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Abstract 

 

Intestinal and Systemic Cytotoxic T Lymphocyte and Humoral Immune Responses to Oral 

and Parenteral Reovirus Infection 

Jonathan Reid Fulton 

 

 

This work was undertaken to determine effects of routes of infection with reovirus 
induction of responder cytotoxic T lymphocytes (CTL). Further, this work concerns differential 
effects of age on humoral and CTL responses following oral and parenteral reovirus infection. 
Despite considerable knowledge about non-intestinal systemic viral immunity, intestinal immune 
response to viral infection is less understood, and it remains unknown what differences, may 
occur in CTL populations induced by local viral infections in the intestine or systemic periphery.  

We infected mice orally or in hind footpads with reovirus, serotype 1, strain Lang (TIL), 
and utilized flow cytometry to assess T cell receptor (TCR) Vβ repertoire of CD8+ cells in 
draining lymphoid tissues and spleens for reovirus-driven proliferative changes. We observed 
predominant expansion of Vβ6+ CD8+ CTL in spleens and Peyer’s patches (PP) of orally 
infected mice, as well as spleens and popliteal lymph nodes of footpad infected mice. Vβ6+ 
CD8+ cells from orally and footpad infected mice mediated reovirus-specific cytotoxicity. TCR β 
chain complementarity determining region 3β (CDR3β  length profile analysis of Vβ6+ CD8+ cell 
lines from orally and footpad infected mice, as well as cells recovered from adoptive transfer into 
reovirus infected SCID recipients, showed a consistent, clear, and uniform expansion of one or 
few clones bearing identical CDR3β length, indicating that CTL responses following oral or 
parenteral infection are likely dominated by identical CTL populations.   

We also compared the ability of old and young mice to mount CTL and humoral 
responses to reovirus. We found old and young mice had similar CTL frequency and cytotoxicity 
following oral and parenteral infection. We observed that while old mice mounted IgG responses 
to parenteral reovirus equivalent to young mice, IgA responses of orally infected aged mice were 
elevated compared to young mice. These data indicate old mice retain the ability to mount CTL 
and humoral responses against reovirus in the intestine and systemic periphery. Furthermore, old 
mice have potentiation of intestinal IgA responses compared to young following intestinal 
infection. Our results suggest the intestine can be utilized as a route of immunization to provide 
efficacious cell-mediated and humoral immunity in the aged. 
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General Introduction 

Parenteral and enteric viral infections elicit T cell-mediated immunity tasked with 

controlling and, insofar as possible, eradicating the invading virus. The tissue environments at 

distinct anatomic sites of infection may be quite different, and as regards the small intestine Vis a 

Vis the non-mucosal peripheral immune system, specialized lymphoid tissues and lymphocyte 

populations exist to tailor the immune response to the unique characteristics of the host tissue. It 

remains unknown whether distinct anatomic sites of viral infection preferentially select for 

different T cell populations to respond to the virus in the setting of the infected tissue.  

This introduction serves to review elements of intestinal and non-intestinal systemic immunity, 

including the priming and effector sites of adaptive immunity, and the immune cells and factors 

involved in mucosal and systemic immunity to virus infection. Additionally, the model intestinal 

pathogen, reovirus, is described, in terms of its structure, mechanisms of infection, and the host 

immune responses it elicits. Finally, consideration of the unique characteristics of the intestinal 

environment, resident antigen presenting cell populations and responder T cell populations is 

given with the aim of introducing the hypothesis that an intestinal virus infection may induce the 

selection and expansion of responder CD8+ T cells populations that are distinct from those 

induced following a parenteral reovirus infection.  

 A reader may peruse the first part of the introduction to become familiar with the 

intestinal immune environment, and skip the reovirus section with the understanding that 

reovirus infection elicits a cytotoxic T lymphocyte (CTL), and that CTL can function to assist in 

the resolution of reovirus infection. A separate chapter reviewing all the elements of intestinal 

immunity, especially in humans, is included at the end of this dissertation for the interested 

reader. 
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Intestinal Immunity 

Gastrointestinal immunity: passive or active, innate or adaptive.  
 

The gastrointestinal system is essentially a long, muscular tube, the functional surface of 

which is a thin, mucous-coated layer 1mm thick that is joined at both ends with the external 

integument and thus is a contact surface of the external environment (MacDonald et al., 1999). 

As such, it is in contact with a vast array of environmental antigens ranging from dietary sources 

and innocuous commensal organisms to frank pathogens. Normal functions of the GI system 

provide non-specific defenses against foreign organisms (Mowat and Viney, 1997). These 

defenses include iron-sequestering lactoferrin in saliva and other GI exocrine secretions; 

peptidoglycan hydrolyzing salivary and gastric lysozyme, secreted complement components such 

as factor C3 and factor B, the initiating components of the �alternative pathway� of complement 

activation; anion-binding pore-forming molecules such as intestinal crypt Paneth cell derived α-

defensins, and intestinal epithelial cell derived β-defensins; and Paneth cell secretory 

phospholipase A2. New defenses are continuously being uncovered, such as the up-regulated 

production of nitric oxide by duodenal epithelial cells to combat infestation by the parasite 

Giardia lamblia (Eckmann et al., 2000). Other GI functions with defensive benefits include 

normal peristalsis, both triggered by bulk in the lumen and normal vagal major motility 

complexes, gastric parietal cell acid secretion, gastric chief cell pepsin production; pancreatic 

trypsin, chymotrypsin, phospholipase and bile acids; local insult repair molecules such as 

intestinal goblet cell derived trefoil proteins (Podolsky, 2000); constant epithelial cell turnover 

(Merrit et al., 1995); and perhaps most important, the ever present mass of viscous barrier 

mucous. 
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Lymphoid tissues of the intestinal immune system can be divided into two types (Mowat and 

Viney, 1997). First is the organized priming or inductive tissue such as the Peyer�s patches (PP) 

and mesenteric lymph nodes where antigen-naïve lymphocytes are first activated and induced to 

proliferate. Second, there are the dispersed effector sites, which include both the lamina propria 

(LP) underlying the absorptive epithelium, where antigen experienced cells mediate their 

specialized effector functions such as cytokine secretion and cytotoxicity or antibody production, 

and the T lymphocyte compartment interspersed within the absorptive epithelial cell layer, 

containing the so-called intraepithelial lymphocytes (IEL) (MacDonald et al., 1999). 

Proceeding distally along the GI tract from the oropharynx, the hostile environment of the 

stomach gives way to the major absorptive organ of digestion, the small intestine. This is a site 

of great antigenic load and variability, requiring careful regulation of adaptive immune function. 

Dangerous organisms must be identified and adequate defenses produced, and yet innocuous 

dietary antigens must be ignored. This regulation of response vs. non-response is an intrinsic 

function of the small intestine not normally emulated by most other immune tissues. 

Additionally, the intestinal mucosal contains newly identified lymphoid-tissue structures, such as 

the small intestine lymphocyte filled villi (LFV) (Moghaddami et al., 1998) and deep LP 

crytopatches (Ishikawa et al., 1999), which are of uncertain function, although there is mounting 

evidence that these tissues may be involved in the generation of unconventional, extra-thymic T 

cells which constitute part of the intestinal IEL compartment (Saito et al., 1998; Poussier and 

Julius, 1999; Oida et al., 2000).  
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Sleuth of the sluice; sentinel tissues and immune priming sites that are the Peyer�s 
patches.  
 

The PP, unlike the peripheral lymph nodes, have no afferent lymphatics, and so the influx 

of mature, activated dendritic cells that is the central requirement of priming of naïve T cells 

does not occur. The PP, in its role as the premier and initial priming tissue of the small intestine 

has developed specialized structures and tissue organization adapted to its location (Kelsall et al., 

1996).  The sequence of an active immune response in the small intestine begins with an ingested 

foreign antigen or organism, such as reovirus, being endocytosed by the microfold cells (M cells) 

of the so-called follicle associated epithelium at the luminal surface of the patch (Owen, 1994). 

M cells, unlike the columnar absorptive epithelial cells, lack the covering �molecular sieve� 

barriers of the glycoprotein glycocalyx and mucous coat on their lumenal surface, and thus are 

easily able to interact with particulate antigens and organisms in the gut lumen (Nuetra et al., 

1996). M cells are thin, endocytic cells that continuously sample the lumenal contents of the 

small intestine, and transcytose antigen across the M cell into a region of the PP immediately 

underlying the FAE known as the �sub-epithelial dome� that is highly enriched for endocytic 

dendritic cells (Kelsall et al., 1996). Despite the fact that the M cell is in intimate contact with a 

population of T and B lymphocytes actually encased within pockets of the M cell membrane 

(Farstad et al., 1994), antigen processing is not thought to be an important function of the M cell, 

and as the M cells have little MHC class II and no co-stimulatory molecule expression, they are 

thought to not be directly involved in antigen presentation (Farstad et al., 1994). Rather, M cells 

transport antigen from the intestinal lumen directly into the subepithelial dome region of the PP 

(Mowat and Viney, 1997). Underlying DCs of the subepithelial dome internalize transcytosed 

antigen, processing it and presenting it in association with surface MHC molecules during 

maturation (Keren, 1992). Mature DC migrate from the subepithelial dome region into the T cell 
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enriched interfollicular regions of the PP, analogous to the migration of dendritic cells of the 

non-intestinal periphery to draining lymph nodes. Once in the interfollicular region, mature DC 

can activate naïve CD4+ and CD8+ T cells. Activated T cells are induced first to proliferate, and 

within one or two cell divisions T cells may take on effector function (Ben-Sasson et al., 2001). 

Primed T cells may then migrate to the mesenteric lymph nodes via the efferent lymphatic 

vessels and thence proceed via the thoracic duct directly to the systemic venous circulation 

(Rothkotter et al., 1999). Like T cells primed in the peripheral lymph nodes, many PP primed 

cells will deposit in the spleen and continue to proliferate (Bradley et al., 1999). Intestinally 

primed T cells may leave the PP, MLN, or spleen and circulate via the blood to the LP of the 

intestine, and to a lesser degree to other mucosal tissues via interactions of post-capillary venule 

addresin molecules such as MadCAM-1 expressed on the surface of normal or inflamed flat 

endothelial cells with specific lymphocyte surface integrins such as α4β7 (Farstad et al., 1996; 

Wagner et al., 1996). T and B cells exiting the venules of the submucosa take up residence in the 

LP to mediate effector function, or to await subsequent activation (Molberg et al., 1998). Some 

of the T cells, primarily of the CD8+ phenotype and expressing the αEβ7 integrin, enter the 

intraepithelial cell compartment, adhering to the palisade-like intestinal epithelial cells (IEC) of 

the villi via interaction of IEL integrin αEβ7 to IEC E-cadherin (Cepek et al., 1994). Within the 

LP, CD4+ cells mediate effector function by producing cytokines to activate resident tissue 

macrophages and parenchymal cells (MacDonald et al., 1999), and to support antigen-specific B 

cell differentiation into IgA secreting plasma cells. CD8+ cells within the LP and IEL 

compartments may mediate their effector function by the killing of infected host cells (Kim et 

al., 1999) and the production of cytokines such as TNF-α and IFN-γ. 
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Intestinal T cells are often of uncertain origin and function Vis a Vis peripheral T 
cells.  
 

The earliest differentiated precursors of T lymphocytes are found in the cortex of the 

thymus. During a progressive migration of these cells through the medulla they must sequentially 

successfully rearrange both the α and β chains of the TCR. They must then undergo positive 

selection for the ability to bind self MHC class I or class II molecules, and negative selection to 

delete T cells that may become aberrantly activated by self MHC and antigen complexes (Laufer 

et al., 1999). Although the majority of GALT CD8+ cells are thymus-derived (Lin et al., 1996), 

CD8+ T cells of the GALT are a diverse group, both with regard to function (Mayrhofer, 1980; 

Guy-Grand et al., 1996), derivation (Mayrhofer, 1980), and cell surface phenotype (Klein, 1986). 

Antigen-specific CD8+ T cells primed in the PP are thymus-derived, CD8αβ heterodimer+ 

TCRαβ+ cells, whereas within the intestinal epithelium a minor population of CD8αα 

homodimer+ TCRαβ+ cells exists which may be extra-thymically derived (Guy-Grand et al., 

1991), possibly from the cryptopatches which have been identified in mice, rats, and humans 

(Saito et al., 1998; Ishikawa et al., 1999), or the lymphocyte filled villi (LFV), which are also 

conserved among humans and rodents (Moghaddami et al., 1998). There also exists in the 

epithelium an enrichment of TCRγδ + cells that may express CD8αα or be CD8-, which may be 

extra-thymically derived (Guy-Grand and Vassalli, 1993). It remains uncertain whether any 

intestinal CD8αβ+ TCRαβ+ cells develop in situ, as opposed to being recruited to the epithelium 

from the vasculature (Muller et al., 2000). It also remains uncertain as to what immune role 

extra-thymically derived T cells of any phenotype actually mediate.  
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T cells of the intestinal mucosa are strikingly oligoclonal, by comparison with those 
of the systemic periphery. 
 

It has been shown that the TCRαβ+ IEL are not polyclonal as are T cells of the peripheral 

blood and lymphoid tissues (Akolkar et al., 1995), but rather are oligoclonal, and that nearly the 

total population of TCRαβ+ IEL of any individual human or mouse are due to a limited number 

of highly expanded clones that are distributed along the length of the intestine (Cumano et al., 

1994). This suggests proliferation and recirculation of selected populations of TCRαβ T cells 

through the systemic circulation and recruitment back to the mucosal (Arstila et al., 2000).  For 

example, normal human jejunal IEL from six individuals were shown to have expanded 

representation of one to three TCR Vβ subpopulations accounting for more than 40% of the total 

TCRαβ+ IEL. Sequencing of cloned PCR products of TCR β chain transcripts of one of the over-

represented Vβ subpopulations from two of the donors yielded identical β chain sequences in 13 

out of 21 clones in one donor. The second donor had a conserved β chain sequence in 18 of 21 

clones.  In both humans and mice, the expanded oligoclonal populations are unique to the 

individual host, and are distinct from the IEL of even genetically identical animals reared under 

similar conditions (Cumano et al., 1994). Evidence suggests, however, that despite the 

oligoclonality of the CD8αβ+ TCRαβ+ IEL, these cells have immigrated from the peripheral 

secondary lymphoid tissues. As an example, CD8αβ+ TCRαβ+ IEL of DBA/2 mice expressing 

the minor lymphocyte stimulating antigen alpha (Mls1a) phenotype were devoid of Vβ6, Vβ8.1 

and Vβ11+ TCR as were CD8+ T cells of the peripheral lymphoid tissues (Rocha et al., 1994), 

whereas T cells of the deleted phenotype should have been represented in the intestinal mucosal 

if the cells were derived in situ, thus bypassing normal thymic selection. Nevertheless, these 

CD8αβ+ TCRαβ+ IEL have been shown to be oligoclonal (Regnault et al., 1994), reflecting Vβ 

repertoire skewing unseen in the peripheral CD8+ T cell compartment, and thus demonstrating 
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selective processes on otherwise conventional pCTL not seen outside the intestine. Oligoclonal 

expansion has also been demonstrated for TCRαβ+ T cells of the LP, although the T cell 

population as a whole is far more polyclonal than the IEL. Identical T cell clones have been 

isolated from the peripheral blood and LP compartments (Kim et al., 1999), from the IEL and LP 

compartments (Bennet et al., 1999; Kim et al., 1999), and from the thoracic duct, IEL and LP, 

indicating migration of T cells to and/or from the peripheral blood, and a common origin of some 

LP and IEL T cells (Arstila et al., 2000). Additionally, oligoclonality is found within all subsets 

of LP and IEL TCRαβ+ T cells, including CD8αβ+, CD8αα+ (Cumano et al., 1994), and CD4+ T 

cells (Arstila et al., 2000), although the same β chain sequences are not shared among the T cells 

of different subsets.  

Antigen-specific cytotoxicity is mediated by intestinal IEL of conventional CD8αβ+  
TCRαβ+ phenotype.  
 

It should be noted that, as with the T cells of the LP, not all the of the TCRαβ+ T cells of 

the IEL compartment are members of the expanded oligoclonal populations, and these T cells 

may be recently arrived CD8αβ+ TCRαβ+ T cells primed during incipient immune responses 

within the PP and other inductive tissues. For example, following infection of mice with reovirus 

(London et al., 1989; Cuff et al., 1993; Chen et al., 1997), rotavirus (Offit and Dudzik, 1989), 

LCMV (Sydora et al., 1996; Muller et al., 2000), and T. gondii tachyzoites (Chardes et al., 1994) 

organism-specific CTL can be isolated from the IEL with the conventional CD8αβ+ TCRαβ+ 

phenotype. This is also true for alloantigen-specific CTL from the IEL compartment in 

alloantigen-primed mice (Parrott et al., 1983). It is believed that these IEL, like the T cells of the 

underlying LP, are derived from conventional T cells primed within the PP or peripheral 

organized lymphoid tissue, as their antigen specific CTL activity is dependent on recent antigen 

exposure. To date, the oligoclonal CD8αβ+ TCRαβ+ T cell populations of the naïve host IEL 
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compartment have not been shown to possess a priori the ability to mediate specific responses 

against novel antigens, although a recent report suggests that some CD8αβ+ TCRαβ+ IEL from 

naïve mice can mediate very low levels of LCMV specific cytotoxicity by a Fas-Fas ligand 

mediated mechanism (Corazza et al., 2000). Nevertheless, expanded oligoclonal IEL populations 

of CD8αβ+ TCRαβ+ T cells specific for known cognate antigens are present, and are likely 

derived from immigrant T cells originally primed in the PP and other peripheral secondary 

lymphoid tissues (Camerini et al., 1998). Their striking oligoclonality within the IEL 

compartment is probably reflective of chronic re-stimulation in situ by a restricted number of 

antigens derived from the diet or the normal intestinal commensals (Imaoka et al., 1996; Arstila 

et al., 2000), or an uncharacterized stimulatory influence of the intestinal epithelium independent 

of flora and diet (Guy-Grand et al., 1991; Guy-Grand et al., 1996). Indeed, the Vβ repertoire of 

germ-free rat CD8αα+ and CD8αβ+ TCRαβ+ IEL becomes skewed upon microbial colonization 

of the intestine, whereas the Vβ repertoire of CD8+ T cells in the mesenteric lymph nodes of 

these animals remains unchanged, indicating a unique stimulatory environment of the intestinal 

epithelium associated with normal flora (Helgeland et al., 1996).   

Functions of intestinal IEL with unconventional CD8+ TCR+ phenotypes.  
 

Antigen-specific cytotoxicity is not consistently or definitively mediated by the minor 

IEL populations of non-conventional CD8αα+ TCRαβ+ T cells, nor by the TCRγδ+ T cells. 

Furthermore, these cells do not tend to proliferate in response to antigenic or mitogenic 

stimulation in vitro (Sydora et al., 1996; Lundquist et al., 1996), although evidence exists that 

IEL utilize a CD2-dependent co-stimulatory mechanism (Van Houten et al., 1993) and an IL-15 

dependent signaling pathway (Inagaki-Ohara et al., 1997) to proliferate following stimulation. 

Nevertheless, they have been shown to mediate non-specific cytotoxicity in redirected CTL 
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assays using anti-TCRαβanti-CD3, or γδ mAb-coated target cells (Viney et al., 1990; Guy-Grand 

et al., 1991; (Lunquist et al., 1996).  These IEL have also been shown to express NK cell surface 

molecules and mediate protective antiviral NK-like cytotoxicity (Carmen et al., 1986), although 

unlike conventional NK cells, this killing is not inhibited by target cell MHC class I molecule 

expression  (Guy-Grand et al., 1996). Additionally, human jejunal IEL cell lines have been 

shown to recognize and kill target cells expressing the non-classical β2 microglobulin-associated 

MHC class I-like molecule CD1c, which may be expressed on stressed or damaged intestinal 

epithelial cells (Griffith et al., 1998).  TCRαβ+ T cells, which account for 20-80% of small 

intestinal IEL in mice (Goodman and Lefrancois, 1988; Hohara et al., 1990), depending on the 

age and strain (Mosley et al., 1994), are thought to play a role in the maintenance of the integrity 

of the intestinal epithelium by recognizing and removing stressed or damaged epithelial cells 

(Yoshikai, 1999), and by producing reparative enterocyte mitogens such as keratinocyte growth 

factor (Finch and Cheng, 1999).  In further evidence of an epithelium-maintaining role, TCRγδ+ 

T cells have been shown to recognize non-classical MHC-like molecules CD1.1 and the thymic 

leukemia antigen (TL) in mice (Shawar et al., 1994), and CD1d, MICA, and MICB in humans 

(Griffith et al., 199; Groh et al., 2000), molecules usually expressed only on distressed intestinal 

epithelium and professional APC (Shawar et al., 1994), suggesting that TCRγδ+ IEL respond to 

distressed IEC . Additionally, TCRγδ+ T cells have been shown to spontaneously produce IFN-

γδ and IL-5, possibly to modulate other local immune cells (Yamamoto et al., 1993). Evidence 

also exists for a role of IEL TCRγδ+ T cells in promoting mucosal IgA responses, as β chain gene 

knock out (β-/-) mice, which have no TCRαβ+ T cells, have deficient generation of intestinal 

sIgA+ B cell responses to oral challenge with cholera toxin B subunit and tetanus toxoid 

(Fujihashi et al., 1996). Furthermore, TCRγδ+ T cells appear regulate intestinal TCRαβ+ T cell 
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responses, as β -/- mice infected orally with the parasite Emeria vermiformis display enhanced 

severity of TCRαβ+ T cell mediated mucosal damage in the small intestine compared to similarly 

infected wild type controls (Roberts et al., 1996). The enhanced pathology can be abrogated by 

the adoptive transfer of IEL TCRγδ+ T cells from naïve wild type mice into infected β-/- recipient 

mice. While the function of TCRγδ+ T cells remains incompletely understood, there is ample 

reason to predict the TCRαβ T cells of the intestinal mucosa mediate effects distinct from 

TCRαβ+ T cells of the periphery. First, TCRαβT cells make up less than 3% of T cells in the 

spleen and peripheral lymph nodes, whereas they often account for more than half of the murine 

IEL T cells (Goodman and Lefrancois, 1988; Hohara et al., 1990), and are also enriched in the 

human intestinal IEL compartment (Bucy et al., 1989). Additionally, the murine intestinal TCR 

αβ+ IEL utilize the TCR Vβ7 segment, whereas those of the periphery mainly use Vβ4, 5 and 6, 

which suggest distinct TCR specificities of intestinal TCRαβ+ T cells compared to those of the 

periphery (Haas, 1993). The vast majority of the TCRαβ+ IEL of the small intestine overlie the 

LP of the absorptive epithelium, and thus would tend to mediate their effects predominantly 

outside of the PP. Nevertheless, in view of the evidence that TCRαβ+ IEL influence LP 

lymphocytes, that specialized structures of the LP such as the crytopatches and LFV may serve 

as an alternate source of non-thymic responder T cells, and the mounting evidence that DC of the 

LP may prime responder T cells in situ (Muller et al., 2000), the unique influences of the IEL 

compartment, for which there may be no systemic equivalent, may well be imprinted upon the 

character of conventional intestinal T cell responses. 

Impact of unique intestinal CD8+ responder populations primed in situ.  
 

It has been suggested that some CD8αβ+ TCRαβ+ T cells of the GALT may differ from 

those of the systemic periphery by their site of origin and priming, as in the case of extra-
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thymically derived T cells primed within the intestinal mucosa. Additionally, conventional, 

thymus-derived CD8+ T cells induced to respond in the PP may differ from those primed in the 

systemic periphery due to the unique microenvironment of the PP.  Antigen processing and 

presentation by professional antigen presenting cells such as the dendritic cells of the sub-

epithelial dome region is not definitively known to generate the same antigenic epitopes as APC 

in the peripheral lymph nodes. Indeed, differences may exist in the T cell priming and mediated 

by PP DC as compared with splenic DC that have been attributed to the antigen and cytokine 

milieu in the intestinal tissues (Hooper et al., 1994). Thus the naïve pool of PP CD8+ T cells that 

could be stimulated to respond to a foreign antigen may differ from that of the peripheral lymph 

nodes. Additionally, some as yet unidentified influences of the GALT microenvironment may 

impart unique characteristics on the responding CD8+ T cells, such as expression of the IEL 

phenotype marker, the cell surface integrin αEβ7, which is induced on CD8+ cells primed in the 

PP by local transforming growth factor-β1 (TGFβ1) production (Kilshaw et al., 1991). Clearly, 

the understanding of intestinal CTL responses involves a number of complicated elements. 

Reovirus, a proven inductive agent of systemic and intestinal CTL, provides a useful tool for 

determining the influence of the anatomic site of infection on CTL immune responses.  

Reovirus as a model intestinal and systemic pathogen 
 
Reovirus, model infectious organism for the elucidation of mucosal and systemic 
immune responses.  
 

Reovirus, respiratory enteric orphan virus, is an icosahedral virus lacking a lipid envelope 

and glycoproteins (Palmer and Martin, 1977). Reovirus has a genome of 10 double-stranded 

RNA segments encoding 8 structural and three non-structural proteins (Joklik, 1980; Sakar et al., 

1985). The genus Orthoreovirus contains three mammalian reovirus serotypes as determined by 

hemagglutination inhibition assays, each having a prototypical strain isolated from the 
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respiratory or intestinal secretions of human children (Tyler and Fields, 1990). These serotypes 

are reovirus type 1, strain Lang (T1L), type 2 Jones (T2J), and type 3 strain Dearing (T3D). The 

most extensively studied serotypes, T1 and T3, are naturally infective for the M cells overlying 

the small intestinal PP, and for replicating, immature, small intestinal epithelial cells (IEC) of the 

small intestinal crypts. The outer capsid proteins, σ1 and σ3, are resistant to both low pH and 

lipid detergents, and protect the virus from the hostile environments of the stomach and 

duodenum. Following ingestion, reovirus undergoes endoproteolytic cleavage of the outer capsid 

σ1 and removal of the σ3 proteins due to the action of pancreatic chymotrypsin (Bodkin et al., 

1989; Bass et al,, 1990). This processing is an absolute requirement of the natural enteric 

infection, allowing the remaining intermediate subviral particle (ISVP) to bind to the M cell of 

overlying the Peyer�s patch (Amerongen et al., 1994). The ISVP can infect the M cell or be 

transcytosed without further processing to the sub-epithelial dome region of the PP (Wolf et al., 

1983), a region rich in dendritic cells.  

Natural reovirus T1L infection causes ileal disease.  
 

Per-oral infection of mice with reovirus T1L causes enteric disease primarily in the ileal 

crypts of Lieberkuln surrounding the PP, whose M cells serve as portals of egress from the 

intestinal lumen (Rubin et al,, 1985).  Reovirus infects and transiently decreases the number of 

M cells in the first 72 hours following per-oral application (Bass et al., 1988). Transcytosed virus 

infects dendritic cells and macrophages of the subepithelial dome, which subsequently prime a T 

helper cell and CTL response. Reovirus T1 and T3 have also been shown to bind the apical 

surface of IECs in vitro (Ambler and Mackay, 1991; Weiner et al,, 1988 ), and reovirus T1L has 

been observed to bind the apical surface of goblet cells interspersed among the IEC of the 

intestinal villi. Although the related genus of Reoviridae, the rotaviruses, do infect the intestinal 
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mucosal via the apical surface of mature enterocytes residing at the ends of the enteric villi 

(Starkey et al., 1986) this route has not been demonstrated for the reovirus. Although reovirus is 

able to enter cultured monolayers of Caco-2 intestinal epithelial cells via the �apical� surface, 

reovirus has only been observed to infect IEC in small intestinal epithelium fragments in vitro 

via the basolateral surface (Weiner et al., 1988).  Binding of reovirus T1L to epithelial fragments 

was observed to be 100-fold greater along the basolateral surface than the apical surface, 

possibly due to interference of binding by the IEC microvillus brush border, the glycoprotein 

glycocalyx and the goblet cell-secreted mucous coat overlying the absorptive epithelium. PP M 

cells have no brush border or glycocalyx coating, and are free of secreted mucous, possibly 

facilitating virus binding (Neutra et al., 1996), and electron micrographs have shown that 

reovirus ISVPs have tendency to exclusively bind M cells in vivo (Bass et al., 1988). Thus, 

access to the epithelium is thought to be most likely due initially to infection or penetration of PP 

M cells by reovirus, which then extends either directly through the lamina propria to the 

basolateral surface of the crypt enterocytes or by dissemination of reovirus via the local 

circulation either freely or in association with infected APC. However, given the huge surface 

area of the small intestinal epithelium, estimated in humans to be approximately 400m2 (Mowat 

and Viney, 1997), may allow for even exceptionally rare direct infection of enterocytes of the 

absorptive epithelium via the apical surface, thus bypassing the M cells, to be a significant 

pathway of infection in vivo. A recent report by Barton et al., (2001) that reovirus T1 and T3 can 

bind the junction adhesion molecules found in the tight junctions of a number of mammalian 

tissues, including the polarized epithelial cells of the intestine, lends support to the idea that 

reovirus may gain access to the absorptive epithelium directly, possibly through minor ruptures 
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in the tight junctions between epithelial cells. Nevertheless, the majority of reovirus virions are 

believed to cross the M cell of the FAE.  

Following transcytosis through the M cell into the sub-epithelial dome of the PP, the 

ISVP binds to and is internalized by host APC via receptor-mediated endocytosis (Wolf et al., 

1981). The �1 hemagglutinin tetramers in the 12 vertices of the icosahedral ISVP bind sialyated 

glycoproteins on the surface of host cells (Kauffman et al., 1983). The endosomes containing the 

endocytosed ISVPs then fuse with lysosomes (Schiff and Fields, 1990). Further chymotryptic 

degradation by lysosomal proteases is thought to expose lipophilic amino acid residues of the 

subviral core particle, which facilitate fusion of the core with the lysosomal membrane 

phospholipids and subsequent escape of the core into the cytoplasm, allowing for genome 

transcription and viral replication (Schiff and Fields, 1990).  

Reovirus is a cytopathic, lytic virus that ruptures the cell membrane of its host cell to 

allow dissemination of progeny virions, in addition to large amounts of non-infectious virus 

particle debris (Oberhaus et al., 1998). Infectious virions may escape the Peyer�s patch through 

the draining lymphatics or by direct extension into the lamina propria of the small intestinal 

absorptive epithelium from the follicle associated epithelium, sequentially infecting ileal crypt 

IEC (Rubin et al,, 1985) along their basolateral surfaces (Weiner et al., 1988) by binding to the 

epithelial growth factor receptor (Strong et al., 1993; Tang et al., 1993). Productive infection of 

immature crypt enterocytes by reovirus may be due to a requirement for factors available only in 

replicating host cells to support viral replication. 

Reovirus elicits innate immune responses.  
 

Reovirus type 1 and 3 infections of L929 murine fibroblasts in vitro have both been 

shown to induce an increase in IFN-α (type 1 interferon) production. The induction of IFN-α is 
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due to a cascade of events subsequent to the activation of cellular dsRNA-dependent protein 

kinase by the dsRNA product of transcription of viral mRNA from negative sense viral template 

RNA, and is inhibited by binding of particles of the σ3 structural protein to viral template RNA 

(Samuel, 1998). Type 1 interferons have been shown to play a protective role in murine infection 

with other cytopathic viruses such as vaccinia virus (Nagao et al., 1998), influenza A virus 

(Durbin et al., 2000), and vesicular stomatitis virus (van den Broek et al., 1995). The role of type 

1 interferons in vivo has not been determined for reovirus infection nor for rotavirus infection. 

While reovirus infected cells are susceptible to NK cell mediated lysis, the role of NK cells in 

responding to reovirus infection has also not been thoroughly evaluated in vivo (Fawaz et al., 

1999), although potent NK responses have been demonstrated during reovirus infections of 

athymic nude mice and CB.17 SCID mice (Taterka et al., 1995). 

Reovirus elicits adaptive immune responses.   
 

Reovirus-specific adaptive immunity has been extensively studied. Intraperitoneal or 

intragastric infection of immunocompetent mice with reovirus T1L induced Thy-1+ T cells that 

could mediate delayed type hypersensitivity (DTH) responses following injection of reovirus 

into the footpads of immune mice (Weiner et al., 1980; Letvin et al., 1981). Further, Thy-1+ T 

cells isolated from the spleens of immune mice could be induced to mediate anti-reovirus CTL 

effector function following re-stimulation in vitro with reovirus-pulsed APC. The generation of 

reovirus-specific CTL and DTH was dependent on professional APC, as mice depleted of 

professional APC by UV irradiation prior to infection had diminished ability to generate reovirus 

specific T cell immunity (Letvin et al., 1981).  
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The phenotype and function of reovirus-specific CTL.   
 

Reovirus-specific CTL have been shown to be H-2 (MHC class I) restricted (Ertl et al., 

1982).  Reovirus-specific CTL could be elicited in mice to viral epitopes in association a broad 

range of murine class I alleles (Parker and Sears, 1990). APC within the PP, such as dendritic 

cells or macrophages, prime the reovirus-specific CTL response following enteric reovirus 

infection (Letvin et al., 1981). It is unknown if dendritic cells or macrophages containing 

reovirus or even free virus particles gaining access to the mesenteric lymph node via the PP 

efferent lymphatics or lacteals draining the intestinal villi prime CTL in tissues other than the PP. 

However, replicating reovirus has been recovered from both the MLN and the spleen following 

enteric infection, suggesting that CTL could be primed outside the PP during enteric infection 

(Letvin et al., 1981). Reovirus-specific CTL can be derived from cultures of MLN, spleens, 

peripheral lymph nodes, and IEL in addition to PP following enteric infection, though it is 

uncertain whether these CTL were primed in situ or migrated to these lymphoid compartments 

after priming in the PP. Murine enteric reovirus T 1L infection resulted in precursor CTL (pCTL) 

frequencies by day 6 post-infection up to 100 times higher in the PP than the MLN, spleen, or 

PLN, as determined by LDA (London et al,, 1987).  A similar observation of graded pCTL 

frequencies was made in rat lymphoid tissues following enteric rhesus rotavirus infection. 

Nevertheless, the question of where the pCTL outside the PP were initially primed is still valid 

(Offit et al., 1991). It seems likely, however, that the majority of pCTL primed following enteric 

infection comes from the PP, with some extra-intestinal priming in the MLN and spleen.  

CTL primed in the PP of mice enterically infected with reovirus T1L have been shown to 

be conventional class I MHC-restricted CD8αβ+ TCRαβ+ cells expressing the effector / memory 

hyaluronate adhesion molecule Pgp-1 (CD44), Thy-1 (London et al., 1987), and the novel 



 

18 

 

germinal center T cell associated marker GCT (London et al., 1990). Reovirus-specific CTL 

have been isolated from the IEL compartment of enterically infected mice (London et al., 1989; 

Cuff et al., 1991; Chen et al., 1997), and as there exist unconventional CD8+ cells in the IEL, the 

origin of these cells and the site of their priming with reovirus are uncertain. Reovirus specific 

CTL derived from the PP were subsequently shown to be similar in phenotype to the reovirus-

specific CTL populating the small intestinal IEL compartment following enteric reovirus 

infection in mice (Cuff et al., 1991). Additionally, the frequency of virus-specific pCTL among 

CD8+ PP cells following enteric infection, was similar to that of CD8+ IEL, approximately 

200/106. Furthermore, adoptively transferred PP CTL populated the IEL compartment of SCID 

recipient mice, and persisted in situ for up to 4 weeks. Enteric reovirus T1L infection of C3H 

mice has been shown to induce reovirus-specific CTL in the IEL compartment predominantly 

bearing TCR Vβ12 or Vβ17, with minor responder populations expressing Vβ2, 7, 9, or 14 

(Chen et al., 1997). These CTL are possibly conventional thymus-derived CD8+ T cells 

originally primed by dendritic cells within the PP.  

The 3 serotypes of reovirus, T1, T2, and T3, were differentiated by antibody mediated 

blocking of viral hemagglutination. CTL responses to the three serotypes were initially shown to 

be completely serotype-restricted to unique epitopes derived from the product of the S1 gene, 

which encodes the viral cell attachment protein σ1 (hemagglutinin) (Finberg et al., 1979). 

Reovirus-specific CTL induced by parenteral infection were later demonstrated to be serotype 

non-restricted, or cross-reactive among all three serotypes, presumably by recognizing common 

epitopes in association with a wide spectrum of murine H-2 molecules (Parker and Sears, 1990). 

CTL recovered from the PP and intestinal epithelium following enteric infection were similarly 

shown to be cross-reactive against target cells infected with reovirus T1L or T3D (London et al., 



 

19 

 

1989b). Subsequently, clones of reovirus-specific CTL induced following per-oral infection were 

shown to be predominantly cross-reactive among the three serotypes, with very rare clones 

specific for T1 or T3 alone (Hogan and Cashdollar, 1991). Most recently, a second protein 

product from the bi-cistronic S1 gene (Munemitsu et al., 1986), the σ1 non-structural (σ1NS) 

protein (Sarkar et al., 1985), was identified as containing a cross reactive epitope for CTL 

generated from C3H mice infected with reovirus types 1 and 3 (Hoffman and Cashdollar, 1996). 

It is as yet unknown if all CTL epitopes are derived from the σ1NS protein. 

CD8+ CTL play a role in clearing reovirus infection, but are not necessarily a sine 
qua non of effective anti-reovirus immunity.  
 

The role of CD8+ CTL in the response to reovirus infection has been extensively studied. 

It has been established that CD8+ cells have an important role in the antiviral immune response, 

although they are not absolutely required to clear reovirus infection. β2m gene knock out (β2m 

KO) mice lacking conventional CD8+ T cells clear reovirus T1L infection within 10 to 14 days, 

kinetics that are comparable to wild type controls (Major and Cuff, 1997). β2m KO mice were 

similarly able to clear reovirus T3 infection within 7 days, the same time required for wild type 

controls (Barkon et al., 1996). Nude mice lacking CD4+ and CD8+ T cells are thought to be 

capable of controlling reovirus T1 infection following intraperitoneal injection, though at the day 

nine post-infection time point at which intestinal and lymphoid tissues were assessed for 

replicating reovirus it was merely demonstrated that the nude mice had comparable amounts of 

virus as euthymic controls, but had not yet cleared the virus (Letvin et al., 1981). Furthermore, 

euthymic mice depleted of APC by UV irradiation, and thus defective in the generation of virus-

specific CTL and T helper cell responses were able to clear reovirus infection as rapidly as non-

irradiated mice (Letvin et al., 1981). Thus, CD8+ cells, and possibly CD4+ cells are not required 

for normal clearance of reovirus infection of mice. B cells are apparently also not absolutely 
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required, as B cell deficient MuMT mice, which have a null mutation of the IgM transmembrane 

exon, clear reovirus infection with only a slight delay relative to wild type controls (Barkon et 

al., 1996). Nevertheless, SCID CB17 mice which have neither functional T nor B cells, and 

which mount a furious NK cell response to enteric reovirus T1L infection (Taterka et al., 1995), 

are unable to clear reovirus and die within six weeks post-infection of hepatic necrosis (George 

et al., 1990). Thus, while either cellular or humoral immunity are dispensable in clearance of 

reovirus infection, they are not both simultaneously dispensable. These observations are similar 

to those reported for rotaviruses (Franco and Greenberg, 1995; McNeal et al., 1997). 

Reovirus-specific lymphocytes protect against reovirus-induced pathology.  
 

The roles of T cells and B cells in the reovirus-specific immune response have been 

further assessed by the transfer of fractionated lymphocyte populations into reovirus-infected 

immunodeficient mice. As mentioned, SCID mice enterically infected with reovirus T1L or T3D 

cannot clear reovirus infection and die within 6 weeks (George et al., 1990). While replicating 

virus can be isolated from numerous organs, including the small intestinal crypts, the spleen, and 

the Purkinje cells, massive viral replication and necrosis occurs among liver hepatocytes. 

Transfer of 1.5×107 unfractionated PP cells from donor mice previously infected intraduodenally 

with the homologous serotype of reovirus into SCID recipient mice 2 days before challenge with 

reovirus could contain the infection within the small intestines of the SCID mice and completely 

clear the virus within the second week post-infection. Transferred PP cells from non-immune 

mice could also clear replicating virus within 2 weeks post-infection, although the reovirus 

infection could not be contained initially within the small intestine as it was by the immune PP 

cells. The protective effect of transferred PP cells was titratable, as 5×106 transferred immune 

cells mediated somewhat delayed protection, whereas 1×106 cells were not protective. 
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Reovirus-specific CTL help protect against visceral organ disease.  
 

It was subsequently observed that infection of visceral organs outside the intestines, such 

as the heart, was attenuated by transferred immune splenocytes to neonatal mice prior to 

infection (Virgin and Tyler, 1991). Neonatal mice transferred with immune splenocytes 2 days 

prior to infection with myocarditis -inducing reovirus strain T3/8B were protected from virus-

induced myocarditis, whereas recipients of cells from naïve donors were not protected from 

myocarditis, although both immune and naïve cells eventually completely cleared replicating 

reovirus (Sherry et al., 1993). Together, these results indicate that reovirus can cause severe 

pathology in immunodeficient mice, which can be contained by the lymphocytes of adaptive 

immunity. 

Conventional and unconventional CTL are induced in respiratory tract associated 
lymphoid tissue following infection of the respiratory tract with reovirus.  
 

Reovirus-specific CTL are induced during murine bronchopneumonia following 

intratracheal instillation of reovirus T1L (Thompson et al., 1996; Periwal and Cebra, 1999). 

CD8+ reovirus-specific pCTL can be recovered from the draining mediastinal and 

tracheobronchiolar lymph nodes, and induced to mediate virus specific cytotoxicity following in 

vitro re-stimulation. Additionally, a CD8+ T cell infiltrate of putative CTL can be recovered from 

the airspaces by bronchoalveolar lavage in the first week post-infection (Thompson et al., 1996). 

The most intriguing result of reovirus T1L bronchopneumonia is the generation of an unusual 

population of CD4+CD8+ double positive (DP) T cells in the draining mediastinal lymph nodes 

that are also capable of mediating reovirus-specific cytotoxicity following in vitro re-stimulation 

(Periwal and Cebra, 1999). While peripheral populations of mature DP T cells have been found 

in rats (Helgeland et al., 1999), mice (Das and Janeway, 1999), humans (Colombati et al., 1998), 

macaques (Currier et al., 1999), and pigs (Zuckermann and Gaskins, 1996), they usually express 
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the non-conventional CD8αα homodimeric phenotype, whereas DP cells elicited by reovirus 

bronchopneumonia express the conventional CD8αα heterodimer, and are thus of uncertain 

lineage. Together, these experiments indicate an important role for CD8+ T cell in the immune 

response to reovirus infection at a number of anatomic locations. Furthermore, as demonstrated 

by Periwal and Cebra (1999) following intratracheal instillation of reovirus, the anatomic site of 

reovirus infection can influence the generation of unique reovirus-specific CTL populations. It 

remains unknown what differences exist among CTL populations induced following enteric 

infection with reovirus as opposed to infection at peripheral non-mucosal locations. Research 

outlined in the following chapters will address this question. 

The T cell receptor; rearrangement, selection, and function 
 
Rearrangement of the TCR gene segments during T cell ontogeny; specificity 
through variability.  
 

T cells play an important role in adaptive immune responses, which are directed 

specifically against invading organisms and foreign antigen. Conventional T cells usually 

respond specifically to unique peptide sequences presented on the surface of host cells in 

association with class I or class II major histocompatibility complex (MHC)-encoded proteins. 

To limit the T cell response solely to peptide sequences unique to foreign antigens, and 

conversely to avoid responding to self-peptides, the T cell relies on the exquisite antigen 

specificity of its T cell receptor (TCR) (Kaye et al., 1992; Sandberg et al., 2000). The TCR is a 

heterodimeric molecule of an α and β chain (Samelson et al., 1985), the distal ends of which 

have variable protein structural conformations unique to any given naïve T cell and its progeny 

that confer upon the T cell its antigen specificity(Goyarts et al., 1998; Garcia et al., 1998). The α 

and β chain genes are composites of germ line DNA segments that undergo rearrangement 

during T cell ontogeny (Kronenberg et al., 1986). The β chain gene is a composite of a single Vβ 
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gene element, a diversity (Dβ) element, and a joining (Jβ) element. Post-transcriptional 

modification of nascent β chain mRNA involves the splicing of the rearranged VβDβJβ gene 

mRNA with the mRNA encoding a non-rearranged constant (Cβ) element, yielding a complete β 

chain mRNA with the order VβDβJβCβ(Kronenberg et al., 1986). The rearrangement of the β 

chain gene elements and post-transcriptional splicing are similar except that there are no α chain 

diversity (D) elements (Winoto et al., 1985; Kronenberg et al., 1986; Yague et al., 1988).  The α 

and β chains each contain 3 structurally variable regions, called complementarity-determining 

regions (CDR) responsible for the specific recognition of the cognate antigen in association with 

a specific self-MHC molecule, known as the restricting MHC molecule (Teng et al., 1998; 

Garcia et al., 1998). The CDR1 and CDR2 regions of the β chain (CDR1β and CDR2β) are 

encoded completely by the rearranged Vβ gene element. The CDR3β region is, by contrast, 

encoded by the site of joining of the rearranged Vβ gene element and the rearranged Jβ gene 

element. Similarly, the CDR1β and CDR2β are encoded by the rearranged Vβ gene element, 

with the CDR3β region encoded by the joining of the VβDβJβ elements, inclusive of the entire D 

element. The CDR1 and CDR2 β and β regions are responsible for recognizing and binding the 

restricting self-MHC allele, with the CDR3β and to a lesser extent the CDR3β regions 

responsible for recognizing the cognate antigenic peptide epitope (Garcia et al., 1998). Recently, 

the CDR1β region has been shown to play a minor supporting role in antigen recognition as well 

(Pannetier et al., 1991). That the CDR3β and CDR1β are derived in part or in whole from the 

selected Vβ gene element, and that these regions contribute to the majority of cognate antigen 

recognition (Pannetier et al., 1991), allows the use of monoclonal antibodies specific for distinct, 

invariant sequences within the amino acid chain encoded by a given Vβ element as phenotypic 
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markers of T cell populations utilizing that Vβ element in the β chain of their TCR (Faint et al., 

1999).  

Random rearrangement of β chain elements allow for the characterization of antigen-

driven proliferative expansion of T cells bearing identical β chain sequences by CDR3β length 

profile analysis.  

Rearrangement of β chain gene elements to give T cells bearing TCR of unique sequences and 

specificities has been exploited to allow identification of proliferative expansion by responder T 

cells of a known Vβ phenotype. The unique sequences of the CDR3β region are due to the messy 

process of rearrangement of the VβDβJβ elements. The β chain must be derived of elements that 

rearrange to give a gene that is in-frame for appropriate translation. Thus, in addition to the 

randomly cut and ligated portions of the stochastically selected Vβ, Dβ, and Jβ elements in a 

given T cell, random, non-templated bases are added during the rearrangement process that both 

facilitate ligation and provide an in-frame β chain of variable length, always varying by multiples 

of 3. The variable amino acid sequence of the CDR3β region grants a T cell and all of its 

progeny a unique antigen specificity. Proliferation of a given T cell will create numerous 

progeny bearing identical TCR, and thus identical CDR3β sequences and lengths. Thus, changes 

in the distribution of all CDR3β lengths for a responder Vβ subpopulations following exposure 

to cognate antigen allows for a more detailed assessment of the antigen-specific T cells. The 

�CDR3β length profile� is the distribution of PCR products of cDNA derived from the mRNA for 

TCR β chains. Primers specific for elements of the TCR flanking the CDR3β region are selected 

to look at the CDR3β length profiles of the Vβ populations of interest. The primers allow for the 

PCR amplification of the variable length CDR3β regions from a population of T cells, that in the 

unimmunized state, give a normal distribution of DNA fragments varying from each other by 
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multiples of 3 base pairs. Following exposure to cognate antigen, proliferative expansion of 

responder T cells generate large numbers of progeny T cells with identical TCR. Thus, the 

immunized T cell population will not show a normal distribution of CDR3β PCR fragment 

lengths, but will instead show a skewing of the distribution to reflect the expansion of T cells 

bearing an identical CDR3β length (Pannetier et al., 1993). This technique can be used like flow 

cytometric Vβ repertoire analysis to determine antigen-specific T cell subpopulations on the 

basis of CDR3β length profile �skewing� associated with antigen exposure, and provides a 

further insight into the clonalality of the T cell response, on the assumption that responder T cells 

bearing TCR utilizing the same Vβ element, but having different CDR3β sequences, and 

possibly lengths, will give distinct patterns of CDR3β length profile skewing.  

Germ-line polymorphism governs the potential of the TCR Vβ repertoire.  
 

As mentioned previously, the TCR β chain is responsible for the majority of the antigen 

recognition. As the Vβ element contains the entire CDR1β region and contributes to the CDR3β 

region that mediates TCR β chain antigen recognition, the selected Vβ element of any given 

TCR β chain determines much of a given T cell�s antigen specificity (Pannetier et al., 1993). 

Thus, the available Vβ repertoire utilized by peripheral T cells can influence the generation of an 

adaptive immune response to a foreign organism or antigen (Cao et al., 1996). Anything that 

alters the available T cell TCR Vβ repertoire can affect the magnitude or character of the T cell 

response. A number of factors can affect the Vβ repertoire available in the peripheral T cell pool. 

Germ-line Vβ gene elements present in one animal strain or individual may be deleted in 

another. For example, mice of the Vβa haplotype have a deletion of the Vβ5, 8, 9, 11, 12, and 13 

elements, all of which are retained in mice of the Vβb haplotype, radically altering the potential 

antigenic specificities of the T cell pool available to Vβa haplotype mice as compared to Vβb 
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haplotype animals (Osman et al., 1999). Additionally, mutations have led to polymorphisms 

within the germ-line Vβelements, changing the resultant amino acid sequences, which has been 

demonstrated to possibly influence thymic selection processes, and thus the peripheral T cell 

pool, as well as peripheral immune responses to cognate antigen (Osman et al., 1999).  Other 

mutations may render a Vβ element nullified, as in the nonsense mutation within the Vβ17 gene 

element in C3H mice (Wade et al., 1988).  

Intra-thymic post-rearrangement negative selection of the TCR repertoire 
congenital factors.  
 

Intra-thymic selection processes following successful rearrangement the TCR α and β 

chains bring new influences to bear on the immature DP T cell. The positive selection of DP T 

cells has been demonstrated to be dependent mostly on the selected Vβ element of the β chain 

(Wang et al., 1998), with preferential usage of some Vβ elements among T cells recognizing 

class I or class II molecules (Manning et al., 1999). There is, however, MHC selective pressure 

on some Vβ elements, as in the positive selection of TCR Vβ5+, Vβ8.2+, Vβ9+, Vβ12+, and 

Vβ14+ T cells in H-2b C57Bl/6 mice (Caccamo et al., 1999). In addition, thymic selection of T 

cells with TCR expressing distinct Vβ elements has been strongly associated with provirus- 

encoded endogenous superantigens. Endogenous retroviral superantigens, known as minor 

lymphocyte stimulating (Mls) antigens for the ability to induce allogenic mixed lymphocyte 

reactions among MHC haplo-identical mice, are derived from the protein products encoded by 

the long terminal repeats of murine mammary tumor viruses (MMTV)(Tomonari et al., 1992; 

Jarvis et al., 1994). There are 4 classic Mls antigens (Mls1-4) the expression of which by thymic 

epithelial cells result in the negative selection of DP T cells expressing certain Vβ elements, a 

phenomenon known as clonal deletion (Acha-Orbea and MacDonald, 1995). For example, H-2d 

mice expressing Mls1a have intra-thymic deletion of all DP T cells expressing Vβ6. Thus, no 
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Vβ6+ CD4+ or CD8+ cells are allowed to mature or be exported to the periphery. DBA/2 mice are 

devoid of Vβ3, 6, 7, and 17+ cells due to intra-thymic expression of an endogenous MMTV 

superantigen (Marodon and Rocha, 1994). There are up to 30 endogenous retroviruses of the 

MMTV type integrated into the murine genome, with any given strain expressing 3 to 8 viral 

proteins to varying degrees (Acha-Orbea and MacDonald, 1995). It is unknown what influence 

endogenous retroviral proteins may have on human thymic selection processes.  

Extra-thymic modification of the TCR repertoire of the mature peripheral T cell 
pool.  
 

There are also extra-thymic influences in the periphery that further shape the T cell 

repertoire of T cells surviving the thymic selection processes. Normal antigen specific responses 

induce the expansion, often quite dramatically, of antigen specific T cells in the periphery, and 

this is especially true for virus-specific CD8+ T cell populations (Mongkolsapaya et al., 1999). 

There are also mitogenic influences on the peripheral T cell repertoire mediated by bacterial 

(Sundstedt et al., 1998; Haut et al., 1999), parasitic (Denkers et al., 1994), and viral 

superantigenic proteins (Smith et al., 1993), which can have long-term effects on T cell 

immunity. For example, bacterial superantigens are thought to play a role in activating and 

causing the proliferative expansion of CD4+ and CD8+ T cells expressing Vβ8 in the bronchus 

associated lymphoid tissues of humans with poorly controlled chronic asthma (Haut et al., 1999).  

Positive and negative selection of mature peripheral T cells by superantigens.  
 

Superantigens influence the peripheral T cell repertoire by interacting with conserved 

sequences of select TCR Vβ elements and the β2 domain of MHC class II molecules, causing T 

cell activation and proliferation, and often though not always subsequent deletion or anergy of 

the responder T cells (Sundstedt et al., 1995). Protein homogenates of Toxoplasma gondii 

tachyzoites have been shown to cause an MHC class II dependent expansion of the Vβ5+ CD8+ 
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peripheral T cells in C57BL/6 mice (Denkers et al., 1994), an example of the ability of 

superantigens, which preferentially activate CD4+ cells in association with MHC class II 

molecules, to also activate CD8+ T cells by cross-linking their TCR Vβ element with otherwise 

non-restricting MHC class II molecules (Sundstedt et al., 1995; Sundstedt et al., 1998). 

Additionally, viral superantigen(s) of a transmissible B cell tropic MMTV passed in the milk of 

lactating Balb/J dams to their offspring are expressed on infected PP B cells, causing deletion 

throughout the peripheral lymphoid tissues of Vβ6+ T cells CD4+ and CD8+ (Tucek et al., 1993). 

Thus, genetic background, intra-thymic selection events, and post-thymic proliferation and 

deletion events serve to shape the peripheral T cell repertoire.  

It seems certain that in shaping the possible responder T cell pool, factors such as intra-

thymic and extra-thymic selection and deletion of the available T cell pool may influence 

antigen-specific immune responses. Other influences, such as the microenvironment of the 

anatomic site of infection, the infecting agent, and the antigen presenting cell population, also 

shape the immune response. Nowhere is this more evident than the distinct features of immunity 

following immune priming at a mucosal location as compared to priming at a non-mucosal site. 

The CTL response to virus infection 
 
General characteristics of viral infection and the innate host immune response.  
 

Virus infections elicit varied immune responses dependent upon the infecting virus, the 

host tissue, the immune capability of the host, and other factors. Nevertheless, there are 

stereotypical features of the immune response. A typical virus infects a host tissue, initially 

adhering to the cell membrane by a specific viral ligand-binding event called adsorption (Perez 

and Carrasco, 1994). Internalization of the virus occurs by direct membrane fusion in the case of 

enveloped virus such as influenza A and B (Roth et al., 1986), and Sendai virus (Sechoy et al., 
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1989) or by receptor mediated endocytosis for non-enveloped viruses, such as poliovirus or 

reovirus (Perez and Carrasco, 1994). Depending on the viral products produced in the cytosol, 

and especially in response to dsRNA intermediaries produced by some viruses such as reovirus, 

innate cellular defensive measures, such as production of type 1 interferon α and β, attempt to 

forestall viral reproduction by shutting down ribosomal translation and inducing enzymatic 

cleavage of all cytosolic mRNA (Samuel, 1998). Viral hijacking of cellular translational 

machinery results in decreased cell surface MHC class I molecule expression, rendering infected 

cells susceptible to killing by natural killer (NK) cells, which are otherwise inhibited by cell-

surface expression of normal levels of MHC class I (Huard and Fruh, 2000). NK cells probably 

play an important role in suppressing the spread of the virus until virus-specific lymphocytes can 

be activated to clear the infection. NK cell activity is increased by local type 1 interferon, which 

induces NK cells to produce the anti-viral Type 2 interferon, interferon-γ (IFN-γ) (Biron, 1999) 

which enhances CTL responses, increases MHC class II expression, and recruits circulating 

lymphocytes to sites of active inflammation (Parr and Parr, 2000). Type 1 interferons produced 

by infected cells induces an increase in the expression of MHC class I molecules on surrounding 

cells, which increases the presentation of viral antigen in infected cells to newly generated virus-

specific CD8+ CTL of the adaptive immune response while simultaneously protecting non-

infected cells from indiscriminate lysis by activated NK cells (Biron, 1999). 

CTL and NK cells utilize similar mechanisms to mediate cellular cytotoxicity.  
 

NK cells and CTL lyse infected target cells by perforin and granzyme mediated 

cytotoxicity (Shi et al., 1997; Trapani et al., 1999). Granzymes are serine esterases that 

proteolytically cleave and activate members of the interleukin 1β converting enzyme (ICE)/ ced-

3 �cell death proteases� inducing an intracellular signaling cascade resulting in apoptosis (Shi et 
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al., 1997). Perforin is another granule-associated protein whose monomers self-associated into a 

membrane pore-forming complex that allows granzyme access into the target cell cytosol (Shi et 

al., 1997; Trapani et al., 1999). The granules of cytotoxic immune cells also contain the anti-

bacterial protein granulysin, which is believed to play a role against intracellular bacteria such as 

mycobacteria (Stenger et al., 1998). NK cells and CTL also produce IFN-γ(Gregg and Bernstein, 

1997), which activates the antigen presenting cell (APC) functions of local tissue macrophages, 

and induces them to produce a battery of pro-inflammatory cytokines such as IL-12, IL-1, TNF-

α, and IL-6 (Creery et al., 1996).  

Innate immunity to viral infection both presages and precipitates adaptive T cell 
immunity. 
 

In the first few days of a virus infection, before the generation of a virus-specific CTL 

response, NK cells, activated by type 1 interferon produced by infected cells, subsequently 

produce IFN-γ, inducing macrophage local tissue macrophage activation and cytokine 

production in paracrine fashion (Biron, 1999). Macrophage TNF-α and especially IL-12, 

reciprocally activate the NK cells, inducing further IFN-γ production and thereby creating a 

positive feedback cycle of inflammatory mediators (Carson et al., 1999). Inflammatory 

cytokines, and possibly debris of damaged, infected cells induces immature resident dendritic 

cells to begin maturation and migration via the tissue lymphatic vessels into the afferent 

lymphatics of local draining lymph nodes (Moodycliffe et al., 2000). Dendritic cells, the premier 

APC of the immune system, are highly endocytic cells of hematopoeitic origin that avidly 

accumulate protein antigens from their local tissue microenvironment, during their immature 

phase (Moodycliffe et al., 2000). Maturation of dendritic cells, mediated by elevated local 

inflammatory cytokine levels, causes the cessation of antigen uptake, and the commencement of 

antigen processing within endolysosomal vesicles, followed by presentation of antigenic peptides 
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in association with cell surface MHC class II molecules coincident with migration to local 

lymphoid tissue (Moodycliffe et al., 2000). Dendritic cells are also readily infected by viruses, 

and endogenous viral antigens are enzymatically processed in the cytosol for presentation in 

association with MHC class I molecules (Muller et al., 2000). Dendritic cells arrive at the 

draining lymph node and encounter naïve T cells in the paracortex (Moodycliffe et al., 2000). 

Interdigitating dendritic cells are also located within the node from the region of the paracortex 

to the medulla in the T cell zones surrounding the B cell follicles, and also serve to present 

peptides processed from antigens that have either flowed freely in the afferent lymphatic vessel 

to the node, or that is donated on membrane vesicles pinched off from immigrant dendritic cells 

from the inflamed tissues (Russo et al., 2000).  

Dendritic cells are the premier antigen presenting cells in priming a CTL response.  
 

Dendritic cells are unique among APC in having the ability to stimulate naïve CD4+ and 

CD8+ T cells (Banchereau et al., 2000).  T cells recognize fragments of peptide antigens, known 

as epitopes, expressed on APC cell surfaces in association with the specialized cell surface 

antigen presentation complexes; HLA in humans and H-2 antigens in mice (Lambrecht et al., 

2000). A peptide fragment expressed on an MHC molecule is called an epitope. When an epitope 

is specifically recognized by a T cell, and induces a T cell response, it is called a �cognate 

epitope�.  

Generation and presentation of viral peptide epitopes.  
 

Peptide antigen derived from exogenous sources (those that are phagocytosed from 

outside the dendritic cell) are processed in endolysosomal vesicles wherein protein antigen is 

fragmented by acid dependent proteases (cathepsins), and fragments 18-22 amino acids long can 

become associated with MHC class II molecules within the endosome, and subsequently shuttled 
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to the cell membrane for presentation to the T cell receptor (TCR) of CD4+ helper T cells 

(Chapman et al., 1998). Self or viral peptide antigen derived from the cytosol is enzymatically 

cleaved by the large multicatalytic proteosome (LMP), and peptide fragments are then 

transported into the lumen of the endoplasmic reticulum (ER) by the transporter associated with 

antigen presentation (TAP 1 and 2) heterodimer (Hammond et al., 1993). Within the ER, 

antigenic peptides are trimmed by aminopeptidases to fragments of roughly 8-12 amino acids, 

and are bound within the binding cleft of MHC class I molecules, which are themselves 

associated with β2 microglobulin (York et al., 1999). The resultant heterotrimeric complex is 

then transported to the cell surface by way of the golgi apparatus (York et al., 1999). Dendritic 

cells are also capable of presenting exogenous, phagocytosed antigen in the context of MHC 

class I molecules, a phenomenon known as cross-presentation, thus allowing the priming of 

CD8+ cells to antigens that would under conventional circumstances be presented to CD4+ cells 

(Castellino et al., 2000; Hamano et al., 2000). 

Ligation of co-stimulatory molecules on APC by responder T cell receptors 
potentiates, augments, and maintains T cell responses.  
 

Virus-specific CD4+ and CD8+ T cells interacting with cognate MHC-peptide via their 

TCR are initially induced to proliferate. Priming of naïve CD4+ and CD8+ T cells is thought of in 

terms of the two-signal model. Upon TCR ligation, a signal is transduced by the TCR-associated 

CD3 complex, providing the first and most important signal toward activation. In the absence of 

a second, co-stimulatory signal, the T cell is generally rendered anergic, or refractory to further 

stimulation, and thus unable to respond to cognate antigen (Swartz, 1997). Mature dendritic 

cells, like activated macrophages and B cells, provide the required costimulatory signal via cell 

surface expression of B7.1 and B7.2, which are the ligands of the T cell surface molecule CD28 

(Andreasen et al., 2000). Ligation of CD28 by dendritic cell B7 enhances the TCR mediated 
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signal to fully activate the naïve T cell (Vieira et al., 2000). While the mature dendritic cell 

constitutively expresses surface B7, interaction of the APC surface receptor CD40 with the T cell 

surface CD40 ligand (CD40L) found predominately on the surface of CD4+ T cells, greatly 

increases the APC expression of B7 (Andreasen et al., 2000), as well as the secretion of T cell 

stimulatory cytokine IL-12 (Snijders et al., 1998). Because of the enhancement of APC co-

stimulatory activity following CD40 ligation by CD4+ T cell CD40L, it is believed that most 

CD8+ T cell responses require that CD4+ cells first interact with the dendritic cell to fully 

condition APC co-stimulatory activity  (Lefrancois et al., 1999; Andreasen et al., 2000). 

However, CD4+ cells are not absolutely required to generate CTL responses in some massive 

systemic virus infections, such as infection with LCMV, or to induce CTL responses to non-

replicating peptide antigen in transgenic mice with CD8+ T cells expressing invariant TCR 

(Lefrancois et al., 1999). It is believed that the presence of inflammatory cytokines causes 

dendritic cells to acquire sufficient co-stimulatory ability to prime a CTL response without the 

need of prior CD40L-CD40 interaction (Kim et al., 1998; Andreasen et al., 2000), although there 

is evidence that CD40L expressed on CD8+ cells also interacts with CD40 on dendritic cells to 

upregulated B7 expression (Andreasen et al., 2000).  The requirement of co-stimulation to fully 

activate a naïve CD8+ T cell is, however, variable, depending on the strength of the TCR-

MHC/peptide complex interaction (Andreasen et al., 2000), the number of cognate MHC-peptide 

complexes on the surface of the APC (Wherry et al., 1999), the local cytokine milieu (Kim et al., 

1998), and the prior antigen experience of the T cell (naïve vs. memory). One of the effects of 

CD28-B7 interaction is to augment the production of IL-2, the premier T cell proliferation and 

activation cytokine. This augmentation is mediated by the stabilization of IL-2 mRNA in CD4+ T 

cells, which are the major IL-2 producing cells, and to a lesser extent in CD8+ cells (McAdam et 
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al., 1998). Evidence also exists for other co-stimulatory molecules on the surface of the APC, 

possibly related to B7.1 and B7.2, but their role in T cell responses, if any, are as yet not known 

(Swallow et al., 1999).  

CD8+ T cells are induced to proliferate, emigrate and differentiate after TCR 
ligation of cognate antigen and restricting MHC molecules.  
 

Responder T cells initially proliferate, creating progeny cells bearing identical TCR, and 

thus having identical antigen specificity. Murine CD8+ T cells can proliferate at a maximal rate 

of 3 times per day in response to LCMV infection (Zimmerman et al., 1999), although the rate 

for other T cell responses likely varies as a function of the conditions that also influence the 

magnitude of the response (Bousso et al., 1999). Proliferating antigen specific CD8+ T cells may 

remain in the lymph node, or may emigrate from the lymph node via the efferent lymphatic 

vessels to continue proliferating and differentiating in the periarterilolar sheath of the splenic 

white pulp (Tarazona et al., 1996). It is not certain if the proliferation of recently activated CD8+ 

T cells emigrating to the spleen requires continued stimulation in situ by APC presenting cognate 

antigen or is an intrinsic ability of these cells, but proliferation in the spleen believed to 

dramatically enhance the overall number of progeny antigen-specific T cells as much as 50-fold 

in some models, and possible much more in some systemic virus infections (Vasseur et al., 

1999). Whether in the spleen or lymph node, the CD8+ T cells eventually shift from a naïve 

phenotype, such as CD62+ (L-selectin+), CD28+ CD45RA+ (Doyle et al., 1999), to an effector 

phenotype of CD62lo CTLA4+ CD44+ CD45RA/RO+, CD25+ CD69+ LFA-1+ VLA-4+ CD56+ 

(Doyle et al., 1999).  These phenotypic changes coincide with the acquired ability of the CD8+ T 

cell to migrate to inflamed peripheral tissue via the venous circulation, and to adhere via the 

LFA-1 (αxβ2) and VLA-4 (α4β1) integrins to ICAM-1 and VCAM-1 expressed on the surface of 

endothelial cells of post-capillary venules in inflamed peripheral tissue (Parr and Parr, 2000), to 
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cross the endothelial barrier to the extravascular compartment, there to mediate effector 

functions such as cytotoxicity and IFN-γ and TNF-α production (Cerwenka et al., 1999; Trapani 

et al., 1999). Tissue-specific heterodimeric integrin molecules are expressed on antigen-

experienced effector and memory cells dependent on the lymphoid tissue in which the naïve T 

cell precursor first encountered its cognate antigen, and governing the tissue to which the antigen 

experienced cell will most likely migrate (MacKay et al., 1996; Tarazona et al., 1996). Thus, the 

progeny of naïve CD8+ T cells encountering their cognate antigen on the MHC class I molecules 

of dendritic cells in lymph nodes draining the skin will express α4β1 (MacKay et al., 1996) and 

the cutaneous lymphocyte antigen (Santamaria et al., 1995), which are specific for the skin 

epithelia, as well as the LFA-1 and VLA integrins, which are specific for ligands such as 

VCAM-1 expressed on inflamed epithelial cells, allowing extravasation into inflamed tissues. By 

contrast, the progeny of naïve CD8+ T cells encountering cognate viral peptide in the mesenteric 

lymph nodes, Peyer�s patches, or other mucosa-associated lymphoid tissue (MALT) will express 

α4β7, (MacKay et al., 1996) an integrin specific for the mucosal addressin cell adhesion molecule 

(MadCAM-1) (Lefrancois et al., 1999). MadCAM-1 is constitutively expressed on the 

endothelial cells of post-capillary venules of mucosal tissues, as well as specialized high-

endothelial venules of the MALT (Berlin et al., 1993).  Mucosally primed CD8+ cells may also 

express αEβ7, an integrin specific for E-cadherin expressed in the epithelial cells of mucosal 

tissue (Lefrancois et al., 1999). The acquired effector phenotype also coincides with effector 

function, which in the case of CD8+ cells is perforin/granzyme or FasL mediated cytotoxicity 

and the production of IFN-γ, and TNF-α, or rarely IL-4 (Harty et al., 2000).  
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Kinetics of the CTL response are similar for several viral infections; prima facie 
and heuristic evidence that proliferative characteristics of anti-viral CTL responses 
are conserved.  
 

Maximal numbers of virus-specific CD8+ T cells are usually reached within the first or 

second week post-infection (Doherty et al., 1997). Murine intraperitoneal infection with 

lymphocytic choriomeningitis virus (LCMV), Pichinde virus, vesicular stomatitis virus, vaccinia 

virus, and murine cytomegalovirus (MCMV) elicited maximal virus-specific CTL frequencies by 

days 7-8 post-infection as determined by limiting dilution analysis (LDA) (Selin et al., 1996). 

Oral infection of immunocompetent mice with reovirus and murine rotavirus was usually cleared 

no later than day 10 post-infection (Barkon et al., 1996), which would occur after the maximal 

CTL response. Similar rates of maximal CTL response generation also occur for influenza 

infection (Jameson et al., 1998) and vesicular stomatitis virus infection of humans (Sharp et al., 

1992), although Epstein Barr virus infection of human patients induces maximal CTL responses 

usually 2 weeks after presentation of patients with acute infectious mononucleosis (Lynne et al., 

1998), and the peak of the cell mediated response in measles infection is coincident with the 

development of the characteristic rash 2 to 3 weeks after infection (Mongkolsapaya et al., 1999). 

Despite some variability in the timing of virus-specific CTL responses, conserved features are a 

rapid increase in the frequency of virus-specific cells that is in the main positively correlated 

with the degree to which the virus replicates in the host tissue, the subsequent death of the 

majority of the progeny CTL following resolution of the infection (Lynne et al., 1998), and the 

maintenance of memory CTL (mCTL) which are antigen-experienced and have a lowered 

threshold of required stimulation and co-stimulation for reactivation despite being otherwise 

quiescent with regard to proliferation or effector function in the absence of antigen (Lynne et al., 

1998). 
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Quantification by LDA of CTL response magnitude, and cotemporaneous 
generation of the �bystander� phenomenon.  
 

Proliferative responses of virus-specific CTL following infection have classically been 

quantified directly by LDA or indirectly by determining the effector to target ratio required for 

measurable virus-specific killing of infected target cells by 51Cr release assay (Doherty et al., 

1997). The number of cells determined to be antigen-specific by these assays is dependent on the 

number of virus-specific cells that are capable of proliferating in vitro and the number of 

resulting progeny cells that can assume CTL effector function. By LDA, the frequency of virus-

specific cells was determined to increase often a thousand-fold following a primary virus 

infection (Doherty et al., 1997), and this expanded CTL population was found to decrease by less 

than a factor of ten following the resolution of the virus infection (Selin et al., 1996). For 

example, LDA of splenocytes from LCMV and VV infected mice showed a frequency of virus-

specific CTL at day 8 post-infection of approximately 1 in 30 and 1 in 70, respectively, 

decreasing to approximately 1 in 200 to 1 in 500 within one month and there remaining constant 

up to one year post-infection   (Selin et al., 1996). However, the number of proliferating CD8+ 

cells recoverable during a virus infection is usually far in excess of the number of virus-specific 

CTL that can be accounted for by LDA (Doherty et al., 1997). This led to speculation that the 

unaccountable proliferation was due to the proliferative expansion of CD8+ cells of various other 

specificities, non-specifically activated in the environment of a massive ongoing immune 

response to the infecting virus. This could occur due to cross-reactivity of some CD8+ cells with 

non-cognate virus antigen that �looks� structurally similar to cognate antigen to the TCR of 

cross-reactive T cells  or due to cytokine (especially IL-2) driven antigen-independent 

proliferation of mCTL due to their decreased activation threshold (Hou et al., 1994). These non-

specific responses were termed �bystander� responses, and were believed to underlie the 
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observation that the onset of a number of autoimmune conditions was apparently linked to prior 

viral infection (Horwitz and Sarvetnick, 1999). It was eventually demonstrated using naïve or 

antigen -experienced transgenic CD8+ T cells bearing invariant TCR specific for a known 

LCMV antigen, adoptively transferred into vaccinia virus-infected or Listeria monocytogenes-

infected non-transgenic recipients, that bystander responses did occur, in this case inducing anti-

LCMV CTL effector function by the transgenic T cells (Ehl et al., 1997). However, the induced 

bystander CTL responses were very weak. Thus, the cause of the massive �bystander� response 

seen following LCMV infection, and other virus-induced CD8+ responses, had to be reevaluated. 

Reevaluation of quantification by LDA of CTL response magnitude, and 
cotemporaneous reassessment of the �bystander� phenomenon.  
 

Virus infections can cause a massive expansion of CD8+ T cells. Infection of C57BL/6 

with LCMV has been shown to cause a proliferative expansion of Vβ8.1+ CD8+ T cell population 

from 3% to 16% of splenic CD8+ cells, and to increase the overall number of CD8+ cells in the 

spleen from about 20% of total splenic mononuclear cells to more than 35% (Lin and Welsh, 

1998). Intranasal infection of C57BL/6 mice with influenza A results by day 5 post-infection in a 

5-fold increase in the percentage of mediastinal lymph node CD8+ cells in the S and G2/M stage 

of the cell cycle as compared to cells from non-infected controls Tripp et al., 1995). 

Furthermore, up to 20% of splenic CD8+ cells are found to be proliferating in the spleens of 

influenza infected mice by day 5. LDA analysis of splenocytes from influenza infected mice 

revealed an unexpectedly low  frequency of just 1 virus- specific pCTL per 600 CD8+ cells at the 

time of the maximal CTL response, and preceding the clearance of replicating virus by 2 days 

(Tripp et al., 1995). Influenza infection caused a skewing of the Vβ repertoire of infected mice in 

favor of Vβ8+ CD8+ cells, and virus-specific CTL were shown to express predominantly Vβ8.3 



 

39 

 

and to a lesser extent Vβ8.1 (Doherty et al., 1997), but the increase in Vβ8+ CD8+ cells was 

paradoxically not in agreement with the results of the LDA.  

Symptomatic human infection with EBV, �acute infectious mononucleosis�, is a 

lymphocytosis in which the absolute number of circulating CD8+ cells increases 4 to eight times 

over that of healthy controls (Lynne et al., 1998). These cells show an activated phenotype with 

expression of HLA-DR, an MHC class II molecule expressed on activated human T cells, and 

the low molecular weight isoform of CD45 (CD45RO) expressed by antigen-experienced T cells 

(Silins et al., 1998). The expansion of CD8+ cells is limited to one or a few Vβ subpopulations as 

determined by flow cytometric staining for Vβ repertoire (Silins et al., 1998). LDA for pCTL 

specific for EBV lytic cycle proteins give an estimate of virus specific CTL among total CD8+ 

cells among peripheral blood mononuclear cells (PBMC) of only 1/100 to 1/500 (Benninger-

Doring et al., 1999). This pattern of massive virus-driven expansion of CD8+ cells in infected 

hosts far in excess of the number of virus-specific pCTL detectable by LDA, yet still 

demonstrating TCR Vβ repertoire skewing in favor of Vβ phenotypes utilized by virus-specific 

CTL has also been seen in macaques infected with simian immunodeficiency virus (SIV) 

(Wilson et al., 1998), and in humans infected with HIV (Cabonari et al., 1999) and measles 

(Mongkolsapaya et al., 1999). By way of example, in a human measles infection, peripheral 

blood CD8+ TCR Vβ+ populations of acutely infected hosts expand up from 3 to 10-fold over 

healthy controls (Mongkolsapaya et al., 1999). While peripheral blood CD8+ cells from infected 

subjects can be induced to mediate virus-specific cytotoxicity by 51Cr release assay, depletion of 

the CD8+ cells expressing the expanded TCR Vβ phenotype by magnetic sorting abrogates the 

ability of the CD8+ cells to kill virus-infected targets, suggesting that expanded CD8+ TCR Vβ 

subpopulations are virus-specific (Mongkolsapaya et al., 1999). Furthermore, cloning of PCR 
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amplified cDNA generated from reverse transcription of TCR beta chain mRNA indicated that 

the expanded Vβ subpopulations were dominated by a handful of clones in infected patients, 

with some clones accounting for more than 60% of all cells from an expanded Vβ subpopulation 

(Mongkolsapaya et al., 1999). This was more evidence to indicate that the massive expansion of 

CD8+ T cells following infection was mainly virus-specific, as a true bystander response would 

be expected to cause a broadly polyclonal, stochastic expansion. 

Quantification of CTL response magnitude by IFN-γ�  ELISPOT, intracellular 
cytokine staining, and MHC class I/peptide tetramers staining.  
 

The discordance between the quantity of virus-specific CTL as determined by LDA and 

the observed dramatic increases of activated CD8+ T cells following virus infection was finally 

put to rest by assays looking at other CTL effector functions that, unlike the LDA, were not 

dependent on proliferation or cytotoxicity. Two new techniques, the determination of virus-

specific cells by intracellular IFN-γ (or TNF-α) production by flow cytometry, and the 

determination of IFN-γ secretion by ELISPOT analysis, allowed more accurate quantitation of 

virus-specific effector T cells. Another flow cytometry technique, which relied on knowledge of 

the cognate viral epitopes and the restricting MHC class I alleles of the responder CTL, was the 

peptide-MHC class I tetramer staining. For viruses the epitopes of which were already mapped, 

such as LCMV, the number of virus-specific CTL determined by IFN-γ staining or ELISPOT 

was found to closely approximate tetramer-positive CD8+ cells, and to be more than 10-fold 

greater than the number of virus-specific cells determined by LDA, thus accounting for almost 

all the �bystander� response (Murali-Krishna et al., 1998). By intracellular IFN-γ staining of 

CD8+ splenocytes in mice infected with LCMV, Butz and Bevan (1998) showed that virtually all 

the activated CD8+ cells, which can account for more than 50% of all CD8+ cells in the spleen, 

were LCMV-specific. Similar results were obtained by IFN-γ specific ELISPOT analysis of 
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CD8+ splenocytes from LCMV-infected mice. H-2kd tetramers complexed with the known 

immunodominant LCMV epitopes showed almost all the activated CD8+ cells from LCMV 

infected Balb/c mice were specific to a single peptide epitope (van der Most et al., 1998), 

whereas in C57BL/6 mice, the majority of activated CD8+ T cells could be accounted for by 

tetramers using a panel of 4 epitopes (van der Most et al., 1998). Class I tetramers complexed 

with epitopes from the gag and pol proteins of HIV have also shown CD8+ T cell expansions in 

the peripheral blood of infected humans are virus-specific (Gary et al., 1999), and similar results 

have been found in SIV infected macaques (Donahoe et al., 2000), Tetramer staining or 

assessment of IFN-γ production have given revised frequencies of virus-specific CTL ranging 

from 20 to 500 times greater than those previously determined by LDA (Murali-Krishna et al., 

1998). While tetramer staining and the quantification of IFN-γ producing CD8+ cells have been 

considered essentially equivalent in detection efficacy, there are some differences regarding 

application. Tetramer staining is only feasible when the restricting H-2 or MHC molecule and 

also the cognate epitopes are known. 

Advantages of MHC tetramer staining.  
 

If the cognate epitopes are known, tetramer staining allows quantitation of the magnitude 

of the CTL response to each epitope of an infectious agent. Tetramer staining also allows 

concomitant assessment of cell surface phenotypic markers such as the CD45 isoforms, surface 

integrins, and activation markers of memory, effector, and naive T cells, and does not rely on the 

ability of the CD8+ cell to mediate effector function. Vβ repertoire can also be assessed, as 

apparently there is no steric hindrance between mAb reacting to conserved structures of the Vβ 

chain and the tetramers/epitope complex (Busch and Pamer, 1998). Intracellular IFN-γ staining 

also allows assessment of surface phenotypic markers such as the Vβ repertoire of virus-specific 
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cells. This method is dependent on the ability of the cells to mediate an effector function - IFN-γ 

production- although not cytotoxicity or proliferation. This method also has the advantage of not 

requiring knowledge of the cognate epitope or the restricting H-2 or HLA allele.  

Advantages of intracellular interferon-γ staining.  
 

Without some degree of prior cell sorting, IFN-γ ELISPOT analysis does not allow 

correlation of effector cell number with cell phenotype, as CD4+ cells and NK cells also may 

produce IFN-γ in response to virus, but like intracellular IFN-γ staining, ELISPOT analysis does 

not require knowledge of the cognate epitopes and restricting H-2/HLA alleles. ELISPOT 

analysis has also been shown to be far more sensitive than the flow cytometric techniques in 

detecting extremely small numbers of effectors (<1:1000) (Murali-Krishna et al., 1998). 

Although this is hardly a problem for most acute virus infections, it may have application in 

quantifying long-term antiviral memory.  

Decline of the CTL response with resolution of infection, maintenance of memory 
and �rapid effectors�.  
 

The vast majority of the virus specific CTL generated in the acute response is 

predisposed to die by apoptosis (Selin et al., 1996). Following infection in C57BL/6 mice, the 

frequency of LCMV, Pichinde virus, vaccinia virus, and MCMV virus-specific pCTL was found 

by LDA to decline 4 to 10 fold within 1 month following infection, and to decrease steadily, 

though less rapidly, over the next several months (Selin et al., 1996). Similar kinetics were 

observed by LDA for the decrease of splenic virus-specific pCTL from mice infected with 

Sendai virus, Influenza A, and respiratory syncytial virus (RSV) (Doherty et al., 1997). In 

humans, the TCR Vβ perturbations of peripheral blood CD8+ T cell population corrected to 

�baseline� (not significantly different from the Vβ repertoire of healthy controls) within 6 

months for EBV acute infectious mononucleosis (Silins et al., 1998) and within 4 months for 



 

43 

 

measles (Mongkolsapaya et al., 1999). Thus, without persistence of replicating virus, the 

frequency of virus-specific cells dramatically decreases. It was believed that as activated effector 

cells die (Ishigami et al., 1998) or become quiescent memory cells (Opferman et al., 1999), that 

the frequency of remaining virus specific cells would approach the frequency detectable by 

LDA, especially over a period of months or years post-infection. Thus, tetramer staining or 

intracellular IFN-γ staining, both of which rely on flow cytometry, would lack the sensitivity to 

detect virus-specific cells without first a period of reactivation and proliferation. In human 

subjects having recovered from influenza A infection several months previously, CD8+ cells in 

the peripheral blood were found to be able to produce IFN-γ within 6 hours of exposure to 

influenza infected syngenic APC by ELISPOT (Lalvani et al., 1997). The frequency of IFN-γ 

producing CD8+ cells was found to be 7 to 10 fold greater than that detectable by LDA, although 

still too few to effectively enumerate by intracellular IFN-γ staining or tetramer staining. These 

findings imply that following the apoptotic contraction of virus-specific CTL numbers after 

resolution of acute infection, a population of virus-specific CD8+ memory cells that can rapidly 

mediate effector function (IFN-γ production) persist at a frequency several times greater than the 

pCTL detectable by LDA, which of course means these cells lack the ability to proliferate 

(Alexander-Miller et al., 1996), or mediate cytotoxicity, or both. That virus-specific cells that 

cannot proliferate or kill virus-infected targets, yet can produce cytokines, do exist in large 

numbers must account for the great majority of the CD8+ T cell expansion seen following acute 

virus infection (Lalvani et al., 1997). That this condition persists following the post-resolution 

apoptotic contraction phase raises the question as to whether some effector cells that lack 

proliferative and/or cytotoxic potential escape from apoptosis?  
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Loss of CTL with continuous antigenic stimulation can be limited by anti-apoptotic 
and T cell-tropic cytokines.  
 

CD8+ cells can be induced to proliferate, and even to mediate effector function (IFN-γ 

production) before acquiring a proliferation-incompetent anergic state, yet such cells may persist 

in vivo for extended periods (Dubois et al., 1998). Adoptive transfer of transgenic CD8+ cells 

with a Vβ5+ TCR into congenic recipient mice expressing a provirus encoded cognate antigen 

resulted in rapid activation and proliferation of the transferred cells  (Dubois et al., 1998). 

Progeny transgenic cells had an effector phenotype, but rapidly became proliferation 

incompetent even in the presence of IL-2, yet they were able to produce IFN-γ on cross-linking 

of CD3 complexes by anti-CD3α monoclonal antibodies. These cells persisted in vivo with a t1/2 

of 5 days, although this was in the continued presence of the cognate antigen that induced their 

inactivation. Such models of �high dose tolerance� with respect to CD8+ T cell effector function 

using TCR transgenic CD8+ cells provide useful tools for understanding stereotypical aspects of 

CTL responses also seen in virus infections. For instance, activated, proliferation-incompetent 

CTL were shown to have decreased expression of Bcl-2, an apoptosis-inhibiting factor the down-

regulation of which is seen in anti-viral CTL at the resolution of a viral infection (Grayson et al., 

2000). Cytokines such as IL-2, IL-4, IL-7, and IL-15 bind to receptors that share common 

transmembrane signal transducing γ chains. These cytokines act in paracrine fashion to increase 

Bcl-2 levels in activated T cells, thus preventing apoptosis. Type 1 interferon also has a role in 

preserving effector cells from apoptosis by a mechanism independent of Bcl-2 (Mitchell et al., 

1999). In the absence of anti-apoptotic factors, especially the CD4+ T helper cell cytokine IL-2, 

most CD8+ effector cells are fated to die (Grayson et al., 2000). This is best exemplified in 

LCMV infection of CD4 gene �knock out� (CD4KO) (von Herrath et al., 1996) or IL-2KO mice 

(Bachmannl et al., 1995). C57BL/6 mice infected with LCMV mount rapid and protective CTL 
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responses to the epitopes GP33 and NP396 (van der Most et al., 1998). By contrast, LCMV 

infection of CD4KO mice resulted in chronic infection (von Herrath et al., 1996). Tetramer 

epitope staining of CD8+ cells during the first week post-infection showed induction of GP33 

and NP396 specific CD8+ cells with comparable kinetics for both wild type and CD4KO mice, 

but apoptosis soon claimed the NP396 specific and most of the GP33 specific cells in the 

CD4KO mice, with those few GP33 specific cells remaining being unable to proliferate 

(Gallimore et al, 1999). Antiviral CD8+ T cells responses were inducible in the absence of CD4+ 

T helper cells, but the assistance of the CD4+ cells was required to maintain the response. Studies 

using IL-2KO mice indicated that CD4+ T cells were dispensable, but IL-2 was essential in the 

generation and maintenance of antiviral CTL responses (Bachmann et al., 1995). It is thought 

that CD4+ T cell independent CD8+ responses can occur because APC B7 co-stimulation through 

the CD8+ T cell CD28 molecule allows the responding CD8+ T cell to produce sufficient IL-2 to 

proliferate (Gajewski et al., 1995), but the very process of continuous activation through the 

TCR renders the progeny T cells prone to apoptosis, a process known as activation induced cell 

death (AICD). AICD can be prevented in the presence of exogenous CD4+ T helper cytokine IL-

2 in quantities far in excess of that produced by CD8+ cells (Deeths et al., 1999). It is therefore 

very significant that virus-specific CD4+ cells proliferate 10 to 100 fold less than CD8+ cells 

(Whitmire and Ahmed, 2000), and that most of the T cells isolated at sites of inflammation are 

CD8+ effector cells, as many of the activated CD8+ cells may not receive sufficient CD4+ 

cytokine support to prevent apoptosis even with a normal CD4+ response (Whitmire and Ahmed, 

2000). Thus, the range and quantity of anti-apoptotic cytokines in the local milieu of effector 

CD8+ cells determines future potential: cell death, proliferation and cytotoxicity incompetent 
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IFN-γ producing effector function, or fully replication competent mCTL that are detectable by 

LDA.   

Anti-viral CTL can be generated against epitopes derived from numerous viral 
proteins.  
 

CTL responses are generated against one or more epitopes for any given infectious agent. 

In a virus infection, epitopes can be peptide fragments of viral structural proteins that form the 

infectious viral particle, such as HA and NA from influenza (Gianfrani et al., 2000) or HA from 

reovirus (Finberg et al., 1981), capsid proteins VP5, VP7 (Heath et al., 1997)  VP3 and VP6 

(Franco et al., 1994) from rotavirus, and nucleoproteins from the viral core in influenza (Kees 

and Krammer, 1984), parainfluenza (Cole et al., 1995), and LCMV (van der Most et al., 1998). 

Non-structural viral proteins, which are involved in replication of the virus but not incorporated 

into the complete virion, such as reovirus σ1NS (Hoffman et al., 1996) and human papilloma 

virus (HPV) early proteins E6 and E7 (Bourgault et al., 2000) can also be the source of antigenic 

epitopes for CTL responses. It has been suggested that CTL responses are stereotypically 

generated against invariant viral peptides (Kees and Krammer, 1984), whereas for example 

influenza may undergo antigenic drift, minor changes due to in the protein sequence of the HA 

and NA molecules due to mutations in the genomic RNA (Lambkin et al., 1994), or antigenic 

shift due to reassortment of genome RNA segments between related heterologous influenza 

viruses co-infecting the same host and thus rendering influenza virions able to escape previously 

elicited humoral immunity (Castrucci et al., 1993), the influenza specific CTL recognize 

epitopes from conserved NP proteins, which make virions unable to escape the CTL recall 

response (Kees and Krammer, 1984). However, this phenomenon does not seem axiomatic, and 

the factors governing the immunogenicity of an epitope in eliciting the anti-viral CTL response 

seem more related to the quantity of that epitope that can be stably processed and presented on 



 

47 

 

the MHC molecules of an APC (Wherry et al., 1999), and the ability of the CD8+ T cell 

repertoire to recognize the MHC epitope complex, than what role the viral protein plays in viral 

replication or structure. While the ability of some mCTL to recognize conserved epitopes may 

give a selective advantage in recall responses over mCTL that recognize epitopes prone to 

mutation, CTL do not seem to play much role in protection from re-infection as compared to 

circulating antibody. For a number of viruses, protection from re-infection is mediated by 

neutralizing and even non-neutralizing antibody, and it is unlikely much selection would occur 

on the virus-specific mCTL population in the face of extant protective humoral immunity.  

Anti-viral CTL responses are usually, but not exclusively, generated against a panel 
of distinct epitopes.  
 

The virus-specific response to a given virus is often reactive to more than one viral 

peptide epitope, giving a graded response pattern where one or a few epitopes are strongly 

responded to, and others are responded to various lesser degrees, so-called immunodominant and 

subdominant epitopes. Factors possibly influencing relative immunodominance and sub-

dominance of epitopes are the efficiency of viral protein fragmentation by host proteases both at 

the level of the LMP in the cytosol and exopeptidases resident in the ER, the efficiency of 

transportation of potential epitopes into the ER via the TAP heterodimer, the strength of the 

interaction of the epitope with MHC class I alleles which directly relates to the number of 

peptide MHC class I complexes on the surface of the APC and the time those complexes remain 

stable. Additionally, CD8+ T cell dependent factors include the frequency of available naïve 

precursor CTL specific for a given epitope (Cao et al., 1996), and the strength of the recognition 

of a pCTL with a peptide-MHC class I complex. For example, there are 2 class I (H-2Kd) 

restricted epitopes from the hemagglutinin (HA) molecule of influenza A/Japan/57 generated in 

infected Balb/c mice, one of which is strongly immunodominant although both are processed and 
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presented to comparable degrees (Cao et al., 1996). The initial precursor frequencies of naïve 

CD8+ cells that can respond to each epitope have been shown to be different, thus the magnitude 

of the response to the HA epitopes are dramatically different although clones of CTL specific for 

each epitope show equal ability on a per cell basis to kill virus infected target cells in vitro. 

Epitopes which do not elicit any immune response are known as cryptic epitopes, and may be 

due to �holes� in the repertoire of possible responder CD8+ T cells (Cao et al., 1996), or 

conditional presentation by APC dependent on the degree of APC activation.  

The panel of epitopes recognized by an elicited CTL response to a given virus or 

intracellular bacteria has been found to be stable with regard to secondary (recall) mCTL 

responses.  For example, Listeria monocytogenes (Lin and Welsh, 1998) elicits CTL responses in 

mice to a panel of immunodominant and subdominant epitopes. These graded strength of the 

CTL response to immunodominant and subdominant epitopes is preserved among mCTL, and 

the same pattern of response is seen on reinfection. Further, if mice are infected initially with L. 

monocytogenes mutants without the immunodominant epitopes, the subdominant responses are 

not made concomitantly stronger, and on secondary infection with wild type L. monocytogenes, 

the immunodominant epitopes elicit a CTL response of greater magnitude than the memory 

response against the subdominant epitopes (Busch et al., 1998; Vijh and Pamer, 1997). This 

indicates immunodominant epitopes do not out-compete subdominant epitopes, a finding that 

explains the stability of the virus-specific mCTL repertoire following subsequent reinfection. As 

the magnitude of the virus-specific mCTL population has been shown to be most dependent on 

the size of the initial proliferative response during the preceding viral infection (Hou et al., 

1994), and the size of the proliferative response has been shown to be most directly related to the 

amount of cognate epitope expressed by APC (Wherry et al., 1999) and the size of the naïve 
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CD8+ T cell population that can recognize the cognate epitope (Cao et al., 1996), it is no surprise 

that the relative strength of the responses for the various immunodominant and subdominant 

responses would be seen in subsequent recall responses (Naumov et al., 1998). Indirectly, 

conservation of a broad T cell reactivity from primary to recall responses can be inferred by the 

maintenance of similar TCR β chain heterogeneity in peripheral blood mononuclear cells from 

EBV immune human donors responding to a subsequent EBV exposure (Coudel et al., 1999), 

and in mice sequentially infected with LCMV (Sourdive et al., 1998) and Listeria (Lin and 

Welsh, 1998).  It is curious, however, that such preservation of both strong and weak epitope 

specific responses are maintained in vivo, but not in vitro, as cultures of CD8+ splenocytes from 

LCMV infected mice that are restimulated over a period of weeks progressively lose CTL 

responses to everything but the cognate immunodominant epitopes, a phenomenon called 

�repertoire focusing� (van der Most et al., 1998). It is clear, however, that in vitro culture 

systems may often skew CTL populations with time due to unnatural selective pressures (Arenz 

et al., 1997). In any event, maintenance of graded CTL responses to a plethora of epitopes is 

advantageous to the host, as evidenced by chronic murine hepatitis virus infection induced CNS 

demyelination, wherein infected C57BL/6 mice generate a massive CTL response specific for a 

single epitope from a viral genomic RNA associated protein (Pewe et al., 1997). The massive 

epitope mono-specific CTL response, as opposed to a broadly reactive response against 

numerous epitopes, selects among the replicating virions in the CNS for mutation in the cognate 

epitope. Once demyelinating disease is established in these mice, CNS viral isolates show 

mutation in the cognate epitope that have allowed the replicating virus to escape recognition by 

the wild-type virus specific CTL. Such mutant virions are not found in the CNS of infected 

severe combined immunodeficient (SCID) mice, indicating the selective pressure of a narrow 
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CTL response has granted an advantage to mutant virions. Thus, a broad CTL response against a 

number of viral epitopes is advantageous to the host. 

Differential influences of the intestinal and systemic peripheral immune 
tissues upon cellular and humoral immunity 
 

Unique intestinal environment and cell populations may influence the selection and 

expansion of reovirus-specific CTL, altering the responder T cell repertoire compared to that 

elicited following infection in the systemic periphery.   

CD8+ T cell responses are induced following enteric and parenteral infection of mice 

with reovirus. There is no evidence to definitively support or refute the selection of different 

populations of CD8+ CTL following enteric or parenteral reovirus infection, or indeed following 

any virus infection. There are, however, features of the intestinal immune responses distinct from 

those of the systemic periphery that may exert differential selective influences on the CD8+ T 

cell populations induced following enteric reovirus infection.  

Issues of integrin-addressin mediated lymphocyte trafficking, and �common 
mucosal immunity�.  
 

Mucosal and systemic immunity can be thought of as two separate, partially overlapping 

components consisting of humoral (B cell and antibody) and cell-mediated (T helper cell and 

CTL) elements.  Mucosal immune responses are initiated within the priming sites of the mucosal 

associated lymphoid tissue (MALT) and provide immunity at mucosal surfaces as well as the 

systemic, non-mucosal periphery (Bergquist et al., 1995;Benedetti et al., 1997;Kuklin et al., 

1998; Liu et al., 1998; Brennan et al., 1999;Gherardi and Esteban, 1999). Conversely, systemic 

immune responses generated in the peripheral lymph nodes and spleen, elicit both systemic and 

to a lesser extent, mucosal immunity (Premier et al., 1996; Coffin and Offit, 1998; Muir et al., 

1998;Herremans et al., 1999). Mucosal humoral immunity consists primarily of immunoglobulin 
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of the IgA isotype, with minor IgG and IgM components, whereas parenterally generated 

humoral responses are characterized primarily by immunoglobulin of the IgG isotypes 

(Weinstein and Cebra 1991; Major and Cuff, 1996). T helper cell and CTL responses can be 

elicited at either mucosal or systemic priming sites, although whether there are tissue specific 

differences in the responder T cell populations has not been determined. Antigen-specific B cells 

primed in the peripheral lymph nodes or spleen tend to recirculate to non-mucosal tissues such as 

the spleen and bone marrow (Bachmann et al., 1994).  By contrast, B cells primed in the MALT 

priming tissues distribute themselves among all the mucosal tissues, such as the nasal, 

respiratory, gastrointestinal, vaginal and lacrimal mucosa, a phenomenon called �common 

mucosal immunity� (Montgomery et al., 1980; Pal et al., 1996; Farstad et al., 1997).  CD4+ and 

CD8+ T cells primed in either the peripheral lymph nodes or the MALT are thought to also 

migrate through the circulation back to the systemic or mucosal compartments, respectively 

(Mackay et al., 1996; Farstad et al., 1997).  In practice, the tendency of T and B cells primed in 

the peripheral lymph nodes or MALT to redistribute along non-mucosal and mucosal 

segregational lines is far from absolute, and is governed by the cell surface integrins expressed 

by antigen-experienced lymphocytes. It has been shown that the entry of naïve lymphocytes into 

the priming sites of the MALT, such as the intestinal Peyer�s patches and mesenteric lymph 

nodes, or into the spleen or peripheral lymph nodes is equivalent due to binding of �peripheral 

lymph node addressin� by the lymphocyte integrin L-selectin, CD62L (Mackay et al., 1996; 

Farstad et al., 1997). Indeed, the majority of the T cells in the peripheral lymph nodes or Peyer�s 

patches are naïve cells (Tietz and Hamann 1997). Antigen driven T and B cell responses result in 

a decrease in CD62L expression on responder lymphocytes, limiting their ability to migrate to 

the lymphoid tissue of the systemic and mucosal compartments indiscriminately (Chao et al., 
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1997). Primed B and T cells undergo a concomitant increase in CD44, LFA-1, VLA-4, and CD2, 

which allows for their recruitment and extravasation at sites of active inflammatory responses 

(Picker et al., 1990). Mucosally primed lymphocytes and a fraction of those primed systemically 

also express the mucosa-specific integrin, α4β7 (Farstad et al., 1996). 

Expression of cell surface integrin molecules direct subsets of activated lymphocytes 
to the mucosa.  
 

α4β7, the lymphocyte surface ligand for mucosal addressin cellular adhesion molecule, 

MadCAM-1, is expressed on a fraction of B and T lymphocytes primed within the peripheral 

lymph nodes, and on virtually all lymphocytes primed in the MALT (Kantele et al., 1997). As 

MadCAM-1 is normally expressed almost exclusively on the endothelium of the post-capillary 

venues of mucosal lamina propria (Farstad et al., 1996), and the specialized cuboidal endothelial 

cells of the MALT priming tissue high endothelial venules (HEV) (Brisken et al., 1993), 

lymphocytes primed in the mucosa are preferentially recruited back to the MALT from the 

circulation (Farstad et al., 1996). Expression of α4β7 by subsets of lymphocytes primed in the 

periphery would lead to the prediction that these cells may also preferentially be recruited to the 

MALT, and this does indeed seem to be true (Farstad et al., 1997). It has been observed that 

antigen-experienced α4β7
+ lymphocytes can enter all the intestinal tissues; whereas antigen- 

experienced α4β7
- cells were excluded (Farstad et al., 1996; Williams and Butcher, 1997). Naïve 

CD62L+ α4β7
- cells could enter Peyer�s patches, mesenteric lymph nodes, or peripheral lymph 

nodes with equal efficacy but were also excluded from the lamina propria (Williams and 

Butcher, 1997). Antigen experienced cells α4β7
+ and α4β7

- cells were ten-fold less able to enter 

the peripheral lymph nodes than naïve cells (Tietz and Hamann, 1997), although the spleen 

recruited naïve and antigen experienced cells with equal efficacy, regardless of phenotype 

(Williams and Butcher, 1997). Thus, the ability of α4β7
+ cells to enter both the mucosal priming 
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sites and lamina propria due to interaction with endothelium expressing MAdCAM-1provides 

both an explanation for the common mucosal immune system as well as the prediction that the 

fraction of α4β7
+ lymphocytes primed in the peripheral lymph nodes can mediate mucosal 

immune function.  Conversely, the fact that α4β7
+ cells can be recruited to the spleen suggests 

that mucosal immune priming could also provide systemic immunity. Both these predictions 

hold true. For example, parenteral priming of mice with rotavirus induced rotavirus-specific IgG 

producing cells in the intestinal lamina propria, and potentiated a subsequent IgA immune 

response to oral challenge with rotavirus (Coffin et al., 1995). Further, parenteral LCMV 

infection of mice induces LCMV specific CTL in both the lamina propria and intraepithelial 

(IEL) compartments of the small intestine (Muller et al., 2000). Additionally, parenteral 

immunization with ovalbumin protein of mice adoptively transferred with transgenic CD8+ T 

cells bearing a T cell receptor (TCR) specific for an ovalbumin epitope resulted in a 700-fold 

increase in the number of the transgenic T cells recovered from the IEL compartment, and the 

acquisition of cytotoxic effector function (Lefrancois et al., 1999; Lefrancois et al., 2000). 

Conversely, mucosal immune responses to foreign organisms such as reovirus (London et al., 

1987) and rotavirus (Offit and Dudzik, 1989; Feng et al., 1994), results in both mucosal and 

systemic immunity, in terms of both cell mediated immunity and IgA- and IgG- producing B 

cells. 

Immune responses are not necessarily confined to either the systemic or mucosal 
immune compartments.  
 

The degree to which immune priming in one anatomic compartment provides antigen-

experienced cells and antibody at another site depends mostly on the immunogenicity and the 

amount of the priming antigen (Blanas et al., 2000), and the degree of inflammatory response 

induced (Lefrancois et al., 1999); factors known to influence the overall magnitude of the 
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adaptive immune response. Another factor is whether the antigen or invading organism remains 

confined to the initial priming site. London et al. (1987) demonstrated a higher reovirus specific 

pCTL frequency in the Peyer�s patches and mesenteric lymph nodes compared to the spleen and 

peripheral lymph nodes following per-oral infection of mice with reovirus T1L, and assumed 

these differences in frequency of pCTL in the peripheral lymph nodes and spleen were due to the 

dissemination of enterically primed pCTL, not cells primed locally in the systemic periphery by 

disseminating antigen or replicating virus, either freely or in association with migrating APC 

(Dharakul et al., 1988; Brown and Offit, 1998). Infection of the intestinal mucosa of 

immunocompetent mice with LCMV (Muller et al., 2000), rotavirus (Uhnoo et al., 1990), or 

reovirus (Letvin et al., 1981; Major and Cuff, 1997), can result in the dissemination of 

replicating virus to the mesenteric lymph nodes and spleen. Parenteral infection of mice with 

reovirus results in the recovery of replicating virus from the small intestinal crypts (Rubin et al., 

1985) as well as the Peyer�s patches, peripheral lymph nodes, and spleen (Letvin et al., 1981), 

quite possibly in association with migrating dendritic cells and macrophages. Indeed, 

macrophages and dendritic cells have been observed to migrate into the Peyer�s patches from the 

non-mucosal periphery (Soesatyo et al., 1993). Dendritic cells containing LCMV mRNA have 

been observed by in situ hybridization in the small intestine lamina propria and intestinal 

epithelium of parenterally infected mice (Muller et al., 2000), suggesting dissemination of 

LCMV to the mucosa from the systemic periphery. Infectious virions as well as non-replicating 

endocytosed reovirus antigen may gain access to the systemic periphery from the mucosa or the 

reverse within migrating antigen presenting cells, as has been suggested in studies of rotavirus 

infection (Dharakul et al., 1988; Brown and Offit, 1998). Furthermore, dissemination of antigen 

in association with dendritic cells from the intestinal mucosa has been observed. Cells recovered 



 

55 

 

from the thoracic duct lymph of mesenteric lymphadenectomized mice include numerous 

dendritic cells, termed �veil cells� due to cell membrane folds that resemble veils (Liu and 

Macpherson, 1991; Liu and Macpherson, 1993). These dendritic cells are presumed to originate 

in the lamina propria and Peyer�s patches, and contained experimentally fed ovalbumin protein. 

Furthermore, adoptive transfer of these cells elicited ovalbumin-specific T cell responses in 

recipient mice, indicating that cells migrating from the intestine are able to process and present 

antigen gathered in the intestine to naïve T cells in systemic tissues. In any event, regardless of 

the magnitude of free or dendritic cell-associated antigen dissemination, replicating virus can be 

isolated from the spleen following oral infection with reovirus, suggesting at least some of the 

pCTL in the non-mucosal systemic periphery may be primed in situ.  

Differences in the systemic and mucosal humoral immune responses may reflect 
underlying T helper 1/T helper 2 or other microenvironmental differences.  
 

As mentioned, there are distinct features of the systemic and mucosal immune responses. 

The mucosal humoral response is predominately of the IgA isotype, whereas that of the systemic 

periphery is mainly IgG. In order to determine if the IgA response was a byproduct of a chronic 

state of immune activation in Peyer�s patches mediated by intestinal microflora, or an intrinsic 

feature of the MALT microenvironment, Weinstein and Cebra, (1991) infected germ-free mice 

either orally or parenterally with reovirus T1L. Germinal center reactions caused by proliferating 

B cells, otherwise absent in germ-free animals, were induced by reovirus infection. 

Immunohistochemical analysis of germinal center B cells showed that the reovirus infection 

induced surface IgG+ (sIgG+) and sIgM+ B cells in the draining lymph nodes, and a major sIgA+ 

B cell response with a minor population of sIgM+ B cells in the Peyer�s patches. Restriction 

enzyme digestion of the germinal center B cell DNA and subsequent southern blot analysis of 

the fragments confirmed rearrangement of the immunoglobulin heavy chain isotype genes. 



 

56 

 

Similar isotypic responses were found using germ free mice mono-associated with Morganella 

enterically or parenterally injected, and are in keeping with isotype responses elicited from 

conventionally reared animals (Logan et al., 1991). Thus the preferential IgA response of the 

Peyer�s patches is due to some intrinsic factor of the Peyer�s patches not active in the peripheral 

lymphoid tissues.  IgA isotype switching is known to be induced by T helper 2 type cytokine 

TGF-� Sonoda et al., 1992; van Vlasselaer et al., 1992), in addition to the interaction of B-cell 

expressed CD40 with T helper cell CD40L. IL-5, a T helper 2-type cytokine, is a known inducer 

of IgA production (Cebra et al., 1991a; Cebra et al., 1991b; Sonoda et al., 1992). IL-6 is yet 

another T helper 2 cytokine which augments IgA responses (Cebra et al., 1991b; McGhee et al., 

1991). Therefore in mucosal immune responses, such as the response to enteric reovirus 

infection generated in the Peyer�s patches (VanCott et al., 2000), a T helper 2 cell response 

might be expected to predominate and underlie the observed sIgA+ B cell response (Cebra et al., 

1991b).  

Enteric reovirus infection induces predominantly a T helper 1 type cytokine profile, 

however, with upregulation of IFN-γ message and production of IFN-γ and IL-2 proteins (Fan et 

al., 1998). Furthermore, the immunoglobulin of the minor IgG isotype fraction induced by 

enteric reovirus infection is of the IgG2a and IgG2b subclasses (Major and Cuff, 1996), which 

are associated with IFN-γ production by T helper 1 cells (Bossie and Vitetta, 1991). By contrast, 

the IgG antibody produced following parenteral infection with reovirus has a substantial IgG1 

component in addition to IgG2a (Major and Cuff, 1996), indicating a potentially mixed 

underlying T helper 2/T helper 1 cytokine response. Nevertheless, semi-quantitative RT-PCR 

assessment of T helper 2/T helper 1 cytokine mRNA message levels in peripheral lymph nodes 

and Peyer�s patches following parenteral and oral infection, respectively, were not found to be 
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different (Major and Cuff, 1996). Thus, the use of antibody as a teleological assessment of the 

differences in T cell populations primed in Peyer�s patches and peripheral lymph nodes is not 

sustained at the level of the T helper cell cytokine response with regard to classic T helper 2/T 

helper 1 cytokines such as IL-4, IL-5, IL-6 and IFN-γ, although the role of other cytokines, such 

as IL-10, IL-12, IL-15, and IL-18 remains to be determined. Nevertheless, assessment of T cell 

immune responses to reovirus in other mucosal tissues may to clarify the issue.  Mixed T helper 

2/T helper 1 cytokine production is observed using intracellular cytokine staining and flow 

cytometry of pulmonary airway infiltrating CD4+ lymphocytes during reovirus 

bronchopneumonia (Thompson et al., 1999). T cell mediated immune responses generated within 

the priming sites of the lung, the tracheobronchial and mediastinal lymph nodes, are 

preferentially of the T helper 2 type (Constant et al., 2000), and it is similarly thought that most 

intestinal immune responses stimulated within the Peyer�s patches also follow a default T helper 

2 program, except in cases where a sufficient inflammatory cytokine override accompanies the 

antigen (Strober and Kelsall, 1998; Stumbles et al., 1998). Inflammation acts at the level of the 

antigen presenting cells, dendritic cells and macrophages, priming the naïve antigen specific 

responder T cells. The adoption of a T helper 1 immune response is governed in large part by 

dendritic cell and macrophage produced IL-12 (Fuss et al., 1999) and IL-15 (Liu et al., 2000) in 

response to local levels of inflammatory mediators and cytokines such as IL-16 (Mathy et al., 

2000) and IL-18 (Liete-de-Morales et al., 1999; Chang et al., 2000). Thus the confusing array of 

T cell mediated and influenced responses share a common initiator focus, the priming APC, and 

it is from the event of the priming of the naïve virus-specific T cell response that all subsequent 

tissue dependent priming differences will arise.  
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Dendritic cells at different anatomic locations are functionally distinct as regards T 
cell priming and differentiation, as evidenced by T helper cell cytokine profiles.   
 

Evidence exists that the dendritic cell populations of the MALT are functionally different 

from those of the spleen or peripheral lymph nodes. Murine intestinal lamina propria dendritic 

cells pulsed with keyhole limpet haemocyanin preferentially stimulated naïve CD8+ T cell 

proliferation in vitro (Williams et al., 1992).  By contrast, splenic and peripheral lymph node 

dendritic cells preferentially stimulated CD4+ T cells in vitro despite comparable surface 

expression of MHC class I and class II molecules (Williams et al., 1992). Further, upon 

monoclonal antibody ligation of CD40, murine dendritic cells isolated from Peyer�s patches, but 

not those from the spleen, were shown to produce IL-10 (Iwasaki and Kelsall, 1999), a 

pleiotropic cytokine that induces CD8+ T cell proliferation and effector function (Rowbottom et 

al., 1999; Santin et al., 2000), B cell proliferation (Itoh and Hirohata, 1995), and Th2 responses 

(Cua et al., 1996). Dendritic cells also induce differential T helper 2/T helper 1 cytokine profiles 

by mechanisms as yet incompletely understood (Schuhbauer et al., 2000). For example, in vitro 

stimulation of naive transgenic CD4+ T cells bearing a TCR specific for an epitope from 

ovalbumin with Peyer�s patch dendritic cells pulsed with ovalbumin induced the production of T 

helper 2 type cytokines, whereas splenic dendritic cells induced a mixed T helper 2/T helper 1 

cytokine response (Iwasaki and Kelsall, 1999). Everson et al., (1998) showed mitogen and 

allogenic cell-stimulated Peyer�s patch and splenic T cells produce T helper 2 type cytokines IL-

4 and IL-6 protein in the presence of Peyer�s patch derived dendritic cells. By contrast, the 

presence of splenic DC tended to induce IL-2 and IFN-γ among similarly stimulated T cells, and 

little IL-4 or IL-6, again suggesting an underlying difference in intestinal and systemic dendritic 

cells. Dendritic cells from other mucosal tissues aside from the intestine also induce T cell 

function distinct from the dendritic cells of non-mucosal lymphoid tissues. For instance, rat 
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bronchus associated lymphoid tissue (BALT) dendritic cells pulsed in vitro with ovalbumin and 

subsequently intravenously transferred into recipient rats previously adoptively transferred with 

transgenic CD4+ T cells bearing a TCR specific for an ovalbumin derived epitope induced an 

ovalbumin-specific T helper 2 response in naïve recipient rats (Stumbles et al., 1998). 

A mixed T helper 2/T helper 1 response could be obtained if BALT dendritic cells were 

incubated with the cytokine GM-CSF prior to ovalbumin pulsing, and a dominant T helper 1 

response could be obtained if TNF-γ was added in addition to GM-CSF, possibly by mimicking a 

cytokine milieu reminiscent of an inflammatory response (Stumbles et al., 1998). Another 

difference with regard to intestinal immune tissue is the anatomic fact that while peripheral 

lymph nodes receive activated dendritic cells and antigen via the afferent lymphatics, Peyer�s 

patches have no afferent lymphatics (Witmer and Steinman., 1998). However, Peyer�s patch 

dendritic cells in the subepithelial dome region underlying the M cells showed the ability to 

migrate in vitro in response to the inflammatory chemokine MIP-3α, whereas splenic dendritic 

cells lacked the ability to migrate in response to MIP-3a (Iwasaki and Kelsall, 2000). 

Furthermore, parenteral injection of soluble Toxoplasma gondii tachyzoite protein antigen 

caused dendritic cells of the subepithelial dome region off Peyer�s patches to migrate deep into 

the T cell rich paracortical regions of the patches (Iwasaki and Kelsall, 2000). This migration in 

response to inflammation may be analogous to the migration of peripheral dendritic cells to the 

draining peripheral lymph nodes via the afferent lymphatics or via the blood to the spleen. 

Clearly then, the premier initiator APC of adaptive immunity has distinct functional 

characteristics in the systemic periphery and mucosal immune compartments (Iwasaki and 

Kelsall, 2000). 
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Dendritic cells are also capable of unconventional epitope processing and 
presentation.  
 

The effect of dendritic cells from mucosal or systemic peripheral immune tissue on the 

priming of CD8+ T cells is not well understood. Long believed to be primed exclusively by MHC 

class I molecules in association with cytosol derived cognate antigen, CD8+ cells can also be 

primed by endocytosed exogenous antigen in a manner normally associated with the MHC class 

II presentation pathway by an alternative mechanism phenomenon called �cross-presentation� 

(Castellino et al., 2000; Hamano et al., 2000). Furthermore, CD8+ CTL responses have long been 

thought to be dependent on concomitant Th1 responses due to the direct relationship between 

and IL-18 (Okamoto et al., 1999), IL-12 (Paganin et al., 1995), IFN-γ and IL-2 (Mehorotra et al., 

1995) and the magnitude of the CTL response. Recently, CTL responses have been shown to be 

enhanced by Th2 type cytokines. For example, CD8+ T cells can proliferate in response to 

exogenous IL-10 (Rowbottom et al., 1999), and both IL-10 (Santin et al., 2000) and IL-4 (Specht 

et al., 1998) have been shown to enhance CD8+ T cell cytotoxicity. As CTL responses can be 

induced in the absence of Th cell assistance provided sufficient levels of cognate antigen 

presentation, co-stimulatory molecule expression, and cytokine production by priming dendritic 

cells, it is clear that the priming dendritic cells population may most heavily influence primary 

CTL responses. As conventional naïve T cells show no differences in recruitment to mucosal and 

non-mucosal priming sites, which recruit equally all CD62L+ naïve T cells any differences in the 

CTL populations primed in the mucosa or peripheral lymph nodes would likely be due to local 

dendritic cells influence.  
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Dendritic cells at different anatomic locations may be functionally distinct as 
regards epitope processing and presentation; a mechanism of possible tissue-specific 
T cell priming as a function of microenvironment.   
 

As previously mentioned, antigen-specific CD8+ and CD4+ T cells utilize their TCR to 

recognize cognate epitopes in association with MHC class I or class II, respectively. The 

generation of a panel of small peptide fragment epitopes from native foreign protein is dependent 

on the antigen processing and presentation pathways of the APC. It is unknown if dendritic cells 

from MALT or priming sites of the systemic periphery generate differential antigenic epitopes 

from the same native protein. However, it is known that dendritic cells can process and display 

differential epitopes of a given protein in response to exogenous cytokine tension. For instance, 

splenic dendritic cells pulsed with myelin basic protein process and display a characteristic panel 

of MHC class II associated epitopes, but treatment with exogenous IL-6 causes the dendritic 

cells to express novel epitopes, known as cryptic epitopes because they are otherwise not 

processed or expressed (Drakesmith et al., 1998). The IL-6 is believed to cause a decrease in the 

pH of dendritic cells endolysosomal vesicles, enhancing the activity of endogenous acid 

proteases to liberate the cryptic epitopes. It is as yet unknown whether other cytokines or 

chemokines of the local tissue milieu can similarly affect the panel of epitopes generated, 

although the ability of and type 2 interferons to enhance the function of the cytosolic 

multicatalytic proteosome and to enhance MHC class I expression of cryptic epitopes has been 

described (Sewell et al., 1999). Given the ability of dendritic cells to cross-present endocytosed 

antigen epitopes on MHC class I molecules, it is possible the IL-6 mediated alteration of antigen 

processing can also affect the priming of CTL populations in vivo (Drakesmith et al., 1998).  
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Tissue-specific modification of an extant, ongoing CTL response may reshape the 
final TCR repertoire.  
 

Immune responses are dynamic, as opposed to static events. Activated CD8+ T cells can 

migrate to peripheral sites of inflammation, assume effector function, and either die by in situ 

apoptosis or migrate via the lymphatics to draining lymph nodes. Within the lymph node, the 

antigen-experienced T cell will encounter APC which will express antigen acquired from the site 

of inflammation. The recently arrived effector CTL will recognize cognate epitopes on the APC 

by MHC-peptide-TCR interaction, possibly resulting in activation induced cell death (AICD) 

(Sarin et al., 1995). Ironically, CTL recognizing subdominant epitopes, or bearing TCR with less 

avidity for cognate antigen and thus less prone to being strongly activated by cognate epitopes 

presented by the APC, may more likely be spared than those CTL recognizing dominant antigens 

or having high avidity TCR (She et al., 1998). Extreme examples of this tendency toward AICD, 

termed �clonal exhaustion�, are seen in the deletion of the most avid CTL in chronic LCMV 

infection of mice and hepatitis B virus infection of humans, and are due to chronic stimulation of 

effector CTL by viral antigen (Welsh and McNally, 1999). However, in view of the 

predisposition for IL-10 production by the dendritic cells of the mucosa, a cytokine known to 

decrease epitope presentation (Faulkner et al., 2000), and also the production of 

immunosuppressive prostaglandin E2 (Newberry et al., 1999) and TGF-β by macrophages and 

dendritic cells of the mucosa, effector CTL may receive less re-stimulation with in the mucosal 

lymphoid tissue compared to draining peripheral lymph nodes. Thus, mucosal CTL may be more 

likely to survive encounters with APC within the mucosa by avoiding AICD as compared to 

effectors in the systemic periphery. Additionally, CTL primed later in the immune response, after 

the generation of the T helper cell response, may respond to epitopes distinct from those primed 

in the very beginning, as T helper cell cytokine and CD40L mediated �conditioning� of dendritic 
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cells (Andreason et al., 2000) could allow for the generation and expression of cryptic epitopes. 

Indeed, the IL-6 dependent unmasking of cryptic epitopes subsequent to the priming of cryptic 

antigen specific T cell populations is thought to be most pronounced during an ongoing, 

previously established T helper 2 response (Drakesmith et al., 1998). 

Evidence for continuous reshaping of the T cell repertoire in the intestinal 
mucosa.  
 

Arstila et al., (2000) demonstrated that activated �blasting� (proliferating) CD4+ and 

CD8+ cells trafficking through the thoracic duct circulated back to the intestinal mucosal. Indeed, 

many of the activated T cells had TCR β chains identical to TCR of cells distributed through the 

oligoclonal populations of the small intestinal lamina propria and IEL populations. Thus, CD8+ 

cells restimulated within the effector site become activated and induced to proliferate, and 

recirculate through the intestinal lymphatics to the peripheral circulation and back to the 

intestinal mucosa. This observation, taken with the characteristic oligoclonality of conventional 

CD8+ T cells in the IEL and lamina propria (Regnault et al., 1995; Arstila et al., 2000) suggests a 

continuous modification of the antigen specific T cell repertoire occurs well after the initial 

antigen priming event in the Peyer�s patches. Modification of the CTL repertoire in enteric 

reovirus infection may thus be more pronounced in the case of intestine than in the systemic 

periphery. This is possibly due to the fact that intestinal epithelial cells (IEC) are believed to act 

as non-classical APC, as they express MHC class I and can be induced to express class II in 

response to TNF-α and IFN-γ(Lopes et al., 1999; Hershberg and Mayer, 2000). IEC also express 

novel co-stimulatory molecules such as gp180 (Hershberg and Mayer, 2000), which interacts 

with T cell surface molecule CD2 (Horie et al., 1998) to induce T cell activation by an 

alternative mechanism as yet not entirely understood (Bachmann et al., 1999). IEC, like resident 

professional APC such as tissue macrophages and dendritic cells, may be exposed to antigen 
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epitopes unseen in the Peyer�s patches as the initial phase of infection requires chymotrypic 

processing of the outer capsid proteins σ3 and σ1c to yield the M cell-binding ISVP (Bodkin et 

al., 1998). Cleaved outer capsid proteins taken up directly by IEC or transported to the lamina 

propria by transcellular or paracellular routes may be later presented to reovirus-specific CTL. It 

has been established that serum and tissue protease-mediated extracellular proteolytic processing 

of viral antigens, such as the δ antigen of the hepatitis D virus, can result in the priming of T cell 

responses tissue macrophage (Accapezzato et al., 2000). Additionally, specialized dendritic cells 

subpopulations resident in the intestinal mucosal have been identified that phagocytose apoptotic 

IEC and subsequently migrate via the villus-draining lacteal to the mesenteric lymph nodes and 

via the thoracic duct to the spleen. It is possible that such dendritic cells may cross-present 

antigenic epitopes generated in the intestinal lumen or in the mucosa that are unseen in the 

systemic periphery (Huang et al., 2000). Such dendritic cells would influence both the initial 

priming of the responder T cells and could modify the repertoire of antigen experienced T cells 

(Albert et al., 2000).  

Differential reshaping of the virus-specific CTL repertoire as a function of distinct 
humoral immunity.  
 

Cross-presentation pathways are facilitated by the binding Fc receptors on dendritic cells 

to antibody complexed with foreign antigen (Regnault et al., 1999). Thus, immune complexes of 

antibody-antigen aggregates may interact with dendritic cells to modify the MHC class I 

restricted CTL response (Hamano et al., 2000). This could be important to the modification of 

CTL responses primed in the mucosal or systemic periphery given that evidence exists that 

antibody induced at mucosal sites may recognize some conformational antigenic determinants or 

epitopes distinct from those recognized by systemically primed antibody responses, due possibly 

to the local antigenic milieu (Bos et al., 1988).  Modification of the CTL response by these 
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mechanisms is, of course, speculative, as no evidence exists to support or refute the influence of 

the route of infection on the populations of responder CTL. Determination of differences in 

induced CTL populations would be a teleological assessment of distinct antigen processing and 

MHC class I presentation in much the same way as the T helper 2/T helper 1 cytokine profiles 

reflect MHC class II mediated T cell priming. Elucidating the mechanisms of antigen specific T 

cell priming, the central event of adaptive immunity, in general and as pertains to mucosal 

immunity, is of paramount importance for such applications as vaccine design, tolerance 

induction, and the control of immunopathology. 

Overview of these studies 
 

Oral and parenteral reovirus infections induce both virus-specific CTL and antibody. 

However, the humoral immune response to oral reovirus infection is dominated by antibody of 

the IgA isotype, whereas infection of the systemic periphery is dominated by IgG (Weinstein and 

Cebra, 1991).  Furthermore, such IgG as is induced following intestinal reovirus infection is 

predominantly of a different subclass than that induced following parenteral infection (Major and 

Cuff, 1996). It has been suggested that these differences are due to intrinsic differences in the 

lymphocyte priming conditions of the intestinal and peripheral immune tissue environments, and 

may reflect differences in the T cell populations induced in these tissues. Indeed, evidence exists 

for the induction of unusual T cell populations during reovirus infection of the pulmonary 

mucosal (Thompson et al., 1996; Periwal and Cebra, 1999). These studies were undertaken 

primarily to determine what differences, if any, exist in the CTL populations that are induced 

following oral or parenteral infection with reovirus. Furthermore, other aims included 

determining if different immune compartments of the intestine contained distinct CTL 

populations following oral infection. Additionally, we sought to determine the effects of ageing 
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on CTL induction, humoral immunity, and immune memory following oral and parenteral 

reovirus infection.  

The CTL Vβ Repertoire Induced Following Oral or Systemic Infection with 
Reovirus.  
 

We hypothesized that virus-specific CTL populations induced following oral reovirus 

T1L infection would be distinct from those induced following parenteral infection. We assessed 

CD8+ cells from the Peyer�s patches and spleens of orally infected mice and popliteal lymph 

nodes and spleens of mice infected in the hind footpads for changes in the Vβ repertoire by flow 

cytometry. We also established cell lines from these tissues to enrich for virus-specific CTL, and 

concomitantly assessed for changes in the Vβ repertoire of CD8+ T cells. We also adoptively 

transferred CD8+ cells from the spleens and Peyer�s patches of orally infected donor mice, and 

the spleens of hind footpad infected mice, into reovirus infected SCID recipient mice, and 

assessed for changes in the Vβ repertoire of recovered CD8+ T cells. We observed a consistent 

expansion of virus specific Vβ6+ CD8+ CTL for both orally infected and hind footpad infected 

mice. Subsequently, we assessed the Vβ6+ CD8+ T cells, which dominate the reovirus-specific 

CTL response, for differences in the CDR3β length profiles of cells derived from orally infected 

and footpad infected donors, to better determine if distinct clonal populations of the general 

Vβ6+ CD8+ T cell response were induced following oral or parenteral reovirus infection. We 

observed a the expansion of a clonal population(s) of Vβ6+ CD8+ T cells utilizing the same 

length CDR3β region, regardless of the route of infection. We conclude that the CTL population 

induced following oral reovirus infection is similar, if not identical to the CTL population 

induced following parenteral reovirus infection.  
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Preservation of Intestinal Immunity to Reovirus Infection in Ageing.  
 

It has been reported that intestinal immunity is diminished in ageing (Schmucker et al., 

1996; Koga et al., 2000). We hypothesized that the intestinal CTL and humoral immune 

response to reovirus infection would be diminished in aged mice compared to young mice. We 

assessed the splenic pCTL, and the virus-specific cytotoxicity of splenic and Peyer�s patch cells 

from aged and young mice infected orally with reovirus. We also assessed the intestinal IgA 

response and systemic IgG response to oral reovirus infection in aged and young mice. We 

observed similar CTL frequencies and levels of virus-specific cytotoxicity for old and young 

mice, and similar systemic IgG responses to oral reovirus infection. However, intestinal IgA 

responses were elevated in old mice compared to young mice, suggesting maintenance of 

intestinal CTL responsiveness and possible potentiation of intestinal humoral immunity in 

ageing.  
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Abstract 

 

Reovirus type 1 strain Lang (T1L) induces both humoral and cell-mediated immune 
responses in the draining lymph nodes of parenterally infected mice and the Peyer�s patches of 
orally infected mice. Distinct mechanisms of viral protein processing and epitope generation, 
naïve CD8+T cell recruitment, or other micro-environmental influences might influence the 
magnitude and T cell receptor (TCR) repertoire of the responder CD8+ T cells at these priming 
sites. We sought to determine if the repertoire of TCR Vβ populations of cytotoxic T lymphocyte 
(CTL) induced following parenteral infection were the same as or distinct from those induced 
following oral infection. We infected C3HeB/FeJ mice orally or in the hind footpads with 
reovirus T1L and assessed for changes in the Vβ repertoire among CD8+ T cells in Peyer�s 
patches (PP), or popliteal lymph nodes (PLN), and spleens.  

We noted a consistent expansion of Vβ6+ CD8+ T cells in the spleens of animals infected 
10 days previously by either route, although similar expansions were not consistently found in 
the local draining lymphoid tissues. We also assessed changes in the Vβ repertoire of CTL lines 
that were re-stimulated with reovirus over a period of several weeks. We consistently observed 
expansion of the Vβ6+ CD8+ T cells, with occasional representation of other minor Vβ 
populations. Cell lines were sorted into enriched and depleted fractions of Vβ populations of 
interest. Subsequent assessment of sorted fractions for anti-viral cytotoxicity by 51Cr release 
assay confirmed a predominant role for Vβ6+ CD8+ T cells, and a variable minor role for Vβ8+ 
CD8+ T cells following both oral and parenteral infection.  In addition, we adoptively transferred 
enriched memory CTL populations from orally or parenterally infected C3H donor mice into 
reovirus infected SCID recipient mice. We were able to retrieve large numbers of CTL from 
recipient mice that could mediate high levels of virus-specific cytotoxicity immediately ex vivo. 
Vβ analysis of the retrieved donor cells, cell lines, and cells removed from previously infected 
immunocompetent mice all tended to indicate preferential utilization of Vβ6+ TCR. We 
subsequently assessed CDR3β length profiles Vβ6+ CD8+ cells from orally infected or 
parenterally infected ex vivo, after in vitro re-stimulation, or after adoptive transfer into infected 
SCID recipients. We observed a consistent expansion of one or more clones utilizing TCR β 
chains of a single CDR3β length for orally and parenterally infected mice. Thus, we conclude 
that the route of infection with reovirus does not overtly affect the selection and priming of the 
repertoire of Vβ TCR populations of CTL. 
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Introduction 

Respiratory enteric orphan virus (Reovirus), serotype 1 strain Lang (T1L) is a non-

enveloped, segmented dsRNA virus (Palmer and Martin, 1977) that is infectious in mice 

following oral and parenteral application, and elicits both humoral (London et al., 1987; 

Weinstein and Cebra, 1991) and cell-mediated immunity (Finberg et al., 1979; Letvin et al., 

1981). After gaining access to the intestinal tissue via the M cells of the PP (Wolf et al., 1983) , 

reovirus infection of immunocompetent mice causes a self-limited disease of enterocytes of the 

crypts of Lieberkuln adjacent to the PP of the distal ileum (Rubin et al., 1985). In response, 

virus-specific cytotoxic T lymphocytes (CTL) are induced within the PP (London et al., 1987). 

CTL may transit via efferent lymphatic vessels to the mesenteric lymph nodes and via the 

thoracic duct lymph and the systemic circulation to the spleen, peripheral lymph nodes (London 

et al., 1987), or intestinal mucosal sites such as the intestinal intraepithelial lymphocyte (IEL) 

compartment (London et al., 1989; Cuff et al., 1993; Chen et al., 1997). Parenteral infection with 

reovirus induces virus-specific CTL in the draining peripheral lymph nodes and spleen  (Letvin 

et al., 1981). CTL induced following infection with reovirus are CD8αβ+ TCRαβ+ Thy-1+ H-2 

class I-restricted T cells (London et al., 1987). It has been demonstrated that reovirus-specific 

CD8+ CTL induced in the PP following enteric reovirus infection (London et al., 1987) and in 

the lung following reovirus bronchopneumonia (Thompson et al., 1996) express the unusual cell 

surface marker germinal center and T antigen (GCT), but it remains unknown what other 

differences may exist among the cytotoxic T lymphocyte populations that are induced following 

enteric or systemic reovirus infection, especially as regards their selection and specificity. 

Recently, it has been demonstrated that murine reovirus bronchopneumonia following 

intratracheal instillation of reovirus T1L induces an unusual population of cytotoxic CD4+ 
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CD8αβ+ TCRαβ+ T cells (Periwal and Cebra, 1999), indicating that unique CTL populations 

might be induced by reovirus infection at distinct anatomic locations. Enteric reovirus T1L 

infection of C3HeB/FeJ mice has been shown to elicit CD8αβ+ CTL populations expressing 

Vβ12 and Vβ17, with minor populations expressing Vβ2, Vβ7, Vβ9, and Vβ14 in the intestinal 

IEL compartment (Chen et al., 1997). These CTL populations were thought to be representative 

of the CTL response primed in the PP following oral infection with reovirus T1L (Cuff et al., 

1993), although some may have been derived in situ given the uncertain ontogeny of the IEL 

compartment lymphocytes.  

We infected C3H mice orally or parenterally with reovirus, and assessed the Vβ 

repertoire of splenic virus-specific CTL populations induced to determine if the route of 

infection affected the selection of responder CTL populations. We also assessed the Vβ 

repertoire of virus-specific pCTL primed in the PP, as well as those primed in the peripheral 

lymph nodes, to determine if the virus-specific CTL Vβ populations recruited to the spleen 

following reovirus infection were representative of all the populations initially induced in the 

priming sites. Additionally, we adoptively transferred splenic and PP T cells from mice 

previously immunized orally or in the hind footpads with reovirus into reovirus-infected 

syngenic SCID mice to determine what CTL Vβ populations would expand in the presence of 

continuous virus restimulation in vivo.  

The humoral immune response to reovirus is influenced by micro-environmental or 

cellular factors at the anatomic site of infection (Weinstein and Cebra, 1991; Major and Cuff, 

1996). It is not known, however, if intestinal reovirus infection results in a CTL response distinct 

from that following infection in the systemic periphery. Differences in the recruitment of naïve T 

cells, and local antigen processing and presentation within the PP as opposed to the peripheral 
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lymph nodes may be reflected in the repertoire of CTL induced following oral or parenteral 

infection. 

Methods 
 

Animals:  7-8 week old male C3HeB/FeJ and C3HSmnPkrc severe combined 

immunodeficiency (SCID) mice were purchased from Jackson Laboratories (Bar Harbor, MA) 

and were housed in microisolator cages under specific pathogen free conditions. Mice were 

allowed to acclimate for one week, and were maintained on autoclaved food and water. Infected 

mice were housed in microisolator cages in a laminar flow cabinet in a separate room kept under 

negative pressure. 

Virus: Third passage reovirus T1L stocks were grown in L929 cells. Cells were disrupted 

by sonication in a buffer of 0.01M Tris, 0.25M NaCl, 0.01M ß-mercaptoethanol, and 0.1% 

sodium deoxycholate (pH 7.4) and purified by freon extraction followed by step-wise CsCl 

gradient centrifugation as described (Smith et al., 1969). Infectious reovirus titers were assessed 

by plaque assay in L929 cells as described (Cuff et al. 1990). 

Animal infections: Orally-infected mice received 3×107 plaque-forming units (pfu) of 

reovirus in 50µl of sterile borate-buffered saline and gelatin by gavage using a stainless steel 

feeding tube attached to a 1ml syringe. Hind footpad infected mice received 1.5×107 pfu of 

reovirus in 50µl of sterile borate-buffered saline and gelatin in each hind footpad. SCID recipient 

mice received 3×107 pfu of reovirus in 100µl total of sterile borate-buffered saline and gelatin by 

intraperitoneal injection. 

Preparation and culture of splenic, PLN, and PP cells: Single cell suspensions of 

spleens and PLN cells were prepared by expressing tissues through sterile nylon mesh. Single-

cell suspensions of PP were prepared by mechanical dissociation using sterile 18-gauge needles. 
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Splenocytes were depleted of red blood cells by incubation in a hypotonic solution of NH4Cl and 

Tris-HCl. Splenocytes and PLN cells were washed 3 times in medium consisting of RPMI-1640 

(Biowhittaker, Walkersville, MD) supplemented with 10% FBS (Hyclone, Logan, VT), 2mM L-

glutamine (Biowhittaker), 100U penicillin/ml, 0.1µg streptomycin/ml (Biowhittaker), and 50µM 

β-mercaptoethanol, (TCM). Cell viability was determined by trypan blue exclusion.  

Generation of reovirus-specific T cell lines: CTL lines were generated by suspending 

cells in TCM to a concentration of 107 cells/ml prior to re-stimulation with reovirus T1L at a 

multiplicity of infection (MOI) of 1 for 1 hr. at 25°C. Cells were subsequently re-suspended in 

TCM to a final concentration of 2 × 106 cells/ml and incubated at 37°C in an atmosphere of 5% 

CO2 for the first week. Cultures were re-stimulated at weekly intervals using syngenic naïve 

splenic feeder cells previously pulsed for 1 hr. at 25°C with reovirus T1L and irradiated with 

2000 rad of gamma radiation.  

Effector cells were re-stimulated with syngenic, RBC-depleted splenic feeder cells from 

naive mice that were resuspended in TCM to a concentration of 107/ml and pulsed with 3rd 

passage reovirus T1L at for 1 hr. at 25°C. The feeder cells were then washed and irradiated with 

2000 rad of gamma radiation . Irradiated feeder cells were added with effector splenocytes at a 

ratio of 5 feeders to each effector and brought to a final concentration of 2 × 106 cells/ml in fresh 

TCM containing 5% IL-2-containing conditioned media from Con A-stimulated rat splenocytes, 

and 5% 1 mM α-methylmannoside. Cultures were incubated at 37°C in an atmosphere of 5% 

CO2. 

Enrichment and Depletion of Vββββ-expressing populations by indirect panning.  Three 

days following in vitro restimulation with reovirus T1L, Ficoll-Hypaque gradient-enriched cells 

were treated with sterile PBS-diluted anti-Vβ antibodies. Antibodies used were: MR9-4 (mouse 
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anti-mouse Vβ5.1; 5.2 IgG2a), F23.1 (mouse anti-mouse Vβ8.1; 8.2; 8.3 IgG), RR3-15 (rat anti-

mouse Vβ11 IgG), or KJ23, (mouse anti-mouse Vβ17 IgG), (RR4-7, rat anti-mouse Vβ6 IgG2b), 

(TR310, rat anti-mouseVβ7 IgG2b), (MR11-1, mouse anti-mouse Vβ12 IgG1), (MR12-3, mouse 

anti-mouse Vβ13 IgG1), and (14-2, rat anti-mouse Vβ14 IgM) (Pharmingen, San Diego, CA).  

The cells were washed 3 times in PBS/5% FCS, and resuspended in 4 ml of PBS/5% FCS. Half 

of the cells from each treatment group were panned by two successive incubations on sterile 16 × 

100 mm polystyrene bacteriology grade petri dishes (Falcon, Franklin Lakes, NJ) coated with 

10µg/ml goat anti-rat or goat anti-mouse IgG (Rockland, Gilbertsville, PA) in a 0.15M Tris 

buffer (pH 9) for 45 minutes at 4°C. Adherent cells were washed 3 times on the petri dishes with 

PBS/5% FCS before being dislodged with a sterile rubber scrapper and cultured as above.  

Depleted and non-depleted cell cultures were assayed two days later for virus-specific 

cytotoxicity by 51Cr-release assay, and assessed for TCR expression by flow cytometry. 

Alternatively, depleted and enriched fractions were restimulated for a period of 1 week prior to 

analysis of and virus-specific cytotoxicity, using syngenic, irradiated, reovirus-pulsed 

thioglycollate-elicited peritoneal macrophages as feeder cells in a ratio of 1 feeder cell to 5 

effector cells. 

Adoptive transfer: RBC-depleted donor lymphocytes collected from mice that were 

infected 30 days previously were depleted of surface Ig-positive B cells by three successive 

incubations on sterile 16 × 100 mm polystyrene bacteriology grade petri dishes (Falcon) coated 

with 100µg/ml goat anti-mouse IgG, IgM and IgA antibody (Rockland) in a 0.15M Tris buffer 

(pH 9) for 45 minutes at 4°C. 1.5×107 non-adherent T cells were resuspended in 1ml. of sterile 

PBS, and were injected intraperitoneally into reovirus-infected SCID recipient mice using a 20-

gauge needle.  
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Depletion of CD4+ or CD8+ cells: CD4+ or CD8+ T cells were depleted by treatment 

with anti-mouse CD4 IgM (RL172) or anti-mouse CD8α IgM (3.155)-containing hybridoma 

culture supernatants, followed by the addition of Low-Tox rabbit complement (Cedarlane, 

Hornby, Ontario, Canada) to a final concentration of 10% by volume. The efficacy of 

complement-mediated depletion was determined by flow cytometry.   

51Cr release assay: Assays were performed as previously described (Cuff et al. 1998). 

Briefly, Ficoll-Hypaque gradient-purified effector CTLs were added in two-fold dilutions to 

duplicate or triplicate wells of 5×103 reovirus-infected or uninfected 51Cr-labeled (200µCi; 

Dupont, Wilmington, DE) L929 target cells in a V-bottom 96-well plate (Nalgene, Rochester, 

NY) at effector: target cell ratios starting at 100 or 50:1. The assay plates were incubated for four 

hours at 37°C in an atmosphere of 5% CO2.  Specific lysis of reovirus infected targets for each 

effector: target ratio was calculated as described (London et al., 1987). 

Flow cytometric analysis of effector cells: RBC-depleted mononuclear splenocytes, PP 

cells, and PLN cells from were stained with phycoerythrin (PE)-conjugated anti-CD8α mAb 

(CALTAG, Burlingame, CA), and fluorescein isothiocyanate (FITC)-conjugated mAbs to either 

CD4 or Vβ 2, 4, 5, 6, 7, 8.1/8.2, 8.3, 9, 10, 11, 12, 13, 14, 17, (Pharmingen). In some 

experiments, cells were also stained with a biotinylated  anti-Vβ3 mAb (Pharmingen) followed 

by FITC-avidin (CALTAG). Percentages of cells staining positive for each marker were 

determined by analysis on a FACScan flow cytometer (Becton-Dickinson, Franklin Lakes, NJ), 

and results were further analyzed using WinMIDI 2.8 software (Joseph Trotter, Scripps Research 

Institute, La Jolla, CA). 

CDR3ββββ length profile analysis: Fragment analyses were performed by a modification of 

the methods originally reported by Pannetier et al., (1993). Briefly, single cell suspensions of 
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purified CD8+ cells were prepared, and mRNA was isolated using the QIAGEN RNAeasy kit as 

per manufacturers instructions.  Isolated mRNA was converted to cDNA and subsequently 

amplified using Vβ6 or Vβ2 primers and TAMRA-conjugated Cβ primers (Integrated DNA 

Technologies, Coralville, IA) using sequences reported by Pannetier et al. using the QIAGEN 

RT-PCR kit (QIAGEN Inc., Valencia, CA) as per manufacturers instructions. Amplified 

products were analyzed using an ABI Prism model 377 automated sequencer (Applied 

Biosystems, Inc. Foster City, CA).  CDR3β length distribution profiles were assessed by means 

of Genescan 3.0 software (Perkin Elmer, Norwalk, CT).  

Statistical analysis: Means and standard deviations were calculated for each Vβ 

population expressed among all groups of mice and tissues assessed by flow cytometry. 

Statistically significant differences in Vβ expression were determined by one - way analysis of 

variance followed by the Tukey test using Sigmastat 2.0 software (Jandel Scientific, Chicago, 

IL).   

Results 
 
Reovirus T1L infection alters the Vββββ repertoire of CD8+ T cells in the spleen.  
 

The Vβ repertoire of CD8+ splenocytes from mice infected orally or in the hind footpads 

10 days previously was assessed by flow cytometry (Figure 1). CD8+ splenocytes from footpad-

infected mice showed a significantly elevated percentage of Vβ6+ cells compared to orally 

infected mice (p<0.05) and non-infected age-matched mice (p<0.001) (Figure 1A). Additionally, 

orally infected mice had a significantly increased percentage of Vβ9+ CD8+ splenocytes 

compared to non-infected mice (p=0.042). Absolute numbers of CD8+ splenocytes of each Vβ 

population were calculated for orally infected, footpad infected, and non-infected mice (Figure 

1B). Footpad infected mice had a significantly increased number of Vβ6+ and Vβ7+ CD8+ 



 

125 

 

splenocytes relative to non-infected mice (p=0.02 and p=0.022, respectively). Orally infected 

mice also had elevated numbers of splenic Vβ6+ and Vβ7+ CD8+ cells compared to non-infected 

mice, but the differences were not significant (p=0.467 and p=0.404, respectively).  

In vitro re-stimulation with reovirus expands virus-specific Vβ populations of CD8+T 

cells from the spleens of orally infected mice. Cultures of spleen cells from orally infected mice 

were assessed for changes in the Vβ repertoire of CD8+ T cells by flow cytometry and 

concomitantly assayed for enrichment of reovirus-specific CTLs by 51Cr release assay. Cell lines 

consistently showed greatly increased percentages of Vβ6+ CD8+ T cells, with continued 

representation of minor Vβ7+ and Vβ8.1, 2+ populations, while all other CD8+ Vβ populations 

decreased to very low levels after 5 weeks in vitro (Figure 2). In vitro re-stimulation with 

reovirus simultaneously enriched virus-specific CTLs, which mediated strong virus-specific 

cytotoxicity by 51Cr release assay (Figure 3).   

In vitro re-stimulation with reovirus also expands virus-specific Vβ6β6β6β6++++ CD8+T cells 
from the spleens of hind footpad infected mice.  
 

Spleen cells from mice infected in the hind footpads with reovirus were similarly cultured 

and assessed for changes in Vβ repertoire of CD8+ cells and enrichment of virus-specific CTLs. 

As with cultures of splenocytes from orally infected mice, cultured splenocytes showed a greatly 

increased percentage of Vβ6+ CD8+ T cells, with representation of a few minor populations 

(Figure 4), concurrent with enriched virus-specific CTL activity (data not shown).  

Effect of oral and hind footpad infection with reovirus T1L on the Vββββ repertoire of 
CD8+ cells in local lymphoid tissue.  
 

To determine if proliferative expansion of virus responsive CD8+ T cells in draining 

lymphoid tissues resulted in changes in the Vβ repertoire detectable by flow cytometry, mice 

were infected orally or in the hind footpads with reovirus.  7 days later, CD8+ PP lymphocytes 
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from orally infected mice, and CD8+ PLN lymphocytes from footpad infected mice were stained 

with a panel of FITC-conjugated anti-Vβ monoclonal antibodies, and compared to the Vβ 

staining profiles of CD8+ PP or PLN lymphocytes from mock infected C3H mice (Figure 5). No 

significant differences in the percentage expression of any Vβ population of CD8+ T cells were 

noted between mice infected by either route compared to mock infected controls.  

Vββββ repertoire of reovirus-specific CTL in PP and PLN.   
 

PP cells from orally infected mice or PLN cells from footpad-infected mice were cultured 

for a period of 2 weeks and assessed for changes in the Vβ repertoire of CD8+ T cells. PP and 

PLN cultures consistently showed increasing percentages of Vβ6+ cells (Figure 6), with 

concurrent enrichment of reovirus-specific CTL activity (Figure 7).  

Vββββ6+ CD8+ cells mediate reovirus-specific cytotoxicity.  
 

Spleens from mice infected orally or in the hind footpads were expanded in culture for 3 

weeks. Cultured cells were depleted of CD4+ T cells, the CD8+ cells were fractionated into Vβ6+, 

Vβ7+, or Vβ8.1+, 8.2+, and 8.3+ depleted and enriched fractions by panning  (Figure 8), and 

subsequently assessed for reovirus-specific cytotoxicity (Figure 9). The Vβ6-enriched fractions 

of cultured splenocytes from both footpad infected mice (Figure 9B), and orally infected mice 

(Figure 9C) consistently mediated high levels of reovirus-specific cytotoxicity, whereas Vβ6-

depleted fractions showed diminished reovirus-specific killing (9A and C). By contrast, the Vβ7-

enriched fractions did not mediate reovirus-specific killing (9B). Interestingly, Vβ8-enriched 

fractions did on rare occasion mediate a low level of killing (9B). No other CD8+ T cell Vβ 

populations in spleen cell lines from orally and footpad infected mice were shown to mediate 

reovirus-specific cytotoxicity, including Vβ5, Vβ9, Vβ10, Vβ11, Vβ12, Vβ13, Vβ14, or Vβ17 

(not shown). 
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Adoptively transferred, reovirus-primed CD8+ cells from immunocompetent donors 
expand in reovirus-infected SCID recipients.  
 

Splenocytes from C3H mice infected orally or in the hind footpads with reovirus 30 days 

previously were depleted of B cells by panning on anti-murine Ig coated petri plates. 1.5×107 

pooled cells (4 ×106 CD8+ cells) were injected intraperitoneally into congenic SCID mice 

infected intraperitoneally with reovirus 4 days previously. Aliquots of donor cells were assessed 

for the Vβ repertoire of CD8+ cells to allow quantitation of the number of CD8+ cells of each Vβ 

population transferred to recipient mice. Recipient SCID mice were sacrificed at days 8, 10, and 

12 post-transfer, and their splenocytes were stained for the Vβ expression (Figure 10). A 

dramatic expansion in the number of Vβ6+ CD8+ cells in the spleens of infected SCID recipients 

was observed for recipients of both orally infected and footpad infected donors. However, the 

number recovered from recipients of orally infected donors was significantly greater by day 12 

post-transfer than the number recovered from recipients of footpad infected donors (p<0.0144). 

The Vβ7+ CD8+ population was also increased in recipients of both donor groups, although 

spleens recovered from recipients of from orally infected donors had significantly more Vβ7+ 

CD8+ cells than those of recipients of footpad infected donors at day 12 post-transfer (p<0.0011). 

A similar outcome occurred for recovered Vβ8.1,2+ CD8+ cells (p<0.0089). Recipients of both 

donor groups also saw an expansion in the number of recovered Vβ17+ CD8+ over the course of 

the experiment. Reovirus infection of SCID recipient mice was essential in the recovery of donor 

cells and in the expansion of Vβ populations of CD8+ T cells, as immune donor cells transferred 

into non-infected SCID recipients showed no preference for expansion of any Vβ population (not 

shown).  
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CD8+ T cells recovered from the spleens of infected SCID recipients of immune 
splenocytes are enriched for virus-specific CTLs .  
 

Spleen cells recovered from infected SCID recipients of T cells from orally infected and 

footpad infected donor mice were assessed at days 8, 10, and 12 post-transfer for ex vivo 

cytotoxicity (Figure 11). Recovered spleen cells were depleted of CD8+ cells or CD4+ cells prior 

to 51Cr release assay. Spleen cells recovered from infected SCID recipients of orally infected and 

footpad infected donors mediated strong ex vivo cytotoxicity. Depletion of CD8+ cells, but not 

CD4+ cells, ablated virus-specific killing. Reovirus infection of SCID recipient mice was 

essential in inducing CTL activity, as donor cells recovered from non-infected SCID recipients 

did not mediate ex vivo virus-specific cytotoxicity (not shown).  

Adoptively transferred PP CD8+ lymphocytes from reovirus immune donors, but not those from 

naïve donors, expand in infected SCID recipients.1×107 B cell-depleted PP lymphocytes from 

orally infected mice or naive mice were injected intraperitoneally into SCID mice infected with 

reovirus 4 days previously. Recipient SCID mice were sacrificed at day 10 post-transfer, and 

their splenocytes were stained for the Vβ repertoire of recovered CD8+ T cells (Figure 12). 

Consistent with the results for the adoptive transfer of immune spleen cells, a dramatic expansion 

in the number of Vβ6+ CD8+ cells in the spleens of infected SCID recipients was observed 

(Figure 12A). By contrast, CD8+ cells recovered from the spleens of infected SCID recipients of 

naive CD8+ lymphocytes showed no clear expansion of any Vβ population (Figure 12B).  

Adoptively transferred PP lymphocytes from reovirus immune donors, but not 
those from naïve donors, are enriched for virus-specific CTLs in reovirus-infected 
SCID recipients.   
 

Spleen cells recovered from infected SCID recipients of CD8+ PP lymphocytes from 

orally infected and naive donor mice were assessed at day 10 post-transfer for ex vivo 

cytotoxicity (Figure 13). Adoptively transferred CD8+ PP lymphocytes from immune donors 
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recovered from the spleens of infected recipient SCID mice mediated strong reovirus-specific ex 

vivo cytotoxicity by 51Cr release assay (Figure 13A). By contrast, CD8+ PP lymphocytes from 

naive donors recovered from infected SCID recipients did not mediate ex vivo reovirus-specific 

killing (Figure 13B).  

In vitro re-stimulation results in the continued expansion of adoptively transferred 
immune Vββββ6+ CD8+ PP lymphocytes recovered from the spleens of reovirus infected 
SCID recipients. 
 

CD8+ PP lymphocytes from immune donor mice recovered from the spleens of reovirus 

infected SCID recipients at 10 days post-transfer were cultured for 3 weeks with reovirus pulsed 

PECs and Con-A conditioned media and assessed for changes in Vβ repertoire of CD8+ cells 

(Figure 14). Consistent with CD8+ splenic and PP lymphocytes from orally infected mice 

restimulated in vitro with reovirus, the percentage of Vβ6+ CD8+ cells increased with time.  

Effect of oral and hind footpad infection with reovirus T1L on the CDR3ββββ length 
profile of CD8+ cells in local lymphoid tissue and spleen.  
 

To determine if proliferative expansion of virus responsive CD8+ T cells in draining 

lymphoid tissues resulted in changes in the CDR3β length profile, mice were infected orally or in 

the hind footpads with reovirus.  10 days later, cells from spleens and the priming lymphoid 

tissues were depleted of CD4+ cells. Vβ6+ and Vβ2+ CD8+ PLN (Figure 15A) and splenic 

lymphocytes  from footpad infected mice, and Vβ6+ and Vβ2+ CD8+ PP (Figure 15B) and 

splenic lymphocytes  from orally infected mice were assessed for CDR3β length profile, and 

compared to the CDR3β length profiles of Vβ6+ and  Vβ2+ CD8+ PP, PLN, or splenic 

lymphocytes from mock infected C3H mice. Vβ2 was chosen as a control subpopulation, as 

Vβ2+ CD8+ cells consistently do not respond to reovirus T1L infection as determined by flow 

cytometry. No striking or consistent differences in the CDR3β length profile of PP, PLN or 
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splenic Vβ6+ or Vβ2+ CD8+ T cells were noted between mice infected by either route compared 

to mock infected controls.  

Adoptively transferred, reovirus-primed Vββββ6+, but not Vββββ2+, CD8+ cells from 
reovirus-immune donors show altered CDR3ββββ length profiles upon recovery from 
reovirus-infected SCID recipients.  
 

Spleen cells recovered from infected SCID recipients of splenic or PP T cells from orally 

infected donor mice, or splenic T cells from footpad infected donor mice depleted of CD4+ T 

cells were assessed at day 10 post-transfer for CDR3β length profiles among Vβ6+ or Vβ2+ 

CD8+ cells. As previously shown, spleen cells recovered from infected SCID recipients of orally 

infected and footpad infected donors mediated strong ex vivo cytotoxicity (data not shown). 

Vβ6+ CD8+ cells recovered from reovirus-infected SCID recipients of cells from both orally 

infected and hind footpad infected donors showed dramatic and consistent alterations in the 

CDR3β length profile relative of the profiles for the input cells, with a predominant expansion of 

a subpopulation(s) bearing Vβ6+ TCR giving a CDR3β fragment length peak at 138bp (Figure 

16). 

In vitro re-stimulation with reovirus alters the CDR3ββββ length profiles Vββββ6+ CD8+T 
cells from the spleens of orally infected and footpad infected mice.  
 

Spleen cell lines from orally infected and parenterally infected mice were depleted of 

CD4+ cells and assessed for changes in the CDR3β length profile of Vβ6+ CD8+ or Vβ2+CD8+ T 

cells. Cell lines from both orally infected and footpad infected mice consistently showed a 

uniform and dramatic alteration of the CDR3β length profile of Vβ6+ CD8+ T cells, with a 

predominant expansion of a clonal subpopulation(s) bearing Vβ6+ TCR giving a CDR3β length 

peak at 138bp (Figure 17). No consistent changes in the CDR3β length profile of Vβ2+ CD8+ 
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cells were noted.  In vitro re-stimulation with reovirus simultaneously enriched virus-specific 

CTLs, which mediated strong virus-specific cytotoxicity (data not shown).   

In vitro re-stimulation with reovirus further alters the CDR3ββββ length profiles Vββββ6+ 
CD8+T cells recovered from the spleens of infected SCID recipients of orally 
infected and footpad infected donors.  
 

Purified CD8+lymphocytes recovered at 10 days post-transfer from the spleens of 

reovirus infected SCID recipients of orally or footpad infected donors were re-stimulated for 3 

weeks with reovirus, whereupon the cell lines were found to be nearly 100% Vβ6+ and 65% 

Vβ6+, respectively, and mediated high levels of reovirus-specific cytotoxicity (data not shown). 

CDR3β length profile analysis of the Vβ6+ cells demonstrated a clear dominance of the Vβ6+ 

cells by a clonal subpopulation(s) bearing TCR β chains utilizing the single, uniform CDR3β 

length seen previously, regardless of the route of infection of the original donor mice (Figure 

18). 

Discussion 
 

We sought to determine if the route of infection influenced the virus-specific CTL 

response. Specifically, we asked whether oral and footpad reovirus T1L infection of mice elicit 

different responder CTL populations utilizing distinct TCR Vβ elements. There are many 

potential reasons why CTL induced following oral infection with reovirus could be different 

from those induced parenterally. During natural reovirus infection, the ingested virions undergo 

pancreatic chymotryptic proteolysis of the outer coat proteins in the duodenum to yield the 

infectious intermediate sub-viral particle (ISVP) (Bodkin et al., 1989). This processing within 

the lumen of the small intestine may generate antigenic determinants distinct from those 

generated in the systemic periphery. Additionally, cleaved viral antigens may be taken up by 

intestinal absorptive epithelial cells (Pang et al., 1981; So et al., 2000) which express a number 
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of classical and non-classical antigen presentation and co-stimulatory molecules such as MHC 

class I, class II, CD1 and TL (mice) (Hershberg and Mayer, 2000; Matsumoto et al., 1992), 

CD1d (human), and the CD8 binding and activating ligand, gp180 (Campbell et al., 1999), and 

are thought to act as unconventional antigen presenting cells to lymphocytes of the intestinal 

mucosal (Kaiserlian and Etchart, 1999). Evidence also exists that lamina propria dendritic cells 

underlying the epithelium may sample luminal antigen directly (Kaiserlain and Etchart, 1999), or 

acquire antigen by from endocytosed, apoptotic intestinal epithelial cells (Huang et al., 2000), 

possibly acting in the priming of mucosal T cell populations (Muller et al., 2000). Thus, the 

generation of different antigenic determinants and the presence of distinct populations of antigen 

presenting cells could influence the priming of the CTL response. 

10 days following oral or footpad infection of C3H mice with reovirus T1L, we observed 

a consistent expansion in the percentage and absolute number of splenic Vβ6+ CD8+ T cells 

compared to non-infected mice. However, while we also noted an increase in the percentage of 

Vβ6+CD8+ cells in the PP 7 days following oral reovirus infection, we did not observe a similar 

increase of Vβ6+CD8+ T cells in the draining PLN of mice infected in the hind footpads. 

Nevertheless, the observed increase in splenic Vβ6+ CD8+ cells was consistently greater in 

footpad-infected mice than in orally infected mice (Figure 4). Uncertainty in the numbers of 

naïve T cells primed at each site, and the possible contribution of other potential draining 

lymphoid tissues such as the mesenteric lymph nodes or inguinal lymph nodes may tend to 

obscure the significance of these differences. However, the finding that the same Vβ populations 

can be cultured from the spleen and the priming sites irrespective of the route of infection led us 

to analyze the spleen as a common repository of CD8+ memory cells derived from those CD8+ 

cells induced in the priming tissues (Bousso et al., 1999).  It is possible that differential CD8+ T 
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cell migration and trafficking may be reflected in the disparity in observed Vβ6+CD8+ T cells in 

draining lymphoid tissues and spleens. For instance, it has been observed that activated virus-

specific naïve T cells primed in peripheral lymph nodes can deposit in the spleen, where 

subsequent rounds of proliferation dramatically increase the numbers of virus-specific T cells 

(Haanen et al., 1999). Thus, despite the fact that Vβ6+CD8+ T cells seem not to be increased in 

the PLN of mice infected with reovirus T1L in the hind footpads, (although virus-specific 

Vβ6+CD8+ T cells certainly are present as they can be expanded in vitro) activated Vβ6+CD8+ T 

cells emigrating from the PLN that deposit in the spleen and subsequently proliferate may allow 

for our observation of elevated Vβ6+CD8+ cell numbers in the spleen. This is likely also true for 

PP-derived Vβ6+ CD8+ T cells. However, the less dramatic increase noted in the spleens of 

orally infected mice, in light of the observed expansions of the percentage of Vβ6+CD8+ T cells 

in the PP, may suggest that the gut-derived reovirus-specific CTL are less likely to deposit in the 

spleen, possibly instead trafficking preferentially to mucosal effector sites (Bode et al., 1999), 

perhaps by α4β7-MadCAM-1 interaction (Farstad et al., 1996; Lefrancois et al., 1999). 

Splenic, PP, and PLN cells consistently showed dramatically increased representation of 

Vβ6+ CD8+ T cells with continued restimulation in vitro. Other CD8+ T cell populations bearing 

other TCR Vβ elements were also occasionally represented following several rounds of in vitro 

restimulation, albeit less consistently and to a less dramatic degree than the ubiquitous Vβ6+ 

CD8+ T cells. These other CD8+ Vβ-populations included cells bearing Vβ8.1 or Vβ8.2, Vβ8.3, 

Vβ7, Vβ14, or Vβ13 in order of frequency of occurrence, and showed no association with the 

initial route of infection. However, only the Vβ6+CD8+ cells consistently mediated virus-specific 

cytotoxicity, regardless of the initial route of infection. TheVβ12+ and Vβ17+ CD8+ T cell 

populations, found by Chen et al. (1997) to contain reovirus-specific cells within the IEL 
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compartment of C3H mice infected orally with reovirus T1L, consistently could not be recovered 

following restimulation of splenocytes in vitro regardless of the route of infection. It should be 

remembered, however, that the intestinal IEL are an arcane population that may not be 

representative of conventional T cell populations. 

It was possible that the different routes of infection yielded distinct reovirus-specific 

CD8+ Vβ-populations that were not accurately represented by the CTL populations expanded in 

vitro. For instance, it was possible that culture conditions were causing the loss or under-

representation of some virus-specific CD8+ T cell populations, as has been suggested in other 

culture systems (Arenz et al., 1997). Therefore, we sought to expand reovirus-specific CTL in 

vivo, in a model of chronic reovirus infection in the absence of humoral immunity. We 

adoptively transferred B cell-depleted splenic T cells from C3H donors infected either orally or 

in the hind footpads with reovirus T1L, into reovirus-infected C3H SCID mice to observe the 

expansion of reovirus-specific CD8+ T cells. We reasoned that immune cells must expand in 

reovirus infected SCID mice, as previous reports indicated that unfractionated immune Peyer�s 

patch cells adoptively transferred into SCID recipients were able to clear reovirus infection 

(George et al., 1990).  Immune cells were transferred one month post-infection with reovirus to 

allow for the redistribution of reovirus-specific Ig-producing plasma cells from the spleen to 

effector sites such as the bone marrow (Slifka et al., 1995), as direct panning for surface Ig-

positive splenic B cells would not otherwise allow the effective depletion surface Ig-negative 

plasma cells from the transferred donor splenocytes. Transferred splenocytes and their progeny 

were recovered from the spleens of reovirus infected SCID mice at various time points in the 

second week post-transfer, and demonstrated high levels of virus-specific cytotoxicity 

immediately ex vivo. This cytotoxicity was completely abrogated by complement and 
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monoclonal antibody mediated depletion of CD8+ cells but not CD4+ cells, thus demonstrating 

that recovered CD8+ T cells were responsible for the observed virus-specific cytotoxicity, and 

not CD4+ CTL or activated NK cells (Taterka et al., 1995). CD4+ cells were not depleted from 

the initial bolus of transferred donor cells to provide virus-specific T helper cell support, as we 

were concerned that massive stimulation of CD8+ T cells without CD4+ T cell support would 

lead to clonal exhaustion, as has been reported in murine LCMV infection (Battegay et al., 1994; 

Matloubian et al., 1994). Interestingly, in other adoptive transfer systems the relative ratio of 

CD4+ to CD8+ T cells transferred into T cell deficient mice has been shown to be tightly 

regulated (Rocha et al., 1989). However, we observed a dramatic and rapid inversion of the 

CD4/CD8 ratios of recovered donor cells, a result which closely agrees with the findings of 

Zimmermann and Pircher (1999) and Zimmermann et al., (1999) in which immune T cells from 

mice previously infected with vaccinia virus, vesicular stomatitis virus, or lymphocytic 

choriomeningitis virus (LCMV), that were subsequently transferred into congenic recipient mice 

infected with the homologous virus showed a rapid expansion of donor CD8+ T cells and an 

inversion of the donor CD4/CD8 T cell ratio by the second week post-transfer. The rapid 

proliferation of CD8+ T cells in our transfer experiments is also due mainly to the activation of 

memory CTL, as T cells recovered from the spleens of infected SCID recipients of PP T cells 

from naïve donors could not mediate reovirus-specific cytotoxicity ex vivo. Additionally, any 

non-specific proliferation of donor CD8+ T cells in the recipient to fill the otherwise empty T cell 

compartment (Rudolphi et al., 1991), a phenomenon called �blind homeostasis� (Cole, 1995), did 

not result in same the Vβ repertoire distribution we observed for infected SCID recipients of 

immune T cells, as CD8+ spleen cells recovered from the infected SCID recipients of naïve PP 
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cells, as well as CD8+ spleen cells recovered from non-infected SCID recipients of immune 

donor splenocytes, showed no preferential expansion  of any Vβ population.  

Vβ analysis of the recovered CD8+ cells from infected SCID recipients of both orally and 

hind-footpad infected donor mice demonstrated a dramatic and consistent expansion in the 

percentage and number of Vβ6+ T cells, with other minor expansions in some other populations, 

notably those utilizing Vβ7 or Vβ8. The Vβ repertoire profile recovered CD8+ cells did not, 

however, demonstrate any overt differences in responder CD8+ T cell Vβ subpopulations 

dependent on the route of infection of the donor mice, and overall the results closely agreed with 

our previous analyses of cultured CD8+ cells from orally and footpad infected animals. Further 

studies, using enriched T cells from the PP of immune donor C3H mice infected orally with 

reovirus T1L one month previously transferred into reovirus infected C3H SCID mice also 

resulted in the expansion in vivo of Vβ6+CD8+ T cells, indicating that the reovirus-specific CD8+ 

T cells recovered from the spleens of recipient SCID mice reflected those reovirus-specific cells 

from the initial priming tissues. Thus, we conclude that the predominant CTL response to both 

oral and footpad infection of C3H mice with reovirus T1L is of Vβ6+CD8+ T cells. We further 

conclude that the recovered splenic populations are reflective of the T cell populations induced to 

respond at the initial priming sites, and therefore that the anatomic site of infection does not 

affect the selection of responder CD8+ T cell populations.  

There are indications, however, that reovirus infection in distinct mucosal compartments, 

may prime unique CTL populations. For example, murine bronchopneumonia following 

intratracheal instillation with reovirus T1L primes CTL responses in the draining 

tracheobronchial and mediastinal lymph nodes, including unique CD4+ CD8αβ+ TCRαβ+ CTL 

(Periwal and Cebra, 1999). Additionally, Chen et al. (1997) determined that enteric reovirus T1L 
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infection of C3HeB/FeJ mice induced reovirus-specific CTL in the intestinal IEL compartment 

that were Vβ12+, or Vβ17+, with other apparently virus-responsive CD8+ populations expressing 

either Vβ2, Vβ7, Vβ9, or Vβ14. We demonstrated that the CTL Vβ populations recovered from 

the PP and spleen or the PLN and spleen following enteric and systemic infection of C3HeB/FeJ 

mice, respectively, were essentially the same, yet are distinct from those Chen et al. (1997) 

expanded in culture out of the IEL compartment. However, although evidence exists that 

reovirus-specific CTL recovered from the IEL compartment are originally primed in the PP, the 

IEL compartment is largely populated by unconventional CD8+ T cell of uncertain ontogeny and 

function, which may not be representative of conventional T cells of the peripheral lymphoid 

tissues. Indeed, the presence of unusual lymphoid structures such as cryptopatches (Saito et al., 

1998; Ishikawa et al., 1999), and lymphocyte filled villi (Moghaddami et al., 1998), postulated to 

provide intestinal sites of extrathymically-derived IEL, suggests that T cells produced and 

primed in situ may provide a source of virus-specific CTL in addition to those derived from the 

PP. 

  In any event, whether or not enteric reovirus infection induces minor populations of CTL 

of unconventional ontogeny, the CTL response was overwhelmingly dominated by Vβ6+ CD8+ 

that, at the level of flow cytometric analysis, was not different from the CTL induced following 

parenteral footpad infection. However, distinct clonal responses might occur within the broad 

Vβ6+ response dependent on the anatomic site of infection. A more detailed characterization of 

the responder Vβ6+ CD8+ T cells in the spleens and priming lymphoid tissues was performed by 

CDR3β length profile analysis. While no difference ex vivo was found in the CDR3β length 

profile of Vβ6+ CD8+ from spleens and priming tissues relative to non-infected controls, re-

stimulation with reovirus in vitro, and adoptive transfer of immune cells into infected SCID 
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recipients yielded Vβ6+ CD8+ CTL with a consistent expansion of one or a few clones utilizing 

TCR β chains of the same length. This CDR3β length profile was uniformly found in Vβ6+ 

CD8+ CTL initially primed by either oral or parenteral infection, further suggesting that the route 

of infection does not select for the priming of different populations of responder CD8+ cells. 

These findings imply that the antigen processing and presenting machinery utilized by APC at 

the draining lymphoid tissue of different anatomic sites is conserved, indicating that perhaps 

viral antigen processing and epitope presentation events do not differ between the intestinal 

immune system and that of the systemic periphery. Thus, the cellular immune system seems to 

utilize similar strategies and cell populations to control infection within the intestine and the 

systemic periphery. 



 139

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 4 5 6 7  8.1,2  8.3 9 10 11 12 13 14 17

5

10

15

20

25

30

35

PLN from non-infected mice
PLN from footpad-infected mice

2 3 4 5 6 7  8.1,2  8.3 9 10 11 12 13 14 17

5

10

15

20

25

30

35

PP from non-infected mice
PP from perorally-infected mice

%
 o

f C
D

8+  c
el

ls
 

%
 o

f C
D

8+  c
el

ls
 

 Vβ 

A 

B 



 

140 

 

 

 

 

 

 

 

 

Figure 1.  Vβ repertoire of CD8+ T cells from the Peyer�s patches of C3H mice infected 

perorally and the popliteal lymph nodes of mice infected in the hind footpads with reovirus 

7 days previously (A and B respectively), compared to Peyer�s patch and popliteal l Data 

are expressed as mean percentage±±±± standard deviations. 
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Figure 2.  Vβ repertoire of representative cultures of CD8+ Peyer�s patches from C3H mice 

infected perorally and popliteal lymph nodes from mice infected in the hind footpads with 

reovirus (A and B respectively). Shown are the percentages of CD8+ cells staining positive 

with a panel of FITC-anti-Vββββ antibodies immediately ex vivo and after 2 weeks of in vitro 

restimulation with reovirus. In both cultures there has been an expansion of the Vββββ6+ CD8+ 

subpopulation, with  Vββββ8.1,2+ and Vββββ8.3+ also showing increased representation in Peyer�s 

patch cultures. Data is show as mean percentage expression. 
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Figure 3.  51Cr release assay of Peyer�s patch and popliteal lymph node cells derived from 

C3H mice infected perorally or in the hind footpads and restimulated with reovirus in vitro 

for a period of 2 weeks. Data is given as mean percent specific lysis ±  standard deviation. 
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Figure 4.  Ten days following peroral or hind footpad infection of C3H mice with reovirus, 

splenocytes were assessed by flow cytometry for Vβ repertoire expression among CD8+ T 

cells. (A.) The percentage of CD8+ cells staining positive with each anti-Vβ antibody were 

determined for infected and non-infected control mice. Data are given as mean percentage 

±±±± standard deviation. For all three groups, n=9. 

*Significant differences by one way ANOVA followed by the Tukey test. Footpad infected mice 

have an increased percentage of Vβ6+ CD8+ cells compared to perorally infected and non-

infected mice (p<0.05 and p<0.001, respectively). Perorally infected mice show increased 

expression of Vβ9+ CD8+ cells compared to non-infected (p=0.042).  

(B.) The absolute numbers of CD8+ expressing each Vβ were calculated. Data are given as 

(means ± standard deviations)×10-6 CD8+ cells.  

Significant differences as determined by one-way ANOVA followed by the Tukey test. Footpad-

infected mice have a greater number of Vβ6+ and Vβ7+ CD8+ splenocytes compared to non-

infected controls (p=0.02 and p=0.022, respectively).  
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Figure 5.  Vβ repertoire of cultured CD8+ splenocytes from C3H mice infected perorally 

with reovirus. Shown are selected Vβ staining profiles of CD8+ splenocytes (A) and after 5 

weeks in culture (B). Restimulation in vitro with reovirus during culture has selectively 

expanded the Vβ6+ CD8+subpopulation, with conspicuous representation of the Vβ7+, 

Vβ8.1, 2+ and Vβ8.3+ and Vβ14+ subpopulations after 5 weeks. 

* No stain panels represent cells stained with PE-anti-CD8α+ alone. The percentage of cells in 

the upper right quadrant are subtracted from the percentage of CD8+ cells staining positive for 

each FITC-Vβ antibody to correct for false-positives. 
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Figure 6.  51Cr release assay of splenocytes derived from C3H mice previously infected 

perorally with reovirus. Splenocytes were restimulated in vitro for a period of 5 weeks 

prior to analysis.  Data is given as mean lysis. 
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Figure 7.  Figure 7. Vβ repertoire of CD8+ splenocytes from C3H mice infected with 

reovirus in the hind footpads. Shown are selected Vβ staining profiles of CD8+ splenocytes 

after 2 weeks of culture (A) and after 5 weeks of culture (B). Re-stimulation with reovirus 

in vitro has selectively expanded the Vββββ6+ CD8+ subpopulation, and to a lesser extent the 

Vββββ7 and Vββββ8.1 subpopulations, from weeks 2 to 5. 

*No stain panels represent cells stained with PE-anti-CD8α+ alone. The percentage of cells in the 

upper right quadrant are subtracted from the percentage of CD8+ cells staining positive for each 

FITC-Vβ antibody to correct for false-positives. 
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Figure 8.  Flow cytometric analysis of the Vβ6, Vβ7, and Vβ8 expression of fractions of 

sorted CD8+ splenocytes from footpad-infected C3H mice. Splenocytes were cultured for 3 

weeks and complement depleted of CD4+ cells as described in methods. CD8+ cells were 

then sorted into Vββββ6+, Vββββ7+, and Vββββ8+ enriched and depleted fractions by indirect panning. 



 155

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

0

20

40

60

80

E:T Ratio

12.5 6.3 3.1 1.5 0.8 

0

20

40

60

Control
Vβ6 depleted
Vβ7 depleted
Vβ8 depleted

Control
Vβ6 enriched
Vβ7 enriched
Vβ8 enriched

Vβ6 depleted

Vβ6 enriched

Vβ8 depleted

Vβ8 enriched

%
 sp

ec
ifi

c 
ly

si
s 

%
 sp

ec
ifi

c 
ly

si
s 

%
 sp

ec
ifi

c 
ly

si
s 



 

156 

 

 

 

 

 

 

 

 

Figure 9.  Representative 51Cr release assays of virus-specific cytotoxicity mediated by 

selected Vβ subpopulations of cultured CD8+ splenocytes from C3H mice previously 

infected in the hind footpads or perorally with reovirus. Splenocytes from footpad and 

perorally infected mice were cultured for 3 weeks and then complement depleted of CD4+ 

cells as detailed in methods. CD8+ cells from footpad infected mice were then incubated 

with monoclonal antibodies specific for either Vββββ6, Vββββ7, or Vββββ8.1, 2, and 3.  Incubated cells 

were then separated by indirect panning into enriched and depleted fractions of the Vββββ 

subpopulation of interest prior to analysis of anti-viral cytotoxicity by 51Cr release assay, as 

detailed in methods (A and B are depleted and enriched fractions, respectively). CD8+ 

splenocytes of perorally infected mice were similarly sorted and assessed for anti-viral 

cytotoxicity (C).   
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Figure 10.  Intracellular interferon-γ staining of a CD8+ splenocytes from perorally 

infected C3H mice after 3 weeks of reovirus restimulation in vitro. 5.0�ҳ106 cell fractions 

were incubated for 6 hours in the presence of 2.5ҳ106 PECs either pulse or unpulsed with 

reovirus as described in methods. Brefeldin A was added for the last 5 hours of culture.  

Cells were stained first with anti-FcγγγγR, then with antibodies to CD8ββββ and select Vββββ 

subpopulations. CD8ββββ+ Vββββ6+, Vββββ8.1, 2+, Vββββ8.3+, or Vββββ12+ and Vββββ17+ cells were 

permeabilized and assessed for the intracellular accumulation of interferon-γγγγ with PE-anti-

IFN-γγγγ antibody. 

*Isotype control antibody, PE-anti-rat IgG2b, added to splenocytes co-cultured with reovirus-

pulsed APC. 

 

 

 

 

 

 



 159

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

2 3 4 5 6 7 8.1,2 8.3 9 10 11 12 13 14 17

1

2

3

4

5

6

7

8

donor input
day 8
day 10
day 12

(1
0-6

) C
D

8+  c
el

ls
 

 *

 * 

  *  *  * 

A 

Vβ
2 3 4 5 6 7 8.1,2 8.3 9 10 11 12 13 14 17

1

2

3

4

5

6

7

8 B 

 * 

(1
0-6

) C
D

8+  c
el

ls
 



 

160 

 

 

 

 

 

 

 

 

Figure 11.  Vβ repertoire of CD8+ T cells recovered from reovirus-infected SCID recipients 

of immune splenocytes from donor mice infected perorally (A.) or in the hind footpads (B.) 

one month before. Splenocytes were isolated from recipient reovirus infected SCID mice at 

days 8, 10, or 12 post-transfer. Data are given as (mean ±±±± standard deviation)××××10-6. 

* Significant by analysis of variance of the log10 ratio of the input cell numbers for each Vβ 

subpopulation to the numbers recovered.  SCID recipients of splenocytes from perorally-infected 

donors show significantly elevated Vβ2+(p<0.0036), Vβ6+(p<0.0144), Vβ7+(p<0.0011),  and 

Vβ8.1, 2 + (p<0.0089) CD8+ T cells by day 12 post-transfer compared to SCID recipients of cells 

from footpad-infected donors. Cells recovered from SCID recipients of both perorally-infected 

and footpad-infected donors showed a significant increase in Vβ17+ cells (p<0.0272) by day 10 

post-transfer. 
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Figure 12.  . Immediate ex vivo 51Cr release assay of splenocytes recovered from reovirus 

infected C3H SCID recipients ten days after adoptive transfer of purified splenic T cells 

from donor C3H mice previously infected perorally (A) or in the hind footpads (B) with 

reovirus. Recovered splenocytes were complement depleted of either CD4+ cells or CD8+ 

cells as described in methods. Control fractions were treated with complement alone. 

Data are given as mean % specific lysis ±  standard deviation.  
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Figure 13.  Vβ repertoire of CD8+ lymphocytes recovered from the spleens of infected C3H 

SCID recipient mice of perorally infected (A) or naïve (B) donor C3H mice, ten days after 

adoptive transfer of Peyer�s patch cells as described in methods. Data are expressed as 

(means ±±±± standard deviations)××××10-6 CD8+ cells. 

Figure A, n=5 recipient mice compiled from 2 experiments. 

Figure B, n=3 recipient mice. 
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Figure 14.  Ex vivo 51Cr release assay of splenocytes from reovirus-infected C3H SCID 

mice 10 days after adoptive transfer of purified Peyer�s patch T cells from naïve C3H 

donors or immune donors infected perorally with reovirus one month previously.  

Splenocytes from infected SCID recipients of immune donor T cells mediate virus-specific 

cytotoxicity immediately ex vivo, whereas splenocytes of infected SCID recipients of naïve 

T cells do not. 
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Figure 15.  CDR3β length profiles of Vβ6+ and Vβ2+ CD8+ T cells from the popliteal 

lymph nodes of footpad infected mice (A) and Peyer�s patch cells of orally infected mice (B) 

compared to cells from non-infected controls. Cells from infected and non-infected mice 

were harvested 10 days after infection, and were depleted of CD4+ cells. Cellular RNA was 

isolated and used as template for RT-PCR using Vββββ2 or Vββββ6 and Cββββ primers and assessed 

using an automated sequencer as described in methods. Data are shown as representative 

CDR3ββββ length profiles for Vββββ6 and Vββββ2 CD8+. No differences are seen in the profiles of 

cells from infected mice compared to those of non-infected mice immediately ex vivo. 
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Figure 16.  CDR3β length profiles of Vβ6+ and Vβ2+ CD8+ T cells from the spleens of 

footpad infected mice and orally infected mice, compared to cells from non-infected 

controls. Cells from infected and non-infected mice were harvested 10 days after infection, 

and were depleted of CD4+ cells. Cellular RNA was isolated and used as template for RT-

PCR using Vββββ2 or Vββββ6 and Cββββ primers and assessed using an automated sequencer as 

described in methods. Data are shown as representative CDR3ββββ length profiles for Vββββ6 and 

Vββββ2 CD8+. No differences are seen in the profiles of cells from infected mice compared to 

those of non-infected mice immediately ex vivo. 
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Figure 17.  CDR3β length profiles of Vβ6+ and Vβ2+ CD8+ T cells recovered from the 

spleens of reovirus infected SCID recipients of purified splenic T cells from footpad 

infected mice or purified T cells from the spleens or Peyer�s patches of orally infected 

donor mice. Cells were recovered from recipient mice 10 days post-transfer, and were 

depleted of CD4+ cells. Cellular RNA was isolated and used as template for RT-PCR using 

Vββββ2 or Vββββ6 and Cββββ primers and assessed using an automated sequencer as described in 

methods. Data are shown as representative CDR3ββββ length profiles for Vββββ6 and Vββββ2 CD8+ 

cells. A consistent expansion of Vββββ6+ CD8+ cells using a TCR ββββ chain CDR3ββββ length is 

indicated by the arrow (▲). No consistent or clear changes are seen in the control Vββββ2 

profiles. 



 173

Vβ2

132 144 156

162150 174

Vβ6

132 144 156

162150 174

2 week cultured splenocytes

footpad
infected

orally
infected



 

174 

 

 

 

 

 

 

 

 

Figure 18.  CDR3β length profiles of Vβ6+ and Vβ2+ CD8+ T cells from cultured cell lines 

established from the spleens of footpad infected mice or orally infected mice. Cells were re-

stimulated in vitro with reovirus for 2 weeks, and were depleted of CD4+ cells prior to 

analysis. Cellular RNA was isolated and used as template for RT-PCR using Vββββ2 or Vββββ6 

and Cββββ primers and assessed using an automated sequencer as described in methods. Data 

are shown as representative CDR3ββββ length profiles for Vββββ6 and Vββββ2 CD8+. A consistent 

expansion of Vββββ6+ CD8+ cells using a TCR ββββ chain CDR3ββββ length is indicated by the arrow 

(▲). No consistent or clear changes are seen in the control Vββββ2 profiles. 
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Figure 19.  CDR3β length profiles of Vβ6+ CD8+ T cells from cell lines established from 

recovered splenocytes of reovirus infected SCID recipients of purified splenic T cells from 

footpad infected mice or purified T cells from the spleens of orally infected donor mice. 

Cells were recovered from recipient mice 10 days post-transfer, and were depleted of CD4+ 

cells. The cells were re-stimulated with reovirus in vitro for a period of 3 weeks. Cellular 

RNA was then isolated and used as template for RT-PCR using Vββββ6 and Cββββ primers and 

assessed using an automated sequencer as described in methods. Data are shown as CDR3ββββ 

length profiles for Vββββ6 CD8+ cells. A dramatic and overwhelming expansion of Vββββ6+ CD8+ 

cells using a TCR ββββ chain CDR3ββββ length is indicated by the arrow (▲).Vββββ2 profiles were 

not assessed, as the cell lines from recipients of footpad infected donors and orally infected 

donors were shown to be 100%  and 65% Vββββ6+, respectively. 
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Abstract 

Systemic immunity is progressively impaired in ageing, predisposing to morbidity and 
mortality from neoplasia and infectious disease. However, the effect of ageing on mucosal 
immunity is controversial.  To assess intestinal immunity in ageing, young and aged mice were 
orally immunized with reovirus serotype 1 strain Lang or cholera toxin (CT). Analysis of local 
intestinal and systemic reovirus or CT-specific IgA and IgG responses was performed by 
ELISPOT analysis of Peyer�s patches (PP) and spleens, and by ELISA of intestinal fragment 
culture supernatant and fecal IgA and serum IgG. Reovirus-specific cytotoxic T lymphocyte 
(CTL) responses were assessed by frequency analysis and bulk culture 51Cr release assay. As 
previously reported by others, aged mice immunized orally with CT mounted diminished 
intestinal and systemic IgA responses to CT compared to young mice. By contrast, aged mice 
yielded two to three-fold more reovirus-specific IgA-producing cells in the PP compared to 
young mice, and also higher titers of reovirus-specific IgA in fragment culture supernatants. In 
addition, reovirus-specific cytotoxicity and CTL frequencies from aged mice were not different 
from those of young mice. Together, these results suggest a diminished potential for systemic 
and intestinal immunity to orally applied protein antigens in ageing, but an intact ability to 
respond to intestinal virus infection. Infection with a replicating virus may induce inflammatory 
mediators and innate immune factors that potentiate the priming of mucosal immunity, 
overcoming ageing related deficits otherwise seen following oral immunization with non-
replicating or inert antigens, thus suggesting the importance of antigen replication to antigen-
specific immunotherapy strategies in the elderly. 
 
Key words: ageing, GALT, mucosal, CTL, IgA, IgG, Peyer�s patch, intestine, reovirus, cholera 
toxin 
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Introduction 

 
Ageing is associated with a decline of immune function in humans and animals. 

Declining immune function and regulation is believed to result in an increased incidence of 

infectious diseases, neoplasia, and autoimmunity in the aged (1). Ageing affects cellular 

immunity mediated by both CD4+ and CD8+ T cells, and CD8+ CTL (2).  A number of studies 

have documented decreased CTL proliferation and killing in aged mice (3, 4) and humans (5-7), 

that can lead to prolonged duration of infection (8). Impaired CTL proliferation results from 

decreased T helper  (Th) cell support (9), diminished antigen presenting cell function (10), and 

defective cell signaling following TCR/CD3 ligation (11-13) and CD28 co-stimulation (14). 

Decreased cytotoxicity by CTL results from defective production of perforin (15-17) or serine 

esterase gene products (15), and possibly impaired exocytosis of cytotoxic granule contents (18). 

In some studies, naive precursor CTL (pCTL) frequencies are lower in aged animals and humans 

following infection or immunization compared to the pCTL frequencies in similarly treated 

young animals (19-22). By contrast, other studies suggest that the initial frequencies of antigen-

specific pCTL may be similar in young and aged animals, but pCTL from aged subjects may 

undergo far fewer rounds of proliferation than those from young, generating a smaller overall 

response magnitude in the aged (10, 23). CTL that are generated in aged subjects may show 

similar (24) or decreased (4) levels of cytotoxicity on a per-cell basis, but typically produce 

diminished amounts of IFN-γ compared to CTL from young subjects, possibly as a result of a 

shifting Th type 1 to a type 2 immune predilection in ageing (7, 25, 26). 

Humoral responses to both B cell mitogens and specific antigens such as CT (27), 

keyhole limpet hemocyanin, and sheep red blood cells (28) are also diminished in aged animals 

and humans. It is believed that these failings are due more to acquired defects in Th cell function 
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than to intrinsic defects in the responder B cells themselves (29, 30). Evidence does exist, 

however, that some murine B cell populations do acquire defects with ageing in cell cycle 

progression following stimulation by autoreactive T cells (31) or B cell mitogens (32).  

Although many of the studies that have shown immune hyporesponsiveness have focused 

on systemic immunity, there is evidence that mucosa-associated lymphoid tissues may retain 

immune function longer than systemic immune tissues.  For example, Gallichan and Rosenthal 

(33) showed that mice infected intranasally with a recombinant adenovirus vector containing the 

herpes simplex virus glycoproteins B (gB) mounted both mucosal and systemic CTL responses, 

and these mice maintained detectable gB-specific CTL in mucosal lymphoid tissue, although not 

in systemic lymphoid tissue, for longer than 1.5 years following immunization. Mucosal humoral 

immunity may also be differentially affected by ageing compared to systemic immunity. 

Kawanishi et al. (34) found preservation, and/or enhancement of intestinal IgA responses to 

orally administered Mycobacterium tuberculosis antigen generated in the Peyer�s patches (PP) 

and the mesenteric lymph nodes of aged mice compared to young. These findings were 

interpreted as a lack of CD8+suppressor T cell function, as co-culture experiments of aged PP B 

cells and Th cells primed in vivo with PP CD8+ cells from young mice did not overproduce 

antigen-specific IgA, whereas similar co-cultures using young PP B cells and Th cells with aged 

CD8+ cells did overproduce IgA. This hyper-responsiveness was reversible by treatment with 

exogenous IL-2 (35), a protocol that had been previously shown to compensate for decreased Th 

cell function in ageing (36). However, a recent report by Koga et al. (37) indicated that murine 

mucosal IgA responses to orally administered CT and ovalbumin progressively declined with 

increasing age. The results suggested that defective induction of humoral and Th cell responses 

was more pronounced, and began at an earlier age in mice given CTB or ovalbumin by an oral 
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route than those immunized systemically. Thus, the effects of ageing on immune responses to 

mucosal immunization remain controversial. 

In this report we examine CTL and humoral responses in aged mice following oral 

infection with the model enteric pathogen, reovirus, which induces CTL in PP and spleen as well 

as humoral immunity following oral infection of immunocompetent mice (38). Our data suggest 

the ageing intestinal immune system remains as capable of responding to virus infection as that 

of the young, and that there is no diminution of anti-viral CTL or B cell priming or function in 

the intestinal immune tissues with ageing. The preservation of immune responsiveness to oral 

reovirus infection suggests that this route may prove efficacious in vaccination and 

immunotherapeutic strategies in the aged.  

Methods 
 

Mice: Male mice were used in all studies. Balb/c mice, age 18-24 months, were born in 

our animal facility and housed in individual micro-isolator cages in a pathogen-free room. 

Additional Balb/c mice, age 22 months, and B6C3F1 mice, age 18-22 months, were obtained 

from the National Institutes of Ageing (Bethesda, MD). C3HeB/FeJ mice were obtained from 

Jackson Laboratories (Bar Harbor, MA) at 8 weeks of age. Young Balb/c and B6C3F1 mice 

were obtained at 8 weeks of age from Charles River (Wilmington, MA), and Harlan Laboratories 

(Indianapolis, IN), respectively, and allowed to acclimate for 1 week before use.  All animals 

were kept in micro-isolator cages in a pathogen-free room and maintained on autoclaved food 

and water. Virus-infected animals were housed in a laminar flow hood in a separate room under 

negative pressure. 
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Virus: Third passage reovirus serotype 1 strain Lang (T1L) was grown in L929 cells and 

purified by freon extraction followed by CsCl gradient centrifugation as described (39). 

Infectious virus titers were assessed by plaque assay in L929 cells (40). 

Animal infections: Mice were infected orally with 3 × 107 plaque-forming units (pfu) of 

reovirus in a vehicle of 50µl of sterile borate-buffered saline and gelatin by gavage. Systemically 

infected mice subcutaneously received 3 × 107 pfu of reovirus in 100µl of vehicle. 

Cholera toxin immunizations: Mice were orally immunized with 10µg of azide-free CT 

(List Biological Laboratories, Campbell, CA) in 50µl sterile PBS by gavage on days 0, 7 and 14.  

Preparation and culture of splenic and PP cells: Single cell suspensions of spleens 

were prepared by expression through sterile nylon mesh. Splenocytes were depleted of red blood 

cells by incubation in a hypotonic solution of NH4Cl and Tris-HCl. Splenocytes were washed 3 

times in tissue culture medium (TCM) consisting of RPMI-1640 (Biowhittaker, Walkersville, 

MD) supplemented with 10% FBS (Hyclone, Logan,VT) 2mM L-glutamine, 100U penicillin/ml, 

0.1µg streptomycin/ml, and 50µM β-mercaptoethanol. Single-cell suspensions of PP were 

prepared by mechanical dissociation using 18-gauge needles. CTL were generated by re-

stimulating splenocytes and PP cells with reovirus T1L at a multiplicity of infection (MOI) of 1 

for 1 hr at 25°C. Cells were resuspended in TCM to a final concentration of 2 × 106 cells/ml and 

incubated at 37°C in an atmosphere of 5% CO2.  

Preparation of bone marrow cells: Femurs and tibiae were excised, and the ends were 

removed with scissors. Cold Hank�s buffered salt solution (HBSS) (Sigma, St. Louise, MO) was 

forced through the length of the bones by means of a 26-gauge needle attached to a 3 ml syringe 

inserted into one cut end of the bone. The contents were flushed into 15ml centrifuge tubes. The 
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marrow plug was rendered a single-cell suspension by expression through nylon mesh and 

resuspended in TCM. Viability was determined by trypan blue exclusion. 

Bulk 51Cr release assay: Assays were performed as previously described (41). Briefly, 

Ficoll-Hypaque gradient-purified effector CTLs were added to triplicate wells of reovirus-

infected or non-infected 51Cr-labeled L929 (H-2k) or KD2SV (H-2d) target cells in a V-bottom 

96-well plate (Nalgene) at effector: target cell ratios starting at 25:1. The assay plates were 

incubated for 4 hrs at 37°C in an atmosphere of 5% CO2.  The cells were then pelleted by 

centrifugation, and 100µl of supernatant was removed from each well. Specific lysis of reovirus 

infected targets for each effector: target ratio was calculated as described (38). 

Limiting dilution analysis: Splenocytes were diluted to 2.4 × 106/ml in TCM. Replicates 

(n=24) were serially diluted two-fold in U-bottomed 96-well culture plates (Costar, Corning 

NY). To each well 2.5 × 104 syngeneic thioglycollate-elicited peritoneal macrophages previously 

pulsed with reovirus T1L and irradiated with 2000 rad of gamma radiation were added in 60µl 

TCM. The plates were incubated overnight at 37°C in an atmosphere of 5% CO2, whereupon 20 

µl of IL-2 containing supernatant from concanavalin A-stimulated rat splenocytes, and an equal 

volume of 1mM α-methylmannoside in RPMI-1640, were added to each well to give a final 

volume of 200µl. The plates were incubated at 37°C in an atmosphere of 5% CO2 for 4 more 

days, whereupon the contents of each well was split into duplicate wells of 96-well V-bottom 

plates (Nalgene, Rochester, NY). To each well, 5 × 103 51Cr (Dupont, Wilmington, DE)�labeled 

syngeneic target cells, either infected or not infected with reovirus, were added in a volume of 

100µl of TCM. The plates were incubated for 4 hrs at 37°C in an atmosphere of 5% CO2. 100µl 

of supernatant was removed from each well and the specific activity of each supernatant sample 

was determined using a Clinigamma gamma counter (Wallac, Gaithersburg, MD). Positive wells 



 

192 

 

were determined as 51Cr activity in the supernatant from the plate incubated with infected targets 

being at least 3 standard deviations above the spontaneous release of reovirus-infected target 

cells, and simultaneously not showing such activity in the corresponding well of the plate 

incubated with non-infected targets. The frequencies of virus-specific pCTLs were then 

determined by the χ2minimization method of Taswell (42). 

Elispot:  Elispot analysis of reovirus-specific IgA and IgG-producing cells and cholera 

toxin B subunit (CTB) specific IgA-producing cells was performed by incubating various 

numbers of splenic, PP and bone marrow mononuclear cells for 4 hrs on ELISPOT plates 

(Millipore, Bedford, MA) previously coated with reovirus as described (43), or recombinant 

CTB subunit (List Biological Laboratories). The plates were then washed 8 times with 0.5% 

Tween 20 in PBS. Alkaline-phosphatase conjugated goat anti-mouse IgG or IgA antibodies 

(Southern Biotechnology, Birmingham, AL) diluted 1:200 in PBS + 5% FBS were then added to 

individual wells, and the plates were incubated at 4°C overnight. Spots were developed with 

100µl of BCIP-NBT substrate (Sigma) in de-ionized H2O.  

Flow cytometric analysis of splenocytes and bone marrow mononuclear cells:  

Constant numbers of mononuclear splenocytes and bone marrow cells were stained with a 

phycoerythrin (PE)-conjugated anti-CD8α mAb (Caltag, Burlingame, CA), fluorescein 

isothiocyanate (FITC)-conjugated anti- CD4, FITC-conjugated anti-surface immunoglobulin, or 

PE-conjugated anti-B220 (Pharmingen, San Diego, CA).  Cells were analyzed with a FACScan 

flow cytometer (Becton-Dickinson, Franklin Lakes, NJ), and data were assessed using WinMIDI 

2.8 software (Joseph Trotter, Scripps Research Institute, La Jolla, CA). 

Preparation of PP and lamina propria (LP) fragment cultures, and fecal extracts:  

Fragmented PP and LP were cultured by a modified version of the method of Logan et al. (44). 
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PP were removed from the small intestine and washed in RPMI-1640 + 5% bovine calf serum. 

Patches from individual mice were cultured in 2ml of TCM for 5 days at 37°C in an atmosphere 

of 5% CO2. Fecal extracts were generated from pellets formed 7 days after the final 

immunization as described (45). 

LP cultures were generated following the removal of the PP by longitudinal cutting of the 

small intestine followed by transverse cuts to yield 3-5cm long segments. Intestinal epithelial 

cells were removed by 2 successive 30 minute incubations at 37°C in 1mM EDTA in Ca2+ and 

Mg2+ -free HBSS with gentle stirring. Fragments from individual mice were then washed and 

cultured together in 5ml TCM for 5 days as above. Supernatants from day 5 PP and LP cultures 

were collected, clarified by centrifugation, and frozen at �20°C prior to analysis. 

ELISA: Assessment of reovirus-specific IgA from LP fragment culture supernatants and 

virus-specific serum IgG was done by ELISA as described by Major and Cuff (43). Briefly, high 

protein binding ELISA plates (Costar) were coated with 50µl per well of 1010 particles/ml of 

reovirus T1L or 1 µg/ml goat anti-mouse immunoglobulin heavy and light chain, (Southern 

Biotechnology) in 0.1M NaHCO3. CT- specific IgA from fragment culture supernatants and fecal 

extracts, and CT-specific serum IgG were assessed on ELISA plates coated with 5µg/ml CTB in 

PBS. 100µl of serial four-fold dilutions of supernatant samples, fecal extracts, or a purified 

murine IgA standard (Southern Biotechnology) in PBS + 10% FCS were added to triplicate 

wells, and subsequently incubated with 100µl/ well of 1µg/ml biotinylated goat anti-mouse IgA 

(Southern Biotechnology). Plates were incubated in 0.25µg/well avidin-conjugated peroxidase 

(Sigma) and developed with 100µl/well of 2, 2�-azino-bis-3-ethylbenz-thiazoline-6-sulphonic 

acid (Sigma) as per manufacturer�s instructions. Colorimetric analysis was performed at 405 nm 

on an ELISA microplate reader (Bio-Tek Instruments Inc., Winooski, VT.) 
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Statistical analysis: Means and standard deviations of pCTL frequency, IgA and IgG-

producing cells, and mononuclear cell numbers recovered from PP and spleens were compared 

by Student�s t-test using Sigmastat 2.0 software (Jandel Scientific, Chicago Il). Data are 

expressed as arithmetic mean ± standard deviation unless otherwise indicated.  

Results 
 

We assessed the intestinal anti-viral humoral immune response following enteric reovirus 

infection in aged (18-24 months) and young (8 weeks) Balb/c mice. 10 days after oral infection 

with reovirus, anti-reovirus IgA and total IgA producing cells were enumerated in PP and 

spleens of aged and young mice by ELISPOT assay (Table 1). Aged mice had a significantly 

elevated frequency of PP anti-reovirus IgA antibody forming cells (AFC) as a fraction of total PP 

cells or total IgA AFC compared to young mice (p<0.008 and p<0.0005 respectively). By 

contrast, the frequency of reovirus-specific IgA AFC among total cells or as a fraction of total 

IgA AFC in the spleens of aged and young Balb/c mice was not different (p=0.277 and p=0.329, 

respectively). The absolute numbers of PP cells recovered from aged and young animals were 

not significantly different (1.07 ± 0.37 × 107 and 1.35 ± 0.33 × 107 respectively, p=0.07).  

Small intestinal LP fragment cultures were established to assess the production of reovirus-

specific IgA at the effector site of the intestinal mucosa. The quantity of reovirus-specific and 

total IgA in LP fragment culture supernatants of aged and young Balb/c mice was determined by 

ELISA (Figure 20). Aged mice showed a 3-fold greater production of reovirus-specific IgA 

compared to young mice (p=0.001), whereas no significant difference was found between aged 

and young mice in total IgA production (p=0.452).  High titers of reovirus-specific IgG were 

detected in the serum of orally infected aged and young Balb/c mice, and were not significantly 

different (data not shown).  
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The effect of ageing on the generation of reovirus-specific CTL following enteric 

reovirus infection was also determined. Splenocytes from aged and young Balb/c mice infected 

orally with reovirus 10 days previously were assessed for pCTL frequency by LDA (Figure 

21A). Aged Balb/c mice had a frequency of 151 ± 44 pCTLs /106 CD8+ splenocytes, which was 

not significantly different from the frequency of 120 ±  57 pCTLs /106 CD8+ splenocytes from 

young Balb/c mice (p=0.670). Absolute numbers of splenocytes were not different between aged 

and young mice, with 8.15 ± 2.79 × 107 and 10.3 ± 3.6 × 107 cells recovered per mouse, 

respectively (p=0.077).  Absolute numbers of CD8+ cells were also similar in aged and young 

Balb/c mice (data not shown). Additionally, bulk cultures of reovirus re-stimulated splenocytes 

from aged and young Balb/c mice showed no differences in anti-reovirus cytotoxicity of 

reovirus-infected murine KD2SV fibroblasts by bulk culture 51Cr release assay (Figure 21B).  

Splenocytes from aged and young B6C3F1 mice infected orally with reovirus were also 

assessed for pCTL frequency by LDA, and for bulk culture cytotoxicity by 51Cr release assay. 

Aged B6C3F1 mice had a frequency of 92.7 ± 34.1 pCTLs /106 CD8+ splenocytes, which was 

similar to the frequency of 112 ± 37.7 pCTLs /106 CD8+ splenocytes from young mice,  

(p=0.471) (Figure 21C). Absolute numbers of splenocytes were not different between aged and 

young mice, with 3.55 ± 0.84 × 107 and 3.89 ± 1.43 × 107 cells per mouse, respectively (p=0.90).  

Absolute numbers of CD8+ cells were also not found to be different between aged and young 

B6C3F1 mice (p=0.06).  Analysis of B6C3F1 splenic bulk cultures by 51Cr release assay showed 

no difference in reovirus-specific cytotoxicity between aged and young mice (Figure 21D).  

To examine CTL generation at the intestinal inductive site, PP lymphocytes from orally infected 

aged and young B6C3F1were re-stimulated in vitro and assessed for CTL activity by 51Cr release 
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assay. CTL from aged and young mice mediated similar levels of virus-specific cytotoxicity over 

a range of effector to target ratios (Figure 22).  

We assessed the systemic anti-viral humoral immune response following subcutaneous 

reovirus infection in aged (22 months) and young (8 weeks) Balb/c mice. 10 days after infection 

with reovirus, splenic reovirus-specific IgG AFC and total Ig AFC were enumerated for aged and 

young mice by ELISPOT assay (Figure 23). Aged mice had a similar frequency of reovirus-

specific IgG AFC as a fraction of total Ig AFC compared to young mice (66,419 ± 18441 IgG 

AFC / 106 Ig AFC and 72,640 ± 16,892 IgG AFC / 106 Ig AFC, respectively, p=0.637). 

Subcutaneously infected aged and young B6C3F1 mice also had similar frequencies of splenic 

reovirus-specific IgG AFC as a fraction of Ig AFC (98,267 ± 22,269 IgG AFC / 106 Ig AFC and 

121,131 ± 24,872 IgG AFC / 106 Ig AFC, respectively, p=0.220). The absolute numbers of 

splenic mononuclear cells recovered from aged and young animals were not significantly 

different for Balb/c mice (17.12 ± 3.90 × 107 and 13.62 ± 5.36 × 107 respectively, p=0.332) or 

B6C3F1 mice (10.5 ± 1.96 × 107 and 8.52 ± 1.91 × 107 respectively, p=0.198). Furthermore, 

similar titers of reovirus-specific IgG were detected in the serum of subcutaneously infected aged 

and young Balb/c mice (p=0.110) and B6C3F1 mice (p=0.315) (Figure 24). We also assessed the 

generation of reovirus specific CTL in subcutaneously infected aged and young Balb/c mice and 

B6C3F1 mice. Bulk cultures of reovirus re-stimulated splenocytes from aged and young mice 

mediated similar levels of reovirus-specific cytotoxicity against reovirus-infected targets (data 

not shown).  

As a previous report by Koga et al., (2000) showed diminished intestinal humoral 

responses by aged C57BL/6 mice to CT, we assessed intestinal CT specific humoral immune 

response following oral CT immunization in aged and young B6C3F1 and Balb/c. Mice were 
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orally immunized 3 times at 7 day intervals with CT. Seven days following the final 

immunization, CT-specific IgA AFC were enumerated in PP and spleens of aged and young 

mice by ELISPOT assay. Aged Balb/c mice had a significantly lower frequency of PP CT-

specific IgA AFC as a fraction of total PP Ig AFC compared to young mice (4,329.8 ± 2,007.9 

IgA AFC / 106 Ig AFC and 9,945.9 ± 1,276.0 IgA AFC / 106 Ig AFC, respectively, p=0.015) 

(Figure 25A). Similarly, aged B6C3F1 mice showed diminished numbers of PP CT-specific IgA 

AFC as a fraction of total PP cells compared to young mice (2.8 ± 2.0 IgA AFC / 106 PP cells 

and 19.0 ± 16.6 / 106 PP cells, respectively, p=0.170) (Figure 25B) as well as significantly fewer 

splenic CT-specific IgA AFC both absolutely (294 ± 83 IgA AFC/ spleen and 33,875 ± 11650 

IgA AFC/ spleen, respectively, p=0.008) as a fraction of total splenic IgA AFC compared to 

young mice (1,797.6 ± 1,129.5 IgA AFC /106 Ig AFC and 165,519.6 ± 66,235.8 IgA AFC /106 Ig 

AFC, respectively, p=0.013).  

Small intestinal LP fragment cultures were established to assess the production of CT-

specific IgA at the intestinal mucosa. The quantity of CT specific IgA in LP fragment culture 

supernatants of aged and young Balb/c mice was determined by ELISA (Figure 26A). Aged 

Balb/c mice showed a 4-fold lower production of CT-specific IgA compared to young mice (8.3 

± 6.7 ng/ml and 36.3 ± 35.1 ng/ml, respectively, p=0.246).  Similarly, fragment cultures from 

aged B6C3F1 mice produced 3-fold less CT specific IgA than those from young mice (4.4 ± 1.8 

nr/ml and 13.2 ± 7.8, respectively, p=0.130). Extracts from fecal pellets formed 7 days following 

the final immunization were assessed for CT specific IgA content (Figure 26B). Aged Balb/c 

mice produced approximately 5- fold less fecal CT specific IgA than young mice (29.0 ± 29.8 

ng/ml extract and 148.8 ± 38.8 ng/ml extract, respectively, p=0.013). Similarly, aged B6C3F1 

mice produced approximately 8-fold less CT specific fecal IgA than young mice (30.4 ± 16.0 
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ng/ml and 262.7 ± 276.1 ng/ml feces, respectively, p=0.220). Additionally, aged Balb/c and 

B6C3F1 mice produced 4 to 2 times lower titers of serum CT specific IgG compared to young 

mice (data not shown). The effect of ageing on CTL memory responses was also examined. Mice 

infected orally with reovirus 16 months previously and subsequently orally re-infected or not re-

infected were assessed for reovirus-specific splenic pCTL frequency by LDA and for bulk 

culture cytotoxicity by 51Cr release assay. Re-infected mice had a pCTL frequency of 101 ± 

56.1/106 CD8+ cells in two separate experiments (Figure 27). The frequency of reovirus-specific 

splenic pCTL in mice infected once 16 months previously was barely detectable by LDA (5.6 ± 

5.2/106 CD8+ cells).   

Mice infected only once 16 months previously had reovirus-specific IgA and IgG-

producing cells within the bone marrow, and a variably lower frequency of such cells in the 

spleen. Mice re-infected with reovirus had a 5-6-fold higher frequency of reovirus-specific IgA-

producing cells and an approximately 2-fold higher frequency of IgG-producing cells in the bone 

marrow and spleen than mice infected only once 16 months previously (Table 2). Reovirus-

specific serum IgG and LP culture supernatant IgA content of were also determined. Animals not 

re-infected with reovirus had nearly undetectable amounts of reovirus-specific IgA in PP and LP 

culture supernatants (Table 3), and similarly showed low titers of reovirus-specific IgG in the 

serum (data not shown). 

Discussion 
 

We used oral infection with reovirus to test the ability of the intestinal immune system of 

aged mice to respond to an enteric virus infection. Previous reports indicate that the immune 

system in general is compromised in ageing, and this has suggested a causal link between 

diminished immune function in ageing, with an increased incidence of vaccination failure, 
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infectious disease, autoimmunity, and neoplasia. We found a similar splenic anti-reovirus IgG 

response and an enhanced anti-reovirus intestinal IgA immune response in the PP of aged Balb/c 

mice, and an equivalent to slightly enhanced response in B6C3F1 mice, compared to young 

mice. The enhanced IgA response in the priming site of the PP and the enhanced secretion of 

reovirus-specific IgA within the small intestine LP of aged animals together suggest that the 

primed reovirus-specific IgA-producing cells proliferated and trafficked normally to the LP in 

the aged animals.  By contrast, migration to the spleen of reovirus-specific IgA-producing cells 

was similar in both aged and young mice. The apparent increase in IgA humoral immunity to 

intestinal virus infection was not a compensatory effect of diminished virus-specific T cell-

mediated cytotoxicity, as the splenic reovirus-specific pCTL frequency and bulk culture 

cytotoxicity of lymphocytes from aged animals was not different from that of young animals. 

In addition to mediating cytotoxicity, enteric CD8+ T cells have been suggested to exert a 

modulatory effect upon intestinal humoral immune responses. Kawanishi et al. (34) found that 

unfractionated mycobacterial antigens given orally to aged mice resulted in an enhanced specific 

IgA response compared to that of young mice. This elevated response was attenuated by the 

exogenous addition of IL-2, which caused the IgA response of the aged mice to resemble that of 

the young. CD8+ T cells have also been shown to have a modulatory role in the intestinal 

humoral immune response to reovirus. Major and Cuff (46) showed that β2-microglobulin 

deficient mice, which lack conventional CD8+ T cells, mount an enhanced anti-viral IgA 

response following enteric reovirus infection as compared to wild-type controls. In light of these 

reports, our data suggest a functional preservation in the cytotoxic function of virus-specific 

CD8+ T cells with ageing, despite a potential diminution in regulatory function exerted on the 

intestinal humoral immune response.  
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Bulk cultures of PP cells from aged and young B6C3F1 mice re-stimulated in vitro 

showed similar levels of reovirus-specific cytotoxicity. Taken together with the similar reovirus-

specific pCTL frequencies recovered from the spleens of aged and young mice, these results 

suggest that pCTL priming within the PP and migration to the spleen occurs normally in aged 

mice. Following oral reovirus infection, reovirus-specific CTLs localize to the PP (38), spleen 

(47), and the effector site of the intestinal epithelial surface (48). These CD8+ T cell receptor αβ+ 

cells may be initially primed within the PP (49, 50), and would therefore be of similar origin to 

those CTLs we have assayed within the spleen and PP. Thus, similar priming of virus-specific 

CTL responses in the PP and intact pCTL migration indicated by similar frequencies of pCTL 

recovered from the spleens together suggest similar numbers of virus-specific CTL migrating to 

and mediating cytotoxicity within the gut mucosal effector sites of the LP and intestinal 

epithelium. Therefore, it appears that in both strains of mice tested the priming and cytotoxic 

effector functions of reovirus-specific CTL in the intestinal mucosa are intact in aged animals 

compared to young. Furthermore, the mucosal humoral immune response to virus infection is 

intact, or even enhanced, in agreement with the results of Kawanishi et al. (34).  

Several factors may play a role in attenuating the immunosenescence of the gut immune 

system. The intestinal intraepithelial cells and resident LP mononuclear cells (51) produce a 

variety of immunomodulatory factors as a result of constant stimulation by dietary and 

microfloral antigens. Local production of IL-1, IL-6, IL-7, IL-8, IL-12, IL-15, IL-16, IL-18 (52-

57), and innate mucosal adjuvants such as lymphotactin (58) may maintain a high degree of 

constant immune tension that potentiates immune responsiveness to reovirus.  

In contrast to immune responses induced by enteric reovirus infection, our finding of 

diminished intestinal and systemic humoral immunity in aged Balb/c and B6C3F1 mice 
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following oral immunization with CT agrees well with the findings of Koga et al. (37), wherein 

mice one year of age or older showed diminished mucosal and systemic humoral and cellular 

immune responses to oral immunization with ovalbumin and CT compared to young controls. 

However, the inflammatory state induced by a replicating, invasive intestinal pathogen may 

account for the enhanced humoral and intact cellular immunity seen in aged mice following oral 

reovirus infection, which may not be equivalently mimicked with the classic mucosal adjuvant 

CT, or an otherwise inert protein antigen such as ovalbumin. This prediction is further supported 

by our findings of similar humoral and CTL immune responses between aged and young Balb/c 

and B6C3F1 mice following subcutaneous reovirus infection, and suggests innate immune 

factors can play an important role in overcoming otherwise defective initiation of adaptive 

immune responses in ageing.  

Finally, we have assessed humoral and CTL immunity in aged mice infected orally with 

reovirus T1L early in life and re-infected orally 16 months later. Virus infection early in life 

generates memory CTL and B cells, some of which might persist into old age (33), giving some 

degree of a secondary immune response to re-infection of the aged animal despite systemic 

immunosenescence (59). Although mice infected orally with reovirus in youth had virus-specific 

IgG and IgA producing cells in the spleens and bone marrow, they had very low splenic 

reovirus-specific pCTL frequencies at 16 months post-infection.  

Aged mice orally re-infected with reovirus mounted both mucosal and systemic humoral 

immune responses, and generated splenic pCTL. It is, however, uncertain to what degree these 

responses reflect the re-activation of memory B cells and pCTL, as opposed to a primary 

response of naïve pCTL and B cells. In any event, oral reovirus infection of aged mice induced 

both humoral and cell mediated immunity.  
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In conclusion, we have shown the maintenance during ageing of the priming and function 

of both humoral and cellular intestinal immunity following enteric virus infection. We have also 

noted enhanced mucosal humoral responsiveness, in agreement with the previous findings of 

Kawanishi et al. (34). However, instead of finding generally diminished CD8+ T cell function, 

we have noted the preservation of CD8+ T cell mediated cytotoxicity. It is possible that the loss 

of CD8+ T cell regulatory function on intestinal humoral immunity may be more susceptible to 

ageing than is CTL function. In any event, enhanced mucosal humoral immunity concurrent with 

preserved CTL function in the aged intestine need not be considered an ageing-related 

dysfunction, but may be an exploitable phenomenon in the design and application of 

immunotherapy strategies aimed at generating potent mucosal and systemic immunity in the 

elderly. 



 203

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table I. Elispot analysis of PP and spleens from old and young Balb/c micea 

   
Tissue group reo-IgA/106 cellsb   Total IgA/106 cells reo-IgA/106IgAc

      
aged 92 (52)    1981 (804) 47354 (18968)  PPd 

young 22 (19) 3470 (2370) 12670 (11379)  
p 0.008   0.058              0.0005  

Spleen aged- 22 (19)   581 (262) 38525 (25395)  
 young 17 (9)   554 (340) 32700 (21279)  
 p 0.277 0.431 0.329  
     

 
a n=8 aged, 7 young; data are compiled from 2 separate experiments. 
b reovirus-specific IgA-producing cells/106 mononuclear cells 
c reovirus-specific IgA-producing cells/106 IgA-producing cells 
d Number of PP cells recovered from aged and young mice were comparable. 

Aged mice yielded 1.07 ±  0.37 × 107 cells/mouse. Young mice yielded 1.35 ±  0.33 × 107 
cells/mouse,  p=0.07. 
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Table II. Elispot analysis of bone marrow and spleens from old mice 

 
Experiment 1 2 

   
Tissue re-infectiona reo-IgA/106 cellsb,c reo-IgG/106 cellsc,d reo-IgA/106 cellsb,c  reo-IgG/106 cellsc,d 

      
- 18 (18) 38 (23)  42 (11) 152 (48)BM 
+ 109 (30)  104 (26) 256 (187) 288 (217)

  
Spleen - 2 (3)  42 (11)  12 (16) 39 (20)

 + 13 (2)  110 (70) 118 (76) 82 (19)

    
 

aAll mice were infected orally at 8 weeks of age and 16 months later were either 
re-infected (+) or not re-infected (-). 
b Mean ± standard deviation   
c reovirus-specific IgA-producing cells/106 cells 
D reovirus-specific IgG-producing cells/106 cells 
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Table III.   Reovirus specific and total IgA from LP and PP fragment cultures from old mice 
 

Experiment 1 2 

   
Tissue re-infectiona reo-IgA (ng/ml)b reo-IgG (ng/ml) b reo-IgA (ng/ml) b reo-IgA (ng/ml) b 

      
- <4.0 24319 (2746) 0.9 (1.3) 5550 (2526) LP 
+ 60.6 (49.4) 29477 (2948) 31.3 (17) 7195 (2629) 

     
PP - <0.8 1262 (48) <0.2 1732 (556) 

 + 9.9 (7.3) 2673 (1187) 3.3 (0.5) 2978 (1413) 

    
 

aAll mice were infected orally at 8 weeks of age and 16 months later were either 
re-infected (+) or not re-infected (-). 
b Mean ± standard deviation    
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Figure 20.  Reovirus-specific and total IgA in LP fragment cultures.  Old and young Balb/c 

mice were infected orally with reovirus, and 10 days later small intestines were removed, 

fragmented, and cultured for 5 days as described in methods. Reovirus-specific and total 

IgA concentrations were determined for individual mice by ELISA. Data are expressed in 

ng/ml for reovirus-specific IgA, and µµµµg/ml for total IgA, as determined by titration of 

supernatants in comparison to a known murine IgA standards. Reovirus-specific IgA 

concentration of LP culture supernatants from aged mice was found to be significantly 

elevated compared to LP culture supernatants from young mice (p=0.001). No significant 

difference was found in total IgA concentration between old and young mice (p=0.452). 
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Figure 21.  Splenic reovirus-specific pCTL frequencies of young and old mice. Balb/c (A) 

and B6C3F1 (C) mice were infected orally with reovirus and 10 days later spleens were 

assessed for the frequency of pCTL by limiting dilution analysis as described in methods. 

Data are expressed as means ± standard deviation / 106 CD8+ cells. 

CTL activity of bulk cultures of splenocytes from Balb/c (B) and B6C3F1 (D) mice were also 

similar.  

Data are expressed as the means and standard deviations of cytotoxicity against reovirus-infected 

target cells less background non-specific lysis for  triplicate wells at an effector: target ratio of 

25:1  
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Figure 22.  51Cr release assay of pooled PP lymphocytes from orally infected young and old 

B6C3F1 mice re-stimulated in vitro with reovirus for 2 weeks. Data are expressed as the 

mean cytotoxicity against reovirus-infected (▲ young PP, ● old PP) and non-infected (!!!! 

young PP, !!!! old PP) targets. 
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Figure 23.  Splenic reovirus-specific IgG AFC frequencies of young and old mice. B6C3F1 

(A) and Balb/c (B) mice were infected subcutaneously with reovirus and 10 days later 

spleens were assessed for the frequency of reovirus-specific IgG AFC by ELISPOT analysis 

as described in methods. Data are expressed as means ± standard error IgG AFC / 102 Ig 

AFC. 
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Figure 24.  Reovirus-specific serum IgG titers from young and old mice.  B6C3F1 (A) and 

Balb/c (B) mice were infected subcutaneously with reovirus and 10 days later sera were 

collected and assessed for reovirus-specific IgG by ELISA. Data are expressed as reciprocal 

mean titer ± standard error IgG (×10-3). 
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Figure 25.  Peyer�s patch and splenic CT-specific IgA AFC frequencies of young and old 

mice. B6C3F1 (A and C) and Balb/c (B) mice were immunized orally 3 times with CT and 7 

days following the last immunization PP and spleens were assessed for the frequency of CT 

specific IgA AFC by ELISPOT analysis as described in methods. Data are expressed as 

means ± standard error IgA or IgG AFC / 102 Ig AFC. Young Balb/c mice had significantly 

more PP CT-specific IgA AFC than old mice (p=0.015); young B6C3F1 mice had 

significantly more splenic CT-specific IgG AFC than old mice (p=0.013). N.T.= not tested. 
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Figure 26.  CT-specific IgA in fecal pellet extracts (A) and LP fragment cultures (B).  

Young and old B6C3F1 and Balb/c mice were orally immunized 3 times with CT, and 7 

days following the final immunization, small intestines were removed, fragmented, and 

cultured for 5 days as described in methods. Additionally, fecal pellets formed on day seven 

following the final immunization were collected and extracted with PBS. CT-specific IgA 

concentrations were determined for individual mice by ELISA. Data are expressed in ng 

CT-specific IgA / ml supernatant and ng CT-specific IgA / ml fecal extract, as determined 

by titration of samples in comparison to a known murine IgA standard. 
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Figure 27.  Splenic reovirus-specific pCTL frequencies of mice infected orally 16 months 

previously. Mice were either re-infected orally (■ ) or not re-infected (■), and 10 days later 

spleens were assessed for the frequency of pCTL by limiting dilution analysis as described 

in methods. Data are expressed as (means ± standard deviation) / (106 CD8+ cells). Re-

infected groups consisted of n=3 and n=2 mice for experiments 1 and 2, respectively.  Not 

re-infected groups, n=2 and n=3 mice. 
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Introduction 

Additional experiments were performed to determine the effect of the route of infection 

upon the selection and expansion of virus-specific CTL populations. Some of these experiments 

were initial pilot studies of our adoptive transfer experiments as described in Chapter 2, wherein 

we assessed the Vβ repertoire of CD8+ splenocytes recovered from reovirus-infected CB.17 

SCID recipients of purified splenic T cells from congenic Balb/c donors infected orally or in the 

hind footpads. We believed adoptively transferred virus-specific cells could be expanded in 

reovirus infected SCID mice as indirectly evidenced by the clearance of reovirus infection from 

infected SCID recipients of immune, unfractionated Peyer�s patch cells (George et al., 1990).  

We further expected to be able to see a dramatic proliferative expansion of CD8+ T cells, as seen 

by Zimmermann et al., (1999) following the adoptive transfer of purified T cells from mice 

previously immunized against vesicular stomatitis virus (VSV) or vaccina virus into naïve mice 

subsequently infected with VSV of vaccinia. In the second week post-transfer, we found a 

dramatic expansion of CD8+ T cells in the infected SCID recipient mice consisting of a limited 

number of Vβ subpopulations that were the same regardless of the route of infection of the donor 

mice. These data suggest that oral and parenteral reovirus infection of donor mice induce similar 

responder CTL populations. 

Methods 
 

Mice: Male CB.17 SCID mice were born and housed in microisolator cages within 

isolation bubbles at the University of Pennsylvania Department of Biology animal care facility. 

Male Balb/c mice were acquired from Charles River Laboratories (Wilmington, MA) at 8 weeks 

of age and allowed to acclimate for 1 week before use.  Balb/c mice were kept in micro-isolator 

cages in a pathogen-free room, and all mice were maintained on autoclaved food and water. Virus-
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infected Balb/c mice were housed in a laminar flow hood in a separate room under negative 

pressure. 

Virus: Third passage reovirus T1L stocks were grown in L929 cells. Cells were disrupted 

by sonication in a buffer of 0.01M Tris, 0.25M NaCl, 0.01M ß-mercaptoethanol, and 0.1% 

sodium deoxycholate (pH 7.4) and purified by freon extraction followed by step-wise CsCl 

gradient centrifugation as described (Smith et al., 1969). Infectious reovirus titers were assessed 

by plaque assay in L929 cells as described (Cuff et al. 1990). 

Animal infections: Orally-infected mice received 3×107 plaque-forming units (pfu) of 

reovirus in 50µl of sterile borate-buffered saline and gelatin by gavage using a stainless steel 

feeding tube attached to a 1ml syringe. Hind footpad infected mice received 1.5×107 pfu of 

reovirus in 50µl of sterile borate-buffered saline and gelatin in each hind footpad. SCID recipient 

mice received 3×107 pfu of reovirus in 100µl total of sterile borate-buffered saline and gelatin by 

intraperitoneal injection. 

Preparation of spleen cells: Single cell suspensions were prepared by expressing 

spleens through sterile nylon mesh. Splenocytes were depleted of red blood cells by incubation 

in a hypotonic solution of NH4Cl and Tris-HCl. Splenocytes were washed 3 times in medium 

consisting of RPMI-1640 (Biowhittaker, Walkersville, MD) supplemented with 10% FBS 

(Hyclone, Logan, VT), 2mM L-glutamine (Biowhittaker), 100U penicillin/ml, 0.1µg 

streptomycin/ml (Biowhittaker), and 50µM β-mercaptoethanol, (TCM). Cell viability was 

determined by trypan blue exclusion.  

Adoptive transfer: RBC-depleted donor lymphocytes collected from mice that were 

infected 30 days previously were depleted of surface Ig-positive B cells by three successive 

incubations on sterile 16 × 100 mm polystyrene bacteriology grade petri dishes (Falcon) coated 
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with 100µg/ml goat anti-mouse IgG, IgM and IgA antibody (Rockland) in a 0.15M Tris buffer 

(pH 9) for 45 minutes at 4°C. 1.5×107 non-adherent T cells were resuspended in 1ml of sterile 

PBS, and were injected intraperitoneally into reovirus-infected SCID recipient mice using a 20-

gauge needle.  

Flow cytometric analysis of effector cells: RBC-depleted mononuclear splenocytes 

were stained with phycoerythrin (PE)-conjugated anti-CD8α mAb (CALTAG, Burlingame, CA), 

and fluorescein isothiocyanate (FITC)-conjugated mAbs to either CD4 or Vβ 2, 4, 5, 6, 7, 

8.1/8.2, 8.3, 9, 10, 11, 12, 13, 14, 17, (Pharmingen). Some cells were also stained with a 

biotinylated  anti-Vβ3 mAb (Pharmingen) followed by FITC-avidin (CALTAG). Percentages of 

cells staining positive for each marker were determined by analysis on a FACScan flow 

cytometer (Becton-Dickinson, Franklin Lakes, NJ), and results were further analyzed using 

WinMIDI 2.8 software (Joseph Trotter, Scripps Research Institute, La Jolla, CA).  

Statistical analysis: Means and standard deviations were calculated for each Vβ 

population expressed among all groups of mice and tissues assessed by flow cytometry. 

Statistically significant differences in Vβ expression were determined by one - way analysis of 

variance (ANOVA) followed by the Tukey test using Sigmastat 2.0 software (Jandel Scientific, 

Chicago, IL).   

Results and Discussion 
 

Adoptively transferred, reovirus-primed CD8+ cells from immunocompetent donors 

expand in reovirus-infected SCID recipients. Splenocytes from Balb/c mice infected orally or in 

the hind footpads with 3×107 pfu of reovirus 30 days previously were depleted of B cells by 

panning on anti-murine Ig coated petri plates. 2.0×107 pooled enriched T cells were transferred 

into isogenic SCID CB.17 recipients (n=12 recipients of per orally infected donors; n=10 
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recipients of footpad-infected donors) themselves infected with 3×107 pfu of reovirus 4 days 

previously. Splenocytes from the recipient mice were isolated at day 9, 11, and 13 post-transfer, 

and assessed for CD4+ and CD8+ T cell number and TCR Vβ repertoire by flow cytometry.  

A progressive increase in the number of CD4+ T cells recovered from the spleens of infected 

recipient mice is seen in the second week post-transfer, with 8.3×106± 2.5×106, 17.6×106± 

11.0×106,and 9.4×106± 0.7×106 CD4+ cells, and 8.1×106± 7.6×106, 15.8×106± 1.8×106, and 

20.8×106± 9.4×106, CD4+ cells recovered on days 9, 11, and 13, from SCID recipients of cells 

from orally infected and footpad infected donors, respectively (Figure 28A and B, respectively). 

A more dramatic increase is seen among recovered CD8+ T cells.  9.8×106± 5.8×106, 30.5×106± 

19.9×106, and 25.4×106± 9.0×106 CD8+cells, and 5.8×106± 4.3×106, 32.9×106± 11.0×106, and 

30.9×106± 9.8×106 CD8+ cells were recovered on days 9, 11, and 13 from SCID recipients of 

cells from orally infected and footpad infected donors, respectively (Figure 28A and B). 

Recovered CD8+ cells outnumber CD4+ cells by approximately 2:1 after day 9 post-transfer in 

recipient mice of both orally and footpad infected donors. 

A dramatic and progressive increase in the percentage of Vβ3+ CD8+ cells was observed 

with increasing time post-transfer for SCID recipients of both orally infected and footpad 

infected donors (percentage data not shown). The absolute numbers of CD8+ splenocytes of the 

assessed Vβ repertoire were determined for both groups at all time-points (Figure 29). Again, a 

progressive increase with time in the number of Vβ3+ cells was seen in both groups of recipient 

mice. One-way ANOVA showed that among SCID recipients of footpad infected mice there is a 

significant increase in the number of Vβ3+ cells from day 9 to day 11 and day 13 post-transfer as 

determined by the Tukey test (p<0.05). Similar changes are seen in the recipients of cells from 

footpad-infected donors. Other minor changes were observed for some Vβ subpopulations, 
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notably the Vβ8.3+ and Vβ9+ CD8+ subpopulations, but none of these were as striking as the 

change in the Vβ3+ CD8+ cells, nor were any other changes found to be statistically significant 

by one way ANOVA.   

Our data indicate that the Vβ3+ CD8+ T cell subpopulation was primed in vivo following 

either oral or parenteral reovirus infection of donor mice, as this population was greatly 

expanded in the infected CB.17 SCID recipient mice. Furthermore, no significant differences 

were found among any of the TCR Vβ subpopulations of CD8+ T cells recovered from the 

recipients of cells from orally infected or parenterally infected donors. Our data suggest the 

finding that the route of infection does not select distinct responder CTL populations, at least at 

the level of the TCR Vβ repertoire, is true for the murine Balb/c strain as well as the C3HeB/FeJ 

strain.  
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Figure 28.  CD4+ and CD8+ cell numbers recovered from reovirus infected SCID recipient 

mice of immune donor T cells. Infected CB.17 SCID mice received 1.5�107 purified splenic 

T cells from orally infected (A) and hind footpad infected (B) donor mice as described in 

methods. Splenocytes were isolated from recipient SCID mice at days 9, 11, or 13 post-

transfer and assessed for CD4+ (●) and CD8+ (○) T cells by flow cytometry.  Data are given 

as (mean ±±±± standard deviation)(××××10-6 cells). 
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Figure 29.  Vβ repertoire, in absolute numbers, of CD8+ T cells recovered from reovirus-

infected SCID recipients of purified T cells from immune donor mice. Infected CB.17 SCID 

mice received 1.5ҳ107 purified splenic T cells from orally infected (A) and hind footpad 

infected (B) donor mice as described in methods. Splenocytes were isolated from recipient 

SCID mice at days 9, 11, or 13 post-transfer and assessed for changes in the Vββββ repertoire 

CD8+ T cells by flow cytometry, and absolute numbers were calculated.   

Data are given as (mean ± standard deviation)(×10-6 CD8+ cells).  

* significantly different by one way ANOVA followed by the Tukey test, (p<0.05). 
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Introduction 

The gastrointestinal system is essentially a long muscular tube, the functional surface of 

which is a thin, mucus-coated layer approximately 1mm thick, that is joined at both ends with the 

external integument and thus is a contact surface with the external environment (MacDonald et 

al., 1999). The mucosal surface area of the adult human intestine is estimated to be 

approximately 300m2 (Brandtzaeg et al., 1989).  This surface is constantly exposed to antigens, 

which proximally is mostly of dietary origin, and distally tends to be bacterial products derived 

from colonic flora. Providing a protective barrier at this external surface is complicated by the 

need to selectively absorb nutrients. To prevent the colonization and/or invasion of the intestinal 

mucosal by foreign organisms, the intestine makes use of a number of innate and adaptive 

defense factors.  This chapter provides a broad overview of immune responses in the intestine. 

Innate immunity 
 

A palisade of columnar intestinal epithelial cells (IEC) with interspersed mucous-

secreting goblet cells maintains the first line of innate mucosal defense. Mucous from the goblet 

cells sheaths the mucosal epithelium, and together with the glycoproteins of the IEC glycocalyx 

forms a size-restrictive permeability barrier against lumenal antigens (Pitman and Blumberg, 

2000). Tight junctions between adjacent IEC serve to prevent intercellular passage of antigens 

and organisms into the intestinal tissues. Thus, under ideal conditions, the majority of lumenal 

contents that gain access to the intestinal tissues are small nutrient molecules transported 

transcellularly across the IEC. 

The integrity of the IEC barrier in the villi and crypts is maintained by constant 

proliferation of epithelial stem cells located roughly halfway down the villi, the progeny of 

which migrate either downward into the crypt or upward to the tips of the villi. Progeny cells 
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initially have the ability to differentiate into a number of epithelial cell types, such as absorptive 

IEC, Paneth cells, and goblet cells, undergoing progressive differentiation during migration.  

These cell types have specialized functions in protection of the mucosa. For instance, Paneth 

cells, which are located at the bases of the crypts, produce a number of exocrine antimicrobial 

factors, such as the anion-binding, pore-forming α-defensins (cryptins) (Jones and Bevin, 1992), 

peptidoglycan hydrolyzing lysozyme (Valnes et al., 1984), and phospholipase A2 (Kiyohara et 

al., 1992), that contest microbial colonization of the crypt epithelium. Goblet cells, in addition to 

secreting the mucus barrier (Jabbal et al., 1976), also produce trefoil proteins (Podolsky et al., 

1993), factors that enhance IEC migration toward sites of injury and are thus believed to play a 

role in maintaining the integrity of the epithelial barrier (Modlin and Poulsom, 1997).  

Adaptive Immunity 
 
Organization and Location of Intestinal Lymphocytes: 
 

While passive and active innate factors of the intestinal epithelium provide a basic 

outermost layer of defense against a broad assortment of environmental antigens and organisms, 

a vast array of cells of hematopoietic origin are dispersed throughout the underlying lamina 

propria, clustered in highly organized secondary lymphoid tissues, and intercalated within the 

IEC palisade. These bone marrow derived cells include CD4+ T helper cells (Th), which support 

and direct many of the effector functions of other cells, CD8+ T cells and Natural Killer (NK) 

cells, which mediate cytotoxicity against infected, transformed, or stressed self cells. Other cells 

involved include B lymphocytes, which produce antigen specific immunoglobulin of primarily 

the IgA isotype and lesser quantities of IgM and IgG (Brantzaeg et al., 1989), macrophages, 

dendritic cells, and tissue granulocytes such as mast cells and eosinophils.  
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Lymphoid tissues of the intestine are typically categorized into 2 types: 1) inductive 

tissues, wherein naïve T and B cells as well as antigen-experienced memory cells are primed by 

gut lumenal antigens and then induced to proliferate, and 2) effector tissues, the sites to which 

primed lymphocytes migrate and mediate protective immune function (Mowat and Viney, 1997). 

Inductive tissues include the Peyer�s patches (PP), the mesenteric lymph nodes (MLN), the 

appendix, isolated lymphoid follicles (LF), and potentially such structures as the lymphocyte-

filled villi (Moghaddami et al., 1999). Effector tissues include the intestinal lamina propria 

underlying the villus and crypt absorptive epithelium, and the T lymphocyte-dominated 

intraepithelial lymphocyte (IEL) compartment (MacDonald et al., 1999). Collectively, all these 

tissues are referred to as the gut-associated lymphoid tissue (GALT). Inductive lymphoid 

follicles, which are aggregates of B and T cells, interdigitating dendritic cells, and macrophages 

separated from the lumenal contents by specialized follicle associated epithelium (FAE), are 

distributed along the length of the intestine from the duodenum to the ano-rectal junction 

(Moghaddami et al., 1999). While generally located in the lamina propria of the antimesenteric 

gut wall, human follicles are distributed randomly around the circumference of the gut. While 

generally not macroscopically visible, on histological examine they can be extensive, and may be 

either entirely contained within the lamina propria, or may have long extensions under the 

muscularis mucosa, creating structures previously identified as sub-mucosal lymphoid 

aggregates (Moghaddami et al., 1999). 

The largest aggregates of inductive lymphoid tissue in the GALT, the PP are considered 

the premier priming tissue of intestinal immunity (Kelsall et al., 1996).  PP, defined as 

collections of 5 or more lymphoid follicles, are roughly analogous to peripheral lymph nodes, 

and are grossly located toward the antimesenteric wall of the intestine.  Histologically and 
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functionally, the lymphoid follicle and appendix are very similar to the PP, although some 

question still remains as to whether the appendix may also serve as a primary B cell organ in the 

human perinatal gut (Dasso et al., 2000). The quantity of follicular lymphoid tissue in the gut is 

considerable; there are estimated to be 11,000 to 14,000 scattered LF in the large intestine alone 

(Gebbers et al., 1992).  

The lumenal face of the PP, as with all gut follicular tissues, is covered with a specialized 

dome of epithelial cells, known as follicle associated epithelium (FAE) (Jacob et al., 1987). 

Among the conventional columnar epithelial cells of the FAE are interspersed thin, flat 

microfold (M) cells that lack the long, organized apical microvilli, glycocalyx, and mucus 

coating, that characterize the villus absorptive epithelium. The lack of these covering structures, 

which form a size-selective permeability barrier to prevent access of large antigenic molecules 

and organisms from the absorptive epithelium, make M cells natural portals of ingress for 

lumenal antigens and organisms into the Peyer�s patches (Neutra et al., 1996). Indeed, in animal 

studies intestinal pathogens such as Salmonella typhi (Kohbata et al., 1986), Shigella flexneri 

(Wassef et al., 1989), Yersinia enterocolitica (Grutzkau et al. 1990), reovirus (Wolfe et al., 

1983), poliovirus type 1 (Sicinski et al., 1990), and Cryptosporidium (Marcial and Madara, 

1986) are believed to bind to glycoproteins on the M cell surface, facilitating their ingress.  M 

cells also have been shown to express Fcalpha receptors (FcαR) that selectively allow the 

binding and uptake of lumenal antigens bound by secreted IgA, the immunoglobulin most 

associated with mucosal humoral immunity (Neutra, 1999). Additionally, particulate and soluble 

antigen may be non-specifically internalized and transcytosed by M cells. 

Although M cells have been demonstrated to contain lysosomal vesicles, express major 

histocompatibility class I and, in the small but not the large intestine, class II molecules (Bjerke 
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and Brandtzaeg, 1988; Ueki et al., 1995), and are in intimate contact with a population of T and 

B lymphocytes actually encased within folds of the M cell (Farstad et al., 1994), it remains 

uncertain whether they play a role as antigen presenting cells. However, M cells transcellularly 

translocate lumenal antigens and organisms into the sub-epithelial dome region of the Peyer�s 

patch, which immediately underlies the FAE (Mowat and Viney, 1997). This area is rich in 

macrophages and immature dendritic cells that can internalize, process, and present peptide 

antigen epitopes in association with MHC class I and class II molecules to antigen-specific T 

cells (Mowat and Viney, 1997).  Maturing antigen-bearing dendritic cells and macrophages 

subsequently migrate from the sub-epithelial dome region deeper into the T cell enriched 

parafollicular regions, where they join with networks of interdigitated dendritic cells that serve to 

prime CD4+ Th cells and cytolytic CD8+ T cells (Steinman et al., 1997). 

Cellular Immunity 
 
T-helper cells: 

Adaptive immune responses can be broadly divided into two arms: 1) the cellular 

response, mediated primarily CD4+ and CD8+ T cells, and the myeloid cells they influence, and 

2) the humoral response, consisting of B cells and the specific antibodies they produce under the 

influence primarily of CD4+ Th cells. Central to both arms of adaptive immunity is the priming 

of antigen-specific naive T lymphocytes by antigen-presenting dendritic cells.  Interaction of T 

cells bearing T cell receptors (TCR) specific for antigenic epitopes expressed in association with 

MHC class I or II molecules on the surface of dendritic cells results in mutual stimulation and 

activation of the T cell and dendritic cell. Binding of dendritic cell CD40 to T cell CD40 ligand 

(CD40L) induces the dendritic cells to upregulate expression of T cell co-stimulatory molecules 

B7.1 and B7.2, which in turn interact with T cell surface molecule CD28 to augment the 
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stimulatory signaling of the TCR-CD3 complex with its epitope (McLellan et al., 1996).  These 

multiple interactions required to initiate a T-cell mediated immune response are important 

controls in preventing the development of aberrant immune responses. 

CD4+ T cells recognizing antigen through the TCR and receiving co-stimulation through 

B7-CD28 ligation, up regulate both T cell growth factor IL-2 production (Petro et al., 1995), and 

expression of the high affinity IL-2 receptor alpha subunit (TAC; CD25) (Kremer et al., 1998), 

allowing for autocrine induction of proliferation. Activated progeny CD4+ T cells may then 

either differentiate into effector cells, or migrate from the PP via efferent microlymphatic vessels 

to complete differentiation and mediate effector function in distant tissues (Dunkley and 

Husband, 1987).  

Effector CD4+ T cells are classified as either T-helper type 1 (Th1) or T-helper type 2 

(Th2), and are defined by the cytokines that they produce. Th1 cells produce IL-2, IFN-γ, and 

TNF-α.   IFN-γ activates macrophages, up regulates MHC class II expression of APC (Farrar 

and Schreiber, 1993), induces activated B cells to undergo immunoglobulin heavy chain isotype 

switching to IgG2, and inhibits the establishment of Th2 responses (Farrar and Schreiber, 1993).  

Th1 cytokines, in particular IFN-γ and IL-2, can also augment CD8+ cytotoxic T cell responses 

(Biron, 1994). Th2 effector T cells produce predominately IL-4, IL-5, IL-6, and IL-10 (McHugh 

et al., 1996). These cytokines act on humoral responses; IL-4 induces isotype class switching to 

IgE and IgG1 (Rousset et al., 1991), whereas IL-5, IL-6, and IL-10 supports proliferation of 

activated B cells, and their differentiation into antibody-secreting plasma cells (Burdin et al., 

1995).  Selection of Th1 versus Th2 responses is thought to be influenced by the local cytokine 

milieu (Shibuya et al., 1998), concurrent immune responses (McHugh et al., 1995), the nature of 

the antigen (McHugh et al., 1996), and the APC (Schmitz et al., 1993), and individual genetic 
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predisposition (Shibuya et al., 1998).   It is thought that T-helper cells are the most important 

lymphocyte population in immunopathological inflammatory bowel diseases.   

Cytotoxic T lymphocyte responses: 

CD8+ T cells are responsible for killing cells infected with intracellular pathogens by 

effector mechanisms such as membrane pore-forming perforin and granzyme mediated 

cytotoxicity, as well as by inducing apoptosis of target cell by Fas-FasL interactions. CD8+ cells 

can also kill intracellular bacteria such as mycobacteria by means of the antimicrobial protein 

granulysin. Naïve CD8+ T cells, are activated by antigen expressed in association with MHC 

class I molecules by dendritic cells in the parafollicular T cell area of the PP.   Effector CD8+ T 

cells produce cytokines such as IFN-γ, IL-4, and small amounts of IL-2, which can influence 

other aspects of immune system.  In addition, evidence exists in animal and human models that 

CD8+ T cells can suppress immune responses.  

Effector T cells in the Intestine 
 
Overview: 
 

T lymphocytes in the intestinal lamina propria and intraepithelial lymphocyte 

compartment are numerous, and are phenotypically, functionally, and developmentally diverse. 

In general terms, LP and some IEL T cells can be considered as conventional antigen 

experienced, chronically activated immigrant lymphocytes from GALT and peripheral immune 

compartments. Four general functions can be ascribed to both LP and IEL T cells: Th cell 

support of secretory IgA and IgM mediated immune exclusion; protection of the mucosa against 

invasive organisms; regulation and attenuation of inflammatory responses; repair and 

maintenance of the integrity of the epithelial barrier. These functions are mediated by secreted 

cytokines, and direct cell contact dependent ligation of signal-transducing cell surface molecules. 
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As cytokine profiles, cell surface receptor expression, and activation requirements of mucosal 

effector T cells are often quite different, it is likely that the above mentioned functions are 

mediated, with varying amounts of overlap, by distinct T cell subsets.  

Lamina propria T cells: 

Lamina propria T lymphocytes are 55% CD4+, 24% CD8+, similar to percentages in the 

peripheral blood (Schieferdecker et al., 1992).  Most CD3+ T cells (95%) use the αβ form of the 

TCR (Ullrich et al., 1990), again similar to the peripheral blood, and although LP γδ TCR+ cells 

account for <5% of T cells, they are slightly enriched in the LP as compared to the systemic 

periphery. The LP also contains a minor T cell population that expresses both CD4 and CD8 

(14%) of unknown function (Abuzakouk et al., 1998).   These so-called �double positive� cells 

are rarely found in the peripheral blood.  LP T cells bear surface marker phenotypes associated 

with previous antigen-experience such as CD45RO (96%), cellular adhesion molecules CD2 

(Schieferdecker et al., 1992), α4β7 (70%) (Farstad et al., 1996), αEβ7 (52%), and basement 

membrane binding CD44 (>80%) (Ebert and Roberts, 1996).  LP T cells proliferate at relatively 

low levels, and are refractory to TCR-specific antigen mediated proliferative responses, although 

proliferation can be induced by ligation of alternative T cell stimulation molecules such as CD2 

and CD28 (De Maria et. al., 1993), and epithelial goblet cell derived cytokine IL-7 (Watanabe et 

al., 1995). Nevertheless, many LP T cells are constitutively activated as evidenced by the 

expression among roughly 15% of CD4+ and CD8+ cells of CD25, the IL-2R alpha subunit 

referred to as TAC (Zeitz et al., 1988) and the apoptosis-inducing FasL (De Maria et al., 1996). 

Furthermore, LP T cells were shown to spontaneously produce IFN-γ and IL-4 ex vivo. 

Additionally, high levels of both Th1 cytokines such as IFN-γ (Gonsky et al., 2000) IL-2 

(Gonsky et al., 1998), and TNF-α (Targan et al., 1995) and Th2 cytokines such as IL-4 (Targan 
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et al., 1995), IL-5 (Boirivant et al., 1996), and IL-10 (Braunstein et al., 1997) can be induced by 

ligation of CD2. Together the available data suggests that these cells are antigen-experienced but 

somewhat refractory to re-activation.  This physiologic state of T-cells in normal LP probably 

also contributes to the state of immunologic tolerance of the intestinal immune system. 

Perhaps the most important function of LP T cells is the support of B cell proliferation and 

differentiation. Differentiation of antigen-experienced B cells into pIgA secreting plasma cells is 

promoted by T cell cytokines TGF-β, IL-5, and IL-10, whereas IL-6 supports IgA, IgM, and 

IgG3 production (Riordan et al., 1998). Compelling evidence exists that LP T cells are 

constitutively activated to support B cell function, as LP T cells co-cultured with LPS-stimulated 

LP B cells provided Th cell support for secretion of IgA and IgM, whereas autologous PB T cells 

did not support IgA and IgM production (Danis and Heatley, 1987). Interestingly, TGF-β, IL-6 

(Goodrich and McGee, 1998), and IL-15 (Hiroi et al., 2000) produced by IEC are thought to 

augment LP pIgA production in vivo by B2 cells and B1 cells, respectively, suggesting a 

complex array of factors collectively involved in mucosal immunoregulation. 

Intraepithelial lymphocytes: 

In terms of phenotype, effector mechanisms, priming, and ontogeny, LP T cells are 

similar to other peripheral antigen-experienced T cells, yet contrast dramatically with IEL. IEL 

are a dispersed effector lymphocyte population intercalated within the IEC palisade just above 

the IEC basement membrane, and thus are in intimate contact with the columnar epithelium. The 

IEL compartment consists of T lymphocyte-like cells, with diverse and often unconventional 

phenotypes and developmental backgrounds. Most IEL bear the CD45RO+ phenotype of antigen-

experienced cells, and the integrin αEβ7 (Jarry et al., 1990), the ligand for which is E-cadherin 

expressed on IEC (Higgins et al., 1998). IEL also express HLA-DR and decreased levels of 
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TCR/CD3 as compared to PBL, possibly indicating recent activation (Abuzakouk et al., 1996). 

Up to 90% of IEL bear the CD8 phenotype, most of which the conventional heterodimeric form 

CD8 αβ. About 10% of IEL express CD4, some of which also co-express CD8 in the 

unconventional homodimeric CD8 αα  form. CD4+ IEL are found throughout the length of the 

intestine, and may respond to antigen presented on HLA-DR by IEC (Hoang et al., 1992). 

Additionally, small populations of CD4-CD8- cells are found in the IEL compartment 

predominantly in the large intestine. Most IEL are αβ TCR+, with significant fraction of γδ TCR+ 

cells that variably increases in quantity from 2 % to 10% in the duodenum up to approximately 

40% in the large intestine (Trejdosiewicz et al., 1989; Ullrich et al., 1990). While αβ TCR+ IEL 

can express any of the CD8 and CD4 phenotypes, the most prevalent population is the seemingly 

conventional CD8 αβ+ αβ TCR+ IEL. Of γδ TCR+ IEL, about 58% express the homodimeric 

CD8αα , with the remainder being CD4-CD8- (Deusch et al., 1991).  

The distinct phenotypes may correlate with ontogeny. Numerous studies undertaken in 

animals have suggested that CD8αα+ αβ TCR+ and γδ TCR+ IEL may be derived from 

extrathymic maturation pathways. This is less clear in humans. Nevertheless, these distinct 

phenotypes do correlate with function and specificity. It is well established that IEL with the 

conventional CD8αβ+ αβ TCR+ phenotype contain conventional antigen-specific cytotoxic T cell 

populations (Chardes et al., 1994; Chen et al., 1997), and that these CTL are derived from CD8+ 

T cells primed in Peyer�s patches (Cuff et al., 1993) and other secondary lymphoid tissues 

(Sydora et al., 1996), and assume effector function upon TCR mediated recognition of  antigen. 

Analysis of the TCR β chain sequences have demonstrated that while CD8 αβ+ and CD8αα+ T 

cells are not derived from the same precursor T cells, they are both the clonal progeny of very 

restricted group of progenitors as compared to peripheral blood CD8+ T cells (Pluschke et al., 
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1994). This restricted clonality is thought to derive from a chronic expansion and of IEL of 

certain antigenic specificies by enteric microfloral or dietary antigens. However, CD8αβ+ 

αβ TCR+ IEL bearing identical TCR β chain sequences may be simultaneously broadly 

distributed throughout the length of the intestine and locally enriched (Regnault et al., 1995), and 

also found within the thoracic duct and LP (Arstila et al., 2000), indicating that clonal 

populations of IEL may proliferate locally, and that progeny cells may migrate out of the 

epithelium and recirculate to distant sections of the intestine (Arstila et al., 2000).  

While CD8αβ+ αβ TCR+ IEL are responsive to TCR mediated recognition of antigen, CD8αα+ 

αβ TCR+ and γδ TCR+ IEL are much less responsive to TCR mediated activation (Barrett et al., 

1992). However, IEL are stimulated to proliferate and assume effector function by alternative 

pathways such as ligation of IEL CD2 (Van Houten et al., 1993) and thus may be activated in 

vivo by contact with the IEC CD2 ligand LFA-1 (Kvale et al., 1992). Additionally, IEC express 

surface glycoproteins 180, which can stimulate IEL proliferation through direct binding of CD8 

(Li et al., 1995). Furthermore, IEL proliferation can be induced by goblet cell secreted IL-7, 

which is augmented by LP CD4+ T cell TNF-α  and IL-2 (Ebert, 1998), and by direct contact 

with LP myofibroblasts underlying the IEC basement membrane (Roberts et al., 1997). CD8 αβ+ 

αβ TCR+ IEL are MHC class I restricted, mediate effector function by perforin and FasL 

mediated cytotoxicity (Corazza et al., 2000), and produce cytokines such as IFN-γ (Fan et al., 

1998), IL-8, and TNF-α (Lundqvist et al., 1996), and chemokines such as MIP-1β (Mattapallil et 

al., 1998). CD8 αα+ αβ TCR+ IEL and γδ TCR+ IEL also have the ability to mediate cytotoxicity 

and secrete IFN-γ, although both subsets have been shown to recognize alternative non-classical 

MHC molecules on IEC, such as CD1d (Panja et al., 1993; Sydora et al., 1996). Indeed, γδ TCR+ 

IEL expressing the TCR Vδ1chain, a unique, defining phenotype of the majority of IEL γδ TCR+ 
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IEL (Deusch et al., 1991), respond to IEC expression of MHC Class I like (MICA) molecules 

MICA-A and MICA-B, polymorphic molecules upregulated on stressed or damaged epithelium 

(Groh et al., 1998; Griffith et al., 1998). Additionally, some murine αβ TCR+ and γδ TCR+ IEL 

have been shown to proliferate and secrete IL-3, myeloid cell growth factor GM-CSF, and IFN-γ 

in response to soluble 65-kDa mycobacterial heat shock protein (HSP) (Beagley et al., 1993), 

which has been thought to be a cross-reactive antigen with mammalian HSP.  In murine studies, 

CD8 αα+ αβ TCR+ IEL and γδ TCR+ IEL have been shown to mediate spontaneous NK cell like 

killing, possibly through surface NK cell markers (Guy-Grand et al., 1996). In humans, NK cell 

marker CD56 and NKG2D  have been found on γδ TCR+ IEL, although human IEL do not 

appear to mediate much spontaneous ex vivo cytotoxicity  (Deusch et al., 1991;Bauer et al., 

1999) without stimulation by IL-2, IL-7 or IL-15, which induce so-called lymphokine activated 

killer (LAK) function (Ebert, 1999). Thus, CD8 αα+ αβ TCR+ IEL and γδ TCR+ IEL seem to 

remain cytolytically inactive until stimulated by a battery of IEC and LP cytokines and epithelial 

stress markers, thereby fine-tuning an otherwise non-specific response specifically against 

stressed or infected epithelial cells, possibly an ancient immune function predating the evolution 

of antigen-specific adaptive immunity (Hayday, 2000).  

In addition to cytolysis of infected and possibly stressed epithelial cells (Suzuki et al., 

1997), IEL influence epithelial barrier integrity. IEL have been shown to produce epithelial cell 

mitogen keratinocyte growth factor (KGF) that, in addition to KGF produced by LP fibroblasts, 

can repair damaged epithelium at the resolution of an inflammatory immune response. Indeed, 

mice lacking γδ TCR+ IEL show a reduction in epithelial cell turnover (Komano et al., 1995), 

and resolution of mucosal inflammation with subsequent restoration of the epithelium is greatly 

impaired (Roberts et al., 1996). IEL are reciprocally influenced by the epithelial cell cytokine 
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products, such as IEC IL-15 (Yoshikai et al., 1999) and goblet cell IL-7, which can induce IEL 

proliferation and LAK function, and IEC TGF-β (Ebert, 1999) and nitric oxide (Chung et al., 

2000), which have been shown to prevent IEL activation. Thus, as the immediate front line of the 

immune system in the intestine, different IEL subpopulations function to maintain normal 

epithelium growth homeostasis, non-specifically prevent infection of the epithelium, specifically 

resolve infection and guard against re-infection, and to resolve inflammation and repair epithelial 

damage, under the dynamic reciprocal control of numerous in situ factors of immune, epithelial, 

and stromal cell origin.   

Humoral Immunity: 

The primary follicles, located within the PP, appendix, or as dispersed isolated lymphoid 

aggregates, are the sites of initiation of humoral immune responses, and appear as roughly 

spherical lymphocyte aggregates containing predominately naive B cells that express several 

surface markers including CD19+, CD20+, surface IgD (sIgD+) and IgM  (sIgM+) (Farstad et. al., 

2000). In addition, follicles contain follicular dendritic cells (FDC) and occasional CD4+ Th 

cells. Primary follicles initially occur in the developing fetal intestine, but the development of 

secondary follicles during the B cell proliferative event known as the germinal center (GC) 

reaction does not occur until after birth, concomitant with the establishment of gut microflora 

(Brandtzaeg et al., 1987). Naïve antigen specific B cells initially contact antigen percolating 

through the parafollicular T cell area by means of their antigen-binding surface IgD and IgM, 

and subsequently internalize, process, and present epitopes to antigen-specific CD4+ T cells that 

themselves have been previously activated by the interdigitating dendritic cells in the 

parafollicular T cell area. In a manner that is analogous to the interaction between dendritic APC 

and T-cells, CD4+ T cell CD40L interaction with B cell surface CD40 induces upregulation co-
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stimulatory B7 molecules on the B-cell, which binds T cell surface CD28 and induce effector 

cytokine production, which subsequently induces B cell proliferation, resulting in the germinal 

center (GC) reaction (Gulbranson-Judge et al., 1997; Maclennan et al., 1997).  GC reactions 

occurring within extant primary follicles produce a characteristic appearance of the secondary 

follicle, with a dark zone of rapidly proliferating Ki-67+sIgD- sIgM+CD38+ centroblasts, which 

undergo isotype switching predominately to the IgA1 and IgA2 subclasses, and somatic 

hypermutation of antigen-binding heavy chain complementarity determining regions, a light 

zone of sIgD- sIgM+CD38+ centrocytes, and a mantle zone of predominantly naïve B cells 

(Brandtzaeg and Bjerke, 1990). Low affinity antigen specific antibody produced early in the GC 

reaction, or from previous humoral responses forms insoluble antigen-antibody immune 

complexes on the membrane of FDC within the follicle. During a GC reaction, FDC are induced 

to shed these immune complexes on membrane vesicles known as immune complex coated 

bodies (Ahmed and Gray, 1996). Centrocytes with hypermutated heavy chains are competitively 

positively selected by their ability to bind and internalize these immune complexes, and 

subsequently to present epitopes to follicle-infiltrating CD4+ T cells, and thereby avoid 

apoptosis. This competitive selection for B cells expressing mutated surface immunoglobulin 

best able to bind limiting amounts of antigen is the basis of the phenomenon of affinity 

maturation, and allows for progressively more effective fine tuning of humoral immunity.  

Following proliferation of activated antigen-specific B cell, somatic hypermutation and 

possibly isotype class switching, the resulting centrocytes do not usually immediately terminally 

differentiate to antibody secreting plasma cells, but rather they migrate from the lymphoid tissue 

via the efferent lymphatics to traffic to effector tissues, or they enter the marginal zone around 

the periphery of the follicular mantle zones to become a quiescent sIgD- sIgM+ or  sIgA+ CD20+ 
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reserve pool of antigen experienced �memory� cells (Dunn-Walters et al., 1996). These cells 

await subsequent re-exposure to antigen, whereupon they can provide a secondary �recall� 

response that is more rapid and of greater magnitude than the primary response.  

The primary immunoglobulin isotype produced by mucosal B cells is IgA. In humans, 

there are two subclasses, IgA1 and IgA2. Effector plasma cells in the intestinal LP secrete 

predominantly IgA1 in the proximal intestine, and IgA2 distally, although substantial amounts of 

both are produced at all sites along the length of the intestine (Brandtzaeg and Bjerke, 1990). 

Lesser quantities of B cells expressing immunoglobulin of other isotypes are also produced. In 

order of occurrence, these are IgM>IgG1>IgG2>IgG3/IgG4>IgE. The determination of isotype 

is determined in the initial priming site. Indeed, antigen experienced B cells exiting the gut via 

the mesenteric lymph expressed sIgA, sIgM or sIgG in a ratio of 5:1: approximately 0.5 (Farstad 

et al., 1997). Commitment to the IgA isotype, which contrasts with the PLN isotype class switch 

preference for IgG was shown to be due to intrinsic factors of the mucosal priming site 

microenvironment. Later in vitro studies demonstrated that PP DC and T cell co-cultures with 

mitogen stimulated B cells produce IgA. It is now known that the intestinal CD4+ T cell derived 

cytokine TGF-β, and the interaction of T cell, and possibly DC CD40L with CD40 on the surface 

of activated B cells induces the IgA isotype class switching within the intestinal secondary 

follicles.   The exact mechanisms for induction of IgA class switching and its regulation are still 

being elucidated. 

Intestinal effector B cells: 

The intestinal lamina propria, which contains approximately 1010 Ig-producing B cells 

and plasma cells per meter, totaling roughly 80% of the body total, is far and away the largest B 

cell organ of the body (Brandtzaeg et al., 1999). In the human gut, IgA+ B cells expressing either 
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the IgA1 or IgA2 subclasses predominate over all other isotypes, accounting for about 80% of B 

cells in the LP of the proximal jejunum (77% IgA1, 23% IgA2), increasing to 84% in the ileum 

(60% IgA1, 40% IgA2), and 90% in the large intestine (36% IgA1, 64% IgA2) (Kett et al., 

1986). The relative predominance IgA2+ B cells in the large intestine may be due to the 

abundance of bacterial products such as LPS, which tend to induce isotype class switching to 

IgA2 (Kett et al., 1986).  IgM+ cells show a substantial though decreasing representation from 

18% of B cells in the jejunum to 6% in the large intestine (Kett et al., 1986). IgG+ cells represent 

about 4% of all B cells throughout the intestine, with a subclass distribution of >60% IgG1, 20% 

IgG2, and <10% IgG3 and IgG4 (Bjerke and Brandtzaeg, 1990). IgE+ and IgD+ LP B cells are 

infrequent (Brandtzaeg et al., 1987). Nearly all LP IgA+ and IgM+ B cells, and >80% of IgG+ B 

cells also express the 15kDa J (joining) chain (Bjerke and Brandtzaeg, 1990), which aggregates 

intracellular IgA monomers into predominantly dimeric IgA, and occasional larger polymeric 

masses, and aggregates intracellular IgM into predominantly pentameric forms, and occasional 

hexameric forms collectively called polymeric IgA (pIgA) and pIgM, respectively (Brandtzaeg et 

al., 1999a). Monomeric IgG, by contrast, does not aggregate into polymers, and J chain 

expression by IgG+ cells is believed to be a by-product of mucosal priming of these cells 

(Brandtzaeg et al., 1999b). J-chain dependent pIgA and pIgM secreted by LP plasma cells is 

bound by the polymeric Ig receptor (pIgR) on IEC, translocated, and released in association with 

the secretory component (SC) following cleavage of the pIgR on the lumenal face of the IEC 

(Brandtzaeg et al., 1999b). Large amounts of IgG are also secreted into the intestinal lumen, 

most likely by passive diffusion through paracellular junctions (Prigent-Delecourt et al., 1995), 

although some evidence exists that an FcγR expressed on small intestinal IEC and provides for 

transport from the lumen to the LP of maternal IgG in breast milk, serves as a bi-directional 
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transporter, and can transport LP IgG onto the mucosal surface (Dickinson et al., 1999). Much of 

this IgG is probably derived from serum protein filtrate in the LP.  Taken together, these findings 

suggest a not inconsequential role for IgG in addition to pIgA and pIgM in normal intestinal 

immunity.  

Intestinal humoral immunity: 

Intestinal immunity, mounted under constant challenge by commensal and pathogenic 

organisms, is further complicated by the requirement to tolerate a massive load of normal floral 

and dietary-derived antigens. Despite the vast antigenic challenge, and the apparent chronic 

activation of the GALT, it is striking that not only is the intestinal mucosal not chronically, 

massively inflamed, but that with only rare exceptions, immune responses to most innocuous 

antigens are apparently inhibited. Perhaps the most important mechanism of preventing 

damaging immune responses to normal floral and dietary antigens is to preclude their contact 

with intestinal lymphocytes. This function is partially mediated by the epithelial cell and mucus 

barriers, and also by secreted antibody of predominantly the IgA isotype, with some contribution 

of IgM and IgG. Coating of lumenal organisms and antigens by secretory IgA prevents epithelial 

invasion by pathogens and commensal opportunists, as well as attenuating uptake of lumenal 

antigens, processes collectively known as �immune exclusion� (Neutra, 1999). In the LP, pIgA is 

bound by the pIgR on the basolateral surface of the IEC. Receptor bound pIgA is subsequently 

translocated to the lumenal, apical IEC surface, and is there released by proteolytic cleavage of 

the pIgAR. In the lumen, pIgA prevents antigen and organism contact with the IEC. It is also 

believed that during the translocation event pIgA may bind to antigen or organisms previously 

internalized by the IEC and �carry� it back to the lumen. By contrast, although FAE lacks pIgR 

(Brandtzaeg and Bjerke, 1989), and therefore does not transport pIgA into the gut lumen, M cell 
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FcαR binds antigen-bound secretory IgA in the lumen, translocating it and any associated 

antigen into the PP for subsequent immune priming (Neutra, 1999). Nevertheless, normal human 

GALT does not prime humoral responses to dietary antigen, as potent IgA responses, in contrast 

to IgE responses, against food antigens do not occur in humans except in cases of chronic 

intestinal inflammatory diseases (Husby et al., 2000). Indeed, intestinal IgA responses seem 

exquisitely restricted to commensal and pathogenic organisms and their structural constituents 

and secreted products. This is perhaps most clearly illustrated in studies using germ-free mice, 

wherein GC reactions are absent until colonization of the mucosa with gut microflora, 

monoassociation with segmented filamentous bacteria, or monoinfection with the model 

intestinal pathogen, reovirus. Interestingly, while PP and appendix-derived B cells have been 

demonstrated to provide IgA and IgM lymphocytes throughout the gut LP, studies in mice  

suggest that up to half of all gut LP IgA+ cells are the progeny of an unconventional population 

of peritoneal cavity derived CD5+ B cells, also known as B1 B cells, as distinguished from 

conventional bone-marrow derived GC-primed B2 cells (Murakami and Honjo, 1995). B1 B 

cells tend to produce IgM of low affinity to non-proteinaceous bacterial structural components, 

such as phosphatidylcholine and lipopolysaccharide, generally considered to be Th cell 

independent antigens. Nevertheless, under the influence of Th cell cytokines possibly from 

peritoneal cavity CD4+ T cell, or lamina propria T cells, or even possibly such novel factors as 

enteric nervous system neuropeptide vasoactive intestinal peptide (Boirivant et al., 1994), 

activated B1 cells can undergo isotype class switching to IgA. It is thought that B1 B cells 

represent ancient, innate �natural antibody� B cell immunity that forms an initial, non-specific, 

high volume, low affinity component of immune exclusion. By contrast, conventional (B2) B 

cells form a highly selective, high affinity response to commensal and pathogenic organisms that 
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manage to penetrate the B1 B cell pIgA line of defense (Bos et al., 1999). Interestingly, low 

affinity immunoglobulin from B1 B cells against some bacteria constituents, such as 

phosphatidylcholine-coated surface glycoproteins, can cross react with tissue self-antigens, 

possibly precipitating antibody-mediated autoimmunity, a phenomenon, which is currently under 

investigation (Murakami and Honjo, 1995).  

Migration of lymphocytes from priming to effector sites: 

Initiation of immune responses in the PP results in production of antigen-specific 

antibody and the appearance of activated T-cells at effector sites in the intestine as well as at 

other mucosal sites such as the respiratory tract, the mammary gland, and perhaps the 

genitourinary tract.  This phenomenon has led investigators to describe a �Common Mucosal 

Immune System� (CMIS).  The cellular basis for this CMIS has been understood for almost 30 

years.  Immune cells activated in the PP preferentially migrate back to the intestine, but a 

fraction will distribute to other mucosal compartments.  The phenomenon of shared memory 

lymphocytes among anatomically distinct mucosal compartments is the rationale behind mucosal 

vaccine strategies aimed at providing protective immunity at targeted mucosal tissues by antigen 

application at physically more accessible and convenient locations.  The molecular basis for this 

preferential re-circulation has been more clearly elucidated only in the last decade.   

Most cells leaving the intestine and entering the mesenteric lymphatic vessels are 

believed to migrate to the mesenteric lymph nodes (MLN). Proliferating T and B cells from the 

GALT can produce large numbers of progeny in the MLN, which, along with quiescent 

recirculating naïve and memory cells, can reenter the efferent lymphatics, going on to the 

thoracic duct and then the systemic venous circulation. Antigen experienced T and B cells can 

then migrate to mucosal effector sites or to other secondary lymphoid tissues.  
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Memory T and B cells exiting the gut express a heterodimeric protein receptor referred to as α4β7 

integrin, which allows for the preferential trafficking of gut-primed lymphocytes to the intestinal 

lamina propria and back to the intestinal priming tissues such as PP and MLN. The phenomenon 

of recirculation of antigen-experienced cells back to the gut tissues is mediated by α4β7 ligation 

of the mucosal addresin cell adhesion molecule 1 (MadCAM-1) constitutively expressed on the 

intravascular surfaces of the flat endothelial cells of the post-capillary venules of the gut LP, and 

also on the specialized cuboidal high endothelial vessels (HEV) cells that serve as the points of 

egress of naïve and memory T and B cells from the venous circulation into the organized 

intestinal priming lymphoid tissues (Farstad et al., 1996). Differential glycosylation of the 

MadCAM molecule within the endothelial cells at these locations allow for specific interactions 

with distinct lymphocyte ligands expressed on naïve or activated lymphocytes.  Thus, naïve cells 

are excluded from effector compartments, which preferentially recruit antigen experienced α4β7
+ 

cells.  

Expression of α4β7 is not confined solely to intestinally primed lymphocytes, or even 

more generally to mucosally primed lymphocytes.  Nevertheless, cells primed in distinct mucosal 

immune compartments show a definite preference for returning to their compartment of priming.  

This is likely mediated by differential levels of expression of other integrins and chemokine 

receptors that contribute to lymphocyte homing.  However, a detailed discussion of these 

interactions is beyond the scope of this chapter.  

Oral tolerance: 

Secretory IgA, and to a lesser extent IgM mediated immune exclusion and epithelial 

barrier function to exclude lumenal antigen from the intestinal tissues are important mechanisms 

by which the intestine prevents uncontrolled immune activation and inflammation. Intestinal T 
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cell responses, and by extension systemic T cell responses are tightly controlled by mechanisms 

ranging from outright elimination of antigen activated T cells, known as clonal deletion, 

debilitation of proliferation and effector function, known as anergy, and the generation of antigen 

specific effector T cells secreting a cytokine profile that attenuates other T and B cell responses, 

known as active suppression. Collectively, these mechanisms contribute to a phenomenon of 

elicited antigen-specific hyporesponsiveness, known as oral tolerance. Oral T cell tolerance is 

generated to protein antigens, and therefore requires T cell interaction with APC and antigen. 

The most important determinants of T cell tolerance as regards the mechanisms of clonal 

deletion or anergy are most likely a large quantity of antigen (Friedman and Meiner, 1994 ) and 

low levels of co-stimulatory molecule expression on APC presenting  antigen to T cells (Van 

Gool et al., 1999; Koenen and Joosten, 2000). Both T cell recognition of antigen via the TCR, 

and CD28 ligation by APC B7 are required to activate naïve T cells. In the absence of sufficient 

APC activation by CD40L-CD40 interaction (Van Gool et al., 1999) or local inflammatory 

cytokines such as IL-12 (Villegas et al., 1999), the APC will express B7 at levels insufficient for 

naïve T cell co-stimulation, rendering responder T cells anergic (Frauwirth et al., 2000). Antigen 

experienced T cells, which express the CD28-like high affinity receptor for B7, known as CTLA-

4, can be deleted by interaction with antigen on APC expressing limiting levels of B7, which 

preferentially binds CTLA-4 in lieu of CD28, thereby inducing T cell apoptosis (Perez et al., 

1997). In instances where exceptionally high local concentration of antigen are present, the APC 

may provide such high numbers of MHC antigen complexes to induce responder T cells to 

undergo apoptosis, leading to tolerance by clonal deletion (Chen et al., 1997).  

Active suppression, by contrast, is more complicated, involving under different 

circumstances CD4+, CD8+, or γδ TCR+ T cells, and is dependent on CD40L-CD40 interaction 
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and antigen presenting cell activation (Kweon et al., 1999).  In general, active suppression is 

mediated by antigen-specific T cells that produce the pleiotropic cytokine TGF-β, and the Th2 

associated cytokine IL-10 (Kitani et al., 2000). TGF-β, frequently expressed in GALT by CD4+ 

Th3, or T regulatory cells either alone or in addition to a Th2 cytokine profile (Kitani et al., 

2000), and also by some γδ TCR+ IEL (Barrett et al., 1992) and IEC (Goodrich and McGee, 

1998). TGF-β strongly attenuates T cell responses (Levings and Roncarolo, 2000), while also 

serving as the primary B cell IgA switch factor (van Vlasselaer et al., 1992). Thus, TGF-β serves 

to prevent damaging immunity directly, and by augmenting IgA mediated immune exclusion. IL-

10, a Th2 cytokine involved in downregulating APC antigen processing and presentation, and in 

blocking Th1 responses and cell mediated immune responses such as delayed type 

hypersensitivity, also contributes to the IgA response by promoting IgA+ B cell differentiation to 

IgA secreting plasma cells. Indeed, IL-10 is secreted by IEC; possibly to both reduce APC 

presentation of cell-mediated immune responses to innocuous antigens, and to increase local 

pIgA production. GALT CD8+ T cells also mediate active suppressive tolerance by TGF-β 

production, often in concert with TGF-β producing CD4+ T cells. Animal studies have shown a 

pivotal role for γδ TCR+ T cells in oral tolerance induction and maintenance, as oral tolerance to 

ovalbumin protein could not be established in mice depleted of γδ TCR+ T cells (Mengel et al., 

1995; Ke et al., 1997). Furthermore, previously established oral tolerance to ovalbumin protein 

could be abrogated by depletion in vivo of γδ TCR+ T cells (Mengel et al., 1995). Conversely, 

adoptive transfer of murine γδ TCR+ T cells has been shown to abrogate previously established 

oral tolerance (Fujihashi et al., 1992). The complex role of γδ TCR+ T cells in oral tolerance 

induction and maintenance are subject to ongoing investigation. γδ TCR+ T cells of the IEL 

compartment also have a crucial supportive role in lamina propria IgA production, as TCR δ-
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chain gene deleted mice have severely diminished LP IgA production, but normal LP IgM and 

IgG production, suggesting an important role of mucosal γδ TCR+ T cells in maintaining IgA 

immune exclusion. Numerous clinical studies have been initiated attempting to ameliorate 

intestinal and systemic immunopathology by inducing tolerogenic intestinal immune responses, 

thus exploiting a natural protective phenomenon for broad therapeutic benefit.  
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