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ABSTRACT 

Using the Concrete-Representational-Abstract Sequence to Connect Manipulatives, 
Problem Solving Schemas, and Equations in Word Problems with Fractions 

 
Julie L. Reneau 

Students with learning disabilities or learning difficulties in mathematics often have 
difficulties solving word problems with fractions.  These difficulties limit students’ abilities to 
solve everyday math problems and develop the skills necessary for higher level mathematics.  
Prior research on problem solving indicates that direct instruction on problem schemas can 
improve problem solving performance.  Previous research also suggests that instruction using the 
concrete-representational-abstract (CRA) sequence and instruction with virtual manipulatives 
can enhance understanding of mathematical concepts. However, a CRA sequence that 
incorporates virtual manipulatives has not been combined with schema-based instruction to help 
students solve word problems with fractions.  The purpose of this study was to examine the 
effects of using an intervention that combined the CRA sequence with virtual manipulatives and 
schema-based instruction to improve the problem solving performance of students with learning 
disabilities or learning problems in mathematics on word problems with fractions.  This sequence 
of instruction was combined with a mnemonic strategy called the LISTS strategy to help students 
remember the steps in the problem solving sequence.  Using a single-case multiple baseline 
across participants design, the researcher provided an intervention to five students in the fifth 
grade that included instruction in three problem schemas for addition and subtraction (change, 
compare, and group).  Results indicated that all students made some gains in performance on 
problems similar to those presented during the intervention, but the three students who were able 
to make connections between problem schemas and equations demonstrated significant gains in 
performance.  The concrete models and virtual models used in the CRA sequence enhanced 
understanding of fraction word problems for some, but not all, students.  Additionally, analysis 
of student performance on pre- and post-tests of problems with novel features indicated that 
students made only small gains in performance on fraction word problems that included difficult 
vocabulary, irrelevant information, or information that required different conceptualizations than 
those presented during the intervention. 
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Chapter One 

 Introduction 

Chapter one will describe concerns related to student performance on mathematics 

assessments with a specific focus on students with learning problems or disabilities in math.  The 

importance of mathematical problem solving in these assessments and in national standards for 

mathematics instruction will be discussed.  An overview of effective instructional strategies in 

problem solving for students with learning problems or disabilities will be presented with an 

analysis of the gaps in the research on problem solving instruction.  A statement of purpose and 

research questions based on these gaps in the research will address concerns related to the lack of 

research on problem solving instruction with fractions.  The final section of the chapter will 

include the possible limitations of the study and a glossary of key terms that will be an integral 

part of the proposed research. 

Problem Context: Student Performance in Mathematics 

Research suggests that strong student performance in mathematics can lead to individual 

success in the workplace and may impact the success of the United States in our global economy 

(Achieve, 2008).  Yet recent national and international assessments indicate that students in the 

United States have difficulty with higher level reasoning skills in mathematics and score below 

students from other industrialized nations on assessments of these skills (TIMMS, 2007; NAEP, 

2009).  In the 2009 Program for International Assessment (PISA), students from the United 

States scored 25th out of 34 countries on problem solving and math literacy when compared to 

other industrialized countries.  According to a report by the U.S. Department of Education, 24% 

of the fifteen year old students who took the assessment scored at the basic level, meaning that 

they were only able to make direct inferences from a single source and conduct literal 
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interpretations of problem information.  Furthermore, 23% of U.S. students scored below this 

basic level of achievement.  These students were unable to apply mathematical concepts in 

problem solving contexts (Fleischman, Hopstock, Pelczar, Shelley, & Xie, 2010). 

 Results of assessments conducted in the United States indicate that students with 

disabilities perform lower than students without disabilities.  The 2011 reports on the National 

Assessment of Educational Progress show that 45% of students with disabilities at the fourth 

grade level scored at the “below basic” level compared to 18% of students without disabilities.  

The achievement gap between students with disabilities and students without disabilities was 

even greater by eighth grade with 64% of students with disabilities scoring below basic and only 

27% of students without disabilities scoring at this level (NAEP, 2011).  Students at this “below 

basic” level did not possess understanding of grade level concepts and were not able to solve 

simple grade level word problems (National Center of Educational Statistics, 2011).   

Students with low achievement in mathematics obtained scores that were slightly better 

than students with disabilities on national assessments, but they still performed below their 

average achieving peers (National Mathematics Advisory Panel, 2008).  Furthermore, reports on 

the 2011 NAEP assessments state that low performing students in the fourth and eighth grades 

who scored at the 10th percentile or lower did not show significant improvements from 2009 to 

2011, while their higher performing peers did show significant gains.  While almost one-fourth 

of the students who scored at the 10th percentile were students with disabilities, over three-

fourths of these students were not classified as students with disabilities (NCES, 2011).  These 

low levels of achievement are problematic for students with low achievement or learning 

disabilities in mathematics.  Problem solving skills are necessary for all individuals to function at 

school, home, and work.  According to the National Mathematics Advisory Panel Report 
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(NMAP), higher-level mathematical skills have been correlated with greater access to college 

and to careers with greater incomes (NMAP, 2008).  Future jobs will require a broader and more 

thoughtful understanding of quantitative concepts than current positions and mathematical 

problem solving processes will be necessary for many jobs in the 21st century (Xin, Jitendra, & 

Deatline-Buchman, 2005).   

 National standards and policies related to problem solving.  The National Assessment 

of Educational Progress in mathematics is aligned with current national guidelines for teaching 

mathematics which include problem solving as a critical element of instruction across all topics 

in mathematics and across all grade levels (National Council of Teachers of Mathematics, 2000).  

Problem solving is so important that it was identified as one of the five major process standards 

in the National Council of Teachers of Mathematics (NCTM) Principles and Standards (2000), 

the guiding standards for mathematics instruction across the United States.  The NCTM stated 

that “problem solving…is not only a goal of learning mathematics, but a major means of doing 

so” (NCTM, 2000, p. 52).  This emphasis on problem solving was incorporated into the NCTM 

standards in response to poor student performance on national and international assessments in 

the 1980s and 1990s (Maccini et al., 2007).  As a result of the standards, researchers began to 

focus on higher level problem solving instruction for all students.  The passage of the Individuals 

with Disabilities Act (IDEA1997), which required that students with disabilities have access to 

the general education curriculum, and the No Child Left Behind Act (NCLB, 2002), which 

required that all students meet grade level expectations, led to additional research on problem 

solving instruction for students with learning problems because students were expected to master 

grade level content in mathematics (Maccini et al, 2007).  Even with the additional emphasis on 

problem solving instruction for students with learning problems, many challenges still remain.  
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Students with learning disabilities or with learning problems in math continue to have difficulty 

understanding problem components, identifying effective strategies, or applying strategies when 

attempting to solve word problems (Hegarty, Mayer, & Monk, 1995; Jordan & Montani, 1997; 

Gurganus, 2007).  Additionally, these students often have weak reading comprehension skills 

that limit their understanding of written mathematical problems (Fuchs & Fuchs, 2002). 

 Problem solving with fractions.  Difficulty with problem solving is compounded by 

lack of procedural and conceptual knowledge related to specific content areas.  One of the most 

difficult content areas for students in math is fractions.  Authors of the NMAP report suggest that 

almost half of middle and high school students have difficulty with basic fraction concepts 

(Misquitta, 2011).  Visual models of fractions that are typically used in the elementary grades, 

such as pizzas and pies, only provide a limited representation and often hinder student 

understanding when they move to more complex problems (Wu, 2008).  Word problems with 

fractions pose even more difficulty for students with learning disabilities due to deficits in 

working memory (Hecht, Close, & Santisi, 2003).  Additionally, students with learning problems 

in math often use ineffective strategies to solve fraction problems (Grobecker, 1999).  According 

to the National Mathematics Advisory Panel this difficulty with fractions can be an “obstacle to 

further progress in mathematics” (U.S. Department of Education, 2008, p. 28).  Because of these 

concerns, the  U.S. Department of Educational Sciences issued the following recommendations 

in its report on evidence-based practices for students who struggle with mathematics: (1) Focus 

on rational numbers in grades four through eight; (2) Emphasize problem solving instruction 

based on common underlying structures; and (3) Include materials that provide visual 

representations of mathematical ideas to help students develop understandings of mathematical 

concepts (Gersten, Beckmann, Clarke, Foegen, Marsh, Star, & Witzel, 2009).  Recommendations 
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were made for students with learning disabilities and students with low achievement because 

students identified with LD or as low achievers are often combined in the research and similar 

instructional strategies have been found to be effective for both groups (Misquitta, 2011).   

Problem Solving Instruction for Students with Learning Problems in Math 

 Recent research on mathematics instruction for students with disabilities or learning 

problems in mathematics reflects this focus on using visual representations and problem solving 

in math instruction.  In a review of studies on interventions for secondary students with learning 

disabilities or learning problems in mathematics, eleven studies conducted from 1995-2006 

included some assessment of problem solving performance and seven studies focused explicitly 

on instruction and assessment of problem solving (Maccini et al., 2007).  Furthermore, an 

analysis of the results of these studies and studies conducted with students in the elementary 

grades suggests that cognitive interventions including instruction using a concrete-

representational-abstract sequence,  mnemonic strategy instruction, and schema-based instruction  

led to significant gains in student achievement (Maccini et al., 2007; Powell, 2011).   

 The CRA sequence with virtual manipulatives and mnemonic strategies.  When 

using a concrete-representational-abstract sequence, researchers help students develop an 

understanding of concepts by linking instruction with physical manipulatives to representational 

drawings of those manipulatives and abstract equations of the problems represented by those 

drawings.  Research indicates that this type of instruction has led to improved performance on 

fraction equivalence concepts (Butler, Miller, Crehan, Babbitt, & Pierce, 2003), area and 

perimeter problems (Cass, Cates, Smith, & Jackson, 2003), problem solving with integers 

(Maccini & Ruhl, 2000), and algebra equations (Witzel, Mercer, & Miller, 2003).  Research 

suggests that student performance with the CRA sequence could be enhanced by incorporating 
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virtual manipulatives into the sequence.  Virtual manipulatives are computer models of physical 

manipulatives.  Unlike representational drawings, virtual manipulatives can be moved or turned 

to simulate student experiences with physical manipulatives (Moyer-Packenham, 2010).  

Instruction combining physical and virtual manipulatives can lead to improved student 

performance on computation and problem solving tasks that can be effectively modeled with 

both types of manipulatives (Gire, Carmichael, Chini, Rouinfar, & Rebello, 2010; Terry, 1996).  

 Research also indicates that mnemonic strategy instruction can lead to improvements in 

procedural skills such as solving fraction problems with unlike denominators (Test & Ellis, 

2005).  Mnemonic strategies have been combined with instruction in the CRA sequence to 

enhance understanding of addition and subtraction word problems (Mancl, 2011), integers, and 

algebraic equations (Maccini & Hughes, 2000; Gagnon & Maccini, 2001).  When using 

mnemonic strategy instruction in these studies, researchers made a cue word for students by 

creating a word from the first letter of each problem solving step.  This word was used to help 

students remember each step of the problem solving process.  

 Schema-based instruction and schema-broadening instruction.  Another instructional 

approach that has led to gains in problem solving achievement for students with learning 

difficulties is schema-based instruction.  In this type of instruction students were asked to 

identify a problem type based on conceptual understanding of the problem structure and then use 

a diagram to represent the problem (Xin et al., 2005).  This use of schema diagrams provided 

students with a graphic representation to help them identify critical elements in word problems 

and organize this information so they could visualize the problem.  Identifying specific schema 

types also helped students determine the operations necessary to solve different types of 

problems (Bender, 2009). 
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 Initial research on schema-based instruction focused on individual instruction or small 

group instruction in pull-out special education settings with elementary and middle school 

students (Jitendra, Hoff, & Beck, 1999; Jitendra, DiPipi, & Jones, 2002).  More recent studies 

have compared schema-based instruction to general strategy instruction in both small group and 

inclusive settings at the elementary and middle school levels (Xin et al., 2005; Jitendra & Star, 

2011).  An analysis of the addition and subtraction word problems from the examples, teacher 

scripts, and article manuscripts used in these studies shows that most research interventions in 

schema-based instruction focused on problems with whole numbers operations (Jitendra et al., 

1999; Fuchs et al., 2010; Powell, Fuchs, & Fuchs, 2010;  Griffin & Jitendra, 2008; Fuchs 

Seethaler, Powell, Fuchs, Hamlett, Fletcher, 2008a; Xin, Wiles, & Lin, 2008).  Problems with 

fractions were only noted in several studies that included a schema called a “half” schema (Fuchs 

et al., 2006; Fuchs, Fuchs, Craddock, Hollenbeck, Hamlett, & Schatschneider, 2008b).  While 

these studies did incorporate some problems where students had to determine half price or a half 

of an amount, no other fractions were included and instruction only addressed splitting objects or 

sets into halves.   

 Recent research also has focused on explicit instruction in transfer skills and connecting 

schematic diagrams to algebraic equations.  This type of instruction, called schema-broadening 

instruction, includes instruction in the specific word problem schemas, but it also includes 

explicit instruction in transferring understanding of problem schemas to problems with novel 

features (i.e. – irrelevant information, unfamiliar vocabulary).  Research on schema-broadening 

instruction has been conducted with elementary students in one-on-one, small group, and general 

classroom settings (Fuchs et al., 2008b; Fuchs et al., 2010).  Recent interventions using schema-

broadening instruction helped students generalize the information in word problem schemas to 
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algebraic equations (Fuchs et al, 2008a; Fuchs et al., 2010).  Similar to schema-based instruction, 

schema-broadening instruction primarily included problems that involved whole number 

operations (Fuchs et al., 2008b; Fuchs et al, 2010). 

 Research gaps.  While results of research in the CRA sequence, mnemonic strategy 

instruction, and schema-based instruction indicate that all of these strategies can improve the 

mathematical performance of students with learning disabilities or who struggle with math, no 

research could be found that combines instruction in problem schemas with the CRA sequence.  

Furthermore, in a review of major educational databases such as Education Research Complete 

and ProQuest Dissertations and Theses, no studies could be found that use concrete and virtual 

manipulatives within the full CRA sequence.  Additionally, research related to schema-based and 

schema-broadening  instruction has not focused on word problems with fractions.  This gap in 

the research is problematic because students with learning problems in mathematics often do not 

have a strong conceptual understanding of fractions and are unable to visualize problems with 

fractions.  Schema-based instruction that does not include concrete and pictorial representations 

through the CRA sequence may not be sufficient to develop student understanding of how to 

represent fractional parts and solve word problems with fractions. 

Rationale for this Study 

 Research indicates that students with learning disabilities or learning problems in 

mathematics often have more difficulty representing problems correctly, identifying relevant 

information when solving word problems (Jitendra et al., 2002) or using effective strategies 

(Gurganus, 2007) than students with higher achievement in math.  These limitations make 

problem solving extremely difficult for students with learning problems in math.  In a review of 

literature on fraction instruction for students with learning disabilities or who struggle with math, 
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Misquitta (2011) suggests that problems with working memory, whole number models, and 

confusion from representations used in early elementary school make fraction problems even 

more difficult for these students.   

  Problem solving skills with fractions are important for daily activities and help students 

develop understandings of more abstract mathematical concepts (Misquitta, 2011).  Yet, little 

research has been conducted on effective instructional strategies with fractions for students with 

learning problems in mathematics.  A search of the literature between 1990 and 2008 resulted in 

only 10 empirical studies that focused on current instructional practices for teaching fractions to 

students with learning problems, with only three of these studies focusing on problem solving 

with fractions.  None of the studies that focused on problem solving with fractions included 

instruction with the CRA sequence, mnemonic strategies, or schema-based instruction.  Because 

of this lack of research and concerns related to the performance of students with learning 

problems on problem solving tasks and fractions, this study focused on an instructional routine 

that could be used to increase achievement in problem solving with fractions for students with 

learning problems in mathematics.  This instructional routine combined multiple evidence-based 

practices including the CRA sequence with virtual manipulatives, schema-based instruction, and 

mnemonic strategies to help students develop a conceptual understanding of fraction concepts 

within the context of specific problem schemas for addition and subtraction word problems.  A 

mnemonic strategy was provided to help students remember the steps for solving the problems 

when using this routine.  This combination of effective instructional strategies was necessary to 

try to address the complex reading, memory, and processing challenges encountered by students 

with learning problems when they solve word problems with fractions. 
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Statement of Purpose 

The purpose of this study was to examine the effects of using a concrete-representational-

abstract (CRA) sequence that included explicit connections between concrete manipulatives, 

virtual manipulatives, representational problem solving schemas, and abstract equations on the 

problem solving performance of students with learning disabilities or students with learning 

problems in mathematics.  This sequence of instruction was combined with a mnemonic strategy 

called the LISTS strategy, to help students remember the steps in the problem solving sequence.  

Using a single-case multiple baseline across participants design, the researcher provided an 

intervention to five students in the fifth grade that included instruction in three problem schemas 

for addition and subtraction (change, compare, and group).  The intervention also connected 

concrete manipulatives, virtual manipulatives, schemas, and equations to help students solve 

word problem with fractions. 

Research Questions 

Listed below are the research questions for this study: 

1. When using the concrete-representational-abstract (CRA) sequence, can students 

connect the concrete manipulatives and virtual fraction manipulatives to the 

representational change, compare, and group schemas? 

2. When using the CRA sequence can students connect the representational change, 

compare, and group schemas to the abstract equations?   

3. Will using a CRA sequence that includes concrete and virtual manipulatives to 

connect problem-solving schemas and equations improve student performance on 

problems similar to the problems used during the intervention? 
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4. Will using a CRA sequence that includes concrete and virtual manipulatives to 

connect problem-solving schemas and equations improve student performance on 

problems that require generalization from the models provided during the 

intervention? 

Limitations 

This study was conducted with only five fifth grade students with learning disabilities or 

with learning problems in math, so the generalizability of the results to students with other 

disabilities or in different grade levels was limited.  Additionally, this study was conducted in a 

small rural town in the eastern United States, so the results may not be generalizable to students 

in cities or in other locations.  There were several limitations related to the content of the study 

as well.  First, only group, change, and compare problems were addressed in this study, so the 

results may not be applicable to other types of problems.  Second, this study focused on using the 

CRA sequence with fraction problems.  The results may not be applicable to other content areas 

because students may not need the CRA sequence to visualize problems with whole numbers.  

Finally, the virtual manipulatives from Conceptua Fractions included a limited number of 

fractions that can be modeled with the manipulatives.  Students were not able to complete 

problems with manipulatives for numbers greater than thirty.  

Glossary 

Algebraic Reasoning.  The ability to use problem solving, representation, and quantitative 

reasoning skills to understand the language of algebra, generalize patterns in arithmetic, and use 

algebra as a tool for modeling these patterns.  Students who demonstrate algebraic reasoning are 

able to reverse mathematical processes and build abstract rules from mathematical patterns 

(Kriegler, n.d.; Driscoll, 1999). 
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Cognitive Strategy.  A mental routine such as a mnemonic strategy, self-instruction, or  

graduated instructional sequence that is used to help students understand and remember 

information  (Maccini et al., 2007; Dole, Nokes, & Dritts, 2009). 

Concrete-Representational-Abstract Sequence.  An instructional series that helps students 

connect concrete objects to pictures of objects and equations to develop an understanding of 

mathematical concepts and processes.  The sequence includes an introduction to mathematical 

concepts through concrete or physical manipulatives.  The concrete manipulatives are then 

linked to a representation or picture of the manipulatives.  In the final abstract stage, the pictorial 

representation is linked to an abstract equation that shows the mathematical problem.  This 

sequence is also referred to as a graduated instructional sequence or a concrete-semiconcrete-

abstract sequence (Maccini et al, 2007). 

Enhanced Anchored Instruction (EAI).  Use of video-based problems and hands on projects to  

improve student performance on problem solving tasks.  Problems are based in authentic 

contexts and require students to identify relevant information and solve several smaller problems 

to determine an overall solution (Bottge, Rueda, Grant, Stephens, & Laroque, 2010). 

Explicit Instruction.  An instructional sequence that incorporates direct instruction through 

advanced organizers that identify the objective and rational for the lesson, teacher modeling of 

skills, guided student practice, and independent student practice.  (Strickland & Maccini, 2010).  

LISTS Strategy.  The LISTS strategy is a mnemonic strategy that helps students remember the 

steps of the instructional routine that combines the CRA sequence and schema-based instruction.  

The LISTS strategy includes the following steps: 1.)  Locate key terms; 2.)  Identify the problem 

type and model; 3) Show the model with concrete or virtual manipulatives; 4.) Tie the model to 

the diagram; and 5.) Select the correct equation and solve for the unknown amount. 
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Learning Disabilities in Mathematics.  To qualify as a student with a specific learning 

disability in math for this study, a student must meet the following criteria: 1.) an average to 

above average score on the WISC-IV (Wechsler, 2003);  2.) below an 85 on the Broad Math 

section of the Woodcock-Johnson III Tests of Achievement (Woodcock, 2001) or other similar 

standardized achievement test; and  3.) a severe discrepancy between intelligence and 

achievement in math.  Students with learning disabilities must be receiving services in math in 

self-contained special education or inclusive general education settings. 

Learning Problems in Mathematics.  To qualify as a student with learning problems in 

mathematics for this study, the student must meet the following criteria: 1.) score partial mastery 

or novice on the state assessment, Westest II, and below the mastery level in problem-solving on 

benchmark assessments; 2.) perform at least 2 years below grade level on curriculum-based 

measures in Number Operations and Algebra when using measures from easyCBM (University 

of Oregon, 2010); and 3.) score below the 16th  percentile (one standard deviation below the 

mean) on the Applications subtests on Foundations of Problem Solving and Applied Problem 

Solving of the Key Math-3 Diagnostic Assessment (2007).   

Mnemonics.  An instructional strategy used to help students remember information by linking 

the information to keywords, peg words, or acronyms (U.S. Office of Special Education 

Programs, n.d.).  In mathematical problem solving instruction, individual letters are often 

combined to create a word.  Each letter from the word represents a step in the problem solving 

process. 

Schemas.  The underlying structures of different types of mathematical problems.  The 

following list includes definitions of the three schemas for addition and subtraction word 

problems that will be included in this study:  
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(1) Group schema: A schema that includes problems with “two distinct groups or parts 

combine to form a new group” (Griffin & Jitendra, 2008, p. 188)   

(2) Change schema: A schema that includes problems that have an “increase or decrease 

of an initial quantity to result in a new quantity” (Griffin & Jitendra, 2008, p. 188) 

(3) Compare schema: problems include comparisons of two different groups where the 

relationship stays the same (Griffin & Jitendra, 2008). 

Schema-Based Instruction.  A type of problem solving instruction where students are explicitly 

taught the underlying structures of different types of mathematical word problems and are given 

specific guidelines on how to solve each type of problem.  This type of instruction typically 

includes diagrams to help students organize their work (Powell, 2011).  

Schema-Broadening Instruction.  A type of problem solving instruction where students are 

explicitly taught the underlying structures of different types of mathematical word problems and 

how to apply their understandings of the different types of problems to new problems that 

contain novel features.  These novel features may include information presented in charts or 

graphs, irrelevant information, difficult vocabulary, or irrelevant information (Powell, 2011).  

While students are given diagrams to help organize work, instruction focuses on organizing 

information through mathematical equations (Powell, 2011; Fuchs et al., 2010) 

Schematic Diagrams.  A graphic organizer that provides a visual representation of the structure 

of each schema and provides visual cues to help students solve problems from each schema (Xin  

et al., 2005). 

Virtual Manipulatives.  Dynamic visual representations of concrete or physical manipulatives 

that can be flipped, turned, or moved with the computer mouse (Moyer, Bolyard, & Spikell, 

2002).   
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Chapter Two 

Review of Literature 

This literature review will begin with an overview of the difficulties that students who 

struggle with math or who have learning disabilities encounter when solving story problems, and 

the strategies that these learners typically employ when solving these types of word problems.  

Next, an overview of the literature on effective instructional strategies for students with learning 

difficulties in math will be discussed.  This synthesis of the literature will include specific 

research on the CRA sequence; the use of mnemonics and cognitive strategies within a CRA 

sequence; and the use of virtual manipulatives alone or combined with concrete manipulatives in 

the CRA sequence.  The review will also include an analysis of the literature on teaching word 

problems with fractions using manipulatives and on teaching fraction problem solving using the 

entire CRA sequence.  Finally, a detailed review of research on schema-based instruction, 

schema-broadening instruction, and schema-based instruction combined with cognitive strategy 

instruction will highlight effective instructional routines that have been used in the 

implementation of schema instruction.   

Listed below is an outline of the topics that will be covered in this review: 

1. Challenges with Word Problems 

2. Direct Instruction 

3. Instruction using the Concrete-Representational-Abstract Sequence (CRA) 

4. Instruction with Virtual Manipulatives 

5. Problem Solving Instruction with Fractions 

6. Fractions and the CRA Sequence 
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7. Schema-Based  and Schema-Broadening Instruction 

a. Addition and Subtraction Schemas 

b. Schematic Diagrams and Cue Cards 

c. Schema Instruction and Algebraic Reasoning 

d. Schema Instruction and Cognitive Strategies 

8. Summary 

Challenges with Word Problems 

 Solving word problems in mathematics requires a complex combination of procedural 

skills and conceptual understanding.  Research indicates that students must be able to understand 

the relevant information and semantic structure of problems to solve them effectively (Jonassen, 

2003; Lucangeli, Tressoldi, & Cendron, 1998).  Furthermore, effective problem solvers are able 

to create good visual representations of problem information and use these representations to 

determine steps toward a solution (Van Garderen & Montague, 2003; Lucangeli et al., 1998).  

Students who have difficulty in mathematics often struggle with word problems due to 

procedural deficits in working memory, lack of conceptual knowledge (Geary, 2004), and 

difficulty representing the underlying structure of problems (Van Garderen & Montague, 2003).  

Additionally, difficulties in reading can further influence performance on word problems.  In 

studies where the performance of students with math difficulties only is compared to students 

who have both math and reading difficulties, students with difficulties in both math and reading 

performed significantly lower on problem solving tasks than students with math difficulties only 

(Hanich, Jordan, Kaplan, & Dick, 2001; Fuchs & Fuchs, 2002; Jordan & Montani, 1997).  The 

authors suggest that difficulties with interpreting the linguistic information in word problems or 

in conceptualizing problem situations could contribute to this lower performance.  
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 Use of ineffective strategies may also contribute to lower performance on word problems.  

In a study on the word problem solving performance of 38 college students, Hegarty, Mayer, and 

Monk (1995) found that effective problem solvers used a meaningful model approach when 

solving problems while ineffective problem solvers used a direct translation approach.  When 

using a meaningful model approach students changed problems into mental models with concrete 

representations. Students who used a direct translation approach focused on numbers in the 

problems and the key terms (i.e. – more, less).  The students who correctly solved problems with 

meaningful models answered more problems correctly and could remember the essential 

meanings of the problems more accurately than those students who used the less successful 

translation strategies (Hegarty et al., 1995).  Jordan and Montani (1997) suggest that younger 

students with difficulties in math exhibit deficits similar to those students who used the direct 

translation approach.  In a study that compared the performance of 24 third graders with math 

difficulties to 24 third graders without math difficulties, the authors found that students with 

math difficulties often could not effectively solve problems or develop “back-up” strategies 

when they could not solve the problems initially.  When these students could not solve problems, 

they would typically refer to known ineffective procedures that focused on the key terms in the 

problems (Jordan & Montani, 1997).  Additionally, Rosenzweig, Krawec, and Montague (2011) 

found that students with learning disabilities in mathematics were significantly more likely to 

discuss processes or events that did not help them solve more difficult word problems than low 

achieving or average achieving students.  The authors concluded that these students did not have 

or could not apply effective strategies to these problem solving tasks. 

Direct Instruction 

 Because of concerns related to student difficulties with problem solving and mandates for 
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grade level assessments for students with disabilities in the No Child Left Behind Act of 

2001(NCLB, 2002), more researchers have focused on identifying effective instructional 

strategies in mathematics.  Multiple studies have supported the use of explicit, direct instruction 

in problem procedures and mathematical concepts for students with difficulties or learning 

disabilities (Gersten et al., 2008, Witzel, Mercer, & Miller; 2003; Strickland & Maccini, 2010; 

Kroesbergen, Van Luit, & Mass, 2004;!Xin, Jitendra, and Deatline-Buchman, 2005).  In a study 

that compared explicit instruction and constructivist instruction, Kroesbergen et al. (2004) found 

that elementary students with math difficulties who worked together to construct their own 

understanding of mathematical problems did not perform as well on problem solving 

assessments as students who received explicit, direct instruction.  Using explicit teaching 

strategies was also supported in a meta-analysis of literature on mathematics instruction for 

students who struggle or have disabilities in math.  Gersten et al. (2008) reviewed 11 studies on 

explicit instruction and found that explicit instruction was highly effective with a mean effect 

size of 1.22.  Based on these results, Gersten et al. (2008) argues that “explicit instruction should 

play a key role in mathematics instruction for students with LD” (p. 1).  After conducting a 

review of research on teaching algebra to secondary students, Strickland and Maccini (2010) 

concurred with this analysis and recommended using an explicit instructional sequence that 

includes teacher modeling through a think aloud process, guided practice with teacher prompts, 

and independent practice using the teacher modeled strategies. 

Instruction using the Concrete-Representational-Abstract Sequence  

Research indicates that using this type of explicit instruction in a specific instructional 

sequence called the concrete-representational-abstract sequence (CRA) can improve 

understanding of mathematical concepts and lead to gains in achievement for students with 
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learning disabilities.  When using this sequence, students manipulate concrete objects to show a 

mathematical problem, draw a picture of the manipulatives in the problem, and then tie that 

picture to the abstract numerals that could be used to solve the problems (Witzel, 2005; Maccini 

& Hughes, 2000; Allsopp et al., 2007).  This approach has been proven effective for students 

with math difficulties in a variety of areas.  According to Cass, Cates, Smith and Jackson (2003), 

using concrete geoboards to model geometric figures through an instructional sequence of 

modeling, guided practice and independent practice led to significant improvements in student 

performance on word problems involving perimeter and area.  Witzel, Mercer, and Miller (2003) 

found that sixth and seventh grade students with learning difficulties in mathematics instructed 

using the CRA sequence performed significantly better on algebra transformation equations than 

students receiving traditional instruction on equations.                                                                                 

Students with learning disabilities often need additional support to learn steps for 

problem solving and apply those steps to novel problems when using the CRA sequence.   

Instruction in mnemonic strategies can help students choose and implement effective problem 

solving strategies (Montague, Enders, & Dietz, 2011;  Maccini & Hughes, 2000; Witzel, 

Riccomini, & Schneider, 2008).  These mnemonic strategies can help students remember the 

steps of a problem solving process or prompt students to self-instruct or self-monitor their own 

work (Maccini et al., 2007).  When these strategies are combined with the CRA sequence, 

student performance can be enhanced.  For example, several researchers have found that using a 

STAR strategy with the CRA sequence can improve performance of students with learning 

disabilities on word problems with integers and algebraic equations (Maccini & Hughes, 2000; 

Gagnon & Maccini, 2001).  When using the STAR strategy students were taught to search the 

word problem to determine known and unknown facts; translate the problem to concrete, 
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representational, and then abstract forms; answer the problem, and review the solution to see if it 

makes sense.  Researchers found that students who could implement the strategy with accurate 

models could accurately solve abstract problems with integers (Maccini & Hughes, 2000; 

Maccini & Ruhl, 2000).  According to Maccini & Hughes (2000) the combined CRA sequence 

and STAR strategy provided scaffolding specific to algebra and helped cue students on how to 

represent and solve problems.  This scaffolding was critical for students with learning disabilities 

that have difficulty accessing and applying information to problem-solving situations.  

  Scheuermann et al. (2009) combined the explicit sequencing and instruction using the 

CRA sequence with a routine that included self-monitoring to help students model and solve 

word problems that included one variable equations.  Students used the CRA sequence to model 

and solve problems for each skill.  Students were also expected to guide the teacher in the 

modeling process, explain the process to a partner, and provide self-instruction through private 

dialogue for each skill and at the concrete, representational, and abstract levels.  The researchers 

found that student performance on similar and novel algebra word problems improved 

significantly after instruction on the routine.  The researchers suggested that this type of routine 

could help students with disabilities have greater access to grade level content (Scheuermann et 

al., 2009).  

Instruction with Virtual Manipulatives 

 Even though the use of concrete manipulatives has been supported, teachers of middle 

school students are less likely to use them than their elementary peers.  Challenges with 

organizing materials, monitoring performance, and concerns with student behavior limit the use 

of concrete manipulatives (Butler et al., 2003).  Additionally, as students move into middle 

school, the increased complexity of problems make the use of concrete manipulatives more 
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difficult (Xin, 2008).  One solution is to provide instruction with virtual manipulatives.  

According to Moyer et al. (2002), virtual manipulatives are web-based visual representations can 

be moved or changed by teachers or students to develop understandings of mathematical 

concepts.  Suh (2005) found that students who used virtual manipulatives performed better on 

addition of fraction tasks than students who used physical manipulatives.  Some authors suggest 

that virtual manipulatives can be used in place of concrete manipulatives when implementing the 

CRA sequence because they help students see mathematical relationships and explicitly connect 

pictorial and abstract representations (Suh, Moyer, & Heo, 2005).  In a study that compared the 

performance of eighth-graders on solving problems with polyominoes, Yuan, Lee, and Wang 

(2010) found that eighth grade students performed equally well when using physical or virtual 

manipulatives.  

 Other researchers suggest that a combination of both physical manipulatives and virtual 

manipulatives may provide more effective instruction on concepts that can be clearly shown and 

manipulated with concrete objects.  Researchers at the university level in science compared a 

combined instructional approach of using physical and virtual manipulatives to help students 

understand concepts related to pulleys.  In one condition the students used physical 

manipulatives first and then used virtual manipulatives. In the other condition students used 

virtual manipulatives and then physical manipulatives.  The researchers found that for concepts 

that could be modeled more concretely related to effort force, the students performed better when 

working with physical manipulatives before virtual manipulatives, but when working with 

concepts that were more difficult to model, the students performed better when working with 

virtual manipulatives before concrete manipulatives. The authors concluded a combination of 

physical and virtual manipulatives can be effective, but the order of presentation depends on the 
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concepts that are taught.  They also suggested that using the concrete, real pulleys provided an 

important kinesthetic experience that helped even college level students understand more 

difficult concepts (Gire, Carmichael, Chini, Rouinfar, & Rebello, 2010).  

 Research by Suh and Moyer (2007) comparing student use of concrete Hands-On 

equation model in algebra to a virtual balance scale manipulative extends this research in science 

to math.  When providing instruction to third grade students, the authors found that both groups 

made significant gains, but that each group made gains in different areas.  The virtual 

manipulative balance scale helped students develop a better understanding of equality while the 

Hands-On Equation model led to more significant improvements in mental math and using 

invented methods.  The authors concluded that “different manipulative models, both in the 

physical and virtual environments, may have unique features that encourage relational thinking 

and promote algebraic reasoning” (Suh & Moyer, 2007, p. 171).  

Problem Solving Instruction with Fractions 

 Studies on problem solving with fractions have incorporated concrete manipulatives, 

virtual manipulatives, and the CRA sequence.  Bottge, Rueda, Serlin, Ya-Hui, & Jung Min 

(2007) used an instructional strategy called Enhanced Anchored Instruction (EAI) to help 

students improve their problem solving abilities in several content areas including fractions.  In 

EAI, students watched short video clips of real world scenarios with embedded math problems 

related to the NCTM curriculum.  The students worked with their peers in the general education 

classroom to solve problems in the video and then applied the information they learned to a 

hands-on project.  In one of these projects titled, “A Fraction of the Cost”, students focused on 

student understanding and application of fraction concepts.  The students were supported through 

virtual manipulatives such as interactive tape measures and models of ramps that they could 
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access as needed.  Students applied the information from these virtual manipulatives to a 

concrete real world project of building a skateboard ramp.  In a seven month study that included 

13 students with learning disabilities in inclusive classrooms, the researchers found that the 

performance of students with learning disabilities remained below students without learning 

disabilities, but that students with learning disabilities learned at the same pace as their peers 

without disabilities.  In a related mixed-methods study, researchers implemented a similar 

sequence of instruction using EAI with students with disabilities in a special education setting 

(Bottge, Rueda, LaRoque, Serlin, & Kwon, 2007).  Data from the problem solving test results, 

teacher journals, and classroom observations indicated that problem solving skills improved and 

student motivation to work on problem solving tasks increased significantly.  Researchers 

reported, however, that the scores of the students were not as high as the scores of students with 

learning disabilities in the general education environment from the earlier study.  The special 

educators’ lack of mathematical content and pedagogical knowledge and lower initial levels of 

student performance in math were two of the possible reasons given for these results (Bottge et 

al., 2007). 

 Because students lacked prerequisite skills and content knowledge, the researchers 

designed a new study which included direct instruction to develop understanding of fraction 

concepts and computation skills.  The researchers implemented instruction using the same three 

EAI videos, problems, and informal supports that had been used in previous studies with students 

in collaborative classes.  A second collaborative group received teacher-directed instruction that 

combined work with manipulatives and explicit computer-assisted instruction on fraction 

concepts.  The second group then only completed two of the EAI videos and problems.  The 

researchers found that the computation skills of the second group were higher than the group that 
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only received problem solving instruction with informal support.  Additionally, the problem 

solving skills of both groups improved, but were not significantly different from each other.  The 

authors concluded that direct instruction in procedural knowledge combined with EAI could 

enhance student performance in computational skills without impeding problem solving 

performance (Bottge, Rueda, Grant, Stephens, & Laroque, 2010). 

CRA Sequence and Fraction Instruction   

 Direct instruction using the CRA sequence can also lead to gains in conceptual 

understanding and problem solving performance on problems with fractions for students with 

learning disabilities.  When comparing explicit instruction using the CRA sequence to instruction 

with the representational and abstract (RA) components of the sequence,  Butler, Miller, Crehan, 

Babbitt, and Pierce (2003) found that all students improved in fraction equivalence tasks, but that 

the CRA group performed better on all measures.  A significant finding in the study was that 

both the CRA group and the RA group performed better than a comparison group of eighth 

graders in general education on solving word problems with fractions.  After examining student 

papers, the researchers noted that students in the CRA group and RA group drew representations 

that helped them solve the word problems.  These results are supported by Hecht, Close, and 

Santisi (2003) who found that students with strong conceptual understandings of fractions did 

well on problem solving tasks.  The authors argue that students must be able to form accurate 

mental models of fraction word problems to solve these problems.  

Schema-Based Instruction and Schema-Broadening Instruction 

Research suggests that implementation of the CRA sequence may be enhanced by having 

students classify word problems based on common characteristics such as comparisons between 

two quantities or changes in the amount of an initial quantity.  Schema-based instruction, an 
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approach that uses these problem structures, has led to gains in problem solving achievement for 

students with learning difficulties ( Jitendra, Griffin, Deatline-Buchman, & Sczesniak, 2007; Xin 

et. al., 2005; Jitendra, Hoff, & Beck, 1999).  In this type of instruction students are asked to 

identify a problem type based on conceptual understanding of the problem structure and then use 

a schematic diagram or graphic organizer of the schema to represent the problem (Xin et al., 

2005).  According to a meta-analysis of research on effective instructional strategies for students 

who struggle with mathematics, this focus on underlying problem structures, or schemas, has 

strong support from the research and leads to significant improvements in problem solving 

performance (Gersten et al., 2009).   

 Many studies support the use of schema-based instruction for students with learning 

disabilities.  Initial studies indicated that explicit schema-based instruction for middle school 

students in a pullout setting improved problem-solving performance on addition, subtraction, 

multiplication, and division word problems (Jitendra et al., 1999; Jitendra, Dipipi, & Jones, 

2002) and was more effective than general strategy-based instruction (Xin et al., 2005).  Recent 

studies suggested that explicit schema-based instruction was more effective than general strategy 

instruction for students with disabilities in collaborative elementary classrooms as well (Griffin 

& Jitendra, 2008).  Xin (2008) found that schema-based instruction combined with algebraic 

expressions of mathematical relationships led to improvements in problem solving performance 

and algebraic understanding of multiplicative compare and equal group problems middle school 

students.  In a follow-up study, students were able to accurately apply these strategies to different 

types of equal group and multiplicative compare problems (Xin & Zhang, 2009). Research 

related to schema-based instruction has moved toward helping students with disabilities have 

access to the general education curriculum.  Initial research was conducted on the instructional 
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level of middle school students using third grade addition and subtraction word problems in 

pullout settings (Jitendra et al., 1999), but more recent research has indicated that schema-based 

instruction improves student performance on grade level standards in both collaborative and 

pullout settings (Xin et al., 2005; Griffin & Jitendra, 2008).   

Schema-broadening instruction is a variation of schema-based instruction that focuses on 

helping students transfer their knowledge of existing schemas to similar problems with new 

features (Fuchs, Seethaler, Powell, Fuchs, Hamlett, & Fletcher, 2008).  Research on schema-

broadening instruction indicates that adding transfer features (i.e., irrelevant information, 

unfamiliar vocabulary or different formats)  to schema-based instruction leads to increased 

problem-solving achievement for students with disabilities (Fuchs, Fuchs, Prentice, Hamlett, 

Finelli, & Courey, 2004; Powell, 2011).  While schema-based instruction uses diagrams to help 

students model problems, schema-broadening instruction incorporates mathematical equations to 

help students model problems (Powell, 2011).  Research indicates that relating common schemas 

to equations helps students develop beginning algebraic reasoning skills (Fuchs et al., 2008; 

Fuchs, Zumet, Schumacher, Powell, Seethaler, Hamlett, & Fuchs, 2010).   

Addition and subtraction schemas.  Schema-based instruction and schema-broadening 

instruction focus on three general types of addition and subtraction schemas.  The first type, 

referred to in the literature as the group (Griffin & Jitendra, 2008), the total (Fuchs et al., 2008) 

or the part-part whole schema (Xin, Wiles, & Lin, 2008) refers to problems that include two 

parts that are combined to make a whole (Griffin & Jitendra, 2009).  An example of a problem 

from this type of schema would be, “Farmer Joe has 88 animals on his farm.  He only has horses 

and goats.  There are 49 horses on the farm.  How many goats are on the farm? (Griffin & 

Jitendra, 2009, p. 189).  The second type of problem is referred to the change schema (Fuchs et 
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al., 2008; Xin et al., 2008; Griffin & Jitendra).  Problems are classified in the change schema if 

they include an initial quantity and then an action that causes an increase or decrease in quantity 

(Griffin & Jitendra, 2009).  An example of a problem from the change schema would be, “ 

Johnny had 21 pencils in his desk.  Then he found another 16 pencils in the closet.  How many 

pencils did Johnny have now? (Fuchs et al., 2008, p. 164).  The final schema is referred to in the 

literature as the compare schema (Griffin & Jitendra, 2009), the difference schema (Fuchs et al., 

2008), or the additive compare schema (Xin et al., 2008).  When solving problems in this 

schema, students compare two sets to determine the relationship between two items (Griffin & 

Jitendra, 2009).  The following is an example: “Craig saw a pine tree in the forest. Later, he saw 

a maple tree that was 9 feet tall. The maple tree was 5 feet shorter than the pine tree. How tall is 

the pine tree?”  (Griffin & Jitendra, 2009, p. 189). 

 

Table 2.1 
Types of schemas and names of schema by each research group 

 
Description of 

Schema 
Problem 

Types 

Sample Problem Schema Names 
  Griffin & Jitendra 

(2008);  
Jitendra et al.(1999) 

Schema Names 
Fuchs et al. 

(2008); Fuchs et 
al. (2010) 

Schema 
Names 

Xin et al., 2008  

Two separate 
groups joined 
to make a 
whole 

Tim had 4 dogs. John had 
7 cats. How many animals 
did they have altogether? 

Group Total Part-Part-Whole 
(Combine 
subtype) 

 

Increase or 
decrease in an 
initial 
quantity 

Sarah had a bowl of 20 m 
& ms. She ate 7. How 
many were left? 

Change Change Part-Part-Whole 
(Change 
subtype) 

Comparison 
of two distinct 
sets 

Casey’s foot was 9 inches 
long. Bob’s foot was 13 
inches long. How much 
longer was Bob’s foot? 

Compare Difference Additive 
Compare 
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Schematic diagrams and cue cards.  When providing instruction in the three types of 

addition and subtraction word problem schemas, all researchers used some combination of 

diagrams and cue cards to help students organize their work and solve the word problems.  These 

schematic diagrams and cue cards provide a visual map for students to use to organize 

information for each schema (Powell, 2011).  When using these diagrams or cue cards, students 

were instructed to place the correct values in the boxes or circles.  These diagrams showed the 

connections of the values through arrows, plus, minus and equal signs.  This use of schema 

diagrams and cues provided students with graphic representations to help them identify critical 

elements in each schema and organize this information so they can visualize the problem.  For 

example, when providing instruction on the schema where two separate groups are joined to 

make a whole (i.e. – group, total, or part-part-whole/combine problems), Griffin and Jitendra 

(2008) used the following schematic diagram: 

    +       =   

  

   Small groups or parts Large groups or whole 

      (Griffin & Jitendra, 2008, p. 189) 

Figure 2.1.  Schematic Diagram for Group Schema 

 Students were instructed to fill in the parts or whole based on the information in the 

problem and to place a question mark in the box for the information that was not known.  If 

students were given the sample problem, “Tim had 4 dogs.  John had 7 cats.  How many animals 

did they have altogether?”, they would be instructed to identify the problem schema, determine 

+!(!
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whether the problem included information on the small parts or the whole, fill in the appropriate 

information in the boxes, and put a question mark in the box of the unknown information.  

Both Fuchs et al. (2008) and Xin et al. (2008) used diagrams, but also included cue cards  

with phrases to help students identify the appropriate problem schemas and correctly organize 

information in the problem.  Fuchs et al. (2008) provided a series of prompts with a diagram to 

help students solve problems.  When asked to solve total problems students were given the 

following clues and diagram: 

1. How many for part 1? (P1) 

2. How many for part 2? (P2)  

3. What is the total? (T)  

4. Write the number sentence. 

 

      P1          +         P2         =            T 

   (Fuchs et al., 2008, p. 163; Powell, Fuchs, & Fuchs, 2010, p. 26 ) 

Figure 2.2.  Schematic Diagram for Total Schema 

  

When students were given a problem, they followed the same steps for identifying the 

schema and placing information in the correct positions, but they were instructed to put an x in 

the box to symbolize the unknown information (Fuchs et al., 2008).  Xin et al. (2008) followed a 

similar pattern, but included more information to help students recognize the components of each 

schema.  For example, when asking students to identify problems from the part-part-whole or 

combine schema, the authors gave students a cue card that included the definition of the schema, 
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the schematic diagram, and specific story grammar questions to help students understand the 

schema. 

Part-Part Whole (PPW) 

A PPW problem describes multiple parts that make up the whole 

        Part  Part                 Whole           

    +      =   

 

 

Which sentence or question tells about the “whole” or “combined” amount?  Write 
that  quantity in the big box on one side of the equation by itself. 

 

Which sentence or question tells about one of the parts that makes up the whole?   
Write that quantity in the first small box on the other side of the equation. 

Which sentence or question tells about the other part that makes up the whole?   
Write that quantity in the 2nd small box (next to the first small box).  

 
       (Xin et al., 2008, p. 171) 

Figure 2.3.  Cue Card for Part-Part Whole (Combine) Schema 

Schema instruction and algebraic reasoning.  Several researchers have included 

algebraic equations with schematic diagrams or cue cards to help elementary and middle school 

students generalize problems from specific schemas to specific abstract equations that represent 

those schemas (Fuchs et al., 2010; Xin, 2008).  According to these researchers, algebraic 

reasoning is important for students with disabilities because it provides the foundation for 

understanding abstract concepts used in higher levels of mathematics.  To make the connection 

between the information in the problem, the schematic diagram, and the equation, students 

receiving this type of instruction would circle the numerical values for the parts and total 

!

! !

! !

!

!

!

!

!

!
!
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amounts found in word problems in the total schema.  The students would then label each value 

as Part One (P1), Part Two (P2), or Total (T). The numbers would be placed in the correct 

sequence in the equation P1 + P2 = T and the equation would be solved (Fuchs et al., 2008).  Xin 

(2008) uses a similar approach when connecting schema to algebraic equations at the middle 

school level by combining the schematic diagrams  with algebraic equations for word problems 

with multiplication and division (Xin, 2008; Xin & Zhang, 2009).  Xin (2008) argues that this 

approach is more effective with students with learning difficulties because the connection 

between the schematic diagram and the equation is explicit. 

Schema instruction and cognitive strategies.  Similar to researchers on the CRA 

sequence, individuals investigating the effects of schema-based and schema-broadening 

instruction used specific cognitive strategies to help students remember the steps to solve 

problems from different schemas.  Fuchs et al. (2008) used a simple mnemonic devise called 

RUN to remind students to read the problem, underline the question, and name the problem type.  

The mnemonic by Griffin and Jitendra (2008) called FOPS encouraged students to find the 

problem type, organize the information in the diagram, plan a way to solve the problem, and then 

solve the problem. A slightly more complex mnemonic devise called DOTS was implemented by 

Xin et. al (2008) and Xin and Zhang (2009) to have students detect the type of problem, organize 

information using the correct diagram, transform the diagram into an equation, solve the 

equation, and check the response.  The authors of this mnemonic included a specific statement 

on connecting the diagram to an equation to help students make the connection between the 

visual schema and the overarching algebraic concept for the schema.  
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Summary 

 Students with math difficulties face many challenges when solving word problems.  

Deficits in working memory, conceptual knowledge, and reading comprehension can all create 

challenges when solving word problems (Geary, 2004; Van Garderen & Montague, 2003; Fuchs 

& Fuchs, 2002).  Explicit instruction using the concrete-representational-abstract sequence can 

help students develop an understanding of math concepts incorporated into specific word 

problems (Gersten et al., 2008).  Instruction using the CRA sequence can be enhanced by 

connecting virtual manipulatives and concrete manipulatives (Suh and Moyer, 2007).  

Additionally, the use of cognitive strategies can help students remember general problem solving 

steps when using these instructional routines (Maccini et al., 2007).   

 When conducting a review of the research, only one research study was found that 

combines the CRA sequence, schema-based instruction, and cognitive strategies.  In his 

dissertation, Mancl (2011) developed an instructional routine that included the CRA sequence 

and a cognitive READER strategy.  However, the schemas included in the study were not related 

to the work of Griffin and Jitendra (2005), Fuchs et al. (2008), or Xin et al. (2008).  The 

schematic diagrams in the study helped students make connections between the concrete, 

representational, and abstract levels of the CRA sequence, but they did not address underlying 

problem schemas.  Therefore, this study will focus on an instructional routine that combines the 

CRA sequence with schemas that will help students develop an understanding on specific 

problem structures.  A cognitive strategy will be included to support students as they work 

through the steps of the problem.  Instruction will specifically focus on addition and subtraction 

problems with fractions because fraction concepts are difficult for students with learning 

difficulties in mathematics.  
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Chapter Three 

Method 

 

Introduction 

This chapter will begin with a review of the purpose and research questions for the study.  

Next, the process that was used to select participants and the setting of the study will be 

described.  In the following section, a description of the instructional intervention that combined 

specific schema-based problems and the CRA sequence will be provided.  The chapter concludes 

with an explanation of the data collection and analysis procedures that were used to answer each 

research question. 

Research Questions 

The purpose of this study was to examine the effects of using a concrete-representational-

abstract (CRA) sequence on the problem solving performance of students who struggle with 

mathematics or have been identified with learning disabilities in mathematics.  The problem 

solving instruction in this study included explicit connections between concrete manipulatives, 

virtual manipulatives, representational problem solving schemas, and abstract equations.  The 

following questions guided this study: 

1. When using the concrete-representational-abstract (CRA) sequence, can students 

connect the concrete manipulatives and virtual fraction manipulatives to the 

representational change, compare, and group schemas? 

2. When using the CRA sequence can students connect the representational change, 

compare, and group schemas to the abstract equations?   
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3. Will using a CRA sequence that includes concrete and virtual manipulatives to 

connect problem solving schemas and equations improve student performance on 

problems similar to the problems used during the intervention? 

4. Will using a CRA sequence that includes concrete and virtual manipulatives to 

connect problem solving schemas and equations improve student performance on 

problems that require generalization from the models provided during the 

intervention? 

Design              

A single-case multiple-baseline across participants design was used to evaluate the 

effects of the intervention on student performance on fraction word problems in this study.  

According to Kazdin (2011), a multiple-baseline design is appropriate when evaluating changes 

in a specific skill and when interventions can be implemented with one student or one group at a 

time.  When implementing this design, data were gathered on the baseline performance of each 

student.  After baseline performance was stable for all students, the intervention was started with 

one student or group while the other students continued to receive instruction under baseline 

conditions (Kazdin, 2011).  Using a multiple-baseline across participants design in this study was 

appropriate because a stable baseline of performance on fraction word problems was established 

for each student.  The intervention that combined the CRA sequence and schema-based 

instruction was implemented with the first two students while the other students only received 

classroom instruction in mathematics.  The intervention did not begin with the second two 

students until changes in performance on fraction word problems were documented for the first 

students.  The intervention began with the final student after changes in performance were 

documented with the second two students.  This process showed whether performance on each 
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type of word problem could be attributed to the instructional routine that combined the CRA 

sequence and schema-based instruction.  The intervention was started with pairs of students 

initially because of the late February start to the study. After the second pair began the 

intervention, the researcher noted that progress and attendance of the students was uneven and all 

other lessons for the students were implemented individually. Student 5 was the only student 

included in the final implementation of the intervention because one student moved during the 

study. Because the intervention was introduced at different times to pairs or individual students, 

the effects of outside factors on student performance were reduced (Kazdin, 2011).   

The independent variable for each research question was an instructional routine that 

combined the CRA sequence and schema-based instruction to help students connect concrete 

manipulatives, virtual manipulatives, representational schemas, and abstract equations when 

completing word problems with fractions.  Research on mathematical problem solving indicates 

that using a graduated sequence that connects concrete manipulations of objects, representational 

drawings of those objects, and the abstract equation results in improved student performance on 

problem solving tasks for students with learning disabilities or who struggle with mathematics 

(Maccini & Hughes, 2000; Allsopp et al., 2007; Gagnon & Maccini, 2001).  Additionally, 

instruction on helping students identify specific problem components related to types of word 

problem schemas has been shown to be effective for students who struggle with mathematics 

(Xin et al., 2005; Xin & Zhang, 2009) and students with learning disabilities in mathematics 

(Maccini et al., 2007; Jitendra et al., 2002; Jitendra et al., 1999).  

The dependent variable for each question was related to these key components of the 

instructional routine.  In question one, the dependent variable was the students’ ability to connect 

concrete and virtual manipulatives to the correct schematic diagram.  In question two, the 
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dependent variable was the students’ ability to use the schematic diagram to write the correct 

equation needed to solve the word problem.  The dependent variables for questions three and 

four were the students’ ability to solve word problems with fractions from the group, change, and 

compare schemas.  For question three, the students’ ability to solve word problems that were 

similar to the problems used in the intervention was assessed.  For question four, the ability to 

generalize the strategies to correctly solve problems that include irrelevant information, difficult 

vocabulary, or different conceptualizations of problems was measured.  

Participants 

 Participants were five students from the fifth grade level from a public middle school. 

Four students were males and one student was female. Similar to the county and school 

demographics, all students in the study were White. All students were either currently receiving 

special education services and had been diagnosed with a specific learning disability, or had been 

identified as a struggling student by teachers because of their mathematics performance on state 

testing, benchmark assessments, and curriculum-based measures.  The students were chosen in 

consultation with the special educator and general educators who provided services to the 

students. To qualify as a participant under the category of specific learning disabilities in math, 

the students were required to have an average to above average score on the WISC-IV 

(Wechsler, 2003) or similar standardized assessment and demonstrate a severe discrepancy 

between achievement and intellectual ability in math.  The severe discrepancy formula was used 

because this formula was supported by state policies and used by local education agencies to 

determine eligibility at the middle school level until the 2011-2012 school year (WV Department 

of Education, 2010). Students with learning disabilities were also required to score at the partial 

mastery or novice on the state assessment, Westest II.  They were also assessed using the 

Problem Solving subtest of the Key Math-3 Diagnostic Assessment (2007).  To qualify for the 
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study, students with learning disabilities needed to score at or below the 16th percentile (i.e., one 

standard deviation below the mean).   An additional qualification of this study for students with 

learning disabilities included math instruction in a self-contained special education or inclusive 

general education setting.   

To qualify as struggling student in mathematics, the students were required to score at the 

50th percentile or lower at the fourth grade level on the Number and Operations subtest from the 

easyCBM curriculum-based measures (University of Oregon, 2010).  In addition, struggling 

students could only qualify for the study if they scored at the partial mastery or novice on the 

state assessment, Westest II.  Students who struggled with math were also were assessed using 

the Problem Solving subtest of the Key Math-3 Diagnostic Assessment (2007) and needed to 

score at or below the 16th percentile to qualify for the study. 

Table 3.1 
Student Demographic Information 

                                                
 

Characteristics 

Students 
One Two Three Four Five 

Age 11.1 12.3 11.2 12.2 11.10 
 

Grade 5 5 5 5 5 
 

Gender M M M M F 
 

Ethnicity 
 

White White      White White White 

Disability none LD OHI none none 
 

Westest II Math Level (2011) PM PM PM PM N 
 

Key Math Problem Solving 
Subtest Percentile Ranking 

16% 5% 2% 16% 2% 
 

EasyCBM  Number and 
Operations Gr. 4 Percentile 
Ranking 

20% 50% 40% 50% 20% 
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 Sampling.  A purposive sample of fifth grade students with learning disabilities or who 

struggle in math was selected for this study.  Originally seven students were selected as possible 

participants for the study based on the eligibility criteria and teacher recommendation. One 

student did not meet the qualifying score on the Key Math Problem Solving Test and was 

disqualified. Of the six remaining students, two students with learning disabilities were selected. 

These two students were the only students with learning disabilities who met the criteria and had 

a 30 minute instructional period that could be used for instruction. Three of the four remaining 

students who met the eligibility criteria for struggling students were selected based on teacher 

recommendation. After the third probe was administered, however, one student with learning 

disabilities moved unexpectedly. The final eligible student became a part of the study at this time 

and probes were administered with the other students to establish a baseline of performance. 

 Fifth grade students were selected for this study because according to the Common Core 

Standards (2010) that have been adopted in 43 states, students at this grade level are expected to 

solve addition and subtraction word problems with fractions.  Yet, many fifth grade students with 

learning disabilities and learning problems in math still have difficulty due to lack of conceptual 

understanding of fractions or difficulty with understanding the underlying structures of the 

problems.  Additionally, the fifth grade students that were selected for this study were from a 

public middle school where the researcher taught special education for six years.  The researcher 

now acts as a liaison to this school from a local public university and works in the school one 

morning a week to provide support for students who struggle in mathematics and reading.  

Because of this relationship, the principal and teachers were comfortable with the researcher 

working with teachers and students to provide interventions.  The dual role of the researcher as 

liaison did not impact privacy or confidentiality because confidential information on students 
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was not reported to the university or to students from the university.  Additionally, no students 

from the university were working with the students during the research study. 

Setting 

 The middle school selected for this study is located in a rural town in north central West 

Virginia.  According to the US Census Bureau (2010), the population of this town is over 95% 

White and the median income of residents is below the state median income.  The town has an 

80% high school graduation rate, but only approximately 13% of adults have a bachelor’s degree 

or higher (US Census Bureau, 2010).  Similar to community statistics, over 95% of students in 

the school are White.  Unlike the statistics from the community, the teachers in the school are 

highly educated with over 70% reporting having a master’s degree or above.  Teachers also are 

very experienced and average over 20 years of teaching.  Despite the education and experience 

of the teachers, the school has struggled to meet adequate yearly progress (AYP) for the past five 

years because of reading or math scores in special education (West Virginia Department of 

Education, 2011).  

 The school in this study has about 700 students in grades five through eight with 

approximately 175 students at the fifth grade level.  The students with learning disabilities 

received services in math from one highly qualified special educator who had 5 years of 

experience teaching special education. The students who had been identified as at-risk in reading 

and mathematics received instruction in all subjects by one general educator with 32 years of 

teaching experience. This teacher taught students with disabilities for  12 years of those 32 years.  

Instructional Intervention 

 The researcher in this study provided instruction on group, change, and compare word 

problems schemas that were adapted from Griffin and Jitendra (2009).  According to these 
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researchers, the group, change, and compare schemas are three common problem structures for 

addition and subtraction word problems.  These types of problems are often found in textbooks 

or problem solving units. 

 Group Problems.  According to Gurganus (2007), group problems include two discrete 

amounts that are combined to equal a total amount.  The unknown amount in a group problem 

could be the total amount or the amount in either part or subset.  The following is an example of 

a problem from the group schema: James brought ! of a cheese pizza to the school party.  Cindy 

brought " of a pepperoni pizza to the party.  How much pizza did the two students bring to the 

party?  In this example, there are two different types of pizza that are combined to make a total 

amount of pizza. 

 Change Problems.  A change problem involves a quantity or amount that is increased or 

decreased.  The increase or decrease results in a new total amount (Gurganus, 2007, Griffin & 

Jitendra, 2009).  The following is an example of a problem from the change schema: Matt had 

1/3 cup of sugar, but he gave # of a cup to his mother to cook some brownies.  How much sugar 

did Matt have left?  In this type of problem, there is an initial amount of one item, the sugar, 

which was decreased to a new amount of sugar.  

 Compare Problems.  According to Gurganus (2007), compare problems involve 

comparisons between two distinct sets.  The comparison is in terms of bigger and smaller or 

more and less.  For example, Sarah has 4 " dollars less than Rachael.  If Rachael has 6 " 

dollars, how much money does Sarah have?   

 Concrete-Representational-Abstract Sequence.  The researcher provided instruction 

on problems from each schema through the CRA sequence.  When using this sequence during 

the intervention, students were given instruction on how to manipulate concrete models of 
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fractions to show a mathematical problem at the concrete level; use the virtual fraction 

manipulatives and schematic diagrams to represent the concrete models at the representational 

level; and then tie the virtual manipulatives and schematic diagram to the abstract numerals that 

could be used to solve the problems at the abstract level.  For example, when providing 

instruction on the example group problem: Jim had 3/4 of a pie.  Todd had 2/4 of a pie.  How 

much pie did they have all together?, the researcher began by defining group problems as two 

parts that can be combined to make a whole.  Next, the researcher helped the student identify the 

fractional parts (3/4, 2/4) and the unknown total in the problem and then showed the student how 

to model the parts of the problem by using concrete fraction circles and tiles.  The researcher 

represented the unknown total with a W.                                                                

                                      

 

 

Figure 3.1. Model Problem of Schema-based Instruction with CRA Sequence.  The model 
includes a representation of a virtual manipulative and schematic diagram with abstract numbers 
from a sample group problem. 
 
After guided and independent practice with concrete fraction circles and tiles, the researcher 

demonstrated how to model the same parts of the problem using virtual manipulatives of fraction 

circles and tiles.  The researcher then helped students connect the virtual manipulative to a 

schematic diagram and the schematic diagram to the abstract equation. (See Table 3.2) 
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Table 3.2 
Sample of problem types and models at each stage of the CRA sequence 

Problem Type Sample Problems for Probes or 
Practice 

Concrete 
(Virtual 

Manipulative) 

Representational 
(Schematic Diagram) 

 

Abstract 
(Equation) 

Group 
(Part 1 + part 2 
= total) 

Jim had 2 ! cheese pizzas. Todd had 3 
" pepperoni pizzas. How many did 
they have all together? 

Area model 
(fraction 
circles or tiles) 

P1            P2             T 
         +           =  

P1 + P2 = T 
2 ! + 3 " = T 

Cindy had 2/3 of a bag of m & ms. The 
bag only has red and yellow m & ms. If 
" of the bag is red m & ms. How much 
of the bag is yellow m & ms? 

Area model   
 P1           P2             T 
         +           =  

 
P1 + P2 = T 
"  + P2 = 2/3 

Change 
(Starting 
amount +/- 
change = ending 
amount) 

Erin was cleaning her room and found 
1 " packs of crayons. When she looked 
in her backpack she found another  1 ! 
packs of crayons. How many packs of 
crayons does she have now? 

Linear model 
(fraction bars) 

 
   St             C            E 
            +             =                                                                                                                                                                                   

 
St  + C = E 
1 1/4 + 1 1/2 = 
E 

Paula needed 2 !  cups of flour to 
make a pie for her mom’s party. If she 
already has 3/5 of a cup of flour, how 
much more flour will she need to make 
her pie? 

Area model     
    St            C           E  
            +             =                        

 
St +/- C = E 
3/5 + C = 2 1/2 
 
 

Kendall used  2 1/6 pieces of poster 
board for his science fair project. If he 
had 1/2 of a piece of poster board left, 
how much poster board did he have 
when he started the project? 

Linear model  
     E             C           St 
            +          = 

 
E + C = S 
1/2  + 2 1/6 = 
S 

Compare 
(Bigger – 
smaller = 
difference) 

The new pen for the tigers at the zoo 
was 11 1/2 feet tall. The pen for the 
lions was 11 3/4 feet tall. How much 
taller was the pen for the lions than the 
pen for the tigers? 

Area model or 
Set model 

 
   B              s           D 
            -           = 

B – s = D 
11 3/4 - 11 1/2 
= D 

Mrs. Weaver had a shelf for her books 
that was 2  1/5 feet tall.  Mrs. 
McCarthy had a shelf that was 1  1/5 
feet taller than Mrs. Weaver’s shelf. 
How tall was Mrs. McCarthy’s shelf?  

Linear model  
   B              s           D 
            -            = 

B – s = D 
B – 2 1/5 = 1 
1/5 

Adapted from Fuchs, Zumeta, Schumacher, Powell, Seethaler, Hamlett, & Fuchs (2010), Xan, (2008), & Griffin & 
Jitendra, (2008) 
 

When implementing the intervention, the researcher began with problems from the group 

schema and then moved to problems from the change schema.  Problems from the compare 

schema were introduced last.  This sequence began with the simplest type of problems, the group 

fraction problems, because most instruction on fraction concepts focuses on fractions as parts of 

a whole or a group (Misquitta, 2011).  The group problems were modeled using fraction tiles and 

fraction circles which were familiar to students and easier for them to understand.  After 
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completing group problems, more difficult change and compare problems were introduced. 

Although there could have been order effects related to introducing problem types in the same 

order, this is unlikely because specific conceptual understanding of each problem type was 

necessary to model and solve problems.    

The researcher provided instruction on problems from all schemas using concrete 

manipulatives, virtual manipulatives, schematic diagrams, and abstract equations.  At each stage 

of instruction, the researcher modeled problems, provided guided practice, and gave students the 

opportunity for independent practice.  Throughout this intervention process, students continued 

with math instruction in their regular classrooms.  The students were given instruction on 

understanding and comparing fraction concepts, but they did not receive instruction on any of the 

problem schemas from this study.  

Procedures 

Interventions were conducted three to four times a week during either a 30 minute re-

teach/enrichment block that was incorporated into the daily routine at this public middle school, 

or during morning instructional support time for math or reading in the general education 

classroom.  Due to time constraints while awaiting IRB approval, local school board approval, 

and consent forms, the researcher initially implemented the intervention with the first two 

students together during the lessons on the group schema. The next two students began the 

intervention as soon as a stable baseline was established for the first two students. After the 

second pair of students began the intervention, the researcher noted that progress and attendance 

of the students was uneven and all other lessons for the students were implemented individually. 

Student 5 was the only student included in the final implementation of the intervention because 

one student moved during the study. 
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All interventions took place in an empty classroom that contained no windows and 

minimal decorations to limit distractions.  The students sat beside the researcher and faced the 

chalkboard.  The classroom was at the end of the hallway with some traffic to the stairs, so the 

door was shut to limit possible noise from hallway.  Most interventions took place right after 

homeroom (8:05 – 8:35 a.m.) daily or during morning instructional support time in the general 

education classroom for math or reading. The instructional support time varied daily depending 

on the schedule of the general educator. The schedule of interventions did vary in lessons 11-13 

for student 5.  Because multiple probes were needed to demonstrate changes in performance for 

student 1and 2, student 5 did not begin the intervention until later in the school year. 

Interruptions from an extended spring break, state testing, and a mild winter that led to an early 

end of school all affected the implementation schedule for this student. As a result, some of the 

last intervention sessions for student 5 occurred in the afternoon as well. 

Student performance on word problems with fractions was assessed every other day in 

the baseline phase using probes that included nine fraction word problems involving three 

different word problem schemas (See Appendix A).  In addition, students were given one 12 

question test of their ability to generalize knowledge of problem schemas to novel problems with 

unfamiliar vocabulary, irrelevant information, or different conceptualizations than the ones 

presented in the intervention (See Appendix B).  During both of these assessments, instructions 

and problems were read aloud and all students were assessed at the same time.  Students were 

allowed to use calculators because calculators helped students with difficult computations so 

they could focus on problem concepts (Montague, 2005).  Furthermore, research indicates that 

the use of calculators helps students with disabilities or learning problems in math access higher-

level problem solving skills that they could not access without calculators (Center for 
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Implementing Technology in Education, 2007).  The use of calculators was necessary during the 

intervention because of the complex procedures necessary for computations with fractions 

(Misquitta, 2011). 

After baseline was established, the intervention began with the first two students using 

problems from the group schema. Instruction on relating the information in the word problems to 

the concrete manipulatives was provided by the researcher using scripted, 30-40 minute lessons 

that occurred daily (See Appendix C).  At the beginning of the intervention, the researcher 

showed students how to model problems from the schema using concrete manipulatives. The 

researcher modeled two complete problems that include the fractional parts and the solution so 

students could see how each component of the problem was modeled.  According to Xin et al. 

(2005), the complete modeling of problems is important because it helps students who struggle 

with math “develop a mental representation of the problem schema” (p. 269). Additionally, using 

this process helps students understand the schema and retrieve it when solving problems.  After 

students worked with complete problems, the researcher modeled two problems with unknown 

information to help students apply their understanding of schemas to solve problems with 

unknown information.   

Table 3.3   
Sample of complete group problems and problems with unknown information 

Problem 
Type 

Sample  of Complete Problems for 
Instruction 

Sample of Problems with 
Unknown Information 

Group 
(Part 1 + Part 
2 = Total) 

Paul had ! of  a pizza.  Susan had 1/3 of a 
pizza.  Together they had  5/6  of a pizza. 

Paul had ! of  a pizza.  Susan had 1/3 
of a pizza.  How much pizza do they 
have altogether? 

Jake had " bag of skittles. The bag only 
has red and yellow skittles. If 1/8  of the 
bag is red skittles, then 1/8 of the bag has 
yellow skittles. 

Jake had " bag of skittles. The bag 
only has red and yellow skittles. If 1/8  
of the bag is red skittles, how much of 
the bag has yellow skittles? 
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After the researcher explicitly modeled and used a think aloud process to show students 

how to complete four problems from the first schema, the student were given two word problems 

that included all components.  Using guided practice, the researcher helped the student model 

these problems.  The student then practiced modeling two problems with missing information 

with feedback from the instructors.  After guided practice with the instructor, the student were 

given six story situations to model.  Two of these problems included complete information on the 

fractional parts and solutions and four problems contained unknown information.  If the student 

correctly modeled 4 out of 6 problems, the intervention continued to the next phase.  If the 

student was unable to model 4 out of 6 problems correctly, then the researcher modeled and 

provided guided feedback until the student reached 66% or greater mastery. This mastery level 

was adjusted from an original planned mastery level of 5 out of 6 (83%) because the students in 

the study were at the initial acquisition levels when modeling fractions. In other words, three 

students were unable to model basic problems with like denominators using manipulatives and 

no students were able to model problems with unlike denominators. According to Allsopp et. al. 

(2007), when developing understanding at the initial level of acquisition to move to an advanced 

level of acquisition, the expectation for mastery should range from approximately 50-95%. 

Because of the complexity of modeling equivalent fractions and the focus on understanding 

problem schemas, the researcher adjusted the mastery criteria to correspond more closely with 

the average of this range (approximately 72%). However, during the independent practice using 

the schematic diagram and writing the equations, most students solved problems at the original 

mastery level of 5 out of 6 (83%). 
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Table 3.4  
Instructional sequence of problems from group, change, and compare schemas  

Order of Instruction 
at Each Stage of  
CRA Sequence 

Number/Types of Problems Used During Instruction 
 

Mastery 
Level 

Model  -Instructor uses the think aloud process to model or write the equation 
for two problems with complete information  
- Instructor uses the think aloud process to model or write the equation 
for two problems with unknown information 

NA 

Guided Practice -Instructor guides and supports the students as they model or write the 
equation for two complete problems  
-Instructor guides and supports the students as they model or write the 
equation for two problems with unknown information 

4/4 
(100%) 

Independent Practice -Students independently model or write the equation for two complete 
problems  
-Students independently model or write the equation to solve four 
problems with unknown information 

4/6 (66%) 

!

Once the student was at mastery on independent practice problems with concrete 

manipulatives, the concrete-representational instruction occurred.  The teacher used the same 

process of modeling, guided instruction, and 66% mastery on practice problems to help the 

student connect the concrete manipulatives to virtual manipulatives from Conceptua Fractions 

software that was designed to support students who have difficulty with fractions.  (See Figure 

3.2) 

 The teacher modeled complete examples and problems with unknown amounts with 

concrete manipulatives to help students make the connection between concrete models of 

manipulatives and the virtual models on the computer.  The teacher then guided the students on 

how to model the problems using virtual manipulatives.  The students were then given six story 

situations to model with virtual manipulatives.  Two of these problems included complete 

information on the fractional parts and solutions and four problems contained unknown 

information.  If the student correctly modeled 4 out of 6 problems, the intervention continued to 

the next phase.  If the student could not model 4 out of 6 problems correctly, then the researcher 

modeled and provide guided feedback until the student reached 66% or greater mastery. 
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Figure 3.2. Screenshots of Virtual Manipulatives from Conceptua Fractions Website.  
Screenshots show the possible models that could be used by students (linear, area and set 
models).  Adapted from Conceptua Fractions by A. Khalsa, 2010. Retrieved from 
http://conceptuamath.appspot.com/fractions.html#AddingCD  
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Next, the student was given a diagram of the schema with a word problem.  The 

instructor modeled how to identify critical problem components and mapped them on the 

appropriate schematic diagram.  The student then practiced identifying information and placing it 

into the schematic diagram with feedback from the instructors.  After guided practice with the 

instructor, the student was given six story situations to map onto the schematic diagrams.  The 

student was asked to place the information in the schematic diagram with 66% mastery required 

before moving to the next phase.  

Table 3.5 
Sample problem with completed schematic diagram 

  
Problem 

Type 
Sample Problems for 

Probes or Practice 
Representational 

(Schematic Diagram) 
 

Group 
(Part 1 + Part 
2 = Total) 

Jim had 2 "  pizzas. Todd 
had 3 " pizzas. How many 
did they have all together? 

   P1                                P2                                T 
                                       

The same process was used to complete the representational-abstract phase of the 

intervention.  The teacher used modeling and guided practice to show students how to connect 

the information in the schematic diagram to the appropriate mathematical equation.  The students 

were given a cue card to help with the steps for connecting the schematic diagram to the 

equation.  The original cue cards included only the initial diagram. After the first two students 

had difficulty reversing operations and identifying procedures for unknown addends, the cue 

cards were modified to include reverse operations for group and compare problems and difficult 

conceptualizations needed for change problems. The students then practiced connecting 

information from their previously completed diagrams to mathematical equations with 66% 

mastery required before moving to the next phase. 

!
! !!!!5!'!%0(!&!%0(! P! Q!
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Figure 3.3. Sample Cue Cards 

Group Problems – Cue Card 
Two distinct parts combine to form a new group or total  (Griffin & Jitendra, 2008) 

 
*If you know the two parts, add to find the total or whole.  
 
 
                                                         Part One               Part Two             Total           
                                                       (P1)                        (P2)                     (T)                                                                                                                       
 
                                                                        +                         = 
 
 
                 
                               Which sentence tells about a part of a group? Find the amount and write it in the  
                             rectangle.     
          
                             Which sentence tells about another part of a group? Find the amount and write it in the  
                             triangle. 
 
                             Which sentence tells about the total number of items? Find that amount and write it in  
                             the pentagon (house). 
 
 
______________________________________________________________________________________ 
*If you know the total (whole) and one part, subtract to find the other part. 
 
 
                                                        Total              Part One               Part Two                       
                                                    (T)                    (P1)                        (P2)                      
 

-                    = 
 
 
                             Which sentence tells about the total number of items? Find that amount and write it in  
                             the pentagon (house). 
 
                               Which sentence tells about a part of a group? Find the amount and write it in the  
                             rectangle.     
 
                             Which sentence tells about another part of a group? Find the amount and write it in the  
                             triangle. 
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Change Problems – Cue Card 
Increase or decrease an amount to find a new amount (Griffin & Jitendra, 2008, p. 188) 

 
*If you know the starting amount and how much you will increase that amount, add to find 
the ending amount.  
 
 
                                              Starting Amount      Change             Ending Amount         
                                                       (SA)                      (C)                      (EA)                                                                                                                       
 
                                                                        +                         = 
 
 
                 
                               Which sentence tells you the starting amount? Find the amount and write it in the  
                             rectangle.     
          
                             Which sentence tells how much the starting amount will increase (+change)? Find the  
                             amount and write it in the triangle. 
 
                             Which sentence tells about the ending amount? Find that amount and write it in  
                             the pentagon (house). 
 
 
______________________________________________________________________________________ 
*If you know the change amount and how much your ending amount will be, add to find 
the starting amount. 
 
 
                                                       Change           Ending Amount       Starting Amount 
                                                     (C)                        (EA)                          (SA)                      
 

+                   =        
 
 
                             Which sentence tells the change amount? Find that amount and write it in the half circle 
                             that begins with a C.     
 
                               Which sentence tells about the ending amount? Find that amount and write it in  
                             the rectangle. 
 
                             Which sentence tells about the starting amount? Find the amount and write it in the  
                             blue circle. 
 

                                                                                                    (adapted from Y.P. Xin & D. Zhang, 2009) 
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Compare Problems – Cue Card 
Compare a bigger amount and a smaller amount to find the difference (Griffin & Jitendra, 2008) 

*If you know the smaller amount and the difference, add to find the bigger amount.  
 
                                              Smaller Amount      Difference         Bigger Amount         
                                                       (SA)                      (D)                      (BA)                                                                                                                       
 
                                                                        +                         = 
 
 
                 
                               Which sentence tells you the smaller amount? Find the amount and write it in the  
                             rectangle.     
          
                             Which part tells what the difference is between the bigger and smaller amount? Find the  
                             amount and write it in the triangle. 
 
                             Which sentence tells about the bigger amount? Find that amount and write it in  
                             the pentagon (house). 
______________________________________________________________________________________ 
                                   
*If you know the bigger amount and the smaller amount, subtract to find the difference 
between the two amounts. 
 
 
                                                  Bigger Amount     Smaller amount          Difference 
                                                       (BA)                       (SA)                           (D)                                                                                                              
 
                                                                          -                         = 
 
 
                 
                                Which sentence tells about the bigger amount? Find that amount and write it in the     
                              pentagon (house). 
 
                             Which sentence tells about the smaller amount? Find the amount and  
                             write it in the triangle. 
 
                             Which sentence tells about the difference between the two amounts? Find that              
                             amount and write it in the box.                              
  

                                                                                                    (adapted from Y.P. Xin & D. Zhang, 2009) 
 

Figure 3.3. Sample Cue Cards. Cue cards include schematic diagram and steps for schema 
instruction. (Adapted from Y.P. Xin & D. Zhang, 2009)  
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 Throughout the instructional sequence, the instructor taught students how to solve the 

equations with missing information in any of the three positions (either part or total amount) 

using the mnemonic LISTS strategy designed by the researcher.  The LISTS strategy helped 

students remember to 1.)  Locate key terms; 2.)  Identify the problem type; 3) Show the model 

with concrete or virtual manipulatives; 4.) Tie the model to the diagram; and 5.) Select the 

correct equation and solve for the unknown amount.  Combining the mnemonic LISTS strategy 

with the CRA sequence and schema-based instruction helped students remember the steps in this 

routine when solving word problems. 

LISTS Checklist %
!

• Locate key terms!
• Identify the problem type and model!
• Show the model with concrete or virtual 

manipulatives!
• Tie the model to the diagram!
• Select the correct equation and solve for the 

unknown amount!

!

!
!
!
!
!
!
!

 
Figure 3.4 – LISTS Checklist for Students. Checklist describes the students that the students 
should use when using the CRA sequence plus schema-based intervention. 

 
 During the intervention students were assessed after every two intervention sessions 

using the nine problem probe that contains all three problem types.  After students mastered the 

group problems, the same process and schedule of probes was used during instruction on the 

change problems and the compare problems.  When student performance stabilized, the 

maintenance phase began.  Unfortunately, because of the interruptions only one maintenance 

probe was administered to students 1, 3, and 4. This probe was administered 10 days after the 

completion of the intervention.  Additionally, at the beginning of the maintenance phase,  

students 1,3, 4, and 5 were given one twelve problem post-test on their ability to generalize the 
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intervention strategies to novel problems with irrelevant information, unfamiliar vocabulary, and 

different conceptualizations of fraction concepts. Student 2 was an exception. He did not meet 

the mastery criteria on lesson 10 prior to the end of the school year, but he was given the transfer 

test after instruction on lesson 10 to see if there were any changes in his performance from the 

pre-test. The transfer posttest given was the same assessment as the pretest. This test was used 

because of the limited number of questions answered correctly on the pretest and the length of 

time between pre-test and post-test (3 months). 

 When conducting the intervention, the researcher implemented one to two lessons per 

week. Most lessons required two 30 to 40 minute sessions resulting in some weeks with two days 

of instruction, a probe, and then two more days of instruction. During some weeks there were 

interruptions in the intervention schedule due to school events. In these cases, the researcher 

provided interventions on three days and administered a probe on one day. The LISTS strategy 

was taught after instruction on the group schema was implemented at the concrete, concrete-

representational (virtual manipulatives), representational (schematic diagram), and abstract levels 

for problems in the group schema.  The LISTS strategy was taught at this point in the 

instructional sequence because the students had an understanding of one schema and the strategy 

could be taught within the context of that schema. For example, the researcher showed students 

how to locate key terms in a group problem,!identify that the problem is from the group schema, 

model the group problem with manipulatives, tie the model to the schematic diagram for group 

problems, select the correct equation, and solve for the unknown amount. The implementation 

schedule continued with the same schedule for problems in the change and compare schemas as 

long as the student met the mastery criteria of 66% when solving problems independently.  If the 

student did not meet the mastery criteria then further instruction occurred.   
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Table 3.6  
Schedule of Implementation for Students who met Mastery Criteria for All Lessons 
 

Phase CRA Level Instruction 
* 
 

Assessments 

Baseline (Pre-Intervention)  Probes every other day, 
Pre-test Transfer  

Intervention Sessions  
Sessions 1-2 

 
Lesson 1 

 
Concrete Group 

Schema 
 

Probes administered 
after every two sessions 

 
Independent practice 
problems after each 

lesson 

Sessions 3-4 Lesson 2 
 

Concrete-
Representational 

Sessions 5-6 Lesson 3 
 

Representational 

Session 7-8 Lesson 4 Abstract 
Session 9 Lesson 5 

 
 LISTS 

Strategy 
Sessions 10-

11 
Lesson 6 

 
Concrete Change 

Schema 
 Sessions 12-

13 
Lesson 7 Concrete-

Representational 
Session 14 Lesson 8 

 
Representational 

Session 15 Lesson 9 
 

Abstract 

Session 16-17 Lesson 10 
 

Concrete Compare 
Schema 
Compare 
Schema 

 

Session 18-19 Lesson 11 
 

Concrete-
Representational 

Session 20 Lesson 12 
 

Representational 

Session 21 Lesson 13 Abstract 
Maintenance (Post-Intervention) Probe after 10 days for 

students 1,3,4;   
Transfer post-test for all 

students 
*Regular classroom instruction for fifty minutes in mathematics continued through all phases of 
the intervention.  Instruction in this chart refers to instruction that took place in addition to daily 
math instruction. 

Additional instruction was necessary for students 1 and 2 during instruction with the 

concrete manipulatives and the schematic diagram lessons of the group schema.   Further 
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instruction was provided for each lesson and the both students were able to reach the mastery 

criteria. Student 2 did not meet the mastery criteria for compare problems at the concrete 

manipulative level before the completion of the school year and therefore did not complete the 

sequence of lessons. Even when the students did not meet the mastery criteria, however, the 

assessment probes were implemented after every two sessions for the duration of the 

intervention.  

Experimental Controls 

 One threat to this study was to fidelity of implementation of the intervention.  To reduce 

this threat the researcher standardized instruction during the intervention as much as possible.  

To ensure fidelity of implementation, the researcher used scripted lessons and followed the same 

administration and testing procedures for all probes and tests.  To ensure that the treatment was 

implemented consistently, a faculty member at local university with expertise in schema-based 

instruction listened to audiotapes of 25% of the lessons using a checklist that contained key 

components of the intervention (See Appendix D).  The faculty member marked the parts of the 

lesson that were taught during the observation and recorded that 98 % of the key components 

were implement throughout the lessons. 

 A second threat to internal validity is developing valid measures and maintaining 

consistency when scoring measures.  To address these threats, a fourth grade math teacher with 

32 years of teaching experience and expertise in schema-based instruction, the researcher, and 

faculty member reviewed the measures of problem solving performance for this study to ensure 

that the methods are valid.  These measures included the following: (1) a series of word-problem 

probes that include nine fraction word problems involving three different word problem 

schemas: and (2) a twelve problem test that requires generalization of problem schemas to novel 
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problems.  The math teacher, researcher, and faculty member determined that the word problems 

on the probes were representative of each schema by comparing the definition and examples of 

problems from each schema to the problems in the probes. The same individuals reviewed the 

transfer pre- and post-test.  Again, they compared the definition and examples of problems from 

each schema to the problems in the transfer test. They also checked to see if the problems would 

require generalization of strategies to problems that included vocabulary that would be difficult 

for fifth graders, irrelevant information that was not required to solve problems, and different 

conceptualizations through analysis of information in tables in all three problem schemas.  The 

researcher, math teacher, and faculty member had 100% agreement in all areas.   

 To ensure internal validity, baseline levels of performance on group, change, and 

compare problems were established by administering assessments of problem solving using 

different versions of the word problem probes until a baseline was developed.  The 

implementation of the interventions was staggered to show controlled replications or lack of 

replication.  Inter-scorer agreement checks were conducted for probes by having the fourth grade 

math teacher and researcher check student responses with 100% of those assessments checked 

for agreement on right and wrong responses.  The inter-scorer agreement was 100%..   

Instrumentation 

 A series of word-problem probes that include nine fraction word problems involving 

three different word problem schemas (change, compare, and group) were constructed for this 

study.  Each probe contained three word problems from each of the three schemas.  Students 

were given one point for each problem answered correctly and zero points for each incorrect 

response.  These probes were given every other day during the baseline phase and after every 

two sessions during the intervention phase.  A single probe was given 10 days after completion 
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of the intervention during the maintenance phase for students 1,3, and 4. Student 2 did not 

complete the intervention lessons and student 5 completed the intervention two days before the 

end of the school year, so they did not complete this probe.  Additionally, to determine students’ 

abilities to generalize to novel problems, a separate test that included twelve problems was 

created.  This test included four problems from each of the three schemas.  The problems from 

each schema included at least one problem with irrelevant information, one problem that 

contained difficult vocabulary, and one problem that require a different conceptualization 

because the information in the problem was presented in a different way than the problems 

presented in the intervention (i.e. - through charts).  This test was given during the baseline phase 

and at the end of the intervention phase for all students except student 2.  This student did not 

complete the intervention, but he was still given the transfer post-test after lesson 10 to see if any 

changes in performance occurred. The responses of all probes and the transfer tests were 

assessed separately to determine if the students were able to use the schematic diagram to write 

the correct equation. Students were given one point if the correct equation was recorded from the 

schematic diagram and zero points if the incorrect equation was recorded.  

Data Collection and Analysis 

 Data on research questions one and two related to strategy use were collected by 

evaluating the student’s use of models to record information on the schematic diagrams, and the 

student’s use of the schematic diagram or labeling of schema parts in the word problem to write 

correct equations.  To answer research question three, data of performance on problems similar 

to those taught during the intervention were collected and analyzed using visual inspection and 

mathematical calculations of graphed data.  Data on student performance on transfer problems 

were collected through a pre-assessment during the baseline phase and a post-assessment during 



! )-!

the maintenance phase to answer research question four.  Additionally, throughout the study the 

researcher kept a daily journal to record student responses to the intervention, probes, and 

transfer tests as well as daily events at the school that affected student performance during the 

interventions or assessments.  The information in this journal was used to support or extend 

understanding of the quantitative data collected to answer each of the research questions. 

 Research question one.  To determine if students could connect the concrete 

manipulatives and virtual fraction manipulatives to the representational change, compare, and 

group schemas when using the CRA sequence, the researcher recorded the number of times that 

each student correctly modeled a problem with concrete or virtual manipulatives.  Data were 

recorded for all problems that each student solved independently during the intervention phase.  

The researcher determined the percentage of times that each student used a model to help record 

information on a schematic diagram by dividing the number of times that the problem was 

modeled prior to completing the schematic diagram by the total number of word problems 

attempted during each phase of the intervention.   

      Research question two.  To determine if students could connect the change, compare, 

and group schemas at the representational level to the abstract equations when using the CRA 

sequence, the researcher recorded the number of times that each student  correctly recorded 

problem information on the schematic diagram and used that information to write an abstract 

equation to solve the problem.  The data were recorded for probe problems completed during the 

pre-intervention, intervention, and maintenance phases.  During the intervention phase, data were 

also recorded separately for the problems solved independently on the group, change, and 

compare schemas.  The researcher determined the percentage of times that each student used 

information on a schematic diagram to write an abstract equation by dividing the number of 
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times that a student wrote an equation from information in a schematic diagram by the total 

number of word problems attempted during each phase of the intervention.  

 
Table 3. 7 
Phases of Instruction and Type of Problems Assessed when Connecting the Schematic 
Diagram and Equation 
 

Intervention 
Phases  

Baseline 
(Pre-

Intervention)  

Group 
Component of 
Intervention 

 

Change 
Component of  
Intervention 

Compare 
Component of 
Intervention 

Maintenance 
(Post-

Intervention) 

Problems 
Evaluated 

Probes Problems Solved During Independent Practice, 
Probe Problems 

Probe 

 
 

Research question three.  To answer question three and determine whether using a CRA 

sequence to connect problem solving schemas and equations would improve student 

performance on problems similar to the problems used during the intervention, data from the  

probes were analyzed using visual inspection and mathematical calculations of graphed data.  

The graph for each student included the total number of questions answered correctly for each 

probe and the number of correct responses on problems from each schema (group, change, and 

compare).  Data were analyzed to assess gains in overall student performance.  Additionally, data 

were analyzed to determine if student performance only improved on problems from the schema 

taught or on problems from other schemas that had not been taught as well.  Each probe 

contained problems from all three schemas, but the number of problems correctly answered from 

each schema was indicated by bar graphs to determine how instruction affected problems from 

each schema. 

   The analysis of data for each student was conducted using the same process.  In this 

process, the mean for each phase was calculated for each student and graphed to determine 
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increases and decreases between means during each phase.  Visual inspection and comparison of 

the number correct at the end of one phase and the beginning of the next phase was used to 

determine if there were changes in the level of the number of correct responses between the 

baseline and intervention phases or between the intervention and maintenance phases for each 

student.  Visual inspection was also be used to determine if there was a change in the trend from 

baseline to intervention or intervention to maintenance on these problems.  The slope of the trend 

line was calculated by dividing the rise by the run for each phase for each student to provide a 

specific mathematical value to use when comparing trend data.  Additionally, the variability was 

calculated by subtracting the lowest score from the highest score to determine the range of each 

phase.  The range of each phase was compared to determine if variability increased or decreased 

between phases.   

Research question four.  To answer question four and determine whether using a CRA 

sequence with schema-based instruction improved student performance on problems that 

required generalization from the models provided during the intervention, the researcher gave a 

pre-test of transfer skills during the baseline phase and the same test as a post-test of transfer 

skills during the maintenance phase. The data on the number of correct responses for each of the 

three types of transfer problems used to assess generalization of problem solving skills were 

collected and analyzed for each student.  The individual performance of each student and the 

mean percentage correct on transfer problems that included the pre-test and post-test transfer 

characteristics of irrelevant information, unfamiliar vocabulary, and problems that require 

different conceptualizations were calculated and visually compared using bar graphs. 

Additionally, the pre-test and post-test individual scores and mean scores by problem type 

(change, compare, group, and all) were calculated and visually compared using bar graphs.  This 
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process of analysis indicated the types of transfer problems that students could successfully 

solve.  

 Supporting Qualitative Data.  To enhance understanding of the results of the 

quantitative data the researcher kept a daily journal.  After each probe or intervention session, the 

researcher recorded student behavior, student comments, or events that might have affected 

student performance.  Then, based on the results and analysis of the quantitative data for each 

question, the researcher analyzed the journal data to identify possible explanations for student 

performance.  The analysis of qualitative data focused on the following issues: 1.) Possible 

reasons why some students connected the concrete or virtual manipulatives to the schematic 

diagrams and other students did not connect the manipulatives to the diagram; 2.) Possible 

reasons why some students connected problem solving schemas to abstract equations and others 

did not connect schemas to equations; 3.) Possible reasons why students were able or not able to 

solve problems similar to those presented in the intervention; and  4.) Possible reasons why 

students were able or not able to solve transfer problems.  An analysis of student performance 

and behavior during the intervention, probes, and transfer tests was conducted to identify specific 

themes, patterns of behavior, and patterns of performance related to each of these issues. 

Because this information did not directly answer the research questions and provided possible 

explanations for student performance related to each question, it is included in the discussion of 

the findings in chapter five. 

Summary!!

 This chapter described how an instructional routine that combines the CRA sequence and 

schema-based instruction was implemented to address the research questions in this study.  

Information on how the students were selected, the setting for the study, and the specific 
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procedures that were used was also provided.  Finally, a description of the measures of problem 

solving performance and strategy usage were outlined with specific information on how the data 

from these measures were analyzed. 

!
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Chapter Four 

Results 

Introduction  

 The purpose of this chapter is to describe all data collected on the effects of using a 

concrete-representational-abstract (CRA) sequence on the problem solving performance of 

students who struggle with mathematics or have been identified with learning disabilities in 

mathematics.  For each research question, the data for each student is described and an overall 

summary is provided.  First, the data on the number of times that students used a concrete or 

virtual model to draw diagrams is presented to answer research question one.  Next, student use 

of diagrams or labeling to write equations during independent practice for each condition and on 

assessment probes given throughout the study is presented to answer research question two.  

Overall probe performance on problems by schema; probe performance by overall score and by 

each problem type (group, change, compare); and data on mean, trend, level, and variability of 

probe performance for each student is reported to answer research question three.  Finally, 

student gains in performance from transfer pre-test to transfer post-test is given to answer 

research question four. 

Research Question One 

When using the concrete-representational-abstract (CRA) sequence, can students connect the 

concrete manipulatives and virtual fraction manipulatives to the representational change, 

compare, and group schemas? 

 Research question one examined whether students could connect the concrete and virtual 

models to the schemas presented during the intervention.  The concrete and virtual models were 

taught during the first two lessons related to each schema.  Students could use the models during 
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the guided practice and independent practice components of the last two lessons for each schema 

and during the LISTS strategy instruction.  The number of problems where students used the 

concrete or virtual models to help draw the schematic diagrams during the independent practice 

for each lesson was recorded.  Each independent practice sheet included six word problems.  

Therefore, students who completed all lessons had the opportunity to use the strategy a total of 

42 times.  The data of model use is recorded in Table 4.1.   

 
Table 4.1 
Student use of models to draw diagrams during independent practice for each condition 
 

 CRA + Group 
Intervention 

LISTS 
Strategy  

CRA + Change 
Intervention 

CRA + 
Compare 

Intervention 

Total Use 
by 

Number 
and 

Percent 
Strategy Use RI!'! RI!(! RI!)! RI!,! RI!-! RI!%&! RI!%'! !
Student 1 &! $! &!! $! *! *! *! &&0(&!

S)&TU!
Student 2 %! $! &!! &! $! VW! VW! )0'.!

S%+TU!
Student 3  $! $! $! *! &! $! $! ,0(&!

S%-TU!
Student 4 *! $! $! *! &! $! $! %(0(&!

S''TU!
Student 5 *! *! *! *! *! *! *! (&0(&!

S%..TU!
X!Q!Y96:94HD!L:7!8;9!C74@!
VWQ!Y9C@489!@"@!8;9!64>4"#4!"8796C>9";8Z!8;!;55;69C8"9D!<;6!796:94HD!C74!

!

 Student 1.  Student 1 used either a concrete or virtual model to help draw diagrams on a 

total of 22 out of 42 possible problems.  Initially, he was less likely to use a model.  In lessons 3 

and 5 he only modeled 2 out of 6 problems and he did not model any problems during lessons 4 

and 8.  In later lessons 9, 12, and 13, student 1 modeled all problems for each lesson for a total of 
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18 out of 18 problems modeled.  Student 1 used a combination of the concrete and virtual models 

when completing the problems. 

 Student 2.   Student 2 only modeled 5 out of 30 problems when completing the 

independent practice.  He only attempted to model problems with like denominators.  When he 

chose to model problems, he selected only the concrete fraction tiles to use to model the 

problems.  Student 2 did not have the opportunity to model problems in lessons 12 and 13 

because he did not obtain the mastery criteria for lesson 10 prior to the end of the school year. 

 Student 3.   Only 8 out of 42 problems were modeled with concrete or virtual 

manipulatives by student 3.  This student chose to model all problems during lesson 8 on the 

change schema and two problems from lesson 9 in the change schema.  In lesson 9, the student 

only modeled problems with unlike denominators.  He chose to model these problems after he 

completed the problem in the schematic diagram because he believed that he had made an error 

in his response. 

 Student 4.  Student 4 modeled 14 out of 42 problems using concrete or virtual 

manipulatives.  He modeled all problems from lesson 3 in the group schema and lesson 8 in the 

change schema.  He also modeled two problems with unlike denominators from lesson 9.  

Student 4 chose to use the virtual manipulatives when he modeled problems.  Similar to student 

3, he modeled the problems with unlike denominators in lesson 9 after he completed the 

problems in the schematic diagrams because he believed that he had made an error in his 

responses. 

 Student 5.  Student 5 modeled all 42 problems using models.  In lessons 3, 4, 5, 8, and 9, 

she modeled all problems using concrete manipulatives because she had great difficulty 

understanding fraction concepts and was not comfortable using the virtual fraction tool without 
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assistance.  During lessons 12 and 13, student 5 became more confident with the virtual fraction 

tool and used it to model all problems.  

Summary of results.  Out of 198 possible problems, students used either a concrete or 

virtual model 91 times (46%) to model problems.  Although overall this is not a high percentage, 

model use varied widely from one student to another.  Student 5 used models when completing 

all problems, but student 2 used the models only 17% of the time and student 3 used the models 

only 19% of the time.  Some students who used models infrequently selected different types of 

problems to model.  Student 2 modeled only problems with like denominators.  By lesson 9, 

students 3 and 4 chose to model only problems with unlike denominators after they were unsure 

of their responses using the schematic diagrams. 

Research Question Two 

When using the CRA sequence can students connect the representational change, compare, and 

group schemas to the abstract equations?   

 Research question two examined whether students used the schematic diagram or labeled 

parts of the schema in the word problems to write equations presented during the intervention 

and during the assessment probes that the students took after they were introduced to the 

schematic diagrams.  In the third lesson on each schema, the students were taught the schematic 

diagram for the schema.  Students could use the diagrams during the guided practice and 

independent practice components of the last two lessons for each schema and during the LISTS 

strategy instruction.  Figure 4.1 shows an example of student use of a diagram to write an 

equation.  
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Figure 4.1.  Student work sample of group problem with diagram 
 
 
Some students began to label the parts of the schema within the context of the problem and then 

write an equation.  This labeling process also was counted as data that students could connect the 

schema to the equation. 

 
 
Figure 4.2.  Student work sample of compare problem with labeling 
 
 
The number of problems that the students used the schematic diagrams or labeling process 

during the independent practice for each lesson or during the probes was recorded as data to 

answer question 2.  Each independent practice sheet included six word problems.  Therefore, 

students who completed all lessons had the opportunity to use the strategy a total of 42 times 

during independent practice (See Table 4.2).  The number of opportunities to use the schematic 
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diagram or label problems varied during probes depending on when the student began the 

intervention. 

Student 1.  Student 1 used a schematic diagram to write an equation on 36 out of 42 

(80%) of problems during the independent practice of the lessons, but he only used a schematic 

diagram on 9 out of 81 (10%) of possible probe problems.  During independent practice sessions 

student 1 wrote the problems and the solutions on his paper for all lessons except the final lesson 

on the compare schema.  Even though he was instructed to write the equation used to solve the 

problems during the probes, student 1 often only wrote his final answer on the paper. 

 
 
 
Table 4.2  
Student use of diagram or labeling to write equations during independent practice for each 
condition 

 CRA + 
Group 

Intervention 

LISTS 
Strategy  

CRA + 
Change 

Intervention 

CRA + 
Compare 

Intervention 

Total Use by 
Number and 

Percent 
Strategy Use RI!'! RI!(! RI!)! RI!,! RI!-! RI!%&! RI!%'! !
Student 1 *! *! *! *! *! *! $! '*0(&!

S,.TU!
Student 2 *! *! *! *! $! VW! VW! &(0'.!

S,.TU!
Student 3 *! $! *! *! *! *! *!

SA:K4AU!
'*0(&!
S,.TU!

Student 4 *! $! *! *! *! *! *!
SA:K4AU!

'*0(&!
S,.TU!

Student 5 $! *! *! *! *! *! *! '*0(&!
S,.TU!

X!Q!!!!!!!Y96:94HD!L:7!8;9!C74@!
VWQ!!!!!Y9C@489!@"@!8;9!64>4"#4!"8796C>9";8Z!8;!;55;69C8"9D!<;6!796:94HD!C74!
R:K4AQ!Y9C@4897!@"@!8;9!C74!9G4!@":H6:F[!KC9!@"@!A:K4A!4:>G!>;F5;8489!;<!9G4!7>G4F:9">!@":H6:F!"8!9G4!
94$9!;<!9G4!56;KA4FI!
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Table 4.3 
Student use of diagram or labeling to write equations during probes  

Strategy Use Possible Probes for 
Strategy Use 

Probes with Strategy Use (Number 
of Problems) 

Total Use  
(after strategy 

was taught) 
Student 1 \6;K47!*]%(! \6;K4!,!S:AA!-!56;KA4F7U! -0,%!

S%.TU!
Student 2 \6;K47!*]%(! $! .0,%!

S.TU!
Student 3 \6;K47!-]%(! $! .0)(!

S.TU!
Student 4 \6;K47!-]%(! ]\6;K47!-[!%.[!:8@!%%!SWAA!56;KA4F7Z!

&+!9;9:AU!
]\6;K47!%&[!%'[!%(!A:K4A4@!7>G4F:!
5:697!SWAA!56;KA4F7]!&+!9;9:AU!

)(0)(!
S%..TU!

!

Student 5 \6;K47!%&]%*! \6;K47!%&[!%'[%([!%)[!%*!S:AA!
56;KA4F7]!()!9;9:AU!

()0()!
S%..TU!

  

 Student 2.  Student 2 used a schematic diagram to write an equation in 24 out of 30 

(80%) of problems during the independent practice problems.  He used the schematic diagram in 

all possible lessons except the final lesson on the change schema.  Because he did not meet the 

mastery requirements to complete the lessons with modeling on the compare schema, he did not 

have the opportunity to use the diagrams during the compare lessons.  Student 2 did not use the 

schematic diagram on any of the probe lessons.  Like student 1, he often only recorded the 

answers to the problems even though he was instructed to write the equation and the solution to 

each problem. 

 Student 3.  Student 3 used a schematic diagram or labeled problems for 36 out of 42 

(80%) of possible problems during independent practice, but he did not use the process at all 

during the probes.  During independent practice, student 3 did not use the schematic diagram 

during the final lesson in the group schema.  During the final intervention lesson, student 3 

changed to a procedure of labeling the parts of the word problems.  Unlike students 1 and 2, 
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student 3 did record all equations when completing probe problems, but provided no evidence of 

diagrams or labeling to complete the problems. 

 Student 4.  The results for student 4 were consistent with the results for other students in 

the study during the independent practice component of the lessons.  He used the schematic 

diagram or labeled schema parts in 36 out of 42 (80%) of the problems during these lessons.  The 

results for student 4 were different than those for other students during the probes.  He attempted 

to use a schematic diagram or labeling process for all problems when he completed the probes.  

In the first three probes after he learned how to use the schematic diagrams, he used the diagrams 

when solving problems.  In the next three probes he modified his approach and labeled the 

components of the schema within the word problems. 

Student 5.  Student 5 also used a schematic diagram for 36 out of 42 (80%) of problems 

during independent practice.  She did not use the diagram for the initial group lesson, but she 

used the diagram for all other possible lessons.  Student 5 used the diagram for all 45 problems 

during the probes as well.  She used a combination of labeling and schematic diagrams.  In other 

words, she labeled the components of the schema within the problems and used the diagrams 

when solving all independent practice problems and probe problems.  

 

 

Figure 4.3.  Student 5 work sample of group problem with labeling and schematic diagram  
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Summary of results.  Out of a total of 198 independent practice problems, the students 

used a schematic diagram or labeling process on 168 (80%) of all problems.  Student results 

were very consistent with all students using the strategy 80% of the time.  Each student failed to 

use the strategy during one lesson, but this lesson varied from student to student.  Strategy use 

during the probes was significantly lower and more inconsistent between students.  Students 2 

and 3 did not use the schematic diagram or a labeling process at all during the probes and student 

1 only used the diagram during one probe.  On the other hand, students 4 and 5 used a schematic 

diagram, labeling process, or both for all probes. 

Research Question Three 

Will using a CRA sequence that includes concrete and virtual manipulatives to connect problem 

solving schemas and equations improve student performance on problems similar to the 

problems used during the intervention? 

 Student performance on problems similar to problems used during the intervention was 

examined in research question three.  To assess student performance, students were given probes 

that included three problems from each schema.  Data in Figure 4.4 shows overall student 

performance when receiving intervention lessons from each schema (CRA + group, CRA + 

change, CRA + compare).  These figures show the overall performance during baseline, 

intervention, and maintenance for all students on all problems in each probe.  Student 2 did not 

complete the intervention, so no maintenance data was obtained.  Student 5 finished the 

intervention on the day before school was completed for the year, so no maintenance data could 

be obtained for her either. 
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Figure 4.4.  Overall probe performance on problems by schema!
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Figure 4.5 includes the performance on each type of problem (i.e. group, change, compare) in 

relation to the type of instruction during the intervention and overall performance.  In other 

words, performance on group, change, and compare problems can be seen during baseline, the 

CRA + group lessons, CRA + change lessons, CRA + compare lessons, and during maintenance.  

The diamonds in the graphs represent the number of problems students answered correctly on 

each of the 9 problem probes. The bars under each diamond show the number of problems 

answered correctly by each problem type on each probe and add up to the total number of 

problems answered correctly on the probe. Since only 3 problems were included from each 

schema on each probe, the greatest number of problems that each student could answer correctly 

from each schema was three. For example, the graph shows that for probe 6, student 1 correctly 

answered five questions including three questions from the group schema, one question from the 

change schema, and one question from the compare schema.  Student 2 answered six questions 

correctly on the sixth probe including two from the group schema, two from the change schema, 

and two from the compare schema. 
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Figure 4.5.  Probe performance by overall score and by each problem type (group, change, 
compare) 
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Student 1.  Overall performance on all problems in the probes rose from an average of 

.25 correct in the baseline phase to an average of 6.66 problems correct during the compare 

component of the intervention for student 1.  His score of seven correct in the maintenance phase 

was consistent with his final probe performance during intervention.  Visual inspection and 

review of mathematical calculations show that the largest gains for student 1 occurred on probes 

given during the CRA + group instruction and the CRA + compare instruction where he 

improved from an average of .25 correct in baseline to 5.25 correct by the end of the lessons on 

the change schema.  Changes in level (+3) and variability (+5) also support strong performance 

on probes given during the group instruction.  On the probes given during the CRA + group 

instruction, student 1 showed a positive trend of +1.66, but he did show a negative trend (-.75) 

on the probes during the change lessons due to poor performance on one probe (See Table 4.4).  

A review of data in Figure 4.5 on student performance on the different types of problems 

shows that student 1 initially improved on problems from the group schema during instruction on 

this schema.  In probe 6, he correctly answered all three problems from the group schema and 

only one problem from both the change and compare schema.  In probe 7 his performance 

declined, but he still correctly answered two problems from the group schema and only one from 

the change schema.  During instruction on the change schema, strong performance on problems 

from the group schema continued and performance on problems from the change schema 

improved as well.  In both probes 8 and 9, student 1 correctly answered all three problems from 

the group schema, two problems from the change schema, but only one problem from the 

compare schema.  In probe 11, he correctly answered all three problems from the change schema 

and two from the group schema.  The exception to this pattern occurred during probe 10 when 

student 1 only answered one problem correctly from each schema.  
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The pattern of improvement on specific problems types did not continue on probes 

conducted during the compare lessons of the intervention.  In the initial probe given after this 

schema was introduced student one continued the pattern of three correct group problems and 

two correct change problems.  The number of compare problems answered correctly rose to two, 

but this change did not continue in the final two probes or on the maintenance probes.  On each 

of these probes, student 1 only answered one compare problem correctly. 

 
Table 4.4 
Data on mean, trend, level, and variability for each student 
!
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Student 2.   Performance on probes for student 2 rose from an average of zero correct 

during the baseline phase to a high of 4.25 problems correct on probes given during the change 

lessons of the intervention.  This average number correct on probes actually decreased during the 

compare lessons of the intervention to just 3.33 problems correct.  Student 2 showed the greatest 

gains on probes given during the group intervention.  His scores showed a positive trend of 1.66 

and slight improvement in level (+1).  Student 2 did show a slight improvement in the average 

number of probe problems answered correctly during the change lessons with his mean correct 

increasing from 3.66 to 4.25 and a positive trend of .75.  Visual inspection of graphed data and 

an analysis of variability data indicate that his performance on probes was inconsistent.  Student 

2 went up to a high of six problems answered correctly on probe 6 down to only three correct in 

probe 8 with consistent gains on probes given during the change intervention.  Student 2 

recorded a sharp drop in the number of correct responses on probes given during the compare 

intervention.  The average number of problems answered correctly (3.33) dropped to below the 

average number of problems answered correctly during the group intervention (3.66) and a sharp 

negative trend of -1.33 was recorded on probe performance.  Student 2 did not have maintenance 

data because he did not meet the mastery criteria to complete the lessons prior to the end of the 

school year. 

 There was significant variability in the types of problems that student 2 answered 

correctly on the probes.  When receiving the group component of the intervention, his 

performance on group problems did not show a pattern.  He initially answered one group 

problem correctly on probe 5 and two group problems correctly in probe 6, but he did not answer 

any group problems correctly in probe 7.  During lessons from the change component of the 

intervention, student 2 showed a slight increase in the number of group problems correctly 



! +-!

answered on probes with the exception of probe 10.  Toward the end of the intervention, student 

2 also correctly answered three change problems on probe 11, but then only answered one 

change problem correctly in probe 12.  During the compare component of the intervention 

lessons, he answered three group problems correctly in probe 12, but no group problems 

correctly in probes 13 or 14.  He consistently answered one change problem correctly in probes 

12-14.  Throughout the intervention phase, student 2 answered one to two compare problems 

correctly.  There was no change in this pattern during the compare lessons of the intervention.  

Therefore, analysis of this data indicates that there were no patterns of improvement on probe 

problems from the change and compare schemas after instruction on problems from each of these 

schemas. 

 Student 3.  Similar to student 2, student 3 also recorded his greatest gains in mean 

performance correct from probe problems given during the baseline phase (3.00) to probe 

problems given during the change component of the intervention (6.5).  His performance on 

probe problems decreased when receiving instruction on the compare schema.  The mean 

number of five problems with correct responses on probes during the compare intervention was 

the same as the mean number of five problems answered correctly during the group component 

of the intervention.  Student 3 did show an increase to seven correct responses on the 

maintenance probe however.  Student 3 recorded positive trends during baseline (+.71) and 

during the probes administered during the group intervention lessons (.66).  Although there were 

only two sets of probes with consistent scores in the baseline phase prior to the intervention, the 

researcher began the intervention because of the large number of probes (7) that had been 

administered. 
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 A review of performance on individual problem types indicates that performance on 

group problems improved on probe problems completed during the group intervention and on 

probe problems completed during the change intervention.  During the baseline phase, student 3 

answered zero to three group problems on probes correctly, with an average of one group 

problem answered correctly across the seven probes.  During the group intervention, student 3 

correctly answered one to three group problems correctly with an average of two correct 

responses, while during the change intervention he correctly completed all three group problems 

on both probes.  Performance on group problems did decrease on probes taken during the 

compare intervention and maintenance with only two correct responses on probes 13 and 14 and 

the maintenance probe.  

Visual inspection of performance on the change and compare probe problems indicates 

that there were no significant changes in performance on these types of problems from baseline 

to the CRA + group, CRA + change, or CRA + compare components of the intervention.  In the 

baseline phase, student 3 ranged from zero to three problems correct from the change schema, 

but by the end of the baseline phase in probes 5-7, student 3 only completed two change 

problems correctly on each probe.  During instruction on the group, change, and compare 

schemas, student 3 correctly completed one to two problems from the change schema on each 

probe.  His performance did increase to three correct problems during the maintenance probe, but 

this level of accuracy was only demonstrated in this one probe.  Performance on compare probe 

problems was similar to that of change problems.  Student 3 ranged from 0-2 correct problems 

on probes given during the baseline phase and on probes during the group phase.  During the 

change lessons, compare lessons, and maintenance, his performance on compare probe problems 

remained stable with 1-2 compare problems answered correctly on each probe. 
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 Student 4.  Overall performance on all problems in the probes rose from an average of 

.57 correct in the baseline phase to an average of seven problems correct during the compare 

component of the intervention for Student 4.  Student 4 demonstrated consistent gains during 

probes given during the group lessons and change lessons with a mean of three correct during the 

probes given during the group lessons and six correct during the change lessons.  Visual 

inspection of graphs and data on trend (+1.66), level (+3) and variability (5) also indicate that 

student 4 made significant gains in probe performance during the group intervention phase.  

Although the trend on probe performance during the change intervention was a -1, overall 

performance was higher during this component of the intervention.  Performance continued to 

increase up to a high of eight correct on probe 14 during the compare intervention, but the 

number of problems answered correctly was only six on the maintenance probe. 

 Student 4 correctly answered 0-2 group problems during probes given during the baseline 

phase.  His performance on probe problems from the group schema remained in the 0-2 range 

during the group intervention, but he correctly answered 2-3 group problems on probes 

administered during the change and compare lessons of the intervention.  The number of correct 

responses to group problems during the maintenance phase was two problems as well.  Out of 

seven probes administered in the baseline phase, student 4 correctly answered one change 

problem on probe 5, but did not obtain correct answers on any other change problems during 

baseline.  During the group component of the intervention, student 4 averaged just one correct 

change problem on each probe.  The average increased to 2.5 change problems correct on probes 

given during the change and compare components of the intervention.  During the maintenance 

probe, he correctly answered two change problems.  Student 4 did not answer any compare 

problems correctly during the baseline probes.  He answered 0-1 compare problems correctly 
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during the group component of the intervention and one problem on each probe of the change 

component of the intervention.  Student 4 did not show a strong pattern of performance on probe 

compare problems during the compare component of the intervention.  He answered one 

compare problem correctly on the first probe administered during the compare intervention, but 

he answered three problems correctly on the second probe administered during the intervention.  

On the maintenance probe he answered two compare problems correctly. 

 Student 5.  Performance on probes for student 5 rose from a mean of 3.16 correct during 

the baseline phase to a mean of 7.5 correct for probe problems during the compare component of 

the intervention.  Participant 5 demonstrated significant variability during the group component 

of the intervention by obtaining five correct responses on probe 10, two correct responses on 

probe 11 and then seven correct responses on probe 12.  Student 5 demonstrated less variability 

(1) and consistently strong scores (mean=6.5) on probes administered during the change 

component of the intervention.  This high performance and decrease in variability remained 

consistent during probe performance in the compare component of the intervention.  

 Student 5 did show a pattern of improvement on probe group problems after instruction 

in the group component of the intervention.  She correctly answered only 0-1 problems from the 

group schema during the six probes given during the baseline phase.  On the initial two probes 

administered during the group component of the intervention, she answered one group problem 

correctly, but on the third probe she answered three group problems correctly.  On the probes 

administered during the change and compare components of the intervention her scores remained 

high.  She correctly answered three group problems on both probes administered during the 

change component and both probes given during the compare component of the intervention.  

Student 5 correctly answered 1-2 change problems on the six probes given during the baseline 
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phase.  There were no significant changes in this pattern on probes administered during the group 

phase of the intervention (0-2 correct) the change phase of the intervention (1-2 correct), or the 

compare phase of the intervention (2 correct).  Performance on compare problems increased 

slightly during instruction on the compare component of the intervention.  Student 5 ranged from 

0-2 problems correct on compare problems on the probes given in baseline and 1-2 problems 

correct on the probes given during the group component of the intervention.  Her performance 

became more stable with two problems correct during instruction on the change schema and it 

increased slightly to an average of 2.5 problems correct on probes given during instruction on the 

compare schema. 

 Summary of results.  All students demonstrated some gains in the mean number of 

questions answered correctly on the probes from baseline to intervention, but the performance of 

student 3 returned to baseline levels at the end of the intervention and the number of problems 

student 2 answered correctly dropped significantly during the last two probes of the intervention.  

Student 1, 4, and 5 showed positive trends in performance throughout the intervention.  Student 1 

started with a mean performance of .25 in the baseline phase and finished with seven correct 

(75% gain) on the final probe during intervention.  Student 4 obtained an average of .57 correct 

in the baseline phase and completed eight problems correctly (82% gain) on the final probe of 

the intervention.  Student 5 had a higher average of 3.16 correct during the baseline phase, but 

still improved to seven problems answered correctly (43% gain) in the final intervention probe.  

All three of these students recorded positive overall trends in performance with the following 

measures of slope calculated from a line of best fit for intervention performance: student 1 = 

0.52;  student 4= .96; and student 5 = .64.  Student performance varied on the maintenance 

probes.  Student 3 performed better on the maintenance probe than he did on his final probes 
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during the intervention.  Student 1 performed at the same level as his final probe, while student 4 

had a decrease in the total number correct on the maintenance probe (See Figure 4.6).  
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 !

Figure 4.6.  Summary of overall performance on probe problems across entire intervention 
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Students 2 and 3 showed the biggest average gains in performance on probes that were 

administered during instruction on the CRA + group component of the intervention, while 

students 1, 4, and 5 demonstrated the greatest average gains in performance on probes that were 

administered during instruction on the CRA + change component of the intervention.  Students 

1,4, and 5 all showed slight gains in average performance on the probes administered during the 

CRA + compare component of the intervention, but students 2 and 3 actually saw decreases in 

performance on probes given during lessons on the compare schema.  

It is difficult to make summary statements on the relationship between instruction on a 

specific schema and change in student performance due to the small number of problems from 

each schema on each probe and the small number of probes given during instruction on each 

schema.  However, there were some general trends in performance noted across students.  First, 

all students made some gains in performance in the number of group problems answered 

correctly after instruction on the group schema.  Student 1 and 5 demonstrated a clear pattern of 

stronger performance on group problems, while students 2, 3, and 4 made smaller or more 

inconsistent gains in performance on group problems.  Some students appeared to make gains in 

performance on change problems after instruction on the change schema.  Student 1 and student 

4 both increased in the average number of change problems completed correctly during the CRA 

+ change and CRA + compare components of the intervention.  On the other hand, no students 

showed significant improvements in performance on compare problems during or after 

instruction on the compare schema.  Student 4 and Student 5 did each have one probe given 

during the compare schema where they correctly answered all 3 problems from the compare 

schema, but this performance was not sustained in subsequent probes. 
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Research Question Four 

Will using a CRA sequence that includes concrete and virtual manipulatives to connect problem 

solving schemas and equations improve student performance on problems that require 

generalization from the models provided during the intervention? 

 Research question four examined whether students could apply the information from the 

intervention to novel problems that included difficult vocabulary, irrelevant information, and 

different conceptualizations (i.e. - through charts) of information.  Students were given a transfer 

pre-test of 12 problems that included four problems from each of the three schemas during the 

baseline phase of the study.  The problems from each schema included at least one problem with 

irrelevant information, one problem that contained difficult vocabulary, and one problem that 

required a different conceptualization of information.  The students were given the transfer post-

test after completion of all lessons during the intervention.  Student 2 was an exception.  He did 

not meet the mastery criteria on Lesson 10 prior to the end of the school year, but he was given 

the transfer test to see if there were any changes in his performance from the pre-test.  Table 4.5 

shows overall gains on the number of problems answered correctly and overall percent gains in 

performance for each student, as well as gains in the number of problems answered correctly for 

each student by problem type and transfer characteristic.  Figure 4.7 includes graphs of 

performance for each student by problem type and transfer characteristic. 
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Table 4.5 
Student gains in performance from transfer pre-test to transfer post-test 

 Gains by Problem Type Gains by Transfer Characteristic 

Overall 
Pre- to Post-

Test (% 
change) 

Group Change Compare Difficult 
Vocabulary 

Irrelevant 
Information 

Different 
Conceptualization 

Student 1 5 (42%) 1 2 2 4 1 0 

Student 2 1 (8.3%) 1 0 0 1 0 0 

Student 3 2 (16.7%) 0 1 1 2 0 0 

Student 4 1 (8.3%) 0 0 1 1 0 0 

Student 5 2 (16.7%) 1 0 1 2 0 0 

 

 

Student 1.  On the transfer pre-test, student 1 did not answer any problems correctly, but 

on the transfer post-test he correctly answered five questions.  This was an overall gain of 42%.  

On the post-test, student 1 answered one group problem correctly, two change problems 

correctly, and two compare problems correctly.  Analysis of student performance by transfer 

characteristics shows that student 1 had the greatest increases on the post-test on problems with 

difficult vocabulary (4 correct).  He also correctly responded to one problem with irrelevant 

information, but he did not answer any problems correctly that required different 

conceptualizations. 

Student 2.  Student 2 did not answer any problems correctly on the pre-test and he 

answered just one problem correctly on the post-test.  The problem that was answered correctly 

on the post-test was from the group schema and included difficult vocabulary. 
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         Number Correct by Problem Type               Number Correct by Transfer Characteristic 
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Figure 4.7.  Pre- and Post-test Transfer Data by Problem Type and by Transfer 
Characteristics 
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 Student 3.  On the transfer pre-test, student 3 correctly responded to three problems.  He 

was able to answer five problems correctly on the post-test (16.7% gain).  Student 3 determined 

the correct solution to the same number of group problems on the pre-test and post-test.  He 

correctly answered one more change and one more compare problems on the post-test than he 

did on the pre-test.  From pre-test to post-test student 3 showed no gains on the number of 

problems solved correctly with irrelevant information or with different conceptualizations.  On 

the post-test, he did answer two more questions with difficult vocabulary correctly than he did on 

the pre-test. 

 Student 4.  Student 4 answered two questions correctly on the pre-test and three 

questions correctly on the post-test (8% gain).  He recorded the correct response to two group 

questions in both the pre- and post-tests and did not answer any change questions correctly on 

either test.  He did not answer any compare questions correctly on the pre-test, but he did obtain 

the correct response to one compare question on the post-test.  An analysis of problems answered 

correctly by transfer characteristics show that student 4 did not get the correct response to any 

questions with irrelevant information on either the pre or post-test and he responded correctly to 

one question with different conceptualizations on both the pre- and post-test.  He correctly 

responded to one question with difficult vocabulary on the pre-test.  His performance on these 

questions improved to two correct responses on the post-test. 

 Student 5.  Similar to students 1 and 2, student 5 did not respond correctly to any 

problems during the pre-test.  She correctly responded to two questions on the post-test (16.7% 

gain).  On the post-test, student 5 recorded correct responses to one group problem, zero change 

problems, and one compare problem.  Student 5 did not answer any problems with irrelevant 
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information and different conceptualizations correctly, but she did answer two problems with 

difficult vocabulary correctly. 

Summary of results.  Overall, students improved the number of problems correct an 

average of 2.2 problems from the transfer pre-test to the transfer post-test.  Average gains by 

problem type were greatest for the compare problems.  The average number of problems 

answered correctly increased by one problem overall.  An average gain of 0.6 was recorded for 

both change and group problems (See Figure 4.8).  There was some variability by student noted.  

Students 1, 2, and 5 correctly answered one more group problem on the post-test than they did on 

the pre-test.  Students 3 and 4 had no changes in performance on group problems from pre- to 

post-test.  On change problems, student 1 increased the number of change problems answered 

correctly by two problems and student 3 answered one more problem correctly on the post-test 

than on the pre-test.  Students 2, 4, and 5 had no changes in performance on the change problems 

from pre- to post-test.  

 

Figure 4.8.  Average number correct for all students on pre- and post-tests by problem type 
and transfer characteristics 

On compare problems, students 3, 4, and 5 increased the number of problems correctly answered 

by one in the post-test and student 1 increased the number of problems answered correctly by 
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two on the post-test.  Student 2 did not record any changes in performance from pre- to post-test 

on compare problems. 

Average gains by transfer characteristics were greatest on problems that included difficult 

vocabulary.  The average performance rose from 0.4 correct on the pre-test to 2.4 correct on the 

post-test for an average gain of two problems answered correctly on problems with difficult 

vocabulary.  Significant variability was noted in the gains on problems with difficult vocabulary 

by student.  Students 2 and 4 increased the number of correct responses on these problems by 

one, students 3 and 5 increased the number of correct responses on these problems by two, and 

student 1 increased the number of correct responses on these problems by four.  On the other 

hand, there was a very slight average gain in performance from pre- to post-test on problems 

with irrelevant information.  Students only improved an average of 0.2 of a problem from pre-

test to post-test.  Only student 1 improved performance on these problems on the post-test and he 

only answered one more problem correctly than he did on the pre-test.  There was no difference 

in performance from pre- to post-test on problems with different conceptualizations.  Average 

performance on both tests was only 0.4 problems answered correctly.  

Conclusion 

 In this chapter, the data collected to determine the effects of using a concrete-

representational-abstract (CRA) sequence on the problem solving performance of students who 

struggle with mathematics or have been identified with learning disabilities in mathematics were 

reported.  For each research question, the results were presented by student and an overall 

summary of results for all students was provided.  Results on research question one show that 

models were used with about half of all possible problems during independent practice to help 

draw schematic diagrams, but that model use varied widely among students in the study.  
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Analysis of data on research question two indicates that all students used schematic diagrams or 

labeled parts of the schema to write equations on 80% of the problems given during the 

independent practice sessions, but three out of the five students did not apply this strategy to 

most or all probe problems.  The two students that did apply the strategy to probe problems used 

the strategy when completing all probe problems.  Results for research question three showed 

positive trends and significant improvements on probes given in the baseline phase to probes 

given in the intervention phase for students 1, 4, and 5.  Students 2 and 3 made some 

improvements in probe performance during the group and change components of the 

intervention, but both students had decreases in performance during the compare component of 

the intervention.  Data indicated that for most students, performance on group problems did 

increase after instruction on the group schema and some students did show increases in 

performance on change problems after instruction on the change schema, but no student saw 

consistent increases in performance on problems from the compare schema after instruction on 

this schema.  Finally, analysis of data from transfer pre- and post-tests for research question four 

indicates that students only increased correct responses by an average of about two problems 

from pre-test to post-test.  Greatest gains were seen on problems from the compare schema and 

problems with difficult vocabulary.  
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Chapter Five 

Discussion 

Introduction 

 This chapter includes the major research findings, conclusions, and recommendations 

based on results of the study.  The chapter begins with a review of the purpose and research 

questions for the study.  Each research question is then restated and the findings related to each 

research question are presented.  In the following section, overall conclusions based on those 

findings are described.  Next, limitations of the study are provided.  These limitations are the 

basis for the final section which includes recommendations for future research and practice.  

Review of Purpose and Research Questions 

The purpose of this study was to examine the effects of using a concrete-representational-

abstract (CRA) sequence on the problem solving performance of students who struggle with 

mathematics or have been identified with learning disabilities in mathematics.  Using a single-

case multiple baseline across participants design, the researcher provided an intervention to five 

students in the fifth grade that included instruction in three problem schemas for addition and 

subtraction (change, compare, and group).  The intervention in this study included explicit 

connections between concrete manipulatives, virtual manipulatives, representational problem 

solving schemas, and abstract equations when solving word problems with fractions.  The 

following questions guided this study: 

1. When using the concrete-representational-abstract (CRA) sequence, can students 

connect the concrete manipulatives and virtual fraction manipulatives to the 

representational change, compare, and group schemas? 

2. When using the CRA sequence can students connect the representational change, 

compare, and group schemas to the abstract equations?   
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3. Will using a CRA sequence that includes concrete and virtual manipulatives to 

connect problem solving schemas and equations improve student performance on 

problems similar to the problems used during the intervention? 

4. Will using a CRA sequence that includes concrete and virtual manipulatives to 

connect problem solving schemas and equations improve student performance on 

problems that require generalization from the models provided during the 

intervention? 

Discussion of Results!

 Research Question One.  When using the concrete-representational-abstract (CRA) 

sequence, can students connect the concrete manipulatives and virtual fraction manipulatives to 

the representational change, compare, and group schemas? 

 Only two students used models to draw diagrams in more than half of all possible 

problems, and both students generally modeled problems to support their conceptual 

understanding of the fractions and fraction operations necessary to solve the problems.  Student 5 

used concrete or virtual manipulatives to draw diagrams for all independent practice sessions.  

Data and anecdotal records on her performance indicate that this student needed to see the 

models to understand the problems.  Even though student 5 understood each of the problem 

solving schemas (group, change, and compare) when introduced to these schemas, she had a very 

weak understanding of fraction concepts.  During the initial lessons on the group schema, she 

could not model mixed numbers with concrete manipulatives and had difficulty understanding 

how to model problems that required combining fractional parts to make whole numbers (i.e. – 1 

# + #).  She was unable to see that 1 6/4 should be rewritten as 2 2/4 or 2 1/2.  This student also 

had difficulty understanding how to model subtraction problems when it was necessary to 



! -*!

change whole numbers to fractional parts to subtract (i.e. – 1 " - #).  She could not initially 

“see” that it was necessary to exchange 4/4 for one whole to model the subtraction in this 

problem.  Although she could sometimes correctly put numbers in the diagram and solve the 

problems, she needed the concrete models to understand the fraction concepts and operations.  

This finding on the importance of concrete models for student 5 is similar to previous research 

which suggests that concrete models can improve performance on subtraction with integers 

(Maccini & Ruhl, 2000), area and perimeter word problems (Cass et al., 2003), and fraction word 

problems (Butler et al., 2003).  Furthermore, Cramer and Wyberg (2009) suggest that concrete 

models can be used to help students create mental representations of ideas that can be used to 

facilitate understanding of abstract concepts.  Using the concrete manipulatives appeared to 

support this student’s understanding of abstract fraction concepts. 

 Student 5 did not have the same success when using only virtual fraction manipulatives. 

During the initial lessons on the group and change schemas, student 5 had to model each 

problem with the concrete manipulatives prior to modeling with the virtual manipulatives to 

understand the problems.  This modeling process appeared to help her develop a visual 

representation of fractions and fraction operations.  This student was highly motivated to 

understand the problems and continued with a combination of concrete and virtual manipulatives 

throughout the intervention.  The adherence to this sequence of modeling by student 5 provides 

support for research which suggests that concrete and virtual manipulatives can support student 

learning of concepts in unique ways (Suh & Moyer, 2007; Olympiou and Zacharia, 2012).  

Furthermore, the positive results from the combination of concrete and virtual manipulatives 

used by student 5 is similar to the findings from recent research in science education.  This 

research indicates that using a combination of concrete and virtual manipulatives can be more 
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beneficial for students than using either concrete or virtual manipulatives alone (Olympiou & 

Zacharia, 2012; Jaakkola, Nurmi, & Veermans, 2010).  However, the results from the current 

study contradict research that suggests that there is no significant difference in student 

performance when modeling math problems with virtual manipulatives or concrete 

manipulatives (Burns & Hamm, 2011). Student 5 was able to solve problems most effectively 

with the combination of concrete and virtual manipulatives, but she had greater success with 

using only the concrete manipulatives than she did with only using the virtual manipulatives. 

 Student 1 used the manipulatives in over half of the independent practice problems, but 

he primarily modeled problems from later lessons on the change and compare schemas.  During 

the compare lessons, the concrete model was switched from fraction tiles to fraction tower 

blocks to illustrate comparisons.  Student 1 was highly motivated to work with these tower 

blocks, so this could partially account for the increased use of concrete manipulatives when 

drawing the compare diagrams.  However, student 1 also had more difficulty solving problems 

from the compare schema and often used the tower blocks to make sure that he was accurately 

labeling each component of the schema before writing the problems in the compare diagrams.  

Thus, both student 1 and student 5 used visual representations to support their understanding of 

information in the word problems.  The findings related to these students support research which 

suggests that effective problem solvers are able to create good visual representations of problem 

information (Van Garderen & Montague, 2003).    

 The other students in the study were not able to consistently connect the concrete or 

virtual manipulatives to the schematic diagrams or chose not use the manipulatives to help draw 

schematic diagrams.  Some students had difficulty understanding problem schemas, equivalent 

fractions, and the virtual manipulatives.  Because of these difficulties, they were unable to 
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accurately model some types of problems.  Other students had a strong understanding of fraction 

concepts and were able to accurately model problems with little assistance.  These students 

generally chose not to use models to draw diagrams unless they encountered more challenging 

problems. 

 Conceptual Understanding of Problem Schemas.  Initially, lack of understanding of 

problem schemas could have limited some students’ ability to connect the manipulatives to the 

diagrams.  During instruction in the group schema, students 1 and 2 struggled with understanding 

the meaning of basic addition and subtraction word problems.  This lack of understanding 

hampered their ability to model the problems with concrete fraction tiles.  When asked to model 

a group problem such as, “Ben has 1 " pepperoni pizzas and Todd has 1 " cheese pizzas.  How 

many pepperoni and cheese pizzas do they have?” they were initially unsure whether they 

needed to add or subtract.  They had similar difficulties with subtraction problems that included 

the whole amount and one of the parts.  In other words, a reversal of the problem above such as, 

“Ben and Todd have 3 pepperoni and cheese pizzas altogether.  If Ben has 1 " pepperoni pizzas, 

how many cheese pizzas does Todd have?” was problematic for these students.  When given 

these problems, students 1 and 2 would sometimes try to model a subtraction word problem as an 

addition word problem or an addition word problem as a subtraction word problem.  Data on 

student use of models to draw diagrams show that during the group lessons, LISTS Strategy 

instruction, and early change lessons students 1 and 2 did not model more than two problems in 

any lesson.  It is possible that student 1 may have needed more instruction on the schemas prior 

to modeling with concrete or virtual manipulatives because as he received more instruction on 

the use of the models, his use of models increased.  This finding supports research on schema-

based and schema-broadening instruction.  In a review of eleven studies, Powell (2011) states 
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that students showed significant positive gains in problems solving when researchers included 13 

to 45 sessions on schema-based or schema broadening instruction.  Powell argues that students 

needed many sessions to develop an understanding of problem schemas. 

 Finding equivalent fractions.  Research on problem solving with fractions suggests that 

students must have a strong conceptual understanding of fractions to perform well on word 

problems with fractions (Hetcht et al. 2003).  Several of the students in this study did not have a 

good conceptual understanding of fractions.  This lack of conceptual understanding made it 

difficult for these students to find equivalent fractions which could have limited students’ ability 

to use models to draw diagrams as well.  Even though students had some prior instruction in 

equivalent fractions, only students 3 and 4 were able to find equivalent fractions to solve some 

word problems with unlike denominators.  The word problems that required finding equivalent 

fractions caused so much difficulty for students that many of the word problems used in the 

guided practice and independent practice sessions had to be changed from the original planned 

lessons to include like denominators so students could understand the modeling process and 

focus on understanding the problem schema.  As students became more competent in equivalent 

fractions in the later lessons, more practice problems with unlike denominators were included.  

In general, this gradual increase in problem difficulty was effective for students.  However, the 

frustration with trying to find equivalent fractions while solving word problems may have 

negatively impacted student 2.  He worked well with the concrete models during instruction in 

the group and change schemas, but commented that he did not like using the fraction tiles or 

tower blocks during instruction on the compare schema.  

 Previous research on finding equivalent fractions suggests that fraction equivalence is 

problematic for many students who struggle with math or who have math disabilities (Misquitta, 
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2011).  Butler et al. (2003) found that students who were given instruction using the CRA 

sequence performed better on problems that required an understanding of equivalent fractions 

than those who were given instruction using only the representational-abstract (RA) components 

of the sequence.  While the findings of the current study support previous research on the 

difficulty of fraction equivalence problems for students, the use of the CRA sequence in this 

study may have been beneficial for some students, but not for other students. 

 Virtual fraction tool.  Difficulty modeling addition and subtraction problems using the 

virtual fraction tools also could have contributed to student’s inability to connect the models to 

the schematic diagrams.  Students 1, 2, and 5 had difficulty modeling addition and subtraction 

problems using the virtual manipulatives even when they understood the schema of the problem 

and how to solve it.  For example, when solving the addition word problem example with pizzas 

using the virtual fraction tools, the students needed to model the 1 ! pepperoni pizzas and the 1 

! cheese pizza.  The students would then have to move the tiles together to determine how many 

pizzas the two boys had altogether.  Students would sometimes have trouble understanding that 

the fractional parts could be combined to make whole numbers or mixed numbers with the 

virtual manipulatives, because unlike concrete manipulatives, the virtual manipulatives could not 

be organized neatly into rows by whole number units.  For example, in the sample problem in 

Figure 5.1, these students could not see that the green and blue bars could be added together to 

make 2 2/2 or 3.  Although the answer appears in step 2 of Figure 5.1, the answer is not provided 

until the student types it in on the website.  
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Model of Addition Problem from Conceptua Fraction’s Website 
 
Step 1 – Model the 1 " pepperoni pizzas and the 1 " cheese pizzas. 
 

 
 
 
Step 2 – Move the second fraction modeled next to the first model to show the combined amount 
and add the parts to find the total. 
 
 
Part One: Slide tiles  Part Two: Count combined tiles and find total as a mixed number 
 

   or 3 0/2 ! !
!
 
Figure 5.1.  Sample of process of addition using the virtual manipulative tool on  the 
Conceptua Fractions website. To complete an addition problem the student would slide the 
model of the second fraction next to the model of the first fraction to determine the solution.  
 

 Students 1, 2, and 5 also had difficulty with the virtual subtraction tool.  In the 

subtraction problem example with pizzas, the students needed to model the total of 3 pizzas 

using halves so they could take away the 1 ! pepperoni pizzas.  The concept of modeling 3 as 
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six halves was initially very challenging for these students because they did not understand that 

they needed to change three whole tiles to three tiles with two halves each, so they could take 1 

! away.  Additionally, to “take away” Ben’s 1 ! pepperoni pizzas, the students had to move the 

1 !  fraction tiles to “cover” the part taken away to determine the other part (i.e., the amount of 

cheese pizza).  Students 1, 2, and 5 had difficulty understanding this process of covering meant 

subtraction because they were not actually taking a part away.  (See Figure 5.2)  While students 

1 and 5 developed an understanding of this process by modeling problems with both concrete 

and virtual manipulatives during the lessons on the change and compare schemas, student 2 

continued to struggle with more complex problems using the virtual fraction tool.   

Student difficulties with the virtual fraction manipulatives extends the research on 

concrete manipulatives which suggests that there may be features of certain concrete models that 

limit or enhance student understanding of fraction concepts (Keijzer & Terwel, 2003).   In a 

study that compared the efficacy of different concrete models for teaching fractions, Cramer and 

Wyberg (2009) found that some concrete models did not show the action of adding or 

subtracting with fractions clearly or required some prior understanding of fraction equivalence 

concepts.  In the current study,  the process of adding and subtracting with virtual manipulatives 

required some clarification for some students. Students 1, 2, and 5 had to develop understanding 

of the virtual fraction tool by comparing the process of adding and subtracting fractions with the 

concrete manipulatives to the process of adding and subtracting fractions with the virtual 

manipulatives. For example, when subtracting fractions, these students had to connect the 

process of taking away the fraction tiles using concrete manipulatives with the process of 

covering fraction tiles using the virtual manipulatives. 
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Model of Subtraction Problem from Conceptua Fraction’s Website 
 
Step 1 – Model the total of 3 pizzas and show the 1 " pepperoni part that would be subtracted. 
 

 
 
Step 2 – Slide the 1 " over the total amount to cover the amount taken away and subtract. 
 
Part A: Slide bars  Part B: Cover to take away and record green bars “left” as mixed number 
 

!  
 
 
Figure 5.2.  Sample of process of subtraction using the virtual manipulative tool on  the 
Conceptua Fractions website. To complete a subtraction problem the student would slide the 
model of the second fraction over to the model of the first fraction to cover the part that would be 
taken away when using concrete manipulatives. 
 
 

 Student perceived need.  Some students were able to effectively model problems with the 

concrete models or virtual models, but chose not to use these models when drawing the 

schematic diagrams.  These students only used models when they encountered more difficult 
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problems or when they wanted to “check” answers that they had obtained when using the 

schematic diagrams.  For example, students 3 and 4 were able to model the addition and 

subtraction problems during the lessons, but stated that they did not feel it was necessary to 

model most of the problems with the manipulatives when using the schematic diagrams.  Both of 

these students had some initial difficulty with problems from the change schema.  The only time 

that student 3 used models to draw diagrams was during lessons on this schema.  Student 4 used 

models initially during the group lesson, but was more likely to use the models when solving 

problems from the change schema as well.  

Research Question Two.  When using the CRA sequence can students connect the 

representational change, compare, and group schemas to the abstract equations?   

 Data on the use of diagrams or labeling to write equations show that students consistently 

used diagrams to write equations during 80% of the independent practice problems, but only 

students 4 and 5 consistently used diagrams to write equations for all probe problems.  Analysis 

of the work on independent practice problems and probe problems suggests that the students that 

used the diagrams on the independent practice and the probe problems were able to apply their 

knowledge of each schema to the problems in the probes.  In other words, students 4 and 5 could 

look at each probe problem, determine the correct problem schema, and use the schematic 

diagram to solve most problems.  For example, during instruction in the group schema student 5 

initially tried to draw the diagram for the group schema on all probe problems, but as she 

received instruction in the change and compare schemas she began to recognize the connections 

between the different diagrams and used those when labeling her work (See Figure 5.3). 

 

.  
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Figure 5.3.  Student 5 probe sample. The sample demonstrates this student’s ability to apply 
the schematic diagrams from the group, change, and compare schemas to solve probe problems. 
 
 

Additionally, student 4 also understood the similarities and differences between the different 

schemas and schematic diagrams that were used to represent these schemas.  For example, when 

solving a group problem that required addition such as “Jim had 2 " bags of Doritos.  Todd had 

3 # bags of Fritos.  How many chips did they have altogether?”, student 4 was able to see that 
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this problem used the same sequence of shapes in the schematic diagram as the following 

problem from the change schema:  “Cindy started with 2 # cups of water in her chili.  She 

poured another # of a cup of water in her chili.  How much water did Cindy pour into her 

chili?”  Student 4 could also see that an addition problem from the compare schema such as, 

“Mrs. Weaver had a shelf for her books that was 2 1/5 feet tall.  Mrs. McCarthy had a shelf that 

was 1 1/5 feet taller than Mrs. Weaver’s shelf.  How tall was Mrs. McCarthy’s shelf?” used the 

same sequence of shapes in the schematic diagram as addition problems from the group and 

change schemas.  

Problem Type Sample Problems for Probes or Practice Representational 
(Schematic Diagram) 

 

Abstract 
(Equation) 

Group 
(Part 1 + part 2 = 
total) 

Jim had 2 ! bags of Doritos.  Todd had 3 
" bags of Fritos.  How many chips did 
they have altogether? 

P1            P2             T 
         +           =  

P1 + P2 = T 
2 ! + 3 " = T 

Change 
(Starting amount 
+/- change = 
ending amount) 

Cindy started with 2 " cups of water in her 
chili.  She poured another " of a cup of 
water in her chili.  How much water did 
Cindy pour into her chili? 

  
 SA           C             E 
         +           =  

 
St +/- C = E 
2 "  + " = E 

Compare 
(Smaller + 
difference = 
Bigger) 

Mrs. Weaver had a shelf for her books that 
was 2  1/5 feet tall.  Mrs. McCarthy had a 
shelf that was 1  1/5 feet taller than Mrs. 
Weaver’s shelf.  How tall was Mrs. 
McCarthy’s shelf? 

 
   s                D         B 
            +            = 

 
S + D = B 
2 1/5  + 1 1/5= B 

 

Figure 5.4.  Problems from the three different schemas that use the same sequence of 
shapes in the schematic diagram 
 
 When working change problems student 4 commented that, “When you add the change 

amount to the starting amount to get the ending amount it is like adding the parts together to 

make a whole.”  He also commented that all of these kinds of problems (See Figure 5.3) “start 

with a rectangle plus a triangle to equal the house (pentagon).”  According to some researchers, 

this understanding of the relationship between schematic diagrams and equations of different 

schemas requires algebraic reasoning.  This use of algebraic reasoning helped student 4 make 
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connections between problem schemas and equations. As a result, student 4 was able to solve 

problems from different schemas correctly. This finding supports research which indicates that 

algebraic reasoning helps students understand the connections between different types of 

problems and leads to improved performance (Xin, 2008, Xin & Zhang, 2009, & Fuchs et al., 

2010). 

 The other students in the study did not consistently connect the schematic diagrams to the 

equations when completing probe problems.  Students 1 used diagrams to write equations on 

only 10% of problems on the probe and students 2 and 3 did not write diagrams when solving 

any probe problems.  Analysis of student performance and anecdotal records indicate that student 

2 may have been more likely to use the diagrams during independent practice because he only 

had to answer problems from one schema during the independent practice sessions.  Student 2 

appeared to have difficulty applying the schematic diagrams when problems from all three 

schemas were included on the probes.  After failing to meet the mastery criteria on the group 

lesson using the schematic diagram and completing probe 8, Student 2 was still unsure how to 

tell the difference between the parts and the whole.  During a conversation he asked, “How can 

you tell when you are missing the whole or the parts?”  An additional remedial lesson had to be 

designed at this point to help him identify these components in the schema before he could 

effectively use the group schematic diagram.  After this lesson, he was able to use the schematic 

diagram for group problems during independent practice, but he had difficulty identifying group 

problems when they were combined with change and compare problems.  The findings related to 

student 2 support research by Fuchs et al. (2004) and Powell (2011)  which indicate that students 

need practice identifying problems from different schemas when problems from different 

schemas are presented in assessment tasks.  In a review of schema-based and schema broadening 
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instruction, Powell (2011) discussed that studies that showed improvements in student problem 

solving performance included some type of practice with sorting problems by schema. 

 It was not clear from the data why students 1 and 3 chose not to use the schematic 

diagrams when completing the probes.  Both students were able to identify different components 

of each schema in the word problems and use that information to effectively solve problems 

during the independent practice.  During the limited examples from the LISTS lessons, both 

students seemed to be able to identify problems from different schemas when they were 

presented together.  Informal conversations with student 1 indicate that he may have been using 

the information on the schemas to help solve the problems even though he did not label or record 

diagrams on his probe.  He stated when working on the compare probe problems that he, 

“thought of compare problems as bigger part – smaller part = difference part” because that 

helped him remember how to solve the problems.  This statement demonstrated application of 

information from the group schema to the compare schema.  

Research Question Three.  Will using a CRA sequence that includes concrete and virtual 

manipulatives to connect problem solving schemas and equations improve student performance 

on problems similar to the problems used during the intervention? 

 Overall Findings.  Results for research question three indicate that using a CRA 

sequence to connect problem solving schemas and equations can improve performance on 

problems similar to problems used during the intervention for some students.  In this study, 

students 1, 4, and 5 recorded positive trends and significant improvements on the mean number 

correct on probes given in the baseline phase to probes given in the intervention phase.  Results 

for students 2 and 3 did not show strong gains in performance.  The overall mean correct from 

the baseline phase to the intervention phase did increase for each of these students.  Specifically, 
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students 2 and 3 made some improvements in probe performance during the group and change 

components of the intervention.  However, both students had decreases in performance during 

the compare component of the intervention.  Additionally, trend lines show that there was 

minimal growth from the start of the intervention to the end of the intervention for these 

students.  Several features related to the intervention may have affected student performance on 

probe word problems.  Although there was not enough data to show that these features caused 

changes in performance, several features were correlated with higher or lower performance. 

 Intervention features.  The use of schema-based instruction appeared to have a positive 

impact on the students who used the schematic diagrams to write equations for independent 

practice and probe problems.  These students recorded strong mean gains in probe performance 

from baseline to intervention and strong positive trends.  Two students who did not use the 

schematic diagrams to write equations showed little improvement in performance.  Student 1 was 

an exception to this pattern, but while he did not specifically write the schematic diagrams to 

solve equations, anecdotal evidence suggests that he was applying his knowledge of the different 

schemas to the probe problems.  The improved performance by the students who used their 

understanding of the schemas to solve problems is supported by the research on schema-based 

instruction which suggests that schema-based instruction does lead to increases in performance 

on problems similar to those used during the intervention (Jitendra, Griffin, Deatline-Buchman, 

& Sczesniak, 2007; Xin et. al., 2005; Jitendra, Hoff, & Beck, 1999).    

 Researchers investigating schema-based instruction and schema-broadening instruction 

have incorporated mnemonic strategies with interventions to help students follow a general 

problem solving process to effectively solve word problems (Fuchs et al., 2008; Griffin & 

Jitendra, 2009; Xin et al., 2008).  Use of the mnemonic LISTS strategy may have affected 
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student performance in this study as well.  Students 1, 4, and 5 all used this strategy or a 

modified version of this strategy to solve at least half of the independent practice problems.  

These students showed increases in mean performance and trend during the intervention.  When 

using this strategy students followed these general steps: locate key terms; identify the problem 

type and model; show the model with manipulatives; tie the model to the diagram; and solve the 

equation.  Student 5 consistently used this strategy for all lessons.  She even used a modified 

version of this strategy on her own prior to receiving formal instruction on the strategy in lesson 

five.  Student 4 also used his own modified version of this strategy.  After receiving instruction 

on the strategy in lesson five he chose to modify step 3 to “show the model with manipulatives 

as needed”.  Findings in this study suggest that the mnemonic LISTS strategy was beneficial for 

those students who used it during the intervention.  This finding supports previous research 

which suggests that instruction in mnemonic strategies can help students use effective problem 

solving strategies (Montague, Enders, & Dietz, 2011; Maccini & Hughes, 2000; Witzel, 

Riccomini, & Schneider, 2008). 

 Research on the CRA sequence suggests that using this sequence can increase student 

understanding of mathematical concepts and lead to better performance on word problems with 

fractions (Butler et al., 2003).  The use of the CRA sequence of instruction also appeared to have 

some positive impact on performance for some students in the study.  Those students (students 1 

& 5) who used the modeling process to help draw schematic diagrams for at least half of the 

problems during independent practice showed strong gains in overall mean performance from 

baseline to intervention and strong positive trends during the intervention.  Two of the students 

who did not use the modeling process to draw diagrams (students 2 & 3) did not show strong 

gains in overall performance.  Again, there was one exception to this pattern.  Student 4 did show 
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strong gains in overall performance, but he did not consistently use the modeling process.  Data 

indicate that he chose not to use this process because he already had a good conceptual 

understanding of fractions and did not need to use this process to understand how to solve the 

problems.  

 Setting features and student characteristics.   Features related to the timing of the study 

may have negatively impacted the performance of some students in the study.  Because of the 

relatively late start of February for the study and the need for remedial lessons for the first two 

students, the intervention was not completed for students until mid-May or later.  Since the last 

day of classes was at the end of May, the students were required to take Westest II during the 

second week of May and complete benchmark testing during the third week in May.  

Additionally, the student with learning disabilities also had to take extended school year testing 

during the third week in May.  While this large number of tests did not seem to have a strong 

impact on students 1, 4, and 5, it did seem to have a negative impact on students 2 and 3.  

According to teacher reports, student 3 became very upset and frustrated during the Westest II on 

several occasions.  He reported to the researcher after the test that he was “tired of tests and did 

not want to take any more”. His performance on his final two probes which were given during 

the week after the Westest II was lower.  However, on the maintenance probe 10 days later his 

performance did return to pre-Westest II levels.  Student 2 also reported his frustration with 

testing and school during the two weeks after Westest II.  On the Monday after Westest II he 

continued with the intervention, but he stated, “I don’t need to know this anymore.  I am done 

with testing.”  He also expressed his frustration with school in general and reported that he 

should be “watching movies and doing fun things now.”  Before each of the last two probes 
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student 2 stated that he was just going to guess on his responses.  His performance on these two 

probes was significantly lower than his performance on the probes prior to testing.   

 While frustration and negative attitudes may have negatively impacted performance on  

the final probes for students 2 and 3,   positive attitudes and motivation seemed to positively 

affect probe performance for students 1, 4, and 5.  Student 4 had a positive attitude and a strong 

work ethic throughout the intervention.  Even though he had issues related to attention, he 

always wanted to attend lesson sessions and consistently worked hard during all sessions and 

probes.  Student 1 reported that he needed to stay focused and work hard in May because he 

would be grounded for the summer if he did not have at least a “B” in math class.  Although his 

performance during the study did not affect his grade, it was noted that he remained very focused 

through the final lessons of the intervention despite the numerous field trips, special activities, 

and final testing that occurred during May.  Student 5 also remained very focused during the 

final intervention lessons in May.  She even offered to give up recess time or activity time to 

work on math because she believed that it was very important to do well in math so she would be 

ready for sixth grade.  These positive attitudes appeared to be correlated with higher 

performance.  Performance on probes for students 1, 4, and 5 remained high on probes 

administered after testing, while probe performance dropped for the two students who had 

expressed difficulty or negative concerns after testing. These findings support prior research on 

students with math difficulties that suggests that motivation and attitude can positively or 

negatively impact student achievement (Sideridis, Morgan, Botsas, Padeliadu, & Fuchs, 2006; 

Woodward & Brown, 2006).  
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Findings on performance by schema.   

 Group Schema.  The results also indicated that instruction by schema can improve 

performance on problems from that specific schema, but that students seemed to benefit most 

from the initial instruction on the group schema.  This schema appeared to be the easiest for 

students to understand because they only had to make distinctions between two schema 

components, the parts and the whole, when solving these types of word problems.  When solving 

change and compare problems students needed to determine three schema components before 

they could solve the problems.  Furthermore, the schematic diagram for the group schema was 

easy for students to understand.  They were able to see how a part place in a rectangle added to 

another part placed in a triangle could be combined to obtain a total or whole that would be 

placed in a house (pentagon).  It is possible, however, that the increased performance on group 

problems was related to order effects or to the instruction on problems from that specific schema.  

Even though students had the same number of lessons on each schema, they did have more 

opportunities to apply their knowledge of the group schema to probe problems since the lessons 

on the group schema were the first lessons taught to all students.   

 Change Schema.  Some students did show increases in performance on change problems 

after instruction on the change schema, but complexities related to the change schema may have 

limited student gains in performance.  When solving problems from the group schema students 

only had to consider two possible relationships in the schema; part + part = whole or whole – 

part = part.  Change problems required consideration of four types of possible relationships 

between components in the schema.  Students had to determine whether they needed to add or 

subtract from the initial change amount and then understand the reverse procedure for each type 

of equation.  They also had to understand how to solve problems with missing change amounts.  
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Analysis of responses to probe questions indicated that students were most successful solving 

change problems that included a missing ending amount, but they had the most difficulty solving 

problems where the change amount was missing (See Figure 5.4: ex. 1).  Those students who 

showed gains in performance on change problems seemed to have a better understanding of how 

to solve change problems with missing change amounts.  

Change 
(Starting 
amount +/- 
change = ending 
amount) 
 

Ex. 1: Paula needed 2 ! cups of flour 
to make a pie for her mom’s party.  If 
she already has 3/5 of a cup of flour, 
how much more flour will she need to 
make her pie? 

    
    St            C             EA  
            +             =                        

 
St + C =  EA 
3/5 + C = 2 1/2 
 

Ex. 2: Kendall used  2 1/6 pieces of 
poster board for his science fair project.  
If he had 1/2 of a piece of poster board 
left, how much poster board did he 
have when he started the project? 

 
     E             C           St 
            +          = 

 
E + C = S 
1/2  + 2 1/6 = 
S 

 
Figure 5.5.  Problems that show the different conceptualizations needed to solve problems 
from the change schema. 
 

Another factor that could have impacted student performance on change problems was 

related to the students’ conceptual understanding of the schema and schematic diagram.  For the 

change schema, conceptual understanding of adding a starting amount that was smaller to a 

change amount to determine an ending amount that was bigger was very similar to the 

understanding of the group schema (See Figure 5.5: ex. 1), but the conceptual understanding of 

adding an ending amount that was smaller to a change amount to get a starting amount that was 

bigger was difficult for students to understand.  Furthermore, this type of problem did not 

visually match the original diagram which combined amounts placed in a rectangle and a triangle 

to obtain a total larger amount that was placed in a pentagon.  (See Figure 5.5: ex. 2).  A separate 

schematic diagram had to be added for this type of change problem because the original diagram 

could not be used to correctly model the relationship between the starting, change, and ending 

amount in these types of problems.  A new diagram that was developed used a “D” for the 
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smaller Ending Amount, a half- circle that started as with a “C” as the change amount and a 

circle for the larger starting amount.  As a result, the use of the shapes in the schematic diagrams 

that seemed to help students with group problems may have hindered some students when 

solving the change problems.  Those students who could understand when to use the different 

schematic diagrams for the change problems showed improvements in probe performance on 

problems from the change schema.  

 Compare Schema.  No students saw consistent increases in performance on problems 

from the compare schema after instruction on this schema.  Item analysis of missed responses on 

the probes given during intervention shows that the last two questions on every probe, which 

were two problems from the compare schema, were missed the most by all students throughout 

the intervention.  In these two problems students had to have a strong understanding of the 

compare schema because the same word in a problem, such as shorter or taller, might require a 

different equation depending on the relationship between the components of the schema.  For 

example, in Figure 5.6, both problems include the word shorter, but in one problem the smaller 

or shorter amount is added to the difference to get the bigger amount.  In the other problems the 

difference is subtracted from the bigger amount to determine the smaller or shorter amount.   

Compare 
(Bigger – 
smaller = 
difference) 

Ex. 1.  Tim cut two boards to begin 
making a wooden picture frame.  One 
board was 7 9/12 inches long.  This 
board was 1 ! inches shorter than the 
other board.  How long is the other 
board? 

 
   s              D              B 
            +             = 

s + D = B 
7  9/12 + 1 != B 

Ex.  2.  Mrs. Weaver had a shelf for her 
books that was 2  1/5 feet tall.  Mrs. 
McCarthy had a shelf that was 1  1/5 feet 
shorter than Mrs. Weaver’s shelf.  How 
tall was Mrs. McCarthy’s shelf?   

 
   B             D             s 
            -              = 

B – D= s 
4 1/5 - 1 1/5 = s 

 
Figure 5.6.  Problems that show the different conceptualizations needed to solve problems 
from the compare schema. 
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Furthermore, sometimes the information in the problems from the compare schema was not 

logical to the students.  For some problems, the smaller component of the schema that needed to 

be identified in the problem might have actually been the larger number in the problem (See 

Figure 5.6: Ex. 1).  Some students may have confused the bigger and smaller components of the 

compare schema with the larger and smaller numbers in the word problems on the probes. 

The lack of conceptual understanding or confusion with the language in these types of compare 

problems may have impacted student performance on these problems during the probes.  This 

finding supports research by Fan, Mueller, Marini (1994) and Fuson and Carroll (1996) which 

indicates that compare problems are challenging for students because the conceptual and 

linguistic complexities in these problems do not cue students to the specific operation needed to 

solve these problems.  

It also is possible that some students had difficulty applying the information on the 

different schemas and schematic diagrams by the time they received the final intervention 

lessons on the compare schema.  Using the same shapes for all three schemas seemed to be 

helpful to some students and somewhat confusing to others.  For example, some students would 

try to apply the components of the group schema to problems from the compare schemas or the 

components of the change schema to problems from the compare schema on the probes.  This 

confusion might have led to more errors on probe problems from the compare schema. 

 Additionally, it is difficult to determine what effect the timing of the instruction on the 

compare problems had during this study.  Students 2 received instruction on the first two lessons 

from the compare schema during the week after the Westest II when he having significant 

difficulty concentrating and did not want to complete the lessons.  Because he was consistently 

not meeting the mastery criteria for the lessons, the intervention was discontinued at this time.  
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Students 3, 4, and 5 also received instruction on some lessons from the compare schema during 

the week following testing.  If instruction on the compare schema had occurred earlier in the 

semester, they may have had more success on these types of probe problems. 

 Summary of Findings on Performance by Schema.  The findings in this study suggest that 

in general, students had the most success solving problems from the group schema and that they 

had the most difficulty with problems from the compare schema.  These findings contradict the 

findings of Garcia, Jimenez, and Hess (2006) which suggest that the semantic structure or 

problem schema alone was not a predictor of the difficulty of specific problems for students. 

However, student performance in the current study was also affected by the location of the 

missing information in the problem.  These findings do support the findings of Garcia et al., 

(2006) and Powell, Fuchs, Fuchs, Cirino, and Fletcher (2008) which suggests that problems with 

missing information in the initial position (e.g. - starting amount) or second position (e.g. – 

change amount) are more difficult for students that problems with missing information in the 

third position (e.g. – whole, ending amount).  

Research Question Four.  Will using a CRA sequence that includes concrete and virtual 

manipulatives to connect problem solving schemas and equations improve student performance 

on problems that require generalization from the models provided during the intervention? 

 Overall, student performance on problems that require generalization did not improve 

significantly after instruction using the CRA sequence to connect problem solving schemas and 

equations.  Average overall performance on the transfer test only increased by two problems 

from pre-test to post-test and only student 1 recorded a significant increase (+5) from pre-test to 

post-test.  The lack of significant improvements for most students on the transfer post-test was 

not surprising because the students in the study did not receive direct instruction on any of the 
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transfer characteristics.  The benefits of direct instruction for students who struggle with math or 

who have learning disabilities have been well-documented for instruction on fractions (Bottge et 

al., 2010; Misquitta, 2010) and when implementing schema-based or schema broadening  

instruction (Powell, 2011).  Specifically, this finding was consistent with previous research on 

problem solving instruction which states that students with disabilities or difficulties in math 

need direct instruction on how to solve problems that require generalization from the problems 

modeled during instruction to improve performance on these transfer problems (Fuchs et. al., 

2004 Fuchs et. al., 2006). 

 Another key finding from the transfer test was that all students improved on the number 

of problems with difficult vocabulary that they answered correctly on the post-test.  For students 

2, 3, 4, and 5 the only gains that were made between pre- and post-test were on problems with 

difficult vocabulary.  This finding suggests that while students were not able to improve 

performance on novel problems with irrelevant information or different conceptualizations on 

the post-test, they did make some improvements on problems with this specific transfer 

characteristic.  Previous research on the different types of transfer characteristics suggests that 

students are more likely to solve problems that include transfer characteristics with more 

similarities to the original problem called “near” transfer problems, than those problems include 

transfer characteristics that include more novel characteristics (Fuchs et al., 2006; Fuchs et al., 

2008).  While the findings in this study support this research, they also indicate that even within 

the category of “near” transfer some specific transfer characteristics may be more challenging for 

students than others. 

 Perhaps one of the most intriguing findings of this study was the types of gains that 

students made on the transfer post-test.  Even though students recorded the weakest gains on 
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compare problems and the lowest average correct on problems from the compare schema during 

the probes, they recorded the highest gains on compare problems on the transfer post-test.  

Furthermore, 4 out of the 5 students in the study made at least some gains on the compare 

problems from pre-test to post-test.  This may have been related to the types of compare 

problems that were included on the transfer test.  One type of compare problem required the use 

of the equation: biggest – smallest = difference, and students needed to find the missing 

difference amount.  This was the simplest type of compare equation for students to solve during 

the intervention.  Additionally, two compare problems also included the transfer characteristic of 

difficult vocabulary.  As previously stated, this transfer characteristic caused the least trouble for 

students when solving transfer problems. 

Conclusions 

 The intervention implemented in this study appeared to improve problem solving 

performance on problems similar to those presented in the intervention for some students in the 

study, but not for all students in the study.  Several factors may have affected student 

performance on probes including student use and understanding of manipulatives and schematic 

diagrams; student understanding of fraction concepts; and the students' ability to correctly 

identify problem schemas.  However, several conclusions can be drawn about specific 

components of the intervention that led to improved performance on independent practice and 

probe problems.  First, students who had weak conceptual understanding of fractions needed the 

instruction with the concrete manipulatives to understand how to model more complex problems 

that required equivalent fractions.  If they had not had this experience with the concrete materials 

initially, it is unlikely that they would have developed the conceptual understanding to model 

problems correctly with the virtual manipulatives.  These findings support the research by Suh 
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and Moyer (2007) which suggested that there may be unique features of both concrete and 

virtual manipulatives that could be used to support student understanding of math concepts.  The 

findings of this study are also similar to those of Gire et al. (2010) who concluded that 

kinesthetic activities with concrete or physical manipulatives may be more beneficial prior to 

instruction with virtual manipulatives when students are working with concepts that can be 

clearly demonstrated with concrete objects.  However, for the students with the greatest 

difficulty with understanding mathematical concepts in this study, these findings do not support 

research which suggests that students perform as well or better when using virtual manipulatives 

than when using concrete manipulatives (Suh, 2005; Yuan et al., 2010).   

 Furthermore, the intervention implemented in this study appeared to lead to stronger 

conceptual understandings of fractions for all students.  Developing a conceptual understanding 

of fractions seemed to help some students understand how to solve fraction problems from the 

different types of schemas and led to improved performance on probes.  However, some students 

improved their conceptual understanding of fractions, but did not make significant gains in 

performance on probe word problems.  These students may have encountered more difficulty 

related to their conceptual understandings of problem schemas.  Students in the study who were 

able to identify the appropriate schema for each problem on the probe and use their 

understanding of the schema to solve the problems made significant gains on the probes in the 

study.  The students who made gains in conceptual understanding, but not in probe performance 

appeared to have difficulty identifying the schemas of problems when problems from all three 

schemas were presented.  Research on identifying schemas supports this conclusion.  Fuchs et al. 

(2004) found that students who received schema-based instruction with practice sorting word 
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problems into schemas performed better on problem solving tests than students who received 

schema-based instruction without this sorting practice.  

 In some cases, the type of the missing information in the problem may have caused 

difficulty for students as well.  Certain problems from each schema were easier to solve than 

other problems in the same schema.  Adding the parts to find the total in the group schema, 

adding the starting amount to the change amount to get the ending amount in the change schema, 

and subtracting the smaller amount from the bigger amount to get the difference in the compare 

schema were the easiest problems for students to solve.  Problems from the change schema 

which asked student to find the change amount and problems from the compare schema where 

students had to find a bigger or smaller amount were the most challenging and required a deeper 

understanding of the schemas.  Including more of these difficult example problems during the 

modeling and guided practice components of the lessons could help students improve their 

performance on these problems during the intervention and maintenance probes.  

  The intervention did not appear to be successful for student 2 who was diagnosed with 

learning disabilities and student 3 who was diagnosed as OHI.  Data from the study suggest that 

there may be different reasons why these students did not make significant gains on the probes or 

transfer tests.  Student 2 experienced challenges with multiple components of this study 

including his conceptual understanding of fractions, his ability to identify and apply information 

from each schema when problems from the three schemas were mixed together on the probes, 

and his motivation and attitude at the end of the year.  Although the other students experienced 

some of these challenges as well, his difficulties in these areas were more severe than the other 

students in the study.  The cognitive challenges this student faced may have resulted in a 

cognitive overload that affected performance.  Research on students who struggle with math 
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suggests that this type of cognitive overload can lead to poorer performance and more negative 

attitudes toward math (Woodward & Brown, 2006).  Additionally, a review of multiple studies 

on cognitive, behavior, and affective deficits in students with learning disabilities suggests that 

the combination of factors that affected student 2 during this study is often detrimental to the 

performance of students with learning disabilities (Sideridis et al., 2006).  

 Although student 3 did not make significant gains in performance, he demonstrated a 

very different pattern of performance during the intervention, probes, and transfer tests.  His 

performance improved during baseline conditions and was relatively strong when he started the 

intervention.  His performance on the transfer pre-test was the highest of all students.  During the 

intervention he appeared to have a good conceptual understanding of fractions and the three 

schemas presented in the lessons.  While he did make some gains, these gains were not sustained 

on the probes presented during the lessons on the compare schema.  It is possible that this 

student’s performance was significantly affected by the testing during May.  However, his 

pattern of performance indicates that this student may not have applied the information from the 

lessons when completing the probes or transfer post-test.  This student seemed to use the same 

strategies during the intervention and transfer tests as he used prior to the intervention.  

Additionally, there was no evidence on the probes or from anecdotal data that this student 

applied the information on schemas when solving probe problems during intervention, 

maintenance, or the transfer post-test.  

 Finally, implementing the intervention did not lead to overall improvement on problems 

that required generalization.  While the results from the transfer post-test in this study were 

disappointing, they did suggest that even transfer skills that would be considered “near” transfer 

skills are not equally difficult for students.  In this study it appeared that problems that required 



! %&'!

students to determine which information was irrelevant or problems that required student 

interpretation of information in charts was more difficult for students than problems with 

difficult vocabulary.  These transfer characteristics seemed to have more of an impact on student 

performance than the type or problem (group, change, or compare) that was solved. Although 

previous research has addressed immediate transfer, near transfer, and far transfer characteristics 

of word problems (Fuchs et al., 2004; Fuchs et al., 2006; Fuchs et al., 2008), no research could 

be found that considered the difficulty of specific transfer characteristics within each category. 

Limitations 

 This study was conducted with only five students in the fifth grade, so the 

generalizability of the results to students in different grade levels is limited.  Additionally, this 

study was conducted in a small rural town in the eastern United States with Caucasian students, 

so the results may not apply to students in cities, other locations, or students from diverse ethnic 

backgrounds.  Since the intervention in this study was conducted with pairs or individual 

students, the results may not be applicable to pullout special education classrooms or the general 

education classroom.  Furthermore, since the study included three students who struggled with 

math and two students with disabilities, the findings on the students without disabilities may not 

be generalizable to students with disabilities.  On the other hand, the findings related to the 

students with disabilities may not apply to students who struggle with math. 

 There were several limitations related to the content of the study as well.  First, only 

group, change, and compare problems that required addition and subtraction were addressed in 

this study.  The results may not be applicable to other types of problems or problems that require 

multiplication and division.  Second, this study used the CRA sequence with fraction problems.  

The results may not be applicable to problems with whole numbers because students may not 



! %&(!

need the CRA sequence to visualize problems with whole numbers.  Finally, the problems in the 

transfer tests only addressed the near transfer characteristics of difficult vocabulary, irrelevant 

information, or different conceptualizations.  The results may not apply to other problems with 

different near transfer characteristics or real world problems that would be include far transfer 

characteristics. 

 Limitations on the use of the concrete and virtual fractions could also affect the 

application of the findings.  During the study, fraction circles, fraction tiles, and fraction tower 

blocks were the primary concrete manipulatives used during the intervention.  Similar virtual 

manipulative were used from Conceptua Fractions to model these problems as well.  Use of other 

concrete or virtual manipulatives, such as fraction squares or the number line, may have changed 

the results of the study.  Furthermore, limited kinds of problems could be modeled with these 

concrete and virtual manipulatives.  The concrete manipulatives only had up to twelve fractional 

parts and each virtual manipulative could only be divided into thirty parts.  Therefore, the results 

may not be applicable to word problems with fractions with denominators larger than thirty. 

Implications for Practice 

 There are several possible implications for practice from this study.  First, findings from 

this study suggest that teachers and other personnel who work with students who have weak 

conceptual understandings of fractions should include instruction with concrete manipulatives 

and virtual manipulatives to improve student understanding of fraction concepts.  The findings 

also indicate that instruction should start with the concrete manipulatives because the actual  

physical manipulation and modeling of fractions seems to help students with math difficulties 

develop an understanding of fraction concepts.  Instruction using virtual manipulatives should 
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follow instruction on concrete manipulatives because instruction with virtual manipulatives can 

extend student understanding by using a broader range of examples and models.  

Second, analysis of results also indicates that teachers should explicitly connect the CRA 

sequence to problem schemas.  Students who have conceptual difficulties with fractions can 

benefit from these explicit connections when solving word problems with fractions.  Students 

who already have a strong conceptual understanding of fractions may not need to model all word 

problems with manipulatives, but they can use these models when they have difficulty 

understanding specific problems.  Furthermore, analysis of data also suggest that teachers should 

provide explicit instruction on how to label the parts of the schemas in word problems and on 

how to use the schematic diagrams to write equations to solve word problems.  Students should 

be given the opportunity to select the method of using the schema information to solve problems.  

Students who used the schematic diagrams to write equations in the study improved their 

performance on word problems, but students who developed their own process of labeling or 

applying information on schemas to word problems also improved performance. 

 Additionally, after teaching the three problem schemas, teachers should give students 

multiple opportunities to practice identifying the schema of problems when problems from all 

three schemas are combined.  In this study, students who were able review problems from 

different schemas on the probes, select the appropriate schema for each problem, and apply the 

information on the schema to the problem demonstrated gains on probe performance.  Multiple 

opportunities to sort problems by schema could help students identify the correct schema for 

each problem when all problems from all schemas are combined.  This explicit instruction could 

also provide opportunities for discussion on the similarities and differences between problem 
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schemas.  Teachers could use these discussions to develop algebraic reasoning skills by helping 

students see the connections between similar problems and equations. 

 Furthermore, when teaching problems from the change and compare schemas, teachers 

should provide additional examples and practice with problems that are more challenging for 

students.  Students may need more explicit modeling, guided practice, and independent practice 

with problems that include missing change amounts from the change schema or missing smaller 

or bigger amounts from the compare schema.  When solving all types of problems a mnemonic 

strategy, such as the LISTS strategy used in this study, should be used to help students remember 

the steps of the problems solving process. 

 The findings of this study also suggest that teachers should provide explicit instruction on 

transfer skills.  Specifically, students could benefit from direct instruction and practice with 

transfer problems that include irrelevant information and different conceptualizations through 

charts or graphs.  Students may also need explicit instruction on transfer problems in each of the 

three schemas.  Students may be able to solve problems similar to those during instruction from 

the group, change, and compare schemas, but they may need additional help solving transfer 

problems from each of these three schemas. 

 There are several specific implications for instruction of students with learning 

disabilities from this study.  Results indicate that students with learning disabilities could need 

additional instruction and practice solving word problems from each schema.  Students may 

benefit from a combination of easier and harder problems or distributed practice so they will 

maintain a positive attitude and not reach cognitive overload (Woodward & Brown, 2006).  

Students with learning disabilities may also need additional scaffolding with graphic organizers 

to help them apply the correct schematic diagram to word problems.  Including a blank copy of 
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the correct schematic diagrams on probe problems could help students with learning disabilities 

apply their knowledge of these schemas to the word problems.  The students could identify 

schema components in the problems and fill in the diagrams until they were able to master this 

skill with problems from different schemas combined.  At this point, the diagrams could be 

gradually withdrawn.  This use of graphic organizers could also be beneficial for students who 

did not apply the strategy when problems from different schemas were combined.  

Implications for Further Research 

 There are several implications for further research from this study.  The suggestions 

below are based on the analysis of the results and the conclusions presented in this chapter. 

1. Although the results of this study indicate that a sequence of instruction that includes 

concrete and virtual manipulatives improves conceptual understanding of fractions, more 

research needs to be conducted to determine if this sequence of instruction is most 

effective when developing an understanding of fraction concepts. Additionally, more 

research needs to be conducted to determine if this sequence of instruction is effective 

when providing instruction on other math concepts, to students at different grade level, or 

to students who perform at or above grade level in mathematics. 

2. Most research on virtual manipulatives suggests that this type of manipulative can be 

effectively substituted for instruction using concrete manipulatives (Suh, 2005; Yuan et 

al., 2010).  The findings of this study did not support this research.  Additional research 

should compare interventions that use concrete manipulatives with interventions that use 

virtual manipulatives to determine if virtual manipulatives can be as effective as concrete 

manipulatives when working with different concepts, students at different grade levels, or 

students with disabilities. 
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3.  Although both the concrete and virtual manipulatives in this study could be created and 

moved to solve problems, some students were not as successful when manipulating the 

virtual manipulatives on the computer screen. Research that considers the characteristics 

of concrete and virtual manipulatives should be conducted to determine how a concrete 

manipulative is defined and where virtual manipulatives fit in the CRA sequence.  

4.  Previous research indicates that providing schema-based instruction with opportunities to 

sort problems by schema improves student performance on word problems (Fuchs et al., 

2004).  The current study provided limited opportunities for students to identify problems 

schemas when problems from three schemas were combined.  Research should be 

conducted that combines instruction on the CRA sequence with schema-based instruction 

that includes more opportunities for sorting problems by schema.  

5. To clarify the connection between the intervention used in the current study and students’ 

ability to generalize to problems with novel characteristics, additional research that 

includes explicit instruction by problem type and transfer characteristic should be 

conducted.  This additional research could provide a better understanding of the 

relationship between the CRA sequence and schema-broadening instruction. 

6. Research that includes additional supports to help students connect problem schemas to 

equations could provide a better understanding of the level of support needed to help 

students who struggle with math and students with learning disabilities solve word 

problems with fractions.  This type of research could include blank copies of the 

schematic diagram with word problems to help students make the connection to the 

schema or drawings of concrete/virtual manipulatives to help students conceptually 

understand difficult problems.  
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7. To determine the connection between students’ conceptual understanding of fractions and 

their ability to solve fraction word problems, further research on the CRA sequence with 

schema-based instruction should include pre- and post- assessments of conceptual 

understanding of fractions.  Specific assessments of conceptual understanding may 

provide a better understanding of the relationship between a conceptual understanding of 

fractions and students’ abilities to solve word problems with fractions.  

Summary 

 Despite the mixed results of this study, this research suggests that a sequence of 

instruction that combines the CRA sequence with schema-based instruction can help some 

students solve word problems with fractions.  However, this research also highlights the need for 

more research on the use of concrete and virtual manipulatives when providing this type of 

intervention for students who struggle or have learning disabilities in math.  Additionally, the 

findings of this study indicate that problems from certain schemas and specific types of transfer 

characteristics may be more difficult for students.  These problems may require more modeling 

by teachers and practice by students.  This research also suggests that the intervention used in 

this study may be beneficial for students who struggle with math, but students with disabilities 

may need even more intense instruction and additional scaffolding to make connections between 

the CRA sequence and problem schemas when word problems from multiple schemas are 

combined.  
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Appendix A 

Sample Math Probes 

Directions for Probes and Transfer Tests 

Today I would like for you to answer these word problems with fractions.  I will read each 
problem to you and you may use a calculator to complete each problem.  Even though you may 
use a calculator, you will still need to show your work on the paper.  For example if you enter "  
+ #  = __   or " x 1/3 = _ in the calculator, you will need to write the problem down with your 
answer on the page.  If you use pictures or diagrams to help you with the problem, please draw 
these in the space below the problem. Are there any questions? 

The researcher will read each problem out loud.   

Math Probe #1        
 

1. A mother elephant eats 2 "  tons of food every month.  Her baby eats 1 ! tons of food. 
How many tons of food do they eat in a month? (group) 

2. Tiffany bought 3 ! pounds of yellow and red m & ms to take to a friend’s party.  If 1 2/3 
pounds of m & ms were yellow, how many pounds were red? (group) 

3. Last week, John kept track of the weather for five days.  In his town it was sunny some 
days and rainy other days.  If it rained 1 ! days, how many days were sunny? (group) 

4. Sarah needed 6  1/3 cups of water to make her soup recipe. If she already has 2 2/3 cups 
of water, how much more water will she need to make her soup? (change) 

5. Rachael was cleaning her room and found 1 " packs of colored pencils.  When she 
looked in her backpack she found another # of a pack of colored pencils. How many 
colored pencils does she have now?  (change) 

6. Josh used  2 ! pieces of construction paper for his art project. If he had 4 " pieces of 
construction paper left, how much construction paper did he have when he started the 
project?  (change) 

7. Gary’s basketball goal was 8 " feet tall.  His younger sister Cindy bought a goal at Wal-
Mart that was 6 2/3 feet tall.  How much taller was Gary’s goal than Cindy’s goal? 
(compare) 

8. Paul cut two boards to begin making a wooden picture frame.  One board was 5 1/8 
inches long. This board was 1 ! inches shorter than the other board.  How long is the 
other board? (compare) 

9. Julie built a tower out of blocks that was 4 # feet tall.  Angel built a tower that was 1 1/3 
feet taller than Julie’s tower.  How tall was Angel’s tower? (compare) 

 

Math Probe #2    

1. An adult dog eats 6 3/4  pounds of food every month.  Her puppy eats 1 1/3 pounds of 
food. How many pounds of food do they eat in a month? (group) 



! %'%!

2. Heather bought 2 3/4 pounds of yellow and red skittles to take to a friend’s party.  If 1 2/5 
pounds of skittles were yellow, how many pounds were red? (group) 

3. Last week, Chris kept track of the weather for five days.  In his town it was sunny some 
days and snowy other days.  If it snowed 1 1/4 days, how many days were sunny? (group) 

4. Kim needed 4 2/3 cups of water to make her chili. If she already has 2  1/4 cups of water, 
how much more water will she need to make her chili? (change) 

5. Erin was cleaning her room and found 1 " packs of crayons.  When she looked in her 
backpack she found another # of a pack of crayons. How many packs of crayons does 
she have now? (change) 

6. Carrie used  3 ! pieces of construction paper for her art project. If she had 2 " pieces of 
construction paper left, how much construction paper did she have when he started the 
project? (change) 

7. Bob’s ladder was 7 5/8 feet tall.  His brother Ray bought a ladder at Lowe’s that was 5 
2/3 feet tall.  How much taller was Bob’s ladder than Ray’s ladder? (compare) 

8. Mary cut two ribbons to begin making a bow for her hair.  One ribbon was 4 2/5 inches 
long. This ribbon was 1 1/3 inches shorter than the other ribbon.  How long is the other 
ribbon? (compare) 

9. Dorothy built a tower out of Legos that was 7 #  inches tall.  Hannah built a tower that 
was 1 1/3 inches taller than Dorothy’s tower. How tall was Hannah’s tower? (compare) 

 

Math Probe #3        
 

1. Jared went to McDonalds and ate 3 1/2 Chicken McNuggets.  His brother ate  4 1/2 
Chicken McNuggets. How many Chicken McNuggets did they eat altogether? (group) 

2. Tia bought 3 1/3 pounds of green and red lollipops to take to a friend’s house.  If  1 2/7 
pounds of the lollipops were green, how many pounds were red? (group) 

3. Last week, the football team practiced five days.  Some days, or parts of some days,  they 
worked on offense and on other days they worked on defense.  If they worked on offense 
2  1/3 days, how many days did they work on defense? (group) 

4. Betty needed 3  5/8 cups of flour to make a cake for her mom’s birthday. If she already 
has 2  2/3 cups of flour, how much more flour will she need to make her cake? (change)  

5. T.J. was cleaning his room and found 1 " packs of baseball cards.  When he looked in his 
desk he found another 1/5 of a pack of baseball cards. How many packs of baseball cards 
does he have now? (change) 

6. Brandon used  1 1/8 pieces of poster board for his science fair project. If he had 2 3/5 
pieces of poster board left, how much poster board did he have when he started the 
project? (change) 

7. Jay is 5 1/4 feet tall.  His friend Sam is 5 1/2 feet tall.  How much taller is Sam than Jay? 
(compare) 
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8. Joseph cut two pieces of wood to make a shelf for his room.  One piece of wood was 2 
7/8 feet long. This piece of wood was 6 1/3 feet shorter than the other piece of wood.  
How long is the other piece of wood? (compare) 

9. Tim built a tower out of Legos that was 5 3/7 inches tall.  Hunter built a tower that was 2  
2/3 inches taller than Tim’s tower. How tall was Hunter’s tower? (compare) 
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Appendix B 

Math Transfer Pre- and Post-Test 

1. Elephants can communicate through low frequency infrasonic rumbles. Their sounds can 
travel from 1/8 km to 9 ! km.  How much farther can the longest sound travel than the 
shortest sound? p. 249 (difficult vocabulary, compare) 

2. The escape velocity for a rocket to move out of the Earth’s gravitational pull is 6 9/10 
miles per second. The Moon’s escape velocity is 5 2/5 miles per second slower. How fast 
does a rocket have to launch to escape the moon’s gravity? p. 249 (difficult vocabulary, 
compare) 

3. The two largest meteorites found in the U.S. landed in Canyon Diablo, Arizona, and 
Williamette, Oregon. The Arizona meteorite weighs 33 1/10 tons! Oregon’s weighs 16 ! 
tons. How much do the two meteorites weigh in all? p. 249 (difficult vocabulary, group) 

4. The new president of the United States timed his inauguration speech at 5 1/6 minutes.  
The television producer informed him that he would only have 4 ! minutes to complete 
his speech.  How much time will the president have to remove from his speech to 
complete it in 4 ! minutes? (difficult vocabulary, change) 

5. Jack decreased his best time in the 100 meter race by # of a second.  His new best time is 
8 ! seconds.  Jack’s friend Tim’s best time is 8 " seconds in the 100 meter race. What 
was Jack’s old time in the 100 meter race? (irrelevant information, change) 

6. The average person in the United States chews 1 9/16 pounds of gum each year. The 
average person in Japan chews 7/8 pounds of gum and the average person in England 
chews 1 " pounds of gum. How much more gum does the average American chew than 
the average person in Japan? (irrelevant information, compare) 

7. Before she went to the hairdresser on Saturday, Sheila’s hair was 7 " inches long.  When 
she left the salon on Saturday, it was 5 ! inches long. Next time that she gets it cut, she 
hopes that it will only be 3 ! inches long. How long was Sheila’s hair when she left the 
salon on Saturday? (irrelevant information, change) 

8. Grant bought 3 1/8 pounds of apples at Foodland. Hannah bought 2 1/3 pounds of 
bananas and Heather bought 4 ! pounds of oranges. How many pounds of apples and 
bananas were bought by the students? (group, irrelevant information) 
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*The following chart will be used to answer questions 9-12. 

Jenny’s Gift Wrap Table 
Gift Size Paper Needed (yards) 

Small 11/12  
Medium 1 5/9 

Large 2 2/3 
X-Large 3 1/9 

 

9. Jenny is working at a gift wrap center.  She has 2 " yards of wrapping paper to wrap a 
small box. How much wrapping paper will be left after she wraps the gift? (different 
conceptualization, change) 

10. Jenny needs to wrap one x-large box and one medium box. How much wrapping paper 
will she need to wrap both boxes? (different conceptualization, group) 

11. Jenny has 3 1/3 yards of wrapping paper.  She needs to wrap one small box and one 
medium box. How much wrapping paper will she have left after she wraps both boxes? 
(different conceptualization, group) 

12. Jenny needs to wrap a  large box and a small box. How much more wrapping paper will 
she need to wrap the large box than the small box? (different conceptualization, compare) 

 
*Problems were adapted from Bennett, J. M., Chard, D. J., Jackson, A., Milgram, J., Scheer, J. 
K., Waits, B. K. (2004). Holt Middle School Math: Course 1. Austin, TX: Holt, Rinehart , and 
Winston. 
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Appendix C 

Sample Scripted Lesson  
Lesson 1 – Group Problems with Manipulatives 

Objectives: 

Given modeling and guided practice, the student will be able to solve fraction word problems 
from the group schema by modeling the problem with manipulatives. 

Materials: 

Practice Sheet 1 

Rainbow Fraction Tiles 

Fraction Circles 

Pencils 

*Note: In all lessons, the researcher will respond to questions from the student related to the 
lesson. The researcher may provide clarification or additional information if the student does not 
understand the examples or how they are modeled using manipulatives or the schematic diagram. 

Advanced Organizer: 

“Word problems in math are used to help you learn to solve math problems that you might have 
to figure out from the real world. You may be in situations when you are shopping, cooking, or 
hanging out with your friends that you need to use math to solve problems. Can you think of 
times when you have to solve word problems? Can you think of ways that you might need math to 
solve problems when you are not in school? 

When you get older you may have to calculate how many miles for trips, how much gas you need 
for your car, or how much pizza you want to buy for your party so it is important to learn how to 
solve problems. During the next couple of weeks I will be teaching you some strategies to help 
you solve word problems. We will be focusing on word problems with fractions because this is 
an important skill for fifth grade, but you can use these strategies to help you solve word 
problems without fractions as well.” 

Pre-requisite practice with concrete manipulatives on equivalent fractions: 

“Before we start with the word problems, I want to show you how you might use some concrete 
materials to help you model different kinds of fraction problems. These materials are called 
manipulatives. Have you ever used these manipulatives before? The researcher will show the 
students samples of fraction tiles, fraction tower blocks, fraction circles, and fraction squares. If 
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the student responds with, yes, then the research will ask: “What do you remember about using 
these manipulatives? to determine the background knowledge of the student. 

“Today, we are going to specifically focus on how we might use the fraction tiles to model 
fractions in word problems. Fraction tiles are color-coded. The first fraction tile is just the 
number one and it represents one whole. The researcher will pick up the red fraction tile of one 
and show it to the student. So if we were talking about 1 pizza or 1 pound of food or 1 day of the 
week, we could use the red fraction tile of 1 to model that number. The other fraction tiles are 
different ways that we can break the number one into smaller parts. For example, the pink 
fraction tiles can each be used to model ". So if we were trying to model " pound of m and ms 
or " of a pizza, we could use a pink " tile to model that amount. The researcher will use the 
same format to introduce thirds, fourths, sixths, eighths, tenths, and twelfths and provide an 
example using pizza or m and ms for each. 

“The nice thing about fraction tiles is that we can compare different types of fractions to see if 
they are equivalent. Equivalent means that the amounts are the same. For example if I line up 
2/4 on the table (the researcher will line up " and then another ") and then put " below it (the 
researcher will put the pink ! tile below it) then you can see that the 2/4 are the same length as 
the ". The models show the same amount. These are called equivalent fractions. This is 
important to know because often times when you are solving problems with fractions you need to 
find an equivalent fraction so you can show the answer to the problem using the smallest fraction 
possible. Another example of equivalent fractions is 2/3  (the researcher will line up  an orange 
1/3 tile and then another orange 1/3 tile) and  4/6 (the researcher will line up four teal 1/6 tiles). 
Do you have any questions about the fraction tiles or equivalent fractions? (If not, then the 
researcher will continue to describe and model phase of the lesson.  If so, the researcher will 
answer questions and provide additional examples if necessary.) 

Describe and Model Group Problems: 
 
 “There are several different types of word problems. If you understand the characteristics of 
each type of word problem, then that will help you figure out how to solve similar problems. 
Today we are going to learn about one type of word problem called a “group” problem. When 
you solve group problems you combine two parts of something to make a whole. (The researcher 
will write P + P = W on the board for a visual reference). For example, if you have 1 pepperoni 
pizza and your friend has 2 cheese pizzas, then how many pizzas do you and your friend have 
altogether? (3) In this problem the whole group or total number of pizzas is 3 pizzas, but you 
have two parts: 1 pepperoni pizza and 2 cheese pizzas. Or if you had 6 bags of m and ms: 2 were 
peanut and 4 were plain, then your whole group or total bags of m and ms is 6 bags, but one part 
of the group or total is the 2 bags of peanut m & ms and the other part of the group or total is the 
4 bags of plain m & ms. Do you have any questions about group problems? 
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Now, I’m going to model some examples of group problems with fractions using the fraction tiles 
that I showed you earlier. Even though we are using fractions, I will still be modeling problems 
where two parts can be combined to make a total or group. 

S2G4!6474:6>G46!L"AA!9G48!64:@!4:>G!56;KA4F!L"9G!>;F5A494!"8<;6F:9";8!9;!9G4!79C@489!:8@!C74!
9G4!<6:>9";8!9"A47!9;!F;@4A!9G4!56;KA4F7I!2G4!6474:6>G46!L"AA!"@489"<D!4:>G!5:69!;<!9G4!56;KA4F!
:8@!9G4!LG;A4!;6!9;9:A!:F;C89!:8@!4$5A:"8!G;L!7;F49"F47!:!<6:>9";8!>:8!K4!7G;L8!C7"8H!9G4!
7F:AA479!<6:>9";8!5;77"KA4!;6!"8!^A;L479!946F7_IU!!

Model – Four Problems 

Complete Information 

10. A mother elephant eats 2 3/4  tons of food every month.  Her baby eats  1/4 of a ton of 
food.  Altogether they eat 2 4/4 or 3 tons of food.  

 
“When we have these types of problems we combine or add the two parts together to find the 
total. So in this case we have one part, the 2 3/4 tons of food for the mother elephant and another 
part, the 1/4 of a ton of food for the baby, the total or whole is 2 and 4/4, but the 4/4 can be 
changed to 1 whole.  We can then say that the total is 3 tons of food. (The researcher will write 
Part + Part = Whole on the board to reinforce this concept.)  
 

(The researcher will then read the following problem.) 

11. Tiffany bought 2 1/2 pounds of yellow and red m & ms to take to a friend’s party.  If 1 
1/2 pounds of m & ms were yellow, then one pound is red. (group) 

 

(The researcher will model the problem with fraction tiles while stating the following:) 

“In this problem  the two parts are the 1 " pounds of yellow m & ms and the 1 pound of red m & 
ms.  We can model our yellow m & ms  with the red fraction tile for 1 and the half with the pink 
" fraction tile. We can model the 1 pound of red m & ms with another red fraction tile for 1. The 
total or whole group is the 2 " pounds of yellow and red m & ms combined. This problem is still 
a group problem, but it is written in a different way. The total or group is at the beginning of the 
problem and the two parts are at the end of the problem.  (The researcher will show the student 
on the written problem.) 

 
Unknown Information 

“Sometimes we have group problems and we know each of the parts, but we don’t know the total 
or whole amount in the group.  I’m going to model this type of problem.  (The researcher models 
the following problem with fraction tiles.) 
 

12. A mother elephant eats 2 2/3  tons of food every month.  Her baby eats 2/3 of a ton of 
food. How many tons of food do they eat in a month?  
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“When we have these types of problems we combine or add the two parts together to find the 
whole. So in this case we have one part, the 2 2/3 tons of food for the mother elephant and 
another part, the 2/3 of a ton of food for the baby and we want to know how much we have as the 
total or “whole” amount.  If we look at the tiles we can see that we have 2 and 4/3, but the 3/3 
can be changed to one whole  (the researcher will model with the blocks) so our total or group 
amount is 3 1/3.” 

 
13. Tiffany bought 3 2/3 pounds of yellow and red m & ms to take to a friend’s party.  If 1 

1/3 pounds of m & ms were yellow, how many pounds were red?  
 

“In this problem we know that the total or whole group is the 3 2/3 pounds of yellow and red m 
& ms combined. We know that one of the parts is the 1 1/3  pounds of yellow m & ms, but we 
don’t know the other part (red m & ms).  We can model the 3 2/3 pounds of m& ms with our 
fraction tiles and take away the part that we know (the 1 1/3 pound of yellow m & ms) to see 
what our other part or red m & ms would be. We can tell by the tiles that are left that there 
would be 1 1/3 pounds of red m & ms.  Do you have any questions about these problems?” 

Guided Practice: 
 
“Now I’m going to help you model some group problems. The first two problems include all the 
information, so you will just practice modeling the two parts and the total or whole amount of 
the problem. (The researcher will then read each problem to the student and guide the student as 
he/she models the problem. The researcher will point out the different parts and the total in each 
problem.) 

Guided Practice – Four Problems 

1. Last week, John kept track of the weather for three days.  In his town it was sunny some 
days and rainy other days.  If it rained 1 ! days, then 1 ! days were sunny.  

2. An adult dog eats 1 3/4 pounds of food every day.  Her puppy eats 1 1/4 pounds of food.  
Altogether they eat 3 pounds of food each day. 

 
The next two problems have missing information. I will help you model the known information. I 
will then help you use the model of the group problem to determine the missing information. 
(The researcher will then read each problem to the student and guide the student as he/she 
models the problem. The researcher will point out the known parts or total and guide the student 
in using the manipulatives to find the missing part or total.) 

 
3. Last week, John kept track of the weather for three days.  In his town it was sunny some 

days and rainy other days.  If it rained 2 ! days, how many days were sunny?  
4. An adult dog eats 1 1/3  pounds of food every day.  Her puppy eats  2/3 pounds of food. 

How many pounds of food do they eat in a day?  
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“Do you have any questions about the problems that we worked together? (The researcher will 
answer any questions and provide clarification at this point.) Now I am going to let you model 
two problems that have all the information and I’m going to let you try to use the fraction tiles to 
solve four group problems similar to the ones that we worked together. I will read the problems 
to you, but I want you to describe how you are getting the answer and model the problem with 
the fraction tiles. I will read each problem to you. (The researcher will read the following 
problems to the student. The researcher will take notes as the student models each problem and 
describes how he/she solves the problems.) 

Independent Practice: 

1. Isaiah bought 2 3/4 pounds of yellow and red skittles to take to a friend’s party.  If 1 1/4 
pounds of skittles were yellow then 1 2/4 pounds were red. 

2. Mrs. Poling brought 1 3/4 cheese pizzas to the fifth grade party and Mrs. Young brought 
1 # pepperoni pizzas to the party.  Together they brought 3 2/4 pizzas to the class party. 

3. Last week, Kola kept track of the weather for three days.  In his town it was sunny some 
days and snowy other days.  If it snowed 1 1/2 days, how many days were sunny?  

4. Jared went to McDonalds and ate 1 2/3 Chicken McNuggets.  His brother ate  1 2/3 
Chicken McNuggets. How many Chicken McNuggets did they eat altogether?  

5. Hannah bought 3 2/3 pounds of green and red lollipops to take to a friend’s house.  If  1 
1/3 pounds of the lollipops were green, how many pounds were red?  

6. Last week, the football team practiced three days.  Some days, or parts of some days,  
they worked on offense and on other days they worked on defense.  If they worked on 
offense 2  1/4 days, how many days did they work on defense?  

 

Scoring:  
The researcher will check to see if each problem is modeled correctly and the correct answer is 
given. If the student correctly answers 5/6 questions the researcher will continue to the next 
lesson. If the student does not correctly answer 5/6 questions then the researcher will review the 
modeling and group schema with the student. 
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Appendix D 
 

Checklist for Review of Audiotaped Lessons 
 

1. _____ The researcher included a description of the problem type in the introduction. 
 

2. _____ The researcher included a review of the previous problem type (when appropriate) 
or review of the previous lesson in the introduction. 
 

3. _____ The researcher modeled two problems with known amounts (this could be 
completed with help from the student).  
 

4. _____ The researcher modeled two problems with unknown amounts (this could be 
completed with help from the student). 
 

5. _____The student and researcher completed two guided practice problem(s) with known 
amounts. 
 

6. _____The student and researcher completed two guided practice problems with unknown 
amounts. 
 

7. _____ The student completed two independent practice problems with known amounts. 
 

8. _____The student completed four independent practice problems with unknown amounts. 
 

9. _____The researcher (or student) read each independent practice problem aloud. 
 

10. _____The researcher responded to student questions when asked throughout the lesson. 
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