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Abstract 

Fractal Analysis of Fingerprints 
 

by 
 

John C. Deal 
Master of Science in Electrical Engineering 

 
West Virginia University 

 
Matthew Valenti, Ph.D., Chair 

 

Current methods for comparing fingerprints have weaknesses that have opened them to 

criticism.  Current methods concentrate on the comparison of minutia in the print either manually 

or with the assistance of a computer algorithm.  This causes these methods to depend highly on 

the presence of minutia and their relationship to one another.  Absence or rotations of minutia 

can prevent current methods form making accurate comparisons. The goal of this process is to 

develop a new method for analyzing fingerprints that addresses many of the concerns with 

current methods.   

The developed process uses an iterated function sequence (IFS) to convert the image of a 

fingerprint into a fractal pattern.  The input for the IFS is constructed by a random walk through 

the image.  Once a fingerprint is converted into a fractal pattern, the fractals can be used to make 

comparisons.  Fractals are well defined mathematical objects that make them far easier to 

compare than fingerprints themselves.  This process addresses many of the issues with current 

methods.  This method is global in nature and thus it is not dependent on a set number of 

minutiae.  Moreover, the rules for the random walk are constructed so as to make the fractal 

produced invariant of orientation of the print.  

 This method offers a new fast way to compare images.  This method can be used to 

increase confidence, both in court and public opinion, in the use of fingerprints as identification.  

It can offer both an independent and/or supplemental method to the current ones used.    
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I. Introduction 

People have been interested in the individuality of fingerprints for years.  Artifacts show that 

ancient people were likely aware of the individuality of fingerprints [1].  In 1864 a paper was 

published by an English plant morphologist describing his study of ridge and pre-structures [1].  

Though, it was not until 1888 that Sir Francis Galton introduced the use of minutiae features for 

fingerprint matching [2].  By the early twentieth century, fingerprint recognition by minutiae was 

formally accepted [1].  In the 1960s, the FBI began development of an automated system to 

compare fingerprints [1].   There has been difference of opinion on the number of minutiae to 

establish a positive identification [3].  The number of minutiae used varies by country and is 

established by observation, not scientific study [3]. 

The individuality of fingerprints has not been formally proven; it is an observation, not a 

proven scientific fact.  There is growing public and legal concern about the uniqueness of 

fingerprints [3].  The real question at hand is whether or not each person has a unique fingerprint 

and also whether the method of matching location of minutiae is detailed enough to produce 

accurate identifications.  Some papers have speculated that the fingerprints of identical twins are 

95% similar [3].  It has also been speculated that comparison of a partial latent fingerprint may 

not be able to show the difference in very similar prints [3]. 

The method described in this thesis, addresses some of the problems and concerns in the 

current processes.  The method that we have developed is global in nature since the data sampled 

to construct the fractal is taken from the entire image.  This is distinct from the traditional 

methods that are based on local features such as minutiae.  Using this unique approach and the 
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inherent speed of our method current databases could be compared to one another to offer some 

proof that at least those prints are unique. 

 

A. Background (literature review) 

Comparison of fingerprints can be accomplished either manually or automatically.  Human 

fingerprint examiners use minutiae in the fingerprint to compare two prints and decide if they 

came from the same finger.  The accepted standard in the US is twelve minutiae for a fingerprint 

to be considered a match [3].   

The matching of fingerprints is made difficult because the same finger can produce different 

fingerprint images due to the following factors [3]. 

 Displacement:  The fingerprint will not always be in the same position in the image 

due to differences in finger position during capture. 

 

 Rotation:  The fingerprint will not always have the same orientation in the image due 

to the finger being twisted from normal during capture. 

 

 Partial overlap:  A portion of the fingerprint may be missing because the finger was 

placed over the edge of the sensor. 

 

 Non-linear distortion:  These differences in the image are caused by trying to obtain 

an image on a two-dimensional surface from a three-dimensional finger.  The skin 

elasticity of the print will cause differences in the image produced from separate 

acquisitions.  These differences can also be produced by the user applying torque to 

the finger during acquisition causing ridge distortion. 
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 Pressure and skin condition:  Pressure, skin condition, sweat, hydration and skin 

disease can cause the fingerprint image to be different between acquisitions of the 

same print. 

 

 Noise:  Problems created when the image is obtained can cause disturbances or noise 

in the image.  Examples would be residues left on the glass of a sensor or other 

disruptions in the surface on which the finger was placed.  These problems would 

cause a distorted or smudged area of the fingerprint. 

 

 Feature extraction error:  Algorithms to extract minutiae and ridge details can cause 

measurement errors.  Algorithms to enhance and extract features are aggressive and 

can sometimes add false or distorted details.  This would only be an issue with 

automated systems. 

 

 

Matching by a human examiner is time consuming and has questionable reliability.  Even 

though the examiners are trained, they will each have their own standards that make their 

examination of fingerprints different.  The manual matching of fingerprints is a subjective 

process and producing a quantitative measure of a match is difficult if not impossible. 

Due to the difficulties and limitations of manual matching, many automated methods have 

been developed for the analysis of fingerprints.  Automated methods for matching can be divided 

into three classes; correlation-based, minutiae-based and ridge feature-based [3].  All of these 

methods are based on the location of features in the fingerprint so they are dependent on the 

displacement and the orientation of the fingerprint. 
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To allow the automated matching of fingerprints, they must be aligned to account for 

displacement and differences in orientation.  To align a fingerprint, the center of the print or core 

must be found.  The core of the fingerprint is defined as ―the north most point of the innermost 

ridge line [4]‖.  This point is often just the middle of the overall structure of the print.  Some 

classes of fingerprint do not have a well defined center, such as the arch type, and are difficult to 

align (see Figure I-1).  Figure I-2 shows the core of two different classes of fingerprints. 

 

Figure I-1.  The image above shows fingerprints from the five classes. (Image from Figure 3.3 on p84 of Handbook [3].  
With permission.) 

 

 

Figure I-2.  Image showing the cores of two different classes of print (Image from Figure 3.2 on p84 of Handbook [3]) 
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Correlation-based Techniques 

Correlation methods involve the superposition of one print over another and the comparison 

of their intensities directly.  The simplest measure of the differences in the intensities is the sum 

of the squares of the differences in intensities.  The sum of the squares is given by Equation I-1 

for images represented by matrices T and I [3]. 

Equation I-1.  Equation for correlation comparison. 

 𝑇 − 𝐼 2 =  𝑇 2 +  𝐼 2 − 2𝑇𝑇𝐼 

In this equation the second term in the final expression is just -2 times the cross correlation of 

the images.  From this observation it is seen that maximizing the correlation minimizes the 

distance.  High correlation implies that the images are likely from the same finger.  The 

displacement and rotation of the image will affect the correlation so the correlation must be 

maximized as a function of core position and rotation.   

Differences in pressure and skin elasticity along with different collection environments and 

methods affect the image and cause difficulty with the described correlation comparison.  The 

use of better correlation methods such as normalized cross-correlation can help to negate the 

effects from these factors [5].   

Calculation of the maximum correlation of a relatively small image over the displacement 

and rotation values is extremely time consuming operation.  Because of this, the correlations are 

often calculated on a local and not a global area.  Each of the local regions in the template image 

are extracted and correlated with the whole input image [6].   
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Minutiae-based Methods 

To understand minutiae methods one first has to examine how minutiae are defined and 

extracted from a fingerprint image.  By definition the word minutia means a small detail. In 

fingerprints these ‗small details‘ are the discontinuities in the ridges of the fingerprint.  Minutiae 

come in many forms [2] and some typical types are shown in Figure I-3. 

 

Figure I-3.  Illustration of the different types of minutiae in fingerprints.  (Image from Figure 3.4 on p85 of Handbook [3]) 

 

There is some difference of opinion about which of these minutiae should be used to identify 

a print.  American National Standards Institute (ANSI) suggests there should be four classes of 

minutiae [7]:  terminations, bifurcations, trifurcations (crossovers), and other.  The FBI‘s model 

considers only terminations and bifurcations [8].  If one examines the negative of a fingerprint 

image, terminations become bifurcations (see Figure I-4).  Where a ridge terminates, the 

corresponding valley bifurcates creating a feature called termination/bifurcation duality [3].   
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Figure I-4.  Images that illustrate the termination/bifurcation duality principle.  (Image from Figure 3.5 on p86 of 
Handbook [3]) 

 

The information about a minutia used for comparison includes the class, position (or 

coordinates), and its angle or orientation to the horizon.  Extracting the minutiae from the 

fingerprint involves determining the orientation.  The most common method for determining the 

orientation of minutiae in the print is to use an orientation image [9].  Each element in the 

orientation image‘s array corresponds to the average ridge orientation in that element‘s 

neighborhood.  When creating the orientation matrix, a reliability matrix is also created showing 

the reliability of the orientation estimate.  The reliability value can be used to determine high and 

low quality (or noisy) portions of the image.  Figure I-5 shows the orientation image for part of a 

print.  An illustration of the orientation and reliability is also shown.   
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Figure I-5.  Partial image of the average orientation map for a print.  The illustration to the right shows what the 
orientation and reliability matrices describe.  (Image from Figure 3.8 on p88 of Handbook [3]) 

 

Most methods for computing the orientation of the ridges involves taking the gradient of a 

pixel map.  The phase angle of the gradient is the direction of max intensity change of the pixels.  

The gradient estimate of one pixel is on too small of a scale to be used.  To solve this problem, a 

method was proposed to determine the average phase angle over an n by n region [10].  Equation 

I-2 shows how the estimate d is computed.   Where ri,j is the distance from the calculated point 

and θi,j is the angle. 

Equation I-2.  Equation to determine the orientation image components. 

𝒅 =  
1

𝑛2
 𝑟𝑖,𝑗 cos 2𝜃𝑖,𝑗

𝑖 ,𝑗

,
1

𝑛2
 𝑟𝑖,𝑗 sin 2𝜃𝑖,𝑗

𝑖 ,𝑗

  

 

Once an orientation image for a print is obtained, the next step in the minutiae matching 

process is singularity detection.  Singularities are usually detected using the Poincaré method 
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[11].  The Poincaré index is computed for each element in the orientation image by algebraically 

summing orientation differences for its adjacent elements.  Equation I-3 shows how the index is 

calculated and a list of the singularities certain indices detect [12].  Figure I-6 shows an 

illustration of the Poincaré index for some singularities. The detection of singularities is used to 

determine the core of the fingerprint image.  The core is used to align the fingerprint image for 

comparison.   

 

Equation I-3.  Equation for the Poincaré index. 

𝑃𝐺,𝐶 𝑖, 𝑗 =  𝑎𝑛𝑔𝑙𝑒 𝑑𝑘 , 𝑑 𝑘+1 𝑚𝑜𝑑 8 

7

𝑘=0

 

𝑃𝐺,𝐶 𝑖, 𝑗 =

 
 

 
0°     𝑖𝑓  𝑖, 𝑗 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑎𝑛𝑦 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

360°  𝑖𝑓  𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎 𝑤𝑕𝑟𝑜𝑙 𝑡𝑦𝑝𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

180°  𝑖𝑓  𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎 𝑙𝑜𝑜𝑝 𝑡𝑦𝑝𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 

−180°  𝑖𝑓  𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎 𝑑𝑒𝑙𝑡𝑎 𝑡𝑦𝑝𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛   

  

 

 

Figure I-6.  Images showing the Poincaré index for some singularities in the orientation image.  (Image from Figure 3.15 
on p98 of Handbook [3]) 
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The next step in the minutiae based method is the detection of the minutiae in the print 

image.  Since most images of fingerprints are in a grayscale form, minutiae detection is 

simplified by conversion to a binary image.  Each of the ridges in the binary image is then 

reduced to one pixel to further simplify minutiae detection.  Figure I-7 shows a fingerprint 

image, its binary version and the reduced image [13]. 

 

Figure I-7.  Images showing the conversion of a grayscale image to its reduced binary form.  (Image from Figure 3.31 on 
p113 of Handbook [3]) 

Using the thinned binary image, minutiae are detected by calculating the crossing number for 

each element of the thinned image.  The crossing number is half the sum of the differences 

between pairs of adjacent pixels in the eight pixels neighboring the pixel [14].  Equation I-4 

shows how the crossing number is obtained.  A crossing number other than 2 indicates a minutia 

at that pixel.  Figure I-8 illustrates some minutiae and their corresponding crossing numbers.   

Equation I-4.  Equation for the crossing number. 

𝑐𝑛 𝑝 =
1

2
   𝑝𝑖 𝑚𝑜𝑑  8 − (𝑝𝑖−1) 

8

𝑖=1
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Figure I-8.  Images illustrating the crossing number for various minutiae.  (Image from Figure 3.36 on p119 of Handbook 
[3]) 

 

The thinning process can introduce some false minutiae in corrupted areas of the fingerprint.  

For example, arrow sections of a continuous ridge may disappear during thinning and create two 

terminations.  Algorithms have been created to detect and remove false minutiae from the 

thinned image [15].   Figure I-9 shows common false minutiae and their corrected forms after 

application of the algorithm.   

 

Figure I-9.  Image that shows some typical false minutiae and their repaired forms.  (Image from Figure 3.41 on p125 of 
Handbook [3]) 
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The list of minutiae obtained along with their positions in the image and their orientation can 

be used to make comparisons to other prints.  Distortion tolerant transforms are applied to 

maximize the number of matched minutiae and negate to effects of distortion.  Figure I-10 shows 

some minutiae from two prints with the first print‘s minutiae as circles and the second as x.  

Gray circles indicate a match because the minutiae from the two prints are within tolerance 

levels.   

 

Figure I-10.  Image of matching minutiae from two images.  (Image from Figure 4.4 on p144 of Handbook [3]) 

 

The solution is trivial when the two prints are correctly aligned.  This happens when both 

cores have the same displacement and the rotations are also equal.  For prints that are not 

correctly aligned, the maximization can be solved for the (Δx, Δy, θ) variables using a least 

squares approach [16].  Solving this maximization using the brute force approach may be the 

most obvious, but is computationally prohibitive.   
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Most different methods of fingerprint matching concentrate on handling the distortion and 

rotation problems with minutiae matching.  These methods take some different approaches to 

maximizing the number of matching minutia by obtaining the correct alignment.  Some methods 

for determining matches include relaxation, algebraic and operational research solutions, tree 

pruning, energy minimization, and Hough transforms.   

In relaxation, confidence intervals for pairs of points are adjusted until certain criteria are 

satisfied [17].  The algebraic approach proposes that exact alignment can be accomplished using 

affine transformation [18].  For tree pruning, correspondence between points is found by 

searching over a tree of possible matches while applying pruning methods to reduce the search 

space [19].  Energy approaches associate energy with each solution to the matching problem, and 

then minimizes the energy using a stochastic algorithm [20].  The Hough approach converts the 

matching problem into a peak detection problem in Hough space [21]. 

Pre-alignment of the fingerprint images offers a great improvement in the speed of the 

matching process.  Even though methods with built-in alignment offer more robust algorithms 

for noisy images, they do not offer great enough throughput for some applications such as AFIS.   

There are two types of pre-alignment, absolute and relative.   

In absolute pre-alignment, templates in the database are pre-aligned and stored.  The input 

image is then aligned just once before being compared to all images in the database.  The main 

difficulty is in the registration of the input image, as a mistake here will result in a matching 

error.  The registration process depends on core detection, which can be difficult.  

In relative pre-alignment, the input image is aligned with each template in the database 

before matching.  Relative pre-alignment offers a speed increase over methods without pre-



14 

 

alignment but cannot compete with absolute pre-alignment.  Relative pre-alignment is more 

effective than absolute because features of the template can be used in the registration process.   

 

Ridge Feature Based Techniques 

Ridge feature based methods can be used in conjunction with or instead of minutiae based 

methods.  When used in conjunction with minutiae methods, they can increase accuracy and 

robustness.  Sometimes ridge feature based methods are used instead of minutiae methods 

because of difficulties in extracting minutiae from poor quality images.  Below are some of the 

other features of a print that can be used for matching [3]:   

1. Size and silhouette shape. 

2. Number, type and position of singularities. 

3. Spatial relationship and geometrical attributes of the ridge lines [22]. 

4. Shape features [23]. 

5. Global and local texture information. 

6. Sweat pores [24]. 

7. Fractal features [25]. 

Approaches numbered 1 and 2 are unstable and highly dependent on the image collection 

method.  Out of the others, global and local texture information and fractal features merit further 

consideration in this thesis because they have the closest relationship to the method proposed.   

Textures are characterized by properties of an image such scale, orientation, frequency, 

symmetry, and isotropy.  One method proposed looks at the global textures using the Fourier 

domain.  In this method, a ―wedge-ring detector‖ is used to produce a feature vector that is 
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independent of translation, rotation and scale [26].  This is difficult because specific ridge 

features and orientations show up as small changes in the frequency domain, while features such 

as ridge frequency dominate.  In global analysis, most spatial information is lost. 

Most local texture analysis is performed on the orientation and frequency images described 

earlier.  One method proposed that an area of interest in the print be tessellated with respect to 

the core [27].  A feature vector is then obtained from ordered enumeration of the features found 

in each sector of the tessellation. This feature vector contains both global information and local 

details from the sectors.  A Gabor filterbank is used to decompose the information in the sectors.  

Figure I-11 illustrates the process described.     

 

Figure I-11.  Illustration of an local texture matching method. (Image from Figure 4.19 on p167 of Handbook [3]) 
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The matching method based on fractal features uses existing algorithms to calculate 

Estimates of Fractal Dimension (EFD) [25].  The box counting algorithm to obtain these EFDs 

divides the image into boxes of length l containing at least one sample of light intensity.  Plotting 

the log of this intensity versus the log of  l gives a slope that estimates the fractal dimensions.   

The EFD can be calculated for each pixel along with the whole image.  The EFDs for each 

pixel comprise a matrix that is referred to as the fractal dimension map of the image.  These 

maps can be used to compare images of low quality.  For comparison, a grid EFD is used.  The 

grid EFD bins the number of boxes N of a given size that have the same intensity.  Plotting the 

log of N versus the log of the intensity gives a slope as a measure of the fractal dimension.  Table 

I-1 shows a couple of points on two different person‘s fingers.  Notice how the fractal dimension 

for the different points on the same finger is close while the fractal dimension between persons is 

noticeably different.   

Table I-1.  Table showing the estimated fractal dimensions for some prints.  (Data from Table 1 in Polikarpova's paper 
[25]). 

 Person 1 Person 2 

Point 1 2.45 2.51 

Point 2 2.46 2.51 

 

Even though there are differences in the EFD for the two different prints, the measures are 

reasonably close.  With a difference this small it is likely, that given a large set of prints, two 

different prints would produce the same fractal dimension measure.   
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B. Observations 

By surveying the current methods for analyzing fingerprints, it is clear that a more reliable 

method needs to be developed.  Many current methods only use small portions of the print to 

identify them.  A global approach that uses the whole print and is not affected by many of the 

typical problems was developed and is described in this thesis.     

Using an iterated function sequence to create a fractal from the image of a fingerprint helps 

with many of the difficulties in fingerprint analysis.  The fractal has mathematical properties that 

allow it to be analyzed much faster and with less difficulty than the image itself.  Information 

about the error in the random walk and the properties of the fractal affects the reliability of the 

match. 

C. Statement of the Problem 

A fast algorithm that provides a fractal that is representative of the fingerprint that produced 

it is needed.  Further, this algorithm needs to easily account for differences in images from the 

same print, including independence of displacement and rotation.  This fractal should then be 

able to be matched to another print using the same process. 

D. Goal of Research 

The goal of this research is to provide a fast algorithm to produce a fractal representative of 

the fingerprint from which it came.  The algorithm also should provide solutions to many of the 

current problems with fingerprint matching using a fractal method.  The goal is to produce an 

algorithm that is unaffected by the typical variable that affect multiple acquisitions of the same 

print.  This method addresses the following acquisition variables from the list presented in the 

literature review: 
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 Displacement 

 Rotation 

 Partial Overlap 

 Non-linear distortion. 

 Pressure and skin condition 

 Noise 

 Feature extraction errors. 

E. Products of Research 

The products of this research include the algorithm with the properties described above.  The 

research also produced a program that implements the algorithm in C.  The research also 

provided many fractals and data to be analyzed for verification of the method. 
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II. Experimentation 

A. Approach & Design of Methodology 

The goal of the research described in chapter one is to address some of the problems with 

current methods for fingerprint analysis, by developing a new method.  This method should also 

provide some assurance to the reliability of fingerprints as a source of identification.  Before the 

process was designed, many of the weaknesses of other minutiae based methods were examined.  

These weaknesses are detailed in the Literature review earlier in the document. 

The design of this process allows it to address many of the concerns with fingerprint 

identification.  Some examples of the items addressed in the program are independence of 

orientation, use of the entire image not just select points, and the ability to provide a quantitative 

measure of a match.  Many computerized matching methods have difficulty if a fingerprint is 

rotated more than 15º [3].  An algorithm that was independent of orientation of the fingerprint 

would be far more useful.   

Most current automated and manual methods depend on the comparison of minutiae in 

fingerprints for their matching.  The difficulty with this is the question of how many minutiae to 

use for an accurate match and also if that number is available in a partial print [3].  A method 

that used data from the entire print instead of just a few key minutiae would answer both of the 

questions raised. 

Offering a quantitative measure for the comparison of fingerprints would offer reassurance 

on their use for identification.  A process based entirely on mathematical operations that have a 

defined error would allow one to use this error to produce a probability of a match. 
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B. Fractal Analysis 

 A fractal is a figure that can easily be broken into smaller parts.  Each of these parts will 

have a self-similar pattern.  Each part is a scaled copy of the whole [29].   

Chaos Game 

The iterated function sequence (IFS) that was used to create the fractal is the well known 

chaos game [29].  The chaos game starts by choosing an initial point within a square (or other 

geometrical shape).  The game progresses by a series of moves. Each move adds a new point to 

the fractal. The first move places a point at a distance halfway between the initial point and one 

of the corners of the square. The second move places another point at a distance halfway 

between the second point and one of the corners. In principle this process is repeated an infinite 

number of time, while in practice it is repeated until fractal is developed to the desired level of 

detail.  Figure II-1 shows a few examples of the starting moves in the chaos game for squares 

moving halfway to the corner.   

 

Figure II-1 Two examples of the chaos game.  In the first game the moves taken were to corners BAD. For the second 
game the moves taken were BCDD. 
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The selection of the corners in each of the moves is the cruces of the procedure.  In the 

traditional chaos game, the corners are chosen randomly.  If the chaos game is played on a 

triangular board and the corners are chosen randomly, the fractal produced is the well known 

Sierpinski triangle [30]. On the other hand, if the chaos game is played on a square board, then 

the pattern produces is a uniform gray (see Figure II-2).  While both of these patterns meet the 

definitions of a fractal, the properties of a fractal are more readily seen in the Sierpinski triangle.   

The Sierpinski triangle displays many properties fractals posses including self-similarity.  

A self-similar fractal contains the same information as the whole in a smaller portion of the 

fractal pattern.  The top third of the triangle repeats the same motif, and it is a scaled copy of the 

entire triangle.  The same holds for the top third of that portion.  If the number of moves used to 

produce the fractal was infinite then the resolution of the fractal will also be infinite.  The 

triangular pattern exhibited in figure II-2 would be reproduced on all scales. However, since in 

practice, one must limit the number of moves made in the development of the fractal, the 

resolution of the fractal will also be limited. In practice one chooses the number of moves used to 

develop the fractal sufficiently large so that one obtains the desired level of resolution (see 

Figure II-2). 
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Figure II-2.  Two results of the chaos game.  In the first one the game was played over a triangle to produce the Sierpinski 

triangle.  Notice the self-similarity in the triangle fractal.  In the second the game was played over a square to produce a 

gray fractal. 

 

Random Walk 

The difference between the traditional chaos game and the method of analysis developed 

here lies in the choice of the corners. Instead of picking the corners randomly our method picks 

the corners based on information from a fingerprint image.  The information from the fingerprint 

image is obtained by comparing two pixels in the image and using the result to select the next 

corner, by the rules of the Chaos Game, to approach (see Table II -1).  The fingerprint image 

used to obtain the information is a binary image so there are only two possible values for each 

point in the image. 
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Value of points in pairing Corner to approach 

Point 1 Point 2 

Black Black A 

Black White B 

White Black C 

White White D 

Table II-II-1.  Table showing the steps to take in the chaos game based on comparing two pixels in the fingerprint image 

 

The pixels to be compared in the fingerprint are determined by a random walk through the 

fingerprint.  The random walk through the image ensures the fractal is produced from the image 

as a whole and not just from a few features.   

To specify two pixels to compare four values are needed.  If all four values are picked 

randomly the resulting fractal only offers information concerning the proportion of black and 

white pixels in the image.  In our algorithm we chose pairs of pixels that are separated by a fixed 

distance. As consequence only three of the four values are picked randomly, the last being the 

distance between the two pixels being fixed. Moreover, by varying the distance between the 

pixels we can construct an entire family of fractals from a single fingerprint. 

At each step in the iterated function sequence used to create the fractal, two random numbers 

are chosen to determine the x and y coordinates of the point midway between the two pixels.  

This accounts for two of the three random values needed to select two pixels.  A third random 

number is selected to specify the angle that the line connecting the two pixels makes with the 

horizontal axis.  Using these three random values and a predetermined distance the two pixels to 

be compared are readily determined (see Figure II-3).  This process is repeated for each step of 
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the iterated function sequence and constitutes a random walk through the fingerprint.  After 

many thousands of steps in the iterated function sequence a fractal similar to the one shown in 

Figure II-4 is produced.   

 

Figure II-3.  This figure illustrated the process developed to pick the two points for comparison.  The process is repeated 

for each step in the random walk.  The points obtained in each step define to next corner in the chaos game according to 
Table II-1. 
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Figure II-4.  The fractal produced from the described process (500,000 itterations). 

 

Using the random walk through the fingerprint in order to determine the sequence of 

corners to use in the iterated function sequence defined by the chaos game, results in a self-

similar fractal. It is important to observe that while the walk through the fingerprint is random, 

the information extracted from the fingerprint in this manner is not random. If the information 

extracted in this manner was random, then the resulting fractal would have been uniformly gray, 

however, it is clear from the fractals shown in the various figures in this section that they are not 

uniformly gray. The self-similarity of the fractals is very similar to that seen in the Sierpinski 

triangle, the difference being that instead of the upper triangle being repeat again and again, in 

this case it repeated motif is found in the upper quadrangle (see Figure II-5). 
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Scale & Scale Spectrum 

As discussed in the previous section, the algorithm used for determining the sequence of 

corners chosen in construction the fractal using the chaos game is based upon a comparison of 

two pixels separated by a given distance.  If this distance is varied, a different fractal is 

constructed.  This is illustrated in Figure II-5 where two fractals are shown.  The difference 

between these two fractals is the distance between the pixels which are used to determine the 

sequence of corners to use in the chaos game.  In this research the distance separating the pair of 

pixels is referred to as the scale.  This scale is different from the scale used in the fractal 

dimension method described in chapter one.  The other methods scale is a scale of the fractal 

while this methods scale is over the fingerprint. 

 

 

 

 

The difference in the fractals is no surprise as fingerprints have features at different scales. 

On the large scale, fingerprints have shapes and general ridge flow that classify them into a 

certain category.  On the medium scale, fingerprints have the individual ridges and their splits.  

(a) (b) 

Figure II-5.  The two fractals above are from the same fingerprint but on different scales.  The scale is 

defined as half the distance between the two pixels being compared.  The scale of (a) is λ = 2.8 and the scale 

of (b) is λ = 18.2. 
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Finally, on the small scale, fingerprints have sweat pores that appear if the image has a high 

enough resolution.   

The fractals that are constructed using the chaos game/ iterated function sequence can be 

characterized by a set of scaling parameters. When observing the self-similar behavior of these 

fractals, it is clear that when reducing the full fractal to fit into one of the four quadrants that the 

intensity (darkness) must either be increased or decreased. The factor by which the intensity is 

increased or decreased defines the scaling parameters just mentioned above. As there are four 

quadrants there will be four scaling parameters. 

The scaling parameters are related to the "darkness" of each of the four quadrants. In turn, the 

darkness of each of the four quadrants is determined by the number of points that lie in each of 

these quadrants. The iterated function sequence defining the chaos game has been constructed in 

such a manner that if two pixels are white-white, then the associated point lies in the top left 

quadrant, if the two pixels are black-black then the associated point lies in the lower right 

quadrant. Similarly, if the two points are either white-black or black-white then the associated 

point lies in either the upper right or lower left quadrant. As the "darkness" of each of the 

quadrants is directly proportional to the number of points that lie within it, the scaling factors are 

seen to be equal to the probabilities that a given point is in a particular quadrant. 

We label these scaling parameters α00,  for the white- white quadrant, α11 for the black black 

quadrant, β01 for the white-black quadrant and finally, β10 for the black-white quadrant. Next we 

note that the ordering of the pixels in the pairs is arbitrary, consequently, it is expected that the 

two scaling parameters β01 and β10 should be equal. (we have verified this numerically and these 

two scaling parameter have been observed to be equal to within the expected level of numerical 
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error). Moreover, as the scaling parameters are probabilities, their sum should be equal to unity, 

see Equation II-1.  Thus we see that there are two relationships between these four scaling 

parameters and so only two will be independent. 

 

Equation II-1.  Equation relating the scaling parameters. 

1 = 𝛼00 + 𝛼11 + 2𝛽 

 

Figure II-6.  Fractal with the corner probabilities labeling their respective regions. 

 

As we have seen in the figure II-5, different choices of the scale (or distance between the 

pixels to be compared) result in different fractals and consequently different scaling parameters. 

In order to characterize a fingerprint we calculate the scaling parameters or probabilities for a 

wide range of scales for a given fingerprint. These probabilities are then plotted as a function of 

the scale. The resulting plot is called the scale spectra of the fingerprint. 
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Figure II-7 shows the scale spectra of a finger print, in Figure II-8 two fingerprints are 

shown.  Their respective scale spectra are shown in Figure II-9. These scale spectra are clearly 

different and can be used to distinguish between the different fingerprints. 

 

Figure II-7.  Scale spectrum for a fingerprint.  The spectrum is a plot of α00 is the probability of white-white α11 is the 
probability of black-black and β represents the equal probability white-black and black-white probabilities. 

 

 

Figure II-8.  Two different fingerprints for the same class of print. 
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Normalization 

Variables in the collection of fingerprints affect the image used by the process.  Pressure and 

the resolution of the scan can affect the ridge width in the image and thus the proportion of black 

to white pixels in the image.  To ensure these factors don‘t lead to false matches or rejections, the 

scale spectrum needs to be normalized.  Normalization involving all probabilities would account 

for differences in the proportion of black and white pixels.   

Many methods for normalizing the spectra were investigated.  The goal of the normalization 

was to produce one spectrum per print that had an initial value of one and a final value of zero.  

Some of the methods to normalize the spectra required the use of the probability of a black and a 

white pixel being selected for a given scale.  Equations II-2 through II-5 show how the 

probabilities are found and how the scale spectra are normalized for each scale σ. 

Figure II-9.  Scale spectra for the two prints in Figure II-8.  Notice that even though the prints are similar in type size and 
proportion of black to white pixels their scale spectra are noticeably different. 
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Equation II-2.  Equation for the probability of a black pixel at a given scale. 

)()()(2)( 100111  bP  

Equation II-3.  Equation for the probability of a white pixel at a given scale. 

)()()(2)( 100100  wP  

Equation II-4.  Equation to verify probabilities. 
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Equation II-5.  The first normalization equation. 

𝑃𝑏 𝜎 𝛼00 𝜎 − 𝑃𝑤 𝜎 𝛼11(𝜎)

𝑃𝑤  𝜎 𝑃𝑏 𝜎  𝑃𝑤 𝜎 − 𝑃𝑏(𝜎) 
=

𝛽(𝜎)

𝑃𝑤 𝜎 𝑃𝑏(𝜎)
 

This normalization worked well in theory but failed to produce the desired spectrum in 

practice.  The spectrum starts at one but approaches a value slightly off zero (see Figure II-10).  

The most likely explanation is the error is magnified by the normalization and the spectrum will 

not go to exactly one.   

When trying to show the theoretical origin of these equations, it was discovered that similar 

results could be obtained by using matrix properties.  The trace and determinant of the 2x2 

matrix shown below can be used as a normalization (see Figure II-11). 

Equation II-6.  Scaling parameters matrix and the equation for the determinant. 

𝑀 =
𝛼00 𝛽01

𝛽10 𝛼11
 

det 𝑀 =∝00∝11− 𝛽01𝛽10  
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Figure II-10.  Graph showing the normalized spectrum for a fingerprint (plot of equation II-5).  The y-axis is the 
normalized probability which is the difference in two probabilities, this is why it goes negative. 

 

 

Figure II-11. Graph showing the determinant of the probability matrix M. 
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C. Image Preprocessing 

The fingerprints that are readily available need to be preprocessed prior to using them in 

our analysis. Two principle factors must be taken into account. First, our algorithm requires that 

the images of the fingerprints be binary, that is, black and white. Often images of fingerprints are 

in a gray scale or in a color scale. If this is the case then they must be converted to a  binary 

image.  The second issue is that fingerprints invariably include background. This background 

must be removed. This is accomplished by outlining the fingerprint. 

A related issue is the question of smudges and other "damages" in the image of the 

fingerprint. These regions also need to be removed. With regard to these regions, we have 

designed our outlining algorithm in such a manner that it not only outlines the fingerprint but 

also outlines the smudges and other ―damage‖.  Figure II-13 shows a fingerprint with the pre-

processing performed. 

 

Figure II-12.  Image showing a fingerprint that has been outlined with the masked pixels shown in green.  The image has 
also been converted to binary. 
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Outlining 

The outlining process involves creating a mask of the fingerprint images that includes the 

domains of uniformity to exclude from the random walk.  This is accomplished by observing 

each pixel‘s surrounding pixels and masking those whose regions are near uniform (almost all 

black or all white).  Many factors affect whether or not a pixel is masked.  The number of 

surrounding pixels is an important factor in the decision to mask a pixel.  The uniformity of the 

neighborhood as a boundary for masking is also a factor. 

The number of surrounding pixels or the neighborhood size must be a value that allows the 

fingerprint to be kept and the background to be excluded.  By looking at many fingerprints it has 

been observed that many of them have ridges and valleys 4-5 pixels wide, so a neighborhood of 

pixels 9x9 would ensure a non-uniform neighborhood.  A boundary of within 5% of uniform was 

also determined by observation.  Both of these values are easily adjustable for different 

collection methods or other factors that may affect the images used. 

Determining whether a pixel should be masked is accomplished by checking the uniformity 

of the pixels neighborhood.  This is accomplished by calculating the sum of the intensities of the 

NxN neighborhood of pixels.  If this summation is within a certain percentage of all white or all 

black the pixel will be masked (see Equation II-7).  In this equation Pi,j is one of the pixels in the 

neighborhood.  For this process to work the intensities used are either 1 if the grayscale value is 

greater than 128 or 0 if less than 128. 

Equation II-7.  Outlining threshold equation. 

0.05 𝑁2 <   𝑃𝑖,𝑗 < 𝑁2 − 0.05(𝑁2)

𝑁

𝑗=1

𝑁

𝑖=1
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Performing the outlining calculation for the pixels near the edge presents some difficulty.  

The pixels on some sides of the boarder pixels are outside of the image and are not usable in the 

summation calculation.  These pixels are often in the background of the image so the outlining 

calculation must be performed for them.  To address this problem, the image is padded with 

pixels to allow the calculation of the sum.  The padding pixels are just N/2 copies of the edge 

rows and columns (see Figure II-14). 

 

Figure II-13.  Image showing the 9x9 neighborhood of pixels used to decide if the top left pixel of an image should be 
masked. 

  

Old Method for Conversion to Binary 

The current method to convert the grayscale image uses the average intensity to determine 

the binary value of a pixel.  The first step is to sum the intensities of all of the pixels in the image 

and divide by the number of pixels in the image.  Finally, each pixel in the image is compared to 
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the average intensity and if it is less than the average it is set to black, otherwise it is set to white 

(see Equation II-8). 

Equation II-8.  Old binary conversion decision equations.  Icp is the pixel in question and Ii,j represents a pixel in the 
neighborhood. 

𝐼𝑓 𝐼𝑐𝑝 <
  𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑀
𝑖=1

𝑀𝑁
         𝑇𝑕𝑒𝑛  𝑃𝑖𝑥𝑒𝑙 = 0 

𝐼𝑓 𝐼𝑐𝑝 >
  𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑀
𝑖=1

𝑀𝑁
         𝑇𝑕𝑒𝑛  𝑃𝑖𝑥𝑒𝑙 = 1 

 

New Method for Conversion to Binary 

The new method for the conversion of the grayscale image is an adaptation of the NIST 

standard for fingerprint processing [31].  In this method the pixel is compared to an average of its 

neighboring pixels as opposed to the average of the entire image.  This method allows proper 

binarization of images with light and dark regions.  If the overall average is used dark regions 

would be set to almost all black and light regions would be set to all white regardless of the ridge 

features in these light and dark regions.   

This method is also easily implemented during the outlining process. When the summation of 

the neighborhood is calculated in the outlining process it is divided by the number of pixel in the 

neighborhood to calculate the neighborhood average.  If the central pixel is less than the average 

it is set to black, otherwise it is set to white (see Equation II-9). 

Equation II-9.  New binary conversion decision equations.  Icp is the pixel in question and Ii,j represents a pixel in the 
neighborhood. 

𝐼𝑓 𝐼𝑐𝑝 <
  𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁𝑁
         𝑇𝑕𝑒𝑛  𝑃𝑖𝑥𝑒𝑙 = 0 
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𝐼𝑓 𝐼𝑐𝑝 >
  𝐼𝑖 ,𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁𝑁
         𝑇𝑕𝑒𝑛  𝑃𝑖𝑥𝑒𝑙 = 1 

III. Program 

Step 1 Preprocessing 

A small C++ program was written in order to implement the fractal analysis of  fingerprints. 

The implementation involves two principle tasks. These are, first, the prepossessing of the 

images, and second, the conversion of the digital image of the fingerprint into a scale spectra 

representative of the image using the iterated function sequence.  

For the preprocessing step, the image needs to be converted into a form that can be used in 

the random walk step.  The random walk requires binary values to give the desired four possible 

outcomes.  All of the images currently in our database are grayscale.  These grayscale images are 

converted to binary using the process described in the end of the previous chapter.   

The background and smudged areas of the image also need to be addressed before the image 

is analyzed.  This is accomplished through an outlining process that is also described in the end 

of the previous chapter.  The masked binary image is then used as input to the fractal creation 

step.  The implementation details of both preprocessing steps are covered by the source code for 

the outlining class in Appendix B. 

Step 2 Fractal Creation 

The next step in the process is to use the preprocessed image as input to the random walk to 

produce a scale spectrum.  For each scale value specified in the options, the program performs 

the random walk incrementing the appropriate scale parameter counter at each step.  This is just 
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an implementation of the random walk process described in the previous chapter without the 

fractal creation.  The fractal is not created during that random walk because it is easier and faster 

to calculate the scale parameters directly.  If the graphical mode of the program is run, the fractal 

is then calculated from these stored scale parameters.   

.  The program was designed to store the scale spectrum in a table in a text document for 

further analysis.  Appendix A contains a user‘s manual for the program.  Appendix B contains 

the source code for the key files in the program.  The files that are not included deal with typical 

code for a Windows API and were adapted from code available online [28].   Appendix C 

contains descriptions of the variables and methods by class.  The figures below contain some 

basic diagrams and flowcharts describing the program. 
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Diagrams  

 

Figure III-1.  Data flow diagram for program.  The diagram shows how and where the data described in the algorithm 
chapter is exchanged by the implemented classes. 
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Figure III-2.  General flowchart for the whole program.  The flowchart shows the steps taken and classes used to analyze 
a typical file from opening to close. 
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Figure III-3.  Detailed flowchart for the random walk.  This chart details the random walk step in the general flowchart 
Figure III-2 
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IV. Analysis 

After attaining the scale spectra from the fingerprints, a method to compare the spectra and, 

in turn, the fingerprints they were created from was needed.  There are many ways to compare 

two graphs.  Just a few procedures are presented in this chapter as ways to compare the graphs.  

The first procedure developed was the direct comparison, where the difference in the two scale 

spectra is evaluated.  The second procedure treated the spectra as an N dimensional vector and 

evaluated the distance for comparison.  The third procedure uses the Fourier Transform of the 

spectra for comparison.  The last procedure presented here fitted polynomials to the scale spectra 

for comparison of their coefficients.   

The database used for the analysis consists of uncompressed grayscale TIFF images 

640x640 pixels or less [3].  This database includes 7,040 fingerprints and 8 different captures of 

each print.  This database is actually comprised of two databases from the Fingerprint 

Verification Competition 2000 and 2002.  Details concerning these databases are described by 

the sponsors below. 

―Four different databases (hereinafter DB1, DB2, DB3 and DB4) were collected by using 

the following sensors/technologies: 

DB1: low-cost optical sensor ―Secure Desktop Scanner‖ by KeyTronic* 

DB2: low-cost optical capacitive sensor ―TouchChip‖ by ST Microelectronics* 

DB3: optical sensor ―DF-90‖ by Identicator Technology* 

DB4: synthetic generation based on an evolution of the method proposed in [10]. 

Each database is 110 fingers wide (w) and 8 impressions per finger deep (d) (880 

fingerprints in all); fingers from 101 to 110 (set B) have been made available to the 

participants to allow parameter tuning before the submission of the algorithms; the 

benchmark is then constituted by fingers numbered from 1 to 100 (set A) [3].‖   

Table IV-1 summarizes the common features and Figure IV-1 shows a sample print.   



43 

 

Table IV-1.  The four FVC 2000 databases taken from Handbook [3]
 

 Sensor Type Image Size Set A (w×d) Set B (w×d) Resolution 

DB1 Low-cost Optical 300×300 100×8 10×8 500 dpi 

DB2 Low-cost Capacitive 256×364 100×8 10×8 500 dpi 

DB3 Optical 448×478 100×8 10×8 500 dpi 

DB4 Synthetic Generator 240×320 100×8 10×8 500 dpi 

 

 

Figure IV-1.Samples of the four databases.[3]
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A. Direct Comparison 

To make decisions about fingerprint matches, the scale spectra must be compared.  If the 

scale spectra from two fingerprint images are nearly the same, the two images came from the 

same fingerprint.  Plotting the normalized scale spectra from two fingerprints will visually show 

the differences in the spectra.  Figure IV-2 shows a plot of the normalized scale spectra from two 

fingerprints.  These spectra are from the fingerprints shown in Figures II-8 and are clearly 

different. 

 

Figure IV-2.  Plot the scale spectra from two prints. 

One of the simplest ways to compare the scale spectra is to find the difference between the 

two spectra to be compared.  If the difference between the two spectra is statistically small 

enough, the two spectra are considered to be the same.   

 Error Bars 

To allow for the differences in random walks over the same print the error in the process has 

to be considered when making comparisons of scale spectra.  The error in the scale spectra is 
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taken to be N
1/2

 where N is the number of times a probability bin has been visited [32].  Using 

this method, the length of the random walk will control the uncertainty of a fingerprints scale 

spectra (See Figure IV-3).   

The amount of time required to perform a random walk over the fingerprint is dependent on 

the length of the random walk performed.  Since the time required to make a decision when 

comparing fingerprints is of concern, the length of the random walk is very important (See 

Figure IV-4).  Due to the relationship between time and walk length and the relationship between 

walk length and uncertainty, the time to make the random walk is related to the desired 

uncertainty (See Figure IV-5). 

 

Figure IV-3.  Graph showing uncertainty as a function of random walk length. 
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Figure IV-4.  Graph showing the time necessary to perform a random walk based on the length of the random walk.  The 
data for this graph was obtained using the described program on a 1.7GHz IBM Laptop. 

 

Figure IV-5.  Graph showing uncertainty as a function of time to execute.  Notice how that past about 0.2 seconds the 

gains in uncertainty are minimal due to the law of diminishing returns.  So the optimum value of uncertainty is about 
0.15% taking 0.2 seconds to obtain.   
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The above graphs illustrate that a relatively low uncertainty of about 0.15% can be obtained 

using a random walk that only takes 0.2 seconds to perform on a modest machine.  The time cost 

to get a significantly smaller uncertainty is very large and likely unacceptable.  This value for 

uncertainty corresponds to a random walk length of 500k steps, which is our default value in the 

program. 

Using this error estimation, error bars can be added to the scale spectra graphs.  If two scale 

spectra are within the error region for each other, they are most likely from the same fingerprint.  

Plotting the difference between the two spectra with an error line clearly shows whether the 

difference for all scales is within the error for the random walk.  Figure IV-6 shows the described 

difference plot for two different random walks over the same image. 

 

Figure IV-6.  The graph shows the difference in two runs over the same image.  Notice that, for all but one scale the 
difference is below the expected percentage uncertainty. 
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Orientation Independence 

One of the key benefits of the developed process is its independence on the orientation of the 

fingerprint in the image.  Many current automated fingerprint comparison algorithms depend on 

the fingerprint being no more than 15º from normal.  This is because their minutiae match 

optimization is only done over a limited angle typically 15˚ [3].  This either requires the 

algorithm to have a complex algorithm to rotate the captured print to normal or for the device to 

request another acquisition of the fingerprint.   

The use of a random angle to find the two points for comparison in the fingerprint allows the 

developed process to be independent of orientation.  Figure IV-7 illustrates this independence by 

showing the difference in two runs of a print in which on run was based on a 90º rotation of the 

image.   

 

Figure IV-7.  The above plot shows the difference in scale spectra from a print and its rotated version.  Notice how most 
of the differences are below the expected percentage uncertainty. 
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This orientation independence is due to the random angle selection.  For an example take a 

print rotated by φº from norm.  When the random angle θ is selected in the random walk, there is 

really no difference in the randomness of the angle if it is instead θ+φ.  If a constant value is 

added to all of the random angles in the random walk process, they are all still random and the 

scale spectrum is unaffected.   

 

Smudge Removal 

Fingerprint images often have areas in the print that are smudged.  These are areas in which 

the ridge details are not clear either because of collection or damage to the image in other ways.  

The developed algorithm uses the entire print to produce the scale spectrum.  If the smudges of 

the print are included, it will cause the scale spectrum to be based in part on the smudge instead 

of just the actual ridges in the fingerprint.  Many of the smudged prints in our database have 

small smudges less than 5% of the print in size. 

To remove the smudged area from the fingerprint, an outlining process is used that has been 

described earlier in this document.  The outlining process masks the areas of the fingerprint that 

are smudged or part of the background behind the fingerprint.  If any of the points to be 

compared are in this masked area when the random walk is performed, they are thrown out and 

another random set are picked.   

To illustrate the removal of a damaged area of the fingerprint, a small portion of a good 

fingerprint is erased in a photo editing program.  Figure IV-8 shows a fingerprint image with the 

background outlined in green.  Figure IV-9 shows the same print with a portion blacked out and 

it‘s outlined version.  Figure IV-10 shows a plot of the difference in the scale spectra for the 
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fingerprint and the fingerprint with a 2% portion removed as shown in Figure IV-9.  The blacked 

out area was placed in the left central portion of the fingerprint because by observation this area 

seems to be the most likely to be smudged in our database.  Figures IV-11 shows the same print 

with a 5% portion removed with the smudge and background in green.  Figure IV-12 shows a 

plot of the difference in scale spectra between the Figure IV-11 print and the original.  Figure IV-

13 shows the same print with a 10% portion removed with the smudge and background in green.  

Figure IV-14 shows the plot of the difference in scale spectra for the Figure IV-13 print and the 

original.   

 

Figure IV-8.  Fingerprint image and its outlined version with masked pixels shown in green. 
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Figure IV-9.  Image of a fingerprint with a small portion blacked out and its outlined version with masked pixels 
displayed in green. 

 

 

 

Figure IV-10.  This is a plot showing the difference in the scale spectra for the fingerprint and its smudged version.  
Notice that most of the differences are still below the expected uncertainty. 
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Figure IV-11.  The images above show the original print with 5% smudged and the outlined version of this print.  In the 
outlined version everything in green is masked from use in the random walk. 

 

 

 

Figure IV-12.  This is a plot showing the difference in the scale spectra for a fingerprint and its version with 5% smudged.  
Notice that in this case all of the differences are below the expected value. 
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Figure IV-13.The above images show the original print with 10% smudged and it’s outlined version. 

 

 

Figure IV-14. This plot shows the differences in scale spectra for a print and its smudged version with 10% removed.  

Notice that with this much removed a large portion of the differences are above the expected uncertainty. 
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From these tests, it appears that 10% is the approximate maximum for the amount of the print 

that can be missing without affecting the scale spectra noticeably.  Even though this is the area 

observed to be the most likely to be smudged, some other tests of moving the smudge around the 

image were designed.  Figure IV-15 shows the original print with 5% smudged in a different area 

than before.  Notice that in the plot of the difference in Figure IV-16, the differences are much 

higher than in the first example of 5% removed Figure IV-12.  Figure IV-17 shows the original 

print with 5 areas of 2% each removed for a total of 10% removed.  Notice that in the plot of the 

difference Figure IV-18, the differences are much lower than those from the first example of 

10% being smudged Figure IV-14.   

 

 

Figure IV-15.  The above images show the original print with 5% smudged in a new region and it’s outlined version. 
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Figure IV-16.  This plot shows the differences in scale spectra for a print and its smudged version with 5% removed from 

a new region.  Notice that most of the differences are above the expected uncertainty unlike in the first print with 5% 
smudged. 

 

 

Figure IV-17.  The above images show the original print with 2% smudged in a new 5 different regions for a total of 10%. 
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Figure IV-18.  This plot shows the differences in scale spectra for a print and its smudged version with 2% removed from 

5 different regions.  Notice that most of the differences are below the expected uncertainty unlike in the first print with 
10% smudged. 

 

From the comparisons of different smudged prints it is clear that smudging effect on the scale 

spectrum is dependent on both the size of the smudge and the position on the fingerprint image.  

In general a single smudged portion 10% or larger appears to have a noticeable effect on the 

scale spectrum.  Also it appears that smudges in the center of the fingerprint have a greater effect 

than ones on the outside of the image.  Finally it appears that if there are many small smudges 

they have less effect than one large one equal to their total area. 

Now that it has been shown that direct comparison can identify the same print even with 

some abnormalities we should at least show how the difference and uncertainty plot looks for 

two different prints.  This is shown in Figure IV-19 for the two prints shown in Figure II-8. 
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Figure IV-19.  Plot showing the difference in two different prints.  Notice the line clear at the bottom is the uncertainty 
line that almost all of the points were below for the same print. 

  

B. Fourier Transform 

When looking at the scale spectrum for a fingerprint, it is clearly a periodic damped function.  

Upon initial inspection, it appears to have the shape of an exponentially decaying sinusoid.  To 

help extract the periodic information of the scale spectrum, a Discrete Fourier Transform (DFT) 

was used.  The DFT should give us the frequencies of the periodic portions of the scale 

spectrum.  In our case, the frequency is really number of pixels because the independent variable 

is scale instead of time.  To obtain the Fourier Transform Coefficients from the software program 

the Intel Signal Processing package was used.   
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Initially a Discrete Cosine Transform (DCT) was used because it has no complex 

coefficients.  The all-real coefficients were thought to be easier to compare and understand.  The 

DCT failed to work properly due to the sharp decay from the origin.  The DFT was needed due 

to this feature of the scale spectrum.   

From examination of the scale spectra for most of the fingerprints in our database, we found 

the scale spectrum stays constant after a scale of approximately 30 for the prints in our database.  

Using this fact, a maximum scale of 32 works well and would allow the use of the Fast Fourier 

Transform (FFT).  The coefficients of the FFT are the same as those from the DFT for series 

with 2
n
 points in them.  For experimentation, a max scale of 64 was used to be sure important 

data was not excluded, but in practice a max scale of 32 could be used and the FFT efficiency 

can be exploited. 

The FFT of the scale spectra can be compared in the same fashion as the spectra themselves 

because they are still just graphs.  The advantage to taking the FFT is the information on pixel 

features such as the ridge spacing from the fingerprint.  The peak in the FFT plot corresponds to 

the ridge spacing in the fingerprint.  Figure IV-20 shows the FFT from the normalized scale 

spectra for the two prints shown in Figure II-9. 
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Figure IV-20.  Plot showing the FFT for two different fingerprints. 

 

 

C. Other Comparison Methods 

Since the scale spectra to be compared are just graphs representing the fingerprint there are 

many more ways to compare them.  Any reasonable method of comparing graphs of functions 

can be used to compare the scale spectra and in turn the fingerprint images that produced them.   

One other method that was used was to treat the probabilities for each scale as the magnitude 

for a vector in R dimensional space.  Where the R is the number of scales the random walk was 

performed over.  Using this idea, the distance between the endpoints of the vectors can be found 

using the distance formula shown below.  If the distance is small enough the fingerprints are 

likely the same and if they are further apart they are likely from different fingers.   



60 

 

Equation IV-1.  Multidimensional vector distance formula. Pi,j is the probabilities from two prints, where I is the print 
number and j is the scale with a max scale of R. 

𝑑 =   𝑃1,1 − 𝑃2,1 
2

+  𝑃1,2 − 𝑃2,2 
2

+ ⋯ 𝑃1,𝑅 − 𝑃2,𝑅 
2
 

  

Another method that was investigated was fitting a 5
th
 order polynomial to the scale spectrum 

and using the coefficients for comparison.  Figure IV-21 shows the scale spectrum for the first 

fingerprint shown in Figure II-8 and the 5
th
 order polynomials that were fitted to the plots.  Table 

IV-2 shows the polynomial coefficients from the two fingerprints in Figure II-8 along with the 

difference in each of the coefficients for each of the probabilities in the scale spectrum. 

 

 

Figure IV-21.  Plot showing the scale spectrum and trend lines.  The trend lines are 5th order polynomials. 
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Table IV-2.  Table showing the coefficients of the fitted polynomials.  The difference in the coefficients of the polynomials 

for the two prints is shown in the difference row.  The distance column shows the distance using the distance formula and 
the differences from the difference row. 

N11 

Print x
5 

x
4 

x
3 

x
2 

X C Distance 

1 -0.004 0.797 -56.26 1830 -26721 28596  

2 -0.005 0.981 -67.51 2119 -29669 28773  

Difference 0.001 -0.184 11.25 -289 2948 -177 2967.437 

N00 

Print x
5 

x
4 

x
3 

x
2 

X C Distance 

1 -0.005 0.95 -66.44 2140 -31203 27968  

2 -0.006 1.158 -78.9 2439 -32998 27087  

Difference 0.001 -0.208 12.46 -299 1795 881 2021.817 

N01 

Print x
5 

x
4 

x
3 

x
2 

X C Distance 

1 0.004 -0.866 60.94 -1976 28883 -32676  

2 0.005 -1.069 73.13 -2277 31323 -29336  

Difference -0.001 0.203 -12.19 301 -2440 -3340 4147.282 

 

 After presenting all of the above methods for the comparison of the scale spectra It can be 

concluded that the direct comparison or difference method offers the best solution.  The distance 

method offers only one final value for comparison.  The FFT and polynomial fit method require 

an additional complex calculation before comparison.  The difference method is the 

computationally simplest method that offers multiple points of comparison between two prints.  
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V. Conclusions 

The examples presented in this thesis show the method produces the desired results.  The 

method uses a random walk over the whole fingerprint to produce a fractal image that is 

representative of the fingerprint it was created from.  Further the fractal can be represented by 

the probabilities of each pixel pair combination.  The method captures information from the print 

over many scales by setting the distance between the points to be compared.  The probabilities 

can be plotted as a function of scale to produce a graph that represents the fingerprint from which 

it was created.   

This process addresses many of the difficulties with current methods.  It offers a creative 

solution to many of the difficulties in fingerprint analysis.  Since the method is performed over 

the whole print, it uses all of the information available over all scales of the print to produces the 

scale spectra.  Unlike many other methods, it can account for small scale (sweat pores) to large 

scale (ridge classification) features of the print.   

As presented in the problem statement, this method is also fast.  The method can produce the 

scale spectra for an entire print in less than 15 seconds.  This is impressive considering it was 

performed on an ultra-portable laptop using an un-optimized program.  Though the creation of 

the scale spectra is quick, the largest speed gains from this method will come in the comparison 

to a database.  Most current methods require the alignment and comparison of the actual print 

images between the sample and every print in the database.  The scale spectra for all of the prints 

in a large database could be obtained in idle times before a comparison is requested.  Using the 

values for the spectra, a sorted list of values can be created.  Then when a comparison is 

requested, the scale spectra is calculated and then the closest value can be found in the database 

through an efficient search of a few values.  Searching a database for a certain pairing of about a 
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dozen values would be far quicker than aligning and comparing two images for each print in the 

database.   

The quantitative measure that was proposed in the introduction has not been obtained yet.  

The method still has the potential to produce a quantities measure of a match, though the 

research just has yet not been developed that far in the comparison process.  Once a comparison 

method is settled on mathematical analysis of the error in the random walk based on the 

resolution of the print could be used as the basis for a measure.    

 

Goals of Research 

 The goals of the research were to produce a method that was not affected by many of the 

typical difficulties for automated matching.  Referring to the list of difficulties presented in the 

introduction each of the problems are addressed by portions of the algorithm designed.   

Displacement, rotation, and partial overlap, are addressed by the fractal being created 

from a random walk.  Since the pixels are selected randomly selected the fractal is unaffected by 

prints being in different positions in the image.  The random angle allows for any rotation of the 

print without an effect on the fractal (See the Analysis section).   

Pressure, skin condition, and non-linear distortion are handled by the normalization of the 

scale spectra as described in the Experimentation section.  These factors will effect the ridge 

width and spacing.  The normalization process makes the scale spectra independent of the 

portion of black and white pixels (ridge width).   
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The noise problems are handled by the outlining algorithm which removes smudged or 

damaged areas of the prints along with the background.  The method is not prone to feature 

extraction errors because features of the print are not used and therefore not extracted. 

 

Further Research and Future Applications 

 This method is very open to expansion and improvement. Further work on the 

comparison method and the quantitative measure is needed.  Once that comparison and measure 

are settled, the method should have far more extensive testing on large databases to determine its 

performance and limitations.   

 More work is also currently being performed on understanding how different print 

features affect the scale spectra.  Test images have been ran through the program to determine 

how factors such as ridge spacing show up in the scale spectra.  This work will allow the method 

to give information such as the ridge width and spacing using the scale spectra obtained.   

 One of the most interesting areas for this method is the application in new areas.  With 

some adaptations to the random walk and scale spectra creation process, it can be applied to 

many other images.  It can be used for other biometric features, including palm prints, faces, iris, 

speech and handwriting.  It could also have other forensic applications such as ballistics and 

fracture comparison.   

 One other area for this method is detecting hidden features such as camouflage.  Hidden 

features in an image or signal are usually on a different scale from their surroundings.  Producing 

the scale spectra for portions of an image independently will allow the observations of these 
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differences in scale.  The scale spectra of the background portions will be similar while the 

spectra for the abnormality will be different.   
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Appendix A Software Manual 

General description 

 This program converts fingerprints into fractal images.  The fingerprints are assumed to 

be in standard grayscale TIFF format.  The algorithm constructs a random walk through the 

fingerprint and uses this sequence of data as input to the Chaos Game that produces the fractal.  

The details of this (both technical and theoretical) procedure are discussed at length in the 

Annual Report dated September 30, 2005 NIJ(2003-RC-CX-K001). 

Using the algorithm the scale spectrum defined in the Annual Report is constructed.  The 

scale spectrum is characteristic of the fingerprint and is used to make direct comparisons 

between fingerprints.  A variety of tools are included in this package.  The first outlines the 

useable areas of the image of the fingerprint.  Also included is a tool that generates the fractal for 

arbitrary scaling parameters.  The batch processing mode includes a tool to produce Discrete 

Cosine Transforms of the scale spectrum.  The program also includes a separate capability to 

send the results to a data file.  A variety of parameters governing the algorithm must be input.  

These are discussed in the remainder of this guide.   

The software has been structured to be a long-term exploratory tool as well as an 

algorithm depository.  This strategy is apparent in the look and feel of the program‘s 

implemented capabilities to date.  Graphical display of calculated data, the ability to select input 

parameters, and real-time graphical updates to user requests via sliders and other controls are 

important features for us— as the developers of the underlying computational algorithms— as 

well as for users whose intent is for demonstration and discussion of PCG research and 

technologies. 
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Installation 

 Installation of the program only involves copying the executable to the folder from which 

you want to run the program.  You must also have the ―duke.dll‖ file in the same folder as the 

executable.  Failure to have the ―duke.dll‖ file will cause an error when attempting to run the 

program. 

 

Getting Started 

 Double clicking the executable file starts the fingerprint program.  Upon opening the 

program one sees a blank window with the typical menu and toolbars at the top (see Figure A-1).   

The first step in processing a fingerprint is to use the open command from the Files menu 

or the toolbar .  With this command you can select one or more TIFF file(s) to open for 

processing.  Dragging and dropping TIFF file(s) into the gray background of the window also 

opens the files for processing.  If the file opened or dropped is not a valid TIFF image there will 

be an error displayed.  If this error is displayed be sure it is a non-compressed grayscale TIFF 

image 640x640 or less in size.   
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Figure A-1.  The Initial program window.  Notice the menu and toolbar at the top of the window.  Clicking on these 
produces menus that are used to set options, control inputs and outputs, or process 

 

Working with the fingerprint 

 When the TIFF file(s) are successfully loaded you will see a dialog with three panes, four 

buttons below them (see Figure A-2).  Once the TIFF file(s) are opened you will see the 

fingerprint shown in the first pane.  Clicking the Outline button will outline and convert the 

fingerprint to a binary image.  The result will be displayed in the second of the three panes in the 

dialog.  The areas in green are the masked area of the image identified by the outlining procedure 

and will not be used in the fractal calculations.   
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Figure A-2.  TIFF image dialog.  Outlining process has been done.  The three panes are for displaying the fingerprint 

image, the outlined image, and the fractal for the scale currently selected by the slider.  The buttons below the panes allow 

you to outline the image, change the random walk and scale boundaries (explained below), and to perform the 

calculations.  The items that are grayed out are not fully implemented in this version of the program and are consequently 
disabled.   

 

Once the outlining process has been completed you can use the Calculate Alphas button 

to do the random walks to produce the fractals for the print.  If you wish to change the length of 

the random walk, the number of scales or the increment between scales click the Scale Method 

button to open the dialogue (see Figure A-3).   

   Once you have set the scale method and clicked on the Calculate Alphas button the 

program will begin the fractal generation process.  As fractals are calculated for each scale they 

are displayed in the third box and the scale spectrum graph is updated.  When the calculation is 
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complete for all scales (see Figure A-4) fractals for a given scale can be reviewed using the slider 

at the bottom of the window (see Figure A-4 and A-5).   

 When the calculation is complete you also have the ability to normalize the graph 

(subtract a value so the graphs approach zero at the end).  You can also choose to save the values 

for the print to a text file using the Save Table button.  This option saves the data to the selected 

text file in a tab separated format so it can be opened in other programs such as Excel.   

 

Figure A-3.  Scale Method Dialog.  The Max Scale box relates to the maximum distance between the pair of 

compared pixels.  The Scale Increment relates to the step size between fractal images calculated for each 

scale.  Finally, the Symbols/scale refers to the length of the random walk. 
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Figure A-4.  Tiff dialog upon completion.  The fractal for the scale indicated by the slider and the line on the 

scale spectrum graph is displayed in the third pane above. 
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Figure A-5.  Tiff dialog upon completion.  This is the same fractal and run as in Figure B.4 but with a different 

slider position and corresponding fractal. 

 

Global Options and Batch Processing 

 The yellow smiley face button  on the toolbar or the Tools->Preferences menu 

option allows you to change the Scale method for all future fingerprints in this session whether in 

batch or graphical mode (see Figure A-1).  Clicking either of these opens the same dialogue as 

show in Figure 2 with the same options.  The only difference is that these settings will be applied 

to all fingerprints analyzed in this session and not just the currently open print.   
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 Clicking the Files->Batch Flag option puts the program in batch mode.  In this mode 

when print(s) are opened or dragged in the program does not display the graphical interface, but 

rather begins  the process for the opened files.  When the process is complete for all files the 

program will display a completed message.  You can then find the results of the batch processing 

in two text files for each print located in the same directory the print was loaded from.  If the 

print‘s filename was filename.tif the two files would be filename.txt.  The first file has the scale 

and scaling parameter table similar to the one saved using the Save Table button in graphical 

mode.  The second file is the Discrete Cosine Transform of the data in the table in the first file.  

These files can be open in Excel or any similar program for inspection and comparison between 

prints.   

 

Other Tools 

Clicking the Tools->Fisch menu option opens a tool shown in Figure A-6 that illustrates 

the relationship between the scaling parameters and the fractal pattern they define.  Moving the 

sliders around the fractal will show the various fractals produced for the scaling parameters given 

by the sliders.   
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Figure A-6.  Scaling parameter to fractal tool.  The scaling parameter with the dot before it is set allowing only 

two of the sliders to be moved.  Changing the dot will allow the other slider to move. 
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Appendix B Source Code 

DlgMaster.h 
#ifndef DLG_MASTER_H 

#define DLG_MASTER_H 

 

#include "tools.h" 

#include "arrays.h" 

#include "twister.h" 

#include "fileTIFF.h" 

#include "FrameCtl.h" 

#include "ctlDMask.h" 

#include "ctlDWalk.h" 

#include <windows.h> 

 

 

extern TCHAR szFileDrop[MAX_PATH]; // Framectl.cpp 

extern TCHAR szTitleDrop[MAX_PATH]; // Framectl.cpp 

extern TCHAR _szFileName[MAX_PATH]; // Framectl.cpp 

 

 

class DlgMaster 

{ 

public: 

 DlgMaster (DOCSTATEINFO & pstate, IDLOGDOC *initDOC, 

WalkData *walkdata, HWND hwnd); 

 ~DlgMaster (); 

 

 

 void OutlineMethod ();        //calls outlining 

 void OnNewTiff (HWND hwnd);   //Captions window 

 void SymbolGenerateMethod (); //Calls symbol gen twister 

 void SymbolGenerateTwister ();//calls calc next point 

 

 void MaskPrefsDlg (HWND hwnd);  //opens dialogue 

 void    WalkPrefsDlg (HWND hwnd);  //opens dialogue 

 

 void RunBatch();   

 BOOL TxtFileWrite (TCHAR * szFileName, TCHAR * szTitleName, 

bool bNormalized); 

 bool CalcNextPoint(int iscale, float finc); 

 

 

 //provides access to priviate variables 

 float getA11(int i) const {return 

(_A11arr.GetFloat(i));} 

 float getA00(int i) const {return (_A00arr.GetFloat(i));} 
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 float getB01(int i) const {return (_B01arr.GetFloat(i));} 

 float getBn(int i) const {return (_Barr.GetFloat(i));} 

 float getDIS(int i) const {return (_distance.GetFloat(i));} 

 BYTE getBmpImage(int x, int y) const {return 

(_bmpImage.GetByte(x,y));} 

 BYTE getBmpMask(int x, int y) const {return 

(_bmpMask.GetByte(x,y));} 

 bool getBoolMask(int x, int y) const {return 

(_boolMask.GetBool(x,y));} 

 int  getImageDimX() const {return 

_bmpImage.QueryDimX();} 

 int  getImageDimY() const {return 

_bmpImage.QueryDimY();} 

 int  getMaskDimX() const {return 

_bmpMask.QueryDimX();} 

 int  getMaskDimY() const {return 

_bmpMask.QueryDimY();} 

 int  getNumScales() const {return _numScales;} 

  

 float GetScaleIncr() const {return 

_walkMethodLocal.GetScaleIncr();} 

 int GetWalkMethod() const {return 

_walkMethodLocal.GetMethod();} 

  

 private: 

 DlgMaster (const DlgMaster & no_copy); // protect from 

copy 

  

 void PrepareStateForDlgCtor (); 

 HWND     _hwnd; 

  

 WalkData          &_walkMethodGlobal;   // params for 

generating symbols 

 WalkData          _walkMethodLocal;   // params for 

generating symbols 

  

 int               _numScales; 

 int               _neighborParm; 

 

 Byte2D_640        _bmpImage;     // for display of original 

image 

 Byte2D_640        _bmpMask;      // for display of masked 

image 

  

 Bool2D_640        _boolImage;    //  unmasked data for 

analysis 

 Bool2D_640        _boolMask;     //  mask for data used in 
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analysis 

  

 Int2D_640         _scratch;      //  neighborhood 

calculations 

  

 FileTifTouch  _tifFileInfo; 

 TCHAR   _szTitleName[MAX_PATH]; // Local 

  

 //scaling parameters 

 AlphaArray        _A00arr; 

 AlphaArray        _A11arr; 

 AlphaArray        _B01arr; 

 AlphaArray        _distance; 

 AlphaArray        _A00c; 

 AlphaArray        _A11c; 

 AlphaArray        _B01c; 

 AlphaArray        _B10c; 

 AlphaArray   _Tout; 

 

 AlphaArray   _Pb; 

 AlphaArray   _Pw; 

 AlphaArray   _Barr; 

 

    HWND     _hMDIChildOwner; // scroll, command 

    HWND     _hFrameClient;  // scroll, command 

    IDLOGCOMMON     _common; 

    MenuBarCurrent    _TDSLmenu;  

    DOCSTATEINFO    &_pState;   // owned by 

ChildCtrl 

    Twister           _MTPRNG; 

    FingerTwister     _ftwister; 

    MaskData          _maskMethod;  

 

 

}; 

 

#endif 

DlgMaster.cpp 
#include "dlgmaster.h" 

 

#include "outline.h" 

#include "MiscDlgs.h" 

#include "modaldlg.h" 

 

extern "C" { 

#define nsp_UsesTransform 

#define nsp_UsesDct 
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//#include "C:\Program Files\Intel\plsuite\Include\nsp.h" 

#include "nsp.h" 

} 

 

 

#include <windowsx.h> 

#include <stdlib.h> 

 

static const double INFLXPNT_TEMP = 0.03f; 

 

DlgMaster::DlgMaster ( DOCSTATEINFO & pstate, IDLOGDOC 

*initDOC, WalkData *walkdata, HWND hwnd)  

 : // Stuff we get from MDI Doc level: (don't use 

File*Look/Touch) 

  _walkMethodGlobal  (* walkdata), 

  _walkMethodLocal  (_walkMethodGlobal), 

  _hwnd(hwnd), 

  _hMDIChildOwner (GetParent(hwnd)), 

  _hFrameClient (GetParent(_hMDIChildOwner)), 

  _TDSLmenu (GetParent(_hFrameClient)), 

  _tifFileInfo (_bmpImage), 

  _numScales (MAX_SCALE_INDEX),           // the number 

(also sizes?) 

  _neighborParm (1),     

  _ftwister (_MTPRNG, _boolImage, _boolMask),// size of 

neighborhood; see Outline.cpp 

  _maskMethod (127, out_thresh, out_thresh),  

//      

  _pState   (pstate)//,  // owned by 

ChildCtrl 

{ 

 PrepareStateForDlgCtor ();       

 // Has PtrWavedata been redimed already? 

} 

 

DlgMaster::~DlgMaster () 

{ 

} 

 

 

void DlgMaster::RunBatch() 

{ 

   OnNewTiff(_hwnd); 

   OutlineMethod(); 

   SymbolGenerateMethod(); 

   TxtFileWrite (_szFileName, _szTitleName, false); 
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} 

 

void DlgMaster::OnNewTiff (HWND hwnd) 

{ 

 GetFileTitle (szFileDrop, szTitleDrop, MAX_PATH+1); 

 if (_tifFileInfo.DropFileOpen (hwnd, szFileDrop, 

szTitleDrop)) 

 { 

  memcpy (&_szFileName, &szFileDrop, MAX_PATH); // 

copy sz*Drop to sz*Name  

  GetFileTitle (_szFileName, _szTitleName, MAX_PATH+1); 

  DoCaption (GetParent(hwnd), _szTitleName) ; 

//  UpdateNeedSaveStatus (false); 

 } 

} 

 

void DlgMaster::SymbolGenerateTwister ()  

{ 

  

  numScales  = 

_walkMethodLocal.GetMaxScale()/_walkMethodLocal.GetScaleIncr(); 

 

  // Count the pixels of each type 

   

  _ftwister.CountPixels();            // Scale = zero; alphas = 

fraction of pixels 

   

  float a00 = (float) _ftwister.GetNum00()/_ftwister.GetTotal(); 

  float a11 = (float) _ftwister.GetNum11()/_ftwister.GetTotal(); 

  float b01 = 

(float)(_ftwister.GetNum01()+_ftwister.GetNum10())/(2*_ftwister.

GetTotal()); 

   

  _A00arr.SetFloat(0, a00); 

  _A11arr.SetFloat(0, a11); 

  _B01arr.SetFloat(0, b01); 

  _distance.SetFloat(0, 0); 

  _Barr.SetFloat(0,1); 

   

  // Get parameters as a function of scale 

   

  for (int iscale = 1; iscale < _numScales; iscale++) 

    { 

      CalcNextPoint(iscale, _walkMethodLocal.GetScaleIncr()); 

    } 
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} 

 

bool DlgMaster::CalcNextPoint(int iscale, float finc)   //  

returns true while points left to do. 

{ 

  int tout; 

  _numScales = 

_walkMethodLocal.GetMaxScale()/_walkMethodLocal.GetScaleIncr();    

// need this for printing txt file 

   

  if( iscale >= _numScales ) 

    { 

      return false;        // error, add a message box here for 

DEBUG 

    } 

   

  if ( 0 == iscale) 

    { 

      _ftwister.CountPixels();// Scale = zero; alphas = fraction 

of pixels 

      tout = 0; 

    } 

  else 

    { 

      _ftwister.CountSymbols(iscale, 

_walkMethodLocal.GetNumSymbols(), finc/2,tout); //last param is 

factor to multiply scale 

    } 

   

  //set values for scaling parameters 

  _A00arr.SetFloat(iscale, (float) 

_ftwister.GetNum00()/_ftwister.GetTotal()); 

  _A11arr.SetFloat(iscale, (float) 

_ftwister.GetNum11()/_ftwister.GetTotal()); 

  _B01arr.SetFloat(iscale, 

(float)(_ftwister.GetNum01()+_ftwister.GetNum10())/(2*_ftwister.

GetTotal())); 

   

  //set values for probability of black and white pixels 

  _Pb.SetFloat(iscale, 

(float)(_ftwister.GetNum11()*2+_ftwister.GetNum01()+_ftwister.Ge

tNum10())/(2*_ftwister.GetTotal())); 

  _Pw.SetFloat(iscale, 

(float)(_ftwister.GetNum00()*2+_ftwister.GetNum01()+_ftwister.Ge

tNum10())/(2*_ftwister.GetTotal())); 

   

  //set normalized values 
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  _Barr.SetFloat(iscale,(float)1-

((pow(_B01arr.GetFloat(iscale),2)/(_A00arr.GetFloat(iscale)*_A11

arr.GetFloat(iscale))))); 

  _distance.SetFloat(iscale, ((float) iscale)*finc); 

   

  _A00c.SetFloat(iscale,_ftwister.GetNum00()); 

  _A11c.SetFloat(iscale,_ftwister.GetNum11()); 

  _B01c.SetFloat(iscale,_ftwister.GetNum10()); 

  _B10c.SetFloat(iscale,_ftwister.GetNum01()); 

  _Tout.SetFloat(iscale,tout); 

   

   

  return (_numScales != (iscale + 1) ); 

} 

 

void DlgMaster::OutlineMethod ()  

{ 

  Outline outline; 

   

  outline.ByteToBool(_bmpImage, _boolImage);   // -> binary, 

based on avg unmasked image 

   

  // create mask, allowing for noise thresholds _noisefraction 

   

  outline.MaskSquareAggregate(_boolImage, _boolMask, _scratch, 

_neighborParm, _maskMethod);    

   

  outline.ByteToBoolMasked(_bmpImage, _boolImage, _boolMask);    

// temp: no mask, just a "greyscale" of 2 color image 

   

  outline.MaskSquareAggregate(_boolImage, _boolMask, _scratch, 

_neighborParm,  _maskMethod);    

   

  outline.ByteToBoolMasked(_bmpImage, _boolImage, _boolMask);    

// temp: no mask, just a "greyscale" of 2 color image 

   

  outline.BoolToByte(_boolImage, _bmpMask);    // temp: no mask, 

just a "greyscale" of 2 color image 

   

  //      _boolMask.FillAll(true);                     // 

convention: mask is "true" if we use the pixel 

   

   

} 

 

void DlgMaster::SymbolGenerateMethod ()  

{ 



84 

 

   switch (_walkMethodLocal.GetMethod ()) 

   { 

   case WALK_METHOD_TWISTER: 

      SymbolGenerateTwister (); 

      break; 

   case WALK_METHOD_PAIRS: 

//      SymbolGeneratePairs (); 

      break; 

   case WALK_METHOD_COMBO: 

//      SymbolGenerateCombo (); 

      break; 

   } 

 

} 

 

void DlgMaster::MaskPrefsDlg (HWND hwnd) 

{ 

  //  MaskData data (_maskMethod); 

  MaskDataBMP data (_maskMethod, _bmpImage); 

  ControllerFactory <MaskCtrl, MaskDataBMP> factory (& data); 

  ModalDialog dialog (GetWindowInstance(hwnd), hwnd, 

IDD_MASK_METHOD, &factory); 

  if (dialog.IsOk ()) 

    { 

      _maskMethod.CopyAll (data); 

      ::InvalidateRect (hwnd, NULL, FALSE); // Force repaint 

    } 

} 

 

void DlgMaster::WalkPrefsDlg (HWND hwnd) 

{ 

  WalkData data (_walkMethodLocal); 

  ControllerFactory <WalkCtrl, WalkData> factory (& data); 

  ModalDialog dialog (GetWindowInstance(hwnd), hwnd, 

IDD_WALK_METHOD, &factory); 

  if (dialog.IsOk ()) 

    { 

      _walkMethodLocal.CopyAll (data); 

      ::InvalidateRect (hwnd, NULL, FALSE); // Force repaint 

    } 

} 

 

BOOL DlgMaster::TxtFileWrite (TCHAR * szFileName, TCHAR * 

szTitleName, bool bNormalized) 

{ 

  FILE *   outf; 
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  TCHAR    *szFileNameTXT =szFileName;  

  char *temp; 

  temp = strchr(szFileNameTXT,int('.')); 

  *temp = '\0'; 

  strncat(szFileNameTXT, ".txt",4); 

   

  outf = fopen(szFileNameTXT,"w"); 

   

  int i; 

  float mul_00, mul_11, mul_01;          // assymptotic values 

(A(0) squared) 

  float inf_00, inf_11, inf_01;          // assymptotic values 

(A(0) squared) 

   

  fprintf(outf,"\n\nFile: %s\tScale Incr:%1.2f\tMax 

Scales:%d\tNum Steps%d\n", szTitleName, 

   _walkMethodLocal.GetScaleIncr(),  

   _walkMethodLocal.GetMaxScale(), 

   _walkMethodLocal.GetNumSymbols()); 

  fprintf(outf,"\nScale\tN11\tN00\tN01\tN10\tNumSkip\n"); 

  for (i = 0; i < _numScales; i++) 

    { 

       

       

      fprintf(outf,"%.2f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f\n", 

_distance.GetFloat(i), 

       _A00c.GetFloat(i),  

       _A11c.GetFloat(i),  

       _B01c.GetFloat(i), 

       _B10c.GetFloat(i), 

       _Tout.GetFloat(i)); 

    } 

} 

 

fclose(outf); 

return TRUE; 

} 

 

 

Twister.h 
#ifndef TWISTER_H 

#define TWISTER_H 

 

#include "params.h"      // needed for MAX_SCALE_INDEX 

#include "arrays.h"       

#include "FOG/randoma.h"       



86 

 

#include <cassert> 

#include <time.h> 

#include <windows.h>   // needed for min, max, BOOL 

 

// class to generate unifrom random numbers 

class Twister 

{ 

 public: 

  Twister (int iSeed = (int) time( NULL )) 

    :  _twoPI (2 * 3.1415926535),  

    _min (0), 

    _max (1) 

 

    { 

      TRandomInit(iSeed); 

    } 

  //set range 

  void SetMin (int i) {_min = i;} 

  void SetMax (int i) {_max = i;}   

   

 

  float TwoPI () const {return _twoPI;} 

 

 

private: 

 

   float      _twoPI;  

   int        _min;           

   int        _max;           

    

}; 

 

 

class FingerTwister 

{ 

 public: 

  FingerTwister (Twister & twst, Bool2D_640 & bImage, Bool2D_640 

& bMask) 

    :  _pTwist (twst),  

    _pbImage (bImage), _pbMask (bMask), 

    _iA00 (0), _iA11 (0), _iB01 (0), _iB10 (0), _iTotal(0), 

    _iScale (1) 

    { 

    } 

 

  BYTE GetSymbol (int i, int j) const; 

   



87 

 

  //functions to perform walk 

  void CountSymbols (int iscale, int iterations, float factor, 

int &tout); 

  void CountPixels (); 

   

  //functions to return results 

  int GetNum00 () const {return _iA00;} 

  int GetNum01 () const {return _iB01;} 

  int GetNum10 () const {return _iB10;} 

  int GetNum11 () const {return _iA11;} 

  int GetTotal () const {return _iTotal;} 

   

 

private: 

 

   int             _iA00;     // false-false (WHITE-WHITE) (MSB-

LSB) 

   int             _iA11;     // true -true  (BLACK-BLACK) (MSB-

LSB) 

   int             _iB01; 

   int             _iB10; 

   int             _iTotal; 

    

   int             _iScale;           

    

   Twister        &_pTwist; 

    

   //images to perform walk over 

   Bool2D_640     &_pbImage; 

   Bool2D_640     &_pbMask; 

}; 

 

 

#endif 

 

Twister.cpp 
#include "Twister.h" 

#include <math.h> 

 

 

 

void FingerTwister::CountSymbols (int iscale, int iterations, 

float factor, int &tout) 

{ 

  _iScale = iscale; 
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  tout=0; 

  int inum=0; 

  float fScale = _iScale * factor; 

  _iTotal = 0; 

   

  _iA00 = 0; 

  _iA11 = 0; 

  _iB01 = 0; 

  _iB10 = 0; 

   

  int xsize = _pbImage.QueryDimX(); 

  int ysize = _pbImage.QueryDimY(); 

   

   

  //  Initialize variables associated with the output bitmap's 

coordinates 

   

  int xA, yA, xB, yB; 

  float fXorg, fYorg; 

  float fTheta; 

  float fx, fy; 

  int isymbol; 

   

  float fXsize = (float)(xsize-1); 

  float fYsize = (float)(ysize-1); 

   

  do 

    { 

      fYorg = fYsize * TRandom();    //  Pick a random x and y 

coordinate 

      fXorg = fXsize * TRandom(); 

       

      //random angle 

      fTheta = TRandom() * _pTwist.TwoPI(); 

       

      fx = fScale * cos(fTheta); 

      fy = fScale * sin(fTheta); 

 

      yA = (int)(fYorg + fy); //  Find P1, with new x and y 

coordinates (closest integer) 

      xA = (int)(fXorg + fx); 

       

      yB = (int)(fYorg - fy); //  Find P2, with new x and y 

coordinates (closest integer) 

      xB = (int)(fXorg - fx); 

       

      //  Check to ensure all four points are within bounds 
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      if(         (yA >= 0) && (yA < ysize)) 

 { 

   if(      (xA >= 0) && (xA < xsize)) 

     { 

       if(   (yB >= 0) && (yB < ysize)) 

  { 

    if((xB >= 0) && (xB < xsize)) 

      { 

         

        if (_pbMask.GetBool(xA, yA) && 

_pbMask.GetBool(xB, yB))  // convention: mask is "true" if we 

use the pixel 

   { 

     isymbol = 0; 

      

     if(_pbImage.GetBool(xA, yA))      // true = 

black 

       { 

         isymbol += 1; 

       } 

      

     if(_pbImage.GetBool(xB, yB))      // most 

recent point is MSB 

       { 

         isymbol += 2; 

       } 

     //increment the appropriate counter 

     switch (isymbol) 

       { 

       case 0: 

         _iA00++; 

         break; 

       case 1: 

         _iB01++; 

         break; 

       case 2: 

         _iB10++; 

         break; 

       case 3: 

         _iA11++; 

         break; 

       } 

      

     _iTotal++; 

      

   }  // outline 
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      }     //yA 

  }        //xA 

     }           //yB 

 }              //xB 

      inum++; 

    } while (_iTotal < iterations);        // loop over 

iterations 

   

  tout=inum-iterations; 

   

} 

 

 

void FingerTwister::CountPixels () 

{ 

  _iTotal = 0; 

   

  _iA00 = 0; 

  _iA11 = 0; 

  _iB01 = 0;     // remains 0 

  _iB10 = 0;     // remains 0 

   

  int xsize = _pbImage.QueryDimX(); 

  int ysize = _pbImage.QueryDimY(); 

   

   

  //  Count the self-self symbols (black and white pixels) 

   

  for (int j = 0; j < ysize; j++) 

    { 

      for (int i = 0; i < xsize; i++) 

 { 

   if (_pbMask.GetBool(i, j))          // don't count the 

masked pixels  

     { 

       if(_pbImage.GetBool(i, j))      // true = black 

  { 

    _iA11++; 

  } 

       else 

  { 

    _iA00++; 

  } 

       _iTotal++; 

     }   

 } 



91 

 

    }         

} 

 

 

Outline.h 
(written entirely by Dr. Lyn Ratcliff) 
#ifndef OUTLINE_H 

#define OUTLINE_H 

 

#include "ctlDMask.h" 

 

class Int2D_640; 

class Byte2D_640; 

class Bool2D_640; 

 

 

class Outline 

{ 

 public: 

  Outline () 

    : _srcDimX(0), _srcDimY(0), _destDimX(0), _destDimY(0), 

    _iValidPixelCount(0), _validAvg (0) 

    { 

    } 

   

  void DoOutline (Byte2D_640 & source, Bool2D_640 & dest); 

   

  void ByteToBool (Byte2D_640 & source, Bool2D_640 & dest); 

  void BoolToByte (Bool2D_640 & source, Byte2D_640 & dest); 

   

  int  GetValidPixelCount () const {return _iValidPixelCount ;} 

   

  void ByteToBoolMasked (Byte2D_640 & source, Bool2D_640 & dest, 

Bool2D_640 & bmask); 

   

  void MaskSquareAggregate (Bool2D_640 & source, Bool2D_640 & 

dest,  

       Int2D_640 & scratch, int tt, const MaskData & 

maskdata); 

   

   

 protected: 

   

  int       _srcDimX, _srcDimY, _destDimX, _destDimY; 

  int         _iValidPixelCount; 
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  float       _validAvg; 

   

}; 

 

 

#endif 

 

Outline.cpp 
(written entirely by Dr. Lyn Ratcliff) 

#include "outline.h" 

#include "arrays.h" 

//#include <windowsx.h> // GetWindowInstance 

 

 

// aggregate version of OUTLINE nask 

 

// tt = 0, 1, 2, ... 

// zz = 2*tt + 1 

// 3*zz = 2*ww + 1 

 

// neighborhood is a square of length = width = 3*zz 

 

// eg if tt = 1, then zz = 3, ww = 4, neighborhood is  9x9  

divided into 9 sub-squares of 3x3 

// eg if tt = 2, then zz = 5, ww = 7, neighborhood is 15x15 

divided into 9 sub-squares of 5x5 

 

// will try tt = 1 for 640x640 images (1500x1500 images used 

35x35 neighborhood) 

 

// we will PAD the outside edges of the image by (zz + tt) 

pixels, by simply extending the 

// edge values into the PAD region, the same way that a surface-

mount chip leads are soldered 

// onto a curcuit board; the corner values will be copied to the 

four PAD corners. 

 

 

// then, we aggregate (sum) data for every zz by zz sub-square, 

and then do a 9 term sum  

// (center and compass directions) to decide on whether to mask 

the pixel.  

 

 

void Outline::MaskSquareAggregate (Bool2D_640 & source, 
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Bool2D_640 & dest, Int2D_640 & scratch, int tt, const MaskData & 

maskdata) 

{ 

  int zz =2*tt + 1; 

  int ww =3*tt + 1; 

  int PAD = zz + tt; 

   

  dest.SetDimX(source.QueryDimX());      // set dimensions of 

the mask 

  dest.SetDimY(source.QueryDimY()); 

   

  _srcDimX = source.QueryDimX();         // some redundancy in 

these 

  _srcDimY = source.QueryDimY(); 

  _destDimX = dest.QueryDimX();          // some redundancy in 

these 

  _destDimY = dest.QueryDimY(); 

   

  int scrDimX = _srcDimX + 2*PAD; 

  int scrDimY = _srcDimY + 2*PAD; 

   

  scratch.FillAll(0);                    // zero out scratch 

array 

  scratch.SetDimX(scrDimX);              // set dimensions of 

the scratch array 

  scratch.SetDimY(scrDimY); 

   

  int tmp = _srcDimY - 1; 

  int i, j, ii, jj; 

   

   

  // Fill center of scratch array, indexed with offset PAD 

   

  for (j = 0; j < _srcDimY; j++) 

    { 

      for (i = 0; i < _srcDimX; i++) 

 { 

   if (source.GetBool(i,j)) 

     { 

       scratch.SetInt(i+PAD, j+PAD, 1);      // work with 

this array in subsequent steps (?) 

     } 

 } 

    } 

   

  // pad top and bottom (but not corners) 

   



94 

 

  for (i = 0; i < _srcDimX; i++) 

    { 

      if (source.GetBool(i,0))               // pad top 

 { 

   for (jj = 0; jj < PAD; jj++) 

     { 

       scratch.SetInt(i, jj, 1); 

     } 

 } 

       

      if (source.GetBool(i,tmp))             // pad bottom 

 { 

   for (jj = 0; jj < PAD; jj++) 

     { 

       scratch.SetInt(i, _srcDimY + jj, 1); 

     } 

 } 

    } 

   

  tmp = _srcDimX - 1; 

   

  // pad left and right (including corners) using values from 

scratch array 

   

  for (j = 0; j < scrDimY; j++) 

    { 

      for (ii = 0; ii < PAD; ii++) 

 { 

   scratch.SetInt(ii, j, scratch.GetInt(PAD, j)); 

   scratch.SetInt(_srcDimX+ii, j, scratch.GetInt(tmp, j)); 

 } 

    } 

   

  // if we could settle on a value of tt, this routine could be 

made much more efficient 

  // by unrolling many of these "for" loops 

   

  // aggregate the data in two steps (zz terms added along x 

coordinate, then along y coordinate) 

   

  int isum; 

  int numExtra = zz - 1; 

   

  for (j = 0; j < scrDimY; j++) 

    { 

      for (i = 0; i < (scrDimX - numExtra); i++) 

 { 
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   isum = 0; 

   for (ii = 0; ii < zz; ii++) 

     { 

       isum += scratch.GetInt(i+ii, j); 

     } 

   scratch.SetInt(i, j, isum); 

 } 

    } 

   

  for (j = 0; j < (scrDimY- numExtra); j++) 

    { 

      for (i = 0; i < (scrDimX - numExtra); i++) 

 { 

   isum = 0; 

   for (jj = 0; jj < zz; jj++) 

     { 

       isum += scratch.GetInt(i, j+jj); 

     } 

   scratch.SetInt(i, j, isum); 

 } 

    } 

   

  // reject pixel if the neighborhood avg is outside range [(1 -

thresh)*maxagg, thresh*maxagg] 

   

  int twoPAD = PAD+PAD; 

   

  int maxagg = (3*zz)*(3*zz)*(1);        // *(1) because source 

is bool 

  int lowerTol = maxagg * maskdata.GetLoThresh(); 

  int upperTol = maxagg * (1.0f - maskdata.GetHiThresh()); 

   

  dest.FillAll(true);                 // 

   

  for (j = 0; j < _srcDimY; j++) 

    { 

      for (i = 0; i < _srcDimX; i++) 

 { 

   isum = 0; 

    

   isum += scratch.GetInt(i,       j); 

   isum += scratch.GetInt(i+PAD,    j); 

   isum += scratch.GetInt(i+twoPAD, j); 

   isum += scratch.GetInt(i,        j+PAD); 

   isum += scratch.GetInt(i+PAD,    j+PAD); 

   isum += scratch.GetInt(i+twoPAD, j+PAD); 

   isum += scratch.GetInt(i,        j+twoPAD); 
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   isum += scratch.GetInt(i+PAD,    j+twoPAD); 

   isum += scratch.GetInt(i+twoPAD, j+twoPAD); 

    

   if( (isum < lowerTol) || (isum > upperTol) ) 

     { 

       dest.SetBool(i, j, false); 

     } 

 } 

    } 

   

} 

 

 

 

 

void Outline::ByteToBool (Byte2D_640 & source, Bool2D_640 & 

dest) 

{ 

  dest.SetDimX(source.QueryDimX());      // set dimensions of 

the mask 

  dest.SetDimY(source.QueryDimY()); 

   

  _srcDimX = source.QueryDimX();      // some redundancy in 

these 

  _srcDimY = source.QueryDimY(); 

  _destDimX = dest.QueryDimX();      // some redundancy in these 

  _destDimY = dest.QueryDimY(); 

   

   

  // An extremely crude fake outlining procedure 

  bool bvalue; 

  long sum = 0; 

  float avg; 

  int i, j; 

   

  //calculate the average byte value 

  for (j = 0; j < _srcDimY; j++) 

    { 

      for (i = 0; i < _srcDimX; i++) 

 { 

   sum += source.GetByte(i,j); 

 } 

    } 

   

  avg = sum / (_srcDimY*_srcDimX); 

   

  for (j = 0; j < _srcDimY; j++) 
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    { 

      for (i = 0; i < _srcDimX; i++) 

 { 

   if (source.GetByte(i, j) < avg) 

     { 

       bvalue = true; 

     } 

   else 

     { 

       bvalue = false; 

     } 

   dest.SetBool (i, j, bvalue); 

 } 

    } 

   

} 

 

void Outline::ByteToBoolMasked (Byte2D_640 & source, Bool2D_640 

& dest, Bool2D_640 & bmask) 

{ 

  dest.SetDimX(source.QueryDimX());      // set dimensions of 

the mask 

  dest.SetDimY(source.QueryDimY()); 

   

  _srcDimX = source.QueryDimX();      // some redundancy in 

these 

  _srcDimY = source.QueryDimY(); 

  _destDimX = dest.QueryDimX();      // some redundancy in these 

  _destDimY = dest.QueryDimY(); 

   

   

  // An extremely crude fake outlining procedure 

  int i, j; 

  bool bvalue; 

  long sum = 0; 

  _iValidPixelCount = 0; 

   

  for (j = 0; j < _srcDimY; j++)     //calculate the average 

byte value 

    { 

      for (i = 0; i < _srcDimX; i++) 

 { 

   if (bmask.GetBool(i,j))          // convention: mask is 

"true" if we use the pixel 

     { 

       sum += source.GetByte(i,j); 

       _iValidPixelCount++; 
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     } 

 } 

    } 

   

  _validAvg = sum / _iValidPixelCount;   // get average over 

unmasked 

   

  for (j = 0; j < _srcDimY; j++) 

    { 

      for (i = 0; i < _srcDimX; i++) 

 { 

   if (source.GetByte(i, j) < _validAvg) 

     { 

       bvalue = true; 

     } 

   else 

     { 

       bvalue = false; 

     } 

   dest.SetBool (i, j, bvalue); 

 } 

    } 

   

} 

 

void Outline::BoolToByte (Bool2D_640 & source, Byte2D_640 & 

dest) 

{ 

  dest.SetDimX(source.QueryDimX());      // set dimensions of 

the mask 

  dest.SetDimY(source.QueryDimY()); 

   

  _srcDimX = source.QueryDimX();      // some redundancy in 

these 

  _srcDimY = source.QueryDimY(); 

  _destDimX = dest.QueryDimX();      // some redundancy in these 

  _destDimY = dest.QueryDimY(); 

   

   

  // An extremely crude fake outlining procedure 

  BYTE white = 255; 

  BYTE black = 0; 

  BYTE byvalue; 

   

  for (int j = 0; j < _srcDimY; j++) 

    { 

      for (int i = 0; i < _srcDimX; i++) 
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 { 

   if (source.GetBool(i, j)) 

     { 

       byvalue = black; 

     } 

   else 

     { 

       byvalue = white; 

     } 

   dest.SetByte (i, j, byvalue); 

 } 

    } 

   

} 
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Appendix C  

DlgMaster 
(methods) 

void OutlineMethod() Inputs:  grayscale array (_bmpImage) 

 

Outputs:  binary array (_boolImage) 

          mask array (_bmpMask) 

 

Purpose:  The method calls the outlining functions to 

convert the image to binary and outline it.  It uses the 

image arrays from the private section. 
 

void OnNewTiff(HWND 

hwnd) 

Inputs:  hwnd 

 

Outputs:  none 

 

Purpose:  The method gets the filename that has been 

opened and uses it for a caption on the window 
 

void 

SymbolGenerateMethod () 

Inputs:  Walk Method 

 

Outputs:  none 

 

Purpose:  The method calls the appropriate method to 

perform the walk based on the method selected 

(SymbolGenerateTwister is the only implemented method) 

 
void 

SymbolGenerateTwister 

() 

Inputs:  Walk parameters (_walkMethodLocal) 

 

Outputs:  scaling parameters for scale zero (a00,a11,b01 

arrays) 

 

Purpose:  The method determines the length and step size 

for the walk from default or input information.  The 

method then calls the CountPixels function for the for each 

of the scales until max scale. 

 
void MaskPrefsDlg (HWND 

hwnd) 

Inputs:  hwnd 

 

Outputs:  Mask data (_maskMethod) 

 

Purpose:  The method opens the mask preference dialogue 

to gets mask data from the user. 
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void WalkPrefsDlg (HWND 

hwnd) 

Inputs:  hwnd 

 

Outputs:  Walk values (_walkMethodLocal) 

 

Purpose:  The method opens the walk preferences 

dialogue to get walk information from the user. 

 

void RunBatch () Inputs:  none 

 

Outputs:  none) 

 

Purpose:  The method calls the other methods necessary to 

perform the random walk and write the results to the file.  

The method takes the place of the GUI ‗s buttons when the 

batch flag is selected. 

 
bool TxtFileWrite 

(TCHAR *szFileName, 

TCHAR *szTitleName, 

bool bNormalized) 

Inputs:  Filename, titlename, normalize flag, scaling 

parameters (a00,a11,b01) 

 

Outputs:  Table of information to txt file 

 

Purpose:  The method formats and write the scale spectra 

information to a text file with the same name as the print. 

 
bool CalcNextPoint (int 

iscale, float finc) 

Inputs:  binary array (_bmpImage) 

               mask array (_bmpMask) 

               current scale (iscale) 

               increment (finc) 

 

Outputs:  scaling parameters (a00,a11,b01) 

 

Purpose:  The method calls twister‘s CountPixels method 

to perform the random walk for the current scale.  It also 

fills the scaling parameter arrays upon completion. 

 

float get***** 

BYTE get***** 

Methods to provide data from private variable to functions 

outside of the class. 

 

DlgMaster 
(variables) 
HWND _hwnd Pointer to the window for print information 

display 
WalkData &_walkMethodGlobal Reference to walk information for all prints. 

WalkData _walkMethodLocal Data for the length and scale of the random 
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walk either a copy of the global or the user 

input data 

 

int _numScales Number of scales to perform the walk over. 
int _neighborParm Number of neighboring pixels to consider for 

outlining 

 

Byte2D_640 _bmpImage Array containing the input image. 
Byte2D_640 _bmpMask Array containing the mask calculated in the 

outlining methods for display 

 

Bool2D_640 _boolImage Array containing the binary print image. 

Bool2D_640 _boolMask Array containing the mask information used 

for analysis 

 
Int2D_640 _scratch Array used for temp in outlining process. 

FileTifTouch _tifFileInfo Tiff file information 
TCHAR _szTitleName[MAX_PATH] Title of file 

AlphaArray _*** Arrays to store scaling parameter, current 

scale, number of pixels skipped and 

normalized scale values 

 

FingerTwister _ftwister Instance of the twister class used to perform 

the random walk. 

 
MaskData _maskMethod Data to use when calculating the outline. 

Other private variables Used for tracking parent windows and other 

GUI information. 
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