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Abstract 

 

Effect of Interface Fields on the Piezoelectric Response of Aluminum 

Nitride Thin Films 

by John P. Harman 

Group III-Nitride wide bandgap semiconductors have attracted much attention in the 

optoelectronic and electronic research areas recently.  III-Nitride semiconductor materials 

are attractive materials for use in optoelectronic and high speed electronics devices 

because they are direct bandgap semiconductors and the bandgap can be varied over a 

wide range.  It has also been shown that the III-Nitride group of materials function 

exceptionally well in harsh environments.  The piezoelectric properties of the III-Nitride 

material system have been studied and several of the III-Nitride compounds have been 

found to have non zero piezoelectric coefficients.  This work shows that the observed 

piezoelectric coefficient of Aluminum Nitride (AlN) is directly related to the metal used 

as the topside contact.  The data and preliminary analysis presented here indicate that 

AlN cannot be treated as an insulating material and must be treated as a semiconductor in 

order to model its piezoelectric behavior.    
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1 INTRODUCTION  

1.1 III-Nitride Material System 

The group III – Nitride material system consisting of the three binary compounds, namely 

Aluminum Nitride, Galium Nitride and Indium Nitride is of extreme interest to researchers in the 

optoelectronics, high power, high speed and high temperature electronics areas. [1]  This interest 

is fueled largely because of the ability to tailor the bandgap of these semiconductor materials by 

varying the concentration of the constituent elements.  Because the binary, ternary and 

quaternary compounds have similar lattice constants, it is possible to epitaxially grow 

homojunction structures that have minimal strain and defects. [2]  By reducing strain and defects 

electronic and optoelectronic devices fabricated by hetero-epitaxial growth have higher 

efficiencies, faster switching speeds and can dissipate more heat than similar homojunction 

devices.  III – Nitrides are inherently direct bandgap semiconductors.  Direct bandgap 

semiconductors allow electrons to transition from the conduction band to the valence band 

without a change in momentum. [3]  During this transition the electrons extra energy is expended 

in the form of a photon with wavelength proportional to the bandgap.  The wavelength as a 

function of bandgap is given by Equation 1. [4] 

   

Equation 1 – Wavelength and Bandgap Relation 

Equation 1  shows that the three binary III – Nitride compounds Indium Nitride (InN), Gallium 

Nitride (GaN) and Aluminum Nitride (AlN) will emit at 688, 400 and 200 nanometers 

respectively.  This is also evidenced in Figure 1.  By producing pseudobinary Aluminum 

Gallium Nitride (AlxGa1-xN) and Aluminum Gallium Indium Nitride (AlxGayIn1-x-yN) ternary and 
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quaternary alloys it is possible to vary the bandgap almost continuously from that of InN all the 

way to AlN.  Both emitting and detecting devices can be fabricated for specific wavelengths 

using this material system. 

 

III – Nitride materials also exhibit piezoelectric properties that stem from the inherent dipole 

moment of the material system.  The three aforementioned binary compounds each exhibit strong 

c-axis piezoelectric responses.  While other III-Nitride ternary and quaternary compounds do 

exhibit piezoelectric properties, the magnitude of the response is much less compared to that of 

the binary compounds. [5]  The piezoelectric response of the III – Nitride material system is of 

great interest because the material can simultaneously perform optoelectronic, electronic and 

piezoelectric functions.  The piezoelectric coefficient of the materials in the III – Nitride system 

is also not degraded by high temperature or most harsh chemical environments. [5]  Because of 

this thermal and chemical resistance the III – Nitride system lends itself nicely to sensors and 

actuators that must function in harsh environments. 

 

Because of growth constraints, most III – Nitride materials are grown as thin films on a surrogate 

substrate such as Sapphire or Silicon.  III – Nitride compounds can be synthesized using standard 

semiconductor growth techniques such as Metal Organic Vapor Phase Epitaxy (MOVPE) [6], 

Molecular Beam Epitaxy (MBE) [7] and reactive sputtering [8], [9], [10].  Generally, MOVPE 

and MBE produce very high quality single crystal films whereas reactive sputtering produces 

polycrystalline or amorphous films.  However, MOVPE and MBE are inherently slow processes 

that do not lend themselves to high throughput as is required in the microelectronics industry.  

Reactive sputtering can achieve the high throughput necessary for a production environment at 
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the cost of crystalline quality.  Much research has been conducted with the goal of improving the 

crystalline quality of films deposited by reactive sputtering.  Despite these efforts the current 

state of the art sputtered films are less efficient than MOVPE or MBE films. [11]  Because 

sputtering is inherently a random process, sputtered films tend to be polycrystalline or 

amorphous as opposed to single crystals. [12]  Therefore, when these films are employed in 

optoelectronic or electronic devices leakage currents tend to be higher, electronic and optical 

efficiency tends to be lower.  

 

Figure 1 – III-Nitride Binary Compounds [13] 
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1.2 Aluminum Nitride Material System 

 

Aluminum Nitride (AlN) is III – Nitride and a wide bandgap semiconductor material that 

crystallizes in the wurtzite structure with lattice constant a = 3.11 Å and c = 4.98 Å. [14]    The 

wurtzite crystal structure is shown in Figure 2. 

 

Figure 2 – Wurtzite Unit Cell   

 

The bandgap of AlN is 6.22 eV making it both a viable dielectric [15] and semiconductor [16] 

material.  Single crystalline AlN is very hard to manufacture and most AlN samples are either 

amorphous or polycrystalline.  The crystalline quality of AlN is directly related to the refractive 

index of the material.  Generally, AlN has a refractive index between 1.8 and 2.1 with 1.8 

representing amorphous AlN and 2.1 representing single crystalline AlN. [17]  The Fermi level 

and impurity concentration of AlN is much harder to determine because standard 

photoluminescence and Hall Effect studies do not lend themselves to the measurement of wide 

bandgap semiconductors.  The electron affinity of AlN is likewise not well known and some 



 5

studies report that AlN actually has a negative electron affinity.  Despite the difficulty in 

experimentally determining many of the electrical and semiconducting properties of AlN it is 

nonetheless a very important material in electronics and optoelectronics. 

 

1.2.1 Growth and Deposition Methods 

The high Gibbs free energy of Aluminum Nitride makes it challenging to synthesize high quality 

single crystalline Aluminum Nitride.  Aluminum Nitride is generally not grown as a bulk 

material but rather as a thin film on a surrogate substrate with a significant lattice mismatch.  The 

most common foreign substrates used to deposit Aluminum Nitride thin films and their lattice 

mismatch are summarized in Table 1. 

Material Lattice Mismatch 

Silicon 19% 

Aluminum 8% 

Platinum 11% 

Table 1 – Common Aluminum Nitride Substrates 

The use of Face Centered Cubic (FCC) metals to act as a substrate for the growth of Aluminum 

Nitride allows higher crystalline quality at the expense of creating a Schottky contact on the 

backside of the Aluminum Nitride thin film.  In some electronic applications this is a fortuitous 

intersection of two desirable traits but in most applications the proximity of the conductor 

actually hinders the electrical performance of the device. 

 The two most prominent methods of reactively synthesizing Aluminum Nitride are 

reactive sputtering and Metal Organic Vapor Phase Epitaxy (MOVPE). 
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1.2.1.1 DC Magnetron Sputtering 

The synthesis of Aluminum Nitride by DC Magnetron reactive sputtering involves 

simultaneously populating a vacuum chamber with Nitrogen gas and atomic Aluminum.  

Sputtering is accomplished by evacuating a vacuum chamber to a base pressure of less than 10e-

5 Torr and introducing a mixture of Argon and Nitrogen gasses into the chamber.  A strong 

magnetic field is created by passing a DC current through a magnet embedded in a block of 

Aluminum inside the chamber.  The powerful negative DC voltage applied to the Aluminum 

target ionizes the gas creating plasma above the Aluminum.  The kinetic energy of the positively 

charged Nitrogen and Argon ions slamming into the negatively charged Aluminum target causes 

atomic Aluminum particles to be “sputtered” from the target.  The particles travel away from the 

target in a Gaussian distributed pattern and react with the Nitrogen gas in the chamber to form 

Aluminum Nitride.  Aluminum Nitride is reactively formed when the Aluminum atoms are 

deposited on the substrate.  The general sputtering process is schematically outlined in Figure 3. 
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Figure 3 - Schematic representation of sputter deposition chamber. 

Sputter deposition is an excellent way to quickly deposit Aluminum Nitride thin films on many 

substrates including Silicon, Saphire and metals.  Despite the ease of deposition, Aluminum 

Nitride thin films deposited by DC reactive magnetron sputtering are inherently lower in quality 

than their counterparts that are grown by high temperature methods.  Sputtered films tend to be 

amorphous or polycrystalline and have a refractive index between 1.8 and 1.95.  Surface 

roughness of sputtered films is often observed to be as high as 50nm.  The rate of sputter 

deposition is directly contingent on the pressure of the Argon and Nitrogen gas in the sputter 

chamber.  Generally, higher Argon pressures correspond to higher deposition rates and lower 

quality films.  However, at very low Argon pressures it is impossible to produce plasma thus 

limiting the Aluminum Nitride film quality.  Deposition rates and film quality are also dependent 

on the ratio of Argon to Nitrogen.  The final factor that influences deposition rate and film 

+       DC      - 

Substrate

Argon and 

Nitrogen Gas 



 8

quality is the power that is applied to the Aluminum target.  Generally, higher powers result in 

higher deposition rates but lower quality Aluminum Nitride films. To produce high quality films 

it is necessary to optimize each of these parameters for the particular sputter deposition chamber 

through an iterative process. 

1.2.1.2 Metal Organic Vapor Phase Epitaxy (MOVPE) 

MOVPE is the second technique employed in this study to deposit Aluminum Nitride.  MOVPE 

generally produces highly c-axis oriented single crystalline Aluminum Nitride thin films with a 

minimum number of defects and dislocations.  MOVPE Aluminum Nitride is deposited by 

flowing a metal organic gas, namely tri-methyl aluminum, over a substrate that is heated to 900˚ 

to 1200˚ Celsius.  As the tri-methyl aluminum gas becomes hot the chemical bonds break down 

allowing the metal to drop onto the substrate and the constituent molecules to be extricated from 

the chamber.  Nitrogen gas is introduced into the chamber at the same time and deposition of 

Aluminum Nitride on the substrate occurs. 

 MOVPE deposition rates are generally slower than sputter deposition rates but the films 

produced are much higher quality.  MOVPE is not used to deposit AlN on metal substrates 

because of the risk of metal contaminating the chamber during the high temperature deposition.  

With MOVPE it is possible to intentionally add impurities to the Aluminum Nitride to shift the 

Fermi level making it n-type or p-type material.  Despite the ability to add the aforementioned 

impurities it is very hard to determine the Fermi level post deposition and therefore all 

Aluminum Nitride used in this study was intrinsic.  The refractive index of Aluminum Nitride 

films deposited by MOVPE is generally between 1.95 and 2.05 indicating a high degree of 

crystallinity.  MOVPE deposited samples routinely exhibit surface roughness less than 10nm and 
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it is not uncommon to measure surface roughness of MOVPE deposited Aluminum Nitride 

samples of less than 5nm.   

 

1.3 Piezoelectric Materials 

By definition a piezoelectric material is any solid material that produces a charge when stress is 

applied to the material. [18]  Generally piezoelectric materials are crystalline materials that have 

a dipole structure.  At equilibrium the separation between the atoms is such that the charge state 

is zero.  However, when a strain force is applied to a piezoelectric material the dipole is forced 

closer together thus creating a non-zero charge.  The piezoelectric response of a material is 

defined as the amount of charge produced per unit stress.  Due to differing material 

configurations the magnitude of the piezoelectric response varies across a wide range.  To fully 

understand the piezoelectric response it is necessary to delve into the tensor representation of the 

crystal lattice. [19]  Despite the complex nature of tensors and tensor analysis it is fairly easy to 

understand the practical application of the tensor as it applies to the uniaxial piezoelectric 

response.  The uniaxial piezoelectric response is defined simply as the charge produced across an 

axis when unit stress is applied along the same axis.  Using an orthogonal coordinate system the 

piezoelectric response can be defined as the charge produced along axis x when unit stress is 

applied along axis x.  This is denoted as dxx. [19]  The uniaxial piezoelectric response ignores any 

charge that may be induced on the other axes.  This approach lends itself well to most 

piezoelectric materials because generally the piezoelectric response along one axis is much 

greater than the response along the other axes.  The realization that the piezoelectric response is 

much greater along one axis than the other two axes leads to two direct measurement techniques 
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used to determine the magnitude of the piezoelectric response.  Generally the piezoelectric 

response of greatest interest is d33 or the charge produced per unit stress along the vertical axis. 

 

1.3.1 Direct Piezoelectric Effect    

The piezoelectric effect manifests itself in two measurable effects, namely the direct and 

converse piezoelectric effect.  The direct effect is exactly as described in the preceding section; a 

strain is applied to a crystal lattice and a charge is produced along the axis that the strain was 

applied.  The direct effect can be measured using a mechanical stress applied to the crystal in 

conjunction with a charge integrator.  During application of mechanical stress the crystal 

produces charge which is gathered on the charge integrator and measured as a voltage.  Because 

the voltage is directly proportional to charge it is possible to determine the charge produced by 

the crystal per unit stress.  Therefore d33 takes on the units of Coloumb per Newton.  Because the 

magnitude of the response is very small the units of pico Coloumb per Newton are generally 

used.   

 

 

Equation 2 – d33 In the Direct Case 

Equation 2 shows the relationship between charge and force and the units of measure.  A 

schematic diagram of a device to measure the direct piezoelectric effect is outlined in Figure 4.  

In Figure 4 a mechanical excitation is applied to a metal contact by means of a stylus or other 

rigid mechanical body.  The excitation causes a charge to accumulate on the metal contacts on 
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the top and bottom of the piezoelectric crystal.  This charge is gathered on the charge integrator 

and read as a voltage. 

 

Figure 4 - Measurement of the Direct Piezoelectric Effect 

1.3.2 Converse Piezoelectric Effect 

The converse piezoelectric effect is functionalized by applying an electric field across the 

material and measuring the deformation of the crystal along the same axis that the field was 

applied.  The piezoelectric coefficient, therefore, becomes displacement per unit field .  In this 

case the units of d33 are meters per volt or picometers per volt because of the very small 

displacements involved.   

  

Equation 3 – d33 In the Converse Case 

Equation 3 shows the relationship between strain and electric field and shows that ideally d33 

does not depend on film thickness. The experimental setup for measuring the converse case 

V 
PZ Crystal Mechanical Excitation 

Charge Integrator 
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generally involves depositing metallic contacts on opposite sides of the sample and applying an 

oscillating electric field between the top and bottom contacts.  The oscillating electric field in 

turn produces an oscillating displacement along the axis.  To measure this displacement many 

different methods have been employed.  The most common methods involve the use of a dual 

beam differential interferometer or vibrometer to measure the picometer level displacements 

induced by the oscillating voltage.  Other methods use extremely sensitive probe tips to 

physically probe the oscillating surface and measure the displacement.  These methods, akin to 

Atomic Force Microscopy, are not often used because of their inherent complexity and low 

resolution.  With optical methods it is possible to obtain resolutions of less than 5 picometers at 

frequencies as low as 1 kHz.  A general dual beam interferometer / vibrometer setup is 

schematically depicted in Figure 5.  

   

Figure 5 – Schematic depiction of dual beam interferometer 

1.3.3 Equivalence of Units 

It should be noted that the units of meters per volt and Coulomb per Newton are exactly 

equivalent.  A simple unit conversion from meters per volt to Coulomb per Newton can be easily 

V AC PZ Crystal

Interferometer 
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demonstrated.  The unit meter is a fundamental unit and cannot be expressed in terms of simpler 

units.  However the unit of volt can be expressed as a Joule per Coulomb allowing the following 

equation to be written: 

 

Equation 4 – Equivalency of Piezoelectric Units 

From Equation 4 it is evident that the units in the direct case and the converse case are exactly 

equal. 

1.3.4 Analysis of Piezoelectric Data 

As with any experimental technique, the results obtained from direct measurement of the direct 

or converse piezoelectric effect are only as reliable as the analysis technique applied to the data.  

The analysis of charge versus stress or displacement versus voltage data can seem deceptively 

simple.  However, to ensure that erroneous measurements are excluded it is imperative to 

validate all data by applying strict statistical analysis methods.  The first step in analyzing any set 

of piezoelectric data is to perform a linear regression on the charge as a function of applied stress 

or the displacement as a function of applied voltage.  Ideally the curve should be perfectly linear 

and pass through the origin.  If the curve displays significant non-linearity i.e. the curve shows 

an exponential or polynomial dependence then the quality of the data immediately becomes 

questionable.  Most piezoelectric response curves do not pass through the origin and have an 

intercept greater than the background noise or resolution of the measurement method.  This 

phenomenon can not readily be explained and can generally be discounted.  It is believed that 

this non-zero intercept is due to initial stress in the films due to defects and charge deformities.  

However, this is only a conjecture and has not been proven in this or other work.  It is not 
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prudent to force the regression through the origin because it can significantly change the 

piezoelectric coefficient.  As with any analysis of experimental data it is imperative to determine 

the standard error of the measurements.  The standard error is not simply the resolution of the 

measurement technique but rather the variability of the data set.  As an example when measuring 

the converse piezoelectric response of an Aluminum Nitride thin film displacement data is taken 

for different values of excitation voltage.  At each excitation voltage several (generally 100 or 

greater) single point measurements are averaged to produce the final measurement.  The standard 

error generated by this data set is of extreme importance.  To obtain an accurate estimate of the 

piezoelectric coefficient it is necessary to measure this standard error and use it when calculating 

the piezoelectric coefficient.  The standard error is somewhat dependent on the signal to noise 

ratio (SNR) of the measurement technique.  Therefore, data collected at lower applied stress 

levels or lower applied voltage levels generally exhibit a higher standard error.  However, it 

should be noted that the standard error versus signal to noise ratio generally saturates at high 

SNR.  

1.4 Piezoelectric Micro Electro Mechanical Systems (MEMS) 

 

Recently, Micro Electro Mechanical Systems (MEMS) has come to the forefront of the 

microelectronics and micromechanics research field.  MEMS have a wide variety of uses ranging 

from complex systems used as safe and arm devices for nuclear weapons to simple valves used 

to control the flow of minute amounts of fluids.  MEMS are electromechanical systems that 

accomplish motion by one of two means either a static attraction repulsion as in silicon based 

MEMS or by means of a piezoelectric response as in Aluminum Nitride or other piezoelectric 

materials.  Silicon based MEMS are by far the most prevalent and have been widely studied 
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because of their compatibility with standardized silicon microchip processing technology.  

Figure 5 is a schematic representation of a lateral comb resonator (LCR) that is often employed 

to drive motion in Silicon based MEMS.  In Figure 6 motion is along the Y axis.   

 

Figure 6 - Silicon Lateral Comb Resonator 

 

Piezoelectric MEMS however, have only recently begun to be studied because the processing 

techniques that must be employed to fabricate complex structures from novel materials either do 

not exist or are very expensive and not well understood.  The allure of using materials other than 

Silicon in MEMS lies in the fact that Silicon is greatly limited in the type of environment it can 

function in.  High temperature and chemically harsh environments preclude Silicon based 

MEMS from being a viable solution.  Lead Zircronate Titinate (PZT) is a very common 

piezoelectric material that is often employed in piezoelectric MEMS applications.  PZT is an 

excellent candidate material for temperatures that do not exceed 200˚C.  However, at high 

temperatures PZT loses its spontaneous polarization and the piezoelectric response rapidly 

AC  

X 

Y 
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declines.  Aluminum Nitride maintains its piezoelectric properties at high temperatures and in 

harsh environments making it an excellent candidate material for piezoelectric MEMS 

applications that much withstand such environments.  Because Aluminum Nitride is most easily 

deposited as a thin film, piezoelectric devices made using Aluminum Nitride generally 

incorporate a substrate material to aid in deposition.  Figure 7 schematically depicts a simple 

cantilever MEMS device based on silicon and Aluminum Nitride thin film technology. 

 

Figure 7 - Aluminum Nitride Thin Film Based MEMS Device  

 

In Figure 7 red represents Aluminum Nitride, black represents silicon and white represents 

vacuum. 

In Figure 7 a voltage is applied between the bottom of the structure (Silicon) and the top 

(Aluminum Nitride).  The voltage and resulting electric field cause the Aluminum Nitride to 

actuate moving the cantilever either up or down depending on the polarity of the electric field.  

Conversely, if a stress is applied to the cantilever a charge will be produced that is proportional 

Top View Side View 
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to the amount of stress applied.  This utilization of both the direct and converse piezoelectric 

effect allows the cantilever MEMS device to act as both an actuator and a sensor.  This dual 

functionality is a property that is unique to piezoelectric MEMS. 

 As with the deposition of Aluminum Nitride, fabrication techniques for Aluminum 

Nitride based piezoelectric MEMS present several challenges.  Because of the chemical 

resistance of Aluminum Nitride it is not possible to use the same etching techniques that are 

utilized by the Silicon MEMS industry.  Aqueous etching of Aluminum Nitride has proven to be 

very uncontrollable and does not lend itself to reliable MEMS releases.  Dry etching techniques 

such as Reactive Ion Etching (RIE) and Deep Reactive Ion Etching (DRIE) have proven to be the 

most viable etching solutions for Aluminum Nitride MEMS.  All chemical etching methods 

involve using a mask material to protect the areas of the Aluminum Nitride that must not be 

removed.  Because Aluminum Nitride is very resistant to chemical etching few materials exist 

that can withstand the etching process, therefore, limiting the materials that can be used as a 

mask. 

1.5 Aluminum Nitride Piezoelectric Devices 

 

Aluminum Nitride as a candidate for piezoelectric MEMS systems was discussed in the previous 

section.  However, other devices that utilize the piezoelectric properties of Aluminum Nitride 

also exist.  These devices, while not new, have received much attention in the past few years.  

These devices fall into two major categories namely Bulk and Surface Acoustic Wave (BAW 

and SAW) devices and Metal Insulator Semiconductor (MIS) devices.  Relative to Aluminum 

Nitride based piezoelectric MEMS these devices are much easier to fabricate.  Generally the 

fabrication of BAW, SAW and MIS devices and structures involves depositing contact metal 
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patterns using standard photolithographic techniques on an Aluminum Nitride substrate.  

Because complex etching techniques are not required to fabricate these devices it is much easier 

to mass produce them using mostly standard Silicon microchip processing techniques. 

 The first class of devices, BAW and SAW devices are of particular interest because they 

utilize both the direct and converse piezoelectric effect.  Figure 8 is a schematic depiction of a 

BAW or SAW device. 

 

Figure 8 – Aluminum Nitride BAW / SAW Device   

In Figure 8 red represents Aluminum Nitride while black represents metal contacts deposited on 

the Aluminum Nitride.  The BAW / SAW device depicted in Figure 8 works by applying an 

oscillating voltage between the electrodes deposited on the left hand side of the device.  This 

oscillating voltage induces movement in the Aluminum Nitride film.  The movement causes 

acoustic waves to travel across the Aluminum Nitride to the opposing set of metal contacts.  

These contacts act as a transducer and a voltage can be measured across the contacts.  Because 

the geometry of the device is easily controlled it is possible to tailor the frequency response of 

Top View Side View 
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the device.  The largest application of BAW / SAW devices is as a means of both electrical 

isolation and as a low pass, high pass or band pass filter.   

2 EXPERIMENTAL SETUP  

2.1 Deposition and Growth of Aluminum Nitride 

All the Aluminum Nitride samples used in this work were deposited either by DC reactive 

magnetron sputtering or by Metal Organic Vapor Deposition (MOVPE).  The protocol for 

depositing Aluminum Nitride by DC reactive magnetron sputtering is outlined in Appendix A 

and a general overview of DC reactive magnetron sputtering has been presented previously in 

this work. 

 The samples used in this work were deposited on three substrates, namely p-type silicon 

and n-type silicon.  Table 2 outlines the properties of the silicon used in this study. 

 Resistivity Bulk Carrier Concentration Orientation 

n-type Si (Ph Doped) 1-20 Ω-cm 1.3 10 cm  (100) 

p-type Si (B Doped) 1-20 Ω-cm 1.3 10 cm  (100) 

Table 2– Semiconducting Properties of Silicon Substrates  

The silicon samples used in this study were double polished to ensure a uniform and 

reproducible metal contact could be made to the backside of the silicon.  The silicon substrates 

used in this study underwent a thorough organic cleaning in acetone and methanol followed by a 

2 minute immersion in a 1% solution of hydrofluoric acid and DI water.  The purpose of the 

organic cleaning was to remove any native organic materials like oils that may have accumulated 

on the surface of the silicon during processing, shipment and storage.  The purpose of the 

hydrofluoric acid bath was to ensure that no native oxide remained on the surface of the wafer 
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before the deposition process was begun.  During the course of this study it was determined that 

even a few angstroms of native oxide are enough to impede the function of the semiconductor – 

Aluminum Nitride – metal structures.  This result will be used as supporting, circumstantial 

evidence for the central conclusion drawn later in this work. 

 The MOVPE Aluminum Nitride used in this study was deposited in a horizontal 

AIXTRON 200/4 RF-S Metal Organic Vapor Phase Epitaxy reactor. Trimethylaluminum and 

ammonia were used as the Al and N precursors with approximate flows of 12 mol/min and 1.5 

slm, respectively. Hydrogen was used as the carrier gas and growth was conducted at a reactor 

pressure of 50 mbar and an approximate temperature of 1100 °C.  The deposition of Aluminum 

Nitride by MOVPE is inherently a very complex process and therefore falls outside the scope of 

this work.  Suffice it to say that the samples used in this study were processed by Kalyan Kasarla 

and Lee Ellen Rodak and the specific process parameters can be found in their relevant work. 

[11] 

 As previously mentioned the specific process parameters are outlined in Appendix A.  

Several other process considerations that impact the deposition of Aluminum Nitride shall be 

outlined here.  The first process consideration is the vacuum chamber pressure.  It has been 

generally found that film quality is inversely proportional to the chamber pressure.  Hence, lower 

chamber pressures produce higher quality films.  Intuitively one would assume that chamber 

pressure should be reduced to very near zero.  However, at very low chamber pressures it 

becomes increasingly hard to sustain plasma in the reaction chamber.  Due to the challenges 

inherent in depositing Aluminum Nitride at very low pressures a chamber pressure of 30mTorr 

was used for the samples in this study even though successful deposition of Aluminum Nitride 

was demonstrated by this group at pressures as low as 20mTorr.  A second critical process 
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consideration is the formation of a native oxide on the sputter target.  While the vacuum chamber 

is exposed to ambient conditions a layer of Aluminum Oxide and possibly even Aluminum 

Nitride forms on the sputter target.  To keep this unwanted layer of Oxide or Nitride from 

contaminating the sample it is imperative to pre-sputter for 5-10 minutes in a pure Argon 

atmosphere to ensure that this layer is removed from the target.  A third critical process 

consideration that greatly influences both the film quality and the deposition rate is the power 

applied to the sputter target.  In this study all samples were deposited using 500 watts applied to 

the target.  It was found through iterative studies that higher powers generally lead to lower 

quality films while increasing the deposition rate and lower powers increase the film quality to a 

point while leading to decreased deposition rates.  The result of the iterative studies showed that 

500 watts is a near optimum power to deposit polycrystalline Aluminum Nitride.  One final 

process consideration that can easily lead to films with little or no piezoelectric response is the 

leak rate of the vacuum chamber.  It is imperative that the chamber be leak free as oxygen 

contents as low as 2% in the films will cause a serious degradation of the piezoelectric response.  

Because of this the chamber must be fully sealed and pumped to a base pressure of at least 

5x10e-6 Torr.  At pressures this high out gassing of the chamber is not a significant issue.  

However, any opportunistic leaks will present themselves at this pressure making periodic 

helium leak tests a necessity. 
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2.2 Fabrication of MIS Devices 

The fundamental structure used in this study to determine the piezoelectric coefficient of 

Aluminum Nitride is the Metal Insulator Semiconductor device.  It can be argued that the 

nomenclature used here is fundamentally flawed because Aluminum Nitride is not an insulator 

but rather a wide bandgap semiconductor with Eg = 6.22 eV.  However, in an effort to preserve 

the nomenclature used in most literature the term Metal Insulator Semiconductor or MIS is used 

here as opposed to Metal Semiconductor Semiconductor or MSS which may fundamentally be 

more appropriate.   The fundamental operation and implementation of MIS devices has been 

outlined previously in this work and this section is devoted to the actual implementation of 

Aluminum Nitride MIS devices as they were used in this work. 

The first step in fabricating the Aluminum Nitride MIS devices used in this study was to 

obviously deposit, either by MOVPE or sputtering, an Aluminum Nitride thin film on a silicon 

substrate.  After the film has been deposited it is possible to apply both topside and backside 

electrical contacts to the film using standard photolithographic techniques.  Solid, circular 

contacts from a circular TLM pattern were used as illustrated in Figure 9. 

 

Figure 9 - Circular TLM Pattern 

It should be noted that only the inner solid contact was used in this study.  The TLM mask used 

has both rings, circles and ring-circle structures.  Only the solid circles were used.  To 

successfully apply a metallic topside contact to the Aluminum Nitride a standard cleaning 
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process using acetone and methanol was performed to remove any grease or other organic 

contaminants that may have survived as remnants of the sputtering process.  Next, a dehydration 

bake is performed for 10 minutes at 100˚C to ensure the surface of the film is free of any water.  

After the dehydration a 1.4 micron thick film of photoresist was applied to the samples using a 

standard centrifugal spin coater.  After spin coating, a negative photolithographic process is 

carried out to the sample to open windows in the photoresist.  It should be noted that the 

developer solution used to expose the underlying Aluminum Nitride can actually etch the 

Aluminum Nitride film causing the sample to be ruined.  This is evidenced when the color of the 

underlying Aluminum Nitride becomes non uniform and is an indication of overdevelopment. 

After the windows to the Aluminum Nitride have been opened by the developing process, the 

topside metallic contacts may be deposited by a standard sputter deposition.  Generally the 

thickness of the metal contacts used in this study was around 250 nm.  After the sputter 

deposition of the topside contact the solid aluminum backside contact was applied using the 

same sputter deposition process.  After the application of the backside contact the samples were 

subjected to a final acetone bath to facilitate the liftoff process.  The acetone dissolves the 

underlying photoresist and leaves behind only the metallic circular topside contacts.  This is the 

last step in the fabrication of the MIS structure.  Figure 10 shows the final contact. 
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Figure 10 - Metal contact on Aluminum Nitride. 

2.3 Determining the Piezoelectric Coefficient of Aluminum Nitride with LDV 

After fabrication of the MIS device the piezoelectric coefficient of the Aluminum Nitride thin 

film was determined using a Laser Doppler Vibrometer (LDV).  The LDV is a complex 

instrument that relies on the Doppler shift between two beams of laser light, namely a 

measurement beam and a reference beam, to make a very accurate determination of the 

frequency that a solid object is vibrating at.  By processing the vibration measurement it is 

possible to determine the magnitude of the vibration in the frequency domain.  The specific 

protocol used to operate the LDV is outlined in Appendix C.   In this work a square wave was 

applied between the topside and backside contacts to induce an oscillating electric field across 

the Aluminum Nitride.  The magnitude of the response observed by the LDV is directly 
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proportional the magnitude of the voltage applied to the sample.  Measurements were taken at 

voltages ranging from 5 to 40 volts peak to peak amplitude and the piezoelectric coefficient was 

derived from this experimental data. 

Several considerations must be made when taking data with the LDV.  First, the position of both 

the reference beam and the measurement beam is critical to obtaining an accurate measurement.  

The fringing electric field lines induce a piezoelectric response in the Aluminum Nitride some 

distance from the contact pad.  Because of this it is imperative that the reference beam be kept as 

far as possible away from the measurement beam.  Figure 11 illustrates the fringing fields 

associated with a 40V DC signal across the MIS structure.  Figure 11 was produced using 

Maxwell 2D® field simulator. 

 

Figure 11 – Fringing Fields on Aluminum Nitride MIS Structure 
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As is evidenced in Figure 11 it is possible to observe a falsely high piezoelectric response on the 

edges of the contact and even on the surrounding Aluminum Nitride film.  Because of this effect 

it is very important to measure the piezoelectric response in or as close to the center of the 

contact as possible.  Further electric field modeling reveals that it is important to measure the 

piezoelectric response using a sufficiently large contact area to ensure that the electric field 

vectors are perpendicular to the Aluminum Nitride thin film.  Figure 12 and Figure 13 show the 

effect of varied contact size on the orientation of the electric field lines.  The data in Figure 12 

and Figure 13 was obtained using Maxwell 3D® field simulator. 

 

Figure 12 – Field vectors on 100µm Dot  
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Figure 13 – Field Vectors on 400µm Dot 

In Figure 12 it is evident that each vector inside the dot has a significant off axis component that 

effectively reduces the piezoelectric response of the underlying Aluminum Nitride film.  

However, in Figure 13 the field lines near the center of the dot have almost no off axis 

component and therefore will give a greater and more accurate piezoelectric response.  It should 

be noted that the field vectors in reality are infinitesimally small meaning that there is a region 

on the 100um dot where the field vectors have very little off axis component.  However, this area 

is so small and so near the geometric center of the dot that it is impractical to actually try to hit 
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an area this small with the laser beam.  Therefore, to reduce variability and increase accuracy it 

is advantageous to use a dot with a larger diameter. 

2.4 Analysis 

The result of any experimental endeavor is contingent upon not only the quality of the empirical 

data but also upon the analysis techniques used to interpret the data.  In this study every possible 

measure was taken to ensure both the quality of the data and the soundness of the analysis 

techniques employed to interpret the data.  The previous section outlined how the raw data was 

gathered.  After this data was gathered for a particular sample a rigorous method of statistical 

analysis was employed.  Figure 14 is a representative graph of displacement vs. voltage for an 

Aluminum Nitride sample. 
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4. A standard least squares linear regression was used to compute the line of best fit through 

the data points. 

By using the aforementioned method it is possible to obtain measurements with minimum 

error.  One significant drawback to the LDV software is the fact that it does not compute the 

standard deviation for the data.  Therefore, with a sample size of 100 or 1000 it is impossible 

to determine the width of the distribution.  This inherent inaccuracy is mitigated by taking 3 

sets of data for the same point and computing the average and standard deviation.  As 

evidenced in Figure 14 the error is generally very small.  It should also be noted that the 

measurement voltages are chosen at random to ensure that previous measurements have no 

effect on the subsequent measurements. 

3 EXPERIMENTAL RESULTS  

3.1 Metals Used 

The experimental setup described in the previous sections was initially devised by the author 

after doing a comprehensive literature search and determining what assets were available at West 

Virginia University to measure the piezoelectric coefficient of Aluminum Nitride.  The first 

sample of DC reactive sputtered Aluminum Nitride that was characterized exhibited a larger than 

expected piezoelectric coefficient.  The author chose gold as the topside contact because gold 

generally wets the surface of III-Nitrides well.  The gold contacts also serve as a highly reflective 

surface for LDV measurements.  Initial measurements of the piezoelectric response of sputtered 

Aluminum Nitride indicated that the d33 was greater than 6 pm/V.  The theoretical limit of the 

piezoelectric coefficient of Aluminum Nitride had been shown to be on the order of 4 pm/V.  

However, other groups had reported measuring the piezoelectric coefficient of Aluminum Nitrite 
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at greater than 5 pm/V.  These groups attributed this increased d33 to the superior quality of the 

films.  Understanding that a fundamental limit cannot be surpassed simply by having a superior 

quality film the decision was made to investigate the effect on d33 of varying the topside contact 

metal.  A hypothesis was generated that the apparent piezoelectric response of the material may 

be linked to the work function of the metal used as the topside contact and thus the band 

alignment between the metal and semiconductor.  To test this hypothesis 4 readily available 

metals covering a range of work function from 4.28eV to 5.65eV were chosen to conduct the 

test.  The metals used in this study were Aluminum (4.28eV), Titanium (4.32eV), Gold (5.1eV) 

and Platinum(5.65eV).  The value of the work function presented here represents the value 

quoted in the Handbook of Chemistry.  Realistically the work function value is a range that 

depends on several factors.  However, for the purposes of this study the difference in relative 

work function is much more important in establishing trends than the actual work function value.  

Therefore, an in depth analysis of the techniques used by various groups to measure the metal 

work function is omitted.  All metals used in this study were sputter deposited using Argon gas. 

3.2 Metal Semiconductor Band Alignment 

Metal – semiconductor junctions are very well understood and have been studied for many years 

and is taught in every introductory device electronics textbook.  Despite our excellent 

understanding of these junctions and our successful application of the idealized theory to 

practical devices there exist regimes that are not very well understood.  One such regime is the 

contact between a metal and a wide bandgap semiconductor like Aluminum Nitride.  It was 

impossible to determine the Fermi level of the Aluminum Nitride samples used in this study and 

to assume they are intrinsic with Ef = ½ Eg is a very naïve assumption at best.  A very small 

concentration of impurities can lead to a significant shift in the Fermi level.  It is almost a 
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linear trend between work function and piezoelectric response.  The data represented in  Figure 

17 illustrates 12 separate samples and over 90,000 individual measurements.  Sample 024 was an 

MOVPE deposited sample with thickness of 150nm.  The response of this sample is much 

greater than the response of the two DC reactive sputtered samples.  The greater response can be 

attributed to the inherently higher quality films deposited by MOVPE.  A qualitative comparison 

of Figure 17 and Figure 16 show that the piezoelectric response of Aluminum Nitride appears to 

be closely linked to the electric field across the Aluminum Nitride.  The magnitude of the electric 

field is of course increased as the meal work function is increased thus increasing the apparent 

piezoelectric response. 

The experimental method employed here was studied closely for flaws and all measures were 

taken to ensure that the results were not influenced by experimental artifacts.  All individuals 

involved in this study agree that the methodology is sound and the results reflect an actual 

physical process and not an experimental artifact.  The results presented here represent the first 

time that the apparent piezoelectric response of a material has been linked to the metal used as a 

contact. 

3.4 Perturbation of Band Structure 

To ensure that the data gathered in this study was not flawed it became apparent that the 

piezoelectric coefficient must be measured under perturbed conditions.  This means that the band 

structure must be altered in a predictable, reproducible fashion that must not interfere with the 

LDV measurement.   
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3.4.1 DC Bias 

The most obvious method of perturbing the band structure of the Aluminum Nitride MIS 

structures is to add a DC bias to the square wave signal applied during the measurement.  By 

applying a DC bias the initial electric field across the Aluminum Nitride is increased or 

decreased depending on the polarity of the bias.  The function generator used in this study was 

capable of applying a DC offset to the square wave so the measurements required no extra 

experimental setup. The maximum DC offset that the function generator could produce was 

+10V or -10V.  A 20V p-p square wave was shifted positive and negative and then the 

magnitude of the square wave was modulated to gather the d33 data.  Representative results of the 

DC bias experiment are presented in Figure 18. 
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the highest response of the Aluminum sample.  By perturbing the band structure it was possible 

to confirm that the magnitude of the static field across the Aluminum Nitride plays a large role in 

determining the apparent piezoelectric response. 

To further confirm the band alignment hypothesis another simple method of perturbing the band 

structure was devised.  High intensity white light can be used to optically generate carriers even 

in a wide bandgap semiconductor.  It was also hypothesized that the samples used in this study 

possess many impurities and mid-bandgap states that allow the generation of a significant 

number of carriers.  To test this hypothesis and to effect another perturbation of the band 

structure intense white light was focused on the sample while the measurement was being 

conducted.  The results are presented in Figure 19. 
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used in this portion of the study were significantly thin to permit light to reach the underlying 

Silicon.  Therefore the effect of optical carrier generation in the Silicon substrate is minimized. 

3.4.2 C-V Hysteresis 

Capacitance as a function of voltage analysis is a widely used semiconductor characterization 

tool.  The capacitance measured from the front to back of a MIS structure in contingent on the 

DC voltage applied to the structure.  This is generally due to the accumulation or depletion of 

carriers in the semiconductor layer.  However, trap states in the insulator layer have been shown 

to introduce hysteresis into the CV data.  The CV data used in this study was gathered using an 

LCR meter and sweeping the DC voltage from positive to negative and back from negative to 

positive.  The resulting data was then plotted to observe any hysteresis present in the structures.  

The general results of this are evidenced in Figure 21.  
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pronounced hysteresis evidence in Figure 20 is not present in MOVPE deposited structures again 

indicating that fewer impurities and charge traps exist in MOVPE deposited Aluminum Nitride.   

The results presented here are intended to show that a total understanding of the dependence of 

d33 on work function is not only contingent upon understanding the band structure of the MIS 

device.  The total understanding of this phenomenon is contingent upon understanding many 

nuanced interactions that influence the response of the device. 

3.4.3 Interpretation of Experimental Results 

The results presented in this work were published in the Journal of Vacuum Science and 

Technology B in August 2008.  The published work focused only on the experimental results and 

did not attempt an explanation.  Throughout the course of this work many experiments have been 

devised and volumes of supplemental data have been gathered.  Despite these efforts a concrete 

explanation that can be used to both model and predict the behavior of Aluminum Nitride thin 

films has been illusive.  In light of this two promising first order models have been developed 

that seek to link the piezoelectric response to the electric field induced by the topside metal 

contacts.  These models and their inherent weaknesses are presented. 

4 FIRST ORDER MODEL 

The first order model presented here is based solely on empirical evidence.  First consider an 

Aluminum Nitride thin film with an externally applied electric field.  The apparent piezoelectric 

coefficient of this film is given by the following simple equation. 

 
∆

 

Equation 5 
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Where  is the apparent piezoelectric coefficient, ∆  is the change in thickness and  is the 

externally applied voltage.  It is also possible to define ∆  in terms of the actual  and the 

actual voltages present in the sample.  This yields the following equation. 

∆   

Equation 6 

Where  is the total voltage across the Aluminum Nitride film defined as the sum of the 

externally applied voltage and the internal electric fields.  Since voltages can be expressed as the 

product of an electric field over a thickness the following equation can be written. 

∆   

Equation 7 

Where  are the individual internal and external fields.  Given this the following equation can 

be written. 

∆    

Equation 8 

Where  is the electric field across the interface and  is the thickness of the interface.  The 

terms  and  represent the externally applied electric field and total film thickness.  

Realizing that this product is simply the externally applied voltage the following equation can be 

written. 

∆   

Equation 9 

 

Replacing ∆  in Equation 2 with Equation 6 the following equation is generated: 
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Equation 10 – Apparent d33 Due to Built In Fields 

 

Equation 7 shows that the internal electric fields can actually increase or decrease the 

piezoelectric response of the Aluminum Nitride thin film.  The assumption can be made that 

since the film is completely depleted of carriers the electric field extends across the entire film.  

Using a 500nm thick film and assuming an electric field of 100kV/cm it is possible to see an 

increase in  of about 1.125 times nominal.  This approach also allows the DC bias data to be 

explained.  By simply adding another term to Equation 7 it is possible to take into account the 

DC bias dependence.  However, this approach does not take into account the non-linearity of the 

DC bias data and the nearly maximum values used to derive the 1.125 increase factor do not 

account for the experimental data. 

It is very clear from this approach that other unquantified factors play a significant role in this 

study.  The existence of trap states, both surface and mid-bandgap, complicate the study. 

5 CONCLUSIONS AND FUTURE WORK 

The results outlined in this work represent a major step forward in the understanding of 

piezoelectric semiconducting materials and have directly led to three peer reviewed publications. 

[20], [11], [21]  However, this work is lacking in that it only reports a result and presents a 

plausible hypothesis supported by circumstantial evidence.  More work, both experimental and 

analytical, is needed to bring a full analytical solution to light.  The search for a full analytical 

solution will undoubtedly uncover other previously unknown phenomenon.  It is the authors 

hope that this work can continue past this preliminary study.   
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APPENDIX A – DEPOSITION OF ALUMINUM NITRIDE BY REACTIVE 

DC MAGNETRON SPUTTERING 

 

 

The predominant means of depositing the Aluminum Nitride thin films used in this study was 

DC reactive magnetron sputtering.  The films synthesized by DC reactive magnetron sputtering 

are generally polycrystalline films with a refractive index in the range of 1.85 – 1.95.  The 

sputtering system used was a CVC 610 magnetron sputtering system.  To deposit Aluminum 

Nitride it is necessary to simultaneously populate the chamber with both Nitrogen and atomic 

Aluminum.  Because the Nitrogen molecules are very light it is necessary to introduce the inert 

gas Argon into the chamber to aid in the sputtering process.  The only purpose that Argon serves 

is to accelerate the sputtering of Aluminum atoms from the target.  The 200mm diameter target is 

composed of 99.999% pure Aluminum and is driven with 500 watts of DC power.  The system 

uses a combination of a mechanical roughing pump and a cryogenic pump to achieve a vacuum 

level of 5e-6 Torr.  It is imperative that this base pressure is reached to ensure that all 

contaminants, especially Oxygen, are removed from the chamber before deposition.  Any 

Oxygen content above approximately 2.5% will significantly reduce the piezoelectric response of 

the material.  It is also important to perform a pre-sputter on the target to remove any Aluminum 

Nitride or Aluminum Oxide that has formed on the target in previous depositions or while the 

chamber is open.  The following steps outline the protocol for deposition of Aluminum Nitride. 
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1.  Vent the chamber with nitrogen. 

2.  Open the chamber, mount the sample over the large target and close the chamber. 

3.  Ensure that the shutter is open on position 2 so it can be opened to position 3 for the 

deposition. 

4.  Set the timer to the desired deposition time.  The deposition rate is approximately 10nm / min. 

5.  Change the power on the magnetron drive to 500W. 

6.  Engage the rough valve and turn the mechanical pump on. 

7.  When the rough pressure reaches 1 turn the rough valve and the mechanical pump off and 

turn the high vacuum valve on. 

8.  When the gas pressure reaches 0.09 turn the ion gauge on and wait until the pressure in the 

chamber reaches 5e-5 Torr.  Turn the ion gauge off. 

9.  When the base pressure has been reached set the analog mass flow controllers for Nitrogen 

and Argon to 27 and 3 SCCM respectively.  These are gasses 1 and 3 on the mass flow controller 

respectively. 

10.  Flow gasses 1 and 3 into the chamber by turning on the gas 1 and 3 buttons and engage the 

throttle valve by turning on the throttle valve button. 

11. Bring the pressure in the chamber to 30 mTorr.  This equates to a readout of 3.00 on the 

pressure gauge. 

12.  Engage the continuous sputter mode and turn the magnetron drive on. 

13.  Pre-sputter for 10 minutes then simultaneously turn the shutter to position 3 and engage the 

timed sputter. 
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14.  Once the sputtering process is complete turn off the gasses and turn off the throttle valve and 

high vacuum.  When the high vacuum gate valve has closed vent the chamber and remove the 

sample. 

APPENDIX B – FABRICATION OF METAL INSULATOR 

SEMICONDUCTOR STRUCTURES  

 

The Metal Insulator Semiconductor (MIS) structures central to this work were fabricated by 

using standard Silicon processing technology in the clean room environment at West Virginia 

University.  The process outlined here can be used to deposit any metal on the Aluminum Nitride 

Film.  It is assumed that the most fundamental part of this work, the deposition of an Aluminum 

Nitride thin film, has all ready been performed. 

1.  Clean the sample with acetone for 5 minutes. 

2.  Clean the sample with methanol for 5 minutes. 

3.  Dry the sample with clean room grade compressed Nitrogen. 

4.  Bake the sample at 100 C for 10 minutes to remove any water. 

5.  Spin coat the sample with AZ 5214 photoresist at 4000 RPM for 30 seconds. 

6.  Soft bake the sample at 90 C for 45 seconds. 

7.  Expose the sample using the desired mask and calculated exposure time. 

8.  Hard bake the sample at 120 C for 2 minutes. 

9.  Flood expose the sample for 82 seconds. 

10.  Develop the sample in a 1:6 solution of AZ 400K developer to DI water for 20 seconds. 

11.  Immerse the sample in water to remove any residual developer. 

12.  Dry the sample with compressed clean room Nitrogen. 
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13.  Look at the pattern under the optical microscope to determine if it is fully developed. 

14.  Mount the sample in the sputtering chamber. 

15.  Sputter the topside contact. 

16.  Remove the sample and sputter the backside contact. 

17.  Remove the sample from the chamber and immerse the sample in Acetone to facilitate the 

liftoff process. 

18.  If necessary put the sample into the ultrasonic bath to help increase the speed of the liftoff 

process. 

19.  After the liftoff process is complete clean the sample with DI water and dry the sample with 

clean room Nitrogen. 
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APPENDIX C – PROTOCOL FOR MEASURING D33 BY LASER 

DOPPLER VIBROMETRY 

 

The piezoelectric measurements used in this study were taken using a dual beam differential 

Laser Doppler Vibrometer (LDV).  To obtain and ensure consistent results it is imperative that 

an experimental protocol be followed for each measurement.  Each sample presents specific 

challenges with regard to data collection and validation.  The following protocol allows 

consistent measurements and provides enough data to reduce error to the level of background 

noise. 

1. Turn the computer, video camera and laser output unit of the LDV on. 

2. Open the controller software on the PC. 

3. Allow 20 minutes for the laser to come to a steady state temperature before taking a 

measurement. 

4. Apply a small amount of conductive silver paste to the conductive aluminum plate on 

the mounting bracket under the microscope. 

5. Place the sample contact side up on the conductive silver paste under the microscope. 

6. Switch the software to video mode and focus the microscope on the sample. 

7. Move the sample using the x and y adjustments on the mounting stage until the desired 

contact is roughly in the middle of the field of view. 

8. Turn the laser on and using the laser x and y movement controls in the software 

position the measurement beam on the contact pad. 

9. Using the manual controls on the laser scanner head move the measurement beam to 

the side of the contact pad. 
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10. Ensure sufficient signal is present by looking both at the signal bar on the laser output 

unit and the signal bar displayed on the computer screen. 

11. Gently probe the edge of the contact pad with the three axis probe and tungsten probe 

tip.  Once the probe is in contact with the sample do not continue to push the probe 

onto the contact. 

12. In the LDV measurement setup ensure that the software is setup to take 100 single 

point measurements. 

13. Set the output of the function generator to 40V p-p at 3.5kHz. 

14. Ensure the connections between the function generator and the sample (topside and 

backside) are workable. 

15. Ensure that the bandpass filter applied in the LDV software measurement setup is set 

for a bottom cutoff frequency of less than 1kHz and the top cutoff frequency is set 

greater than 5kHz.  This ensures that no attenuation at the measurement frequency of 

3.5kHz will occur. 

16. Turn on the output of the function generator. 

17. Start the measurement on the LDV and allow it to average 100 samples. 

18. Repeat this measurement a minimum of three times to ensure the accuracy of the data. 

19. Once the data has been validated for a single voltage record the displacement as a 

function of voltage by varying the voltage randomly and measuring the average 

displacement for 100 samples. 

20. Once a minimum of 8 measurements of 100 samples each have been taken plot the 

data and perform a linear regression.  The slope of the regression line provides the d33 

of the sample. 
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Notes:  It is always a good idea to make sure the signal to noise ratio is greater than 5 and 

preferably 10.  The higher the signal to noise ratio the more accurate the measurement will be.  

After much study it was found that 100 measurements averaged are functionally as accurate as 

1000 or 10,000.  100 measurements take approximately 1 minute to take while 10,000 take over 

1.5 hours.  It was noted that not all samples (in fact very few samples) had a regression line that 

went through the origin.  Many samples had intercepts that were significantly greater than the 

background noise indicating some other source of experimental error or an unknown effect in the 

film.  Despite much study it was not possible to determine the origin of this discrepancy.  Future 

work should disregard this non-zero intercept unless it is an order of magnitude or more greater 

than the background noise. 
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APPENDIX D – PROTOCOL FOR DETERMINING DC BIAS 

DEPENDENCE OF D33 

1.  Follow the setup procedures for the LDV outlined in Appendix C. 
2. Set the function generator to DC offset mode. 
3. Apply a DC offset of between -10 and 10 volts to the sample. 
4. Apply a 3.5kHz square wave to the sample of amplitude between 0 and 20 volts. 
5. Measure the displacement of the sample following the procedures outlined in Appendix 

C. 
6. Record the data. 
7. Change the amplitude of the square wave within the 0 to 20 volt range and repeat the 

measurement at least 4 times. 
8. Calculate the piezoelectric coefficient for that particular offset using standard linear 

regression. 
9. Change the DC offset and repeat steps 5 through 8. 
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