMULINK environment. During the

simulation, a list of the events signaling replans and the time at which they occur are

displayed in the MATLAB command window. Plots, displaying the locations of the

UAVs, threats, no-fly zones, and targets, can appear while the simulation is running.

These plots are created each time a replan occurs. The data is also saved so the

 19

simulation may be played, paused, and viewed more than once, upon completion. Data

necessary to view the simulation using MATLAB’s Virtual Reality Toolbox (VRT) is also

saved. After the simulation is complete, the VRT can be used to display it. The main

MATLAB codes are included in Appendix A, while the main SIMULINK block diagrams are

included in Appendix B.

 20

Chapter 3: Combined Approach

 The combined path planning and task allocation problem was approached from

the direction of Richards, How, et al’s work18,19,20. The combined problem, when

formulated as a mixed integer linear program, produces optimal solutions. The paths and

tasks are planned and allocated concurrently. These solutions can serve as a benchmark

to evaluate the performance of suboptimal routines. MILP problems are solved using a

variety of methods, including simplex and branch and bound1,7. These solution methods

apply to many different applications of linear programming, including scheduling and

vehicle routing1. The simplex solution method is used in this research because it is the

method employed by the free student version of AMPL/CPLEX11.

3.1 Classic Mixed Integer Linear Program (MILP)

 A classic example of a simple MILP problem has an objective function that must

be minimized (or maximized) subject to several constraints. Equation 5 is an example of

an objective function.

xcJ *min = (5)

J is the utility to be minimized, c is a row vector containing the objective function

coefficients, and x is a column vector containing the decision variables for which MILP is

solving. The constraints are in the form of Equation 6.

bxA ≤* (6)

A is the coefficients matrix of the constraints and b is the column vector containing the

values that limit the constraints.

 21

 The decision variables are constrained by upper and lower bounds, thereby

limiting the number of possible solutions. This decreases the amount of computational

time required to reach the solution. The path planning and task allocation problem must

be formulated in this classical way before it can be solved.

 A simple MILP example involves two vehicles and two targets. The specific data

given is shown in Table 2.

Table 2: MILP example costs, in meters, for each vehicle to visit each target

 UAV 1 UAV 2

Target 1 10m 20m

Target 2 15m 10m

The specific objective function for this example is shown in Equation 7,

22211211 10201510min xxxxJ +++= (7)

where xuav target. The constraints placed on the decision variables are in Equations 8 and 9.

Equation 8 enables only one path to be chosen for each vehicle. Equation 9 requires each

target to be attacked.

1
1

2221

1211

≤+
≤+

xx
xx

 (8)

1
1

2212

2111

=+
=+

xx
xx

 (9)

Equations 8 and 9 are written in such a way that the decision variables, x, are binary

variables. This creates a simple integer linear problem, as opposed to a mixed integer

linear problem. A mixed integer problem builds on this basic integer problem, by adding

 22

decision variables whose values will not be integer. The solution to this example has

UAV 1 visiting target 1 and UAV 2 visiting target 1, with a cost of 20 meters.

3.2 Path Planning and Task Allocation MILP

 The goal of the path planning and task allocation MILP is to minimize the overall

mission completion time. Before the objective function can be explicitly written, the

constraints on the system must be defined. The problem begins with the following

items18,19,20 being specified by the simulation user:

• number of vehicles, Nv
• number of targets, Nw
• number of time steps, Nt
• mass of each vehicle, mass
• maximum internal force of the vehicles, fmax
• maximum velocity of the vehicles, vmax
• maximum size of the battlefield, distmax
• starting locations of the UAVs, ()00 , pp yx
• initial vehicle velocities, ()00 , pp yx ��

• target locations, ()21, ii WW
• size and location of the no-fly zones, ()4321 ,,, jjjj ZZZZ

The first constraint on this system represents the vehicle dynamics. The dynamics

determine the positions, ()ptpt yx , , and velocities, ()ptpt yx �� , , of vehicle p at time t. These

values are incorporated into a state vector, spt, as shown in Equation 1018,19,20.

[]Tptptptptpt yxyxs ��= (10)

The inputs that affect the state vector are control forces, fpt, represented by Equation

1118,19,20.

()
ptpt yxpt fff ,= (11)

 23

Together, the state vector and the force vector create the state space model of the system.

This constraint is shown in Equation 1218,19,20.

[] []
() ptpttp

tv

BfAss
NtNp

+=
+∈∀∈∀

+1

10,1 ……
 (12)

The vehicles are approximated as point masses moving at constant altitudes. The

matrices A and B are known from previous work on point mass dynamics14,18. They are

represented in Equation 1314,18 for the continuous system.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mass

mass
BA

10

01
00
00

,

0000
0000
1000
0100

 (13)

For use in Equation 12, and this simulation, the matrices of Equation 13 must be

discretized. The discretization is done using the MATLAB command “c2d.” The decision

variables in Equation 12 are spt and fpt. The initial conditions, sp0, must be defined by the

user.18

 The aircraft’s velocities and the forces on it are limited by their maximum values.

These constraints should be nonlinear equations. However, to maintain the linear

formulation, some approximations are made. To determine the magnitude of the total

velocity, or force, it is necessary to combine the x and y components. The magnitude

constraint should be a complete, continuous circle. A necessary approximation requires

the circle to be divided into M segments. The locations of the segment vertices around

the circle are represented with sine and cosine terms. The velocity and force magnitude

constraints can now be written as in Equations 1416,18,19 and 1516,18,19.

 24

[] [] []

max
2cos2sin

1,1,1

v
M

my
M

mx

MmNpNt

ptpt

vt

≤⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

∈∀∈∀∈∀

ππ ��

………
 (14)

[] [] []

max
2cos2sin

1,1,10

f
M

mf
M

mf

MmNpNt

ptpt yx

vt

≤⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

∈∀∈∀−∈∀

ππ
………

 (15)

The sine and cosine terms represent nonlinearities. To avoid this problem, the sine and

cosine terms are reduced to constant numerical values prior to writing the constraints in

the model file.16,18,19

 Next, the UAVs must be concerned with avoiding no-fly zones. The UAV’s

position must not be within the boundaries of a no-fly zone at any time t. For simplicity,

the no-fly zones are modeled as rectangles. The lower left vertex and upper right vertex

are represented by ()21, jj ZZ and ()43 , jj ZZ , respectively. The no-fly zone avoidance

constraint is described by Equation 1618,20.

[] [] []

∑
=

≤

−≥−

−≥−

−≥−

−≥−
∈∀∈∀∈∀

4

1

42

34

2j1

13

3

Z

1,1,1

k
jkpt

ptjptj

ptjjpt

ptjpt

ptjjpt

zvt

d

RdyZ

RdZy

Rdx
RdZx

NjNpNt ………

 (16)

In addition to xpt and ypt, djkpt is a decision variable. Unlike the previous decision

variables, djkpt is a binary variable equaling one if the vehicle is potentially within the

boundaries of a no-fly zone. The k represents the four directions:

(YYXX)−=+=−=+= 4,3,2,1 . The R in Equation 16 helps relax the constraint if djkpt

 25

equals one. The value of R is a positive number much greater than any position or

velocity to be encountered in the problem.18 The summation of the djkpt’s ensures that no

more than three of the constraints are relaxed.18,20

 The UAVs’ mission is to visit known targets. To do this, the position of a UAV

must exactly equal that of a target at a particular time step. The location of a target is

defined as (. Equation 1718,19,20 shows how this target constraint is defined.)21, ii WW

[] [] []
()
()
()
()iptipt

iptipt

iptipt

iptipt

ztv

bRWy

bRWy

bRWx
bRWx

NNtNp

−−≥−

−≤−

−−≥−

−≤−
∈∀∈∀∀

1

1

1
1

1,1,1

2

2

1

1

………

 (17)

Similar to the partially decoupled method, each UAV is capable of visiting every target.

Another binary decision variable, bipt, is introduced. If vehicle p visits target i at time

step t, then bipt equals one. R is the same number as used in the no-fly zone constraint,

Equation 16. This target constraint requires the vehicles to pass directly over the target.

If desired, this constraint may be relaxed to allow the vehicle to pass within a certain

distance of the target.18,19,20

While Equation 17 indicates when a target has been reached, it does not explicitly

require this visitation. Equation 18 specifies that each target must be visited.

[] [] []

gb

NiNtNp
v tN

p

N

t
tpi

wtv

=

∈∀∈∀∈∀

∑∑
= =1 1

,,

1,1,1 ………
 (18)

The integer value g indicates the number of times the targets must be visited, as required

to complete the mission. When g equals one, the targets are simply visited. To classify,

attack, and assess a target, g is set to three.

 26

 Next, it is necessary to know at which time step a target is visited. To do this, a

constraint as shown in Equation 1918,20 is added.

[] []

∑
=

≥

∈∀∈∀
tN

t
iptp

wv

tbt

NiNp

1

1,1 ……
 (19)

The additional variable, tp, represents the time step at which vehicle p visits target i. This

constraint ensures that tp is the time at which the last target is visited.18,20

 The overall mission complete time, t , must be determined. This value must be

greater than or equal to the longest completion time among the vehicles. Equation 2018

shows this constraint.18,20

[]
p

v

tt
Np

≥
∈∀ …1

 (20)

 After formulating these constraints, the objective function is written. The goal of

the objective function is to minimize the overall mission completion time. Equation

2118,20 explicitly states the objective function.

tJ
dbfs

=
,,,

min (21)

The decision variables s, f, b, and d are the values that determine tp, which directly affects

t .18,20

 Solution aids can be added to this objective function as shown in Equation 2218,20.

∑
=

+=
vN

p
pdbfs

ttJ
1

1,,,
min ε (22)

The small weighting factor ε1 decreases the computation time. This weighting factor

requires the minimum time path to be chosen for each vehicle. If this factor is omitted,

then only the vehicle with the longest finishing time will be directly minimized.18,20

 27

 After specifying the upper and lower bounds for all of the decision variables, the

MILP is ready to be solved. The resulting values for the decision variables indicate the

paths and tasks assigned to the UAVs. The objective function value is calculated based

on the values of the decision variables.

Following the recommendations of [3], [6], [19], and [20], the combined problem

is formulated for use with AMPL/CPLEX. The student version of AMPL/CPLEX has

limitations of 300 decision variables and 300 constraints. The constraints, upper and

lower bounds, and objective function are written in a model file. The input data, such as

Nv, Nw, Nt, Nz, and locations, are included in a data file. These files are developed

following the examples and descriptions provided by AMPL, A Modeling Language for

Mathematical Programming8. The results are plotted in MATLAB to visualize the assigned

paths and tasks. The code for the model file is included in Appendix C and the data file

is included in Appendix D.

 28

Chapter 4: Comparison between the Partially Decoupled and
Combined Approaches

4.1 Simulation Parameters Defined

A comparison of the partially decoupled approach and the combined approach

yields information on how the approximations used to decouple the path planning and

task allocation degrade the optimality of the solution. For an accurate comparison, the

input data provided to each simulation must be the same. The common input data

consists of the number and starting positions of the UAVs; the number and locations of

the targets; and the number, locations, and sizes of the no-fly zones. Additionally, the

partially decoupled simulation requires a threat, its effective range, probability of kill,

state, and location, and the targets’ values and states. Because threats do not exist in the

combined approach due to constraint limitations, a single threat is located outside the

edge of the battlefield and given a POK of zero. This is done to minimize the effect the

threat has on the scenario. It influences the Voronoi diagram slightly, but not the costs of

the path segments. The combined simulation is not capable of giving targets any type of

value or precedence; therefore, all target values are set to 100 in the partially decoupled

simulation. The partially decoupled simulation is stopped after the first path planning

and task allocation assignment, due to the inability of the combined approach to react to

dynamic situations. Accordingly, the targets are only visited once.

The combined approach additionally requires the UAVs’ starting velocities,

maximum velocities, maximum force loadings, and masses to be inputs. The combined

approach is based on no-fly zones that are rectangular, rather than the circles used in the

partially decoupled approach. To match the circular no-fly zones of the partially

 29

decoupled method, three rectangles are layered on top of each other to approximate a

circle. Equation 16 was not modified to represent a circle due to the excessive increase in

constraints. Figure 6 shows how rectangles placed inside a circle can approximate it.

Figure 6: Circular no-fly zone approximated with rectangles

These rectangles have angles chosen such that the difference in area covered by the

rectangles is about 10% less than the area covered by the circle.

4.2 Results from the Comparison

 For this comparison, five scenarios are investigated. They involve altering the

initial locations of the vehicles. The limits imposed by the student version of

AMPL/CPLEX restrict the scenarios to two vehicles, two targets, and one no-fly zone.

 30

Additionally, in the combined method, only three time steps are available. The battlefield

must be small enough to allow the vehicles to avoid the no-fly zones and reach the targets

in three time steps, each time step equaling one second. The scenarios are designed for a

50 m x 50 m battlefield. The initial locations for the first scenario can be seen in Figure

7. The partially decoupled simulation additionally has a threat located at (55, 55) m.

Figure 7: Initial setup of the battlefield, scenario 1

This method has a constant vehicle speed of 13.41 m/s, and a minimum turning radius of

6.5 m. The combined approach has the UAVs’ limiting velocities set at 13.41 m/s,

limiting allowable forces of 2.35 N, and masses of 0.085 kg17.

±

±

 After entering the data using the graphical user interface for the partially

decoupled approach, the simulation is executed until the first path planning and task

 31

allocations are complete. At this point, the data is saved and plotted. The chosen paths

and assigned tasks are shown in Figure 8.

Figure 8: Results for scenario 1 using the partially decoupled method

 A data file containing the input information is created for the combined approach.

The input information is the same as used for the partially decoupled approach. Also, the

number of segments, M, from Equations 14 and 15, for approximating a circle, is set to

ten. The relaxation constant, R, from Equations 16 and 17 has a value of 100,000. The

weighting factor, ε1, equals 0.001. These values are specified in the data file. Upon the

completion of the combined simulation, a plot is created using the locations of the

vehicles at each time step. Figure 9 displays the paths the vehicles take to reach the

targets.

 32

Figure 9: Results for scenario 1 using the combined method

Scenarios two through five have the same parameters as scenario one, except for

the initial vehicle location and velocity. The changes in the locations affect the Voronoi

diagrams, and the initial direction the UAVs need to be going, hence, modifying the

initial velocity. The initial locations for scenario two are shown in Figure 10.

 33

Figure 10: Initial setup of the battlefield, scenario 2

The results from the partially decoupled method are displayed in Figure 11, while the

combined method results are in Figure 12.

 34

Figure 11: Results for scenario 2 using the partially decoupled method

Figure 12: Results for scenario 2 using the combined method

 35

The initial locations for scenario three are shown in Figure 13.

Figure 13: Initial setup of the battlefield, scenario 3

The results from the partially decoupled method are displayed in Figure 14, while the

combined method results are in Figure 15.

 36

Figure 14: Results for scenario 3 using the partially decoupled method

Figure 15: Results for scenario 3 using the combined method

 37

The initial locations for scenario four are shown in Figure 16.

Figure 16: Initial setup of the battlefield, scenario 4

The results from the partially decoupled method are displayed in Figure 17, while the

combined method results are in Figure 18.

 38

Figure 17: Results for scenario 4 using the partially decoupled method

Figure 18: Results for scenario 4 using the combined method

 39

The initial locations for scenario five are shown in Figure 19.

Figure 19: Initial setup of the battlefield, scenario 5

The results from the partially decoupled method are displayed in Figure 20, while the

combined method results are in Figure 21.

 40

Figure 20: Results for scenario 5 using the partially decoupled method

Figure 21: Results for scenario 5 using the combined method

 41

The total cost for each scenario and method is found during the respective

simulations. The cost for each method is the fuel cost, calculated using Equation 1, the

distance formula. The results are shown in Table 3.

Table 3: Mission cost, in meters, for each method and scenario

 partial (m) combined (m) difference (m)
scenario 1 41.5 42.3 -0.9
scenario 2 59.8 65.8 -6.0
scenario 3 38.4 39.0 -0.6
scenario 4 30.6 33.5 -2.9
scenario 5 55.6 60.4 -4.8

The results in Table 3 indicate that the partially decoupled method paths are less

expensive than the combined method paths. Table 4 contains the central processing unit

(CPU) times necessary to solve each scenario by each method. This time does not

include the initial setup of the simulations, nor the time necessary to generate plots.

Table 4: CPU time, in seconds, for each method and scenario

 partial (s) combined (s) difference (s)
scenario 1 0.391 0.050 0.341
scenario 2 0.401 0.050 0.351
scenario 3 0.360 0.050 0.310
scenario 4 0.361 0.060 0.301
scenario 5 0.381 0.050 0.331

The results in Table 4 show the combined method to take significantly less time to solve

than the partially decoupled method. The computer being used to run these simulations is

a Pentium® 4 CPU, 2.00 GHz, with 512 MB of RAM.

 42

Chapter 5: Conclusions and Recommendations

Creating software that enables UAVs to attack specific targets while minimizing

the associated risks is a goal for many researchers. Presented in this thesis are two

methods for the desired path planning and task allocation. The first is a partially

decoupled method. The second is a combined method. The two scenarios evaluated in

Chapter 4 indicate that the partially decoupled method costs an average of 3.0 m less than

the combined method, while taking an average of 0.327 s longer.

The cost results are due to the limitations of the student version of

AMPL/CPLEX. More available times steps would allow the locations and velocities of

the vehicles to be checked more frequently. This would allow more opportunities to

change the velocities and provide smoother, more efficient paths to the targets.

Additionally, a full version of AMPL/CPLEX would allow for a larger battlefield,

with more vehicles, targets, and no-fly zones. The no-fly zones would no longer have to

be approximated with three rectangles, and the number of segments, M, for restricting

forces and velocities could be expanded. As the number of constraints increases, the

solution time is expected to increase.

The availability of additional variables and constraints provides the opportunity to

add options to the combined method so it better parallels the partially decoupled method.

For example, constraints defining the role of threats could be added. The tasks the UAVs

are required to complete could be expanded to include classifying and assessing targets.

Precedence, or importance, could be assigned to the targets. Rendezvous locations may

also be defined to ensure the vehicles safely exit the combat zone. Vehicles of varying

size and requirements may be incorporated.

 43

In conclusion, as currently modeled, the partially decoupled method has many

advantages over the combined method, while solving slightly slower. These advantages

include larger scenarios, inclusion of threats, reactions to dynamic situations, final

rendezvous locations, and available software.

 44

References

1: “A Tutorial in Integer Programming.” Ed. Michael A. Trick. 14 June 1998. The

Operations Research Faculty of GSIA. 1 Sept 2003
<http://mat.gsia.cmu.edu/orclass/integer/integer.html>

2: Akbar, Mostofa Md., Eric G. Manning, Gholamali C. Shoja, and Shahadat Khan.

“Heuristic Solution for Multi-dimensional Multiple Choice Knapsack Problem.”
5 Mar. 2004 <http://www.panda.uvic.ca/papers/storage/HeuMCMDKP.pdf>

3: Bellingham, John, Michael Tillerson, Arthur Richards, and Jonathan P. How. “Multi-

task Allocation and Path Planning for Cooperating UAVs.”

4: Black, Paul E. “Dijkstra’s Algorithm.” National Institute of Standards and

Technology. 5 Mar. 2004 <http://www.nist.gov/dads/HTML/dijkstraslgo.htm>

5: Chandler, P. R., and M. Pachter. “Hierarchical Control for Autonomous Teams,” in

the proceedings of the AIAA Guidance, Navigation, and Control Conference and
Exhibit, AIAA Paper 2001-4149. AIAA, Reston, VA, 2001.

6: Chandler, Phillip R., Meir Pachter, Steven R. Rasmussen, and Corey Schumacher.

“Distributed Control for Multiple UAVs with Strongly Coupled Tasks,” in the
proceedings of the AIAA Guidance, Navigation, and Control Conference and
Exhibit, AIAA Paper 2003-5799. AIAA, Reston, VA, 2003.

7: Fourer, Robert (4er@iems.nwu.edu). "Linear Programming Frequently Asked

Questions." 2000. Optimization Technology Center of Northwestern University
and Argonne National Laboratory. 1 Sept 2003 <http://www-
unix.mcs.anl.gov/otc/Guide/faq/ linear-programming-faq.html>

8: Fourer, Robert, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling

Language for Mathematical Programming. 2nd ed. Toronto: Curt Hinrichs, 2003

9: Hazelton, Jennifer B., Matthew C. Lechliter, and Zachary W. Spritzer. “Path Planning

and Task Allocation for Unmanned Air Vehicles (UAVs),” as presented at the
2003 AIAA Region I Mid-Atlantic Student Conference. April, 2003.

10: Helwig, Catherine. “Dijkstra’s Shortest Path Algorithm.” 1997. 17 Mar. 2003

<http://renoir.vill.edu/~helwig/grafpage.html>

11: ILOG. ILOG AMPL CPLEX System Version 8.0 Users Guide. France: 2002. 28 Mar

2004. <http://netlib.bell-labs.com/netlib/ampl/solvers/cplex/ampl80.pdf >

12: Kay, Michael G. Matlog software. <http://www.ie.ncsu.edu/Kay/matlog>

 45

13: Khan, Shahadatullah, Md. “Quality Adaptation in a Multisession Multimedie

System: Model, Algorithms, and Architecture.” Diss. University of Victoria,
1998. 5 Mar. 2004 <http://www.lapis.ece.uvic.ca/WWW_LAPIS/theses>

14: Kosecka, Jana. “CS685 – Lecture Notes.” 16 Mar. 2004

<http://cs.gmu.edu/~kosecka/cs685/dynamicalSystems.pdf>

15: McLain, Timothy W., Phillip R. Chandler, Steven Rasmussen, and Meir Pachter.

“Cooperative Control of UAV Rendezvous.”

16: McLain, Timothy W., and Randal W. Beard. “Trajectory Planning for Coordination

and Rendezvous of Unmanned Air Vehicles.” AIAA Paper 2000-4369. AIAA,
Reston, VA, 2000.

17: Pike, John. Global Security. 23 Apr 2004 <http://www.globalsecurity.org>

18: Richards, Arthur George. “Trajectory Optimization using Mixed-Integer Linear

Programming.” Thesis, Massachusetts Institute of Technology, June 2002.

19: Richards, Arthur, and Jonathan P. How. “Aircraft Trajectory Planning with

Collision Avoidance Using Mixed Integer Linear Programming,” in the
proceedings of the American Control Conference, AIAA Paper 2002-1057.
AIAA, Reston, VA, 2002.

20: Richards, Arthur, John Bellingham, Michael Tillerson, and Jonathan How.

“Coordination and Control of Multiple UAVs,” in the proceedings of the AIAA
Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2002-
4588. AIAA, Reston, VA, 2002.

21: Weisstein, Eric W. “Voronoi Diagram.” From MathWorld—A Wolfram Web

Resource. 26 Apr 2004 <http://mathworld.wolfram.com/VoronoiDiagram.html>

 46

Appendix A: Main MATLAB files for the Partially Decoupled
Simulation

define_battlefield.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file is representative of the information necessary to input to the partially decoupled
scheme. This information may also be entered using graphical user interface menus.

function[UAVS,TARGETS,THREATS,ZONES,n_uav,n_targ,n_zones,n_threats]=

define_battlefield

UAVS=zeros(4,9);
TARGETS=zeros(4,9);
THREATS=zeros(4,15);
ZONES=zeros(3,10);

n_uav=menu('Enter the number of UAVs for this simulation',' 1
',...
 '2','3','4','5','6','7','8','9');
n_targ=menu('Enter the number of TARGETs for this simulation','
1 ',...
 '2','3','4','5','6','7','8','9');
n_zones=menu('Enter the number of NO-FLY ZONEs for this simulation','
1 ',...
 '2','3','4','5','6','7','8','9','10');
n_threats=menu('Enter the number of THREATs for this simulation','
1 ',...
 '2','3','4','5','6','7','8','9','10','11','12','13','14','15');

Vel_UAV=0.13;
menu('Using the crosshairs and clicking on the plot','Place UAVs at desired positions');
axis([5 200 5 200]);
grid on;

for i=1:n_uav
 [UAVS(1,i),UAVS(2,i)]=ginput(1);
 plot(UAVS(1,i),UAVS(2,i),'bd');
 text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b');
 axis([5 200 5 200]);
 grid on;
 UAVS(3,i)=2;
 UAVS(4,i)=Vel_UAV ;
 hold on;
end

 47

hold on;

menu('Using the crosshairs and clicking on the plot','Place TARGETs at desired
positions');
for i=1:n_targ
 tar=menu('Select Target Value - Scale 10-
100','10','20','30','40','50','60','70','80','90','100');
 TARGETS(3,i)=10*tar;
 TARGETS(4,i)=1;
 [TARGETS(1,i),TARGETS(2,i)]=ginput(1);
 plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0,.4,0]);
 text(TARGETS(1,i)+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);
 axis([5 200 5 200]);
 grid on;
 hold on;
end

hold on;

menu('Using the crosshairs and clicking on the plot','Place NO-FLY ZONEs at desired
positions');

for i=1:n_zones
 ZONES(3,i)=9;
 [ZONES(1,i),ZONES(2,i)]=ginput(1);
 axis([5 200 5 200]);
 grid on;
 t_nfz = (1/16:1/16:1)'*2*pi;
 x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i);
 y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);
 fill(x_nfz,y_nfz,'k');
end

menu('Using the crosshairs and clicking on the plot','Place THREATs at desired
positions');
hold on;

for i=1:n_threats
 thr=menu('Select Threat Type','KS-19 100mm AntiAircraft Artillery - Range 4000
meters, 40% Probability of Kill',...
 'SA-7 Grail - Man-Portable SAM - Range 5000 meters, 50% Probabilty of Kill',...
 'Crotale SAM - Range 10,000 meters, 80% Probability of Kill',...
 'SA-2 - Range 30,000 meters, 80% Probabilty of Kill');
 if thr == 1
 THREATS(3,i)=4;

 48

 THREATS(4,i)=.4;
 end
 if thr == 2
 THREATS(3,i)=5;
 THREATS(4,i)=.5;
 end
 if thr == 3
 THREATS(3,i)=10;
 THREATS(4,i)=.8;
 end
 if thr == 4
 THREATS(3,i)=30;
 THREATS(4,i)=.8;
 end
 [THREATS(1,i),THREATS(2,i)]=ginput(1);
 plot(THREATS(1,i),THREATS(2,i),'r*');
 text(THREATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r')
 axis([5 200 5 200]);
 grid on;
 t_threat = (1/32:1/32:1)'*2*pi;
 x_threat = THREATS(3,i)*sin(t_threat)+THREATS(1,i);
 y_threat = THREATS(3,i)*cos(t_threat)+THREATS(2,i);
 plot(x_threat,y_threat,'r.');
 hold on;
end

path_planning.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file is the main file that takes the input data and determines the paths and allocates
tasks.

function [out]=path_planning(in)

UAVS_long=in([1:36],1);
UAVS_long=reshape(UAVS_long,4,9);
TARGETS_long=in([37:72]);
TARGETS_long=reshape(TARGETS_long,4,9);
ZONES_long=in([73:102]);
ZONES_long=reshape(ZONES_long,3,10);
THREATS_long=in([103:162]);
THREATS_long=reshape(THREATS_long,4,15);
TIME=in(163);
n_plots=in(164);
HEADING_ANGLE=in([165:173]);

 49

uavs_existing=zeros(1,9);
for i=1:9
 if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26
 uavs_existing(1,i)=1;
 end
end
[UAVS]=filter_zeros(UAVS_long,9);
n_uav=size(UAVS,2);

targ_existing=zeros(1,9);
for i=1:9
 if TARGETS_long(3,i)~=0,
 targ_existing(1,i)=1;
 end
end
[TARGETS_temp]=filter_zeros(TARGETS_long,9);
TARGETS=[TARGETS_temp(1,:);TARGETS_temp(2,:)];
n_targ=size(TARGETS,2);

[ZONES]=filter_zeros(ZONES_long,10);
n_zones=size(ZONES,2);

threats_existing=zeros(1,15);
for i=1:15
 if THREATS_long(3,i)~=0
 threats_existing(1,i)=1;
 end
end
[THREATS]=filter_zeros(THREATS_long,15);
n_threats=size(THREATS,2);

ZONES_REAL=ZONES;
THREATS_REAL=THREATS;

ZONES(3,:)=1.15*ZONES_REAL(3,:);
THREATS(3,:)=1.15*THREATS_REAL(3,:);

split_seg=10;
min_turn=1;
[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,

THREATS);
[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs,UAVS,

TARGETS,ZONES,THREATS);
[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,

ZONES,THREATS,min_turn,split_seg,n_uav,n_targ,HEADING_ANGLE);
[Selected_Paths_x,Selected_Paths_y,mincost]=mmkp_task_allocation(totalcost,

 50

Shortened_Paths_x,Shortened_Paths_y,n_uav);
[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,
 Selected_Paths_y,UAVS,min_turn*2);
keyboard
if n_plots~=0,
 plot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long,uav_path_x,

uav_path_y,n_plots,uavs_existing,targ_existing,threats_existing);
end

disp(sprintf('Path Planning ran at time %d. \n',round(TIME)));

bestcomb=zeros(1,9);
for i=1:n_uav,
 for j=1:n_targ,
 if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &

round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)
 bestcomb(1,i)=j;
 break
 end
 end
end

%Making into vector
uav_x=zeros(9,100);
uav_y=zeros(9,100);
uav_time=zeros(9,100);
uav_alt=zeros(9,100);
selected_targets=zeros(9,1);
szpath=size(uav_path_x,2);
counter=1;
for i=1:9,
 if uavs_existing(1,i)==1
 selected_targets(i,1)=bestcomb(1,counter);
 uav_x(i,[1:szpath])=uav_path_x(counter,:);
 uav_y(i,[1:szpath])=uav_path_y(counter,:);
 uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;
 uav_alt(i,[1:szpath])=altitude_uav(counter,:);
 counter=counter+1;
 end
end
sys_temp=[];
for i=1:9;
 sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)];
end
out=[sys_temp,selected_targets'];

 51

vrn_diag_gen.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file generates the Voronoi diagram based on the locations of the threats and no-fly
zones.

function[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,

ZONES,THREATS)
%INPUTS:
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVs, the third row is the initial altitude of the UAVs, and
%the fourth row is the initial Velocity of the UAVs.
%
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
%the targets.
%
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%THREATS - is a 4xn matrix where n is the number of threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%OUTPUTS:
%
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.
%
%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the Voronoi, UAVs, and targets. The first row is the ending point's
%x position for the nth line and the second row is the starting point's
%x position for the nth line.
%
%all_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the Voronoi, UAVs, and targets. The first row is the ending point's
%y position for the nth line and the second row is the starting point's
%y position for the nth line.
%

 52

%all_costs - is a 1xn row where n is the number of all of the lines
%for the Voronoi, UAVs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y

max_x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])+25;
min_x=min([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])-25;
max_y=max([TARGETS(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])+25;
min_y=min([TARGETS(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])-25;

VRNPTS=[ZONES([1,2],:) THREATS([1,2],:) ...
 [(min_x)*ones(1,4);(((max_y-min_y)*[1:4]/4)+min_y)] ...
 [(max_x)*ones(1,4);(((max_y-min_y)*[1:4]/4)+min_y)] ...
 [(((max_x-min_x)*[1:4]/4)+min_x);(min_y)*ones(1,4)] ...
 [(((max_x-min_x)*[1:4]/4)+min_x);(max_y)*ones(1,4)]];

[vx,vy] = voronoi(VRNPTS(1,:),VRNPTS(2,:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Taking unique numbers from vx and vy
%%%
[vxyn]= 1e-6*unique(round(1e6*[vx(:),vy(:)]),'rows');
%%%
%Connecting UAV's into Voronoi
%%%
[line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS([1,2],:));
%%%
%Connecting the targets into the Voronoi
%%%
[line_cost_targ,targx,targy]=connect_vrn(vxyn,TARGETS([1,2],:));
%%%
%Generation for Voronoi line costs
%%%
nvlines=size(vx,2);
line_cost_vrn=zeros(1,nvlines);
for i=1:nvlines,
 line_cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2);
end
%%%
%Stacking unique positions, lines for x and y, and costs of those lines
%%%
all_pos=[UAVS([1,2],:) vxyn(:,[1,2])' TARGETS([1,2],:)];
all_lines_x=[uavx([1,2],:) vx([1,2],:) targx([1,2],:)];
all_lines_y=[uavy([1,2],:) vy([1,2],:) targy([1,2],:)];
all_costs=[line_cost_uav(1,:) line_cost_vrn(1,:) line_cost_targ(1,:)];

 53

connect_vrn.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file is called in the vrn_diag_gen.m file to connect the UAVs and the targets to the
Voronoi diagram.

function [line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS)

%Inputs:
%vxyn - is a nx2 matrix with first column defining all of the unique x
%positions of the Voronoi diagram or grid and the second column defining
%all of the unique y positions of the Voronoi diagram or grid.
%
%UAVS - is a 2xn matrix with the first row defining the x position of the
%UAV and the second row defining the y position of the UAV.
%
%Outputs:
%
%line_cost_uav - is a vector containing the cost of the lines of connecting
%the UAV's into the Voronoi diagram or grid
%
%uavx - is a 2xn matrix with first row defining ending point and second row
%defining starting point for the x coordinates.
%
%uavy - is a 2xn matrix with first row defining ending point and second row
%defining starting point for the y coordinates.
%
nuav=size(UAVS,2);
nvxynpts=size(vxyn,1);
du=zeros(1,nvxynpts-1);
uavx=zeros(2,nuav*3);
uavy=zeros(2,nuav*3);
line_cost_uav=zeros(1,nuav*3);
for k=1:nuav,
 for j=2:nvxynpts,
 du(1,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))^2+(UAVS(2,k)-vxyn(j,2))^2);
 end
 mdu=sort(du,2);
 for i=1:3,
 mdu_loc=find(du==mdu(1,i));
 uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1);
 uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2);
 uavx(2,3*(k-1)+i)=UAVS(1,k);
 uavy(2,3*(k-1)+i)=UAVS(2,k);
 line_cost_uav(1,3*(k-1)+i)=mdu(1,i);
 end
end

 54

cheapest_paths.m
Authored by Michael G. Kay, [H]
This file finds the cheapest paths for each permutation of UAV to target. It uses
Dijkstra’s algorithm.

function[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs,

UAVS,TARGETS,ZONES,THREATS)
%
%INPUTS:
%
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.
%
%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the Voronoi, UAVs, and targets. The first row is the ending point's
%x position for the nth line and the second row is the starting point's
%x position for the nth line.
%
%all_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the Voronoi, UAVs, and targets. The first row is the ending point's
%y position for the nth line and the second row is the starting point's
%y position for the nth line.
%
%all_costs - is a 1xn row where n is the number of all of the lines
%for the Voronoi, UAVs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y.
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVs, the third row is the initial altitude of the UAVs, and
%the fourth row is the initial Velocity of the UAVs.
%
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
%the targets.
%
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%THREATS - is a 4xn matrix where n is the number of threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

 55

%
%OUTPUTS:
%
%stored_paths - is a mxn matrix where m is the number of UAVs times the
%number of targets and n is the length of the longest path. The first row
%being the first path for the first UAV and the last row being the last
%path for the last UAV. The paths are output by node numbers coming from
%the implementation of Dijkstra’s algorithm [H].
%
%totalcost - is a mxn matrix where m is the number of UAVs and n is the
%number of possible paths for each UAV. The element (m,n) of this matrix
%is the cost for the mth UAV to take the nth path.

%%%
%Making THC matrix for Dijkstra’s algorithm [H]
%%%
[THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs);

%%%
%Cost Assignment for all lines
%%%
[THC]= c_assign(all_pos,THC,ZONES,THREATS);

%%%
%Adding the reverse of the THC matrix onto the end, so that the
%reverse of the lines is possible
%%%
THC=[THC(:,[1,2,3]); THC(:,[2,1,3])];

%%%
%Implementing Dijkstra's algorithm [H]
%%%
nuav=size(UAVS,2);
ntarg=size(TARGETS,2);
A = list2adj(THC);
totalcost=zeros(nuav,ntarg);
for i=1:nuav,
 for j=1:ntarg,
 [totalcost(i,j),path] = dijk(A,i,size(all_pos,2) - j + 1);
 stored_paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]);
 end
end

 56

c_assign.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file assigns the costs for each segment of the Voronoi diagram. These costs must be
assigned before the cheapest paths can be determined.

function [THC]= c_assign(all_pos,THC,ZONES,THREATS)
%
%INPUTS:
%
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points,
%UAV points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.
%
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line.
%
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%THREATS - is a 4xn matrix where n is the number of threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%OUTPUTS:
%
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line. With updated costs due to no-fly zones and
%threats.

szthc=size(THC,1);
nzones=size(ZONES,2);
nthrts=size(THREATS,2);

for i=1:szthc,
 start=THC(i,1);finish=THC(i,2);
 SF=sqrt(((all_pos(1,finish)-all_pos(1,start))^2)+((all_pos(2,finish)-
all_pos(2,start))^2)); % cost associated with length of each segment
 for j=1:nzones,
 SC=sqrt(((ZONES(1,j)-all_pos(1,start))^2)+((ZONES(2,j)-all_pos(2,start))^2));

 57

 FC=sqrt(((ZONES(1,j)-all_pos(1,finish))^2)+((ZONES(2,j)-all_pos(2,finish))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0,PC=sqrt(SC^2-SN^2);
 else
 if SC<FC,PC=SC;
 else
 PC=FC;
 end
 end
 if PC < ZONES(3,j),THC(i,3)=1e30*THC(i,3);

 % cost associated with intersecting a no-fly zone
 end
 end
 for j=1:nthrts,
 SC=sqrt(((THREATS(1,j)-all_pos(1,start))^2)+((THREATS(2,j)-
all_pos(2,start))^2));
 FC=sqrt(((THREATS(1,j)-all_pos(1,finish))^2)+((THREATS(2,j)-
all_pos(2,finish))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0,PC=sqrt(SC^2-SN^2);
 else
 if SC<FC,PC=SC;
 else
 PC=FC;
 end
 end
 if PC < THREATS(3,j),THC(i,3)=(THREATS(4,j)*100)+THC(i,3);
 % cost associated with intersecting a threat and/or its effective range
 end
 end
end

path_shrtng.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file looks for line-of-sight paths to reduce the costs of the mission. It also provides
fillets for sharp corners and the proper heading angles for the entire path. After these
elements are taken care of, the costs are updated to reflect the changes.

function[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,

all_pos,ZONES,THREATS,min_turn,split_seg,nuav,ntarg,HEADING_ANGLE)

%INPUTS:
%
%stored_paths - is a mxn matrix where m is the number of UAVs times the
%number of targets and n is the length of the longest path. The first row

 58

%being the first path for the first UAV and the last row being the last
%path for the last UAV. The paths are output by node numbers coming from
%the implementation of Dijkstra’s algorithm.
%
%all_pos - is a 2xn matrix where n is the number of unique Voronoi points,
%UAV points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.
%
%ZONES - is a 3xn matrix where n is the number of no-fly zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%THREATS - is a 4xn matrix where n is the number of threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%min_turn - minimum turning radius for the UAVs
%
%split_seg - number of segments to Split the Voronoi lines into for the
%purpose of a more near-optimal solution
%
%nuav - number of UAVs
%
%ntarg - number of targets

%OUTPUTS:
%
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth UAV at point n. The element
%(nxmx2) y position of the mth UAV at point n.
%
%totalcost - is a mxn matrix where m is the number of UAV and n is the
%number of possible paths for each UAV. The element (m,n) of this matrix
%is the cost for the mth UAV to take the nth path.
%
%Stored_Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth UAV at point n. The element
%(nxmx2) y position of the mth UAV at point n.

%%%
%Splitting the Voronoi lines into more segments for the purpose of a more
%near-optimal solution

 59

%%%
szpths=size(stored_paths,2);
 split_vect=[(0:(1/split_seg):(1- 1/split_seg))]';

%%%
%Finding the corresponding x and y coordinates of the smaller segments
%%%
Stored_Pos_x=ones(szpths,nuav*ntarg);
Stored_Pos_y=ones(szpths,nuav*ntarg);
stored_paths(:,szpths+1)=0;
for i=1:nuav*ntarg,
 mnz=min(find(stored_paths(i,:)==0));
 Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))';
 Stored_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))';
 Stored_Pos_x(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))';
 Stored_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))';
end

%%%
Stored_Pos_x_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg);
Stored_Pos_y_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg);
for k=1:nuav*ntarg,
 j=1;
 for i=1:(szpths -1),
 Stored_Pos_x_new([j:(j + (split_seg -1))],k)=
 ones(split_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-
 Stored_Pos_x(i,k));
 Stored_Pos_y_new([j:(j + (split_seg -1))],k)=
 ones(split_seg,1)*Stored_Pos_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)-
 Stored_Pos_y(i,k));
 j=j+ split_seg;
 end
 Stored_Pos_x_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_x(szpths,k);
 Stored_Pos_y_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_y(szpths,k);
end

Shortened_Paths_x_end=ones(500,1)*Stored_Pos_x(szpths,:);
Shortened_Paths_y_end=ones(500,1)*Stored_Pos_y(szpths,:);
Shortened_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end];
Shortened_Paths_y=[Stored_Pos_y_new;Shortened_Paths_y_end];

%%%
%Shortening the paths
%%%
for i=1:nuav*ntarg,

 60

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten_paths(Shortened_Paths_x(:,i),S
hortened_Paths_y(:,i),ZONES,THREATS,Stored_Pos_x(:,i),Stored_Pos_y(:,i));
end

%%%
%Putting fillets into the shortened paths
%%%
for i=1:nuav*ntarg,
[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shor
tened_Paths_y(:,i)],min_turn);
end

Shortened_Paths_x_old=Shortened_Paths_x;
Shortened_Paths_y_old=Shortened_Paths_y;
Shortened_Paths_x=[];
Shortened_Paths_y=[];
for j=1:size(Shortened_Paths_x_old,1)-1,
 if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &
 Shortened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:),
 Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
 Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:);
 break
 else
 Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
 Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:);
 end
end

%%%
%Updating the Costs
%%%
szsp_perm=size(Shortened_Paths_x,2);
permcost=zeros(nuav*ntarg,1);
for z=1:szsp_perm,
[permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Paths_y(:,z)],
THREATS);
end
totalcost=reshape(permcost,ntarg,nuav)';

shorten_paths.m
Authored by Zachary Spritzer, and Matthew Lechliter
This file actually shortens the paths.

function [shr_x,shr_y]=shorten_paths(sp_x,sp_y,Z,T,spo_x,spo_y)

 61

%INPUTS:
%
%sp - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth UAV at point n. The element (nxmx2) y position of the mth UAV at
%point n.
%
%Z - is a 3xn matrix where n is the number of no-fly zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%T - is a 4xn matrix where n is the number of threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%spo - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth UAV at point n. The element (nxmx2) y position of the mth UAV at
%point n. This matrix is the original matrix without the Voronoi segments
%split up.
%
%OUTPUTS:
%
%shr - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth UAV at point n. The element (nxmx2) y position of the mth UAV at
%point n.
spo=[spo_x,spo_y];
sp=[sp_x,sp_y];
SC=0;FC=0;SF=0;SN=0;
for j=1:size(T,2),
 PC=[];
 for i=1:size(spo,1)-1,
 SC=sqrt(((T(1,j)-spo(i,1))^2)+((T(2,j)-spo(i,2))^2));
 FC=sqrt(((T(1,j)-spo(i+1,1))^2)+((T(2,j)-spo(i+1,2))^2));
 SF=sqrt(((spo(i+1,1)-spo(i,1))^2)+((spo(i+1,2)-spo(i,2))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0
 PC(i)=sqrt(SC^2-SN^2);
 else
 if SC<FC
 PC(i)=SC;
 else

 62

 PC(i)=FC;
 end
 end
 mPC=min(PC);
 if mPC< T(3,j),
 T(3,j)=mPC*.995;
 end
 end
end

ZT=[Z([1:3],:) T([1:3],:)];
szzt=size(ZT,2);
szsp=size(sp,1);
shr=ones(szsp,2);
for i=1:2,
 shr(:,i)=sp(szsp,i);
end
shr(1,:)=sp(1,:);
a=1;
PC=zeros(1,szzt);
while shr(a,:)~=sp(szsp,:),
 for i=1:szsp,
 if shr(a,:)==sp(i,:)
 pck=i;
 break
 end
 end
 for i=szsp:-1:pck+1,
 SF=sqrt(((shr(a,1)-sp(i,1))^2)+((shr(a,2)-sp(i,2))^2));
 for j=1:szzt,
 SC=sqrt(((ZT(1,j)-shr(a,1))^2)+((ZT(2,j)-shr(a,2))^2));
 FC=sqrt(((ZT(1,j)-sp(i,1))^2)+((ZT(2,j)-sp(i,2))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0
 PC(1,j)=sqrt(SC^2-SN^2);
 else
 if SC<FC
 PC(1,j)=SC;
 else
 PC(1,j)=FC;
 end
 end
 end
 if PC(1,:)>ZT(3,:),
 a=a+1;
 shr(a,:)=sp(i,:);

 63

 break
 end
 end
end
shr_x=shr(:,1);
shr_y=shr(:,2);

fillet_path.m
Authored by Jennifer Hazelton, and Matthew Lechliter
This file places fillets in the corners of the paths.

function[Shortened_Paths_fillet_x,Shortened_Paths_fillet_y]=fillet_path

(Shortened_Paths,min_turn)

%INPUTS:
%
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth UAV at point n. The element
%(nxmx2) y position of the mth UAV at point n.
%
%min_turn - minimum turning radius for the UAVs

%OUTPUTS:
%
%Shortened_Paths_fillet - is a nxmx2 matrix where n is the length of the
%longest path with the addition of fillets ((2*old size)-1) and m is the
%number of UAVs multiplied by the number of targets. The element (nxmx1)
%x position of the mth UAV at point n. The element (nxmx2) y position of
%the mth UAV at point n.

Shortened_Paths_fillet=Shortened_Paths*0;
Shortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1);
Shortened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2);
Shortened_Paths_fillet(1,:)=Shortened_Paths(1,:);

fillet_counter=2;
for j=2:size(Shortened_Paths,1)-1,
 if Shortened_Paths(j,:)==Shortened_Paths(j+1,:),
 break
 end
 start=Shortened_Paths(j-1,:);
 middle=Shortened_Paths(j,:);
 finish=Shortened_Paths(j+1,:);
 SM=sqrt(sum((middle-start).^2));

 64

 MF=sqrt(sum(((finish-middle).^2)));
 SF=sqrt(sum(((finish-start).^2)));
 alpha=acos((SM^2+MF^2-SF^2)/(2*SM*MF));
 Fillet=min_turn/tan(alpha/2);
 if Fillet>=SM
 Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:);
 else
 Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-

1,:)+(Shortened_Paths(j,:)-Shortened_Paths(j-1,:))*((SM-Fillet)/SM);
 end
 if Fillet>=MF,
 Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j+1,:);
 else

Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+
(Shortened_Paths(j+1,:)-Shortened_Paths(j,:))*(Fillet/MF);

 end
 fillet_counter=fillet_counter+2;
end
Shortened_Paths_fillet_x=Shortened_Paths_fillet(:,1);
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2);

mmkp_task_allocation.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file calls the functions necessary to assign tasks to each of the UAVs in a manner
that minimizes the overall mission cost.

function [Selected_Paths_x,Selected_Paths_y,mincost]=mmkp_task_allocation(totalcost,

Shortened_Paths_x,Shortened_Paths_y,nuav)

%INPUTS:
%
%totalcost - is a mxn matrix where m is the number of UAVs and n is the
%number of possible paths for each UAV. The element (m,n) of this matrix
%is the cost for the mth UAV to take the nth path.
%
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth UAV at point n. The element
%(nxmx2) y position of the mth UAV at point n.
%
%nuav - number of UAVs

%OUTPUTS:
%
%Selected_Pos - is a nxmx2 matrix where n is the length of the longest

 65

%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth UAV at point n. The element (nxmx2) y position of the mth uav at
%point n.

%%%
%MMKP algorithm
%%%
[bestcomb,mincost]=mmkp_new(totalcost);

%%%
%Taking the results from mmkp
%%%

Selected_Paths_x=zeros(size(Shortened_Paths_x,1),nuav);
Selected_Paths_y=zeros(size(Shortened_Paths_x,1),nuav);
for i=1:nuav,
 Selected_Paths_x(:,i)=Shortened_Paths_x(:,(nuav)*(i-1)+bestcomb(1,i));
 Selected_Paths_y(:,i)=Shortened_Paths_y(:,(nuav)*(i-1)+bestcomb(1,i));
end

mmkp_new.m
Authored by Jennifer Hazelton, Zachary Spritzer, Matthew Lechliter, and Elena Lucchi
This file finds the permutation from UAVs to target associated with the minimum cost.

function [bestcomb,mincost]=mmkp_new(totalcost)

%Inputs:
%
%totalcost - is a nxm matrix where n is the total number of UAVs and m is
%the total number of targets or paths. Where the element nxm is the cost
%associated with UAV "n" choosing target or path "m".
%
%Outputs:
%
%bestcomb - is a 1xn row with n equal to the number of UAVs where each
%element of the row represents which path the UAV should select to give the
%optimal solution.
%
%mincost - is a scalar number which is sum of the optimal costs for all
%the UAVs paths.

nuav=size(totalcost,1);
mincost=inf;
C_new=perms(1:nuav);
for j=1:size(C_new,1),

 66

 sc=0;
 for i=1:nuav,
 sc=sc+totalcost(i,C_new(j,i));
 end
 if sc < mincost
 bestcomb=C_new(j,:);
 mincost = sc;
 end
end

vrt_sim_convert.m
Authored by Zachary Spritzer
This file converts all of the data necessary for creating a VRT simulation.

function[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y,

UAVS,distpast)
%
%INPUTS:
%
%shr - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth UAV at point n. The element (nxmx2) y position of the mth UAV at
%point n.
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVs, the third row is the initial altitude of the UAVs, and
%the fourth row is the initial Velocity of the UAVs.
%
%
%OUTPUTS:
%
%uav_path_x - is a mxn matrix where m is the number of UAVs and m is the
%length of the longest path. These are the x coordinates of the paths.
%
%uav_path_y - is a mxn matrix where m is the number of UAVs and m is the
%length of the longest path. These are the y coordinates of the paths.
%
%time_uav - is a mxn matrix where m is the number of UAVs and m is the
%length of the longest path. These values correspond to the time at which
%the uavs are at coordinates x and y in uav_path_x and uav_path_y.
%
%altitude_uav - is a mxn matrix where m is the number of UAVs and m is the
%length of the longest path. These values correspond to the altitudes that
%the UAVs are at when they are at coordinates x and y in uav_path_x and

 67

%uav_path_y.
%
%Threat_range_vrt - is a 1xn vector where n is the number of threats, where
%the first row is the range of the threats at the altitude where the UAVs
%are flying.
%
%Zone_range_vrt - is a 1xn vector where n is the number of zones, where
%the first row is the range of the zones at the altitude where the UAVs
%are flying.

nuav=size(shr_x,2);
szshrpth=size(shr_x,1);
shr_x=[[shr_x];[shr_x(szshrpth,:)]];
shr_y=[[shr_y];[shr_y(szshrpth,:)]];
uav_path_x=zeros(nuav,szshrpth+1);
uav_path_y=zeros(nuav,szshrpth+1);
for i=1:nuav,
 for j=1:szshrpth,
 if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j,i)] | j==szshrpth,
 lst_pnt_x=shr_x(j,i);
 nxtlst_pnt_x=shr_x(j-1,i);
 lst_pnt_y=shr_y(j,i);
 nxtlst_pnt_y=shr_y(j-1,i);
 dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+((lst_pnt_y-nxtlst_pnt_y)^2));
 last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(distpast/dist_pnts));
 last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(distpast/dist_pnts));
 uav_path_x(i,[j+1:szshrpth+1])=last_x;
 uav_path_y(i,[j+1:szshrpth+1])=last_y;
 uav_path_x(i,j)=shr_x(j,i);
 uav_path_y(i,j)=shr_y(j,i);
 break
 else
 uav_path_x(i,j)=shr_x(j,i);
 uav_path_y(i,j)=shr_y(j,i);
 end
 end
end

%Initializing matrixes
time_uav_temp=zeros(nuav,szshrpth+1);
time_uav=zeros(nuav,szshrpth+1);
altitude_uav=zeros(nuav,szshrpth+1);

%Time matrix
for i=1:nuav,
 for j=1:szshrpth,

 68

 shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))^2+(uav_path_y(i,j)-
uav_path_y(i,j+1))^2);

 time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i);
 end
 time_uav(i,[2:szshrpth+1])=sum(time_uav_temp(i,:));
 for j=2:szshrpth+1,
 time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j);
 end
end

time_uav=time_uav*1.01;

%Altitude matrix
for i=1:nuav,
 for j=1:szshrpth+1,
 altitude_uav(i,j)=UAVS(3,i);
 end
end

plot_uav.m
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
This file will plot the locations of the UAVs and their environment each time the method
replans, during the simulation, if the plots are enabled.

functionplot_uav(UAVS,TARGETS,ZONES,THREATS,uav_path_x,uav_path_y,

n_plots,uavs_existing,targ_existing,threats_existing)
%%%
%Plotting results
%%%
figure(n_plots);
hold on;
for i=1:2,
 subplot(1,2,i),
 for i=1:size(UAVS,2)
 if uavs_existing(1,i)==1
 plot(UAVS(1,i),UAVS(2,i),'bd');
 text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b');
 axis([5 200 5 200]);
 hold on;
 end
 end
 for i=1:size(TARGETS,2)
 if targ_existing(1,i)==1
 plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0,.4,0]);
 text(TARGETS(1,i)+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);

 69

 axis([5 200 5 200]);
 hold on;
 end
 end
 for i=1:size(THREATS,2)
 if threats_existing(1,i)==1
 plot(THREATS(1,i),THREATS(2,i),'r*');
 text(THREATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r')
 axis([5 200 5 200]);
 hold on;
 end
 end
 hold on;
end

%Plotting threats and range
for i=1:size(THREATS,2)
 if threats_existing(1,i)==1
 t_threat = (1/32:1/32:1)'*2*pi;
 x_threat = THREATS(3,i)*sin(t_threat)+THREATS(1,i);
 y_threat = THREATS(3,i)*cos(t_threat)+THREATS(2,i);
 for i=1:2,
 subplot(1,2,i),plot(x_threat,y_threat,'r.');hold on;
 end
 end
end

%Plotting No fly Zones
for i=1:size(ZONES,2)
 t_nfz = (1/16:1/16:1)'*2*pi;
 x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i);
 y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);
 for i=1:2,
 subplot(1,2,i),fill(x_nfz,y_nfz,'k');hold on;
 end
end

%Plotting shortened paths
for i=1:size(uav_path_x,1)
 subplot(1,2,2),plot(uav_path_x(i,:),uav_path_y(i,:),'b-');hold on;
end
subplot(1,2,1),title('Initial Positions');hold on;
subplot(1,2,2),title('Shortened Selected Paths');hold on;
for i=1:2,
 subplot(1,2,i),axis([-25 250 -25 250]);hold on;
end

 70

Appendix B: Main SIMULINK diagrams for the Partially
Decoupled Simulation

This model is the top level for the partially decoupled simulation. The GUI Inputs, User
Defined Battlefield, and Pre-defined Battlefield all offer different ways to input the
necessary data. The Plot Simulation button will show the paths the vehicles actually take
in their quest to fulfill the mission.

pathplan.mdl
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
The main model for the path planning and task allocation simulation of the partially
decoupled system.

 71

pathplan/ PATH PLANNING
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
The path planning subsystem calls the path_planning.m file.

pathplan/SIGNAL REPLAN
Authored by Zachary Spritzer, and Matthew Lechliter
This code is called every time a replan is signaled.

 72

pathplan/TARGETS MANAGER
Authored by Zachary Spritzer, and Matthew Lechliter
The target manager subsystem is responsible for identifying when a target changes state
and signaling an appropriate replan.

pathplan/TARGETS CLASSIFIER
Authored by Zachary Spritzer, and Matthew Lechliter
The targets classifier subsystem determines when a target is classified and signals
appropriate replans.

 73

pathplan/ADD WAYPOINTS
Authored by Jennifer Hazelton, Zachary Spritzer, and Matthew Lechliter
When the number of targets is less than the number of vehicles, the ADD WAYPOINTS
subsystem adds targets with a value of zero until the targets equal the vehicles in number.

pathplan/THREATS MANAGER
Authored by Zachary Spritzer, and Matthew Lechliter
The threats manager subsystem, in Figure 15, determines when a threat fires and signals a
appropriate replans.

 74

pathplan/UAV MANAGER
Authored by Zachary Spritzer, and Matthew Lechliter
The UAV Manager subsystem determines when a vehicle has been destroyed and signals
appropriate replans.

pathplan/UAV CRASH
Authored by Zachary Spritzer, and Matthew Lechliter
The UAV crash subsystem determines if a UAV’s path intersects a no-fly zone. If it
does, then the vehicle is considered lost.

 75

pathplan/UAV DOWN
Authored by Zachary Spritzer, and Matthew Lechliter
The UAV down subsystem detects whether a vehicle has been shot down by a threat.

pathplan/UAV DOWN
Authored by Zachary Spritzer, and Matthew Lechliter
The UAV intercepted subsystem determines whether a threat hits a vehicle.

 76

Appendix C: Model file for the Combined Method
Authored by Jennifer Hazelton
Combined path planning and task allocation UAV problem ###
used for each scenario ###

sets of data, corresponding to indices
set Nv; # number of vehicles
set Nw; # number of targets
set Nz; # number of no-fly zones
set Nk; # number of corners on a no-fly zone
set Pos; # x-position, y-position of targets

parameters, data for the model
param Nt >0; # number of time steps
param posmax >0; # maximum position of vehicle from origin
param vmax >0; # maximum velocity of vehicle
param fmax >0; # maximum force on vehicle
param sigma1 >0; # weighting factor
param sigma2 >0; # weighting factor
param x0 {Nv}; # initial values of x-location
param y0 {Nv}; # initial values of y-location
param xdot0 {Nv}; # initial values of x-velocity
param ydot0 {Nv}; # initial values of y-velocity
param Z {Nz,Nk}; # locations of NFZ
param R; # relaxation value in NFZ and target constraints
param W {Nw,Pos}; # locations of targets
param attack; # number of times to attack each target

decision variables
var tp {p in Nv} integer >=0, <=30; # vehicle completion time
var tbar integer >=0, <=35; # overall mission completion time
var b {i in Nw, p in Nv, t in 1..Nt} binary; # target state indicator
var d {j in Nz, k in Nk, p in Nv, t in 1..Nt} binary; # no-fly zone indicator
var x {p in Nv, t in 0..Nt} >= 0, <= posmax; # x-location of vehicle
var y {p in Nv, t in 0..Nt} >= 0, <= posmax; # y-location of vehicle
var xdot {p in Nv, t in 0..Nt} >= -vmax, <= vmax; # x-velocity of vehicle
var ydot {p in Nv, t in 0..Nt} >= -vmax, <= vmax; # y-velocity of vehicle
var fx {p in Nv, t in 0..Nt} >= -fmax, <= fmax; # x-force on vehicle
var fy {p in Nv, t in 0..Nt} >= -fmax, <= fmax; # y-force on vehicle

objective function
minimize mission_time: tbar+ sigma1*(sum {p in Nv} tp[p]);

 77

constraints

initial condition
subject to initial_cond1 {p in Nv}: x[p,0] = x0[p];
subject to initial_cond2 {p in Nv}: y[p,0] = y0[p];
subject to initial_cond3 {p in Nv}: xdot[p,0] = xdot0[p];
subject to initial_cond4 {p in Nv}: ydot[p,0] = ydot0[p];

constraint 1
subject to state_vector_1 {p in Nv, t in 0..Nt-1}:

x[p,t+1] = x[p,t]+xdot[p,t]+5.8824*fx[p,t];
subject to state_vector_2 {p in Nv, t in 0..Nt-1}:

y[p,t+1] = y[p,t]+ydot[p,t]+5.8824*fy[p,t];
subject to state_vector_3 {p in Nv, t in 0..Nt-1}: xdot[p,t+1] = xdot[p,t]+11.765*fx[p,t];
subject to state_vector_4 {p in Nv, t in 0..Nt-1}: ydot[p,t+1] = ydot[p,t]+11.765*fy[p,t];

constraint 2, one line for every m in 1..M
subject to max_force_1 {p in Nv, t in 0..Nt}:

fx[p,t]*0.58779 + fy[p,t]*0.80902 <= fmax;
subject to max_force_2 {p in Nv, t in 0..Nt}:

fx[p,t]*0.95106 + fy[p,t]*0.30902 <= fmax;
subject to max_force_3 {p in Nv, t in 0..Nt}:

fx[p,t]*0.95106 + fy[p,t]*(-0.30902) <= fmax;
subject to max_force_4 {p in Nv, t in 0..Nt}:

fx[p,t]*0.58779 + fy[p,t]*(-0.80902) <= fmax;
subject to max_force_5 {p in Nv, t in 0..Nt}:

fx[p,t]*0 + fy[p,t]*(-1) <= fmax;
subject to max_force_6 {p in Nv, t in 0..Nt}:

 fx[p,t]*(-0.58779) + fy[p,t]*(-0.80902) <= fmax;
subject to max_force_7 {p in Nv, t in 0..Nt}:

fx[p,t]*(-0.95106) + fy[p,t]*(-0.30902) <= fmax;
subject to max_force_8 {p in Nv, t in 0..Nt}:

fx[p,t]*(-0.95106) + fy[p,t]*0.30902 <= fmax;
subject to max_force_9 {p in Nv, t in 0..Nt}:

fx[p,t]*(-0.58779) + fy[p,t]*0.80902 <= fmax;
subject to max_force_10 {p in Nv, t in 0..Nt}:

fx[p,t]*0 + fy[p,t]*1 <= fmax;

constraint 3
subject to max_velocity_1 {p in Nv, t in 0..Nt}:

xdot[p,t]*0.58779 + ydot[p,t]*0.80902 <= vmax;
subject to max_velocity_2 {p in Nv, t in 0..Nt}:

xdot[p,t]*0.95106 + ydot[p,t]*0.30902 <= vmax;
subject to max_velocity_3 {p in Nv, t in 0..Nt}:

xdot[p,t]*0.95106 + ydot[p,t]*(-0.30902) <= vmax;

 78

subject to max_velocity_4 {p in Nv, t in 0..Nt}:
xdot[p,t]*0.58779 + ydot[p,t]*(-0.80902) <= vmax;

subject to max_velocity_5 {p in Nv, t in 0..Nt}:
xdot[p,t]*0 + ydot[p,t]*(-1) <= vmax;

subject to max_velocity_6 {p in Nv, t in 0..Nt}:
 xdot[p,t]*(-0.58779) + ydot[p,t]*(-0.80902) <= vmax;

subject to max_velocity_7 {p in Nv, t in 0..Nt}:
xdot[p,t]*(-0.95106) + ydot[p,t]*(-0.30902) <= vmax;

subject to max_velocity_8 {p in Nv, t in 0..Nt}:
xdot[p,t]*(-0.95106) + ydot[p,t]*(0.30902) <= vmax;

subject to max_velocity_9 {p in Nv, t in 0..Nt}:
 xdot[p,t]*(-0.58779) + ydot[p,t]*0.80902 <= vmax;
subject to max_velocity_10 {p in Nv, t in 0..Nt}:

xdot[p,t]*0 + ydot[p,t]*1 <= vmax;

constraint 5
subject to noflyzone_1 {t in 1..Nt, p in Nv, j in Nz}: x[p,t] - Z[j,'xr'] >= -R*d[j,'xl',p,t];
subject to noflyzone_2 {t in 1..Nt, p in Nv, j in Nz}: Z[j,'xl'] - x[p,t] >= -R*d[j,'yl',p,t];
subject to noflyzone_3 {t in 1..Nt, p in Nv, j in Nz}: y[p,t] - Z[j,'yr'] >= -R*d[j,'xr',p,t];
subject to noflyzone_4 {t in 1..Nt, p in Nv, j in Nz}: Z[j,'yl'] - y[p,t] >= -R*d[j,'yr',p,t];
subject to noflyzone_5 {t in 1..Nt, p in Nv, j in Nz}: sum {k in Nk} d[j,k,p,t] <= 3;

constraint 6
subject to target_1 {p in Nv, t in 1..Nt, i in Nw}: x[p,t] - W[i,'xpos'] <= R*(1-b[i,p,t]);
subject to target_2 {p in Nv, t in 1..Nt, i in Nw}: x[p,t] - W[i,'xpos'] >= -R*(1-b[i,p,t]);
subject to target_3 {p in Nv, t in 1..Nt, i in Nw}: y[p,t] - W[i,'ypos'] <= R*(1-b[i,p,t]);
subject to target_4 {p in Nv, t in 1..Nt, i in Nw}: y[p,t] - W[i,'ypos'] >= -R*(1-b[i,p,t]);

constraint ensure targets are hit, right hand side indicates how many times the vehicle
#must be hit
subject to hit_target1: sum{p in Nv} (sum {t in 1..Nt} b['targ1',p,t]) = attack;
subject to hit_target2: sum{p in Nv} (sum {t in 1..Nt} b['targ2',p,t]) = attack;

constraint 7
subject to vehicle_completion_t {p in Nv, i in Nw}: tp[p] >= sum {t in 1..Nt} t*b[i,p,t];

constraint 8
subject to mission_completion_t {p in Nv}: tbar >= tp[p];

 79

Appendix D: Data file for the Combined Method
Authored by Jennifer Hazelton

Scenario 1
Data file for path planning and task allocation ####

sets of data, or the indices explicitly
set Nv:= uav1 uav2; # number of UAVs
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones
set Nk:= xl yl xr yr; # corners of a no-fly zone
set Nw:= targ1 targ2; # number of targets
set Pos:= xpos ypos; # x- and y-location of targets

param Nt := 3; # number of time steps
param posmax := 70; # m, maximum position value of a UAV
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s)
param fmax := 2.35; # N, Roskam
param sigma1 := 0.001; # weighting factor
param attack := 1; # number of times to attack each target
param R := 100000; # relaxation value in NFZ and target constraints

param : x0 y0 xdot0 ydot0 :=
 uav1 15 14 10 1
 uav2 12 17 5 3 ;

param Z: xl yl xr yr :=
 nfz1 16.4 17.5 21.6 20.5
 nfz2 17.5 16.4 20.5 21.6
 nfz3 16.88 16.88 21.12 21.12;

param W: xpos ypos :=
 targ1 30 27
 targ2 27 30 ;

Scenario 2
Data file for path planning and task allocation ####

sets of data, or the indices explicitly
set Nv:= uav1 uav2; # number of UAVs
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones
set Nk:= xl yl xr yr; # corners of a no-fly zone
set Nw:= targ1 targ2; # number of targets
set Pos:= xpos ypos; # x- and y-location of targets

param Nt := 3; # number of time steps
param posmax := 70; # m, maximum position value of a UAV

 80

param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s)
param fmax := 2.35; # N, Roskam
param sigma1 := 0.001; # weighting factor
param attack := 1; # number of times to attack each target
param R := 100000; # relaxation value in NFZ and target constraints

param : x0 y0 xdot0 ydot0 :=
 uav1 10 5 12 1
 uav2 5 10 2 9.25 ;

param Z: xl yl xr yr :=
 nfz1 16.4 17.5 21.6 20.5
 nfz2 17.5 16.4 20.5 21.6
 nfz3 16.88 16.88 21.12 21.12;

param W: xpos ypos :=
 targ1 30 27
 targ2 27 30 ;

Scenario 3
Data file for path planning and task allocation ####

sets of data, or the indices explicitly
set Nv:= uav1 uav2; # number of UAVs
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones
set Nk:= xl yl xr yr; # corners of a no-fly zone
set Nw:= targ1 targ2; # number of targets
set Pos:= xpos ypos; # x- and y-location of targets

param Nt := 3; # number of time steps
param posmax := 70; # m, maximum position value of a UAV
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s)
param fmax := 2.35; # N, Roskam
param sigma1 := 0.001; # weighting factor
param attack := 1; # number of times to attack each target
param R := 100000; # relaxation value in NFZ and target constraints

param : x0 y0 xdot0 ydot0 :=
 uav1 18 12 6 7
 uav2 12 18 1 4 ;

param Z: xl yl xr yr :=
 nfz1 16.4 17.5 21.6 20.5
 nfz2 17.5 16.4 20.5 21.6
 nfz3 16.88 16.88 21.12 21.12;

 81

param W: xpos ypos :=
 targ1 30 27
 targ2 27 30 ;

Scenario 4
Data file for path planning and task allocation ####

sets of data, or the indices explicitly
set Nv:= uav1 uav2; # number of UAVs
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones
set Nk:= xl yl xr yr; # corners of a no-fly zone
set Nw:= targ1 targ2; # number of targets
set Pos:= xpos ypos; # x- and y-location of targets

param Nt := 3; # number of time steps
param posmax := 70; # m, maximum position value of a UAV
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s)
param fmax := 2.35; # N, Roskam
param sigma1 := 0.001; # weighting factor
param attack := 1; # number of times to attack each target
param R := 100000; # relaxation value in NFZ and target constraints

param : x0 y0 xdot0 ydot0 :=
 uav1 20.5 15 13.41 0
 uav2 15 20.5 0 13.41 ;

param Z: xl yl xr yr :=
 nfz1 16.4 17.5 21.6 20.5
 nfz2 17.5 16.4 20.5 21.6
 nfz3 16.88 16.88 21.12 21.12;

param W: xpos ypos :=
 targ1 30 27
 targ2 27 30 ;

Scenario 5
Data file for path planning and task allocation ####

sets of data, or the indices explicitly
set Nv:= uav1 uav2; # number of UAVs
set Nz:= nfz1 nfz2 nfz3; # number of no-fly zones
set Nk:= xl yl xr yr; # corners of a no-fly zone
set Nw:= targ1 targ2; # number of targets
set Pos:= xpos ypos; # x- and y-location of targets

param Nt := 3; # number of time steps

 82

param posmax := 70; # m, maximum position value of a UAV
param vmax := 13.41; # m/s, maximum velocity Roskam (max=267m/s)
param fmax := 2.35; # N, Roskam
param sigma1 := 0.001; # weighting factor
param attack := 1; # number of times to attack each target
param R := 100000; # relaxation value in NFZ and target constraints

param : x0 y0 xdot0 ydot0 :=
 uav1 6 12 2 10
 uav2 12 6 13 0 ;

param Z: xl yl xr yr :=
 nfz1 16.4 17.5 21.6 20.5
 nfz2 17.5 16.4 20.5 21.6
 nfz3 16.88 16.88 21.12 21.12;

param W: xpos ypos :=
 targ1 30 27
 targ2 27 30 ;

 83

	Comparison of partially decoupled and combined methods of path planning and task allocation
	Recommended Citation

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Chapter 1: Introduction
	1.1 Thesis Objective
	1.2 Survey of Previous Work

	Chapter 2: Partially Decoupled Approach
	2.1 Generating Initial Paths
	2.2 Task Allocation

	Chapter 3: Combined Approach
	3.1 Classic Mixed Integer Linear Program (MILP)
	3.2 Path Planning and Task Allocation MILP

	Chapter 4: Comparison between the Partially Decoupled and C
	4.1 Simulation Parameters Defined
	4.2 Results from the Comparison

	Chapter 5: Conclusions and Recommendations
	References
	Appendix A: Main Matlab files for the Partially Decoupled S
	Appendix B: Main Simulink diagrams for the Partially Decoup
	Appendix C: Model file for the Combined Method

		2004-05-06T10:37:36-0400
	John H. Hagen
	I am approving this document

