
Graduate Theses, Dissertations, and Problem Reports

2007

Fractal analysis of fingerprints Fractal analysis of fingerprints

John C. Deal
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Deal, John C., "Fractal analysis of fingerprints" (2007). Graduate Theses, Dissertations, and Problem
Reports. 1852.
https://researchrepository.wvu.edu/etd/1852

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1852?utm_source=researchrepository.wvu.edu%2Fetd%2F1852&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Fractal Analysis of Fingerprints

By

John C. Deal

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Matthew Valenti, Ph.D., Chair
Alfred Stiller, Ph.D.
Charles Jaffé, Ph.D.

Xin Li, Ph.D.
Natalia Schmid, Ph.D.

Lane Department of Computer Science and Electrical Engineering
Morgantown, West Virginia

2007

Keywords: Fractals, Fingerprints, Iterated Function Sequence, Forensics, Biometrics

Copyright 2007 John C. Deal

Abstract

Fractal Analysis of Fingerprints

by

John C. Deal
Master of Science in Electrical Engineering

West Virginia University

Matthew Valenti, Ph.D., Chair

Current methods for comparing fingerprints have weaknesses that have opened them to

criticism. Current methods concentrate on the comparison of minutia in the print either manually

or with the assistance of a computer algorithm. This causes these methods to depend highly on

the presence of minutia and their relationship to one another. Absence or rotations of minutia

can prevent current methods form making accurate comparisons. The goal of this process is to

develop a new method for analyzing fingerprints that addresses many of the concerns with

current methods.

The developed process uses an iterated function sequence (IFS) to convert the image of a

fingerprint into a fractal pattern. The input for the IFS is constructed by a random walk through

the image. Once a fingerprint is converted into a fractal pattern, the fractals can be used to make

comparisons. Fractals are well defined mathematical objects that make them far easier to

compare than fingerprints themselves. This process addresses many of the issues with current

methods. This method is global in nature and thus it is not dependent on a set number of

minutiae. Moreover, the rules for the random walk are constructed so as to make the fractal

produced invariant of orientation of the print.

 This method offers a new fast way to compare images. This method can be used to

increase confidence, both in court and public opinion, in the use of fingerprints as identification.

It can offer both an independent and/or supplemental method to the current ones used.

iii

Acknowledgements

 I thank Alfred Stiller, for introducing me to this area and for teaching me much more than

just how to perform research on fractals. I thank Charles Jaffe, for all of his guidance with my

research and the revision of my Thesis. I thank Lyn Ratcliff for his extensive help with the

Windows API and the program. I would also like to thank Matthew Valenti for accepting my

invitation to lead this diverse committee, and for all of his help adapting this project to the

Computer Science and Electrical Engineering department. I also thank Natalia Schmid for

offering insight on how this compares with other methods. I thank Xin Li for serving on this

committee. I would like to thank the Computer Science and Electrical Engineering department

and the Department of Chemistry for facilitating this inter-departmental thesis to be presented.

Finally, I thank the National Institute of Justice for funding this research under Grant # 2003-RC-

CX-K001.

iv

Table of Contents

Abstract .. ii

Acknowledgements .. iii

Table of Contents ... iv

Table of Figures.. vi

List of Tables .. ix

List of Equations ... x

I. Introduction ... 1

A. Background (literature review)... 2

Correlation-based Techniques .. 5

Minutiae-based Methods ... 6

Ridge Feature Based Techniques .. 14

B. Observations.. 17

C. Statement of the Problem .. 17

D. Goal of Research .. 17

E. Products of Research ... 18

II. Experimentation ... 19

A. Approach & Design of Methodology .. 19

B. Fractal Analysis .. 20

Chaos Game .. 20

Random Walk .. 22

Scale & Scale Spectrum .. 26

Normalization .. 30

C. Image Preprocessing .. 33

Outlining ... 34

Old Method for Conversion to Binary .. 35

New Method for Conversion to Binary ... 36

III. Program .. 37

Step 1 Preprocessing ... 37

Step 2 Fractal Creation .. 37

Diagrams ... 39

v

IV. Analysis ... 42

A. Direct Comparison ... 44

Error Bars .. 44

Orientation Independence .. 48

Smudge Removal ... 49

B. Fourier Transform .. 57

C. Other Comparison Methods .. 59

V. Conclusions ... 62

Goals of Research .. 63

Further Research and Future Applications ... 64

Bibliography .. 66

Appendix A Software Manual .. 68

General description ... 68

Installation .. 69

Getting Started .. 69

Working with the fingerprint ... 70

Global Options and Batch Processing ... 74

Other Tools.. 75

Appendix B Source Code .. 77

Appendix C .. 100

vi

Table of Figures

Figure I-1. The image above shows fingerprints from the five classes...4

Figure I-2. Image showing the cores of two different classes of print ..4

Figure I-3. Illustration of the different types of minutiae in fingerprints6

Figure I-4. Images that illustrate the termination/bifurcation duality principle.7

Figure I-5. Partial image of the average orientation map for a print. ...8

Figure I-6. Images showing the Poincare index ..9

Figure I-7. Images showing the conversion of a grayscale image to its reduced binary form 10

Figure I-8. Images illustrating the crossing number for various minutiae. 11

Figure I-9. Image that shows some typical false minutiae and their repaired forms. 11

Figure I-10. Image of matching minutiae from two images. .. 12

Figure I-11. Illustration of an local texture matching method. ... 15

Figure II-1 Two examples of the chaos game. ... 20

Figure II-2. Two results of the chaos game. .. 22

Figure II-3. This figure illustrated the process developed to pick the two points 24

Figure II-4. The fractal produced from the described process ... 25

Figure II-5. The two fractals above are from the same fingerprint but on different scales. 26

Figure II-6. Fractal with the corner probabilities labeling their respective regions. 28

Figure II-7. Scale spectrum for a fingerprint. .. 29

Figure II-8. Two different fingerprints for the same class of print. .. 29

Figure II-9. Scale spectra for the two prints in Figure II-8. ... 30

Figure II-10. Graph showing the normalized spectrum for a fingerprint. 32

Figure II-11. Graph showing the determinate of the probability matrix. 32

vii

Figure II-12. Image showing a fingerprint that has been outlined .. 33

Figure II-13. Image showing the 9x9 neighborhood of pixels ... 35

Figure III-1. Data flow diagram for program. ... 39

Figure III-2. General flowchart for the whole program. .. 40

Figure III-3. Detailed flowchart for the random walk.. 41

Figure IV-1.Samples of the four databases. ... 43

Figure IV-2. Plot the scale spectra from two prints. .. 44

Figure IV-3. Graph showing uncertainty as a function of random walk length. 45

Figure IV-4. Graph showing the time necessary to perform a random walk 46

Figure IV-5. Graph showing uncertainty as a function of time to execute. 46

Figure IV-6. The graph shows the difference in two runs over the same image.. 47

Figure IV-7. The above plot shows the difference from a print and its rotated version. 48

Figure IV-8. Fingerprint image and its outlined version with masked pixels shown in green. 50

Figure IV-9. Image of a fingerprint with a small portion blacked out .. 51

Figure IV-10. Plot showing the difference for the fingerprint and its smudged version. 51

Figure IV-11. The images above show the original print with 5% smudged 52

Figure IV-12. Plot showing the difference for a fingerprint and its version with 5% smudged. . 52

Figure IV-13.The above images show the original print with 10% smudged 53

Figure IV-14. Plot shows the differences for a print and its smudged version with 10% 53

Figure IV-15. The above images show the original print with 5% smudged in a new region 54

Figure IV-16. Plot shows the differences version with 5% removed from a new region. 55

Figure IV-17. Images show the original print with 2% smudged in a new 5 different regions ... 55

viii

Figure IV-18. This plot shows the differences in scale spectra for a print and its smudged

version with 2% removed from 5 different regions. ... 56

Figure IV-19. Plot showing the difference in two different prints. .. 57

Figure IV-20. Plot showing the FFT for two different fingerprints. ... 59

Figure IV-21. Plot showing the scale spectrum and trend lines. .. 60

Figure A-1. The Initial program window. ... 70

Figure A-2. TIFF image dialog. .. 71

Figure A-3. Scale Method Dialog. .. 72

Figure A-4. Tiff dialog upon completion. ... 73

Figure A-5. Tiff dialog upon completion. ... 74

Figure A-6. Scaling parameter to fractal tool. ... 76

ix

List of Tables

Table I-1. Table showing the estimated fractal dimensions for some prints. 16

Table II-II-1. Table showing the steps to take in the chaos game .. 23

Table IV-1. The four FVC 2000 databases taken from Handbook ... 43

Table IV-2. Table showing the coefficients of the fitted polynomials. 61

x

List of Equations

Equation I-1. Equation for correlation comparison. ..5

Equation I-2. Equation to determine the orientation image components.8

Equation I-3. Equation for the Poincaré index. ...9

Equation I-4. Equation for the crossing number. ... 10

Equation II-1. Equation relating the scaling parameters. ... 28

Equation II-2. Equation for the probability of a black pixel at a given scale. 31

Equation II-3. Equation for the probability of a white pixel at a given scale. 31

Equation II-4. Equation to verify probabilities. ... 31

Equation II-5. The first normalization equation. ... 31

Equation II-6. Scaling parameters matrix and the equation for the determinate. 31

Equation II-7. Outlining threshold equation. ... 34

Equation II-8. Old binary conversion decision equations. ... 36

Equation II-9. New binary conversion decision equations. .. 36

Equation IV-1. Multidimensional vector distance formula. ... 60

1

I. Introduction

People have been interested in the individuality of fingerprints for years. Artifacts show that

ancient people were likely aware of the individuality of fingerprints [1]. In 1864 a paper was

published by an English plant morphologist describing his study of ridge and pre-structures [1].

Though, it was not until 1888 that Sir Francis Galton introduced the use of minutiae features for

fingerprint matching [2]. By the early twentieth century, fingerprint recognition by minutiae was

formally accepted [1]. In the 1960s, the FBI began development of an automated system to

compare fingerprints [1]. There has been difference of opinion on the number of minutiae to

establish a positive identification [3]. The number of minutiae used varies by country and is

established by observation, not scientific study [3].

The individuality of fingerprints has not been formally proven; it is an observation, not a

proven scientific fact. There is growing public and legal concern about the uniqueness of

fingerprints [3]. The real question at hand is whether or not each person has a unique fingerprint

and also whether the method of matching location of minutiae is detailed enough to produce

accurate identifications. Some papers have speculated that the fingerprints of identical twins are

95% similar [3]. It has also been speculated that comparison of a partial latent fingerprint may

not be able to show the difference in very similar prints [3].

The method described in this thesis, addresses some of the problems and concerns in the

current processes. The method that we have developed is global in nature since the data sampled

to construct the fractal is taken from the entire image. This is distinct from the traditional

methods that are based on local features such as minutiae. Using this unique approach and the

2

inherent speed of our method current databases could be compared to one another to offer some

proof that at least those prints are unique.

A. Background (literature review)

Comparison of fingerprints can be accomplished either manually or automatically. Human

fingerprint examiners use minutiae in the fingerprint to compare two prints and decide if they

came from the same finger. The accepted standard in the US is twelve minutiae for a fingerprint

to be considered a match [3].

The matching of fingerprints is made difficult because the same finger can produce different

fingerprint images due to the following factors [3].

 Displacement: The fingerprint will not always be in the same position in the image

due to differences in finger position during capture.

 Rotation: The fingerprint will not always have the same orientation in the image due

to the finger being twisted from normal during capture.

 Partial overlap: A portion of the fingerprint may be missing because the finger was

placed over the edge of the sensor.

 Non-linear distortion: These differences in the image are caused by trying to obtain

an image on a two-dimensional surface from a three-dimensional finger. The skin

elasticity of the print will cause differences in the image produced from separate

acquisitions. These differences can also be produced by the user applying torque to

the finger during acquisition causing ridge distortion.

3

 Pressure and skin condition: Pressure, skin condition, sweat, hydration and skin

disease can cause the fingerprint image to be different between acquisitions of the

same print.

 Noise: Problems created when the image is obtained can cause disturbances or noise

in the image. Examples would be residues left on the glass of a sensor or other

disruptions in the surface on which the finger was placed. These problems would

cause a distorted or smudged area of the fingerprint.

 Feature extraction error: Algorithms to extract minutiae and ridge details can cause

measurement errors. Algorithms to enhance and extract features are aggressive and

can sometimes add false or distorted details. This would only be an issue with

automated systems.

Matching by a human examiner is time consuming and has questionable reliability. Even

though the examiners are trained, they will each have their own standards that make their

examination of fingerprints different. The manual matching of fingerprints is a subjective

process and producing a quantitative measure of a match is difficult if not impossible.

Due to the difficulties and limitations of manual matching, many automated methods have

been developed for the analysis of fingerprints. Automated methods for matching can be divided

into three classes; correlation-based, minutiae-based and ridge feature-based [3]. All of these

methods are based on the location of features in the fingerprint so they are dependent on the

displacement and the orientation of the fingerprint.

4

To allow the automated matching of fingerprints, they must be aligned to account for

displacement and differences in orientation. To align a fingerprint, the center of the print or core

must be found. The core of the fingerprint is defined as ―the north most point of the innermost

ridge line [4]‖. This point is often just the middle of the overall structure of the print. Some

classes of fingerprint do not have a well defined center, such as the arch type, and are difficult to

align (see Figure I-1). Figure I-2 shows the core of two different classes of fingerprints.

Figure I-1. The image above shows fingerprints from the five classes. (Image from Figure 3.3 on p84 of Handbook [3].
With permission.)

Figure I-2. Image showing the cores of two different classes of print (Image from Figure 3.2 on p84 of Handbook [3])

5

Correlation-based Techniques

Correlation methods involve the superposition of one print over another and the comparison

of their intensities directly. The simplest measure of the differences in the intensities is the sum

of the squares of the differences in intensities. The sum of the squares is given by Equation I-1

for images represented by matrices T and I [3].

Equation I-1. Equation for correlation comparison.

 𝑇 − 𝐼 2 = 𝑇 2 + 𝐼 2 − 2𝑇𝑇𝐼

In this equation the second term in the final expression is just -2 times the cross correlation of

the images. From this observation it is seen that maximizing the correlation minimizes the

distance. High correlation implies that the images are likely from the same finger. The

displacement and rotation of the image will affect the correlation so the correlation must be

maximized as a function of core position and rotation.

Differences in pressure and skin elasticity along with different collection environments and

methods affect the image and cause difficulty with the described correlation comparison. The

use of better correlation methods such as normalized cross-correlation can help to negate the

effects from these factors [5].

Calculation of the maximum correlation of a relatively small image over the displacement

and rotation values is extremely time consuming operation. Because of this, the correlations are

often calculated on a local and not a global area. Each of the local regions in the template image

are extracted and correlated with the whole input image [6].

6

Minutiae-based Methods

To understand minutiae methods one first has to examine how minutiae are defined and

extracted from a fingerprint image. By definition the word minutia means a small detail. In

fingerprints these ‗small details‘ are the discontinuities in the ridges of the fingerprint. Minutiae

come in many forms [2] and some typical types are shown in Figure I-3.

Figure I-3. Illustration of the different types of minutiae in fingerprints. (Image from Figure 3.4 on p85 of Handbook [3])

There is some difference of opinion about which of these minutiae should be used to identify

a print. American National Standards Institute (ANSI) suggests there should be four classes of

minutiae [7]: terminations, bifurcations, trifurcations (crossovers), and other. The FBI‘s model

considers only terminations and bifurcations [8]. If one examines the negative of a fingerprint

image, terminations become bifurcations (see Figure I-4). Where a ridge terminates, the

corresponding valley bifurcates creating a feature called termination/bifurcation duality [3].

7

Figure I-4. Images that illustrate the termination/bifurcation duality principle. (Image from Figure 3.5 on p86 of
Handbook [3])

The information about a minutia used for comparison includes the class, position (or

coordinates), and its angle or orientation to the horizon. Extracting the minutiae from the

fingerprint involves determining the orientation. The most common method for determining the

orientation of minutiae in the print is to use an orientation image [9]. Each element in the

orientation image‘s array corresponds to the average ridge orientation in that element‘s

neighborhood. When creating the orientation matrix, a reliability matrix is also created showing

the reliability of the orientation estimate. The reliability value can be used to determine high and

low quality (or noisy) portions of the image. Figure I-5 shows the orientation image for part of a

print. An illustration of the orientation and reliability is also shown.

8

Figure I-5. Partial image of the average orientation map for a print. The illustration to the right shows what the
orientation and reliability matrices describe. (Image from Figure 3.8 on p88 of Handbook [3])

Most methods for computing the orientation of the ridges involves taking the gradient of a

pixel map. The phase angle of the gradient is the direction of max intensity change of the pixels.

The gradient estimate of one pixel is on too small of a scale to be used. To solve this problem, a

method was proposed to determine the average phase angle over an n by n region [10]. Equation

I-2 shows how the estimate d is computed. Where ri,j is the distance from the calculated point

and θi,j is the angle.

Equation I-2. Equation to determine the orientation image components.

𝒅 =
1

𝑛2
 𝑟𝑖,𝑗 cos 2𝜃𝑖,𝑗

𝑖 ,𝑗

,
1

𝑛2
 𝑟𝑖,𝑗 sin 2𝜃𝑖,𝑗

𝑖 ,𝑗

Once an orientation image for a print is obtained, the next step in the minutiae matching

process is singularity detection. Singularities are usually detected using the Poincaré method

9

[11]. The Poincaré index is computed for each element in the orientation image by algebraically

summing orientation differences for its adjacent elements. Equation I-3 shows how the index is

calculated and a list of the singularities certain indices detect [12]. Figure I-6 shows an

illustration of the Poincaré index for some singularities. The detection of singularities is used to

determine the core of the fingerprint image. The core is used to align the fingerprint image for

comparison.

Equation I-3. Equation for the Poincaré index.

𝑃𝐺 ,𝐶 𝑖, 𝑗 = 𝑎𝑛𝑔𝑙𝑒 𝑑𝑘 , 𝑑 𝑘+1 𝑚𝑜𝑑 8

7

𝑘=0

𝑃𝐺 ,𝐶 𝑖, 𝑗 =

0° 𝑖𝑓 𝑖, 𝑗 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑎𝑛𝑦 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

360° 𝑖𝑓 𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎 𝑤𝑟𝑜𝑙 𝑡𝑦𝑝𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

180° 𝑖𝑓 𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎 𝑙𝑜𝑜𝑝 𝑡𝑦𝑝𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

−180° 𝑖𝑓 𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎 𝑑𝑒𝑙𝑡𝑎 𝑡𝑦𝑝𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

Figure I-6. Images showing the Poincaré index for some singularities in the orientation image. (Image from Figure 3.15
on p98 of Handbook [3])

10

The next step in the minutiae based method is the detection of the minutiae in the print

image. Since most images of fingerprints are in a grayscale form, minutiae detection is

simplified by conversion to a binary image. Each of the ridges in the binary image is then

reduced to one pixel to further simplify minutiae detection. Figure I-7 shows a fingerprint

image, its binary version and the reduced image [13].

Figure I-7. Images showing the conversion of a grayscale image to its reduced binary form. (Image from Figure 3.31 on
p113 of Handbook [3])

Using the thinned binary image, minutiae are detected by calculating the crossing number for

each element of the thinned image. The crossing number is half the sum of the differences

between pairs of adjacent pixels in the eight pixels neighboring the pixel [14]. Equation I-4

shows how the crossing number is obtained. A crossing number other than 2 indicates a minutia

at that pixel. Figure I-8 illustrates some minutiae and their corresponding crossing numbers.

Equation I-4. Equation for the crossing number.

𝑐𝑛 𝑝 =
1

2
 𝑝𝑖 𝑚𝑜𝑑 8 − (𝑝𝑖−1)

8

𝑖=1

11

Figure I-8. Images illustrating the crossing number for various minutiae. (Image from Figure 3.36 on p119 of Handbook
[3])

The thinning process can introduce some false minutiae in corrupted areas of the fingerprint.

For example, arrow sections of a continuous ridge may disappear during thinning and create two

terminations. Algorithms have been created to detect and remove false minutiae from the

thinned image [15]. Figure I-9 shows common false minutiae and their corrected forms after

application of the algorithm.

Figure I-9. Image that shows some typical false minutiae and their repaired forms. (Image from Figure 3.41 on p125 of
Handbook [3])

12

The list of minutiae obtained along with their positions in the image and their orientation can

be used to make comparisons to other prints. Distortion tolerant transforms are applied to

maximize the number of matched minutiae and negate to effects of distortion. Figure I-10 shows

some minutiae from two prints with the first print‘s minutiae as circles and the second as x.

Gray circles indicate a match because the minutiae from the two prints are within tolerance

levels.

Figure I-10. Image of matching minutiae from two images. (Image from Figure 4.4 on p144 of Handbook [3])

The solution is trivial when the two prints are correctly aligned. This happens when both

cores have the same displacement and the rotations are also equal. For prints that are not

correctly aligned, the maximization can be solved for the (Δx, Δy, θ) variables using a least

squares approach [16]. Solving this maximization using the brute force approach may be the

most obvious, but is computationally prohibitive.

13

Most different methods of fingerprint matching concentrate on handling the distortion and

rotation problems with minutiae matching. These methods take some different approaches to

maximizing the number of matching minutia by obtaining the correct alignment. Some methods

for determining matches include relaxation, algebraic and operational research solutions, tree

pruning, energy minimization, and Hough transforms.

In relaxation, confidence intervals for pairs of points are adjusted until certain criteria are

satisfied [17]. The algebraic approach proposes that exact alignment can be accomplished using

affine transformation [18]. For tree pruning, correspondence between points is found by

searching over a tree of possible matches while applying pruning methods to reduce the search

space [19]. Energy approaches associate energy with each solution to the matching problem, and

then minimizes the energy using a stochastic algorithm [20]. The Hough approach converts the

matching problem into a peak detection problem in Hough space [21].

Pre-alignment of the fingerprint images offers a great improvement in the speed of the

matching process. Even though methods with built-in alignment offer more robust algorithms

for noisy images, they do not offer great enough throughput for some applications such as AFIS.

There are two types of pre-alignment, absolute and relative.

In absolute pre-alignment, templates in the database are pre-aligned and stored. The input

image is then aligned just once before being compared to all images in the database. The main

difficulty is in the registration of the input image, as a mistake here will result in a matching

error. The registration process depends on core detection, which can be difficult.

In relative pre-alignment, the input image is aligned with each template in the database

before matching. Relative pre-alignment offers a speed increase over methods without pre-

14

alignment but cannot compete with absolute pre-alignment. Relative pre-alignment is more

effective than absolute because features of the template can be used in the registration process.

Ridge Feature Based Techniques

Ridge feature based methods can be used in conjunction with or instead of minutiae based

methods. When used in conjunction with minutiae methods, they can increase accuracy and

robustness. Sometimes ridge feature based methods are used instead of minutiae methods

because of difficulties in extracting minutiae from poor quality images. Below are some of the

other features of a print that can be used for matching [3]:

1. Size and silhouette shape.

2. Number, type and position of singularities.

3. Spatial relationship and geometrical attributes of the ridge lines [22].

4. Shape features [23].

5. Global and local texture information.

6. Sweat pores [24].

7. Fractal features [25].

Approaches numbered 1 and 2 are unstable and highly dependent on the image collection

method. Out of the others, global and local texture information and fractal features merit further

consideration in this thesis because they have the closest relationship to the method proposed.

Textures are characterized by properties of an image such scale, orientation, frequency,

symmetry, and isotropy. One method proposed looks at the global textures using the Fourier

domain. In this method, a ―wedge-ring detector‖ is used to produce a feature vector that is

15

independent of translation, rotation and scale [26]. This is difficult because specific ridge

features and orientations show up as small changes in the frequency domain, while features such

as ridge frequency dominate. In global analysis, most spatial information is lost.

Most local texture analysis is performed on the orientation and frequency images described

earlier. One method proposed that an area of interest in the print be tessellated with respect to

the core [27]. A feature vector is then obtained from ordered enumeration of the features found

in each sector of the tessellation. This feature vector contains both global information and local

details from the sectors. A Gabor filterbank is used to decompose the information in the sectors.

Figure I-11 illustrates the process described.

Figure I-11. Illustration of an local texture matching method. (Image from Figure 4.19 on p167 of Handbook [3])

16

The matching method based on fractal features uses existing algorithms to calculate

Estimates of Fractal Dimension (EFD) [25]. The box counting algorithm to obtain these EFDs

divides the image into boxes of length l containing at least one sample of light intensity. Plotting

the log of this intensity versus the log of l gives a slope that estimates the fractal dimensions.

The EFD can be calculated for each pixel along with the whole image. The EFDs for each

pixel comprise a matrix that is referred to as the fractal dimension map of the image. These

maps can be used to compare images of low quality. For comparison, a grid EFD is used. The

grid EFD bins the number of boxes N of a given size that have the same intensity. Plotting the

log of N versus the log of the intensity gives a slope as a measure of the fractal dimension. Table

I-1 shows a couple of points on two different person‘s fingers. Notice how the fractal dimension

for the different points on the same finger is close while the fractal dimension between persons is

noticeably different.

Table I-1. Table showing the estimated fractal dimensions for some prints. (Data from Table 1 in Polikarpova's paper
[25]).

 Person 1 Person 2

Point 1 2.45 2.51

Point 2 2.46 2.51

Even though there are differences in the EFD for the two different prints, the measures are

reasonably close. With a difference this small it is likely, that given a large set of prints, two

different prints would produce the same fractal dimension measure.

17

B. Observations

By surveying the current methods for analyzing fingerprints, it is clear that a more reliable

method needs to be developed. Many current methods only use small portions of the print to

identify them. A global approach that uses the whole print and is not affected by many of the

typical problems was developed and is described in this thesis.

Using an iterated function sequence to create a fractal from the image of a fingerprint helps

with many of the difficulties in fingerprint analysis. The fractal has mathematical properties that

allow it to be analyzed much faster and with less difficulty than the image itself. Information

about the error in the random walk and the properties of the fractal affects the reliability of the

match.

C. Statement of the Problem

A fast algorithm that provides a fractal that is representative of the fingerprint that produced

it is needed. Further, this algorithm needs to easily account for differences in images from the

same print, including independence of displacement and rotation. This fractal should then be

able to be matched to another print using the same process.

D. Goal of Research

The goal of this research is to provide a fast algorithm to produce a fractal representative of

the fingerprint from which it came. The algorithm also should provide solutions to many of the

current problems with fingerprint matching using a fractal method. The goal is to produce an

algorithm that is unaffected by the typical variable that affect multiple acquisitions of the same

print. This method addresses the following acquisition variables from the list presented in the

literature review:

18

 Displacement

 Rotation

 Partial Overlap

 Non-linear distortion.

 Pressure and skin condition

 Noise

 Feature extraction errors.

E. Products of Research

The products of this research include the algorithm with the properties described above. The

research also produced a program that implements the algorithm in C. The research also

provided many fractals and data to be analyzed for verification of the method.

19

II. Experimentation

A. Approach & Design of Methodology

The goal of the research described in chapter one is to address some of the problems with

current methods for fingerprint analysis, by developing a new method. This method should also

provide some assurance to the reliability of fingerprints as a source of identification. Before the

process was designed, many of the weaknesses of other minutiae based methods were examined.

These weaknesses are detailed in the Literature review earlier in the document.

The design of this process allows it to address many of the concerns with fingerprint

identification. Some examples of the items addressed in the program are independence of

orientation, use of the entire image not just select points, and the ability to provide a quantitative

measure of a match. Many computerized matching methods have difficulty if a fingerprint is

rotated more than 15º [3]. An algorithm that was independent of orientation of the fingerprint

would be far more useful.

Most current automated and manual methods depend on the comparison of minutiae in

fingerprints for their matching. The difficulty with this is the question of how many minutiae to

use for an accurate match and also if that number is available in a partial print [3]. A method

that used data from the entire print instead of just a few key minutiae would answer both of the

questions raised.

Offering a quantitative measure for the comparison of fingerprints would offer reassurance

on their use for identification. A process based entirely on mathematical operations that have a

defined error would allow one to use this error to produce a probability of a match.

20

B. Fractal Analysis

 A fractal is a figure that can easily be broken into smaller parts. Each of these parts will

have a self-similar pattern. Each part is a scaled copy of the whole [29].

Chaos Game

The iterated function sequence (IFS) that was used to create the fractal is the well known

chaos game [29]. The chaos game starts by choosing an initial point within a square (or other

geometrical shape). The game progresses by a series of moves. Each move adds a new point to

the fractal. The first move places a point at a distance halfway between the initial point and one

of the corners of the square. The second move places another point at a distance halfway

between the second point and one of the corners. In principle this process is repeated an infinite

number of time, while in practice it is repeated until fractal is developed to the desired level of

detail. Figure II-1 shows a few examples of the starting moves in the chaos game for squares

moving halfway to the corner.

Figure II-1 Two examples of the chaos game. In the first game the moves taken were to corners BAD. For the second
game the moves taken were BCDD.

21

The selection of the corners in each of the moves is the cruces of the procedure. In the

traditional chaos game, the corners are chosen randomly. If the chaos game is played on a

triangular board and the corners are chosen randomly, the fractal produced is the well known

Sierpinski triangle [30]. On the other hand, if the chaos game is played on a square board, then

the pattern produces is a uniform gray (see Figure II-2). While both of these patterns meet the

definitions of a fractal, the properties of a fractal are more readily seen in the Sierpinski triangle.

The Sierpinski triangle displays many properties fractals posses including self-similarity.

A self-similar fractal contains the same information as the whole in a smaller portion of the

fractal pattern. The top third of the triangle repeats the same motif, and it is a scaled copy of the

entire triangle. The same holds for the top third of that portion. If the number of moves used to

produce the fractal was infinite then the resolution of the fractal will also be infinite. The

triangular pattern exhibited in figure II-2 would be reproduced on all scales. However, since in

practice, one must limit the number of moves made in the development of the fractal, the

resolution of the fractal will also be limited. In practice one chooses the number of moves used to

develop the fractal sufficiently large so that one obtains the desired level of resolution (see

Figure II-2).

22

Figure II-2. Two results of the chaos game. In the first one the game was played over a triangle to produce the Sierpinski

triangle. Notice the self-similarity in the triangle fractal. In the second the game was played over a square to produce a

gray fractal.

Random Walk

The difference between the traditional chaos game and the method of analysis developed

here lies in the choice of the corners. Instead of picking the corners randomly our method picks

the corners based on information from a fingerprint image. The information from the fingerprint

image is obtained by comparing two pixels in the image and using the result to select the next

corner, by the rules of the Chaos Game, to approach (see Table II -1). The fingerprint image

used to obtain the information is a binary image so there are only two possible values for each

point in the image.

23

Value of points in pairing Corner to approach

Point 1 Point 2

Black Black A

Black White B

White Black C

White White D

Table II-II-1. Table showing the steps to take in the chaos game based on comparing two pixels in the fingerprint image

The pixels to be compared in the fingerprint are determined by a random walk through the

fingerprint. The random walk through the image ensures the fractal is produced from the image

as a whole and not just from a few features.

To specify two pixels to compare four values are needed. If all four values are picked

randomly the resulting fractal only offers information concerning the proportion of black and

white pixels in the image. In our algorithm we chose pairs of pixels that are separated by a fixed

distance. As consequence only three of the four values are picked randomly, the last being the

distance between the two pixels being fixed. Moreover, by varying the distance between the

pixels we can construct an entire family of fractals from a single fingerprint.

At each step in the iterated function sequence used to create the fractal, two random numbers

are chosen to determine the x and y coordinates of the point midway between the two pixels.

This accounts for two of the three random values needed to select two pixels. A third random

number is selected to specify the angle that the line connecting the two pixels makes with the

horizontal axis. Using these three random values and a predetermined distance the two pixels to

be compared are readily determined (see Figure II-3). This process is repeated for each step of

24

the iterated function sequence and constitutes a random walk through the fingerprint. After

many thousands of steps in the iterated function sequence a fractal similar to the one shown in

Figure II-4 is produced.

Figure II-3. This figure illustrated the process developed to pick the two points for comparison. The process is repeated

for each step in the random walk. The points obtained in each step define to next corner in the chaos game according to
Table II-1.

25

Figure II-4. The fractal produced from the described process (500,000 itterations).

Using the random walk through the fingerprint in order to determine the sequence of

corners to use in the iterated function sequence defined by the chaos game, results in a self-

similar fractal. It is important to observe that while the walk through the fingerprint is random,

the information extracted from the fingerprint in this manner is not random. If the information

extracted in this manner was random, then the resulting fractal would have been uniformly gray,

however, it is clear from the fractals shown in the various figures in this section that they are not

uniformly gray. The self-similarity of the fractals is very similar to that seen in the Sierpinski

triangle, the difference being that instead of the upper triangle being repeat again and again, in

this case it repeated motif is found in the upper quadrangle (see Figure II-5).

26

Scale & Scale Spectrum

As discussed in the previous section, the algorithm used for determining the sequence of

corners chosen in construction the fractal using the chaos game is based upon a comparison of

two pixels separated by a given distance. If this distance is varied, a different fractal is

constructed. This is illustrated in Figure II-5 where two fractals are shown. The difference

between these two fractals is the distance between the pixels which are used to determine the

sequence of corners to use in the chaos game. In this research the distance separating the pair of

pixels is referred to as the scale. This scale is different from the scale used in the fractal

dimension method described in chapter one. The other methods scale is a scale of the fractal

while this methods scale is over the fingerprint.

The difference in the fractals is no surprise as fingerprints have features at different scales.

On the large scale, fingerprints have shapes and general ridge flow that classify them into a

certain category. On the medium scale, fingerprints have the individual ridges and their splits.

(a) (b)

Figure II-5. The two fractals above are from the same fingerprint but on different scales. The scale is

defined as half the distance between the two pixels being compared. The scale of (a) is λ = 2.8 and the scale

of (b) is λ = 18.2.

27

Finally, on the small scale, fingerprints have sweat pores that appear if the image has a high

enough resolution.

The fractals that are constructed using the chaos game/ iterated function sequence can be

characterized by a set of scaling parameters. When observing the self-similar behavior of these

fractals, it is clear that when reducing the full fractal to fit into one of the four quadrants that the

intensity (darkness) must either be increased or decreased. The factor by which the intensity is

increased or decreased defines the scaling parameters just mentioned above. As there are four

quadrants there will be four scaling parameters.

The scaling parameters are related to the "darkness" of each of the four quadrants. In turn, the

darkness of each of the four quadrants is determined by the number of points that lie in each of

these quadrants. The iterated function sequence defining the chaos game has been constructed in

such a manner that if two pixels are white-white, then the associated point lies in the top left

quadrant, if the two pixels are black-black then the associated point lies in the lower right

quadrant. Similarly, if the two points are either white-black or black-white then the associated

point lies in either the upper right or lower left quadrant. As the "darkness" of each of the

quadrants is directly proportional to the number of points that lie within it, the scaling factors are

seen to be equal to the probabilities that a given point is in a particular quadrant.

We label these scaling parameters α00, for the white- white quadrant, α11 for the black black

quadrant, β01 for the white-black quadrant and finally, β10 for the black-white quadrant. Next we

note that the ordering of the pixels in the pairs is arbitrary, consequently, it is expected that the

two scaling parameters β01 and β10 should be equal. (we have verified this numerically and these

two scaling parameter have been observed to be equal to within the expected level of numerical

28

error). Moreover, as the scaling parameters are probabilities, their sum should be equal to unity,

see Equation II-1. Thus we see that there are two relationships between these four scaling

parameters and so only two will be independent.

Equation II-1. Equation relating the scaling parameters.

1 = 𝛼00 + 𝛼11 + 2𝛽

Figure II-6. Fractal with the corner probabilities labeling their respective regions.

As we have seen in the figure II-5, different choices of the scale (or distance between the

pixels to be compared) result in different fractals and consequently different scaling parameters.

In order to characterize a fingerprint we calculate the scaling parameters or probabilities for a

wide range of scales for a given fingerprint. These probabilities are then plotted as a function of

the scale. The resulting plot is called the scale spectra of the fingerprint.

29

Figure II-7 shows the scale spectra of a finger print, in Figure II-8 two fingerprints are

shown. Their respective scale spectra are shown in Figure II-9. These scale spectra are clearly

different and can be used to distinguish between the different fingerprints.

Figure II-7. Scale spectrum for a fingerprint. The spectrum is a plot of α00 is the probability of white-white α11 is the
probability of black-black and β represents the equal probability white-black and black-white probabilities.

Figure II-8. Two different fingerprints for the same class of print.

30

Normalization

Variables in the collection of fingerprints affect the image used by the process. Pressure and

the resolution of the scan can affect the ridge width in the image and thus the proportion of black

to white pixels in the image. To ensure these factors don‘t lead to false matches or rejections, the

scale spectrum needs to be normalized. Normalization involving all probabilities would account

for differences in the proportion of black and white pixels.

Many methods for normalizing the spectra were investigated. The goal of the normalization

was to produce one spectrum per print that had an initial value of one and a final value of zero.

Some of the methods to normalize the spectra required the use of the probability of a black and a

white pixel being selected for a given scale. Equations II-2 through II-5 show how the

probabilities are found and how the scale spectra are normalized for each scale σ.

Figure II-9. Scale spectra for the two prints in Figure II-8. Notice that even though the prints are similar in type size and
proportion of black to white pixels their scale spectra are noticeably different.

31

Equation II-2. Equation for the probability of a black pixel at a given scale.

)()()(2)(100111 bP

Equation II-3. Equation for the probability of a white pixel at a given scale.

)()()(2)(100100 wP

Equation II-4. Equation to verify probabilities.

1
)()(

)()(1100

bw PP

Equation II-5. The first normalization equation.

𝑃𝑏 𝜎 𝛼00 𝜎 − 𝑃𝑤 𝜎 𝛼11(𝜎)

𝑃𝑤 𝜎 𝑃𝑏 𝜎 𝑃𝑤 𝜎 − 𝑃𝑏(𝜎)
=

𝛽(𝜎)

𝑃𝑤 𝜎 𝑃𝑏(𝜎)

This normalization worked well in theory but failed to produce the desired spectrum in

practice. The spectrum starts at one but approaches a value slightly off zero (see Figure II-10).

The most likely explanation is the error is magnified by the normalization and the spectrum will

not go to exactly one.

When trying to show the theoretical origin of these equations, it was discovered that similar

results could be obtained by using matrix properties. The trace and determinant of the 2x2

matrix shown below can be used as a normalization (see Figure II-11).

Equation II-6. Scaling parameters matrix and the equation for the determinant.

𝑀 =
𝛼00 𝛽01

𝛽10 𝛼11

det 𝑀 =∝00∝11− 𝛽01𝛽10

32

Figure II-10. Graph showing the normalized spectrum for a fingerprint (plot of equation II-5). The y-axis is the
normalized probability which is the difference in two probabilities, this is why it goes negative.

Figure II-11. Graph showing the determinant of the probability matrix M.

33

C. Image Preprocessing

The fingerprints that are readily available need to be preprocessed prior to using them in

our analysis. Two principle factors must be taken into account. First, our algorithm requires that

the images of the fingerprints be binary, that is, black and white. Often images of fingerprints are

in a gray scale or in a color scale. If this is the case then they must be converted to a binary

image. The second issue is that fingerprints invariably include background. This background

must be removed. This is accomplished by outlining the fingerprint.

A related issue is the question of smudges and other "damages" in the image of the

fingerprint. These regions also need to be removed. With regard to these regions, we have

designed our outlining algorithm in such a manner that it not only outlines the fingerprint but

also outlines the smudges and other ―damage‖. Figure II-13 shows a fingerprint with the pre-

processing performed.

Figure II-12. Image showing a fingerprint that has been outlined with the masked pixels shown in green. The image has
also been converted to binary.

34

Outlining

The outlining process involves creating a mask of the fingerprint images that includes the

domains of uniformity to exclude from the random walk. This is accomplished by observing

each pixel‘s surrounding pixels and masking those whose regions are near uniform (almost all

black or all white). Many factors affect whether or not a pixel is masked. The number of

surrounding pixels is an important factor in the decision to mask a pixel. The uniformity of the

neighborhood as a boundary for masking is also a factor.

The number of surrounding pixels or the neighborhood size must be a value that allows the

fingerprint to be kept and the background to be excluded. By looking at many fingerprints it has

been observed that many of them have ridges and valleys 4-5 pixels wide, so a neighborhood of

pixels 9x9 would ensure a non-uniform neighborhood. A boundary of within 5% of uniform was

also determined by observation. Both of these values are easily adjustable for different

collection methods or other factors that may affect the images used.

Determining whether a pixel should be masked is accomplished by checking the uniformity

of the pixels neighborhood. This is accomplished by calculating the sum of the intensities of the

NxN neighborhood of pixels. If this summation is within a certain percentage of all white or all

black the pixel will be masked (see Equation II-7). In this equation Pi,j is one of the pixels in the

neighborhood. For this process to work the intensities used are either 1 if the grayscale value is

greater than 128 or 0 if less than 128.

Equation II-7. Outlining threshold equation.

0.05 𝑁2 < 𝑃𝑖,𝑗 < 𝑁2 − 0.05(𝑁2)

𝑁

𝑗=1

𝑁

𝑖=1

35

Performing the outlining calculation for the pixels near the edge presents some difficulty.

The pixels on some sides of the boarder pixels are outside of the image and are not usable in the

summation calculation. These pixels are often in the background of the image so the outlining

calculation must be performed for them. To address this problem, the image is padded with

pixels to allow the calculation of the sum. The padding pixels are just N/2 copies of the edge

rows and columns (see Figure II-14).

Figure II-13. Image showing the 9x9 neighborhood of pixels used to decide if the top left pixel of an image should be
masked.

Old Method for Conversion to Binary

The current method to convert the grayscale image uses the average intensity to determine

the binary value of a pixel. The first step is to sum the intensities of all of the pixels in the image

and divide by the number of pixels in the image. Finally, each pixel in the image is compared to

36

the average intensity and if it is less than the average it is set to black, otherwise it is set to white

(see Equation II-8).

Equation II-8. Old binary conversion decision equations. Icp is the pixel in question and Ii,j represents a pixel in the
neighborhood.

𝐼𝑓 𝐼𝑐𝑝 <
 𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑀
𝑖=1

𝑀𝑁
 𝑇𝑒𝑛 𝑃𝑖𝑥𝑒𝑙 = 0

𝐼𝑓 𝐼𝑐𝑝 >
 𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑀
𝑖=1

𝑀𝑁
 𝑇𝑒𝑛 𝑃𝑖𝑥𝑒𝑙 = 1

New Method for Conversion to Binary

The new method for the conversion of the grayscale image is an adaptation of the NIST

standard for fingerprint processing [31]. In this method the pixel is compared to an average of its

neighboring pixels as opposed to the average of the entire image. This method allows proper

binarization of images with light and dark regions. If the overall average is used dark regions

would be set to almost all black and light regions would be set to all white regardless of the ridge

features in these light and dark regions.

This method is also easily implemented during the outlining process. When the summation of

the neighborhood is calculated in the outlining process it is divided by the number of pixel in the

neighborhood to calculate the neighborhood average. If the central pixel is less than the average

it is set to black, otherwise it is set to white (see Equation II-9).

Equation II-9. New binary conversion decision equations. Icp is the pixel in question and Ii,j represents a pixel in the
neighborhood.

𝐼𝑓 𝐼𝑐𝑝 <
 𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁𝑁
 𝑇𝑒𝑛 𝑃𝑖𝑥𝑒𝑙 = 0

37

𝐼𝑓 𝐼𝑐𝑝 >
 𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁𝑁
 𝑇𝑒𝑛 𝑃𝑖𝑥𝑒𝑙 = 1

III. Program

Step 1 Preprocessing

A small C++ program was written in order to implement the fractal analysis of fingerprints.

The implementation involves two principle tasks. These are, first, the prepossessing of the

images, and second, the conversion of the digital image of the fingerprint into a scale spectra

representative of the image using the iterated function sequence.

For the preprocessing step, the image needs to be converted into a form that can be used in

the random walk step. The random walk requires binary values to give the desired four possible

outcomes. All of the images currently in our database are grayscale. These grayscale images are

converted to binary using the process described in the end of the previous chapter.

The background and smudged areas of the image also need to be addressed before the image

is analyzed. This is accomplished through an outlining process that is also described in the end

of the previous chapter. The masked binary image is then used as input to the fractal creation

step. The implementation details of both preprocessing steps are covered by the source code for

the outlining class in Appendix B.

Step 2 Fractal Creation

The next step in the process is to use the preprocessed image as input to the random walk to

produce a scale spectrum. For each scale value specified in the options, the program performs

the random walk incrementing the appropriate scale parameter counter at each step. This is just

38

an implementation of the random walk process described in the previous chapter without the

fractal creation. The fractal is not created during that random walk because it is easier and faster

to calculate the scale parameters directly. If the graphical mode of the program is run, the fractal

is then calculated from these stored scale parameters.

. The program was designed to store the scale spectrum in a table in a text document for

further analysis. Appendix A contains a user‘s manual for the program. Appendix B contains

the source code for the key files in the program. The files that are not included deal with typical

code for a Windows API and were adapted from code available online [28]. Appendix C

contains descriptions of the variables and methods by class. The figures below contain some

basic diagrams and flowcharts describing the program.

39

Diagrams

Figure III-1. Data flow diagram for program. The diagram shows how and where the data described in the algorithm
chapter is exchanged by the implemented classes.

40

Figure III-2. General flowchart for the whole program. The flowchart shows the steps taken and classes used to analyze
a typical file from opening to close.

41

Figure III-3. Detailed flowchart for the random walk. This chart details the random walk step in the general flowchart
Figure III-2

42

IV. Analysis

After attaining the scale spectra from the fingerprints, a method to compare the spectra and,

in turn, the fingerprints they were created from was needed. There are many ways to compare

two graphs. Just a few procedures are presented in this chapter as ways to compare the graphs.

The first procedure developed was the direct comparison, where the difference in the two scale

spectra is evaluated. The second procedure treated the spectra as an N dimensional vector and

evaluated the distance for comparison. The third procedure uses the Fourier Transform of the

spectra for comparison. The last procedure presented here fitted polynomials to the scale spectra

for comparison of their coefficients.

The database used for the analysis consists of uncompressed grayscale TIFF images

640x640 pixels or less [3]. This database includes 7,040 fingerprints and 8 different captures of

each print. This database is actually comprised of two databases from the Fingerprint

Verification Competition 2000 and 2002. Details concerning these databases are described by

the sponsors below.

―Four different databases (hereinafter DB1, DB2, DB3 and DB4) were collected by using

the following sensors/technologies:

DB1: low-cost optical sensor ―Secure Desktop Scanner‖ by KeyTronic*

DB2: low-cost optical capacitive sensor ―TouchChip‖ by ST Microelectronics*

DB3: optical sensor ―DF-90‖ by Identicator Technology*

DB4: synthetic generation based on an evolution of the method proposed in [10].

Each database is 110 fingers wide (w) and 8 impressions per finger deep (d) (880

fingerprints in all); fingers from 101 to 110 (set B) have been made available to the

participants to allow parameter tuning before the submission of the algorithms; the

benchmark is then constituted by fingers numbered from 1 to 100 (set A) [3].‖

Table IV-1 summarizes the common features and Figure IV-1 shows a sample print.

43

Table IV-1. The four FVC 2000 databases taken from Handbook [3]

 Sensor Type Image Size Set A (w×d) Set B (w×d) Resolution

DB1 Low-cost Optical 300×300 100×8 10×8 500 dpi

DB2 Low-cost Capacitive 256×364 100×8 10×8 500 dpi

DB3 Optical 448×478 100×8 10×8 500 dpi

DB4 Synthetic Generator 240×320 100×8 10×8 500 dpi

Figure IV-1.Samples of the four databases.[3]

44

A. Direct Comparison

To make decisions about fingerprint matches, the scale spectra must be compared. If the

scale spectra from two fingerprint images are nearly the same, the two images came from the

same fingerprint. Plotting the normalized scale spectra from two fingerprints will visually show

the differences in the spectra. Figure IV-2 shows a plot of the normalized scale spectra from two

fingerprints. These spectra are from the fingerprints shown in Figures II-8 and are clearly

different.

Figure IV-2. Plot the scale spectra from two prints.

One of the simplest ways to compare the scale spectra is to find the difference between the

two spectra to be compared. If the difference between the two spectra is statistically small

enough, the two spectra are considered to be the same.

 Error Bars

To allow for the differences in random walks over the same print the error in the process has

to be considered when making comparisons of scale spectra. The error in the scale spectra is

45

taken to be N
1/2

 where N is the number of times a probability bin has been visited [32]. Using

this method, the length of the random walk will control the uncertainty of a fingerprints scale

spectra (See Figure IV-3).

The amount of time required to perform a random walk over the fingerprint is dependent on

the length of the random walk performed. Since the time required to make a decision when

comparing fingerprints is of concern, the length of the random walk is very important (See

Figure IV-4). Due to the relationship between time and walk length and the relationship between

walk length and uncertainty, the time to make the random walk is related to the desired

uncertainty (See Figure IV-5).

Figure IV-3. Graph showing uncertainty as a function of random walk length.

46

Figure IV-4. Graph showing the time necessary to perform a random walk based on the length of the random walk. The
data for this graph was obtained using the described program on a 1.7GHz IBM Laptop.

Figure IV-5. Graph showing uncertainty as a function of time to execute. Notice how that past about 0.2 seconds the

gains in uncertainty are minimal due to the law of diminishing returns. So the optimum value of uncertainty is about
0.15% taking 0.2 seconds to obtain.

47

The above graphs illustrate that a relatively low uncertainty of about 0.15% can be obtained

using a random walk that only takes 0.2 seconds to perform on a modest machine. The time cost

to get a significantly smaller uncertainty is very large and likely unacceptable. This value for

uncertainty corresponds to a random walk length of 500k steps, which is our default value in the

program.

Using this error estimation, error bars can be added to the scale spectra graphs. If two scale

spectra are within the error region for each other, they are most likely from the same fingerprint.

Plotting the difference between the two spectra with an error line clearly shows whether the

difference for all scales is within the error for the random walk. Figure IV-6 shows the described

difference plot for two different random walks over the same image.

Figure IV-6. The graph shows the difference in two runs over the same image. Notice that, for all but one scale the
difference is below the expected percentage uncertainty.

48

Orientation Independence

One of the key benefits of the developed process is its independence on the orientation of the

fingerprint in the image. Many current automated fingerprint comparison algorithms depend on

the fingerprint being no more than 15º from normal. This is because their minutiae match

optimization is only done over a limited angle typically 15˚ [3]. This either requires the

algorithm to have a complex algorithm to rotate the captured print to normal or for the device to

request another acquisition of the fingerprint.

The use of a random angle to find the two points for comparison in the fingerprint allows the

developed process to be independent of orientation. Figure IV-7 illustrates this independence by

showing the difference in two runs of a print in which on run was based on a 90º rotation of the

image.

Figure IV-7. The above plot shows the difference in scale spectra from a print and its rotated version. Notice how most
of the differences are below the expected percentage uncertainty.

49

This orientation independence is due to the random angle selection. For an example take a

print rotated by φº from norm. When the random angle θ is selected in the random walk, there is

really no difference in the randomness of the angle if it is instead θ+φ. If a constant value is

added to all of the random angles in the random walk process, they are all still random and the

scale spectrum is unaffected.

Smudge Removal

Fingerprint images often have areas in the print that are smudged. These are areas in which

the ridge details are not clear either because of collection or damage to the image in other ways.

The developed algorithm uses the entire print to produce the scale spectrum. If the smudges of

the print are included, it will cause the scale spectrum to be based in part on the smudge instead

of just the actual ridges in the fingerprint. Many of the smudged prints in our database have

small smudges less than 5% of the print in size.

To remove the smudged area from the fingerprint, an outlining process is used that has been

described earlier in this document. The outlining process masks the areas of the fingerprint that

are smudged or part of the background behind the fingerprint. If any of the points to be

compared are in this masked area when the random walk is performed, they are thrown out and

another random set are picked.

To illustrate the removal of a damaged area of the fingerprint, a small portion of a good

fingerprint is erased in a photo editing program. Figure IV-8 shows a fingerprint image with the

background outlined in green. Figure IV-9 shows the same print with a portion blacked out and

it‘s outlined version. Figure IV-10 shows a plot of the difference in the scale spectra for the

50

fingerprint and the fingerprint with a 2% portion removed as shown in Figure IV-9. The blacked

out area was placed in the left central portion of the fingerprint because by observation this area

seems to be the most likely to be smudged in our database. Figures IV-11 shows the same print

with a 5% portion removed with the smudge and background in green. Figure IV-12 shows a

plot of the difference in scale spectra between the Figure IV-11 print and the original. Figure IV-

13 shows the same print with a 10% portion removed with the smudge and background in green.

Figure IV-14 shows the plot of the difference in scale spectra for the Figure IV-13 print and the

original.

Figure IV-8. Fingerprint image and its outlined version with masked pixels shown in green.

51

Figure IV-9. Image of a fingerprint with a small portion blacked out and its outlined version with masked pixels
displayed in green.

Figure IV-10. This is a plot showing the difference in the scale spectra for the fingerprint and its smudged version.
Notice that most of the differences are still below the expected uncertainty.

52

Figure IV-11. The images above show the original print with 5% smudged and the outlined version of this print. In the
outlined version everything in green is masked from use in the random walk.

Figure IV-12. This is a plot showing the difference in the scale spectra for a fingerprint and its version with 5% smudged.
Notice that in this case all of the differences are below the expected value.

53

Figure IV-13.The above images show the original print with 10% smudged and it’s outlined version.

Figure IV-14. This plot shows the differences in scale spectra for a print and its smudged version with 10% removed.

Notice that with this much removed a large portion of the differences are above the expected uncertainty.

54

From these tests, it appears that 10% is the approximate maximum for the amount of the print

that can be missing without affecting the scale spectra noticeably. Even though this is the area

observed to be the most likely to be smudged, some other tests of moving the smudge around the

image were designed. Figure IV-15 shows the original print with 5% smudged in a different area

than before. Notice that in the plot of the difference in Figure IV-16, the differences are much

higher than in the first example of 5% removed Figure IV-12. Figure IV-17 shows the original

print with 5 areas of 2% each removed for a total of 10% removed. Notice that in the plot of the

difference Figure IV-18, the differences are much lower than those from the first example of

10% being smudged Figure IV-14.

Figure IV-15. The above images show the original print with 5% smudged in a new region and it’s outlined version.

55

Figure IV-16. This plot shows the differences in scale spectra for a print and its smudged version with 5% removed from

a new region. Notice that most of the differences are above the expected uncertainty unlike in the first print with 5%
smudged.

Figure IV-17. The above images show the original print with 2% smudged in a new 5 different regions for a total of 10%.

56

Figure IV-18. This plot shows the differences in scale spectra for a print and its smudged version with 2% removed from

5 different regions. Notice that most of the differences are below the expected uncertainty unlike in the first print with
10% smudged.

From the comparisons of different smudged prints it is clear that smudging effect on the scale

spectrum is dependent on both the size of the smudge and the position on the fingerprint image.

In general a single smudged portion 10% or larger appears to have a noticeable effect on the

scale spectrum. Also it appears that smudges in the center of the fingerprint have a greater effect

than ones on the outside of the image. Finally it appears that if there are many small smudges

they have less effect than one large one equal to their total area.

Now that it has been shown that direct comparison can identify the same print even with

some abnormalities we should at least show how the difference and uncertainty plot looks for

two different prints. This is shown in Figure IV-19 for the two prints shown in Figure II-8.

57

Figure IV-19. Plot showing the difference in two different prints. Notice the line clear at the bottom is the uncertainty
line that almost all of the points were below for the same print.

B. Fourier Transform

When looking at the scale spectrum for a fingerprint, it is clearly a periodic damped function.

Upon initial inspection, it appears to have the shape of an exponentially decaying sinusoid. To

help extract the periodic information of the scale spectrum, a Discrete Fourier Transform (DFT)

was used. The DFT should give us the frequencies of the periodic portions of the scale

spectrum. In our case, the frequency is really number of pixels because the independent variable

is scale instead of time. To obtain the Fourier Transform Coefficients from the software program

the Intel Signal Processing package was used.

58

Initially a Discrete Cosine Transform (DCT) was used because it has no complex

coefficients. The all-real coefficients were thought to be easier to compare and understand. The

DCT failed to work properly due to the sharp decay from the origin. The DFT was needed due

to this feature of the scale spectrum.

From examination of the scale spectra for most of the fingerprints in our database, we found

the scale spectrum stays constant after a scale of approximately 30 for the prints in our database.

Using this fact, a maximum scale of 32 works well and would allow the use of the Fast Fourier

Transform (FFT). The coefficients of the FFT are the same as those from the DFT for series

with 2
n
 points in them. For experimentation, a max scale of 64 was used to be sure important

data was not excluded, but in practice a max scale of 32 could be used and the FFT efficiency

can be exploited.

The FFT of the scale spectra can be compared in the same fashion as the spectra themselves

because they are still just graphs. The advantage to taking the FFT is the information on pixel

features such as the ridge spacing from the fingerprint. The peak in the FFT plot corresponds to

the ridge spacing in the fingerprint. Figure IV-20 shows the FFT from the normalized scale

spectra for the two prints shown in Figure II-9.

59

Figure IV-20. Plot showing the FFT for two different fingerprints.

C. Other Comparison Methods

Since the scale spectra to be compared are just graphs representing the fingerprint there are

many more ways to compare them. Any reasonable method of comparing graphs of functions

can be used to compare the scale spectra and in turn the fingerprint images that produced them.

One other method that was used was to treat the probabilities for each scale as the magnitude

for a vector in R dimensional space. Where the R is the number of scales the random walk was

performed over. Using this idea, the distance between the endpoints of the vectors can be found

using the distance formula shown below. If the distance is small enough the fingerprints are

likely the same and if they are further apart they are likely from different fingers.

60

Equation IV-1. Multidimensional vector distance formula. Pi,j is the probabilities from two prints, where I is the print
number and j is the scale with a max scale of R.

𝑑 = 𝑃1,1 − 𝑃2,1
2

+ 𝑃1,2 − 𝑃2,2
2

+ ⋯ 𝑃1,𝑅 − 𝑃2,𝑅
2

Another method that was investigated was fitting a 5
th
 order polynomial to the scale spectrum

and using the coefficients for comparison. Figure IV-21 shows the scale spectrum for the first

fingerprint shown in Figure II-8 and the 5
th
 order polynomials that were fitted to the plots. Table

IV-2 shows the polynomial coefficients from the two fingerprints in Figure II-8 along with the

difference in each of the coefficients for each of the probabilities in the scale spectrum.

Figure IV-21. Plot showing the scale spectrum and trend lines. The trend lines are 5th order polynomials.

0

50000

100000

150000

200000

250000

300000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
u

m
b

er
 o

f
P

o
in

ts

Scale

N11

N00

N01

Poly. (N11)

Poly. (N00)

Poly. (N01)

61

Table IV-2. Table showing the coefficients of the fitted polynomials. The difference in the coefficients of the polynomials

for the two prints is shown in the difference row. The distance column shows the distance using the distance formula and
the differences from the difference row.

N11

Print x
5

x
4

x
3

x
2

X C Distance

1 -0.004 0.797 -56.26 1830 -26721 28596

2 -0.005 0.981 -67.51 2119 -29669 28773

Difference 0.001 -0.184 11.25 -289 2948 -177 2967.437

N00

Print x
5

x
4

x
3

x
2

X C Distance

1 -0.005 0.95 -66.44 2140 -31203 27968

2 -0.006 1.158 -78.9 2439 -32998 27087

Difference 0.001 -0.208 12.46 -299 1795 881 2021.817

N01

Print x
5

x
4

x
3

x
2

X C Distance

1 0.004 -0.866 60.94 -1976 28883 -32676

2 0.005 -1.069 73.13 -2277 31323 -29336

Difference -0.001 0.203 -12.19 301 -2440 -3340 4147.282

 After presenting all of the above methods for the comparison of the scale spectra It can be

concluded that the direct comparison or difference method offers the best solution. The distance

method offers only one final value for comparison. The FFT and polynomial fit method require

an additional complex calculation before comparison. The difference method is the

computationally simplest method that offers multiple points of comparison between two prints.

62

V. Conclusions

The examples presented in this thesis show the method produces the desired results. The

method uses a random walk over the whole fingerprint to produce a fractal image that is

representative of the fingerprint it was created from. Further the fractal can be represented by

the probabilities of each pixel pair combination. The method captures information from the print

over many scales by setting the distance between the points to be compared. The probabilities

can be plotted as a function of scale to produce a graph that represents the fingerprint from which

it was created.

This process addresses many of the difficulties with current methods. It offers a creative

solution to many of the difficulties in fingerprint analysis. Since the method is performed over

the whole print, it uses all of the information available over all scales of the print to produces the

scale spectra. Unlike many other methods, it can account for small scale (sweat pores) to large

scale (ridge classification) features of the print.

As presented in the problem statement, this method is also fast. The method can produce the

scale spectra for an entire print in less than 15 seconds. This is impressive considering it was

performed on an ultra-portable laptop using an un-optimized program. Though the creation of

the scale spectra is quick, the largest speed gains from this method will come in the comparison

to a database. Most current methods require the alignment and comparison of the actual print

images between the sample and every print in the database. The scale spectra for all of the prints

in a large database could be obtained in idle times before a comparison is requested. Using the

values for the spectra, a sorted list of values can be created. Then when a comparison is

requested, the scale spectra is calculated and then the closest value can be found in the database

through an efficient search of a few values. Searching a database for a certain pairing of about a

63

dozen values would be far quicker than aligning and comparing two images for each print in the

database.

The quantitative measure that was proposed in the introduction has not been obtained yet.

The method still has the potential to produce a quantities measure of a match, though the

research just has yet not been developed that far in the comparison process. Once a comparison

method is settled on mathematical analysis of the error in the random walk based on the

resolution of the print could be used as the basis for a measure.

Goals of Research

 The goals of the research were to produce a method that was not affected by many of the

typical difficulties for automated matching. Referring to the list of difficulties presented in the

introduction each of the problems are addressed by portions of the algorithm designed.

Displacement, rotation, and partial overlap, are addressed by the fractal being created

from a random walk. Since the pixels are selected randomly selected the fractal is unaffected by

prints being in different positions in the image. The random angle allows for any rotation of the

print without an effect on the fractal (See the Analysis section).

Pressure, skin condition, and non-linear distortion are handled by the normalization of the

scale spectra as described in the Experimentation section. These factors will effect the ridge

width and spacing. The normalization process makes the scale spectra independent of the

portion of black and white pixels (ridge width).

64

The noise problems are handled by the outlining algorithm which removes smudged or

damaged areas of the prints along with the background. The method is not prone to feature

extraction errors because features of the print are not used and therefore not extracted.

Further Research and Future Applications

 This method is very open to expansion and improvement. Further work on the

comparison method and the quantitative measure is needed. Once that comparison and measure

are settled, the method should have far more extensive testing on large databases to determine its

performance and limitations.

 More work is also currently being performed on understanding how different print

features affect the scale spectra. Test images have been ran through the program to determine

how factors such as ridge spacing show up in the scale spectra. This work will allow the method

to give information such as the ridge width and spacing using the scale spectra obtained.

 One of the most interesting areas for this method is the application in new areas. With

some adaptations to the random walk and scale spectra creation process, it can be applied to

many other images. It can be used for other biometric features, including palm prints, faces, iris,

speech and handwriting. It could also have other forensic applications such as ballistics and

fracture comparison.

 One other area for this method is detecting hidden features such as camouflage. Hidden

features in an image or signal are usually on a different scale from their surroundings. Producing

the scale spectra for portions of an image independently will allow the observations of these

65

differences in scale. The scale spectra of the background portions will be similar while the

spectra for the abnormality will be different.

66

Bibliography

1. Lee H.C. and Gaensslen R.E., Advances in Fingerprint Technology, 2
nd

 edition, Elsevier,

New York, 2001.

2. Galton F., Finger Prints, McMillian, London, 1892.

3. Maltoni D., Maio D., Jain A., and Prabhakar P., Handbook of Fingerprint Recognition,

Springer, New York, 2003.

4. Henry E., Classification and Uses of Finger Prints, Routledge, London, 1900.

5. Crouzil A., Massip-Pailhes L., and Castan S., ―A New Correlation Criterion Based on

Gradient Fields Similarity,‖ in Proc. Int. Conf on Pattern Recognition (13
th
), pp. 632-636,

1996.

6. Bazen A.M., Verwaaijen G.T.B., Gerez S.H., Veelenturf I.P.J., and van der Zwang B.J., ―A

Correlation-Based Fingerprint Verification System,‖ in Proc. Workshop on Circuits Systems

and Signal Processing (ProRISC 2000), pp. 205-213, 2000.

7. ANSI, ―Fingerprint Identification – Data Format for Information Interchange,‖ American

International Standards Institute, New York, 1986.

8. Wegstein J.H., ―An Automated Fingerprint Identification System,‖ U.S. Government

Publication, Washington, DC: U.S. Dept. of Commerce, National Bureau of Standards, 1982.

9. Grasselli A., ―On the Automatic Classification of Fingerprints,‖ in Methodologies of Pattern

Recognition, S. Watanabe (Ed.), Academic, New York, 1969.

10. Kass M. and Witkin A., ―Analyzing Oriented Patterns,‖ Computer Vision, Graphics, and

Image Processing, vol. 37, no. 3, pp. 362-385, 1987.

11. Weisstein E.W., ―Poincaré-Hopf Index Theorem‖, http://mathworld.wolfram.com/Poincare-

HopfIndexTheorem.html

12. Kawagoe M. and Tojo A., ―Fingerprint Pattern Classification,‖ Pattern Recognition, vol. 17,

pp. 295-303, 1984.

13. Maio D. and Maltoni D., ‗Direct Gray-Scale Minutiae Detection in Fingerprints,‖ IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 1, 1997.

14. Arcelli C. and Baja G.S.D., ― A Width Independent Fast Thinning Algorithm,‖ IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 4, no. 7, pp. 463-474, 1984.

15. Xiao Q. and Raafat H., ―Fingerprint Image Post-Processing: A Combined Statistical and

Structural Approach,‖ Pattern Recognition, vol. 24, no. 10, pp. 985-992, 1991.

16. Umeyama S., ―Least-Square Estimation of Transformation Parameters Between Two Point

Patterns,‖ IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 4,

pp. 376-380, 1991.

17. Rosenfeld A. and Kak A., Digital Picture Processing, Academic, New York, 1976.

18. Sprinzak J. and Werman M., ―Affine Point Matching,‖ Pattern Recognition Letters, vol. 15,

pp. 337-339, 1994.

19. Baird H., Model Based Image Matching Using Location, MIT Press, Cambridge, MA, 1984.

http://mathworld.wolfram.com/Poincare-HopfIndexTheorem.html
http://mathworld.wolfram.com/Poincare-HopfIndexTheorem.html

67

20. Starnik J.P.P. and Backer E., ―Finding Point Correspondence Using Simulated Annealing,‖

Pattern Recognition, vol. 28, no. 2, pp. 231-240, 1995.

21. Stockman G., Kopstein S., and Benett S., ―Matching Images to Models for Registration and

Object Detection via Clustering,‖ IEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 4, no. 3, pp. 229-241, 1982.

22. Kaymaz E. and Mitra S., ―Analysis and Matching of Degraded and Noisy Fingerprints,‖

Proc. Of SPIE (Applications of Digital Image Processing XV), vol. 1771, pp. 498-508, 1992.

23. Ceguerra A. and Koprinska I., ―Integrating Local and Global Features in Automatic

Fingerprint Verification,‖ in Proc. Int. Synp. On Fingerprint Detection and Identification, J.

Almong and E. Springer (Eds.), Israel National Police, Jerusalem, pp. 305, 1996.

24. Stosz J.D. and Alyea L.A., ―Automated System for Fingerprint Authentication Using Pores

and Ridge Structure,‖ Proc. Of SPIE (Automatic Systems for the Identification and Inspection

of Humans), vol. 2277, pp. 210-223, 1994.

25. Polikarpova N., ―On the Fractal Features in Fingerprint Analysis,‖ in Proc. Int. Conf. on

Pattern Recognition (13
th
), vol. 3, pp. 591-595, 1996.

26. Coetzee L. and Botha E.C., ―Fingerprint Recognition in Low Quality Images,‖ Pattern

Recognition, vol. 26, no. 10, pp. 1441-1460, 1993.

27. Jain A.K., Prabhakar S., Hong L., and Pankanti S., ―Filterbank-Based Fingerprint Matching,‖

IEEE Transactions on Image Processing, vol. 9, pp. 846-859, 2000.

28. Milewski B. Windows API Tutorial, http://www.relisoft.com/win32/index.htm , 2006.

29. Barnsley M., Fractals Everywhere, Morgan Kaufmann, San Fransisco, 2000.

30. Sierpinski W., Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci.,

Paris, 1915.

31. NIST Image Group, http://fingerprint.nist.gov/ , 2004.

32. Weisstein. E., "Standard Error.", http://mathworld.wolfram.com/StandardError.html

http://www.relisoft.com/win32/index.htm
http://fingerprint.nist.gov/
http://mathworld.wolfram.com/StandardError.html

68

Appendix A Software Manual

General description

 This program converts fingerprints into fractal images. The fingerprints are assumed to

be in standard grayscale TIFF format. The algorithm constructs a random walk through the

fingerprint and uses this sequence of data as input to the Chaos Game that produces the fractal.

The details of this (both technical and theoretical) procedure are discussed at length in the

Annual Report dated September 30, 2005 NIJ(2003-RC-CX-K001).

Using the algorithm the scale spectrum defined in the Annual Report is constructed. The

scale spectrum is characteristic of the fingerprint and is used to make direct comparisons

between fingerprints. A variety of tools are included in this package. The first outlines the

useable areas of the image of the fingerprint. Also included is a tool that generates the fractal for

arbitrary scaling parameters. The batch processing mode includes a tool to produce Discrete

Cosine Transforms of the scale spectrum. The program also includes a separate capability to

send the results to a data file. A variety of parameters governing the algorithm must be input.

These are discussed in the remainder of this guide.

The software has been structured to be a long-term exploratory tool as well as an

algorithm depository. This strategy is apparent in the look and feel of the program‘s

implemented capabilities to date. Graphical display of calculated data, the ability to select input

parameters, and real-time graphical updates to user requests via sliders and other controls are

important features for us— as the developers of the underlying computational algorithms— as

well as for users whose intent is for demonstration and discussion of PCG research and

technologies.

69

Installation

 Installation of the program only involves copying the executable to the folder from which

you want to run the program. You must also have the ―duke.dll‖ file in the same folder as the

executable. Failure to have the ―duke.dll‖ file will cause an error when attempting to run the

program.

Getting Started

 Double clicking the executable file starts the fingerprint program. Upon opening the

program one sees a blank window with the typical menu and toolbars at the top (see Figure A-1).

The first step in processing a fingerprint is to use the open command from the Files menu

or the toolbar . With this command you can select one or more TIFF file(s) to open for

processing. Dragging and dropping TIFF file(s) into the gray background of the window also

opens the files for processing. If the file opened or dropped is not a valid TIFF image there will

be an error displayed. If this error is displayed be sure it is a non-compressed grayscale TIFF

image 640x640 or less in size.

70

Figure A-1. The Initial program window. Notice the menu and toolbar at the top of the window. Clicking on these
produces menus that are used to set options, control inputs and outputs, or process

Working with the fingerprint

 When the TIFF file(s) are successfully loaded you will see a dialog with three panes, four

buttons below them (see Figure A-2). Once the TIFF file(s) are opened you will see the

fingerprint shown in the first pane. Clicking the Outline button will outline and convert the

fingerprint to a binary image. The result will be displayed in the second of the three panes in the

dialog. The areas in green are the masked area of the image identified by the outlining procedure

and will not be used in the fractal calculations.

71

Figure A-2. TIFF image dialog. Outlining process has been done. The three panes are for displaying the fingerprint

image, the outlined image, and the fractal for the scale currently selected by the slider. The buttons below the panes allow

you to outline the image, change the random walk and scale boundaries (explained below), and to perform the

calculations. The items that are grayed out are not fully implemented in this version of the program and are consequently
disabled.

Once the outlining process has been completed you can use the Calculate Alphas button

to do the random walks to produce the fractals for the print. If you wish to change the length of

the random walk, the number of scales or the increment between scales click the Scale Method

button to open the dialogue (see Figure A-3).

 Once you have set the scale method and clicked on the Calculate Alphas button the

program will begin the fractal generation process. As fractals are calculated for each scale they

are displayed in the third box and the scale spectrum graph is updated. When the calculation is

72

complete for all scales (see Figure A-4) fractals for a given scale can be reviewed using the slider

at the bottom of the window (see Figure A-4 and A-5).

 When the calculation is complete you also have the ability to normalize the graph

(subtract a value so the graphs approach zero at the end). You can also choose to save the values

for the print to a text file using the Save Table button. This option saves the data to the selected

text file in a tab separated format so it can be opened in other programs such as Excel.

Figure A-3. Scale Method Dialog. The Max Scale box relates to the maximum distance between the pair of

compared pixels. The Scale Increment relates to the step size between fractal images calculated for each

scale. Finally, the Symbols/scale refers to the length of the random walk.

73

Figure A-4. Tiff dialog upon completion. The fractal for the scale indicated by the slider and the line on the

scale spectrum graph is displayed in the third pane above.

74

Figure A-5. Tiff dialog upon completion. This is the same fractal and run as in Figure B.4 but with a different

slider position and corresponding fractal.

Global Options and Batch Processing

 The yellow smiley face button on the toolbar or the Tools->Preferences menu

option allows you to change the Scale method for all future fingerprints in this session whether in

batch or graphical mode (see Figure A-1). Clicking either of these opens the same dialogue as

show in Figure 2 with the same options. The only difference is that these settings will be applied

to all fingerprints analyzed in this session and not just the currently open print.

75

 Clicking the Files->Batch Flag option puts the program in batch mode. In this mode

when print(s) are opened or dragged in the program does not display the graphical interface, but

rather begins the process for the opened files. When the process is complete for all files the

program will display a completed message. You can then find the results of the batch processing

in two text files for each print located in the same directory the print was loaded from. If the

print‘s filename was filename.tif the two files would be filename.txt. The first file has the scale

and scaling parameter table similar to the one saved using the Save Table button in graphical

mode. The second file is the Discrete Cosine Transform of the data in the table in the first file.

These files can be open in Excel or any similar program for inspection and comparison between

prints.

Other Tools

Clicking the Tools->Fisch menu option opens a tool shown in Figure A-6 that illustrates

the relationship between the scaling parameters and the fractal pattern they define. Moving the

sliders around the fractal will show the various fractals produced for the scaling parameters given

by the sliders.

76

Figure A-6. Scaling parameter to fractal tool. The scaling parameter with the dot before it is set allowing only

two of the sliders to be moved. Changing the dot will allow the other slider to move.

77

Appendix B Source Code

DlgMaster.h
#ifndef DLG_MASTER_H

#define DLG_MASTER_H

#include "tools.h"

#include "arrays.h"

#include "twister.h"

#include "fileTIFF.h"

#include "FrameCtl.h"

#include "ctlDMask.h"

#include "ctlDWalk.h"

#include <windows.h>

extern TCHAR szFileDrop[MAX_PATH]; // Framectl.cpp

extern TCHAR szTitleDrop[MAX_PATH]; // Framectl.cpp

extern TCHAR _szFileName[MAX_PATH]; // Framectl.cpp

class DlgMaster

{

public:

 DlgMaster (DOCSTATEINFO & pstate, IDLOGDOC *initDOC,

WalkData *walkdata, HWND hwnd);

 ~DlgMaster ();

 void OutlineMethod (); //calls outlining

 void OnNewTiff (HWND hwnd); //Captions window

 void SymbolGenerateMethod (); //Calls symbol gen twister

 void SymbolGenerateTwister ();//calls calc next point

 void MaskPrefsDlg (HWND hwnd); //opens dialogue

 void WalkPrefsDlg (HWND hwnd); //opens dialogue

 void RunBatch();

 BOOL TxtFileWrite (TCHAR * szFileName, TCHAR * szTitleName,

bool bNormalized);

 bool CalcNextPoint(int iscale, float finc);

 //provides access to priviate variables

 float getA11(int i) const {return

(_A11arr.GetFloat(i));}

 float getA00(int i) const {return (_A00arr.GetFloat(i));}

78

 float getB01(int i) const {return (_B01arr.GetFloat(i));}

 float getBn(int i) const {return (_Barr.GetFloat(i));}

 float getDIS(int i) const {return (_distance.GetFloat(i));}

 BYTE getBmpImage(int x, int y) const {return

(_bmpImage.GetByte(x,y));}

 BYTE getBmpMask(int x, int y) const {return

(_bmpMask.GetByte(x,y));}

 bool getBoolMask(int x, int y) const {return

(_boolMask.GetBool(x,y));}

 int getImageDimX() const {return

_bmpImage.QueryDimX();}

 int getImageDimY() const {return

_bmpImage.QueryDimY();}

 int getMaskDimX() const {return

_bmpMask.QueryDimX();}

 int getMaskDimY() const {return

_bmpMask.QueryDimY();}

 int getNumScales() const {return _numScales;}

 float GetScaleIncr() const {return

_walkMethodLocal.GetScaleIncr();}

 int GetWalkMethod() const {return

_walkMethodLocal.GetMethod();}

 private:

 DlgMaster (const DlgMaster & no_copy); // protect from

copy

 void PrepareStateForDlgCtor ();

 HWND _hwnd;

 WalkData &_walkMethodGlobal; // params for

generating symbols

 WalkData _walkMethodLocal; // params for

generating symbols

 int _numScales;

 int _neighborParm;

 Byte2D_640 _bmpImage; // for display of original

image

 Byte2D_640 _bmpMask; // for display of masked

image

 Bool2D_640 _boolImage; // unmasked data for

analysis

 Bool2D_640 _boolMask; // mask for data used in

79

analysis

 Int2D_640 _scratch; // neighborhood

calculations

 FileTifTouch _tifFileInfo;

 TCHAR _szTitleName[MAX_PATH]; // Local

 //scaling parameters

 AlphaArray _A00arr;

 AlphaArray _A11arr;

 AlphaArray _B01arr;

 AlphaArray _distance;

 AlphaArray _A00c;

 AlphaArray _A11c;

 AlphaArray _B01c;

 AlphaArray _B10c;

 AlphaArray _Tout;

 AlphaArray _Pb;

 AlphaArray _Pw;

 AlphaArray _Barr;

 HWND _hMDIChildOwner; // scroll, command

 HWND _hFrameClient; // scroll, command

 IDLOGCOMMON _common;

 MenuBarCurrent _TDSLmenu;

 DOCSTATEINFO &_pState; // owned by

ChildCtrl

 Twister _MTPRNG;

 FingerTwister _ftwister;

 MaskData _maskMethod;

};

#endif

DlgMaster.cpp
#include "dlgmaster.h"

#include "outline.h"

#include "MiscDlgs.h"

#include "modaldlg.h"

extern "C" {

#define nsp_UsesTransform

#define nsp_UsesDct

80

//#include "C:\Program Files\Intel\plsuite\Include\nsp.h"

#include "nsp.h"

}

#include <windowsx.h>

#include <stdlib.h>

static const double INFLXPNT_TEMP = 0.03f;

DlgMaster::DlgMaster (DOCSTATEINFO & pstate, IDLOGDOC

*initDOC, WalkData *walkdata, HWND hwnd)

 : // Stuff we get from MDI Doc level: (don't use

File*Look/Touch)

 _walkMethodGlobal (* walkdata),

 _walkMethodLocal (_walkMethodGlobal),

 _hwnd(hwnd),

 _hMDIChildOwner (GetParent(hwnd)),

 _hFrameClient (GetParent(_hMDIChildOwner)),

 _TDSLmenu (GetParent(_hFrameClient)),

 _tifFileInfo (_bmpImage),

 _numScales (MAX_SCALE_INDEX), // the number

(also sizes?)

 _neighborParm (1),

 _ftwister (_MTPRNG, _boolImage, _boolMask),// size of

neighborhood; see Outline.cpp

 _maskMethod (127, out_thresh, out_thresh),

//

 _pState (pstate)//, // owned by

ChildCtrl

{

 PrepareStateForDlgCtor ();

 // Has PtrWavedata been redimed already?

}

DlgMaster::~DlgMaster ()

{

}

void DlgMaster::RunBatch()

{

 OnNewTiff(_hwnd);

 OutlineMethod();

 SymbolGenerateMethod();

 TxtFileWrite (_szFileName, _szTitleName, false);

81

}

void DlgMaster::OnNewTiff (HWND hwnd)

{

 GetFileTitle (szFileDrop, szTitleDrop, MAX_PATH+1);

 if (_tifFileInfo.DropFileOpen (hwnd, szFileDrop,

szTitleDrop))

 {

 memcpy (&_szFileName, &szFileDrop, MAX_PATH); //

copy sz*Drop to sz*Name

 GetFileTitle (_szFileName, _szTitleName, MAX_PATH+1);

 DoCaption (GetParent(hwnd), _szTitleName) ;

// UpdateNeedSaveStatus (false);

 }

}

void DlgMaster::SymbolGenerateTwister ()

{

 numScales =

_walkMethodLocal.GetMaxScale()/_walkMethodLocal.GetScaleIncr();

 // Count the pixels of each type

 _ftwister.CountPixels(); // Scale = zero; alphas =

fraction of pixels

 float a00 = (float) _ftwister.GetNum00()/_ftwister.GetTotal();

 float a11 = (float) _ftwister.GetNum11()/_ftwister.GetTotal();

 float b01 =

(float)(_ftwister.GetNum01()+_ftwister.GetNum10())/(2*_ftwister.

GetTotal());

 _A00arr.SetFloat(0, a00);

 _A11arr.SetFloat(0, a11);

 _B01arr.SetFloat(0, b01);

 _distance.SetFloat(0, 0);

 _Barr.SetFloat(0,1);

 // Get parameters as a function of scale

 for (int iscale = 1; iscale < _numScales; iscale++)

 {

 CalcNextPoint(iscale, _walkMethodLocal.GetScaleIncr());

 }

82

}

bool DlgMaster::CalcNextPoint(int iscale, float finc) //

returns true while points left to do.

{

 int tout;

 _numScales =

_walkMethodLocal.GetMaxScale()/_walkMethodLocal.GetScaleIncr();

// need this for printing txt file

 if(iscale >= _numScales)

 {

 return false; // error, add a message box here for

DEBUG

 }

 if (0 == iscale)

 {

 _ftwister.CountPixels();// Scale = zero; alphas = fraction

of pixels

 tout = 0;

 }

 else

 {

 _ftwister.CountSymbols(iscale,

_walkMethodLocal.GetNumSymbols(), finc/2,tout); //last param is

factor to multiply scale

 }

 //set values for scaling parameters

 _A00arr.SetFloat(iscale, (float)

_ftwister.GetNum00()/_ftwister.GetTotal());

 _A11arr.SetFloat(iscale, (float)

_ftwister.GetNum11()/_ftwister.GetTotal());

 _B01arr.SetFloat(iscale,

(float)(_ftwister.GetNum01()+_ftwister.GetNum10())/(2*_ftwister.

GetTotal()));

 //set values for probability of black and white pixels

 _Pb.SetFloat(iscale,

(float)(_ftwister.GetNum11()*2+_ftwister.GetNum01()+_ftwister.Ge

tNum10())/(2*_ftwister.GetTotal()));

 _Pw.SetFloat(iscale,

(float)(_ftwister.GetNum00()*2+_ftwister.GetNum01()+_ftwister.Ge

tNum10())/(2*_ftwister.GetTotal()));

 //set normalized values

83

 _Barr.SetFloat(iscale,(float)1-

((pow(_B01arr.GetFloat(iscale),2)/(_A00arr.GetFloat(iscale)*_A11

arr.GetFloat(iscale)))));

 _distance.SetFloat(iscale, ((float) iscale)*finc);

 _A00c.SetFloat(iscale,_ftwister.GetNum00());

 _A11c.SetFloat(iscale,_ftwister.GetNum11());

 _B01c.SetFloat(iscale,_ftwister.GetNum10());

 _B10c.SetFloat(iscale,_ftwister.GetNum01());

 _Tout.SetFloat(iscale,tout);

 return (_numScales != (iscale + 1));

}

void DlgMaster::OutlineMethod ()

{

 Outline outline;

 outline.ByteToBool(_bmpImage, _boolImage); // -> binary,

based on avg unmasked image

 // create mask, allowing for noise thresholds _noisefraction

 outline.MaskSquareAggregate(_boolImage, _boolMask, _scratch,

_neighborParm, _maskMethod);

 outline.ByteToBoolMasked(_bmpImage, _boolImage, _boolMask);

// temp: no mask, just a "greyscale" of 2 color image

 outline.MaskSquareAggregate(_boolImage, _boolMask, _scratch,

_neighborParm, _maskMethod);

 outline.ByteToBoolMasked(_bmpImage, _boolImage, _boolMask);

// temp: no mask, just a "greyscale" of 2 color image

 outline.BoolToByte(_boolImage, _bmpMask); // temp: no mask,

just a "greyscale" of 2 color image

 // _boolMask.FillAll(true); //

convention: mask is "true" if we use the pixel

}

void DlgMaster::SymbolGenerateMethod ()

{

84

 switch (_walkMethodLocal.GetMethod ())

 {

 case WALK_METHOD_TWISTER:

 SymbolGenerateTwister ();

 break;

 case WALK_METHOD_PAIRS:

// SymbolGeneratePairs ();

 break;

 case WALK_METHOD_COMBO:

// SymbolGenerateCombo ();

 break;

 }

}

void DlgMaster::MaskPrefsDlg (HWND hwnd)

{

 // MaskData data (_maskMethod);

 MaskDataBMP data (_maskMethod, _bmpImage);

 ControllerFactory <MaskCtrl, MaskDataBMP> factory (& data);

 ModalDialog dialog (GetWindowInstance(hwnd), hwnd,

IDD_MASK_METHOD, &factory);

 if (dialog.IsOk ())

 {

 _maskMethod.CopyAll (data);

 ::InvalidateRect (hwnd, NULL, FALSE); // Force repaint

 }

}

void DlgMaster::WalkPrefsDlg (HWND hwnd)

{

 WalkData data (_walkMethodLocal);

 ControllerFactory <WalkCtrl, WalkData> factory (& data);

 ModalDialog dialog (GetWindowInstance(hwnd), hwnd,

IDD_WALK_METHOD, &factory);

 if (dialog.IsOk ())

 {

 _walkMethodLocal.CopyAll (data);

 ::InvalidateRect (hwnd, NULL, FALSE); // Force repaint

 }

}

BOOL DlgMaster::TxtFileWrite (TCHAR * szFileName, TCHAR *

szTitleName, bool bNormalized)

{

 FILE * outf;

85

 TCHAR *szFileNameTXT =szFileName;

 char *temp;

 temp = strchr(szFileNameTXT,int('.'));

 *temp = '\0';

 strncat(szFileNameTXT, ".txt",4);

 outf = fopen(szFileNameTXT,"w");

 int i;

 float mul_00, mul_11, mul_01; // assymptotic values

(A(0) squared)

 float inf_00, inf_11, inf_01; // assymptotic values

(A(0) squared)

 fprintf(outf,"\n\nFile: %s\tScale Incr:%1.2f\tMax

Scales:%d\tNum Steps%d\n", szTitleName,

 _walkMethodLocal.GetScaleIncr(),

 _walkMethodLocal.GetMaxScale(),

 _walkMethodLocal.GetNumSymbols());

 fprintf(outf,"\nScale\tN11\tN00\tN01\tN10\tNumSkip\n");

 for (i = 0; i < _numScales; i++)

 {

 fprintf(outf,"%.2f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f\n",

_distance.GetFloat(i),

 _A00c.GetFloat(i),

 _A11c.GetFloat(i),

 _B01c.GetFloat(i),

 _B10c.GetFloat(i),

 _Tout.GetFloat(i));

 }

}

fclose(outf);

return TRUE;

}

Twister.h
#ifndef TWISTER_H

#define TWISTER_H

#include "params.h" // needed for MAX_SCALE_INDEX

#include "arrays.h"

#include "FOG/randoma.h"

86

#include <cassert>

#include <time.h>

#include <windows.h> // needed for min, max, BOOL

// class to generate unifrom random numbers

class Twister

{

 public:

 Twister (int iSeed = (int) time(NULL))

 : _twoPI (2 * 3.1415926535),

 _min (0),

 _max (1)

 {

 TRandomInit(iSeed);

 }

 //set range

 void SetMin (int i) {_min = i;}

 void SetMax (int i) {_max = i;}

 float TwoPI () const {return _twoPI;}

private:

 float _twoPI;

 int _min;

 int _max;

};

class FingerTwister

{

 public:

 FingerTwister (Twister & twst, Bool2D_640 & bImage, Bool2D_640

& bMask)

 : _pTwist (twst),

 _pbImage (bImage), _pbMask (bMask),

 _iA00 (0), _iA11 (0), _iB01 (0), _iB10 (0), _iTotal(0),

 _iScale (1)

 {

 }

 BYTE GetSymbol (int i, int j) const;

87

 //functions to perform walk

 void CountSymbols (int iscale, int iterations, float factor,

int &tout);

 void CountPixels ();

 //functions to return results

 int GetNum00 () const {return _iA00;}

 int GetNum01 () const {return _iB01;}

 int GetNum10 () const {return _iB10;}

 int GetNum11 () const {return _iA11;}

 int GetTotal () const {return _iTotal;}

private:

 int _iA00; // false-false (WHITE-WHITE) (MSB-

LSB)

 int _iA11; // true -true (BLACK-BLACK) (MSB-

LSB)

 int _iB01;

 int _iB10;

 int _iTotal;

 int _iScale;

 Twister &_pTwist;

 //images to perform walk over

 Bool2D_640 &_pbImage;

 Bool2D_640 &_pbMask;

};

#endif

Twister.cpp
#include "Twister.h"

#include <math.h>

void FingerTwister::CountSymbols (int iscale, int iterations,

float factor, int &tout)

{

 _iScale = iscale;

88

 tout=0;

 int inum=0;

 float fScale = _iScale * factor;

 _iTotal = 0;

 _iA00 = 0;

 _iA11 = 0;

 _iB01 = 0;

 _iB10 = 0;

 int xsize = _pbImage.QueryDimX();

 int ysize = _pbImage.QueryDimY();

 // Initialize variables associated with the output bitmap's

coordinates

 int xA, yA, xB, yB;

 float fXorg, fYorg;

 float fTheta;

 float fx, fy;

 int isymbol;

 float fXsize = (float)(xsize-1);

 float fYsize = (float)(ysize-1);

 do

 {

 fYorg = fYsize * TRandom(); // Pick a random x and y

coordinate

 fXorg = fXsize * TRandom();

 //random angle

 fTheta = TRandom() * _pTwist.TwoPI();

 fx = fScale * cos(fTheta);

 fy = fScale * sin(fTheta);

 yA = (int)(fYorg + fy); // Find P1, with new x and y

coordinates (closest integer)

 xA = (int)(fXorg + fx);

 yB = (int)(fYorg - fy); // Find P2, with new x and y

coordinates (closest integer)

 xB = (int)(fXorg - fx);

 // Check to ensure all four points are within bounds

89

 if((yA >= 0) && (yA < ysize))

 {

 if((xA >= 0) && (xA < xsize))

 {

 if((yB >= 0) && (yB < ysize))

 {

 if((xB >= 0) && (xB < xsize))

 {

 if (_pbMask.GetBool(xA, yA) &&

_pbMask.GetBool(xB, yB)) // convention: mask is "true" if we

use the pixel

 {

 isymbol = 0;

 if(_pbImage.GetBool(xA, yA)) // true =

black

 {

 isymbol += 1;

 }

 if(_pbImage.GetBool(xB, yB)) // most

recent point is MSB

 {

 isymbol += 2;

 }

 //increment the appropriate counter

 switch (isymbol)

 {

 case 0:

 _iA00++;

 break;

 case 1:

 _iB01++;

 break;

 case 2:

 _iB10++;

 break;

 case 3:

 _iA11++;

 break;

 }

 _iTotal++;

 } // outline

90

 } //yA

 } //xA

 } //yB

 } //xB

 inum++;

 } while (_iTotal < iterations); // loop over

iterations

 tout=inum-iterations;

}

void FingerTwister::CountPixels ()

{

 _iTotal = 0;

 _iA00 = 0;

 _iA11 = 0;

 _iB01 = 0; // remains 0

 _iB10 = 0; // remains 0

 int xsize = _pbImage.QueryDimX();

 int ysize = _pbImage.QueryDimY();

 // Count the self-self symbols (black and white pixels)

 for (int j = 0; j < ysize; j++)

 {

 for (int i = 0; i < xsize; i++)

 {

 if (_pbMask.GetBool(i, j)) // don't count the

masked pixels

 {

 if(_pbImage.GetBool(i, j)) // true = black

 {

 _iA11++;

 }

 else

 {

 _iA00++;

 }

 _iTotal++;

 }

 }

91

 }

}

Outline.h
(written entirely by Dr. Lyn Ratcliff)
#ifndef OUTLINE_H

#define OUTLINE_H

#include "ctlDMask.h"

class Int2D_640;

class Byte2D_640;

class Bool2D_640;

class Outline

{

 public:

 Outline ()

 : _srcDimX(0), _srcDimY(0), _destDimX(0), _destDimY(0),

 _iValidPixelCount(0), _validAvg (0)

 {

 }

 void DoOutline (Byte2D_640 & source, Bool2D_640 & dest);

 void ByteToBool (Byte2D_640 & source, Bool2D_640 & dest);

 void BoolToByte (Bool2D_640 & source, Byte2D_640 & dest);

 int GetValidPixelCount () const {return _iValidPixelCount ;}

 void ByteToBoolMasked (Byte2D_640 & source, Bool2D_640 & dest,

Bool2D_640 & bmask);

 void MaskSquareAggregate (Bool2D_640 & source, Bool2D_640 &

dest,

 Int2D_640 & scratch, int tt, const MaskData &

maskdata);

 protected:

 int _srcDimX, _srcDimY, _destDimX, _destDimY;

 int _iValidPixelCount;

92

 float _validAvg;

};

#endif

Outline.cpp
(written entirely by Dr. Lyn Ratcliff)

#include "outline.h"

#include "arrays.h"

//#include <windowsx.h> // GetWindowInstance

// aggregate version of OUTLINE nask

// tt = 0, 1, 2, ...

// zz = 2*tt + 1

// 3*zz = 2*ww + 1

// neighborhood is a square of length = width = 3*zz

// eg if tt = 1, then zz = 3, ww = 4, neighborhood is 9x9

divided into 9 sub-squares of 3x3

// eg if tt = 2, then zz = 5, ww = 7, neighborhood is 15x15

divided into 9 sub-squares of 5x5

// will try tt = 1 for 640x640 images (1500x1500 images used

35x35 neighborhood)

// we will PAD the outside edges of the image by (zz + tt)

pixels, by simply extending the

// edge values into the PAD region, the same way that a surface-

mount chip leads are soldered

// onto a curcuit board; the corner values will be copied to the

four PAD corners.

// then, we aggregate (sum) data for every zz by zz sub-square,

and then do a 9 term sum

// (center and compass directions) to decide on whether to mask

the pixel.

void Outline::MaskSquareAggregate (Bool2D_640 & source,

93

Bool2D_640 & dest, Int2D_640 & scratch, int tt, const MaskData &

maskdata)

{

 int zz =2*tt + 1;

 int ww =3*tt + 1;

 int PAD = zz + tt;

 dest.SetDimX(source.QueryDimX()); // set dimensions of

the mask

 dest.SetDimY(source.QueryDimY());

 _srcDimX = source.QueryDimX(); // some redundancy in

these

 _srcDimY = source.QueryDimY();

 _destDimX = dest.QueryDimX(); // some redundancy in

these

 _destDimY = dest.QueryDimY();

 int scrDimX = _srcDimX + 2*PAD;

 int scrDimY = _srcDimY + 2*PAD;

 scratch.FillAll(0); // zero out scratch

array

 scratch.SetDimX(scrDimX); // set dimensions of

the scratch array

 scratch.SetDimY(scrDimY);

 int tmp = _srcDimY - 1;

 int i, j, ii, jj;

 // Fill center of scratch array, indexed with offset PAD

 for (j = 0; j < _srcDimY; j++)

 {

 for (i = 0; i < _srcDimX; i++)

 {

 if (source.GetBool(i,j))

 {

 scratch.SetInt(i+PAD, j+PAD, 1); // work with

this array in subsequent steps (?)

 }

 }

 }

 // pad top and bottom (but not corners)

94

 for (i = 0; i < _srcDimX; i++)

 {

 if (source.GetBool(i,0)) // pad top

 {

 for (jj = 0; jj < PAD; jj++)

 {

 scratch.SetInt(i, jj, 1);

 }

 }

 if (source.GetBool(i,tmp)) // pad bottom

 {

 for (jj = 0; jj < PAD; jj++)

 {

 scratch.SetInt(i, _srcDimY + jj, 1);

 }

 }

 }

 tmp = _srcDimX - 1;

 // pad left and right (including corners) using values from

scratch array

 for (j = 0; j < scrDimY; j++)

 {

 for (ii = 0; ii < PAD; ii++)

 {

 scratch.SetInt(ii, j, scratch.GetInt(PAD, j));

 scratch.SetInt(_srcDimX+ii, j, scratch.GetInt(tmp, j));

 }

 }

 // if we could settle on a value of tt, this routine could be

made much more efficient

 // by unrolling many of these "for" loops

 // aggregate the data in two steps (zz terms added along x

coordinate, then along y coordinate)

 int isum;

 int numExtra = zz - 1;

 for (j = 0; j < scrDimY; j++)

 {

 for (i = 0; i < (scrDimX - numExtra); i++)

 {

95

 isum = 0;

 for (ii = 0; ii < zz; ii++)

 {

 isum += scratch.GetInt(i+ii, j);

 }

 scratch.SetInt(i, j, isum);

 }

 }

 for (j = 0; j < (scrDimY- numExtra); j++)

 {

 for (i = 0; i < (scrDimX - numExtra); i++)

 {

 isum = 0;

 for (jj = 0; jj < zz; jj++)

 {

 isum += scratch.GetInt(i, j+jj);

 }

 scratch.SetInt(i, j, isum);

 }

 }

 // reject pixel if the neighborhood avg is outside range [(1 -

thresh)*maxagg, thresh*maxagg]

 int twoPAD = PAD+PAD;

 int maxagg = (3*zz)*(3*zz)*(1); // *(1) because source

is bool

 int lowerTol = maxagg * maskdata.GetLoThresh();

 int upperTol = maxagg * (1.0f - maskdata.GetHiThresh());

 dest.FillAll(true); //

 for (j = 0; j < _srcDimY; j++)

 {

 for (i = 0; i < _srcDimX; i++)

 {

 isum = 0;

 isum += scratch.GetInt(i, j);

 isum += scratch.GetInt(i+PAD, j);

 isum += scratch.GetInt(i+twoPAD, j);

 isum += scratch.GetInt(i, j+PAD);

 isum += scratch.GetInt(i+PAD, j+PAD);

 isum += scratch.GetInt(i+twoPAD, j+PAD);

 isum += scratch.GetInt(i, j+twoPAD);

96

 isum += scratch.GetInt(i+PAD, j+twoPAD);

 isum += scratch.GetInt(i+twoPAD, j+twoPAD);

 if((isum < lowerTol) || (isum > upperTol))

 {

 dest.SetBool(i, j, false);

 }

 }

 }

}

void Outline::ByteToBool (Byte2D_640 & source, Bool2D_640 &

dest)

{

 dest.SetDimX(source.QueryDimX()); // set dimensions of

the mask

 dest.SetDimY(source.QueryDimY());

 _srcDimX = source.QueryDimX(); // some redundancy in

these

 _srcDimY = source.QueryDimY();

 _destDimX = dest.QueryDimX(); // some redundancy in these

 _destDimY = dest.QueryDimY();

 // An extremely crude fake outlining procedure

 bool bvalue;

 long sum = 0;

 float avg;

 int i, j;

 //calculate the average byte value

 for (j = 0; j < _srcDimY; j++)

 {

 for (i = 0; i < _srcDimX; i++)

 {

 sum += source.GetByte(i,j);

 }

 }

 avg = sum / (_srcDimY*_srcDimX);

 for (j = 0; j < _srcDimY; j++)

97

 {

 for (i = 0; i < _srcDimX; i++)

 {

 if (source.GetByte(i, j) < avg)

 {

 bvalue = true;

 }

 else

 {

 bvalue = false;

 }

 dest.SetBool (i, j, bvalue);

 }

 }

}

void Outline::ByteToBoolMasked (Byte2D_640 & source, Bool2D_640

& dest, Bool2D_640 & bmask)

{

 dest.SetDimX(source.QueryDimX()); // set dimensions of

the mask

 dest.SetDimY(source.QueryDimY());

 _srcDimX = source.QueryDimX(); // some redundancy in

these

 _srcDimY = source.QueryDimY();

 _destDimX = dest.QueryDimX(); // some redundancy in these

 _destDimY = dest.QueryDimY();

 // An extremely crude fake outlining procedure

 int i, j;

 bool bvalue;

 long sum = 0;

 _iValidPixelCount = 0;

 for (j = 0; j < _srcDimY; j++) //calculate the average

byte value

 {

 for (i = 0; i < _srcDimX; i++)

 {

 if (bmask.GetBool(i,j)) // convention: mask is

"true" if we use the pixel

 {

 sum += source.GetByte(i,j);

 _iValidPixelCount++;

98

 }

 }

 }

 _validAvg = sum / _iValidPixelCount; // get average over

unmasked

 for (j = 0; j < _srcDimY; j++)

 {

 for (i = 0; i < _srcDimX; i++)

 {

 if (source.GetByte(i, j) < _validAvg)

 {

 bvalue = true;

 }

 else

 {

 bvalue = false;

 }

 dest.SetBool (i, j, bvalue);

 }

 }

}

void Outline::BoolToByte (Bool2D_640 & source, Byte2D_640 &

dest)

{

 dest.SetDimX(source.QueryDimX()); // set dimensions of

the mask

 dest.SetDimY(source.QueryDimY());

 _srcDimX = source.QueryDimX(); // some redundancy in

these

 _srcDimY = source.QueryDimY();

 _destDimX = dest.QueryDimX(); // some redundancy in these

 _destDimY = dest.QueryDimY();

 // An extremely crude fake outlining procedure

 BYTE white = 255;

 BYTE black = 0;

 BYTE byvalue;

 for (int j = 0; j < _srcDimY; j++)

 {

 for (int i = 0; i < _srcDimX; i++)

99

 {

 if (source.GetBool(i, j))

 {

 byvalue = black;

 }

 else

 {

 byvalue = white;

 }

 dest.SetByte (i, j, byvalue);

 }

 }

}

100

Appendix C

DlgMaster
(methods)

void OutlineMethod() Inputs: grayscale array (_bmpImage)

Outputs: binary array (_boolImage)

 mask array (_bmpMask)

Purpose: The method calls the outlining functions to

convert the image to binary and outline it. It uses the

image arrays from the private section.

void OnNewTiff(HWND

hwnd)

Inputs: hwnd

Outputs: none

Purpose: The method gets the filename that has been

opened and uses it for a caption on the window

void

SymbolGenerateMethod ()

Inputs: Walk Method

Outputs: none

Purpose: The method calls the appropriate method to

perform the walk based on the method selected

(SymbolGenerateTwister is the only implemented method)

void

SymbolGenerateTwister

()

Inputs: Walk parameters (_walkMethodLocal)

Outputs: scaling parameters for scale zero (a00,a11,b01

arrays)

Purpose: The method determines the length and step size

for the walk from default or input information. The

method then calls the CountPixels function for the for each

of the scales until max scale.

void MaskPrefsDlg (HWND

hwnd)

Inputs: hwnd

Outputs: Mask data (_maskMethod)

Purpose: The method opens the mask preference dialogue

to gets mask data from the user.

101

void WalkPrefsDlg (HWND

hwnd)

Inputs: hwnd

Outputs: Walk values (_walkMethodLocal)

Purpose: The method opens the walk preferences

dialogue to get walk information from the user.

void RunBatch () Inputs: none

Outputs: none)

Purpose: The method calls the other methods necessary to

perform the random walk and write the results to the file.

The method takes the place of the GUI ‗s buttons when the

batch flag is selected.

bool TxtFileWrite

(TCHAR *szFileName,

TCHAR *szTitleName,

bool bNormalized)

Inputs: Filename, titlename, normalize flag, scaling

parameters (a00,a11,b01)

Outputs: Table of information to txt file

Purpose: The method formats and write the scale spectra

information to a text file with the same name as the print.

bool CalcNextPoint (int

iscale, float finc)

Inputs: binary array (_bmpImage)

 mask array (_bmpMask)

 current scale (iscale)

 increment (finc)

Outputs: scaling parameters (a00,a11,b01)

Purpose: The method calls twister‘s CountPixels method

to perform the random walk for the current scale. It also

fills the scaling parameter arrays upon completion.

float get*****

BYTE get*****

Methods to provide data from private variable to functions

outside of the class.

DlgMaster
(variables)
HWND _hwnd Pointer to the window for print information

display
WalkData &_walkMethodGlobal Reference to walk information for all prints.

WalkData _walkMethodLocal Data for the length and scale of the random

102

walk either a copy of the global or the user

input data

int _numScales Number of scales to perform the walk over.
int _neighborParm Number of neighboring pixels to consider for

outlining

Byte2D_640 _bmpImage Array containing the input image.
Byte2D_640 _bmpMask Array containing the mask calculated in the

outlining methods for display

Bool2D_640 _boolImage Array containing the binary print image.

Bool2D_640 _boolMask Array containing the mask information used

for analysis

Int2D_640 _scratch Array used for temp in outlining process.

FileTifTouch _tifFileInfo Tiff file information
TCHAR _szTitleName[MAX_PATH] Title of file

AlphaArray _*** Arrays to store scaling parameter, current

scale, number of pixels skipped and

normalized scale values

FingerTwister _ftwister Instance of the twister class used to perform

the random walk.

MaskData _maskMethod Data to use when calculating the outline.

Other private variables Used for tracking parent windows and other

GUI information.

	Fractal analysis of fingerprints
	Recommended Citation

	Fractal Analysis of Fingerprints

		2007-11-29T11:08:14-0500
	John H. Hagen
	I am approving this document.

