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Abstract 

 
Investigation and Simulation of the Planetary Combination Hybrid Electric Vehicle 

Csaba Tóth-Nagy  

 
 

The purpose of this study was the detailed examination of a Planetary Combination 
Hybrid Electric Vehicle design (PC-Hybrid).  The PC-Hybrid unites all the advantages of the 
existing hybrid electric vehicle powertrain concepts, such as series, parallel and combination, 
while eliminating the disadvantages of each.   

The PC-Hybrid powertrain is built up of an internal combustion engine, and two electric 
motor/alternators connected together via a planetary gear set.  Several different powertrain 
configuration layouts were investigated as possible setups of the PC-Hybrid and the two most 
promising ones were chosen for further investigation and simulation.  A control strategy has 
been developed for the optimal operation PC-Hybrid configurations.  A computer program was 
written to simulate the fuel economy of the PC-Hybrid.   

A Hybrid Vehicle Simulator, HVSim (developed at WVU), was used as the basis of the 
computer simulation and was used to compare the fuel consumption of the PC-Hybrid design to 
a baseline conventional vehicle setup as well as to the currently existing hybrid electric vehicle 
configurations.  The program uses a backward-looking simulation model that calculates the 
speed and torque required of the engine, the motor and the alternator for a given driving cycle.  
Once the engine, motor and alternator speed and torque are calculated, HVSim uses efficiency 
maps of the engine and motor to define their efficiency.  Using the instantaneous efficiency 
HVSim defines the power loss in each component and calculates the fuel consumption of the 
simulated vehicle. 

The simulation results show that the fuel economy of the PC-Hybrid is better than that of 
a comparable Series HEV on the FTP City cycle and better than that of a comparable Parallel 
HEV on the Highway FET cycle while maintaining similar performance to the stock 
conventional vehicle.  In addition the exhaust gas emissions may be reduced, compared to 
conventional vehicle or a parallel HEV, due to the reduced requirement for transient engine 
operation.
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1 Introduction 

The high level of air pollution caused by the ever increasing number of vehicles on the 

roads have generated a need for alternative power sources in transportation offering better fuel 

efficiency and lower exhaust emissions.  Governments have designed regulations to keep the 

emissions of the vehicles on the public roads low.  This forces automobile manufacturers to 

develop new propulsion technologies.   

Also decreasing crude oil supplies urge the development of alternative fuel vehicles and 

require better fuel economy from present conventional vehicles.  For this reason a government 

and industry partnership was formed called Partnership for a New Generation of Vehicles 

(PNGV).  PNGV’s goal is to produce prototype vehicles that reach 3 times the fuel economy of 

today’s vehicle. 

Electric vehicles seem to be an obvious solution for the problem since the 1980s when 

semiconductors became usual in power electronics.  It is not obvious yet that what will be the 

energy source of these vehicles.  It can be solar, wind, geothermal energy or something that is 

unknown this time.  One thing is for sure: electric vehicles will have energy storage on board.  

At this point batteries fulfill this task but they are very inefficient, heavy and have low 

capacity.  Today’s electric vehicle is limited to approximately 100 miles range and condemned 

to spend hours being recharged.  Customers typically do not tolerate these limitations.   

Hybrid vehicles have emerged as the leading technology to solve this problem for the 

next 10-15 years until high capacity advanced energy storages become available.  Hybrid 

Electric Vehicles use less fuel and produce less emission than conventional vehicles and do not 

have to be recharged from an off-board electrical source unlike Electric Vehicles.  
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 The two main configurations of hybrids are the Series Hybrid, which shows excellent 

fuel consumption in city traffic (transient driving) and the Parallel Hybrid, which consumes 

significantly less than a conventional vehicle in highway driving (less transient).   

Both designs have an internal combustion engine on board as well as an electric motor 

with an energy storage device.  The improvement of their fuel consumption is gained by the 

optimal use of the engine, by the regenerative braking and by the advanced drive train that is 

used in Hybrids.  

A Combination Hybrid Electric Vehicle design unites all the advantages of both basic 

modes, thus eliminating the disadvantages of each.  

West Virginia University is developing a Combination Hybrid Electric Vehicle for a 

full size SUV, which will imply the advantages of both basic hybrid configurations.  The PC-

Hybrid (Planetary Combination Hybrid) will reach the fuel consumption of the series in city 

driving and the fuel consumption of the parallel on highway driving while maintaining similar 

dynamic performance to that of the stock vehicle.   
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1.2 Emission Regulations 

According to present days concept, which is called wells to wheels concept, all 

emissions must be counted that are involved with the fuel in any kind of form such as 

production and transportation as well as vehicular exhaust emissions.  This sort of calculation 

is needed because vehicular emissions are getting lower.  In some cases, such as in the case of 

electric vehicles, vehicular emissions become zero or negligible so what really counts is 

power-plant emissions and emissions from transporting the given fuel. 

• Wells to wheels emissions stage by stage [7] 

• Feedstock production 

• Feedstock transportation 

• Fuel distribution 

• Vehicular emissions 

The wells to wheels emissions that people are concerned about are 

• Oxides of nitrogen 

• Carbon monoxide 

• Hydrocarbons  

• Particulate matter 

• Carbon dioxide and other greenhouse goses  

Oxides of nitrogen, carbon monoxide and the unburned hydrocarbons are poisonous to 

people, particulate matter causes respiratory diseases such as silicosis, and carbon dioxide is a 

green house gas that is responsible for global warming [8].   
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Table 1 shows the regulated emissions in California for light duty and medium duty 

vehicles.  California has the most stringent exhaust emission standards in the USA.  

Weight [lb] Category NMOG CO NOx PM HCHO 
<8,500 LEV 0.090 4.2 0.07 0.01 0.018 
<8,500 ULEV 0.055 2.1 0.07 0.01 0.011 
<8,500 SULEV 0.010 1.0 0.02 0.01 0.004 
<10,000 LEV 0.195 6.4 0.2 0.12 0.032 
<10,000 ULEV 0.143 6.4 0.2 0.06 0.016 
<10,000 SULEV 0.100 3.2 0.1 0.06 0.008 
<14,000 LEV 0.230 7.3 0.4 0.12 0.040 
<14,000 ULEV 0.167 7.3 0.4 0.06 0.021 
<14,000 SULEV 0.117 3.7 0.2 0.06 0.010 

 
Table 1.  California LEV II emission standards for light and medium duty diesel vehicles.  

(g/mile)   Durability 120,000 miles.  Year 2004-2010. [9] 

 
Table 2 shows the regulated emissions in the European Union for light duty vehicles 

and passenger cars. 

 
Weight 
[kg] 

Tier Year HC+NOx NOx CO PM 

<1305 Euro II  1994 0.97 - 2.72 0.14 
<1305 Euro III 2000 0.56 0.50 0.64 0.05 
<1305 Euro IV 2005 0.30 0.25 0.50 0.025 

Euro II  1994 1.40 - 5.17 0.19 
Euro III 2001 0.72 0.65 0.80 0.07 

1305 
to 
1760 Euro IV 2006 0.39 0.33 0.63 0.04 
>1760 Euro II  1994 1.70 - 6.90 0.25 
>1760 Euro III 2001 0.86 0.78 0.95 0.10 
>1760 Euro IV 2006 0.46 0.39 0.74 0.06 

 
Table 2.  EU Emission standards for diesel cars and light duty vehicles.  (g/km)  Year 2000. [9] 
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1.3 Historical Background 

The idea of the electric and hybrid electric vehicles is not new.  The history goes back 

to 1790 when Nathan Read made the first drawings of a steam carriage and fifteen years later a 

self-propelled car was invented. [4] After the first attempts to make self-powered vehicles, 

which was driven by the steam engine, two main power sources became usual.  One of them 

was the electric motor, and the other one was the internal combustion engine.   

The development of the electric motor can be traced back to the Danish scientist Hans 

Christian Orsted, to the early 19th century, when he discovered that electricity in motion 

generates a magnetic field. In seeking to demonstrate the converse of this finding, the English 

physicist and chemist Michael Faraday constructed a primitive model of the electric motor in 

1821. In the early 1870s the first commercially viable electric motor was created by Gramme, a 

Belgium-born electrical engineer, and the first induction motor was invented by the Czech 

Telsa in 1888. [3] 

The first electric vehicle was made by Professor Stratingh in the Dutch town of 

Groningen in 1835.  Although several electric vehicle manufacturers were established in 

Europe as well as in America before internal combustion engines became available the electric 

vehicle did not become a viable option until the Frenchmen, Gaston Plante, and Camille Faure 

invented (1865) and improved (1881) the storage battery.  On the turn of the century (1899) 

Baker Electric, US manufactured an electric vehicle that was reputedly easy to drive, and could 

cruise a distance of 80 kilometers when fully charged.  Although it seems a little high reference 

[2] says the vehicle was capable of reaching a top speed of 40km/h top speed.  A 1hp DC 

motor powered it.  Its operating voltage was 20V.  The vehicle had rechargeable batteries as an 

energy storage device. [2]   
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The first successful gas engine was made by Étienne Lenoir in Paris 1859.  Although 

the engine worked it was only in 1878 when it became commercially available due to the work 

of the German inventor Nikolaus Otto. 

In 1892 Rudolf Diesel, also of Germany invented the diesel engine.  At first, it was fine 

coal powder that Diesel injected in the cylinder and later he used oil products.   

The use of liquid fuel was exclusively in diesel engine until 1893, when two Hungarian 

scientists Donát Bánki & János Csonka invented the carburetor.  This made the liquid fuel 

available for the Otto engine as well. [6]  

Various countries claim to be the first to produce a gasoline-powered automobile. 

Although there is room for argument, Germany's Karl Benz is now accorded this distinction 

with the three-wheeler he produced in 1886.  The engine, placed over the rear axle, was a 

horizontal, four-cycle, single-cylinder type with 984cc-volume displacement.  The engine was 

capable of providing 0.9hp at 400rpm and could propel the vehicle as fast as 15mph.  It was the 

first automobile equipped with a differential gear. [2] 

Between 1890 and 1910, many hybrid electric cars were built.  The purpose of hybrids 

was basically to improve the handicaps of the single propulsion systems. They were a 

transition between electric and gasoline cars.  Electric cars were more expensive than gasoline 

cars while electric vehicles were considered more reliable, safer and more convenient.  

With the development of the starter motor for gasoline cars and their increased range 

the public interest turned from electric to gasoline after 1913.  That was the year when Henry 

Ford set up the new assembly line for the famous Model T.  It took just 93 minutes for a Model 

T to be assembled. [5] 

Electric vehicles and hybrids were forgotten for a long while.  Although adventurous 

engineers never stopped designing electric vehicles, the lack of advanced batteries, lack of 
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efficient control and the cheap price of gasoline pushed electric and hybrid electric vehicles 

into the background until recent years.  Nowadays, decreasing crude oil resources and 

increasing environmental concerns revitalize the concept of electric vehicles.  Hybrids have 

already returned as the first stage of the change.  They fulfill the same role now as they did 100 

years ago only in reverse.  Hybrids were a transition between electric and gasoline vehicles at 

the turn of the last century.  Now they are a transition between gasoline and electric vehicles. 
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2 Description of Vehicle Layouts 

2.1 The Advantages and Disadvantages of Conventional Vehicles  

Although everybody is familiar with conventional vehicles, their features are 

summarized here to form a basis of comparison.  Figure 1 shows the layout of a conventional 

vehicle. 

Transmission
Internal

Combustion
Engine

Mechanical Energy Flow

Wheel

Wheel

Differen
tial

 

Figure 1.  The conventional vehicle layout. 

In a conventional vehicle an internal combustion engine drives a transmission that 

drives the differential that drives the wheels.  The engine can be diesel or gasoline.  The 

transmission can be manual, automatic or continuously variable transmission (CVT).  A 

conventional vehicle is relatively cheap and easy to control.  It does not require extra control 

besides the engine control unit and, the automatic transmission control unit if an automatic 

transmission is applised.   
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2.2 The Advantages and Disadvantages of Electric Vehicles 

The electric vehicle has a powertrain consists of an electric motor, an energy storage 

device and a controller.  The electric motor provides the power required to propel the vehicle.  

The energy storage device stores the electrical energy and supplies it to the electric motor.  

Although the energy storage device could be a flywheel or an ultra-capacitor as well it is 

usually a battery pack.  Figure 2 shows the layout of a typical electric vehicle. 

Figure 2.  Layout of an electric vehicle. 

The main advantage of electric vehicles is that they don’t emit exhaust gases from their 

tailpipes.  Although, they are called zero emission vehicles (ZEVs), the electrical energy 

production is not free of emissions.  According the “wells to wheels” concept the emissions of 

the vehicle must be increased by the emissions of any kind related to the vehicle such as 

production and transportation.  In that sense EVs are not zero emission vehicles. (See chapter 

1.2)   

The other advantage of EVs is their noiseless operation.  EVs would decrease the noise 

level in cities significantly. 

Battery
Storage

Motor
Controller

Electric
Motor

Electrical Energy Flow

Mechanical Energy Flow

Transmission

Wheel

Wheel

Differen
tial
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EVs are competitive with conventional vehicles in complexity and price and even lees 

complicated to control.  The disadvantage of the electric vehicle is its short range.  It is limited 

by the capacity of the battery pack.  Present battery technology provides approximately 100 

miles on a single charge depending on vehicle size, battery size and capacity and driving 

conditions.  For example GM claims that the EV1 has a range 160 miles. [17] The range of an 

EV can be determined as it is shown in Equation 1 using the data of the EV1 assuming the 

vehicle is cruising 65mph on flat road with no wind.   

EV1 data [18] 

Mass:    m=1350kg 

Drag coefficient:  Cd=0.019 

Frontal area:   A=1.7 m2 

Rolling resistance:  µ=0.018 

Grade:    α=0° 

Air density:   ρ=1.23kg/m3 
 

Velocity of the vehicle: v=65mph=29m/s 

Battery voltage:  V=343volts 

Battery capacity:  C=77Ah 

The power required to drive the vehicle be calculated using the driving resistance 

equation. 

7397.6W  P
s
m29*0sin *  

s
m9.81 *  1350

s
m29*

s
m0 * 1350

)
s
m(29 *1.7m *

m
kg 1.23 * 0.019 * 

2
1

s
m29*cos(0) * 

s
m9.81 * 1350kg * 0.018 P

v*)sin( * g * v*a* v*A  *  *  * 
2
1v*)cos(  * g* m *  P

22

32
32

3
d

=

=++

++=

+++=

kgkg

mmC αραµ

(1) 
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The total energy stored in the battery 

W26411343V*77AhV*CE ===  

(2) 

The range that can be traveled on a single charge supposing 70% of the stored energy is 

usable without damaging the batteries and 0.9 conversion efficiency for the electrical system 

 

 

at 65 mph and zero grade. 

 mile2.1469.0*7.0*mph65*
7397.6W
26411Whv*

P
ERange ===                                        (3) 

The short range of electric vehicles is not the main problem though.  While 

conventional vehicles can be refilled in a couple of minutes, batteries of EVs need several 

hours of charging once they were discharged.  Consumers are not used to being without their 

vehicles for hours every day.  The next calculation is for comparison of a conventional 

vehicle’s refueling rate and an electric vehicle’s recharging rate. 

Density of gasoline: [19]    ρ=0.78kg/l 

Energy density of gasoline: [19]   Eρ=44MJ/kg 

Volume flow rate of gasoline: [20]   V=0.5l/sec 

Recharging time for lead acid batteries: [21]  t=60 min. 

Energy flow rate of gasoline: 

282050J/s5.0*
87.0

440000005.0*EEg ===
ρ
ρ        (4) 

Average energy flow rate into a battery while being charged: 

J/s9.03721000000*
3600

EE 2 ==         (4.1) 
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As a conclusion to recharge the batteries takes 138 times as much time as it takes to fill 

up the fuel tank for the same trip.   



 

 13 

2.3 The Advantages and Disadvantages of Series HEVs  

Series HEVs have the motor coupled either straight to the differential through a gear or 

chain drive or coupled thorough a gearbox, while the internal combustion engine (ICE) is 

coupled to the alternator.  Figure 3 displays the typical layout of a series hybrid electric 

vehicle. 

  Figure 3. Power flow diagram for a typical series hybrid electric vehicle. 

In series HEVs there is no physical coupling between the engine and the transaxle.  

This can reduce the transient operation of the ICE that is especially helpful from an emissions 

standpoint allowing optimal fueling and ignition control.  Under heavy acceleration often an 

engine will fuel heavily to prevent a misfire situation due to an instantaneously high air to fuel 

ratio. The drawback to a series hybrid electric vehicle is the associated mechanical to electrical 

to mechanical energy conversion losses. However this makes it possible for the engine to 

operate in its most efficient region.  A diesel engine efficiency map can be seen in Figure 4. 
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Figure 4. Efficiency map of the Detroit Diesel Corporation 642 engine. 

The fact that the engine can operate in its most efficient region compensates the energy 

conversion losses and results fuel economy improvement that is significant in the city and 

moderate on the highway.  The design also offers regenerative braking to capture the braking 

energy and store it in the battery instead of wasting it on the brake disks in the form of heat.  

The hardware of the series HEV is more expensive than the hardware of EVs or conventional 

vehicles because it requires two electric machines and an ICE.  In addition to that the control of 

it is more complicated than the control of electric and conventional vehicles. 

 

2.4 The Advantages and Disadvantages of Parallel HEVs  

 Parallel Hybrid Electric Vehicles have both the engine and the electric motor 

coupled directly to the wheels through some type of transmission. This direct coupling infers 
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that the ICE does undergo significant transients in speed but in torque as it can be assisted by 

the electric motor.  The speed transients are a drawback from the vehicle’s emissions 

standpoint compared to the series setup.  On the other hand the motor can be used to level the 

torque load that the ICE is subjected to operate in a more efficient range.  Typically ICEs 

operate more efficiently at higher loads (at moderate speeds).  When a low load is required by 

the vehicle the engine can either be shut off while the motor alone drives the vehicle or the 

engine load can be increased by the motor as it acts as a generator.  

The engine is typically not allowed to operate in an inefficient range at low load as it 

does in a conventional vehicle.  In turn it supplies an extra energy to the batteries to be stored 

for later use.  The greatest advantage of a parallel HEV (over series HEVs with the same size 

components) is in its performance.  Parallel HEVs have the potential to use both their electric 

motor and ICE as power sources, simultaneously propelling the vehicle.  

 There are two basic types of parallel HEV schemes.  One is when the main 

power source is the engine and the electric motor assists.  In the other one the electric motor is 

the main power source and the ICE assists.  Figure 5 shows the Power Flow Diagram for 

Parallel HEV when the electric motor assists the internal combustion engine.  Figure 6 shows 

the Power Flow Diagram for Parallel HEV when the ICE assists the electric motor.   
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Figure 5.  Power flow diagram for parallel HEV when the electric motor is before the 

transmission and it assists the internal combustion engine. 
 
 
 

Figure 6.  Power flow diagram for parallel HEV when the ICE assists electric motor.   
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Another version of parallel HEVs is when the electric motor is after the transmission.  

In that case the inefficiency of the transmission does not affect the power of the motor. 

The hardware of a parallel HEV is less expensive than a series HEV because one 

electric motor is enough.  The control, on the other hand, is much more complicated since there 

is physical coupling between the engine and the motor. 
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2.5 The Potential Advantages of Combination HEVs  

It is possible to build a vehicle that can be operated either as a series or as a parallel or 

even some combination of both for different driving conditions. This would utilize the 

advantages of both drive train types.  For example in heavy traffic the vehicle can operate as a 

series HEV or it can operate as a parallel HEV when full power is required.  There are several 

ways to create a drive train that has the characteristics of both a series HEV and a parallel HEV 

but the two main layouts are the series-parallel combination and the Planetary Combination 

HEVs. 

The series-parallel combination has two electric machines and an ICE coupled with a 

combination of clutches that can be engaged in such a way that in one instance the powertrain 

is operating as a series HEV and at another instance operated as a parallel HEV.    

Figure 7.  Power Flow Diagram for the Series-Parallel HEV 
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Depending on driving conditions the various modes would be selected to utilize the 

most advantageous individual mode. This however would involve even more components than 

either a series or a parallel further increasing the size and complexity of the powertrain and the 

complexity of the control.  Figure 7 shows the series-parallel combination HEV. 

 The other main design is the planetary combination hybrid electric vehicle.  

Several possible setups can be arranger around a planetary gear set. [22] One of those versions 

is employed by the Toyota Prius.  The PC-Hybrid in the Prius couples an ICE, an alternator, 

and a motor via a planetary gear set.  The engine is linked to the planet carrier; the alternator to 

the sun gear and the output is the ring that transmits the torque to the differential.  The motor is 

also linked to the ring gear so that it is able to add torque to the output shaft so to the 

differential.  With this setup there are three degrees of freedom, with the alternator being used 

to control the extra degree of freedom on the sun. Changes in the alternator operation affect the 

engine operation yielding total control over the engine at all driving conditions (within reason).   

Because the alternator controls the torque on the engine, the engine can operate at the most 

efficient point at each speed of operation.  In addition to that because there is no gear changing 

involved with the PC Hybrid the engine operation is less transient than at the parallel 

configuration.  It is not as steady as the series though.   

In this setup the vehicle acts as a series HEV, only when the stationary vehicle starts 

moving. All the power from the engine is transmitted through the alternator and the electric 

motor.  As soon as the vehicle starts moving, besides the electrical path, power gets transmitted 

mechanically through the planetary gear set.  For the rest of its operation the vehicle works as a 

combination of a series and a parallel HEV, once again taking advantage of both 

configurations.  If the alternator could be stopped the vehicle would operate as a parallel 

vehicle.  Off course the alternator cannot operate at less than its lowest operating speed 
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because as it loses motion it loses the ability to generate electricity.  Thus the vehicle will 

never operate as a pure parallel HEV.   

The hardware cost of the PC Hybrid is of course more than that of an electric or a 

conventional vehicle.  It needs two electric motors and an engine but it also eliminates the need 

for the transmission that makes the PC Hybrid one of the cheapest most integrated designs.  

The control of the PC Hybrid is more complicated than that of the series and less complicated 

than that of the parallel HEV.  Figure 8 shows the basic layout of the PC Hybrid. Table 3 

compares all efficient types of hybrids to conventional vehicles in terms of fuel economy 

emissions potential and ease of control. 

 

 

 
 Figure 8.  Power Flow Diagram for the Planetary Combination Hybrid. 
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 Series Parallel S-P HEV PC-Hybrid 

Highway Fuel Efficiency + ++ ++ ++ 

City Fuel Efficiency ++ + ++ ++ 

Over the Road Fuel Efficiency + ++ ++ ++ 

Low Emissions Potential ++ + ++ ++ 

Cost -- - -- - 

Complexity - - -- - 

Ease of Control - - -- -- 

Table 3.  Comparison of hybrid types. 

  ++ much better than a similar conventional vehicle 
  +   better than a similar conventional vehicle 

-    worse than a similar conventional vehicle 
--  much worse than a similar conventional vehicle 
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3 An Analytical Investigation of the Planetary Combination Hybrid 

Electric Vehicle  

3.1 Configuration 

The Planetary Combination Hybrid integrates a somewhat undersized internal 

combustion engine, an electric motor and an alternator through a planetary gear set.  This 

configuration allows the engine to operate in its most efficient range at any time using the 

electric motor, the alternator and the planetary gear set effectively as an electronic CVT.  The 

vehicle has moderately sized energy storage that stores the energy recaptured during 

regenerative braking and provides energy under high load situations so that the motor can 

assist the engine to meet high power demand.  The motor, the alternator and the battery pack 

are on the same electrical bus.  This way the alternator can either provide energy to the traction 

motor or recharge the batteries.  Also the traction motor can use the energy either directly from 

the alternator or from the batteries or can capture the braking energy and send it to the batteries 

during braking.  

3.2 Description of Operation 

The main power source of the vehicle is the engine.  The electric motor adds power to 

the output shaft only at starting the vehicle or at severe load conditions.  The engine provides 

power to the planetary gear set.  The planetary gear set splits the power two ways.  Part of the 

power flows mechanically to the wheels through the planetary gear set, the transfer case and 

the differential.  The other part of the power flows through the planetary gear set to the 

alternator from where it flows electrically to the bus and either to the traction motor or to the 

battery pack.  The ratio of the power split changes with the speed of the components but the 
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ratio of the torque remains constant because of its geometrical characteristics.  This mode of 

operation requires the motor to have high torque at low speed and also requires regenerating 

capabilities of the alternator even at low alternator speed.   

3.3 System Integration 

 Figure 9 shows the integrated design of the PC Hybrid.  This design requires a hollow shaft 

generator and a through-shaft motor.  In this way the motor, the alternator and the planetary gear 

set, as an integrated unit, will fit in the place of the conventional vehicles transmission. 

 

Figure 9.  The integrated design arrangement of the PC Hybrid. 

3.4 Control Strategy 

The control is the uncertain part of the PC-Hybrid.  Although, there are some reports 

talking about the vehicle control vaguely, there is no paper that would fully explain the entire 

control strategy probably because of the proprietary nature of the control.  Figure 14 shows the 

flow chart that can be interpreted from the reports [10,11,12,13]. 

The only active control input to the system is the accelerator pedal signal (APS) which 

defines the torque demand from the traction motor.  The traction motor will pull current from 

the electrical bus on one side while the alternator will provide current to the bus on the other 

side.  A current sensor monitors the current in to and out of the batteries.  When the sensor 

indicates an out-flowing current it implies that the alternator is not providing enough power to 
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the motor.  The computer increases the power demand signal of alternator, which increases the 

torque until it reaches the maximum torque of the engine at the given speed.  When the engine 

reaches its maximum torque at that speed the computer increases the engine speed moving the 

engine to a higher power zone.  If the current sensor indicates an in-flowing current it means 

the alternator is generating too much energy and the driver does not require the electric motor 

to consume it.  The computer decreases the speed signal to the engine that results in a 

decreasing engine speed and hence a lower power is generated by the alternator.  At high 

power demand the batteries can provide extra power to the electric motor and the engine 

speeds up to its maximum power capability.  However, there is an optimization loop in the 

control that aims to keep the engine speed as low as possible at all road speeds and to utilize all 

the available torque of the engine at that speed.  This way the power required to propel the 

vehicle is provided by the engine operating in its highest efficiency range.  It also minimizes 

the transient operation of the engine. 
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3.5 Flow Chart of the Hybrid Control 

The PC-Hybrid has two basic operations depending on state of charge.  See Figure 10.  

At high SOC the engine is off, and the vehicle operates as an electric vehicle.  At low SOC the 

vehicle operates as in hybrid mode.  When current flowing out of the battery is higher than the 

set maximum (400A) the control switches to HEV mode independently from the SOC. 

 
Figure 10.  The primary control loop of the PC-Hybrid is based on battery state of charge. 

SOC charge of the battery can not be measured directly.  SOC is a linear function of the 
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state voltage after resting for 24 hours.  Therefore the actual battery voltage can only be used 

as a rough estimate of the SOC. [20]  

Figure 11 shows the flow chart of the EV mode.  The control is very simple in this 

mode.  The gas pedal gives a torque request and the brake pedal gives a regenerating request 

signal to the electric motor.   

Figure 11.  Flow chart of the Electric Vehicle operation.  
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When SOC is low the computer turns on the engine and runs the vehicle as a hybrid.  

See Figure 11. 

Figure 12 shows the basic loop of control in HEV mode.  It shows that the only inputs 

to the system from the driver are brake pedal and gas pedal signals. 

 

Figure 12.  Flow chart of the vehicle control as an HEV. 

The next flowcharts in Figure 13 and Figure 14 give a deeper insight into the 

deceleration loop and the acceleration loop, respectively. 
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Figure 13.  Deceleration loop of the vehicle control. 

As soon as the brake pedal is pressed in the computer sets the engine speed to idle and 

the alternator torque request to zero.  Since the alternator torque controls the engine torque, the 

engine neither provides nor consumes torque so all the kinetic energy of the vehicle can be 

captured during braking.  The first part of the brake pedal throw makes the motor act as a 

generator to regenerate energy from the momentum of the vehicle.  The braking torque signal 

is proportional to the pedal travel and at about one fourth of the maximum travel it reaches the 

maximum regenerative capability of the motor.  (Mechanical brakes are not applied yet.)  If the 

driver needs more severe deceleration that would exceed the regenerative torque capability of 
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the electric motor, the driver simply presses the brake pedal further down.  This activates the 

mechanical brakes as needed while keeping the regenerative braking at the maximum.  The 

current flowing in to the battery also needs to be monitored.  Too high a current can damage 

the batteries or shorten their life significantly.  For this reason the maximum regenerative 

capability is usually defined by the battery current and not the maximum torque capability of 

the electric motor.  The brake control is the same in this case as it was described above.  

Toyota explains the operation and control of the brake in reference [14].  

Figure 14 shows the acceleration loop of the PC-Hybrid control.  As soon as the 

accelerator pedal is pressed it gives a motoring signal to the electric motor.  The motor pulls 

current from the bus, which receives current from the alternator and/or the batteries.  The 

system is optimized to use as little energy from the battery as possible.  Whenever energy is 

used from the battery the computer increases the alternator output and with that the engine 

output.  The upper limit of the alternator output is the third of the maximum brake horsepower 

output of the engine.  Whenever energy is supplied to the battery the computer lowers the 

alternator output and with that the engine output.  The lower limit is the idling speed of the 

engine.  Figure 14 shows the acceleration loop for the hybrid mode. 
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Figure 14.  Acceleration loop for the PC-Hybrid in hybrid mode. 
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3.6 Planetary Gear Set 

Planetary gear drives are widely used as speed reducers in power transmission 

applications.  They consist of 4 main components: a sun gear, planets, a planetary carrier and 

an internally toothed ring gear.  See picture 1. 

Picture 1.  Planetary gear set. 

Planetary gear sets have three input and/or output shafts that give them two degrees of 

freedom of motion.  This makes them great candidates for transmissions.  The three degrees of 

freedom can be defined as the motion of shaft of the ring gear, the motion of the shaft of the 

planetary carrier and the motion of the shaft of the sun gear. The variables on the shafts are 

speed and torque.  This gives two sets of triple variables, three for speed and three for torque.  

Fixing any two given degrees of freedom defines the third one. In transmissions and speed 

reducers usually one shaft, one degree of freedom, is held stationary.  This results the other two 

degrees of freedom being the linear function of each other.   

In the PC-Hybrid none of the elements are held fixed.  The speed of the engine and the 

torque of the alternator are controlled, resulting in the desired speed and the torque at the 

wheels.   
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The required gearing ratio of the planetary gear set depends on the maximum speed and 

torque of the components.  Using a DDC642 engine and two 75kW UQM PM brushless motors  

Engine speed @ maximum power  4500rpm 

Maximum alternator speed  7500rpm 

The requirement of the planetary gear set is to minimize alternator torque and 

maximize alternator speed and output torque.  Calculations are shown in Chapters 3.8, 3.9, 

3.10, 3.11, 3.12, 3.13. 
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3.7 Planetary Configurations 

The components of PC Hybrid can be configured in six different basic layouts, using a 

single planetary gear set, depending on what component is linked to what part of the planetary 

gear set.  The six basic configurations will be investigated in Chapters 3.8, 3.9, 3.10, 3.11, 

3.12, and 3.13.    These are  

Configuration #1 -Engine on the sun, Alternator on the carrier, Motor on the ring 

Configuration #2 -Engine on the ring, Alternator on the carrier, Motor on the sun 

Configuration #3 -Engine on the sun, Alternator on the ring, Motor on the carrier 

Configuration #4 -Engine on the ring, Alternator on the sun, Motor on the carrier 

Configuration #5 -Engine on the carrier, Alternator on the ring, Motor on the sun 

Configuration #6 -Engine on the carrier, Alternator on the sun, Motor on the ring 

Schmidt and Klemen describe four of the six basic configurations in reference [22].  

They describe four-four possible arrangements for configuration #4 and configuration #6 and 

shows a layout for configuration #3 and #5.  He calls them “one mode, input split, parallel, 

hybrid transmission”.  Schmidt has probably recognized the fact that configurations #1 and #2 

make the alternator torque high and alternator speed low, which is against the nature of 

alternators.  See description and calculations in Chapter 3.8 and 3.9. 

Schmidt also describes 7 possible combinations of the six basic configurations in [23].  

He calls them “two mode, input split, parallel, hybrid transmission”.  He describes six possible 

arrangement of the combination of configurations #2 and #4 and one combination of 

configuration #5 and #6.  These combinations give more flexibility to the transmission.  Such 

that the transmission will be able to increase either output torque or output speed significantly. 

Then Schmidt goes further and introduces the “two mode, compound split, electro-

mechanical, vehicular transmissions”, as he calls them, in [24].  These arrangements are also 
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combinations of the six basic configurations using one or two extra planetary gear sets.  These 

configurations do not split the power at the input.  They split the power before the output.  He 

describes combinations of configurations #4 and #6, configurations #2 and #4 and 

configurations #1 and #3 in [24].  For example, he describes a configuration, with two 

planetary gear sets and three clutches, which gives the combination of configurations #2, #4, 

ZEV and high power output parallel.  Figure 14.1 shows this configuration.  Table 3.1 shows 

the possible modes of the configuration. 

 

Configuration Clutch #1 Clutch #2 Clutch #3 Motor #1 Motor #2 

ZEV Disengaged Engaged Engaged Motor Motor 

#2 Engaged Engaged Disengaged Alternator Motor 

#4 Engaged Engaged Disengaged Motor Alternator 

Parallel Engaged Engaged Engaged Motor Motor 

Table 3.1  Possible hybrid modes of the configuration can be seen in Figure 14.1. 

 

The compound configuration, that Schmidt describes in [24], works as a ZEV when 

clutch #1 is disengaged, clutch #2 and #3 are engaged and both motors work as an alternator.  

The compound configuration acts as a configuration #2 when clutch #1 and #2 are engaged 

clutch #3 is disengaged, motor #1 is an alternator and motor #2 is a motor.  The compound 

configuration acts like a configuration #4 when clutch #1 and #2 are engaged, clutch #3 is 

disengaged, motor #1 works as a motor and motor #2 works as an alternator.  The compound 

configuration acts like a super high output parallel HEV when all the clutches are engaged and 

both motors work as motors.   
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Figure 14.1.  A possible two-mode, compound-split, electro-mechanical, vehicular transmissions. 

[24] 
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810      -Hybrid transmission 

812       -Input shafts 

812A      -Input shaft extension 

813      -Input gear 

814      -Engine 

820      -Compound planetary gear set 

822 -Planetary gear subset 

824      -Planetary gear subset 

826      -Ring gear   

828      -Sun gear 

830      -Planet gears 

832      -Planet carrier 

834      -Ring gear   

836      -Sun gear 

838      -Planet gears 

839A      -Transfer gear 

840      -Planet carrier 

841      -Outer sleeve shaft  

844       -Compounded gear member 

846      -Inner sleeve shaft 

848      -Compounded gear member 

852      -Output shaft 

854       -Compounded gear member 

856      -Drive axle 
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858      -Drive axle 

860      -Differential 

862      -Wheel 

864      -Wheel 

865      - Torque transfer device (Clutches #2) 

866      -Torque transfer device (Clutches #3) 

872A, 872B     -Idler gears 

873      -Idler shaft 

880      -Torque transfer device (Clutch #1) 

882      -Electric storage device 

884      -Electrical control unit 

886A, 886B, 886C, 886D,886E,886F -Transfer conductors 

888      -Motor/generator #2 

890      -Motor/generator #1 

896A, 896B     -Idler gears 

902      -Drive gear 

904      -Motor/alternator shafts 

894      -Motor/alternator shafts 

898 -Transfer gear 

Table 3.2.  Components of the two-mode compound-split electro-mechanical, vehicular 

transmission. [24] 
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3.8 Configuration 1.  (Engine on the sun, Alternator on the carrier, Motor on the 

ring)  
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Figure 15.  Configuration 1. Engine on the sun, Alternator on the carrier, Motor on the ring.  

Arrangement and Free body diagram. 

The engine spins the sun gear while the alternator turns on the planetary carrier in the 

same direction providing the counter torque when loaded.  The torque of the alternator and the 

speed of the engine are controlled by the computer.  Thus the torque of the engine on the sun 

and the torque of the alternator on the carrier results a reversed torque on the ring. 

 The torque on the shaft of the ring gear, which is the output torque 

(5) 

The torque on the shaft of the planetary carrier is the alternator torque 

(6) 

The Equation 7 calculates the speed of the carrier as a function of the speeds of the sun 

gear and the ring gear.                                (7) 
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The alternator speed is highest when the vehicle is stationary and the engine spins at its 

highest speed.  The maximum engine speed is 4500rpm.  The maximum alternator speed is 

7500rpm. 

 (8) 

The gearing ratio is negative, which means that the required speed ratio is practically 

impossible using a planetary gear set.  This setup will never provide higher alternator speed 

than the engine speed.  The design requires a low speed, high torque alternator, which is not 

typical, or additional speed reduction.   

Using 1:1.5 as a gearing ratio, the maximum alternator speed would be             

 (9) 

To utilize the full alternator speed range a 1:2.7 gearing is needed. 
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Torque on the alternator 

(11) 

Torque on the ring gear 

(11.1) 

3.9 Configuration 2.  (Engine on the ring, Alternator on the carrier, Motor on the 

sun) 
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Figure 16. Configuration 2. Engine on the ring, Alternator on the carrier, Motor on the sun.  

Arrangement and Free body diagram. 

The engine spins the ring gear while the alternator turns on the planetary carrier in the 

same direction providing counter torque when loaded.  The torque of the alternator and the 

speed of the engine are controlled by the computer.  Thus the torque of the engine on the ring 

and the torque of the alternator on the carrier results a reversed torque on the sun. 
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The torque on the shaft of the planetary carrier, which is the alternator torque 

(13) 

The Equation 14 calculates the speed of the carrier in the function of the speeds of the 

sun gear and the ring gear. 

(14) 

The alternator speed is highest when the vehicle is stationary and the engine spins at its 

highest speed. 

(15) 

The negative gearing ratio means that such a planetary gear set does not exist.  This 

setup will never provide higher alternator speed than the engine speed.  The design also 

requires a low speed, high torque alternator, which is not typical, or an additional gearbox.   

Using 1:1.5 as a gearing ratio, the maximum alternator speed would be 

(16) 

To utilize the full alternator speed range a 1:4.16 gearing is needed. 
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The maximum output speed is 

(17) 

Torque on the alternator 

(18) 

Torque on the sun gear 

(19) 

3.10 Configuration 3.  (Engine on the sun, Alternator on the ring, Motor on the 

carrier. ) 
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 Figure 17.  Configuration 3. Engine on the sun, Alternator on the ring, Motor on the carrier.   

Arrangement and Free body diagram. 

The engine spins the sun gear while the alternator turns on the ring gear in reversed 

direction providing counter torque when loaded.  The torque of the alternator and the speed of 

the engine are controlled by the computer.  Thus the torque of the engine on the sun and the 

torque of the alternator on the ring results a torque on the carrier in the same direction as the 

engine torque. 
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 The torque on the shaft of the planetary carrier, which is the output torque 

(20) 

The torque on the shaft of the ring gear, which is the alternator torque 

(21) 

The Equation 22 calculates the speed of the ring gear as a function of the speeds of the 

sun gear and the planetary carrier. 

(22) 

The alternator speed is highest when the vehicle is stationary and the engine spins at its 

highest speed. 

 (23) 

Planetary gearing ratio must be smaller than 1.6667:1, which is impossible without a 

gearbox between the carrier and the alternator.  The negative sign only means that the output 

torque and speed will be in the reverse direction compared to the input torque and speed (as it 

was supposed to be). 

This design requires a low speed, high torque alternator, what is not a typical alternator, 

an additional gearbox or just the engine needs to go on the ring and alternator on the sun. 
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Using 1:1.5 as a gearing ratio, the maximum alternator speed would be 

(24) 

To utilize the full alternator speed range a 1:2.7 gearing is needed. 

The maximum output speed 
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3.11 Configuration 4.  (Engine on the ring, Alternator on the sun, Motor on the 

carrier) 
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Figure 18. Configuration 4. Engine on the ring, Alternator on the sun, Motor on the carrier.  

Arrangement and Free body diagram. 

The engine spins the ring gear while the alternator turns on the sun gear in reversed 

direction providing the counter torque when loaded.  The torque of the alternator and the speed 

of the engine are controlled by the computer.  Thus the torque of the engine on the ring and the 

torque of the alternator on the sun results a torque on the carrier in the same direction as the 

engine torque. 

 The torque on the shaft of the planetary carrier, which is the output torque 

(28) 

The torque on the shaft of the sun gear, which is the alternator torque 
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The Equation 30 calculates the speed of the sun gear as a function of the speeds of the 

sun gear and the planetary carrier. 

(30) 

The alternator speed is highest when the vehicle is stationary and the engine spins at the 

highest speed. 

 (31) 

The negative sign only means that the output torque and speed will be reversed 

direction to the input torque and speed.  Planetary gearing ratio must be smaller than 1.667 

from safety point of view so the alternator is not going to over spin.  On the other hand, the 

alternator does not work at low speeds so the gearing ratio must be as large as possible. The 

largest possible is 1.66.  This gives the following relative radii ratios for the sun, the ring and 

the planets 
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The maximum output speed 

(33) 

The torque on the shaft of the planetary carrier, which is the output torque using the 

relative radii calculated above will be 

(34) 

The torque on the sun will be 

(35) 

This setup looks to be an excellent candidate for a vehicle application. 

3.12 Configuration 5.  (Engine on the carrier, Alternator on the ring, Motor on the 

sun) 
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Figure 19. Configuration 5. Engine on the carrier, Alternator on the ring, Motor on the sun.  

Arrangement and Free body diagram. 

The engine turns the planetary carrier while the alternator spins on the ring gear giving 

the counter torque when loaded.  The torque of the alternator and the speed of the engine are 
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controlled by the computer.  So the torque of the engine on the planetary carrier and the 

counter-torque of the alternator on the ring results in a torque on the sun in the same direction 

as the engine torque. 

The torque on the shaft of the sun gear, which is the output torque 

 (36) 

The torque on the shaft of the ring gear, which is the alternator torque 

(37) 

The Equation 38 calculates the speed of the ring gear in the function of the speeds of 

the sun gear and the planetary carrier. 

(38) 

The alternator speed is the highest when the vehicle is stationary and the engine spins at 

the highest speed. 

(39) 
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speed, high torque alternator, which is not typical for an alternator.  It either requires an 

additional gearbox or the motor has to be mounted on the ring and the alternator on the sun. 

Using 1:1.5 as gearing ratio, the maximum alternator speed would be 

(40) 

The maximum output speed 

(41) 

Torque on the alternator 

(42) 

Torque on the ring gear 

(43) 

This arrangement can be a candidate too for hybrid vehicle application. 
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3.13 Configuration 6. (Engine on the carrier, Alternator on the sun, Motor on the 

ring) 
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Figure 20. Configuration 6. Engine on the carrier, Alternator on the sun, Motor on the ring.  

Arrangement and Free body diagram. 

The engine spins the planetary carrier while the alternator turns on sun gear giving the 

counter torque when loaded.  The torque of the alternator and the speed of the engine are 

controlled by the computer.  Thus the torque of the engine on the planetary carrier and the 

counter-torque of the alternator on the sun result a torque on the ring in the same direction as 

the engine torque. 

 The torque on the shaft of the ring gear, which is the output torque 

(44) 

The torque on the shaft of the sun gear, which is the alternator torque 

(45) 
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The Equation 45.1 calculates the speed of the sun gear in the function of the speeds of 

the ring gear and the planetary carrier. 

(45.1) 

The alternator speed is the highest when the vehicle is stationary and the engine spins at 

the highest speed. 

(46) 

The planetary gearing ratio must be larger than 1.5:1 from safety point of view so the 

alternator is not going to over speed.  This is practically impossible.  It means the alternator 

will be in the danger of over speeding.  This can be taken care of by the control.  This 

configuration also gives the possibility of using the alternator in its efficient region all the time. 

Using 1:0.6667 as a gearing ratio the maximum alternator speed will be  

(47) 

 

The maximum output speed is 

(48) 

This speed is too high for the alternator.  It might need a speed reducer or the control 

must have a speed limit for the alternator.  That will limit the power output at low speed. 
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The torque on the shaft of the ring gear, which is the output torque, will be 

(49) 

The torque on the sun will be 

(50) 

3.14 Comparison of Different Configurations 

Although all the six configurations discussed above are feasible and will work some of 

them have drawbacks and others have advantages.  Some of them are more suitable for an 

existing vehicle design based on engine and motor speeds and torque than others.  Table 5 

summarizes the features of different configurations.  These features are:  

T.Eng. -Engine torque. (Basically the input torque to the system) 

T.Mot. -The torque transmitted mechanically through the planetary gear drive. (It is the 

shaft to which the motor is connected.) 

T.Alt. -Torque on the alternator shaft. (This torque is a counter torque.  This controls 

the third degree of freedom in the planetary.) 

S.Eng. -Engine speed. (Input speed to the system.) 

S.Mot. -Maximum motor speed (planetary output speed), when alternator speed is zero. 

S.Alt. -Maximum alternator speed, when motor speed is zero (vehicle is stationary). 

Configuration #1 -Engine on the sun, Alternator on the carrier, Motor on the ring 

Configuration #2 -Engine on the ring, Alternator on the carrier, Motor on the sun 

Configuration #3 -Engine on the sun, Alternator on the ring, Motor on the carrier 
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Configuration #4 -Engine on the ring, Alternator on the sun, Motor on the carrier 

Configuration #5 -Engine on the carrier, Alternator on the ring, Motor on the sun 

Configuration #6 -Engine on the carrier, Alternator on the sun, Motor on the ring 

Configuration T.Eng. T.Mot. T.Alt. S.Eng. S.Mot. S.Alt. 

#1 1 1.5 2.5 4500 3000 1800 

#2 1 0.667 1.667 4500 6750 2700 

#3 1 1.5 -2.5 4500 1800 -3000 

#4 1 1.6 -0.6 4500 2812 -7500 

#5 1 0.4 0.6 4500 11250 7500 

#6 1 0.6 0.4 4500 7500 11250 

Table 5.  Features of different configurations. 
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3.15 Speed Requirement of the Vehicle 

The input speed to the differential required to propel a Chevrolet Suburban at a road 

speed of 100mph using the existing final drive ratio of 3.72 is given by 

(51) 

The input speed to the differential at 75mph is 

(52) 

According to the calculations above only two configurations of the six possible can 

fulfill the speed requirement.  They are #5 and #6.  Configuration #6 transmits 60% of the 

input torque mechanically and 40% of it electronically while configuration #5 transmits only 

40% mechanically and 60% of the input torque electronically.  This implies that configuration 

#6 has a better efficiency because the mechanical to electrical and electrical to mechanical 

conversion losses are lower in configuration #6.  This means that configuration #6 is the best 

choice for the given application.  Configuration #6 is the same setup as the one used in the 

Toyota Prius. 

Although configuration #4 cannot meet the speed requirement using the original 

differential, it is the best choice if the differential is replaced by another one with a differential 

ratio of 2.   
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The required input speed to the differential in a Chevrolet Suburban to maintain a speed 

of 100mph using a novel final drive ratio of 2:1 is 

(53) 

The input speed to the differential at 75mph is 

(54) 

The advantage of configuration #4 over configuration #6 with proper sizing is that the 

alternator can not be over-speeded.  Thus it can start off from stationary vehicle position with 

maximum power while configuration #6 reaches its maximum power at about 10 mph.   
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4 Computer Simulation, HVSim 3.0 

The computer simulation of the Planetary Combination Hybrid was based on HVSim.  

HVSim is an effective hybrid vehicle simulator tool that has been developed at West Virginia 

University.  HVSim has been described in the thesis of Kellermeyer [15].   

HVSim can simulate a number of different vehicles with different hybrid 

configurations on different driving cycles.  The vehicle configuration can vary from 

conventional vehicle to electric vehicle through many kind of hybrid vehicles.   

HVSim is using a backward-looking kinetic simulation model.  As a first step it uses 

the road load equation to calculate the power to propel the vehicle required at the wheels from 

the vehicle data and the driving cycle.  Then it uses efficiency constants for the gearboxes and 

the differential to calculate the power required from the engine and the motor.  HVSim uses 

lookup tables, or empirical maps, to define engine efficiency and motor efficiency as a function 

of torque and speed. 

Using engine efficiency and motor efficiency the program calculates instantaneous fuel 

consumption and integrates it throughout the whole cycle.  As a final step HVSim makes a 

correction on fuel economy taking into account the difference in state of charge of the battery 

pack over the cycle and yields the real fuel economy of the simulated vehicle.  HVSim uses a 

modified battery pack model, described by Kellermeyer [15], to simulate the losses involved in 

the internal resistance of the battery. 

HVSim 3.0 is extended by the simulation model of the PC-Hybrid.  With this it is 

capable to simulate the whole spectrum of HEVs, EVs and conventional vehicles.  It can 

simulate 10 different vehicles with 10 different engines on 10 different driving cycles.  It 

provides the choice between manual, automatic and continuously variable transmissions.  The 
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output of the simulation program includes the instantaneous torque, speed and efficiency of 

different components and battery current, voltage and SOC on a second-by-second basis.  The 

base of comparison for different configurations is the fuel economy corrected with the 

difference in SOC. 

5 Vehicle Data 

The simulated vehicle was a year 2000 Chevrolet Suburban.  This vehicle is the subject 

of the FutureTruck Challenge project at West Virginia University.  The vehicle ran and 

performed well in the FutureTruck2000 student competition as a parallel HEV.  It is going to 

be modified to be a PC-Hybrid for year 2001. 

Chevrolet Suburban data [16] 

Mass:        3220kg  

Drag coefficient:      0.446 

Frontal area:       3.169 m2 

Coefficient of rolling resistance:  0.0059 

Differential ratio:      3.72 (configuration # 6) 

Differential ratio:      1.5 (configuration # 4) 

Wheel diameter:      0.8 m 

  Component data 

Battery pack:   27 x 12 V Panasonic 17Ah batteries. 

Engine:    Detroit Diesel Corporation 642, inline 6 cylinder, 119 kW peak torque 

output. 

Motor:     Unique Mobility SR218, 75 kW, permanent magnet brushless DC 

motor. 
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Alternator:    Unique Mobility SR218, 75 kW, permanent magnet brushless DC 

alternator. 

Driving cycles used: HWFET cycle, FTP city cycle, US06 cycle 
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6 Simulation Results 

Simulation was performed on two of the possible configurations using four driving 

cycles.  The two configurations were configuration #4 and configuration # 6.  The driving 

cycles were the FTP city, the highway FET and, the US06 cycles and a cycle on 5% grade at 

55 mph steady speed. 

6.1 Configuration # 4 on the FTP City Cycle 

 
Figure 21.  Speed vs. time on the FTP city cycle 

Figure 22 shows the state of charge of the battery during the FTP city cycle starting 

from an initial SOC of 80%.  The chart shows that the vehicle takes off as an EV causing a 

rapidly decreasing SOC initially.  As soon as the SOC drops to the set minimum (70% in this 

case) the engine turns on and SOC starts increasing.  The battery SOC never reaches the set 

upper limit during the FTP city cycle.  The reason for this is the control system turns the 

engine off after 5 seconds of idling, whenever the vehicle came to a full stop and stayed 

stationary for more than 5 seconds, independently from the SOC is. 
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Figure 22.  SOC vs. time on the FTP city cycle.  Initial  SOC=80% 

 

It can be seen in Figure 22 that the kinetic energy is captured and stored during the 

regenerative braking.  Basically the engine gives a small rate of charge to the battery pack.  

The steep rises in SOC are due to the regenerative braking.   

Figure 22.1 shows the battery SOC on the FTP city cycle starting from an initial SOC 

of 60%.  The lower limit of the SOC, where engine is programmed to turn on, was set to 70% 

so the engine immediately turns on and SOC starts increasing.  Although the SOC never goes 

above the set maximum, where the engine is scheduled to turn off, the engine turns off twice 

due to the fuel saving control strategy.  The computer turns the engine off as soon as vehicle 

stops and stays stationary for 5 seconds.  Figure 22.1 shows that the vehicle is charge 

sustaining.   
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Figure 22.1.  SOC vs. time on the FTP city cycle.  Initial  SOC=60% 

 

Figure 23 shows the speed of the engine, the speed of the electric motor and the speed 

of the alternator.  It is obvious that the engine is oversized for the FTP city cycle.  Most of the 

time it is spinning at 1000rpm, which is hardly above idling speed.  The engine speeds up only 

to increase vehicle speed whenever the alternator reaches close to zero rpm so the unit has 

reached its maximum overdrive capability.  The alternator speed gets close to zero, in order to 

maintain vehicle speed the engine has to rev up.  Figure 23 also shows that the alternator is 

spinning backward whenever the engine is on.  When the engine is off the alternator is 

spinning forward. 
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Figure 23.  Engine speed, motor speed and alternator speed vs. time on the FTP city cycle. 

 
Figure 24.  Engine torque, motor torque, and alternator torque vs. time on the FTP city cycle. 
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Figure 24 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque.  Alternator torque is 

opposite in direction to engine torque.  Both alternator speed and torque have the same 

direction so the alternator is producing power.  It is providing power to the electrical bus.   

The negative torque on the motor can be seen only at braking.  It shows clearly that the 

electric motor provides braking power while working as an alternator.  It captures the kinetic 

energy of the vehicle. 

 

Figure 25.  Engine efficiency as the function of engine speed and engine torque.  

Figure 25 shows the engine efficiency as the function of engine speed and engine 

torque.  It clearly shows that the engine mostly works at a speed of 1000 rpm at relatively low 

torque.  It does not need to operate at a high power output to provide enough power for 

propelling the Suburban on the FTP city cycle.  The engine is oversized for this application. 

Figure 26 shows the motor efficiency as a function of motor speed and motor torque.  

The points shown with an o on the plot are positive torque from motoring, points shown with 
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an x are negative torque from regenerating and the blue color means that the rotational 

direction is the same as the engine rotational direction.  The motor operates at low torque most 

of the time.  Figure 24 shows that high torque is required from the motor only when the engine 

is off or during regenerative braking.   

 
Figure 26.  Motor efficiency as the function of motor speed and motor torque.  

Figure 27 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the red 

color shows that the rotational direction is opposite to the engine rotational direction.  Some 

blue circles can be seen but only at zero torque and when the engine is turned off.  It means 

that when the engine is off the alternator is spinning forward with no load on it acting only as a 

flywheel.  The motor is properly sized for this application. 
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Figure 27.  Alternator efficiency as the function of alternator speed and alternator torque.  
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6.2 Configuration # 4 on the HWFET Cycle 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Speed vs. time on the HWFET test cycle. 

Figure 29 shows the state of charge of the battery during the HWFET cycle.  The chart 

shows that the vehicle takes off as an EV causing a rapidly decreasing SOC initially.  As soon 

as the SOC drops to the set minimum the engine turns on and SOC starts increasing.  The 

difference in SOC throughout the cycle is negative.  On the other hand looking only at the 

section when the engine is on the difference in SOC is positive.  The battery SOC never 

reaches the set upper limit during the HWFET cycle.  This is because when the engine is off 

the battery gets depleted rapidly and the increase of SOC is moderate.  The reason is that the 

control is optimized and does not charge the battery more than it is ideal and the trace is too 

short for a complete charge so the engine does not turn off on the highway cycle.  The engine 

turns back  on again as soon as current out of batteries exceeds the set limit of 400 amps.   
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Figure 29.  SOC vs. time on the HWFET cycle. 

It can be seen in Figure 29 that the kinetic energy is captured and stored during the 

regenerative braking.  Basically the engine gives a small rate of charge to the battery pack.  

The steep rises in SOC are from the regenerative braking.   

Figure 30 shows the speed of the engine, the speed of the electric motor and the speed 

of the alternator.  It can be seen that the vehicle speed is higher than on the city cycle.  The 

alternator speed is close to zero, so in order to maintain vehicle speed the engine has to speeds 

up.  This places the engine out of its most efficient range.  Figure 30 also shows that the 

alternator is spinning backward whenever the engine is on.  When the engine is turned off the 

alternator is spinning forward. 
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Figure 30.  Engine speed, motor speed and alternator speed vs. time on the HWFET cycle. 

 
Figure 31.  Engine torque, motor torque and alternator torque vs. time on the HWFET cycle. 
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Figure 31 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque.  Alternator torque is 

opposite in direction to engine torque.  Both alternator speed and torque have the same 

direction so the alternator produces power.  It is provides power to the electrical bus.   

The negative torque on the motor can be seen only at braking.  It shows clearly that the 

electric motor provides braking power while working as an alternator.  It captures the kinetic 

energy of the vehicle.  When the vehicle has reached its cruising speed the electric motor has 

hardly any torque on it.  That shows that the vehicle is uses mainly the engine as a power 

source so it operates very close to a conventional vehicle with an above average overdrive ratio 

(0.6). 

 
Figure 32.  Engine efficiency as the function of engine speed and engine torque.  
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Figure 32 shows the engine efficiency as the function of engine speed and engine 

torque on the HWFET cycle.  It clearly shows that the maximum engine speed is 1600rpm.  It 

does not need to operate at a high power output to provide enough power for propelling the 

Suburban on the HWFET cycle.  It does not need to operate at a high speed either due to high 

overdrive.  The engine never operates at the maximum available torque, that the engine is 

oversized for this application too. 

Figure 33 shows the motor efficiency as a function of motor speed and motor torque.  

The points shown with an o on the plot are positive torque from motoring, points shown with 

an x are negative torque from regenerating and the blue color means that the rotational 

direction is the same as the engine rotational direction.  The motor operates at close to zero 

torque most of the time.  Figure 31 shows that high torque is required from the motor only 

when the engine is off or during regenerative braking.   

 
Figure 33.  Motor efficiency as the function of motor speed and motor torque.  
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Figure 34 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the red 

color shows that the rotational direction is opposite to the engine rotational direction.  Some 

blue circles can be seen but only at zero torque.  It happens only when the engine is turned off.  

It means that when the engine is off the alternator is spinning forward with no load on it acting 

only as a flywheel. 

 
Figure 34.  Alternator efficiency as the function of alternator speed and alternator torque.  
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6.3 Configuration # 4 on the US06 Cycle 

 
Figure 35.  Speed vs. time on the US06 test cycle. 

Figure 36 shows the state of charge of the battery during the US06 cycle.  The chart 

shows that the vehicle takes off as an EV causing a rapidly decreasing SOC initially.  As soon 

as the SOC drops to the set minimum the engine turns on and SOC starts increasing.  Although 

the final battery SOC is close to the set upper SOC of the battery, it never reaches it during the 

US06 cycle.  The reason is that the control is optimized and does not charge the battery more 

than it is ideal and the trace is too short for a complete charge so the engine does not turn off 

on the US06 cycle. 
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Figure 36.  SOC vs. time on the US06 cycle. 

It can be seen in Figure 36 that the kinetic energy is captured and stored during the 

regenerative braking such as on the previous cycles.  Basically the engine gives a small rate of 

charge to the battery pack.  The steep rises in SOC are from the regenerative braking.   

Figure 37 shows the speed of the engine, the speed of the electric motor and the speed 

of the alternator.  It can be seen that, at the middle section of the trace, the vehicle speed is 

higher than on the city cycle.  The alternator speed is close to zero, so in order to maintain 

vehicle speed the engine has to speed up.  Of course it places the engine out of its most 

efficient range.  Figure 37 also shows that the alternator is spinning backward whenever the 

engine is on.  When the engine is turned off the alternator is spinning forward.  The figure also 

shows that the engine and the alternator both speed up, whenever the power demand is high, 

making the engine operate at higher speed that gives higher possible power output. 
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Figure 37.  Engine speed, motor speed and alternator speed vs. time on the US06 cycle. 

 
Figure 38.  Engine torque, motor torque and alternator torque vs. time on the US06 cycle. 
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Figure 38 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque and the alternator 

torque has the opposite direction as engine torque.  Both alternator speed and torque have the 

same direction so the alternator is producing power, it is providing power to the electrical bus.   

The negative torque on the motor can be seen only at braking.  It shows clearly that the 

electric motor provides the braking power working as an alternator.  It captures the kinetic 

energy of the vehicle.  When the vehicle has reached its cruising speed the electric motor has 

hardly any torque on it.  That shows that the vehicle is uses mainly the engine as a power 

source such that it operates very close to a conventional vehicle with an above average 

overdrive ratio (0.6). This means very little battery losses are involved. 

 
Figure 39.  Engine efficiency as the function of engine speed and engine torque.  



 

 76 

Figure 39 shows the engine efficiency as the function of engine speed and engine 

torque on the FTP highway cycle.  It clearly shows that the engine often speeds up to higher 

rpm to provide enough power to make the vehicle follow the trace.  It reaches the maximum 

torque curve frequently but never reaches its maximum power output.  This shows that this is 

appropriate engine for this application 

Figure 40 shows the motor efficiency as a function of motor speed and motor torque.  

The points shown with an o on the plot are positive torque from motoring, points shown with 

an x are negative torque from regenerating and the blue color means that the rotational 

direction is the same as the engine rotational direction.  The motor is providing significant 

amount of power during the US06 cycle.  It reaches maximum its maximum torque a couple of 

times.  Figure 38 also shows that extremely high torque is required from the motor when the 

engine is off.  This means the motor is undersized for this application. 

 
Figure 40.  Motor efficiency as the function of motor speed and motor torque.  
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Figure 41 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the red 

color shows that the rotational direction is opposite to the engine rotational direction.  Some 

blue circles can be seen but only at zero torque.  It happens only when the engine is turned off.  

It means that when the engine is off the alternator is spinning forward with no load on it acting 

only as a flywheel.  The alternator operates only at low speed, low torque range.  This shows 

that the alternator is oversized even for the US06, which is the most severe cycle. 

 
Figure 41.  Alternator efficiency as the function of alternator speed and alternator torque.  
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6.3.1 Configuration # 4 on a 5% grade at 55 mph steady speed 

 

 
Figure 41.1.  Speed vs. time on a 5% grade at 55 mph steady speed. 
 

Figure 41.2 shows the state of charge of the battery on a 5% grade at 55 mph steady 

speed.  The chart shows that the vehicle takes off as an EV causing a quickly decreasing SOC 

initially.  As soon as the battery current exceeds 400 amps the engine turns on and SOC stays 

steady.  The difference in SOC throughout the cycle is negative.  On the other hand looking 

only at the section when the engine is on the difference in SOC is positive.  This means that the 

vehicle is charge sustaining even on 5% grade.  The battery SOC never reaches the set upper 

limit on a 5% grade at 55 mph steady speed.  This is because when the engine is off the battery 

gets depleted rapidly and the increase of SOC is moderate when the engine is on.  The reason 

for that is the control is optimized and does not charge the battery more than it is ideal and the 

trace is too short for a complete recharge so the engine does not turn off on the 5% grade at 55 

mph steady speed. 
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Figure 41.2.  SOC vs. time on a 5% grade at 55 mph steady speed. 

It can be seen in Figure 41.2 that the kinetic energy is captured and stored during the 

regenerative braking.  The steep rise in SOC at the end of the trace is from the regenerative 

braking.   

Figure 41.3 shows the speed of the engine, the speed of the electric motor and the speed 

of the alternator.  It can be seen that the vehicle speed is increases until it reaches 55 mph than 

stays steady.  The alternator speed is not zero in this case so it lets the engine operate at a 

higher power output range.  Figure 41.3 also shows that the alternator is spinning forward 

whenever the engine is off.  When the engine is turned on the alternator is spinning backward. 
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Figure 41.3.  Engine speed, motor speed and alternator speed vs. time on a 5% grade at 55 mph 

steady speed. 

 
Figure 41.4.  Engine torque, motor torque and alternator torque vs. time on a 5% grade at 55 

mph steady speed. 
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Figure 41.4 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque.  At Configuration # 4 

the alternator torque has reversed direction to engine torque.  Both alternator speed and torque 

have the same direction so the alternator is producing power, it is providing power to the 

electrical bus.   

The negative torque on the motor can be seen only at braking.  It shows clearly that the 

electric motor provides the braking power working as an alternator.  It captures the kinetic 

energy of the vehicle.  When the vehicle has reached its cruising speed the electric motor 

provides some torque.  That shows that the vehicle uses mainly the engine as a power source 

but there is a significant amount of energy transmitted electronically through the alternator and 

the motor.  The vehicle is working as a real hybrid. 

 
Figure 41.5.  Engine efficiency as the function of engine speed and engine torque.  
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Figure 41.5 shows the engine efficiency as the function of engine speed and engine 

torque on a 5% grade at 55 mph steady speed.  It clearly shows that the maximum engine speed 

is 1800rpm and the torque is the maximum at that speed.  The engine operates at a higher 

power output to provide enough power for propelling the Suburban on a 5% grade at 55 mph 

steady speed.  The engine is operating at 60% of its maximum power output so it would be 

able to handle more severe driving conditions. 

Figure 41.6 shows the motor efficiency as a function of motor speed and motor torque.  

The points shown with an o on the plot are positive torque from motoring, points shown with 

an x are negative torque from regenerating and the blue color means that the rotational 

direction is the same as the engine rotational direction.  The motor is providing significant 

torque.  It definitely assists the engine in propelling the vehicle. 

 
Figure 41.6.  Motor efficiency as the function of motor speed and motor torque.  
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Figure 41.7 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the red 

color indicates that the rotational direction is the opposite to the engine rotational direction.  

Some blue circles can be seen but only at zero torque.  It happens only when the engine is 

turned off.  It means that when the engine is off the alternator is spinning forward with no load 

on it acting only as a flywheel.  The low torque, low speed operation range clearly shows that 

the alternator is way oversized for this application too.  The alternator mostly operates at 

around 150Nm and 3000rpm.  This provides the electrical energy consumed by the motor.  The 

vehicle does not use energy from the battery.  It is charge sustaining. 

 
Figure 41.7.  Alternator efficiency as the function of alternator speed and alternator torque.  
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6.4 Configuration # 6 on the FTP City Cycle 

 
 Figure 42.  Speed vs. time on the FTP city test cycle. 

Figure 43 shows the state of charge of the battery during the FTP city cycle.  Basically 

there is no difference between the SOC plot of the two configurations.  The chart shows that 

the vehicle takes off as an EV causing a quickly decreasing SOC initially.  As soon as the SOC 

drops to the set minimum the engine turns on and SOC starts increasing.  The battery SOC 

never reaches the set upper limit during the FTP city cycle.  The reason is that the control 

system turns the engine off after 5 seconds of idling after the vehicle came to a full stop and 

stayed stationary for 5 seconds no matter what the SOC is.  The engine turns back on again as 

soon as current out of batteries exceeds the set limit of 400 amps.   
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Figure 43.  SOC vs. time on the FTP city cycle. 

It can be seen in Figure 43 that the kinetic energy is captured and stored during the 

regenerative braking.  The main difference is that the alternator is spinning at much higher 

speed.  This gives a higher basic charge rate to the batteries and can be seen on the SOC.  The 

steep rises in SOC are, again, from the regenerative braking.   

Figure 44 shows the speed of the engine, the speed of the electric motor and the speed 

of the alternator.  It is obvious that the engine is oversized for the FTP city cycle at 

Configuration # 6 as well.  Most of the time it is spinning at 1000rpm, which is hardly above 

idling speed.  The engine speeds up only to increase vehicle speed whenever the alternator 

reached close to zero rpm so the unit has reached its maximum overdrive capability.  The 

alternator speed gets close to zero, in order to maintain vehicle speed the engine has to speed 

up.  Figure 44 also shows that the alternator is spinning in the same direction as the engine 

does whenever the engine is on.  When the engine is off the alternator is spinning backward. 
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Figure 44.  Engine speed, motor velocity and alternator speed vs. time on the FTP city cycle. 

 
Figure 45.  Engine torque, motor torque and alternator torque vs. time on the FTP city cycle.   
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Figure 45 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque.  Alternator torque is 

in the same direction as the engine torque.  Both alternator speed and torque have the same 

direction so the alternator is producing power, it is providing power to the electrical bus.   

The negative torque on the motor can be seen only at braking.  It shows clearly that the 

electric motor provides the braking power working as an alternator.  It captures the kinetic 

energy of the vehicle. 

 
Figure 46.  Engine efficiency as the function of engine speed and engine torque.  

Figure 46 shows the engine efficiency as the function of engine speed and engine 

torque.  It clearly shows that the engine mostly works at a speed of 1000 rpm.  Although it 

does not need to operate at a high power output to provide enough power in order to make the 

vehicle meet the trace, it goes up to half of the maximum engine power capability to propel the 

Suburban on the FTP city cycle.   
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Figure 47 shows the motor efficiency as a function of motor speed and motor torque.  

The points shown with an o on the plot are positive torque from motoring, points shown with 

an x are negative torque from regenerating and the blue color means that the rotational 

direction is the same as the engine rotational direction.  The motor operates at low torque most 

of the time.  Figure 45 shows that high torque is required from the motor only when the engine 

is off or during regenerative  braking.   

 
Figure 47.  Motor efficiency as the function of motor speed and motor torque.  

Figure 48 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the blue 

color indicates that the rotational direction is the same as the engine rotational direction.  Some 

red circles can be seen in the graph but only at zero torque and when the engine is turned off.  

It means that when the engine is off the alternator is spinning forward with no load on it acting 

only as a flywheel. 
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Figure 48.  Alternator efficiency as the function of alternator speed and alternator torque.  
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6.5 Configuration # 6 on the HWFET Cycle 
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Figure 49.  Speed vs. time on the HWFET test cycle. 

Figure 50 shows the state of charge of the battery during the HWFET cycle.  The chart 

shows that the vehicle takes off as an EV causing a quickly decreasing SOC initially.  As soon 

as the SOC drops to the set minimum the engine turns on and SOC stays steady.  The 

difference in SOC throughout the cycle is negative.  On the other hand looking only at the 

section when the engine is on the difference in SOC is positive.  The battery SOC never 

reaches the set upper limit during the HWFET cycle.  This is because when the engine is off 

the battery gets depleted rapidly and the increase of SOC is moderate when the engine is on.  

The reason is that the control is optimized and does not charge the battery more than it is ideal 

and the trace is too short for a complete charge so the engine does not turn off on the highway 

cycle.  This is off course to eliminate battery losses 
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Figure 50.  SOC vs. time on the HWFET cycle. 

It can be seen in Figure 50 that the kinetic energy is captured and stored during the 

regenerative braking  The steep rises in SOC are from the regenerative braking.   

Figure 51 shows the speed of the engine, the speed of the electric motor and the speed 

of the alternator.  It can be seen that the vehicle speed is higher than on the city cycle.  The 

alternator speed is close to zero, so in order to maintain vehicle speed the engine has to speed 

up.  This places the engine out of its most efficient range.  Figure 51 also shows that the 

alternator is spinning forward whenever the engine is on.  When the engine is turned off the 

alternator is spinning backward. 
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Figure 51.  Engine speed, motor speed and alternator speed vs. time on the HWFET cycle. 

 
Figure 52.  Engine torque, motor torque and alternator torque vs. time on the HWFET cycle. 
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Figure 52 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque.  At Configuration # 6 

the alternator torque has the same direction to engine torque.  Both alternator speed and torque 

have the same direction so the alternator is producing power, it is providing power to the 

electrical bus.   

The negative torque on the motor can be seen only at braking.  It shows clearly that the 

electric motor provides the braking power working as an alternator.  It captures the kinetic 

energy of the vehicle.  When the vehicle has reached its cruising speed the electric motor 

produces very little torque.  That shows that the vehicle uses mainly the engine as a power 

source so it operates very close to a conventional vehicle with an above average overdrive ratio 

(0.6). 

 
Figure 53.  Engine efficiency as the function of engine speed and engine torque.  
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Figure 53 shows the engine efficiency as the function of engine speed and engine 

torque on the HWFET cycle.  It clearly shows that the maximum engine speed is 1800rpm.  It 

does not need to operate at a high power output to provide enough power for propelling the 

Suburban on the HWFET cycle.  It does not need to operate at a high speed either due to high 

overdrive.  The fact that the engine never operates at the maximum available torque, shows 

that the engine is oversized for this application too. 

Figure 54 shows the motor efficiency as a function of motor speed and motor torque.  

The points shown with an o on the plot are positive torque from motoring, points shown with 

an x are negative torque from regenerating and the blue color means that the rotational 

direction is the same as the engine rotational direction.  The motor operates at close to zero 

torque most of the time.  Figure 52 shows that high torque is required from the motor only 

when the engine is off or during regenerative  braking.   

 
Figure 54.  Motor efficiency as the function of motor speed and motor torque.  
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Figure 55 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the blue 

color shows that the rotational direction is the same as the engine rotational direction.  Some 

red circles can be seen but only at zero torque.  It happens only when the engine is turned off.  

It means that when the engine is off the alternator is spinning forward with no load on it acting 

only as a flywheel.  The low torque, low speed operation range clearly shows that the alternator 

is way oversized for this application. 

 
Figure 55.  Alternator efficiency as the function of alternator speed and alternator torque.  
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6.6 Configuration # 6 on the US06 Cycle 

 
Figure 56.  Speed vs. time on the US06 test cycle. 

Figure 57 shows the state of charge of the battery during the US06 cycle.  The chart 
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as the SOC drops to the set minimum the engine turns on and SOC starts increasing.  The 
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and vehicle starts operate as an electric vehicle.  The engine turnson again when current 
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Figure 57.  SOC vs. time on the US06 cycle. 
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Figure 58.  Engine speed, motor speed and alternator speed vs. time on the US06 cycle. 

 
Figure 59.  Engine torque, motor torque and alternator torque vs. time on the US06 cycle. 
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Figure 59 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque and the alternator 

torque has the opposite direction as engine torque.  Both alternator speed and torque have the 

same direction so the alternator is producing power, it is providing power to the electrical bus.   

The negative torque on the motor can be seen only at braking.  It shows clearly that the 

electric motor provides the braking power working as an alternator.  It captures the kinetic 

energy of the vehicle.  When the vehicle has reached its cruising speed the electric motor has 

hardly any torque on it.  That shows that the vehicle is uses mainly the engine as a power 

source so it operates very close to a conventional vehicle with an above average overdrive ratio 

(0.6).  It means again that battery losses are very low. 

 
Figure 60.  Engine efficiency as the function of engine speed and engine torque.  
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Figure 60 shows the engine efficiency as the function of engine speed and engine 

torque on the FTP highway cycle.  It clearly shows that the engine often speeds up to higher 

rpm to provide enough power to make the vehicle follow the trace.  It reaches the maximum 

torque curve frequently but never reaches its maximum power output.  This shows that this is 

appropriate engine for this application 

Figure 61 shows the motor efficiency as a function of motor speed and motor torque.  The 

points shown with an o on the plot are positive torque from motoring, points shown with an x 

are negative torque from regenerating and the blue color means that the rotational direction is 

the same as the engine rotational direction.  The motor is providing significant amount of 

power during the US06 cycle.  It reaches maximum its maximum torque a couple of times.  

Figure 59 also shows that extremely high torque is required from the motor when the engine is 

off.  This means the motor is undersized for this application.   

 
Figure 61.  Motor efficiency as the function of motor speed and motor torque.  
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Figure 62 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the blue 

color shows that the rotational direction is the same as the engine rotational direction.  Some 

red circles can be seen but only at zero torque.  It happens only when the engine is turned off.  

It means that when the engine is off the alternator is spinning backward with no load on it 

acting only as a flywheel.  The alternator operates only at low speed, low torque range.  This 

shows that the alternator is oversized even for the US06, which is the most severe cycle. 

 
Figure 62.  Alternator efficiency as the function of alternator speed and alternator torque.  
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6.7 Configuration # 6 on a 5% grade at 55 mph steady speed 

 
Figure 62.1.  Speed vs. time on a 5% grade at 55 mph steady speed. 
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trace is too short for a complete recharge so the engine does not turn off on this cycle. 
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Figure 62.2.  SOC vs. time on a 5% grade at 55 mph steady speed. 
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regenerative braking.  The steep rise in SOC at the end of the trace is from the regenerative 
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Figure 62.3.  Engine speed, motor speed and alternator speed vs. time on a 5% grade at 55 mph 

steady speed. 

 
Figure 62.4.  Engine torque, motor torque and alternator torque vs. time on a 5% grade at 55 

mph steady speed. 
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Figure 62.4 shows the engine torque, motor torque and the alternator torque vs. time.  It 

can be seen that the engine torque is proportional to the alternator torque.  At Configuration # 6 

the alternator torque has the same direction as engine torque.  Both alternator speed and torque 

have the same direction so the alternator is producing power, it is providing power to the 

electrical bus.   

Negative torque on the electric motor can be seen only at braking.  It shows clearly that 

the electric motor provides the braking power working as an alternator.  It captures the kinetic 

energy of the vehicle.  When the vehicle has reached its cruising speed the electric motor 

provides very littie torque.  That shows that the vehicle uses mainly the engine as a power 

source but there is some energy transmitted electronically through the alternator and the motor.   

 
Figure 62.5.  Engine efficiency as the function of engine speed and engine torque.  
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Figure 62.5 shows the engine efficiency as the function of engine speed and engine 

torque on a 5% grade at 55 mph steady speed.  It clearly shows that the maximum engine speed 

is about 1800rpm and the torque is the maximum at that speed.  The engine operates at a higher 

power output to provide enough power for propelling the Suburban on a 5% grade at 55 mph 

steady speed.  The engine is operating at about 60% of its maximum power output so it would 

be able to handle more severe driving conditions. 

Figure 62.6 shows the motor efficiency as a function of motor speed and motor torque.  

The points shown with an o on the plot are positive torque from motoring, points shown with 

an x are negative torque from regenerating and the blue color means that the rotational 

direction is the same as the engine rotational direction.  The motor is providing significant 

torque.  It definitely assists the engine in propelling the vehicle. 

 
Figure 62.6.  Motor efficiency as the function of motor speed and motor torque.  
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Figure 62.7 shows the alternator efficiency as the function of alternator speed and 

alternator torque.  The points shown with an x are defining regenerative torque and the blue 

color indicates that the rotational direction is the same as the engine rotational direction.  Some 

red circles can be seen but only at zero torque.  It happens only when the engine is turned off.  

It means that when the engine is off the alternator is spinning backward with no load on it 

acting only as a flywheel.  The low torque, low speed operation range clearly shows that the 

alternator is way oversized for this application too.  The alternator mostly operates at around 

150Nm and 3000rpm.  This provides the electrical energy consumed by the motor.  The 

vehicle does not use energy from the battery.  It is charge sustaining. 

 
Figure 62.7.  Alternator efficiency as the function of alternator speed and alternator torque.  
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7 Discussion of Results 

Computer simulation has been performed on different vehicles.  Table 6 summarizes 

the vehicles simulated with HVSim. 

 Conventional Series HEV Parallel HEV PC-Hybrid #4 PC-Hybrid #6 

Engine GM 5.3 V8, 

gasoline  

Detroit Diesel 

Corporation 642 

Detroit Diesel 

Corporation 642 

Detroit Diesel 

Corporation 642 

Detroit Diesel 

Corporation 642 

Transmission 5-speed manual 

transmission 

5-speed manual 

transmission 

5-speed manual 

transmission 

N/A N/A 

Gearing ratios 3.059, 1.625, 1, 

0.696 

3.083 1.833 

1.217 0.95 0.741 

3.083 1.833 

1.217 0.95 0.741 

N/A N/A 

Motor NO SR218 Unique 

Mobility 

SR218 Unique 

Mobility 

SR218 Unique 

Mobility 

SR218 Unique 

Mobility 

Alternator NO SR218 Unique 

Mobility 

NO SR218 Unique 

Mobility 

SR218 Unique 

Mobility 

Diff. ratio 3.72 3.72 3.72 1.5 2.92 

Table 6.  Vehicle configuration simulated with HVSim. 

The ultimate base of comparison is the fuel economy of the different vehicles.  Table 7 

shows the fuel economy results for the different setups.  
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Fuel Economy 

(mpg) 

Conventional Series HEV Parallel HEV PC-Hybrid 

# 4 

PC-Hybrid 

# 6 

FTP City 16.6 24.6 22.4 39.6 37.5 

Highway FET 21.8 23.7 27.6 36.2 33.52 

US06 15.1 14.7 16.1 26.4 26.2 

%5 grade 

 at 55mph 

14.1 Not capable of 

making the 

trace 

15.52 19.1 18.7 

Table 7.  Fuel economy of the different configurations on the FTP city, on the FTP highway and 

on the US06 cycles.  These fuel economy results are not corrected by any EPA factors. 
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8 Conclusion 

The purpose of this study was the detailed examination of the Planetary Combination 

Hybrid Electric Vehicle design (PC-Hybrid).  Different possible design layouts were 

investigated as possible setups of the PC-Hybrid and the two most promising ones have been 

chosen for further investigation and simulation.  A control strategy has been developed for the 

optimal operation PC-Hybrid configurations.  A computer program was made to simulate the 

fuel economy of the PC-Hybrid.   

The simulated fuel economy results of the PC-Hybrid configurations were compared to 

the simulated fuel economy results of a conventional vehicle, a series hybrid, and a parallel 

hybrid. The simulation was performed on the FTP City cycle, on the FTP Highway cycle and 

on the US06 cycle. 

From table 6 it is obvious that the PC-Hybrid Configuration #4 and PC-Hybrid 

Configuration #6 have the best fuel economy of all.  The average fuel economy of the 

configurations is almost equivalent.  Both of them are excellent candidates for hybrid electric 

vehicle application.  The only difference between the two configurations is that Configuration 

# 4 has high-torque low-speed output while Configuration #6 has a low-torque high-speed 

output.  Obviously the require different final drive ratio.  The one that fits better to present 

days differentials is Configuration #6.  A power source and transaxle unit like Configuration 

#6 could replace the engine and transmission unit in an existing vehicle right away.  That is 

probably the reason why Toyota has put Configuration #6 in the Prius. [10] Configuration # 4 

requires lower gearing ratio in the differential.  However, in a SUV like the Suburban the 

combination of the two configurations would eliminate the range shifter providing an almost 

infinitely variable transmission.   
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