
Graduate Theses, Dissertations, and Problem Reports

2005

Multiagent autonomous energy management Multiagent autonomous energy management

Shilpa B. Ganesh
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Ganesh, Shilpa B., "Multiagent autonomous energy management" (2005). Graduate Theses, Dissertations,
and Problem Reports. 1665.
https://researchrepository.wvu.edu/etd/1665

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230475014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1665?utm_source=researchrepository.wvu.edu%2Fetd%2F1665&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Multiagent Autonomous Energy Management

by

Shilpa B Ganesh

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Software Engineering

Karl Schoder, Ph.D.
Katerina D. Goseva-Popstojanova, Ph.D.

Cynthia D Tanner, M.S.
Hong-Jian Lai, Ph.D.

Ali Feliachi, Ph.D., Chair

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2005

Keywords: Agents, Multiagent Systems, Maximum Flow Algorithms, Decision Networks,
Electric Shipboard Power Systems, Energy Management

Copyright 2005 Shilpa B Ganesh

Abstract

Multiagent Autonomous Energy Management

by

Shilpa B Ganesh

Master of Science in Software Engineering

West Virginia University

Ali Feliachi, Ph.D., Chair

The objective of this thesis is to design distributed software agents for reliable operation of
integrated electric power systems of modern electric warships. The automatic reconfiguration
of electric shipboard power systems is an important step toward improved fight-through and
self-healing capabilities of naval warships. The improvements are conceptualized by redesign-
ing the electric power system and its controls. This research focuses on a new scheme for an
energy management system in the form of distributed control/software agents. Multiagent
systems provide an ideal level of abstraction for modeling complex applications where distrib-
uted and heterogeneous entities need to cooperate to achieve a common goal. The agents’
task is to ensure supply of the various load demands while taking into consideration system
constraints and load and supply path priorities. A self-stabilizing maximum flow algorithm
is investigated to allow implementation of the agents’ strategies and find a global solution
by only considering local information and a minimum amount of communication. This de-
centralized reconfiguration scheme is complemented with a layer of hierarchically organized
agents to provide situational awareness capabilities. The two layers combined allow for dis-
tributed decision making while operating the system with global and optimal goals. While the
reconfiguration layer performs negotiation and energy management, the situational awareness
layer adds autonomous and intelligent agents that help determine component failures, tracking
performance, and analyzing system events that have the potential to degrade system perfor-
mance and reliability. A list of possible events includes short circuits, open circuits, loss of
communication networks, and failures of agents themselves. The agents in the situational
awareness layer are added using influence diagrams to assist human operators in determining
the “silent death” of components or agents and to further improve the autonomous operation
capabilities of the shipboard power system. Tests of different critical scenarios are investigated
to demonstrate the feasibility and flexibility of the maximum flow algorithm and to evaluate
the agents’ decision making performance. The results are very promising.

iii

Acknowledgement

The following is a simple representation in words of the immense gratitude I hold to all those
wonderful people who have helped me make this day a reality.

First of, I duly thank my advisor Professor Ali Feliachi for giving me the opportunity
to work for him. The completion of this thesis is definitely the result of his constant advice
and encouragement. I also like to extend my sincere gratitude to Dr. Karl Schoder who
has been instrumental in giving the right directions to my research and without his guidance
and supervision, this thesis would have been an impossible feat. His supervision affected my
research tremendously.

I am also thankful to Dr. Hong-Jian Lai who helped me get my hands together in the basic
concepts of Graph theory, which formed the foundation of my work. I would like to thank my
other committee members Ms. Cynthia D. Tanner and Dr. Katerina Goseva-Popstojanova
for their review and recommendations on my thesis. I am thankful to the whole APERC team
for their valuable feedback to my presentations during the Wednesday meetings. I am also
grateful to Dr. Srinivas Kankanahalli who intrusted in my research potential during my early
days in WVU.

My family, though not directly present here, have been my strength and motivation per-
petually. I am indebted to my father, mother and sister for their continuous encouragement
and support without which I would not have been able to successfully finish this endeavor
of mine. The person whom I cannot thank, but just acknowledge, is my friend and fiancé,
Shrawan, who has been my motivation to come all the way to the United States and who has
been by my side all through my Masters.

I would also like to thank my roommates in Morgantown and my friends in Bangalore for
all their support. Last, but in all ways the highest, I would like to thank “The Transcendental
Almighty” for blessing me with all these wonderful people in my life.

Funding for this work was provided by the US DEPSCoR and Office of Naval Research
(ONR) under grant (DOD/ONR N000 14-031-0660).

Contents

Abstract ii

Acknowledgement iii

List of Figures vii

List of Tables ix

Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Objective . 3
1.4 Approach . 3
1.5 Outline of the Thesis . 4

2 Literature Survey 6
2.1 Modeling and Simulation . 6
2.2 Agent Based Systems . 10
2.3 Graph Algorithms . 12
2.4 Decision Networks . 13
2.5 Conclusion . 14

3 Software Agents and Agent-Based Systems 15
3.1 Software Agents . 15

3.1.1 Software Agents - Definition . 15
3.1.2 Software Agent Architectures . 18

3.2 Multiagent Systems . 21
3.2.1 Characteristics of Multiagent Systems 22
3.2.2 Communication Protocols . 22
3.2.3 Interaction Protocols . 24
3.2.4 Advantages of Multiagent Systems . 27
3.2.5 JAVA . 28

3.3 Software Engineering of Agent-Based Systems 30
3.3.1 Agents and AI . 30

iv

CONTENTS v

3.3.2 Agents and Expert Systems . 31
3.3.3 Agents and Objects . 31
3.3.4 Agent-Based Systems . 32

3.4 Conclusion . 36

4 Modeling the Electric Shipboard Power System 37
4.1 Model Description . 37
4.2 Interfacing the Physical Model . 38
4.3 Conclusion . 39

5 Energy Management System 40
5.1 Graph Theory . 40

5.1.1 Definitions and Notation . 40
5.1.2 The Maximum Flow Problem . 42
5.1.3 Self-Stabilizing Algorithms . 44
5.1.4 Self-Stabilizing Maximum Flow Algorithm 46

5.2 The Shipboard’s Power Flow as Maximum Flow Problem 49
5.2.1 Requirements . 49
5.2.2 Agent’s Maximum Flow Algorithm . 50

5.3 Discussion . 52
5.4 Conclusion . 53

6 Situational Awareness Component 55
6.1 Decision Problems and Decision Networks . 55

6.1.1 Utilities . 56
6.1.2 Network Structure . 57
6.1.3 Network Links . 58
6.1.4 Reasoning . 59
6.1.5 “Umbrella” Example Decision Network 60
6.1.6 Advantages . 62
6.1.7 Implementation Tool: Netica . 62

6.2 Situational Awareness Component for the Energy Management System 62
6.3 Conclusion . 67

7 Multiagent Architecture 70
7.1 Technical Approach - Prototyping Model . 70
7.2 Architecture Overview . 71

7.2.1 Layered Architecture . 71
7.2.2 Blackboard for Communication Infrastructure 72
7.2.3 Architecture for the Energy Management System 72

7.3 Agent Specification . 74
7.3.1 UML Statecharts . 74
7.3.2 Agent Specification using UML statecharts 76

7.4 Implementation . 79
7.4.1 Physical System Layer . 79

CONTENTS vi

7.4.2 Command and Control Center . 80
7.4.3 Blackboard . 81
7.4.4 Running the Simulation . 81

8 Case Studies and Discussion of Results 85
8.1 Startup Scenario . 85
8.2 Rerouting Power . 86
8.3 Restoring High Priority Loads . 87
8.4 Random Operating Conditions . 88
8.5 Physical System Faults and Silent Death . 90

8.5.1 Normal Operation . 91
8.5.2 Silent Death . 92
8.5.3 Overload . 92

9 Summary and Future work 94
9.1 Summary . 94
9.2 Future work . 95

APPENDIX 96

A Publications and Award 96
A.1 Publications . 96
A.2 Award . 97

B Transfer Functions for Physical System Layer 98

References 102

List of Figures

2.1 NCS Generation & Distribution Test Bed . 9

3.1 Software Agents . 17
3.2 BDI Architecture . 20
3.3 Layered Architecture . 21
3.4 Multiagent Systems . 22
3.5 Architecture of basic blackboard system showing the blackboard, knowledge

sources (KS) and control components. 26

4.1 Shipboard Power System . 38

5.1 Directed and Undirected Graphs . 41
(a) Directed graph . 41
(b) Undirected graph . 41

5.2 Examples of paths and walks in graphs . 42
5.3 Examples of cycles . 42
5.4 Example graph with edge capacities of 4 . 44

(a) Feasible flow and its residual graph . 44
(b) Maximum flow and its residual graph . 44

5.5 Digraph and its Residual Graph for an Example 48
5.6 Mapping of electrical components to graph theoretic representation 53

6.1 Decision Network Nodes . 58
(a) Chance node . 58
(b) Decision node . 58
(c) Utility node . 58

6.2 Decision Network Links . 58
(a) To chance . 58
(b) To decision . 58
(c) To utility . 58

6.3 Decision Network - Reasoning . 59
(a) Diagnostic . 59
(b) Predictive . 59
(c) Intercausal . 59
(d) Combined . 59

6.4 Umbrella Example . 60

vii

LIST OF FIGURES viii

6.5 Decision Network for agents in the situational awareness layer 63
6.6 Observation of demand for all the agents . 65
6.7 Observation of d-value for all the agents . 66

7.1 Prototyping Process . 71
7.2 Layered Architecture for the Energy Management System 73
7.3 Illustration of a Statechart . 75
7.4 Illustration of a Concurrent State with Two Regions 76
7.5 Specification for the Command and Control Center 77
7.6 Specification for plotting the digraph of the EMS 78
7.7 Specification for agents in the Reconfiguration Layer 79
7.8 Specification for agents in the Situational Awareness Layer 80
7.9 Specification for agents’ collaboration in different layers (with blackboard) . . . 81
7.10 Command and Control Center . 83
7.11 Directed Acyclic Graph of the Electric Shipboard Power System 84
7.12 User Interface for Simulating Faults . 84

8.1 Agents’ Moves for the Startup Scenario . 86
8.2 Agents Executing for the Startup Scenario . 87
8.3 Loads supplied through Edge (4,6) . 87
8.4 After Disturbance: Loads supplied through Edge (5,6) 88
8.5 Loads supplied Through Edge (5,7) . 89
8.6 Loads supplied Through Edge (5,7) to Restore High Priority Loads 89
8.7 Moves for Randomly Changing Operating Conditions 90

B.1 Synchronous generator model . 99
B.2 Exciter model and its control . 99
B.3 Turbine model and its control . 99
B.4 Shipboard propulsion system model . 100
B.5 AC/DC converter model and its control . 100
B.6 Zone load and its converter model . 101

(a) Zone model and its control . 101
(b) Zone converter model (part of Zone model) 101

List of Tables

6.1 Conditional probability table for Weather Forecast 60
6.2 Prior probability table for Weather . 61
6.3 Utility values for Umbrella Example . 61
6.4 Table of Outcomes (Utility values) . 61
6.5 Prior probabilities . 64
6.6 Conditional probabilities for Physical System Problem 65
6.7 Conditional probabilities for Silent Death . 65
6.8 Conditional probabilities for Agent Problem . 68
6.9 Utility values . 69

8.1 Maximum, minimum and average moves for the ‘startup’ scenario 86
8.2 Maximum, minimum and average moves for the ‘rerouting’ scenario 88
8.3 Maximum, minimum and average moves for switching between various modes . 91
8.4 Maximum and minimum ranges for the loads in various modes 93

B.1 Parameters for Generator . 98
B.2 Parameters for Exciter . 99
B.3 Parameters for Turbine . 100
B.4 Parameters for Propulsion Load . 100
B.5 Parameters for PS (AC/DC) Converter . 101
B.6 Parameters for Zone Converter and Load . 101

ix

Acronyms

AI Artificial Intelligence
ARCHON ARchitecture for Cooperative Heterogeneous ON-line systems

BDI Belief-Desire-Intention
CCC Command & Control Center
DAI Distributed Artificial Intelligence
EMS Energy Management Systems
FIPA Foundation of Intelligent Physical Agents

IT Information Technology
JDBC Java Database Connectivity
ODBC Open Database Connectivity

ONR Office of Naval Research
KQML Knowledge Query and Manipulation Language

KS Knowledge Source
MAS Multiagent Systems
RMI Remote Method Invocation

RSAD Reduced Scale Advanced Demonstrator
SPID Strategic Power Infrastructure Defense
SPS Shipboard Power System
SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol
UDP User Datagram Protocol
UML Unified Modeling Language

x

Chapter

1

Introduction

1.1 Motivation

Since its dawn in the mid to late 1970s distributed artificial intelligence (DAI) evolved and

diversified rapidly, and today, is an established and promising research and application field

bringing together and drawing on results, concepts, and ideas from many disciplines, including

artificial intelligence (AI), computer science, sociology, economics, organization and manage-

ment science, and philosophy [98]. Reflecting the focus of interest of the researchers in this

field the field has adopted the name of Multiagent systems [84].

Two primary reasons can be identified as the driving forces behind the growth of Mul-

tiagent systems in recent years. First, multiagent systems have the capability of playing a

key role in computer science and its applications, as modern computing platforms and in-

formation environments are very often open, large, distributed, and complex. To cope with

applications that require processing of huge amounts of spatially distributed data, computers

need to operate more as “individuals” or agents rather than mere “parts” [98]. Secondly, mul-

tiagent systems have the capacity to play important roles in analyzing and developing models

and theories of interactivity in human societies [98]. Humans interact in various ways and

at different levels. For instance, humans observe and model one another, they request and

1

CHAPTER 1. INTRODUCTION 2

provide information, they negotiate and discuss, they develop shared views of their environ-

ment, they detect and resolve conflicts, and they form and dissolve organizational structures

such as teams, committees, and economies. Many interactive processes among humans are

still not very well understood, although they are an immanent part of our everyday life. DAI

technologies allows us to investigate their sociological and psychological foundations [98].

Autonomous agents and multiagent systems embody a novel paradigm for analyzing, de-

signing, and implementing solutions to complex problems. The agent-based view has the

potential to improve the way in which people conceptualize and implement different types of

software systems by offering a powerful repository of tools and techniques. Agents are used

in a wide range of applications, ranging from small systems such as personalized email filters

to large, complex, mission critical systems such as air-traffic control [49].

The distributed control of electric power systems on modern warships is one such mis-

sion critical application where the application of software agents is applied. The success of

increasingly all electric commercial ships has sparked interest to incorporate the advantages

of improved electric power systems in naval warships [21]. The design of the shipboard power

system is dictated by the demand to reduce manning and costs and is step-by-step replacing

mechanical-hydraulic systems by electric solutions. This process will ultimately also improve

the survivability [38] of the envisioned all electric warship.

The use of software agents gained popularity by recent advances in software engineering

to construct distributed systems that cooperate to reach a common goal [98]. This new

philosophy of implementing decentralized control algorithms is discussed in this thesis and

envisioned improvements and advantages of a multiagent-based control framework are applied

to build an energy management system with situational awareness capabilities incorporated

within it.

1.2 Problem Statement

The necessity of improving warships is the bottom line of several incidents in which the electric

power was lost through only a single incident [94]. The challenge is to provide a new and

distributed answer for a decentralized energy management system for the electric shipboard

power system that allows automatic reconfiguration based on situational awareness. The

energy management system to be developed here should help solve the problem of providing

CHAPTER 1. INTRODUCTION 3

the various loads with electric power while incorporating mission and load priorities.

1.3 Objective

The objective of this research is to develop an agent architecture for the shipboard power

system that incorporates the following general attributes:

• Defines a reusable and scalable architecture for the construction of intelligent software

components and agents;

• Allows developing and deploying hybrid intelligent agent applications; and

• Is an event-driven, interactive development, and test environment including a means of

modeling physical systems.

More specifically, this research is to design distributed intelligent control agents for re-

liable operation of integrated electric power systems of modern warships. In the event of

scheduled load changes or unforeseen disturbances, the power system is expected to operate

at a minimum level of performance in areas that could be mission critical and thus result in

saving lives. The idea is to integrate three layers that will allow to achieve the desired goals:

(i) the electrical network, (ii) a computer, control, and communication network, and (iii) the

human operator(s). This multidisciplinary research and development will guarantee the best

achievable overall system performance and reduce costs and time required for reengineering.

These goals can be summarized as follows:

• Incorporate a mathematical model of the shipboard power system that is linked to and

exchanges information with the controlling agent architecture;

• Agent architecture for automatic reconfiguration of power distribution on shipboard

power systems;

• Human-machine interface to present and exchange information between the autonomous

system and the human operator(s).

1.4 Approach

The approach taken to solve the power flow problem for the energy management system is

based on spatially distributed software agents. These agents make local decisions to reach a

globally acceptable solution with limited amount of communication. The distributed agent

CHAPTER 1. INTRODUCTION 4

concept needs to build on an appropriate framework for implementing automatic reconfigura-

tion based on situational conditions. Graph theory provides a formal basis to represent the

distributed control system and to develop algorithms for a decentralized energy management

solution. Maximum flow algorithms have been investigated to find an answer to this challenge.

The energy management system is complemented by decision networks to aid in determining

the current state of the system. The approach is hence summarized as follows:

• Maximum flow algorithms from graph theory for reconfiguration

• Decision networks for incorporating situational awareness capabilities

These approaches are going to be implemented using the MATLAB/Simulink [62] envi-

ronment for modeling and simulating the shipboard power system in combination with JAVA

technology [45].

1.5 Outline of the Thesis

An outline of the remaining chapters of this thesis is as follows:

• Chapter 2: Literature Survey

This chapter gives an overview of the research background (Section 2.1) and the related

work concerning electric shipboard power systems and multiagents (Section 2.2), graph

theory (Section 2.3), and decision networks (Section 2.4).

• Chapter 3: Software Agents and Agent-Based Systems

This chapter discusses the concepts and terminologies associated with software agents

(Section 3.1) and multiagent systems (Section 3.2). In (Section 3.3) agent-based software

engineering is discussed.

• Chapter 4: Modeling the Electric Shipboard Power System

The challenges of designing the energy management system are discussed in this chapter.

It describes the model of the shipboard power system (Section 4.1) and the interfacing

of the physical model (Section 4.2).

• Chapter 5: Energy Management System

Details regarding the energy management system is given in this chapter. The chapter

introduces some fundamental definitions used in graph theory (Section 5.1) including

maximum flow and self-stabilizing maximum flow algorithms. The shipboard’s power

CHAPTER 1. INTRODUCTION 5

flow as implemented in form of a maximum flow problem is discussed in (Section 5.2)

followed by a discussion (Section 5.3) and conclusion (Section 5.4).

• Chapter 6: Situational Awareness Component

This chapter addresses issues of identifying problems with the physical system layer and

reconfiguration layer. It begins with a brief overview of decision problems and decision

networks (Section 6.1). The shipboard’s situational awareness component is discussed

in (Section 6.2), along with a few concluding remarks (Section 6.3).

• Chapter 7: Multiagent Architecture

The technical approach (Section 7.1), the architecture of the multiagent system (Section

7.2) and the agent modeling approach adopted (Section 7.3) is explained along with the

implementation setup in (Section 7.4) of this chapter.

• Chapter 8: Case Studies and Discussion of Results

This chapter presents case studies of the autonomous energy management system and

discusses important performance and reliability aspects.

• Chapter 9: Summary and Future Work

The final chapter summarizes the accomplishments in developing the autonomous energy

management system (Section 9.1) and gives suggestions for future work (Section 9.2).

A list of publications and details of an award as a result of this research is given in

Appendix A.1 and A.2 respectively.

Chapter

2

Literature Survey

This chapter gives an overview of the related work associated with modeling, operation and

control, and reconfiguration of electric shipboard power systems. It also gives a brief glimpse

into the related work in the field of multiagent systems, graph theory, and decision networks.

2.1 Modeling and Simulation

Today’s commercial ships and warships are changing toward a completely electric system. To

this end, Naval Combat Survivability Generation & Propulsion and DC Distribution Test-

beds have been [74] developed as a common base for modeling the electric warship. With

the aim towards improving the survivability of warships, the remaining control challenge re-

quires highly efficient simulation environments for the hybrid shipboard systems to allow the

development of advanced control strategies.

Modeling electrical power generation and propulsion systems is challenging but has the

potential to significantly reduce the cost and risk associated with the design and acquisition

process. The British Ministery of Defense and The Mathworks Ldt. [22] have developed models

of marine power systems and a supporting library of generic components.

Previously, the shipboard AC power systems were based on AC radial distribution topology

6

CHAPTER 2. LITERATURE SURVEY 7

[106]. Maintaining the security or integrity of such systems is directly influenced by the power

system dynamics. The following gives a brief summary of work related to these systems.

In [102] an approach to conduct computer simulation studies of fault scenarios, which may

occur in the electric power system on the ship as a result of battle damage, is presented. A

test system for the U.S. navy shipboard power system was modeled and simulated using the

Alternative Transients Program (ATP) [4] and a geographical information system. The test

system included models for generators, cables, transformers, induction motors, and constant

impedance loads combined with their location onboard. The geographical information system

was used to both select and display affected (damaged) areas and components. This informa-

tion was then conveyed in an ATP test system to simulate the fault scenario and observe the

system’s behavior.

Navy shipboard power systems have different characteristics when compared with utility

power systems [12]. For example, there is very little rotational inertia in shipboard power

systems relative to their load and prime movers on the shipboard are faster then that of utility

systems. The authors in [105] and [106] present results of analyzing shipboard power systems

using three popular software tools in transient simulation studies: ATP [4], PSpice [76], and

Saber [93, 80]. The conclusions suggest that ATP is a good tool for generating detailed

component models and calculating model parameters directly from standard specifications and

ratings of the equipment. PSpice and Saber have an excellent graphical interface for building

complex systems and flexibility in establishing monitoring points and processing output data.

The power flow problem can be solved numerically at a central place using various tech-

niques, for example Newton-Raphson algorithms to solve the non-linear set of equations and

it can also be formulated as linear programming problem to allow incorporation of limits

and priorities of loads and supply paths. These approaches have been investigated by several

authors and can be found in [13] and [14].

An expert system approach has been presented in [86] to extend the analysis of fault

conditions and help in network reconfiguration for restoring the power system after occurrence

of disturbances. This approach helps greatly in operating the shipboard power system and

in making the correct decisions in emergency situations. Nevertheless, the disadvantages of

being a centralized approach and the required time for the expert system to infer suggested

switching actions have yet to be overcome.

CHAPTER 2. LITERATURE SURVEY 8

In [89] a multiagent system approach is adopted to reconfigure the shipboard power system

without human intervention and without centralized scheduling and planning. The solution is

to use an agent to represent and exert high-level control on each critical system component.

By summarizing the power budget and cost, the resource can be reserved, de-allocated and

redistributed without a central scheduling entity. The agent development framework used is

the Lightweight Extensible Agent Platform (LEAP) [56] library combined with Java Agent

DEvelopment framework (JADE) [44], a Foundation of Intelligent Physical Agents (FIPA)

[27] compliant agent platform.

The AC generation and distribution based systems suffered in several incidents from severe

damage and inoperability due to a single hit [94]. The USS Stark, Roberts, Princeton, and

Cole incidents all left modern U.S. warships without electric power in the water [94]. The

identified major weakness is the centralized controls that provide remote control with manual

backup. This problem necessiated the redesign of the whole system. The transition process

from traditionally radial AC power systems to zonal DC distribution systems was initiated

and envisioned to lead to a fully Integrated Power System (IPS). The IPS takes advantage of a

reconfigurable DC distribution system feeding load centers from two DC buses. The location of

the two buses is chosen to minimize the likelihood of both buses being disabled due to a single

disturbance. Besides the flexibility in system configuration, the IPS reduces weight, costs due

to labor and improves the overall survivability of the combatant with reduced manning. The

envisioned shipboard power system in the form of a block diagram is shown in the Fig. 2.1.

The block diagram corresponds to the Naval Combat Survivability Generation & Propulsion

and DC distribution testbeds [74, 88].

The ability to fight through combat damage requires systems with the ability to sense,

isolate, and quickly compensate for major disruptions. Modern military systems share a fun-

damental challenge: to ensure continuity of service for distributed mission and life critical

services despite both natural and hostile disruptions. The shipboard power system includes a

spatially distributed, variable structure physical plant and associated hybrid sensing, commu-

nication, control, and actuation facilities. Damage is assumed to be clustered spatially and

temporally resulting in concurrent disruption of both the physical plant and the control system

[95]. The primary objective is to provide continuity of service despite faults and failures.

The Naval Combat Survivability Generation & Propulsion and DC distribution testbeds

CHAPTER 2. LITERATURE SURVEY 9

Prime
Mover

Propulsion
Converter

Motor

A.C.
Generator

Harmonic
Filter

Pulsed
Load

Prime
Mover

Propulsion
Converter

Motor

A.C.
Generator

Harmonic
Filter

Pulsed
Load

PS

SSCM

SSCMSSCMSSCM

SSCMSSCM

SSIM LB MC CPL PS

Port Distribution Bus

Starboard Distribution Bus

3-Phase
Distribution Bus

3-Phase
Distribution Bus

Zone 3Zone 2Zone 1

PS : Power Supply
SSCM : Ship Service Converter Module
SSIM : Ship Service Inverter Module

LB : Load Bank
CPL : Constant Power Load
MC : Motor Controller

Figure 2.1: NCS Generation & Distribution Test Bed

have been developed as a common base for modeling the electric warship. The testbed is fed by

two AC sources represented by induction motors as prime movers, synchronous generators, and

exciters. The propulsion systems are connected to the AC system using power electronics for a

flexible drive system. The AC is converted to DC for distribution of the electric power by two

DC buses, the port bus and starboard bus. To improve survivability, the loads on board are

grouped into zones and each zone is supplied from both of the DC buses by additional DC/DC

converters. This arrangement allows a certain redundancy as well as graceful performance

degradation as the converters are used to limit currents and isolate faulty loads or entire parts

of the system. The loads represent typically encountered power demands including induction

motors, three-phase AC-loads, pulsed loads, and constant power loads.

The remaining control challenge requires advanced control strategies to ensure system

stability and to take advantage of the system’s capabilities [104]. The controls to be developed

include local controls for the various power electronic devices and the automation of processes

to help system operators in coping with routine operations, maintenance, and emergency

situations to optimize life-time and cost performance. The answer to this problem is envisioned

in dependable automation strategies [95] that for example extend nonlinear control theory,

apply analytic redundancy, utilize distributed intelligence to form robust networks, and allow

CHAPTER 2. LITERATURE SURVEY 10

reconfiguration based on situational awareness.

2.2 Agent Based Systems

The Open Autonomy Kernel (OAK) in [81] is a control agent architecture that is based on

a unique combination of model-based reasoning and software agents. OAK has been im-

plemented on Navy auxiliary systems, such as the chilled water Reduced Scale Advanced

Demonstrator (RSAD) at the Naval Surface Warfare Center, Philadelphia. It shows how

control agents based on Markov blankets may be used to develop effective control of large

chemical and biological surveillance sensor grids.

Rockwell Automation [78, 63] has developed a set of tools and methodologies to help

design, build, test, and verify distributed control systems that overcome the survivability

problem of single controller approaches. Using these tools and methodologies, they have

devised an agent architecture that has been applied to a US Navy shipboard chilled–water

system. Simulation results indicate that the approach can lead to systems that operate in a

real-life application with critical constraints such as survivability achieved through dynamic

reconfiguration with reduced human supervision.

In [77] a multiagent approach is proposed for power system restoration. The proposed

system consists of a number of bus agents BAGs and a single facilitator agent (FAG). The

BAG is developed to decide a suboptimal target configuration after a fault occurence by

interacting with other BAGs based on only locally available information, while the FAG is

to act as a manager in the decision process. Simulation results show that the method is

able to reach sub-optimal target configurations, which are compared with those obtained by

a mathematical programming approach.

ARCHON (ARchitecture for Cooperative Heterogeneous ON-line systems), Europe’s largest

project in the area of DAI [20], has devised a general-purpose architecture, software frame-

work, and methodology that supports the development of DAI systems. A number of industrial

domains such as electricity distribution and supply, control of a cement kiln complex, con-

trol of a particle accelerator, and control of a robotics application have used this concept for

redesigning controls.

A real-life, wide-area, adaptive protection and control system, the Strategic Power In-

CHAPTER 2. LITERATURE SURVEY 11

frastructure Defense (SPID) system [57], has been developed by the Advanced Power Tech-

nologies (APT) Consortium [2]. By incorporating multiagent system technologies, the SPID

system is able to assess power system vulnerability, monitor hidden failures of protective de-

vices, and provide adaptive control actions to prevent catastrophic failures. In [57], a new

concept is included for bargaining by multiagents to identify the decision options to reduce

the system vulnerability.

A wide range of application domains makes use of agent-based systems. Agent applica-

tions are being developed for fields as varied as manufacturing, entertainment and electronic

commerce. The following gives a brief overview of the different areas of application, for a more

extensive list see [49].

Industrial applications of agent technology were among the first to be developed, and today,

agents are being applied in a wide range of industrial systems such as manufacturing [73] [72],

process control [20], telecommunications [82], air traffic control [15] [58], and transportation

systems[11].

Entertainment applications such as computer games are extremely challenging and re-

munerative. Agents have a prominent role in computer games [35] [97], interactive theater

[92] [37], and virtual reality applications. Such systems tend to be full of semi-autonomous

animated characters, which can be implemented as agents.

Commercial applications tend to be oriented much more towards the mass market un-

like industrial applications and involve highly complex systems that need to be operated in

comparatively smaller areas. Some of the examples are information management applications

like directory services, database inquiry, media indexing [60] [90]; service management appli-

cations like multimedia services, intelligent network management services, trip planning and

guidance services [53] [18]; electronic commerce [17] [55], business management applications

like financial services, workflow management, and office automation [48].

Medical informatics is a major growth area in computer science: new applications are

being found for computers every day in the health industry and is a definite domain for agents

to be applied. Two of the earliest applications are patient monitoring systems [36] and health

care [42].

Agent-based systems are being used to further research other IT areas such as vision

CHAPTER 2. LITERATURE SURVEY 12

processing, learning and adaptive systems, speech processing, distributed knowledge-based

systems, and human-computer interface.

2.3 Graph Algorithms

Ahuja in [1] introduces many applications in context with core network flow models — shortest

path problems, maximum flow problems, minimum cost flows, and network optimization mod-

els like minimal spanning trees. Graph algorithms have diverse fields of applications including

engineering, management science, computer science and communications, and manufacturing.

The maximum flow problem has been extensively studied for a long period of time and

many algorithms have been developed. The author in [33] surveys the recent improvements

that have been made in theoretical performance of maximum flow algorithms.

Graph theory has been applied to many electric power systems related applications. In

[87] the problems of the steady-state security enhancement of radial distribution networks

after structural disturbances causing violations of imposed operating limits are considered.

Corrective actions used for relief of violations are of switching operations type. The paper

describes the development of a graph-oriented control algorithm based on the linearized system

model, where the synthesis of corrective controls is formulated as a combinatorial problem of

mixed-integer programming. A heuristic algorithm is suggested as a solution of the problem.

The fact that all disturbances as well as corrective actions are of topological nature makes

the application of graph representation the natural way of describing the system, having both

algorithmic and computer implementation consequences. The feasibility of the algorithm is

tested on two examples of real medium-voltage distribution networks. Results show good

properties of the proposed approach and its suitability for the solution of practical corrective

control problems.

In [96] a novel approach using the minimal cutsets with minimum net flow to island the

system following large disturbances has been presented. Slow coherency [103] has been proved

effective in determining sets of generator groups among weak connections in any given power

system. In [96] two comprehensive approaches to deal with islanding the actual system based

on the grouping information by using the minimal cutsets technique in graph theory are

provided. The issue of minimal cutsets has been widely discussed in areas related to network

topology determination, reliability analysis, etc. The results show potential in application

CHAPTER 2. LITERATURE SURVEY 13

to power system islanding. The verification of the islanding scheme is provided based on a

WECC 179-Bus, 29-Generator test system.

2.4 Decision Networks

Decision networks are a tool for representing decision scenarios for decision makers. A solution

to a decision network is a set of strategies which ensures maximal expected utility. Many algo-

rithms have been proposed for determining the optimal decision policies in decision networks.

The following discusses those relevant to this research.

An algorithm has been developed by Shachter [85], that can evaluate any well formed

influence diagram and determine the optimal policy for its decisions. The influence diagram

can be analyzed directly, hence there is no need to construct other representations such as

decision trees [54]. The result is that the analysis can be performed using the decision maker’s

perspective on the problem. In [71] clinical examples are used to illustrate the mathematical

operations of the influence diagram evaluation algorithm.

In [41] methods for managing the complexity of information displayed to people responsible

for making high-stakes, time-critical decisions are described. The techniques provide tools for

real-time control of the configuration and quantity of information displayed to a user, and

a methodology for designing flexible human-computer interfaces for monitoring applications.

After defining a prototypical set of display decision problems, details regarding how to enhance

computer displays used for monitoring complex systems by measuring the expected value of

revealed information is described. The presentation is motivated by discussing the efforts to

employ decision-theoretic control of displays for a time-critical monitoring application at the

NASA Mission Control Center in Houston.

The use of decision networks to build mixed-initiative [65] decision-support agent systems

for real-world applications is demonstrated in [24]. Agents should represent domain informa-

tion that resembles knowledge of a human expert and objectively analyze alternatives that

provide human decision makers with choices and corresponding justifications. This approach

is demonstrated in [24] by examples in the traffic management and the academic advising

domain to highlight application possibilities.

CHAPTER 2. LITERATURE SURVEY 14

2.5 Conclusion

This chapter listed and summarized the research work done with respect to the shipboard

power systems, multiagent systems, graph theory, and decision networks. It gave an insight on

the various approaches adopted for simulating and modeling the shipboard power system, and

the different theoretical approaches to incorporate reconfiguration. Also, various application

areas of multiagent systems and application of the same to the domain of shipboard power

system were briefly listed. Graph theory algorithms as applied to power systems was discussed

along with the application of decision networks.

Chapter

3

Software Agents and
Agent-Based Systems

This chapter gives an overview on the various concepts and terminologies associated with soft-

ware agents and agent-based systems. The term “software agent” and its associated attributes

along with the various agent architectures will be discussed. Furthermore, multiagent systems

and the advantages of solving a problem using this approach are addressed. A review of vari-

ous agent communication strategies and interaction protocols is given. The Java language is

reviewed as suitable programming language for agent-based systems. Over the past few years

computer scientists have introduced a new paradigm – agent-based software engineering which

is also explained.

3.1 Software Agents

In this section the definition of an agent is given and various agent attributes are discussed.

3.1.1 Software Agents - Definition

Various definitions from different disciplines for the term agent exist today. In [29], the authors

discuss several definitions of agents of well-known authors in the domain.

According to [99]: “An agent is a computer system that is situated in some environment,

15

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 16

and that is capable of flexible autonomous actions in this environment in order to meet its

design objectives.”

In [61] it is defined as: “Autonomous agents are computational systems that inhabit some

complex dynamic environment, sense and act autonomously in this environment, and by doing

so realise a set of goals or tasks for which they are designed.”

Ferber in [26] arrived at the following definition:

An agent is a physical or virtual entity

(a) which is capable of acting in an environment,

(b) which can communicate directly with other agents,

(c) which is driven by a set of tendencies or goals (in the form of individual objectives or of

a satisfaction/survival function which it tries to optimise),

(d) which possesses resources of its own,

(e) which is capable of perceiving its environment (but to a limited extent),

(f) which has only a partial representation of this environment (and perhaps none at all),

(g) which possesses skills and can offer services,

(h) which may be able to reproduce itself,

(i) whose behaviour tends towards satisfying its objectives, taking account of the resources

and skills available to it and depending on its perception, its representation, and the

communication it receives.

Weiss [98] describes: “An agent is a computational entity such as a software program

or a robot that can be viewed as perceiving and acting upon its environment and that is

autonomous in that its behaviour at least partially depends on its own experience.”

IBM’s White Paper [31] defines agents as:

“... software entities that carry out some set of operations on behalf of a user or another pro-

gram with some degree of independence or autonomy, and in so doing, employ some knowledge

or representation of the user’s goals or desires.”

In this thesis, the following definition is applied:

A software agent is a thread of execution that is situated in some environment

and capable of flexible autonomous interaction with this environment in order to

meet its goals.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 17

actuators Environment

sensors

Agent

percepts

actionscommunication

Figure 3.1: Software Agents

An agent and its interaction with an environment is shown in Fig. 3.1. The agent posseses

means of sensing, communicating, processing, and acting. According to the given definition,

three vital concepts can be identified: environment, autonomy, and flexibility.

• Environment: The agent’s sensors perceive inputs from its environment and perform

actions through actuators that affect the environment in some way.

• Autonomy: The system should be capable of taking its own actions without being di-

rected or supervised by humans (or other agents), and that it should have control over

its internal state and actions.

• Flexibility: Means the following:

– Reactive: Perceive the environment and respond in a timely fashion to changes that

occur in that environment;
– Pro-active: Exhibit goal-directed behavior and take the initiative when appropriate;
– Social: Interact with other agents and humans in order to complete and solve a

problem while simultaneously help others in their activities.

Other Agent Attributes

Some of the other commonly identified agent attributes are as follows [30]:

• Mobility: Agents can have the ability to move to different environments and carry data

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 18

as well as a set of intelligent instructions which can be executed remotely.

• Temporal Continuity: Agents are continuously running processes, not “one shot” com-

putations that terminate.

• Adaptivity: Agents continuously adapt to changes in the environment.

The ongoing interest in autonomous agents did not emanate from a vacuum but researchers

and developers from various disciplines have been making progress on related issues in the

last decade. Contributions have been mainly from the fields of: artificial intelligence, object-

oriented programming and concurrent object-based systems, and human-computer interface

design. For more details regarding the same refer to [49].

3.1.2 Software Agent Architectures

The following describes possible agent architectures [98]:

Logic Based Agents

Decision making in logic based approaches to building agents, is considered as deduction

process. An agent’s “program,” i.e., its decision making strategy, is encoded as a logical theory,

and the process of selecting an action is reduced to a problem of proof. Logic-based approaches

are elegant and have clean (logical) semantics—wherein lies much of their long-lived appeal.

But logic-based approaches have many disadvantages. The inherent computational complexity

of theorem proving makes it questionable whether agents as theorem provers are capable of

operating effectively in time-constrained environments. Decision making in logic-based agents

is based on the assumption of calculative rationality—the assumption that the state of the

world is not going not change in any substantial way while the agent is deciding what to do,

and that an action which is rational when decision making begins will be rational when it

concludes.

Subsumption Architecture

Subsumption architecture is the best-known reactive agent architecture, in which decision

making is implemented in some form of direct mapping from situation to action. In other

words, an agent makes a decision through a set of task accomplishing behaviors. Each behavior

is regarded as an individual action function and designed to achieve a particular task. These

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 19

behaviors are implemented as rules in the form:

situation → action

which maps perceptual input directly to actions. As multiple rules can be fired simultaneously,

a subsumption hierarchy is utilized to arrange behaviors into layers. Lower layers in the

hierarchy can inhibit higher layers. The higher layers abstract higher-level behaviors while

the lower layers implement more basic and time constrained tasks. The overall decision is

made through a set of behaviors with the inhibit relations linking them.

The major advantage of this architecture is that it has a high computational efficiency

and is robust to single point failures. The disadvantages are decision making is based on

information about the agent’s current state and it must inherently take a ‘short-term’ view,

difficulty in building up agents of multiple layers, and the difficulty in applying iterative

learning to improve agents’ behaviors. In addition, no methodology other than trial and error

is available to build such agents.

Belief-Desire-Intention (BDI) Agents

BDI architectures are practical reasoning architectures, in which the process of deciding what

to do resembles the kind of practical reasoning that we appear to use in our everyday lives

[40]. The basic components of a BDI architecture are data structures representing the beliefs,

desires, and intentions of the agent, and functions that represent its deliberation (deciding

what to do) and means-ends reasoning (deciding how to do it). Intentions play a central role

in the BDI model: they provide stability for decision making, and act to focus the agent’s

practical reasoning.

The procedure of BDI decision-making is shown in Fig. 3.2. The belief revision function

(BRF) takes the perceptions and the agent’s current beliefs as input to determine a set of new

beliefs. The option generation function (generate options) decides on the basis of the current

beliefs and intentions a series of options. These generated options serve as new desires. The

filter function, which models the agent’s deliberation process, will then be utilized to actually

select some of the desires. The chosen desires become intentions and will guide the action

selection function (execute), which determines an action to be performed by the agent.

A major issue in BDI architectures is the problem of striking a balance between being

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 20

brf

beliefs

Generate options

execute

filter

desires

intentions

sensor input

action output

Figure 3.2: BDI Architecture

committed to and overcommitted to one’s intentions. The BDI model is attractive for several

reasons. First, it is intuitive—we all recognize the processes of deciding what to do and then

how to do it, and we all have an informal understanding of the notions of belief, desire and

intention. Secondly, it gives a clear functional decomposition, which indicates what sort of

subsystems might be required to build an agent.

Layered Architectures

Layered architectures as shown in Fig. 3.3 are currently the most popular general class of

agent architectures. Layering represents a natural decomposition of functionality: it is easy

to see how reactive, pro-active, and social behavior can be generated by the corresponding

layers in an architecture. Information and control flow within the layers are identified in

two ways: Horizontal layering and Vertical layering. In horizontal layered architectures the

software layers are each directly connected to the sensor input and action output. In vertically

layered architectures the sensor input and action output are connected to a fixed layer. The

advantage of horizontally layered architectures is their conceptual simplicity: an agent can

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 21

Layer n

...

Layer 1

Layer 2

perceptual
input

action
output

Layer n

...

Layer 1

Layer 2

p
e
r
c
e
p
t
u
a
l

i
n
p
u
t

a
c
t
i
o
n

o
u
t
p
u
t

horizontal vertical

Figure 3.3: Layered Architecture

exhibit n different types of behaviors by simply employing n layers. However, inconsistent

actions might be suggested and unstable overall agent behavior may result. The problem can

be alleviated in the vertically layered architectures. The vertically layered architectures can

be divided into one-pass architectures and two pass architectures. In onepass architectures,

control flows sequentially through each layer until the final layer generates action output. In

two-pass architectures, information flows up the architecture and control flows back down.

With the basic notion of an agent, its attributes defined, and various agent architectures

discussed, the next section takes the step towards a population of co-operating agents.

3.2 Multiagent Systems

A multiagent system (see Fig. 3.4) is composed of a population of agents. The agents interact

with each other to reach common objectives while simultaneously pursue individual objectives

[26]. In such a system, the agents form a loosely-coupled network of problem solvers and work

together to solve problems that are beyond their individual capabilities [101]. These problem

solvers, characterized by various degrees of problem solving capabilities, may be spatially

distributed and heterogeneous in nature. Research in multiagent systems is mainly connected

with coordinating intelligent behavior among these agents so that they collectively benefit from

individual knowledge, goals, skills, and plans and take appropriate actions to solve problems.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 22

interact
common

objectives

interact

interact

Figure 3.4: Multiagent Systems

Each agent can be identified as an entity (e.g., a machine, a plant or a part) and thus help in

incremental growth and flexible expansion. The advantage of scalability is provided as each

agent is allowed to join a system, begin coordinating with other agents, and leave a system

once it has achieved its goal without affecting the operation of the system.

3.2.1 Characteristics of Multiagent Systems

The following is a summary of typical multiagent systems [49]:

• Every agent has incomplete knowledge or capabilities in solving the problem, hence a

limited viewpoint.

• Multiagent systems are typically open [98] and have no centralized control.

• Data is decentralized and computations are performed asynchronously.

3.2.2 Communication Protocols

Agents’ communication is vital in order to achieve better goals for themselves or of the so-

ciety/system in which they exist. Communication protocols enable agents to exchange and

understand messages. As an example, a communication protocol might specify that the fol-

lowing types of messages can be exchanged between two agents:

• Propose a course of action

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 23

• Accept/Reject a course of action

• Disagree with a proposed course of action

• Counterpropose a course of action.

Communication allows coordination of actions and behavior among the agents, resulting

in systems that are more coherent. According to [98] the following are the possible communi-

cation protocols:

Coordination

Coordination is a property of a system of agents performing some activity in a shared environ-

ment. The degree of coordination is the extent to which the agents are able to avoid extraneous

activity by reducing resource contention, avoiding deadlock, and maintaining applicable safety

conditions. Cooperation is coordination among harmonious agents, while negotiation is co-

ordination among competitive or self-interested agents. Typically, to cooperate successfully,

each agent must have a model of other agents and also develop a model of future interactions.

Speech Acts

Speech Act theory [83] is a popular basis for analyzing communication where in the spoken

human communication is used as the model for communication among computational agents.

Speech act theory views human natural language as actions, such as requests, suggestions,

commitments, and replies. For example, when you request something, you are not simply

making a statement, but creating the request itself. It helps define the type of message by

using the concept of the illocutionary force. The sender’s intended communication act is

clearly defined, and the receiver has no doubt as to the type of message sent.

KQML

The knowledge query and manipulation language (KQML) is a protocol for exchanging in-

formation and knowledge. The elegance of KQML is that all information for understanding

the content of the message is contained in the communication itself. KQML-speaking agents

appear to each other as clients and servers. The communication among such agents can be

either synchronous or asynchronous. KQML messages can be “nested,” i.e., the contents of a

KQML message may be another KQML message, which is self contained.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 24

Ontologies

An ontology is a specification of the objects, concepts and relationships in an area of interest.

Concepts can be represented in first-order logic as unary predicates and higher-arity predicates

represent relationships. An ontology is more than a taxonomy of classes; the ontology must

describe the relationships. It is analogous to a database schema, not the contents of a database

itself.

3.2.3 Interaction Protocols

Interaction protocols govern the exchange of a series of messages among agents, i.e., a con-

versation. For instance, based on the message types given in the previous section, the follow-

ing conversation corresponds to an interaction protocol for negotiation between Agent1 and

Agent2:

Agents start negotiation by

• Agent1 proposes some action to Agent2

Agent2 evaluates the proposal and

• sends acceptance/rejection to Agent1 OR

• sends counterproposal to Agent1 OR

• sends disagreement to Agent1

As per [98], several interaction protocols have been devised for systems of agents:

Coordination Protocols

In an environment with limited resources, agents must coordinate their activities with each

other to further their own interests or satisfy group goals. The actions of multiple agents need

to be coordinated because there are dependencies between the agents’ actions, there is a need to

meet global constraints, and no one agent has sufficient competence, resources or information

to achieve system goals. While the distributed goal formalism has been used frequently to

characterize both global and local problems, the key agent components are commitment and

convention. Commitments are viewed as pledges to undertake a specific course of action,

while conventions provide a means of managing commitments in changing circumstances.

Commitments and conventions are the cornerstones of coordination: commitments provide the

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 25

necessary structure for predictable interactions, and social conventions provide the necessary

degree of mutual support.

Contract Net

The contract net protocol is an interaction protocol for cooperative problem solving among

agents and is most widely used. It is modeled on the contracting mechanism used by businesses

to govern the exchange of good and services. The contract net provides a solution for the so-

called connection problem: finding an appropriate agent to work on a given task.

An agent wanting a task solved is called the manager; agents that might be able to solve

the task are called potential contractors. From a manager’s perspective, the process is to

announce a task, receive and evaluate bids from potential contractors, award a contract to

a suitable contractor, and receive and synthesis results. From a contractor’s perspective,

the process is to receive task announcements, evaluate one’s capability to respond, respond

or decline, perform the task, and report results. The contract net offers the advantages of

graceful performance degradation. If a contractor is unable to provide a satisfactory solution,

the manager can seek other potential contractors for the task.

Blackboard System

The blackboard system as shown in Fig. 3.5 consists of a set of specialized knowledge sources,

a centralized blackboard data structure, and a control strategy. The blackboard data structure

acts as a global data repository, which facilitates indirect communication between knowledge

sources. It contains input data, partial solutions and other data that are in various problem-

solving states. The blackboard can be thought of as a dynamic “library” of contributions to

the current problem that have been recently “published” by other knowledge sources.

The blackboard architecture was first introduced in the Hearsay II speech recognition

project [25]. It featured a system with multiple knowledge sources or independent agents,

each with a specific domain of expertise related to speech analysis. Each agent works on its

own pace on its part of the problem, it refers to the blackboard to pick up new information

posted by other agents, and in turn posts its results to the blackboard. Thus, the blackboard

architecture allows multiple agents to work independently and cooperate with each other

towards solving the problem.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 26

Blackboard

Pending
KS

Activations

Library
of

KSs

Control
Components

Executing
Activated

KS

Events

Figure 3.5: Architecture of basic blackboard system showing the blackboard, knowledge sources (KS)

and control components.

Market Mechanisms

Market mechanisms are effective for coordinating the activities of many agents with minimal

direct communication among the agents. Everything of interest to an agent is described by

current prices - the preferences or abilities of others are irrelevant except insofar as they affect

the prices. There are two types of agents consumers, who exchange goods, and producers,

who transform some goods into other goods. Agents bid for goods at various prices, but all

exchanges occur at current market prices. All agents bid so as to maximize either their profits

or their utility.

One of the oldest applications of market mechanisms is in decision-theoretic planning,

which models the costs and effects of actions quantitatively and probabilistically. For many

applications, where the probabilities can be estimated reliably, this leads to highly effective

plans of actions.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 27

Negotiations

A frequent form of interaction that occurs among agents with different goals is termed nego-

tiation. It is a process by which a joint decision is reached by two or more agents, each trying

to reach an individual goal or objective. The agents first communicate their positions, which

might conflict, and then try to move towards agreement by making concessions or searching

for alternatives.

The major features of negotiation are (1) the language used by the participating agents,

(2) the protocol followed by the agents as they negotiate, and (3) the decision process that

each agent uses to determine its positions, concessions, and criteria for agreement.

3.2.4 Advantages of Multiagent Systems

Multiagent systems offer a way to mitigate the constraints of centralized, planned, sequential

control and provide systems that are decentralized, emergent, and concurrent. Applications

are inherently distributed either functionally or spatially. For instance, a group of experts with

different specialities collaborating to solve a complex problem corresponds to an application

being functionally distributed. The advantages offered by using autonomous agent-based

systems can be identified as follows:

• Fault Tolerance – Agents are a distributed mechanism towards problem solving and

thus a system made of autonomous agents will not collapse when one or more of its

components fail as there will not be any single point of failure.

• Self-Configuring Systems – A collection of agents are capable of reconfiguring them-

selves as they run. This is crucial for systems that need to respond to a wide range

of operating conditions. As the overall system behavior emerges from local decisions,

the system readjusts itself automatically to environment noise or the removal of other

agents. Thus a fully functional self-configuring system can be smoothly implemented by

merely networking agent resources.

• Modular Software/Scaleable Architecture – The reason why agents are considered as

dynamic and powerful entities is because of the factorization of the problem they provide.

Every agent can be considered as an entity and thus allows incremental growth and

flexible expansion. The advantage of scalability is provided as each agent is allowed to

join or leave a system.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 28

• Decreased communication – By exchanging only high level solutions with other agents.

• Flexible systems – By having agents with distinctive expertise dynamically team up to

solve problems.

• Faster Problem Solving – By employing parallelism.

This section has discussed the basic issues that must be dealt with while building a MAS.

These issues are concerned with providing communication and interaction in the MAS. Com-

munication enables the agents in the MAS to exchange information on the basis of which

agents coordinate their actions. Interaction is very important as it is the process of interac-

tion that allows several intelligent agents combine their efforts. The next section discusses the

motivation for the use of Java in multiagent systems development.

3.2.5 JAVA

To correctly develop autonomous, intelligent, reactive pieces of software, we must have good

ways of implementing, debugging, and evaluating them. This section describes in detail various

reasons why Java [45] renders itself as a suitable choice to construct software agents and also

build an agent framework [6].

Object-Oriented

Object-oriented design is a very powerful concept as it facilitates the clean definition of inter-

faces and makes it possible to provide reusable software components. It is an approach that

focuses design on the data and on the interfaces to it. It is also the mechanism for defining

how modules “plug and play.” Though there are many languages which are object oriented

in nature, Java is one of the few languages which enforces it. The user has no choice but to

encapsulate all data in objects. Since agents are essentially built around a group of different

object components, Java is an ideal language for developing them.

Network-Savvy

Communication is a very crucial aspect in the development of multiagent systems. Agents

located on different machines and in different environments have to communicate information

and knowledge about their goals, beliefs and intentions to each other to coordinate and co-

operate so as to bring about a coherent solution. Thus communication is a very important

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 29

aspect in the development of any MAS. Java lends itself as an extremely suitable choice in

this regard. It offers an comprehensive library of classes and routines which cope easily with

both UDP and TCP/IP protocols and thus supports sending both broadcast and directed

messages across the network. Moreover it provides the feature of RMI (Remote Method Invo-

cation) which is extremely helpful while creating a family of interacting agents. The process

of creating network connections is extremely easy when compared to other languages.

Secure

As Java is intended for use in networked/distributed environments, a great deal of importance

has been placed on security. Java allows for the construction of virus-free and tamper-free

systems. The authentication techniques are based on public-key encryption.

Architecture Neutral and Portable

As agents are characterized by being spatially distributed, applications must capable of be-

ing executed anywhere on the network without prior knowledge of the target hardware and

software platform. Using Java has definitely a cutting edge, as it is architecture neutral and

portable. Java adopts a “binary code format” that is nondependent of the hardware architec-

tures and operating system interfaces as a measure to solve the binary-distribution problem.

The format of this system-independent binary code is architecture neutral. No special port-

ing activity is needed for an application written in Java to execute in a given hardware and

software environment if the Java run-time platform is made available. The Java compiler

generates bytecodes, which is a high-level machine independent code for an abstract machine

that is implemented by the Java interpreter and run-time system. The most important ben-

efit of the interpreted bytecode approach is that compiled Java programs are portable to

any system on which the Java interpreter and run-time system have been implemented. The

architecture-neutral feature is one huge step towards achieving portability. And also program-

ming languages such as C and C++ suffer from the defect of designating many fundamental

data types as “implementation dependent.” Java eliminates this issue by defining a standard

behavior that will apply to the data types across all platforms.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 30

Database Connectivity - JDBC

The Java Database Connectivity kit lets Java programmers connect to any relational database,

query it, or update it using the industry standard structured query language (SQL). This is a

very useful feature as databases are among the most common uses of software and hardware

today.

Native Methods

While developing a multiagent application, there are often situations when it is essential to

use the code written in a different language(native code) and call it from Java (either the

system needs some pre-existing legacy code or it is very essential in order to maximize the

speed of the code). To facilitate this, Java provides ways to call already compiled code (native

methods). The features of JDBC along with native methods help in enabling legacy software

integration.

3.3 Software Engineering of Agent-Based Systems

Agents are generally regarded as autonomous decision making systems, which sense and act

in some environment. Agents appear to be a promising approach to developing complex

applications, ranging from internet-based electronic commerce and information gathering to

industrial process control [46].

3.3.1 Agents and AI

The research in the field of AI had been largely responsible for the emergence of the discipline

of intelligent agents [100]. One way of defining AI is as the problem of building an intelligent

agent [79]. But it is important to draw a thin line of difference between the broad intelligence

that is the clear-cut goal of the AI community, and the intelligence which is sought for in

agent-based systems. The only intelligence required of agents is that they must make an

acceptable decision about what action to perform next in their environment in time for this

decision to be useful. Other requirements for intelligence will be determined by the domain

in which the agent is going to be applicable: for instance, not all agents need to exhibit a

learning capability. Agents are nothing but software components that must be designed and

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 31

implemented in the same way as any other software component. AI techniques are more often

the most appropriate way of building agents.

3.3.2 Agents and Expert Systems

Expert systems were considered the AI technology of the 1980s [100]. For knowledge-rich

domains, expert systems are the most appropriate as they are capable of solving problems or

giving advice. MYCIN is a classic example of an expert system. It was intended to assist

physicians in the treatment of blood infections in humans. The most important distinction

between agents and expert systems is that expert systems like MYCIN are inherently dis-

embodied. They are not capable of interacting directly with any environment, i.e., they get

information not via sensors, but through a user acting as middle man. Additionally, expert

systems are not required to operate in real-time. Finally, in expert systems it is not required

that they are capable of cooperating with other agents. But inspite of these differences be-

tween expert systems and agents, some expert systems, look very much like agents. An apt

example for this is ARCHON [47], which started as a collection of expert systems, and ended

up being viewed as a multiagent system. ARCHON operates in the domain of industrial

process control.

3.3.3 Agents and Objects

The growing interest in programming languages such as JAVA has aided the object oriented

approaches in being considered as the “best practice” not only by the academic computer

science community but also by the software industry. Agents are identical to objects in most

important respects: they encapsulate state and behavior, and communicate via message pass-

ing. Although there are certain similarities between object and agent oriented approaches,

there are also a number of important differences [51]. Firstly, objects are generally passive

in nature hence they come alive when they are sent a message. Secondly, although objects

encapsulate state and behavior, they do not encapsulate behavior activation i.e., action choice.

Thus, any object can invoke any publicly accessible method on any other object. Once the

method is invoked, the corresponding actions are performed. Thirdly, object-oriented tech-

nology does not succeed to provide adequate set of concepts and mechanisms for modeling

complex systems. According to [8] for modeling complex systems objects, classes, and modules

provide an essential yet insufficient means of abstraction. Finally, object-oriented approaches

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 32

provide only minimal support for specifying and managing organizational relationships.

3.3.4 Agent-Based Systems

The technology of multiagent systems seems to radically alter the way in which complex,

distributed, open systems are conceptualized and implemented. Adopting a multiagent ap-

proach to system development affords software engineers a number of significant advantages

over contemporary methods. This does not imply that multiagent systems are a silver bullet

[9]—there is no evidence to suggest they will represent an order of magnitude improvement in

software engineering productivity. However, for certain classes of application, an agent-based

approach can significantly improve the software development process. This approach follows

the phases of Specification, Implementation, and Verification [100] [50].

Specification

The software development process begins by establishing the client’s requirements. When this

process is completed, a specification is developed which sets out the functionality of the new

system to be developed. The purpose of this section is to consider what a specification for

an agent-based system might look like. What are the requirements for an agent specification

framework? What sort of properties must it be capable of representing? Taking the view

of agents as practical reasoning systems, the predominant approach to specifying agents has

involved treating them as intentional systems that may be understood by attributing to them

mental states such as beliefs, desires, and intentions [99]. An agent specification framework

must be capable of capturing at least the following aspects of an agent-based system:

• the beliefs agents have;

• the ongoing interaction agents have with their environment;

• the goals that agent will try to achieve;

• the actions that agents perform and the effects of these actions.

The most successful approach appears to be the use of a temporal modal logic [99]. The

fundamental problem faced by agent researchers is developing a formal model that gives a

good account of the interrelationships between the various attitudes that together comprise

an agents internal state [99]. Comparatively few serious attempts have been made to specify

real agent systems using such logics - see, [28] for one such attempt.

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 33

Implementation

Once given a specification, we must implement a system that is correct with respect to this

specification. The next issue to be considered is converting this abstract specification to

concrete computational model. There are at least three possibilities for achieving this trans-

formation as specified in [100]:

1. manually refine the specification into an executable form by following some principled

but informal refinement process;

2. directly execute or animate the abstract specification; or

3. translate or compile the specification into a concrete computational form using an au-

tomatic translation technique.

Refinement

At the time of writing, most software developers use structured but informal techniques for

transforming specifications into concrete implementations. One of the most common tech-

niques in widespread use are based on the idea of top-down refinement. In this approach,

an abstract system specification is refined into a number of smaller, less abstract sub-system

specifications, until the derived sub-systems are simple enough to be directly implemented and

which together satisfy the original specification. It is required that each step represents a true

refinement of the more abstract specification that preceded it. For functional systems, the

refinement process is well understood, and comparatively straightforward [66]. For reactive

systems, refinement is not so straightforward, as reactive systems must be specified in terms of

their ongoing behavior. The refinement problem for agent-based systems, where specifications

may be regarded as even more abstract than those for reactive systems, is quite challenging.

Structured but informal refinement techniques are the backbone of real-world software

engineering. For agent-based techniques to become widely used outside the academic com-

munity, the approach of informal, structured methods for agent-based development will be

essential. An example, one such technique is followed in [59] using a standard specification

technique (in their case, Z), and then using traditional refinement methods (in their case,

object-oriented development) for transforming the specification into an implementation. This

approach has the advantage of being familiar to a much larger user-base than entirely new

techniques, but suffers from the disadvantage of presenting the user with no features that

make it particularly well-suited to agent specification. A similar approach is taken in this

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 34

research by using Unified Modeling Language (UML) statecharts [70] for specification and the

object oriented development to transform the specification into an implementation using the

Java programming language.

Directly Executing Agent Specifications

One major disadvantage with manual refinement methods is that they introduce the possibility

of errors. If no proofs are provided, to demonstrate that each refinement step is indeed a true

refinement, the correctness of the implementation process depends upon little more than the

intuitions of the developer. This is definitely undesirable for applications in which correctness

is a major issue. One possible way of overcoming this problem, is to get rid of the refinement

process altogether, and perform direct execution of the specification.

Suppose a system specification is given, Φ, which is putforth in some logical language L.

One way of obtaining a concrete system from Φ is to treat it as an executable specification,

and interpret the specification directly in order to generate the agent’s behavior. Interpreting

an agent specification can be viewed as a kind of constructive proof of satisfiability. By this it

can be shown that the specification Φ is satisfiable by building a model (in the logical sense)

for it. If models for the specification language L can be computationally interpreted, then

model building can be viewed as executing the specification.

Compiling Agent Specifications

An alternative to direct execution is compilation. In this approach, the abstract specification

is transformed into a concrete computational model using some automatic synthesis process.

The main advantage of compilation over direct execution is the run-time efficiency. Direct

execution of an agent specification, involves the manipulation of a symbolic representation of

the specification at run time. This manipulation corresponds to reasoning of some form, which

is computationally costly. Compilation approaches aim to reduce abstract symbolic specifica-

tions to a much simpler computational model, which requires no symbolic representation. The

“reasoning” work is performed off-line, at the time of compilation; execution of the compiled

system can then be done with little or no run-time symbolic reasoning.

The general approach of automatic synthesis, although theoretically appealing, is limited in

a number of important aspects. As the agent specification language becomes more expressive,

even off-line reasoning becomes too expensive to carry out. The systems generated in this way

are not capable of learning, (i.e., they are not capable of adapting their “program” at runtime).

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 35

Finally, as the case with direct execution approaches, agent specification frameworks donot

have concrete computational interpretation, making such a synthesis practically not possible.

Verification

Once a concrete system is developed, it should be shown that this system is correct with

respect to the original specification. This process is known as verification, and it is especially

important if any informality is introduced into the development process. The approaches to

the verification are divided into two broad classes: (1) axiomatic; and (2) semantic (model

checking).

Axiomatic Approaches

Axiomatic approaches to program verification were the first to enter the mainstream of com-

puter science, with Hoare’s work [39] in the late 1960s. Axiomatic verification necessitates that

a logical theory should be derived systematically from the concrete program that corresponds

to the behavior of the program. This can be termed as the program theory. If the program

theory is expressed in the same logical language as the original specification, then verification

reduces to a proof problem: showing that the specification is a theorem of (equivalently, is a

logical consequence of) the program theory. The development of a program theory is made

feasible by axiomatizing the programming language in which the system is implemented. For

instance, Hoare logic gives more or less an axiom for every statement type in a PASCAL-like

language. Given the axiomatization, the program theory can be derived from the program

text in a systematic way.

Semantic Approaches: Model Checking

Axiomatic verification reduces to a proof problem and hence they are inherently limited by the

difficulty of this proof problem. Proofs are hard enough, even in classical logic; the addition of

temporal and modal connectives to a logic makes the problem considerably harder. For this

reason, more efficient approaches to verification have been sought. One successful approach

is that of model checking. As the name suggests, model checking approaches are based on the

semantics of the specification language unlike axiomatic approaches which generally rely on

syntactic proof.

The model checking problem is simple: for given a formula Φ of language L and a model

M for the language L, the validity of Φ in M has to be determined. Model checking-based

CHAPTER 3. SOFTWARE AGENTS AND AGENT-BASED SYSTEMS 36

verification has been studied in connection with temporal logic. The technique relies upon the

close relationship between models for temporal logic and finite-state machines. Suppose that

Φ is the specification for some system, and Π is a program that is supposed to be implementing

Φ. Then, in order to determine whether or not Π truly implements Φ, a model MΠ is generated

that corresponds to Π, in the sense that MΠ encodes all the possible computations of Π. The

main advantage of model checking over axiomatic verification is in complexity. Model checking

using the branching time temporal logic CTL [19] can be done in polynomial time, whereas

the proof problem for most modal logics more complex.

3.4 Conclusion

The chapter gave an overview on agents, agent-based systems and agent based software en-

gineering. The various components and approaches both necessary and possible to construct

agent-based systems have been discussed. The following chapters will consequently address

the modeling of shipboard power system as the domain of interest and provide the tools to

construct and program the “inside” of agents necessary to develop the autonomous energy

management system.

Chapter

4

Modeling the Electric
Shipboard Power System

The challenge of designing an agent-based energy management system requires the possibility

to interact with a model of the electric shipboard power system. Only with the availability of

either a mathematical or hardware model of the physical system can the higher levels of the

design goals be evaluated. This work will build on a mathematical model and the following

will introduce the assumptions made in defining an appropriate model and its interface to the

other parts of the autonomous energy management system.

4.1 Model Description

The modified version of the shipboard power system is shown in Fig. 4.1. The model builds

on the integrated electric power system as introduced earlier but ignores the pulsed load com-

ponents and adds an additional load in each of the zones. For this work, all components

are modeled by discrete transfer functions of first and second-order to represent input-output

relationships concerning active power and voltage values. This setup allows modeling enough

details for the energy management system while decreasing the required simulation time.

The components’ transfer functions and parameters as used for implementation in the MAT-

LAB/Simulink environment are given in Appendix B.

37

CHAPTER 4. MODELING THE ELECTRIC SHIPBOARD POWER SYSTEM 38

Zone 1 Zone 2 Zone 3
Port

Starboard

speed1

speed

g.energy1

g.energy

b.energy1

b.energy

In2

In1

Zone Connectors

In2

In1

P

e

S

Starboard Gas

Ps

S

e

Starboard Battery

Pe

Sb

Sg

Pm

w

v

Ps

Starboard AC

0

StarPS 0

StarCM3

0

StarCM2

0

StarCM1

pref

v

p1

Propulsion 2

pref

v

p1

Propulsion 1

Ppr 2

Ppr 1

0

PortPS

0

PortCM3

0

PortCM2

0

PortCM1

P

e

S

PortBus Gas

Ps

S

e

PortBus Battery

Pe

Sb

Sg

Pm

w

v

Ps

PortBus AC

Pm1

Pm

Pd AC2

Pd AC1

pref

vb1

vb2

p1

p2

LoadType1 6

pref

vb1

vb2

p1

p2

LoadType1 5

pref

vb1

vb2

p1

p2

LoadType1 4

pref

vb1

vb2

p1

p2

LoadType1 3

pref

vb1

vb2

p1

p2

LoadType1 2

pref

vb1

vb2

p1

p2

LoadType1 1

0

LT8

0

LT7

0

0

LT5

0

LT4

0

LT3

0

LT2

LT1 6

LT1 5

LT1 4

LT1 3

LT1 2

LT1 1

0

LT1
[AC2PROPPORT]

[AC2BATPORT]

[AC2GASSTAR]

[GAS2ACSTAR]

[LT6]

Goto5

[LT1Z32SUM1PORT]

[LT1Z32SUM2PORT]

[LT1Z32SUM1STAR]

[LT1Z32SUM2STAR]

[CMP32LT1]

[CMSB32LT1]

[LT5]

Goto4

[LT1Z22SUM2STAR]

[LT1Z22SUM2PORT]

[LT1Z22SUM1STAR]

[LT1Z22SUM1PORT]
[LT1Z12SUM1PORT]

[LT1Z12SUM2PORT]

[CM12PSSTAR][PS2CMSTAR]

[LT4]

Goto3

[CM32PSSTAR][CM22PSSTAR]

[CMSB12LT1]

[LT1Z12SUM2STAR]

[BAT2ACSTAR]

[AC2BATSTAR]

[PS2CMPORT]

[AC2GASPORT]

[AC2PROPSTAR]

[CMP22LT1]

[LT3]

Goto2

[CMSB22LT1]

[GAS2ACPORT]

[CM12PSPORT]
[CM32PSPORT][CM22PSPORT]

[CMP12LT1]

[LT1Z12SUM1STAR]

[BAT2ACPORT]

[LT2]

Goto1

[LT1]

Goto

[CM12PSPORT]

[AC2PROPSTAR]

[CM32PSPORT]

[AC2PROPPORT]

[BAT2ACPORT]

[SUM2CM3STAR]

[PS2CMSTAR]

[CMSB32LT1]

[CMP32LT1]

[CMSB32LT1]

[SUM2CM3PORT]

[SUM2CM2STAR]

[AC2GASSTAR]

[PS2CMSTAR]

[CMSB22LT1]

[CMSB22LT1]

[CMP22LT1]

[SUM2CM2PORT]

[SUM2CM1STAR]

[PS2CMSTAR]

[CMSB12LT1]

[CMP12LT1]

[CMSB12LT1]

[SUM2CM1PORT]

[PS2CMPORT]

[CM32PSSTAR]

[CM22PSSTAR]

[CM22PSPORT]

[AC2BATSTAR]

[AC2BATPORT]

[CMP32LT1]

[PS2CMPORT]

[AC2GASPORT]

[PS2CMPORT]

[UNIT2ACPORT]

[CM12PSSTAR]

[AC2PROPSTAR]

[AC2PROPPORT]

[GAS2ACSTAR]

[BAT2ACSTAR]

[UNIT2ACSTAR]

[CMP22LT1][CMP12LT1][GAS2ACPORT]

v

P Z1

P Z2

P Z3

vm

P

vb

DC PS2

v

P Z1

P Z2

P Z3

vm

P

vb

DC PS1

v

P

vm

P

vb

CM SB3

v

P

vm

P

vb

CM SB2

v

P

vm

P

vb

CM SB1

v

P

vm

P

vb

CM P3

v

P

vm

P

vb

CM P2

v

P

vm

P

vb

CM P1

Figure 4.1: Shipboard Power System

4.2 Interfacing the Physical Model

The above shown physical system model is based on only local controls for individual compo-

nents. If any of the components fail, the rest of the system gets affected resulting in either

bringing down of the whole system or parts of the load not receiving power. What is needed

is an autonomous energy management system that has the ability to automatically reroute

the power flow based on the current state of the system. For example, if a line is lost due to

some catastrophic event, then an alternate route should be chosen on the fly with minimal or

no involvement of human operators. The energy management system should also incorporate

the criteria of restoring power to loads based on their priorities.

The platform for implementing such an energy management system for the shipboard

power system should facilitate the execution of multiple threads of actions working towards

their goals asynchronously. At the same time the platform has to be portable and architectural

neutral. Java, which supports multithreading and which is considered as a defacto standard

programming language, is chosen as the ideal platform. Another important reason for choos-

CHAPTER 4. MODELING THE ELECTRIC SHIPBOARD POWER SYSTEM 39

ing the Java platform is its compatibility and interoperability with the MATLAB/Simulink

environment.

4.3 Conclusion

This chapter introduced the mathematical model of the shipboard power system as appropriate

for the energy management system. The important aspects of interfacing the model with the

autonomous energy management components to be developed has been addressed and lead to

the choice of combining MATLAB/Simulink with agents and tools to be written in Java.

Chapter

5

Energy Management System

The chapter gives details regarding the shipboard energy management system. As the design

builds on a graph theoretic approach using a specific form of maximum flow algorithm, a

brief introduction to graph theory followed by the maximum flow problem and self-stabilizing

maximum flow algorithms is given. Consequently, the issues of transforming the general

algorithm into an application considering constraints given by a naval system are addressed

and an agent-based maximum flow algorithm for the energy management system constructed.

5.1 Graph Theory

Graph theory is a domain that lies on the cusp of several fields of interest, including applied

mathematics, computer science, engineering, management and operation research. The maxi-

mum flow problem is an elementary problem in graph theory and combinatorial optimization.

The maximum flow problem seeks a feasible solution that sends the maximum amount of flow

from a source to a sink node and will be useful in the design of the energy management system.

5.1.1 Definitions and Notation

In this section the basic definitions and notation from graph theory are presented. Also, an

overview of some fundamental properties of graphs is given.

40

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 41

2

1 5

4

7

63
(a) Directed graph

2

1 5

4

7

63

(b) Undirected graph

Figure 5.1: Directed and Undirected Graphs

Directed Graphs and Networks: A directed graph G = (N,A) consists of a set N of nodes

ii and a set A of arcs ai whose elements are ordered pairs of distinct nodes. Fig. 5.1(a)

gives an example of a directed graph. For this graph, N = {1, 2, 3, 4, 5, 6, 7} and A =

{(1, 2), (1, 3), (2, 3), (2, 4), (3, 6), (4, 5), (4, 7), (5, 2), (5, 3), (5, 7), (6, 7)}. A directed network is

a directed graph whose nodes and/or arcs have associated numerical values to represent, e.g.,

costs or capacities. They are also termed as weighted directed graphs.

Undirected Graphs and Networks: Undirected graphs and undirected networks are defined

in the same manner as their respective directed counterparts except that arcs are unordered

pairs of distinct nodes. Fig. 5.1(b) gives an example of an undirected graph. An undirected

arc(i, j) can be regarded as a two-way street with flow permitted in both directions: either

from node i to node j or from node j to node i.

Walk and Path: A walk in a directed graph G = (N,A) is a subgraph of G consisting of

a sequence of nodes and arcs i1 − a1 − i2 − a2 − ...− ir−1 − ar−1 − ir satisfying the property

that for all 1 ≤ k ≤ r − 1, either ak = (ik, ik+1) ∈ A or ak = (ik+1, ik) ∈ A. A path is a

walk without any repetition of nodes. Fig. 5.2 illustrates two walks: 1-2-3-4 and 1-2-4-3-2-6.

Fig. 5.2(a) shows a path but Fig. 5.2(b) is not because node 2 is visited twice.

Directed Walk and Directed Path: A directed walk is an “oriented” version of a walk in

the sense that for any two consecutive nodes ik and ik+1 on the walk, (ik, ik+1) ∈ A. Fig. 5.2(b)

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 42

2

1 75
(a)

2

1 5

4

3
(b)

Figure 5.2: Examples of paths and walks in graphs

2

5

6

(a)

2 4

5

(b)

Figure 5.3: Examples of cycles

shows a directed walk. A directed path is a directed walk without repetition of nodes, i.e., it

has no backward arcs.

Cycle: A cycle is a path i1 − i2 − ...− ir together with the arc (ir, i1) or (i1, ir). Fig. 5.3(a)

gives an example of a cycle.

Directed Cycle: A directed cycle is a directed path i1 − i2 − ... − ir together with the arc

(ir, i1). Fig. 5.3(b) shows a directed cycle.

Acyclic Graph: A graph is acyclic if it contains no directed cycle.

5.1.2 The Maximum Flow Problem

A fundamental problem in graph theory is the maximum flow problem. Many different sequen-

tial and parallel algorithms have been developed [1]. All the parallel algorithms but the one

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 43

by Gosh, Gupta, and Pemmaraju in [34] present implementations that do not run in polylog-

arithmic time on a polynomial number of processors. Other advantages of this algorithm are:

simple, passive, self-stabilizing, and local checking and corrections only. The algorithm has

been investigated here to find a solution to the power flow problem of the electric shipboard

system. The following briefly defines the maximum flow problem and notation used. More

details can be found in [34].

A directed graph (digraph) G = (V,E) with n = |V | number of nodes and e = |E| number

of edges as shown in Fig. 5.4. The graph should not contain any directed cycles of length

2: if (i, j) ∈ E then (j, i) /∈ E. The nodes s and t are the distinct source and sink nodes,

respectively. The source node s has no incoming edges, the sink node t has no leaving edges.

Every edge (i, j) is associated with a real-valued flow f(i, j) and a non-negative real-valued

capacity C(i, j). Any feasible flow f in G obeys the flow conservation constraint, i.e., the

incoming flow If (i) =
∑

(j,i)∈E f(j, i) equals the outflow Of (i) =
∑

(i,k)∈E f(i, k):

for all i ∈ V − {s, t} : If (i) = Of (i)

Flows are also satisfying the skew symmetry property of f(i, j) = −f(j, i). The maximum

flow problem is to maximize the outflow of the source node Of (s).

Definition 1: For any flow f and for each pair of nodes (i, j) ∈ V × V , the residual capacity

r(i, j) is equal to C(i, j)− f(i, j).

Definition 2: For any flow f in G, the residual graph Gf of G with respect to f is defined as

the weighted digraph Gf = (Vf , Ef), where Vf = V and (i, j) ∈ Ef if and only if r(i, j) > 0.

Definition 3: A directed path in the residual graph Gf from s to t is called an augmenting

path.

Example: A feasible flow of a graph and its residual graph are given in Fig. 5.4(a). All edges

have a capacity of 4 and C(s, a) = C(a, b) = C(s, c) = C(c, b) = C(b, t) = 4. The number

on an edge indicates the flow along an edge, e.g., the flow from node b to the target node

t f(b, t) = 3. The residual graph for the flow gives the remaining capacity, for example the

residual flows r(b, t) = C(b, t)−f(b, t) = 4 - 3 = 1 and r(t, b) = C(t, b)−f(t, b) = 0−(−3) = 3.

A maximum flow and its corresponding residual graph are shown in Fig. 5.4(b), respec-

tively. It has been achieved by increasing the flow on the augmenting path s − a − b − t by

its minimum residual capacity of r(b, t) = 1. Note that after increasing the flow, the updated

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 44

a

ss b

c

t

a

ss b

c

t

2 2

3

1 1

2 2

1 1

2 2

3 3

1

3

(a) Feasible flow and its residual graph

a

ss b

c

t ss b

c

t
3 3

4

1 1

3 3

3 3

1 1

1 1

4

a

(b) Maximum flow and its residual graph

Figure 5.4: Example graph with edge capacities of 4

residual graph contains no augmenting path and, therefore, the flow from the source to the

target cannot be increased further.

Applications

The maximum flow problem arises in a wide variety of situations and in several forms. A

list includes the Feasible Flow Problem, Problem of Representatives, Matrix Rounding Prob-

lem, Scheduling on Uniform Parallel Machines, Distributed Computing on a Two-Processor

Computer, and Tanker Scheduling Problem. For an overview of applications see [1].

5.1.3 Self-Stabilizing Algorithms

Two radically different approaches toward fault tolerance are followed in literature. In robust

algorithms each step of each process is taken with sufficient care to ensure that, inspite of fail-

ures, correct processes only take correct steps. In self-stabilizing algorithms correct processes

can be affected by failures, but the algorithm is guaranted to recover from any arbitrary con-

figuration when the processes resume correct behavior [91]. Robust algorithms continuously

show correct coordinated behavior even when failures occur, but the number of failures is

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 45

limited and the failure model must usually be known precisely. In self-stabilizing algorithms

any number of failures of arbitrary types is allowable, but correct behavior of the algorithm is

suspended until some time after the repair of the failures [91]. A self-stabilizing algorithm can

be started in any system configuration and eventually reaches an allowed state, and behaves

according to its specifications from then on. Consequently, the effects of temporal failures

die out, and also, there is no need to initialize the system consistently. Self-stabilizing (also

referred to as stabilizing) algorithms were introduced as early as in 1974 [23].

Robust algorithms follow a pessimistic approach, suspecting all information received, and

precede all steps by sufficient checks to guarantee the validity of all steps of correct processes.

Validity must be guaranteed in the presence of faulty processes, which necessitates restriction

of the number of faults and of the fault model.

Stabilizing algorithms are optimistic, which may cause correct processes to behave incon-

sistently, but guarantee a return to correct behavior within finite time after all faulty behavior

ceases. That is, self-stabilizing algorithms protect against transient failures and eventual repair

is assumed, and this assumption allows to abandon failure models. Rather than considering

processes to be faulty, it is assumed that all processes operate correctly, but the configuration

can be corrupted arbitrarily during a transient failure. The configuration at which the analysis

of the algorithm starts is considered the initial one of the (correctly operating) algorithm. An

algorithm is therefore called stabilizing if it eventually starts to behave correctly (according

to the specification of the algorithm), regardless of the initial configuration.

Properties of Self-Stabilizing Algorithms

Self-stabilizing algorithms offer the following three fundamental advantages over classical al-

gorithms.

• Fault tolerance. Self-stabilizing algorithms provide full and automatic protection against

all transient process failures, because the algorithm recovers from any configuration, no

matter how much the data has been corrupted by failures.

• Initialization. The need of proper and consistent initialization of the algorithm is elimi-

nated, because the processes can be started in arbitrary states and yet eventually coor-

dinated behavior is guaranted.

• Dynamic topology. A self-stabilizing algorithm computing a topology dependent function

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 46

converges to a new solution after the occurence of a topological change.

5.1.4 Self-Stabilizing Maximum Flow Algorithm

By observing the drawbacks of the technique presented by Awerbuch and Varghese [5], Ghosh

et al. [34] were motivated to find a simple, passive, distributed self-stabilizing algorithm for the

maximum flow problem that uses local checking and local correction only. Ghosh et al. have

taken a step in this direction in [34] by presenting an algorithm that computes the maximum

flow in an acyclic digraph starting in an arbitrary initial state. The algorithm is simple to

understand and implement. In addition to being tolerant to transient faults, the algorithm

can also automatically adjust to dynamic changes in network topology or in edge capacities.

In particular, the self stabilizing algorithm can adapt (dynamically) to (a) arbitrary addition

or deletion of edges in the graph, (b) addition and deletion of nodes provided that the number

of nodes in the network is within a constant bound known a priori to all processes, and (c)

arbitrary changes in the capacities of the edges.

The algorithm uses an approach similar to that of Goldberg and Tarjan [32]. It is assumed

that each node in G contains a process that asynchronously makes moves based on local

information only. The moves by a process update the local state of that process alone.

It is assumed that G is an acyclic digraph, and associated with each edge (i, j) in G there

is a variable f(i, j) that stores the current flow from node i to node j. Both process i and

process j can read from and write into the variable f(i, j). Each node can then change f(i, j)

by changing the value of its local variable. Each node i contains a single variable d(i) that

denotes what i “believes” to be the length of the shortest directed path from the source s to

itself in the residual graph Gf . The value of d(i) is restricted to be an integer in the range

[0..n]. The flow f(i, j) is referred to as the f-value of edge (i, j) and d(i) as the distance-value

or d-value of node i. Each node can make moves that update its d-value or the f -value(s)

of incident edges. A move that updates a node’s d-value is called a d-move and a move that

updates an edge’s f -value is called an f-move. The algorithm allows one type of d-move and

three types of f -moves. The algorithm contains four guarded actions, labeled GS1 through

GS4 for convenience. For each i, 1 ≤ i ≤ 4, the guard and action in GSi are referred to as Gi

and Ai respectively.

The main idea behind the algorithm is as follows. For any node i 6= {s, t}, let demand(i) =

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 47

Of (i) − If (i). In addition, let demand(t) = ∞. Each node i, i 6= s, tries to restore the flow

conservation constraint demand(i) = 0 either by reducing its inflow if demand(i) < 0, or by

increasing its inflow or reducing its outflow if demand(i) > 0. In particular, each node with

positive demand attempts to “pull” flow via a shortest path from s to itself in the residual

graph. If the node believes that a path from s to itself does not exist in the residual graph,

then it rejects the demand by “pushing” it back along an outgoing edge. Breadth-first search

is used to keep track of the shortest paths from s to all nodes in Gf . The following explains

how the four guarded statements, GS1-GS4 implement the above idea.

• Guarded statement GS1. Each node i, i 6= s, computes its d-value by examining

the values d(j) for all (j, i) ∈ Ef . Note that it is referring to edges in the residual

graph Gf , not in the original graph G. Let k be a node such that (k, i) ∈ Ef and

d(k) = min{d(j) | (j, i) ∈ Ef}. If d(k) < n, then node i views node k as its predecessor

on the shortest path from node s to node i in Gf . Therefore, in this case, node i sets

its d-value to d(k)+1. If d(k) = n, then i believes that there is no path from s to itself

in Gf and therefore d(i) is also set to n. It is assumed that d(s) is fixed at 0.

• Guarded statement GS2. For any node i, i 6= s, if demand(i) < 0 then the total flow

along incoming edges in G is reduced irrespective of the d-value of i and the d-values of

the neighbors of i.

• Guarded statement GS3. For any node i, i 6= s, if demand(i) > 0 and d(i) < n then,

i tries to meet this demand by “pulling” flow along an incoming edge (j, i) ∈ Ef that

i believes to be on a shortest path from s to itself in the residual graph Gf . For this,

node i simply picks a node j such that (j, i) ∈ Ef and d(j) = d(i)− 1. The flow is then

increased along the edge (j, i) by the minimum of demand(i) and r(j, i).

• Guarded statement GS4. For any node i, i 6= s, if demand(i) > 0 and d(i) = n,

then i believes that there is no path in Gf from s to itself, and hence the excess demand

cannot be met. In this case node i “pushes” the excess demand for flow back towards

the sink t.

A remark on the distinguished nodes s and t: Node s remains idle with its d-value fixed at 0

and node t executes the same algorithm as the rest of the nodes. However, the value of Of (t)

is assumed to be fixed at ∞ implying that demand(t) is always greater than zero. Thus, node

t “drives” the algorithm by pulling flow along incoming edges until d(t) = n.

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 48

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b t

s a b ts a b t

s a b t s a b t

0 1 3 3 1

1(A)

(B)
0 1 3 3

1 0 1

0 0 1

1

1

2 1
1

1

0 1 2 3

0 0 1(C) 2 1
1

1

(D)

(E)

0 1 2 3

0 0 2 2 1 2

0 1 2 3

0 1 2 2 1 2

(F)
0 1 2 3

1 1 2 1 2
1

1

0 1 4 3

1 1 2(G) 1 2
1

1

(H)
0 1 4 3

1 1 1 1
1

1

1

1

1
1

1

1

1
0 1 4 4

1 1 1(I)

1

Node a: (GS2)

Node b: (GS1)

Node t: (GS3)

Node b: (GS3)

Node a: (GS3)

Node b: (GS1)

Node b: (GS4)

Node t: (GS1)

Figure 5.5: Digraph and its Residual Graph for an Example

The algorithm provides an upper limit on the number of moves necessary before a global

solution is found based on the number of nodes n in the graph: n2.

An example taken from [34] is shown in Fig. 5.5 and demonstrates the algorithm. The

digraph G on which the algorithm is run is simply a directed path of length 3 whose nodes are

labeled s, a, b, and t. The graphs on the left show how the d-values and the f -values change

in G as nodes make moves. The d-value of each node is shown under the corresponding node

and the f -value of each edge is shown above the corresponding edge. The graphs on the right

shows the corresponding residual graphs along with weights (residual capacities) of the edges.

The shortcomings associated with this algorithm is that it does not consider the priority

of the loads, i.e., loads are not restored based on their priorities. And also the algorithm

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 49

does not take care of capacity violations of the edges. These shortcomings are addressed by

extending the algorithm by three additional Guarded Statements namely, GS5−GS7, which

are explained in detail in the following section.

5.2 The Shipboard’s Power Flow as Maximum Flow Problem

5.2.1 Requirements

The electric shipboard power system is modeled as an acyclic directed graph and its residual

graph. The transformation of the block diagram into the acyclic graph is achieved by rep-

resenting physically linked components by neighboring nodes in a graph. Each of the edges

between nodes can be associated with a direction because the electric power flows only from

the AC generators toward the loads. The multiple generators (sources) and loads (sinks)

can be accommodated by introducing supersource and supersink nodes with additional edges.

This is a common step in maximum flow algorithms and does not introduce any limitations

(see for example [1]). The edges’ capacities from the supersource and to the supersink nodes

represent the upper bounds on generation capabilities and load demands, respectively. In

order to avoid bi-directional flows (loops of length 2) in the DC distribution bus, the bus has

been represented as a single node rather then a bi-directed edge. Every load is associated with

a priority value which can be high or low under different system conditions. Each agent should

perform locally by observing its environment and taking corrective actions to satisfy its goals,

i.e., to request power for a load, to route the power flow according to load priorities, etc. The

agents’ actions are taken without synchronization. By making local and asynchronous moves

that follow a self-stabilizing concept, convergence to the desired solution is achieved. Also, as

disturbances can be seen as arbitrary initial conditions, tolerance to transient faults that upset

system conditions is given. The energy management system for the SPS is based on steady

state analysis and short term transients are not considered. The algorithm published by [34]

provides such a framework for the desired agents’ behavior and allows the design of agents

that adjust to changes in network topology and edge capacity. The computational model

and changes made to the algorithm to accommodate requirements of the energy management

system are presented next.

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 50

5.2.2 Agent’s Maximum Flow Algorithm

Every node in the graph is allowed to make moves by changing its distance value or flows.

The algorithm executed by the agents at their nodes i (i 6= s) is given in Listing 5.1. The

algorithm is based on seven guarded statements GS1 − GS7 that consist of their respective

guard Gi and action Ai. The first six actions represent local steps taken to find a solution to

the power flow problem. Guarded statement GS7 notifies other agents by publishing to the

blackboard its status of making local changes or convergence to a local solution.

The algorithm is continuously executed by every agent i 6= s in order to restore the

demand(i) = Of (i)− If (i) = 0. The two distinguished agents s (source) and t (sink) differ in

their behavior from other nodes: Agent s is idle; agent t performs the same program as the

other nodes but with a demand(t) = ∞. The agents’ actions perform changes to increase or

decrease their inflows or to reduce their outflows. Agents with the belief that no direct path

from the source to itself exists push back the demand on their outgoing edges. The following

describes the guarded statements in more detail:

Guarded statement GS1: Every node i, i 6= s, updates its d(i)-value by determining

d(k) = min{d(j) | (j, i) ∈ Ef}. If d(k) < n then node k is a predecessor of node i and

d(i) = d(k) + 1, otherwise d(i) = n and no direct path from the source to node i exists. The

distance value of the source node is set to d(s) = 0.

Guarded statement GS2: Every node i, i 6= s, reduces the total flow along incoming edges

in case demand(i) < 0.

Guarded statement GS3: Every node i, i 6= s, with demand(i) > 0 and d(i) < n increases

the flow on available incoming path (j, i) ∈ Ef with d(j) = d(i) − 1, by the minimum of

demand(i) and residual flow r(j, i).

Guarded statement GS4: Every node i, i 6= (s, t), with demand(i) > 0 and d(i) = n

reduces the outflow on the path (i, j) ∈ E where f(i, j) > 0.

Guarded statement GS5: Every node i, i 6= s, checks the flows on incoming edges (j, i) ∈ E

and reduces flows in case of capacity violations. Note that the above guarded statements never

lead to this condition in case a valid initial flow existed. This statement rather allows changing

system conditions including the loss of a link.

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 51

Listing 5.1: Maximum Flow Algorithm

Node s : i d l e w i th d (s) = 0 , Node t : demand (t) = ∞ ,

i n i t i a l l y h i s t o r y (i) = 1 .

Nodes ’ a l g o r i t hm : f o r agent i , i 6= s

begin

{GS1} : d(i) 6= min(D(i) ∪ {n}) ? d(i) := min(D(i) ∪ {n})
{GS2} : demand(i) < 0 ? Reduce Inflow (i)

{GS3} : ∃ j ∈ IN(i) : pull(j, i) ? f(j, i) := f(j, i) + min(demand(i), r(i, j))

{GS4} : push(i) ? Reduce Outflow (i)

{GS5} : ∃ j ∈ LIMIT (i) ? f(j, i) := f(j, i)− (f(j, i)− C(j, i))

{GS6} : validate(i) ? Update Flows (i)

{GS7} : change(i) ? Notify (i)

end

Procedure Reduce Inflow(i) Procedure Reduce Outflow(i)

begin begin

Find (k, i) ∈ E such that f(k, i) > 0 Find (i, k) ∈ E such that f(i, k) > 0

f(k, i) = f(k, i)−min(−demand(i), f(k, i)) f(i, k) = f(i, k)− min(demand(i), f(i, k))

end end

Procedure Update Flows(i) Procedure Notify(i)

begin begin

1a. f(i, j) = f(i, j)−min(demand(i), f(j, k)) Blackboard Send(status(i))

1b. f(i, j) = f(i, j)−min(demand(i), f(j, k)) history(i) = status(i)

2. Find m ∈ LLN such that f(m, t) > 0 end

f(k, t) = f(k, t) + r(k, t) ∧ f(m, t) = f(m, t)− r(k, t)

end

Notation :

demand(i) = Of(i)− If(i) D(i) = {d (p) + 1 | p ∈ IN (i)}
IN(i) = {j | (j, i) ∈ Ef ∧ (j, i) ∈ E} pull(j, i) = (demand (i) > 0) ∧ (d (i) < n) ∧

(d(j) = d(i) - 1)

OUT(i) = {j | (i, j) ∈ E} push(i) = (demand(i) > 0)∧(d(i) = n)∧(i 6= t)

LN = {j | (j, t) ∈ E} LIMIT(i) = {j | f (j, i) >C(j, i) ∧ (j, i) ∈ E}
HLN = {i | j ∈ LN ∧ priority = high} priority(i) = { ‘ 1 ’ i f (j, k) ∈ E ∧ k ∈ LLN∧

f (j, k) > 0 e l s e ’0 ’}
validate(i) = 1a . (demand(i) > 0 ∧ d(i) = n ∧ i /∈TN ∧ j ∈TN ∧ f (i, j) > 0 ∧ p r i o r i t y (i) = 1)∨

1b . (demand(i) > 0 ∧ d(i) = n ∧ i ∈TN ∧ j ∈LLN ∧ f (i, j) > 0)∨
2 . (demand(i) = 0 ∧ d(i) = n ∧ i /∈TN ∧ k ∈HLN ∧ (j, k) ∈ E ∧ f (j, k) <C(j, k))

LLN = {i | j ∈ LN ∧ priority = low} status(i) = G1 ∨ G2 ∨ G3 ∨ G4 ∨ G5 ∨ G6

TN = {j | (j, LN) ∈ E} change(i) = s t a t u s (i) 6= h i s t o r y (i)

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 52

Guarded statement GS6:

• Every node i, i 6= s, with demand(i) > 0, d(i) = n:

– i /∈ TN (TN corresponds to special nodes connected directly to the load nodes),

and i connected to j ∈ TN ∧ (i, j) ∈ E with flow(i, j) > 0, if priority(i) = 1 (it

is 1 if it is connected to a low priority load ’k’ which is supplied, otherwise 0) then

reduce flow along (i, j) by the minimum of demand(i) and f(j, k)
– i ∈ TN and i connected to a low priority load j with (i, j) ∈ E ∧ flow(i, j) > 0

reduce the flow on low priority load j by the minimum of demand(i) and f(i, j)

• For every node i, i 6= (s, TN), demand(i) = 0, d(i) = n and i is connected to j ∈ TN and

if j is connected to unsupplied high priority load ’k’ then reduce supply to low priority

loads, by minimum of demand(j) and flow to low priority loads f(i, j) until the high

priority load is supplied. Increase the flow to high priority load proportionately.

Guarded statement GS7: Every node i, i 6= s, publishes its status to the blackboard in

case it has changed.

A mapping of the physical, electrical components/subsystems to the graph theory concept

is shown in Fig. 5.6. By depicting the shipboard power system as directed acyclic graph,

considering every component as a node, the reconfiguration layer is comprised of 22 agents.

The list of agents includes 2 AC sources, 2 power supply modules, 2 DC distribution buses, 6

converter modules, 6 loads in the zones, 2 propulsion loads, and the supersource and supersink

nodes.

5.3 Discussion

Designing agents that work together effectively involves several different kinds of activities

like sharing the tasks, information, and the dynamic co-ordination of multiagent activities.

Agents are forced to cooperate due to their limited knowledge and capabilities and need to

work together towards the common goal. The agents in the graph-theoretical approach taken

here follow a “Partial Global Planning” concept [98]. This distributed planning concept is

well suited for applications where some uncoordinated activity is part of the problem solving.

As such, the graph theory introduced here provides the means of establishing a design concept

that allows programming the agents’ body and therefore taking the step from a formal concept

towards a specific implementation.

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 53

load

G

TG

EXC

Bus

Bus

Bus Bus

Cable

L1 L2 L3

Supply 1 Supply 2

Electrical

supersinkloadnode

flow / capacity

requestactual

nodesupersource

flow / capacity

Max supply capabilityactual

Node

Node x Node y

flow / capacity

actual

L1

L2

L3

Supply 1

Supply 2

Node

Graph

(b) Generator

(a) Node

(c) Load

(d) Cable

(e) DC distribution bus

DC bus-node

(f) Power Supply / Converter Module

rating

Figure 5.6: Mapping of electrical components to graph theoretic representation

5.4 Conclusion

This chapter discussed the challenges of providing an autonomous energy management com-

ponent for the operation of electric shipboard power systems. The designed multiagent system

allows a decentralized approach in solving the power flow problem while incorporating specific

CHAPTER 5. ENERGY MANAGEMENT SYSTEM 54

needs of a naval system: maximum supply according to component priorities. Different levels

of priority within in the same level for the various components can also be easily incorporated

into the existing system. The apparent problems of this decentralized design include commu-

nication issues and the detection of failures. These issues will be addressed in the following

chapter.

Chapter

6

Situational Awareness
Component

This chapter builds on the multiagent approach introduced in the previous chapter and ad-

dresses issues of identifying problems in the physical system layer as well as the operation of

the reconfiguration agent layer. The challenges to be addressed are: What problems may occur

during the operation and how can a component that supports the human operator in identi-

fying and solving such problems be constructed? The most important step towards this goal

is the recognition of an “uncertainty element” as the decentralized and autonomous approach

relies on functionally correct agents and the availability of communication links. Therefore,

the following will introduce a tool for making decisions under uncertainty and tailor the tool

to the shipboard power system application.

6.1 Decision Problems and Decision Networks

Evaluating and choosing from a set of available actions is termed as decision making. The

process of decision making becomes complex when problems are uncertain, dynamic, distrib-

uted, and heterogeneous in nature. This section is concerned with an approach for decision

making under uncertainty: decision networks as an extension of probabilistic reasoning of

Bayesian networks. Decision networks incorporate and extend Bayesian networks by both

actions under consideration and values of desirability of the resulting outcomes.

55

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 56

Decision networks are useful in solving decision problems where the goal is to find a set

of decisions that maximize the value of the expected utility. They are used for visualizing the

probabilistic dependencies among the variables in the decision model.

The decision network as a whole depicts a decision or planning problem that a “decision

maker” (a person or an agent) faces. Decision networks combine Bayesian networks [16] with

additional nodes for action and utilities. It is a compact representation emphasizing features

of decision problems. The decision network representation combines the two components of

knowledge about beliefs and actions.

Once the decision network is constructed, it may be solved, after which a model-iteration

and what-if analysis can be performed [68]. In its more general form, a decision network

represents information about the current state of an agent, the possible actions associated

with it, what state will be reached as a result of that action and the utility value of that state

[79].

To complement the previously discussed reconfiguration layer, a layer has to be provided

which adds autonomous and intelligent agents that help determine component failures, track-

ing performance and analyzing system events that hold the potential to degrade system per-

formance and reliability. This added functionality using decision networks will assist human

operators in determining the “silent death” of components or agents, detecting the physi-

cal system conditions like open circuit, short ciruit, and overload, and further improves the

autonomous operation capabilities of the shipboard power system.

The following discusses important components of decision networks and gives a simple ex-

ample before designing a situational awareness component for the energy management system.

6.1.1 Utilities

When deciding upon an action, we need to consider our preferences between the possible

outcomes for the available actions. Utility theory [54] provides a way to represent and reason

with preferences. A utility function determines preferences, reflecting the “desirability” of the

outcomes, by mapping each preference to real numbers. Such a mapping allows combining

utility theory with probability theory. It allows calculating which action A is expected to

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 57

deliver the most value (or “expected utility” EU) given any available evidence E [54]:

EU(A | E) =
∑

i

P (Oi | E,A) U(Oi | A) (6.1)

where

• E is the evidence available,

• A is an action which is non-deterministic and is associated with possible outcome states

Oi,

• U(Oi | A) is the utility value of each of the outcome states for the given action A,

• P (Oi | E,A) is the conditional probability distribution over the possible outcome states,

for the given evidence E and action A.

The ability of computing the expected utility combined with the principle of maximum

expected utility [79] allows designing rational decision makers (or agents): a rational decision

maker acts to maximize the expected utility value.

6.1.2 Network Structure

As stated earlier, decision networks extend Bayesian networks by two additional node types.

The three types of nodes as shown in Fig. 6.1 are:

• Chance nodes, shown as circles, represent random variables as known from Bayesian

networks. Each chance node has associated with it a conditional distribution that is

indexed by the states of the parent nodes or prior probabilities.

• Decision nodes, shown as rectangles, represent the decision being made at a particular

point in time. They contain a set of possible choices for a decision.

• Utility nodes, shown as hexagon, represent the agent’s utility function. They are also

called value nodes. They contain a function to calculate the expected utility on the basis

of parent chance and decisions nodes and measure how desirable the result can be. Each

utility node has an associated utility table.

Decision networks form a directed acyclic graph with the following structural properties:

• There is a directed path comprising all decision nodes; and

• The utility nodes have no children.

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 58

(a) Chance node (b) Decision node (c) Utility node

Figure 6.1: Decision Network Nodes

XA

Y

(a) To chance

XA

B

(b) To decision

X

U

A

(c) To utility

Figure 6.2: Decision Network Links

6.1.3 Network Links

The meaning of links in a decision network depends on the link’s destination. A link pointing

into a chance node signifies relevance. For example, nodes A and X of Fig. 6.2(a) point to node

Y and therefore imply that the probability of Y depends on that of A and X. Links towards a

decision node have a special meaning and are called informational links. They indicate what

will be known at the time of decision making. In other words, the decision maker will know

the values of all the nodes which have links into that decision node but will not know the

values of any other nodes. Fig. 6.2(b) depicts such a situation: A and X are known at the

time decision B is made. Finally, links into utility nodes signify functional dependence. As

shown in Fig. 6.2(c), the utility is calculated by some function f on A and X: U = f(A,X).

If there are a number of decision nodes, possibly corresponding to decisions made at

different times, then solving the network will find a decision function for each of them to form

a set known as “policy.” This policy corresponds to a full conditional plan and specifies what

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 59

direction of reasoning

Cause

Symptoms

direction of reasoning

Cause

Symptoms

(a) Diagnostic

direction of reasoning

Effect

Cause

direction of reasoning

Effect

Cause

(b) Predictive

Effect

Cause 1 Cause 2

Effect

Cause 1 Cause 2 Cause 1 Cause 2

(c) Intercausal

Cause

Effect 1

Effect 2

Cause

Effect 1

Effect 2

(d) Combined

Figure 6.3: Decision Network - Reasoning

to do in each possible event based on the available information.

6.1.4 Reasoning

In Bayesian networks, when observing a value of a variable (the evidence), the belief in other

variables’ values can be updated. This process is known as probability propagation or belief

updating and is performed via a flow of information through the network. An advantage

of Bayesian networks is based on their full representation of probability distributions over

variables. Therefore, information evaluation (or reasoning) can be performed not only in the

direction of arcs but also in any other direction. As a result of this, four types of reasoning

are possible: diagnostic – from symptoms to cause (Fig. 6.3(a)), predictive – from evidence

about causes to effects (Fig. 6.3(b)), intercausal – reasoning about mutual causes of a common

effect (Fig. 6.3(c)), and combined – using the other three types combined to query the network

based on evidence found (Fig. 6.3(d)). For more details regarding the same refer to [54].

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 60

Umbrella?
(Y/N)

Forecast

Satisfaction

Weather

Umbrella?
(Y/N)

Forecast

Satisfaction

Weather

Figure 6.4: Umbrella Example

Table 6.1: Conditional probability table for Weather Forecast

Forecast
Weather Sunny Cloudy Rainy

No Rain 0.70 0.20 0.10
Rain 0.15 0.25 0.60

6.1.5 “Umbrella” Example Decision Network

An decision problem from [69] known as “Umbrella” as shown in Fig. 6.4 is discussed in the

following. The network has 2 chance nodes representing the weather forecast in the morning

(sunny, cloudy or rainy), and whether or not it actually rains during the day (rain or norain).

The probability values of weather forecast and weather are given in the Tables 6.1 and 6.2

respectively. Further, decision node of whether or not to take an umbrella, and a utility node

that measures the decision maker’s level of satisfaction complete the network. There is a link

from Weather to Forecast capturing the believed correlation between the two (perhaps based

on previous observations).

A link exists from Forecast to Umbrella indicating that the forecast is known to the decision

maker when he makes the decision. But there is no link from Weather to Umbrella because

if he knew for certain about the nature of the weather then it was an easy decision to make

whether or not to take the umbrella.

There are links from Weather and Umbrella to Satisfaction, capturing the idea that he is

the happiest when it is sunny and he does not take an umbrella (utility = 100), happy when

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 61

Table 6.2: Prior probability table for Weather

Weather
No Rain Rain

0.70 0.30

Table 6.3: Utility values for Umbrella Example

Weather Umbrella? Utility
No Rain No 100
No Rain Y es 20

Rain No 0
Rain Y es 70

it is raining and he does take an umbrella (utility = 70) as given in Table 6.3. He dislikes to

carry an umbrella when it is sunny (utility = 20), but is most unhappy when it rains and he

is without one (utility = 0).

The values of the expected outcomes are given in the Table 6.4 and is explained as follows:

Prior to any information being available, deciding to take the umbrella results in an expected

value of 35, while leaving it at home evaluates to 70. Obviously, the best choice given the

available information is to leave the umbrella at home. If the decision maker gets to know

that the weather forecast is sunny, then the expected values of utility corresponding to each

decision choice changes. The best decision then is to still leave the umbrella at home, but

the expected utility has increased to 91.59, because the extra known information indicates it

is now more likely that the umbrella will not be required. Say for instance the forecast was

cloudy. Still the best decision is to leave the umbrella at home, but the expected utility has

decreased to 65.12, because of the increased chance of rain. For “rainy,” the best decision

changes to “take the umbrella,” and the expected utility of that decision is 56.

Table 6.4: Table of Outcomes (Utility values)

Decision
Forecast Take Leave

Unknown 35.00 70.00
Sunny 24.21 91.59
Cloudy 37.44 65.12
Rainy 56.00 28.00

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 62

6.1.6 Advantages

Decision networks are mathematically precise and have been used for more than twenty years

as an aid in formulating decision analysis problems. The major advantage of the decision

network is an unambiguous and compact representation of probabilistic and informational

dependencies. Also, introducing new factors does not contribute to exponential growth of

information as each additional factor to be considered requires only a node and an arc. They

provide a means to compare alternatives and also serve as a valuable communication tool

between the decision maker and the analyst.

6.1.7 Implementation Tool: Netica

The Netica APIs [69] are family of comprehensive toolkits for working with Bayesian belief net-

works and decision networks. They are used to build, modify, transform, perform probabilistic

inference, and store networks. The inference engine is used to answer queries or find optimal

solutions. Netica-J offers the complete Netica API in Java. Its object-oriented design and the

possibility to access all of Netica’s capabilities were the motivation for its incorporation in the

envisioned energy management system using agents written in Java.

6.2 Situational Awareness Component for the Energy Man-

agement System

While the reconfiguration layer based on the maximum flow algorithm was specifically chosen

to allow online modifications of its graph structure, e.g., addition or deletion of nodes and

edges, it still requires a component to identify the changes due to failures occuring in the

system. Once these changes have been identified, the reconfiguration of the agent-based

network of problem solvers can occur. Otherwise, the maximum flow agents may represent an

outdated solution or not converge to a new globally consistent solution for the energy flow.

The situational awareness agents supervise the operation of the reconfiguration and im-

plementation agents by observing the following:

1. The guarded statements, which serve as rules for the reconfiguration agents, are used

to derive input information concerning the logical operation of the energy management

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 63

d-Value Demand Overload

Agent Problem Physical System
Problem

Open CircuitShort CircuitSilent Death

Ping Agent

Corrective
Action

Situation
Assessment

Figure 6.5: Decision Network for agents in the situational awareness layer

system (see Fig. 6.5 for a the graphical representation of the decision network and the

corresponding nodes):

• Chance node 1 (d-Value): The flow of energy allows determine the range of

possible distance values of neighboring agents. For example, the d-value of agent

i when linked to agent j by an incoming and supplying edge, has to obey d(i) =

d(j) + 1 or d(i) = n.

• Chance node 2 (Demand): Any agent has to drive its demand to zero (inflow

has to equal outflow).

• Chance node 3 (Silent Death): Indicates loss of communication between re-

configuration agent and the blackboard.

• Chance node 4 (Agent Problem): Combines the causal chance nodes 1-3 and

8 (discussed below) to calculate the conditional probability of an apparent agent

problem.

2. Measurements within the physical layer are communicated by the implementation agent

to the situational awareness layer to identify physical system problems:

• Chance node 5 (Overload): Indicates that the corresponding (physical) device

is currently providing/demanding more power when anticipated.

• Chance node 6 (Short Circuit): Indicates that the corresponding (physical)

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 64

device is actively limiting the power flow due to a short circuit.

• Chance node 7 (Open Circuit): Indicates that the corresponding (physical)

device lost its power supply.

• Chance node 8 (Physical System Problem): Summarizes the state of the

physical system.

The decision network is envisioned to help determine the necessity and value of monitoring

the individual agent’s communication capabilities more closely and to provide suggestions for

corrective actions:

• Decision node 1 (Ping Agent): Decision (True/False) to trigger a communication

test that provides evidence for either an operational or failed agent communication

system.

• Decision node 2 (Corrective Action): Suggests taking corrective action. The pos-

sible actions are: no action and deactivate agent.

The remaining node to be defined is the utility node:

• Utility node (Situation Assessment): Allows computation of the respective values

of making decisions.

The specific values of apriory probabilities for chance nodes d-value, and Demand are through

experience, while that of chance nodes Overload, Short Circuit, Open Circuit, and Silent Death

are based on assumptions. The aprior probability values along with conditional probabilities

of chance nodes, and the utility values can be found in Tables 6.5, 6.6, 6.7, 6.8, and 6.9

respectively.

Table 6.5: Prior probabilities

d-value d(i) = n d(i) = d(j) + 1 wrong

% 45 45 10

demand zero notzero

% 90 10

FALSE TRUE

Overload 90 10
Short Circuit 80 20
Open Circuit 80 20

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 65

Table 6.6: Conditional probabilities for Physical System Problem

Overload Short Circuit Open Circuit FALSE TRUE

FALSE FALSE FALSE 98 2
FALSE FALSE TRUE 30 70
FALSE TRUE FALSE 20 80
FALSE TRUE TRUE 50 50
TRUE FALSE FALSE 20 80
TRUE FALSE TRUE 50 50
TRUE TRUE FALSE 20 80
TRUE TRUE TRUE 100 0

Table 6.7: Conditional probabilities for Silent Death

Ping Agent FALSE TRUE

FALSE 80 20
TRUE 98 2

Sample data of observed values of demand and d-value during reconfiguration is shown

graphically in Fig. 6.6, and 6.7 respectively.

Figure 6.6: Observation of demand for all the agents

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 66

Figure 6.7: Observation of d-value for all the agents

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 67

6.3 Conclusion

To summarize, this chapter presented the situational awareness component which is an ad-

dition and enhancement to the multi-layered agent architecture of the energy management

system. Improvements are made possible by providing this awareness component that identi-

fies the operational status and performance of the shipboard system. It also suggests corrective

measures to deal with critical situations. The benefit of decision networks allows operators

to first gain trust in the correctly functioning situational awareness agents before finally del-

egating the final decision making to the agents as well. The component is implemented by

combining agent-based techniques and decision networks and consequently enhances the en-

visioned modernized control architecture for shipboard power systems.

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 68

Table 6.8: Conditional probabilities for Agent Problem

d-value demand PA SD PP FALSE TRUE

a zero FALSE FALSE FALSE 99 1
a zero FALSE FALSE TRUE 30 70
a zero FALSE TRUE FALSE 30 70
a zero FALSE TRUE TRUE 15 85
a zero TRUE FALSE FALSE 100 0
a zero TRUE FALSE TRUE 8 92
a zero TRUE TRUE FALSE 8 92
a zero TRUE TRUE TRUE 1 99
a notzero FALSE FALSE FALSE 30 70
a notzero FALSE FALSE TRUE 10 90
a notzero FALSE TRUE FALSE 10 90
a notzero FALSE TRUE TRUE 10 90
a notzero TRUE FALSE FALSE 70 30
a notzero TRUE FALSE TRUE 10 90
a notzero TRUE TRUE FALSE 10 90
a notzero TRUE TRUE TRUE 4 96
b zero FALSE FALSE FALSE 98 2
b zero FALSE FALSE TRUE 10 90
b zero FALSE TRUE FALSE 10 90
b zero FALSE TRUE TRUE 10 90
b zero TRUE FALSE FALSE 96 4
b zero TRUE FALSE TRUE 5 95
b zero TRUE TRUE FALSE 5 95
b zero TRUE TRUE TRUE 5 95
b notzero FALSE FALSE FALSE 95 5
b notzero FALSE FALSE TRUE 10 90
b notzero FALSE TRUE FALSE 10 90
b notzero FALSE TRUE TRUE 10 90
b notzero TRUE FALSE FALSE 96 4
b notzero TRUE FALSE TRUE 5 95
b notzero TRUE TRUE FALSE 5 95
b notzero TRUE TRUE TRUE 5 95
c zero FALSE FALSE FALSE 30 70
c zero FALSE FALSE TRUE 5 95
c zero FALSE TRUE FALSE 5 95
c zero FALSE TRUE TRUE 5 95
c zero TRUE FALSE FALSE 5 95
c zero TRUE FALSE TRUE 5 95
c zero TRUE TRUE FALSE 5 95
c zero TRUE TRUE TRUE 5 95
c notzero FALSE FALSE FALSE 10 90
c notzero FALSE FALSE TRUE 5 95
c notzero FALSE TRUE FALSE 5 95
c notzero FALSE TRUE TRUE 5 95
c notzero TRUE FALSE FALSE 10 90
c notzero TRUE FALSE TRUE 5 95
c notzero TRUE TRUE FALSE 5 95
c notzero TRUE TRUE TRUE 0 100

d-value: a — d(i) = n, b — d(i) = d(j) + 1, c — wrong

CHAPTER 6. SITUATIONAL AWARENESS COMPONENT 69

Table 6.9: Utility values

Ping Agent Agent Problem Corrective Action Utility
FALSE FALSE FALSE 1
FALSE FALSE TRUE 0.01
FALSE TRUE FALSE 0.1
FALSE TRUE TRUE 0.4
TRUE FALSE FALSE 0.7
TRUE FALSE TRUE 0.02
TRUE TRUE FALSE 0.1
TRUE TRUE TRUE 0.6

Chapter

7

Multiagent Architecture

Through the many interesting features, agents provide autonomy and heterogeneity, restrict

access to resources and guarantee specialized integrity requirements, and model organiza-

tions and nonterminating tasks in them. Agents are best applied to achieving flexibility and

agility, improving efficiency of processes, and helping manage complexity. Just by using the

terms “agents” or “multiagents” to describe a system does not mitigate the issues concern-

ing agent-based systems. Specific solutions are needed to address the challenges of complex

systems. The following will combine the above discussed components to form a consistent

and cooperating multiagent based energy management system. The graphical Unified Mod-

eling Language will be the tool of choice to specify the system components and allow taking

advantage of UML’s graphical expressiveness while avoiding the complexities of a text based

specification/programming language.

7.1 Technical Approach - Prototyping Model

As an approach towards designing a multiagent architecture for the shipboard power system,

a combination of traditional software engineering approaches [75] with considerations from

the agent-oriented field is followed here. The research adopts the “prototyping model” to

help build and evaluate the multiagent system. The multiagent architecture follows a layered

70

CHAPTER 7. MULTIAGENT ARCHITECTURE 71

Initial Prototype

Revise/Refine
Prototype

Review Prototype

Start

Stop

Satisfied

Yes

No

Figure 7.1: Prototyping Process

approach in solving the energy management problem using the blackboard system as an inter-

action protocol. UML statecharts are used to specify agents and the object oriented language

Java is used for implementing agents.

Prototyping [10] is a valuable technique to help software engineers explore the design space

while gaining insight and a feel for the dynamics of the system. It also allows engineers learn

more about the relationships among design features and the desired computational behavior.

It promotes early experimentation with alternative design choices allowing engineers to pursue

different solutions without efficiency concerns.

The research follows a generic prototyping process as shown in Fig. 7.1. A series of steps

are performed iteratively until the objectives are attained.

7.2 Architecture Overview

7.2.1 Layered Architecture

Layered architecture is opted due to two major reasons. Firstly, it provides a functional

separation which makes it organized and easily modifiable. Secondly, it supports independence

between the layers which allows us to replace, add or remove layers without affecting the

others. To maximize the level of independence, the layered approach uses a blackboard as an

CHAPTER 7. MULTIAGENT ARCHITECTURE 72

interaction protocol as discussed next.

7.2.2 Blackboard for Communication Infrastructure

Blackboard systems are an excellent paradigm for processing and fusing information and

developing situation assessments. This paradigm is particularly appropriate for integrating

diverse knowledge and performing multi-level reasoning. The approach for this research adopts

the blackboard system as a shared memory structure, facilitating inter-layer interaction. The

blackboard system is a convenient method for the various layers to post their solutions and

status, and fetch the required results.

7.2.3 Architecture for the Energy Management System

The overall layout of the shipboard energy management system is based on grouping the

different system parts into layers. The layers form a logical architecture according to their

functionality (see Fig. 7.2).

The lowest layer represents the mathematical model for the physical system. The ship-

board model simulates the various components of the ship and their interactions. It is modeled

using MATLAB/Simulink. The components have local controls, e.g., proportional-integral

controllers and their reference and parameter values, which are modified and adjusted by the

decision implementation agents.

The implementation layer represents the layer closest to the physical power system. This

layer contains the decision implementation agents that are the point of interface between

the individual devices. These agents, which are M-S functions, continuously monitor the

blackboard to implement the power flow solution agreed upon by agents in the reconfiguration

layer. These agents access locally their respective maximum flow agents to inquire the solution

to be implemented.

The decentralized power flow solution using the maximum flow algorithm is part of the

reconfiguration layer. The agents in this layer reach a globally feasible solution by executing

their programs asynchronously and locally but can communicate status using the blackboard.

Here each agent follows a set of seven rules as was explained in detail in Chapter 5. These

rules are based on the self-stabilizing maximum flow algorithm from Graph theory. The agents

in the reconfiguration layer are implemented using the Java programming language [45] where

CHAPTER 7. MULTIAGENT ARCHITECTURE 73

Maximum Flow Agents

Decision Implementation
Agents

Blackboard
System

User Interface Layer

Reconfiguration Layer

Implementation Layer

EMS Shipboard Model

Physical System Layer

Control and Command
Center

Decision Network

Situational Awareness Layer

Figure 7.2: Layered Architecture for the Energy Management System

every agent is implemented by an asynchronously executing thread.

The agents of the situational awareness layer are built on top of the reconfiguration and

implementation layers to provide system operators on board with updated information con-

cerning the operational status of the system. These agents help the operators assess the

situation on hand and make appropriate decisions based on the possible course of action

suggested by the agents in crisis situations. They supervise the actions by the agents in the

reconfiguration layer and implementation layer by observing certain variables, the details have

been given in the previous chapter.

The topmost layer represents the human-machine interface for the command and control

center. This layer displays important system information and also allows the system operator

CHAPTER 7. MULTIAGENT ARCHITECTURE 74

to communicate with system components, e.g., request for desired changes in propulsion power.

It can also be used to simulate disturbances, e.g., loss of generation.

The next sections discuss the specification process adopted in designing the agents for the

energy management system.

7.3 Agent Specification

7.3.1 UML Statecharts

The specification of multiagent systems needs to be meaningful and at the same time explana-

tory so that its possible to model not only the dynamic behavior of a single agent, but also the

collaboration among several agents and the changes caused by external events from the envi-

ronment. For this, UML statecharts [70] seem to provide an adequate means. They provide

a way to define a mapping between the internal state of an agent and its operations in the

world. The use of UML as a specification and modeling language is already widely accepted.

It is possible to get a synoptic overview of the functionality of the complete multiagent system

by means of only one type of diagram, namely statecharts [3] [67].

The following section briefly summarizes those parts of the UML statechart formalism [67]

that are employed for the design of agents for the energy management system.

States and Transitions

In the UML formalism, a state is considered an interval in the life of a system or an agent

during which a certain condition holds or an activity is performed. For example, an agent

may remain in a state while it waits for some external event to occur. In a statechart a state

is represented as a box with corners rounded.

External events cause the state of a system to change. Such a change of state is called

a transition. A transition string is used to specify the behavior of a transition. A transition

string is a tuple T = (e, c, a) ∈ (E × C × A), where E is the set of (external) events, C is

the set of boolean expressions over a domain and A is the set of possible actions that can be

taken. A transition then can be defined as a tuple t = (s1, T, s2), where s1, s2 denote arbitrary

states and T is a transition string of the form (e, c, a).The (informal) semantics of t is “if the

system is in state s1 and event e occurs and the condition c holds, then the system executes

CHAPTER 7. MULTIAGENT ARCHITECTURE 75

S21 S22

composite state

S11 S12

e2[c]/a

e[ok]

e[todo]

Figure 7.3: Illustration of a Statechart

action a and changes to state s2”. In a statechart diagram a transition is shown as a directed

edge from s1 to s2, which is labeled with T in the form e[c] \ a.

There are different types of states in the UML statechart formalism. As a statechart is

hierarchical in nature, the UML distinguishes between three major classes of states two of

which are shown in Fig. 7.3.

Simple states are atomic in the sense that they do not possess any internal structure. Nev-

ertheless it is possible to assign some kind of behavior to a simple state by defining internal

transitions.

Composite states are states that can be further decomposed. They contain internal sub-

machines which describe the activity associated with the composite state.

Concurrent states are special types of composite states. A concurrent state contains two or

more composite substates, which are called regions. If an agent is in a concurrent state, it is

in all regions simultaneously. Thus concurrent states are used to model concurrent activities

in a system or an agent. An example is shown in Fig. 7.4.

CHAPTER 7. MULTIAGENT ARCHITECTURE 76

concurrent state

S21 S22

e2[c]/a2

S12

e1/a1

e3

S11

Figure 7.4: Illustration of a Concurrent State with Two Regions

7.3.2 Agent Specification using UML statecharts

This section gives the details regarding the specification for the agents in energy management

system for the shipboard power system. Every layer of the energy management system is

modeled in individual statecharts. The collaboration between the Command and Control

Center, the Reconfiguration Layer and Situational Awareness Layer is also modelled. Some

details are not shown, which are indicated by the hidden decomposition icon o—o.

Specification for the Command and Control Center

The User interface design : The specification for the Command and Control Center is as

shown in Fig. 7.5. It is initially in the init state and then comes to the ready state. Once

in the ready state, it remains in this state until it is triggered by an external event (the click

of a button) after which it is seen that it can follow any of the three states, execute, reset

and save. The execute state is a composite state with two concurrent states, GUI state and

maxflow state. The ready state has two more concurrent states display and quit. When it

enters the Display state it displays the directed graph for the Shipboard Power System, which

is explained next. Once it enters the quit state it stops.

Displaying the directed graph : The Display state which corresponds to displaying of the

directed graph for the Shipboard Power System is shown in Fig. 7.6. It changes from init

state to plotting state. From the plotting state it evaluates to see if the quit signal is true. If

CHAPTER 7. MULTIAGENT ARCHITECTURE 77

CCC Behavior

Init

Ready

Start

Reset

GUI

Execute

Maxflow

Save

Display

Quit

Reinitialize

CCC Behavior

Init

Ready

Start

Reset

GUI

Execute

Maxflow

Save

Display

Quit

Reinitialize

Figure 7.5: Specification for the Command and Control Center

the quit signal is true then it stops else it goes into the repaint state and again to the plotting

state.

Specification for the Reconfiguration Layer

Reconfiguration of agents : The reconfiguration agents’ specification is shown in Fig. 7.7.

These agents are initially in the init state and then move to the state execute guards where

in the guarded statements corresponding to the self stabilizing maximum flow algorithm is

executed. All the agents in the reconfiguration layer follow the same specification (design).

After the state “execute guards” if all the guards evaluate to a false then the new solution

is published to the blackboard. After which it is checked if end evaluates to a true, if yes it

stops, else if it is false, it goes to the “execute guards” state again and continues.

Specification for the Situational Awareness Layer

Situational Awareness agents : The Fig. 7.8 corresponds to the specification for the agents

in the Situational Awareness layer. The agents in this layer begin execution from their init

state to evaluate state. In the evaluate state the agents are in the process of supervising the

CHAPTER 7. MULTIAGENT ARCHITECTURE 78

Display

Init

Plotting

Repaint
Signal

quit
false

true

Display

Init

PlottingPlotting

RepaintRepaint
Signal

quit
false

true

Figure 7.6: Specification for plotting the digraph of the EMS

agents in the reconfiguration layer and the implementation layer. From the evaluate state they

determine if something is wrong. If it returns a true then it displays the appropriate message

to the system operator, who would need to take the necessary action as a corrective measure

against the problem. And then it evaluates end and if end is true then it exits otherwise it

again goes back to the evaluate state. From the Fig. 7.8 we see that if “nothing wrong” is

detected by these agents, again end is evaluated and if end is true it exits otherwise goes back

to the evaluate state.

Multilayer Collaboration

Collaboration between different layers : The Fig. 7.9 shows the overall behavior of

the multiagent system (excluding the implementation layer and physical system layer). The

agents in the reconfiguration are in the left most concurrent state. The right most concurrent

state corresponds to that of the Command and Control center and the center concurrent

state corresponds to that of the agents in the situational awareness layer. From the Fig. 7.9

it is seen that the agents in all the three concurrent states are initially in the init state.

After the init state the agents in the respective layers move into their corresponding states

i.e, reconfiguration layer agents — execute guards, situational awareness — evaluate agents

CHAPTER 7. MULTIAGENT ARCHITECTURE 79

Init Execute Guards

Reconfiguration Agents

Publish

All Guards
false?

true

false

end?

true

false

Init Execute Guards

Reconfiguration Agents

Publish

All Guards
false?

true

false

end?

true

false

Figure 7.7: Specification for agents in the Reconfiguration Layer

and command and control layer — wait for input state and execute state. As and when

appropriate the agents in all the layers asynchronously update the blackboard system and

continue to operate in this way until end is evaluated to a true. When end is evaluated to

true, the agents in all the layers stop execution.

The section described the high level specification for the multiagent architecture of the

autonomous energy management system. The next section gives implementation details of

the respective parts of the multiagent architecture.

7.4 Implementation

7.4.1 Physical System Layer

The energy management system for the electric shipboard power system has been accomplished

following the agent-based framework explained in the previous chapter. The Physical system

layer implemented in SIMULINK is shown in Fig. 4.1 of Chapter. 4. The average model of

the shipboard power system is used to make the simulations run faster than or in real-time.

This layer models the various parts of the electric shipboard power system. It consists of the

CHAPTER 7. MULTIAGENT ARCHITECTURE 80

Init Evaluate

SA Agents

Display

Something
Wrong?

true

false

end?

true

false

Init Evaluate

SA Agents

Display

Something
Wrong?

true

false

end?

true

false

Figure 7.8: Specification for agents in the Situational Awareness Layer

generation and propulsion test bed (blocks in green and blue) and the DC distribution test

bed. The DC distribution part of the system is divided into three zones as indicated. Each

zone is equipped with two loads, one high priority and one low priority load.

7.4.2 Command and Control Center

The User Interface layer is implemented using the Java Swing components (Fig. 7.10). It is

designed to help the system operator communicate with the physical system. For example, the

operator can change the mode of operation of the ship by switching between modes of ‘cruis-

ing,’ ‘traveling,’ ‘harbor,’ and ‘fighting.’ Depending on each mode, the priorities of the various

loads in every zone will change. The operator can also change the supply path of the loads by

performing operations on the agents and edges like addition, deletion, and modification (only

in the case of edges). The interface is also a means to simulate disturbances inflicted onto

the system and allows evaluate the agent-based energy management system using arbitrary

system conditions. The Command and Control Center (CCC) is also provided with a mes-

sage board where important information regarding the system’s operational status is displayed.

CHAPTER 7. MULTIAGENT ARCHITECTURE 81

Maxflow

Init

Execute
Guards

Init

Evaluate
agents

Init Wait for
input

Execute

Update
Blackboard

System
Changed?

false
true

false

true
end?

Maxflow

Init

Execute
Guards

Init

Evaluate
agents

Evaluate
agents

Init Wait for
input

ExecuteExecute

Update
Blackboard

Update
Blackboard

System
Changed?

false
true

false

true
end?

Figure 7.9: Specification for agents’ collaboration in different layers (with blackboard)

7.4.3 Blackboard

The blackboard was implemented using standard relational database management systems

(RDBMS). The blackboard system is accessible to the agents in the energy management

system via the JDBC-ODBC connection, using the standard Structured Query Language

(SQL). While every agent updates its own section of the blackboard, the other agents are just

able to read the values.

7.4.4 Running the Simulation

The simulation is started from the MATLAB environment by starting the simulation of the

physical system model. Once the simulation of the physical system has begun, the CCC is

displayed. Upon hitting the ‘Start’ button in the CCC, the agents in the reconfiguration

layer begin operating at the specified initial conditions. To display the directed graph of the

shipboard power system, the ‘Display’ button needs to be clicked. This starts a separate thread

executing asynchronously. Fig. 7.11 is a snapshot of the digraph of the SPS. The digraph is

updated continuously based on the current system status. Once the reconfiguration agents

agree on a solution, the implementation agents are notified and adjust the parameters in the

CHAPTER 7. MULTIAGENT ARCHITECTURE 82

physical system layer. These changes are applied to the physical system be either turning off

(red) or turning on the loads (light blue).

Simulating external faults

Certain physical system disturbances like open circuit, short circuit, and overload conditions

can also be simulated from within the physical system and reported to the system operator

(through the CCC) via the implementation layer, blackboard, and situational awareness layer.

The interface for disturbance simulations is shown in Fig. 7.12.

CHAPTER 7. MULTIAGENT ARCHITECTURE 83

Figure 7.10: Command and Control Center

CHAPTER 7. MULTIAGENT ARCHITECTURE 84

Figure 7.11: Directed Acyclic Graph of the Electric Shipboard Power System

Figure 7.12: User Interface for Simulating Faults

Chapter

8

Case Studies and Discussion
of Results

The energy management system has been tested for different system conditions, e.g., initial

startup, changes in load demand, changes in edge capacity, loss of agents (nodes), and increases

in demand beyond generation and power transfer capabilities. Some of the simulated case

studies are discussed in the following sections.

8.1 Startup Scenario

The ‘startup’ scenario tests the system to find configuration solutions for various operating

modes when starting from an initially deactivated ship where no power is provided to any

load. The chosen modes — full-power, traveling, harbor, cruising, and fighting — and their

respective minimum and maximum ranges of the loads to be supplied along with priorities

are given in Table 8.4 at the end of this chapter. The following case studies and scenarios will

build on these base settings.

Fig. 8.1 shows the number of moves made by the 22 maximum flow agents when configuring

for the different operating modes of the shipboard power system: full-power, traveling, harbor,

cruising, and fighting. To be able to test convergence characteristics, each agent was started

randomly after a small time interval. The plot shows the sum of the agents’ moves until

the process converges to a global solution. The number of agents actively performing during

85

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 86

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Time (s)

N
um

be
r o

f m
ov

es

Startup Scenario−Number of moves

Full−power
Cruising
Traveling
Harbor
Fighting

Figure 8.1: Agents’ Moves for the Startup Scenario

reconfiguration until the solution is reached is depicted in Fig. 8.2. Statistics concerning the

number of agents’ moves necessary for the ‘startup’ scenario are given Table 8.1.

Table 8.1: Maximum, minimum and average moves for the ‘startup’ scenario

Full-power Cruising Traveling Harbor Fighting
Max 84 64 90 73 80

Startup Avg 73 57 69 58 58
Min 66 52 56 43 51

8.2 Rerouting Power

For a chosen operating condition (traveling mode) as shown in Fig. 8.3, a global solution was

reached by the agents in the reconfiguration layer and edge (4, 6), which represents the link

between the Port PS and Port DC bus, is supplying power to the loads. The loss of this

edge, which is analogous to either loss of communication between the agents 4 and 6 or a

physical cable damage, was triggered through the CCC. For this condition, the agents in the

reconfiguration layer pick up the disturbance and start to negotiate a new globally acceptable

solution. Once the agents agree upon a solution a new supply path is found and the loads can

be restored. For this scenario, edge (5, 6) as shown in Fig. 8.4 is now supplying power.

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 87

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

22

Time (s)

N
um

be
r o

f A
ge

nt
s

Ex
ec

ut
in

g

Startup Scenario−Agents Executing

Full−power
Cruising
Traveling
Harbor
Fighting

Figure 8.2: Agents Executing for the Startup Scenario

Edge supplying
power

Figure 8.3: Loads supplied through Edge (4,6)

8.3 Restoring High Priority Loads

The following simulation scenario starts in cruising mode. In this mode, the loads are initially

supplied via the link between the Port PS and Port DC bus, i.e., edge (4, 6). A damage to

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 88

Edge (5,6)
supplying

power

Figure 8.4: After Disturbance: Loads supplied through Edge (5,6)

Table 8.2: Maximum, minimum and average moves for the ‘rerouting’ scenario

Moves
Max 55

Rerouting Avg 29
Min 5

agent 6, which represents the Port DC bus, leads to its elimination. The second enforced

disturbance is a loss of edge (4, 7), the link between the Port PS and Starboard DC bus.

Consequently, power is rerouted through the port-side edge (5, 7) to supply the loads (see

Fig. 8.5). Further loss of system capabilities was simulated by reducing the capacity of edge

(5, 7) representing the link between the Starboard PS and Starboard DC bus from 18.0 kW

to 5.7 kW (180 to 57 units in the digraph). When a solution was agreed upon by the agents

in the reconfiguration layer, only high priority loads were restored due to the reduction in

distribution capacity. The low priority loads have been disconnected as shown in Fig. 8.6.

This change is reflected in the physical system via the implementation layer agents with the

loads being turned off.

8.4 Random Operating Conditions

The system was subjected to randomly changing operating conditions mimicing the changes

happening onboard a naval ship. The modes were changed after a solution had been found.

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 89

Edge (5,7)
supplying

power

High priority load
Low priority load

Figure 8.5: Loads supplied Through Edge (5,7)

Edge (5,7)
supplying

power

High priority load
Low priority load

Low priority load
turned off

Figure 8.6: Loads supplied Through Edge (5,7) to Restore High Priority Loads

Fig. 8.7 shows the plot for the following randomly chosen sequence of modes and conditions:

full-power, traveling, harbor, fighting, cruising mode, loss of port DC bus (agent 6), loss of

supply path between Port PS and Starboard DC bus (edge (4, 7)), traveling mode, supply

path capacity reduction between Starboard PS and Starboard DC bus from 18 kW to 9 kW

(180 to 90 units along edge (5, 7)).

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 90

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Time (s)

N
um

be
r o

f m
ov

es

Plot for Random Operating Conditions

Figure 8.7: Moves for Randomly Changing Operating Conditions

The plot demonstrates that once the globally acceptable solution is arrived upon by the

maximum flow agents, there are no more moves performed by the agents, this is indicated by

the regions in the graph where the number of moves remains constant. Whenever there is any

change in the system configuration, for example the ship changes its mode from harbor to

fighting, the number of moves gets re-initialized to zero and the agents start working together

towards forming a new global solution.

Table 8.3 gives the maximum, minimum, and average number of moves made by the

agents while reconfiguring. The results show that the algorithm requires fewer than n2 moves

to compute the correct maximum flow based on the priorities of the loads starting from an

arbitrary initial state: 52 � 222 = 484.

8.5 Physical System Faults and Silent Death

To demonstrate the operation of the situational awareness layer, three cases of interest are

chosen from the possible set of either normal operation or crisis scenarios and the respective

decision making process presented. In the cases presented, the belief values given are in

the range from zero to one indicating total rejection and agreement, respectively. Evidence

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 91

Table 8.3: Maximum, minimum and average moves for switching between various modes

Full-power Cruising Traveling Harbor Fighting
Max 35 29 52 33

Full-power Avg 27 27 46 28
Min 23 24 44 26
Max 49 40 46 32

Cruising Avg 44 31 39 27
Min 38 24 31 22
Max 41 33 45 29

Traveling Avg 37 26 39 25
Min 34 22 33 22
Max 34 37 38 37

Harbor Avg 28 32 32 32
Min 25 29 28 29
Max 51 38 41 49

Fighting Avg 44 28 35 40
Min 40 21 29 35

marked as ‘Unknown’ means that actual evidence was not present and the decision was based

on prior probabilities. This feature is important as it ensures that missing evidence, due to

for example lost communication, does not invalidate the decision making process. Also, the

relatively small size of the situational awareness component and the efficiency of available

data mining algorithms allow evaluate all the possible cases within a fraction of a second and

ensures a timely response.

8.5.1 Normal Operation

During hours of normal operation, the situational awareness layer has to report that the

system is fully functioning and no corrective actions need to be taken. Entering the actual

information and measurements from the lower layers into the situational awareness agent as

evidence (d-Value = d(i)+1, Demand = 0, Silent Death = False, Physical System Problem =

False) and evaluating the decision network results in utility values for the two possible actions.

The network yields the actions’ values for “Ping Agent” (False = 0.98800, True = 0.69600)

and ‘Corrective Action’ (False = 0.98200, True = 0.01780.) Therefore, the network identifies

correctly that no corrective action needs to be taken.

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 92

8.5.2 Silent Death

Though only a limited amount of communication is necessary to operate the distributed energy

management system, it is a critical part of the agent-based approach. To examine an agent’s

silent death problem, where it loses it’s capability to communicate with the blackboard, the

scenario with (d-Value = d(i)+1, Demand = 0, Silent Death = True, Physical System Problem

= False) has been evaluated. Reasoning yields the utility values of (False = 0.46000, True=

0.60500) for the ‘Ping Agent’ and (False = 0.13000, True = 0.57100) for the ‘Corrective

Action.’ This allows notify the human operator and reconfiguration layer that the respective

agent should be deactivated and can be either used to manually or automatically trigger

adjustments necessary.

8.5.3 Overload

This case is simulated by providing evidence for an ‘Overload’ failure. The evidence of (d-

Value=Unknown, Demand = NotZero, Silent Death = Unknown, Overload = True) yields

(False = 0.52117, True = 0.62598) for the ‘Ping Agent’ and (False = 0.25591, True = 0.44927)

for the ‘Corrective Action.’ Therefore, the situational awareness layer suggests to the command

and control center that the agent has to be deactivated and reconfiguration of the system

should take place.

CHAPTER 8. CASE STUDIES AND DISCUSSION OF RESULTS 93

Table 8.4: Maximum and minimum ranges for the loads in various modes

Mode Load Priority Min demand in % Max demand in %
Full − power StarPropulsionLoad High 100 100

PortbusPropulsionLoad High 100 100
Zone1Load1 High 100 100
Zone1Load2 High 100 100
Zone2Load1 High 100 100
Zone2Load2 High 100 100
Zone3Load1 High 100 100
Zone3Load2 High 100 100

Cruising StarPropulsionLoad High 20 50
PortbusPropulsionLoad High 20 50

Zone1Load1 High 20 50
Zone1Load2 Low 20 50
Zone2Load1 High 50 90
Zone2Load2 Low 50 90
Zone3Load1 High 50 90
Zone3Load2 Low 50 90

Traveling StarPropulsionLoad High 50 90
PortbusPropulsionLoad High 50 90

Zone1Load1 Low 50 90
Zone1Load2 High 50 90
Zone2Load1 Low 20 50
Zone2Load2 High 20 50
Zone3Load1 Low 50 90
Zone3Load2 High 50 90

Harbor StarPropulsionLoad Low 0 0
PortbusPropulsionLoad Low 0 0

Zone1Load1 High 20 50
Zone1Load2 Low 20 50
Zone2Load1 High 20 50
Zone2Load2 Low 20 50
Zone3Load1 Low 20 50
Zone1Load2 High 20 50

Fighting StarPropulsionLoad High 20 50
PortbusPropulsionLoad High 20 50

Zone1Load1 High 50 90
Zone1Load2 High 50 90
Zone2Load1 High 50 90
Zone2Load2 High 50 90
Zone3Load1 High 20 50
Zone3Load2 High 20 50

Chapter

9

Summary and Future work

9.1 Summary

A new agent-based concept for the energy management system of shipboard power systems has

been presented. A multi-layer architecture has been used to accomplish the functionality of a

human-machine interface, automatic reconfiguration using a maximum flow algorithm, agents

to implement reconfiguration decisions, agents to provide situational awareness capabilities,

and the mathematical model of a shipboard power system. Most of the actions necessary for

the operation of the energy management system can be performed locally following a distrib-

uted concept. Complementing the energy management system is the situational awareness

component whose objective is to not only support human operators by providing analysis

of the operational status of the system but also to suggest corrective measures to deal with

critical situations.

Assumptions made for this work concern the availability of an appropriate communication

infrastructure and the simplified representation of DC distribution buses by a single node

as bi-directional power flows would violate conditions necessary for the graph theoretic ap-

proach. Also, the possibility of distributed resources for the purpose of power generation is

not considered.

94

CHAPTER 9. SUMMARY AND FUTURE WORK 95

The case studies demonstrate the feasibility and flexibility of the concept and results are

promising. The agents are able to converge to a globally acceptable solution for arbitrary

initial conditions and restore the loads based on priorities. The agents are able to identify

changes in the system and provide an efficient means of decision support. The benefits of

decision networks allow operators to first gain trust in the correctly functioning situational

awareness agents before finally delegating the final decision making to the agents as well. This

step will further broaden the application of agents to automate the shipboard operation and

reduce the stress and reliability on human operators in times of crisis.

9.2 Future work

One of the major assumptions in the multiagent system developed was that the agents talk

to each other in common vocabulary or ontology. KQML, which is a protocol for exchang-

ing information and knowledge, can be implemented where agents have completely different

internal structures but need to exchange information.

No formal agent framework is used in designing the multiagent framework. Nevertheless,

the prototype presented here can be implemented with the help of tools available. For example,

the Agent Building and Learning Environment (ABLE, [7]) is a good candidate.

All the simulations are presently working on a single PC. A very simple extension to this

by running the simulations on two PCs, one with the MATLAB simulations and the other

with the java simulations is running successfully in real-time. Nevertheless, running parts of

the simulation on different machines and testing the collaborating agents in this way would

allow a more elaborate investigation of the distributed energy management concept.

The multiagent system developed has not been enriched by any learning technique that

would automatically improve the multiagent system. Nevertheless, AI concepts based on

learning are a worthwhile next step.

Lastly, an important step would be from a purely software architecture to a mixed hard-

ware/software approach. This step would allow investigation of appropriate means of em-

bedded software development while dramatically boosting the response time. Consequently,

successful operation of the autonomous energy management system could be performed with

more stringent real-time requirements.

Appendix

A

Publications and Award

A.1 Publications

The work done so far has been presented at two conferences and published in the corresponding
proceedings.

• Energy Management System with Automatic Reconfiguration for Electric
Shipboard Power Systems:
Abstract: The automatic reconfiguration of electric shipboard power systems is an
important step toward improved fightthrough and self-healing capabilities of naval war-
ships. The improvements are envisioned by redesigning the electric power system and
its controls. This research focuses on a new scheme for an energy management system
in form of distributed control agents. The control agents’ task is to ensure supply of
the various load demands while taking into consideration system constraints and load
and supply path priorities. A self-stabilizing maximum flow algorithm is investigated to
allow implementation of the agents’ strategies and find a global solution by only consid-
ering local information and a minimum amount of communication. A case study using
the distributed agents within a multilayer system architecture to function as energy
management system is presented.
Reference: Ganesh, S., Schoder, K., Lai, H. J., Al-Hinai, A., Feliachi, A., “Energy Man-
agement System with Automatic Reconfiguration for Electric Shipboard Power Systems”
Proc. of ASNE Reconfiguration and Survivability Symposium, RSS 2005, Jacksonville,
FL, February 2005.

• Improving Automatic Reconfiguration of Electric Shipboard Power Systems
by Adding Situational Awareness Capabilities:

96

APPENDIX A. PUBLICATIONS AND AWARD 97

Abstract: A new layer of hierarchically organized agents is developed to complement
efforts in designing energy management systems with automatic reconfiguration for elec-
tric shipboard power systems. This layer provides situational awareness capabilities to
a previously implemented reconfiguration layer that was also based on agent technology.
Both of these layers allow for distributed decision making while operating the system
with global and optimal goals. While the reconfiguration layer performs negotiation and
energy management, the situational awareness layer adds autonomous and intelligent
agents that help determine component failures, tracking performance, and analyzing
system events that have the potential to degrade system performance and reliability.
A list of possible events includes short circuits, open circuits, loss of communication
networks, and failures of agents themselves. The added functionality is using influence
diagrams to assist human operators in determining the silent death of components or
agents and further improves the autonomous operation capabilities of the shipboard
power system. Tests of different critical scenarios are investigated in a case study to
evaluate the layer’s decision making performance.
Reference: Ganesh, S., Schoder, K., A., Feliachi, A., “Improving Automatic Reconfig-
uration of Electric Shipboard Power Systems by Adding Situational Awareness Capa-
bilities,” Proc. of ASNE Intelligent Ship Symposium, Villanova, PA, June 2005.

A.2 Award

• Sigma Xi Poster Award: This research work was awarded 3rd place in the Engineering
Research Area of the Sigma Xi National Honor Society’s Graduate Research Competition
2005. The competition was held on April 25, 2005, and attracted more than 74 entrees
in the three different categories of engineering, life and agricultural science, and general
science.

Appendix

B

Transfer Functions for
Physical System Layer

The transfer functions and their respective parameters of the mathematical model of the
shipboard power system are given in the following. The various transfer functions represent
input-output models for power generation, converter modules, and loads. The blocks’ transfer
functions and parameters have been determined through simulation and identification of the
Naval Combat Survivability systems as presented [74] [88]. The only modifications made to the
system concern the loads: Only the constant power demand type is used here as it adequately
represents all load types for the power flow solution. Pulse loads have been ignored but can
be incorporated through the constant power load type as well. Also, two loads instead of
only one are modeled within each of the three zones. For simulation purposes the equivalent
discrete system model with a sampling time of 50 ms has been used.

Table B.1: Parameters for Generator

Parameter Value Unit
Vdroop 0.1 p.u.

Hinertia 1 p.u.
tg1 0.2 sec.
kp 2 p.u.

98

APPENDIX B. TRANSFER FUNCTIONS FOR PHYSICAL SYSTEM LAYER 99

2
v

1
w

1
s

speed

−K−

inertia

−K−

droop

kp
−−−−−−−−−−−−−

 tg1 s + 1

Genexe PT1

3
Efd

2
Pe

1
Pm

Figure B.1: Synchronous generator model

1
Efd

1 v_ref

kp
 −−−−−−−−−−−−

 Et1 s + 1

Exciter

PI Controller
with Anti−Windup

Controller

1 v

Figure B.2: Exciter model and its control

Table B.2: Parameters for Exciter

Parameter Value Unit
Et1 0.1 sec
kp 1 p.u.

PI : ki 2 p.u.
PI : kp 4 p.u.

PI : max.limit 1.02 p.u.
PI : min.limit 0 p.u.

1

Pm

1 w_ref

kp
−−−−−−−−−−−−−−−−−

 Gt1 s2 + Gt2 s +1

Turbine

PI Controller
with Anti−Windup

Controller

1 w

Figure B.3: Turbine model and its control

APPENDIX B. TRANSFER FUNCTIONS FOR PHYSICAL SYSTEM LAYER 100

Table B.3: Parameters for Turbine

Parameter Value Unit
Gt1 0.0625 sec
Gt2 0.45 sec
kp 0.98 p.u.

PI : ki 1 p.u.
PI : kp 2 p.u.

PI : max.limit 1.02 p.u.
PI : min.limit 0 p.u.

1
p 0

−C−

vmin

1

1
−−−−−−−−−−−−

 Prvt1 s + 1

minV tf

>

1
 −−−−−−−−−−−−

 Prt1 s + 1

Propulsion

IA

P Zones

−K−

P

AND

Logical
Operator

double

D2D

1
v

Figure B.4: Shipboard propulsion system model

Table B.4: Parameters for Propulsion Load

Parameter Value Unit
Prvt1 0.01 sec
Prt1 0.1 sec
P 0.55 p.u.

vmin 0.8 p.u.

2
vb

1
P

0

−C−

vmin 1

>

1
 −−−−−−−−−−−−

 vt1 s + 1

vk2
 −−−−−−−−−−−−

 vt1 s + 1

Voltage

P Zones

P Zones

AND

Limit

double

D2D

4
P Z3

3
P Z2

2
P Z1

1
v

Figure B.5: AC/DC converter model and its control

APPENDIX B. TRANSFER FUNCTIONS FOR PHYSICAL SYSTEM LAYER 101

Table B.5: Parameters for PS (AC/DC) Converter

Parameter Value Unit
vt1 0.2 sec

vt1 Voltage 0.2 sec
vk2Port 0.95 p.u.

vk2Starboard 0.9 p.u.
vmin 0.8 p.u.

2
p2

1
p1

0

1
 −−−−−−−−−−−−

 Lvt12 s + 1

minV_

1
 −−−−−−−−−−−−

 Lvt11 s + 1

minV_

vb1

vb2

Zone
Converter

1
 −−−−−−−−−−−−

 Lt1 s + 1

Starboard

1
 −−−−−−−−−−−−

 Lt1 s + 1

Port
P Zones

P Zones

−K−

P

3
pref2

vb2

1
vb1

(a) Zone model and its control

2

1

−C−

vmin

−C−

vmin

>

>

Relay

Relay

AND

AND double

D2D

double

D2D

boolean

D2B

boolean

D2B

2
vb2

1
vb1

(b) Zone converter model (part of Zone model)

Figure B.6: Zone load and its converter model

Table B.6: Parameters for Zone Converter and Load

Parameter Value Unit
Lvt11 0.01 sec
Lvt12 0.01 sec

Lt1Starboard 0.1 sec
Lt1Port 0.1 sec
vmin 0.7 p.u.

References

[1] Ahuja, R. K., Magnanti, T. L., Orlin, J. B., Network Flows - Theory, Algorithms, and
Applications, Prentice Hall, 1993.

[2] Advanced Power Technologies (APT) Consortium, http://www.ee.washington.edu/ener
-gy/apt.

[3] Arai, T., Stolzeburg, F., “Multiagent Systems Specification by UML Statecharts Aiming
at Intelligent Manufacturing,” Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, Bologna, Italy, July 2002.

[4] Alternative Transients Program (ATP), http://www.emtp.org.
[5] Awerbuch, B., Varghese, G., “Distributed program checking: a paradigm for building

self-stabilizing distributed protocols,” Proceedings of the 32nd Annual IEEE Symposium
on Foundations of Computer Science, 258–267, 1991.

[6] Bigus, J. P., Bigus, J., Constructing Intelligent Agents Using Java, John Wiley & Sons,
2001.

[7] Bigus, J. P., Schlosnagle, D. A., Pilgrim, J. R., Mills III, W. N., Diao, Y., “ABLE: A
toolkit for building multiagent autonomic systems,” IBM Systems Journal, 41(3), 2002.

[8] Booch, G., Object-Oriented Analysis and Design with Applications, Addison Wesley,
Reading, MA, 1994.

[9] Brooks, F. P., The mythical man-month, Addison Wesley, 1995.
[10] Budde, R., Kuhlenkamp, K., Mathiassen, L., Zullighoven, H, Approaches to Prototyping,

Springer-Verlag, New York, NY, 1984.
[11] Burmeister, B., Haddadi, A., Matylis, G., “Applications of multi-agent systems in traffic

and transportation,” IEE Transactions on Software Engineering, 144(1), 51–60, Febru-
ary 1997.

102

REFERENCES 103

[12] Butler, K. L., Sarma, N. D. R., Whitcomb, C., Do Carmo, H., Zhang, H., “Shipboard
Systems Deploy Automated Protection,” IEEE Computer Applications in Power, 11(2),
31–36, April 1998.

[13] Butler, K. L., Sarma, N. D. R., Prasad, V. R., “Network reconfiguration for service
restoration in shipboard power distribution systems,” IEEE Transactions on Power
Systems, 16, 653–661, November 2001.

[14] Butler-Purry, K. L., Sarma, N. D. R. , “Self-Healing Reconfiguration for Restoration of
Naval Shipboard Power Systems,” IEEE Transactions on Power Systems, 19(2), 754–
762, May 2004.

[15] Cammarata, S., McArthur, D., Steeb, R., “Strategies of cooperation in distributed prob-
lem solving,” Proceedings of the Eighth International Joint Conference on Artificial In-
telligence, (IJCAI-83), 767–770, Karlsruhe, Federal Republic of Germany, 1983.

[16] Charniak, E., “Bayesian Networks without Tears,” AI Magazine, 12(4), Winter Issue,
1991.

[17] Chavez, A., Maes, P., “Kasbah: An agent marketplace for buying and selling goods,”
Proceedings of the First International Conference on the Practical Application of Intel-
ligent Agents and Multi-Agent Technology, 75–90, London, UK, 1996.

[18] Chen, L., Sycara, K., “Webmate : A personal agent for browsing and searching,” Pro-
ceedings of the Second International Conference on Autonomous Agents, Minneapolis/St
Paul, MN, May 1998.

[19] Clarke, E. M., Emerson, E. A., “Design and synthesis of synchronization skeletons using
branching time temporal logic” In D. Kozen, editor, Logics of Programs, 131, 52–71,
Springer-Verlag, 1981.

[20] Cockburn, D., Jennings, N. R., “ARCHON: A Distributed Artificial Intelligence System
for Industrial Applications,” In: Foundations of Distributed Artificial Intelligence, 319–
344, Wiley, 1996.

[21] Distributed Intelligence for Automated Survivability Thrust, ONR Science & Technol-
ogy, http://www.onr.navy.mil, 2002.

[22] Deverill, P., Newell, C. J., Rottier, P., Bennett, A., Bryce, S., Healey, N., “Modelling
of a warships electrical power generation and propulsion system, and practical impli-
cations for supporting the acquisition process,” Proceedings of The Institute of Marine
Engineering, Science and Technology AES 2003, (Edinburgh International Conference
Centre, Edinburgh, UK), February 2003.

[23] Dijkstra, E. W., “Self-stabilizing systems in spite of distributed control,” Communica-
tions of the ACM, 17, 643–644, 1974.

[24] Dutta, P. S., Sen, S., Peng, J., “Applying Bayesian Mixed-Initiative Agents in Real-
World Reasoning,”, in notes of the IJCAI Workshop on Autonomy, Delegation and
Control: Interacting with Autonomous Agents, Seattle, WA, August 4–10 2001.

[25] Erman, L. D., Hayes-Roth, F., Lesser, V. R., Reddy, D. R., “The HEARSAY-II speech-
understanding system: Integrating knowledge to resolve uncertainty,” Computing Sur-
veys 12(2), 213–253, 1980.

REFERENCES 104

[26] Ferber, J., Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence,
Addison–Wesley, Harlow, UK, 1999.

[27] Foundation of Intelligent Physical Agents, http://www.fipa.org, 2005.
[28] Fisher, M., Wooldridge, M., “On the formal specification and verification of multi-agent

systems,” International Journal of Cooperative Information Systems, 6(1), 37–65, 1997.
[29] Franklin, S., Gasser, A., “Is it an Agent, or just a Program?: A Taxonomy for Au-

tonomous Agents,” Third International Workshop on Agent Theories, Architectures and
Languages, Springer-Verlag, 1996.

[30] Bradshaw, J., Software Agents, The AAAI Press/The MIT Pres, Cambridge, MA, 1997.
[31] Gilbert, D., Aparicio, M., Atkinson, B., Brady, S., Ciccarino, J., Grosof, B., O’Connor,

P., Osisek, D., Pritko, S., Spagna, R., Wilson L., “The role of intelligent agents in the
information infrastructure,” IBM Report, 1995.

[32] Goldberg, A. V., Tarjan R. E., “A new approach to the maximum flow problem,” J
ACM, 35, 921–940, 1988.

[33] Goldberg, A. V., “Recent Developments in Maximum Flow Algorithms,” Technical Re-
port No. 98-045, NEC Research Institute, Inc., April 1998.

[34] Gosh, S., Gupta, A., Pemmaraju, S. V., “A Self-stabilizing Algorithm for the Maximum
Flow Problem,” Distributed Computing, 10, 167–180, 1997.

[35] Grand, S., Cliff, D., “ Creatures: Entertainment software agents with artificial life,”
Autonomous Agents and Multi-Agent Systems, 1(1), 1998.

[36] Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R., Seiver, A., “Distributing
intelligence within an individual,” Distributed Artificial Intelligence, 2, 385-412, Pitman
Publishing: London and Morgan Kaufmann: San Mateo, CA, 1989.

[37] Hayes-Roth, B., “Agents on stage: Advancing the state of the art in AI,” Proceed-
ings of the Fourteenth International Joint Conference on Artificial Intelligence, 967-971,
Montréal, Quéebec, Canada, August 1995.

[38] Hegner, H., Tavener, K., Robey, H., “Integrated fight through power ship design consid-
erations,”, Proceedings of The Institute of Marine Engineering, Science and Technology
AES 2003, (Edinburgh International Conference Centre, Edinburgh, UK), February 13–
14 2003.

[39] Hoare, C. A. R., “An axiomatic basis for computer programming,” Communications of
the ACM, 12(10), 576–583, 1969.

[40] Hoek, W. van der., Wooldridge, M., “Towards a Logic of Rational Agency,” Logic Jour-
nal of IGPL, 11(2), 133–157, 2003.

[41] Horvitz, E., Barry, M., “Display of Information for Time-Critical Decision Making,” 11th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), San Francisco,
CA, 1995.

[42] Huang, J., Jennings, N. R., Fox, J., “An agent-based approach to health care manage-
ment,” Applied Artificial Intelligence, 9(4), 401-420, 1995.

[43] Gilbert D., Aparicio M., Atkinson B., Brady S., Ciccarino J., Grosof B., O’Connor
P., Osisek D., Pritko S., Spagna R., Wilson L., “The Role of Intelligent Agents in the
Information Infrastructure,” IBM Report, 1995.

REFERENCES 105

[44] Java Agent DEvelopment Framework, http://jade.tilab.com, 2005.
[45] Java Technology, http://java.sun.com, 2005.
[46] Jennings, N. R., Wooldridge, M., “Applying agent technology,” Applied Artificial Intel-

ligence, 9(6), 357-370, 1995.
[47] Jennings, N. R., Corera, J., Laresgoiti, I., Mamdani, E. H., Perriolat, F., Skarek P.,

Varga, L. Z., “Using ARCHON to develop real-world DAI applications for electricity
transportation management and particle accelerator control,” IEEE Expert, December
1996.

[48] Jennings, N. R., Faratin, P., Johnson, M. J., Norman, T. J., O’Brien, P., Wiegand, M.
E., “Agent-based business process management,” International Journal of Cooperative
Information Systems, 5(2-3),105-130, 1996.

[49] Jennings, N. R., Sycara, K., Wooldridge, M., “A Roadmap to Agent Research and
Development,” Autonomous Agents and Multi-Agent Systems, 1998.

[50] Jennings, N. R., Wooldridge, M., “Agent-Oriented Software Engineering,” Handbook of
Agent Technology, AAAI/MIT Press, 2000.

[51] Jennings, N. R., Bussmann, S., “Agent-Based Control Systems,” IEEE Control Systems
Magazine, June 2003.

[52] Jensen, F. V., An Introduction to Bayesian Networks, Springer-Verlag, New York, 1996.
[53] Kautz, H., Selman, B., Shah, M., “The hidden web,” AI Magazine, 18(2), 27-35, 1997.
[54] Korb, K. B., Nicholson, A. E., Bayesian Artificial Intelligence, Chapman & Hall/CRC,

2004.
[55] Krulwich, B., “The BargainFinder agent: Comparison price shopping on the internet,”

Bots, and other Internet Beasties, 257–263, 1996.
[56] Lightweight Extensible Agent Platform, http://leap.crm–paris.com.
[57] Li, H., Rosenwald, G., Jung, J., Liu, C. C., “Strategic Power Infrastructure Defense,”

Proceedings of the IEEE, 93(5), 918–933, 2005.
[58] Ljunberg, M., Lucas, A., “The OASIS air traffic management system,” Proceedings of

the Second Pacific Rim International Conference on AI, Seoul, Korea, 1992.
[59] Luck, M., D’Inverno, M., “A formal framework for agency and autonomy,” In Pro-

ceedings of the First International Conference on Multi-Agent Systems, 254–260, San
Francisco, CA, June 1995.

[60] Maes, P., “Agents that reduce work and information overload,” Communications of the
ACM, 37(7), 31-40, July 1994.

[61] Maes, P., “Artificial life meets entertainment: life like autonomous agents,” Communi-
cation of the ACM, 38(11), 108–114, 1995.

[62] The Mathworks, http://www.mathworks.com, 2005.
[63] Maturana, F. P., Staron, R. J., Discenzo, F. M., Hall, K., “Intelligent Autonomous Con-

trol Architecture for Automated Ship Control, Damaged and Optimized Operations,”
ASNE Intelligent Ship Symposium, Villanova, PA, June 2005.

[64] McGeary, F., Decker, K., “DECAF Programming: Agents for Undergraduates,” Work-
shop on Infrastructure for Scalable Multi-Agent Systems, Autonomous Agents 2001, 53–
60, May 2001.

REFERENCES 106

[65] Notes of the AAAI-97 Spring Symposium on Computational Models for Mixed Initiative
Interaction, 1997.

[66] Morgan, C., Programming from Specifications, Prentice Hall International: Hemel
Hempstead, England, Second edition, 1994.

[67] Murray, J., “Specifying Agents with UML in Robotic Soccer,” Proceedings of the 1st
International Joint Conference on Autonomous Agents & Multi-Agent Systems, Bologna,
Italy, 2002.

[68] “Netica , Application for Belief Networks and Influence Diagrams”, User’s Guide, Ver-
sion 1.05 for Windows, 1997.

[69] Norsys Software Corp., Netica Application and API, http://www.norsys.com, 2002.
[70] Object Management Group, Inc. OMG Unified Modeling Language Specification, Version

1.5, March 2003.
[71] Owens, D. K., Shahcter, R., Nease, R. F., “Representation and Analysis of Medical

Decision Problems with Influence Diagrams”, Medical Decision Making, 17(3), 241–262,
1997.

[72] Overgaard, L., Petersen, H. G., Perram, J. W., “Reactive motion planning: a multi-
agent approach,” Applied Artificial Intelligence, 10(1), 35-52, 1996.

[73] Parunak, H. V. D., “Applications of distributed artificial intelligence in industry,” In
Foundations of Distributed Artificial Intelligence, eds. O’Hare, G. M. P., Jennings, N.
R., Wiley, 1995.

[74] Pekarek, S. D., Tichenor, J., Sudhoff, S. D., Sauer, J. D., Delisle, D. E., Zivi, E. J.,
“Overview of a Naval Combat Survivability Program,” Proceedings of the 13th Interna-
tional Ship Control Systems Symposium, Orlando, FL, 2003.

[75] Pressman, R. S., Software Engineering: A Practitioner’s Approach, McGraw-Hill, Fifth
edition, 2001.

[76] PSpice A/D Simulator, MicroSim Corporation, Version 8.0, July 1997.
[77] Rehtanz, C., Autonomous Systems and Intelligent Agents in Power System Control and

Operation, Springer-Verlag Berlin Heidelberg, 2003.
[78] Maturana, F. P., Staron, R. J., Hall, K. H., Rockwell Automation, “Methodologies and

Tools for Intelligent Agents in Distributed Control,” IEEE Intelligent Systems, January
2005.

[79] Russel, S., Norvig, P., Artificial Intelligence: A Modern Approach, Prentice Hall Series
in Artificial Intelligence, 2004.

[80] Saberbook Navigator, Analogy Inc., Version 4.3.
[81] Scheidt, D. H., “Intelligent Agent-Based Control,” Johns Hopkins Apl Technical Digest,

23(4), 2002.
[82] Schoonderwoerd, R., Holland, O., Bruten, J., “Ant-like agents for load balancing in

telecommunications networks,” Proceedings of the First International Conference on
Autonomous Agents, 209-216, Marina del Rey, CA, 1997.

[83] Searle, J. R., Speech Acts: An Essay in the Philosophy of Language, Cambridge Univer-
sity Press, 1970.

REFERENCES 107

[84] Sen, S., “Multiagent Systems: Milestones and New Horizons,” Trends in Cognitive Sci-
ence, 1(9), 334–339, 1997.

[85] Shachter, R., “Evaluating Influence Diagrams”, Operations Research, 34(6), November-
December 1986.

[86] Srivastava, S. K., Butler-Purry, K. L., Sarma, N. D. R., “Shipboard power Restored for
Active Duty,” IEEE Computer Applications in Power, 16–23, July 2002.

[87] Stankovic, A. M., Calvic, M. S., “Graph-oriented algorithm for the steady state security
enhancement in distributed networks,”, IEEE Trans. Power Delivery, 4(1), 539–544,
1989.

[88] Sudhoff, S. D., Glover, S. F., Zak, S. H., Pekarek, S. D., Zivi, E. J., Delisle, D. E., “Sta-
bility Analysis Methodologies for DC Power Distribution Systems,” 13th International
Ship Control Systems Symposium, Orlando, FL, April 7–9 2003.

[89] Sun, L., Cartes, D. A., “Reconfiguration of Shipboard Radial Power System using In-
telligent Agents,” ANSE Electric Machine Technology Symposium, Philadelphia, PA,
2004.

[90] Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D., “Distributed Intelligent
Agents,” IEEE Expert, 11(6), 1996.

[91] Tel, G., Introduction to Distributed Algorithms, Cambridge University Press, 1994.
[92] Trappl, R., Petta, P., Creating Personalities for Synthetic Actors, Springer-Verlag:

Berlin, Germany, 1997.
[93] Tseng, K. J., Foo, C. F., Palmer, P. R., “Implementing Power Diode Models in SPICE

and Saber,” Proceedings of the 25th IEEE Annual Power Electronics Specialists Confer-
ence, PESC’94, 59–63, June 1994.

[94] Tucker, A. J., “Opportunities and Challenges in Ship Systems and Control at ONR,”
IEEE Conference on Decision and Control, December 2001.

[95] US Navy ONR/NSF EPNES, “ONR Control Challenge Problem (white paper),”
http://www.usna.edu/EPNES/Challenge Problem.htm, 2002.

[96] Wang, X., Vittal, V., “System Islanding Using Minimal Cutsets with Minimum Net
Flow,” Power Systems Conference and Exposition, IEEE PES, 1, 379–384, October
2004.

[97] Wavish, P., Graham, M., “A situated action approach to implementing characters in
computer games,” Applied Artificial Intelligence, 10(1), 53-74, 1996.

[98] Weiss, G., Multiagent Systems - A Modern Approach to Distributed Artificial Intelli-
gence, MIT Press, 1999.

[99] Wooldridge, M., Jennings, N. R., “Intelligent agents: theory and practice,” The Knowl-
edge Engineering Review, 10(2), 115–152, 1995.

[100] Wooldridge, M., “Agent-Based Software Engineering,” IEE Proceedings on Software
Engineering, 144, 26–37, 1997.

[101] Wooldridge, M., An introduction to Multiagent Systems, John Wiley & Sons, 2002.
[102] Xiao, H., Adediran, A. T., Butler, K. L., “Fault scenario studies based on geograph-

ical information for shipboard power systems,” Proceedings of North American Power
Symposium, 436-442, October 2001.

REFERENCES 108

[103] Yusof, S. B., Rogers, G. J., Alden, R. T. H., “Slow coherency based network partitioning
including load buses,”, IEEE Transactions on Power Systems, 8(3), 1375-1382, August
1993.

[104] Zivi, E. L., McCoy, T. J., “Control of a Shipboard Integrated Power System,” Proceed-
ings of the 33rd Annual Conference on Information Sciences and Systems, Baltimore,
MD, 1999.

[105] Zhang, H., Butler, K. L., “Simulation of ungrounded shipboard power systems in
PSpice,” Proceedings Midwest Symposium on Circuits and Systems, 58-62, 1998.

[106] Zhang, H., Butler, K. L., Sarma, N. D. R., DoCarmoand, H., Gopalakrishnanand, S.,
Adediran, A., “Analysis of tools for simulation of shipboard electric power systems,”
Electric Power Systems Research, 58, 111-122, 2001.

	Multiagent autonomous energy management
	Recommended Citation

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Objective
	Approach
	Outline of the Thesis

	Literature Survey
	Modeling and Simulation
	Agent Based Systems
	Graph Algorithms
	Decision Networks
	Conclusion

	Software Agents and Agent-Based Systems
	Software Agents
	Software Agents - Definition
	Software Agent Architectures

	Multiagent Systems
	Characteristics of Multiagent Systems
	Communication Protocols
	Interaction Protocols
	Advantages of Multiagent Systems
	JAVA

	Software Engineering of Agent-Based Systems
	Agents and AI
	Agents and Expert Systems
	Agents and Objects
	Agent-Based Systems

	Conclusion

	Modeling the Electric Shipboard Power System
	Model Description
	Interfacing the Physical Model
	Conclusion

	Energy Management System
	Graph Theory
	Definitions and Notation
	The Maximum Flow Problem
	Self-Stabilizing Algorithms
	Self-Stabilizing Maximum Flow Algorithm

	The Shipboard's Power Flow as Maximum Flow Problem
	Requirements
	Agent's Maximum Flow Algorithm

	Discussion
	Conclusion

	Situational Awareness Component
	Decision Problems and Decision Networks
	Utilities
	Network Structure
	Network Links
	Reasoning
	``Umbrella'' Example Decision Network
	Advantages
	Implementation Tool: Netica

	Situational Awareness Component for the Energy Management System
	Conclusion

	Multiagent Architecture
	Technical Approach - Prototyping Model
	Architecture Overview
	Layered Architecture
	Blackboard for Communication Infrastructure
	Architecture for the Energy Management System

	Agent Specification
	UML Statecharts
	Agent Specification using UML statecharts

	Implementation
	Physical System Layer
	Command and Control Center
	Blackboard
	Running the Simulation

	Case Studies and Discussion of Results
	Startup Scenario
	Rerouting Power
	Restoring High Priority Loads
	Random Operating Conditions
	Physical System Faults and Silent Death
	Normal Operation
	Silent Death
	Overload

	Summary and Future work
	Summary
	Future work

	APPENDIX
	Publications and Award
	Publications
	Award

	Transfer Functions for Physical System Layer
	References

		2005-12-09T14:08:53-0500
	John H. Hagen
	I am approving this document

