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ABSTRACT 

Nondestructive Evaluation of Fiber Reinforced Polymer Bridge Decks  
Using Ground Penetrating Radar and Infrared Thermography 

 
Cheng Lok Hing 

 

Recent studies have focused on the development of Fiber Reinforcement Polymer 
(FRP) as an alternative construction material for highway bridge decks. 
 The goal of this study was to explore the viability of nondestructive testing of 
FRP bridge decks using infrared thermography (IRT) and ground penetrating radar 
(GPR).  
 All tests were conducted on a 6’ x 3’ (1828.8mm x 914.4mm) low profile (4” or 
101.6mm deep) FRP bridge deck and a 3’ x 2’ (914.4mm x 609.6mm) low profile FRP 
bridge deck specimen with embedded delaminations. Replaceable wearing surface 
modules with air-voids of varying sizes were used to simulate air-filled debonds between 
the wearing surface and the FRP bridge deck. To simulate the water-filled debonds, 
custom made water-pouches were placed in the air-voids. 

Solar radiation, commercially available heater, and heating blankets were utilized 
as active heat sources in the IRT tests. The effectiveness of each heat source in 
subsurface detection of defects was examined.  

A simple finite element model was created to study the heat transfer phenomena 
between the FRP bridge deck with wearing surface and the surroundings. The FE model 
enabled a theoretical study of the effect of subsurface defect thickness on the surface 
temperature profile. Results from the model were also compared to the experimental 
results obtained through the IRT tests. 
 A 1.5GHz ground-coupled antenna and a 2.0GHz air-coupled antenna were 
utilized in the GPR tests for this study. They were used in an attempt to identify both air-
filled and water-filled debonds and delaminations. The effectiveness of each antenna in 
detecting subsurface defects was carefully examined.  

The results of this study have shown that a combination of GPR and IRT 
techniques can lead to an effective nondestructive testing system for detecting subsurface 
defects in FRP Bridge Decks. 
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Chapter 1 

INTRODUCTION 

 
1.1 BACKGROUND 

 The advancement of Fiber Reinforced Polymer (FRP) technology has enabled the 

use of FRP bridge decks as possible replacement for many obsolete in-service concrete 

bridge decks. These composite decks are manufactured in factory through a pultrusion 

process. The FRP composites can be pultruded into various shapes and sizes which make 

it very attractive since it can cater to many different applications, such as bridge decks, 

support beams, and rebars, just to name a few.  

 While all of these composite components are manufactured under a control 

environment with high quality controls, subsurface defects such as cracks, voids, 

debonds, and delaminations could still be developed during the manufacturing process. 

Besides, subsurface defects could also develop during the installation phase, or during the 

service life of the structure due to various factors, such as weather, vehicle loads, wear 

and tear. The subsurface defects could adversely affect the integrity of the structure 

locally and globally. Coupled with the fact that FRP is still a relatively new technology 

with the in-service aging phenomena yet to be fully understood, it is imperative that an 

effective yet economical inspection procedure be employed to inspect and evaluate all in-

service FRP structural components. At the same time, such inspection procedure could 

elevate the overall quality of the FRP products during the manufacturing (pultrusion) 

stage.  
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This study investigates the use of Infrared Thermography and Ground Penetrating 

Radar as the two nondestructive evaluation (NDE) techniques for field inspection. Both 

techniques enable rapid data collection in the field environment and have a great potential 

for detecting subsurface defects.  

The focus of this study is on the use of both Infrared Thermography (IRT) and 

Ground Penetrating Radar (GPR) for the detection of air- and water-filled subsurface 

debonds and delaminations in Fiber Reinforced Polymer (FRP) composite bridge decks. 

A debond refers to the discontinuity between the wearing surface and the underlying FRP 

deck while a delamination is a discontinuity within the flanges of the FRP deck. 

 The results of the previous research conducted at Constructed Facilities Center of 

West Virginia University have demonstrated the usefulness as well as limitations of the 

Infrared Thermography technique for subsurface defect detection in FRP bridge decks 

(Halabe et al. 2004a, 2004b, 2004c, 2004d, 2003a, 2002). While Infrared Thermography 

was found to be an excellent technique for detecting subsurface debonds between the 

wearing surface and the underlying FRP deck, its capability is very limited in terms of 

detecting delaminations within the flange of the FRP deck, specially for deck flanges 

overlaid with wearing surface. Also, Infrared Thermography was found to be sensitive to 

air-filled defects but the sensitivity reduced significantly for water-filled defects. On the 

other hand, GPR is more sensitive to water-filled defects. Therefore, it is important to 

combine the near-surface capability of Infrared Thermography with the deeper 

penetration capability of Ground Penetrating Radar (GPR) in order to arrive at a more 

robust hybrid system for detection of subsurface defects in FRP composites. However, 

research still needs to be conducted on GPR data analysis for FRP bridge decks and on 
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developing a procedure to effectively combine the output of GPR and Infrared 

Thermography based systems.  

While Infrared Thermography is more sensitive to near-surface defects (Halabe et 

al. 2004a, 2004b, 2004c), GPR uses electromagnetic waves to assess the condition at 

greater depths (Halabe et al. 1995). Also, unlike ultrasonics, GPR allows rapid data 

collection and does not require the use of a couplant between the antenna and the deck 

surface. GPR has been used in an air-launched mode by several researchers for concrete 

bridge deck and pavement applications and has great promise for field use (Maser et al., 

2002a, 2002b). Some researchers have highly recommended the combination of Infrared 

Thermography and GPR as a more robust technique for concrete deck assessment (Maser 

et al. 2002a).  Preliminary investigation by Jackson et al. (2000) also indicates that such a 

combination could be developed as a potentially effective tool for detection of debonds in 

FRP wrapped members. 

 

1.2 RESEARCH OBJECTIVES AND SCOPE 

The objective of this research is to investigate the use of GPR as well as Infrared 

Thermography for subsurface defect detection in FPR bridge deck specimens. Moreover, 

a finite element heat transfer model will be used to compare theoretical predictions with 

the actual results obtained from the IRT tests. The specific research objectives of this 

study are as follows: 

• Investigate the use of both Infrared Thermography and GPR for nondestructive 

evaluation of FRP bridge decks using laboratory deck specimens. This 

investigation includes the inspection using GPR and IRT on the following: 
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- deck specimens with debonds between the wearing surface and the FRP deck  

- deck specimens with delaminations within the top flange of the FRP deck, with 

and without wearing surface on the top 

- deck specimens with delaminations within the bottom flange of the FRP deck 

(GPR only) 

• Compare the advantages and disadvantages of Ground Penetrating Radar with 

Infrared Thermography based on the experimental results 

• Investigate the usefulness and effectiveness of the 1.5 GHz ground-coupled 

antenna and the 2.0 GHz horn antenna made by Geophysical Survey Systems, Inc. 

(GSSI). The antennas will be used to test both water and air-filled subsurface 

defects. The ability to locate the defects, the precision of the detection, and the 

information extracted from both antennas pertaining to the defects will be 

discussed. 

• Develop a Finite Element (FEM) Heat Transfer Model for FRP bridge deck. The 

goal of the FE modeling is to study the effect of various defects thickness. The 

FEM results will be compared to the infrared images obtained in this study. The 

FEM model requires input parameters such as density, emissivity and thermal 

conductivity of the material. These parameters were measured in the laboratory 

for wearing surface and flange of low-profile FRP deck.  

• Propose a Test Procedure for FRP Bridge Decks using GPR and IRT techniques.  

While GPR and IRT are proven nondestructive testing techniques, it is important 

to standardize the testing procedure as well as the test settings. Such 

standardization would help minimize many human errors while ensuring an 
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effective inspection. A test procedure will be proposed at the end of this study for 

GPR and Infrared testing. This test procedure could be used in the future to 

further develop a Standard Field Testing Procedure. 

 

1.3 ORGANIZATION 

 This dissertation consists of 8 chapters. Chapter 1 presents an introduction of 

nondestructive testing in general, as well as describes the objectives of this research. 

Chapter 2 includes the literature review of nondestructive testing using infrared 

thermography and ground penetrating radar. Chapter 3 discusses the underlying theories 

behind infrared thermography and ground penetrating radar. Chapter 4 describes the 

infrared and the ground penetrating radar equipment used in this study. The test 

specimens and the procedure for creating defects are also discussed in details. Chapter 5 

discusses the infrared thermography results. It covers the results of using heater, heating 

blanket, and solar radiation as active heat sources. Chapter 6 presents the results from 

Finite Element heat transfer modeling. Description of the finite element model, the 

thermal properties obtained through experiments, and the results predicted using the 

model are discussed in this chapter. Chapter 7 is devoted to the experimental study using 

ground penetrating radar. The feasibility of using both ground- and air-coupled antennas 

as subsurface defect detection tool for FRP bridge deck is carefully discussed. Chapter 8 

summarizes the research findings of this study. Future recommendations are also 

included in this chapter. This is followed by the Reference section and an appendix 

describing the post-processing steps used for GPR data analysis. 
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Chapter 2 

LITERATURE REVIEW 

 

The history of ground penetrating radar (GPR) and infrared thermography (IRT) 

has been briefly reviewed in this chapter. The advancement of technology has brought 

incredible improvements for these nondestructive testing techniques. The applications as 

a result of such advancement has also been discussed in this chapter.  

 

2.1 HISTORY OF GPR AND IRT 

2.1.1 GPR 

The theory behind electromagnetic waves and its reflections were first developed 

by James Clerk Maxwell in 1864. It was later confirmed by Heinrich Hertz in 1886. In 

1924, Sir Edward Victor Appleton utilized the basic electromagnetic reflection principles 

to estimate the height of the ionosphere, a layer in the upper atmosphere that reflects long 

radio waves. In 1935, British physicist Sir Robert Watson-Watt created the first practical 

radar system. Entering World War II, the British had constructed a network of radar 

systems along England’s south and east coasts (Smemoe, 2000). 

It is believed the first GPR survey was performed by German geophysicist W. 

Stern in 1929 at Austria (Olhoeft, web site). GPR did not gain prominence until the late 

1950’s when the radar systems in US Air Force planes penetrated through the ice in 

Greenland. It caused the pilot to misinterpret the altitude of the planes and crash into the 

ice. John C. Cook proposed to utilize radar for subsurface reflections detection in 1960 
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(Cook, 1960). Cook and others continued to develop radar systems to detect reflections 

beneath the ground surface (Moffatt and Puskar, 1976). 

The GPR system created by Moffatt and Puskar in 1976 used an improved 

antenna that gave a better target-to-clutter ratio and was able to detect subsurface 

reflections with great accuracy. Moffatt and Puskar (1976) were able to locate an 

underground tunnel, a fault, and mines. They concluded that GPR is a useful tool for 

detection of subsurface anomalies and exploration of subsurface soils variations. Moffatt 

and Puskar (1976) also presented some basic theory on GPR and equations for computing 

subsurface wave velocities.  

 

2.1.2 IRT 

Many ancient civilizations believed to have used their hands as a thermal imaging 

system, with the fingers acting as sensors and the brain interpreting the changes in 

temperature. The practice had enabled them to effectively evaluate, or even isolate, the 

changes of temperature at a specific area.  

Hippocrates wrote in 400 B.C., “In whatever part of the body excess of heat or 

cold is felt, the disease is there to be discovered." The ancient Greeks immersed the body 

in wet mud. The area that dried more quickly indicated a warmer region, and was 

considered the diseased tissue (Hodge Jr., 1987). 

The practice of sensing body temperature using hands continued well into the 

sixteenth and seventeenth centuries. Galileo made a thermoscope from a glass tube, 

which is believed to be the first thermometer. This device, however, did not have a scale 

since a conforming set of temperature scale was not established at the time. Fahrenheit 
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then fixed a lower point by using salt with ice water and an upper point using boiling 

water at 212 degrees. Obviously, this set of scale is formally denoted as the Fahrenheit 

scale to honor Fahrenheit. 

In 1742, Celsius created a decimal scale which focuses the zero degree as the 

boiling point of water and 100 as the freezing point. That scale was later reversed by a 

Swedish named Linnaeus. In 1868, Prof. Carl Wunderlich of Leipzig created the first set 

of temperature charts on individual patients with a wide range of diseases. He also 

proposed the creation of modern day clinical thermometer (Ring, 1997). 

In 1877, Lehmann established that Cholesteric esters have the property of 

changing color with temperature. This discovery established the use of liquid crystal as 

another method of evaluating skin temperature. It is worth noting that the methods 

described before are both contact methods. The use of infrared thermal imaging did not 

gain popularity until the last 30 years.  

The astronomer, Sir William Herschel, discovered the existence of infrared 

radiation when he tried to measure the heat of each of the rainbow spectrum cast on a 

table in a darkened room. He found the highest temperature to fall beyond the red end, 

which he reported to the Royal Society as Dark heat in 1800. His son, Sir John Herschel, 

managed to record the heat rays on the infra red side of red by creating an evaporograph 

image using carbon suspension in alcohol. That was believed to be the very first thermo 

image known to humans. By using the same principle, sophisticated thermal imaging 

equipment were later developed to accommodate military, industrial, and medical 

applications.  
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2.2       INFRARED THERMOGRAPHY 

In 2001, Miceli et al. used infrared imaging as the tool for monitoring the health 

of FRP structures with debonds and delaminations. They have found that surface 

anomalies due to staining and non-uniform wear causes complication in the data 

interpretation. They also concluded that the presence of moisture in the defects caused an 

inaccurate estimation of the defects. 

 In recent years, seismic retrofitting of bridge columns and rehabilitation of 

concrete structures using fiber reinforced polymer (FRP) wraps are becoming more and 

more popular. Traditionally, there are three main methods of wrapping. These are hand 

lay-up, pre-cured shells, and machine wraps. Though these additions to the existing 

infrastructures provide great improvements, each of these wrapping methods may end up 

creating voids or defects between the FRP sheet and the underlying structural component. 

Infrared thermography has proven to be an excellent method to detect such subsurface 

voids because of its remote inspection capability, its short inspection time, and its 

convenient means of data archival (Johnson et al., 1999). 

 Mtenga et al. (2001) found infrared thermography to be a very efficient method 

for quality assurance in FRP retrofitted structures. In their study, a double-tee (DT) 

concrete beam retrofitted with a CFRP wrap was nondestructively tested. They’ve used 

heat gun as their primary means of heat source. They have found IRT to be extremely 

useful in the void detection.  

 Brown and Hamilton III (2003) have conducted infrared thermography NDE tests 

on small-scale specimens created in the laboratory setting and on four full-scale 

AASHTO Type II concrete girders that were loaded to failure. The damaged girders were 
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then strengthened by bonding FRP sheet on the bottom face of each girder. The 

laboratory tests concluded that IRT thermography is useful in evaluating the bond 

between FRP strengthening systems and concrete. They have also captured digital IRT 

images containing pixel-by-pixel temperature data. These digital data enabled an 

effective quantitative analysis of debonded areas. They also found that the effectiveness 

of IRT thermography in detecting debonds between the FRP and concrete decreases as 

the thickness of the FRP increases (Brown and Hamilton III, 2003).   

 

2.3     GROUND PENETRATING RADAR 

Barnes and Trottier (World Wide Web, 1999) surveyed seventy-two bridge decks 

using ground penetrating radar from 1996 to 1999. They found that ground penetrating 

radar can detect deterioration with a higher accuracy and less variability than that the 

traditional method such as chain drag. This project further enhanced the accountability of 

ground penetrating radar and also helped reduce the cost of future maintenance with a 

more accurate procedure. 

Ground penetrating radar has become an established technology for subsurface 

exploration purposes that involved geological application as well as many Civil 

Engineering applications. Applications such as groundwater investigations and road 

inspection using GPR with 2-D data acquisition are considered normal practice in the 

United States of America as well as many European countries. In recent years, however, 

many researchers have been focusing on developing 3-D data acquisition methods for 

alternative applications such as utility detection, landmine detection, just to name a few 

(Groenenboom and Yarovoy, 2000). Since subsurface targets such as utility lines, 
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landmines, etc., may not necessarily be detected along a single line, broader plots of 

subsurface profile become necessary. This essentially leads to a need for three-

dimensional data acquisition using ground penetrating radar (Groenenboom et. al., 2001). 

The 3D GPR test has also greatly improved the traditional 2D GPR test as more 

information can be obtained in a single pass. 

Aside from utilizing 3D GPR data acquisition for various applications, such as 

marine geology, many researchers are concentrating on developing imaging algorithms to 

physically explain and describe the datasets obtained through 3D GPR data acquisition. 

There are three important parameters that must be considered in the imaging algorithm in 

order to obtain a good image of the subsurface. The three parameters are the wave speed, 

the polarization, and the radiation characteristics of the source and the receiver antennas 

(Van der Kruk, 2001). Radzevicius and Daniels (2000) showed that when the polarization 

of the electric field is parallel to a pipe, a maximum reflection from that pipe would be 

obtained. 

Although there exist several 3D imaging algorithms for GPR data based on scalar 

(seismic) imaging algorithms, many researchers turned their attention to incorporate the 

radiation patterns of source and receiver antennas and the characteristic of 

electromagnetic waves in the imaging algorithms for GPR data (Wang and Oristaglio, 

2000). For instance, Van der Kruk et al. (2001) have compared the resolution functions of 

3D multi-component imaging algorithms with 3D single-component imaging algorithms 

for ground penetrating radar data. They have found that the multi-component imaging 

algorithms were able to provide more information than that of single-component imaging 

algorithms.  
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Figure 2.1 Multi-Component Imaging Results (Van der Kruk, 2001). 
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Chapter 3 

BASIC THEORY 

 

3.1 BASICS OF GROUND PENETRATING RADAR (GPR) 

 Ground Penetrating Radar (GPR) operates by transmitting electromagnetic energy 

into the probed material and receiving the reflected pulses. The transmitted EM pulses are 

reflected as they encounter discontinuities. The discontinuity could be a boundary or 

interface between materials with different dielectrics or it could be a subsurface object 

such as debond or delamination. The antenna receives the pulses with varying amplitudes 

and arrival times. The amplitudes of the received echoes and the corresponding arrival 

times can then be used to determine the nature and location of the discontinuity. It is 

important to realize that the recorded arrival time is two-way travel time. The 

measurements have to be conducted carefully in order to get meaningful post-processing 

results. The reflected pulses are displayed on an oscilloscope as a time-series of pulses, 

known as waveform. These waveforms have been used to determine the depth of the 

asphalt layer, the thickness of the pavement, debonding of asphalt from concrete, and 

delamination of concrete (Halabe et al. 2003c, Carter et al. 1995). With the advancement 

in GPR technology, especially the increase in frequency of commercially available GPR 

antennas and better data processing software, GPR can now be used for subsurface 

condition assessment in materials consisting of thin layers such as Fiber Reinforced 

Polymer (FRP). Careful analysis of GPR waveforms can potentially help detect 

subsurface debonds between the wearing surface and the underlying FRP bridge deck, 

and delaminations within the flanges of the FRP deck. A major advantage of GPR over 
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techniques such as Infrared Thermography is its ability to attain deeper penetration 

including evaluation of the bottom flange from the top surface of the deck itself, with no 

access required to the bottom side. 

 Velocity and attenuation of radar waves in the transmitted media directly affect 

the output waveform. Both the velocity and the attenuation of radar waves depend on the 

complex dielectric permittivity, which is related to the electromagnetic properties of solid 

particles, porosity, moisture content, and salt content of the medium (Halabe et al. 1993). 

Basically, most materials can be classified as either (a) conductors (e.g., metallic objects 

such as rebars in concrete deck), or (b) insulators, also known as dielectrics, such as 

asphalt, FRP, and concrete. Some media, such as water, are in between conductors and 

dielectrics depending on their purity (Halabe et al. 1993). 

 

3.1.1 Electromagnetic Properties and Radar Wave Propagation 

 An FRP deck consists of multiple layers of different material with different 

dielectric properties. These layers include the wearing surface, FRP deck flanges and 

webs, debonds between the wearing surface and the FRP deck and possible delaminations 

within the deck flanges and/or web. The electromagnetic property of each of these layers 

is characterized by a property known as the dielectric permittivity. The relative dielectric 

permittivity (ε) of a material is defined as the ratio of the actual dielectric permittivity of 

the medium (εactual) to the permittivity of free space or vacuum (εo). 

     
o

actual

ε
ε

ε =     (3.1) 
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The dielectric permittivity is a complex quantity and can be expressed as (Halabe 

et al. 1993): 

     ε = ε’ + iε”   (3.2) 

where, 

ε  =  relative complex dielectric permittivity of the medium 

ε’ = real part of relative dielectric permittivity 

ε’’ = imaginary part of relative dielectric permittivity   = 
oωε

σ  

where, 

σ  =  dielectric conductivity of the medium (mho/m) 

ω  =  angular frequency (radian/sec) = 2πf 

εo =  dielectric permittivity of free space or vacuum = 8.854 x 10-12 farad/m 

f  =  frequency of the radar wave (Hz) 

 

The real part of the relative dielectric permittivity (ε’) in Equation 3.2 is 

commonly known as the dielectric constant. The imaginary part (ε”) is known as the loss 

factor. For one dimensional electromagnetic wave propagation along x-direction, the 

amplitude of the wave is given by Halabe (1990): 

     A(x,t) = Aoei(kx – ωt)  (3.3)  
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where, 

Ao  = initial wave amplitude 

A(x,t) = wave amplitude at a distance ‘x’ and time ‘t’ 

k = complex wave number, which is related to ε as per the following 

  relationship (Halabe 1990): 

  k = kR + ikI = εεµω oo    (3.4) 

where, 

kR   = real part of complex wave number (m-1) 

kI = imaginary part of complex wave number, also known as the 

material attenuation coefficient (m-1) 

µo = magnetic permeability of free space = 4π x 10-7 henry/m 

 

The real part of the wavenumber (kR) is related to the wavelength (λ) of the 

propagating radar wave as per the following equation (Halabe 1990): 

   kR = 
λ
π2      (3.5) 

For a medium with low conductivity, such as FRP decks, the attenuation 

coefficient, kI, is given by (Halabe et al. 1993, Halabe 1990): 

     kI = 
'2

377
ε
σ     (3.6) 
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The relationship between phase velocity (V), wavelength (λ), and frequency (f) for 

electromagnetic waves is given as: 

     V = λ f    (3.7) 

where,     λ  = 
Rk
π2    (3.8) 

and,     ω = 2πf   (3.9) 

and hence, 

     V = 
Rk

ω    (3.10) 

For slightly conducting medium, the electromagnetic wave velocity is given by 

(Halabe et al. 1993, Halabe 1990): 

     V = 
'ε

c    (3.11) 

where c is the electromagnetic wave velocity in vacuum or air, which is the speed of light 

(3 x 108 m/sec). 

The dielectric constant for the top layer can be computed from the reflection 

coefficient R1,2. It is defined as the ratio of the reflected wave amplitude to the incident 

wave amplitude at an interface, and is given by (Halabe et al. 1993): 

     R1,2 = 
''

''

21

21

εε

εε

+

−
  (3.12) 

where the subscripts 1 and 2 denote the first and second media at the interface. 
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The transmission coefficient, T1,2 is defined as the ratio of the transmitted wave 

amplitude to the incident wave amplitude, and is given by (Halabe et al. 1993): 

    T1,2 = 1+R1,2 = 
''

'2

21

1

εε

ε

+
  (3.13) 

Reflection from a metal plate gives the amplitude of the incident radar wave 

(transmit pulse) because a metal plate is a perfect conductor, hence a perfect reflector. 

For a FRP bridge deck, the magnitude of the reflection coefficient (R) for the top surface 

(air-FRP interface) can be written as (Halabe et al. 1995): 

    R =  - R1,2 = 
1

1
'

'

+

−

a

a

ε

ε
=

pA
A   (3.14) 

where, 

A =  amplitude of reflection from the top surface (i.e., air-FRP bridge deck 

interface) 

Ap =  amplitude of reflection from the metal plate (negative of the incident 

amplitude) placed at the top of the FRP (in order to maintain a constant 

distance from the radar antenna) 

ε'a =  dielectric constant of top surface of the FRP bridge deck 

Hence, 

     '
aε  = 

2

1
1

⎥⎦
⎤

⎢⎣
⎡

−
+

R
R   (3.15) 
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A 3/8” (9.5mm) thick layer of wearing surface is usually placed on the top of the 

FRP deck modules in field construction to provide a riding surface and prevent slip of 

vehicles. For such decks, Equation (3.15) gives the dielectric constant of the wearing 

surface. If the wearing surface has not yet been placed, the GPR measurements of A and 

Ap would lead to dielectric constant of the FRP deck surface. It is important to note that 

the measurements of A and Ap are only possible with the use of an air-launched antenna 

and not with a ground-coupled antenna. 

3.1.2 Detection of Voids 

 The detection of subsurface defects (voids, cracks, delaminations, etc.) is 

primarily a function of the changes in dielectric permittivity. Subsurface voids, debonds, 

or delaminations in FRP bridge decks may be filled with either air or water, which creates 

a discontinuity in the dielectric permittivity of the medium. Thus, if the change in 

dielectric permittivity is significant, then the gap (voids, debonds, or delaminations) 

appears to the radar as two reflectors close to each other (Halabe et al. 1995).  If the 

entire wearing surface and/or the underlying deck have high moisture content, the 

attenuation of the radar wave also increases. This adversely affects the waveform 

amplitudes and makes it more difficult to analyze. Therefore, it is essential to conduct 

radar survey only during relatively dry weather when the overall FRP deck may have low 

moisture content. However, moisture inside the voids, debonds, or delaminations, are 

beneficial for radar detection since water-filled defects produce high amplitude 

reflections. Therefore, the optimal condition for conducting field GPR measurements is 

few days after it has rained, that is, after the overall deck had time to dry up but still has 

some moisture entrapped in the subsurface voids, debonds, or delaminations. 
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3.2 BASICS OF INFRARED THERMOGRAPHY (IRT) 

Heat transfer is defined as energy transfer due to temperature differences. Heat 

flows from the object at higher temperature to that at lower temperature. Because of the 

heat transfer, objects’ temperature changes according to the heat flow. Hotter objects will 

become cooler while colder objects will become warmer. This heat transfer process will 

continue until a state of thermal equilibrium is achieved, meaning both objects attain the 

same temperature. 

 Temperature is a measurement of a material’s thermal state but it is not a 

measurement of internal energy. Temperature can be measured in either relative or 

absolute terms. Relative temperatures are expressed in degrees “Celsius” (°C) or 

“Fahrenheit” (°F) for Foot-Pound-Second system (FPS) while absolute temperature is 

expressed in “Kelvin” (K) for the International System of Units (SI). The temperature 

units corresponding to the FPS system and SI system are related. The conversions 

between the two systems are as follows: 

    32
5
9

+= cf TT    (3.16) 

16.273+= ck TT    (3.17) 

where, 

 Tc  = Temperature in degrees Celsius 

 Tf  = Temperature in degrees Fahrenheit 

 Tk = Temperature in Kelvin 

 

 There are three modes of heat transfer between two objects, namely conduction, 

convection, and radiation. For simplicity purposes, the discussions of the three modes of 

 20



heat transfer in this chapter deal with steady-state heat transfer. These modes of heat 

transfer occur on a molecular or subatomic scale. 

 

3.2.1 Conduction 

Conduction is the transfer of heat between two media through direct contact. By 

definition, conduction occurs when molecules travel a very short distance (~0.65µm) 

before colliding with another molecule to initiate the energy exchange. The energy will 

be moved from higher temperature sites to lower temperature sites. Thermal conductivity 

is defined as the ratio of the heat flux to the temperature gradient and is measured in heat 

flow per unit area for a unit temperature difference across a unit thickness (Neville 1973). 

The equation relating the net heat flow through a material with its thermal conductivity is 

as follows: 

qnet )( lh TT
d
k

−=    (3.18) 

where, 

 qnet = net heat flow through a unit area of the deck per unit time (W/m2) 

k  = thermal conductivity of the medium (J/m/s/°C or W/m/°C) 

Th  = temperature of the hotter side (°C) 

Tl = temperature of the colder side (°C) 

d = thickness of the layer or the medium (m) 

 

3.2.2 Convection 

Convection is heat transfer by mass motion of a fluid such as air or water when 

the heated fluid is caused to move away from the source of heat, carrying thermal energy 
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with it. Convection may arise from temperature differences either within the fluid or 

between the fluid and its boundary, other sources of density variations (such as variable 

salinity), or from the application of an external motive force. Convection is usually the 

dominant form of heat transfer in liquids and gases. There are two primary convection 

modes, namely the forced convection and the free convection. Forced convection 

happens when motion of the fluid is imposed externally (such as by a pump or fan). Free 

convection is convection in which motion of the fluid arises solely due to the temperature 

differences existing within the fluid. Naturally, the temperature at the object’s surface, 

the ambient temperature, and the speed of the motion fluid (e.g. wind) are the factors that 

control the convective heat flow. The convective heat transfer between a deck surface and 

the surrounding fluid (air) can be obtained through Langmuir’s equation, which is given 

as follows (Malloy 1969):  

35.0
)35.0()(947.1 4

5

0
+

−=
vTTq ac   (3.19) 

where, 

qc = convective heat transfer from the surface (W/m2) 

v = wind velocity (m/s) 

To = surface temperature of the deck (°C) 

Ta = ambient air temperature (°C) 
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3.2.3 Radiation 

Radiative heat transfer is the only form of heat transfer that can occur in the 

absence of any form of medium and as such is the only means of heat transfer through 

vacuum. Thermal radiation is a direct result of the movements of atoms and molecules in 

a material. Since these atoms and molecules are composed of charged particles such as 

protons and electrons, their movements result in the emission of electromagnetic 

radiation, which carries energy away from the surface. The behavior of such radiant 

emission can be described through Stefan-Boltzmann law, which states that the heat 

radiated by a body is directly proportional to the fourth power of its absolute temperature 

(Vanzetti 1972). 

       (3.20) 4Tqe σε=

where, 

 qe = total radiant emission from the radiating surface (W/m2) 

 σ = Stefan-Boltzmann constant = 5.673 x 10-8 W/m2/K4 

 ε = emissivity value of the radiant object 

 T = absolute temperature of the object (K) 

 

 While a body is radiating heat, its surface is also constantly receiving the radiation 

from the surroundings, resulting in the transfer of energy into the surface. Since the 

amount of emitted radiation increases with increasing temperature, a net transfer of 

energy from higher temperatures to lower temperatures results. Through the variation of 

the Stefan-Boltzmann law, the net radiation from any surface can be expressed as follows 

(Halabe and Maser 1986): 
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      (3.21) ])273()273[( 44 +−+= aor TTq σε

where, 

 qr = net radiation from the radiating surface (W/m2) 

Ta = ambient air temperature (°C) 

To = temperature of the radiating surface (°C) 

 

As per the Stefan-Boltzmann equation, the radiation heat transfer is directly 

proportional to the emissivity value, ε, which is therefore an important material property. 

Table 3.1 lists the various thermal properties of some commonly used materials. 

Table 3.1 Thermal properties of some materials (Maldague 1993) 
Material Specific heat Density Heat capacity Thermal conductivity Thermal diffusivitya 

  (J kg-1°C)-1 (kg m-3) (J cm-3 °C-1) (W m-1 °C-1) δ x 10-6  (m2 s-1) 

Air (as defect) 700 1.2 0.8 x 10-3 0.024 33 
Aluminium 880 2700 2.4 230 95 
Brass (65% Cu, 35% Zn) 380 8400 3.2 130 32 
CFRPb (      fibers)  1200 1600 1.9 0.8 0.42 
CFRPb (      fibers)  1200 1600 1.9 7 3.7 
Concrete 800 2400 1.9 1 0.53 
Copper 380 8900 3.4 380 110 
Epoxy resin 1700 1300 2.2 0.2 0.09 
Glass 670 2600 1.7 0.7 0.41 
GFRPc (      fibers)  1200 1900 2.3 0.3 0.13 
GFRPc (      fibers)  1200 1900 2.3 0.38 0.17 
Lead 130 11300 1.5 35 23 
Nickel 440 8900 3.9 91 23 
PlexiglassTM - 1200 - 0.2 0.25 
Porcelain 1100 2300 2.5 1.1 0.43 
Steel (mild) 440 7900 3.5 46 13 
Steel (stainless) 440 7900 3.5 25 7.1 
TeflonTM - - - 0.42 1.59 
Titanium 470 4500 2.1 16 7.6 
Uranium 120 17800 2.2 27 12 
Water 4180 1000 4.2 0.6 0.14 
Zircaloy 2 280 6600 1.8 13 11 

 
(Vavilov 1980, p 182; Reynolds and Wells 1984, p 43; Tretout 1987, p 49; Touloukian and DeWitt 1970) 
a Defined as δ = K/ρC, where K is the thermal conductivity, ρ is mass density and C is the specific heat. 
b Carbon fiber reinforced polymer. 
c Glass fiber reinforced polymer. 
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3.2.4 Infrared Measurement 

At a temperature above absolute zero (-273.16 °C), all objects radiate 

electromagnetic waves. The intensity of the radiation is directly proportional to the 

object’s temperature and its emissivity value. Emissivity value is defined as the ratio of 

radiation emitted by an object to that from a blackbody source, which theoretically refers 

to the object that emits maximum amount of radiation at any given temperature.  

Radiative heat transfer occurs in the infrared portion of the electromagnetic 

spectrum (0.75µm to around 100µm). Figure 3.1 shows the electromagnetic spectrum. 

 
Figure 3.1 Electromagnetic spectrum showing the infrared measurement region (Kaplan 1999). 

 
 
 

For practical purposes, most infrared measurements are conducted around 20µm 

(Kaplan 1999). The infrared measurement is made through infrared detectors that can 

sense the infrared radiant energy. Such devices translate the radiant energy into useful 

electrical signals proportional to the temperature of the probed objects. With the 

advancement of technology in recent years, the infrared thermal imagers are capable of 
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producing thermal maps (thermograms) with various color palettes, including black and 

white scale.  

Thermal imaging is conducted through two different approaches: the active 

thermography and the passive thermography. In active thermography, heat flow is 

produced with external heating or cooling of the structure. Because of this thermal 

excitation, the object with subsurface anomalies will display non-uniform surface 

temperatures. Conversely, the passive thermography relies solely on the existing 

temperature differences within the object. The passive scheme is commonly used to 

assess the state of industrial processes or during the manufacturing stage of certain 

products (Maldague and Moore 2001). 
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Chapter 4 

EQUIPMENT AND TEST SPECIMENS 

 

4.1       GPR EQUIPMENT 

The equipment used in the Ground Penetrating Radar portion of this study was 

manufactured by Geophysical Survey Systems, Inc. The SIR-20 data acquisition system 

was chosen based on the fact that it has two different channels that could accommodate 

various antennas with different frequencies. The SIR-20 system is also capable of 

integrating data collection and post-processing for instant results. Furthermore, the SIR-

20 system has the capability to take input from a geographic information system (GIS). 

The associated data processing software, RADAN, is capable of 3D modeling, which 

drastically improves the post-processing process.  

The SIR-20 system comes with an industrial strength notebook computer made by 

Panasonic and a mainframe, which serve as a bridge between the notebook computer and 

the antennas. Two types of antenna were chosen for this study.  

The first type is a 2.0 GHz air-coupled antenna, also commonly known as horn 

antenna. The horn antenna is optimized for non-contact high-speed scanning, and is the 

antenna with the highest frequency commercially available at this time. Typically, a horn 

antenna is mounted to the back of a vehicle for field testing. Since the current research is 

a laboratory study, a push-cart was modified to mount the horn antenna (Figure 4.1a). 

Such configuration will allow the survey of a small bridge deck within laboratory setting.  

The second antenna is a 1.5 GHz ground-coupled antenna (Figure 4.1b). While 

the horn antenna is optimized for high speed scanning, the ground-coupled antenna is 
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well known for the high resolution radar images it produces because it is capable of 

transmitting more energy into the material. The 1.5 GHz frequency is the highest 

commercially available frequency at this time for a ground-coupled antenna. The depth of 

viewing window for the 1.5GHz antenna is approximately 18 inches in concrete. 

 

 

 

 

 

 

 

 

 

 

 

SIR-20 Main 
Computer 

SIR-20 
Mainframe 

2.0 GHz 
Horn 
Antenna 

Modified 
Push Cart 

Figure 4.1(a): GPR system with 2.0 GHz horn antenna on the modified push-cart. 

 

 

 

 

 

 

 

1.5 GHz Ground-
coupled Antenna 

Survey Wheel 

Figure 4.1(b): Hand-held 1.5 GHz ground-coupled antenna and survey wheel configuration. 
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 Figure 4.2(a) below shows the footprint of the 2.0GHz air-coupled antenna. The 

footprint was obtained by moving a steel rebar underneath the antenna. When the rebar 

reflects the electromagnetic energy sent by the antenna, the waveform of the scan will 

change from its original state. Such changes would determine the outer most boundary 

for the electric field generated by the antenna. The dimensions of this boundary, known 

as the antenna’s footprint, is directly proportion to the height of the antenna from the 

ground because of the beam spread as shown in Figure 4.2(a). Therefore, it is important 

to calculate the beam spread angle, which is shown in the figure below.  

 

GPR – Horn Antenna Dimensions 
 

GPR  
Horn Antenna 

21.375”

19.125”

7.875”  
 

Air-coupled horn antenna’s effective footprint and angle: 

 
 

8”

3.9375”

14”

5.5”θ1 

10.6875”

θ2 5.5”

tan θ1 = (14 - 10.6875)/5.5      θ1 = 31.06o 
 

tan θ2 = (8 – 3.9375)/5.5      θ2 = 36.45o 
 

Figure 4.2(a): Footprint of the 2.0 GHz air-coupled horn antenna. 
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Figure 4.2 ed antenna. The 

footprin

Ground-coupled antenna’s footprint

 (b) shows the footprint of the 1.5GHz ground-coupl

t was obtained by moving a thin aluminum plate underneath the antenna. When 

the aluminum plate reflects the electromagnetic energy sent by the antenna, the waveform 

of the scan will change from its original state. Such changes would determine the outer 

most boundary (antenna’s footprint) for the electric field generated by the antenna. This 

footprint is longer that the physical size (7” x 4”) of the ground-coupled antenna, but 

narrower with a total of 2” effective footprint perpendicular to the line of survey. 

 

 

 

Figure 4.2(b): Footprint of the 1.5 GHz ground-co

1.5GHz 
Antenna 

1.5GHz 
Antenna 

1 inch

Footprint 
perpendicular to 
the ey line of surv

Footprint along 
the line of survey 

Center 
line 

4 
inches Center 

line 

upled antenna. 
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4.2       INFRARE

The ThermaCAM™ S60 (FLIR Systems) infrared monitoring system consists of 

an advanced digital infrared camera and associated image processing software. The 

ThermaCAM™ camera (shown in Figure 4.3) is a handheld, lightweight and a truly 

portable camera with a built-in 24
o 

lens. It also contains an integral digital color camera, a 

laser pointer, a 4” color LCD on a removable remote control, and a range of accessories. 

This camera can detect radiation in the spectral range of 7.5 to 13 µm.  

 

 

 

 

 

 

 

 

 

 

 

The type of detector in the camera is a focal plane array (FPA), uncooled 

microbolometer. The different temperature ranges available for the measurement are 0 to 

+500
o
C (+32 to +932 

o
F), -40 to +120 

o
C (-40 to +248 

o
F) and +350 to 1500 

o
C (+662 to 

+2732
o
F). The measurements can be detected up to an accuracy of ±0.06 

o
C or ±2% of 

the temperature reading. The imaging performance for the camera has a spatial resolution 

D EQUIPMENT 

Figure 4.3 ThermaCAM™ S60 infrared camera from FLIR Systems.  
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 a capture rate of up to 60 frames per second, non-

interlac

markers built into 

the cam  Systems software (FLIR Systems 2002a).  

he software that is used along with the camera is called as the ThermaCAM™ 

Researcher 2002. It deals with the live IRT images arriving through the camera interface 

and can also receive IRT images from other media, such as PC card hard disk from the 

camera. The software can be used to display the IRT images, record them on the disk, or 

analyze them later during the replay. The measurements can be made with the analysis 

tools like isotherm, spot meter, area and line. The images can be processed further to 

enhance their contrast. Since the camera captures fully radiometric digital images, a 

reference image can be subtracted from the full image sequence to achieve better results 

in term of detectability of defects and to conduct a quantitative analysis (FLIR Systems 

2002b).  

 
4.2.1 

of 1.3 mrad and can record images at

ed. It is possible to capture and store images on a removable flash card or directly 

into a laptop computer which also houses the display software. The camera also features 

burst recording functionality that allows the user to record sequences of events into the 

internal RAM memory. Voice and/or text comments could be stored. The built-in digital 

color camera captures critical details, making reporting and analysis easy. The images 

can be analyzed either in the field by using the real-time measurement 

era software, or in a PC using FLIR

T

s 

Heating Sources 

One of the objectives of this study is to advance the nondestructive testing 

technology using Infrared Thermography. In order to attain the goal, it is vital to explore 

both passive thermography and active thermography. 



Solar Radiation 

The sun has long been considered a massive energy source for the earth. On a 

bright sunny day, solar radiation is often regarded as the perfect uniform heating source 

provided the wind is not interfering with the process. As Maser et al. (1990) pointed out, 

the sun produced excellent temperature differentials in concrete decks using IRT between 

10 AM to 2 PM.  

As good as it may be, though, solar radiation does indeed have weaknesses when 

dealing with IRT nondestructive testing. First of all, the availability of solar heating is 

heavily

lectrical/Gas Heater 

 To induce heat into the FRP bridge deck specimens thus creating an active 

heating, both electrical and gas heaters can be used. Generally, the commercially 

available heaters (both electrical and gas powered heaters) are capable of inducing a high 

level of heat into any object over a short period of time, thus resulting in high thermal 

 dependent on the unpredictable weather. In order to conduct a successful solar 

heating IRT test, the sky has to be clear most of the time. Also, as indicated in the 

previous chapter, wind velocity is one of the parameters that affects the overall heat 

transfer in convective mode. Therefore, it is important to have a relatively windless day 

to ensure uniform heating. It should be noted that solar radiation is a gradually increasing 

heat source (from morning to mid-day) which may not cause a sufficiently large thermal 

perturbation over a small period that is often needed for successful IRT testing.  

Nonetheless, the study of solar heating on FRP bridge decks is crucial in further 

understanding and advancing the nondestructive testing using IRT.  

 

E
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stimulation. There are a wide range of heaters with various heating power available for 

selectio

 heating blanket of plan size 36” x 36” (914mm x 914mm) and 1” 

(25mm

uced by 

the blank

ent, 

e control box with thermostatic control was used to cut off the 

heating of coils, the heating blanket can be used in either vertical or horizontal position.  

n. This provides an incredible amount flexibility to achieve a good active heating 

on FRP bridge deck, which will enable field testing even during cold days.  

 

Heating Blanket 

An electric

) thickness (Figure 4.4) was purchased to apply uniform heating in this study. This 

heating blanket is rated at 1016W. The blanket is connected to an external temperature 

control box (Figure 4.4). The blanket has a double stitched inner liner of 3259 silicone 

fabric with an outer cover made from a tough vinyl fabric. The insulation of the blanket is 

an one inch thick Armaflex foam. The heating elemts are 2” wide knitted heating tape 

strips bonded to the inner liner. These multi-stranded (coils) heating elements are 

connected in a series configuration. The blanket also has a Type J thermocouple with a 

male plug for connection to an external temperature controller. 

Although maximum allowable temperature of 163
o
C (325

o
F) can be prod

et, the safe operational temperature range was limited to 32-60 
o
C (90 – 140 

o
F) 

since higher temperatures over prolonged periods could damage the heating coils. To 

ensure that there is no overheating of the blanket before, during, and after the experim

the external temperatur

power supply to the blanket once the desirable temperature is achieved.  

One of the most intriguing features of the heating blanket is its ability to wrap 

around objects such as beams and columns. Since the heat is produced through electrical 
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 As attractive as it may sound, the heating blanket does take a longer time to 

induce same amount of heat compared to the electrical or gas heaters in general. Also, 

since the heating blanket was constructed by connecting the heating elements in series, it 

 important to handle the heating blanket with care to ensure that none of the heating 

ged. A damaged heating element will cause the entire heating blanket 

(or a pa

 

 

 

 

 

 

 

  

The multi-cellular shaped low-profile FRP bridge deck is made of E-glass fiber 

his bridge deck 

is designed to withstand AAS

is

elements are dama

rt of it) to cease functioning.  

  

 

 

 

 

Figure 4.4: Heating blanket with external temperature contro  box. l

4.3       TEST SPECIMENS 

and vinyl ester resin. Figure 4.5 shows the cross section of the multi-cellular shaped FRP 

deck component of 30” (762 mm) width and 4” (101.6 mm) thickness. T

HTO’s HS20 loads in spite of the low deck thickness of 4” 

(101.6 mm). This is achieved by creating more fiber continuity between the web and the 
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flange as well as by reducing the weight. This low-profile deck is cost effective and is 

manufactured with higher structural strength and lower weight than its predecessor.  

The flanges and webs of the low-profile FRP bridge deck component were made 

of triaxial fabrics, continuous rovings and mats. The fibers continue from the flange to 

web and back to the flange. The resin used in this deck was vinyl ester resin which is a 

high elongation resin. This low-profile deck weighs about 10 lb/ft2 and has fiber volume 

fraction of approximately 50%.  

Figure 4.5: Cross-section of low-profile FRP bridge deck. 

 

The ability to manufacture bridge deck in a factory setting thus ensuring good 

quality control k. Generally, the 

manufactured through a pultrusion process. 

olves direct conversion of continuous fibers and resins into 

finished product of any size and shape, so l

wet-out bath and the injection chamber, where they are wetted by the thermoset resin, 

is one of the most intriguing aspects of FRP bridge dec

FRP products are first designed, and then 

Pultrusion is a process that inv

ong as a mold can be made. The first step to 

be considered in pultrusion process is the design and manufacturing of pultrusion die to 

strict tolerances of thickness, angularity and radius. The performing guides position the 

roving and mat dispensed from the creel and mat racks in the specified location, in the 

cross section of the product. Then the fiber reinforcements are made to pass through the 
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supplied under pressure. The extreme pressure forces out any air or excess resin from the 

fiber reinforcement as it enters the die. The part is subjected to multiple curing 

temperatures inside the die. The layers of reinforcements are mechanically fixed to each 

other, which results in a solidified laminate. The finished product exiting the die is then 

pulled by reciprocating pullers at a constant speed. The product is cut to the specified 

length with the aid of a moving cutoff saw. Figure 4.6 shows the schematic diagram of a 

basic pultrusion process. 

 

The low-profile FRP bridge deck specimens used in this study were manufactured 

BRP during pultrusion of the low-profile FRP deck. 

Figure 4.6 Schematic diagram of Pultrusion process. 

 

by Bedford Reinforced Plastics, Inc (BRP). Figure 4.7 shows the photographs taken at 
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Figure 4.7: Photographs showing manufacturing of FRP bridge deck in a factory using Pultrusion process. 

 

 This study evaluates the applicability of both ground penetrating radar and digital 

infrared thermography systems to detect subsurface anomalies such as water-filled and 

air-filled debonds and delaminations. Debonds refer to discontinuities between the 

wearing surface and the underlying deck, while delaminations refer to discontinuities 

within the flanges of the deck itself.  

 

4.4 REPARATION OF DEFECTS 

 surfaces of dimensions 36” x 24” x 

3/8” (914.4mm x 609.6mm x 9.525mm) (Figure 4.8) were cast. The wearing surface 

module was made by mixing a gallon of Transpo Industries’ Transpo T-48A Epoxy 

Resin, half a gallon of Transpo T-48B Hardener, and a 52 pounds bag of Transpo T-48 

Powder component and cast over a light steel frame of dimensions 36” x 24” x 3/8” 

(914.4mm x 609.6mm x 9.525mm).  

P

Debonds refer to the subsurface defects that are present at the interface between 

the wearing surface layer and the underlying FRP deck. In order to produce defects that 

could be used over and over again, modular wearing
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Figure 4.8: Wearing surfaces module of dim

3 ft long 

2 ft wide 

ensions 36” x 24” x 3/8” (914.4mm x 609.6mm x 9.525mm). 

 

d thicknesses were used to create “voids” at 

the bot

ps. Due to the self-adhesive nature of the wraps, the 

Aluminum plate of various sizes an

tom of the wearing surface modules. The aluminum plates were first placed on a 

flat surface and the wearing surface was overlaid on the top, with removable mold 

holding the wearing surface from the side. Use of plastic wrap under the wearing surface 

modules ensured that the modules did not stick to any surface, thus making them reusable 

for the laboratory experiments. Once the wearing surface cured, the aluminum plates 

were removed to create “voids” underneath the wearing surface. These voids were used 

later as air-filled debonds, or served as water-filled debonds by attaching a water pouch 

made using Glad “Press’N Seal” wra
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pouch could be easily made by folding the wrap into half and gently pressing the sides 

together to seal off the edges (Figure 4.9). of the pouch ranged from as large as 

12” x 12” (304.8mm x 304.8mm) to as small as 1” x 1” (25.4mm x 25.4mm). The 

pouches were made into three thicknesses: 0.75mm, 1.5mm, 2.25mm (Figure 4.10). 

These pouches were then filled with water using a syringe (Figure 4.11). While 

c  were made to inject the exact amount of water to fill the entire void, some air 

bubbles were trapped inside the water pouch as seen in Figure 4.10, which was due to 

some human error. The bottom side of a typical wearing surface module with simulated 

debonds is shown in Figure 4.12. 

 The size 

alculations

 

Figure 4.9: Pouch made using Press’N Seal Glad wrap. 
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Figure 4.10: Photograph showing water-filled pouches. 

 

Figure 4.11: Glad pouch being filled with water using syringe. 

 41



Figure 4.12: Bottom side of a wearing surface with two water-filled simulated debonds attached. 

 
 Along with the wearing surface modules, a delamination deck module was created 

(Figure 4.13). Two FR arge deck. The small 

 manually cut out voids to simulate 

P bridge deck modules were first cut out of a l

modules were then brought to the shop to

delaminations. Two filling channels were cut out for simple refilling of the water 

delaminations later. The two modules were then joined together by applying appropriate 

amount of special glue used to bond the FRP module. The two delaminations prepared in 

this manner were of sizes 3”x3”x0.06” (76.2mm x 76.2mm x 1.5mm). One was air-filled 

and the other (connected to two filling channels) was water-filled. Figures 4.13 – 4.16 

illustrate the process of creating the two delaminations inside a deck module. 
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Figure 4.13: The machine drilling out voids to be used as delamination. 

 

 

Figure 4.14: Cutting out the filling channel. 
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Figure 4.15: Two filling channels were cut out by the machine. 

 

 

Figure 4.16: The two FRP modules to be joined together.
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Chapter 5 

EXPERIMENTAL RESULTS FROM INFRARED 

THERMOGRAPHY 

 

 Previous studies have shown that commercially available heater is a useful tool to 

help find debonds as small as 1” x 1” (25.4mm x 25.4mm) in small scale FRP bridge 

deck specimens (Halabe et al. 2004d). To further evaluate the feasibility of utilizing 

commercially available heating source in subsurface detection of defects on FRP bridge 

decks, similar tests were conducted on a larger scale specimen (6’ x 3’, or 1828.8mm x 

914.4mm). Furthermore, the same specimens were subjected to two rounds of solar 

radiation tests during two different seasons. The first solar radiation test was conducted

during the early f tively calm wind 

yielded excellent heating of the FRP deck. The second solar radiation test was conducted 

during late winter/early spring season. The low ambient temperature provided a testing 

environment with low rate of heat transfer between the FRP bridge deck specimen and 

the surroundings. In addition to solar radiation tests, a heater and an electric heating 

blanket were used as active heat sources.  

 

 5.1 IRT USING COMMERCIALLY AVAILABLE HEATER AS ACTIVE 

HEAT SOURCE 

Uniform heating was achieved by placing a 1500W heater few inches away from

the wearing surface tedly to ensure no 

overheating of one region. Heat was applied for about 5 minutes. The infrared image of 

 

all season. The abundance of solar energy and rela

 

 and moving the heater back and forth repea
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the specimen revealed the location of ebonds as white regions. They were 

areas with hi egions. The 

color scale showing the temperature variab  area is also available with 

the infrared image. A simple post-processing step was used in which the infrared image’s 

scale was adjusted until a clear contrast could be seen. Figure 5.1 shows the processed 

infrared image of a 4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) air-filled debond. 

 

 

 

 

 

 

 

 

Figure 5.1: Infrared image of 4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) air-filled debond. 

 x 1.5mm) could be detected by infrared 

ography (Figure 5.2).  

 the air-filled d

gher temperature when compared to the surrounding defect-free r

ility over the deck

4” x 4” x 0.09” debond 

 

By repeating the same procedure, it was found that air-filled debond as small as 

2” x 2” x 0.06” (50.8mm x 50.8mm

therm
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Figure 5.2: Debonds detected using infrared image. 

 

In this testing, infrared therm was unable to detect the water-filled 

all FRP deck specimens indicated that 

all as 1/16” (1.6mm) in thickness could be detected using 

et al. 2004d). This is because past testing used FRP deck 

ens with small plan sizes (1’ x 2’ = 2 sq. ft.), which allowed intense heat to be 

applied to the deck surface using a commerc

and, the current test deck had a much larger plan size (3’ x 6’ = 18 sq. ft.), which was 

needed

ography 

debonds, even though past research using sm

water-filled debonds as sm

infrared thermography (Halabe 

specim

ially available 1500W heater. On the other 

h

 for GPR testing. However, the larger plan size required the heater to be moved 

around to cover a much larger area, thus reducing the heat intensity on the deck.  
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5.2 T US

.2.1 Solar Radiation Test Conducted in September 2005 

The solar radiation test was conducted on a sunny day, with ambient temperature 

ith highs in the 70s F (≅22 C). The bridge deck module with wearing surfaces (with 

ebonds) and another module with defect-free wearing surface (with delamination) were 

laced directly under the sun for solar radiation heating. Each wearing surface module 

onsisted of several water-filled and air-filled defects. The exact location of the defects 

are shown in Figures 5 he middle of an open 

space which had no obstruction to sunlig t (Figure 5.5 and Figure 5.6). The solar 

radiation test started at 9 A.M. and lasted for 24 hours. Readings were taken once every 

half hour for the first 12 hours. A reading was taken for each subsequent one hour span.  

IR ING SOLAR RADIATION AS ACTIVE HEAT SOURCE 

5

w

d

p

c

.3 and 5.4. The modules were placed in t

h

 

Figure 5.3: Defects map of delamination module for IRT solar radiation experiment. 
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2”x2”x0.06” 
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7”

7”

5”
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Figure 5.4: Defects map of debond module for IRT solar radiation experiment. 
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Figur he bridge deck le with wearing surfaces. e 5.5: T modu

Figure 5.6: The setup diation IRT test. 

  

 The data were processed through ThermaCAM™ Researcher software. As 

indicated in Figure 5.7, the solar radiation test did not reveal any detectable 

delaminatio ecting any 

elamination, whether it’s water or air-filled delamination. 

 of the solar ra

ns. Subsequent results confirmed that IRT is not capable of det

d
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Figure 5.7: IRT image of FRP module with delaminations. 

 

 Figures 5.8 and 5.9 show the IRT images of the bridge deck module with debonds 

after two hours of solar heating. Evidently from Figure 5.8, the air-filled debonds were 

clearly detectable by IRT. The previous studies had shown that IRT test can comfortably 

detect air-filled debonds as small as 2” x 2” (50.8mm x 50.8mm) and as thin as 0.06” 

(1.5mm). This study also showed that the air-filled debonds with thickness of 0.06” 

(1.5mm) and 0.09” (2.25mm) and as small as 2” x 2” (50.8mm x 50.8mm) in plan could 

be detected in the infrared images. However, as shown in Figure 5.9, the 4” x 4” x 0.03” 

(101.6mm x 101.6mm x 0.75mm) air-filled debond and the water-filled debonds are not 

detectable by the IRT, which indicated th

thin for detection using solar radiation. Further processed results indicated that the water-

filled debonds are not as clearly shown as the air-filled debonds. Figure 5.10 shows the 

IRT image taken after 5 hours of solar heating at 2:30 PM. The 4” x 4” x 0.09” (101.6mm 

x 101.6mm x 2.25mm) water-filled debond is visible along with all the air-filled debonds. 

Usually, a water-filled defect should show up as a cold-spot as opposed to the indicated 

at these 0.03” (0.75mm) thick debonds are too 
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hot-spot in Figure 5.10. Since the water-filled debond was heated for 5 hours, the water 

stored lot of heat energy due to its high specific heat capacity. Thus, it is understandable 

that the temperature would be higher after prolonged heating of water-filled defect, thus 

leading to a hot-spot as opposed to a normal cold-spot for a water-filled defect. 

 

Figure 5.9: IRT image #2 of the bridge deck at 11:30 AM. 

 

Figure 5.8: IRT image #1 of the bridge deck at 11:30 AM. 

 

Air-filled 
debonds 

4”x4”x0.09”  
(101.6mm x 101.6mm x 2.25mm)  
air-filled debond 
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4”x4”x0.09”  
(101.6mm x 101.6mm x 2.25mm)  
water-filled debond 

Air-filled 
debonds 

 

Figure 5.10: IRT image taken after 5 hours of solar heating at 2:30 PM. 

 

 The surface temperature of the debonds were recorded and plotted using the 

Microsoft Excel. As seen in Figure 5.11, the debonds are a few degrees hotter than the 

defect-free area dur ct of solar heating 

began to wear off. The temperatures conve ed around 5:30 PM and stayed relatively 

closed to each other throughout the night. The equilibrium state achieved during the night 

proved that cooling itself is no T detection of defects. On the other hand, 

the equilibrium state is a perfec peratures are not 

fluctuating as much as it were during the day.  

Figure 5.12 also shows the temperatures converging around 5:30 PM. The 

temperatures are fluctuating slightly more after 5:30 PM. for this wearing surface 

compared to the previous wearing surface data in Figure 5.11. This is due to the fact that 

the two wearing surfaces were made from two different batches of mixes.  

ing the day time. As the sun goes down, the effe

rg

t suitable for IR

t stage for IRT experiment, since the tem
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Figure 5.11: Surface temperature of defects versus defect-free area on wearing surface #1. 
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Figure 5.12: Surface temperature of defects versus defect-free area on wearing surface #2. 
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 Figure 5.13 and Figure 5.14(a) show the temperature differences for the previous 

data (from Figures 5.11 and 5.12). The temperature difference data was used for curve-

fitting using polynomial function to the 4th order. From Figure 5.13, it can be seen that 

the temperature differences are the highest between 12 PM to 5 PM. Also, it is clear that 

4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) air-filled defect has the highest 

temperature differences among all the defect sizes considered in this study, follow by 2” 

x 2” x 0.09” (50.8mm x 50.8mm x 2.25mm) air-filled defect. The water-filled defect has 

the lowest temperature differences for wearing surface module #1, as expected.  

 Since the source of the heating (sun) is the same for both wearing surfaces, and 

the fact that the defects embedded on each wearing surface are consistent relative to its

defect- igure 

.14(a). Once again, it is clear that the temperature differences are the greatest between 

12PM to 5PM. Also note that the 4” x 4” x 0.06” (101.6mm x 101.6mm x 1.5mm) water-

filled debond’s temperature differences are relatively low and thus very hard to 

distinguish from a regular IRT image. Notice that all the air-filled defects have higher 

maximum differences than any of the water-filled defects. It is consistent with the 

conclusion from previous studies. Furthermore, Figure 5.14(a) also indicated that an 

infrared experiment would obtain the best result if conducted during day time when the 

temperature differences between a defective and a defect-free area are the highest. 

However, since the temperature fluctuation is relatively low at night, it provides an ideal 

condition to conduct an infrared thermography test if an external active heat source is 

available. Figure 5.14(b) shows the entire set data collected during the test. Notice that

the tem

 

free area, all six detectable defects’ temperature differences were plotted in F

5

 

perature variance at night (9PM to 6AM) is very low. 
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Figure 5.13: Temperature differences of various defects on wearing surface #1. 
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5.2.2 Solar Radiation Test Conducted in March 2006 

The solar radiation test was conducted on a partly cloudy day, with ambient 

temperature highs in the 40s F (≅4 C). The wind was blowing at 2 – 4 mph. The bridge 

deck module with wearing surfaces were placed directly under the sun for solar radiation 

heating. Each wearing surface module consisted of several water-filled and air-filled 

defects. The exact location of the defects are shown in Figure 5.18. The modules were 

placed in the middle of an open space which had no obstruction of sunlight. The solar 

radiation test started at 11 AM and lasted for 4 hours. Readings were taken once every 

half hour. 

Figure 5.15 and Figure 5.16 show the FRP bridge deck after being heated by the 

sun for 30 r heating. 

 5.14(b): Temperature differences of various defects on all wearing surfaces, data

 minutes. Figure 5.17 shows the FRP bridge deck after 3 hours of sola
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Notice that the 4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) air-filled debond can 

still be seen in Figure 5.17 while all other air-filled debonds disappeared. Furthermore, 

the appearances of the defects in Figure 5.15 and Figure 5.16 are not as prominent as 

those from the previous  solar  radiation  test. More importantly,  many of the  smaller 

f solar heating. 

 

Figure 5.15: FRP bridge deck after 30 minutes o

Figure 5.16: FRP bridge deck after 30 minutes of solar heating. 

4” x 4” x 0.03” air-
filled debond 

4” x 4” x 0.09” air-
filled debond 

4” x 4” x 0.06” 
air-filled debond 

 



 

4” x 4” x 0.09” 
air-filled debond 

Figure 5.17: FRP bridge deck after 3 hours of solar heating.  

defects that  were detected by the previous solar radiation during a relatively warm 

September day could not be detected during the second solar radiation test in colder 

ambient temperature. Also, the wind flow was relatively strong compared to the 

September’s solar radiation test, which re  

defective and defect-free area. This explains the disappearance of the smaller defects as 

well as the vague appearance of th

duced the temperature differences between

e debonds that could be seen.  
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Figure 5.18: Defects map of debond module for IRT solar radiation experiment. 
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5.3 IRT USING HEATING BLANKET AS ACTIVE HEAT SOURCE 

 The heating blanket IRT tests were conducted to determine the feasibility of using 

heating blanket as active h source. The ted indoors, with an ambient 

temperature in the neighborhood of 61 ºF ure 5.19 and Figure 5.20 show the 

experimental setup for the heating blanke IRT test. The wooden platforms surrounding 

the FRP bridge deck were for the GPR t the IRT tests. The two grey color 

heating blankets were warmed up for 15 minutes prior to actual testing, to ensure the 

active heating was to be conducted at around 70 ºF. As noted in Figures 5.19 and 5.20, 

the size of the heating blanket was not sufficient to cover up the entire bridge deck 

module, thus the data acquisition of the IRT was divided into two portions.  

eat  tests were conduc

 (16 ºC). Fig

t 

est prior to 

 

Figure 5.19: The experimental setup for IRT test using heating blanket as active heat source. 
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Infrared 
Camera 

External 
Temperature 
Controller 

Figure 5.20: The experimental setup for IRT test using heating blanket as active heat source. 

 

 The objective of this experiment was to determine the feasibility of IRT using 

heating blanket as active heat source in defect detection. Therefore, various debond sizes 

and thicknesses were used with the defect configuration shown in Figures 5.21 and 5.22. 

Both air-filled and water-filled debonds were used in the experiments. Four minutes of 

heating at 70 ºF was applied to one 3’ x 3’ portion of the FRP bridge deck. The thermo 

image acquisition began immediately after the removal of the heating blankets. Three 

minutes (180 seconds) of thermo images were acquired at one second interval. The 

process was repeated for another 3’ x 3’ portion of the FRP bridge deck, and the same

proces

 

s was continued for the other defects configurations. 
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Figure 5.21(a): Defect map for IRT using heating blanket as active heat source.
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Figure 5.21(b): Defect map for IRT using heating blanket as active heat source. 
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 As seen in Figure 5.22 and Figure 5.23, all the air-filled defects can be clearly 

identified. Due to the sheer size of the defects (8” x 8” and 12” x 12”, or 203.2mm x 

203.2mm and 304.8mm x 4.8mm), the effect of thickness is not as dominant as before.   30

 

Figure 5.22: Results of IRT on air-filled ing blanket as active heat source. defects using heat

 

Figure 5.23: Results of IRT on air-filled g blanket as active heat source. 

 

 On ckness is a 

dominant factor in defect determination using heating blanket as active heat source. As 

seen in Figure 5.25, the thickest debond of all (8” x 8” x 0.09” or 203.2mm x 203.2mm x 

2.25mm) can be clearly seen. At the same time, though fuzzy, the 12” x 12” x 0.03” 

defects using heatin

the other hand, results for the water-filled defects indicated that thi
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(304.8mm x 304.8mm x 0.75mm) can be detected in Figure 5.24. However, it is 

important to realize that without prior information, the 12” x 12” x 0.03” (304.8mm x 

304.8mm x 0.75mm) water-filled debond in Figure 5.24 cannot be accurately identified. 

The last set of IRT tests were conducted on modules with smaller defects (2” x 2” and 4” 

x 4” or 50.8mm x 50.8mm and 101.6mm x 101.6mm debonds). As seen in Figures 5.26 

and 5.27, the heating blanket did not provide adequate energy to detect any of these 

smaller defects. 

 

Figure 5.24: Results of IRT on water-filled defects using heating blanket as active heat source. 

 

Figure 5.25: Results of IRT on water-filled defects using heating blanket as active heat source. 
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Figure 5.26: Results of IRT on smaller size defects using heating blanket as active heat source. 

 

Figure 5.27: Results of IRT on smaller size defects using heating blanket as active heat source. 

 

To further investigate the results obtained so far, the surface temperature of each 

detectable debond (both air-filled and water-filled) were recorded and plotted using 

Microsoft© Excel.  

It is clear that the surface temperature over an air-filled debond increases with the 

volume of the debond. By inspecting Figure 5.28, it can be seen that all the air-filled 

defects show higher surface temperatures than the defect-free area. Furthermore, in 

Figure 5.29, the difference between the defective and defect-free area is about 2 degrees 
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Celsius for the largest debond (12” x 12” x 0.06” or 304.8mm x 304.8mm x 1.5mm). 

From Figure 5.29, it is clear that the effect of thickness is more prominent than the effect 

of size since the difference between 12” x 12” x 0.06” and 12” x 12” x 0.03” is about 1 

degree Celsius while it’s about 0.5 degree Celsius for the difference between two 

different sizes defect of the same thickness. Interestingly, the difference between 8” x 8” 

x 0.09” and 8” x 8” x 0.06” air-filled debond is only about 0.25 degree Celsius (Figure 

5.30). This indicate that the effect of thickness on surface temperature is tapering down 

after 2” x 

12” x 0.06” is much lower compared to any other defects. This indicates that the heating 

blanket may not be as effective in its edge region, thus resulting in lower surface 

temperature near the edge area of the heating blanket.  

 

reaching a thickness of about 0.06”. In Figure 5.31 the surface temperature of 1
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Figure 5.28: Temperature profile of various air-filled debonds. 
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Figure 5.29: Temperature profile of defective minus defect-free for various air-filled debonds. 
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Figure 5.30: Temperature profile of various air-filled debonds. 
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Figure 5.31: Temperature profile of defective minus defect-free for various air-filled debonds. 

 

 As indicated before, the sensitivity of IRT in detecting debonds reduced when the 

debonds are filled with water. As seen in Figure 5.32, the temperature difference dropped 

to about 0.53 to 0.68 degree Celsius when the 12” x 12” x 0.03” debonds are filled with 

water. Likewise, the temperature difference for 8” x 8” x 0.09” water-filled debond is 

about 2.1 to 2.2 degree Celsius (Figure 5.33). This indicates a drop of about 0.3 degrees 

when the debond is filled with water instead of air. It is interesting to note in Figure 5.33 

that the temperature difference for the water-filled debonds kept rising for 60 seconds or 

so before it decreases. This phenomenon is largely due to water’s high specific heat value 

which means it takes longer to get heated compared to FRP. The same phenomenon can

also be seen in Fig

 

ure 5.32, although it is much clearer in Figure 5.33. 
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 5.32: Temperature profile of defective minus defect-free for 12” x 12” x 0.03” water-filled deb
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5.4 CONCLUSIONS 

In summary, results have shown that while commercially available heaters are 

capable of finding defects as small as 1” x 1” (25.4mm x 25.4mm) in laboratory setting, it 

is certainly not as good at detecting defects in a larger scale specimen since the smallest 

air-filled defect that can be detected was 2” x 2” x 0.06” (50.8mm x 50.8mm x 1.5mm). 

This is because moving the heater back and forth in larger specimen reduces the heat 

intensity. This problem can be addressed using multiple heaters, or by testing larger areas 

in small pieces. Furthermore, use of heaters was not found to be very effective in 

detecting water-filled defects. 

Solar radiation can be a good heating source if used properly. The best times to 

result for IRT testing if an external heating source is going to be employed since the 

temperature fluctuation is relatively low at night. A relatively low wind velocity 

environment is needed to produce good results. The solar radiation tests have shown that 

4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) water-filled debond can be detected on 

a warm sunny day (for example, during the summer months), while the ability to detect 

smaller and thinner water-filled debonds need further improvement. Both solar tests have 

shown that all the 4” x 4” (101.6mm x 101.6mm) air-filled debonds as thin as 0.06” 

(1.5mm) can be detected in warm September weather and colder March days using solar 

energy as primary heat source. The results also showed that the defect clarity in colder 

March days was not very good but the warm September day produced good results. The 

t  

sing only solar radiation. 

detect air-filled debonds are between 12 noon to 5 PM. Night time may provide better 

est also showed that delamination within the flanges of FRP decks cannot be detected

u
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The heating blankets proved to be the weakest active heat source explored in this 

study. 

ility to apply uniform heat to a large area while the heating 

blanket

It was not capable of detecting any debonds (air-filled and water-filled) smaller 

than 8” x 8” in size. Although the heating blankets were sending out 1200 W/m2 of 

output (roughly the same amount of energy emitted by the sun on a hot sunny day in 

June), it did not perform as well as the solar radiation test because the specimens were 

heated by the sun for a much longer period of time compared to only 4 minutes using the 

heating blanket. When comparing the heating blanket to the heaters, it is clear that heaters 

provide a much greater heat intensity (≅ 2500 W/m2 output) for IRT. The only setback 

regarding the heaters is its inab

s provided uniform heating of the specimens. 
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Chapter 6 

FINITE ELEMENT MODELING 

 

Finite element (FE) analysis is widely accepted as a powerful and versatile 

analytical tool. While finite element could be a powerful tool in analyzing stress-strain 

and thermal behavior for objects with complex geometry, the goal of this study is to 

utilize a simple heat transfer finite element model that could be used for studying the 

effect of subsurface defects on heat transfer through FRP bridge decks and the resulting 

surface temperature differences.  

Before thermal modeling of the FRP bridge deck, some essential information is 

needed such as, the thermal properties of the FRP layers and wearing surface, the thermal 

loading conditions (positive or negative heat input), and the boundary conditions for 

thermal modeling. The thermal properties needed to create an FE model are the specific 

heat, the emissivity, and the thermal conductivity. Radiation is assumed to be the 

dominant mode of heat transfer between the wearing surface and the surrounding air 

while conduction is the dominant mode of heat transfer between the wearing surface, 

defects, and the FRP layer in this model. A time-step heat flux was used to simulate the 

active heat source. There were no existing thermal properties available for the FRP used 

in this study since it is a relatively new material. Although some published tables for 

thermal properties (Table 3.1) are available, the FRP bridge deck specimens used in this 

study were tested in order to experimentally determine the specific heat, the thermal 

conductivity, and the emissivity for these specimens. 
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6.1 THERMOGRAPHIC DEFE NITION AND MEASUREMENT 
THEORY (Shepard et al. 1999) 

  

The 3-Dimensional diffusion equation of the thermal response of a thick (semi-

infinite) opaque solid sample with an insulating subsurface defect, immediately after 

illumination by spatially uniform light pulse, is described by, 

CT RECOG

012 =
∂
∂

−∇
t
T

α
T      (6.1) 

where, del operator 222
2

zyx ∂
+

∂
+

∂
=∇ , α is the thermal diffusivity and T = T(x,y,z), 

is the temperature of the sample. Using a s

222 ∂∂∂

imple separation of variables, one may treat 

this equatio

In a defect-free sample, at a point far away from the edges, lateral heat flow 

components cancel and the temperature distribution can be approximated by, 

n in such a way that a defect signature based on both spatial and temporal 

characteristics of the surface profile becomes evident. 

01
2

2

=
∂

−
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∂ TT      (6.2) 

Contrary to that, the presence of an insulating subsurface defect obstructs the flow 

of heat into the sample and the incident thermal energy is trapped between the defect and 

the sample surface. The trapped energy flows towards cooler areas surrounding the defect 

in the lateral direction, which will be the dominant cooling mechanism in the region. The 

temperature distribution in this case can be approximated by, 

tαz

01
,

2 =
∂
∂

−∇
TTyx
tα

    (6.3) 
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Figure 6.1: Heat flow due to a flash pulse. Initially the pulse causes thin layer of uniform heat on the 

 

The analysis of pulsed thermographic data ca

regimes as a result of the separation of the diffusion equation, a regime before the 

he transition time, the dominant 

influence on the surface temperature above the defect is the lateral heat flow as per 

Equation 6.3. 

 

6.2 THERMAL PROPERTIES 

6.2.1 Conductivity 

ental setup of the test. 

surface (Left). Heat flows into the sample (Center). When a defect is encountered, the heat is trapped 
between the defect and the sample surface, giving rise to lateral heat flow above the defect (Shepard et al. 

1999). 

n be separated into two distinct time 

incident heat reaches the buried defect and that after it reaches the buried defect. The time 

at which the transition between the regimes occurs depends on the depth of the defect. 

Until the transition time is reached, the surface above the defect and the rest of the area 

behave in the same manner. After the elapse of t

 Thermal conductivity means “The material property that describes the rate at 

which heat flows within a body for a given temperature change.” To measure the thermal 

conductivity, a thermal conductivity testing system (Unitherm model 2022 from ANTER 

Corp., Pittsburgh, PA) was utilized. Figure 6.2 shows the experim
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Figure 6.2: Experimental set up of Unitherm 2022. 

 

This unit is supplied with a mid range flux module covering a thermal resistance 

range from 0.002 to 0.02 m2 K/W and is able to measure the thermal conductivity of 

materials in the range of 0.1 to 40 W/m-K as per the test standard ASTM E 1530. 

Samples were cut in the form of two inch diameter circular discs from the Transpo 

ace and the FRP deck’s top flange for thermal conductivity measurement.  

ent of the system. The system is 

functionalities. The heater on top and bottom 

sample is placed between two polished surfaces and a pneumatic pressure of 10 psi is 

applied on the top of the system as indicated in Figure 6.3. The entire system is 

wearing surf

Figure 6.3 shows the schematic arrangem

essentially made up of parts with different 

are used to create steady state heat transfer through the sample. The heat sink at the 

bottom is to prevent excessive temperature from the system resulting in system failure. A 

reference calorimeter is placed under the lower plate, which acts as a heat flux transducer. 

The sample disks are first polished to ensure good thermal contact. Then the prepared 
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maintained in a thermally insulated glass chamber. The system will check for steady state 

heat flow through the sample and thermal conductivity is then measured (Mutnuri 2005). 

Each test takes approximately 3 hours to complete. 

 

Figure 6.3: Schematic model of Unitherm 2022. 

   

A total of four FRP deck samples and three Transpo wearing surface samples 

were prepared and tested (Figures 6.4a and 6.4b).  

 

Figure 6.4(a): Circular Transpo wearing surface disc samples. 
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Figure 6.4(b): Circular FRP disc samples. 

 

mal conductivity value for the four FRP samples ranged from 0.3 to 0.35 

W m-1  the 

ples yielded an average value of 0.63 

W m-1 oC-1.  

 The ther

oC-1, thus an average of 0.325 W m-1 oC-1 was used for the FE modeling. On

other hand, the three Transpo wearing surface sam
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6.2.2 Emissivity 

Emissivity refers to the ratio of power radiated by a substance to the power 

radiated by a blackbody at the same temperature. It is a measure of a material's ability to 

absorb and radiate energy. Based on the definition, the emissivity value can be, in 

principal, determined by knowing the apparent (measured) temperature of the interest 

material and the temperature of a blackbody at the same temperature. 

To achieve such goal, a small FRP bridge deck specimen (12” x 24” or 304.8mm 

x 609.6mm) was prepared. Then wearing surface was placed on one half of the specimen, 

leaving the other half surface of the bridge deck module a FRP surface. Half of the 

wearing surface and half of the FRP surface were painted black using a special flat-black 

paint. The flat-black paint produced a near perfect blackbody, which has an emissivity

value of 1.  

The bridge deck specimen was then heated using solar energy to ensure uniform 

heating. The temperature was recorded. The same procedure was then repeated for the 

other face of the bridge deck specimen.  

Through the use of infrared camera, the temperatures of the blackbody region as 

well as the unaffected region were extracted from the original file. Base on the equation, 

 

Total radiated energy = ε (T + 273)4    (6.4) 

 

the emissivity value can be calculated with the help of Microsoft Excel. Here T is 

measured in oC. The region with flat-black paint exhibited a higher temperature. With the 

known emissivity value calibrated into the infrared camera and the temperature (average 
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tempe ature in this tr est), the total energy emitted can be calculated. That information was 

then us

niform heating mechanism is needed to increase the temperature to a known 

value. 

t value of 1670 J/kg-C, to a temperature of 160 

°F (71.

 

the vegetable oil was recorded prior to submerging the sample. The temperature of the 

vegetable oil in the beak

was recorded.  

ed to back calculate the actual emissivity value of the material desired.  

 The emissivity value of the FRP deck’s flange was determined to be 0.9 while the 

emissivity value of the wearing surface was 0.89.  

 

6.2.3 Specific Heat 

Specific heat (Cp) is defined as the amount of heat needed to raise the temperature 

of one unit mass of an object by 1 degree Celsius. As with the other thermal properties, 

the specific heat value pertaining to the FRP decks used in this experiment is unique, thus 

required to be determined experimentally.  

To determine the specific heat value of the wearing surface as well as the FRP 

samples, a u

A commercially available digital deep fryer was chosen for this task (Figure 6.5).  

The sample was first weighed using a digital scale (Figure 6.6). It was then heated 

in vegetable oil, which has a specific hea

1 oC). Upon reaching the equilibrium temperature, the sample was then moved to a 

beaker with a known volume of vegetable oil at room temperature. The temperature of

er was then carefully monitored, and the maximum temperature 
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Figure 6.5: The digital deep fryer. 

 

Figure 6.6: Weighing of the sample using a digital scale. 
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By knowing three sets of temperature as well as the specific heat value of the 

vegetable oil and the weight of both vegetable oil and sample, the specific heat value of 

the sample was easily calculated by using the following equation: 

 

(weight of sample) (∆tsample) (Cpsample) = (weight of oil) (∆toil) (Cpoil)  (6.5) 

 

Table 6.1: The recorded data sheet for the specific heat value test 

  FRP 1 (A) FRP 2 (B) FRP 3 (C) FRP 4 (D) 

Weight of Sample disc, (g) 21.8 18.6 18.8 21 
Temperature of Fryer Oil, (F) 130 130 130 130 
Weight of Vegetable oil, (g) 77.3 77.9 77.9 77.6 
Initial Temperature of Veg. oil, (F) 78 78.7 78 78.2 
Final Temperature of Veg. oil, (F) 85.8 85.5 84.8 85.9 

∆tFRP  44.2 44.5 45.2 44.1 

∆toil 7.8 6.8 6.8 7.7 

Specific Heat Value, (J/kg-C) 1041.0 1077.5 1045.0 1068.8 
  WS 1 WS 2 

Weight of Sample disc, (g) 42.9 39.6 
Temperature of Fryer Oil, (F) 130 130 
Weight of Vegetable oil, (g) 77.4 77.6 
Initial Temperature of Veg. oil, (F) 77.5 81.1 
Final Temperature of Veg. oil, (F) 88.4 90.3 

∆tFRP  41.6 39.7 

∆toil 10.9 9.2 

Specific Heat Value, (J/kg-C) 789.5 758.4 

∆tFRP = (Temperature of Fryer Oil) – (Final Temperature of Veg. oil) 

∆toil = (Final Temperature of Veg. oil) – (Initial Temperature of Veg. oil) 
 
FRP = Fiber Reinforced Polymer Disc 
WS = Wearing Surface Disc 
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Ta
Material FRP A FRP B FRP C FRP D 

Besides thermal conductivity, emissivity, and specific heat values, the density of 

the materials are also required. Table 6.2 and Table 6.3 show the density calculation for 

FRP and wearing surface (WS) material. 

ble 6.2 Density table of round 2” diameter FRP and WS specimen  

diameter, d (mm) 50.5 50.65 50.9 50.95 
diameter, d (m) 0.0505 0.05065 0.0509 0.05095 
thickness, t (mm) 5.37 4.77 4.93 5.16 
thickness, t (m) 0.00537 0.00477 0.00493 0.00516 
weight, m (kg) 0.0218 0 0 0..0186 .0188 021 
D .978 1934.51 1873.315 1995.338 ensity (kg/m3) 2025
Average FRP  1957    = .285
M A WS* WS*aterial WS*  B  C 
d 48.4 48.4 iameter, d (mm) 47.4 
d 0.04 0.048iameter, d (m) 0.0474 84 4 
thickness, t (mm) 5.7 5.9 5.25 
thickness, t (m) 0.00525 0.00 0.00557 9 
weight, m (kg) 0.0201 0.021 0.023 5 
Density (kg 3 2001.654 2164.016 /m ) 2168.78 
Average WS  211  = 1.483 
* Wearing Surface Coupon Sample 
 
 
Table 6.3 Density table of square FRP specimen 
S A (F B (FRP) C (FRP)  quare Specimen RP) 
V 0.00010731 0.00010682 0.00011035  olume, Calculated (m3) 
Weight (kg) 0.2051 0.2107 0.2143 Average 
Density, Calculated (kg/m3) 1911.3 1972.5 1942 1941.33 
 
S

R

ample Calculation: 

ound Spec.  Volume = [(πd2)/4]*t = mxm)0505.0(22
⎟⎟
⎞

⎜⎜
⎛

00537.0
2

 = 0.0000108m3 

q m = 0.00010731 m3 
.00010731m3 = 1911.3 kg/m3 

47 ⎠⎝
uare Spec.  Volume = b*h*t = 0.1002m x 0.1022m x 0.0105S

Density = Weight/Volume = 0.2051kg/0
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 Table 6.4 shows the thermal properties needed to create the FE model for this 

 

Material GFRP 

study. 

Table 6.4 Material properties of GFRP, wearing surface, and water 
Wearing Surface Water 

Mass Density, ρ (kg m-3) 1950.5* 2111.5 1000 
Conductivity, K (W m-1 oC-1) 0.325 0.63 0.6 
Specific Heat, Cp (J kg-1 oC-1) 1058 774 4180 
Emissivity 0.9 0.89 0.95** 
* Average of seven samples 

/3 html 

esti p per  ob lues shown in Table 6.4 

lis s le pe value for a glass fiber 

 polymer (GFRP) is 1200 J kg  oC  the experimentally determined value 

-1 rmo xpe ly determined thermal conductivity is 

-1 e ow le 3.1. Likewise, the mass density is 

hig he a

.3 FE MODEL 

ion of 0.3m x 0.6m. SI units were used 

roce fa rm  w re obtained 

as ers of l, with ng surfac top 

eck’s top flange as the bottom layer. For simplicity purposes, each 

of mesh in the thickness dire sh 

ntly 

affected by the properties of resin instead of the glass fibers, were assumed to be the 

same in all 3 directions. The FE model considered 3-dimensional heat transfer. 

** Obtained from http://www.engineeringtoolbox.com 6_447.
 

It is inter ng to com are the ex imentally tained va

to that of the pub hed value  from Tab 3.1. The s cific heat 

reinforced -1 -1 while

is at 1058 J kg  -1 oC . Furthe re, the e rimental

within 0.025 W m  C  of tho -1  value sh n in Tab

only 50.5 kg m  -3 her than t  value in T ble 3.1. 

 

6

The FE model in this study has a dimens

throughout the modeling p ss due to the ct that all the al properties e

in SI units. The FE model h  two lay  materia  weari e as the 

layer, and the FRP d

layer of material contains only one layer ction. Further me

refinement can be done for future study. The thermal properties, which are predomina
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Two planar surfaces were defined to represent each of the two materials. The 

planar surfaces were then extruded into solid element and merged at the boundary. To 

air-filled debond, a void was extrude g surface layer, thus 

e illed debond, water’s property was assigned to the 

s extruded from the wearing surface layer. 

simulate d from the wearin

creating an air gap. To simulat water-f

void that wa

 

Figure 6.7: Triangular solid mesh of the FE model. 

The mesh chosen for this study is a solid triangular mesh (Figure 6.7). Figure 6.8 

shows the mesh for the wearing surface layer with a debond embedded in the layer. 

 Two mesh sizes were utilized: 0.05m and 0.025m. Several cases of 0.05m mesh 

were generated for comparison purposes. The majority of the generated FE models in this 

study are of 0.025m mesh size. The thickness of the element for wearing surface and 

flange of FRP deck was typically 0.0095m, that is, each layer (FRP and wearing surface) 

was one element thick. The void (debond) thickness was of the order of 0.0025m. This 
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means 

 was used in conjunction with the 

heat flux. The heat flux was applied for 300 seconds (5 minutes) and was removed 

immediately after that. Only radiation is used for heat transfer between the material and 

the air. The entire model was applied with an initial body temperature of 20 °C and the 

ambient air temperature (boundary conditions) were also set to be 20 °C. Once the model 

was analyzed, readings were noted at 350 seconds, 500 seconds, and 650 seconds. 

the aspect ratio (element size:thickness) was 10:1 for the smaller mesh size and 

20:1 for the bigger mesh size in case of debonds. 

 A heat flux of 1000 watts/m2 was used to simulate the active heat source. This 

heat intensity is similar to that provided by the heating blanket discussed in Chapter 5. To 

properly monitor the heat transfer, a time-step function

 

Figure 6.8: FE mesh of wearing surface layer with embedded debond. 

 
6.4 RESULTS AND DISCUSSION 

Even though the model in Figure 6.9 has twice the mesh size as the model in 

Figure 6.10, they have a pretty similar temperature profiles at time equal to 350 seconds. 
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After 650 seconds, both profiles are still relatively close to each other. This indicates that 

the solution has achieved convergence. All other FE models generated from this point 

onward utilized the smaller (0.025m) mesh size. 

 

Figure 6.9: Temperature profile for a 0.1m x 0.1m x 0.0025m air-filled debond with 0.05m mesh, t=350s. 
 

 

Figure 6.10: Temperature profile for a 0.1m x 0.1m x 0.0025m air-filled debond with 0.025m mesh, t=350s. 
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Figure 6.11: Temperature profile for a 0.1m x 0.1m x 0.0025m air-filled debond with 0.05m mesh, t=650s. 

 

 

Figure 6.12: Temperature profile for a 0.1m x 0.1m x 0.0025m air-filled debond with 0.025m mesh, t=650s. 
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 Notice in Figure 6.10, the model exhibits a hotter region on the surface of the 

defects. That is consistent with the IRT image for an air-filled debond. Close inspection 

of FE results for all other 0.1m x 0.1m air-filled debond with various thicknesses reveal 

that as the thickness of the debond decreases, the amount of heat trapped above the 

debond decreases as well (Figures 6.13 and 6.14). 

 The surface temperature difference between the debonded and the defect-free area 

are recorded and plotted using Microsoft Excel (Figure 6.15). The Excel plot shows that 

the theoretical temperature changes are very much similar to that of actual temperature 

changes over time (Figure 5.29). However, the upward trend in Figure 5.29 lasted much 

longer than in case of the FE model shown in Figure 6.15. This could be due to the fact 

that Figure 5.29 (experimental result) is for larger defect sizes (in plan). 

 

 

Figure 6.13: Temperature profile for a 0.1m x 0.1m x 0.0025m air-filled debond with 0.025m mesh, t=350s. 
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Figure 6.14: Temperature profile for a 0.1m x 0.1m x 0.0015m air-filled debond with 0.025m mesh, t=350s. 
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Figure 6.15(a): Temperature profile of various 0.1m x 0.1m air-filled debonds minus defect-free. 
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Figure 6.15(b): Temperature profile of various 0.1m x 0.1m air-filled debonds minus defect-free (after 

removal of heat, 200 seconds comparison). 
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Figure 5.29: Temperature profile for defective minus defect-free for various air-filled debonds.  

 92



 Notice in Figure 6.15(a), the temperature difference seems to be converging after 

650 seconds. On the other hand, a quick look at Figure 6.11 shows that though the center 

of the debond area and the defect-free area are indeed leveling temperature wise, there is 

a distinct “ring” around the boundary of the debond. This phenomenon is not common in 

actual IRT test in the laboratory. The temperature difference in the laboratory setting for 

a 0.09” (0.0025m) thick air-filled debond is slightly lower than 2.5 oC (Figure 5.31) while 

it is slightly higher than 2.5 oC theoretically. Furthermore, the 0.03” (0.00076m) and 

0.06” (0.0015m) air-filled debonds are hovering around 1 oC difference (Figure 5.29) 

while it is also 1 oC difference theoretically (Figure 6.15b). 

 The temperature difference for 0.05m x 0.05m air-filled debonds is slightly 

sm g 

that a smaller size defect d mperature difference. 

aller than that of 0.1m x 0.1m (Figure 6.16). It is common knowledge in IRT imagin

oes indeed produce a lower surface te
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Figure 6.16: Temperature profile of various 0.05m x 0.05m air-filled debonds minus defect-free. 
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 As seen in Figure 6.17, the FE model for the water-filled debond clearly exhibits a 

lower surface temperature due to a much higher thermal conductivity. At the same time, 

water has a high specific heat value of 4180 J kg-1 oC-1 and retains heat much better than 

air, thus resulting in a higher temperature than the surrounding after a long period of time 

(Figure 6.18). Once again, results from water-filled debond FE model shows the 

characteristic pertaining to a water-filled debond. The temperature of the debond as well 

as the defect-free area was noted and plotted using Microsoft Excel (Figure 6.19). 

Unfortunately, there are no actual data of 4” x 4” (roughly 0.1m x 0.1m) water-filled 

debonds available for direct comparison with Figure 6.19. However, the temperature 

ore 

profile of a theoretical water-filled debond does exhibit some characteristics that could be 

found on actual water-filled debond. As seen in Figure 5.33 and Figure 6.19 (especially 

the region after 300 seconds), the curves show a general upward trend bef

 

Figure 6.17: Temperature profile for a 0.1m x 0.1m x 0.0025m water-filled debond with 0.025m mesh, 
t=350s. 
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Figure 6.18: Temperature profile for a 0.1m x 0.1m x 0.0025m water-filled debond with 0.025m mesh, 

t=650s. 
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Figure 6.19: Temperature profile of defective minus defect-free for 0.1m x 0.1m water-filled debonds. 
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Figure 5.33: Temperature profile of defective minus defect-free for 8” x 8” x 0.09” water-filled debond.  

 

reaching a maximum value followed by a decreasing trend. Based on the results from the 

air-filled debond models, the water-filled debond model should in theory work as well as 

the air-filled debond model, but this issue needs to be investigated further by using 

identical defect sizes in comparing the experimental results with the theoretical 

predictions from the finite element mode. 

 In Figure 6.20, it is clear that the defects partially filled with water exhibit some 

rather unusual results. The temperature profile for all the cases (with different saturation 

levels) are identical. Even though the model assumes a horizontal deck with air layer 

always over the water layer in case of partially saturated debonds, the thickness of the air 

layer is reduced with higher water saturation level, and the model should show some

di t 

 

fference. Thus, it can be concluded that the partially water-filled debond model is no
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valid at this point even though it was an evolution from the working air-filled debond 

model. This model for partially saturated case needs further investigation. 
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6.5 CONCLUSIONS 

 Based on the comparison between the actual laboratory data and the theoretical 

data generated using finite element model,

Figure 6.20: Temperature profile of defective minus defect-free for 0.1m x 0.1m partially water-filled 

 

 it is clear that the FE model has an acceptable 

since they may describe some of the field conditions more accurately.   

accuracy in describing the actual heat transfer process in FRP decks with air-filled 

debonds. Future studies should focus on improving the modeling around the boundary of 

debonds to better describe the actual heat transfer of an air-filled debond situation. 

 The fully water-filled debond models generated in this study have shown 

promising characteristics. However, the finite element results for partially water-filled 

debonds are not valid, and future effort should focus on successfully modeling such cases 
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Chapter 7 

EXPERIMENTAL RESULTS FROM GROUND PENETRATING 

RADAR 

 

 This chapter discusses in detail all the GPR tests conducted in this study using 

2.0GHz air-launched and 1.5GHz ground-coupled antennas. The first GPR test was 

conducted by placing a 3’ x 2’ wearing surface module on the top of a 3’ x 6’ low-profile 

(4” thick) FRP bridge deck with a water-filled defect planted underneath the 3/8” thick 

  

Figure 7.1:  The setup of the preliminary GPR test. 
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we g 

surface module was placed as shown in Figur st-processing, an 

aluminum tape was placed right before the sound wearing surface module and a steel 

rebar was placed right before the water-filled wearing surface module (Figure 7.1). The 

 RADAN 5.0 was used to process the collected GPR data. After applying a range 

gain of 5 as well as Finite Impulse Response (FIR) filters, the RADAN software resulted 

in the GPR scan shown in Figure 7.2.  

aring surface. Adjacent to it (on the same FRP deck), another defect-free wearin

e 7.1. To simplify the po

entire setup was then tested using the 2 GHz air-launched GPR system in the laboratory, 

with the signals recorded and processed later by using the GPR processing software 

(RADAN 5.0) provided by the GPR manufacturer. The GPR data was also converted to 

ASCII format for signal comparisons using EXCEL plots.  

 
Figure 7.2: GPR scan of the test deck. 
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As indicated in Figure 7.2, the aluminum tape, steel rebar, and the water-filled 

defect could be detected very clearly. This is because these objects result in higher signal 

reflection echoes in the GPR scan as shown by the bright white strips. It was later 

verified through the distance measurement that the position of the objects were accurately 

stated on the plot. To take a step further, GPR signals were extracted from each of the 

region listed on the plot above, as well as the defect-free wearing surface region. The 

signals were plotted in Excel and are shown in Figure 7.3. 
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Figure 7.3: Processed signals as Excel plot. 

 
 The amplitude of the aluminum tape is almost the same as that of the steel rebar. 

They are both metallic objects with more or less same plan sizes, and equal reflection 

amplitudes from these objects indicate that the GPR system is working perfectly. The 

location of the water-filled defect was directly under the wearing surface, and the 

reflection from the top surface of the wearing surface and the reflection from water-filled 

defect overlapped to give ris ect signal. When the defect-e to the resulting water-filled def
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free signal was subtracted from the water-filled defect signal, the resulting difference 

(Figure 7.4) showed the presence of the water-filled defect very clearly.  

 
Figure 7.4: Result of subtraction of defect-free signal from water-filled signal. 

 

7.1 FULL SCALE GPR TEST 

7.1.1 Detection of Wate

wearing surface (Figure 7.5). The surface of the FRP bridge deck was level with the rest  

r-filled and Air-filled Debonds 

 The GPR system used in this study was the SIR-20 system manufactured by 

Geophysical Survey Systems, Inc. (GSSI), New Hampshire. The SIR-20 GPR system 

with the vehicle mount boom was assembled on a hand-wheel cart instead of a vehicle so 

that the experiments could be conducted inside a laboratory setting. Because of the long 

length of the assembled GPR scanning system, a wooden platform with plan dimensions 

of 30ft x 9ft (9.14m x 2.74m) was constructed around the FRP test bridge deck with the 
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Figure 7.5: FRP Deck module with the wooden platform setup. 

 

 
Figure 7.6: Hardware configuration of SIR-20 GPR system with 2.0GHz horn antenna. 

2.0GHz Horn 
Ant

Processor 

enna 

Computer 

Mainframe 
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of the platform as can be seen in Figure 7.5. The hand-wheel cart housed the GPR  

mainframe processor as well as the computer, while an optical encoder based survey 

wheel was attached to the bottom of the cart itself. A 2.0GHz air-coupled horn antenna 

was attached to one end of the boom extension and the other end of the boom was bolted 

to the cart (Figure 7.6). In addition to the horn antenna, a 1.5GHz ground-coupled 

antenna was also used in the GPR experiments (Figure 7.7). 

 The GPR mainframe processor is used to excite the antenna and receive the 

collected data while the attached computer is used to configure the data acquisition 

settings and store the collected data. The same mainframe processor and the computer are 

used for both the 2.0GHz air-coupled horn antenna and the 1.5GHz ground-coupled 

antenna. These antennas were chosen since they offered the highest commercially 

available frequency in the air-coupled and ground-coupled categories, respectively. The 

higher the frequency, the shorter is the wavelength, and this results in better resolution of 

subsurface defects. 

Figure 7.7: 1.5GHz ground-coupled antenna. 
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 The focus of this experiments using GPR was to evaluate GPR’s ability to detect 

small subsurface defects. The defects were carefully designed and placed under the 

wearing surface modules. The 3’ x 2’ wearing surface module with defects were placed 

over the middle portion of the 3’ x 6’ FRP bridge deck, with two defect-free wearing 

surfaces (3’ x 2’ plan size) placed before and after it over the same deck. After scanning 

the deck setup using GSSI’s SIR-20 unit along with the 2.0GHz air-coupled horn antenna 

 air-launched antenna) and used to compute the dielectric constant of 

the wearing surface. The dielectric constant of the Transpo’s wearing surface was 

computed as 4. This is an important piece of information as the SIR-20 system will need 

user input of the dielectric constant of the first medium encounter by GPR. The dielectric 

constant of the FRP deck was found to be higher (~ 10).  

All subsequent GPR experimental data from the test FRP deck was collected 

using the survey wheel mode, which provides an accurate account of horizontal position 

in the scanning area. The survey wheel has an in-built optical encoder which provides 

distance information to th es the user to control the 

as well as the 1.5GHz ground-coupled antenna, the radar data were processed using the 

available RADAN post-processing software provided by the GPR equipment 

manufacturer. For research purposes, the data range for this experiment was set to 5 

nanoseconds to ensure a higher resolution at regions where the clarity of the data set is 

most crucial. At the same time, the system was set to collect 512 points (rather than 1024 

points) for each scan so that the GPR system could be operated at a faster pace. Prior to 

the actual experiments, a scan of the wearing surface as well as a metal plate reflection 

was taken (using the

e mainframe processor, and also enabl
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n  of radar waveforms acquired per unit distance. The survey wheel data allows the 

user to visually pin-point potential defective areas.  

In order to compare the data sets from different GPR tests later during the post-

processing phase of the experiment, all GPR data were collected using the same initial 

setting. Aluminum tapes were placed at the boundary of the FRP deck to mark the 

starting and ending points for each scan in order to provide a benchmark for post-

processing. Since aluminum tape reflects the entire electromagnetic wave energy incident 

on it, the amplitude of its reflection will be significantly higher than from other areas of 

the FRP deck (Figures 7.8 and 7.9). Also, as indicated by Figure 7.8, the 1.5GHz ground-

coupled antenna has the sensitivity to pick up even the webs of the FRP deck which are 

not visible in the GPR scan using the 2.0GHz air-coupled antenna (Figure 7.9). This is 

because in case of the air-coupled antenna, a significant portion of the incident 

electromagnetic energy is reflected off of the wearing surface (air-wearing surface 

boundary). On the other hand, the ground-coupled antenna is able to transmit more 

energy into the deck, which results in deeper penetration. 

 

umber

Figure 7.8: A typical GPR scan of an FRP deck using 1.5GHz ground-coupled antenna. 

 

 
Aluminum tape 
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Figure 7.9: A typical GPR scan of an FRP deck using 2.0GHz air-coupled horn antenna. 

  

 In this experiment, three passes of GPR scanning were conducted along the length 

of the FRP deck. Each length pass included a defect-free wearing surface module 

followed by a defective wearing surface module (with defect attached to the bottom side 

of the wearing surface, thus simulating debonds) and then another defect-free module. By 

collecting multiple (three in this case) GPR passes for the test deck at equal distances (9” 

or 228.6mm) apart, RADAN post-processing software enabled the creation of a 3D 

profile of the scanning project (Figure 7.10). This 3D profile (obtained using ground-

coupled antenna in this case) is very useful as it allows user to visually identify any 

detectable defects and pinpoint its exact location through the 3D coordinate system. Most 

3D data have to be gained (amplified) during the post-processing stage in order to 

identify smaller defects.  

Aluminum Tape 
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ground-coupled antenna. 

 was applied to all data sets. The data were then gained in order 

to identify any subsurface defects. Figure 7.11 shows the GPR scan after the FIR was 

applied to the original (raw) data set shown in Figure 7.8 (ground-coupled antenna). It 

should be noticed that the uniform “top” layer that is visible in Figure 7.8 no longer exists 

after the FIR was applied (Figure 7.11). Also, the application of gain has made the 

features in the GPR scan look much sharper in Figure 7.11. 

Figure 7.10: 3D profile created by collecting three passes of GPR data at equal distances (9”) apart using 

 

 There are several few post-processing options available through the use of the 

post-processing software, RADAN. Process such as zero-correction, will remove the gap 

between the antenna and the top surface of the first medium. This process essentially 

enables the user to identify the depths of detectable defects. Another one of the many 

post-processing options available is the Finite Impulse Response (FIR) filter. FIR 

filtering removes any constant system noise generated within the GPR system. For this 

experiment, the FIR filter
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Figure 7.11: GPR processed data after FIR filter was applied to the raw data in Figure 7.8. 

 

 

could be easily detected by using a 1.5GHz ground-coupled antenna (Figure 7.12). The 

FRP Web 

Large water-filled defect (4” x 4” x 0.09” or 101.6mm x 101.6mm x 2.25mm)

bright spot in the middle of the deck is due to the presence of the water-filled debond. 

The predicted location was later confirmed by measurement. 

 
 

Figure 7.12: 4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) water-filled debond shown in 3D profile 
using ground-coupled antenna. 

 

Water-filled debond 
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A 4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm)  air-filled defect could not be 

detected using the 3D GPR profile (Figure 7.13), which was found to be very noisy. 

 

Figure 7.13: 4” x 4” x 0.09” (101.6mm x 101.6mm x .25mm) air-filled debond in the central region of the 

 

orn antenna profile (Figure 

7.14) indicated a high degree of wave attenuation. 

 

 2
FRP deck is not visible in this 3D profile obtained using ground-coupled antenna. 

3D profiles of every data set (with different configuration of subsurface defects) 

were generated. It was noted that the ground-coupled antenna’s data produced a clearer 

and more useful 3D profiles (e.g., Figure 7.12) while the h

  

Figure 7.14: 3D profile generated by the air-coupled horn antenna. 
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As shown in Figure 7.14, the features were sparse and not uniform. The features 

only show noise, and one cannot make a firm conclusion based on the 3D profile 

obtained using the air-coupled antenna. The ground-coupled antenna’s 3D profile could 

easily detect subsurface water-filled debonds (Figure 7.12) of size 4” x 4” x 0.09” 

(101.6mm x 101.6mm x 2.25mm) and greater.  

While 3D profile offers a user friendly way to identify subsurface defects, there 

are many instances where inspecting and even processing the 2D scan profile could yield 

better results. For instance, the amplified FIR scan of 4” x 4” x 0.03” (101.6mm x 

101.6mm x 0.75mm) water-filled defect could be identified through the 2D profile 

onclude t

easily b

nother characteristic of the water-filled debond is that it tends to create an 

upward “wave”. The same upward wave is very obvious in the middle region of the scan 

in Figure 7.11, which is once again the 4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) 

water-filled defect. By inspecting the 2D scan, the smallest defect that could be detected 

was 2” x 2” x 0.06” (50.8mm x 50.8mm x 1.5mm) water-filled debond (Figure 7.16). By 

knowing the characteristic of a water-filled debond (upward “wave”) as well as obvious 

visual indications, GPR proved to be an extremely useful tool in detecting subsurface 

water-filled debonds between the wearing surface and the underlying FRP bridge deck

(Figure 7.15) but not via the 3D profile. By visual inspection of Figure 7.15, one can 

hat the middle portion of the scan is unusual. Since the aluminum tapes can c

e spotted towards the beginning and the end of the 2D scan, the distance of the 

“unusual” spot to one of the aluminum tapes could be measured. This measurement 

confirmed that the unusual spot was indeed the 4” x 4” x 0.03” (101.6mm x 101.6mm x 

0.75mm) water-filled debond. 

A

. 
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Figure 7.15: 4” x 4” x 0.03” (101.6mm x 101.6mm x 0.75mm) water-filled debond seen in a 2D GPR scan 
obtained using ground-coupled antenna. 

 

Unfortunately, the air-filled defects were not visible in the 2D or 3D GPR profiles 

due to the fact that the dielectric constant of air is relatively close to FRP. In the case of 

water-filled defect, the complex dielectric permittivity of water is significantly higher 

compared to the FRP which makes the amplitude of the water-filled debond to be 

significantly higher. While visual inspection of the 2D and 3D plot is an acceptable tool 

for detecting subsurface defects, a more systematic approach such as automated 

algorithms is needed for future advancement of the inspection system. Besides, it is a 

good practice to verify the validity of the visual inspection of the 2D and 3D profiles by 

other means. To achieve these goals, the individual scans at the location of the defects 

and at a defect-free area were identified and converted into ASCII format. These ASCII 

files were then imported into Excel spreadsheet. Simple analysis was done to confirm the 

validity of visual inspection of 2D and 3D profiles.  

Unusual spot Aluminum tape 
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” x 0.06” (50.8mm x 50.8mm x 1.5mm) w

Water-filled debond 

Figure 7.16: 2” x 2 ater-filled debond. 

A 5 to 6 character code system was used to help analyze this set of data. The first 

two characters represent the size of the subsurface debond in inches. The third character 

represents the thickness of the defect (1 for 0.03” or 0.75mm thick, 2 for 0.06” or 1.5mm 

thick, and 3 for 0.09” or 2.25mm thick). The fourth character was a “W” for water-filled 

defects or an “A” for air-filled defects. The last one or two character would be “GC” 

which stands for ground-coupled antenna, or “H” which stands for horn antenna. For 

example, a “443WGC” means a 4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) water-

filled debond scan with a 1.5GHz ground-coupled antenna. “DFGC” is used occasionally 

to represent the defect free waveform collected using the ground-coupled antenna. 

As indicated in Figure 7.17, the 443WCG, i.e., 4” x 4” x 0.09” (101.6mm x 

101.6mm x 2.25mm) water-filled debond can be easily detected because of its higher 

than usual amplitude compared to the defect-free waveform. Notice that the 223WGC, or 

2” x 2” x 0.09” (50.8mm x 50.8mm x 2.25mm) water-filled debond has a comparable, but 
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smaller amplitude waveform. Though the amplitude is smaller than the 443WGC case 

(yet slightly higher than the defect free waveform), the 223WGC is obviously a water-

filled defect because its phase is similar to 443WGC. Also notice that the 222WGC 

waveform, which corresponds to a 2” x 2” x 0.06” (50.8mm x 50.8mm x 1.5mm) water-

filled debond, is showing a slight time-shift. The waveforms corresponding to the 0.03” 

(0.75mm) thick water-filled debonds (221WGC and 441WGC) are more or less aligned 

with the defect-free waveform. While it is clear that the signal amplitudes in these 

waveforms (221WGC and 441WGC) are slightly ct-free waveform 

(DFGC), such distinction may not be obvious in the field data. Thus, it would be difficult

to detect 0.03” (0.75mm) thick water-filled debonds, while water-filled debonds with 

larger t

 higher than the defe

 

hicknesses (≥ 0.06” or 1.5 mm) could be detected. 

To further investigate this result, signal subtraction was carried out. The defect-

free signal was subtracted from the signals corresponding to the various water-filled 

debonds. Figure 7.18 shows the waveforms for the various water-filled debonds after the 

subtraction was carried out. 
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Figure 7.17: Comparison of signal amplitudes for GPR waveforms (g
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Figure 7.18: Waveforms corresponding to various debonds after subtraction of defect-free waveform 
(ground-coupled antenna). 
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As seen from Figure 7.18, 223WGC and 443WGC show higher amplitudes while 

the other waveforms show significantly lower amplitudes. Though the laboratory setting 

allows the smaller debonds to be detected through such GPR waveform comparisons, the 

amplitude of such debonds are not significant enough to confidently classify as defect, 

especially in the field setting when many other factors could give rise to signals of 

comparable amplitude.  

A similar analysis was conducted for the GPR waveform from subsurface 

debonds obtained using air-coupled horn antenna. Unfortunately, as seen in Figure 7.19, 

the horn antenna waveforms yield no useful information. Also, the spikes in Figure 7.19 

are the result of noises introduced during the processing of GPR data. 
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Figure 7.19: Comparison of signal amplitudes for GPR waveforms (air-coupled horn antenna) from variou

 

s 
water-filled debonds. 
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In lieu of previous results which indicated the inability of 2.0GHz air-coupled 

antenna GPR system to detect smaller defects (2” x 2”, 4” x 4” defects with thickness 

varies from 0.03” to 0.09”), various larger size defects, such as 8” x 8” (203.2mm x 

203.2mm) and 12” x 12” (304.8mm x 304.8mm) debond, were created to accurately 

identify the minimum size and thickness defect detectable by the 2.0GHz air-coupled 

antenna GPR system. The defects’ thicknesses ranged from 0.03” (0.75mm) to 0.09” 

(2.25m

ormity of the data 

collected. In this case, the gain during the data acquisition was set to 10 times, while 

lowering the range down to 5 ns with 1024 points collected with each pass. 

The data were then analyzed by using the Radan 6.0 software. Finite Impulse 

Response (FIR) was applied to all the data, and a 3D model was created as well. As noted 

in the previous reports, the key to analyzing GPR data is to look at a combination of the 

2D image, 3D image, and the signal analysis in order to draw conclusions. 

Results show that the 2.0GHz horn antenna GPR system is not capable of 

detecting subsurface air-filled defects (Figure 7.21). As such, the next logical step is to 

apply the FIR in hope of eliminating the constant signal noise thus improving the quality 

of the 2D plot. Unfortunately, the result of FIR did not reveal any helpful result either. 

Finally, the files were stitched together to form a 3D image. As with the procedures 

m). The layout of the defects is shown in Figure 7.20. 

 Data were collected by using the 2.0GHz horn antenna GPR system on the 

modules with air-filled defects follow by water-filled defects. As with any other GPR 

procedure, a set of fixed parameters were established to ensure unif

before, it too did not reveal any conclusive result. By knowing the exact location of the 
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defects

  
Figure 7.20: Layout of defects. 

 beforehand, 10 scans of data were extracted from the location of each defect and 

converted into ASCII format for signal analysis. The average of the 10 scans was used. 

 

12” x 12” x 0.03” 8” x 8” x 0.03” 

” 8” x 8” x 0.06” 8” x 8” x 0.09

12” x 12” x 0.06” 

36” 

7” 7” 

8” 

72” 

6” 
8” 

4” 7” 

12” 

30” 
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Figure 7.21: 2D image of an air-filled debond scan. 

 

Figure 7.22 shows the GPR signals corresponding to the air-filled defects data 

prior to applying FIR. Each waveform corresponds to various air-filled debonds after 

subtraction of defect-free waveform. The maximum amplitude of each waveform is about 

4000 points within each other, hovering around the 6000 point mark. Compared to the 

same signal analysis for a ground-coupled antenna (Figure 7.23), the signal amplitudes 

(after subtraction of defect-free waveform) for the air-filled defects clearly is not  

significant enough to show any promising results (note that all analysis figures use a 

70,000 point scale for easy comparison). In hopes of getting better responses, a FIR 

analysis was done to each set of data, prior to taking the average value. Once again, it did 

not reveal any compelling results, since the resulting signals had comparable signal 

strengths as the original data sets (Figures 7.24 and 7.22).  

A result of an imperfection 
on the platform setup 
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Figure 7.22: Signals corresponding to the original air-filled defects data after subtraction of defect-

 

 

free waveform (horn antenna). 

-30000

-20000

-10000

0

10000

20000

30000

40000

1 51 101 151 201 251 301

A
m

pl
it

351 401 451 501

Data Point

ud
e

223WGC 443WGC 441WGC 222WGC 221WGC
 

Figure 7.23: Waveforms corresponding to various water-filled debonds after subtraction of defect-free 
waveform (ground-coupled antenna). 
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Figure 7.24: Signals corresponding to the air-filled defects data, after subtraction of defect-free 
veform, with FIR (horn antennawa ). 

 Quick glance at the 2D image of a water-filled defect scan (horn antenna) showed 

that it is very promising. As easily seen in Figure 7.25, there is a questionable spot in the 

2D image. Note that this is the scan of the deck portion with a 12” x 12” x 0.03” water-

filled defect at 12” from the beginning of the scan and another 8” x 8” x 0.06” water-

filled defect at 12” from the end of the scan. However, it is not conclusive enough to 

draw a conclusion based on only one 2D image. Hence, FIR filter was applied to the 

original set of data (Figure 7.26).  

Interestingly, the defect that was first identified by the 2D image has disappeared. 

However, the FIR image (Figure 7.26) did show the second water-filled defect, which has 

a smaller plan size but larger thickness at 0.06”. Figures 7.27 and 7.28 show the 2D 

im t. 

Likewise, Figures 7.29 and 7.30 show the 2D image of the original and FIR scan for the 

. 

age of the original and FIR scan for the 12” x 12” x 0.06” water-filled defec
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8” x 8” x 0.03” water-filled defect at 8” from the beginning of the scan and 8” x 8” x 

0.09” water-filled defect at 8” from the end of the scan. Figures 7.27 and 7.28 clearly 

show the 12” x 12” x 0.06” water-filled defect. Figure 7.29 did not reveal anything while 

Figure 7.30 clearly shows the 8” x 8” x 0.09” water-filled defect.  

To further evaluate the data, a 3D scan was constructed (Figure 7.31). As usual, a 

FIR version of the 3D scan was constructed as well for comparison purposes (Figure 

7.32). 

 

 

Figure 7.25: 2D image of a water-filled debond scan. 

Questionable spot 

 

Figure 7.26: 2D image of a water-filled debond scan with FIR. 

A result of an 

water-filled defect 8” x 8” x 0.06” 
water-filled defect 

imperfection on the 
platform setup 



 

12” x 12” x 0.06” 
water-filled defect 

Figure 7.27: 2D image of the original scan for the 12” x 12” x 0.06” water-filled defect. 

 

Figure 7.28: 2D image of the FIR scan for the 12” x 12” x 0.06” water-filled defect. 

 

 

Figure 7.29: 2D image of modules with 8” x 8” x 0.03” and 8” x 8” x 0.09” water-filled debonds. 
 
 

12” x 12” x 0.06” 
water-filled defect 

8” x 8” x 0.09” 
water-filled defect 

 

Figure 7.30: 2D image of m

 
 

odules with 8” x 8” x 0.03” and 8” x 8” x 0.09” water-filled debonds with FIR. 
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Figure 7.31: 3D plot of the entire deck module with various water-filled defects. 

 

 

A result of an 
imperfection on the 
platform setup 

A result of 
interpolation 
between two defects 

Figure 7.32: FIR 3D plot of the entire dec dule with various water-filled defects. 

 

 The result from Figure 7.31 is consistent ages. The only 

visible water-filled defect th

debond while the other defects are not as conclusive. While looking at Figure 7.32 and

results. Due to the nature of the software (interpolating data between scans), the 8” x 8” x 

k mo

with all the original 2D im

at can be detected was the 12” x 12” x 0.06” water-filled 

 

comparing it with the 2D images, it is clear that FIR did indeed provided a better overall 

 123



0.06” and 8” x 8” x 0.09” water-filled defects are shown as one big defect on the 3D plot 

(Figure 7.32).  

 Finally, a close look at the signal analysis further strengthens the previous 

findings. In Figure 7.33, it is clear that 12” x 12” x 0.06”, 8” x 8” x 0.06”, and 8” x 8” x 

0.09” water-filled defects (after subtracting the defect-free waveform) have a 

significantly higher amplitude compared to other defects with smaller thicknesses. The 

signal analysis for FIR data sets (Figure 7.34) shows that 12” x 12” x 0.06” water-filled 

defect can be easily detected but the rest of the waveforms are not as clear cut. 
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Figure 7.33: Signal analysis of the water-filled defects data. 
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Figure 7.34: Signal analysis of the water-filled defects data with FIR. 

 

 In summary, the 2.0GHz air-coupled antenna GPR system is not capable of 

detecting any air-filled defects with thicknesses up to 0.09” (2.3mm). By combining the 

2D images, 3D images, and signal analysis of both original data and data sets applied 

with Finite Impulse Response (FIR) filter, the smallest water-filled defect that can be 

detected by the 2.0GHz air-coupled antenna is 8” x 8” x 0.06”.  

 Further GPR tests were all conducted using the 1.5GHz ground-coupled antenna. 

All data acquisition was conducted using a 1024 e range 

of 4ns for top flange defect detection and 10ns for bottom flange defect detection. A 

further discussions on the parameter settings is provided later in section 7.2 

 The following defect layout (Figure 7.35) was used to conduct a series of GPR 

tests using the 1.5GHz ground-coupled antenna. 

 

points record length, with a tim
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st. 
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72” 

7” 7” 

8” 

Figure 7.35: Layout of the defect for 1.5GHz ground-coupled antenna GPR te
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30” 



As seen in Figures 7.36 and 7.37, the two water-filled debonds can be clearly 

identified. The same process was repeated to identify other water-filled debonds and the 

results are shown in Figures 7.38 to 7.41. It can be seen from these figures that the GPR 

scans obtained after applying the to the or  sets show the defect 

locations much more clearly. Notice that the size of the defect shown on the GPR scans is 

directly dependent on the thickness of the defect rather than its planar size. 

 FIR filter iginal data

 

Figure 7.36: Results of GPR test showing 12” x 12” x 0.03” and 8” x 8” x 0.06” water-filled debonds. 

 

Figure 7.37: Results of GPR test (FIR) showing 12” x 12” x 0.03” and 8” x 8” x 0.06” water-filled debond. 

 

 

8” x 8” x 0.06” water-
filled debond 

12” x 12” x 0.03” water-
filled debond 

12” x 12” x 0.03” water-
filled debond 

8” x 8” x 0.06” water-
filled debond 
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12” x 12” x 0.06” 
water-filled debond 

 

Figure 7.38: Results of GPR test showing 12” x 12” x 0.06” water-filled debond. 

 

 

12” x 12” x 0.06” 
water-filled debond 

Figure 7.39: Results of GPR test (FIR) showing 12” x 12” x 0.06” water-filled debond. 
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Figure 7.40: Results of GPR test showing 8” x 8” x 0.03” and 8” x 8” x 0.09” water-filled debond. 

 

 

Figure 7.41: Results of GPR test (FIR) showing 8” x 8” x 0.03” and 8” x 8” x 0.09” water-filled debond. 

8” x 8” x 0.03” wat
filled debond 

8” x 8” x 0.09” water-
filled debond 

er-

8” x 8” x 0.03” wat
filled debond 

 water-er- 8” x 8” x 0.09”
filled debond 
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Figure 7.42: 3D map showing all the water-filled debonds. 

 As 

en above, the 3D representation is an extremely convenient tool to identify defect 

 

(8” x 8” and 12” x 12”). A further study of the 1.5GHz ground-coupled antenna was done 

by performing a GPR test on an FRP deck with the debond configuration shown in Figure 

7.43. This configuration included many smaller size defects. 

As shown in Figures 7.44 and 7.45, the smaller water-filled debonds can also be 

detected. Notice in Figure 7.44, only three distinctive distorted regions can be identified

f  

Figure 7.45, all four water-filled debonds can be clearly identified. This indicates that 

while the original 2D scan may be able to display the small water-filled defects, it is best 

first apply the FIR filter to eliminate any system noise thus greatly improving the results. 

Also note that no air-filled debonds could be clearly identified in these scans. 

Figure 7.42 shows the 3D map of the location of all the water-filled debonds. 

se

locations. 

The 1.5GHz antenna proved to have no problems in identifying the larger defects

 

rom the original scan while there are four water-filled debonds altogether. Whereas in
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Figure 7.43: Layout of the defects for 1.5GHz ground-coupled antenna GPR test. 
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Figure 7.44: Results of GPR test showing smaller sized water-filled debonds. 

 

 

Figure 7.45: Results of GPR test (FIR) showing sm d debonds. aller sized water-fille
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Figure 7.46: 3D map showin e water-filled debonds. 

 

As with the larger water-filled debonds, a 3D map can be constructed through the 

data sets applied with FIR. As shown in Figure 7.46, all the four water-filled debonds are 

clearly displayed on the 3D map at their respective locations. 

 

g all th

 

Figure 7.47(a): 2D GPR data collected using linear gain setting.
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Figur ting. 

 

 

ear gain data in Figures 

7.47(a) and 7.47(b) certainly provided a larger intensity. However, the original or raw 

linear gain data (before applying FIR filter) in Figure 7.47(a) is more difficult to interpret 

than the raw constant gain data in Figure 7.38.  

 

7.1.2 Delamination Detection Using GPR 

 One of the goals of this research was to determine the ability to detect 

delamination within the top and bottom flange of FRP decks without requiring access to 

the bottom side of the deck, that is, by conducting nondestructive measurements only 

from the top surface of the FRP deck. Infrared thermography could not be used in this

case since there is ch affect the heat 

transfer through the deck, and also since the infrared technique can only detect detects 

e 7.47(b): 2D GPR data (FIR) collected using linear gain set

Figures 7.47(a) and 7.47(b) show the 2D data acquired using a “linear” gain 

(increasing with depth), while all previous data was acquired using constant gain. By 

comparison with Figures 7.38 and 7.39 (constant gain), the lin

 

 a wide gap between the top and bottom flanges whi
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over shallow depths. GPR, on the other hand, provides deeper penetration capability. 

Therefore, its use was investigated for defect detection in the bottom flange of an FRP 

deck.  

A 4” (101.6mm) thick low profile FRP deck (with properties as described earlier) 

was structurally tested until failure occurred (Figures 7.48(a) and 7.48(b)). The defect-

free wearing surface modules were placed on the top of the deck. The 1.5GHz ground-

coupled antenna was used to scan the failed deck. Ten nanosecond range was used 

instead of the previous five nanosecond range since the bottom flange was of concern.   

The 3D  region within 

e low profile FRP deck. Though the failed region is clearly observable due to the 

rom the FRP deck can be seen clearly in 

e defect-free 2D profile (Figure 7.51) but the web echo signals attenuated significantly 

a  flange 

 profile (Figure 7.49) reveals the exact location of the failed

th

severity of the damage, it is encouraging to note that GPR could detect defects as far 

down as 4” (101.6mm). To verify the result, FIR filtering was applied to the 2D data and 

this 2D scan was observed. The 2D profile of the GPR data revealed the same 

information. It can be seen from Figure 7.50 (failed region) and Figure 7.51 (defect-free 

region) that the severity of the damage causes the radar echo from the webs to be 

attenuated extensively. The web echo signals f

th

at dam ged regions (Figure 7.50). While the 2D profile may not show the bottom

clearly, the 3D profile of this experiment proves that GPR has potential for locating 

defects at greater depths (web and possibly bottom flange).  
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(a) 

 

(b) 
Figure 7.48: Pictures showing 4” thick low profile deck that was loaded until failure. 
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Figure 7.49: 3D GPR profile of the 4” thick low profile failed deck. 
 

 
 

Figure 7.
 

50: 2D GPR profile of the “failed region” in the 4” thick low profile failed deck. 

Web Echo
Region where web 
echo is not visible 
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Figure 7.51: 2D GPR profile of the “defect-free ion” in the 4” thick low profile failed deck. 

To further investigate the viability of GPR as a tool to detect delaminations within 

top and bottom flanges of a FRP bridge deck, a delaminated module was used to perform 

GPR test using 1.5GHz antenna. Figure 7.52 shows the configuration of the 

delami . A defect-free wearing surface 

was placed over the top ns) of the FRP deck. Figure 

illed delamination is 

clearly visible. Apparently, it is easy to locate a 3” x 3” x 0.06” water-filled delamination 

within the top flange. However, GPR is unable to detect the air-filled delamination. 

 The bottom flange delamination could be easily simulated by inverting the entire 

bridge deck module upside down and supported on both ends to ensure a gap between the

 urface 

was still placed over the top flange but the delaminations were inside the bottom flange. 

Another round of GPR test was conducted using a linear gain (to magnify the weakened 

Web Echo

 reg

 
 

nations (also see Figures 4.13 to 4.16 in Chapter 4)

 flange (with embedded delaminatio

7.53 shows the GPR scan in which only the 3” x 3” x 0.06” water-f

 

bottom face of the bridge deck module and the ground. In this case, the wearing s
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signal towards the bottom). Comparing Figures 7.54 and 7.55, it is clear that the 1.5GHz 

ground-coupled antenna is capable of detecting water-filled delaminations within the 

bottom flange of FRP decks. Notice, however, that unlike the case of delamination within 

the top flange (Figure 7.53), the location of the water-filled delamination cannot be 

pinpointed exactly in case of the bottom flange e radar echo is more  (Figure 7.55) since th

 
Figure 7.52: Defect layout of delamination module. 

 

 

3” x 3” x 0.06” 
Delamination 

Figure 7.53: 2D scan of delamination embedded within top flange of FRP bridge deck module. 
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Figure 7.54: 2D scan of defect free FRP bridge deck module. 

 

Figure 7.55: 2D scan of delamination embedded within bottom flange of FRP bridge deck module. 

3” x 3” x 0.06” water-filled 
delamination 
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spread out due to larger depth of the delamination. Furthermore, it was noted that it is 

actually harder to locate water-filled delamination in the top flange with a linear gain data 

set (Figure 7.56) than a constant gain data (Figure 7.53). On the other hand, linear gain 

helped in detecting delamination in the bottom flange (Figure 7.55). The 3D map using 

constant gain is shown in Figure 7.57 and the water-filled delamination is clearly visible. 

 

Figure 7.56: 2D linear scan of delamination embedded within top flange of FRP bridge deck module. 

 

Figure 7.57: 3D map of delamination module constructed by the constant gain data set. 
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7.2 PARAMETER SETTINGS 

7.2.1 Record Length (512 Points versus 1024 Points) 

The 1.5GHz GPR system is capable of acquiring data using different record 

lengths. Obviously, data collection using more points per waveform in any given scan 

will improve its resolution. Consequently, the speed at which 1024 data can be acquired 

will be slower than that of 512 points. Laboratory tests showed that data acquisition 

speed is not of real concern between 512 and 1024 point settings since they are relatively 

close to each other. However, further studies should be done to evaluate the importance 

of data acquisition speed in the field using 512 points versus 1024 points.  

In terms of data quality, it is clear that 1024 point setting does provide a better 

resolution (Figure 7.58), which could be important for detecting defects with smaller 

sizes. As for defects with larger sizes, there is no distinct advantage of using 1024 points 

versus 512 points. Overall, a 1024 point data acquisition is recommended for subsurface 

defect detection in FRP bridge decks since this setting provides better resolution for 

smaller defect sizes. 

  

(a) (b) 

Figure 7.58: (a) 512 points 2D scan  (b) 1024 points 2D scan. 
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7.2.2 Constant Gain versus Linear Gain 

gain is a function that could be 

applied

cient in  

Before the actual data acquisition process begins, 

 to all the subsequent data collection. It is important to understand the dynamics of 

applying gain to a set of data. While some argue that the data could be collected first and 

a gain function (linear or constant) can be applied later during the post-processing, this 

laboratory study has found that the quality of data is far better if gain is applied during 

the data acquisition stage itself. Post-processing gain could again be applied to such data. 

Figure 7.59 shows a 2D GPR scan obtained using a constant gain for a 10ns range 

data collection. It is evident from this figure that a constant gain is not suffi

 

Figure 7.59: A constant gain 2D scan of 10ns range. 
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record ng vital information needed for defeci t detection in the bottom flange. In fact, no 

useful i

. It is 

strongly recommended that proper gain setting be calibrated upfront according to the 

equipment manufacturer’s suggested procedure. Proper use of gain function allows for 

acquisition of better quality data, which will ensure a successful GPR test.  

 

7.3 BLIND TEST 

A full scale FRP bridge deck (3’ x 6’) was cast with an integral wearing surface. 

During casting, six water-filled pouches (frozen initially to facilitate easy placement) of 

various sizes and thicknesses were added between the wearing surface layer and the FRP 

bridge deck to simulate water-filled debonds. Figure 7.60 shows the defect layout. After 

the wearing surface was cured for 24 hours, a GPR test using 1.5GHz ground-coupled 

antenna was conducted while the water-filled debonds (now with liquid water) between 

the surfaces were still intact. Since this was a blind test, the deck specimen was prepared 

by someone else and the locations of the defects were not known to the GPR surveyor.  

nformation can be obtained beyond 4 ns range.  

Traditionally, the application of linear gain does not affect the quality of a top 

flange 2D scan. However, when the defect size gets smaller, the magnified signal may 

interfere with the signal of the small defect thus affecting the detection of such defect. At 

the same time, a linearly (or exponentially) increasing gain is necessary for defect 

detection in the bottom flange.  

The actual gain value that is required will vary from surface to surface, and it is 

also dependent on environmental parameters such as moisture content of the deck
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Figure 7.60: Defect layout for blind test. 
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Figure 7.61: FIR 2D scan of blind test revealing first two defects. 

 

Figure 7.62: FIR 2D scan of blind test revealing third defect. 

 

Figure 7.63: FIR 2D s  blind test reveali he fourth defect. can of ng t

 

Figure 7.64: FIR 2D scan of blind test revealing the fifth defect. 

Defects 

Defect 

Defect 

Defect 
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Eight longitudinal scans were collected at 4” spacing from right to left. The first 

scan was collected 4” away from the edge of the deck. From Figures 7.61 and 7.62, one 

can clearly identify 3 defects. Figure 7.63 shows the defect because of the disappearance 

of the high intensity spike near the end of the scan. In Figure 7.64, though there appears 

to be a defect, further testing was needed to confirm its existence. Besides, only 5 defects 

were found in the first round of testing, thus requiring a refined round of testing to 

identify the last defect. The first round of GPR testing was done with 4” scan spacing, 

thus there’s a possibility that a sm defect could go unnoticed due to 1.5GHz 

antenna’s sm

between two of the first round scans. Ultimately, the entire blind test was conducted with 

a 2” spacing data collection. 

 In Figure 7.65, the sixth defect can be seen clearly in the early part of the scan.

The other defect s  identified before. 

Since it’s showing up in both scans, it is a large 4” x 4” defect. In Figure 7.66, the 2D 

scan basically confirmed the fifth defect that was detected previous

 

aller 

all footprint. Therefore, a total of seven additional scans were taken, each in 

 

hown towards the end of the scan is one that was

ly from Figure 7.64. 

 

Figure 7.65: FIR 2D scan of blind test revealing the sixth defect. 

Defect 
Defect 
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  Notice that GPR is excellent in detecting the water-filled debonds, but was 

unable to provide important information such as the planar size of the defects or its 

thickness. Future study should attempt to quantify the results in hope of categorizing the 

defects by type, size, and thic

Figure 7.66: FIR 2D scan of blind test confirming the fifth defect shown in Figure 7.64. 

kness.  

 Figure 7.67 shows the 3D plot of the defect location. The 1.5GHz ground-coupled 

antenna is proven to be extremely effective in detecting water-filled debond. 

 

 

Figure 7.67: 3D map showing the location of the water-filled defects. 

 

Defect 
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Based on the post processing results, it is concluded that 2.0GHz horn antenna 

 is not capable of detecting air-filled defects regardless of size and thickness. 

e general consensus regarding the low effectiveness of any GPR 

system efects. By combining the 2D images, 3D images, and signal 

analysis of both original data and data sets applied with Finite Impulse Response (FIR)

the sma d horn 

antenna was found to be 8” x 8” x 0.06”. 

. Although it has a 1” footprint size on each side of 

the center line, the signal decreases drastically. Hence, in order to detect a very small 

defect, such as a 1” x 1” debond, the antenna has to go directly over the defect. Not only 

ply not 

ractical considering the large size of the area usually surveyed using GPR system. 

In order to conduct a successful GPR test, a time range of 4ns is recommended for 

defect detection in the top flange while 10ns range should be used for the bottom flange. 

Furthermore, in conjunction with 10ns range, a linearly increasing gain is needed to 

magnify the echo signals from the bottom flange and produce meaningful results. 

Laboratory test did not find any advantage in using 512 point record length over 1024 

points in terms of acquisition speed. However, the 1024 point record length provided 

somewhat better resolution. Thus it is recommended that any GPR tests on FRP bridge 

decks be conducted using 1024 points record length. 

The blind test conducted in this study proves that 1.5GHz can easily detect water-

filled debonds as small as 2” x 2” x 0.06”.  

7.4 CONCLUSIONS

GPR system

This is consistent with th

 for air-filled d

, 

llest water-filled defect that could be detected by the 2.0GHz air-couple

On the other hand, the 1.5GHz ground-coupled antenna proved to be an excellent 

tool in detecting subsurface water-filled defects (both debonds and delaminations). The 

smallest water-filled debond that could be detected was 2” x 2” x 0.06” given the 

footprint size of the 1.5GHz antenna

is the probability of achieving such feat a monumental task in the field, it is sim

p



Chapter 8 

In summary, results have shown that while commercially available heaters are 

ts in a larger scale specimen since the smallest 

air-fille

detecting water-filled defects. 

better 

result f

4” x 4” x 0.09” (101.6mm x 101.6mm x 2.25mm) water-filled debond can be detected on 

 

(1.5mm  

 also showed that the defect clarity in colder 

CONCLUSIONS AND RECOMMENDATIONS 

  

8.1  CONCLUSIONS 

capable of finding defects as small as 1” x 1” (25.4mm x 25.4mm) in laboratory setting, it 

is certainly not as good at detecting defec

d defect that can be detected was 2” x 2” x 0.06” (50.8mm x 50.8mm x 1.5mm). 

This is because moving the heater back and forth in larger specimen reduces the heat 

intensity. This problem can be addressed using multiple heaters, or by testing larger areas 

in small pieces. Furthermore, use of heaters was not found to be very effective in 

Solar radiation can be a good heating source if used properly. The best times to 

detect air-filled debonds are between 12 noon to 5 PM. Night time may provide 

or IRT testing if an external heating source is going to be employed since the 

temperature fluctuation is relatively low at night. A relatively low wind velocity 

environment is needed to produce good results. The solar radiation tests have shown that 

a warm sunny day (for example, during the summer months), while the ability to detect 

smaller and thinner water-filled debonds need further improvement. Also, solar tests have 

shown that all the 4” x 4” (101.6mm x 101.6mm) air-filled debonds as thin as 0.06”

) can be detected in warm September weather and colder March days using solar

energy as primary heat source. The results
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March days was not very good but th ber day produced good results. The 

test also show t be detected 

ved to be the weakest active heat source explored in this 

study. It was not capable of 

2

2

ility to apply uniform heat to a large area while the heating 

blanke

e warm Septem

ed that delamination within the flanges of FRP decks canno

using only solar radiation. 

The heating blankets pro

detecting any debonds (air-filled and water-filled) smaller 

than 8” x 8” in size. Although the heating blankets were sending out 1200 W/m  of 

output (roughly the same amount of energy emitted by the sun on a hot sunny day in 

June), it did not perform as well as the solar radiation test because the specimens were 

heated by the sun for a much longer period of time compared to only 4 minutes using the 

heating blanket. When comparing the heating blanket to the heaters, it is clear that heaters 

provide much greater heat intensity (≅ 2500 W/m  output) for IRT. The only setback 

regarding the heaters is its inab

ts provided uniform heating of the specimens. 

Based on the comparison between the actual laboratory data and the theoretical 

data generated through the use of finite element model, it is clear that the FE model has 

an acceptable accuracy in describing the actual heat transfer process between an air-filled 

debond and the surrounding. Future studies should focus on improving the modeling 

around the boundary of the debond to better describe the actual heat transfer in the 

vicinity of an air-filled debond. 

 The FE model for fully water-filled debond has shown promising characteristics. 

Unfortunately, adequate experimental data is currently unavailable to support the validity 

of the model. Future testing of IRT on water-filled debond should be done to provide data 

for verification purposes. 
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 Since the results have shown that the FE predictions for partially water-filled 

debond case are questionable, future effort should focus on successfully modeling such 

cases since it may be more representative of the field conditions. 

” x 0.06”. While results certainly 

indicate

ld, it is simply not practical considering the large size of 

Based on the post processing results, it is concluded that 2.0GHz horn antenna 

GPR system is not capable of detecting air-filled defects regardless of size and thickness. 

This is consistent with the general consensus regarding the lack of effectiveness of any 

GPR system in detecting air-filled defects. By combining the 2D images, 3D images, and 

signal analysis from both original data and data sets applied with Finite Impulse 

Response (FIR), the smallest water-filled defect that can be detected by the 2.0GHz air-

launched horn antenna is 8” x 8” x 0.06”. 

On the other hand, the 1.5GHz ground-coupled antenna proved to be an excellent 

tool in detecting subsurface water-filled defects (debond and delamination). The smallest 

water-filled debond that can be detected is 2” x 2

d the ability to detect even smaller defects using 1.5GHz ground-coupled 

antenna, the problem remains due to footprint size of the 1.5GHz antenna. Although it 

has a 1” footprint to each side from the center line, the signal decreases drastically away 

from the center line. Hence, in order to detect a small defect, such as 1” x 1” debond, the 

antenna has to go directly over the defect. Not only is the probability of achieving such 

feat a monumental task in the fie

the areas usually surveyed by the GPR system. 

In summary, the 1.5GHz ground-coupled antenna has out-performed the 2.0GHz 

air-coupled horn antenna in subsurface defect detection for FRP bridge decks. 
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In order to conduct a successful GPR test, a time range of 4ns is recommended for 

defect detection in the top flange while 10ns should be used for the bottom flange. 

Furthermore, in conjunction with 10ns range, a linear gain is needed to magnify the 

signals

ial to combine IRT’s ability to detect air-filled 

debond

thickness. Such quantitative models will 

also be

analysis of 

IRT data should be explored to improve IRT’s performance in defect detection. 

 from the bottom flange of the FRP deck to produce meaningful results. 

Laboratory test did not find any major advantage in terms of data acquisition speed in 

using 512 points record length over 1024 points. However, the results clearly show that 

1024 point data provided somewhat better resolution. Thus it is recommended that GPR 

tests on FRP decks be conducted using 1024 points record length. The blind test results 

proved that 1.5GHz antenna can detect water-filled debonds as small as 2” x 2” x 0.06”.  

Finally, it has proved to be benefic

s if a proper active heat source is employed and GPR’s ability to detect water-

filled defects. GPR can even detect delaminations in the bottom flange of an FRP bridge 

deck for a thorough nondestructive evaluation. By complementing each technique’s 

short-coming, the combination of IRT and GPR will greatly improve the quality of 

nondestructive evaluation and associated maintenance plan for FRP bridge decks, which 

is necessary to ensure their long-term in-service performance. 

 

8.2  RECOMMENDATIONS FOR FUTURE RESEARCH 

It is recommended that future research be focused on quantitative analysis of GPR data 

for extracting vital information such as defect 

 needed for automating the signal analysis procedure. As for IRT, a more powerful 

yet efficient heat source should be explored for field use. Also, quantitative 
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APPENDIX A 

RADAN POST PROCESSING 

 

A.1   FINITE IMPULSE RESPONSE (FIR) 

Finite impulse response (FIR) is a built-in function within the GPR RADAN 

ain function is to eliminate any constant noise generated by the GPR 

any 

s 

in detail below. 

software. Its m

system during the data acquisition phase. FIR process is highly recommended for 

data sets to be used for 3D modeling, since it would eliminate many unnecessary feature

within a GPR image (2D and 3D). The process of applying FIR filter to each set of data is 

described 

 

STEP 1: Open any data file that wished to be FIR filtered (Figure A1). 

 

Figure A1: RADAN main operating screen. 

STEP 2: Click on FIR Filter under the “Process” tab (Figure A2), or simply click on the 

FIR icon  
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STEP 3: On the ensuing screen, inf  to the data acquisition as well as 

the antenna is needed. Un , type in a number equal 

 1 less than the number of data acquisition point. For example, if the data was acquired 

ckground Removal” column. Under the 

“Vertic

applied, a screen will prompt for a location where the software 

ill save the file.  

ormation pertaining

der the “Background Removal” column

to

using 512 points setting, type 511 in the “Ba

al Filter” column, the “Low Pass” is equals to double of your antenna’s frequency. 

For instance, if a 1.5GHz (= 1500 MHz) antenna was used for data acquisition, then the 

number would be 1500 x 2 = 3000. Likewise, the high pass is usually 1/3 of the antenna 

frequency. In this example, 500 (1/3 x 1500) was used. Finally, click “Apply” for the 

changes to take place, and then click “OK” (Figure A3).  

STEP 4: Once the filter is 

w

  

 

Figure A2: Click to apply FIR filter. 
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A.2   3D MODELING 

3D modeling enables the user to visually identify the defects and its locations. 

FIR filtered data are recommended for construction of 3D model since it will help the 

user by removing any unwanted noise and features within the 3D model. The process of 

3D construction is described in detail below. 

 

STEP 1: Start a new project by click “New” under the “File” tab. 

Figure A3: Input necessary information for FIR filter application. 

 

 

Figure A4: Start a new project for 3D construction. 

1 

2
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STEP 2: Provide a name for the 3D project, and check “RADBridge Project”. 

 

Figure A5: Create a new RADAN bridge project. 

 

STEP 3: After providing the file name and the location where the 3D file is going to be 

ved, a list of required files need to be added one by one, starting from the file collected 

). When the addition is 

over, click “Done”. 

STEP 4: A dummy macro is needed to proceed. A dummy macro is a macro which 

multiplies the entire file set by 1 (essentially, not doing anything to the file set). This 

macro can be created once and re-used forever. Select the files attached before and click 

“Attach Macro” (Figure A7). 

 

sa

on the far right of the surveyed area and proceed left (Figure A6
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Figure A6: Adding necessary files for 3D construction. 

 

Figure A7: Attach a dummy macro to all files. 
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STEP 5: On the ensuing screen, define the actual 3D physical characteristics. Under the 

“X Max” column, insert the length of the survey (for consistency purposes, an aluminum 

tape is recommended to be placed on the boundary of the survey area). Insert the distance 

between scan under the “Y Max” column (Figure A8). Click on “3D Output Filename” 

and give it any name. The 3D construction will generate a 3D file by stitching together all 

the files provided before. 

 

Figure A8: Provide 3D file parameters. 

 

STEP 5: Click on “Files 1-8” tab to select the beginning of the file for each file. If more 

than 8 files are added, there will be tabs like “Files 9-16” and so on (Figure A9). Click on 

“Click” to open up the file and manually pick out the beginning of the file. If aluminum 

tape was used to mark the boundary of the survey area (as shown in the example), the 

selection of the beginning of file should be easy (Figure A9). Once the beginnings of all

the files are picked, click

 

 “Apply”, then click “OK”. 
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Figure A9: Pick the beginning of each file. 

STEP 6: Click “Run” under the “Process” tab to initiate stitching of the files based on the 

parameters provided. 

 

Figure A10: Initiate the stitching of the files. 
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STEP 7: Once the process of stitching is complete, a large “stitched” file can be seen 

(Figure A11). By selecting the “3D Mode”, a set of 3D post-processing options will be 

activated (Figure A12). 

 

Figure A11: 3D “stitched” file. 

 

Figure A12: 3D processing options. 

 

3D mode 
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