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Abstract 

Imaging White Blood Cells using a Snapshot Hyper-Spectral Imaging System  

by Christopher Robison 

Automated white blood cell (WBC) counting systems process an extracted whole blood sample and 

provide a cell count.  A step that would not be ideal for onsite screening of individuals in triage or 

at a security gate.  Snapshot Hyper-Spectral imaging systems are capable of capturing several 

spectral bands simultaneously, offering co-registered images of a target. With appropriate optics, 

these systems are potentially able to image blood cells in vivo as they flow through a vessel, 

eliminating the need for a blood draw and sample staining. Our group has evaluated the capability 

of a commercial Snapshot Hyper-Spectral imaging system, specifically the Arrow system from 

Rebellion Photonics, in differentiating between white and red blood cells on unstained and sealed 

blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera as a 

platform to build an automated blood cell counting system.  Hyperspectral data consisting of 25, 

443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. 

Open-source hyperspectral datacube analysis tools, used primarily in Geographic Information 

Systems (GIS) applications, indicate that white blood cells’ features are most prominent in the 428-

442nm band for blood samples viewed under 20x and 50x magnification over a varying range of 

illumination intensities.  The system has shown to successfully segment blood cells based on their 

spectral-spatial information.  These images could potentially be used in subsequent automated 

white blood cell segmentation and counting algorithms for performing in vivo white blood cell 

counting. 
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Chapter 1: Introduction 
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In medicine, doctors extract a blood sample from a patient and analyze the sample to provide an 

estimated count of leukocytes per volume of blood.  When the human auto-immune response 

activates, hormones are released to instruct stem cells in the bone marrow to form into white blood 

cells (Leukocytes) and travel to the site of activation.  This response creates an elevated number of 

leukocytes in the body and is a telltale sign of a foreign pathogen or disease in the body [1].  The 

number of leukocytes in the body exists within a distribution that is common to all humans [2].  

Using this, a doctor could diagnose a patient for certain illnesses if they find that the blood cell 

count distributions, in a patient, to be outside the norm. 

Often, blood cell counts are performed manually by preparing a blood sample diluted to two 

concentrations (1:10 & 1:100 hematocrit) in a calibrated glass chamber and viewed through a Leica 

semiconductor grade microscope [2].  This process is time-consuming and resource intensive as it 

requires a skilled operator to accurately count the types of cells present in the sample [3].  In 

scenarios where a large number of samples need to be processed, these facilities need to have a 

robust and automated method of accurately counting red and white blood cells for a large number 

of subjects as quickly as possible.   

1.1 Problem statement: 

There exists a performance bottleneck in blood counting procedures in that, generally, a sample of 

blood must be prepared and examined by a certified operator or technician.  There have been other 

attempts to automate this process but they too suffer from similar limitations [4]–[7].  These 

limitations arise from methods which rely on technologies that require a sample in vitro ( i.e. out 

of the body).  For example, a label or staining agent that contaminates or kills the blood sample, or 

the supervision of a qualified professional to ensure accurate counting of blood cells.  Currently, 

there is neither a manual nor automated method of cell counting that could be used to perform a 

blood count in vivo (within the body).   
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The work performed in this thesis can be categorized by three topics.  A hyperspectral image data 

collection of unstained blood on sealed hematology slides.  The labeling and analysis of this data 

to determine if spectral features of RBCs and WBCs can be used in binary and multiclass 

classification algorithms.  Finally, the development of a methodology that can detect white blood 

cells based on their spectral signature, without the need for stains or labels.  This system design is 

inspired by the need to provide a point of care solution in scenarios with a large influx of individuals 

for example mass exposure to a radiation source.  As the WBC count of a human decreases rapidly 

after moderate to severe acute radiation exposure [8].  The use case of such a system is not specific 

to radiological disasters; such a system could also be used in various applications, such as rapid 

blood counts for cancer patients or industrial workers exposed to hazardous materials (e.g. benzene 

[9]) on a regular basis.   
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Figure 1:  Process flow of proposed system.  A subject enters a checkpoint where 

a snapshot hyperspectral imaging system captures blood flowing through 

superficial blood vessels in the sclera.  Based on statistical average blood cell 

concentrations in the body determine if a subject is healthy.The contributions of 

this work reside within the subject collection and cell detection portions of this 

this system design. 

The diagram in (Figure 1) illustrates the overall functionality of the proposed system.  A subject 

approaches the imaging interface where an operator ensures the target area of the sclera is in focus 

and properly exposed.  The imaging device in the system is a hyperspectral camera, a camera 

capable of capturing the spectral information of a scene.  The data is then processed to reduce noise 

as well as detect cells based on their spectral signatures.  With enough of these spectra Identified 

the system segments out individual cells and counts them over a fixed period of time.  Based on 
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vessel diameter and blood flow rate, a blood count can be performed for viable volume within an 

acceptable data capture duration.  With the count completed, the system tells the operator whether 

the counting operation shows adequate results or the subject may require further attention.  

However, there are specific requirements to be met in order for this system to be viable.  They are 

as follows: 

1.) A system capable of capturing images of blood cells as they pass through a blood vessel 

with little to no blurring (i.e. fast integration time or shutter speed) 

a. no marker or label will need to be injected into the subject to aid cell detection. 

2.) A high enough frame rate in order to enable cell tracking; thus providing a way to avoid 

counting the same cell twice. 

3.) A spectral bandwidth in which the peak absorption wavelengths of the target endmembers 

(cells) is unique to each target to be classified. 

4.) A self-contained system that is relatively lightweight or portable that can be deployed with 

minimal setup. 

5.) A data processing and classification technique that may perform accurately under varying 

illumination intensities. 

These requirements present new and unique challenges that will require clinical testing, IRB 

approval, and a robust dataset.  Some of the challenges set forth have been met from the work of 

systems implementing similar technologies [10]–[12].  However, there are many other prerequisites 

that must be met before any testing can be planned or approved.  Possibly the most important aspect 

to be explored is to determine if blood cells can be distinguished from one another in vitro and in 

vivo. 

While the system will be designed to count blood cells from hyperspectral video of blood moving 

through blood vessels.  The system needs to first be able to count cells in a single frame.  If the 
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system cannot accomplish this task, then it would be moot to experiment with moving cells first.  

Thus, the system design was broken down and isolated to its simplest components and capabilities.   

The problems posed in this research do not only reside within the scope of image processing.  For 

instance, there are several biological limitations that must be considered in order for the proposed 

device to be as non-invasive as possible.  To image blood cells in vivo (without physically removing 

blood, such as imaging blood flow in scleral vessels) this system would need to be able to image 

blood vessels in an easy to access location on the body.  Blood vessels lie 250-425µm under the 

surface of the skin, which would then require a strong illumination source to penetrate deep enough 

into the skin to image the blood cells. 

 

Figure 2: Basic representation of the human eye (left), the sclera is the thick white 

tissue layer surrounding the eye and is fed oxygen and nutrients via scleral blood 

vessels (right) 

Alternatively, in vivo imaging could be performed at a location where blood vessels are extremely 

close to the surface of the skin.  One such body part containing these blood vessels would be located 

in the white of the eye also known as the sclera.  The blood vessels in the sclera (the Superficial 

episcleral network, see Figure 2) would be an optimal choice as they are relatively thick and reside 

very close to the surface of the scleral tissue (25-90 µm), giving nearly a perfect window from 
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which to observe blood cells without the increased spectral noise from intermediate tissues [13], 

[14].  However, other stabilization systems would need to be incorporated into this system to 

counteract the saccades (i.e. constant movements) in the eye [14]. 

The goal of this research effort is to develop a system design which will apply a snapshot 

hyperspectral imaging system (HSI), an imaging technique well used in remote sensing 

applications[11], [15]–[18], to identify and detect white blood cells (WBC).  More specifically the 

HSI will need work in an application required to detect WBCs and RBCs that are alive and 

unstained.  This system design would not require the staining process used in many of the other 

methods, thus limiting the materials and sample preparation needed in other system designs. 

This thesis addresses the baseproblems of a need for an automated blood cell counting method that 

has the potential to perform in vivo.  The tasks that were accomplished to meet the goal of this 

research effort include: 

Task 1:  Setup of the Arrow system and calibrate the system to evaluating imaging 

capability in top down and bottom up illumination using stained blood cells. 

Task 2:  Imaging of blood cells on histology slides to determine spectra of interest.  These 

target spectra will contain the greatest divergence between the absorption spectra 

of RBCs and WBCs 

Task 3: Implement linear binary classification and nonlinear, multi-classification 

algorithms on of WBCs, RBCs, and background from the acquired data 

The problems addressed in this thesis work have set the foundation for developing and testing an 

imaging system based on this method.  The information gathered from this research will benefit 

greatly towards the future development of an automated system capable of performing a complete 

blood count in vivo.  This method was developed utilizing a snapshot HSI equipped to 

simultaneously capture 31 bands within the range 461-641nm or 25 bands within the range of 419-

494nm.  This imaging system, attached to the camera port of a microscope, captured data of 
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unstained blood samples on microscope slides.  Several commonly used segmentation techniques 

were applied to the data to determine if WBCs and RBCs are in fact discernable.  Non-linear 

classification techniques were implemented to separate the two cell types, which display positive 

results with an accuracy >80% on non-ideal imaging examples.  Ultimately, this work shows that 

these cell types are indeed separable without the use of a stain or label. 

1.2 Manual Blood Cell Counting: Background and Limitations 

Manual blood cell counting first involves the extraction of a blood sample from a patient.  Blood 

samples are typically extracted from one of the three major veins in the arm (the median cubital 

vein, Cephalic vein, and Basilic vein) [19].  Once a sample is extracted, it is ‘spun down’ in a 

centrifuge to force red blood cells to the bottom of the sample chamber.  The liquid matrix or 

plasma is displaced by the red cells and rests on top of the ‘plug’ of blood cells.  Resting between 

the plasma and plug is the buffy coat, a layer of platelets and white blood cells which make up 

about 1% of the sample’s total volume [2]. 
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Figure 3:  Process flow for manual blood cell counting 

After a blood sample is extracted from a patient, two steps must be performed before any counting 

can be conducted (Figure 3).  The blood must first be diluted to a specified concentration, a 1 mL 

sample of blood is diluted with 10 mL of additive solution and 1 µL of the diluted blood is then 

extracted [2].  The cell count is then represented as the number of cells per unit volume, more 

specifically, cubic millimeters (mm3).  Despite the genetic diversity seen throughout human 

populations, the concentrations of each cell type per mm3 of blood are very consistent (Table 1). 
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Manual leukocyte counts require more preparation since their concentrations within a volume of 

blood is orders of magnitude less than that of erythrocytes (RBCs) (Table 1).  Not only are several 

additional procedures required, but specialized equipment is required as well [2].  A 

hemocytometer, a precision measurement instrument resembling two glass microscope slides with 

a grid etched on the bottom slide, is used to aid the operator in counting leukocytes per volume of 

blood.  A few additional steps require the use of a solution that lyses (i.e. destroys) RBCs leaving 

only leukocytes so that they are not obscured when the solution settles on the slide.  Not only is 

this procedure time consuming and painstaking for the operator, each step which involves a human 

operator can create opportunities for errors to be introduced. 

Table 1:  Typical blood cell values in young adults [2], note that while the 

concentration of erythrocytes varies by sex, the concentrations of leukocytes and 

platelets remain the same. 

CELL TYPE CONCENTRATION 

ERYTHROCYTES 
5.21 x 106/mm3 (Male) 

4.60 x 106/mm3 (Female) 
LEUKOCYTES 7.8 x 103/mm3 
PLATELETS 311 x 103/mm3 

 

1.2.1 Blood Count Limitations 

A complete blood count, while a relatively simple diagnostic tool, is a complex task to perform on 

a large number of patients.  The ability to provide an accurate blood count rapidly for a large 

population could allow healthcare professionals to focus their efforts on patients that require 

immediate care [20].  One such example is an accident in 1987 in Goiânia, Brazil where over 200 

people were exposed to a radioactive Caesium-137 source [8].  During the accident, over 100,000 

people visited local hospitals to be tested for radiation exposure, commonly diagnosed using white 

blood cell count. Local football stadiums were used as triage centers to aid the hospital’s capacity 

exceeding number of patients.  The goal of these centers was to provide rapid exposure assessment 

and treatment to those exposed.  Acquiring an accurate count of WBCs in an individual subject is 
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a time-consuming process, with throughput largely limited by the number of available personnel 

[20]. 

Acute Myeloid Leukemia, a form of blood cancer that affects the myeloid family of leukocytes, is 

another example where rapid high volume blood cell counts can make a significant impact.  There 

exists sufficient evidence that Benzene, a widely used chemical, causes acute myeloid leukemia 

[21].  This disease, if not detected early, can be fatal.  However, myeloid leukemia can be prevented 

if physical checkups and blood work are performed frequently for individuals who are exposed to 

benzene on a daily basis.  The need for frequent blood work could be expensive and invasive to 

individuals.  

Many cancer treatments, chemotherapy, for instance, place a heavy strain on the body.  A 

prescribed amount of localized radiation and drugs destroy cancer cells while simultaneously 

destroying healthy tissue.  Keeping track of a patient’s blood cell count is crucial in order to balance 

the strength of a treatment and the damage done to the patient’s body [22].  This application could 

move beyond specific types of cancer screening and be used toward monitoring blood counts in 

patients undergoing chemotherapy.  Because of these motivations, an automated system capable of 

screening for anomalous blood cell counts could provide an early warning system and save patients’ 

lives. 

1.3 Blood Count Automation 

Several automated blood counting systems have been developed to address this problem; as 

automating this process can provide an accurate estimate of a blood cell count that could be used 

for further diagnosis [4], [6], [23]–[25].  One method to expedite this process is to implement an 

imaging system capable of scaling throughput to provide a complete blood cell count for a large 

number of patients.  Such systems could relieve the demand for personnel to process a high number 

of blood samples generated from a scenario similar to Goiânia. Capabilities of these systems should 
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not be limited to radiation exposure, but also include situations where quickly identifying 

individuals with abnormal blood cell counts would improve quarantine practices during epidemics 

or environmental disasters. 

The fixation of cell stains involves the use of alcohols which kill the cells in the sample [25].  This 

protocol is common for external testing and diagnosis; it is applicable in all but large-scale, high 

throughput screening scenarios.  To provide an alternate, scalable technique that provides an 

accurate blood cell count.  Newer automated methods should be explored which fit a use case 

outside the scope of current systems.  In addition, if blood cell counting could be performed in vivo, 

throughput could be greatly improved. Due to the destructive nature of cell staining by drying out 

the sample, the lack of scalability, and the cost of onsite expertise, the need for these automated 

systems grows [4], [26]. 

1.3.1 Rapid Blood Counting Systems 

One approach, namely, the Rapid Automated Biodosimetry Tool (RABIT), is an automated WBC 

analysis system capable of processing 6,000 up to 30,000 samples per day.  The system runs two 

fully automated, mature, biodosimetry assays, both of which are used to test for radiation exposure.  

However, the RABIT still processes blood samples collected by examiners in bulk, only expediting 

the analysis portion of providing a blood cell count for thousands of subjects.  To decrease the time 

taken to process a sample, a system capable of imaging blood cells in vivo should be efficient, 

portable and easy to use. 

Since blood counts were first utilized as a means to diagnose diseases or radiation exposure, many 

fields of research have explored solutions to improve count accuracy as well as scalability.  The 

first and easiest solution was to simply stain the cells in order to allow lab technicians to see the 

different blood cells more clearly [27].  Within the past two decades, automated systems have been 

developed to perform white blood cell counts but require blood samples to be taken from a patient 
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and processed.  Most systems are designed to perform rapid blood counts. However, some specific 

systems, the RABIT for example, were designed to operate in scenarios with a high throughput 

requirement [4]. 

1.3.2 Photothermal Tomography Methods of Cell Differentiation 

Photothermal flow cytometry[26], an in vitro method, is aimed at imaging cells flowing through a 

microvessel in a single-file fashion.  These systems use lasers, emitting near-infrared (NIR) 

wavelengths (800nm-1.6µm) to excite cells and measure their fluorescence (if labeled) or light 

scattering effects to determine cell structure and type.  However, due to the relatively high power 

of these laser systems, localized temperature increases of cellular structures occurs.  Photothermal 

flow cytometry, while effective, is damaging to tissues if used for extended periods of time[28]. 

Photothermal optical coherence tomography (OCT) is a technique used to image blood in vivo 

beneath the epidermis.  This imaging technique is generally used for measuring blood oxygenation 

[29] as well as blood flow as a diagnostic tool to determine a patient’s overall health.  However, 

spatial imaging quality could pose an issue when attempting to count individual blood cells.  For 

example, optical coherence tomography systems usually operate around the 1050nm, or near 

infrared band.  This band is chosen due to the low absorption value of water at this particular 

wavelength.  However, whole blood is roughly 55% water which has a higher absorption coefficient 

in the shorter wavelengths of the visible spectrum.  Since OCT requires reflectance interference to 

resolve an image, the depth at which the system can observe is severely decreased [30]. 

1.3.3 Other Systems 

The Retinal Function Imager, an in vivo multispectral approach, was also explored to measure 

blood flow, oxygenation and metabolic signals in the retina.  This system is comprised of a Charge-

Coupled Device (CCD) camera, an imaging system with both a fast integration time and high 

spatial resolution, attached to a multispectral filter system.  The filter system, composed of four 
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fast moving filters, exploits a natural chromophore in erythrocytes to allow for a non-invasive label 

that can be used for calculating blood flow,  metric which is very useful in diagnosing diseases and 

injuries such as hemorrhages or micro aneurysms in the retina [31]. 

The systems mentioned previously aren’t the only ones developed to automate cell counting.  There 

is a large market for systems that employ various different technologies that measure differing 

properties of blood samples in vitro to determine a cell count.  These systems include methods 

involving electrical impedance [32], [33], light scattering [6], microfluidic devices [34], 

electromagnetic radiation conductivity (reflectance/absorption) and cytochemistry [2] [23].  Above 

all, each of these systems relies on disposable materials to conduct testing in a safe and sanitary 

manner.  These disposable components, while relatively inexpensive, lead to a recurring cost over 

the lifetime of the systems [3].  Additionally, single-use supplies limit the capacity of a facility to 

process samples based on the inventory on hand at any given time. 

1.4 Remote sensing impacts on Blood Cell Counting  

The field of remote sensing has expanded beyond astronomy and geology to a wide range of fields 

thanks to advances in imaging systems and computer processing power [35].  Remote sensing 

equipment typically consists of highly sensitive sensors and produces a substantial amount of data.  

Remote spectrometry has been used to great success in geological surveys to detect mineral content 

in otherwise inaccessible regions.  These systems observe and analyze the natural reflectance of 

sunlight from a remote material.  Due to physical properties at the atomic/molecular level, each 

material has a unique reflectance spectrum that can be used as a specific signature [36].  These 

signatures can allow these systems to detect a material without requiring a physical sample nor 

chemical marker.  
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Up until the advent of general purpose graphical processor unit (GPGPU) computing in the past 

decade [37], processing this large amount of data would require significant computational resources 

to record and analyze.  With GPGPU computing, remote sensing and data acquisition systems can 

be scaled down from requiring the processing power of a supercomputer to a desktop workstation.  

Consequentially, microscopy-based diagnostics, including blood cell counting, now have a new 

technology to incorporate into the micro-imaging domain. 

1.4.1 Hyperspectral Imagery 

A subfield of remote sensing and remote spectrometry, Hyperspectral Imaging Systems (HSI) are 

cameras that can capture spectral information within their field of view.  These systems differ from 

multispectral systems in the fact that the number of bands (wavelengths) captured in the spectrum 

have a narrow spectral resolution and represent a near continuous sample of a specified bandwidth 

[15].  These systems allow for the capture of spatial information alongside spectral information, a 

relationship essential in remote sensing when determining the exact location of a specific material.  

Since these systems can capture the spectral and spatial properties of a material, the segmentation 

algorithms used to exploit these properties reside in three general paradigms.  The first of involves 

extracting features from both spectral and spatial information before classification methods are 

applied.  This method is beneficial for scientists to incorporate specific features in classification.  

However, since these features are ‘hand-crafted’, they require human knowledge in order to train 

[38].  The second method foregoes extraction of spatial features prior to classification and instead 

uses contextual information inferred from the spatial data to classify spectral features; as seen in 

[39].  The final paradigm uses the spatial information after classification to act as a boundary 

condition.  Such a method extracts features from spectral and spatial information but treats them 

independently.  While this technique does reduce dimensionality, it does also dampen any strong 

correlations between spectral and spatial features [40]. 
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Since the advent of small and inexpensive imaging components, the applications of hyperspectral 

imagery have branched out into the agricultural [17] and medical fields [11], [12], [18].  Systems 

that provide automated quality control on food processing lines and pharmaceutical production labs 

have become increasingly popular [41], [42].  The manufacture and testing of thin-film materials 

are aided by hyperspectral imagery to detect flaws and measure film thicknesses[16], [43]. 

While there are many industries and research fields that utilize HSI systems, there is a previously 

unoccupied niche in some industries, namely medical imaging.  HSI systems have been applied to 

several different branches of medicine [44].  From applications in detecting damaged tissue in burn 

patients to the detection of plaques in arterial walls [45], [46].  These systems aid doctors and 

medical professionals in identifying specific regions of interest that may otherwise go unnoticed or 

undetected.  Regions of interest might include less severe burns surrounded by heavily damaged 

tissue or plaques in adjacent arterial walls that might be overlooked when targeting larger deposits.  

These systems can be incorporated as a valuable tool used on a daily basis to increase the accuracy 

and precision of treatments for patients as a second method to verify a medical professional’s 

diagnosis. 

The ability for these systems to be able to differentiate healthy from damaged tissues without the 

need for a biopsy or label presents some significant advantages over current systems or methods.  

For example, consider systems described in the above paragraph.  The advantage of a system that 

can detect and differentiate burned or damaged tissue from healthy tissue could decrease the area 

where skin grafts would be applied.  The reduction in the area of grafted skin will improve a 

patient’s recovery and potentially reduce chances for infection [47], [48].  Likewise, the ability to 

detect smaller plaque deposits that would have otherwise gone unnoticed would aid surgeons in 

treating patients with a higher success rate.  These systems and their applications in the medical 

field hold enough merit to explore applying this technology to blood count automation. 
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1.4.2 Blood Tissue Optical Properties 

Blood is one of the main tissues in the human body, it consists of blood cells and their fluid matrix, 

plasma [2].  Although, it is the fluidic nature of blood which presents a difficult task in modeling 

its optical properties within the body.  As blood is a heterogeneous mixture its optical properties 

too are heterogeneous, meaning that changes in the population density of red cells in the plasma 

can change rapidly thus altering optical properties as well [49].  Like other tissues explored and 

examined with the devices seen in [45], [46], the same could be done with blood tissue. 

Another optical property of blood that is worth mentioning is its light scattering properties.  Due to 

their pseudo-toroidal shape, RBCs tend to scatter light anisotropically [50].  Meaning the intensity 

of the scattering effect is dependent on the direction photons enter the cell.  However, based on 

findings in [50] these scattering properties do not change based on the oxygenation of hemoglobin 

in RBCs nor if the cells were deformed in shape so long as if volume and hemoglobin properties 

are kept constant.  This last piece of information justifies why some datasets were used in training 

and testing.  These recorded optical properties of blood can be used as a solid reference to explore 

detecting cells via a hyperspectral imaging technique. 

1.5 Similar Applications 

In the past, several attempts have been made to image white blood cells either as a means to assist 

in counting blood cells as well as performing a full blood analysis.  A common approach has been 

to use RGB color imaging systems to differentiate cell types present in the blood.  The following 

sections summarize prior research in the pursuit of detecting blood cells. 

1.5.1 Blood Cell Detection and Classification Using an RGB Image Processing Approach 

The research methods described in the following section are approaching the task of detecting white 

blood cells using color (RGB) imaging systems.  The image processing techniques, applied to the 



18 

 

data, demonstrate how the structure of WBCs possess unique features that allow for accurate 

segmentation of the cells’ cytoplasm and nuclei.  However, the spectral features of RBCs and 

WBCs that best distinguish the two types exist in a narrow band between 420-440nm [30], [49]–

[51]. 

1.5.1.1 A Framework for WBC Segmentation in Microscopic Blood Images using Digital Image Processing 

Digital image processing techniques have provided significant improvements in a wide range of 

imaging based applications.  The methods proposed in this paper explore the use of spatial features 

obtained from the blood cells to distinguish RBCs and WBCs.  The RGB image data was converted 

to grayscale images before any segmentation methods were applied.  The algorithms used 

implemented the use of active contour models both geometric [52] and parametric [53] to detect 

the contours of the nuclei in WBCs as they are not present in RBCs.  The applied methods produced 

a method capable of segmenting the nuclei of WBCs with 92% accuracy and cytoplasm with 78% 

accuracy [7]. 

1.5.1.2 A New White Blood Cell Segmentation using Mean Shift Filter and Region Growing Algorithm 

A method proposed in this research implements the use of the CIE color space [54] of the image to 

detect blood cells based upon their color in the image.  By transforming into this color space, it is 

possible to utilize a general intensity value (L) as well as the color information (a & b) 

independently.  The results of such methods produced an efficient method of de-noising and 

segmenting blood cells from RGB images.  However, performance results of these experiments are 

based solely on the manual selection of segmentation parameters, there is no general model to 

segment cells without fine tuning [55]. 
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1.5.1.3 White Blood Cell Segmentation by Color-Space-Based K-Means Clustering 

The research proposed in this work was to develop a method to detect white blood cells using color-

space information of the image.  Implementing an unsupervised learning technique (K-means) 

allows for the detection of optimal features in a given color space, in this case, the CMYK color 

space [54].  This clustering technique, when tested on a dataset of over 600 stained blood slide 

images produced an average accuracy for all WBC cell types at 95.7% [56]. 

1.5.1.4 Visual Saliency Attention for Localization and Segmentation in Stained Leukocyte Images 

A fast hierarchical framework developed for localization and segmentation of leukocytes is 

proposed in this work.  A general description of the methods implemented in this framework 

includes mean shift filtering to remove background noise as well as watershed segmentation [57].  

A saliency model, which is based on the contrast of features in the cell compared to its neighbors, 

based on the impurities or DNA in the nuclei of WBCs is used to provide localization of a WBC in 

the image.  The next methods utilize the spatial information of the cells in a watershed segmentation 

technique to differentiate WBC cytoplasm from nuclei.  This framework is very accurate with an 

average performance of 94.1% across all WBC types in a stained blood slide image. 

1.5.1.5 A Summary of RGB Blood Cell Detection Methods 

Table 2: A summary of performance from RGB WBC detection methods 

source method domain performance data 

[7] active contour model spatial 92.0% stained blood 
slides 

[55] Mean Shift filter & 
Region Growing 

color - stained blood 
slides 

[56] K-Means clustering color 95.7% stained blood 
slides 

[58] Mean Shift & 
watershed 

segmentation 

Saliency, 
spatial 

94.1% stained blood 
slides 
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In terms of blood cell detection, the methods demonstrated in the previously described papers are 

significant.  However, the data used in these experiments were images of stained blood samples 

[7], [55], [59]–[62], [56].  The goals of this thesis research are to detect blood cells without the use 

of a stain.  Thus, this work is not comparable within the scope of this thesis research (Table 2).  

The justification of which is that the philosophy behind cell staining, in general, is to improve 

contrast between difficult to distinguish structures within a cell (e.g. WBC nuclei and the cytoplasm 

surrounding them).  Unstained RBCs and WBCs are very difficult to distinguish due to the fact that 

there is little contrast between cell structures without the use of a label or stain [27], [63].  If a stain 

cannot be applied to the cells in order to allow for the application of in vivo cell detection, then an 

alternative image capture method must be explored. 

1.5.2 Blood Cell Detection and Classification Using Hyperspectral Imaging Systems 

The works described in the previous section all implement segmentation algorithms used in 

grayscale or RGB images.  However, hyperspectral systems have a significant advantage in that 

many materials have unique spectral signatures that can be detected and exploited by an HSI.  While 

many digital image processing segmentation algorithms can be applied to HSI data, they are not 

exploiting the spectral information that may provide a better separability between two similar 

objects in the spatial domain [17], [44], [64]. 

1.5.2.1 Blood Cell Classification Using a Hyperspectral Imaging Technique 

Relevant research in this particular field has focused on classifying blood cells using a line-scan 

hyperspectral imaging system.  Using a system with 240 bands and a spectral range from 400-

860nm, the system could cover the whole visible and some of the near infra-red wavelengths [11].  

The setup design in this research involved imaging histology slides containing blood cells taken 

from first-time leukemia patients prior to their first chemotherapy.  The images captured with the 

system were then preprocessed via noise reduction, baseline subtraction, and transmittance 
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conversion.  The research incorporated features from both the spectral and spatial domains.  

Through analysis of the reflectance spectra of the cells, it was determined that several specific 

features could be enough to classify red and white blood cells. 

 

Figure 4:  Diagram of Back-Propagated Neural Network where spectral, spatial, 

and similarity features are used as input layer 

The classification method implemented a multi-layered, back-propagated neural network trained 

with all of the features extracted from the data in preprocessing (Figure 4).  Features containing 

spectral, spatial as well as similarity data were passed into the network on a per-pixel vector basis.  

Training of this network was performed using a modified version of the gradient descent algorithm, 

a stoichiometric algorithm that commonly converges to a local minimum rather than an optimal or 

global minimum.  This modified training method incorporated the use of an adaptive genetic 

algorithm to converge toward optimal weights with a higher “immunity” toward local minima.   
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The performance of this modified neural network was evaluated using a three-fold cross validation 

where each sample was subdivided into three subsamples, two of these subsets were used in training 

where the remaining subset was used for validation.  With an average performance of 87.5% and 

92.5% for White and Red blood cells respectively; there lies room for improvement mentioned in 

future works.  Some improvements mentioned are increasing feature extraction accuracy and some 

modifications to the classifier to improve performance [11]. 

This system was developed and tested around a spatial or ‘push broom’ scanning hyperspectral 

camera.  The system tested and performed very well on images from blood slides, however, tests 

with cells moving in blood flow may pose a challenge due to the scanning HSI’s capacity to only 

capture image data along a single axis.  This limitation would prevent this method from being 

employed in a system designed to capture hyperspectral images of cells moving through a blood 

vessel  

1.5.2.2 Leukocyte identification based on molecular HS imaging 

Prior works explored several feature extraction, as well as classification, techniques in an attempt 

to find an algorithm that could be applied to identifying blood cells.  The focus of this research was 

the identification of morphological differences of cells infected with different diseases [12].  Blood 

smears were imaged utilizing a scanning hyperspectral imaging system with an Acousto-Optical 

Tuneable Filter (AOTF).  With a spectral range from 550nm to 1000nm consisting of 80 bands, the 

system was capable of imaging in the visible green to near-infrared wavelengths. 

The data used was calibrated to compensate for the output spectrum of the illumination source by 

solving for the gray correction coefficient, a technique commonly used for white-balancing images 

[65].  Once white-balancing operations were performed, the data was then normalized and ready to 

be sent through a classifier.  Principal Component Analysis (PCA) was performed on the spatial 

portion of the data, and a K-means unsupervised classifier was used to segment the most important 
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principal components.  The spectral features of leukocytes nuclei and cytoplasm were extracted 

using the fuzzy C-means classifier [66].  The output of these two classifiers was combined into a 

weighted voting system similar to soft-max and the highest voted label was selected as the output.  

This algorithm combining bot spectral and spatial information performed with 92% and 85% 

accuracy in distinguishing nuclei and cytoplasm of white blood cells respectively.  The computation 

cost of this algorithm, roughly 26s on an Intel Core i5, is expensive compared to the Spectral Angle 

Mapper with a computation time of 1.1s on the same system. 

The system implemented in [12] utilized an AOTF spectral scanning HSI.  A system capable of 

capturing a large number of bands but not any two bands simultaneously.  This poses a limitation 

in the system for capturing fast moving targets.  Temporal distortions, the difference of the position 

of an object from one band to the next, occur in spectral scanning HSIs and cannot meet the 

requirements of an in vivo blood cell counting system.  However, the methods implemented show 

an unsupervised classification algorithm that may be used to validate results. 

1.5.2.3 Hyperspectral Image Classification via contextual deep learning 

Contextual deep learning has also been used in conjunction with hyperspectral imaging for object 

classification. Research presented in [5]  describes that most hyperspectral imaging techniques only 

utilize spectral information on a pixel vector basis.  However, the spatial component of these images 

possesses a significant amount of useful information.  The scope of the research presented explores 

first of three major categories of hyperspectral image classification spectral-spatial classification 

where spectral and spatial features are extracted before classification.  A deep learning approach 

was implemented to utilize both spectral and spatial features in such a way that minimizes the 

Hughes phenomenon, otherwise known as the curse of dimensionality [67]. 
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The proposed method in this research was to implement a new deep network design called 

Contextual Deep Learning (CDL) [5], it is a uniquely structured neural network consisting of 3 

hidden layers.  The first layer merges spectral information from adjacent pixels to add a spatial 

component to each pixel vector.  The next group of layers train extensively on each pixel vector to 

learn each spectra from the input.  The third layer is a smoothing layer which learns the gradient of 

the spatial information in the selected neighborhood for the pixel vector. 

CDL networks performed exceptionally well in instances where training examples are limited 

either in number or in resolution.  With an average accuracy score of 98.26% on the AVIRIS Indian 

Pines dataset, CDL networks outperform prior network architectures[5], [39].  CDL networks 

outperform in scenarios with low-resolution hyperspectral data as well, although with a 

neighborhood window of a smaller size to compensate for the limited resolution.   

The data processing methods explored in [5] implement both spatial and spectral data to extract 

features that do not require advanced classification methods.  Using a neural network to extract 

features from the data can ensure that only useful features are used.  Useful features that may 

validate manual segmentation methods performed by a technician with little to no histology 

knowledge.  The main improvement contributed from this work, however, is implementing a deep 

neural network capable of learning spectral features with respect to the spatial location to 

neighboring pixels.  A practical approach to distinguish spectrally similar or mixed materials such 

as whole blood.  
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1.6 System Proposal 

Previously developed systems possess limitations in terms of performing a complete blood cell 

count.  For example, most automated systems designed for high processing output require blood 

samples to be collected from subjects prior to analysis.  This approach, while advancements and 

design improvements have increased their efficiency and effectiveness for large scale screening, 

unfortunately sacrifices its ability to manage small sample sets as well as other manual or automated 

designs.  As a small sample size would still require the same amount of preparation and analysis 

steps, the advantage of large scale systems is their ability to process samples in parallel.  Therefore, 

as the sample size decreases for these massively parallel systems, so too does the efficiency. 

The proposed system would perform in scenarios where samples would be collected and processed 

asynchronously (i.e. independently).  One sample would not have to wait for a minimum sample 

size to be reached before it could be processed.  An example application would be a “checkpoint” 

style screening process where samples can be quickly processed sequentially and independently 

from other samples.  This allows for benign samples to be screened and directed accordingly, thus 

deallocating vital resources that may be used for anomalous or positively detected samples. 

The challenges associated with employing HSI in in vivo and in vitro blood cell counting resemble 

the common issues found in remote sensing applications[68], [69].  However, there is another 

challenge involving spectral un-mixing of the endmembers detected in vivo due to the fact that the 

cells in the connective tissues of blood vessels and dermis also possess similar contents to 

leukocytes.  In order to overcome this obstacle, a HSI system needs to be incorporated into this 

system that meets or exceeds minimum requirements to reasonably achieve the ultimate goal of a 

portable, rapid, and automated blood count system.   
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1.6.1 System Operation 

The intended operational flow of the system (Figure 5) is to provide a complete blood count for a 

subject or patient in a rapid and comfortable procedure.  To begin, a subject is seated or in a prone 

position while a trained medical professional locates suitable blood vessels in the sclera to image.  

Once a suitable imaging site has been located, the device then measures the dimensions of blood 

cells and vessels in the image.  Once initial measurements have been correctly determined, using 

blood cells themselves as a point of reference as their average diameter is fairly constant in humans 

[2].  Using these estimated dimensions, the system can then calculate blood flow and utilize spectral 

information to distinguish individual cell types.  The system then extracts spatial and spectral 

features from the incoming images to identify each cell type and track each unique cell as it passes 

through the frame of the imaging system. 

 

Figure 5: A process flow of the final system. 
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Spatial features of the images, while useful for tracking and differentiating individual cells, are not 

as helpful in identifying the cell types.  As blood cells are very elastic objects, their morphology 

and size change from collisions, blood tonicity and genetic factors (e.g. sickle cell anemia) [25] 

[70].  The measurements and extracted data can then be used to calculate an estimated blood count 

based on the number of cells detected and the estimated flow volume through the blood vessels. 

1.6.2 System Design 

The initial concept to explore a new solution to this problem was to research current or newly 

developed systems that were well suited to this particular application.  The most important 

requirement of this research was that the application of this system allowed for non-invasive blood 

cell counting.  From this stipulation, many obvious choices were no longer applicable to the 

problem as systems used in similar research required the use of cell damaging staining processes 

or the extraction of a blood sample. 

Ultimately, this system will need to perform its task at competitive level as a method to provide 

rapid on site blood cell count for medical professionals.  Its target environment may vary from 

controlled hospital wards to on site triage for disaster victims.  As such, this system will need to be 

modular and portable in order to perform functions in remote locations that may or may not have 

reliable power sources.  Since the device will need to be portable, there will need to be a space and 

power requirement for most components in the system.  From a human factor standpoint, the final 

device requirement specification should elicit a battery life and system weight comparable to that 

of a mobile tablet or laptop. 

In order implement the required specifications the components within the system will need to meet 

a minimum set of requirements.  Its hyperspectral imager needs to provide a useable image in sub 

optimal conditions (low illumination, remote location, limited network or infrastructure access) and 

yet capture enough information to fulfill its function as a blood cell detection and counting system.  
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The intended methods to be used in performing this task are directly dependent on the specifications 

of the imaging system.  The camera system will need to possess an integration time (the time it 

takes to capture a frame) under 100µs, short enough to eliminate any motion blur that would occur 

from cells traveling through blood vessels [71].  There also needs to be a method implemented 

within the system to determine blood vessel diameter for flow estimation.  As blood flow is a crucial 

metric in order to provide an estimated blood count based on the number of cells that pass through 

the system’s imaging region over a given period.  The spectral bandwidth of the imaging system 

should cover the region of interest (420-440nm) to collect enough information necessary to 

differentiate RBCs and WBCs. 

Camera specifications aside, there are several other features this system must possess.  In order to 

process all of the data captured by the camera, the device must contain hardware designed for 

image/video decoding and processing.  Alternatively, the system could be linked to remote host 

computer where the data could be streamed from the device to the remote system for processing.  

The later method may prolong battery life of the device by offloading computationally expensive 

operations to a remote host.  However, it introduces a dependency on a local network or stable 

infrastructure to provide power to the host system. 

1.6.3 System Impact: 

While the proposed design of such a system has not been developed, there are other systems that 

perform a similar function but are designed for different applications.  These systems were 

developed to either provide a rapid blood counting method that can scale to a large number of 

patients.  As well as other systems which were developed to count blood cells without the need for 

a dye or fluorescent label to be applied to the blood sample beforehand.  Other systems are used to 

measure and monitor blood flow in vivo however they do not possess the spatial resolution to 

distinguish individual cells, let alone the type of said cell.  Table 3 enumerates all similar systems 

mentioned in (section 1.5 Similar Applications). 



29 

 

Table 3: Comparison Table of Related Systems to Proposed System 

System Description 
in vitro/ 

vivo 
Manual/ 

Automated 
Imaging 

Technology 
Processing 

Time Application 
Commercial/ 

Academic 

[4] RABIT in vitro Automated Visual: Label ~10s 
Radiation 
Exposure 
Detection 

Commercial 

[28] 

Photothermal 
Optical 

Coherence 
Tomography 

in vivo Automated OCT 4-6s 
Blood Oxygen 

Saturation 
Academic 

[33] 
Coulter 
Counter 

in vitro Automated 
Electrical 

Impedence 
60s 

Complete Blood 
Count 

Commercial 

[72] Sysmex Dl-60* in vitro Automated Flow Cytometry 
3-20 
min 

Complete Blood 
Count 

Commercial 

[24] 
Abbott CELL-

DYN Sapphire* 
in vitro Automated 

Flow Cytometry: 
MultiAngle 

Polarized Scatter 
Separation 

<60s 
Complete Blood 

Count 
Commercial 

* commonly used systems 

To aid examiners when performing blood cell counts, blood cells extracted from a blood sample 

are typically stained to help examiners detect and identify white and red blood cells [27].  This 

staining procedure involves chemical stains that can penetrate specific membranes of blood cells 

and bond to proteins within.  The cells are then killed during the fixation process which involves 

an alcohol washing stage to fix the stain to the cells permanently [25]. 

While there have been several systems developed to perform and automate blood cell counting.  

There isn’t one system capable of meeting the specifications required to solve this particular 

problem [24], [33], [72].  A new system would need to be developed; based on technologies used 

in the remote sensing field as an alternative method to imaging and identifying particular cells 

based on their chemical content.  We develop experiments to determine the target spectral 

signatures (also referred to as target spectral endmembers) of blood cells and test if these 

endmembers are unique enough to easily distinguish red and white blood cells. 
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An alternative approach for imaging live cells involves the usage of hyperspectral imaging systems 

(HSI) [73].  HSIs capture spatial information (an image) in a wide variety of specific spectral bands.  

These bands are stored together in a data structure called a ‘datacube’.  A datacube refers to the 

three dimensional data structure in which the spatial information of each band (wavelength) is 

stacked on top of one another. 

1.7 Thesis Contribution 

The overall design of this system is to provide an alternative method to provide a rapid blood cell 

count independent of other subject samples that can scale to large sample sizes by deploying 

multiple systems.  In order to fulfil this ultimate design goal, the following sub-goals need to be 

met. 

1.) A system capable of capturing images of blood cells as they pass through a blood vessel 

with little to no blurring (i.e. fast integration time or shutter speed) 

a. no marker or label will need to be injected into the subject to aid cell detection. 

2.) A high enough frame rate in order to enable cell tracking; thus providing a way to avoid 

counting the same cell twice. 

3.) A spectral bandwidth in which the peak absorption wavelengths of the target endmembers 

(cells) is unique to each target to be classified. 

4.) A self-contained system that is relatively lightweight or portable that can be deployed with 

minimal setup. 

5.) A data processing and classification technique that may perform accurately under varying 

illumination intensities. 
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In order to construct such a system as the one proposed, there are many underlying components 

that have yet to be utilized in this application.  In order to construct a system on a foundation of 

these systems, several tests and scenarios need to be explored in order to determine the viability of 

these technologies in this application.  In order to utilize a hyperspectral imaging system to track 

and count blood cells, it first needs to be able to detect enough unique spectral information needed 

to differentiate them.  The target application of this system will rely on whether a hyperspectral 

imaging system is capable of capturing and un-mixing spectral information from blood cells, inside 

blood vessels, under superficial layers of tissue cells.  Therefore, the first methods to explore would 

be to determine if types of blood cells do in fact possess unique spectral signatures and if so can 

they be detected to differentiate these cells. 

The research conducted to achieve this final goal covers studying the underlying mechanics needed 

to achieve a reliable blood counting system (Figure 6 & 7).  The tasks covered are as follows: 

1) Data Collection: Testing the capabilities of a snapshot HSI to image unstained blood cells. 

a. Compare this capability to that of systems using RGB imaging systems  

2) Data Processing:  Labeling the data such that each cell is masked in a specific RGB value 

which can then be used to generate labels for binary and multiclass classification 

algorithms.   

3) Cell Recognition:  The development of a methodology that can detect white blood cells 

based on their spectral signature, without the need for fluorescent markers or staining  
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Figure 6: Diagram illustrating process flow of the researchconducted toward the 

final system. . 

The first method presented is an attempt to image unstained blood on slides with a snapshot 

hyperspectral imager.  As there is little to no datasets containing reference data to start from, blood 

samples must be prepared and imaged to build a robust dataset.  The second method builds off of 

initial data collected to construct a segmentation and detection algorithm to accurately determine 

whether a cell is a leucocyte or erythrocyte. 

 

Figure 7: Block Diagram Illustrating Design Problems Presented and addressed 

from the illustration above. 

An imaging system was constructed using the Arrow HSI attached to the top of a Leica microscope 

to capture images of prepared raw blood samples.  The objective is to collect enough data to 

construct a spectral endmember, a point of reference needed to begin basic feature extraction and 
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classification.  These endmembers are a simplistic reflectance spectra of a particular material, in 

this context a white or red blood cell. 

With the endmember constructed the next step was to determine the best approach to gathering an 

accurate endmember via statistical averaging as well as non-supervised clustering.  Using these 

endmembers, feature extraction methods were applied to the data to find features of most 

significance in differentiating white and red blood cells.  Several dimensionality reduction 

techniques were applied to determine if these features best represent the data into a domain that can 

be interpreted and classified.  Finally, these features were then classified via Naïve Bayes, Support 

Vector Machine  

1.8 Thesis Organization 

Chapter 2 will describe techniques and theory behind the experiments conducted in this research.  

Chapter 3 lists in detail the processing methods developed to image, label and detect cells using the 

Rebellion Snapshot HSI.  Chapter 4 describes the tools used in this research as well as the methods 

designed to collect and analyze data.  Chapter 5 contains conclusions and lists a brief summary of 

a path for future work towards development of a blood counting system based on the desired 

specification described in (1.6 System Proposal). 
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Chapter 2: Theory 
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2.1 Blood Cells & the human Immune System 

Blood is a tissue comprised of four components: plasma, red and white blood cells, and platelets.  

Its primary function is to distribute essential nutrients throughout an organism’s circulatory system.  

In humans, three of the four components of blood are distinct cell types: red blood cells, white 

blood cells, and platelets.  Red blood cells (RBC, Erythrocytes) contain a protein, hemoglobin, 

which binds very well with oxygen (02) and distribute it to cells in the body [74].  Once the 02 has 

been transferred to bodily tissues, hemoglobin then binds with CO2 and carries it away to the lungs 

where it is exchanged for O2 and the cycle repeats.  The shape of RBCs is unique compared to other 

blood cells, they possess a biconcave structure formed by hemoglobin proteins [49], [50].  This 

structure increases surface area to aid in diffusion of oxygen molecules across the cell membrane. 

Platelets (Thrombocytes) are fragments of cellular material which are used to form clots when 

exposed to collagen [75].  This normally occurs where blood vessels have been damaged or 

ruptured, platelets will bind to collagen fibers in damaged blood vessel walls.  This clot eventually 

seals off the damaged region and allows the blood vessel to heal with scar tissue.   

The main function of leukocytes (WBCs) is to fight off foreign cells and materials.  These cells 

make up the active part of the immune system.  These blood cells possess a nucleus, unlike platelets 

and red blood cells which extrude their nucleus during cell creation.  However, this is where the 

function and features of each type of white cell differ.  White blood cells are divided into two 

families’ myeloid leukocytes and lymphocytes.  The myeloid family contains the majority of 

different blood cells including platelets (thrombocytes), RBCs (erythrocytes), Basophils, 

Neutrophils, Eosinophils, monocytes and macrophages (Figure 8).  The lymphocytes consist of T 

Cells, B cells and Natural Killer Cells. 

While the functions of most leukocytes are diverse, their overall structure and composition is 

relatively similar.  They all possess a nucleus containing DNA and most contain granules, tiny 
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structures that generate substances needed by the cell to perform it’s cell killing functions [76].  

Leukocytes of all types make up the immune system however, not all of these cells end up in blood 

[25].  The lymphocytes for example, mostly reside in the lymph nodes and spleen.  Macrophages, 

a type of granulocyte, flow through the blood stream for a short period before spending the rest of 

their life cycle residing in a layer of tissue cells.  Due to their wide diversity of functions, only (3 

or 4) types of Leukocyte are commonly found the bloodstream. 

 

Figure 8: Leukocyte Family Tree, the most common of leukocytes (Basophil, 

Neutrophil, Eosinophil and Macrophages) all derive from Myeoblast cells.  

Lymphocytes are less common but vital contributors that work together and 

provide a mechanism that labels and remembers pathogens to increase the 

effective utility of the other WBCs [77]. 

The Neutrophils are by far the most common leukocyte found in the blood stream.  These cells are 

roughly 10-12(um) in diameter and possess a multi-lobed nucleus and make up around 62 percent 

of all white blood cells in the blood stream.  These cells are the first to attack invading microbes 

when an infection occurs.  They respond by absorbing the invading microbes and digest them 

through phagocytosis.  This process ultimately kills the Neutrophil due to its inability to synthesize 
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new lysosomes in the cytoplasm [63].  These dead Neutrophils are eventually broken down by 

Macrophages, another type of leukocyte, and form a viscous fluid commonly known as pus.   

Monocytes are another type of leukocyte that share a similar function to Neutrophils by absorbing 

and digesting foreign pathogens.  Other than their role of fighting invading microbes, Monocytes 

also carry dead segments of pathogens until they encounter T-cell lymphocytes.  Once encountered, 

the T-cells can manufacture antibodies for that particular pathogen allowing the immune system to 

fully recognize and destroy the invading microbes.  Sometimes, Monocytes will migrate into body 

tissues and change into macrophages, long lived pathogen absorbing “clean up” cells to fight off 

secondary infections. 

2.1.1 Optical Properties of Leukocytes 

Reflectance is the capability or effectiveness of a material’s surface to reflect radiant energy.  This 

effectiveness varies depending on the amount of radiant energy that hits the material.  This property 

is unique for different materials as the energy absorbed or reflected is directly affected by the atomic 

structure of the material [78].  However, some energy from photons is absorbed by a materials 

atoms or molecules causing outer shell electrons to momentarily jump up to a higher energy level.  

This energy level cannot be maintained for long however, and the electron drops back down into 

its stable energy level.  When this happens, a photon of a lower energy than the one absorbed is 

released.  This is what causes a material to fluoresce, an effect that causes a material to radiate 

electromagnetic energy most commonly in the visible spectrum.  Often, this energy emission 

creates a peak reflectance at this spectral band when higher energy wavelengths are present in the 

scene (Table 4).  This physical property of many materials is exploited in many applications 

including the field of remote sensing. 
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Table 4: A list of the wavelenghts where different components of blood tissue  

have a diverging absorption peak compared to surrounding cells 

Whole Blood Optical Properties in UV-Visible Spectrum 

WBC local max absorption coefficient (vis)[79] 440NM 

Whole blood local max absorption [50] 420NM, 540NM 

WBC nuclei local auto-fluorescence [80] 
366NM (ABSORB) 

436NM (EMISSION) 

Similarly, a material may completely absorb certain wavelengths of electromagnetic radiation and 

reflect others.  While materials consisting of one element absorb or reflect EM radiation uniformly 

throughout, a compound material’s molecules contain structures where the absorption or reflection 

of certain wavelengths is more dramatic.  These structures, known as chromophores, are what give 

compounds their reflectance and absorption spectrum as well as their color when observed in the 

visible spectrum [81]. 

In the field of microscopy, labels, compounds that possess a strong fluorescent effect that also bind 

to specific molecules, are used to mark cells or tissues to help observe or identify structures.  This 

method is different from traditional staining methods in that the cells being observed do not have 

to be destroyed to stain them.  This imaging technique has wide applications in the biological, 

medical and other scientific fields; mainly used to observe living materials without impacting their 

natural functions or environment. 
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Due to a natural occurring phenomenon found in DNA, white blood cells fluoresce at certain 

wavelengths of light when exposed to ultraviolet radiation(366nm & 436nm) [80].  This 

phenomenon, called auto-fluorescence, is a substance or material’s natural ability to absorb energy 

from photons at certain wavelengths and then emit energy in the form of photons at a lower energy 

level.  White blood cells fluoresce the most between 500-550nm when exposed to a 436nm source.  

This characteristic is useful for identifying white blood cells without the use of a stain or label.  

This natural reflectance presents an additional method to providing a means to amplify specific 

wavelength intensities that are not expressed in red blood cells.  Exploiting these natural 

phenomena may help to segment a cell nucleus from cytoplasm. 

However, blood cells as well as most biological samples, are susceptible to UV radiation which 

can cause photo-bleaching or accelerate cell death.  Photo-bleaching occurs when the molecules 

containing chromophores or luminescent structures become decomposed/denatured by the higher 

amount of energy contained in UV radiation.  Similarly, it is this denaturing of proteins in the cells 

which causes cell death. 

2.2 Endmember Storage Database 

Hyper-spectral data by nature is very large.  One of the initial challenges when analyzing these 

images is how to manage so much information stored in each datacube.  There are several different 

approaches to storing, pre-processing and analyzing.  This section explains the merits found 

between each method.  

The process of reading data stored in BSQ and image files is a very process heavy task as the data 

stored in these files needs to be transformed into a structure that software can access.  To speed up 

this procedure, a database file is used.  There exists a large diversity of data storage structures each 

with particular benefits in terms of portability, Input/output operations (I/O), data distribution as 

well as a few other factors. 
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A problem more commonly seen in big data applications is the issue of having more data than what 

can actually fit into a system’s memory.  This causes a problem when data access could be random, 

causing large chunks of data to be dumped from memory and then new chunks written into memory, 

a very resource intensive process.  To overcome this issue, several database structures were 

designed to handle splitting up data into manageable sized blocks that can speed up throughput and 

not cause a bottleneck when sending data to the processor(s).  In the context of this thesis research, 

an HDF5 database was used to store endmember data. 

2.2.1 Hierarchical Data Format 

The Hierarchical Data Format (HDF5) is an entire filesystem contained within a single file in 

memory.  This data structure design allows for a large database to be divided into smaller ‘chunks’ 

while minimizing as much system memory overhead as possible.  One major benefit to this is that 

more data is stored in memory at any given moment over each example in its own reserved piece 

of memory.  These benefits equate to scalability across distributed systems and access from 

multiple distributed systems while maintaining data integrity. 

2.3 Blood Cell Segmentation Techniques 

With the increase in available compute power over the past 20 years, newer and more accurate 

segmentation methods have been developed.  Spatial information has been incorporated into 

segmentation algorithms to improve accuracy of detection models.  Several of these composite 

kernels show improved performance over methods that only rely on spectral information [5].  The 

following sections briefly describe these algorithms and their effectiveness. 

Blood cells are primarily water and proteins, making it difficult to differentiate the two without the 

aid of a stain or label.  However, Leukocytes contain proteins and nuclear material not present in 

red blood cells.  The purpose of this research is to prove that the spectral absorption of these 

materials is different enough to discern whether an object is a white or red blood cell. 
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Originally, methods used to count the number of blood cells in an individual involved extracting a 

blood sample and manually count the number of white cells present per unit volume of blood.  The 

time and resources needed to perform these measurements are too great to deploy in security 

checkpoint or triage type scenario.  The challenges posed to speed up this process as well as reduce 

the amount of resources needed to do so require the application of devices that can perform this 

operation either very quickly or in a large sample, parallel operation. 

2.4 Hyperspectral Imaging Systems: 

Hyperspectral imaging (HSI) systems capture spatial and spectral information of an object or 

material (Figure 9).  This is achieved in one of several methods, each of which possess advantages 

and flaws for particular applications.  Ultimately, the best system for an application is determined 

by the requirements specified, the platform from which the system will operate, and the subject 

matter that is to be imaged. 

 

Figure 9: Example image showing that there is more information available than 

what can be measured from a standard RGB camera. 

2.4.1 Line Scan Hyperspectral Imaging Systems 

HSI line scan systems capture each spectral band along a single dimension as a scanned composite 

image of the object or area being viewed.  Often referred to as ‘push broom’ hyperspectral imaging 

systems, these devices are deployed in applications from quality control in food production to 

remote surveying of geographical regions.  The defining trait of these systems describes the narrow 
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(1×N pixels) imaging field of view of the system (as seen in Figure 10).  The system obtains its 

images using an optical slit to limit only a thin strip of the image to pass through a prism or grating 

that then projects the diffracted scene onto a sensor.  By limiting the amount of scene (spatial) 

information into the system at any given instance, the majority of the imaging sensor’s area can be 

utilized to capture spectral information. This reduction in spatial resolution allows for simultaneous 

capture of data at a higher spectral resolution.   

 

Figure 10: An diagram illustrating the basic components used in a line-scan 

hyperspectral imaging system. A slit shaped aperature allows a small portion of 

the incomming light from a subject to be split into separate wavelenghts via a 

prism.  An imaging sensor records information from each individual wavelength 

and stores the information into a datacube [64]. 

This data capture technique is a practical solution for applications where a scanning operation is 

possible.  In particular, airborne mounted systems that image the ground surface as an aircraft flies 

overhead.  Food quality inspection is another successful application of these particular systems as 

they can rapidly detect defective or unhealthy produce.  In some food inspection applications these 

systems can be used to provide quality grading of each item as it travels down a processing line 

[17], [41], [82]. 
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While this technique provides both high spatial and spectral resolution, line scan HSIs are very 

susceptible to changes in their target subject’s morphology.  Which means the system must be fixed 

to a steady structure as the subject passes through its linear field of view or, the subject is stationary 

as the system’s imaging plane scans over the subject at a steady rate.  Presenting a major 

disadvantage specific to in vivo blood cell counting. RBCs often collide with one another and pass 

over each other as they travel through blood vessels [6].  If this were to happen as they passed 

through a line scan HSIs imaging plane, distortions created by these movements may introduce 

confusion to detection systems.  Additionally, WBCs tend to rotate and adhere to vessel walls as 

they travel through the target capture region [83], causing the image recorded by the system to 

become spatially distorted. 

2.4.2 Spectral Scanning Hyperspectral Imaging Systems 

Spectral scanning HIS systems, such as those employing an Acousto Optical Tunable Filter 

(AOTF), use piezo-optical devices (see Figure 11) that allow specific wavelengths of 

electromagnetic radiation pass through to a broadband camera sensor [12].  AOTFs are not the only 

filtering technology that can selectively allow specific wavelengths to pass through.  Liquid Crystal 

Tunable Filters (LCTF) use the same technology found in Liquid Crystal Displays (LCDs) to adjust 

its spectral transmittance.  This technology eliminates any vibrations that may be introduced by an 

oscillating piezoelectric crystal [84].  While the fundamental technology behind these tunable filters 

is different, their application achieves the same goal in a similar fashion by iteratively selecting the 

spectral bands of a subject. 
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Figure 11: Diagram illustrating the optomechanics behind a an Acousto Optical 

Tuneable Filter [85] The light from the subjet travels through a piezoelectric 

crystal that alters it’s geometry slightly to alter the angle of incidence for each 

wavelength as it enters the crystal.  The crystal is tuned to distort in such a way 

that only specific wavelenghts exit along the 0-order plane toward a 

monochromatic imaging sensor [64]. 

Depending on the model of AOTF used, the integration time between the capture of each band can 

vary based upon the driving frequency of the piezo-optic sensor and the integration time of the 

camera.  One limitation of scanning HSIs is that all of the bands in the datacube cannot be captured 

simultaneously [86].  During the time between each band capture, a blood cell could rotate or move 

out of frame causing artifacts between each band in a single datacube.  These drawbacks can be 

overlooked in applications where spatial resolution would provide beneficial information.  

However, neither of these two types of hyperspectral imaging systems would be applicable for 

imaging blood flow accurately in vivo. 

2.4.3 Snapshot Hyperspectral Imaging Systems 

A HSI Snapshot, or Non-Scanning, system does not suffer from the distortion issues observed in 

both of the previously mentioned systems. Snapshot HSIs have the capability to capture each band 

for a single datacube simultaneously, eliminating spatial and temporal distortions by capturing 

every band on the same sensor [64], [87], [88].  One method of collecting this data simultaneously 
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is to split the incoming image into discrete strips or lines.  One method developed, as seen in [18], 

[87], uses a precisely ground mirror called an image mapper (Figure 12) that re-directs linear 

segments of the incoming image.  The result is a collection of input “strips” or lines closely 

resembling the input for line scan systems (Figure 13).  However, rather than implementing one 

prism to diffract the incoming image into individual bands, lens and prism arrays are used to diffract 

each slice of the incoming image simultaneously.  The diffracted slices ultimately project onto a 

monochromatic sensor where the spatial and spectral information of the image is collected in the 

same frame grab (integration) of the camera [18], [87].  This design philosophy performs in 

applications where line and spectral scanning systems cannot (e.g. mobile subjects or unsteady 

platforms).   

 

Figure 12: (left) An image mapper is a precision ground mirrored surface that 

directs segments of an image [18] (right) into a collecting lens and projects the 

segmented imnage into a prism array [87]. 

These systems do suffer from one disadvantage in that the simultaneous capture of both spectral 

and spatial information limits the spatial resolution of the system.  Therefore, in applications that 

don’t involve a subject that may change its shape or direction of motion sporadically, line scan and 

spectral scanning HSIs will outperform snapshot systems. 
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Figure 13:  The large image plane on the right shows the elemental (raw) image 

data captured by a snapshot HSI.  This data consists of both spectral and spatial 

information that must be recombined to form a datastructure that can be easily 

interpreted by a user or image processing algorithm.  When the scene information 

is finally captured by the sensor, the data recombined into a datacube via a lookup 

table created when the system is calibrated.[87] 
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Other snaphshot HSIs approach this problem by capitalizing as much surface area of the sensor as 

possible in order to allow for an increase in either spectral or spatial resolution.  Rather than using 

prisms and vibration sensitive optical components, these systems have sensors that have narrow 

bandwidth filters for each subpixel on the sensor (Figure 14) [89], [90].  These subpixels are 

arranged in a mosaic pattern similar to the Bayer pattern used in standard RGB camera sensors.  By 

filtering and capturing spectral information on the sensor itself, these systems are significantly more 

compact and have dedicated decoding processors that allow for frame rates above 60Hz [89]. 

 

Figure 14:  Microscope images of a snaphshot hyperspectral imaging sensor with 

individual band filters over each subpixel of the sensor.  This design ensures that 

every pixel of the sensor is utilized for data capture, a feature that image mapping 

optical hardware cannot provide [90]. 

2.4.4 Datacube 

The term ‘datacube’ defines a three dimensional data structure used to store, for this research 

purpose, hyperspectral image data.  Depending on the imaging system and how it records data off 

of the sensor, the overall sequence or encoding of the data can vary (Figure 15).  There are three 

major encoding methods; Band Sequential (BSQ), Band Interleaved by Line (BIL), and Band 

Interleaved by Pixel (BIP) [91].  Consequentially, the amount of data that is captured and stored 

within each datacube scales with the number of bands the HSI can capture.  Including other factors 

such as bit-depth and image data compression, hyperspectral datacubes can exceed tens of MB per 

frame of data captured. 
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With the emergence of general purpose graphical processing unit (GPGPU) computing, “data 

heavy” imaging techniques (e.g. Hyperspectral Imaging) which produce substantial amounts of 

data became practical.  Techniques such as hyper-spectral and ultra-spectral imaging systems which 

can produce a substantial amount of data per frame captured.  The advent of GPU powered parallel 

processing allowed for these imaging systems to capture data at practical integration times.  In fact 

attempts have been made to construct deep neural networks in order to classify blood cells [92].  

However, their research did encounter issues with feature extraction as well as cell movement.  Un-

mixing the data based on spectra subtraction, a technique commonly used in GIS surveys, may not 

prove to increase performance. 

 

Figure 15: Datacube construction per unit time for each HSI capture technique. 

2.5 Spectral Mixing 

When a scene is captured by a HSI, it is highly likely that the scene consists of many objects with 

different spectral properties.  It is safe to assume that not every pixel in the image represents a 

single object but rather a combination or mixing of different target spectra.  The complexity of this 

mixing varies with respect to the environment of the scene, the distance from the camera each 

object is and the spatial resolution of the system [93].  Hyperspectral Imagers with high enough 

spatial resolution relative to the number of target endmembers can capture enough data to calculate 

the percentage otherwise referred to as abundance (𝛼) of each target endmember within a given 

pixel [94].  This problem presents a multitude of challenges in determining the abundance values 

of target endmembers within a scene [95].  Many algorithms which approach the problem with a 
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linear model assume that the abundances of every target endmember are non-negative and that their 

sum is equal to one [15].  This abundance value is defined by the following. 

In a given (ℎ × 𝑤 × 𝐿) hyperspectral image datacube where L is the number of bands in the image 

and  𝐭1, 𝐭2, … , 𝐭𝑝 are p known targets (unique objects of interest) present in the image.  Let 

𝐦1,𝐦2, … ,𝐦𝑝 denote target signature endmembers and a linear spectral mixture r is a combination 

of 𝐦1,𝐦2, … ,𝐦𝑝 with appropriate abundance fractions (1).   

 α = (𝛼1𝛼2 …𝛼𝑝)
𝑇

 (1) 

𝐫 and 𝐌  are represented as an 𝐿 × 1 pixel vector and 𝐿 × 𝑝 target spectral signature matrix denoted 

by [𝐦1,𝐦2, … ,𝐦𝑝] respectively, where 𝐦𝑗 is a Lx1 pixel vector for 1 ≤ j ≤ p and (1) is a 𝑝 × 1 

abundance vector associated with r and 𝛼𝑗 which denotes the jth target signature 𝐦𝑗 present in pixel 

vector r. The spectral signature of an image pixel r can be modeled in a linear regression form as 

(2), where n is noise which can represent sensor or instrument noise. 

 𝒓 = 𝑴𝛼 + 𝒏 (2) 

This r vector can be used to represent either a pixel vector or spectral endmember as their structure 

is identical and can be modeled using the equation given in (2). 

2.6 Hyperspectral Image Preprocessing 

Immediately after hyperspectral image data is captured it is transformed by one or a combination 

of many image processing techniques.  This processing step is essential in either compressing data, 

removing noise, normalizing data, etc.  Before any processing techniques are applied, statistical 

information about the image is collected in a histogram of pixel values [17].  From this histogram, 

assumptions about the data can be made.  For example, if the histogram shows a skewed distribution 

of pixels toward the max or minimum values, then the image is either over or under exposed.   
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2.6.1 Fast Fourier Transform Filtering 

 

Figure 16: Example of FFT filtering on Lena [99]. 

The discrete fast Fourier transform (FFT), an optimized version of the Discrete Fourier Transform 

(DFT) (3), is a commonly used signal processing tool to project a signal from the time domain to 

the frequency domain.  Signal patterns that continue infinitely in the time domain are transformed 

into finite patterns that can be easily observed and manipulated in frequency space (Figure 16).  

Likewise, signal patterns that occur in an image are often obfuscated by many other signals of 

different periodicity.  A 2 dimensional FFT (4) can return these patterns as discrete structures in 

the frequency domain.  Convolution, an operation which effectively multiplies two signals together 

in the time domain can be easily achieved with simple multiplication in the frequency domain. 

 

𝑿𝑘 = ∑ 𝑥𝑛𝑒−
𝑖2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 (3) 

This equation can be expanded into an infinite number of dimensions which can become a very 

powerful tool when working with images or in the scope of this research, three dimensional 

hyperspectral data. 

 

𝑿𝒌 = ∑ 𝑒−2𝜋𝑖𝒌(
𝒏
𝑵

)𝒙𝒏

𝑵−1

𝒏=0

 (4) 

Projecting a filter into the frequency domain of an image, depending on its shape, can act as a low, 

high or band-pass filter in the time domain.  Additionally, unique filters can be applied in the 
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frequency domain to eliminate specific features that exist in signal (image) in the time (spatial) 

domain [73], [74], [75]. 

Since the Snapshot Hyperspectral system captures all data simultaneously, there is no need to be 

concerned for temporal or spectral distortions to appear as artifacts in the frequency domain.  

Otherwise, the shifting spatial or spectral information would limit the usefulness of frequency 

domain operations.  From this inherent property of the imaging system, frequency domain filters 

can be applied to the entire datacube to remove artifacts present in every band. 

2.6.2 Endmember Construction 

In order to properly identify a substance or material, reference spectral information is required.  The 

reference spectra for a given substance is called an endmember.  Endmembers are created by 

collecting purified samples of a known material and collecting the spectral data with precision 

instruments.  Depending on the target spectral bandwidth, more than one sensor instrument may be 

required to construct an accurate endmember.  Once collected, corrections are applied to counter 

parasitic absorption due to atmospheric or other environmental effects [100]. 

The need for an accurate endmember is essential when attempting to differentiate materials that are 

very similar in composition and appearance.  In most cases, especially in geological remote sensing, 

most pixel vector values in a datacube are a mixture of several endmembers [101].  This mixing 

problem’s complexity is also compounded by environmental effects.  Segmenting out and 

identifying specific endmembers from such a complex problem using conventional RGB images is 

impossible or underdetermined.[102]  In order to solve such a complex system, there needs to be 

more information in the form of measurements (specifically hyperspectral bands) in order to find 

solutions for specific endmembers. 

Several techniques have been researched and developed over the past 20 years, one of the first and 

simplest is the Pixel Purity Index (PPI) [102].  This algorithm first reduces the dimensionality of 
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the datacube via the Maximum Noise Fraction (MNF) [103], a technique[104] developed to 

improve signal to noise ratio of individual bands.  This technique gives better results rather than 

maximize variance in individual bands via principal component analysis (PCA).  The MNF a linear 

transform employs two separate iterations of PCA and noise whitening. 

2.7 Feature Extraction Techniques 

Feature extraction is the process by which data is transformed into a feature space.  This feature 

space has a dimensionality equal to the number of different features extracted from the data.  

However, as the number of unique features or dimensions increases so too does the required sample 

size.  More features does not always equate to better performance, in fact the very opposite is more 

likely as the number of features increases.  This phenomenon is known as the Hughes phenomenon 

or more commonly referred to as the “curse of dimensionality” [69].  Therefore, many feature 

extraction techniques focus to extract only features that provide the greatest statistical weight in 

feature detection or classification algorithms. 

2.7.1 Spectral Angle Mapper 

The Spectral Angle Mapper(SAM) is a transformation which returns an angle between a probe 

vector and a library vector (endmember) [105], [106].  The algorithm works by measuring the angle 

distance between two spectra in n dimensional space, where n is the number of spectral bands in 

the data.  The smaller this angle, the more similar the two spectra are to one another.  A powerful 

feature of this algorithm is that it is insensitive to illumination intensities as the overall “shape” of 

the spectra is what is compared rather than its actual value [107].  The computation to solve for the 

spectral angle can determined with equation (5). 

 

𝛼 = 𝑐𝑜𝑠−1 (
𝒙⃑⃑ ∙ 𝒓⃑ 

‖𝒙⃑⃑ ‖ ∙ ‖𝒓⃑ ‖
) =  𝑐𝑜𝑠−1

(

 
∑ 𝑿𝑖 ∙ 𝒓𝑖

𝑛−1
𝑖=0

√(∑ 𝑿𝑖
2𝑛−1

𝑖=0 ) ∙ (∑ 𝒓𝑖
2𝑛−1

𝑖=0 )
)

   (5) 
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Where n is the number of spectral bands in the datacube; (𝐗𝒊) is a probe pixel vector from the 

datacube; (𝒓𝑖) is the reference endmember and α is the spectral angle (radians) between the two 

vectors in n-dimensional space (6) (Figure 17). Once calculated, the similarity of the probe vector’s 

spectral angle α𝑥  and the angle of the reference end can be compared by using the Euclidean 

distance. 

 ‖α𝑥 − α𝑟 ‖ =  √(α𝑥 − α𝑟 )
2 (6) 

 

 

Figure 17: An example of spectral angle (α) and spectral distance (d) [107] 

2.7.2 Principal Component Analysis 

Principal Component Analysis (PCA) is a commonly used feature extraction algorithm in many 

signal and image processing applications.  PCA is a transformation operation that maps the data 

into a new feature space.  This feature space is based on the variance in the data rather than based 

on the values of the data.  The first dimension is established along an axis in the data with the 

greatest variance.  From there an orthogonal dimension is established again along the axis of 

greatest variance.  This process is repeated until the feature space has an equal number of 

dimensions as the original data.  While the number of dimensions in this feature space is the same 

as the original data, the feature space is different in that its dimensions are ordered from greatest 

variance to least variance.  Therefore, the data can be best represented by the first several 

dimensions in the feature space and the rest may be ignored.  This pruning operation effectively 
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reduces the dimensionality in the data while retaining most of the information needed to 

differentiate classes in the data. 

PCA can be performed via a many number of methods but the one implemented in thesis research 

is primarily eigenvalue decomposition of the data’s covariance matrix.  For the sake of brevity, this 

section covers PCA performed on two-dimensional data however, this operation can be expanded 

to three, four, or n dimensions easily.  The covariance matrix of the data is constructed by finding 

the empirical mean vector 𝒖[𝑗] of every 𝑗th column in the data (7).   

 
𝒖[𝑗] =  

1

𝑛
∑𝑿[𝑖, 𝑗]

𝑛

𝑖=1

 (7) 

 for 𝑗 = 1,… , 𝑝  

Using the 1 × 𝑝 vector 𝒖[𝑗], the deviations from the mean can be calculated by subtracting the 

mean vector 𝒖[𝑗] from each row in the data.  Which can then be used to calculate the covariance 

matrix C (8). 

 𝑩 = 𝑿 − 𝒉𝒖𝑇 (8) 

 𝒉[𝑖] = 1 for 𝑖 = 1, … , 𝑛 

 

 
𝑪 = 

1

𝑛 − 1
𝑩∗ ∙ 𝑩 (9) 

where 𝐁∗ is the conjugate transpose (real transpose) of itself.  Once the covariance matrix 𝐂 has 

been calculated (9), the next step is to find the eigenvalues of the covariance matrix 𝐕. 

 𝑫 = 𝑽−1𝑪𝑽 (10) 

The diagonal matrix of eigenvalues 𝐃 is a matrix of size 𝑝 × 𝑝 and the corresponding eigenvectors 

in matrix 𝐕 (10).  From here, the ordered and paired eigenvalues and eigenvectors can be sorted in 

descending order based on eigenvalue.  The greatest eigenvalue denotes the dimension of most 
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variance followed by the second dimension of most variance and so on.  At this point the 

transformation is complete and these features can be examined and classified [108].  However, it 

is important to note that while PCA minimized the amount of information lost when reducing 

dimensionality, there is still some information lost in the process. 

2.8 Classifiers 

2.8.1 Naïve Bayes Classifier 

The naïve Bayes classifier is a simple binary classifier that draws a boundary between two classes 

of data in the feature space of the two classes.  This is done for each feature independently and does 

not rely on relationships between two or more features.  This type of classification is a very quick 

test to determine if a dataset is linearly separable.  In which case the need for a more advanced 

classifier is unnecessary. 

 𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
 (11) 

The target pixel 𝑐 and the predictor vector 𝑥 are evaluated between the probabilities of the predictor 

𝑃(𝑥) and the probability of the target 𝑃(𝑐) and 𝑃(𝑥|𝑐), the probability of the predictor given class 

(11).  These three probabilities are used to calculate the posterior probability 𝑃(𝑐|𝑥) or the 

probability the predictor 𝑥 is a member of target class 𝑐. 

2.8.2 Gaussian Maximum Likelihood Classifier 

In image classification, pixels in the image are segmented into a finite number to represent entities 

within the image belonging to classes based on certain rules.  In nearly all hyperspectral images, 

the spectral signature of an image pixel is mixed with a number of target endmembers.  This mixing 

is based on the abundance of a target material(s) in each pixel.  This abundance is represented as a 

scalar fraction and can be estimated by a priori or a posteriori information. 
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A powerful extension of the Orthogonal Subspace Projection (OSP) classifier based on a relatively 

simple assumption that any given pixel vector in the image is likely surrounded by a normal 

distribution of like pixel vectors.  This unconstrained classification algorithm employs an a priori 

approach to maximize the assumed Gaussian probability distribution of an unknown constant which 

specifies abundance fractions for each target.   This estimation combined with both the variance 

and covariance of the data are used to classify an unknown image pixel [15].  Pixel vector 

classification is performed by calculating the probability of the target pixel belonging to any given 

class in the image.  The pixel vector is then classified to the class with the highest probability [68]. 

This classifier, much like many other classifiers, makes several assumptions about the data to be 

classified.  The Gaussian maximum likelihood (GML) classifier assumes that the noise in the data 

is structured as a Gaussian distribution with mean 𝐌α and variance 𝝈2𝐈𝐿×𝐿 (12). 

 𝑝(𝑟) = 𝑁(𝐌α,𝝈2𝐈𝐿𝑥𝐿) (12) 

In particular, the estimate of the 𝑝𝑡ℎ abundance value 𝛼𝐫, 𝛼̂𝐺𝑀𝐿,𝑝 is given by the following (13). 

 𝛼̂𝐺𝑀𝐿,𝑝 = (𝐝𝑇𝑃𝑈
⊥𝐝)−1(𝐝𝑇𝑃𝑈

⊥)𝐫 

= (𝐝𝑇𝑃𝑈
⊥𝐝)−1 𝛿𝑂𝑆𝑃(𝐫) 

= (𝐝𝑇𝑃𝑈
⊥𝐝)−1𝐝𝑇𝑃𝑈

⊥(𝐝𝛼𝑝 + 𝐧) 

= 𝛼𝑝 + (𝐝𝑇𝑃𝑈
⊥𝐝)−1𝐝𝑇𝑃𝑈

⊥𝐧 

(13) 

Giving an associated estimation error as (14)  

 𝜀𝐺𝑀𝐿,𝑝 = 𝛼𝐺𝑀𝐿,𝑝 − 𝛼𝑝 

= (𝑑𝑇𝑃𝑈
⊥𝑑)−1𝐝𝑇𝑃𝑈

⊥𝐧 

(14) 

From (13) the GML classifier, 𝛿𝐺𝑀𝐿(𝐫) can be defined as 

 𝛿𝐺𝑀𝐿(𝐫) = (𝐝𝑇𝑃𝑈
⊥𝐝)−1𝐝𝑇𝑃𝑈

⊥𝐫 = 𝛼̂𝐺𝑀𝐿,𝑝 (15) 
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which gives an unconstrained Gaussian maximum likelihood estimate of an abundance fraction 𝛼𝑝 

for a desired target endmember 𝐝 from an image vector 𝐫 [15]. 

2.8.3 Support Vector Machine 

Traditionally, a Support Vector Machine (SVM) is a linear supervised binary classifier which 

attempts to find the optimal boundary, referred to as a hyperplane, between two classes [109], [110].  

Given a dataset of 𝑛 points (𝒙⃑⃑ 1, 𝑦1)… , (𝒙⃑⃑ 𝑛, 𝑦𝑛) where 𝑦𝑖 is either -1 or 1, indicating which class 𝒙⃑⃑ 𝑖 

belongs to (𝒙⃑⃑ 𝑖 is 𝑝-dimensional).  The objective is to determine a hyperplane that will divide classes 

of points 𝒙⃑⃑ 𝑖 for which 𝑦𝑖 = 1 from points 𝒙⃑⃑ 𝑖 for which 𝑦𝑖 = −1.  This hyperplane should divide 

these classes such that the distance from the nearest points 𝒙⃑⃑ 𝑖 of each class is maximized.  The 

hyperplane is defined as (16) where 𝒘⃑⃑⃑  is the normal to the hyperplane. 

 𝒘⃑⃑⃑ ⋅ 𝒙⃑⃑ + 𝑏 = 0 (16) 

The underlying basis of a SVM is the assumption that the classes of 𝒙⃑⃑ 𝑖 (for 𝑦𝑖 = 1 and 𝑦𝑖 = −1) 

are linearly seperable.  With this assumption, two parallel hyperplanes (17),(18) can be drawn to 

separate the data points 𝒙⃑⃑ 𝑖 as much as possible. 

 𝒘⃑⃑⃑ ⋅ 𝒙⃑⃑ + 𝑏 = 1 (17) 

 𝒘⃑⃑⃑ ⋅ 𝒙⃑⃑ + 𝑏 = −1 (18) 

The distance between these two hyperplanes (17),(18)can be defined as 
2

‖𝒘⃑⃑⃑ ‖
.  This distance can be 

increased if ‖𝒘⃑⃑⃑ ‖ is minimized.  However, conditions must be applied to these equations such that 

no point 𝒙⃑⃑ 𝑖 from either class falls into this margin (19). 

or, 

𝒘⃑⃑⃑ ⋅ 𝒙⃑⃑ 𝑖 + 𝑏 ≥ 1 

𝒘⃑⃑⃑ ⋅ 𝒙⃑⃑ 𝑖 + 𝑏 ≤ −1 

if 𝑦𝑖 = 1 

if 𝑦𝑖 = −1 

(19) 
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Which can be generalized to (20) for all 1 ≤ ⅈ ≤ 𝑛.  The result of this optimization gives the 

optimization to minimize ‖𝒘⃑⃑⃑ ‖ to (20) for 𝑖 = 1,… , 𝑛, and solve for 𝒘⃑⃑⃑  & 𝑏. 

 𝑦𝑖(𝑤⃑⃑ ⋅ 𝑥 𝑖 + 𝑏) ≥ 1 (20) 

Additionally, the only points 𝒙⃑⃑ 𝑖 that determine this optimal boundary are the 𝒙⃑⃑ 𝑖 closest to it.  These 

points are referred to as support vecctors.  Thus, this classifier requires at least three points (2 from 

one class and at least 1 from the other) of data from which it draws a line evenly separating the 

points.  The classifier then draws a region extending from the boundary in each direction, with the 

width of this margin determined by the closest point to the boundary [111].  Any points touching 

or relatively close to this margin are referred to as support vectors. 

This algorithm works off of the assumption that any data not near the boundary between two classes 

is irrelevant to determining its final position.  In fact, it is only the support vectors themselves which 

encode the information needed to determine an optimal boundary.  However, since the support 

vectors of one class are calculated based on their distance from those of the other class, SVM’s are 

prone to overgeneralization if there is an insufficient number of samples near the boundaries of the 

two classes.  The only way to ensure a SVM does not overgeneralize the training set is to have a 

substantial amount of useful data.  In this context, useful data is defined as accurate data closest to 

the boundary of the two classes. 

2.9 Research Tools 

The following sections describe tools used in the research conducted in this paper.  Other than the 

Rebellion Photonics Crystal software, these programs are available at no cost or open source. These 
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programs all have a strong user base and active communities to answer questions and help debug 

programs. 

2.9.1  Rebellion Photonics Crystal 

Software provided by Rebellion Photonics which controls, decodes and processes data coming in 

off of the Arrow Snapshot HSI.  This software contains look up tables referencing the exact points 

on the sensor where each band of the image is located.  The software then reconstructs the input 

back into a three dimensional datacube.  Crystal also possesses a flat field correction tool which 

can be used to normalize the background of the image.  This tool is required in order to correctly 

export the incoming image from the sensor as a band sequential (BSQ) or TIF file as the look up 

tables for the sensor are proprietary to Rebellion Photonics. 

2.9.2 Python Packages 

Python is a powerful interpreted programming language which is frequently used in the scientific 

community.  Built upon the C programming language, Python possesses little overhead in terms of 

processing power.  It has been largely expanded upon with open source library packages designed 

for many applications some of which were used in this experiment.  A small summary of these 

packages used is listed below. 

2.9.2.1 Numerical Python 

Numerical python (NumPy) is a package designed for the python language which completely 

overhauls the built in mathematic functions.  NumPy allows for a wide range of data types capable 

of being stored in n-dimensional array data structures.  This package also includes many matrix 

operations and naming schemes from other popular scientific analysis software [112].  Installation 

of this package on Windows machines can be rather difficult when compiling the package from 

source due to its many dependencies on other open source software libraries.  However, a repository 

of precompiled python libraries exists for windows users to use at their leisure [113] [114]. 
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2.9.2.2 Scientific Python 

Scientific Python (SciPy) is a package collection that builds off of the NumPy framework that 

includes optimized functions for scientific computing [115].  SciPy incorporates some other 

packages that are essential in image processing, rapid prototyping and generating plots for 

displaying results.  While Linux is the preferred operating system for these libraries, it is still 

possible to deploy them in Windows with slight modifications (Appendix D). 

2.9.2.3 SciKit 

Sci-kit (SciPy Toolkits) are open source python packages that contain well tested and maintained 

libraries for scientific computing.  The toolkits available range in applications from image 

processing to cheminformatics [115]. These tools are publicly available and licensed; their use 

eliminates provides a controlled testing environment so that any variations in the data would be 

easier to locate and document.  The two SciKit modules used for this experiment were SciKit-

Image and SciKit-Learn, a powerful image processing toolkit with optimized filtering algorithms 

and a machine learning toolkit possessing powerful, streamlined learning algorithms that are easy 

to implement. 

2.9.2.4 Spectral Python 

Spectral Python (Spectral) is a package designed and developed to effectively process and manage 

hyperspectral data [116].  This library includes tools that can implement well used classifiers and 

visualization tools capable of displaying three dimensional HSI datacubes in an easy to understand 

format.  Additionally, this package can perform feature extraction operations on the data to help 

visualize the ‘separability’ of data classes in feature space.  The tools provided in this package are 

used to perform data structure manipulations that would otherwise require a large amount of helper 

functions to make sure data order is preserved. 



61 

 

2.9.3 JetBrains PyCharm 

PyCharm is a python oriented integrated development environment (IDE) that possesses a powerful 

python interpreter debugging tool [117].  This debugging tool is essential in tracing errors to their 

source.  It also incorporates helpful package management as well as virtual environment 

management.  This IDE was primarily used to write, test and run the experiments in this thesis 

work. 
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Chapter 3: Imaging System 

Configuration and Data 

Capture 
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3.1 Research Objective 

 

Figure 18: This flowchart depicts the overall process flow beginning from, 

configuration and adjustment of the snapshot HSI prior to data capture, the data 

capture process, followed by inserting data & metadata into a database, and finally 

hyperspectral image analysis involving feature extraction and blood cell 

detection. 

After analyzing hyperspectral imagery as a potential solution to many of the problems faced in this 

research, several other options had to then be considered.  For instance, while hyperspectral 

imagery is the process of capturing an image at many continuous spectral bands, the method at 

which those bands are captured can vary from one device to another.  Several imaging systems 

were considered and compared to see which of them meet the requirements of the research goal. 

The next steps involved planning out phases of research to be conducted in order to achieve the 

target goal (Figure 18).  One issue of concern is that some microscope objectives have a very 

narrow depth of field and thus prone to chromatic aberration when imaging subjects in multiple 

spectral bands.  In normal viewing applications this aberration is very difficult to detect with the 

human eye but becomes blatantly clear in bands toward the edge of the HSI’s working bandwidth. 
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To conform to initial planning phases, several experiments were designed to best simulate 

conditions seen in real world applications.  Experiments began with testing the possibility of 

segmenting white blood cells in a live blood sample.  These experiments were designed to control 

as many environmental factors as possible to determine which factors impact performance the most.  

With the most influential factors identified, they can then be given a higher priority in terms of 

minimizing error.   

The initial design of the first experiments was to collect data from an unstained blood slide with as 

many imaging factors controlled so that a spectral library could be constructed.  Roughly 120 

samples of blood were prepared at several different cell concentrations and dilution levels.  These 

samples consisted of whole blood and buffy coat smear; at whole, 1:10 and 1:100 blood to Additive 

Solution (AS) Acid Citrate Dextrose a common solution used to preserve blood tissue dilutions 

(Hematocrit) [25]. 

With spectral endmembers of WBC, RBC, background and unknown materials (artifacts from 

debris or dead tissue) properly constructed, they were then used as target vectors for linear 

classifiers.  A limited amount of preprocessing was done to these endmembers in regards to 

background removal and illumination normalization.  This was intentional because illumination 

intensity, in real world applications, will constantly be changing and if these methods cannot 

tolerate variance in illumination intensity then they would not be worth exploring.  

First testing endmembers using a naïve Bayes classifier utilizing the Euclidean distance between a 

probe vector and endmember.  With an error rate of (refer to result A) it was determined that this 

problem was non-trivial and that more advanced segmentation and classification algorithms would 

be needed.  Some further analysis of the data was needed in order to understand which features, if 

any can be used to reach this research goal. 
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Analyzing and understanding the data played a critical role in deciding which segmentation and 

classification techniques to use.  With an analysis of the data completed, some feature extraction 

methods could be implemented.  However, feature extraction with hyperspectral data differs from 

standard color images.  In color image processing, color information is usually less important than 

the overall greyscale intensities of objects in the image.  The feature extraction methods performed 

for this data focus on color (spectral) data over pixel intensities or gradients. 

The following sections describe in detail, the data collection process as well as any operations or 

experiments performed on the data collected.  Each section will list descriptions of tools or 

operations relevant to the corresponding experiment section.  A brief analysis of the results will 

follow reported results and fully summarized in the conclusion section. 

3.2 Data Capture and Processing 

Unlike standard visible imaging sensors, hyperspectral imagery requires the use of filters or prisms 

to separate narrow bands of light from the input lens and direct these bands onto a sensor.  This 

separation has to occur in such a way that the individual bands do not ‘mix’ when absorbed by the 

sensor, otherwise the spectral information of both bands will be sampled into a single value.  There 

is no way to ‘undo’ this mixing (Figure 19) which is why standard RGB images cannot be sliced 

into more than 3 channels (Red 630-700nm, Green 520-600nm, and Blue 450-520nm). 
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Figure 19: Spectral mixing occurs when the spectral information of two different 

materials (RBCs and WBCs as seen above) populates the same pixel on the sensor 

of the HSI.  The resulting pixel spectrum is a convolution of the two endmember 

spectra for each material.  Spectral unmixing algorithms find probability 

distributions that best represent the presence of each target endmember in the 

pixel [94]. 

Hyperspectral imagery presents a solution to this problem, if enough spectral bands are collected 

of known targets (i.e. a priori target endmember information) then it is possible to estimate the 

abundance of each target endmember in a given pixel [17], [102].  These abundance values are 

probabilities of the presence of each target endmember in a pixel and are essential for multiclass 

detection algorithms.  However, if enough bands in the image are oversaturated (the intensity value 

for a given subpixel is its maximum value) or under-saturated (the noise in the image overpowers 

the signal) it is best to discard those bands when calculating abundance values.  If there aren’t 

enough useable bands left after this “pruning” operation, the abundance values cannot be 

determined for the exact same reason abundances cannot be determined in a RGB image [17]. 
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3.2.1 HSI System Setup: 

 

Figure 20:  The Arrow Snapshot Hyperspectral Imaging system developed and 

manufactured by Rebellion Photonics [18], [118]. 

The camera system used in this work is the ‘Arrow’ Snapshot Hyper-spectral system from 

Rebellion Photonics (Figure 20). It was mounted to the camera port of a Leica microscope, 

supported by an aluminum rig mounted to an optical breadboard table.  The Arrow snapshot hyper-

spectral imaging system, mounted to the top of a Leica semiconductor inspection microscope is 

equipped with a Screamin’ Eagle motorized stage.  This motorized stage is utilized as a means to 

provide translation of cells through the frame of the snapshot HSI in a simple attempt to replicate 

blood cells moving through a vessel.  The mount structure constructed to support the snapshot 

hyper-spectral system from t-slot aluminum framing from 80/20.  In order to prevent as much 

motion blur as possible, the entire system was mounted on top of an air-bag suspended optical 

breadboard table. 
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Table 5: The spectral bands for each prism in the Rebellion Photonics Arrow HSI 

Band Prism 1 Prism 2 Band Prism 1 Prism 2 

1 641.4 - 24 486.9 486.9 
2 630.5 - 25 483.0 483.0 
3 620.3 - 26 479.3 479.3 
4 610.8 - 27 475.5 475.5 
5 601.8 - 28 471.9 471.9 
6 593.3 - 29 468.3 468.3 
7 585.2 - 30 464.8 464.8 
8 577.5 - 31 461.4 461.4 
9 570.0 - 32 - 458.0 

10 562.8 - 33 - 454.7 
11 555.9 - 34 - 451.5 
12 549.2 - 35 - 448.3 
13 542.7 - 36 - 445.2 
14 536.3 - 37 - 442.2 
15 530.2 - 38 - 439.3 
16 524.1 - 39 - 436.5 
17 518.4 - 40 - 433.8 
18 513.0 - 41 - 431.1 
19 508.0 - 42 - 428.5 
20 503.3 - 43 - 426.0 
21 498.9 - 44 - 423.6 
22 494.7 494.7 45 - 421.3 
23 490.8 490.8 46 - 419.1 

 

This camera is controlled via Rebellion Photonics’ Crystal software communicating through an 

Imperx frame grabber card attached to a PC.  This snapshot HSI is capable of imaging two 

bandwidths, with a spatial resolution of 443 x 313px, due to the two separate prisms contained 

within the device.  The first prism is capable of capturing 32 bands ranging from 461nm to 641nm, 

the other prism captures 25 spectral bands from 419nm to 494nm (Table 5).  It is attached to a 

microscope with a motorized stage (Figure 21).  The Arrow system can capture datacubes at a rate 

of ~4 cubes/second and an integration time between 30-200µs.  The microscope objectives used, 

magnified at 20x and 50x however, the imaging area of the HSI crops out only a small area, ~20% 

of the actual field of view from the eyepiece. 
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Figure 21:  (A) a snapshot hyperspectral imaging system mounted above a 

microscope.  (B) A diagram depicting the setup used to collect data. 

3.2.1.1 Alternative System Considerations and Justifications 

An alternative Hyperspectral Imaging system considered was an Acousto-Optical Tunable Filter 

(AOTF) design distributed by Brimrose Corporation.  The Brimrose AOTF spectral scanning 

imager captures bands by utilizing a piezoelectric tunable band-pass filter [119].  The filter 

oscillates at the same frequency as the integration rate of the imaging sensor behind it, after a full 

cycle of bands, a data-cube is constructed and the process repeats [119].  However, one drawback 

of this type of system is temporal distortions caused by the need for the filter to “sweep” through 

each band over a certain time interval. 

Due to possible issues with distortions caused by integrating the bands over a period of time, The 

Arrow, a newly developed snapshot hyperspectral system was considered.  This system designed 

and developed by Rebellion Photonics utilizes a multi-faceted mirror and prism[87] to allow the 

entire data-cube to be captured on the sensor of a camera simultaneously.  However, because all 

the spectral information is captured on the sensor simultaneously, the amount of sensor area is 

inversely proportional to the number of spectral bands.  The limitation from the lack of spatial 

resolution is diminished by the fact that temporal and spatial distortions no longer needed to be 

considered a challenge to overcome when imaging blood cells.  Consideration of these systems 
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limitations within the scope of this research led to the decision that a snapshot hyper-spectral system 

would be the best solution available. 

3.2.2 HSI calibration and target size estimation 

During the installation and set-up of the imaging system, several tests were run to calibrate the 

imaging software so that the image bands detected on the sensor was accurate.  Several precision 

filters were placed between the illumination source of the microscope and the objective lens.  The 

transmitted light entering the camera was measured and compared to the filter’s cutoff wavelength.  

Settings for the device were adjusted in this manner until the bands observed by the camera were 

correctly representing the light permitted to enter the objective by the sensor. 

With calibration of the device completed, the next experimental variables, magnification and 

distortion, were measured.  It was hypothesized, distortions caused by the microscope objective as 

well as the crop factor of the imaging system may have an impact on image quality.  To test this, a 

metered glass slide was placed on the microscope stage and to determine if there is any distortion 

as well as determine the relative physical dimensions of each pixel (Table 6) in the image (Figure 

22).  A metered slide with a two dimensional scale (Figure 23) was used for measuring pixel 

dimensions and determine if any barrel distortion occurred [78]. 

 

Figure 22: Pixel resolution for x20 (left) and x50 (right) objective lenses 

calculated using a metered slide 
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Figure 23: Metered Scale used to detect distortions as well as measure the exact 

dimensions of the frame 

Table 6: Pixel dimensions of images from 20x and 50x objectives 

OBJECTIVE LENS WIDTH HEIGHT PIXEL DIMENSIONS 

20X .225 mm .162 mm .5um/pixel 
50X .090 mm .065 mm .2um/pixel 

 

After several test images were taken, it was determined that there is little to no distortion caused 

by the optical components of the device.  The lines of the scale are known to be respectively parallel 

so any distortion could be easily identified if the lines were no longer parallel in specific regions of 

the frame.  (Figure 22) shows that these lines are parallel to each other across the frame in both 

dimensions proving there is little to no distortion present in the image.  Knowing that the 

perspective in the image is nearly constant throughout, rough cell dimensions can be determined 

by using the values calculated in (Table 6) above.  The importance of this is the spatial information 

of the cells in the image will not change drastically as they move in and out of frame. 
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Additionally, there needed to be some way to measure the velocity of the blood cells as they move 

through the frame.  This information can be used to determine the width of a blood vessel as well 

as the flow volume of the blood within.  Values that are necessary to calculate the number of blood 

cells per unit volume. 

The system was also tested to see if the integration time of each frame was fast enough to capture 

useable data of cells moving through the camera field of view (FOV).  This integration time needs 

to be as short in duration as possible to reduce motion blur.  Otherwise, a slow integration time 

could mean that some cells may also enter and leave the frame without ever being captured by the 

HSI.  To test this limitation, image sequences were captured of the metered slide used to find pixel 

dimensions translating across the frame at discrete speed increments via an analog controlled 

motorized stage.  An operator then incremented the translation speed as uniformly as possible until 

the markings on the slide were illegible.  Using the known dimensions of the slide’s meter, an 

estimated maximum translation speed  

To build a point of reference to compare results of future experiments involving raw blood, several 

pre-fixed blood slides were procured and imaged.  These reference slides contained H&E stain 

labels to distinguish RBCs and WBCs.  The blood slides used were created using blood from an 

anonymous donor and stained with a standard Hematoxalyn and Eosin (H.E.) stain.  The data 

captured from these slides was used to create datasets that could then be used as a prototype to test 

classification algorithms.   

3.2.3 Blood Sample Preparation 

Blood samples, in the form of fixed and sealed histology slides, were obtained from two individuals 

for the imaging and classification studies.  The extracted blood samples in the slide consists of cells 

collected from the buffy coat of a spun-down blood sample (Figure 24).  This buffy coat refers to 
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the narrow band of white blood cells that forms between the blood plasma and red blood cells after 

spinning a sample in a centrifuge [120].   

 

Figure 24: The buffy coat is a thin layer of white blood cells which make up less 

than 1 percent of a blood sample’s total volume [121]  

To prepare the sample, an isotonic saline solution was added to delay cell degradation caused by 

illumination conditions which dry out the sample.  Several samples were extracted from the buffy 

coat [25], [120] and placed onto a glass slide and a cover slip placed on top to spread the sample as 

thin as possible.  This step was implemented to better simulate conditions seen in narrow blood 

vessels as seen in the sclera of the eye or the inside of the lip.  Once several sample slides were 

prepared, they could then be imaged using the snapshot HSI.   

Several sequences of datacubes were captured from different regions of each sample.  A prudent 

effort was made to capture as many different regions within each sample slide to improve variance 

within the data.  While the cells on the slide come from the same individual, each cell has slight 

differences in terms of overall shape and structure.  Some cells may be stacked on top of one another 

or deformed by groupings of neighboring cells.  This variance will help train the system to detect 

cells on generalized features rather than a feature specific to an example.  Once the data collection 

procedures were completed, post processing of the data needed to be performed in order to easily 

read data into feature extraction algorithms. 



74 

 

3.2.4 Blood Sample Hyperspectral Data Capture: 

To ensure the data capture between different imaging sessions remains as consistent as possible, a 

data capture process was developed (Figure 18).  Initially, testing data was captured with different 

camera sensor settings to minimize noise in the image.  The greater the amount of light hitting the 

sensor per integration period is directly proportional to the intensity values in each band.  Testing 

began by varying one setting while the other remained fixed to see what impacts the changes had 

on image quality.  Finding optimal settings manually was necessary as the Rebellion Photonics 

Crystal software did not possess an automated exposure control, the integration period and sensor 

gain were adjusted manually.  These tests were to explore which settings had the greatest impact 

on the signal to noise ratio (SNR) between the target endmembers.  The SNR of the image is a ratio 

of a signal (e.g. pixel vector intensity) compared to the intensity of the noise in the background of 

the image.  The settings that most influenced SNR were the integration time (shutter speed) and the 

analog gain (sensitivity) of the sensor.  These two settings of the Arrow HSI were adjusted when 

capturing data to ensure SNR was maximized. 

The settings that gave the greatest divergence between the two targets (RBC and WBC 

endmembers, respectively) while keeping less than 25% of the lower energy bands oversaturated.  

This operation involved selecting target endmember regions of the image using the Crystal 

software.  Once selected, the spectra of the target pixels would be displayed as a two-dimensional 

plot of the pixel intensity for each band.  Next, the integration period of the sensor (i.e. shutter 

speed) was increased incrementally from 25µs to 200µs until the intensity differential between the 

two spectra was as great as possible before more than 25% of the bands became oversaturated.  Due 

to the output spectrum of the illumination source, oversaturation always occurred in the lower 

energy bands (580nm-600nm).   

A higher integration time of the sensor in the HSI introduces motion blur into the spatial domain 

of the datacube.  A distortion that is much more challenging to compensate for without the 
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implementation of a coded aperture or de-convolutional algorithm [64].  While increasing the 

sensor gain introduces noise into the image data, it proved to increase SNR in bands at the higher 

energy levels (420nm – 450nm).  While this change did oversaturate bands in lower energy bands, 

initial research behind the absorption spectra of blood cells showed local maximum absorption in 

the higher energy bands.  Therefore, higher priority was placed to maximize the intensity 

differential between the two target endmembers in the regions listed in Table 4. 

 

The data capture process was then designed around increasing SNR.  By adjusting the integration 

time and analog gain of the camera’s sensor until SNR couldn’t be increased further.  However, 

one drawback of this approach is the settings used to capture data for each sample manually tuned 

Figure 25:  Rebellion Photonics Crystal interface.  Bands can be selected on the 

left with a 2d spatial display in the middle.  The graph on the top right correlates 

to the pixel vector selected by the crosshairs in the bottom right image 
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to capture a useable image.  These operations would be equivalent to manual operation of a 

camera’s shutter speed and sensor sensitivity.  SNR is then further maximized by reducing 

background noise using the automated flat field correction (Figure 26) tool built into Rebellion 

Photonics’ Crystal software (Figure 25).   

More specifically, the flat field correction tool (Figure 26) detects imperfections in the background 

of each image by capturing datacubes at different integration times (shutter speeds) and 

compensates pixel sensitivity accordingly to produce a flat, normalized background image in each 

spectral band.  If any part of the background in the target region changes, artifacts will appear in 

the datacube.  Therefore, initial datacubes were captured with and without flat field calibration in 

order to determine if these artifacts could cause detrimental effects to segmentation performance.  

After the first few sessions of data capture,  

 

Figure 26:  A sample band from a datacube with no flat field correction applied 

(left).  The same sample band in the adjacent image after flat field correction is 

applied (right). 

With the best camera settings to select decided, the Imprex® camera integrated into the Arrow HSI 

was configured to record at the highest capable bit depth of 12 bits per subpixel datacubes.  Giving 
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each subpixel in the datacube a maximum value of 4095.  Since data is allocated in bytes, each 

datacube is given a 16 bit per pixel bit depth but the four greatest significant bits are padded with 

zeroes.  This padding needs to be trimmed via a normalization operation or ignored in analysis 

software.  With bit depth selected, the cubes are stored as a custom binary sequential files (BSQ) 

with an ISO 8601 [122] timestamp as the filename.  The script used to decode these files can be 

found in Appendix A. 

A dataset of stained blood cells was captured in 50 individual sequences of datacubes.  Each 

sequence was captured from different regions of 2 unstained blood slides over a duration of 5 

seconds.  Two complimentary datasets (Figure 27) were created one used top down while the other 

used bottom up illumination.  Top down illumination better represents the target application. 

However, bottom up illumination resulted in images with a higher SNR.  The illumination source 

used is a Schott ACE-1 fiber bundle coupled illumination source [123].  

 

Figure 27: Bands from a datacube in stained blood slide dataset.  The three 

images above represent bands that closest resemble the red (left: 471) green 

(middle: 555) and blue (right: 601) channels of an RGB image: 
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3.2.5 Dataset Construction and Preparation 

For the data collected for this study, spectral libraries for white blood cells, red blood cells, 

unknown artifacts, and background were generated by manually masking each class in a sample set 

of 50 datacubes (Figure 28).  Cells were masked based on examples provided from hematology 

related sources as well as the reference slides (3.2.4 Blood Sample Hyperspectral Data Capture:).  

White cells were labeled green, red cells red, and background was left unlabeled as those locations 

were interpreted as any unlabeled object remaining in the image.  Objects labeled in yellow 

consisted of glass shards from the microscope slide, dust particles, or other foreign matter that could 

not be identified. 

Bands present in a datacube that are oversaturated (overexposed) have a detrimental impact to 

determining abundance values for target endmembers [17].  Examples that contained over 75% of 

useable bands were manually labeled, a python script was written to read in the data and labels; 

they were then stored into a HDF5 database as float32 values.  This datatype is necessary for future 

steps where this data and its labels will be read back into memory for analysis.  Label images were 

read and stored without alteration however, a second matrix was generated to represent each class 

as a one-hot binary value.   

 

Figure 28: An example of a spectral band used to manually mask data for spectral 

library construction with one white blood cell labeled in green (left); The same 

image masked with different RGB values to signify which class the objects belong 

to (right) 
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One-hot labels are a fast way to interpret each class as a binary number where each digit represents 

a class.  For example, if an image contained four classes then a four-digit binary number was 

generated for each pixel.  If a pixel was classified to be class A then a one hot representation would 

be transcribed as ‘0001’, class B ‘0010’, class C ‘0100’ and so on.  Storing these one-hot labels at 

time of dataset creation would reduce overhead when data was read back to perform classification.  

One-hot encoding is a simple way to label each material as well as incorporate confusion.  If the 

ground truth operator is unsure of a material, they could mark the respective material’s bits ‘1’.  

For example, regions bordering cell membranes and nuclear membranes could be labeled as A or 

B ‘0011’ for example.  This reduces operator error in masking these cell regions while still 

providing some useable information for the target pixel vector. 

Table 7:  Statistics Regarding the no. of Samples in Each Data Set 

Prism Train Test

Prism 1 138 12

Prism 2 380 30  

Before storing the data into an HDF dataset, the training and testing datasets were separated 

manually (Table 7).  This was to produce a testing dataset that would consist of data that will never 

be seen by the classification algorithms during training.  Since many of the example images are 

from very similar imaging conditions, a random sampling of these examples to construct each 

dataset would likely contain very similar examples.  In this scenario a manually generated dataset 

of mutually exclusive examples would not produce a skewed accuracy score.  The objective is to 

replicate a scenario of how this system can perform on unfamiliar data giving a performance value 

that is better reflected in real world applications [124]. 

3.2.6 Data Preprocessing 

A different approach to labeling data was taken in the construction of this dataset.  Instead of 

labeling white blood cells entirely as one class, they were split into a WBC class and a separate 
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class for the nucleus in the cells.  The colors chosen to represent these classes have changed slightly 

as well.  In the prior dataset, green was used to represent WBCs where as in this dataset, WBCs are 

labeled in red and RBCs are labeled in green (Figure 29). 

 

Figure 29: An example showing an extracted band image (507nm) and its 

manually segmented version used for training and testing. 

Once training and testing datasets were selected, they were then read and stored into separate HDF5 

files.  These datasets were intentionally kept separate so the testing set could be kept on smaller 

capacity media devices.  This would also eliminate any possibility for a training prototype from 

training on the test data.  To improve data access performance, the data was stacked along the 

spectral axis to create a 443×313×(λN) datacube (Figure 30).  Where b is the number of bands per 

cube and N is the number of samples in the dataset.  This allows for simple loading of the data in 

‘chunks’ into a numpy (See section 2.9.2.1 Numerical Python) array without any kind of data 

conversion needed. 
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Figure 30:  Diagram illustrating the transformations applied to the data.  Each 

cube in the set was rotated and stacked along the spectral axis λ to enable efficient 

data retrieval during processing and analysis. 

Additionally, a third dataset was constructed using the second prism from the Arrow HSI.  This 

dataset consists of data that was collected alongside the prior dataset and constructed in the same 

fashion.  Both of these datasets were trained and tested independently from one another as the bands 

in each data-cube do not cover the same visible spectrum. 
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3.2.7 Illumination Factors:  

 

Figure 31: Mean pixel vector values for white blood cells and red blood cells with 

respective standard deviations for both. The black box shows the ROI where a 

detectable differentiation between cell types is seen. 

After collecting and constructing these datasets, the bands residing in the spectrum of interest 

(Bands 420 – 460 nm in Figure 31) as reported in [51], were poorly illuminated.  This illumination 

issue arises from the halogen filament illumination source used [123], its output spectrum is non-

linear in the spectral range of the Arrow HIS (Figure 32).  To capture images that have the best 

chance to resolve WBCs, it is best to either record the output spectrum of the illuminator or to 

utilize an illuminator with a normalized output spectrum.  Recording the output spectrum of the 

illumination source allows for background adjusted normalization of the data which can be used to 

normalize data across all imaging sessions.  Alternatively, attenuating the lower energy 

wavelengths (570 – 750 nm) would be beneficial as the sensitivity of the sensor could be increased 

to increase intensity in higher energy bands.  However, this attenuation filter would need to be 

incorporated into the background spectrum since this attenuation changes the overall output 
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spectrum of the illumination source.  A reduction of sensor oversaturation in bands with higher 

light intensities can increase the amount of useful spectral information in the data. 

 

Figure 32: Output spectrum of halogen lamp used in Leica Microscope, the red 

box outlines the output spectrum of the illumination source within the target 

region of the HSI (inside).  The outlined region is further expanded to show the 

drastic variance in illumination intensity throughout the target spectrum (outside). 

From observations of the data, the band at 428nm shows the greatest amount of the natural 

reflectance from WBCs. Figure 32 shows the output spectrum of the illumination source used to 

image the blood slides.  The range outlined in the figure directly corresponds to results seen in 

several medical studies on the optical properties of blood cells [30], [49], [50].  It also shows that 

the peak intensity does not lie within the active region of the snapshot HSI outlined by the red 

bounded region.  The larger plot in Figure 32 shows an expanded view of the bounded region from 

the inside plot.  This expanded view shows that even in the active region, the bands of most interest 

(420 - 440nm) have ~5% of the maximum intensity of the illumination source.  To counter this, the 
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gain of the camera sensor in the HSI was increased. The increased gain caused oversaturation of 

the imaging sensor in the lower energy bands (475-498nm).  This gain increase also introduces 

more noise into the datacubes, however, despite the increased noise the signal to noise ratio of the 

data improved.  Since the SNR in the ROI bands was increased, it was considered acceptable to 

leave the lower energy bands oversaturated as the spectral profiles for RBCs and WBCs is too 

similar [50].  The output spectra of RBCs and WBCs as seen in (Figure 31) show that despite the 

introduced noise, the differentiation between the two cell types is still clearly observable.  

Although, without using a filter to attenuate the lower energy wavelengths (570-750nm) the sensor 

becomes oversaturated and spectral information in those bands is lost (Figure 31). 

3.2.8 Endmember Un-mixing and Construction 

Initial methods for analyzing the training data were to separate each pixel vector belonging to each 

class into a separate matrix.  From these matrices, an average pixel vector can be generated as a 

reference when calculating the spectral angle between it and any given test vector (Eq. 1).  Then, a 

large number of random pixel vectors are selected through the data set.  The position of every 

element in each pixel vector or “skewer” as well as its value is recorded and data points 

corresponding to extreme values are selected and placed in a list.  A counter for each pixel vector 

element is incremented for each time that the same element appears in the list.  Pixels with the 

highest counter values are considered to be the purest of endmembers found in the datacube.  Newer 

methods build off of this algorithm by artificial selection of skewers to improve efficiency. 
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Chapter 4: Image Processing 

& Results  
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4.1 Naïve Bayes Classifier 

To begin experimentation, a linear naïve Bayes probabilistic classifier was implemented (see 

section 2.8.1 Naïve Bayes Classifier).  A naïve Bayes classifier simply treats each feature 

independently and attempts to separate two classes with a linear boundary in feature space. The 

target endmember (i.e. boundary) used in this experiment was generated from the manually 

classified WBC pixel vectors in the training data.  As the naïve Bayes classifier is a binary classifier, 

all other pixel vectors were classified as Non-WBC.  The features extracted from the data were the 

Euclidian distance [125] of each pixel vector to the mean of the target endmembers present in the 

training data.  The other feature was the spectral angle (see section 2.7.1 Spectral Angle Mapper) 

distance of each pixel vector from the mean target endmember.  

With the average reference vector, two feature extraction methods were applied to a linear 

segmentation algorithm.  To determine whether the Arrow snapshot HSI is capable of capturing 

enough spectral information needed to detect white blood cells (Figure 33). 

 

Figure 33: RGB visible image (captured with a microscope mounted Canon 5D 

mk II) of a region containing three WBCs among a background of RBCs.  Note 

that there is very little contrast between the two types of cells due to spectral 

mixing of background RBCs between the WBCs and illumination source. 
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With Euclidean distance and spectral angle features extracted, a linear segmentation algorithm were 

implemented to test if these features are unique enough to reject all Non-WBC pixel vectors.  The 

segmentation algorithm implemented a naïve Bayes classifier.  The boundary condition imposed 

was if the Euclidean distance of a given pixel vector that fell within 2 standard deviations (σ) of 

the target (WBC) pixel vector distributions collected to compute the mean reference vector.  If so, 

the pixel vector was classified WBC (logic 1) as seen in Figure 35 and Figure 36.  The same 

boundary condition was imposed on the SAM feature based classifier except using the spectral 

angle distribution of the target pixel vectors.  Any pixel vector with a spectral angle error within 

2σ of the mean spectral angle was classified as WBC (Figure 35 and Figure 36). 

 

Figure 34: The SAM error values (higher is better) between the pixel vectors of 

the datacube and the reference vector calculated from the spectral library.  The 

error values used in the calculation from the same example in Figure 35 on the 

left, error values from the same example in Figure 36 are on the right. 

Any pixel vector that fell outside that range was classified as non-WBCs (logic 0).  When tested 

against testing datacubes, the Euclidean feature based Bayesian classifier is unable to detect WBCs 

as seen in (Figure 36).  The spectral angle of every pixel vector in the data was calculated based 

on the reference vector.  The result was an error value containing the difference angle in n-

dimensional space between the two vectors as seen in Figure 34. 
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Figure 35: Classification results of image seen in figure 29  by naïve linear 

classifier classifier (left) and naïve linear classifier applied to SAM features (right) 

Once the reference (target endmember) vector was determined from the training data, the classifiers 

were then tested against datacubes not in the training set (Figure 34).  Based on results observed 

in Figure 35 and Figure 36, the spectral angle mapper performs better than the Bayesian classifier 

due to it being insensitive to overall intensity induced by changes in integration time, sensor gain, 

or both. 

 

Figure 36: An example of poor performance from raw spectral information 

compared to SAM features extracted from the spectral information. 

While the Bayesian classifier performed well with datacubes from which the reference vector was 

calculated (Figure 35), performance in non-training data drops significantly (Figure 36).  The 

performance (Table 8) of each classifier was measured by false positive (FPR) and true positive 

(TPR) rates [126].  The SAM method, with a high TPR of 66.11% and a low FPR of 0.37%, 

indicates a better performing classifier than the Bayesian classifier with a TPR of 13.74% and a 

FPR of 0.02%. 

Euclidean Dist. SAM 

SAM Euclidean Dist. 
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Table 8: Results from linear Naive Bayes Classifier on datasets manually split 

into training and testing sets. 

No. of Training Samples Accuracy Time (s) 

120 67.2% 233 

100 61.2% 207 
 

4.2 Gaussian Maximum Likelihood Classifier 

While the SAM features improved classification performance over Euclidian distance features, 

there is much room for improvement.  Especially since the goal of the proposed system is to provide 

a blood count, part of which requires the calculation of a ratio of WBCs to RBCs.  Thus both types 

of classes must be classified apart from background or other anomalous structures, which 

necessitates a multi-class decision boundary.  A multiclass approach commonly used in remote 

sensing called the Gaussian Maximum Likelihood Classifier (GMLC), may perform better than 

using SAM features (see section 2.8.2 Gaussian Maximum Likelihood Classifier).  To perform 

the calculations needed for training, a python package called spectral python [116] (2.9.2.4 

Spectral Python) was used.  It contained an efficient GMLC and unit tests to confirm its proper 

implementation. 

4.2.1 Fast Fourier Transform Filtering, PCA, & Gaussian Maximum Likelihood Classifier 

With such a high amount of noise and striations present in the data causing performance 

degradation (Figure 37), a de-noising algorithm was developed to remove some of the high 

frequency, linear artifacts created by the image mapper in the Arrow HSI (see Figure 12 and section 

2.4.3 Snapshot Hyperspectral Imaging Systems).  This de-noising operation applied a two 

dimensional Fast Discrete Fourier Transform (FFT) filtering technique to remove these linear 

artifacts [87].  This technique applies a filter designed to remove high frequency signals from the 

image which make up the linear ‘striations’ in the spatial information of the datacubes. 
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Figure 37: Early tests of  GMLC output for an image with background masked 

to be ignored (top left, top right). Pixel vectors incorrectly classified (bottom)   
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Figure 38:  The absolute value or real component of the 2D FFT from a band in 

the hyperspectral data.  The striations seen in the data are represented here as the 

central vertical line in the image.  The mask (right) removes this feature from the 

frequency information of the FFT and the image is then reconstructed as seen in 

Figure 39. 

The 2D FFT of every band in the dataset revealed that there is a repeating pattern of linear artifacts 

in the image.  The linear artifacts are specifically described as the vertical line passing through the 

center of the image in Figure 38.  In the Fourier space, linear features are perpendicular to their 

spatial component [127].  While a Gaussian smoothing operator could be applied to the data, it may 

remove some useful features in the process.  Instead, since the artifacts from the sensor were 

consistent throughout the datasets, a custom binary mask kernel was applied (mapped) to the data. 

To begin the process, hyperspectral datacubes are normalized to a [0,1] range based on the 

minimum and maximum values in each individual datacube.  This normalization, while not 

necessary for a discrete Fourier transform, helps to take advantage of the added resolution in float64 

datatypes as the data is originally stored as float32.  The data type conversion is necessary as the 

FFT algorithm used implements float64 datatypes for the frequency and phase components of the 
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complex Fourier space result.  Once, the FFT is complete, the frequency information is then masked 

with a generated mask designed to remove high frequency artifacts or ‘striations’ in the data. 

Once the 2D Fourier mask was applied, the inverse 2D FFT was applied, the dataset was 

reconstructed and stored back into its database.  The results presented in Figure 39:  Un-processed 

hyperspectral data prior to filtering horizontal striations from the data (left).  The same 

hyperspectral data after FFT filtering (right).Figure 39 show how well the FFT filtering operation 

removed the artifacts inherited from the HSIs image mapper. 

 

Figure 39:  Un-processed hyperspectral data prior to filtering horizontal striations 

from the data (left).  The same hyperspectral data after FFT filtering (right). 

While there appeared to be visible improvements in image quality as these uniform striations may 

introduce an increased error rate in segmentation and ultimately classification performance, the 

filtering operation could have removed statistically significant features in the spectral data.  The 

only way to test if this operation is beneficial is to apply the FFT filtering operation before the 

feature extraction of the GMLC is applied. 
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To explore if there are any superfluous bands in the data such as bands that are oversaturated or 

spectral features of the classes present are identical in two or more bands.  Much like the manual 

band rejection applied to the linear classifiers in the previous section.  A principal component 

analysis (PCA) was applied to the training set (see Figure 40 section 2.7.2 Principal Component 

Analysis). 

 

Figure 40: The covariance matrix after applying PCA to the training dataset used 

in the experiment illustrated in Figure 37 excluding background (Non-RBC & 

Non-WBC) features. 

A visualization tool seen in Figure 41, shows the components as a labeled point cloud in a 3 

dimensional scatter plot.  These plots are difficult to interpret from the figures provided (as they 

are a 2D projection of a 3D image).  However, the contribution they provide is for the analyst to 

determine if there is indeed separability between the classes present in the data.  
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Figure 41: PCA components of raw (left) and FFT processed data (right).  Classes 

are represented by their respective colors shown in Figure 42-45 

The first feature set used was only the normalized datacubes with no filtering applied, this dataset 

was passed into the GMLC before (Figure 42) and after passing only the most significant PCA 

components (top 40%, or ~10-12 ‘bands’) to the classifier.  The results showed a reduction in sparse 

misclassifications and decreased the number of errors along the boundaries of cell membranes 

(Figure 43). However, some regions of background had a higher distribution of misclassification 

than others giving only a 2-3% increase in accuracy.  As the data tested possessed a low SNR, it is 

unclear whether the PCA components provide any significant improvement to multiclass 

performance without training on a higher quality dataset.  Despite this result, the Gaussian classifier 

performed very well compared to prior linear classification experiments.  With mean percentage 

accuracy ranging from 65-89% based on background exclusion and dimensionality reductions 

performed prior to training as well as mathematical morphology operations [128] performed after 

testing to reduce overall misclassification error as much as possible. 
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Figure 42:  Results of Gaussian Classifier on raw, unprocessed hyperspectral 

data.   

 

Figure 43: Results of Gaussian Classifer on PCA features of raw, unprocessed 

hyperspectral data 
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Figure 44:  Results of Gaussian classifer on FFT filtered hyperspectral data. 

 

Figure 45: Results of Gaussian Classifer on PCA features of FFT filtered data 
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Figure 46:  Observable improvements in classification performance of using PCA 

selected spectral features from the raw hyperspectral data (left) and the FFT 

filtered hyperspectral data (right) 

 

Figure 47:  Application of a erosion (a mathematical morphology algorithm) to 

the results to clean up sparse errors in the data (left).  Compared to the manually 

generated ground truth (right) as well as results seen in Figure 46. 

Ground Truth 
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The FFT filtering technique was then applied to the data and the prior two experiments were 

repeated (Figure 44).  Again, PCA components appeared to have reduced the number of sparse 

misclassifications and increased accuracy roughly 2-3% (Figure 45).  However, the smoothing 

operation from the FFT filtering reduced a large number of linear regions of misclassification 

caused by artifacts from the Arrow HSI’s image mapper.  The error (see Table 9) decreased 

noticeably around the boundaries of the cell membranes of blood cells which may allow for further 

increased accuracy performance by removing sparse misclassifications around blood cells. 

One final operation that may be applied to the results is an image manipulation technique called 

erosion (Figure 47).  The erosion algorithm looks for collections of neighboring pixels that have 

the same value (label) and removes the outermost layer of pixels from the image.  The result is a 

removal of sparsely distributed pixels which have a high likelihood of being erroneous, while 

keeping the larger neighborhoods of pixels relatively untouched. Figure 46 depicts PCA and PCA 

& FFT GMLC classification results for a dataset that was generated using a second dataset where 

datacubes with a poor SNR (below 10dB) were excluded from their respective training and testing 

sets.  This lower SNR threshold limit increased accuracy percentages by ~10% which demonstrates 

how proper illumination and image capture settings can give a significant reduction in classification 

errors.  Figure 47 shows an erosion operation applied to the PCA & FFT GMLC result, removing 

a majority of sparsely misclassified pixel vectors and increasing average total accuracy to 89% 

Table 9: Error rates for each data transformation applied during training for blood 

cell datasets 

Accuracy % of GMLC and Data transformations 

GMLC Raw 70%-74% 

GMLC w/ PCA 70%-72% 

GMLC w/ FFT 71%-77% 

GMLC w/ FFT & PCA 75%-81% 

Cleaned GMLC w/ FFT & PCA 84%-89% 
.  
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Chapter 5: Conclusions & 

Future Work 
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5.1 Results Summary and Conclusions 

The contributions from this thesis work include: 

1. Constructed an HSI dataset of unstained blood samples on sealed blood slides. 

2. From experimental data, found a small region of spectral bands in the visible spectrum 

(420-440nm) in which WBCs and RBCs show a significant difference in absorptivity. 

a. This region is consistent with results from other works regarding the optical 

properties of blood cells [30], [49], [50]. 

3. Demonstrated that a snapshot HSI is capable of capturing spectral information RBCs 

and WBCs in this narrow region. 

a. Implemented methods used in GIS and other HSI applications to show this 

region is significant enough to differentiate RBCs and WBCs. 

4. Illustrate the potential of HSI systems to detect unstained blood cells compared to 

standard RGB methods which rely on the use of stain to improve contrast. 

The use of spectral features of blood and other tissues is steadily becoming an applicable 

technology for medical professionals as a diagnostic tool for tissue damage and cancer detection.  

While a few technologies have used some of these spectral features to monitor blood oxygenation 

and blood flow but, no current systems have used this property for in vivo blood cell counting.  

Blood cells have shown to have a unique spectral response in the low energy ultraviolet spectrum 

(320 ± 20nm) and the high energy visible spectrum (420 ± 15nm).  A spectral response that directly 

correlates to findings in medical studies on the optical properties of blood [30], [49], [50].  With 

these properties, the goal of this thesis research was to exploit one or both of these properties to 

detect blood cells by type (e.g. WBC RBC). 

With a collection of 150 unique examples captured from unstained blood slides of two subjects, 

sealed on a glass slide using in three diluted concentrations (1:1, 1:10 and 1:100 hematocrit).  A 

training subset of 90 examples was used to extract spectral features and classify the remaining 
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examples outside the training subset.  An image processing workflow has been established using 

mostly open source software, for example, python, numpy, scipy, scikit, spectral python, other 

python packages, HDF5, and PyCharm Community Edition. 

The experiments in this paper involved the steps developed and explored exploiting a natural 

phenomenon (e.g. spectral absorption) of blood to detect WBCs.  Collection experiments were 

developed to capture sealed and unstained blood samples in several different concentrations and 

illumination scenarios.  A novel imaging approach using a snapshot HSI was deployed to collect 

and gather data of these blood on slides to test this hypothesis.  Hyperspectral image processing 

and analysis methods were applied to the data in order to determine whether the spectral and spatial 

features of each cell type could be extracted and used to differentiate blood cell types. 

The results of these experiments showed blood cell classification accuracy ranging 65-92% (see 

Table 10-15) based on the types of image processing techniques applied to the data before and after 

classification.  With the FFT filtering method increasing classification accuracy to 78%(Figure 48) 

and applying morphological erosion (Figure 47) to the results after classification can also increase 

performance to 90% (Figure 49).  This performance boost is likely caused by removing noise 

caused by the HSI’s image mapper and spectral mixing influencing the GMLC to misclassify sparse 

groupings of pixels.  Future experiments should test these techniques on a deterministic classifier 

rather than a stochastic classifier like the GMLC.  A deterministic model may help reduce classifier 

error as the intensities of target endmembers in the image may not vary enough for a probabilistic 

model to predict. 
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Table 10: Pixel clasification results using raw HSI data 

Raw GMLC Performance
Confusion Matrix:

3102 0 0 0 0

0 1902 173 571 704

0 465 13461 1547 2529

0 599 175 1755 791

0 9108 11973 14654 75150

Classification Report

precision recall f1-score support

null 1.00 1.00 1.00 3102

WBC 0.16 0.57 0.25 3350

RBC 0.52 0.75 0.61 18002

NUC 0.09 0.53 0.16 3320

BKGND 0.95 0.68 0.79 110855

avg / total 0.86 0.69 0.74 138659

Classification accuracy: 0.677802  

Table 11: Pixel classification results after applying FFT filter to raw HSI data 

FFT Filtering GMLC Performance
Confusion Matrix:

3102 0 0 0 0

0 2044 134 533 619

0 354 14357 1480 1811

0 570 132 1969 649

0 5605 8737 9581 86962

Classification Report:

precision recall f1-score support

null 1.00 1.00 1.00 3102

WBC 0.24 0.61 0.34 3350

RBC 0.61 0.80 0.69 18002

NUC 0.14 0.59 0.23 3320

BKGND 0.97 0.78 0.87 110885

avg / total 0.88 0.78 0.82 138659

Classification accuracy: 0.782019  
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Table 12: Pixel classification results after applying principal component analysis 

to raw HSI data 

PCA prior to GMLC
Confusion Matrix:

3102 0 0 0 0

0 1904 176 550 720

0 475 13648 1500 2379

0 602 176 1719 823

0 9122 12224 14310 75229

Classification Report:

precision recall f1-score support

null 1.00 1.00 1.00 3102

WBC 0.16 0.57 0.25 3350

RBC 0.52 0.76 0.62 18002

NUC 0.10 0.52 0.16 3320

BKGND 0.95 0.68 0.79 110885

avg / total 0.86 0.69 0.75 138659

Classification accuracy: 0.689476  

Table 13: Pixel classsification results after applying principal component analysis 

and FFT filtering to raw HSI data 

PCA & FFT filter prior to GMLC
Confusion matrix:

3102 0 0 0 0

0 2048 136 552 614

0 341 14458 1482 1721

0 567 148 1934 671

0 5564 8724 9369 87228

Classification Report:

precision recall f1-score support

null 1.00 1.00 1.00 3102

WBC 0.24 0.61 0.35 3350

RBC 0.62 0.80 0.70 18002

NUC 0.15 0.58 0.23 3320

BKGND 0.97 0.79 0.87 110885

avg / total 0.88 0.78 0.82 138659

Classification accuracy: 0.784442  
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Table 14: Pixel classsification results after applying erosion technique to results 

from Table 13 

PCA & FFT GMLC aftter erosion
Confusion matrix:

3102 0 0 0 0

815 1652 35 234 614

2080 3 13501 697 1721

989 282 5 1373 671

17242 203 4177 2035 87228

Classification Report:

precision recall f1-score support

null 0.13 1.00 0.23 3102

WBC 0.77 0.49 0.60 3350

RBC 0.76 0.75 0.76 18002

NUC 0.32 0.41 0.36 3320

BKGND 0.97 0.79 0.87 110885

avg / total 0.90 0.77 0.82 138659

Classification accuracy: 0.770639  

Table 15: Pixel classification results after ignoring removed pixels from results 

in Table 14 

PCA & FFT GMLC Erosion after ignoring removed pixels

Confusion matrix:

24228 0 0 0 0

0 1652 35 234 614

0 3 13501 697 1721

0 282 5 1373 671

0 203 4177 2035 87228

Classification Report:

precision recall f1-score support

null 1.00 1.00 1.00 24288

WBC 0.77 0.65 0.71 2535

RBC 0.76 0.85 0.80 15922

NUC 0.32 0.59 0.41 2331

BKGND 0.97 0.93 0.95 93643

avg / total 0.93 0.92 0.93 138659

Classification accuracy 0.922998  
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Figure 48:  Accuracy metrics of the Gaussian Maximum Likelihood classifier 

based on the several pre-processing techniques applied to the data prior to 

classification. 

\ 

Figure 49:  Accuracy metrics of Gaussian Maximum Likelihood Classifier after 

the erosion post processing techniques were applied to the classification results. 
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It should be noted that there is an inherent bias in the data due to a limited number of subjects (2) 

from which blood samples were collected.  This bias, while decreasing the statistical significance 

of these results, allows these results to demonstrate a HSI’s promising capability to detect and 

segment blood cell types.  The creation of a robust dataset of unstained blood samples is required 

in order to validate these results 

This thesis research demonstrated that it is possible to differentiate blood cells based on their 

absorptivity without the need for a label or stain.  The methods and experiments designed and 

implemented in this research have helped to lay out a foundation to further develop a system that 

may perform this task in vivo.  These tests were conducted on datasets captured using two different 

spectral bandwidths that the Arrow HSI is capable of capturing within.  This helped demonstrate 

how important the bands within the range of 420 – 440nm are to differentiating between RBCs and 

WBCs.  Within this range, the difference between WBCs and RBCs is at its greatest and it would 

be prudent to design a HSI that capitalizes on this spectrum when moving forward in this research. 

5.2 Future Work 

5.1.1 Deep Learning Neural Network 

One downside of previous experiments was that the features extracted were based on a heuristic 

approach.  One added benefit of artificial neural network (NN) learners is that they extract features 

based on experiences from the training data thus a non-heuristic approach is taken to extract optimal 

features for the data observed (Figure 50).   
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Figure 50:  Classification results from a Fully Connected Neural Network trained 

from roughly 30 unique sample data-cubes.  Of which multiple data-cubes were 

captured over a period of 20 seconds. This result is from a single hidden layer 

fully connected neural network.  A more advanced network, improved 

preprocessing and most imporantly a large dataset may surpass performance 

reported in this work. 

The purpose of utilizing this neural network is to find any performance gain from using nearly all 

the examples in the data set rather than an extremely small percentage.  Neural networks require a 

large amount of data and processing power to compute.  With the samples collected in preliminary 

testing of the system there are not enough examples to construct a viable network that exceeds the 

performance of other methods tested.  With a more robust data collection from many subjects, 

Artificial Neural Networks are worth exploring. 
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5.1.2 Improvements in snapshot HSI technology 

Based on the discoveries made in this thesis research, a system capable of detecting and counting 

white blood cells in vivo is possible.  Although given the current equipment in this research that 

goal is very challenging.  To improve the performance and viability of this system, a snapshot HSI 

that is capable of capturing data-cubes at a higher frame rate.  As well as a system with a smaller 

footprint so that these systems could be made semi-portable [10], [90]. 

Bay-Spec Corporation has recently developed a snapshot hyperspectral imager that has a small 

footprint and high frame rate.  This device vastly surpasses the capabilities of the [11] Arrow system 

and it could be used for further study as well as tracking cells in high flow scenarios. Another 

system designed and manufactured by Ximea Inc, is a system on chip (SoC) solution that can filter 

up to 25 bands on the sensor itself, eliminating any need for expensive and vibration sensitive 

optical hardware [90]. 

Other improvements would be to gather and image blood samples from a small population of 

individuals.  This will test if these optical features are common to all cells in different subjects.  

Also, one future problem to overcome is commonly referred to as the 3D problem.  It refers to the 

depth at which blood cells travel within the tissue as the surrounding blood vessels and tissue layers 

will affect the spectral information recorded by the camera. 

Alternative sites on the human body can also be used to image blood cells as they move through 

blood vessels.  One site in particular is the vascular tissue on the inside of the lip otherwise known 

as the labial (oral) mucosa (Figure 51).  These vessels in this tissue are very superficial and would 

provide a valuable alternative location if perhaps imaging scleral vessels in some subjects would 

be too difficult (damaged or missing eye).   
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Figure 51:  Illustration of the Buccal (labial) mucosa, the regioun behind th elip 

which is very vascular and is another potential imaging site. 

This effect also refers to the nature of blood cells as they travel through a vessel, as white cells tend 

to stick to the sides of vessels and red cells flow over one another.  Spectral un-mixing of these 

tissues will pose a challenge as they all contain nuclear material that may reduce the view-ability 

of the WBCs.   

 

Figure 52:  Illustration Showing Limitations of non-specialized Microscope 

Objectives, note how the Depth of Field (DoF) only occupies a small volume of 

the capillary tube.  Also not the focal plane of the objective widens as the distance 

from the focal point or working distance. 
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There is also an issue known as the 3D problem in which the object or in this case a blood vessel, 

does not have a depth of field deep enough to capture all objects in focus (Figure 52).  Chromatic 

aberration of the microscope objectives also plays a role in distorting spectral data.  To counter this, 

achromatic objectives can be used since they increase the bandwidth of wavelengths that will be 

focused correctly on the sensor of the system. 

The design and construction of an endoscope system to attach a lightweight adjustable objective to 

the snapshot HSI is the next step before live subject testing could be conducted.  This endoscope 

would allow for relatively simple image collection which would otherwise be impractical due to 

the large size and weight of the Arrow HSI (Figure 53).  Alternatively, a newer model snapshot 

HSI could replace the Arrow system [46]. 

 

Figure 53: Example diagram demonstrating the desired system setup for 

performing on site complete blood counts. 

With an endoscope system developed and tested with no detriment to system performance, the path 

toward live subject data collection and testing would be the next logical step.  To build a system 

that can perform rapid label-less blood counts for any individual would require a significant amount 

of data.  Data collected from a diverse group of subjects as well as complete blood counts performed 

on samples extracted prior to imaging as a control.  The data and information collected should be 
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enough to build a spectral endmember library of all blood cells in the body.  With a next generation 

snapshot HSI sensor, a methodical and organized sample collection.  This system will have a 

potential to provide a simple, automated in vivo blood counting system that may protect lives from 

danger or save lives from disease. 
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System. 
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#################################################################################### 
#main section of convertBsqMulti.py 
 
if __name__ == "__main__": 
    pathName = r'/media/crob/HyperSpec/-_Last_Minute_Data_-'  #F:\-_Research Data_-
\Blood 9_3_2015\Slide 1  /media/crob/USB30FD/HyperSpec_Data/All bsq static 
    os.chdir(pathName) 
    #objNames = glob.glob1(pathName,"*.bsq") 
    #bsqCount = len(objNames) 
    ##  bsqCount = len(glob.glob1(pathName,"*.bsq")) Need both number of files as 
well as filenames 
 
    ## This loop repeats for all subfolders 
    all_subDirs = [d for d in os.listdir('.') if os.path.isdir(d)] 
 
    for dirs in all_subDirs: 
        sDir = os.path.join(pathName, dirs) 
        objNames = glob.glob1(sDir,"*.bsq") 
        bsqCount = len(objNames) 
 
        ## insert for loop here 
        for i in range(0,bsqCount): 
 
            dir = os.path.dirname(os.path.join(sDir,objNames[i])) 
 
            if not os.path.exists(dir+'/TIF/'): 
                os.mkdir(dir+'/TIF/') 
            outfile = dir + '/TIF/' + 
os.path.basename(os.path.join(sDir,objNames[i]))[:-4] 
            (dcb, lambdas) = readbsq(os.path.join(sDir,objNames[i])) 
 
            print('dcb.shape=', dcb.shape) 
            print('dcb.dtype=', dcb.dtype) 
            print('lambdas=', lambdas) 
 
        ## Convert type double pixel data to type uint16 for exporting to TIFF. 
            minval = amin(dcb) 
            maxval = amax(dcb) 
            print('original dcb: minval=%f, maxval=%f' % (minval, maxval)) 
 
            new_dcb = int16((dcb - minval) * (2**15 - 1) / float64(maxval - minval)) 
            print('new_dcb.dtype=', new_dcb.dtype) 
            print('rescaled dcb: minval=%i, maxval=%i' % (amin(new_dcb), 
amax(new_dcb))) 
 
            img = dcb[:, :, 0] 
            im = Image.fromarray(img) 
            #im.show() 
            #imshow(img) 
 
        ## Write the result as a 16-bit TIFF file. Note that very few TIFF viewers 
support 16-bit pixels! ImageJ is a free and widely available one, though. 
            write_dcb_tiffs(outfile, dcb, lambdas)  
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from numpy import * 
import matplotlib.pyplot as plt 
import struct, os 
from PIL import Image 
#import imaging 
import sys 
sys.path 
#from libtiff import TIFFfile 
#import tifffile.c as tiff 
import tifffile as TIFFfile 
from scipy import io 
import glob ## used to count files in a directory 
 
sys.path 
##################################################################################### 
def imshow(image, ax=None, **kwargs): 
    image = array(image) 
    iscolor = (image.ndim == 3) 
 
    if (ax == None): 
        ax = plt.gca() 
    def myformat_coord(x, y): 
        col = int(x+0.5) 
        row = int(y+0.5) 
        if iscolor: 
            (Nx,Ny,_) = image.shape 
        else: 
            (Nx,Ny) = image.shape 
 
        if (col >= 0) and (col < Ny) and (row >= 0) and (row < Nx): 
            if iscolor: 
                z = image[row,col,:] 
            else: 
                z = image[row,col] 
 
            if iscolor or (int(z) == z): 
                if iscolor: 
                    return('x=%i, y=%i, z=(%i,%i,%i)' % (row, col, z[0], z[1], z[2])) 
                else: 
                    return('x=%i, y=%i, z=%i' % (row, col, z)) 
            else: 
                return('x=%i, y=%i, z=%1.4f' % (row, col, z)) 
        else: 
           return('x=%i, y=%i'%(y, x)) 
 
    plt.imshow(image, **kwargs) 
    ax.format_coord = myformat_coord 
    return 
 
##################################################################################### 
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def readbsq(filename, debug=False): 
    filebytes = open(filename, "rb").read() 
    output = struct.unpack('<25c', filebytes[0:25]) 
    #vv = output.join() 
    vv = list(output) 
    #in python 3.x you need to put a b'' instead of '' to signify you're reading 
bytes into a string/bytearray 
    #putting a b in front of a string converts it into a byte array.  Why did the 
docs never mention this? beats me. 
    version_string = b''.join(vv) 
    #outputL = output.decode() 
 
    #version_string = ''.join(outputL) 
 
    if debug: print(version_string + '\n') 
 
    if (version_string == b'RPSpectralCube v 0.1\x00\x00\x00\x00\x00'): 
        version_number = 0 
        firstbyte = 25 
    elif (version_string == 
b'RPSpectralCube\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'): 
        version_number = int32(struct.unpack('>I', filebytes[25:29])) #[0] 
        firstbyte = 29 
    else: 
        raise ImportError('readbsq() cannot recognize that BSQ file version.') 
 
    print('BSQ file version = ' + str(version_number)) 
 
    (Nx,Ny,Nw) = struct.unpack('>III', filebytes[firstbyte:firstbyte+12]) 
    firstbyte += 12 
    if debug: print(Nx,Ny,Nw,firstbyte) 
 
    ## From the Nw value, read in the set of wavelengths, each of type float64. 
    lambdas = zeros(Nw) 
    lambdas = struct.unpack('>' + str(Nw) + 'd', 
filebytes[firstbyte:firstbyte+(Nw*8)]) 
    firstbyte += Nw*8 
    if debug: print('lambdas=', lambdas) 
    if (version_number == 0): 
        pass 
    elif (version_number == 101): 
        pixmin = struct.unpack('>d', filebytes[firstbyte:firstbyte+8]) 
        pixmax = struct.unpack('>d', filebytes[firstbyte+8:firstbyte+16]) 
        firstbyte = firstbyte + 16 
        if debug: print('pixmin,pixmax = ', pixmin, pixmax) 
    else: 
        raise NotImplementedError('That version number (' + str(version_number) + ') 
is not implemented yet!') 
    dcb = zeros((Nx,Ny,Nw)) 
    for w in arange(Nw): 
        for y in arange(Ny): 
            dcb[:,y,w] = struct.unpack('<'+str(Nx)+'f', 
filebytes[firstbyte:firstbyte+(Nx*4)]) 
            firstbyte += Nx*4 
    return([dcb, lambdas]) 
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##################################################################################### 
def write_dcb_tiffs(fileroot, dcb, lambdas = None): 
    (Nx,Ny,Nw) = dcb.shape 
 
    if (lambdas == None): 
        lambdas = [] 
        for w in arange(Nw): 
            lambdas.append('%02i' % w) 
 
    for w in arange(Nw): 
        wavestr = ('%03i' % int(lambdas[w])) 
        filename = fileroot + "-" + wavestr + '.tif' 
        print('Writing filename "' + filename + '"') 
        img = dcb[:,:,w] 
        write_16bitTiff(filename, img) 
 
    return 
 
##################################################################################### 
def readtiff(filename): 
    assert os.path.exists(filename), 'File "' + filename + '" does not exist.' 
    tif = TIFFfile(filename) 
    img = tif.asarray() 
    tif.close() 
    img = flipud(img) 
    return(img) 
 

 

This script extracts each band in the ENVI binary sequential formatted datacubes into a TIF image 

file.  This conversion was only used to help visualize the data.  Other than Rebellion Photonics’ 

Crystal software, there were no other software tools available to decode and view the datacubes in 

a relatively simple manner. 
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Appendix B: BSQ to HDF5 

Conversion Script 
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__author__ = "Christo Robison" 
 
import numpy as np 
from scipy import signal 
from scipy import misc 
import h5py 
from PIL import Image 
import os 
import collections 
import matplotlib.pyplot as plt 
import convertBsqMulti as bsq 
import png 
 
'''This program reads in BSQ datacubes into an HDF file''' 
##################################################################################### 
 
def convLabels(labelImg, numBands): 
    ''' 
    takes a MxNx3 numpy array and creates binary labels based on predefined classes 
    background = 0 
    red = 1 WBC 
    green = 2 RBC 
    pink = 3 nuclear material 
    yellow = 4 ignore 
    ''' 
 
    #b = np.uint8(numBands / 31) 
    # print(b / 31) 
    tempRed = labelImg[:,:,0] == 255 
    tempGreen = labelImg[:,:,1] == 255 
    tempBlue = labelImg[:,:,2] == 255 
    tempYellow = np.logical_and(tempRed, tempGreen) 
    tempPink = np.logical_and(tempRed, tempBlue) 
    temp = np.zeros(np.shape(tempRed)) 
    temp[tempRed] = 1 
    temp[tempGreen] = 2 
    temp[tempPink] = 3 
    temp[tempYellow] = 4 
    print(temp) 
    print(tempRed, tempGreen, tempBlue, tempYellow, tempPink) 
    return temp   
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def loadBSQ(path = '/home/crob/HyperSpec_Data/WBC v ALL/WBC25', debug=False): 
    d31 = [] 
    d31_norm = [] 
    d25 = [] 
    d25_norm = [] 
    l25 = [] 
    l = [] 
    l3 = [] 
    lam = [] 
    for root, dirs, files in os.walk(path): 
        print(dirs) 
        for name in sorted(files): #os walk iterates arbitrarily, sort fixes it 
            print(name) 
 
            if name.endswith(".png"): 
                # Import label image 
                im = np.array(Image.open(os.path.join(root,name)),'f') 
                print np.shape(im) 
                im = im[:,:,0:3] # > 250 
                print(np.shape(im)) 
                im = np.flipud(im) 
                l.append(im) 
                print(np.shape(im)) 
                print("Name = " + name) 
 
            if name.endswith(".bsq"): 
                bs = bsq.readbsq(os.path.join(root,name)) 
                print(np.shape(bs[0])) 
                print(len(bs[1])) 
                #separate bsq files by prism 
                if len(bs[1]) == 31: 
                    print('BSQ is size 31') 
                    print(len(bs[1])) 
                    lam = bs[1] 
                    #d31.append(np.reshape(np.transpose(bs[0], (1, 2, 0)), 4298429)) 
                    d31.append(bs[0].astype(np.float32)) 
                    d31_norm.append(bs[0].astype(np.float32)/np.amax(bs[0])) 
 
                if len(bs[1]) == 25: 
                    print('BSQ is size 25') 
                    print(len(bs[1])) 
                    lam = bs[1] 
                    d25.append(bs[0].astype(np.float32)) 
                    d25_norm.append(bs[0].astype(np.float32)/np.amax(bs[0])) 
 
                    #d25.append(np.reshape(bs[0],[138659,25]).astype(np.float32)) 
                    # old don't use #d25.append(np.reshape(np.transpose(bs[0], (1, 2, 
0)), 3466475)) 
 
    out = collections.namedtuple('examples', ['data31', 'data31_norm', 'data25', 
'data25_norm', 'labels', 'lambdas']) 
    o = out(data31=np.dstack(d31),data31_norm=np.dstack(d31_norm), data25=d25, 
data25_norm=d25_norm, labels=np.dstack(l), lambdas=lam)  #np.vstack(d25), 
labels=np.hstack(l) 
    return o   
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def convLabels(labelImg, numBands): 
    ''' 
    takes a MxNx3 numpy array and creates binary labels based on predefined classes 
    background = 0 
    red = 1 WBC 
    green = 2 RBC 
    pink = 3 nuclear material 
    yellow = 4 ignore 
    ''' 
 
    tempRed = labelImg[:,:,0] == 255 
    tempGreen = labelImg[:,:,1] == 255 
    tempBlue = labelImg[:,:,2] == 255 
    tempYellow = np.logical_and(tempRed, tempGreen) 
    tempPink = np.logical_and(tempRed, tempBlue) 
    temp = np.zeros(np.shape(tempRed)) 
    temp[tempRed] = 1 
    temp[tempGreen] = 2 
    temp[tempPink] = 3 
    temp[tempYellow] = 4 
    print(temp) 
    print(tempRed, tempGreen, tempBlue, tempYellow, tempPink) 
    return temp 
 
def convert_labels(labels,n_classes, debug = False): 
    for j in range(n_classes): 
        temp = labels == j 
        temp = temp.astype(int) 
        if j > 0: 
            conv_labels = np.append(conv_labels, temp) 
            print(temp[:]) 
        else: 
            conv_labels = temp 
    print(np.shape(conv_labels)) 
    conv_labels = np.reshape(conv_labels, [len(labels), n_classes], order='F') 
    if debug: print(np.shape(conv_labels)) 
    if debug: 
        f = h5py.File("/home/crob/HyperSpec/Python/BSQ_whole.h5", "w") 
        f.create_dataset('bin_labels', data=conv_labels) 
        f.close() 
    return conv_labels 
 
def getClassMean(data, classNum): 
    kee = np.equal(data['label'],classNum) 
    out = np.mean(data['data']*kee,axis=0) 
    return out 
 
def getAverages(data, numClasses): 
    out = [] 
    for i in range(numClasses): 
        a = getClassMean(data, i) 
        out.append(a) 
    return out 
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if __name__ == '__main__': 
    path = '/home/crob/-_PreSortedData_Train_-'     s = loadBSQ(path) 
    print(np.shape(s.data25)) 
    f = h5py.File("HYPER_SPEC_TRAIN_RED.h5", "w") 
    f.create_dataset('data', data=s.data31, chunks=(443, 313, 1)) 
    f.create_dataset('norm_data', data=s.data31_norm, chunks=(443,313,1)) 
    f.create_dataset('labels', data=s.labels) 
    f.create_dataset('bands', data=s.lambdas) 
    #Move data into datasets 
    g = np.shape(s.data31) 
    b = np.uint16(g[2] / 31)  #more than 256 samples 
    lab = np.reshape(s.labels, [443, 313, 3, b], 'f') 
    numExamples = np.shape(lab) 
    a = [] 
    for j in range(np.uint16(numExamples[3])): 
        a.append(convLabels(lab[:, :, :, j], None)) 
    f.create_dataset('classLabels', data=np.dstack(a)) 
    f.close()  

This is the script used to convert data that was separated, masked, and stored as training and testing 

sets into a HDF database.  These database files allow for easy access to the data with little 

programming experience.  To add data to the data set or create a new one, data and labels must be 

stored into a shared directory.  Also, training and testing data (and labels) should not be stored in 

the same directory or they will be added to the same HDF file. 
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Appendix C: Script Used to 

Generate HDF Datasets:  

  



129 

 

__author__ = 'Christo Robison' 
 
#This program preprocesses the data by removing artifacts caused by the snapshot HSI 
system 
 
from spectral import * 
import numpy as np 
from PyQt4 import QtGui 
import pyqtgraph as pg 
from pyqtgraph.widgets.MatplotlibWidget import MatplotlibWidget 
from scipy import fftpack as ft 
import h5py 
import matplotlib 
import matplotlib.pyplot as plt 
plt.style.use('ggplot') 
import time 
from skimage import io, exposure, img_as_uint, img_as_float 
import png 
import pyfftw 
import HyperSpecGui 
 
show_full_out = False 
if show_full_out: np.set_printoptions(threshold=np.nan) 
 
##################################################################################### 
def getData(filename=None, dat_idx=None, lab_idx=None): 
    if filename is None: filename = 'D:\-_Hyper_Spec_-\HYPER_SPEC_TEST.h5' 
    f = h5py.File(filename, 'r') 
    if dat_idx is None: 
        dcb = f['data'][:] #Extract normalized data for svm b/c intensity sensitive 
    else: 
        dcb = f['data'][:, :, dat_idx:dat_idx+len(f['bands'])] 
 
    if lab_idx is None: 
        labels = f['labels'][:] 
        classLabels = f['classLabels'][:] 
    else: 
        labels = f['labels'][:, :, lab_idx] 
        classLabels = f['classLabels'][:, :, lab_idx] 
 
    bands = f['bands'][:] 
    #classLabels = f['classLabels'][:] 
    out = {'dcb': dcb, 'labels': labels, 'lambdas': bands, 'classLabels': 
classLabels} 
    f.close() 
    return out 
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def im2png(img, filename): 
    f = open(filename, 'wb') 
    w = png.Writer(313, 443, greyscale=True, bitdepth=8) 
    if img.dtype is not np.int8: 
        if (np.amin(img) < 0): img = img - np.amin(img) 
        img = np.float32(img) * (2.0**7 - 1.0)/ np.amax(img) 
        img = np.int8(img) 
    w.write(f, img) 
    f.close() 
         
##################################################################################### 
def imSave(img, filename, range='float'): 
    f = open(filename,'wb') 
    w = png.Writer(313, 443, greyscale=True, bitdepth=8) 
    img_w = exposure.rescale_intensity(img,out_range=range) 
    img_w = img_as_uint(img_w) 
    w.write(f, img_w) 
    f.close() 
 
##################################################################################### 
def shapeData(data, labels, numExamples, numBands, altDims = None): 
    '''Takes input data matrix and reshapes it into HW,D format 
    i.e. endmembers and their appropriate class labels''' 
    if altDims is None: altDims = [443, 313, numBands, numExamples] 
    temp = np.reshape(data, altDims, 'f') 
    dataR = np.reshape(temp,[-1, numBands]) 
    labelL = np.reshape(labels, [-1,1]) 
    out = {'data': dataR, 'label': labelL} 
    return out 
 
##################################################################################### 
def hsfft(dcb): 
    '''Takes in a datacube (dcb) and returns n-dim FFT of datacube''' 
    temp_dcb = pyfftw.n_byte_align(dcb, 16, dtype='complex128') 
    dcb_fft = pyfftw.interfaces.numpy_fft.fftn(temp_dcb) 
    return dcb_fft 
 
##################################################################################### 
def genMask(h=443, w=313, offset=41, debug=False): 
    '''Generates a fft mask to eliminate HS system artifacts from image''' 
    mask = np.ones((h, w), dtype='float32') 
    mask[:, (w/2):((w+2//2)//2)] = 0 
    mask[((h/2)-offset):((h/2)+offset), :] = 1 
    if debug: print(mask) 
    return mask 
 
##################################################################################### 
def applyMask(dcb_fft, mask=genMask, debug=False): 
    '''Applies mask to spatial information of each band in datacube.''' 
    masked_fft = np.multiply(np.rollaxis(dcb_fft, 2, 0,), ft.ifftshift(mask)) 
    if debug: print("Shape of FFT:" + str(np.shape(masked_fft))) 
    return masked_fft   
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def hsifft(dcb_fft, debug=False): 
    '''Performs inverse fourier transform on datacube''' 
    dcb_out = pyfftw.interfaces.numpy_fft.ifftn(dcb_fft) 
    if debug: print("Shape of iFFT:" + str(np.shape(dcb_out))) 
    return dcb_out 
 
##################################################################################### 
def dcbFilter(dcb, h=443, w=313, offset=41, debug=False): 
    '''A helper function to simplify masking process and reduce confusion''' 
    masked_fft = applyMask(hsfft(dcb), genMask(h, w, offset, debug)) 
    dcb_out = hsifft(masked_fft, debug) 
    return dcb_out 
 
##################################################################################### 
def dispDCB(dcb): 
    dcb = np.swapaxes(dcb, 2, 0) 
 
##################################################################################### 
if __name__ == '__main__': 
    # initialize Qt, needed once per application 
    app = QtGui.QApplication([]) 
    # Define widget to hold outputs 
    MainWindow = QtGui.QMainWindow() 
    MainWindow.setWindowTitle('HyperSpec: Test') 
    ui = HyperSpecGui.Ui_MainWindow() 
    ui.setupUi(MainWindow) 
    MainWindow.show() 
 
    trainData = getData(filename='D:\-_Hyper_Spec_-\HYPER_SPEC_TEST_RED.h5') 
    testData = getData(filename='D:\-_Hyper_Spec_-\HYPER_SPEC_TEST_RED.h5') 
    print(np.shape(trainData['dcb'])) 
    debug = False 
    if debug is True: 
        for i in range(np.shape(trainData['dcb'])[2]): 
            im = exposure.rescale_intensity(trainData['dcb'][:, :, i], 
out_range='float') 
            im = img_as_uint(im) 
            io.imsave((r'HYPER_SPEC_TEST\band_image_' + str(i) + '.png'), im) 
 
    ##### Pull out a data cube and display it in a pyqtgraph object##### 
    img = trainData['dcb'][:, :, 343:370] 
    img1 = np.swapaxes(img, 2, 0) 
    ui.ImageView1.setImage(img1) 
    img_file = open('fftMask_new.png', 'wb') 
    img_w = png.Writer(313, 443, greyscale=True, bitdepth=16) 
    img_to_write = exposure.rescale_intensity(img[:, :, 3], out_range='float') 
    img_to_write = img_as_uint(img_to_write) 
    img_w.write(img_file, img_to_write) 
    img_file.close() 
    ui.ImageView2.setImage(img[:, :, 3]) 
    mask = np.ones((443, 313), dtype='float32') 
    mask[:, 155:157] = 0  #10:430 
    mask[180:262, :] = 1 
    print(mask)   
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    ui.ImageView4.setImage(mask) 
    temp_img = pyfftw.n_byte_align(img, 16, dtype='complex128') 
    img_fft = pyfftw.interfaces.numpy_fft.fftn(temp_img) 
    print(img_fft.dtype) 
    print(img_fft.shape) 
    #if projecting mask along data, need to make sure last two dimensions match 
    Ex: 4Lx3Wx10H * 3Wx10H = 4Lx3Wx10H 
 
    mask_ifft = np.multiply(np.rollaxis(img_fft,2,0), ft.ifftshift(mask)) 
    print("Shape of FFT: " + str(np.shape(mask_ifft))) 
    print("Shape of FFT: " + str(np.shape(mask_ifft))) 
 
    img_FFTout = np.log2(pyfftw.interfaces.numpy_fft.ifftn(mask_ifft)) 
    print("Shape of FFT_Out: " + str(np.shape(img_FFTout))) 
    img_p = pyfftw.interfaces.numpy_fft.ifftn(mask_ifft) 
    ui.ImageView3.setImage(img_p) 
 
    #Start implementing parts from final_tests.py 
    (m, c) = kmeans(img_p.real, 6, 300) 
    mw = pg.widgets.MatplotlibWidget.MatplotlibWidget() 
    subplot = mw.getFigure().add_subplot(111) 
    for i in range(c.shape[0]): 
        subplot.plot(c[i]) 
    mw.draw() 
 
    sys.exit(app.exec_()) 
 

 

This script consists of simple functions to generate HDF5 datasets. 
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Appendix D: HyperSpec 

Main Application : 
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__author__ = 'Christo Robison' 
 
from PyQt4 import QtGui, QtCore 
import sys 
import HyperSpecGui 
import numpy as np 
from scipy import ndimage 
from scipy import fftpack as ft 
import matplotlib 
matplotlib.use('QT4Agg') 
import matplotlib.pylab as pylab 
import matplotlib.pyplot as plt 
 
import time 
import pyqtgraph 
import hs_imFFTW as hs 
from spectral import * 
spectral.settings.WX_GL_DEPTH_SIZE = 16 
 
 
''' 
background = 0 
red = 1 WBC 
green = 2 RBC 
pink = 3 nuclear material 
yellow = 4 ignore''' 
 
class HyperSpecApp(QtGui.QMainWindow, HyperSpecGui.Ui_MainWindow): 
    def __init__(self, parent=None): 
        pyqtgraph.setConfigOption('background', 'k')  #before loading widget 
        super(HyperSpecApp, self).__init__(parent) 
        self.setupUi(self) 
        self.updateBtn.clicked.connect(self.update) 
 
        STEPS = np.array([0.0, 0.2, 0.6, 1.0]) 
        CLRS = ['k','r','y','w'] 
        clrmp = pyqtgraph.ColorMap(STEPS, 
np.array([pyqtgraph.colorTuple(pyqtgraph.Color(c)) for c in CLRS])) 
        data = np.random.normal(size=(100, 200, 200)) 
        self.ImageView2.setImage(data) 
        self.pltView1.plotItem.showGrid(True, True, 0.7) 
        self.pltView2.plotItem.showGrid(True, True, 0.7) 
 
    def update(self): 
        t1 = time.clock() 
        points = 100 
        print("update took %.02f ms" % ((time.clock() - t1) * 1000))   
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def runKmeans(view, inputImg, clusters=6, iters=300): 
    (m, c) = kmeans(inputImg, clusters, iters) 
    for i in range(c.shape[0]): 
        view.plot(c[i]) 
    return (m, c) 
 
##################################################################################### 
def adjustLabels(dcb, bkgnd=0.0, unknown=4.0): 
    dcb[dcb==0.0] = 5.0 
    dcb[dcb==4.0] = 0.0 
    dcb[dcb==5.0] = 4.0 
    return dcb 
 
##################################################################################### 
def runSpectral(dcb, gt, title = 'dcb'): 
    (classes, gmlc, clmap) = runGauss(dcb, gt) 
    (gtresults, gtErrors) = genResults(clmap, gt) 
    displayPlots(clmap, gt, gtresults, gtErrors, (title+" Gaussian Classifer")) 
    return (gtresults, gtErrors) 
 
##################################################################################### 
def runPCA(dcb, gt, title = 'dcb'): 
    pc = principal_components(dcb) 
    pc_0999 = pc.reduce(fraction=0.999) 
    img_pc = pc_0999.transform(dcb) 
    (classes, gmlc, clmap) = runGauss(img_pc, gt) 
    (gtresults, gtErrors) = genResults(clmap, gt) 
    displayPlots(clmap, gt, gtresults, gtErrors, (title+" PCA Gaussian Classifer")) 
    return (gtresults, gtErrors, pc) 
 
##################################################################################### 
def genResults(clmap, gt): 
    gtresults = clmap * (gt!=0) 
    gtErrors = gtresults * (gtresults !=gt) 
    return (gtresults, gtErrors) 
 
##################################################################################### 
def runGauss(dcb, gt): 
    classes = create_training_classes(dcb, gt) 
    gmlc = GaussianClassifier(classes, min_samples=200) 
    clmap = gmlc.classify_image(dcb) 
    return (classes, gmlc, clmap) 

 
##################################################################################### 
def displayPlots(clmap, gt, gtresults = None, gtErrors = None, title = 'classifier'): 
    if (gtresults is None and gtErrors is None): 
        (gtresults, gtErrors) = genResults(clmap, gt) 
    v0 = imshow(classes=clmap, title=(title+" results")) 
    pylab.savefig((title+" results.png"), bbox_inches='tight') 
    v1 = imshow(classes = gtresults, title=(title+" gt Results")) 
    pylab.savefig((title + " gt Results.png"), bbox_inches='tight') 
    v2 = imshow(classes = gtErrors, title=(title+" Error")) 
    pylab.savefig((title + " Error.png"), bbox_inches='tight')   
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def cleanResults(inputImg, cls_iter=1, open_iter=1): 
    open = ndimage.binary_opening(inputImg, iterations=open_iter) 
    close = ndimage.binary_opening(inputImg, iterations=cls_iter) 
    return (open, close) 
 
##################################################################################### 
def combineLabels(rbc, wbc, nuc, bkgd): 
    out = np.zeros(np.shape(rbc), dtype=np.float64) 
    out[bkgd == 1] = 4.0 
    out[rbc == 1] = 2.0 
    out[wbc == 1] = 1.0 
    out[nuc == 1] = 3.0 
    out[out == 0] = 0.0 
    print(out) 
    return out 
 
##################################################################################### 
def create_rgb(classimg, colormap=None): 
    if colormap is None: 
        colormap = np.array([[0, 0, 0], [255, 0, 0], [0, 255, 0], [255, 0, 255], 
[255, 255, 0]], dtype=np.ubyte) 
    h,w = np.shape(classimg) 
    out = np.zeros([h, w, 3], dtype=np.uint8) 
    out[classimg == 0.0] = colormap[0] 
    out[classimg == 1.0] = colormap[1] 
    out[classimg == 2.0] = colormap[2] 
    out[classimg == 3.0] = colormap[3] 
    out[classimg == 4.0] = colormap[4] 
 
    return out 
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if __name__=="__main__": 
    trainData = hs.getData(filename='D:\-_Hyper_Spec_-\HYPER_SPEC_TRAIN.h5', 
dat_idx=25*49, lab_idx=49) 
    app = QtGui.QApplication(sys.argv) 
    form = HyperSpecApp() 
    form.show() 
    form.update() #start with something 
    img = trainData['dcb'][:, :, 0:25]  #fromn red test 343:370 
    img1 = np.swapaxes(img, 2, 0) 
 
    form.ImageView2.setImage(img1) 
    form.ImageView2.export("Pre_FFT_Masking_.png") 
    #create FFT Plot 
    fft_example = hs.hsfft(img1) 
    log_fft = np.log2(fft_example) 
    aaa = ft.fftshift(log_fft.real) 
    form.ImageView3.setImage(aaa) 
    form.ImageView3.export("FFT_DCB_.png") 
 
    mask = hs.genMask(offset=41) 
    #form.ImageView3.setImage(mask, levels=[np.amin(mask),np.amax(mask)+.0001]) 
    #ImageView doesn't seem to display binary arrays very well so add a small value. 
    out_dcb = hs.dcbFilter(img) 
    form.ImageView1.setImage(out_dcb.real) 
    form.ImageView1.export("Post_FFT_Masking_.png") 
    gtbatch = adjustLabels(trainData['classLabels']) 
    gt = gtbatch 
 
    t = np.swapaxes(out_dcb, 0, 2) 
    t = np.swapaxes(t, 0, 1) 
    fftImg = t.real.astype(np.float32, copy=False) 
    print('SHAPE OF INPUT IMG: ' + str(np.shape(img))) 
    print('SHAPE OF FFT OUT: ' + str(np.shape(fftImg))) 
    (m, c) = runKmeans(form.pltView1, fftImg) 
    (mm, cc) = runKmeans(form.pltView2, img) 
 
    view_cube(fftImg) 
 
    (raw_results, raw_Errors) = runSpectral(img, gt, title="Raw") 
    (fft_results, fft_Errors) = runSpectral(fftImg, gt, title="FFT") 
 
    (raw_pc_results, raw_pc_Errors, raw_pc) = runPCA(img, gt, title="Raw") 
    (fft_pc_results, fft_pc_Errors, fft_pc) = runPCA(fftImg, gt, title="FFT") 
    print('SHAPE of results: ' + str(np.shape(fft_pc_results))) 
    print(fft_pc_results) 
    xdata = fft_pc.transform(fftImg) 
    w = view_nd(xdata[:, :, :5], classes=gt.astype(np.int8, copy=False), 
title="FFT_DCB PCA Components") 
 
    ydata = fft_pc.transform(img) 
    w = view_nd(ydata[:, :, :5], classes=gt.astype(np.int8, copy=False), title="DCB 
PCA Components") 
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    # perform mathematical morphology operations to reduce noise in results 
    # convert each class to binary images then recombine a the end 
    rbc_img = fft_pc_results == 2.0 
    wbc_img = fft_pc_results == 1.0 
    nuc_img = fft_pc_results == 3.0 
    bkg_img = fft_pc_results == 4.0 
 
    (wbc_o, wbc_c) = cleanResults(wbc_img) 
    (rbc_o, rbc_c) = cleanResults(rbc_img) 
    (nuc_o, nuc_c) = cleanResults(nuc_img) 
    (bkg_o, bkg_c) = cleanResults(bkg_img) 
 
    #open_rbc = ndimage.binary_opening(rbc_img) 
    #clse_rbc = ndimage.binary_closing(open_rbc) 
    #print(rbc_img) 
 
    ti = combineLabels(rbc_o, wbc_o, nuc_o, bkg_img) 
    color = np.array([[0, 0, 0], [255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 255, 
0]], dtype=np.ubyte) 
    tis = create_rgb(ti, color) 
 
    #calculate accuracy for each class. 
    v6876 = imshow(tis, title="Cleaned FFT PCA GT Result") 
    pylab.savefig("Cleaned FFT PCA GT Result.png", bbox_inches='tight') 
    fft_classes = create_training_classes(fftImg, gt, True) 
    fft_means = np.zeros((len(fft_classes), fftImg.shape[2]), float) 
 
    app.exec_() 
    print("DONE")  

This is the main program that draws a simple GUI and generates images for the user to analyze and 

record results to the program directory.  It calls several helper functions from programs listed in 

Appendix C which handle most of the heavy computation. 
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Appendix E: Rebellion 

Photonics Arrow Snapshot 

Hyperspectral Imager 

Product Specifications: 
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Tables containing all product specifications available regarding the snapshot hyper-sptectral 

imaging system used. 

Features Value 

Optical Resolution Optimized for Diffraction limit 

Output Base Camera Link 

Display Easy-to-use Interface 

Input Power 12 VDC (10V – 15V) 

Power Requirements Consumption = 3.3 W 

Dimensions 17 x 5.6 x 5.7 inches 

Weight 10 lbs 
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Specifications  Value  

Operating Temperature  -30 ◦C to +60 ◦C   

Storage Temperature  -40 ◦C to +70 ◦C   

Operating Humidity  0 to 100% RH  

Vibration  Shock 10G (20 – 200) HZ XYZ, 70 G  

System Software  32-bit Windows® XP, Windows®  Vista,  

Windows ® 7  

Data Format  ENVI HDR (raw binary with text description 

file), 16-bit tiffs  

Usable Spectral Range  400– 750 nm  

Snapshot Spectral Windows  Prism 1 – VIS1 (400 – 500), VIS2 (450 – 650) 

Prism 2 - VNIR1 (400-800)  

Spectral bands  40  

Spatial bands  500 x 300  

Peak Quantum Efficiency  50% (550)  

Avg. Dispersion / pixel  VIS1 (2.75 nm), VIS2(5nm), VNIR1 (10nm)  

Stray Light  Minimized  
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Image Acquisition  Value  

Dynamic Range  12 bit  

Frame Rate  5.0 (Full Quality)  

Computer  Laptop or Desktop  

Light Efficiency  85% over complete spectrum  

Max. Single Frame Capture  15 microseconds  

Integration  Up to 16 seconds  

Programmable External  

Trigger  

3 trigger sources, 5 triggering 

modes  

Capture Mode  Snapshot and Video  
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Appendix F: Product 

Specifications for SCHOTT 

ACE Light Source 
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The specifications of the illumination lamps used.  Not shown is the gooseneck fiber optic 

attachment used to guide the illumination output into the sample on the microscope stage.
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Appendix G: Hardware 

Specifications 
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All tests were performed on a workstation computer equipped with a 12 Core Intel Core i7 3930K 

running at 3.2GHz, 32GB DDR3 Memory running two nVidia GTX 780 GPUs.   

Table 16:  Workstation performance specifications used to process image data in 

this thesis work. 

Workstation Specifications 

Processor Intel Core i7 3930K 12 Core Socket 2011 CPU 

Memory 32 GB Quad Channel DDR3 @1866 Mhz 

Graphics Card 2x SLI nVidia GTX 780 3GB GDDR5 @800MHz 

Operating System Windows 8.1/10 and Ubuntu 14.04 

HDD 512GB Samsung Pro SSD 

The data used in this research was prepared and collected by the author and participating members 

of the WVU LCSEE Nanophotonics research group.  The HDF5 datasets are available upon request 

as combined they are roughly 15GB in size. 

All python scripts and readmes written are hosted on a private github repository and can be released 

upon request. 
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