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ABSTRACT 

 

Analysis of Systematic Risk: Decomposition and Portfolio Efficiency 

 

Rudolf F. Klein 

 

This dissertation comprises three essays that tackle various aspects of linear asset pricing models. 

The first essay, recognizing the dependence problem between factors, in the context of linear 

multi-factor models, proposes an optimal procedure to find orthogonalized risk premia, which 

also facilitates the decomposition of the coefficient of determination. Importantly, the new risk 

premia may diverge significantly from the original ones. The decomposition of risk allows one to 

explicitly examine the impact of individual factors on the return variation of risky assets, which 

provides discriminative power for factor selection. The procedure is experimentally robust even 

for small samples. Empirically we find that even though on average, approximately eighty (sixty-

five) percent of style (industry) portfolios’ volatility is explained by the market and size factors, 

other factors such as value, momentum and contrarian still play an important role for certain 

portfolios. The components of systematic risk, while dynamic over time, generally exhibit 

negative correlation between market, on one side, and size, value, momentum and contrarian, on 

the other side. 

In the second essay we apply Marginal Conditional Stochastic Dominance (MCSD) tests to 

returns on sentiment-beta sorted portfolios and sentiment-arbitrage portfolios, constructed using 

the Baker and Wurgler (2007) index of sentiment levels. The theory of MCSD demonstrates that, 

if one (mutually exclusive) subset of a core portfolio dominates another, conditional on the 

return distribution of the core portfolio, then the core portfolio is inefficient for all utility-

maximizing risk-averse investors. Based on returns on the U.S. equity market, we show that both 

positively and negatively sentiment sensitive stocks are conditionally and stochastically 

dominated by sentiment insensitive stocks. Moreover, we find dominance among sentiment-

arbitrage portfolios, constructed with positively sensitive vs. insensitive, insensitive vs. 

negatively sensitive, and positively vs. negatively sensitive stocks. Therefore, we conclude that 

the market portfolio is stochastically inefficient. 

The third essay builds on the theory of the FX market, which shows that investing in a high 

yielding currency would generate zero average returns, due to its depreciation with respect to the 

home currency. Empirically, it has been shown that high yielding currencies actually appreciate. 

The Consumption CAPM applied in the FX market argues that a high yielding currency also 

exposes investors to more consumption risk, hence the positive excess returns. The literature on 

the FX market proposes different strategies that generate abnormal returns based on the “forward 

puzzle”. This paper investigates whether the returns obtained through a specific strategy that 

combines mean reversion and momentum in the FX market, are a compensation for risk. We find 

that the risk factors corresponding to an extended version of the Consumption CAPM can 

explain 99% of the variation in currency excess returns. We compare this model with other asset 

pricing models and conclude that none of them can provide a similarly good explanation. 
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Chapter 1: Introduction 

 

This dissertation gravitates around linear factor models, which are at the core of asset 

pricing. Often, the market beta is not enough to explain the cross-sectional variations of average 

equity returns. That is why researchers have proposed alternatives to the traditional single-factor 

Sharpe (1964) and Lintner (1965) Capital Asset Pricing Model (CAPM). For instance, Fama and 

French (1992, 1993, 1996, 1998) document that the company’s market capitalization (i.e. size) 

and the company’s value, which is characterized by ratios of book-to-market (B/M), earnings to 

price (E/P) or cash flows to price (C/P), together predict the return on a portfolio of stocks with 

much higher accuracy than the market beta alone. Moreover, the Carhart (1997) model extends 

the Fama-French model, by including a fourth factor: momentum. The momentum effect of 

Jegadeesh and Titman (1993, 2001), Chan, Jegadeesh, and Lakonishok (1996), Rouwenhorst 

(1998), and others, indicates that average returns on the prior best performing stocks (the so-

called winners) exceed those of the prior worst performing stocks (the so-called losers), and thus 

short-term past returns have predictive power over future returns. Conversely, DeBondt and 

Thaler (1985, 1987) reveal a contrarian effect such that stocks exhibiting low long-term past 

returns outperform stocks with high long-term past returns. DeBondt and Thaler (1985, 1987), 

Chopra, Lakonishok, and Ritter (1992), and Balvers et al. (2000) suggest a profitable long-term 

reversal strategy of buying the losers and shorting the winners. Lately, a number of papers have 

been inspecting the effect of investor sentiment on common stock returns. Baker and Wurgler 

(2006, 2007), for example, examine investor sentiment as another determinant of stock returns. 

Glushkov (2006) tests whether exposure to sentiment is a priced factor that is, whether investors 

demand premium for holding stocks with more exposure to sentiment. He finds that the 
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relationship between sentiment betas and returns is inverse U-shaped, meaning that low and high 

beta stocks tend to underperform the near-zero beta stocks. The Consumption CAPM, originally 

developed by Lucas (1978) and Breeden (1979) is extended, for instance, by Yogo (2006) who 

introduces in the equation the nondurable consumption, the durable stock, and the market 

premium. An extension of the CAPM to a multi-country case is the widely known International 

CAPM, attributed to Solnik (1974), Stulz (1981), or Adler and Dumas (1983). The list of 

possible macro-economic factors can also include monetary determinants such as: the growth 

rate of M1 per capita, the federal funds rate, liquidity premium, or term spread. The first 

proponents of the monetary explanations in the case of currency risk premia are Hodrick and 

Srivastava (1986). 

 The first essay (Chapter 2) considers five of the factors enumerated above as inputs in an 

empirical application to a theoretical procedure of symmetric orthogonalization. These factors 

are: RM (i.e. market risk premium), SMB (i.e. Small minus Big, market capitalization), HML (i.e. 

High minus Low, book-to-market ratio), Mom (i.e. momentum), and Rev (i.e. long-term reversal, 

or contrarian). Since these variables are returns, or spreads in returns on well-diversified 

portfolios, they cannot be independent to each other. To be able to examine the impact of each 

individual factor on the return variation of risky assets, and to able to gauge each factor’s 

premium (free of their mutual dependence) we need to find the underlying, uncorrelated 

components of these factors. To accomplish the task of finding the orthogonalized factors, we 

use a procedure developed initially in the quantum chemistry and in the wavelet literature. This 

symmetric procedure has clear advantages over other methods used so far in economics and 

finance: it is optimal, in the sense that it maximizes the resemblance with the original factors. 

Plus, it is both democratic and simultaneous, in that it doesn’t have a sequence bias, meaning that 
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it doesn’t matter which factor is transformed first and which one follows next. Due to the general 

nature of this algorithm, it can have several important applications. One of them, which we are 

pursuing in this paper, is to decompose the coefficient of determination, which is a standardized 

measure of systematic risk. Thus, we can asses the attribution of risk to each individual factor. 

Consequently, we can now answer some very important questions that arise in the asset pricing 

literature, like for instance: does a high R-square imply a proper diversification; does a higher 

beta of one factor imply its relatively higher importance; or, which factors should be included in 

the analysis for a specific type of portfolio? Empirically we find, for instance, that even though 

on average, approximately eighty (sixty-five) percent of style (industry) portfolios’ volatility is 

explained by the market and size factors, the other factors (i.e. value, momentum and contrarian) 

still play an important role for certain portfolios. 

 In the second paper (Chapter 3), after controlling for the market, size, value, and 

momentum factors, we examine the impact of investor sentiment on the cross-section of equity 

returns. For that purpose, we use Marginal Conditional Stochastic Dominance (MCSD) tests to 

prove the existence of a sentiment effect in the US equity market, and to show that the market 

portfolio is inefficient relative to sentiment-beta sorted portfolios (i.e. portfolios formed by 

sorting common stocks on their sensitivity to the index of investor sentiment). As a measure of 

sentiment we employ the Baker and Wurgler (2007) index of sentiment levels. The theory of 

MCSD shows that, if one sub-portfolio of a core portfolio dominates another, conditional on the 

return distribution of the core portfolio, then the core portfolio is inefficient for all utility-

maximizing risk-averse investors. Empirically we find that, considering the returns on all 

common stocks listed on the NYSE, AMEX, and NASDAQ, from January 1966 to December 

2007, both positively and negatively sentiment sensitive stocks are conditionally and 
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stochastically dominated by sentiment insensitive stocks. Moreover, we find dominance among 

sentiment-arbitrage portfolios, constructed with positively sensitive vs. insensitive, insensitive 

vs. negatively sensitive, and positively vs. negatively sensitive stocks. Consequently, we 

conclude that the market portfolio is stochastically inefficient. Taking into consideration that the 

five variables mentioned above could be significantly correlated, we use the orthogonalization 

procedure proposed in Chapter 2, to calculate their orthogonal counterparts. Our results prove to 

be robust, and the conclusions remain the same, when we repeat the MCSD tests for the 

uncorrelated components. 

 The third essay (Chapter 4) examines the validity of different asset pricing models in 

explaining abnormal returns obtained in the foreign exchange (FX) market. For that purpose, it 

employs Serban’s (2010) strategy that combines mean reversion and momentum, a strategy that 

is originally implemented for the stock market by Balvers and Wu (2006). The similarities 

between the two markets allow us to consider the same models when gauging whether the 

abnormal returns documented in the FX market are compensation for risk. We analyze the 

Consumption Capital Asset Pricing Model (CCAPM), Yogo’s (2006) Extended CCAPM, 

CAPM, International CAPM, the Fama-French Model, and a Monetary-based Model. We find, 

using the Hansen’s (1982) Generalized Method of Moments (GMM) procedure, that Yogo’s 

(2006) Extended CCAPM is the best fitted model: it stands as the only model for which the JT-

test does not reject the null of validity. Moreover, it gives an R
2
 value (between the predicted and 

the actual mean excess returns) of 99 percent in the first stage GMM estimation.  

 This dissertation concludes in Chapter 5, with a summary of the main contributions that 

these three papers make to the literature. 
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Chapter 2: Orthogonalized Equity Risk Premia and 

 Systematic Risk Decomposition 

 

2.1. Introduction 

Under the traditional single-factor Sharpe (1964) and Lintner (1965) Capital Asset Pricing Model 

(CAPM), the market beta captures a stock’s systematic risk for all rational, risk-averse investors. 

Therefore, a decomposition of the market beta is sufficient to break down the systematic risk of a 

stock.1 For example, Campbell and Vuolteenaho (2004) break the market beta of a stock into a 

‘bad’ component that reflects news about the market’s future cash flows and a ‘good’ component 

that reflects news about the market’s discount rates. In an earlier paper, Campbell and Mei 

(1993) show that the market beta can be decomposed into three sub-betas that reflect news about 

future cash flows, future real interest rates and a stock’s future excess returns, respectively. 

Acharya and Pedersen (2005) develop a CAPM with liquidity risk by separating the market beta 

of a stock into four sub-betas that reflect the impact of illiquidity costs on the systematic risk of 

an asset. In many cases, the analysis of decomposed market beta has been applied to examine the 

size and/or book-to-market anomalies. Although the beta-decomposition is useful to describe the 

structure and source of systematic variation of returns on risky assets, it is complicated under 

multi-factor frameworks.2 

The purpose of this paper is to develop an optimal procedure to identify the underlying 

uncorrelated components of common factors by a simultaneous orthogonal transformation of 

sample data, such that the linear dependence is removed, and the systematic variation of stock 

                                                 
1 According to the CAPM, the systematic risk is measured by (βj σRM)2. Since the market risk premium is the only 
factor faced by all investors, βj is sufficient to determine the systematic risk. 
2 Campbell and Mei (1993) show that the complication is due to the possible covariance between the risk price of 
one factor and the other factors. 
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returns becomes decomposable. We empirically compare our approach with two popular 

orthogonalization methods, Principal Component Analysis and the Gram-Schmidt process, and 

unsurprisingly find that our technique has the essential advantage of maintaining maximum 

resemblance with the original factors.3 

In the past two decades, one of the most extensively studied areas of financial research 

has concentrated on alternative common risk factors, in addition to the market risk premium, that 

could characterize the cross-section of stock expected returns. Fama and French (1992, 1993, 

1996, 1998) document that the company’s market capitalization - size and the company’s value, 

which is characterized by ratios of book-to-market (B/M), earnings to price (E/P) or cash flows 

to price (C/P), together predict the return on a portfolio of stocks with much higher accuracy than 

the market beta alone, or the traditional CAPM.4 In addition to the size and value effects, 

Jegadeesh and Titman (1993, 2001), Rouwenhorst (1998), Chan, Jegadeesh and Lakonishok 

(1996) reveal that short-term past returns or past earnings predict future returns. Average returns 

on the best prior performing stocks (i.e. winners) exceed those of the worst prior performing 

stocks (i.e. losers), attesting the existence of momentum in stock prices. Conversely, DeBondt 

and Thaler (1985, 1987) reveal a contrarian effect such that stocks exhibiting low long-term past 

returns outperform stocks with high long-term past returns. DeBondt and Thaler (1985, 1987), 

Chopra, Lakonishok, and Ritter (1992), and Balvers et al. (2000) suggest a profitable contrarian 

strategy of buying the losers and shorting the winners. 

Due to the common effects such as size, value, momentum and contrarian, additional 

factors, besides the market risk premium, must be considered for the determination of the return 

                                                 
3 For instance, Baker and Wurgler (2006, 2007) employ Principal Component Analysis to develop measures of 
investor sentiment, shown to have significant effects on the cross-section of stock prices. Boubakri and Ghouma 
(2010) remove the multicollinearity between their variables using the Gram-Schmidt algorithm. 
4 Fama and French (1992, 1996, 1998) show that the investment strategy of buying the small/ value and shorting the 
big/ growth stocks produces positive returns. 
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generating process for risky assets. Therefore, multi-factor market models have been widely 

employed by both financial academics and practitioners. Under the multi-factor framework, the 

expected excess return on a risky asset is specified as a linear combination of beta coefficients 

and expected premia of individual factors. Fama and French (1993) explicitly demonstrate that if 

there are multiple common factors in stock returns, they must be in the market return, or in other 

well-diversified portfolios. This indicates that returns of common factors are correlated with the 

market, and often with each other. Consequently, in the multiple linear regression setting, 

although the beta coefficient corresponding to an individual factor provides a sensitivity measure 

of an asset’s return to the factor’s variation, it may not catch precisely the systematic variation of 

the asset with respect to that factor. For instance, low beta might not indicate low systematic risk. 

The volatility of an asset’s returns is determined jointly not only by the betas, but also by the 

variances and covariances of the factors’ premia. Therefore, to provide a clear image of the 

separate roles of common factors in stock returns, determining the factors' underlying 

uncorrelated components becomes necessary.  

This paper proposes an optimal simultaneous orthogonal transformation of sample returns 

on factors. The data transformation allows us to identify the underlying uncorrelated components 

of common factors. Specifically, the inherent components of factors retain their variances, but 

their cross-sectional covariances are zero. In addition, a multi-factor regression using the 

orthogonalized factors has the same coefficient of determination (R-square, i.e. the ratio of 

systematic variation to the overall volatility of a risky asset) as that using the original, non-

orthogonalized factors. Since the coefficient of determination is a measure of the systematic risk 

of an asset, extracting the core, stand alone components of common factors enables us to 

decompose the systematic risk by disentangling the R-square, based on factors' volatility and 
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their corresponding betas. Different from the Fama and French (1993) approach (which is in fact 

very similar to the Gram-Schmidt process), our methodology is democratic, that is, free of 

sequence bias. They clearly demonstrate that since the market return is a mixture of the multiple 

common factors, an orthogonalization of the market factor is necessary so that it can capture 

common variation in returns, left by other factors such as size or value. We argue that not only 

the market factor, but all factors need to be orthogonally transformed to eliminate the 

dependence problem among them. Although Fama-French’s orthogonalization procedure for the 

market factor is straightforward, their method would involve selection of the leader (i.e. starting 

factor) and sequence biases, if one applied it to orthogonalize more than one variable in the 

model. Specifically, a different selection of the leader factor or a different orthogonalization 

sequence generates different transformation results. Marcelo and Quiros (2006) employ the Fama 

and French (1993) orthogonalization approach to generate an illiquidity-based risk factor. 

Using Monte Carlo simulations, we demonstrate that our orthogonal transformation is 

robust, in that it produces unbiased estimates of the population systematic risk even for small 

samples. By applying our methodology to Kenneth French’s data sets, we show empirically that 

the return variation of assets is now decomposable by factors.5 We find that, generally, the 

market, size and value factors are the largest sources of systematic risk (not always in that order), 

while other factors such as momentum and contrarian play relatively small roles in stock 

volatility determination.  

The paper is organized as follows. In Section II, after an illustration of systematic risk 

decomposition problems in multi-factor models, we present our procedure of symmetric 

orthogonal transformation and risk-decomposition. Next, in Section III, we illustrate the 

                                                 
5 Kenneth French’s Data Library is publicly accessible at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 
data_library.html. 
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procedure empirically, using sample data from Kenneth French’s Data Library. The final section 

of the paper provides brief concluding remarks. 

 

2.2. Orthogonalization Procedure 

Empirically, suppose a risky asset j’s return generating process can be linearly determined by a 

set of K-common factors (returns or macro-variables, denoted by  fk) [e.g. the market (RM), size 

(SMB), value (HML), momentum (Mom), and long-term reversal (Rev) premia], as shown in the 

following regression model: 

 
,, , ,1

,
j t

K

j t j k k t j tk
r fα β ε

=
= + +∑  (2.1) 

where the residual term jε  is assumed to be uncorrelated with fk, but fk are not 

independent from one another.6   

The systematic variation of asset j’s returns can then be measured by: 

 2 ( , )
j j j

K K

sr k l k ll k
Cov f fσ β β=∑ ∑ , (2.2) 

while the coefficient of determination or R-square is the ratio of systematic variation to the total 

return variation ( 2 2

jsr jσ σ ).   

It is important to note that under the multi-factor framework, the systematic risk depends 

not only on the beta coefficients but also on the factors’ variance-covariance. Thus, beta 

coefficients alone are inappropriate measures for systematic variation. One of the goals of this 

paper is to develop a decomposable systematic risk measure.  

                                                 
6 For instance, the market factor is a hodgepodge of the multiple common factors, and the factor portfolios of size, 
value, momentum and contrarian are all formed using securities in the same market, and thus their returns are not 
uncorrelated.   
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As shown in (2), 2

jsrσ is not decomposable due to the mutual correlation between factors.7 

Kennedy (2008) points out that the total R-square cannot be allocated unequivocally to each 

explanatory variable, unless we have zero multicollinearity between the variables. To be able to 

achieve zero multicollinearity, thus eliminating the impact of factors' covariances, the underlying 

component of each factor’s returns needs to be identified by an orthogonal transformation of 

sample returns. We argue that, even though numerous orthogonalization techniques are available, 

the optimal alternative for finding the proper orthogonal proxies of the original factors is the so-

called symmetric procedure, as adapted in this paper (henceforth denoted as SW/L). For instance, 

the popular Principal Component Analysis (PCA), often used for dimensionality reduction, 

though similar to our procedure in some aspects, cannot offer by itself a meaningful bijective 

correspondence from the original to the orthogonalized sets of factors, if the number of variables 

is larger than two. And even in the cases where we have only two explanatory variables, if they 

are significantly correlated, it is difficult to maintain a strong resemblance after transformation. 

Table 2.I considers all the possible combinations of pairs out of the five factors mentioned above 

and, using two measures of similitude, compares these two methods, together with the classical 

Gram-Schmidt (GS) process. A major deficiency of this last procedure is that it requires a choice 

of the initial starting factor, which will not be transformed, thus failing to give all factors equal 

footing. We are nevertheless interested to see whether the deviations in the second factor 

overpower the overall movements attested by the first two methods.  

 

 

                                                 
7 For simplicity and without losing generality, henceforth we will only refer to common factors as factor portfolio 
returns, but the model can also be applied to other systematic factors (e.g. macro-economic or fundamental 
variables). 
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Table 2.I 

Method Comparison with Respect to Resemblance Criteria 

 
This table considers all the possible combinations of pairs out of five stock-market factor 
portfolios: RM, SMB, HML, Mom and Rev, and reports the correlation coefficients (Panel A), 
and the Frobenius norm values of the deviations (Panel B) between the non-orthogonalized and 
the orthogonalized forms. The orthogonalized factors are obtained using each of the following 
methods: the Schweinler-Wigner/ Löwdin (1970) symmetric procedure, as adapted in this paper 
(SW/L), Principal Component Analysis (PCA), and the Gram-Schmidt process (GS). RM, SMB 
and HML are the Fama/French factors: RM is the market risk premium; SMB is Small Minus 
Big, while HML is High Minus Low. Mom is the momentum factor, while Rev is the long-term 
reversal factor. All five factors follow the description and are obtained from Kenneth French’s 
data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. The sample period is 
January 1931 to December 2008. The Frobenius norm of a real matrix is defined as the square 
root of the sum of the squares of its elements. 

 
Panel A: Correlation Coefficients 

  SW/L PCA GS 

RM & SMB 0.992 0.978 0.986 0.874 0.941 

RM & HML 0.996 0.990 0.987 0.922 0.970 

RM & Mom 0.987 0.982 0.909 0.709 0.946 

RM & Rev 0.995 0.989 0.988 0.920 0.968 

SMB & HML 0.999 0.999 0.869 0.913 0.994 

SMB & Mom 0.996 0.998 0.957 0.990 0.991 

SMB & Rev 0.976 0.979 0.590 0.871 0.908 

HML & Mom 0.972 0.984 0.746 0.952 0.925 

HML & Rev 0.947 0.945 0.904 0.450 0.787 

Mom & Rev 0.994 0.990 0.970 0.882 0.975 
 
 

Panel B: Frobenius Norm Values of the Deviation Matrix 

  SW/L PCA GS 

RM & SMB 30.518 57.877 35.994 

RM & HML 22.171 51.239 29.428 

RM & Mom 38.748 128.797 54.975 

RM & Rev 22.824 50.529 28.768 

SMB & HML 7.465 70.009 17.464 

SMB & Mom 12.920 36.675 30.671 

SMB & Rev 31.769 123.197 47.165 

HML & Mom 37.327 88.974 63.458 

HML & Rev 51.105 116.381 71.404 

Mom & Rev 21.661 63.158 28.691 
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Panel A presents the correlation coefficients between the original and the transformed factors. It 

is easily noticeable that SW/L outperforms both PCA and GS. For instance, its lowest correlation 

of 0.945 is more than double the minimum correlation for PCA, 0.450, and about 20 percent 

larger than that of GS, 0.787, all for HML & Rev.8 Also, given that GS does not modify the first 

factor, which can be interpreted as perfect correlation, while the correlation corresponding to the 

second factor is always higher than the lower coefficient for PCA, we can conclude that GS 

dominates PCA in all ten cases. Panel B reports, on a comparative scale, the Frobenius norm of 

the TxK matrix whose elements are the deviations of the orthogonalized, from the original sets of 

data where, in these cases, T = 936 months (from January 1931 to December 2008) and K = 2 

factors. Since we want the original factors to be disturbed as little as possible, the results confirm 

the superiority of our symmetric procedure, which has the lowest (square root of the) sum of 

squared deviations, in all ten cases. Similar to Panel A, the principal component scores are 

further from the values of the original variables, compared to the GS transformation. This is very 

severe especially when the original variables show significant covariance. That is why, some 

researchers, for ease of interpretation of the factor loading pattern, prefer to perform rotations, 

once the PCA is completed.  

  

2.2.A. Methodology 

For convenience purposes, we present the transformation procedure in a matrix format. Let 

1 1 2, , ,
T

k k k k
Tf f f f

×

′ =  L be the sample returns of the k-th factor, for k = 1, 2, …, K, and 

                                                 
8 HML and Rev, in their original form, exhibit the highest correlation among all pairs of factors, over the period 
January 1931 – December 2008 (see Table 2.IV).   
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1, ,

1, ,
 

T K

k K
k

t t T
F f

×

= …

= …
 =    their corresponding T by K matrix.9 Our purpose is to derive from 

T K
F

×
a 

matrix of mutually uncorrelated and variance-preserving vectors, denoted by 
1, ,

1, ,
 

T K

k K
k

t
t T

F f
⊥

×

= …
⊥

= …

 =  
, 

so that the systematic return variation can be estimated by the following decomposable form: 

 ( )
2

2 2 2

1
ˆˆ ˆ ˆ ˆk

j j j

K

sr k jfk εσ β σ σ σ⊥ ⊥

=
= = −∑ , (2.3) 

where 2ˆ
jsrσ is the estimate of 2

jsrσ , β̂ ⊥  and ( )ˆ ˆσ σ⊥ = are the estimates of beta and standard 

deviation from sample data after the orthogonal transformation, and 2ˆ jσ  and 2ˆ
jεσ are the estimated 

variance of asset j’s returns and its residual variance, respectively. Importantly, both the intercept 

and the error term in equation (2.1) stay the same after transformation. 

To obtain
T K

F
×

⊥ , we employ a methodology attributed to Löwdin (1970) - in the quantum 

chemistry literature, and to Schweinler and Wigner (1970) – in the wavelet literature. This is a 

democratic (or egalitarian) procedure as opposed to a sequential approach that is sensitive to the 

order in which vectors are selected.10 This distinctive characteristic is essential for a proper 

decomposition, as we need to treat all the factors on an equal footing. Thus, the orthogonal 

transformation of all factors has to be conducted jointly and simultaneously.11     

As pointed out earlier in the paper, we choose the symmetric form of orthogonalization, 

which minimizes the overall difference between the original and the orthogonal vectors, thus 

maximizing the resemblance between the two sets of data.12 We apply it to the demeaned 

                                                 
9 The factors are assumed to be linearly independent (i.e. T KF × is full rank, where T is the number of time periods, 

and K is the number of factors).  
10 The classical sequential orthogonalization procedure is the Gram-Schmidt process. For a comparison between the 
two approaches, see for instance Chaturvedi, Kapoor and Srinivasan (1998) and Löwdin (1970). 
11 Compared to orthogonal rotation techniques employed in factor analysis or principal component analysis (e.g. 
varimax, quartimax or equamax), our procedure has the advantage of guaranteeing a bijective transformation of the 
original variables (i.e. a one-to-one and onto correspondence between the original and the orthogonalized sets). 
12 For an elaborate explanation, see Srivastava (2000) or Löwdin (1970). 
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original factors, which ensures that the resulting vectors are not only mathematically orthogonal, 

but also uncorrelated.   

Let 
1, , 1, ,

1, ,1, ,
 

T K

k K
k k K

k k

tt t Tt T
F f f f×

= … = …

= …= …

   = = −   

sr sr
 be the demeaned matrix of T KF × . We define a 

linear transformation 
K K

S
×

of the set T KF ×

sr
 to T KF ×

⊥sr
, as follows: 

 T K T K K K
F F S× × ×

⊥
=

sr sr
. (2.4) 

To obtain K KS ×  (and then T KF ×

⊥sr
), the first step is to calculate the variance-covariance matrix of the 

factors sample returns ( )K K×Σ , and take ( )1 ,K K K KM T× ×= − Σ  that is: 

 

1 1 1 2 1

2 1 2 2 2

1 2

( ) '( ) ( ) '( ) ( ) '( )

( ) '( ) ( ) '( ) ( ) '( ) .

( ) '( ) ( ) '( ) ( ) '( )

K

K

K K

K K K K

f f f f f f

f f f f f fM

f f f f f f

×

 
 
 

=  
 
 
  

sr sr sr sr sr sr
L

sr sr sr sr sr sr
L

M M M M
sr sr sr sr sr sr

L

 (2.5) 

The matrix T KF ×

⊥sr
will be orthonormal if 

 ( ) ( ) ( )T K T K T K T K T K T KK K K K K K K K K K K K K K K K
F F F S F S S F F S S M S I× × × × × ×× × × × × × × ×

⊥ ⊥′ ′ ′ ′ ′= = = =
sr sr sr sr sur sr

 (2.6) 

or equivalently, 

 -1

K K K K K K
S S M

× × ×
′ = . (2.7) 

The general solution of equation (2.7) is -1/ 2

K K K K K K
S M C

× × ×
= , where C is an arbitrary orthogonal 

matrix. For 
K K K K

C I
× ×

= , where 
K K

I
×

is the identity matrix, the orthogonalization procedure is 

called symmetric. To be able to calculate K KS × , we identify an orthogonal matrix K KO × (i.e. 
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-1
K K K KO O× ×′ = ) that brings K KM × to a diagonal form K KD ×   (i.e. 1

K K K K K K K KO M O D−
× × × ×= ).13 Thus, 

K KM × can be factorized as: 

 1 ,
K K K K K K K K

M O D O
× × × ×

−=  (2.8) 

where the k-th column of K KO × is the k-th eigenvector of  the matrix K KM × , and K KD ×  is 

the diagonal matrix whose diagonal elements are the corresponding eigenvalues (λ ), i.e.,  

kk kD λ= ,  where k goes from 1 to K. Note that equation (2.7) could also be solved using the 

Cholesky factorization (often employed, for instance, in the Generalized Least Squares 

estimation), but the procedure would produce orthogonal factors whose values depend on their 

sequence (i.e. the algorithm would not be democratic).14 Also note that the GLS estimation, 

different from our procedure, transforms not only the independent variables, but also the 

dependent variable and the error term.  

Solving for K KS × from equations (7) and (8), we obtain the symmetric matrix: 

 
1

2 ,
K K K K K K K K

S O D O
× × × ×

− ′=  (2.9) 

 

1

1 22

1

1

1

0 0

0 0
where: D .

0 0

K K

K

λ

λ

λ

×

−

 
 
 

=  
 
 
 

L

L

M M O M

L

 (2.10) 

 

Finally, we rescale the factors to the original variance, using the following transformation: 

                                                 
13 If 

K K K K
C O

× ×
= instead, the orthogonalization is termed canonical. This form is not appropriate in our case, as it 

does not maintain the resemblance with the original data.  
14 For example, Dewachter and Lyrio (2006) use the Cholesky factorization to compute the orthogonalized 
components of four macroeconomic factors aimed to provide a description of the yield curve. 
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1

2

0 0

0 0
1 ,

0 0

K K K K

K

S S T

σ
σ

σ

× ×

 
 
 −
 
 
 

L

L
a

M M O M

L

                                    (2.11) 

 where σi represents the standard deviation of factor i, for i = 1, 2, …, K. 

Hence, the matrix K KS × [as transformed in equation (2.11)], when substituted in equation (2.4), 

gives the symmetric orthogonal transformation of the demeaned factor-matrix T KF ×

sr
.  

To obtain 
T K

F
×

⊥ , we perform the following straight-forward transformation: 

( )1 1 1 1 1 1T K T K T KK K K K K K K K T K K K T KT K T K T KF F S F S F S F F S F S F× × ×× × × × × × ×

⊥ ⊥
× × × × × ×+ = + = + = =1 1 1

sr sr sr
,       (2.12) 

where 1T×1  is a vector of ones and 1 KF × is the mean of T KF × .  

Hence, the matrix 
T K

F
×

⊥ is a conversion of matrix T KF ×

⊥sr
, not an orthogonalized matrix per se. 

However, considering that adding constant terms to orthogonal vectors results in uncorrelated 

vectors, we can refer to 
T K

F
×

⊥ , for simplicity, as the orthogonalized matrix of 
T K

F
×

.  

To be able to understand what matrix K KS × (or its inverse) represents, we can write each factor 

,kf where k = 1, 2, …, K, as: 

                               1 2
1 2 ,k K
k k Kkf f f fψ ψ ψ

⊥ ⊥ ⊥

= + + +L                   (2.13) 

where the coefficients ψlk are obtained through the orthogonalization procedure described 

above (i.e. they are the elements of the inverse of matrix K KS × , in its final form). 

If we calculate the covariance between kf  and ,kf
⊥

we obtain that 

    ( ) ( ) ( )
( )

( ) ( )
cov , cov ,

cov , var corr ,
var

k k k k

k k k k k
kk kk k

k k

f f f f
f f f f f

f
ψ ψ

σ σ

⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥= × ⇒ = = =    (2.14) 
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Moreover, it can be shown (see the Appendix) that for any k and l, ( )corr ,k l
kl f fψ

⊥

= . Thus, the 

inverse of matrix K KS ×  is the correlation matrix between the original and the orthogonal factors. 

So, if we consider 
K K

S
×

= 1

K K
ψ

×

− , where 
1,...,
1,...,

( , )
K K

k l

k K
l K

Corr f fψ
⊥

× =
=

 =   , the last equality in equation 

(2.12) can be rewritten as: 

 1

K KT K T KF F ψ
×

⊥ −
× ×= . (2.15) 

That is, the orthogonal factors are linear combinations of the original factors, with the 

coefficients taken from the inverse correlation matrix, between the original and the uncorrelated 

factors. Each orthogonal factor deviates from its original counterpart in such a way that the 

common variation is partitioned symmetrically and 
T K

F
×

⊥ optimally resembles T KF × . 

To demonstrate the consistency between the decomposable systematic risk estimate, 

( )
2

1
ˆ ˆ k

j

K

k fk
β σ⊥ ⊥

=∑ , and the systematic risk estimate from regression, 2 2 2ˆ ˆ ˆ
j jsr j εσ σ σ= −  as shown in 

equation (2.3), we note that the orthogonal transformation retains the original sum of squared 

errors (SSE) of equation (2.1) [i.e. min {ε’ε}]. Mathematically, the space generated by F┴ is the 

same, by definition, as the one generated by F.15 This implies that { } { }5 5F Fβ β β β⊥ ⊥ ⊥∈ℜ = ∈ℜ% % % % , 

meaning that all linear combinations of F span the same space as all linear combinations of F┴. 

Therefore, the range of the function of F [defined as ( ) 'r Fβ− % ( )r Fβ− % ] is identical to that of 

the function of F┴ [defined as ( ) 'r F β⊥ ⊥− % ( )r F β⊥ ⊥− % ]. Since the lower boundary of the two 

ranges is the same, min {ε’ε} for F is identical to that for F┴.   

 

                                                 
15 Moreover, by adding a column vector of ones to F and to F┴ (to account for intercepts), the two resulting spaces 
will still be identical. 
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2.2.B. Monte Carlo Simulations 

Since the orthogonal transformation is a numerical data process, an examination of the sampling 

errors for the robustness of our estimation is important. Table 2.II reports the mean squared 

errors (MSE) for a set of Monte Carlo simulations. We generate data for a five-factor linear 

model that has the following structure: 

 1 2 3 4 5 0.02  1.2  0.1  0.3  0.2  0.7 ,r f f f f f e= + + + − + +  (2.16)   

where kf , k = 1,2,…5, follow two hypothetical forms of distribution, multivariate-normal 

and multivariate-lognormal, respectively. The loadings in equation (2.16) are arbitrarily chosen 

so that they make sense economically. Different values will not cause significant changes in the 

robustness of our estimators. A non-zero covariance matrix of kf  is predetermined. In addition, 

the zero-mean residuals, e, follow by turns, one of the two processes: homoscedastic [white 

noise] and heteroscedastic [GARCH(1,1)].  

 

Table 2.II 

The Mean Squared Errors (MSE) of the Decomposable Systematic Risk Estimates 
 

This table presents the Monte Carlo simulation results (10,000 trials) for the MSE of our decomposed 
systematic risk estimates. We generate data for a five-factor linear model that has the following structure:       
r = 0.02 + 1.2 f1 + 0.1 f2 + 0.3 f3 – 0.2 f4 + 0.7 f5 + e, where fk , k = 1, 2,…,5, follow two hypothetical forms of 
distribution, multivariate-normal and multivariate-lognormal, respectively. The correlation coefficients of the 
original data range from approximately -0.4 to 0.7. The residuals, e, follow by turns, one of the two processes: 
homoscedastic [white noise ~ N(0, 0.21)] and heteroscedastic [GARCH(1,1), with coefficients 0.001, 0.5, 0.3].      

 

( )
225 2

1
ˆ ˆ k

jk srfk
MSE E β σ σ⊥ ⊥

=

 = − 
 
∑  

Normal fk , k = 1, 2,…,5  Log-Normal fk , k = 1, 2,…,5 Sample 
Size Homoscedastic (e) Heteroscedastic (e)  Homoscedastic (e)  Heteroscedastic (e)  
50 0.02373 0.02198  0.00119 0.00013 

150 0.00817 0.00720  0.00038 0.00004 
300 0.00404 0.00354  0.00019 0.00002 
500 0.00232 0.00217  0.00011 0.00001 

1000 0.00121 0.00110  0.00006 0.00001 
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We calculate the MSE of decomposable systematic risk estimates for ten thousand trials. The 

random samples have, by turns, five different sizes: 50, 150, 300, 500, and 1,000. Table 2.II 

shows that the MSE consistently and roughly proportionally decreases as the sample size 

increases. Specifically, the MSE drops by more than 80 percent when the sample size is 

increased from 50 to 300, and by more than 90 percent when increased from 50 to 500. The 

results suggest that our estimate in equation (2.3) is robust, especially for sample sizes over 50. 

In addition, we examine the robustness of individual decomposed systematic risk 

measures with respect to a set of five correlated factors in a hypothetical population with a finite 

number (twenty-five thousand) of outcomes. The uncorrelated components of the factors in the 

population are determined numerically by the orthogonal transformation. The population 

decomposed systematic risk for each factor k, ( )2

kk fβ σ⊥ ⊥ , is then calculated. Again, we generate ten-

thousand random samples for each sample size (50, 150, 300, 500, and 1000 observations).  

Table 2.III presents the MSE of individual decomposed measures.  

Table 2.III 

Sampling Errors of Individual Decomposed Systematic Risk Estimates 
 

This table presents the Monte Carlo simulation results (10,000 trials) for the MSE of the 
individual decomposed systematic risk estimates. We define a population with a finite number of 
observations (25,000), such that the generated data corresponds to the following five-factor linear 
model: r = 0.02 + 1.2 f1 + 0.1 f2 + 0.3 f3 – 0.2 f4 + 0.7 f5 + e, where fk , k = 1, 2,…,5, follow a 
multivariate-normal distribution. The correlation coefficients of the original data range from 
approximately -0.4 to 0.7. The distribution of the residuals (e) is normal, with a mean of zero and 
a standard deviation of 0.21. 
 

( ) ( )
22 2ˆ ˆ

k kk f k fMSE E β σ β σ⊥ ⊥ ⊥ ⊥ = −  
, for k = 1, 2, …, 5 

Sample  
Size 

f1 f2 f3 f4 f5 

50 0.01268 0.00035 0.00070 0.00090 0.00134 
150 0.00398 0.00011 0.00022 0.00031 0.00043 
300 0.00202 0.00005 0.00011 0.00015 0.00021 
500 0.00123 0.00003 0.00006 0.00009 0.00012 

1,000 0.00058 0.00001 0.00003 0.00005 0.00006 



 20 

Similar to Table 2.II, the MSE decreases, roughly proportionally, as the sample size increases. It 

drops by approximately two-thirds when the sample size increases from 50 to 150 observations.  

 

2.2.C. R-square Decomposition 

We derive an important extension of equation (2.3), dividing it by the estimated variance of asset 

j's returns ( 2ˆ jσ ). We are then able to decompose the estimate of R-square, i.e. the coefficient of 

determination, as follows: 

 

2

2 2 2
, ,1

ˆ
ˆ,  where 

ˆ

k

j

K f
j j k j k kk

j

R DR DR
σ

β
σ

⊥

=

 
= =   

 
∑ . (2.17) 

Note that since the idiosyncratic risk can be measured as ( )21 R− , the sum of the individual 

decomposed systematic risk measures and the idiosyncratic risk equals one. Moreover, from a 

statistical viewpoint, the decomposition of R-square characterizes the segments of goodness-of-

fit. Parts of the total R-square can now be allocated unequivocally to each orthogonalized factor, 

indicating their relative contribution to the variation in the dependent variable (in our case, the 

return on the risky asset j).   

 

2.3. Empirical Illustration 

We apply the orthogonal transformation procedure described in Section II, to monthly returns on 

five well known equity pricing factors found in Kenneth R. French’s Data Library: RM, SMB, 

HML, Mom and Rev. Historical observations suggest that market equity, book-to-market ratio, 

past short- or long-term returns may be proxies for exposures to various sources of systematic 

risk, not captured by the CAPM beta, and hence generating return premiums. Risk-based 

explanations for the return premiums to these factors might consider, for instance, that the 
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returns on the HML and SMB portfolios seem to predict GDP growth, and thus they may be 

proxies for business cycle risk.16 

Once the transformation is performed, the decomposed systematic risk and decomposed 

R-square are calculated and analyzed for style and industry portfolios, obtained from the same 

data library. Table 2.IV reports the distribution moments and the correlation matrix of factors' 

monthly returns over a sample period from January 1931 to December 2008 for both the original 

and the orthogonally-transformed data.  

 

Table 2.IV 

Distribution Properties of Factors’ Sample Returns: Original vs. Orthogonal  

 
This table reports the distribution parameters (Panel A) and correlation coefficients (Panel B) for the monthly returns 
on five stock-market factor portfolios: RM, SMB, HML, Mom and Rev, both non-orthogonalized and orthogonalized. 
RM, SMB and HML are the Fama/French factors: RM is the market risk premium; SMB is Small Minus Big, while 
HML is High Minus Low. Mom is the momentum factor, while Rev is the long-term reversal factor. All five factors 
follow the description and are obtained from Kenneth French’s data library at http://mba.tuck.dartmouth.edu 
/pages/faculty/ken.french/. The sample period is January 1931 to December 2008. The orthogonalized measures, 
denoted by the symbol "┴", are obtained using the Schweinler-Wigner/ Löwdin (1970) procedure.  
 
 
Panel A: Distribution Parameters 

 Original Returns  Orthogonal Returns 

 RM SMB HML Mom Rev  RM┴ SMB┴ HML┴ Mom┴ Rev┴ 

Mean 0.61 0.29 0.44 0.70 0.35  0.67 0.23 0.55 0.99 0.17 

Std. Dev. 5.40 3.36 3.61 4.71 3.54  5.40 3.36 3.61 4.71 3.54 

Skewness 0.30 2.29 1.91 -3.04 2.95  -0.24 1.44 0.63 -2.04 1.97 

Kurtosis 8.34 22.99 16.11 28.33 24.22  4.82 14.89 5.54 15.45 17.40 
           
 
Panel B: Correlation Coefficients 

 Original Returns   Orthogonal Returns 

Factor RM SMB HML Mom Rev  Factor RM┴ SMB┴ HML┴ Mom┴ Rev┴ 

RM 1 0.33 0.23 -0.34 0.24  RM┴ 1 0.00 0.00 0.00 0.00 
SMB  1 0.10 -0.15 0.41  SMB┴ 0.00 1 0.00 0.00 0.00 
HML   1 -0.40 0.61  HML┴ 0.00 0.00 1 0.00 0.00 
Mom    1 -0.24  Mom┴ 0.00 0.00 0.00 1 0.00 
Rev     1  Rev┴ 0.00 0.00 0.00 0.00 1 

 

                                                 
16 See, for instance, Liew and Vassalou (2000). 
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As expected (see Panel A), sample variances are identical before and after the orthogonal 

transformation. Although the other distributional moments are different between non-

orthogonalized and orthogonalized data, that does not affect the effectiveness of our decomposed 

systematic risk measures. Importantly, after transformation, the risk premiums for all factors will 

change. In our case, the mean returns of RM, HML and Mom increased, while for SMB and Rev, 

they decreased. Note in Panel B of Table 2.IV that the original RM, SMB, HML, Mom, and Rev 

are more or less correlated to each other, while after the orthogonal transformation they become 

uncorrelated.  

Importantly, the orthogonal factors maintain a high resemblance to their original 

counterparts: the correlation coefficients between the original and the orthogonally-transformed 

returns are very high (i.e. 0.97, 0.96, 0.92, 0.97 and 0.91, respectively). 

   Next, using the orthogonally-transformed data, we estimate the “orthogonal” beta 

coefficients, from the five-factor regression model for eight style portfolios, characterized by 

size, value/growth, momentum, and contrarian, respectively. Table 2.V presents the results for 

the equal-weighted portfolios. Apparently, the absolute values of the “orthogonal” betas ( )β̂ ⊥  

are generally higher than those of the “non-orthogonal” betas ( )β̂ .17 For instance, the non-

orthogonal contrarian beta ( )Re
ˆ

vβ  of the small-cap and contrarian-sensitive portfolio (Small/Low 

Rev) is 0.42, but its orthogonal beta 
Re

ˆ
vβ ⊥ equals 0.95. Since the volatility estimates,σ̂ , are 

identical with or without orthogonalization, lower β̂  (as compared to β̂ ⊥ ) indicates that the 

systematic risk is underestimated, if the dependence between factors is ignored.  

                                                 
17 Again, the “orthogonal” betas are the coefficients obtained from the regression on the orthogonally-transformed 
factors, or simply by multiplying the correlation matrix (Ψ) by the original beta estimates. So, they are not 
orthogonal per se, but for ease of understanding, we prefer to term them accordingly. 
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The results presented in Tables IV and V highlight the importance of the orthogonal 

transformation in determining the proper risk premiums and beta coefficients, and suggest that 

multi-factor market models should be used cautiously. Paired t-tests indicate that, for the entire 

period (January 1931 to December 2008), the differences between the risk premiums on the 

orthogonal and the original factors were statistically significant for Mom and Rev (at 1 percent 

level), HML (at 5 percent level), SMB (at 10 percent level), and barely significant for RM. 

 We note that although the orthogonal beta ( )β̂ ⊥  assesses the sensitivity of an asset's 

return to the variation in the underlying component of a factor's premium, it alone can not be 

used as a decomposed risk measurement. The appropriate approach is to take the product of β̂ ⊥ -

square and the factor's volatility( )2 2ˆ ˆi.e. 
jf fβ σ⊥ . Table 2.VI shows the empirical results of systematic 

risk decomposition. Again, our methodology is applied to the eight style portfolios characterized 

by size, value/growth, momentum, and contrarian, respectively. We calculate the risk estimates 

for both the equal-weighted (Panel A) and value-weighted portfolios (panel B). We use an 

Ordinary Least Squares (OLS) regression model and we calculate the systematic variation ( 2ˆ
jsrσ ), 

taking the difference between the variance of a portfolio’s returns ( 2ˆ jσ ) and its residual variance 

( 2ˆ
jεσ ) from the regression. It is clear, from both Panel A and Panel B, that the sum of 

decomposed systematic risk measures after the orthogonal transformation is exactly equal to the 

overall systematic variation ( 2ˆ
jsrσ ). This evidence shows the decomposability of risk 

measurement through orthogonalization.   

Again, due to the correlations between the original factors, as reported in Table 2.IV, the sum of 

the non-orthogonal measures, 2 2ˆ ˆ
jf fβ σ , is clearly different from 2ˆ

jsrσ (and generally much smaller). 
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To examine the magnitude of individual decomposed risk measures in relation to the systematic 

and idiosyncratic risk, we further compute the decomposed R-squares, simply dividing 
2 2ˆ ˆ

jf fβ σ⊥  by 

2ˆ jσ . The sum of the decomposed R-squares stands for the overall systematic risk, and one minus 

the R-square becomes an assessment of the idiosyncratic risk. In addition, the decomposition of 

R-squares can be used to discriminate against unimportant factors in model specification. Table 

2.VII presents the risk decomposition for eighteen style portfolios (both equal-weighted and 

value-weighted): the six portfolios formed on Size and Book-to-Market, the six portfolios formed 

on Size and Momentum, and the six portfolios formed on Size and Long-Term Reversal. The 

percentages of risk contributed systematically from Market (RM), Size (SMB), Value (HML), 

Momentum (Mom), and Contrarian (Rev) for the equal-weighted (value-weighted) small-cap 

portfolios are, on average, 53% (63%) , 25% (21%), 5% (5%), 6% (5%) and 5% (4%), 

respectively. This indicates that the systematic return-variation of the small-cap funds is, in a 

proportion of approximately 80 percent, caused by two sources: the overall market risk and the 

volatility of the size factor. The idiosyncratic risk of the value-weighted small-cap funds (around 

2 percent) seems to be lower than that of the equal-weighted funds (approximately 5 percent).   

For large-cap portfolios, on the other hand, roughly 80 percent of volatility comes from 

the market factor alone, while the size factor is relatively unimportant. Specifically, the 

decomposed R-squares of size are, on average, only 4 percent for the equal-weighted portfolios 

and under 1 percent for the value-weighted funds. The unsystematic risk is about 3 to 4 percent.  

In summary, from the point of view of modeling specification, the conventional single 

index market model is valid for large-cap stocks, but one needs to consider the size factor for 

small-cap stocks.  
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Furthermore, although the value, momentum and contrarian factors seem to be 

unimportant for average portfolios of both large-cap and small-cap stocks, they do have some 

impact on the volatility of the style funds that carry their names. For instance, 16.43 (18.15) 

percent of the equal-weighted (value-weighted) large-cap/value fund’s volatility comes from the 

value-factor (HML). The equal-weighted (value-weighted) large-cap/down-momentum fund has 

23.43 (27.44) percent of the R-square contributed by the momentum factor (Mom). The 

decomposed R-squares of low-reversal portfolios with respect to the Rev factor range from 

9.94% to 18.10%. This indicates that the factor-specification in market models is heterogeneous 

and varies by different styles of portfolio formation. 

When comparing Tables V and VII, it is even more interesting that higher original betas 

(in absolute value) of one factor versus another factor do not necessarily imply a relatively 

higher importance of the former. For example, the four small-cap portfolios in Table 2.V have 

higher betas of SMB compared to RM, still their corresponding decomposed-R2 values are lower. 

Next, our risk decomposition procedure is applied to monthly returns on 30-industry 

portfolios. As shown in Table 2.VIII, the unsystematic variation of industry funds is much larger 

than that of style portfolios. It ranges from 7.76% (Fabricated Products and Machinery) to 

56.23% (Tobacco Products) for the equal-weighted portfolios and from 13.69% (Banking, 

Insurance, Real Estate, Trading) to 71.97% (Coal) for the value-weighted portfolios. The equal-

weighted funds have larger 2
SMBDR  than the value-weighted portfolios. This confirms again that 

the size factor is critical for pricing small-cap stocks. In addition, the value-factor has some weak 

influences on return variation of equal-weighted industry portfolios. For example, the 

decomposed R-square for the value-factor for Transportation, Utilities, Finance, and Coal are 

12.12%, 9.00%, 8.68%, and 8.51%, respectively.  
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It appears that the impact of the momentum and contrarian factors on the industry portfolios is 

small and relatively insignificant. Nevertheless, the high unsystematic risk (1 2R− ) suggests that 

other factors, specific to particular industries, may be influential. 

From the overall sample analysis for the period ranging from January 1931 to December 

2008, more than 85 percent, on average, of style portfolios' return variation is attributed to 

the 2DR of RM, SMB and HML. This indicates that the Fama-French Three-Factor Model 

quantifies fairly well the risk-return structure of well-diversified equity portfolios. However, it is 

well known that the volatility of stock portfolios changes over time.18 An examination of the 

time variation of equity risk decomposition is important. Monthly R-squares and decomposed R-

squares are computed based on overlapping regression estimation for every 60-month (t-59 to t) 

window, over a period ranging from January 1936 to December 2008. We illustrate, in Figure 

2.1, the dynamic risk-decomposition for the value-weighted Small/ Value and Big/ Value style 

portfolios. In this case, for ease of comparability, they are selected from the Fama and French 25 

portfolios formed on size and book-to-market. Again, the volatility is decomposed linearly into 

six components: market ( 2
RMDR ), size ( 2

SMBDR ), value ( 2
HMLDR ), momentum ( 2

MomDR ), contrarian 

( 2
RevDR ), and idiosyncratic risk (1 2R− ). In general, the largest component of return variation is 

captured by the market factor. RM maintains a similar importance when going from Small to Big 

( 2
RMDR for Small and for Big have a high correlation of 77 percent). Conversely, SMB is highly 

significant for Small and insignificant for Big, while HML is moderately more significant for Big. 

These results are in line with Fama and French (1993).  

 

 

                                                 
18 For a good analysis of the dynamic nature of stock market volatility and idiosyncratic risk, see Campbell et al. 
(2001). 
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Figure 2.1: Decomposed Risk over Time 
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Panel B: Decomposed R-square for the Big / Value Portfolio 
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The figure graphs the monthly variation in equity risk decomposition, from January 1936 to December 2008. The R2 
and the decomposed-R2 (denoted by DR2) are calculated based on overlapping regression estimation for every 60-
month (t-59 to t) window. Specifically, we present our empirical results on R2 and DR2 for two of the 25 value-
weighted portfolios formed on Size and Book-to-Market (i.e. Small/ Value and Big/ Value), obtained from Kenneth 
French’s data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.  
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Additionally, as expected, the idiosyncratic component is consistently higher for Big. In the two 

cases, both 2
MomDR and 2

RevDR have a low contribution: with a few exceptions they fall below 20 

percent. From Figure 2.1, it appears that the decomposed components of risk not only are 

dynamic over time, but they may also exhibit significant correlations.19 For example, 2
RevDR  (for 

Small) and 2
HMLDR  (for Big) move inversely with 2

RMDR (with correlation coefficients of -62 

percent and -67 percent, respectively).  

 

2.4. Conclusions 

Multi-factor models employing additional factors to the market risk premium, such as size, value, 

momentum and contrarian, have been widely used by financial researchers and professionals. 

Due to the dependence among factors, decomposing the systematic variation of asset returns, 

with respect to different factors has been a methodological challenge. This study aims to fill this 

gap and proposes a simple procedure of decomposing the coefficient of determination or R-

square. This procedure allows us to examine the marginal contribution of individual factors to an 

asset's return volatility. The key component of our procedure is a simultaneously orthogonal 

transformation of data, that is able to extract jointly, the underlying uncorrelated components of 

individual factors. The covariance between the original factors is eliminated symmetrically, such 

that we achieve a maximum overall resemblance between the original and the transformed data 

sets. Experimentally, it appears that the decomposition is robust even for small sample sizes.   

The decomposition procedure is further applied to return data on U.S. equity portfolios, 

obtained from Kenneth French’s Data Library. Generally, the return variation of well-diversified 

equity portfolios is explained, with the highest proportion, by the market risk premium and size 
                                                 
19 Finding the possible reasons for the ups and downs in the individual components over time is beyond the purpose 
of this paper, and we leave it to future research. 
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factors (in that order). Nevertheless, the decomposed elements of systematic risk and the 

systematic risk itself change over time.  

As expected, the industry portfolios, both equal and value-weighted, exhibit significantly 

higher unsystematic risk than well-diversified portfolios. But, the decomposed-R2 of the equally-

weighted 30-industry portfolios favor market less, and the other factors more, compared to their 

value-weighted counterparts. 

In summary, the paper provides a simple method to extract underlying (i.e. core) 

uncorrelated components from a set of correlated factors.  This allows us to break the systematic 

variation of asset returns and observe the marginal contribution of risk from individual factors.  

We note that the orthogonal transformation is numerical, and further research for developing a 

formal statistical process is necessary. 
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Appendix to Chapter 2: The nature of the relationship between  

the original and the orthogonalized factors 

Considering that each factor kf can be written, according to equation (2.13) as  

1 2
1 2 ,k K

k k Kkf f f fψ ψ ψ
⊥ ⊥ ⊥

= + + +L  where k = 1, 2, …, K and the coefficients ψlk are the 

elements of the inverse of matrix K KS × , as transformed in equation (2.11), we want to prove that 

for any k and l, ( )corr ,k l
kl f fψ

⊥

= . 

Proof: 

The inverse of matrix K KS × (in its final form), can be written as follows: 
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where kl lks s=& & (the inverse of a symmetric matrix is symmetric). 

So, 
1

1
lk
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l

s
T

ψ σ=
−

&
, where k and l go from 1 to K. 

Thus, 1 21 2

1 2

1
.

1
k l Kk k lk Kk
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We can now calculate the covariance between kf  and lf
⊥

[Note that for any i = 1, 2, …, K, 

( ) ( )var vari if f
⊥

= ]: 
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But, 
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.
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lk kl
l k

f f f f
s s
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Writing equation (2.13) for factor l, we have: 
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1 2
1 2 .l k K
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   Q.E.D. 
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Chapter 3: Sentiment Effect and Market Portfolio Inefficiency 

 

3.1. Introduction 

Testing market portfolio efficiency relative to different sets of portfolios has been a main theme 

of financial research. We propose an approach that avoids the major drawbacks of other methods 

and manages to give clear answers, in a simple and less restrictive way. Using Marginal 

Conditional Stochastic Dominance (MCSD) tests, we are able to prove the existence and 

importance of the sentiment effect, and link it to a case of inefficiency of the market portfolio. 

Mean-variance efficiency tests are the pioneers in this area.20 For instance, Gibbons, Ross, 

and Shanken (1989) develop a multivariate F-test that checks whether the intercepts are jointly 

equal to zero. This test is easy to implement and offers a nice economic interpretation (in terms 

of Sharpe ratios), but its theoretical validity depends on the normality assumption of the 

disturbances. MacKinlay and Richardson (1991), Zhou (1993), and Richardson and Smith (1993) 

show that this assumption does not hold empirically. 

The theory of stochastic dominance, developed initially by Hadar and Russell (1969), 

Hanoch and Levy (1969), and Rothschild and Stiglitz (1970), and reassessed by Levy and Sarnat 

(1984) and Levy (1992), was largely augmented by the empirical tests for stochastic dominance 

efficiency, as developed by Post (2003) or Kuosmanen (2004). 

Best, Best and Yoder (2000) show that the U.S. value portfolios second-order 

stochastically dominate (SSD) the U.S. growth portfolios (for the interval July 1978 – June 1998) 

and conclude that this result is inconsistent with market portfolio efficiency. Nevertheless, Post 

and Vliet (2004) underline the sensitivity of the SSD results to sampling variation (as the SSD 

                                                 
20 For an excellent review on the early literature on mean-variance efficiency tests, see Shanken (1996).  
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rule considers the whole sample distribution), and reject the aforementioned conclusion. They 

point out that the market portfolio is actually inefficient when extending the period to July 

1968 – June 1998. 

Chou and Zhou (2006) use a bootstrap method to test the mean-variance efficiency of a 

given portfolio, and claim that the method provides more reliable and robust results, but in a 

computationally-expensive manner.  

Post and Versijp (2007) apply multivariate statistical tests for stochastic dominance 

efficiency of a given portfolio and obtain that the market portfolio (proxied by the CRSP all-

share index) is significantly mean-variance inefficient relative to ten market beta-sorted 

portfolios. A strategy of buying low beta stocks, while selling high beta stocks can lead to a 

higher Sharpe ratio compared to that of the market (i.e. low beta stocks are underpriced and high 

beta stocks are overpriced in the mean-variance framework). They blame this inefficiency on the 

tail risk, not captured by variance. The mean-variance beta underestimates the tail risk for low 

beta stocks and overestimates the tail risk for high beta stocks.  

An earlier article by Post and Vliet (2006) concludes that the same proxy for the market 

portfolio (i.e. the value-weighted CRSP index), is also mean-variance inefficient relative to 

benchmark portfolios formed on size, value and momentum, for the same time period: January 

1933, to December 2002.  

We apply the MCSD tests in the context of a multifactor linear model, so we need to turn 

our attention to this type of models. Multifactor models, alternatives to the traditional Sharpe 

(1964) and Lintner (1965) Capital Asset Pricing Model (CAPM), have become popular in recent 

decades. For instance, an extension of the CAPM to a multi-country case is the widely known 
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International CAPM. 21  Other extensions, to a multi-period economy, are the Intertemporal 

CAPM and Consumption-based CAPM.22 

A widely cited multifactor model is the Fama and French Three Factor Model (1992, 

1993, 1996 and 1998, hereafter FF). The model is considered a special case of the Arbitrage 

Pricing Theory (APT, as developed by Ross, 1976). It considers the existence of three factors 

that determine the asset pricing, but those factors are only mimicked by three well diversified 

portfolios: market, SMB (i.e. Small minus Big, market capitalization) and HML (i.e. High minus 

Low, book-to-market ratio). FF also claim that a series of the so-called anomalies can be 

explained using their model.23 They see higher returns (i.e. excess returns between dominated 

and dominating assets) as compensation for taking on more risk (i.e. systematic risk factors that 

are therefore priced). 

The Carhart (1997) model extends the FF model, by including a fourth factor: momentum. 

The momentum effect of Jegadeesh and Titman (1993, 2001), Chan, Jegadeesh, and Lakonishok 

(1996), Rouwenhorst (1998), and others, indicates that average returns on the prior best 

performing stocks (the so-called winners) exceed those of the prior worst performing stocks (the 

so-called losers), and thus short-term past returns have predictive power over future returns. 

Recently, a number of articles have been inspecting the effect of investor sentiment on 

common stock returns.24 Baker and Wurgler (2006, 2007) examine investor sentiment as another 

determinant of stock returns. They construct sentiment indexes (hereafter denoted as BW) and 

                                                 
21 See for example Solnik (1974), Stulz (1981), Adler and Dumas (1983), Black (1990), and DeSantis and Gérard 
(1998). 
22 See Merton (1973) and Breeden (1979), respectively. 
23 However, a number of studies blame biases in the empirical methodology for the documented anomalies. Lo and 
MacKinlay (1990), MacKinlay (1995), Knez and Ready (1997), and Loughran (1997) argue that the empirical 
evidence can actually result from data-snooping biases such that the anomalies are sample dependent. Therefore, 
they are unlikely to be observed out-of-sample. 
24 See for example Lee, Shleifer and Thaler (1991), Mitchell, Pulvino and Stafford (2002), Qiu and Welch (2004) 
and Brown and Cliff (2004, 2005). 
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find that returns are affected by the level of pessimism/ optimism, even when controlled for the 

Fama and French factors.25 

Glushkov (2006) tests whether exposure to sentiment is a priced factor, namely whether 

investors demand premium for holding stocks with more exposure to sentiment. He develops a 

sentiment factor, taking the first principal component of different measures of investor sentiment 

(similar to BW). He finds a sentiment beta after controlling for risk factors associated with 

market, size, value and liquidity. The relationship between sentiment betas and returns turns out 

to be inverse U-shaped, which means that low and high beta stocks tend to underperform the 

near-zero beta stocks. The under-performance of extreme beta portfolios (with no significant 

difference between them), compared to near-zero sentiment beta portfolios, is also manifested for 

sub-periods, which means, he concludes, that there is no reason to think about sentiment as a risk 

factor. 

This paper applies MCSD tests in order to examine the existence of a sentiment effect 

and to inspect the efficiency of the market portfolio. Unlike the traditional SSD rules of 

comparing unconditional return distributions of assets independently, MCSD considers the joint 

nature between assets and the market.26 The MCSD theory, originally developed by Shalit and 

Yitzhaki (1994), focuses on necessary and sufficient conditions to improve investors’ expected 

utility of wealth, by marginally reallocating the assets in their portfolios (i.e. by increasing the 

share of the dominating assets on the account of the dominated ones).27 Specifically, suppose that 

the market portfolio can be decomposed into a set of mutually exclusive sub-portfolios according 

                                                 
25 Liu (2006) studies the effect of sentiment on stock market liquidity. She finds that BW is a significant factor for 
liquidity, but only for some assets (for instance, portfolios with high sentiment beta), not for the market as a whole. 
26 For a comprehensive review of the advantages of the SSD versus conventional mean-variance analysis, see for 
instance Chow et al. (2008). 
27 Jewitt (1987) derives conditions that all risk-averse individuals prefer one particular sub-portfolio over another, 
given that they hold the rest of the portfolio. 
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to the stocks’ sensitivity to investor sentiment: positively sensitive )( s
+β , insensitive )( 0

sβ , and 

negatively sensitive )( s
−β stocks. Conditional on the return distribution of the given market 

portfolio, if for instance s
0β  marginally and stochastically dominates s

+β according to the MCSD 

criteria, then we conclude that the market portfolio is stochastically inefficient, in that risk-averse 

investors prefer to hold a re-allocated portfolio by selling s
+β stocks and purchasing more of s

0β  

stocks.  

 To examine the sentiment effect, we sort all the NYSE, AMEX, and NASDAQ stocks 

(that do not have missing values during the regression period), according to their sentiment betas, 

(based on the BW sentiment levels index), after controlling for market, size, value, and 

momentum factors. Thus, we form three sentiment-beta sorted portfolios. We also construct three 

sentiment-arbitrage portfolios with positively sensitive vs. insensitive, insensitive vs. negatively 

sensitive, and positively vs. negatively sensitive stocks, dependent on different levels of investor 

sentiment. Employing a statistical inference MCSD test developed by Chow (2001), we find that 

both positively and negatively sentiment sensitive stocks are conditionally and stochastically 

dominated by sentiment insensitive stocks. Moreover, we find dominance among the sentiment-

arbitrage portfolios, which proves once again that the market portfolio is inefficient relative to 

portfolios formed on investor sentiment. 

The paper is organized as follows. Section II reviews the MCSD ranking rule and its 

statistical inference procedures. In section III, we describe the data, the empirical hypothesis and 

we present our main results.  Section IV draws brief conclusions. 
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3.2. Marginal Conditional Stochastic Dominance Test 

Traditional portfolio selection models such as stochastic dominance, mean-variance, and 

performance measures, rank portfolios unconditionally and independently. These approaches are 

appropriate for individual asset selection, but they are unable to effectively solve the problem of 

improving portfolio holding by changing asset allocation in the portfolio. Shalit and Yitzhaki 

(1994) argue that, in reality, investors usually optimize their portfolios by marginally changing 

asset allocation, without altering the core portfolio.   

Let a diversified core-portfolio, such as a market index portfolio, be decomposed into a 

set of n mutually exclusive sub-portfolios according to a fundamental metric (sentiment 

sensitivity, in our case). The return on the core-portfolio can be written as 
1

n

m s s
s

r w r
=

= ∑ , where rs 

is the return of the s-th sub-portfolio, and
1

1
n

s
s

w
=

=∑ . As mentioned above, Shalit and Yitzhaki 

(1994) claim that when investors maximize their expected utility, they normally reallocate 

securities marginally, without altering their core holdings. So, what is the condition such that 

investors are willing to marginally change their asset allocation to optimize their utility?   

Assume that investors are non-satiated and risk-averse (i.e. their preference functions are 

such that: U'>0 and U"<0). Also, they are maximizing their expected utility, E(U(W)), where 

1

1
n

s s
s

W w r
=

= + ∑  is the final wealth (assuming an initial wealth of $1).  

Then, a sub-portfolio p dominates another sub-portfolio q, given the core-portfolio, if the 

following inequality holds for all investors:  

                                               
( ( ))

'( )( )  0p q
p

dE U W
EU W r r

dw
= − ≥                                             (3.1) 
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Shalit and Yitzhaki (1994) formulate the necessary and sufficient conditions such that 

inequality (3.1) holds, in terms of Absolute Concentration Curves (ACCs), which are defined as 

the cumulative expected returns on assets / sub-portfolios, conditional on the return on the core-

portfolio. Since the concept of ACC is less familiar in the financial literature, Chow (2001) 

reformulates these conditions in a relatively simple way, as follows:  

 

Theorem 3.1.  For all risk-averse investors, the inequality (3.1) holds if and only if  

           ∫ ∫∫ ∫ ∞−

∞

∞−∞−

∞

∞−
≥

mm

qmmqqpmmpp drdrrrfrdrdrrrfr
ρρ ττ     

 ),(  ),(                              (3.2.1) 

or, 

E ( ) 0    ≥≤− m
mqp rrr ρτ ,                                                                        (3.2.2)  

 for all ρ, where 10 ≤≤ ρ ; E is the expectation operator; m
ρτ = )(1 ρ−

mF ;  )(1 ρ−
mF is the inverse 

cumulative density function of mr , corresponding to abscissa ρ.   

From equation (3.1) and Theorem 3.1, it is clear that the existence of MCSD for any pair 

of sub-portfolios ensures that the core-portfolio is not optimal, because risk-averse investors are 

able to increase their expected utility through a reallocation between the pair of sub-portfolios. 

The application of Theorem 1 to the test of market portfolio stochastic efficiency is 

straightforward. Let the market portfolio be the core-portfolio, while the sub-portfolios are 

constructed as the sorted mutually exclusive groups of assets according to information about the 

sentiment metric. Our null hypothesis is that there is no MCSD (implying that the core-portfolio 

is efficient). Applying MCSD tests to pairwise comparisons of sub-portfolios, if there is at least 

one MCSD, we then reject the null hypothesis and conclude that the market portfolio is 
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inefficient. Notably, when ρ = 1, the inequalities (2) are equivalent to the difference between the 

mean returns on sub-portfolios p and q.  

 To test for MCSD, a transformation of inequality (3.2.1) is necessary. Without loss of 

generality, let 
m

mI ρτ  be an indicator variable such that 
m

mI ρτ = 1, if m
mr ρτ≤ , and 

m

mI ρτ = 0, otherwise.  

Then, the inequality (3.2.2) can be written as:  

     )()(
mm

mqmp IrEIrE ρρ ττ ≥                                                        (3.3)  

To apply the statistical inference procedure of MCSD, we begin by selecting a set of target 

returns, { m
tτ = )(ˆ 1

tmF ρ−  t = 1,…k}, corresponding to the abscissas {ρt  t = 1,…k}. For instance, 

in the case of deciles, k = 10 and ρ1 = 0.1, ρ2 = 0.2, …, ρ10 = 1.0.  Further, let   

    
m
t

qp
τ

−Φ = )()(
m
t

m
t

mqmp IrEIrE ττ −                                                        (3.4) 

There are three possible outcomes from the MCSD test: equality (
m
t

qp
τ

−Φ = 0 for all t) ; dominance 

(
m
t

qp
τ

−Φ  > 0 for some t, but 
m
t

qp
τ

−Φ = 0 for the rest of t, or 
m
t

qp
τ

−Φ  < 0 for some t, but 
m
t

qp
τ

−Φ = 0 for the 

rest of t); and non-comparability (
m
t

qp
τ

−Φ > 0 for at least one t and 
m
t

qp
τ

−Φ < 0 for at least one t). 

Since conventional goodness-of-fit measures (e.g. Chi-square and F-test) are unable to 

distinguish between dominance and non-comparability when the null hypothesis of equality is 

rejected, a multiple comparison test becomes necessary. It is also important to note that, using 

empirical quantiles from the market return sample as targets may involve sampling variation 

from the population quantiles. However, data snooping bias is limited (Chow, 2001).  

By employing the target approach, the statistical inference of MCSD is simple and 

straightforward. Given a set of ) random sample returns, {( 1pr , 1qr , 1mr ), …, ( p)r , q)r , m)r )}, 

the sample estimates of MCSD ordinates can be expressed as: 
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                                                      1

1
ˆ ( ) ( )

m m m
t t t

)

p q pi mi qi mii
) r I r Iτ τ τ−

− =
Φ = −∑                                         (3.5) 

 Chow (2001) shows that the sampling distribution of )ˆ(
m
t

m
t

qpqp) ττ
−− Φ−Φ is normal, and 

further provides a full variance-covariance structure of estimates.28 Importantly, one may easily 

perform a statistical inference for MCSD by testing a set of Z-statistics under the null 

hypothesis ),...,10{:0 ktH
m
t

qp ==Φ −
τ .  The test statistic can be written as:  

                                                 
m
t

qpZ τ
−  = m

t

m
t

qp

qp

S
)

τ

τ

−

−Φ̂
,                                                           (3.6)                           

for t=1,…,k, where 
m
t

qpS τ
− is the sample standard deviation. To control for the size of the above 

multiple comparison procedure, it is necessary to adjust the critical value of the test.  Using the 

Studentized Maximum Modulus (SMM) approach, the asymptotic joint confidence interval of at 

least 100(1 - α) percent for a set of MCSD estimates is: 

                                        
m
t

qpZ τ
− );;( ∞± kSMM α    for t =1,2,…,k,                                               (3.7) 

where );;( ∞kSMM α is the asymptotic critical value of the α point of the SMM distribution with 

parameter k and ∞ degrees of freedom. Thus, the empirical MCSD rules using the above 

inference procedure are summarized as follows: 

(a) An asset/ sub-portfolio p dominates an asset/ sub-portfolio q, if at least one strong 

inequality holds, 
m
t

qpZ τ
−  > );;( ∞+ kSMM α , and no 

m
t

qpZ τ
−  statistic has a value less than 

);;( ∞− kSMM α .  

(b) An asset/ sub-portfolio p is dominated by an asset/ sub-portfolio q, if at least one strong 

inequality holds, 
m
t

qpZ τ
−  < );;( ∞− kSMM α , and no 

m
t

qpZ τ
−  statistic has a value greater than 

                                                 
28 It is assumed that sample returns of each portfolio are identically and independently distributed. To generate i.i.d. 
sample returns, one may randomize the return data. 
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);;( ∞+ kSMM α . 

(c)       No dominance exists otherwise.29  

Chow (2001) shows that although the MCSD test is conservative in nature, it has power 

to detect dominance for samples with more than 300 observations, and is robust under both 

homoskedasticity and heteroskedasticity assumptions. 

 

3.3. Empirical Results 

We consider the following setting for a multifactor linear model: 

                   i f i i i i i i
t t t t t t t tr r RM s SMB h HML m Mom Sentα γ β ε− = + + + + + + ,                        (3.8) 

where i fr r− represent the excess returns on all common stocks listed on the NYSE, 

AMEX, and NASDAQ (that do not have missing values during the regression period), over the 

one-month Treasury bill rate (from Ibbotson Associates); RM, SMB and HML are the Fama and 

French factors: RM is the market risk premium, SMB is Small Minus Big (size), and HML is 

High Minus Low (book-to-market), while Mom is the momentum factor; Sent is the Baker and 

Wurgler (2007) sentiment levels index.  

Monthly data, ranging from January 1966 to December 2007, are obtained from the 

following sources: stock returns – from the CRSP database, market risk premium, size, value and 

momentum factors – from Kenneth French’s data library (at http://mba.tuck.dartmouth.edu/ 

pages/faculty/ken.french/), and the index of sentiment levels – from Jeffrey Wurgler’s website 

(http://pages.stern.nyu.edu/~jwurgler/).30 

 

                                                 
29 There are two possible cases: (1) all statistics are neither greater than +SMM, nor less than –SMM.  In this case, 
we fail to reject the null hypothesis that the two distributions are equal, and (2) if at least one statistic is greater than 
+SMM, and at least one statistic is less than –SMM, then the MCSD ranking crosses, and there is no dominance. 
30 The time period is constrained by the availability of the sentiment measure.  
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As shown in Table 3.I, the five regressors in equation (3.8) are, to some extent, mutually 

correlated. Their correlation coefficients range, in absolute value, from 0.01 to 0.42. However, 

for other periods or for sub-periods, the coefficients can be more significant. For instance, for the 

first 95 months of the interval, there is a 0.58 correlation between RM and SMB, while for the 

last 151 months, we have -0.53 between RM and HML. Even more so, the fourth 60-month sub-

interval gives a -0.65 correlation between RM and HML.  

For more robust results, we also perform a symmetric orthogonal transformation, as in 

Chow and Klein (2010). The analogous model, in terms of the orthogonally transformed data 

(denoted by the symbol “┴”), is as follows: 

                   i f i i i i i i
t t t t t t t tr r RM s SMB h HML m Mom Sentα γ β ε⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥− = + + + + + +         (3.9) 

Note that the average sentiment level is close to zero (0.017) and remains close to zero (0.018) 

after the orthogonal transformation. The equity premia increase in importance after the 

orthogonalization, more significantly for RM (from 0.442, to 0.610) and HML (from 0.413, to 

0.617), and less significantly for SMB (from 0.219, to 0.224) and Mom (from 0.826, to 0.897). 

Importantly, the orthogonalized factors maintain the standard deviation of their non-

orthogonalized counterparts. Also, the intercept and the error term stay the same after 

transformation.  

To form the sentiment-beta portfolios, we run regression (8) (and (9), respectively) for 

the first twenty-four months, then we sort all assets (that do not have missing values during that 

particular period) on sentiment betas. The top 25, middle 50 and bottom 25 percent are 

considered the positively sensitive )( s
+β , insensitive )( 0

sβ , and negatively sensitive )( s
−β stocks, 

respectively. Next, we repeat the procedure using a rolling-window approach (the overlapping 

interval is twelve months). 
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Table 3.II 

Summary Statistics for Sentiment-Beta Sorted Portfolios  
 
The table presents summary statistics for the excess returns on three sentiment-beta sorted portfolios and for their 
orthogonal counterparts (Panel A), and also for pairwise differences between the aforementioned portfolios (Panel 
B). 31 The three sentiment-beta sorted portfolios are obtained by regressing the monthly percentage excess returns of 
all common stocks (listed on the NYSE, AMEX, and NASDAQ), on the five factors mentioned below and then 
sorting them according to their sentiment betas. The top 25 percent represent the positively sensitive stocks (β+

s), the 
bottom 25 percent indicate the negatively sensitive stocks (β-

s), while the rest are the insensitive stocks (β0
s).  

Monthly data, ranging from January 1966 to December 2007, are obtained from the following sources: stock 
returns – from the CRSP database, market risk premium, size, value and momentum factors – from Kenneth 
French’s data library (at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/), and the index of sentiment 
levels – from Jeffrey Wurgler’s website (http://pages.stern.nyu.edu/~jwurgler/).  
The orthogonally transformed data (denoted by the symbol “┴”) is obtained using the Löwdin (1970) / Schweinler 
and Wigner (1970) procedure, as implemented in Chow and Klein (2010). 

 
 

Panel A: Excess Returns on Sentiment Portfolios 

Portfolio Mean t-statistic 
Standard 

deviation 
Skewness Kurtosis 

       

β+
s
 0.836 *** 2.64 6.841 0.338 4.115 

β0
s
 0.791 *** 3.52 4.857 -0.190 5.135 

β-
s
 0.819 *** 2.79 6.356 -0.150 2.248 

(β+
s
)
┴
 0.836 *** 2.65 6.824 0.339 4.163 

(β0
s
)
┴
 0.789 *** 3.52 4.854 -0.191 5.105 

(β-
s
)
┴
 0.822 *** 2.79 6.379 -0.144 2.245 

              

 
 

Panel B: Pairwise Differences between Sentiment Portfolios 

Portfolio Mean t-statistic 
Standard 

deviation 
Skewness Kurtosis 

       

β+
s
 - β0

s
 0.045  0.35 2.827 1.902 15.308 

β+
s
 - β-

s
 0.017  0.18 2.048 1.362 11.554 

β0
s
 - β-

s
 -0.028  -0.26 2.306 -0.938 4.275 

(β+
s
)
┴
 - (β0

s
)
┴
 0.046  0.36 2.814 1.933 15.569 

(β+
s
)
┴
 - (β-

s
)
┴
 0.013  0.14 2.040 1.361 11.557 

(β0
s
)
┴
 - (β-

s
)
┴
 -0.033  -0.31 2.330 -0.941 4.255 

              

 

Table 3.II reports the descriptive statistics for these three portfolios. Importantly, as 

shown in Panel B, the pairwise differences between the mean returns on the portfolios (both non-
                                                 
31 One, two or three asterisks designate significance levels of 10%, 5% and 1%, respectively. 
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orthogonalized and orthogonalized) are not significantly different from zero. So, we cannot 

perform any first-order sorting. For each of them, the monthly excess returns are, on average, 

around 0.8 percent (see Panel A). Note that the orthogonal transformation causes marginal 

modifications in the construction of the sentiment-beta portfolios, which results in different 

statistics. Specifically, the variance in the returns on the sentiment-beta portfolios is no longer 

expected to stay the same after the orthogonalization procedure. The standard deviation of the 

insensitive stocks, for instance, slightly diverges from 4.857 to 4.854 percent. 

At the second order, the MCSD tests find significant dominance (see Table 3.III): both 

positively and negatively sentiment sensitive stocks are conditionally and stochastically 

dominated by sentiment insensitive stocks.32 The dominance is significant for the first seven 

targets.33 For instance, for the first five targets, conditional on the return on the market portfolio, 

s
0β outperforms s

+β  by roughly 0.4 percent per month (for both non-orthogonalized and 

orthogonalized). That is to say, on the downside of the market, the insensitive stocks surpass the 

positively-sensitive stocks. These results prove the existence of a sentiment effect. More notably, 

the market portfolio is found inefficient relative to the sentiment-beta portfolios. 34  Thus, 

investors are able to improve their expected utility by marginally changing the weights on their 

portfolios (i.e. by increasing the share of the insensitive versus the sentiment-sensitive stocks). 

The dominance fades out towards the upper deciles of the market distribution, but does not 

reverse, which does not affect the significance of our results. 

 

                                                 
32 This inverse U-shaped pattern is in line with Glushkov (2006). 
33 The 10th target (i.e. the maximum value of the market) corresponds to the unconditional means, for which we did 
not find a significant ranking. 
34 We also perform the Gibbons, Ross, and Shanken (1989) test for the entire period, and the results reject the 
market portfolio efficiency relative to the sentiment-beta portfolios. Nevertheless, the results (not reported) need to 
be used cautiously, given the empirical failure of the normality assumption.  
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Table 3.III 

MCSD Test for Sentiment-Beta Sorted Portfolios  
 
The table presents the MCSD test results for pairwise comparisons between three portfolios formed by sorting the 
sentiment betas, based on the Baker and Wurgler (2007) sentiment levels index. We regress the excess returns of all 
common stocks (listed on the NYSE, AMEX, and NASDAQ), on the factors mentioned below and then sort stocks 
according to their sentiment betas. The top 25 percent represent the positively sensitive stocks (β+

s), the bottom 25 
percent indicate the negatively sensitive stocks (β-

s), while the rest are the insensitive stocks (β0
s).  

Monthly data, ranging from January 1966 to December 2007, are obtained from the following sources: stock 
returns – from the CRSP database, market risk premium, size, value, and momentum factors – from Kenneth 
French’s data library (at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/), and the index of sentiment 
levels – from Jeffrey Wurgler’s website (http://pages.stern.nyu.edu/~jwurgler/). Two sets of results are reported: one 
for the original data (Panel A) and one for orthogonally transformed data (Panel B), using Löwdin (1970) / 
Schweinler and Wigner (1970) procedure, as implemented in Chow and Klein (2010). The MCSD ordinates, 
corresponding to empirical quantiles of the market return distribution, are statistically different from zero if their 
accompanying Z-scores (displayed in parentheses) are greater, in absolute value, than the SMM critical values of 
2.560, 2.800 or 3.289, for significance levels of 10, 5 or 1 percent (designated by one, two or three asterisks, 
respectively). 35   
 
Panel A: Original Data 

         ρρρρ              

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

           
ττττρ

m    -4.44 -2.42 -1.08 0.04 1.24 2.05 3.25 4.55 6.07 16.56 

              
-0.249 -0.370 -0.430 -0.473 -0.454 -0.459 -0.296 -0.192 -0.108 0.045 

β+
s
 - β0

s
 

(-4.72)*** (-6.03)*** (-6.63)*** (-6.41)*** (-5.89)*** (-5.50)*** (-2.87)** (-1.65) (-0.88) (0.35) 

           
-0.020 -0.066 -0.040 -0.063 -0.049 -0.058 -0.003 -0.016 0.005 0.017 

β+
s
 - β-

s
 

(-0.63) (-1.59) (-0.87) (-1.26) (-0.92) (-0.99) (-0.05) (-0.21) (0.06) (0.18) 

           
0.230 0.304 0.390 0.410 0.405 0.401 0.293 0.175 0.113 -0.028 

β0
s
 - β-

s
 

(5.41)*** (5.80)*** (6.82)*** (6.46)*** (6.05)*** (5.45)*** (3.56)*** (1.88) (1.16) (-0.26) 

                     
 
Panel B: Orthogonally Transformed Data 

         ρρρρ              

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

           
ττττρ

m    -4.44 -2.42 -1.08 0.04 1.24 2.05 3.25 4.55 6.07 16.56 

              
-0.248 -0.368 -0.426 -0.468 -0.448 -0.453 -0.292 -0.189 -0.106 0.046 

(β+
s
)
┴
 - (β0

s
)
┴
 

(-4.72)*** (-6.05)*** (-6.62)*** (-6.37)*** (-5.84)*** (-5.46)*** (-2.84)** (-1.63) (-0.87) (0.36) 

           
-0.016 -0.060 -0.032 -0.052 -0.038 -0.048 0.003 -0.013 0.004 0.013 

(β+
s
)
┴
 - (β-

s
)
┴
 

(-0.50) (-1.47) (-0.69) (-1.04) (-0.72) (-0.83) (0.04) (-0.17) (0.05) (0.14) 

           
0.232 0.308 0.394 0.416 0.410 0.405 0.295 0.176 0.110 -0.033 

(β0
s
)
┴
 - (β-

s
)
┴
 

(5.42)*** (5.82)*** (6.86)*** (6.50)*** (6.06)*** (5.44)*** (3.54)*** (1.87) (1.13) (-0.31) 

                     

                                                 
35 All the results in this table are reported as percentages. 
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Table 3.IV 

Summary Statistics for Sentiment-Beta Sorted Portfolios  

Conditional on the Level of Sentiment  
 
The table presents summary statistics for the excess returns on the portfolios constructed with positively sensitive 
stocks (β+

s), insensitive stocks (β0
s), and negatively sensitive stocks (β-

s), all with respect to investor sentiment and 
conditional on the level of sentiment: High / Medium / Low .36 To obtain these three portfolios, we regress the excess 
returns of all common stocks (listed on the NYSE, AMEX, and NASDAQ), on the factors mentioned below and 
then sort stocks according to their sentiment betas. The top 25 percent represent the positively sensitive stocks (β+

s), 
the bottom 25 percent indicate the negatively sensitive stocks (β-

s), while the rest are the insensitive stocks (β0
s).  

Monthly data, ranging from January 1966 to December 2007, are obtained from the following sources: stock 
returns – from the CRSP database, market risk premium, size, value, and momentum – from Kenneth French’s data 
library (at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/), and the index of sentiment levels – from Jeffrey 
Wurgler’s website (http://pages.stern.nyu.edu/~jwurgler/).  
Two sets of results are reported: one for the original data (Panel A) and one for orthogonally transformed data (Panel 
B), using the Löwdin (1970) / Schweinler and Wigner (1970) procedure, as implemented in Chow and Klein (2010). 
  

Panel A: Original Data 

Portfolio 
Sentiment 

Level 
Mean t-statistic 

Standard 

deviation 
Skewness Kurtosis 

        
High -0.119  -0.19 7.887 0.156 2.859 

Medium 1.326 *** 3.49 5.732 0.112 1.992 β+
s
 

Low 1.281  1.59 7.395 1.362 7.600 

High 0.315  0.74 5.322 -0.938 3.288 

Medium 1.009 *** 3.80 4.008 -0.552 2.651 β0
s
 

Low 1.084 * 1.67 5.936 1.230 6.698 

High -0.130  -0.23 7.127 -0.435 1.800 

Medium 1.307 *** 3.56 5.539 -0.033 1.271 β-
s
 

Low 1.255 * 1.69 6.785 0.582 3.160 
                

 
Panel B: Orthogonally Transformed Data 

Portfolio 
Sentiment 

Level 
Mean t-statistic 

Standard 

deviation 
Skewness Kurtosis 

        
High -0.111  -0.18 7.867 0.151 2.896 

Medium 1.505 *** 4.12 5.367 0.218 2.324 (β+
s
)
┴
 

Low 0.867  1.09 7.762 1.057 5.545 

High 0.312  0.73 5.318 -0.933 3.253 

Medium 1.164 *** 4.75 3.603 -0.340 1.848 (β0
s
)
┴
 

Low 0.723  1.13 6.292 0.802 4.874 

High -0.131  -0.23 7.156 -0.431 1.788 

Medium 1.517 *** 4.29 5.197 0.157 1.077 (β-
s
)
┴
 

Low 0.811  1.09 7.266 0.364 2.259 
                

 

                                                 
36 One, two or three asterisks designate significance levels of 10%, 5% and 1%, respectively.  
The sentiment level is High / Medium / Low for values greater than / between / less than the 3rd / 1st quartile of the 
Baker and Wurgler (2007) levels index.  
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If we decompose the time series into three sub-periods: high, medium and low (i.e. 

corresponding to values greater than/ between/ less than the 3rd/ 1st quartile of the Baker and 

Wurgler, 2007 levels index), we notice that the higher excess returns on the sentiment-beta 

portfolios are obtained, on average, during the medium sentiment periods. Less significant results 

correspond to low, while for high, on average, there are no significant excess returns (see Table 

3.IV). For example, for the original data, the insensitive stocks exhibit excess returns of about 1 

percent per month for medium and low (statistically significant at 1% and 10%, respectively), 

while for high, the excess returns are statistically insignificant, on average. Intuitively, during 

high sentiment periods, stocks are overpriced, causing lower subsequent returns (and vice versa 

for medium). Apparently, stocks rebound slower after low sentiment periods, compared to the 

more sudden rise that follows immediately after medium periods. 

What if we condition on the level of sentiment and ignore the medium periods: can we 

still find significant stochastic dominance between sub-portfolios? The answer is affirmative. 

Suppose that we check the level of sentiment (in the month that follows the sorting on sentiment-

betas), and decide to pursue the following three simple investment strategies for the next twelve 

months: if the sentiment level is high (i.e. greater than the third quartile of the BW levels index), 

then long s
−β  and short s

+β , long s
−β  and short s

0β , and finally, long s
+β  and short s

0β . If the 

sentiment level is low, the strategies reverse signs. Otherwise (i.e. if the sentiment level is 

neutral), we take no action. Next, we repeat the steps using overlapping intervals (on twelve 

months). 
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Table 3.V 

Summary Statistics for Sentiment-Arbitrage Portfolios  
 
The table presents summary statistics for the monthly percentage excess returns on three sentiment-arbitrage 
portfolios and for their orthogonal counterparts (Panel A), and also, for pairwise differences between the 
aforementioned portfolios (Panel B). 37  The three sentiment-arbitrage portfolios are constructed with positively 
sensitive vs. insensitive, insensitive vs. negatively sensitive, and positively vs. negatively sensitive stocks, based on 
the Baker and Wurgler (2007) sentiment levels index. We regress the excess returns of all common stocks (listed on 
the NYSE, AMEX, and NASDAQ), on the factors mentioned below and then sort stocks according to their 
sentiment betas. The top 25 percent represent the positively sensitive stocks (β+

s), the bottom 25 percent indicate the 
negatively sensitive stocks (β-

s), while the rest are the insensitive stocks (β0
s).  

Monthly data, ranging from January 1966 to December 2007, are obtained from the following sources: stock 
returns – from the CRSP database, market risk premium, size, value, and momentum factors – from Kenneth 
French’s data library (at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/), and the index of sentiment 
levels – from Jeffrey Wurgler’s website (http://pages.stern.nyu.edu/~jwurgler/).  
The orthogonally transformed data (denoted by the symbol “┴”) is obtained using the Löwdin (1970) / Schweinler 
and Wigner (1970) procedure, as implemented in Chow and Klein (2010). 
 

 
 

Panel A: Excess Returns on Sentiment-Arbitrage Portfolios 

Portfolio Mean t-statistic 
Standard 

deviation 
Skewness Kurtosis 

       

β+
s 
vs. β0

s
 0.180 * 1.69 2.302 -2.808 35.463 

β0
s 
vs. β-

s
 0.179 ** 2.43 1.589 -0.711 9.906 

β+
s 
vs. β-

s
 -0.001  -0.01 1.671 1.620 27.116 

(β+
s
)
┴ 

vs. (β0
s
)
┴
 0.170  1.59 2.316 -2.722 34.262 

(β0
s
)
┴ 

vs. (β-
s
)
┴
 0.166 ** 2.20 1.630 -0.660 9.199 

(β+
s
)
┴ 

vs. (β-
s
)
┴
 -0.005  -0.06 1.670 1.613 26.777 

              

 
 

Panel B: Pairwise Differences between Sentiment-Arbitrage Portfolios 

Portfolio Mean t-statistic 
Standard 

deviation 
Skewness Kurtosis 

       

(β+
s
 vs. β0

s
) - (β0

s
 vs. β-

s
) 0.001  0.01 1.671 -1.620 27.116 

(β+
s
 vs. β0

s
) - (β+

s
 vs. β-

s
) 0.181  1.06 3.696 -2.816 40.167 

(β0
s
 vs. β-

s
) - (β+

s
 vs. β-

s
) 0.180 ** 1.69 2.302 -2.808 35.463 

(β+
s
 vs. β0

s
)
┴
 - (β0

s
 vs. β-

s
)
┴
 0.005  0.06 1.670 -1.613 26.777 

(β+
s
 vs. β0

s
)
┴
 - (β+

s
 vs. β-

s
)
┴
 0.175  1.03 3.695 -2.780 39.810 

(β0
s
 vs. β-

s
)
┴
 - (β+

s
 vs. β-

s
)
┴
 0.170 * 1.59 2.316 -2.722 34.262 

              

 

                                                 
37 One, two or three asterisks designate significance levels of 10%, 5% and 1%, respectively. 
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Thus, we have constructed three sentiment-arbitrage portfolios: β+
s vs. β0

s, β0
s vs. β-

s and 

β+
s vs. β-

s (both non-orthogonal and orthogonal).38 Table 3.V reports the summary statistics. Not 

surprisingly, we see a primary ranking that favors the two portfolios that contain the insensitive 

stocks, over the portfolio β+
s vs. β-

s. Mainly, β0
s vs. β-

s exhibits monthly average excess returns of 

0.179 percent for the original, and 0.166 percent for the orthogonal data. 

The MCSD test results (reported in Table 3.VI) confirm the dominance of the portfolios 

β+
s vs. β0

s and β0
s vs. β-

s over β+
s vs. β-

s, while between β+
s vs. β0

s and β0
s vs. β-

s there is hardly 

any preference. In these two cases where we find dominance, it persists for the first six/ seven 

targets (for both original and orthogonal data) and amounts to approximately 0.3/ 0.2 percent per 

month. Again, we point out the importance of the sentiment effect in proving the market 

portfolio inefficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
38 Considering that the portfolios are constructed in a similar short/ long fashion, ignoring the transaction costs does 
not affect the dominance results significantly. 



 55 

Table 3.VI 

MCSD Test for Sentiment Arbitrage Portfolios  

 
The table presents the MCSD test results for pairwise comparisons between three sentiment-arbitrage portfolios 
constructed with positively sensitive vs. insensitive, insensitive vs. negatively sensitive, and positively vs. negatively 
sensitive stocks, based on the Baker and Wurgler (2007) sentiment levels index. We regress the excess returns of all 
common stocks (listed on the NYSE, AMEX, and NASDAQ), on the factors mentioned below and then sort stocks 
according to their sentiment betas. The top 25 percent represent the positively sensitive stocks (β+

s), the bottom 25 
percent indicate the negatively sensitive stocks (β-

s), while the rest are the insensitive stocks (β0
s).  

Monthly data, ranging from January 1966 to December 2007, are obtained from the following sources: stock returns – 
from the CRSP database, market risk premium, size, value, and momentum factors – from Kenneth French’s data 
library (at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/), and the index of sentiment levels – from Jeffrey 
Wurgler’s website (http://pages.stern.nyu.edu/~jwurgler/). Two sets of results are reported: one for the original data 
(Panel A) and one for orthogonally transformed data (Panel B), using the Löwdin (1970)/ Schweinler and Wigner 
(1970) procedure, as implemented in Chow and Klein (2010). The MCSD ordinates, corresponding to the empirical 
quantiles of the market return distribution, are statistically different from zero if their accompanying Z-scores 
(displayed in parentheses) are greater, in absolute value, than the SMM critical values of 2.560, 2.800 or 3.289, for 
significance levels of 10, 5 or 1 percent (designated by one, two or three asterisks, respectively). 39   
 
Panel A: Original Data 

         ρρρρ              

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

           
ττττρ

m    -4.44 -2.42 -1.08 0.04 1.24 2.05 3.25 4.55 6.07 16.56 

              
0.029 0.035 0.031 0.021 0.017 0.035 -0.016 -0.025 -0.017 0.001 

(β+
s
 vs. β0

s
) - (β0

s
 vs. β-

s
) 

(1.05) (1.04) (0.82) (0.52) (0.42) (0.79) (-0.29) (-0.38) (-0.25) (0.01) 

           
0.215 0.255 0.282 0.289 0.278 0.321 0.224 0.166 0.174 0.181 

(β+
s
 vs. β0

s
) - (β+

s
 vs. β-

s
) 

(3.12)** (3.18)** (3.31)*** (3.26)** (3.04)** (3.27)** (1.71) (1.10) (1.08) (1.06) 

           
0.186 0.221 0.252 0.268 0.260 0.286 0.240 0.190 0.192 0.180 

(β0
s
 vs. β-

s
) - (β+

s
 vs. β-

s
) 

(3.78)*** (4.02)*** (4.35)*** (4.53)*** (4.29)*** (4.43)*** (2.91)** (1.98) (1.89) (1.69) 

                     
 
Panel B: Orthogonally Transformed Data 

          ρρρρ              

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

           
ττττρ

m    -4.44 -2.42 -1.08 0.04 1.24 2.05 3.25 4.55 6.07 16.56 

              
0.029 0.034 0.027 0.015 0.015 0.034 -0.017 -0.024 -0.015 0.005 

(β+
s
 vs. β0

s
)
┴
 - (β0

s
 vs. β-

s
)
┴
 

(1.05) (1.01) (0.73) (0.38) (0.35) (0.76) (-0.30) (-0.38) (-0.22) (0.06) 

           
0.207 0.240 0.263 0.264 0.260 0.303 0.207 0.151 0.167 0.175 

(β+
s
 vs. β0

s
)
┴
 - (β+

s
 vs. β-

s
)
┴
 

(3.04)** (3.00)** (3.11)** (3.00)** (2.83)** (3.07)** (1.58) (1.00) (1.04) (1.03) 

           
0.178 0.206 0.236 0.248 0.245 0.269 0.224 0.175 0.182 0.170 

(β0
s
 vs. β-

s
)
┴
 - (β+

s
 vs. β-

s
)
┴
 

(3.63)*** (3.74)*** (4.08)*** (4.19)*** (3.96)*** (4.11)*** (2.68)* (1.81) (1.79) (1.59) 

                      

                                                 
39 All the results in this table are reported as percentages. 
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3.4. Conclusions 

Over the years, financial theorists have been using various tests to gauge the efficiency of a 

given portfolio. Second (and higher) degree stochastic dominance tests have become more and 

more popular, due to their appealing characteristics: economically, they entail meaningful 

assumptions on the utility functions [non-satiation (U’≥0) and risk aversion (U”≤0)]; statistically, 

they consider the entire distribution, not only a few moments (as opposed to the mean-variance 

analysis); another important attribute is the nonparametric approach: the utility function does not 

have to take any particular form (e.g. quadratic), and the distribution is not restricted (e.g. to 

normal). Due to the limitations in applying traditional SSD in a portfolio context, the marginal 

conditional stochastic dominance (MCSD) is considered the appropriate approach.40 

 Under MCSD, the market portfolio (or any other core portfolio) is inefficient if there is a 

subset of that portfolio that stochastically dominates another subset of the portfolio. Thus, 

investors are able to improve their expected utility by marginally reallocating the assets in their 

portfolios (i.e. by altering the relative weights of the dominating/ dominated assets). 

 In recent decades, part of the financial literature has acknowledged the existence of an 

investor sentiment effect. Moreover, some researchers have quantified the investor sentiment. 

We use the Baker and Wurgler (2007) sentiment levels index to show that the insensitive stocks 

marginally and conditionally dominate the positively and the negatively sensitive stocks, thus 

proving the market portfolio inefficiency with respect to the sentiment-beta sorted portfolios. 

Furthermore, we create simple sentiment-arbitrage portfolios, by taking long/ short positions on 

the sentiment-beta portfolios, conditional on the level of sentiment. Again, we find a dominance 

                                                 
40 Shalit and Yitzhaki (1994) argue that one limitation in applying traditional stochastic dominance in portfolio 
context comes from the case of portfolio-choice problems, where it entails infinite pairwise comparisons of 
alternative probability distributions. Also, once the investor is faced with new alternatives, the whole optimization 
procedure must be repeated and sometimes, parts of the portfolio cannot be altered. 
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pattern between portfolios that confirms the inverse U-shaped outline. For robustness, we apply 

an orthogonalization procedure, as in Chow and Klein (2010), and obtain similar results as for 

the original data. 
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Chapter 4: Consumption Risk and FX Trading Returns 

 

4.1. Introduction 

Following the “forward puzzle”, uncovered by Fama (1984), researchers and practitioners have 

advanced many strategies that create profits in the foreign exchange (FX) markets. The puzzle 

says that the forward exchange rates represent biased estimators of the future spot exchange 

rates, which is equivalent to saying that high yielding currencies appreciate with respect to the 

home currency. The unknown aspect in the abnormal returns obtained through the 

aforementioned strategies is whether they are just compensation for risk.  

Serban (2010) employs a strategy in the FX market, originally constructed for the stock 

market, which combines mean reversion and momentum. The results confirm the similarities 

between the two markets, suggesting a very high probability of finding the same risk factors in 

both markets. This supposition is in line with early studies that show similar empirical 

regularities in the FX and stock markets (Mussa, 1979). We use the abnormal returns obtained 

through that particular strategy to test for the validity of different asset pricing models in the FX 

market. 

Given the similarities between equity and FX markets, researchers prefer to use asset 

pricing models originally developed for the equity markets, rather than create new ones. 

Villanueva (2007) investigates carry trade strategies for three currency-pairs and an equal-

weighted carry trade, and examines market risk only for these time series returns. He finds that 

apart from some strategies involving the German Mark, market risk cannot explain abnormal 

returns produced by carry trades. Burnside et al. (2010) also investigate risk explanations in carry 

trades. They use a time-series analysis, as well as the Hansen’s (1982) Generalized Method of 



 

 

59 

Moments (GMM) procedure for a panel analysis.
41

 In both approaches they find little evidence to 

support a risk-based explanation.  

Mark (1985) is the first to implement the Consumption CAPM (CCAPM) in the FX 

market, but he rejects the model. However, a follow-up by Hodrick (1989) for UK data does not 

reject the model. The rest of the literature gives contrasting results.  

Lustig and Verdelhan (2007) use consumption-based pricing factors and show that the 

model explains up to 80% of the variation in the returns on their portfolios (constructed similarly 

to the Fama-French portfolios, but sorted by interest rates). The apparent success of the model is 

intuitively appealing: when the US business cycle decelerates, causing US consumption to 

decrease, the US investor who holds high-yielding foreign currencies would further decrease her 

consumption. Therefore, low interest rate currencies provide a hedge against slowdown in 

domestic consumption, while high interest rate currencies systematically expose the investor to 

more domestic consumption risk. Figure 4.1 shows how the stock of durables and consumption 

of nondurables behave over the analyzed time period. It is obvious that they are correlated with 

periods of recession/economic growth. The Lustig and Verdelhan (2007) procedure is critiqued 

by Burnside (2007), who blames the weakness of the statistical identification. De Santis and 

Fornari (2008) use an extended dataset and a slightly different statistical method, and show that 

durable consumption factors generally give significant coefficients, while nondurables only 

occasionally. Burnside at al. (2010) cannot get any significance for the CCAPM or Yogo’s 

(2006) Extended CCAPM for carry trade returns. However, all these papers use quarterly data.  

 

                                                 
41

 The panel data analysis consists of payoffs for 1 or 5 carry trade portfolios and the 25 Fama – French portfolios. 
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Figure 4.1: Durable and �ondurable Consumption 

 

This figure reports the evolution in time, from 1989:09 to 2008:02, for the growth rate of real per capita 

consumption of nondurables, and for the growth rate of real per capita net stock of durables. 

 

Our paper offers a new perspective on the connection between the current asset pricing 

models and the FX market by considering trading returns, very similar to equity trading returns. 

We test the CCAPM and Yogo’s extension, as well as a very extensive list of other asset pricing 

models found in the literature. We find that none of the other models can perform as well as 

Yogo’s CCAPM. Moreover, this model gives an R
2
 of 99% in the first stage GMM estimation. 

To begin with, we present the methodology and data in Section 2. Next, in Section 3, we 

test the CCAPM, Yogo’s CCAPM, and their alternatives. In Section 4 we run robustness checks 

and, in the fifth and last section, we provide brief conclusions. 
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4.2. Methodology and Data 

 4.2.1. Combining Mean Reversion and Momentum Strategy 

The procedure used in this paper is a momentum – mean reversion combination for the FX 

market. This strategy was originally implemented for the stock market by Balvers and Wu 

(2006), but Serban (2010) finds that it also gives significant returns for the FX market. It starts 

from the Uncovered Interest Parity (UIP) deviations of currency i with respect to the US dollar, 

at time t+1, denoted as i
ty 1+  (which are different from zero according to Fama, 1984): 

i

t

i

t

i

t forwardspoty −= ++ 11 ,             (4.1) 

where i

tspot 1+ and i

tforward are the log of the spot exchange rate and forward exchange rate, at 

time t+1 and t respectively. 

The strategy takes one third of the sample and runs the following pooled regression:
42
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where ∑
=

=
t

s

i

s

i

t yx
1

, µ
i
 is the average return, J is the number of momentum lags, while δ and ρ are 

the parameters to be estimated. As one can notice from equation (4.2), we can allow δ and ρ to 

vary by country and/or by lag. Intuitively, the first part of the equation represents the mean 

reversion component, while the second part is the momentum component. 

 After running the pooled regression, the investor checks which currency has the highest 

expected return (Max) and which currency has the lowest expected return (Min). Then, she holds 

                                                 
42

 For more details on the procedure, see Balvers and Wu (2006) and Serban (2010). 
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a long position on Max and a short position on Min for K months. However, if all returns are 

positive, she only holds a long on Max. Conversely, if all returns are negative, she holds a short 

position on Min.  

Then, the investor does the same thing for one third of the sample plus one month, updating 

the strategy one month at a time. The strategy is shown to give significant mean returns.  

 

 4.2.2. Econometric Procedure 

The linear asset pricing models start from the following equation: 

t

iei
t

yE λβ=)( ,              (4.3) 

where  ei
t

y  is the excess return on asset i at time t, λt represent the risk premia, and the β’s are the 

factor loadings. An alternative setting gives us the opportunity to use the pricing kernel 

formulation. This way, we are able to test the validity of our model and to compare it with other 

models. Moreover, as Cochrane (2005) shows, the results of the first stage GMM estimation are 

very similar to the Fama – MacBeth (1973) two-pass approach, which means that using either the 

pricing kernel formulation, or the formulation in equation (4.3), will give very similar outcomes. 

The pricing kernel approach focuses on the prices of risk, b
j
, rather than the beta loadings, as in 

the following equation: 

∑
=

=
L

j

ei

t

j

t

j yfbei
t

yE
1

),cov()(                           (4.4) 
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Note that L is the number of risk factors, while ) is the number of assets (i.e., in our case the 

number of FX portfolios). Note that equation (4.4) is the same as equation (4.3) if 

1
),cov(

−= ft
ei
t Vfyβ  and bV f=λ , with Vf being the matrix of variance-covariance of the factors. 

Note that λ represents the risk premia, while b’s are the prices of risk.  

 In order to test this model, we consider the pricing kernel formulation, with m (the mean 

discount factor) satisfying the following moment conditions: 

0)( =ei
t

ymE t ,                 (4.5) 

 According to Cochrane (2005), we can identify m in a linear factor model as: 

m = a – b’f ,               (4.6)

 By normalization, a can be simply equal to one. The imposed moment conditions are in 

this case: 

0)( ' =− ei
t

yfbei
t

yE t ,              (4.7) 

 We have L factors and this gives us L parameters b to estimate. Equation (4.7) provides ) 

moment conditions. In order to test whether the model is valid or not, we need an over-

identification of the parameters. In this case, we require that: L < ). That is to say, we need a 

larger number of portfolios than of factors. The GMM examines the validity of the model, using 

a test statistic that follows a χ
2
 distribution with the number of degrees of freedom equal to the 

difference between the number of moment conditions, and the number of parameters to be 

estimated (i.e. the number of over-identifications). Consequently, the number of degrees of 

freedom in this case equals to ) – L. 
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We need to make a few clarifying comments regarding this GMM procedure. First of all, 

we focus more on the results of the first stage estimation, and less on the second stage. Cochrane 

(2005) notices that the first stage estimates are consistent and can be more robust from the 

economic and statistical point of view. The second stage should improve the properties of 

estimators, but does not necessarily achieve that properly. Rubio and Lozano (2010) notice that 

OLS and first stage GMM minimize pricing errors better than GLS and second stage GMM, and 

that the first stage GMM does it better than OLS. Furthermore, many researchers in the GMM 

literature find that the second stage GMM does not in fact bring anything new to the table 

compared to the first stage GMM, in that it does not improve efficiency (e.g. Arellano and Bond, 

1991; Imbens, 2002). Following other papers, we report in detail the results of the first stage 

GMM estimation (see Fillat and Garduno, 2005), and just plot the results of the second stage. 

Fillat and Garduno (2005) also notice that the asset pricing models are rejected too often based 

on the JT-test. Cochrane (2005) reports the same issue (for instance, he finds that the well known 

Fama – French model is rejected formally by the JT-test). Hence, the researcher should also look 

at other measures of fit, such as the R
2
 and resemblance between the predicted and the actual 

returns. Our paper takes these comments into consideration. 

 

4.2.3. Data 

The data set consists of the spot and one-month forward exchange rates. Due to availability 

reasons, the data come from two sources: for the period December 1978 – December 2001, from 

the Bank of International Settlements (BIS) database, and for January 2002 – February 2008, 



 

 

65 

from Datastream.
43

 We collect monthly data for the Canadian dollar, German mark/Euro, UK 

pound, and Japanese yen. The focus is on well-developed economies with liquid markets and 

facile implementation of currency speculation. The US dollar serves as the home currency. 

Given that the strategy starts estimating mean returns based on the first third of the sample, 

and then progresses forward, we lose that third of the sample when obtaining returns on the 

portfolios. So, our analysis considers the period September 1989 – February 2008 for returns and 

risk factors. The monthly world market returns are obtained from the Morgan Stanley Capital 

International (MSCI) Barra. The risk-free rate is the one-month Treasury bill rate (from Ibbotson 

Associates), obtained from Kenneth French’s website. In order to compute the growth rate of M1 

per capita, we collect M1 data from the Board of Governors of the Federal Reserve System, and 

the population data from the U.S. Department of Commerce, Census Bureau. We take the Fama-

French factors: SMB (Small Minus Big), HML (High Minus Low), and RM (market risk 

premium) from Kenneth French’s website. The real per capita growth rates in nondurable 

consumption and net stock of durables are calculated using data from the U.S. Department of 

Commerce, Bureau of Economic Analysis. The nondurable consumption includes both 

nondurable goods and services. The durable stock of the representative consumer, denoted by Dt, 

is calculated as in Yogo (2006): 

Dt = (1 – ϕ) Dt-1 + Et,                            (4.8) 

where ϕ is the depreciation rate and Et represents the units of durable consumption at time t.
44

  

  

                                                 
43

 It took a few years after the collapse of the Bretton Woods System to establish a floating exchange system and for 

speculation to be possible. That is why most of the literature considers data on the FX market starting only around 

1979. 
44

 ϕ is estimated by Yogo (2006) as around 6% per quarter. 
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Table 4.I presents annualized descriptive statistics for our data. The highest mean return 

on the analyzed FX portfolios is 2.26% obtained for K=1 and J=3, while the lowest is 0.49% for 

K=12 and J=6. The standard deviation for the FX returns is much smaller (i.e. around 2%), 

compared to that of the equity portfolios (i.e. around 11 – 14%), represented by the world and 

U.S. market, SMB, and HML. As Yogo (2006) notes, and as intuitively expected, the variation in 

the nondurable consumption growth is larger than that in the durable stock growth. Panel B 

reports the correlations among the proposed risk factors. The largest coefficient is, as expected, 

between the world and the U.S. stock market (87%). 

 

4.3. Testing the CCAPM, Yogo’s CCAPM and Their Alternatives 

4.3.1. Asset Pricing Models in the FX Literature 

The literature on the FX market suggests different explanations for the abnormal returns 

generated by the empirical failure of the UIP condition. In the carry trade literature, various 

authors (mentioned in the introduction) also test for the traditional Sharpe (1964) – Lintner 

(1965) Capital Asset Pricing Model (CAPM), as well as for the Fama-French (1993) three-factor 

model. Given that we deal with international markets, we also analyze the International CAPM 

of Solnik (1974), Stulz (1981), and Adler and Dumas (1983). 

 Among the pioneers to implement the CAPM in the FX market, Sweeney (1986) uses it 

to explain returns obtained through trading rule strategies, and finds that the market beta is not 

significant. Neely et al. (1997) develop a trading rule through a genetic algorithm and find that 

the world and country risk factors are significant only in two cases (and in one of them, the beta 

bears the wrong sign). 
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 Engel (1996) provides a comprehensive survey on models of risk premium in the FX 

literature. He offers explanations for two large branches of the literature: monetary explanations 

and consumption-based models. The first proponents of the monetary explanations for the 

currency risk premia are Hodrick and Srivastava (1986). They develop a two-country setting 

where individuals need foreign currency (provided by their own governments) in order to 

purchase goods produced in the other country. Hence, money shocks have an impact on 

consumption either through the cash-in-advance constraints, or through the “money as a store of 

value” channel, in the overlapping generations model (Engel, 1996). Even if the role of monetary 

policy has been well documented in theoretical papers, the literature on carry trades did not find 

much significance explaining abnormal returns (Burnside et al., 2010; Hollifield and Yaron, 

2001). The influence of the monetary policy on the FX market can also be found in a separate 

branch of the literature, which examines the relationship between market inefficiency and central 

bank intervention. Szakmary and Mathur (1997) show that central bank interventions are 

correlated with the profitability of returns generated by moving average rules for three major 

currencies. However, Neely (2002) supports the conjecture that the intervention is not the cause 

for the FX market inefficiency. 

 The monetary model that we use employs two risk factors: the growth rate of M1 per 

capita and the market factor. We also consider other factors (i.e. federal funds rate, liquidity 

premium, term spread, and VXO), but the results, not reported in this paper, are very similar to 

what we obtain for M1. Additionally, we verify factors used in the hedge funds literature, but 

again, the results are not significantly different from what we report for the monetary aggregate. 

 However, our interest lies in the most controversial part of the literature, dedicated to the 

Consumption CAPM (originally derived by Lucas, 1978 and Breeden, 1979). A newer version of 
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the model, proposed by Yogo (2006), introduces in the equation the nondurable consumption, the 

durable stock, and the market risk. Without stating that this is the only extended version of the 

CCAPM, we consider this approach due to its reported success in the literature (see, for instance, 

Lustig and Verdelhan, 2007). 

 

4.3.2. GMM Estimation 

Yogo’s (2006) Extended CCAPM writes the expected gross excess return on asset i at time t, as: 

),cov(),cov(),cov()( 321
ei
t

m
t

ei
tt

ei
tt

ei
t yrbydbycbyE +∆+∆= ,         (4.9) 

where tc∆  is the change in nondurable consumption, td∆  is the change in durable stock, and m
tr  

is the market excess return; b1, b2, and b3 are the prices of risk. 

 Table 4.II shows the results for the first stage GMM estimation. Only the coefficient of 

durables stock is statistically different from zero.
45

 And yet, the JT-test clearly fails to reject the 

null hypothesis, meaning that Yogo’s CCAPM is a valid model. For comparison purposes only, 

we also report the results obtained for the traditional CCAPM, the CAPM, the International 

CAPM, the Fama-French Model and a monetary-based model. According to the JT-test, we reject 

the validity of all these alternatives. 

  

 

 

 

                                                 
45

 Lustig and Verdelhan (2007) find both durables and nondurables prices of risk significantly different from zero, 

while De Santis and Fornari (2008) only find the durables coefficient statistically significant. 
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Table 4.II  

GMM One Stage Estimation 

The GMM estimation considers the following moment conditions: 
'

( ) 0
ei ei

E y b f ytt t
− =  (where  

ei

ty is the excess 

return on the FX portfolios constructed through the procedure described in section 4.2.1 and f are the risk factors). 

We estimate parameters b. This table reports the first-stage estimation, which assumes the weighting matrix to be 

equal to the identity matrix. The JT-test checks the validity of the model. The CCAPM has the growth rate of real per 

capita consumption of nondurables as the only risk premium. The Extended CCAPM takes into consideration, 

besides the CCAPM factor, the growth rate of real per capita net stock of durables, and the US market excess return. 

The CAPM considers the world excess return as the only risk factor. The International CAPM introduces the 

currency risk to the classic CAPM. The Fama-French model assumes that there are three risk factors: US market 

excess return, SMB, and HML (in this order). The last model takes market excess return and M1 as the sources of 

risk. T-stats are between round brackets (one, two or three asterisks denote significance levels of 10%, 5% and 1%, 

respectively), while p-values for the JT-test are between square brackets. The R
2
 is also reported. 

 

   b R
2
 JT-Test 

 -0.362 
 
  

�D 
 (-0.72)   

 2.829  4.725 
D 

 (8.44) *** [1.00] 

 0.020   

Extended 

CCAPM 

RM 
 (0.66)   

99% 

  

   9.034 
 
 429.220 

CCAPM 
   (3.30) *** 

48% 
[0.00] 

   0.228 
 
 4503.825 

CAPM 
   (2.40) ** 

-446% 
[0.00] 

 0.287 
 
  

RM 
 (0.37)   

 1.341   
DuipJY 

 (0.96)  1523.432 

 -2.867  [0.00] 
DuipBP 

 (-1.66) *  

 0.637   

International 

CAPM 

DuipGM 
 (0.60)   

-85% 

  

 0.609 
 
  

RM 
 (1.24)   

 0.831  364.138 
SMB 

 (1.05)  [0.00] 

 1.323   

Fama-

French 

Model 

HML 
 (1.63)   

56% 

  

 3.101 
 
  

RM 
 (2.88) *** 433.647 

 0.158  [0.00] 

Monetary-

based Model 
M1 

 (0.75)   

47% 
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We present, as well, the R
2
 values for these models, calculated as: 

( ) ( )
( ) ( )yyyy

yyyy
R ~'~

ˆ'ˆ
12

−−

−−
−= ,           (4.10) 

where y  is the actual mean excess return on the portfolios, ŷ is the estimated mean return, and 

y~  is the average across all portfolios. The results show an R
2
 of 99% for Yogo’s CCAPM, much 

higher than that of any other alternative. This very high R
2 

is also easily noticeable, looking at the 

graphical representation of our results in Figures 4.2 and 4.3.
46

 These two exhibits present the 

mean estimated excess returns on the twenty FX portfolios obtained using the Serban (2010) 

strategy (on the horizontal axis) and the actual mean excess returns (on the vertical axis) for the 

first and second stage GMM, respectively. The red line is the 45
0
 line. All points should be very 

close to the red line if the excess returns were compensation for risk (i.e. if the models explained 

a large percentage of the variation in the assets’ returns). In both figures it is obvious that Yogo’s 

CCAPM is the best fitted model. One can clearly see that the predicted values of the analyzed 

returns are very close to the actual values.  

 

 

 

 

 

                                                 
46

 According to Cochrane (2005), the first stage GMM estimation should be enough for our analysis. We do 

however check whether the second stage GMM estimation gives significantly different results. We only present 

them graphically, in Figure 4.3, where it is obvious that Yogo’s CCAPM remains the best fitted model. Actually, 

this extension of the CCAPM is the only one that gives a positive R
2
 in the second stage GMM estimation (97%). 
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Figure 4.2: Mean Estimated Returns vs. Mean Realized Returns for the FX Portfolios 

Obtained through GMM First Stage Approach 

 

Based on the GMM first-stage procedure, we compute the mean estimated returns for the FX portfolios, constructed 

as described in section 4.2.1. The relationship between these averages and their corresponding realized averages are 

represented by the blue stars. The red line is the 45
0
 line. Each panel shows a different asset pricing model, as 

described in Section 4.3. 
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Figure 4.3: Mean Estimated Returns vs. Mean Realized Returns for the FX Portfolios 

Obtained through GMM Second Stage Approach 

 

Based on the GMM second-stage procedure, we compute the mean estimated returns for the FX portfolios, 

constructed as described in section 4.2.1. The relationship between these averages and their corresponding realized 

averages are represented by the blue stars. The red line is the 45
0
 line. Each panel shows a different asset pricing 

model, as described in Section 4.3. 
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4.3.3. Model Comparison 

When comparing asset pricing models, Lewellen et al. (2010) note that one cannot simply look at 

the cross-sectional measures of fit. If the analyzed portfolios have a strong factor structure, the 

pricing errors are idiosyncratic and probably not correlated with the factors of the asset pricing 

model. Consequently, the model betas and the “true” betas are linearly correlated, leading to, for 

instance, a high R
2
. As reported above, Table 4.II shows a very high R

2
 for Yogo’s CCAPM. 

This could suggest that this model is the best in explaining FX returns. However, a high R
2 

does 

not necessarily mean that we have identified the “true” model. Comparing different asset pricing 

models with a different number of factors is not as easy as just comparing measures of fit for 

these models. Lewellen et al. (2010) give multiple solutions to this problem.  

The first is to include other portfolios into the test. We add the 25 Fama-French portfolios 

sorted by size and value (obtained from Kenneth French’s website). These portfolios are known 

to be explained in large proportion by the Fama-French factors. Table 4.III provides the 

measures of fit. The only valid model according to the JT-test is again Yogo’s CCAPM. As for 

the R
2
, after adding the 25 Fama-French portfolios, the only model that continues to exhibit a 

positive R
2 

is Yogo’s CCAPM (97%), indicating that this is indeed the model that could explain 

the FX returns, as predicted by Lustig and Verdelhan (2007). In Figures 4.4 and 4.5, the blue 

stars represent the 20 FX portfolios, while the green bubbles symbolize the 25 Fama-French 

portfolios. Again, Yogo’s CCAPM shows the best fit in the first stage (Figure 4.4) and second 

stage (Figure 4.5) GMM estimation.  
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Table 4.III 

 Models Comparison 

This table reports the comparison among the analyzed models. The CCAPM has the growth rate of real per capita 

consumption of nondurables as the only risk premium. The Extended CCAPM takes into consideration, besides the 

CCAPM factor, the growth rate of real per capita net stock of durables, and the US market excess return. The CAPM 

considers the world excess return as the only risk factor. The International CAPM introduces the currency risk to the 

classic CAPM. The Fama-French model assumes that there are three risk factors: US market excess return, SMB, 

and HML (in this order). The last model takes market excess return and M1 as the sources of risk. We study excess 

returns on the FX portfolios constructed through the procedure described in section 4.2.1 and the Fama-French 25 

portfolios sorted on size and value. We report the R
2
 for the first stage GMM estimation, as well as the JT-test and its 

p-value. The 90% C.I. (between square brackets) are obtained from 1,000 draws of multivariate normal random 

factors. 

 

     R
2
 - first stage  JT-Test - first stage 

 0.99  4.73 
FX only 

 [-0.81 ; -0.67]  [1,380.23 ; 1,488.71] 

 0.97  34.06 
Extended CCAPM 

FX and 25FF 
 [-2.95 ; -2.78]  [4,220.87 ; 4,414.84] 

 0.48  429.22 
FX only 

 [-3.37 ; -3.22]  [3,477.37 ; 3,598.87] 

 -2.23  3607.41 
CCAPM 

FX and 25FF 
 [-6.05 ; -5.84]  [7,644.95 ; 7,884.70] 

 -4.46  4503.83 
FX only 

 [-3.37 ; -3.22]  [3,477.37 ; 3,598.87] 

 -3.73  5287.31 
CAPM 

FX and 25FF 
 [-6.05 ; -5.84]  [7,644.95 ; 7,884.70] 

 -0.85  1523.43 
FX only 

 [-0.04 ; 0.07]  [766.84 ; 854.55] 

 -2.15  3517.66 
International CAPM 

FX and 25FF 
 [-2.27 ; -2.12]  [3,488.66 ; 3,657.03] 

 0.56  364.14 
FX only 

 [-0.81 ; -0.67]  [1,380.23 ; 1,488.71] 

 -2.72  4159.42 
Fama-French Model 

FX and 25FF 
 [-2.95 ; -2.78]  [4,220.87 ; 4,414.84] 

 0.47  433.65 
FX only 

 [-1.82 ; -1.67]  [2,201.90 ; 2,326.78] 

 -0.18  1317.58 
Monetary-based Model 

FX and 25FF 
 [-4.15 ; -3.95]  [5,532.02 ; 5,754.55] 
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Figure 4.4: Mean Estimated Returns vs. Mean Realized Returns for the  

FX Portfolios and the 25 Fama-French Portfolios (GMM First Stage) 

 

 

Based on the GMM first-stage procedure, we compute the mean estimated returns for the FX portfolios constructed 

as described in section 4.2.1 and the mean estimated returns on the 25 Fama-French portfolios, sorted by size and 

value. The relationship between the FX estimated averages and their corresponding realized averages are 

represented by the blue stars. We also graph the relationship between the mean estimated returns on the 25 Fama-

French portfolios and their corresponding realized averages, as green circles. The red line is the 45
0
 line. Each panel 

shows a different asset pricing model, as described in Section 4.3. 
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Figure 4.5: Mean Estimated Returns vs. Mean Realized Returns for the  

FX Portfolios and the 25 Fama-French Portfolios (GMM Second Stage) 

 

 

Based on the GMM second-stage procedure, we compute the mean estimated returns for the FX portfolios 

constructed as described in section 4.2.1 and the mean estimated returns on the 25 Fama-French portfolios, sorted by 

size and value. The relationship between the FX estimated averages and their corresponding realized averages are 

represented by the blue stars. We also graph the relationship between the mean estimated returns on the 25 Fama-

French portfolios and their corresponding realized averages, as green circles. The red line is the 45
0
 line. Each panel 

shows a different asset pricing model, as described in Section 4.3. 
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A second solution to the issues highlighted in Lewellen et al. (2010) is to check whether 

the coefficients have an economic significance. We can address this problem by looking again at 

Table 4.II. This criterion rejects the International CAPM, the Fama-French model, and the 

relevant component of the Monetary-based model. 

 The third solution considers confidence intervals (C.I.) for the measures of fit instead of 

point estimates only. As Lewellen et al. (2010) suggest, researchers should not focus entirely on 

rejecting or accepting the null, and neglect the power of their tests. A C.I. shows the range of the 

“true” parameters consistent with the data. We compute the 90% C.I. for the first stage R
2 

and JT-

test, obtained in 1,000 draws of multivariate standard normally distributed factors. The results 

are reported in Table 4.III. The CAPM and the International CAPM do more poorly than a 

random choice of factors when it comes to explaining the variation in the returns. The JT-test 

shows a similar picture, in that the models that perform well according to the R
2
 criterion have 

lower pricing errors (the JT-test is below the lower end of the C.I.). Yogo’s CCAPM is the top 

performer from this point of view. We can safely conclude that Yogo’s extension of the CCAPM 

is indeed the best fitted model. 

 Another alternative for testing the performance of one model compared to another is the 

JT Difference test (Newey-West, 1987). It tests whether adding extra factors can improve the 

efficacy of the model. Hence, we are testing whether b1 =…= bn = 0 in: 

∑∑
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 The JT Difference test is the difference between the JT –test for the unrestricted model 

and the JT – test of the restricted model, and follows a χ
2
 distribution with the number of degrees 

of freedom equal to the number of restrictions (i.e. n). 

 Table 4.IV tests whether adding additional factors to the market factor makes statistical 

sense. Yogo’s CCAPM and the monetary model perform better than the CCAPM. Less 

significantly, so does the Fama-French Model. The International CAPM, however, fails to bring 

any statistical relevance to the classic CAPM. The last row of the table shows that the factors 

introduced by Yogo to the traditional CCAPM undeniably carry statistical significance in 

explaining FX returns. 

Table 4.IV 

 JT Difference Test 

This table reports the JT difference tests among the analyzed models. We test if the new factors of risk added by the 

unrestricted model (the alternative hypothesis) give statistically different from zero parameters. The degrees of 

freedom represent the number of additional factors of risk in the unrestricted model compared to the restricted 

model. The last column presents the p-value. The CCAPM has the growth rate of real per capita consumption of 

nondurables as the only risk premium. The Extended CCAPM takes into consideration, besides the CCAPM factor, 

the growth rate of real per capita net stock of durables, and the US market excess return. The CAPM considers the 

world excess return as the only risk factor. The International CAPM introduces the currency risk to the classic 

CAPM. The Fama-French model assumes that there are three risk factors: US market excess return, SMB, and HML 

(in this order). The last model takes market excess return and M1 as the sources of risk. We study excess returns on 

the FX portfolios constructed through the procedure described in section 4.2.1. 

 

Restricted 

Model 

Unrestricted model 

(Alternative) 

χ
2 

Difference (�ewey 

- West, 1987) 

Degrees of 

freedom 
p-value 

CAPM Extended CCAPM 201.72 2 0.000 

CAPM Monetary – based Model 9.67 1 0.002 

CAPM Fama-French Model 5.63 2 0.060 

CAPM International CAPM 1.39 3 0.707 

CCAPM Extended CCAPM 184.63 2 0.000 
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4.4. Robustness Checks 

In January 1999, the FX market changed drastically with the introduction of the Euro and the 

demise of currencies that were playing a very important role up to that point in time. Table 4.V 

provides GMM results from the first-stage estimation for two sub-periods: prior to January 1999 

and after January 1999. The results are not different for the two sub-periods, compared to the 

whole period considered in Table 4.II. Again, Yogo’s CCAPM is not rejected by the JT – test and 

has a very high R
2 

for both periods (approximately 98% and 100%, respectively). 

 

Table 4.V 

 GMM First Stage – Sub-periods 

This table reports the results of the first-stage GMM approach for the two specified sub-periods. The GMM 

estimation considers the following moment conditions: 
'

( ) 0
ei ei

E y b f ytt t
− =  (where  ei

ty is the excess return on the 

FX portfolios constructed through the procedure described in section 4.2.1 and f are the risk factors).  We estimate 

parameters b. The JT-test checks the validity of the model. The CCAPM has the growth rate of real per capita 

consumption of nondurables as the only risk premium. The Extended CCAPM takes into consideration, besides the 

CCAPM factor, the growth rate of real per capita net stock of durables, and the US market excess return. The CAPM 

considers the world excess return as the only risk factor. The International CAPM introduces the currency risk to the 

classic CAPM. The Fama-French model assumes that there are three risk factors: US market excess return, SMB, 

and HML (in this order). The last model takes market excess return and M1 as the sources of risk. T-stats are 

between round brackets (one, two or three asterisks denote significance levels of 10%, 5% and 1%, respectively), 

while p-values for the JT-test are between square brackets. The R
2
 is also reported. 

 
   1989:09 - 1998:12  1999:01 - 2008:02 

   b  R
2
 JT-Test  b  R

2
 JT-Test 

 -0.226 
 
   0.546 

 
  

�D 
 (-0.29)    (0.80)   

 3.895  8.814  1.696  1.027 
D 

 (6.70) *** [0.95]  (9.22) *** [1.00] 

 0.000    -0.050   

Extended 

CCAPM 

RM 
 (0.01)   

98% 

   (-1.01)   

100% 

  

   8.921 
 
 285.836  6.362 

 
 477.523 

CCAPM 
   (2.60) *** 

50% 
[0.00]  (2.66) *** 

-64% 
[0.00] 

   0.431 
 
 3349.654  -0.181 

 
 1121.545 

CAPM 
   (3.44) *** 

-489% 
[0.00]  (-1.22)   

-284% 
[0.00] 

 1.062 
 
   -0.620 

 
  

RM 
 (0.74)    (-1.16)   

 2.814    0.158   
DuipJY 

 (0.87)  1133.791  (0.12)  25.007 

 -1.082  [0.00]  -2.574  [0.07] 
DuipBP 

 (-0.56)    (-1.20)   

 -0.518    1.155   

International 

CAPM 

DuipGM 
 (-0.36)   

-99% 

   (1.49)   

91% 
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   1989:09 - 1998:12  1999:01 - 2008:02 

   b  R
2
 JT-Test  b  R

2
 JT-Test 

 0.864 
 
   0.369 

 
  

RM 
 (2.36) **   (0.71)   

 0.325  813.676  0.511  151.035 
SMB 

 (0.60)  [0.00]  (1.79) * [0.00] 

 0.974    0.663   

Fama-

French 

Model 
HML 

 (1.26)   

-43% 

   (1.38)   

48% 

  

 3.383 
 
   2.110 

 
  

RM 
 (2.39) ** 139.627  (1.57)  382.922 

 0.242  [0.00]  -0.088  [0.00] 

Monetary-

based Model 
M1 

 (1.15)   

75% 

   (-0.45)   

-31% 

  

 

4.5. Conclusions 

The literature has documented different explanations for the profitability of strategies in the FX 

market. One of them is the presence of a “peso” problem, particularly appealing to carry trade 

researchers. Burnside et al. (2010) explain that carry trade positive returns might materialize due 

to the fact that the rare event of a large appreciation of the foreign currency just does not happen. 

They find evidence in this regard, rejecting the possibility of a second explanation that these 

returns are simply compensation for bearing risk.  

The appropriate measures of risk are another side of the story. The theoretical 

background for the sources of risk in the FX market is weak. The only intuitive approaches come 

from the equity markets, or from consumption/monetary-based models.  

We take these issues and give them a new spin. The trading strategy that we use 

resembles slightly the carry trades, but it is in fact very different from any other strategy in the 

FX market, and more similar to strategies employed in the stock market. Is it possible that the 

returns obtained through this approach are due to the “peso” problems? Since this strategy 

behaves similarly in the stock and FX markets, we can only assume that the reasons for obtaining 
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the abnormal returns are the same for the two markets. Hence, the only plausible explanation 

besides market inefficiency is compensation for risk.   

We find that the Fama-French model, International CAPM and monetary explanations do 

a poor job in explaining these returns. However, Yogo’s extension of the CCAPM performs very 

well. To the best of our knowledge, our paper is one of the most comprehensive studies in the FX 

literature, analyzing factors of risk. We believe that it helps clarifying which asset pricing models 

can or cannot be used in the FX literature.  

 



 83 

Chapter 5: Conclusions 

 

This dissertation addresses various aspects of linear asset pricing models, aiming to improve on 

the existing literature.  

In Chapter 2 we propose an optimal orthogonalization algorithm (adapted from the 

Schweinler and Wigner (1970)/ Löwdin (1970) symmetric procedure), whose lack of popularity 

in economics and finance is not easily comprehensible. Mostly used so far in the quantum 

chemistry and in the wavelet literature, this procedure is not sequence-dependent, a characteristic 

that can prove to be essential, depending on its application. To understand fully the distinction 

between a sequence-dependent, and a democratic (i.e. egalitarian) process, we should take a very 

simple example: the human mind is able to recognize different objects, irrespective of the order 

in which they appear. If a person sees, for instance, a monitor, a keyboard, and a central unit – in 

any order – she will understand that she has a computer in front of her. Conversely, if a person 

sees the following initials: K, R, and F (in this order) she might identify Kenneth Ronald French, 

or in a different order (R, F, and K) she might think of Rudolf Florian Klein (if, of course, she 

heard of both of us). This crucial characteristic that our method possesses does not come at the 

expense of “disturbing” the initial set of factors more than other techniques. On the contrary, it 

guarantees an optimal resemblance with the original set of variables. As an application, we use 

this procedure to decompose the coefficient of determination (R
2
), which can be considered a 

standardized measure of systematic risk. Thus, we are able to examine the impact of each 

individual factor on the return variation of risky assets, and to answer key questions that arise in 

the literature. For instance, a high R
2
 does not imply a proper diversification: one factor might 

capture a large proportion of the variation, while the other factors that are considered might be 
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insignificant (signaled by small values of the decomposed R-squares), and other relevant 

determinants might be left out. 

In Chapter 3 we acknowledge the importance of the Marginal Conditional Stochastic 

Dominance (MCSD) tests, whose advantages over the traditional mean-variance analysis are 

thoroughly reviewed in Chow et al. (2008). Using the Baker and Wurgler (2007) index of 

sentiment levels, we find that both positively and negatively sentiment sensitive stocks are 

conditionally and stochastically dominated by sentiment insensitive stocks (both for the original 

and for the orthogonally-transformed factors). This pattern confirms the inverse U-shaped outline 

attested by Glushkov (2006). Furthermore, we find dominance among sentiment-arbitrage 

portfolios, constructed with positively sensitive vs. insensitive, insensitive vs. negatively 

sensitive, and positively vs. negatively sensitive stocks. Thus, we conclude that the market 

portfolio is stochastically inefficient. The results, besides reaffirming the existence and the 

importance of a sentiment effect in the US equity market, suggest that fundamental indexation 

using a sentiment metric may perform better than the capitalization-weighted indexation. 

In Chapter 4 we enter the debate on whether the abnormal returns obtained through 

various strategies conducted in the FX market are compensation for risk, or just some market 

inefficiency. We use Serban’s (2010) strategy that combines mean reversion and momentum, an 

approach that is initially implemented for the stock market by Balvers and Wu (2006). We 

compare a number of asset pricing models (usually employed for the equity market) and we find 

that Yogo’s (2006) Extended Consumption-CAPM is clearly the most accurate in explaining the 

abnormal returns. This result is in line with Lustig and Verdelhan (2007) who show that 

consumption growth is a key concept in understanding exchange rates.  
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