
Graduate Theses, Dissertations, and Problem Reports 

2003 

Distributed dispatchers for partially clairvoyant schedulers Distributed dispatchers for partially clairvoyant schedulers 

Kiran S. Yellajyosula 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Yellajyosula, Kiran S., "Distributed dispatchers for partially clairvoyant schedulers" (2003). Graduate 
Theses, Dissertations, and Problem Reports. 1408. 
https://researchrepository.wvu.edu/etd/1408 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230475124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1408?utm_source=researchrepository.wvu.edu%2Fetd%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Distributed Dispatchers for Partially Clairvoyant Schedulers

by

Kiran S Yellajyosula

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Electrical Engineering

Approved by

Dr. K. Subramani, Committee Chairperson

Dr. Supratik Mukhophadyay

Dr. Bojan Cukic

Dr. Hany H. Ammar

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia.

2003

Keywords: Partially Clairvoyant schedules, online dispatchers, loss of dispatchability, distributed memory,

PRAM models.



Abstract

Distributed Dispatchers for Partially Clairvoyant Schedulers.

Kiran S Yellajyosula.

This work focuses on the empirical evaluation of distributed dispatching strategies on shared and distributed

memory architectures for hard real-time systems. The dispatching model accommodates process parameter

variability and analyzes the effect of variable execution times.

Hard real-time systems are modeled in the E-T-C scheduling framework and dispatched if a valid schedule

exists. We examine the dispatchability of Partially Clairvoyant schedules of different sizes and varying

deadlines under reasonable assumptions. The effect of scaling up the number of processors used by the

dispatcher is also studied. The results validate the superiority of the distributed strategies over sequential

dispatching and scalability of the distributed strategies. Certain system limitations which lead to Loss of

Dispatchability in the experiments were pointed out.

The model finds applications in diverse areas like safety critical systems, robotics and machine control,

real-time data management, and this approach is targeted at powering up the controllers.



Acknowledgments

I thank my advisor, Dr. K. Subramani for his patience, guidance and encouragement, without which I would

not have reached my goals.

I would like to thank Dr. Supratik Mukhopadhyay for being in my committee and providing me with his

valuable suggestions. I would also like to thank Dr. Bojan Cukic and Dr. Hany Ammar, for their support

and serving on my committee.

This work was partially supported by National Computational Science Alliance under [ASC30006N] and

utilized the account [kirany] and also by Pittsburgh Supercomputing Center under [ASC020016P] and utilized

the account [yellajyo].

I was helped in numerous occasions by the support staff of the Pittsburgh Super Computing center and

National Computational Science Alliance. I am indebted for their time and valuable suggestions.

I would like to thank my friends Ashraf Osman, Rabita Sarker and Kalyan Reddy Kasarla for their valuable

suggestions and discussions.

I thank Don McLaughlin, Dr. Vanscoy and her staff for giving me a login on ‘Energy’ and helping me take

my first step in parallel programming.

iii



Contents

1 Real-time Systems 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 E-T-C Scheduling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Partially Clairvoyant Scheduling 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Job Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Constraint Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Standard Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Construction of the Constraint Graph for Standard Constraints . . . . . . . . . . . . . 10

2.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iv



2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Partially Clairvoyant Dispatching 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Sequential Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Complexity of Sequential Online Dispatching . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Multiprocessor Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Motivation and Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Parallel Dispatch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 Complexity of Multiprocessor Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Generation of Partially Clairvoyant schedules . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Schedule Generation and Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Distributed Strategy 24

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Architecture, Algorithm and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Single Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Multicast Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Machine Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.3 Dispatch Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Empirical Analysis of Single Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



4.5 Empirical Analysis of Multicast controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 Using all the processors in a node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 Using one processor per node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 PRAM Strategy 42

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Architecture, Algorithm and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Algorithm and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Machine Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Runtime Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.2 Effect of execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.3 Effect of Spacing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusion 58

vi



List of Figures

2.1 A simple robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 The single controller architecture for Partially Clairvoyant dispatching . . . . . . . . . . . . . 25

4.2 Multicasting architecture for Partially Clairvoyant dispatching. . . . . . . . . . . . . . . . . . 28

4.3 The frequency histogram of the observed update times by the single controller dispatcher. . . 33

4.4 The frequency histogram of communication times taken by the multicast dispatcher. . . . . . 34

4.5 Plot of the Update time taken versus the number of jobs as the number of satellite processors

are increased for a single controller with a communicating processor. . . . . . . . . . . . . . . 34

4.6 In the above tests, the single controller chooses multiple processors per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job

set was not dispatched by the single controller with a communicating processor. . . . . . . . 36

4.7 In the above tests, the single controller chooses one processor per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job

set was not dispatched by the single controller with a communicating processor. . . . . . . . 36

4.8 In the above tests, the single controller chooses multiple processors per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job

set was not dispatched by the single controller without a communicating processor. . . . . 38

4.9 In the above tests, the single controller chooses one processor per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job

set was not dispatched by the single controller without a communicating processor. . . . . . 38

vii



4.10 In the above tests, the multicast controller chooses multiple processors per node. For a job

set of spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that

the job set was not dispatched by the multicast dispatcher. . . . . . . . . . . . . . . . . . . . 39

4.11 In the above tests, the multicast controller chooses one processor per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job

set was not dispatched by the multicast dispatcher. . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Shared Memory Dispatcher Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Observed update time frequency for 5000 jobs on 16 processors . . . . . . . . . . . . . . . . . 48

5.3 Plot of update time of single processor dispatcher and multi-processor dispatcher with 2

processors versus number of jobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Update time taken by dispatcher versus number of jobs as the number of processors are increased. 50

5.5 The number of jobs that can be successfully dispatched by a given number of processors, where

the job execution time was between 1 to 5 milliseconds and the spacing time was between 0.1

to 0.5 milliseconds. The area under the curve shows the schedules which can be successfully

dispatched. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 The plot shows the effect of varying the execution time of jobs on the dispatchability of a job

set by a certain number of processors. The spacing time was assumed to be between 0.1 to

0.5 milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 Effect of varying the spacing time on the dispatchability of job sets with different execution

times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



List of Tables

3.1 List of parametric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Largest job set dispatched for varying number of processors by the single controller dispatcher

with a communicating processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Largest job set dispatched for varying number of processors by the single controller dispatcher

without a communicating processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Machine specifications of SGI Origin2000 of NCSA. . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Software Specifications of SGI Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Results of dispatching job sets of different size using single and multiple processors.
√

is when

the schedule was successfully dispatched and × was not. [l, u] = [1ms, 5ms]; [p, q] = [1ms, 5ms] 50

5.4 Scalability of the shared dispatcher. 9750 indicates that all the job sets were dispatched. . . . 51

5.5 Effect of varying the execution time on the dispatchability of a schedule, with a fixed spacing

time [0.1ms, 0.5ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Effect of varying the spacing time on the dispatchability of jobs for different execution times

and different number of processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



Chapter 1

Real-time Systems

1.1 Introduction

Real-time systems are mostly embedded in dynamic environments and need to react to external stimuli

within their deadlines. The system samples its inputs from the environment, computes the response and

responds to the changes recorded. A response can be the execution of a job or computing of a number or

sending a message. Real-time systems are gaining importance with the development of software systems

to control and monitor applications like nuclear reactors, robots, satellites, MP3 players, data sensing and

transmission, automated factory pipelines and other systems.

Hard real-time systems are that subset of real-time systems where failure to compute a result within a

deadline could result in the failure of the system. Air craft controllers, life-support systems, nuclear reactors

are typical examples of this subset. The failure of such systems have catastrophic results such as destruction

or damage to the system or life loss. Both the software and the hardware of the system must function with

high reliability and the deadlines in these systems are to be met at any cost.

The functionality of a system is described as a set of jobs with constraints between them. The execution

times of jobs was assumed to be constant (worst case execution time) and different scheduling strategies

were proposed depending on heuristics, such as earliest deadlines, job execution time, and job frequency

[LW73, SRL90]. With the development and availability of preemptive scheduling systems, job scheduling

was targeted to increase the throughput and utilization of the processor based on the priorities of the jobs.

Jobs of lower priority were suspended till all jobs of higher priority were completed. Several variations were

tested to prevent starvation of low priority jobs, such as priority inheritance and aging techniques.

1
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Many embedded real-time operating systems like VRTX, PSoS and Vxworks were developed. These operating

systems had preemptive kernels with a small context switch time, multiple watchdog timers of high precision

and very small clock cycle. The operating systems used online strategies or look-up tables or job priorities to

determine the next action to be taken. There were in-built timers to monitor different actions and interrupt

the operating system when an action needs to be taken.

With the availability of multiple processors for executing jobs, multiprocessor real-time operating systems

evolved. The jobs were assigned to and scheduled on processors to balance the load while meeting the

deadlines. The distribution of data with jobs created data dependencies across processors. The necessity

to share data within a small duration has lead to requirement of fast, reliable communication between

processors. A few examples of real-time systems in dynamic environments that need to react within small

durations are listed as follows:

• Robots have a mission and are equipped with multiple sensors and actuators to complete their mission.

Robots are being developed to achieve missions in hostile environments like surveying landscape and

searching for survivors [RGH+02]. Clusters of independent robots are being developed to achieve

missions in hostile environments like surveying landscape and searching for survivors. The robots

control their own motion, communicate with each other and complete jobs distributed among them to

complete the mission.

The Mars Pathfinder had to explore the surface of Mars and transmit information about the surface and

topology on the planet. The motion of a robot requires complex modeling and has to consider various

kinematic equations which require different computing times [YYM01, HCF03]. It also had to monitor

the environment and control its motion. Such robots need to perform multiple tasks concurrently and

monitor their components [CJD91]. This justifies the requirement of online controllers; that would

control the actions of the robot and maintain the deadlines across them. Since the environment is

dynamic, we cannot use any offline strategy for controlling the system. The hardware and software

components of a robotic team that surveys a landscape communicating with the central robot is

presented in [RSE+00].

• An automobile cruise control maintains the speed of the car by coordinating and monitoring the actions

of different components of the engine such as fuel injection, braking and transmission. New cars have

adaptive shifting algorithms, modifying shift points based on road conditions, weather, and the driver’s

individual habits. The cruise control system can vary the car acceleration according to the exact speed

of the car provided by the Anti-lock Braking System. These systems require variable times to compute

the required torque to drive the car at a safe speed. A 7−series BMW has 63 microprocessors while
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a Mercedes S-class has 65 microprocessors. Jaguars and Volvos, use the PowerPC 505 to control the

engine and calculate time-angle ratios, which is vital for valve and ignition timing.

• Sound and video synchronization are essential for a person playing video games. The current video

games like PlayStation, Dreamcast, GameCube and N64 have multiple embedded processors to record,

display and react to a change made by a player within a very small duration. Game controllers

have multiple tasks to perform like controlling hardware and computing the response to the player.

Computing a response to a move might require considering complex situations and scenarios which the

game is animating.

Massive Multiplayer Online Role-Playing Games (MMORPGs) such as Star Wars, City of Heroes,

World of Warcraft are growing in the gaming communities. MMORPGs are derived from MUDS and

computer games. The gamers log into the host server and create characters or avatars along with

the virtual characters in the game. The server coordinates the actions of thousands of players over

the internet and stores the changes made to the environments and characters of each person. An

interaction or a fight between two people is real-time where the server needs to respond in fractions of

a second. Each server has a maximum capacity of the number of people that it can host. Each person

has a mission, while there are options allowing people to group and take up collective missions. This

adds the complexity of network delays to the problem of scheduling jobs. In a battlefield, the host

server is required to keep track of the environment and also respond to the gamers.

With the increasingly dynamic nature of the real-time systems, the execution of a job takes different times

in different scenarios. The traditional models use the worst case execution time to model the real-time

systems and would declare complex systems to be infeasible. This promotes the requirement of a more

flexible modeling technique for real-time systems.

1.2 E-T-C Scheduling Model

Real-time scheduling models have complex relations between the jobs which are to be satisfied at all times.

Some dynamic real-time environments, where the execution time changes according to the circumstance, are

listed in the previous section. The execution time of a job can vary due to different factors such as:

1. Input dependent loops - The time to run a job containing loops depending on input parameters changes

with the parameters.

2. Caching - Modern computers have multi-tier memories for improving the memory latency and page
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swapping operating systems to provide larger memory space. The time taken to access a data depends

on where the data is located.

3. Compiler-architecture mapping of the machine - Different compilers go to different levels of optimization

and produce code with different strategies. The length of code differs and could cause the execution

time to change.

4. Processor speed - The execution time of jobs also varies when the processor executes the jobs with

different clock speeds. Transmeta’s LongRun, AMD’s PowerNow, or Intel’s SpeedStep technologies vary

the processor voltage or clock frequency to decrease the power consumed by the processors. Building

or interfacing real-time systems with such processors further complicates the situation. A scheme

to decrease energy consumption for real-time systems by readjusting processor speed and reusing the

unused processor cycles mustered, when a job finishes before the worst case execution time, is proposed

in [AMMMA01]

The E-T-C framework is proposed in [Sub02] to formalize problems in real-time systems which takes into

account the variability of execution time, complex relationships between jobs and clairvoyance of the system.

The scheduling model consists of three sub-models, namely, the Job model, the Constraint model and the

Query model. The Job model describes the type and nature of jobs to be scheduled. The Constraint model

describes the relationships existing between the start or finish times of the jobs. The Query model specifies

what it means for a job set to be schedulable under the imposed constraints. A scheduling model in the

E-T-C framework is constructed by specifying the three sub-models.

The jobs are ordered and non-preemptable and the constraints imposed on the jobs are strict difference

constraints between start and finish times of jobs. We use the algorithm proposed in [Sub03] to decide the

schedulability of a Partially Clairvoyant system and a set of dispatch functions are generated when a schedule

exists.

1.3 Strategy

In this thesis, we focus on “the dispatching analysis and implementation of distributed dispatchers” for

Partially Clairvoyant systems. We provide additional processors to relax constraints and obtain the dispatch

interval of jobs while one processor executes a job. The data required for relaxing constraints is either

transmitted as messages between the processors or stored at a shared location. The temporal deadlines

imposed on the system are met by increasing the processing capacity of the controller.
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We implement and test the sequential and parallel versions of the online dispatcher with schedules of different

sizes and constraints. We study the effect of increasing the number of processors on the update time for

schedules of different sizes. We also study the dispatchability of schedules of different execution time intervals

and spacing time intervals and suggest the factors that can improve dispatchability of schedules.

1.4 Summary of Contributions

The main contributions in the thesis are as follows:

• Algorithms : This work extends the parallel online dispatcher for Partially Clairvoyant systems pro-

posed in [Sub00] to a fixed number of processors; much less than the number of jobs. The original

algorithm requires n processors and assumes that the cost of transmitting data to all the processors

is constant, while the extended algorithm allows the number of processors to be variable and has

constant transmission time. The job set was divided into mutually exclusive and exhaustive sets and

assigned to processors. The complexity of the online dispatching algorithm is analyzed assuming that

the execution time of a job is greater than the update time. The algorithms were modified to suite two

different memory architectures, namely:

1. Shared Memory: Two flags synchronize the execution of the jobs and the updating of constraints.

Memory is flushed to read or write the shared data from the central memory based on the values

of these flags. The algorithm uses one dedicated processor for executing jobs while the other

processors compute the time interval within which the next job can be started without violating

the constraints.

2. Distributed Memory: Processors share data by passing messages to the others. The receiving of

a message is blocking and synchronizes the execution of jobs and updating of constraints. The

dispatching algorithm in [Sub00] was extended to propose and analyze two algorithms using fixed

number of processors. The first algorithm uses a single processor to execute the jobs and the rest

of the processors are used to update constraints. The effect of using a communicating processor

to transmit data is analyzed through an analytic model. The second algorithm distributes the

execution of jobs on multiple processors and analyzes the complexity of dispatching jobs.

• Empirical Analysis - We identify the parameters that effect dispatching and show their effects through

experiments. We show the superiority and scalability of the distributed dispatching strategies through

experimentation. In our experiments, the distributed dispatchers dispatched schedules of different sizes

where the sequential dispatcher failed, and increasing the number of processors helped in dispatching
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larger schedules. We show the effect of the execution time and spacing time on the dispatchability of

schedules and identify and analyze various parameters leading to failure while dispatching.

1.5 Organization

The rest of the thesis is organized as follows: Chapter 2 provides a discussion of the Partially Clairvoy-

ant scheduling model and describes how to decide if a Partially Clairvoyant schedule exists. Chapter 3

describes dispatching Partially Clairvoyant schedules on a single and multiple processors. It also explains

the experimental setup, simulation of the job execution and the test suites created. Chapter 4 describes the

algorithms proposed for distributed memory machines and analyzes their complexity and this chapter also

analyzes the effect of a communicating processor in the single controller model and lists the results obtained

on experimentation. Chapter 5 proposes the dispatching algorithm for shared memory machines and lists

the results obtained on experimentation. Chapter 6 concludes by summarizing the results obtained and

suggesting pointers for future research.



Chapter 2

Partially Clairvoyant Scheduling

2.1 Introduction

This chapter focuses on determining the existence of a schedule for Partially Clairvoyant real-time systems,

wherein the dispatch time of the current job may depend upon the start and execution times of the jobs

sequenced before it. Partially Clairvoyant scheduling was introduced in [Sak94] to reduce the inflexibility of

static scheduling in hard real-time systems. The scheduling problem for Partially Clairvoyant systems has

two stages:

1. Schedulability - Given an instance of the problem in the E-T-C model, to determine if the system is

schedulable under the given constraints (Section §2.2).

2. Dispatchability - Given a schedule for a Partially Clairvoyant system, to determine the start time

interval of jobs and dispatch all the jobs such that none of the constraints are violated (Chapter 3).

The problem of dispatching a Partially Clairvoyant system exists only if the instance of the problem is decided

to be schedulable. A constraint graph is built from the difference constraints imposed on the system and the

algorithm checks for the existence of a negative cycle in the graph by relaxing and removing redundant edges

and contracting vertices. When a negative cycle is found in the graph, the system is declared to be infeasible.

Schedulability of a Partially Clairvoyant system is determined offline while deciding the dispatchability of a

schedule is done at run-time with the job execution. Online dispatching techniques for Partially Clairvoyant

systems are introduced in Chapter 3 and discussed in detail in Chapters 4 and 5.

7
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This chapter reviews and describes contributions towards Partially Clairvoyant scheduling made in [Sub00,

Sub03].

The rest of this chapter is organized as follows: Section §2.2 formally introduces the problem of Partially

Clairvoyant scheduling in the E-T-C scheduling framework. Section §2.3 describes the procedure for con-

structing a constraint graph and states the approach and complexity of the algorithm used to decide the

Partially Clairvoyant schedulability of a problem for the special case in which all constraints are strictly

relative. Section §2.4 provides an example of a real-time system modeled in the E-T-C framework and de-

termines the schedulability of the system. Section §3.5 describes related work done in Partially Clairvoyant

scheduling.

2.2 The Scheduling Problem

2.2.1 Job Model

Let J = {J1, J2, . . . , Jn} be a set of non-preemptive, ordered hard real-time jobs to be scheduled in time

windows of length L. At the start of each scheduling window, the time is set to zero.

2.2.2 Constraint Model

The constraints on the jobs are described by System (2.1):

A.[~s ~e]T ≤ ~b, ~e ∈ E, (2.1)

where,

• A is an m×2.n rational matrix; the constraint set comprises only of standard constraints between two

jobs. Standard constraints express the difference relationships between the start times or finish times

of two jobs and are explained in Section §2.3.1.

• E is an axis-parallel rectangle aph represented by:

E = [l1, u1]× [l2, u2]× . . . [ln, un] (2.2)

The aph E models the fact that the execution time of job Ji can assume any value in the range [li, ui]

i.e., it is not constant.
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• ~s = [s1, s2, . . . , sn] is the start time vector of the jobs, and

• ~e = [e1, e2, . . . , en] ∈ E is the execution time vector of the jobs.

The jobs are ordered, i.e., si +ei ≤ si+1, i = 1, 2, . . . , n−1; the ordering constraints are part of the constraint

matrix A.

2.2.3 Query Model

Suppose that job Ja, 1 ≤ a ≤ n, has to be dispatched. The dispatcher has access to the start times

{s1, s2, . . . , sa−1} and execution times {e1, e2, . . . , ea−1} of the jobs {J1, J2, . . . , Ja−1}.

Definition: 2.2.1 A Partially Clairvoyant Schedule of an ordered set of jobs, in a scheduling window, is

a vector ~s = [s1, s2, . . . , sn], where each si, 1 ≤ i ≤ n, is a function of the start time and execution time

variables of jobs sequenced prior to job Ji, i.e., {s1, e1, s2, e2, . . . , si−1, ei−1}.

Note that s1 is numeric, since J1 is the first job in the sequence.

Definition: 2.2.2 A Partially Clairvoyant Schedule ~s for the constraint system (2.1) is said to be feasible,

if for all sequences bseq = < s′1, e
′
1, s

′
2, e

′
2, . . . , s

′
n, e′n >, where s′i is chosen as per ~s and e′i ∈ [li, ui], we have

A.[~s′ ~e′]T ≤ ~b, where s′i and e′i are numeric vectors, corresponding to the sequence bseq.

We look for the existence of a start time vector,where the start time of a job Ji depends on the start and

execution times of the jobs scheduled before it, such that for any duration of job execution within [li, ui],

the start and execution time vectors do not violate the constraints imposed on the system. The discussion

above directs us to the following formulation of the schedulability query:

∃s1 ∀e1 ∈ [l1, u1] ∃s2 ∀e2 ∈ [l2, u2] . . . ∃sn ∀en ∈ [ln, un] A.[~s ~e]T ≤ ~b? (2.3)

The combination of the Job model, Constraint model and the Query model constitutes a scheduling problem

specification within the E-T-C scheduling framework [Sub02].
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2.3 Algorithm

2.3.1 Standard Constraints

The class of standard constraints was introduced in [GPS95] to describe strict difference constraints between

jobs .

Definition: 2.3.1 A constraint is said to be standard, if it represents a strict difference constraint between

exactly 2 jobs.

As per Definition (2.3.1), the relationships between job Ji and job Jj are standard, if they fall into one of

the following categories:

1. A difference constraint between the start time of Ji and the start time of Jj , e.g. si ≤ sj + c

2. A difference constraint between the start time of Ji and the finish time of Jj , e.g. si ≤ sj + ej + c

3. A difference constraint between the finish time of Ji and the start time of Jj , e.g. si + ei ≤ sj + c

4. A difference constraint between the finish time of Ji and the finish time of Jj , e.g. si + ei ≤ sj + ej + c

Absolute constraints (si ≥ a or si ≤ b) are treated as relative constraints through the addition of a dummy

job J0 with start time s0 and execution time e0 ∈ [0, 0].

Observe that standard constraints are in fact difference constraints between jobs; consequently, they do

have a constraint graph structure [CLR92]. In Section §2.3.2, the construction of the constraint graph

corresponding to a set of standard constraints is shown.

2.3.2 Construction of the Constraint Graph for Standard Constraints

Given a set of n jobs, with standard constraints imposed on their execution, a graph G =< V, E > is

constructed, where V is the set of vertices and E is the set of edges.

1. V = 〈s0, s1, s2, . . . , sn〉, i.e., one node for the start times of each job, and node s0 which is used for

handling absolute constraints;

2. For every constraint of the form: si + k ≤ sj , construct an arc si ; sj , with weight −k;

3. For every constraint of the form: si + ei ≤ sj + k, construct an arc si ; sj , with weight k − ei;
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4. For every constraint of the form: si ≤ sj + ej + k, construct an arc si ; sj , with weight ej + k;

5. For every constraint of the form: si +ei ≤ sj +ej +k, construct an arc si ; sj , with weight ej−ei +k;

6. Finally construct arc so ; s1 with weight 0, since s1 ≥ 0 and arc sn ; s0 with weight L − en, since

all jobs have to be completed by the end of the current scheduling window.

Given an instance of a scheduling problem with standard constraints and execution time belonging to closed

intervals, algorithm proposed in [Sub03] is used to decide the schedulability of the constraint graph generated

using the procedure in Section §2.3.2. The algorithm proceeds by eliminating ei followed by si in succession,

starting with the last job. The execution time ei, is eliminated by substituting [li, ui] on the edges depending

on ei and removing redundant edges. li is substituted on those edges where ei has positive sign and ui where

ei has a negative sign. After substituting, the edges have rational weights and that edge with the least weight

is retained. The start time si is eliminated by contracting the vertex corresponding to si.

2.3.3 Complexity

The complexity of the algorithm used is O(n3) as discussed in [Sub03]. The time taken to eliminate the

execution time variable ei depends on the degree of the vertex si, since ei is present only in constraints

involving si. Since there are n+1 vertices, the number of edges involving ei can be at most 4 · (n+1). Hence

the elimination of the execution time variable takes O(n) time in the worst case. The time to eliminate the

variable si is the time taken to contract one vertex in the constraint graph. The contraction of a vertex

takes time proportional to the product of the in-degree and the out-degree of the vertex, since the relaxing

of edges can be done in constant time. In the worst case, there are O(n) edges coming into the vertex and

O(n) edges going out. Hence the time taken to contract a vertex is O(n2).

The time spent in contracting the n vertices is O(n3). Hence the complexity of algorithm is O(n3).

2.4 Example

Consider a simple robot trying to move an object from one place to another. The speed of the robot depends

on the mass of the object and the surface on which the robot is moving; and the time the robot takes to

change direction depends on the angle it has to turn. Consider that the movement is controlled by the

following algorithm: The robot checks its speed by sensing the environment and varies its speed according

to the requirement. It takes two units to compute the required speed and then adjusts its speed. After
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adjusting the speed it checks if it is moving in the right direction towards the destination. If the robot is

not moving in the right direction, it adjusts the direction. Suppose this happens once in every forty units

of time with the additional constraints that the robot should start finding the direction of motion between

five to ten units of finding its speed. Assume that the robot takes around three to seven units of time to

find the speed, five to six units of time to adjust its speed, two to seven units of time to find the direction

in which it is moving and eight to twelve units of time to adjust the direction.

Figure 2.1: A simple robot

The above system can be modeled as:

• J={J1, J2, J3, J4}

• – e1 ∈ [3, 7]

– e2 ∈ [5, 6]

– e3 ∈ [2, 7]

– e4 ∈ [8, 12]

• – s1 + e1 + 2 ≤ s2

– s2 + e2 ≤ s3

– s3 ≤ s1 + e1 + 10

– s1 + e1 + 5 ≤ s3
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– s3 + e3 + 5 ≤ s4

– s4 + e4 ≤ 40

If the length L of each scheduling window is less than 39, i.e., (s4 + e4 < 39), then the above constraint

system would be infeasible.

2.5 Related Work

The E-T-C scheduling model was introduced and formalied in [Sub02]. The term “Partially clairvoyant

scheduling” was first used in [Sub02] while the scheduling was introduced in [Sak94]. A polynomial time

algorithm to decide schedulability was proposed in [GPS95], when the constraints imposed on the jobs are

standard constraints. The principal technique used in their algorithm was the Fourier- Motzkin elimination

procedure to eliminate existentially quantified variables [DE73]. They showed that when the constraints

are standard, the elimination procedure does not lead to an exponential increase in the set of resolvent

constraints, a phenomenon observed when the constraints are arbitrary [HJLL90].



Chapter 3

Partially Clairvoyant Dispatching

3.1 Introduction

The algorithm in [Sub03] decides the schedulability of a Partially Clairvoyant system and produces a set

of dispatch functions when the query (2.3) is satisfied. In general, the dispatch functions produced are as

follows:

max(g0, g1, . . . , gi−1) ≤ si ≤ min (g′0, g′1, . . . , g′i−1).

where gj and g′j are functions depending on the start and execution times of job Jj (j < i). The dispatching

algorithm has to compute the time interval during which a job can start and dispatch the job in the computed

interval so that none of the constraints imposed on the job are violated.

Definition: 3.1.1 A safety interval([lb, rb]) for a job is the time interval during which the job can be started

such that none of the constraints imposed by the constraint system (2.1) are violated.

The dispatch algorithm fails to dispatch a job in the computed safety interval due to the delay in starting

the job, i.e., the time after computing the safety interval exceeds rb. Hence the job set cannot be dispatched

and the system looses dispatchability. This phenomenon is called Loss of Dispatchability.

The dispatch functions generated by the dual algorithm for the example problem in Section §2.4 in Chapter

2 are as follows:

1. 0 ≤ s1 ≤ 1

14
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2. s1 + e1 + 2 ≤ s2 ≤ min(s1 + e1 + 4, 10)

3. max(s1 + e1 + 5, s2 + e2) ≤ s3 ≤ min(s1 + e1 + 10, 16)

4. s3 + e3 + 5 ≤ s4 ≤ 28

Definition: 3.1.2 A feasible Partially Clairvoyant schedule is said to be dispatchable on a machine M, if

for every job Ji, M can start executing Ji within it’s safety interval.

A sequential online dispatcher executes the schedule by executing a job Ji and updating the safety intervals of

the jobs depending on Ji. A multiprocessor dispatcher has one processor executing a job while the remaining

processors update the safety intervals. The remaining processors update and report the safety interval for

the next job, there by consuming less time than the sequential dispatcher.

In this chapter, the requirement of distributed dispatching is motivated by citing examples where sequential

dispatching fails. We point out the parameters involved in creating Partially Clairvoyant schedules and

identify those which make dispatching difficult. This chapter also explains how the simulation of dispatching

the schedules proceeds.

Section §3.2 describes and analyzes the complexity of the sequential dispatching algorithm. Section §3.3

proposes and analyzes the complexity of the parallel dispatching algorithm along with motivating the re-

quirement of the dispatcher. Section §3.4 describes the parameters involved in generating the constraint sets

and the procedure of simulating the dispatching of a Partially Clairvoyant schedule. Section §3.5 describes

work done in the areas.

3.2 Sequential Dispatching

In sequential dispatching, the dispatch algorithm switches between job execution and updating safety inter-

vals of the remaining jobs. The dispatch algorithm can compute the safety interval using one of the following

techniques:

• Update the safety intervals of all the remaining jobs, whose dispatch functions depend on the start and

execution times of the completed job.

• Compute the safety interval of the next job only using the start and execution times of all the completed

jobs(lazy evaluation).
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In the first approach, the algorithm computes the safety intervals of the remaining (n− i) jobs, immediately

after a job Ji completes. Hence the update time decreases with the completion of jobs.

In the second approach, the number of constraints to be relaxed to obtain the safety interval is proportional

to the i completed jobs. The update time increases as jobs finish.

3.2.1 Algorithm

In this thesis, the online dispatching algorithm (3.2.1) computes and updates the safety intervals of all the

remaining jobs depending on the start and execution time upon completing a job.

Function Sequential-Online-Dispatcher-for-Ja (G = 〈V, E〉)
1: Let [lbi

, rbi
], (lbi

< rbi
) denote the current safety interval of Ji.

2: set current time to 0.

3: for (i = 1 to n) do

4: if (current-time < lbi) then

5: Sleep (lbi-current-time)

6: end if

7: if (current-time ∈ [lbi , rbi ]) then

8: Execute job Ji

9: Update all safety intervals depending on (si, ei)

10: else

11: Return (Schedule is not dispatchable)

12: end if

13: end for
Algorithm 3.2.1: Sequential Dispatcher for <aph|stan|param>

3.2.2 Complexity of Sequential Online Dispatching

The list of dispatch functions generated bound the start time of the job as shown in Table 3.1. In the case

of standard constraints, the length of these lists is at most O(n). For any schedule, the first job has a start

time interval, [a, b], independent of other jobs. Upon termination of job J1, s1 and e1 can be plugged into

f1() and f ′1(), thereby providing a safety interval [a′, b′] for s2. The same argument can be applied to the

following jobs up to Jn. The dispatcher needs to determine the start time of the first job in the sequence,
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Lower bound function ≤ Start time ≤ Upper bound function

a s1 b

f1(s1, e1) s2 f ′1(s1, e1)

f2(s1, e1, s2, e2) s3 f ′2(s1, e1, s2, e2)
...

...
...

fn−1(s1, e1, s2, e2, . . . , sn−1, en−1) sn f ′n−1(s1, e1, s2, e2, . . . , sn−1, en−1)

Table 3.1: List of parametric functions

after which the safety intervals can be computed. Since the length of the list is at most O(n), the complexity

of dispatching a job is O(n).

3.3 Multiprocessor Dispatching

The online dispatcher updates safety intervals of the remaining jobs in parallel to job execution. The online

dispatchers can be modeled using two control paradigms, viz., a master-slave model or a peer to peer model.

In the multiprocessor cases, disjoint job sets are assigned to each processor. In the master-slave model, there

is only one processor executing all the jobs while the rest of the processors update and report the safety

intervals of job sets assigned to them. In the peer to peer model, each processors executes jobs in its job set

and updates the safety intervals of jobs in its job set.

3.3.1 Motivation and Related work

A sequential online dispatching algorithm was proposed in [GPS95], for the schedules generated using the

algorithm in [Sak94]. The computing overhead of the online dispatcher may cause Loss of Dispatchability

due to the linear dispatch complexity.

The original single controller algorithm proposed in [Sub00] assumes that there are as many processors as

the number of jobs n and each processor is assigned one job. The jobs are executed on a central processor

which then broadcasts the start and execution time of the completed job to the other processors. The n

supporting processors receive the start and execution times of a job Jk and update the safety intervals, by

relaxing the 4 constraints between the job completed and the job assigned to them. The satellite processor

k sends the safety interval of job Jk+1. This algorithm has O(1) dispatch time per job and uses O(n) space

per processor. In Chapter 4 and 5, multi-processor dispatch algorithms using fixed number of processors,
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much less than the number of jobs, for different memory architectures are proposed.

For the example stated in Section §2.4 in Chapter 2, assume the first two jobs take the worst case time and

that the first job starts at time t = 0, then the third job has the safety interval [15, 16]. If the dispatcher

takes more than one unit of time to compute the safety interval, then the third job cannot be dispatched.

Another factor which promotes the use of single and distributed controllers is the existence of distributed

applications and critical systems in complex environments as discussed in Chapter 1. This modeling method

allows execution time to vary as a parameter and ensures that the deadlines are met. The algorithms

proposed are especially useful in parallel and distributed systems which require very high computing power

and for control.

Embedded designers are conservative and use 8, 16 or 32-bit processors in most of their applications, which

do not have the sophisticated architecture and instruction set support available in modern processors. NASA

still uses the reliable IBM RISC6000 chips in some of its projects.

Automotive designers deploy microprocessors to control many automotive processes and parts such as cruise

control, automatic transmission, fuel injection, braking and many more. When the cruise control is set,

the controller maintains the speed executing complicated algorithms. The control requires processors to

communicate with each other and exchange data. The designers are conservative on the processors they

embed and prefer to use 8 bit processors that are reliable and exhaustively tested. A controller will be able

to meet its deadlines better if its functions are distributed over some processors or it is provided with a

computing cluster to do its computations.

Example (1): Consider another hard real-time system with a job-set J = {J1, J2, J3, J4}. Let the execution

times of the jobs be as follows:

• e1 ∈ [5, 7]

• e2 ∈ [3, 5]

• e3 ∈ [1, 3]

• e4 ∈ [4, 6]

Let the constraints imposed on the system be as follows:

• s1 + e1 + 5 ≤ s2

• s2 + e2 ≤ s3
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• s3 + e3 ≤ s1 + e1 + 20

• s1 + e1 + 10 ≤ s3

• s3 + e3 + 2 ≤ s4

• s4 + e4 ≤ 30

The query (2.3) for the example above produces the following dispatch functions:

1. 0 ≤ s1 ≤ min(2, 9)

2. s1 + e1 + 5 ≤ s2 ≤ min(14, s1 + e1 + 10)

3. max(s1 + e1 + 10, s2 + e2) ≤ s3 ≤ min(s1 + e1 + 15, 19)

4. s3 + e3 + 2 ≤ s4 ≤ 24

Assume that the first two jobs take the worst case time to complete and that the first job starts at time

t = 1, then the second job has the safety interval [13, 14]. If the dispatcher takes more than one unit of time

to compute the safety interval, then the second job cannot be dispatched. In a situation that J2 starts at

time t = 13 + c, where c ∈ [0, 1]; then J3 has a safety interval of [18 + c, 19]. The example clearly shows the

requirement of speed while dispatching jobs.

3.3.2 Parallel Dispatch Algorithm

The algorithm (3.3.1) uses a fixed number of processors much less than the number of jobs. One processor

executes the jobs while the other update the safety intervals. However, the algorithm can be modified to

distribute job execution across the processors.

In the analysis, we assume that the satellite processors complete relaxing all the constraints depending on

the start and execution time of the previous job and are waiting for the next start and execution time before

the execution of a job finishes.

3.3.3 Complexity of Multiprocessor Dispatching

After a processor completes executing a job Ji, the constraints which need to be computed to determine the

safety interval [lbi+1 , rbi+1 ] of Ji+1 are as follows:
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Function Parallel-Online-Dispatcher-for-Ja (G = 〈V, E〉)
1: Let [lbi , rbi ], (lbi < rbi) denote the current safety interval of Ji.

2: set current time to 0.

3: for (i = 1 to n) do

4: if (current-time < lbi
) then

5: Sleep (lbi-current-time)

6: end if

7: if (current-time ∈ [lbi
, rbi

]) then

8: Execute job Ji

9: Update all safety intervals depending on (si, ei) in Parallel

10: else

11: Return (Schedule is not dispatchable)

12: end if

13: end for
Algorithm 3.3.1: Parallel Dispatcher for <aph|stan|param>

1. si + c1 ≤ si+1

2. si + ei + c1 ≤ si+1

3. si+1 ≤ si + c3

4. si+1 ≤ si + ei + c4

where c1, c2, c3 and c4 are real numbers.

Since there are at most 4 constraints between job Ji and Ji+1, algorithm (3.3.1) takes at most O(1) time,

for each job sequenced before it. As stated in [Sub00], relaxing 4 constraints takes at most 4 additions and

comparisons, i.e., 4 · (Tadd + Tcomp), where Tadd and Tcomp are the times taken to perform an addition and

a comparison respectively.

Let w be the cost of communicating a floating point number to other processors. In the master slave model,

the cost of communicating the start and execution time of a completed job and receiving the safety interval

of the next job is 4 · w while in the peer to peer model is 2 · w; both of which are constant. The time

required to compute the safety interval is 4 · (Tadd + Tcomp) + C ′, where C ′ is a constant. The multiprocessor

dispatching algorithms, complexity and implementation details are discussed in detail in Chapters 4 and 5.
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3.4 Experiment Design

3.4.1 Generation of Partially Clairvoyant schedules

A test-case is a set of jobs with execution time belonging to a certain time period and several constraints

between the jobs. The duration between two adjoint jobs is capped by creating constraints depending on

the execution time of the first job. Test-cases are created by varying the number of jobs or the execution

time period or the threshold value of the cap. These test-cases are used to generate Partially Clairvoyant

schedules.

A detailed description of the parameters required for the schedule generation is in Section §3.4.1. The

procedure followed by the schedule generating algorithm (GA) is described in the Section §3.4.1.

Parameters

The parameters required by GA are as follows:

• Number of jobs n: The number of jobs in the schedule

• Execution time [l, u]: The lower and upper limit of the execution time of the jobs.

• Spacing time [p, q]: This is used to create constraints which would ensure that the next job would

begin between [p, q] seconds after the completion of a job. The value of p will prevent constraints

which force the two jobs to be very close to each other while q prevents a large interval between the

two jobs. p prevents the degree of closeness from being very small and q prevents degree of separation

from being large.

• Number of constraints E: The number of standard constraints between jobs.

where l, u, p and q are real numbers.

Constraint Generation

We specify as inputs, the number of jobs n, the number of constraints E, the execution time [l, u] and the

spacing time [p, q] along with a random seed, for generating the constraints. The generating algorithm (GA)

does as follows:



22

• For each job, GA generates and prints two numbers between l and u (l < u), which bound the execution

time of the job.

• Between every job Ji and Ji+1(1 ≤ i ≤ n), GA generates standard constraints of the form si+ei ≤ si+1

and si+1 ≤ si + ei + c where c is a random number between p and q. The generator generates at least

2 · n constraints.

• If E > 2 · n then (E − 2 · n) constraints between the finish times of two randomly chosen jobs (say Jx

and Jy) such that a Partially Clairvoyant schedule would exist. If x < y then a small negative real

number −l ≤ c1 ≤ 0 is generated such that sx + ex ≤ sy + ey + c1 which would be trivially true; and if

x > y then a very large real number c2 is generated such that sx + ex ≤ sy + ey + c2 which also would

be trivially true.

A large value of E increases the update time on the satellite processors.

3.4.2 Schedule Generation and Execution

The algorithm described in [Sub03] generates a Partially Clairvoyant schedule from a test-case generated by

GA. The schedule is written into a file to be read by the online dispatcher.

The dispatcher reads the number of jobs, execution time periods, a random seed and the dispatch functions

from the file. The dispatch functions are stored in a two-dimensional triangular array by each processor.

Arrays are maintained to store the start time, execution time and execution time periods of the jobs.

The current time is set to zero when the dispatching starts. If the current time at the start of a job is

within the safety interval of a job, the job is started. The job execution is simulated by generating a random

number t′ in the execution time interval of a job and performing a busy wait for t′ seconds.

Further details about implementation on an architecture are discussed in the respective chapters.

3.5 Related Work

A sequential online dispatching algorithm was proposed in [GPS95], for the schedules generated using the

algorithm in [Sak94]. The algorithm stores lists of dispatch functions and has dispatch time proportional

to the number of jobs. The computing overhead of the online dispatcher may cause Loss of Dispatchability

due to the linear dispatch complexity, i.e., the time after computing the safety interval (lb, rb) exceeds rb.
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A parallel online algorithm was proposed in [Sub00] for eliminating Loss of Dispatchability for Partially

Clairvoyant schedules.

Traffic Alert and Collision Avoidance system (TCAS) is used in commercial aircrafts to avoid collisions.

An imprecise computation technique to meet the necessary deadlines was proposed in [HFL95]. Each job

is broken into a mandatory job and an optional job; the mandatory jobs are to meet strict end to end

deadlines while the optional jobs are scheduled in between with intermediatory deadlines. In this situation,

our algorithm helps in executing jobs on different processors such that all deadlines are met.

For control problems, [MFFR02] proposes to use flexible sampling and timing intervals to decide when to

schedule jobs. The start time of jobs is a variable according to the controller but they use the worst case

execution times to decide if a schedule exists. There are constraint sets which do not have a schedule in

case the worst case execution time is assumed as shown in [Sub03]. In case the number of parameters in the

system increase, the efficiency of the controller decreases due to the heavy computing required to schedule

jobs. The algorithms proposed would reduce the computing load on the controller and ensures that the

controller functions with high efficiency.



Chapter 4

Distributed Strategy

4.1 Introduction

Jobs are distributed among processors as to balance the load on each processor. The parallel dispatching

strategy discussed in Section §3.3.2 can be implemented in many ways, two methods of implementing the

algorithm are as follows:

1. Single controller: The jobs execute on one dedicated central processor, while the remaining processors

update and report the safety interval of the next job, to be executed, to the central processor. The

central processor can either transmit the start and execution time of the completed job directly to all

the processors or employ different communicating schemes.

2. Multicast controller: Each processor computes the safety intervals and executes the set of jobs assigned

to them. Different communication strategies can be employed as before. In this chapter, the processor

that executes a job is made to transmit the start and execution time to all the remaining processors.

The above strategies are tested on two network topologies and the results are explained.

In this chapter, the original distributed dispatching algorithm proposed in [Sub00] is extended to distributed

memory machines using a fixed number of processor for dispatching. The original algorithm required as many

processors as the number of jobs. We propose, analyze and empirically test the dispatcher with Partially

Clairvoyant schedules of different sizes and constraints. We analyze and explain the results obtained for both

the algorithms.

24
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The rest of this chapter is organized as follows: Section §4.2 describes the architecture and the algorithms

used for distributed dispatching. It also analyzes the complexity of the algorithms and also explains the

existence of a communicating processor through an analytical model. Section §4.3 explains fills in details

about communication and timing while dispatching the schedule. Section §4.3 also describes the machine

used and the modes of communicating on the machine. Sections §4.4 and Section §4.5 shows and explain

the results obtained on dispatching job sets using the single controller and multicast controller algorithms

respectively. Section §4.6 describes some work going on in the areas of distributed computing and clock

synchronization and §4.7 lists the conclusions reached in our tests.

4.2 Architecture, Algorithm and Analysis

The machine consists of a group of processors which are connected through a high speed switch. Each

processor has its own local memory to store its data and this data is communicated between processors

through asynchronous messages in a shared network. The parallel programming paradigm employed is

Single Program Multiple Data (SPMD).

In the Sections §4.2.2, it is assumed that jobs are distributed equally among the N processors and that a job

Ji is assigned to Pi mod N . This assumption is not completely unrealistic and the order of communicating

(si, ei) can be modified to ensure that the processor that executes the next job (Ji+1) receives (si, ei) before

the others.

4.2.1 Single Controller

Architecture

Central
Processor

... ...

Comm.
Processor

S1 S2 Si Sk

(si,ei)

(si,ei)
(si,ei)

(l2
b,r

2
b)

(lk+1
b ,rK+1

b )

Figure 4.1: The single controller architecture for Partially Clairvoyant dispatching
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The proposed architecture is shown in Figure (4.1). The central processor receives the safety interval from

the satellite processors. The central processor executes a job and transmits the start and execution time

of the executed job to the communicating processor. The communicating processor in turn sends the start

and execution time to all the satellite processors. Each satellite processor S updates and reports the safety

intervals of a class of jobs C preassigned to them. In case there is only one satellite processor, there will be

no communicating processor.

Algorithm

After the central processor completes executing a job Ji, it transmits (si, ei) to the satellite processors where

relaxing 4 constraints takes 4 · (Tadd + Tcomp) as explained in Section §3.3.3.

Let w1 be the cost of transmitting a floating point number from one processor to another. The communication

cost of transmitting (sj , ej) is equal to 2 ·w1 if there is one satellite processor and 4 ·w1 for multiple satellite

processors. Further, 2·w1 is required by a satellite processor to transmit (lbj+1 , rbj+1) to the central processor.

Hence algorithm 4.2.1 has a dispatch complexity of O(1).

In the above analysis, the assumption in the Section 3.3.2 is assumed to hold.

Analytical Model

Consider the following analytic model of a distributed controller with processors of low computing speeds:

Let there be k satellite processors and let tsend be the time to communicate two floating point numbers to

a satellite processor. Let tupdate be the time taken by the satellite processors to compute the safety interval

of the next job.

In case that a communicating processor does not exist, the central processor has to communicate the data

to all the k satellite processors before it is ready to receive the safety interval of the next job. The time T ′

required in the following case is

T ′ = k × tsend + tupdate + tsend = (k + 1)× tsend + tupdate

In case a communicating processor exists, the data is transferred to the communicating processor which in

turn transmits to the satellite processors beginning with the processor which sends the next safety interval.

The time T ′′ required in the following case is

T ′′ = 2× tsend + tupdate + tsend = 3× tsend + tupdate.
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Function Online-Dispatcher-for-Ja (G = 〈V, E〉)
1: Let [lbi , rbi ], (lbi < rbi) denote the current safety interval of Ji.

2: Let P denote the number of satellite processors.

3: for (j = 1 to n) in parallel do

4: if (central processor) then

5: if (current time ∈ [lbj , rbj ]) then

6: Execute job Jj

7: Transmit (sj , ej) to communicating server

8: Compute the satellite processor Sk from which the safety interval is expected

9: Receive (lbj+1 , rbj+1) from Sk

10: else

11: Report Schedule is not dispatchable

12: end if

13: end if

14: if (communicating processor) then

15: Compute the satellite processor Sk from which the safety interval is expected

16: Receive (sj , ej)

17: Transmit (sj , ej) to the satellite processors, beginning with Sk to Sk−1

18: end if

19: if (satellite processor Sm) then

20: Compute the satellite processor Sk from which the safety interval is expected

21: Receive (sj , ej)

22: if Sk = Sm then

23: Update-constraints(j, j + 1)

24: Send safety interval to central processor

25: Update-constraints(j, q) ∀Jq ∈ Ck (q ≥ j + 1)

26: else

27: Update-constraints(j, q) ∀Jq ∈ Cm

28: end if

29: end if

30: if i = n then

31: Report schedule is dispatchable

32: end if

33: end for
Algorithm 4.2.1: Dispatcher for single controller
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Function Update-constraints(j, k) (sj , ej)

Relax constraints between Jj and Jk into absolute constraints.

2: Compare each absolute constraint with the existing safety interval for Jk

if (new constraint is non-redundant) then

4: Update Safety Interval

else

6: Leave the Safety Interval unchanged

end if
Algorithm 4.2.2: Update constraints function in Single controller dispatcher

It is clear that T ′ > T ′′ when b > 2. With a communicating processor, the load on the satellite processors

increases as there is one less processor to update which requires the execution time to be greater than the

update time of all the jobs. When the communication cost to transmit to all the satellite processors is large,

a communicating processor helps.

4.2.2 Multicast Controllers

Architecture

P1

P2

P3

P4

(si,ei)

(si+3,ei+3)

(si+2,ei+2)

(si+1,ei+1)

Figure 4.2: Multicasting architecture for Partially Clairvoyant dispatching.

The proposed architecture is shown in Figure (4.2). A processor P completes the job Ji and then transmits
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(si, ei) to the other processors. If Ji+1 ∈ C ′ of P ′, then P ′ computes the safety interval and immediately

starts Ji+1 in the safety interval. P ′ then updates the safety intervals of the remaining jobs with the start

and execution times of the two jobs, Ji and Ji+1 . The other processors update the safety intervals for the

jobs assigned to them.

Algorithm and Analysis

After completing a job, the processor takes 2 ·w1 to send (si, ei) to the processor P ′ that executes the next

job. P ′ relaxes four constraints which takes 4 · (Tadd + Tcomp). Hence, algorithm 4.2.3 takes constant time

to compute the dispatch interval for a job.

4.3 Experiment Design

4.3.1 Machine Specifications

Lemieux comprises 750 Compaq Alphaserver ES − 45 nodes and two separate front end nodes. Each

computational node contains four 1−GHz processors SMP with 4 Gbytes of memory and runs the Tru64

Unix operating system. A Quadrics interconnection network connects the nodes.

The Quadrics network has two building blocks, a programmable network interface called Elan and a low-

latency high bandwidth communication switch called Elite. The Elan network interface links the high-

performance, multi-stage Quadrics network to the nodes. The Elan also provides substantial local process-

ing power to implement high-level message-passing protocols, such as MPI, in addition to generating and

accepting packets to and from the network. The Elite switch provides 8 bidirectional links supporting two

virtual channels in each direction, an internal 16× 8 full crossbar switch and a bandwidth of 400MB/s with

a latency of 35ns.

We used MPI libraries in C to implement all the dispatchers.

Schedule Execution

In the single controller, the central processor sends (si, ei) and waits for the safety interval of the next job

from the satellite processors. The function, MPI Wtime(), is invoked before sending the start and execution

times to the communicating processor and after receiving the safety interval from a satellite processor. The

time difference between the two function calls is added to the finish time of the completed job to obtain the



30

Function Online-Dispatcher-for-Ja

1: Let the set Ci for each processor Pi.

2: Let [lbi , rbi ], (lbi < rbi) denote the current safety interval of Ji.

3: Let N denote the number of processors.

4: if (current time ∈ [lb1 , rb1 ]) then

5: Execute job J1

6: Send (s1, e1) to the other processors.

7: else

8: Report Schedule is not dispatchable

9: end if

10: for (i = 2 to n) in parallel do

11: Determine the processor P on which job Ji has to be executed.

12: Determine the processor B on which job Ji−1 was executed.

13: if (processor P = Pk) then

14: Receive (si−1, ei−1)

15: Update Constraints between Ji−1 and Ji to determine the safety interval (lbi , rbi).

16: if (current time ∈ [lbi , rbi ]) then

17: Execute job Ji

18: Send (si, ei) to the other processors.

19: else

20: Report Schedule is not dispatchable

21: end if

22: Update-constraints-two(i, q) ∀Jq ∈ Ck

23: else

24: Receive (si−1, ei−1)

25: Update-constraints(i, q) ∀Jq ∈ Ck

26: end if

27: end for
Algorithm 4.2.3: Multicast Dispatcher for distributed controllers
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Function Update-constraints(j, k) (sj , ej)

Relax constraints between Jj and Jk into absolute constraints.

2: Compare each absolute constraint with the existing safety interval for Jk

if (new constraint is non-redundant) then

4: Update Safety Interval

else

6: Leave the Safety Interval unchanged

end if
Algorithm 4.2.4: Update constraints between Job Jj and Jk

Function Update-constraints-two(j, k) (sj−1, ej−1, sj , ej)

Relax constraints between jobs (Jj−1, Jk) and jobs (Jj , Jk) into absolute constraints.

Compare each absolute constraint with the existing safety interval for Jk

3: if (new constraint is non-redundant) then

Update Safety Interval

else

6: Leave the Safety Interval unchanged

end if
Algorithm 4.2.5: Update constraints between Jobs (Jj−1, Jk) and (Jj , Jk)
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start time of the next job. If the start time is within the received safety interval, the next job is started.

In the multi-cast approach, the control passes from one processor to the other with every job. In order to

avoid clock synchronization and drift problems of the processors in our implementation, the current time is

treated as the global clock time and is sent from one processor to the other with the start and execution times.

The communication time is measured by dividing the time required to send a message to and immediately

receive a message from the next processor by 2 after completing a job. This approximately simulates the

time that would be required by the next processor to receive a message. In case the receiving processor is

still updating constraints, then the wait time is automatically added to the communication time.

In the multi-cast approach, the processor which executes a job sends the start and execution times to all the

other processors, while the other processors receive and update the safety intervals.

4.3.2 Communication

The cluster has two layers of communicating messages between processors; intra-node communication and

inter-node communication. Intra-node communication is communication between processors of the same

node through the ELAN interface, while inter-node communication is communication between processors on

different nodes through the Quadrics interconnect network. Thus, two sets of experiments are performed for

each implementation of the dispatchers. In the first set of experiments, all processors are chosen from the

least number of nodes containing them. For example, an experiment with 9 processors requires 3 nodes; all

8 processors of the 2 nodes and 1 processor of the third node. There is substantial intra-node communication

in this model along with inter-node communication. The second set of experiments chooses one processor

per node resulting in inter-node communication only.

4.3.3 Dispatch Variables

In the tests, we observed serious overshoots in the update times taken by satellite processors. These over-

shoots occur due to other system processes using the system resources or due to uncontrolled traffic over the

network that increases the response time taken by the cluster.

We observed the time taken to compute the safety interval in many experiments. Figure (4.3) plots the

frequency of the observed update times taken by the single controller dispatcher while Figure (4.4) plots

the frequency of the observed update times by the multicast dispatcher. Figures (4.3) and (4.4) show the

update times are usually within certain intervals of time and that the overshoots are more than ten times

the frequently observed update times. Accordingly, we categorized update times that are ten times greater
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than the previous update times as overshoots and such observations were neglected by taking the previous

update time. These abnormal overshoots can be safely neglected as real-time systems use dedicated machines

with predictable performance. In case there are three consecutive overshoots, the observed update time was

considered as the actual time taken to compute the safety interval. The above condition is necessary to check

for situations where the concerned satellite processor is still updating safety intervals with the previous start

and execution times, i.e., assumption in Section §3.3.2 fails.

Figure 4.3: The frequency histogram of the observed update times by the single controller dispatcher.

4.4 Empirical Analysis of Single Controller

We generated Partially Clairvoyant schedules with the number of jobs increasing from 1000 to 9750 in steps

of 250. The execution time duration of the jobs was (1 ms,5 ms) and the spacing time was chosen to be

(1ms,5ms), (0.5 ms,1ms) and (0.1 ms,0.5 ms). In the tests, we selected the processors either by choosing

one processor per node or by choosing the processors from the minimum number of nodes containing them.

Figure (4.5) plots the update time taken by the single controller dispatcher for schedules of different size with

varying number of processors. It is observed that the update time of the single controller dispatcher is almost

constant and in the range of 10−5 seconds, while the update time of the sequential dispatcher increases into

milliseconds, as the number of jobs increases. This figure show that the single controller dispatcher has very

less update time compared to the sequential dispatcher.

We conducted experiments to test the dispatchability of various Partially Clairvoyant schedules by varying

the number of processors. Each entry in Table 4.1 shows the largest job set successfully dispatched by
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Figure 4.4: The frequency histogram of communication times taken by the multicast dispatcher.
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Figure 4.5: Plot of the Update time taken versus the number of jobs as the number of satellite processors

are increased for a single controller with a communicating processor.
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the dispatcher with the concerned processor allocation for schedules with spacing times of (1 ms, 5 ms)

and (0.5 ms,1ms). Figures (4.6) and (4.7) show the results obtained with schedules having a spacing time

of (0.1 ms,0.5 ms) as the number of satellite processors are increased. A dot in Figures (4.6) and (4.7)

represents that the schedule with the concerned number of jobs was not dispatched by the concerned number

of processors.

Packing processors in nodes One processor per node

Processors 1 ms− 5 ms 0.5 ms− 1 ms 1 ms− 5 ms 0.5 ms− 1 ms

1 3000 1500 3000 1500

2 9750 9750 9750 9750

4 7500 7500 9750 9750

5 8750 8750 9750 9750

6 8750 8500 9750 9750

7 7500 7500 9750 9750

8 7500 6000 9750 9750

9 8500 8250 9750 9750

10 8000 7750 9750 9750

11 7250 7250 9750 9750

12 7500 7250 9750 9750

Table 4.1: Largest job set dispatched for varying number of processors by the single controller dispatcher

with a communicating processor.

Table 4.1 shows that the size of job sets dispatched is greater when the spacing time between the jobs is

greater. This is observed as the allowed time from the completion of a job to the start of the next job is

greater when the spacing time is larger, thereby allowing the satellite processors to compute and report the

safety interval to the central processor.

Another interesting observation in Table 4.1 is that the dispatcher with multiple satellite processors does

not dispatch large job sets with around 8750 jobs. The satellite processors need to access different memory

locations for each update they make as the size of the job set increases. This causes frequent page faults on

every processor which slows down the throughput of the node. This explains the dispatching of all the job

sets by the single controller dispatcher in Table 4.1 when one processor is chosen per node. Figures (4.6)

and (4.7) also show that there are lesser number of job sets not dispatched in case of Figure (4.7) where

one processor from one node was chosen. An alternate explanation could be based on the load of the ELAN

layer. When a message is to be sent between two processors in a node, the ELAN layer needs to read the
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Figure 4.6: In the above tests, the single controller chooses multiple processors per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job set was not

dispatched by the single controller with a communicating processor.

Figure 4.7: In the above tests, the single controller chooses one processor per node. For a job set of spacing

time [0.1ms, 0.5 ms] and a given number of processors, a dot represents that the job set was not dispatched

by the single controller with a communicating processor.
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data from the memory of the sender and copy it to the memory of the receiver. In situations where data is

sent to processors in other processors also, the ELAN sends the data through the Elite switches. In case the

concerned satellite processor is sending the safety interval from the same node, the ELAN might queue and

delay the safety interval.

In the above experiments, the time taken by the central processor to send the start and execution time to

communicating processor was also measured. In order to avoid the communication delay that occurs when

data moves up and down the protocol layers of the ELAN interface, we modified the architecture to exclude

the communicating processor and the central processor transmits data directly to the satellite processors

in the same order. Similar experiments were conducted with this architecture and the results obtained are

listed in Table 4.2 and Figures (4.8) and (4.9). Figures (4.8) and (4.9) show the effect of packing processors

in a node and choosing one processor per node respectively for Partially Clairvoyant schedules with a spacing

time of [0.1 ms, 0.5 ms]. A dot in the Figures (4.8) and (4.9) for a given value job set indicates that the job

set was not dispatched by the dispatcher with the concerned number of satellite processors.

Packing processors in a node One processor per node

Processors 1 ms− 5 ms 0.5 ms− 1 ms 1 ms− 5 ms 0.5 ms− 1 ms

1 3000 1500 3000 1500

2 7500 6000 7500 6500

3 8750 8750 9750 9750

4 7750 7500 9750 9750

5 9750 9750 9750 9750

6 8500 8750 9750 9750

7 8000 7500 9750 9750

8 7500 7500 9750 9750

9 8750 8750 9750 9750

10 7500 7750 9750 9750

11 7750 7500 9750 9750

12 7500 7500 9750 9750

Table 4.2: Largest job set dispatched for varying number of processors by the single controller dispatcher

without a communicating processor.

The results obtained are similar to the results obtained with the presence of a communicating processor. The

experiments were conducted in a shared environment which might have lead to noise in the observations.

However, this could not be verified as it was not possible to acquire the system in a dedicated mode. Due to
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Figure 4.8: In the above tests, the single controller chooses multiple processors per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job set was not

dispatched by the single controller without a communicating processor.

Figure 4.9: In the above tests, the single controller chooses one processor per node. For a job set of spacing

time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job set was not dispatched

by the single controller without a communicating processor.
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lack of resources, the point where the presence of a communicating processor would help was not exclusively

determined. The analytical model described in Section §4.2.1 motivates the existence of a communicating

processor.

4.5 Empirical Analysis of Multicast controller

4.5.1 Using all the processors in a node

The multicast dispatcher was tested using the same set of experiments as in Section §4.4 and the results

are in Figure (4.10) 1. The results observed are similar to the single controller case in Section §4.4 in that

each processor set has different job sets that it can dispatch and all the processors shown in the figure fail

to dispatch job sets larger than 8750.

It was concluded that multi-processor dispatchers dispatch more job sets than the serial dispatcher and that

different number of processors dispatch different job sets. The failure in dispatching the large job sets is due

to the page faults and the network load that decrease the throughput of the processors in the node.

Figure 4.10: In the above tests, the multicast controller chooses multiple processors per node. For a job set

of spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job set was not

dispatched by the multicast dispatcher.

1These experiments were conducted by Ashraf
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4.5.2 Using one processor per node

In these experiments, the processor allocation and test sets are similar to Section §4.4. Figure (4.11) 2

shows that this implementation is better than the implementation in Section §4.5.1 as most of the jobs are

dispatched. It was concluded that the processor sets dispatch more jobs when the number of page faults and

the load on the ELAN layer is less.

Figure 4.11: In the above tests, the multicast controller chooses one processor per node. For a job set of

spacing time [0.1 ms, 0.5 ms] and a given number of processors, a dot represents that the job set was not

dispatched by the multicast dispatcher.

4.6 Related work

While assuming worst case execution time, [MLWP02] uses an interval to model start times. They decide

the schedulability of such a system and are exploring situations in distributed applications where the global

clock and the local clocks are not synchronized with each other.

A best-case execution time analysis is described in [HKR01], to reduce the jitter and extend the distributed

scheduling analysis, so as to yield more accurate upper and lower bounds on system response times. An

attempt to make real-time communication on the ethernet more predictable by limiting the packet-arrival

rate allowed into the Medium Access Control(MAC) layer is proposed in [KS03]. A middleware architecture

was developed in [BBP+01], that proposes to use small microcontrollers as computation nodes in distributed

real-time systems.

Operators only communicate the high-level goal and deadlines to a spacecraft, which in turn does the planning
2These experiments were conducted by Ashraf
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and scheduling. [DKT99] proposes distributed approaches for onboard planning and scheduling that help

the spacecraft perform as an autonomous agent. For real-time implementation of control applications, [Tr98]

proposes a set of requirements and investigates important sources and characteristics of time-variations in

distributed computer systems .

4.7 Conclusion

We implement two models of distributed memory dispatchers and both were observe to have a lower update

time than the sequential dispatcher. We study the effect of choosing multiple processors across nodes and

find that number of memory accesses effects dispatchability, i.e., the dispatcher fails to dispatch schedules

of smaller size.

We show the effect of spacing time on the single controller dispatcher. We were not able to determine the point

where having a communicating processor would make dispatching superior than without a communicating

processor.

We also observe that the peer to peer model is superior in dispatching than the single controller dispatcher

for the schedules created. The peer to peer model depicts that “Loss of Dispatchability” noticed for larger

schedules is clearly due to the number of page faults.

A different communicating model based on pipeline communications can be tested for the master slave and

the peer to peer model.



Chapter 5

PRAM Strategy

5.1 Introduction

The parallel dispatching algorithm in Section §3.3.2 is implemented as a single controller algorithm. The

central process executes a job and flushes the start and execution time of the completed job to the shared

memory. The central processor updates a flag on which the other processors wait and waits on another flag

to be updated by one of the satellite processors on writing the safety interval of the next job in the shared

memory. The other processors (satellite processors) update the safety intervals of the jobs assigned to them.

In this chapter, the original distributed dispatching algorithm proposed in [Sub00] is extended for shared

memory machines with fixed number of processors. The original algorithm required the number of processors

equal to be the number of jobs and assumed that the time to communicate data to them was constant. We

implement the algorithm with fewer processors making an assumption and test the dispatcher with Partially

Clairvoyant schedules of different sizes. The results obtained are listed and explained.

The rest of this chapter is organized as follows: Section §5.2 describes the architecture of the machine model

and analyzes the algorithm. Section §5.3 describes the machine used and identifies the run-time variables and

overshoots in the experiments, Section §5.4 lists and explains the results obtained on testing the dispatcher

with Partially Clairvoyant schedules of different sizes and constraints. Section §5.6 lists the conclusions made

from our experiments.

42
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5.2 Architecture, Algorithm and Analysis

The CREW-shared memory architecture is discussed in detail in [Ja’92]. Each processor has a separate local

memory in addition to the common shared memory and maintains a copy of the data in its local memory.

Any changes to the shared data are made in its local memory and the data is flushed for memory coherence.

Memory Coherence depends on the protocol followed [LH89], i.e., the shared data variable is marked invalid

in the other memories as soon as a local copy is changed or a flush command needs to be executed by the

processor to achieve memory coherence. A processor requires far less time to access data from its memory

than data in the memory of another processor. The particular machine we are working on is a Non-Uniform

Memory Access (NUMA) machine. While reading a shared variable, the value resulting from the most recent

write is loaded into the local memory.

5.2.1 Architecture
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Figure 5.1: Shared Memory Dispatcher Architecture

The processors share data with each other through the shared memory as indicated in Figure (5.1). The

variables (si, ei) and (lbi+1 , rbi+1) are stored in the shared memory. The central processor C executes Job Ji

and stores (si, ei) into the memory. Then C updates a flag f1 and waits on another flag f2. Each satellite

processor Sj updates and reports the safety intervals for a class of jobs Cj . The satellite processor Sm which

has Ji+1 ∈ Cm writes the safety interval (lbi+1 , rbi+1) in the memory and updates the flag f2. On updating

the safety intervals of all the remaining jobs in their class, the satellite processors wait for f1 to be updated

by C.

In this implementation, there are no communication costs as compared to a distributed model but there is a
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cost for achieving memory coherence. However, the processors are required to flush the start and execution

times and the safety intervals for every job, which is an extra overhead for this algorithm.In this algorithm,

assumption in Section 3.3.2 is assumed to hold.

5.2.2 Algorithm and Analysis

The 4 constraints between job Ji and Ji+1, constant time to compute [lbi+1 , rbi+1 ].

Let w1 be the cost of writing a floating point number to the shared memory such that the data is coherent

through out the memory. C requires to flush the present values of (si, ei, f1) to the memory. Sk will have

to write (lbi+1 , rbi+1 , f2) in the memory.

The time required to compute the safety interval is 4 · (Tadd + Tcomp) + 6 · w1. Hence algorithm (5.2.1) has

O(1) dispatch complexity.

The algorithm 5.2.1 updates the dispatch functions in parallel to the execution of the next job. Let k be the

number of processors. In such a case, each processor has to update constraints between the completed job

and a fraction (= 1
k ) of the remaining jobs. In case n is very large, the time required to update the constraints

is larger than the execution time of the current job and might cause the next job to lose dispatchability.

Increasing the number of processors would help dispatchability if the memory coherence cost is not great.

5.3 Empirical Analysis

5.3.1 Machine Description

We used SGI Origin2000 of NCSA to test an implementation of the algorithm. The hardware specifications

of the machine and environment are listed in Tables 5.1 and 5.2 respectively. The jobs were submitted in

the batch queue.

Schedule Execution

A job is executed only if the current time at the beginning of the job is within the safety interval of the

job. The central processor then updates the f1 and writes the triplet (si, ei, f1) to the memory. The central

processor waits for an updated value of f2 before reading the safety interval of the next job. The C function

gettimeofday() is used to find the time Tbef before writing (si, ei, f1) into the shared memory and the time
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Function Shared-Online-Dispatcher-for-Ja (G = 〈V, E〉)
1: Let [lbi , rbi ], (lbi < rbi) denote the current safety interval of Ji.

2: Let P denote the number of satellite processors.

3: for (i = 1 to n) in parallel do

4: if (central processor) then

5: if (current-time < lbi) then

6: Sleep (lbi
-current-time)

7: end if

8: if (current-time ∈ [lbi
, rbi

]) then

9: Execute job Ji

10: Save (si, ei) to memory

11: Update flag1 and save to memory

12: Wait till flag2 is updated

13: Read (lbi+1 , rbi+1) from memory

14: else

15: Return (Schedule is not dispatchable)

16: end if

17: end if

18: if (satellite processor Sm) then

19: Compute Sk, the satellite processor required to report the safety interval

20: Wait till flag1 is updated

21: Read (si, ei)

22: if Sk = Sm then

23: Update-constraints(i, i + 1)

24: Write safety interval to memory

25: Update flag2 and write to memory

26: Update-constraints(i, q) ∀JobsJq ∈ Ck

27: else

28: Update-constraints(i, q) ∀JobsJq ∈ Cm

29: end if

30: end if

31: if i = n then

32: Return (schedule is dispatchable)

33: end if

34: end for
Algorithm 5.2.1: Shared Dispatcher for <aph|stan|param>
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Function Update-constraints(i, q) (si, ei)

1: Relax constraints between Ji and Jq into absolute constraints of Jq.

2: Compare each absolute constraint with the existing safety interval for Jq

3: if (new constraint is not redundant) then

4: Update Safety Interval ([lbq
, rbq

])

5: else

6: Leave the Safety Interval unchanged

7: end if
Algorithm 5.2.2: Update function of Shared Dispatcher for <aph|stan|param>

Component Description

Architecture Distributed Shared Memory

Processors MIPS R10000

Available number of processors 64 ( or 128)

Clock Speed 250 MHz or 195 MHz

Instruction Cache Size 32Kbytes

Data Cache Size 32 Kbytes

User Virtual Address Space 4 GB

Interconnect between machines Gigabit Ethernet

Table 5.1: Machine specifications of SGI Origin2000 of NCSA.

Component Description

Operating System Irix 6.5

Compiler C

Programming Models OpenMP

Floating Point Format IEEE

Batch System Load Sharing batch system

Table 5.2: Software Specifications of SGI Origin
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Taft after reading the safety interval (lbi+1 , rbi+1) from the memory. The time difference Taft − Tbef gives

the time required to update and report the safety interval to C. The simulation starts at time t = 0 and

proceeds by adding si + ei +Taft−Tbef to obtain the time at the instant C is ready to execute the job Ji+1.

5.3.2 Runtime Approximations

The time required to write the start time, execution time and the flag in the memory depends on various

factors such as the load on the processors, the system bus and the number of memory requests. The wait

depends on the time, the concerned satellite processor takes to read the updated flag f1 and compute the

dispatch functions.

With the execution of jobs, the number of constraints to be updated decrease and the update time should

decrease, but a few overshoots were observed in the update time. These overshoots are caused by the load

on the workstation and the scheduling policy of threads by the operating system Iris. Figure (5.2) shows

the frequency of the observed update times in various intervals while dispatching a job set of 5000 jobs on

16 processers. Figure (5.2) also shows that the update times are heavily concentrated in a certain time

interval and that a few discrepancies are located far away from this interval. Figure (5.2) shows the time

difference between recurring update times and suggests a multiplicative factor after which the update time

can be categorized as overshoots. The frequent update times were observed to be within 4 times the mean

update time. These overshoots were detected by checking if the current update time is greater than 4 times

the previous update time. The overshoots in the update time were neglected by taking the previous update

time, atmost for five consecutive overshoots, after which the observed update time is considered as the actual

update time. These overshoots were neglected as real-time systems require and use dedicated machines. The

test environment on Origin machine is batch, where the response times depend on the load on the machine.

5.4 Results

In the experiments conducted, the number of processors or the distribution of threads across processors

could not be controlled. The number of threads executing in parallel was the only parameter that could be

set before submitting a job. The operating system then schedules the threads balancing the load across the

processors. The optimal condition for the dispatcher would be for one thread to execute on one processor

alone, equivalent to setting the desired number of processors. In all other cases, multiple threads run on a

processor increasing the load on the satellite processors, which decreases the efficiency of the dispatcher.

The update time of the sequential dispatcher increases linearly with the number of jobs. After a certain
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Figure 5.2: Observed update time frequency for 5000 jobs on 16 processors

number of jobs N1, the update time is greater than the spacing time and the job set would no longer be

dispatchable.

We conducted experiments to measure the update time of the sequential and the shared memory dispatchers.

For the sequential dispatcher, the update time of all the jobs was measured by finding the time Tbef at the

completion of a job and the time Taft after completing the update of all the dispatch functions. While

in the case of the shared dispatcher, Tbef is the time before writing the start and execution time of the

job completed and Taft is the time after reading the safety interval of the next job. In both the cases,

the difference between Taft and Tbef gives the update time required to compute the safety interval of the

next job. The multi-processor dispatcher takes around the same update time for any number of jobs. The

update time includes the time required to read (si, ei, f1) and update 4 constraints between Ji and Ji+1

and write back (lbi+1 , rbi+1 , f2). The satellite processors update the remaining constraints in parallel with

the execution of job Ji+1. Figure (5.3) and (5.4) plot the update time in seconds as the number of jobs in

the schedule increase.

Figure (5.3) compares the update time of the sequential dispatcher and the shared dispatcher with two

processors. Figure (5.3) shows that the update time of the sequential dispatcher increases with the number

of jobs. The shared dispatcher with two processors is almost constant and takes at most 2.5× 10−5s to find

the safety interval of the next job.



49

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

up
da

te
 ti

m
e

number of jobs

 Update time on processors versus number of jobs

1
2

Figure 5.3: Plot of update time of single processor dispatcher and multi-processor dispatcher with 2 processors

versus number of jobs.

Using best fit, we calculated the equation of line passing through the single processor update times to be

y = a · x + b, where a = 1.52 × 10−6 and b = −2.214 × 10−4 were obtained. Using the above line and the

maximum update time of the two processor shared dispatcher, it was arithmetically calculated that after

163 jobs the shared memory dispatcher with two processors is superior to the sequential dispatcher.

Figure (5.4) plots the update time taken by the shared memory dispatcher for schedules of different size

with varying number of processors. It is observed that the update time of the shared dispatcher is almost

constant and in the range of 10−5 seconds, while the update time of the sequential dispatcher increases into

milliseconds, as the number of jobs increases. Figure (5.3) and (5.4) show that the shared memory dispatcher

has very less update time compared to the sequential dispatcher.

Figure (5.4) shows that the update time of the shared dispatcher increases with the number of processors,

which can be accounted to the increase in the time taken to obtain a lock by a processor on the shared data,

as processors are augmented. In case the number of jobs increases, the number of safety intervals to be

updated increases and the satellite processors would have an update time linearly increasing with the jobs

as the sequential dispatcher in Figure (5.3). The increase in the update time would make the assumption in

Section §3.3.2 void as the satellite processors would be updating safety intervals when the central processor

updates flag f1 after executing a job. Following which, the dispatcher would not be able to dispatch the

next job if the concerned satellite processor was delayed. On increasing the number of satellite processors,

the number of safety intervals to update per processor decreases and hence the update time. The number of
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Figure 5.4: Update time taken by dispatcher versus number of jobs as the number of processors are increased.

processors should be increased till the time to achieve memory coherence is less that the spacing time, after

which the assumption will not be valid.

The shared and sequential dispatcher were tested with job sets of different sizes. These experiments were

conducted thrice with different random seeds. Table 5.3 summarizes the results of the experiments performed.

Similar results were observed in the three cases, i.e., the schedules were dispatchable or not dispatchable. In

all the three cases, the sequential dispatcher broke at different jobs as it took longer to update the safety

intervals of all the jobs. While in the case of the shared dispatcher, the update times were small and the

jobs were dispatched in their safety intervals.

Processors Number of Jobs

250 500 750 1000 2000 3000 4000 5000

1
√ √ √ √ × × × ×

2
√ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √

4
√ √ √ √ √ √ √ √

Table 5.3: Results of dispatching job sets of different size using single and multiple processors.
√

is when

the schedule was successfully dispatched and × was not. [l, u] = [1ms, 5ms]; [p, q] = [1ms, 5ms]
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5.4.1 Scalability

In this section, the effect of increasing the number of processors on dispatchability of job sets is shown. The

size of the Partially Clairvoyant schedules generated was increased from 1000 up to 9750 in steps of 250. The

jobs in the schedules have execution time periods varying between one to five milliseconds and the spacing

time between two adjacent jobs to be between one-tenth to one-half a millisecond.

We varied the number of processors used by the dispatcher and found the largest job set successfully dis-

patched by the dispatcher. Table 5.4 summarizes the results of the experiments conducted and shows the

largest job set up to which all the schedules were dispatched with a certain number of processors. It is

observed that the dispatcher with fewer processors failed as the size of the job set increased. An increase in

the size of the job set causes an increase in the update time on the satellite processors which would delay

the satellite processors from reading the start and execution time of the next job as soon as it is stored in

the memory by the central processor and results in the breaking down of the schedule. Figure (5.5) plots

the largest job set dispatched by a given set of processors and shows the scalability of the shared memory

algorithm. With 10 processors, all the schedules created were dispatched and the exact number of jobs up

to which 10 processors would succeed was not found.

Processors Maximum size of job set dispatched

1 100

2 2500

3 3500

4 4250

5 5500

6 6500

7 8750

8 8500

9 9250

10 9750

Table 5.4: Scalability of the shared dispatcher. 9750 indicates that all the job sets were dispatched.

In Figure (5.5), it is observed that the slope of the curve decreases for large job sets even as the number of

processors are increased. The satellite processors need to access different locations of the array to update the

safety intervals resulting in frequent page faults. As the size of the job set increases, the satellite processors

need to access memory locations in the central memory for every constraint they relax. The number of read
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Figure 5.5: The number of jobs that can be successfully dispatched by a given number of processors, where the

job execution time was between 1 to 5 milliseconds and the spacing time was between 0.1 to 0.5 milliseconds.

The area under the curve shows the schedules which can be successfully dispatched.

and write operations to the main memory increase and slow down the updating process. After a certain

number of jobs, the time to relax the constraints takes longer and causes the concerned satellite processor

to be inapt in reading the start and execution time of the completed job. This shows that the memory to

processor latency would become a bottleneck for updating constraints and further increasing the processors

would not help as the latency and the spacing time are of the same order. Another reason for the delay in the

latency is the increasing number of read/write requests from all the processors. There is limited bandwidth

between the shared memory and the processors which would prevent all the processors from accessing and

updating the memory at the same time. This shows the requirement of high speed connections and high

memory bandwidth for the dispatchability of the schedules.

In the experiments, it was observed that a certain number of processors were able to dispatch job sets

larger than the job sets for which they failed. These observations are due to the unpredictable memory

flush time (time to achieve memory coherence) caused by the load on the machine. We also conducted

experiments using 32 processors and it was observed that the dispatcher fails for some schedules dispatched

by 7 processors. The update time for 32 processors as observed in Figure (5.4) is comparable to the spacing

time of the test cases and here, the memory coherence time is a significant overhead.
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5.4.2 Effect of execution time

An increase in the execution time of the jobs would give the satellite processors more time to complete

updating the safety intervals. This would cause the satellite processors to wait for the central processor to

update the flag f1 which upholds our assumption in Section §3.3.2. A decrease in the execution time would

make our assumption in Section §3.3.2 void as the satellite processors would be still updating safety intervals

when the central processor completes a job. Hence larger the job execution time, larger is the job set that

can be dispatched.

In the test cases created, the spacing time between two adjacent jobs was set between one-tenth to one-half of

a millisecond and execution time was varied to be [0.1ms, 0.5ms], [0.5ms, 1ms], [1ms, 5ms] and [5ms, 10ms].

The size of the job set was increased from 250 to 5000. Experiments were conducted by setting the number of

processors to be used by the dispatcher and finding the largest job set up to which schedules were successfully

dispatched. Each entry in Table 5.5 indicates the maximum number of jobs that were dispatched successfully

by the number of processors, when the execution time of jobs is in a certain range. The sequential dispatcher

was not able to dispatch any job set used in these experiments.

The observed results are listed in Table 5.5 and are in excellent co-ordination with the expected behavior. A

table entry of 5000 implies that the dispatcher dispatched all the schedules created and can dispatch larger

job sets.

Execution time Processors

(ms) 2 3 4 5 6 7 8 9 12 16 20 24

5-10 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000

1-5 2500 3500 4250 5000 5000 5000 5000 5000 5000 5000 5000 5000

0.5-1 750 1750 2250 2750 3250 3750 4000 4750 5000 5000 5000 5000

0.1-0.5 750 750 1000 1000 1500 1500 1750 1750 2750 3500 3500 4750

Table 5.5: Effect of varying the execution time on the dispatchability of a schedule, with a fixed spacing

time [0.1ms, 0.5ms]

Figure (5.6) plots the largest job sets dispatched with a given number of processors for four different intervals

of job execution time. Clearly, schedules with higher job execution time intervals got dispatched with lesser

number of processors. From the Figure (5.6), it is concluded that greater the execution time, greater is the

number of jobs that can be dispatched by the shared dispatcher.
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Figure 5.6: The plot shows the effect of varying the execution time of jobs on the dispatchability of a job

set by a certain number of processors. The spacing time was assumed to be between 0.1 to 0.5 milliseconds.

5.4.3 Effect of Spacing time

On decreasing the spacing time, the allowed time between the finish time of a job and the start time of the

next job is decreased. The satellite processors need to compute the safety interval of the next job within

this time and hence the assumption in Section §3.3.2 becomes a necessity. The satellite processors need to

complete updating all the safety intervals by the time the central processor completes executing the next

job.

We generated Partially Clairvoyant schedules with spacing times of [0.1ms,0.5ms], [0.5ms,1ms] and [1ms,5ms].

For each spacing time, the schedules were generated with the number of jobs increasing from 250 to 5000

and execution times of [0.1ms,0.5ms], [0.5ms,1ms], [1ms,5ms] and [5ms,10ms]. We fix the number of pro-

cessors to be used by the dispatcher and empirically determine the largest job set up to which the dispatcher

successfully dispatched.

Table 5.6 summarizes the results of the experiments conducted. Each entry in the table is the largest job

set dispatched for the given number of processors with the concerned spacing and execution time. All job

sets of smaller size with the same parameters of execution time, spacing time and number of processors were

dispatched.

Figure (5.7) plots the largest job set dispatched for different values of spacing time versus the number of

processors . Figure (5.7) shows that the size of the schedules dispatched increases with increasing the spacing
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time. The effect of execution time of jobs with spacing time is also shown in Figure (5.7). The non-crossed

lines show job sets with higher execution time of [0.5ms,1ms] while the crossed lines have execution time of

[0.1ms,0.5ms]. The plot shows that job sets with larger execution times have greater dispatchability. Table

5.6 and Figure (5.7) shows that increasing the spacing time will allow job sets of larger size to be dispatched

using the same number of processors and also that increasing the execution times of the jobs increases the

number of jobs dispatched for a given value of the spacing time.
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Figure 5.7: Effect of varying the spacing time on the dispatchability of job sets with different execution

times.

5.5 Related Work

Some of the references stated in Section §4.6 are applicable to this architecture also, when a dispatcher

is implemented based on the peer to peer model. An investigation was performed in [TZ02, TZ01] to

determine how the performance and speedup of applications would be affected by using non-blocking rather

than blocking synchronization in parallel systems. These papers also provides a set of efficient and simple

translations that show how typical blocking operations found in parallel applications, such as simple locks,

queues and lock trees can be translated into non-blocking equivalents that use hardware primitives common

in modern multiprocessor systems. A non-blocking protocol was proposed in [TZ99], that allows real-time

tasks to share data in a multiprocessor system. The protocol gives the means to the concurrent real-time

tasks to read and write shared data and allows multiple write and multiple read operations to be executed

concurrently.
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Processors Spacing time Execution time

5-10 ms 1-5 ms 0.5-1 ms 0.1-0.5 ms

2 0.1-0.5 5000 2500 750 750

0.5-1 5000 3000 1000 750

1-5 5000 2000 1500 1500

3 0.1-0.5 5000 3500 1750 750

0.5-1 5000 4000 1500 1250

1-5 5000 4000 2750 1750

4 0.1-0.5 5000 4250 2250 1000

0.5-1 5000 4000 2750 1500

1-5 5000 5000 3000 2000

5 0.1-0.5 5000 5000 2750 1000

0.5-1 5000 5000 3500 2000

1-5 5000 4000 4000 2250

6 0.1-0.5 5000 5000 3250 1500

0.5-1 5000 5000 4250 2000

1-5 5000 5000 5000 2750

7 0.1-0.5 5000 5000 3750 1500

0.5-1 5000 5000 4750 2750

1-5 5000 5000 5000 3250

8 0.1-0.5 5000 5000 4000 1750

0.5-1 5000 5000 5000 3000

1-5 5000 5000 5000 3250

10 0.1-0.5 5000 5000 4750 1750

0.5-1 5000 5000 5000 4000

1-5 5000 5000 5000 4750

12 0.1-0.5 5000 5000 5000 2750

0.5-1 5000 5000 5000 4500

1-5 5000 5000 5000 4750

16 0.1-0.5 5000 5000 5000 3500

0.5-1 5000 5000 5000 5000

1-5 5000 5000 5000 5000

Table 5.6: Effect of varying the spacing time on the dispatchability of jobs for different execution times and

different number of processors.
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5.6 Conclusion

The shared memory dispatcher is shown to be superior to sequential dispatching, even though the communi-

cation time increases with number of processors. The shared dispatcher is shown to be scalable, i.e., larger

schedules are dispatched with more processors. The effect of execution times and spacing times of jobs on

the shared dispatcher is shown.

We observed “Loss of Dispatchability” in some experiments when the spacing time of jobs is less or when

our assumption is violated. In case of larger schedules, the dispatcher failed due to the number of page faults

that occur while updating constraints. For the schedules created, we showed that a schedule not dispatched

by the distributed dispatcher cannot be dispatched by the sequential dispatcher.

The shared dispatcher will dispatch larger schedules when provided with a large memory that has low latency

and high bandwidth.
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Conclusion

In this thesis, we proposed and empirically evaluated Partially Clairvoyant dispatchers on shared and dis-

tributed memory machines. The dispatchers were tested with schedules of different size and jobs of different

execution times. On the whole, the approach is targeted to power up the controller by providing it with

more processing power.

For the shared memory dispatcher, we demonstrate the scalability of the dispatcher showing that larger

job sets can be dispatched by increasing the number of processors provided the machine has a high memory

bandwidth. The shared dispatcher performs better when the computation time is greater than or comparable

to the memory flush time(time to achieve memory coherence) of the processors. If the execution time of the

jobs is small, the sequential dispatcher is not effected, while, the shared memory dispatcher would suffer as

the available computing time in parallel decreases with respect to the communication time. The sequential

dispatcher is a better choice for small job sets in such situations. In situations where the allowed update

time between jobs is less, the shared memory dispatcher is better than the sequential dispatcher. In case the

shared memory dispatcher cannot dispatch the schedule while updating constraints, the sequential algorithm

would definitely fail.

In the distributed case, we proposed and tested dispatching a Partially Clairvoyant schedule on multiple

processors. The results show the superiority of distributed dispatching over the sequential dispatching. It is

shown that for every schedule, there would be a processor set which would dispatch the schedule successfully.

It was observed that a schedule dispatched by a smaller number of processors was not dispatchable with

more processors. This is because each processor set has a different worst case scenario, depending on the

assignment of jobs and the constraints. The experiments were conducted in a shared network where the

58
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system load might have lead to noise in the observations made. However, this could not be verified due to

lack of a dedicated machine.

It was observed in the distributed experiments that choosing a processor per node is better than choosing

multiple processors per node. Choosing one processor per node increases the length of the connection paths

between processors through switches but decreases the load on the ELAN layer. The ELAN layer that uses

a shared memory to communicate data between processors in a node, becomes a bottleneck when all the

processors in a node send data to each other. Thus, investigating the underlying system architecture and

hardware while implementing the dispatcher helps in obtaining better performance.

In the future, the performance of the dispatcher on a dedicated machines is to be tested. The experiments

revealed that page swapping while dispatching large job sets would lead to Loss of Dispatchability in clusters.

Increased swapping decreases the throughput of the nodes which in turn would lead to the failure of the

dispatcher. The above motivates three problems, namely, the problem of pruning the dispatch functions

to remove redundant constraints between jobs, the problem of distributing jobs among processors and the

problem of determining the number of processors such that the job set would be successfully dispatched.

Other existing distributing paradigms of load balancing and work balancing can be applied and empirically

tested.

Power aware processors change their clock speeds causing the execution time intervals to change. The effect

of such changes on the schedulability and dispatchability of Partially Clairvoyant systems is to be studied.

A hybrid model constructed using start time intervals in [MLWP02] and variable execution times would be

better at modeling the scenarios observed in existing real-time systems.
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