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Abstract 
 

A Low-Powered Optoelectronic Characterizer for CubeSat: LOCC and III-V 
Nitride Based LEDs 

 
 

Matthew J. Pachol 
 
 

III-V semiconductor materials exhibit robustness and natural hardness when exposed to 
ionizing radiation and temperature swings. With these characteristics in mind, III-V Nitride Light 
Emitting Diodes (LEDs) are ideal devices for space-based applications and missions. The effects of 
ionizing radiation on optoelectronic devices comprised of III-V materials have been studied, but 
results have been obtained through experiments performed in terrestrial laboratories. While these 
laboratory tests may lend insight into device lifetimes, performance degradation, etc., they are no 
substitute for similar measurements and characterization performed in space.  

Interest in small satellite applications have grown over the past decade. These solutions range 
from Earth imaging to communication networks. Small satellites provide a unique opportunity to gain 
an understanding of the reliability and operational characteristics of III-V based materials and other 
semiconductor devices while exposed to the environment of space. To meet the constraints of the 
small satellite, a Low-powered Optoelectronic Characterizer for CubeSat (LOCC) has been developed 
in PC/104 form, measuring 3.6 by 3.8 inches. LOCC performs current-voltage and electroluminescent 
measurements of LEDs while in space. The LOCC system is designed using low-power integrated 
circuits that can supply over 100 mA of current to LEDs while maintaining low power of 3.2W under 
operation. 

This thesis presents the design, implementation, and control of the LOCC system. This 
includes system block diagrams, printed circuit board layouts, interfacing, firmware, and software. 
Additionally, the resulting current-voltage measurements, required wattage, and required data storage 
are presented to illustrate functionality. This instrumentation enables the study of optoelectronic 
devices in space, allowing future research to focus on producing radiation hard light emitting devices 
that can operate in environments with reduced shielding against ionizing radiation while maintaining 
device reliability. 
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Chapter 1: Introduction 

1.1 Motivation and Objectives 

When developing optoelectronics for space applications, it is necessary to consider their 

operation in an environment with potentially high radiation levels and large temperature swings. To 

do this, a Low-powered Optoelectronic Characterizer for CubeSat (LOCC) has been developed. The 

motivation for this system is to provide a tool for evaluating the performance of III-V nitride based 

light emitting diodes (LEDs) and photodetectors (PDs) while in space. The LOCC platform was 

developed for West Virginia’s first spacecraft, STF-1, which is a 3-unit CubeSat vehicle developed in 

a joint effort between West Virginia University (WVU) and NASA’s Independent Verification and 

Validation (IV&V).  

 

1.1.1 Problem Statement 

The cost for launching payloads into space can range from $10,000 to $45,000 per pound, 

depending on flight [2] [3] [4]. This means that weight significantly contributes to the cost of space 

missions. The optical and electrical properties of LEDs are subject to ionizing damages that cause 

degradation. This has led to the use of shielding on electronics, which increases the overall weight of 

the spacecraft [5] [6].  More shielding leads to increased overall weight, lower available payload 

capacity, and increased cost. To counter the additional weight from shielding, developing radiation-

hard optoelectronic devices allows for a reduction in the amount of shielding used, improves 

electronics reliability, and decreases spacecraft weight and associate launch costs. To validate 

approaches used to create radiation hardened devices, specifically LEDs, their optical and electrical 

properties must be examined while in the environment of space. 
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CubeSats provide a low-cost testbed to observe the operation of LEDs while in space. 

CubeSats are 10 cm x 10 cm x 10 cm satellites that were originally standardized by California 

Polytechnic State University (Cal Poly) in 1999 [7]. CubeSat launches take advantage of ride-sharing 

opportunities that are offered with increasing frequency through collaborations between small satellite 

developers and rocket companies. For these launches, CubeSats are a secondary payload. Because of 

this, CubeSats can end up with an orbital altitude based on the mission of the primary payload, and 

undergo different effects such as atmospheric drag and ionospheric radiation depending on altitude 

and inclination. A CubeSat may be launched into a low Earth orbit (LEO) that will orbit between 160 

km and 2,000 km [8]. These factors directly impact the lifetime of a CubeSat and its mission duration.  

The goal of this work is to create and evaluate an optoelectronic characterization system that 

is compatible with the space and power requirements of a CubeSat platform that will measure the 

electrical and optical properties of III-V GaN based LEDs while in the space environment. This 

platform will enable the evaluation of radiation hard optoelectronics, as well as the reliability 

assessment of minimally shielded devices. This work aims to reinforce the foundation and 

advancement of optoelectronics and semiconductor devices for applications in the space environment. 

 

1.1.2 Motivation 

LEDs have a broad range of applications and are used globally as efficient sources of light.  

The solid-state lighting (SSL) industry today is motivated by the low energy consumption, control, 

color tuning capability, aesthetics, and long lifetimes of LEDs, making them desirable replacements 

for traditional light sources (incandescent bulbs, fluorescent lamps, etc.). These factors tie together in 

a national and global market that is dedicated to high efficiency and reduced energy consumption. The 

U.S. Department of Energy (DOE) has projected that LEDs will make up 30% of U.S. lighting 

installations by the year 2020. They also forecast that, by 2035, 5.1 quadrillion Btus (quads) in annual 
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energy consumption will be cut. This is equivalent to the total annual energy consumed by 45 million 

U.S. homes. Between the years of 2015 and 2035, this comes close to $630 billion in savings towards 

energy costs [63]. NASA has even sponsored research efforts evaluating the use of LEDs to promote 

astronauts’ health while in space [64]. LEDs are a crucial part of developing technologies, and will 

continue to be influential globally and as part of developing space systems.  

 In 1971, one of the first missions to implement optoelectronic navigation system was the 

Mariner IX mission to Mars [69]. At the heart of this system are the optoelectronic devices (LEDs 

and PDs). The mission focused on imaging and optical measurements of celestial bodies (stars, moons, 

planets, comets, and asteroids). When examining these large bodies, optical navigation determined 

where the image should appear regarding the spacecraft, actual position of the target body, and utilized 

image processing to determine the coordinates of the target object.  

The Mars Reconnaissance Orbiter (MRO) was launched in 2006, built by Lockheed Martin, 

and supervised by NASA Jet Propulsion Laboratory (JPL). This satellite utilized several different 

optical instruments such as a spectrometer, visible spectrum cameras, and radar [70]. 
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Figure 1. 1: Illustration of MRO instrumentation [71] 

 

Among these instruments were the High-Resolution Imaging Science Experiment (HiRISE) camera 

that collected images in blue-green, red, and near infrared (NIR) bands [72]. Also, a Context Camera 

(CTX) that provided greyscale images and utilized a Maksutov Cassegrain telescope with a 5,064-pixel 

array Charged Coupled Device (CCD) camera [73]. The MRO also housed the Mars Color Imager 

(MARCI) that took images of Mars in five visible spectrums and two ultraviolet bands [74]. The MRO 

housed the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) that measured 544 

channels from visible and near infrared bands (VNIR). MRO also carried a Mars Climate Sounder 

(MCS) with multiple VNIR and far infrared (FIR) channels. The MCS measured weather temperature, 

pressure, humidity, and dust [76]. These devices and systems led to the discovery of water ice in ice 

cap measurements, ice exposure in craters, chloride deposits, and even photographed avalanches [77] 

[78] [79] [80]. 

 

  

Figure 1.1.2a: Mars Color Imager [81], Figure 1.1.2b: HiRISE Telescope Camera, Figure 1. 2: 

(LEFT)Mars Color Imager, (RIGHT) HiRISE Telescope Camera [82] 
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Automated Rendezvous and Docking/Capture sensors have been examined as another means 

of utilizing LEDs in space applications [89]. Visible and infrared electromagnetic (EM) spectrum-

based sensors and LEDs can be used in the creation of light detection and ranging (LIDAR) systems 

[91]. SpaceX’s Dragon utilizes IR camera and image processing to provide the relative data on 

navigation range [92]. NASA is currently developing an International Docking Adapter (IDA) that 

will allow the International Space Station (ISS) to dock with any target. Figure 1.3 illustrates the use 

of NASA/Boeing’s Pressurized Mating Adapter (PMAs) that utilize reflective surfaces and LIDAR 

system for automated docking procedures.  

 

 

Figure 1. 3: ISS IDA to PMA interface [89] 

 

1.1.2.1 Optoelectronics in Small Satellite Applications 

The technologies onboard the MRO, Mariner, and other large-scale systems do not fall within 

the constraints of an academic budget, so CubeSat missions offer similar technologies when 

performing celestial observations. The effort described in [75] examines the capabilities of CubeSats 
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for Earth observation. Like the largescale satellites, CubeSats are being equipped with CCD cameras, 

radio receivers, spectral measurements lens, and antennas for examining conditions of planets and 

space. CubeSat missions have performed Earth observations regarding NIR and visible bands and 

disaster monitoring [83] [84] [85], showing that CubeSat imaging can rival that of larger satellites. 

A CubeSat system has been developed to test in-orbit technologies that are necessary for 

autonomous assembled and docking for a multiple mirror micro-satellite array [93]. The Autonomous 

Assemble of a Reconfigurable Space Telescope, or AAReST, has been developed to verify and 

improve autonomous assembly. The AAReST consists of three 3U CubeSats that utilizes 

LIDAR/Camera systems as well as other basic CubeSat components such as Battery, GPS, and 

Transceivers. The mission for the AAReST was developed by California Institute of Technology 

(CalTech) and University of Surrey-Surrey Space Centre (SSC). The overall mission is to develop a 

self-supporting system for autonomy. Figure 1.4 illustrates the layout of the AAReST configuration. 

 

 

Figure 1. 4: AAReST CubeSat System [93] 
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The examples presented above have a common factor; the reliable operation of optoelectronic 

devices. Coupling the growing need for space ready solar panels, LEDs, and photodetectors, it is seen 

that reliable electronics in the space are important. To explore space, reliable optoelectronics are 

necessary in the development of space technologies. It is important to stress the need for electronics 

that must be able to withstand the space to assure successful missions [68].  

As can be seen in the preceding examples, dependable optoelectronic devices are key 

components to the successful operation of spacecraft missions. To improve these devices, it is 

necessary to develop analytical tools that can be utilized in their native environment. This thesis 

focuses on the design and implementation of hardware systems that analyze the operation and 

characteristics of minimally shielded III-V Nitride based LEDs while on orbit. The concept of 

operations of this work is aided by an understanding of small satellites, specifically CubeSats, an 

understanding of LEDs, and the motivation of selected materials versus ionizing radiation. These 

topics will be introduced in the following sections. 

 

1.2 Overview of Electronics in Space Applications 

The space environment poses many challenges to conventional semiconductor devices. High-

energy protons, electrons, and ions that are found in low Earth orbit (LEO) can wreak havoc on 

electronic devices while in space [12]. It is important to understand the general effects of space on 

electronics 

 

1.2.1 Earth’s Atmosphere  

Understanding the effects of irradiation on electronics is paramount when considering 

methods to reduce shielding and increase the lifetime of semiconductor devices (Si-based, III-V, etc.) 

while on orbit. It is necessary to see how space weather will effect our elecontrics. To do this, an 
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overview of Earth’s atmosphere is provided to illustrate the different layers of the atmosphere and 

how they are related. Figure 1.5 shows the break down of atmopsheric layers.  

 

 

Figure 1. 5: Illustration of Earth’s atmospheric boundaries [94] 

 

Starting from the Earth’s surface, the troposphere extends to about 12 km. This varies depending 

relatively between the poles and equator [95]. The stratosphere sits atop the Tropopause, which makes 
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up a 43 km cushion. Temeperatures here range from -60˚C to 0˚C. This is due to the absorption of 

ultraviolet radiation from the Sun [96]. The Mesosphere extends above the Stratosphere another 50 

km into the mesopause at an additional 35 km [97]. Temperatures in this part of the atmosphere can 

reach an average -85˚C, and it is considered the coldest place on Earth [98]. The Thermosphere exists 

from 80 km to 1000 km. This height can be varied due to the influence of solar activity [99]. It is 

within this sphere that STF-1 will orbit. More specifically, in the thermosphere’s lower range. The 

exosphere is Earth’s outermost layer and extends to 10,000 km where the effects of solar wind take 

place. This thesis focuses on the effects of the lower thermosphere. 

 

Table 1. 1: Effects of Space Environment [102] 

 

 

Table 1.1 describes the effects of space. Electronics undergo effects caused by cosmic rays, high energy 

solar particles, radiation belt particles, Ionospheric Plasmas, visible and IR photons as well as UV, X-
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Ray, and gamma photons. Electronics engieeers must be wary of thermodynamic and electromagentic 

effects, and should consider appropriate protection methods, which can influence the weight and cost 

of the component and system. The diveresity of the electromagnetic and thermal environments on 

electronics have had an impact on the way electronics are developed for space [103].  

 

1.2.2 Ionosphere  

Between 60 km and 1,000 km, the ionosphere stretches across the thermosphere, mesosphere 

and exospehers. The Sun’s ionizing partlicles reach this region, and play a crucial role in the electrical 

flow of the atmosphere, forming the edge of the magnetosphere [100]. At this height in the 

atmosphere, wavelengths in the ultraviolet (UV) and x-ray, or shorter wavelengths, can have an ionzing 

effect on the gas atoms and molecules that exist here. Ionization is heavily influenced by solar radiation 

and galactic cosmic radiation (GCR). Two major phenomon appear from the effects of the Sun: 

particle precipitation and convection of ionospheric plasma. These ionization effects are illustrated in 

figure 1.6.  
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Figure 1. 6: Basic Quantities of Ionosphere as function of height [101] 

 

1.2.3 Radiation Effects on Solid-State Electronics 

The space environment and its high-energy particles can produce damage in electronics. These 

effects are listed below [14]: 

 

• Total Ionizing Dose (TID) – Cumulative dose damage 

• Enhanced Low Dose Rate Effects (ELDRS) – Low doses produce disproportionate 

damage in higher ranges 

• Neutron and Proton Displacement 

• Single Event Effects (SEE) – Device disruption by ionic charge 
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TID is caused by displacements in the lattice that come from ionzing radiations of high-energy X-

Rays, gamma rays, or charged particles such as protons. Displacement of atoms due to nuclear 

interactions in lattice structures is widely observed. The displaced lattice atom can produce vacancies, 

interstrials and complexities hereafter. This may result in decreased electron mobility, voltage shifts, 

decreases in transconductance, and decreases in saturation currents [15]. In LEDs, this can result in 

reduced light output with increase in currents. Figure 1.7 illustrates atomic damage in a crystal structure 

of electronics. 

 

 lattice

Particle

(Interstitial) 

(Vacancy)

 

Figure 1. 7: Atomic Displacement and point defects (vacancy and interstitial) 

 

Protons have shown to produce more point defects, and have the largest effect on electronics 

due to electromagnetic interactions within the crystal that are dependent on particle energy and type 

[16] [17] [18]. Radiation effects can act as generation-recombination or trapping centers for charged 
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carries [19]. This has effects on voltage depletion levels, reverse currents, and signal levels. To examine 

these effects in the lattice, the damage is scaled using nonionzing energy loss (NIEL) [20]. This scaling 

allows the macroscopic electrical properties to be compared among devices. It is performed on the 

energy spectra of the particles of a radiation field with the appropriate NIEL factor to express the 

fluence in terms of a reference monochromatic particle [21]. The defects of space charge density 

(𝑁𝑒𝑓𝑓) can be summarized as a function of fluence. Figure 1.8 describes the absolute value of voltage 

for varying thicknesses and fluence of protons; describing decay along with an increase in space charge 

after type inversion. 

 

 

Figure 1. 8: Space Charge and Forward voltage as function of proton fluence [22] 

 

Similiarly, the effects of irradiation in the electical characteristics of silicon photodetectors with varying 

thickness of microstriping is seen in Figure 1.9. 
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Figure 1. 9: Reverse Current as versus bias voltage with varying thicknesses and irradiation [21] 

 

High-energy electrons also casue significant damage to silicon electronics. Leakage current, 

measured in terms of volume density increase, have been observed [23]. Figure 1.10 shows the linear 

fit of multiple silicon materials after electron irradiation and 8 minutes of annealing at 80 ˚C. 

 

 

Figure 1. 10: linear fit of multiple silicon materials after electron irradiation after 8 minutes of annealing at 80 ˚C 
[23] 
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The effects of radiation can also be seen within transistors as a decrease in current gain. Figure 1.11 

describes emitter current density decreases pre- and post-proton irradiation [24].  

 

 

Figure 1. 11: DC Current Gain of npn and pnp transistors [24] 

 

It is easy to see that irradiation of the devices has significant effects on device characteristics. These 

characteristics play a key role in crafting stronger radiation hardness in electronics. With these effects 

in mind, progress needs to be made in the development of robust semicondutor devices which can 

withstandprolonged exposure to the effects of space.  

 

1.2.4 Temperature Effects on Electronics 

It is important to note the effects of temperature while in space, where temperatures can range 

from -193 ˚C to +250 ˚C [25]. The requirments of electronics for space and deep space operations 

need to be capable of operation within these ranges and exhibit long lifetimes while under harsh 

conditions. Temperature can have detrimental effects on devices such as photosensors and transistors. 
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Studies are ongoing at the NASA Glenn Research Center in efforts of designing more temperature-

robust circuits and devices to operatre over greater temperature extremes. The goal is to develop 

devices and technology for low- and high-temperature operation. Figure 1.12 illustrates temperature 

effects on diodes and transistors. Effects on transistors show shifted gate voltage and a diminished 

saturation current. 

 

  

Figure 1. 12: (LEFT) I-V Characteristics of SiGe diode as a function of temperature, (RIGHT) I-V characteristics 
of Si MOSFETs as functions of temperature [25] 

 

Working towards reliable devices for space poses a large challenge for the continued 

exploration of space. Providing tools that can enable these developments are paramount for the 

success of space exploration. 

 

1.2.5 Hardness-by-Design  

It is important to note here the work that has been done towards the hardening of device 

technology to fight against irradiation. Techniques have been adopted and are currently catagorized 
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as Hardness-by-Design. Extensive research has been performed towards the hardning of CMOS 

circuits and system-on-chip architectures [49 - 55]. In CMOS research, techniques such as guard rings 

and width/length ratio control can lead to radiation-tolerent devices. There has been performance 

metrics for devices such as charge coupled devices (CCDs), charge-injection devices (CIDs), and 

active-pixel sensors (APS) that have been examined for imaging while in space. The use of MOSFET 

technology, coupled with hardness-by-design devices, allows for the advancement of imaging systems 

that produce higher quality and less interferance. This will prove important for upcoming missions 

such as the James Webb Space Telescope (JWST) [56]. Degredation in photodetectors is a leading 

interest in space-technologies [57]. It has been shown that the sensitivity of photodetector becomes 

compromised while in space [58]. Research regarding the hardening of optoelectronics have suggested 

that the thinning of layers in the material stack offers an increased defense against radiation dosing. 

The work presented in [59] has shown that layers of Indium Tin Oxide (ITO) are effective with 

conductivity and stable while irradiated. The evaluation of passivation layers, epitaxial growth 

techniques, or photonic cystals may help in the prevention of TID effects and even enchance ligh 

output in devices. Consideration of redundancy and guarding structures may also prove beneficial in 

the improvement of LEDs and optoelectronics. The improvement of CCDs, CIDs, APSs, LEDs, and 

lasers are a byproduct of design and materials. Combining the natural hardness of GaN along with the 

robustness provided by hardness-by-design techniques provides a path towards reliable operation of 

devices in the space environment. 

 

1.3 Overview of GaN Materials for Space Applications 

Wide-bandgap III-V nitrides are shown to be radiation tolerent due to their inherint bond 

strength as binary and terenary compounds [26]. The measures of bond strength were previously 

determined to be inversely proportional to the volume of the unit cell [28]. When compared to GaAs, 
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reports show GaN breakdown occurred two orders of magnitude higher [27]. These intrinic properties 

indicate that that GaN optoelectronics may be better for space applications. To reinforce this, it is 

important that unknown effects of space on GaN optoelectronics be examined.  

GaN in LEO will be subjected to fluxes of high energy electrons, protons, gamma radiation, 

and neutron radiation. Proton and electron irradiation leads to primary defects in the form of vacancies 

and interstitials. This leads to secondary effects such as grain broundies, cracks, and voids [30] [31] 

[32]. It is currently unclear how gamma radiation effects GaN. as multiple reports have conflicting 

results. Statements have been made that gamma irradiation increases electron mobility, thus increasing 

drain currents [33] [34], while others have reported a decrease in drain current [35] [36] [37]. 

 

1.3.1 Radiation Damage in GaN LEDs 

GaN is a promising material for space application electronics. This is due to the required 

displacement energy needed to move atoms from the lattice. The displacement energy is inversely 

proportional to the lattice constant and rivals materials such as GaAs[38].  It is important to 

understand the effects of irradiating GaN materials and what conclusions have been drawn. The most 

prominent damages and effects to GaN materials are summarzed herin. 

 

Proton Damage – Damage caused by protons is dependent on particle energies and  Rutherford 

Scattering. High-energy protons can penetrate packaging materials and affect the LEDs. The effects 

of proton irradiation have been studied in [39] and [40]. It has been found that III-V nitrides posses 

a superior hardness to proton damages, withstanding upwards of 115 MeV. Figure 1.13 shows 

irradiation effects normalized to their parameters. Detremental effects occur after 1 MeV energy [41]. 
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Figure 1. 13: Normalized output vs Proton Irradiation Energies [41] 

 

 

Figure 1. 14: Light Output after 10 MeV proton irradtion of GaN and GaAs materials [41] 
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From [41], it is also seen that GaN Quantum well (QW) structures degrade in optical performance 

two orders of magnitude after GaAs LEDs. The results presented in [42] consider the effects of proton 

irradiation with electroluminescent spectra and I-V characteristics, summarize in Figures 1.15 & 1.16.  

 

 

Figure 1. 15: Current-Voltage Characteristics after irradiation [42] 

 

 

Figure 1. 16: EL output of irradiated LEDs [42] 
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These studies conclude the effects of proton irradation. It was observed that the optical 

properties were effected before the electrical properties. While conductivity is due both to radiative 

recombination and non-radiative recombination, light output is related to the radiative recombination 

process. Because of the creation of non-radiative traps induced by damage, decreased light output is 

observed. It should eb noted that, while resistance, current, and light output are changing, the peak 

emission wavelength remains relatively close to pre-irradiated conditions. 

 

Electron Damage – In [43], LEDs were irradiated with a range of 300 keV to 1400 keV electrons to 

examine light output intensity. It was found that the voltage threshold for lattice displacement was 

around 19 eV, creating noticeable damage. The effects on the LEDs showed that optical properties 

degraded faster than the electrical properties. Figure 1.17 illustrates the normalized light output after 

electron irradiation. 
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Figure 1. 17: Normalized light output vs. electron irradiation [43] 

 

Neutron Damage – Similar effects have been seen with neutron irradiation in LEDs. Results in [44] 

show that neutron irradiation results in a carrier removal effect within the lattic. It was observed that 

an increase of saturation current occurs and was attributed to the increase in trap concentrations. 

Furthermore, it was observed that optical degredation was more severe than electrical effects.   

 

Gamma ray Damage – The effert described in [46] shows that luminescity of the devices decreased 

as dosage increased. A .1 to .15 V shift in turnon voltage was observed. Like the previous particle 

damages, optical output was effected the most. Because of this effect, it is also considered that these 

inefficiencies are due to recombination centers forming. Gamma radiation also resulted in a peak red 
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shift of the wavelength emission. The peaks also showed broadening consistant with electron 

irradiation due to vacancies [47]. 

 

Alpha Particles Damage – GaN LEDs have been irradiated with 500 keV alpha particles at fluences 

above 1014𝑐𝑚−2 using cathodoluminescence [48]. These experiments proved to be consistant with 

the previously shown irradiation damage. This showed a decrease in light output and formation of 

deep level traps within the material. 

 

 The effects of irradiation of InGaN/GaN LEDs can be seen. The experiments show light 

output decrease that scaled with dosages of radiation. It is also noteworthy that the luminescent 

properties changed faster than electrical properties. Neutron irradiation showed a level of recorvery 

after annealing processes, and that electron damages do not have the largest effects on devices. 

Measurment of the effects of irradiation on GaN devices have shown that they are quite resistant to 

radiation, and prove to be a reliable material for electronics used for space-based applications.  

 

1.3.2 Temperature Effects on GaN LEDs 

Because space and the ionosphere have wide temperature ranges (200K – 550K), it is necessary 

to examine the effects of temperature on GaN LEDs and how temperature effects I-V and EL 

characteristics [127]. Temperature has direct effects on the p-n junction of LEDs and can produce 

change in resistance, forward voltage, current, and peak wavelength emission [128 - 130]. In [131], a 

method developed to determine junction temperature based on monitoring resistive change of GaN 

LEDs as a function of temperature is described. The effects of temperature on forward voltage can 

also be seen from [131]. A decrease in forward voltage was observed while temperatures was increased. 
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Figure 1. 18: (LEFT) Resistive change versus temperature, (RIGHT) Forward Voltage Change versus temperature 
[131] 

  

Zhao has similarly reported the change in current and junction temperature at different ambient 

temperatures. This has shown increases in both current and junction temperature. These results show 

that maintaining temperature plays a crucial role in determining the electrical characteristics of LED, 

especially in space. Figure 1.19 shows the change in current and junction temperature at different 

temperatures. 

 

 

Figure 1. 19: Junction temperature as a function of current at different temperatures [131] 
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Additionally, the electroluminescent spectra are influenced by temperature. This can lead to 

red or blue shifts in peak wavelength emission. For example, redshift may occur in InGaN LEDs as 

band gap energy is reduced with increasing temperature [132]. In [133], He shows that emissions peak 

shift occurs in high power blue LEDs as a function of junction temperature. Figure 1.20 shows the 

change in peak emission. 

 

 

Figure 1. 20: Emission shift in peak wavelength as a function of junction temperature [133] 

 

From the studies presented, temperature swings have a direct impact on the performance 

of GaN based LEDs. These effects should be taken into consideration when examining the results 

of the LOCC system while in space. This is because the observed changes in electrical and optical 

properties may not be due to radiation, but variation in junction temperature based on the relative 

position of the CubeSat with respect to the sun. It is also important to note that STF-1 is not 

stationary while on orbit and experiences rotation. This leaves different side of the CubeSat 

exposed to the sun at any time. For future design, thermal control of the LED characterization 

process should be prioritized when developing a system for characterizing LEDs while in space. 
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1.3.3 Annealing Effecting on Radiation Damage 

 It has been shown that displacement damages can be removed by thermal annealing at 

temperatures of 800 ˚C [134]. Defects introduced in GaN by 2 MeV protons and 0.2–2.4 MeV 

electrons were removed after being annealed at around 250 ˚C [135] [136]. When proton, electron, 

and neutrons doses are increased, the density of defects is increased, the thermal stability of radiation 

damage is greater [135]. In GaN irradiated with high doses of protons, the luminescence intensity was 

not restored after annealing at 800 ˚C. For AlGaN/GaN irradiated with 40 MeV protons, doses that 

are equivalent to decades in low-earth orbit, annealing at 300 ˚C restored are over 60% of initial 

forward current. In AlN/GaN irradiated with 5 MeV protons showed less degradation in drain current 

because of the more radiation-hard heterostructure compared to AlGaN/GaN. Annealing of these 

devices at 250 – 350 ˚C from 5 minutes to 3 hours showed that the forward and reverse current 

decreased 10%, and moved towards pre-irradiation values. [137] [138].  

 From the studies presented, annealing directly effects the performance of GaN materials and 

LEDs. These effects may not observable while on orbit, but should be taken into consideration when 

examining the lifetime and degradation effects of LEDs while in space. This section summarizes the 

effects of radiation and temperature on GaN materials and LEDs. It can be seen why GaN is chosen 

for applications that require stability against harsh environments.  

 

1.4 Trends Toward Small Satellites 

This section provides an overview of small satellites and the CubeSat subcategory, as well as 

trends towards their use. It also includes is an overview of their structures, standards, and methods 

of launching. NASA IV&V’s Simulation-to-Flight is detailed herein. 
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1.4.1 Overview 

During the post-World War II era America and the Soviet Union were matched in a “Cold 

War.” In the years of 1957-1958, these two powers brought the dawn of the Space Age [104]. The 

Space Age defines the time of the Space Race, space exploration, and space technology that is seen 

today. This new frontier was ushered in by the launch of the world’s first artificial satellite, Sputnik I. 

Following the launch of Sputnik I, America launched the Explorer I, followed by the U.S. Navy’s 

Vanguard I in the same year. It has been said that congress passing the National Aeronautics and 

Space Act and the creation of NASA were both direct results of the launches of Sputnik I and its 

predecessors [105]. The launching of these artificial satellites has been hailed as great achievements of 

their time, and we are now seeing the fruit of these earlier advances in the emerging commercial space 

industry; NewSpace [106].  

With the advancement of electronics and shrinking of component footprint, a resulting 

increase in performance and smaller systems have emerged. This allows larger satellites to be 

miniaturized. The Hubble Space Telescope has a mass of 11,110 kg (24,490 lb.) with its successor, 

James Webb Space Telescope, coming in at 6,500 kg (14,300 lb.) [107] [108]. Because weight plays a 

significant part in the cost of placing things into space, the miniaturization of satellites allows for a 

cost-effective method when launching science missions into space. Coupling cost effective electronics, 

compact systems, makers’ communities, and the emerging NewSpace industry, shorter development 

times and ease of access to launch opportunities have become available [109]. 

Because of the miniaturization of satellites, small satellites, or “SmallSats”, have been created. 

Small satellites come in various forms and are categorized by mass. Table 1.2 describes the 

subcategories of SmallSats. Please note that CubeSats fall within the category of nanosatellites and will 

be later detailed. These masses are referred to as gross mass, as it may include propellants. 

 

https://www.nasa.gov/mission_pages/hubble/main/index.html
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Table 1. 2: Classification of small satellites by mass 

Class Mass 

Femtosatellites 10-100 g 

Picosatellites .1 – 1 kg 

Nanaosatellite 1 – 10 kg 

Mircosatellites 10 – 100 kg 

 

Examples of satellites within all categories exist. The Orbiting Picosatellite Automatic Launcher 

(OPAL) was designed by Space Systems Development Laboratory (SSDL) at Stanford University, 

Stanford, CA and was used as a mothership for six picosatellites that included StenSat, PICOSAT1.0, 

and Artemis [110]. OPAL demonstrated the feasibility of these spacecrafts and the ability to perform 

various science missions in a compact system. An example of a femtosatellite comes from Cornell 

University’s Sprite concept, which is demonstrated as project KickSat [111]. KickSat is a 3.2 x 3.2 cm 

femtosatellites, and was a crowd funded project to demonstrate 128 Sprites inside a CubeSat [112]. 

The NASA developed Dellingr 6U CubeSat provides an example of nano satellite classifications. The 

Dellingr 6U CubeSat was designed to combat the restraints of the 3U CubeSat and implement low-

cost, commercial off-the-shelf components (COTS). Dellingr replaced 3U CubeSats as a standard for 

the academic, government, and industry institutions [113]. 

 SpaceWorks has been monitoring the global Nano and Microsatellite markets. They annually 

publish their findings and forecasts for free to small satellite communities. Their reviews have shown 

an average growth of 39% per year with a forecasted 13% growth per year over the next six years 

(2016-2022), with 2,300-3,000 nano/microsatellites requiring launch [114]. Figure 1.21 describes the 

history of launches and projected launches over the next 6 years. 
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Figure 1. 21: Nano/Microsatellite Projection and History. SpaceWorks 2016 [114] 

 

Clyde Space is one of the most prominent companies in the small satellite market. The CEO of Clyde 

Space has stated [115]:  

 

I don't see it [CubeSats] slowing down. The challenge for a company like Clyde Space and 

others who operate in this area is whether companies can scale up fast enough to meet the 

demand and still maintain the quality and performance within the timeframes required by the 

customers. 

 

Private investors are a driving factor in the small satellite market, and participation from multiple 

institutions is needed to continue upward trends [116]. 
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1.4.2 On CubeSats 

CubeSats are an increasingly popular classification of small satellites. The CubeSat standard 

was developed by California Polytechnic State University as a collaboration between Professor Jordi 

Puig-Sauri, San Luis Obispo, and Professor Bob Twiggs at Stanford University’s Space Systems 

Development Laboratory (SSDL) [7]. The initial standardization was an attempt to lower development 

time and costs. Outlined in the CubeSat standards are the required parameters of dimension, mass, 

deployment systems, materials, etc.  

Within the CubeSat guidelines, a 1U (1 unit) CubeSat shall measure as cubic with 10 cm x 10 

cm x 10 cm dimensions. Multiple types of CubeSats exist, such as the 2U, 3U, and up to 12U. As an 

example, the 3U measures 10 cm x 10 cm x 30 cm. Figure 1.22 illustrates the different configurations 

of CubeSats. Each variation of CubeSat has its own restrictions. For instance, each 1U CubeSat shall 

not exceed 1.33 kg of mass, or a 3U CubeSat shall not exceed 4.0 kg of mass [7]. It is important to 

note that, within following these guidelines of development, the power generated will be limited to 

the available solar-cell surface area that is available for each dimension. 3U CubeSat power profiles 

have shown an orbit average power of 4.9 W and a peak power of 9W while on the Earth’s poles 

[119].  

It has been estimated that an average cost for the full lifecycle of a CubeSat is around $52,000 

[123]. That can vary depending on the size of the CubeSat. Broadly stating, a CubeSat mission can 

range from $10,000 for a 1U CubeSat mission to $100,000 for a 3U CubeSat mission. These costs may 

swing based on weights and launch vehicles. To lower the expense of CubeSats, NASA created the 

CubeSat Launch Initiative (CLSI) which collaborates with Educational Launch of NanoSatellites 

(ELaNA), the ISS, and ride-share launches. This allows for launches as secondary payloads on already 

existing missions to be widely available to academic institutes [124]. 
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Figure 1. 22: Various CubeSat Configurations [120] 

 

CubeSats should adhere to the standards of the Poly Picosatellite Orbital Deploying (P-POD). 

This is Cal Poly’s standard CubeSat deployment method and system. P-PODs are attached to a rocket, 

the International Space Station (ISS), or other launch vehicles and deploy CubeSats into orbit [117] 

[118]. P-PODs work by receiving a signal and using a spring and board mechanism to launch CubeSats 

into orbit. Figure 1.23shows the basic 3U P-POD deployer. Popular choices for CubeSat deployment 

are NanoRacks CubeSat Deployer (NRCSD) (See Figure 1.23for illustration).  NRCSD will be the 

system used to deploy STF-1.  
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Figure 1. 23: P-POD Deployment System and Cross-Sectional Area [7] 

 

 

Figure 1. 24: NanoRack’s CubeSat Deployer (NRCSD) [121] [122] 

 

1.4.2 Simulation-to-Flight (STF-1) 

Simulation-to-Flight (STF-1) is West Virginia’s first spacecraft and was selected by NASA’s 

2015 CubeSat Launch Initiative. The CubeSat Launch Initiative comes from the White Houses’ 
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‘Makers Initiative’ and promotes the support and assistance of NASA and all 50 states working to 

launch small satellites over the next few years [125]. STF-1 is a 3U-specific CubeSat scheduled to 

launch in August of 2017. The development of STF-1 is being led by NASA IV&V ITC team, and 

houses science and technology payloads from IV&V as well as West Virginia University [126]. STF-1 

is scheduled to be launched on Rocket Labs USA’s Electron Rocket as part of the Educational Launch 

of NanoSatellites (ELaNA) XIX. The launch of the STF-1 mission has provided the ITC team and 

WVU students opportunity for progressing the understanding of the space environment, technology, 

and CubeSat development to foster growth in the small satellite industry. Figure 1.25 depicts STF-1 

in its full stack. Figure 1.26 shows the STF-1 mission patch. 

 

               

Figure 1. 25: (LEFT) 3D Rendering of Skeleton STF-1, (RIGHT) 3D Rendering of STF-1 Assembled. (Image: 
NASA IV&V) 
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Figure 1. 26: STF-1 Mission Patch 

 

STF-1’s primary objective is focused on validation of test platforms for transitioning 

technologies in the development phase to flight-ready components [126]. STF-1 also houses three 

secondary objectives that come directly from WVU. These secondary objectives include the 

Mechanical and Aerospace (MAE) Department’s experiment that consists of microelectromechanical 

systems (MEMS) and an inertial measurement unit (IMU) swarm that are part of a technology 

maturing program between WVU, Marquette University, and NASA Johnson Space Center. 

Additionally, the MAE group will be examining Precise Orbit Determination (POD) as part of a state-

of-the-art Global Positioning System (GPS) to work towards developing high-accuracy GPS POD 

applications [126]. 

The next secondary science experiment comes from WVU’s Physics department, which is 

looking to demonstrate experimental and computational methods regarding Earth’s space weather. 

To do this, the physics department will be examining the coupling of Magnetosphere-Ionosphere and 

space weather in LEO. This will be achieved with an IMU for altitude information and a 

magnetometer, which determines magnetic field direction [126]. This allows for measurement of the 



35 

 

fundamental properties of space weather and provides information for future research. This 

experiment works in conjunction with the LOCC system and III-V nitride materials as the resulting 

measurements give metrics for ionizing dosage on the LEDs. 

The final secondary objective is the characterization of III-V Nitride based LEDs while under 

the influence of ionospheric effects. An advancement of various materials for the detection and 

generation of light is needed to propel the use of novel materials in space applications. This has led to 

the creation of an optoelectronic characterization module that contains 3 arrays of light-emitting 

diodes and photodiodes. The experiment will characterize devices within 380 – 465 nm wavelengths. 

The intent is to examine the durability of the materials used in the LEDs (GaN, InGaN etc.) and the 

performance of the core components in the conditions of the space atmosphere. The details of this 

experiment will be further examined in this thesis. Further details regarding STF-1 and its subsequent 

missions can be found in [126]. 

 

1.5 Research Goals 

This thesis will provide a detailed description of the design and implementation of the LOCC 

system within the mission parameters of STF-1. The development of the LOCC system includes 

power circuit design, I2C communication isolation, power budgets, communication budgets, and PCB 

design and layout. Additionally, the design, fabrication, and packaging of the LEDs is described. The 

system was tested and assembled inside a NASA-provided cleanroom during the final assembly of the 

STF-1 CubeSat. 

To demonstrate functionality, the output of both the Current-Voltage (I-V) characteristics and 

the electroluminescent (EL) characteristics of the system will be provided, along with power 

consumption over time. Figure 1.27 illustrates the process flow diagram for development and 

operation of the LOCC system for performing the characterization of LEDs onboard a CubeSat, 
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along with the critical milestones of development. For continuing the LOCC system and 

characterizing LEDs while in space, LOCC can be used as a starting point or recreated with the given 

documentation to produce the platform. 

Development starts with components being selected and tested for compatibility. Once the 

initial system has been tested in a simulation environment, PCB prototyping takes place to ensure that 

form and function are met. Following corrections and modification, the final PCB board can be 

fabricated and assembled. From here, the PCB will be integrated with the CubeSat’s flight computer, 

and commands can be sent to LOCC for data acquisition. The CubeSat flight computer receive 

command codes from the ground station. These command codes send signals to LOCC to start the 

experiments, configure LEDs, and retrieve stored information. Once the flight computer has received 

LOCC’s stored information, it delivers binary-encoded files that are then post-processed to decimal 

values and logged. 

 

 

Figure 1. 27: Developmental Diagram for LOCC 
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Figure 1.28 describes the overall process cycle of the LOCC system. 

 

Store Data on LOCCSTF-1 Data StorageTranmission of stored data

Ground Station
Radio 

Transmitter

 

Figure 1. 28: Operational Diagram of LOCC system 

 

The tasks involved in this research are as follows: 

1: PC Board & Circuit Development – This involves circuit design, PCB layout, embedded 

development, prototyping, assembly, and integration into the CubeSat. This was done using spice 

programs, OrCAD Capture, Altium Designer, and Arduino. 

2: LED Fabrication – For the LOCC system, custom LEDs were fabricated and packaged to fit in 

chip carrier sockets. These LEDs are fabricated as a 16 x 16 array of devices with 10 major steps that 

include: annealing, photolithography, etching, and metal deposition. The LEDs are then packaged into 

chip carriers using wafer dicing, boding and encapsulation epoxies, and ultrasonic wire bonding. The 

LEDs fabricated were done so using commercially available substrates and fabricated with WVU SRF 

provided cleanroom equipment.   

3: LED Characterization Via LOCC - The LOCC system has been developed to produce current-

voltage (I-V) and electroluminescent (EL) characteristics while on-board STF-1. The fabricated LEDs 
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are characterized using a current sourcing method with switching to control up to 24 separate LEDs 

and measure the changing current. Using a grouping of analog-to-digital converters and an array of 

Si-PIN photodiodes the light output intensity and the peak wavelength can be determined from the 

operation of these components. To control these characterization methods, firmware has been 

developed for switching, ramping, and data acquisition. STF-1’s flight computer sends command 

codes to the LOCC system to initiate one of two experiments. Data is stored in LOCCs onboard 

EEPROM. This data is then sent to STF-1 to be stored until the ground station can download the 

data. 

The developed LOCC system and the research performed provide new tools and ideas for the 

way electronics and optoelectronics are thought about in the space environment. LOCC is built to fit 

in the CubeSat platform, adhering to power and data budget requirements while being able to deliver 

electrical and optical characteristics of the onboard LEDs. The fundamental operation of LOCC 

allows for reproduction, scalability, modification, and improvement for a variety of environments.  

This tool paves way for research and allows for those interested in space exploration to develop more 

sophisticated devices with expanding reliability, lifetime and reduced costs. 

 

1.6 Thesis Overview 

The work presented within looks at applying optoelectronic characterization methods into a 

CubeSat system to study the effects of radiation in semiconductor materials while on orbit. The 

optoelectronic characterizer is presented as a tool for supporting research done on improving the 

lifetime and reliability of optoelectronics for space-based applications. This thesis is organized as 

follows: Chapter 2 describes the theory of LED operations, displacement damages and ion stopping 

in both LEDs and PDs, and thermal effects. Chapter 3 provides a hypothesis and background on the 

characterization method and what is looked for from the LOCC system. This also includes the 
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schematic of each of LOCC’s modules, PCB layout, firmware, and software interfacing. Chapter 4 

describes the LED fabrication and packaging processes. Chapter 5 provides a system evaluation to 

illustrate functionality with I-V and EL characterization results, light output intensity, power 

consumption, data budgets as well as costs. The two main experiments performed are the I-V 

characterization and the EL characterization. These two experiments provide the bases for all other 

information retrieved from this system. Lastly, Chapter 6 concludes the thesis and examines future 

work that can be done regarding the LOCC system and LED research for space-based applications. 

  



40 

 

Chapter 2: Theory 

2.1 Introduction 

This chapter discusses the operation of light emitting diodes and accumulated radiation 

damage in III-V GaN materials. This section will look at their theoretical models as well as effect of 

temperature on GaN materials and the changes that may occur. An understanding of how radiation 

particles are implanted into semiconductor materials is also presented.  

 

2.2 LED Basics and Operation 

Light generated by an LED requires that electrons undergo recombination with their counter-

part, holes. Electron-hole recombination is the basis for the emission of photon energy from 

semiconductor materials. The largest commercial demand for illumination is the production of visible 

light that is comprised of wavelengths from 400 nm to 700nm [128]. 

 

 

Figure 2. 1: Electromagnetic Spectrum [127] 
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2.2.1 Direct and Indirect Band Gap Semiconductors 

It is important to note the fundamental operation of light generation in semiconductor 

materials. Semiconductor materials are generally divided into two categories: direct bandgap and 

indirect bandgap materials. These bandgap structures consist of the conduction band and the valence 

band. The valence band consists of stationary electrons that exist around their respective atoms. 

Electrons in the conduction band can move from vacancy to vacancy within the atomic lattice. The 

momentum of electrons plays a significant role in the transition from conduction to valence band. 

Electrons and holes with the same momentum, as found in direct bandgap semiconductors, will 

transition, and electron-hole pairs will recombine to produce a photon. Oppositely, electrons and 

holes with different momentums may also recombine. This can be seen in indirect bandgaps. 

Transitioning electron-hole pairs may generate phonons, resulting in lattice vibrations or the 

production of heat. 

 

 

Figure 2. 2: Energy Band Diagram of Direct (Gallium Nitride) and Indirect Bandgap (Silicon Carbide) [129] 

 

Group III-V nitrides consist of direct bandgap materials and are often comprised of binary, ternary, 

and quaternary atomic structures. Respectively, these can be seen as GaN, InGaN, or AlInGaN. 
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2.2.2 Materials and Structures 

The LOCC system is designed to characterize III-V nitride LEDs while on-orbit. Group III-

V nitride based materials consists of engineered energy bandgaps that fall within the .7 eV to 6.4 eV 

ranges. These approximated bang-gap energy boundaries are formed by binary materials Indium 

Nitride (InN) and Aluminum Nitride (AlN). Gallium Nitride (GaN,) is the focus of this research, 

possesses a band gap that falls around 3.4 eV [130]. Proper grown and engineering of III-V materials 

allows for the tuning of bandgaps. This is done by forming tertiary and quaternary compounds such 

as Indium Gallium Nitride (InGaN) or Aluminum Indium Gallium Nitride (AlInGaN). The tie-lines 

between the points in Figure 2.3 show that a combination of these materials can produce a wide range 

of emission wavelengths lying within the visible spectrum. 

 

 

Figure 2. 3: Band Gap Energy vs. lattice constant [130] 
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For creation and bandgap energy tuning of these materials, the alloy properties follow the Vegard’s 

law:  

𝑃𝐴𝑥𝐵1−𝑥𝑁 = 𝑥𝑃𝐴𝑁 + (1 − 𝑥)𝑃𝐵𝑁.     (2. 1) 

 

Here, 𝑃𝐴𝑁 and 𝑃𝐵𝑁 represent material properties of InN and GaN, and 𝑥 is fractional. For calculating 

the resulting bandgap of the heterostructure, an empirical equation can be used. 

 

𝐸𝐼𝑛𝑥𝐺𝑎1−𝑥𝑁
𝑔

= 𝑥𝐸𝐼𝑛𝑁
𝑔

+ (1 − 𝑥)𝐸𝐺𝑎𝑁
𝑔

− 𝑥(1 − 𝑥)𝑏𝐼𝑛𝐺𝑎𝑁.  (2. 2) 

 

It follows that 𝐸𝐺𝑎𝑁
𝑔

 is the material band gap energy of GaN at 3.4 eV and 𝐸𝐼𝑛𝑁
𝑔

 is the material band 

gap of InN at .7 eV, and b is the bowing parameter. From here the operating wavelength can be 

determined using band gap energy (or vice versa) using 

 

𝐸𝑔 =
ℎ𝑐

𝜆
,     (2. 3) 

 

where 𝐸𝑔 is the band gap energy, ℎ is Plank’s constant, 𝑐 is the speed of light and 𝜆 is the wavelength. 

The crystallography of group III-V based semiconductors can come in both wurtzite and zinc 

blende structures. Generally, III-V nitrides exist in a wurtzite crystal structure, and will be the focus 

of describing the atomic structure of the material used in this work [131]. Figure 2.4 shows the general 

structure of both wurtzite and zinc blende. 
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Figure 2. 4: (LEFT)Wutzite Crystal Stucture, (RIGHT) Zinc Blende Crystal Structure [133] 

 

2.2.3 P-N Junction Theory 

Light emitting diodes are comprised of semiconductor material that are given a positive charge 

(p-type), with an excess of holes, and negative charge (n-type), with an excess of electrons. These 

materials gain their positive and negative charge by doping the base materials using methods such as 

ion implantation, diffusion, or epitaxy. When these materials are placed together a region known as 

the depletion region is formed. The excess of positively charge holes are forced back by the positive 

ions that have been revealed with the pushing of electrons from the stationary negatively charges ions. 

The newly-formed built in electric field prevents the flow electrons until an electric potential is applied. 

Figure 2.5 illustrates a p-n junction at equilibrium temperature with heavier doping of acceptors  
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Figure 2. 5: Asymmetric p-doped P-N junction at thermal equilibrium and zero-bias voltage [134] 

 

To operate an LED, the space charge layer that has been created by the repulsion of electrons 

and holes must be overcome. This is done by applying electromotive force, voltage, across the p-n 

junction. Once the voltage is applied, the free electrons and holes are swept across the space charge 

layer, creating a current flow. With both holes and electrons flowing against each other, the process 

of recombination begins. The energy from the sub-particle recombination is released in the form of 

photons. The production of light within the material is called electroluminescence. The desired 

emission energy or wavelength can be calculated via the equations mentioned above. Figure 2.6 

illustrates the operation of a LED. 
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Figure 2. 6: LED Circuit and band Diagram [135] 

 

The p-n junction can also be connected in a reverse and a voltage applied.  In this 

configuration, because the negative terminal is connected to the positive charge, holes move away 

from the n-type barrier. This is the same for electrons. Because the positive terminal of the voltage 

source is connected the negative charge of the p-n junction, the electrons pull away from the barrier, 

leading to an increased electric field or spatial-charge layer. When photon hits the diode, electron-hole 

pairs are created. This process is known as the photoelectric effect. Absorption occurs in the space 

charge layer; these generated hole pairs are the swept from then junction and produce photocurrent. 

This turns the p-n junction into a photosensitive device that produces current proportional to the light 

falling on the active region of the material. With forward or reverse bias configurations, the p-n 

junction can potentially act as an LED by spontaneous emission or as a photodetector through 

absorption and generation, though their activation energies may vary based on material and structure. 

Figure 2.7 illustrates the basic operations of each device. 
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Figure 2. 7: Emissions and Absorption operations of p-n junction. 

 

The recombination of electron-hole pairs follows a Boltzmann distribution and the emission intensity 

is expressed as the following: 

 

𝐼(𝐸) ∝ √𝐸 − 𝐸𝑔𝑒−
𝐸

𝑘𝑇.     (2. 4) 

 

Here, 𝐸 is the electric potential, 𝐸𝑔 is the bang gap energy, 𝑘 is the Boltzman constant, and 𝑇 is 

temperature. Oppositely, light that is absorbed into a material is a function of distance into the 

material and is based on the following equation: 

 

       𝐼(𝑥) ∝ 𝐼𝑜𝑒−𝑎𝑥,     (2. 5) 

 

where 𝑎 represents the absorption coefficient of the material 𝑥 is the distance into the material, and 

𝐼𝑜 is the light intensity at the material’s surface. The operation described above gives the coupled 
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concept of LEDs and photodetectors. Utilizing these core concepts of emission and absorption, 

optoelectronic devices can be tuned and configured for sunlight detection, auto-focusing, optical 

communications, barcode scanners, position sensors, etc. This thesis focuses on the forward 

characterization of LEDs. Commercial photodiodes are used in the characterization of emission 

spectrum. 

 

2.3 LED characterization 

LOCC will control voltages to characterize III-V nitride LEDS. This is needed to examine the 

forward voltage characteristics, current throughput, and light output during the lifetime of the device 

on orbit. LOCC is broken into two systems, the I-V characterization module and the EL 

characterization module. Below, the characterization methods employed in these modules will be 

described in detail. 

 

2.3.1 I-V Characteristics 

The LOCC system is built with a voltage ramping module because current as a function of 

voltage is to be examined. The current-voltage characteristics represent the amount of current 

traveling through the device over a range of 0V to 5V. This allows the determination of dependent 

variables such as the device resistance, turn-on voltage, and allows for examination of current versus 

light output. Figure 2.8 illustrates measurements for an Schottky diode [145].  
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Figure 2. 8: Schottky Diode I-V characteristic curve [145] 

 

This graph can be represented by the equation: 

 

                                                                    𝐼 = 𝐼𝑠𝑒
𝑉𝑑

𝑛𝑉𝑇 − 1,     (2.6) 

 

where 𝐼 is the current through the device, 𝐼𝑠 is reverse saturation current, 𝑉𝐷 is the voltage across the 

diode, 𝑉𝑇 is the thermal voltage, and 𝑛 is the ideality factor. 𝑉𝑇 is calculated by: 

 

 𝑉𝑇 =
𝑘𝑇

𝑞
,                     (2.7) 

 

where 𝑘 is the Boltzman constant, 𝑇 is temperature, and 𝑞 is the magnitude of charge. From here, 

changing the voltage will result in an exponential change in current. Because one focus is on forward 

bias characterization, a sample plot of the average I-V characteristics of several LEDs is show in Figure 

2.9. These results were achieved by a lab characterization system. The I-V characterization module 
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will be explained in detail in subsequent sections. The ability to measure the I-V characteristics of 

these LEDs will provide operational information such as turn-on voltages, devices resistances, and 

currents after the optoelectronic devices are exposed to the space environment. The methods by which 

these measurements will be used to give insight into damage that may be take place over time due to 

this exposure will be discussed later in this chapter. 
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Figure 2. 9: Illustration of WVU   LED I-V Characterization Curves 

 

2.3.2 Electroluminescent (EL) Characterization 

An electroluminescent (EL) response is created by radiative recombination of electron-hole 

pairs inside of a semiconductor material. A general representation of an EL curve is provided in Figure 

2.10. As previously described, photodiodes are designed to be responsive to various wavelengths of 

light. They generate a very small current (nanoamps and or picoamps) as part of the photoconductive 
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response of the photodiodes. Using this principle of operation, light output can be measured from 

LEDs to photodiodes. Additionally, because photodiodes can be responsive to certain wavelengths 

of light, this can be used to estimate the LED’s emitted wavelength. Using these properties of 

photodiodes, LOCC will measure light intensity as well as estimate peak wavelength emissions. 

 

 

Figure 2. 10: Electroluminescent response of blue/green light source [146] 

 

The LEDs were originally characterized using constant current methods at currents of 20 mA, 

40 mA, 60 mA, and 100 mA. The LEDs were characterized using a BWTEK Quest-Q CCD Array 

Spectrometer coupled with its software. Below, the average output of the pre-packaged LEDs at the 

mentioned currents can be seen. While monitoring the EL output of the LEDs, dependent variables 

such as light output and peak wavelength shifts can be measured. The results of the unpackaged LED 

measurements will also lend information to correction algorithms for determining the peak 

wavelength emission point. 
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Figure 2. 11: EL spectral output of WVU LEDs 

 

For LOCC to perform EL measurements of the LEDs, a MaZET MTCSiCF photodiode 

and ADC are used. The response of the MTCSiCF is based on CIE 1931 color space, which 

provides a link between wavelength and physiological perceived colors in the human eye [164]. 

Figure 2.12 illustrates the responsivity of the color matching functions with respect to wavelength. 
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Figure 2. 12: Responsivity of XYZ color sensor MTCSiCF [163] 

 

The tristimulus values are obtained by the relation of spectral radiance and the color matching 

functions:  

 

                                                             𝑋 = ∫ 𝐿𝑒,𝛺,𝜆(𝜆)𝑋(𝜆)𝑑𝜆,
780

380
                                                   (2.8) 

 

                                                             𝑌 = ∫ 𝐿𝑒,𝛺,𝜆(𝜆)𝑌(𝜆)𝑑𝜆,
780

380
                                   (2.9) 

and  

                                                             𝑍 = ∫ 𝐿𝑒,𝛺,𝜆(𝜆)𝑍(𝜆)𝑑𝜆.
780

380
                                                        (2.10) 

 

These values can then be passed into the CIE xy chromaticity diagram, and the CIE xyY color space 

where the peak emission wavelength can be interpreted, and the luminance of color can be mapped. 

Chromaticity of a color is specified by the two x and y parameters. These are normalized values being 

functions of all three tristimulus values X, Y, and Z.  The derived color space values x, y, and z are 
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calculated from the tristimulus values. These can then be mapped into the CIE 1931 color space, seen 

in figure 2.13. The chromaticity equations are as follows: 

 

                    𝑥 =
𝑋

𝑋+𝑌+𝑍
 ,         (2.11) 

                                                                       𝑦 =
𝑌

𝑋+𝑌+𝑍
 ,                                                       (2.12) 

and 

                                                                       𝑧 =
𝑍

𝑋+𝑌+𝑍
.                                                         (2.13) 

 

 

Figure 2. 13: CIE 1931 Chromaticity Diagram [165] [166] 

 

It should be noted that, to achieve proper results the output values, the MCDC04 must be calibrated 

for applications for absolute color measurements based in the CIE 1931 standard. This is necessary 

for conversion into color space and helps compensate for opto-mechanical design variations. These 

values need to be adjusted for external effects such as temperature or other components within the 
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system. A sensor calibration can be made by an individual, system or by an in-series calibration. Using 

an illumination source such as a monochromator and spectrometer as reference, this provides for the 

variables of the calibration. For calibration of the target, measurements by a spectrometer are known. 

By defining a coefficient matrix, the relationship between the measured sensors values and color 

coordinates in CIE 1931 color space can be made. T represents the matrix of the reference 

measurement. S is the sensor signal matrix, and K is the transformation matrix. After the transposition 

of S, a transformation matrix will be calculated, K. K which is used to transform the measured sensor 

values into XYZ color space. The following equations show the calculation of correction matrix and 

the use of known spectrometer values: 

 

                                          𝑇 = (
𝑋1 𝑋𝑛
𝑌1 𝑌𝑛
𝑍1 𝑍𝑛

) , 𝑆 = (
𝑥 𝑎𝑑𝑐 1 𝑥 𝑎𝑑𝑐 𝑛
𝑦 𝑎𝑑𝑐 1 𝑦 𝑎𝑑𝑐 𝑛
𝑧 𝑎𝑑𝑐 1 𝑧 𝑎𝑑𝑐 𝑛

).    (2.14) 

 

where T is the 𝑋𝑛, 𝑌𝑛, 𝑍𝑛 of known XYZ measurements from a spectrometer, 𝑆 is ADC values from 

the MCDC04. The correction matrix 𝐾 is calculated by 

 

                                                            𝐾 = (𝑇 ∗ 𝑆𝑇) ∗ (𝑆 ∗ 𝑆𝑇)−1      (2.15) 

and     

 

                                                            𝐾 = (
𝑥𝑘1 𝑥𝑘2 𝑥𝑘𝑛
𝑦𝑘1 𝑦𝑘2 𝑦𝑘𝑛
𝑧𝑘1 𝑧𝑘2 𝑧𝑘𝑛

).      (2.16) 

  

 



56 

 

The calibrated output is defined as follows. Using the correction matrix, output values of the MCDC04 

are found using: 

 

                                                        (
𝑋 𝑠𝑒𝑛𝑠𝑜𝑟
𝑌 𝑠𝑒𝑛𝑠𝑜𝑟
𝑍 𝑠𝑒𝑛𝑠𝑜𝑟

) = 𝐾 ∗ (
𝑥 𝑎𝑑𝑐
𝑦 𝑎𝑑𝑐
𝑧 𝑎𝑑𝑐

),    (2.17) 

 

where X, Y, and Z sensor are the CIE system values as corrected by the transformation matrix. This 

must be done to graph the output values to the xyY color space and chromaticity diagram. The values 

are stored in the LOCC system as the raw ADC values, and will need to be post processed after 

retrieval of the data transmitted from STF-1 while on orbit. 

 

2.3.3 Epoxies and Conformal Coatings 

It is important to note the use of transparent epoxies and conformal coatings in this research. 

Epoxies and conformal coatings used in spaceflight applications maintain integrity even after large 

temperature fluctuations. Conformal coatings can be used for multiple applications, including the 

protection of PCBs and electronic circuitry against particles such as dust, moisture, chemicals and 

temperature extremes [146]. It should be noted that ionic stopping properties have not been 

considered for certain conformal coatings, such as Parylene, remain transparent for temperatures 

upwards of 175˚C, with low visible region absorption, making it transparent for 455-465 nm 

wavelengths. It should also be noted that these conformal coatings can have radiation resistance 

towards gamma radiation in 100 Mr dosages [148]. For examining LED light output for this project, 

it is assumed that the epoxies and conformal coatings do not severely impact the light output intensity, 

as they are listed at 99% transparent against visible spectrum light. 
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2.4 Radiation Damage in InGaN/Gan LEDs 

Many environmental variables may have an effect on the operation of LEDs and the LOCC 

system while in space. The use of the LOCC system may aid in determining these effects on 

optoelectronics. It is important to note that the LED’s minority carrier lifetimes are sensitive to atomic 

displacement within the material. The physical mechanisms of nonradiative recombination centers are 

introduced when under the bombardment of radiation. This effectively decreases the minority carrier 

lifetime. The decrease in minority carrier lifetime brings with it the mechanism of radiation-induced 

light output degradation. Nonradiative centers begin to out number radiative recombination centers, 

thus decreasing light output. Equations 2.18 – 2.28 have been derived in [136] and definethe initial 

carrier lifetime relating to light output of LEDs to the damage caused by radiation: 

 

   
1

𝜏𝑜
=

1

𝜏𝑜𝑅

+
1

𝜏𝑜𝑁𝑅

,     (2. 18) 

 

where 𝜏𝑜 is the preirradiated minority carrier lifetime, 𝜏𝑜𝑅
 and 𝜏𝑜𝑁𝑅

, respectively, are the radiative and 

nonradiative processes. Because nonradiative formations dominate the carrier lifetime, Equation 2.18 

can be written as 

 

1

𝜏𝑜𝑅

= 𝜎𝑅𝑣𝑡ℎ𝑁𝑅 and 
1

𝜏𝑜𝑁𝑅

= 𝜎𝑁𝑅𝑣𝑡ℎ𝑁𝑁𝑅,   (2.19) 

 

where 𝜎𝑅 and 𝜎𝑁𝑅 are the carrier capture cross sections that respectively relate to radiative and non-

radiative center. 𝑁𝑅 and 𝑁𝑁𝑅 are the concentrations of the radiative and non-radiative centers, and 

𝑣𝑡ℎ is the minority carrier thermal velocity. This allows the carrier lifetime to be written as the 

following, post irradition, 
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1

𝜏
=

1

𝜏𝑜
+ 𝜎𝑁𝑅𝐼𝑣𝑡ℎ𝑁𝑁𝑅𝐼.    (2. 20) 

 

In this equation, 𝜏 represents the postirradiated carrier lifetime and 𝑁𝑁𝑅𝐼 is radiated non-radiative 

centers and 𝜎𝑁𝑅𝐼 is the radiated non-radiative carrier capture cross section. These centers are given by 

 

    𝑁𝑁𝑅𝐼 = 𝑐𝑖𝜙,      (2. 21) 

 

where ϕ is radiation fluence and 𝑐𝑖 is the defect density generated by unit of radiation fluence. The 

damage constant can now be defined. The damage constant K is written as 

 

    𝐾 =  𝜎𝑁𝑅𝐼𝑣𝑡ℎ𝑐𝑖.       (2.22) 

 

Note that K is a superposition of 𝜎𝑁𝑅𝐼 and 𝑐𝑖, or a cascasde of damages, seen as 

 

   𝐾 = 𝑣𝑡ℎ∑𝑐𝑖𝜎𝑁𝑅𝐼     (2. 23) 

 

The phenomenological equation to describe LED radiation damage can be written by substituting  

Equation 2.11 into 2.8, rearranged, and written as 

 

    
𝜏𝑜

𝜏
= 1 + 𝜏𝑜𝐾𝜙     (2. 24) 

 

Another note regarding the damage constant K is that K is determined through non-ionizing energy 

loss (NIEL) of radiation, the type of semiconductor material, its composition, and annealing that may 



59 

 

be taking place while under temperature influences in space. This leads K to not be easily changed in 

order to achieve radiation hard LEDs. This does not mean that K cannot be used as a prediction 

device, as long as the limitations of this value are kept in mind. This leaves the lifetime-damage 

product, 𝜏𝑜𝐾, the quantity of interest in finding due to its importance in determining the damages 

seen in LEDs. 

 For the LOCC system, the measurable values of light output and current as a function of 

forward voltage are needed to determine the damage constant. This means that the current controlling 

mechanism must be known. The LOCC system produces a constant voltage for the LED, leading to 

radiative current diffusion control. The resulting relationship of light output I and minority carrier 

lifetime can bewritten as 

 

         𝐼 = 𝐶𝜏𝑒
𝑞𝑉

𝑘𝑇 .      (2. 25) 

 

The relationship between LED degredation and irradiation is modeled according to Rose and 

Barnes from [136]. It’s given by the following rearrangment of Equations 2.13 and 2.12 as 

 

      (
𝐼𝑜

𝐼
)

1

𝑛
− 1 = 𝜏𝑜𝐾𝜙.    (2.26) 

 

Here, 𝐼 is the LED light output after irradtion, 𝐼𝑜 the the light output before irradiation, 𝐾 is a fitting 

paratermer, ϕ is particle fluence and 𝑛 is another fitting parameter dependent ondevice operating by 

diffusion current or recombination. For future analysis of equations for LEDs see [136]. GaN, K is 

~10−7𝑐𝑚−2𝑠 per particle of 40 MeV protons [137]. The total current governed by space-charge 

recombination can be calculated similiarly to equation 2.14. Using the following equation [144]: 
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𝐽 =
𝐶

𝜏
𝑒

𝑞𝑉

2𝑘𝑇.                                                    (2.27) 

 

Where 𝐶 is a constant value, 𝑞 is the particle charge, 𝜏 is the carrier lifetime, 𝑉 is energy, 𝑘 is the 

Boltzman constant, and T is temperature. Similiarly, this can be rearranged as: 

 

𝐽

𝐽𝑜
− 1 =  𝜏𝑜𝐾𝜙.    (2.28) 

 

Degradation occurs when the value of 𝜏𝑜𝐾𝜙 approaches one. 

  

 

 

 

 

 

2.5 Thermal Effects on GaN LEDs 

Because temperature has a direct effect on EL spectra and I-V curves. This may lead to both 

a forward voltage descrease/increase and a peak wavelength emission increase with increasing 

temperature. The relation between junction temperature and forward voltage can be realized through 

the Shockley equation [138],  

 

𝐽𝑓 = 𝐽𝑠[𝑒

𝑒𝑉𝑓

𝑛𝑖𝑑𝑒𝑎𝑙𝑘𝑇 − 1],     (2. 29) 
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where 𝐽𝑠 is the density of saturation current, k is the Boltzmann’s constant and 𝑛𝑖𝑑𝑒𝑎𝑙 is the ideality 

factor. 𝐽𝑠. The ideality factor is expressed by 

 

𝐽𝑠 = 𝑒 [√
𝐷𝑛𝑛𝑖

2

𝜏𝑛𝑁𝐷
+ √

𝐷𝑝𝑛𝑖
2

𝜏𝑝𝑁𝐴
],    (2.30) 

 

where 𝐷𝑛 and 𝐷𝑝 are the diffusion constants of electrons and holes repespectively. The minority 

carrier lifetimes of electrons and holes are denoted as 𝜏𝑛 and 𝜏𝑝 respectively. The donor and accpetor 

energy state concentrations are denoted as 𝑁𝐷 and 𝑁𝐴. The intrinsic carrier concentration 𝑛𝑖 is 

expressed as 

 

     𝑛𝑖 = √𝑁𝑐𝑁𝑣𝑒−
𝐸𝑔

2𝑘𝑇,     (2.31) 

 

here 𝑁𝑐 and 𝑁𝑣 are the effective density of states at the conduction band and valence bands, 

repsectively. 

For 𝑉𝑓>>
𝑘𝑇

𝑒
, the original equation can be written as 

 

                    𝐽𝑓 = 𝐽𝑠𝑒

𝑒𝑉𝑓

𝑛𝑖𝑑𝑒𝑎𝑙𝑘𝑇.      (2.32) 

 

Solving for junction voltage, 

 

    𝑉𝑓 =
𝑛𝑖𝑑𝑒𝑎𝑙𝑘𝑇

𝑒
𝑙𝑛 (

𝐽𝑓

𝐽𝑠
).    (2. 33) 
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The derivative of the forward voltage allows the determination of the temperature dependence of the 

given variables [139].  

 

𝑑𝑉𝑓

𝑑𝑇
=

𝑑

𝑑𝑇
[

𝑛𝑖𝑑𝑒𝑎𝑙𝑘𝑇

𝑒
𝑙𝑛 (

𝐽𝑓

𝐽𝑠
)].    (2. 34) 

 

Substituing the previous equations in to 2.23 gives the temperature dependence of 𝑛𝑖 , 𝐸𝑔, 𝑁𝑐, and 𝑁𝑣 

. The derivative then yields 

 

𝑑𝑉𝑓

𝑑𝑇
= (

𝑒𝑉𝑓−𝐸𝑔

𝑒𝑇
) +

1

𝑒
(

𝑑𝐸𝑔

𝑑𝑇
) −

3𝑘

𝑒
.   (2. 35) 

 

Equations 2.35 shows the fundemental temperature dependence of forward voltage. The first sum on 

the right side of the equation is from the intrinsic carrier concentration, the second comes from 

temperature dependence of the band-gap energy. Because LEDs operate near to the built-in voltage, 

𝑉𝑓 ≈ 𝑉𝑏𝑖., this allows for nondegenerate doping concentrations to be written as 

 

    𝑒𝑉𝑓 − 𝐸𝑔 ≈ 𝑘𝑇𝑙𝑛 (
𝑁𝐷𝑁𝐴

𝑛𝑖2 ) − 𝑘𝑡𝑙𝑛 (
𝑁𝑐𝑁𝑣

𝑛𝑖2 ) = 𝑘𝑇𝑙𝑛 (
𝑁𝐷𝑁𝐴

𝑁𝑐𝑁𝑉
).   (2. 36) 

 

The band-gap energy can be written as 

 

     𝐸𝑔 = 𝐸0 −
𝛼𝑇2

𝛽+𝑇
,      (2. 37) 

 

where 𝛼 and β are the Varshni parameters. 𝛼 for GaN is 0.77 meV/𝑘2 and β is 600 K. Substituting 

the previous two equations, 2.36 and 2.37, equation2.35 can be written as 
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𝑑𝑉𝑓

𝑑𝑇
≈

𝑘

𝑒
𝑙𝑛 (

𝑁𝐷𝑁𝐴

𝑁𝑐𝑁𝑣
) −

𝛼𝑇(𝑇+2𝛽)

𝑒(𝑇+𝛽)2 −
3𝑘

𝑒
.    (2. 38) 

 

These equations expresses the temperature coefficient of the junction voltage, 𝑉𝑓. These equations 

and descriptions are used to understand the limitations of the LOCC system with regards to thermal 

regulation and the results of LOCC relating to the LEDs. Future design consideration should utilize 

know PCB thermal management techniques to midigate against thermal saturation.  

For furthur junction temperature estimation, a forward voltage method can also be employed, 

though this requires a series of two measurments, a calibration measurement, and the actual junction 

temperature measurment. The calibration setup uses a duty cyle of 0.1% forward driving current, 

ensuring the junction temperature is the same as the ambient temperature. The calibration step 

establishes the relation between junction temperature and forward voltage. Last, an oscilloscope can 

be used to measure the forward voltage over various temperatures. The initial calibration step can be 

done prior to flight to see how the on orbit conditions are effecting the LED temperature. Previous 

experiments have shows that 𝑉𝑓 against T is close to a linear relation and can be fitted to [140] 

 

                        𝑉𝑓 = 𝐴 + 𝐵𝑇𝑜,     (2. 39) 

 

where 𝑇𝑜 is the oven temperature and A and B are fitting parameters. Following the calibration 

measurments, a forward current can be applied and the voltage values can be measured. The junction 

temperature can then be determined at various dc currents given by 

 

𝑇𝑗 =
𝑉𝑓−𝐴

𝐵
.     (2. 40) 
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Let it be noted that the LOCC system does not currently have the ability to perform these 

measurements, but the mechanics above can be used for future designs. These uncertainties that stem 

from the limitation of the LOCC system can be mitgated by providing temperature sensors and 

heatsinks to the LOCC sytstem to provide stable temperatures. Additionally, because the junction of 

LEDs are not able to be directly probed for temperature, the LED junctions conform to the 

temperatures of the system, PCB, or ambient temperatures. Ambient temperatures readouts will be 

given from parallel experiments onboard STF-1. 

 

2.6 Ion Stopping and Displacement  

There are two main systems that effect how a heavy ions and high-energy particles become 

trapped in GaN materials along with other crystal stuctures. These mechanisms are nuclear stopping 

and electronic stopping. Nuclear stopping occurs due to elastic collisions between the ion and nuclei 

in the lattice. This is important for low energies. At higher energies, particles are traveling too fast to 

have energy transfer. At low energies, nuclear stopping dominates the stopping power. The following 

equation represents the maximum stopping power within a crystal stucture. 

 

       𝑆𝑛 =
2.8𝑥10−15𝑀𝑖𝑍𝑖𝑍𝑡

(𝑀𝑖+𝑀𝑡)(𝑍
𝑖

2
3+𝑍𝑡

2
3)

1
2

(𝑒𝑉 ∗ 𝑐𝑚2).   (2.41) 

 

Oppositly, electronic stopping power dominates at high ion velocity, and maximum electronic 

stopping power is governed by the following: 
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      𝑆𝑒 =

√
𝑍𝑖𝑍𝑡

𝑀𝑖
3𝑀𝑡

(𝑀𝑖+𝑀𝑡)
3
2

𝑍
𝑖

2
3+𝑍𝑡

2
3 

√𝐸(𝑒𝑉 ∗ 𝑐𝑚2)    (2. 42) 

 

In both equations 𝑍𝑖 represents the atomic number of the ion, 𝑍𝑡 represents the target lattice. 𝑀𝑖 is 

the mass of the incoming ion and 𝑀𝑡 is the mass of the lattice structure. The total stopping power is 

then decribed in Figure 2.8 and Equation 2.31. In electronic stopping, a “screen” of electrons will 

cause a significant drag on a passing ion. The resulting charge attraction creates a stopping force 

proportional to the ion velocity, described by 

 

       𝑆 = 𝑆𝑒 + 𝑆𝑛 = (
𝑑𝐸

𝑑𝑥
)

𝑒
+ (

𝑑𝐸

𝑑𝑥
)

𝑛
,    (2. 43) 

 

where 𝑆𝑒 and (
𝑑𝐸

𝑑𝑥
)

𝑒
 are the electronic stopping power, and 𝑆𝑛 and (

𝑑𝐸

𝑑𝑥
)

𝑛
 are the nuclear stopping 

powers.The two mechasism rely heavily on the mass of the ion and the mass and density of target.  
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Figure 2. 14: Stopping power versus ion energy [143] 

 

It is importatnt to note that models for ion implantation have been used rigerously and include the 

Monte-Carlo and Marlow [145 - 147]. 

For space applications, high-energy particles may pass right through the material. When this 

is not the case, these lower energy paticles will actually stop within the material. This gives a projected 

stopping range based on incident ion energy, 

 

       𝑁(𝑥) = 𝑁𝑝𝑒

(𝑥−𝑅𝑝)
2

2𝛥𝑅𝑝
2

,    (2. 44) 

 

where 𝑁𝑝 is the peak concentration, 𝑅𝑝 is the projected range, 𝛥𝑅𝑝 is the straggle, and peak 

concentration is 𝑁𝑝 =
𝜙

√2𝜋𝛥𝑅𝑝
. With this dosing profile, different types of radiation will cascade their 

damage within the device structure and degredation will occur. This calls for the use of damage models 

with succesful displacement damage. It can now be seen how ionizing radiation affects our electronics.  
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2.7 Radiation Effects on Photodetectors 

Because photodectors are sensitive to dark thermal currents, a general design consideration is 

cooling the photodetectors to obtain correct results. Johnson-Nyquist noise, or the thermal noise 

relation, is given by 

 

𝑖 =
4𝑘𝐵𝑇𝐵

𝑅𝐶
,     (2. 45) 

 

where 𝑘𝐵 is the Boltzman constant, 𝐵 is the bandwith if the device, 𝑇 is temperature, and 𝑅𝑐 is the 

device resistance. Because heating by radiation is the dominant factor, it should also be noted that the 

heat radiating from the Sun will generally effect results as well. Photodiodes will also experience a 

permanent increase in leakage current due to displacement damage. For this, a calculation can be 

performed to accurately describe the dark current increase. The approach can be used for radiation-

induced dark currents which produce generation centers [141]. The equation for dark current density 

change can be written as 

 

              𝛥𝐽𝑑 =
𝑞𝑛𝑖𝑥𝑑𝜙

2𝐾
.     (2. 46) 

 

Where 𝑛𝑖 is the instrinsic carrier concentration, 𝑥𝑑 is the depletion region width, ϕ is the particle 

fluence, and K is the damage coefficient. For calculations regarding proton and electron bombardment 

proper damage coefficients see [142]. 

 



68 

 

2.8 Summary 

In summary, there are many environmental variables that may impact the operation of the 

LEDs and the LOCC system while under the conditions of the ionosphere. With the knowledge of 

both the LED structures and the effects of radiation damage, the use of the LOCC system shows 

potential in determining the effects of space on optoelectronics. This chapter has examined the 

fundamental operations of LEDs, their crystal structure, their engineering principles, and how these 

values relate to emission and absorption. For examining the damage caused by radiation, a damage 

coefficient can be found from the relationship of minority carrier lifetimes pre and post irradiation.  

Thermal and annealing effects will also take place. This needs to be considered for system 

purposes, as providing a thermally-stable system ensures that characteristics that are being observed 

and not due to unforseen environmental conditions. Junction voltage is directly related to temperature 

and, therfore, peak emission and turn-on voltage will change due to environmental effects. It is 

suggested that analysis of the fabricated LED be examined over temperature extremes to gain a sense 

of how temperature will effects peak wavelength emission and I-V characteristics. Alleviating 

uncertainties in the LOCC can be with utilizing telemetry given by STF-1 and its subsequent 

experiments. Table 2.1 provides an overview of the damage parameters and what LOCC will 

determine based on the provided information. LOCC can not determine junction temperature, but 

methods have been mentioned for future work. 
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Table 2. 1: Damage Parameters and Used Equations 

Damage Parameter Equations 

Light Output Power/Life-time damage 

constant 
(

𝐼𝑜

𝐼
)

1
𝑛

− 1 = 𝜏𝑜𝐾𝜙 

Peak Wavelength emission shift 

(
𝑋 𝑠𝑒𝑛𝑠𝑜𝑟
𝑌 𝑠𝑒𝑛𝑠𝑜𝑟
𝑍 𝑠𝑒𝑛𝑠𝑜𝑟

) = 𝐾 ∗ (
𝑥 𝑎𝑑𝑐
𝑦 𝑎𝑑𝑐
𝑧 𝑎𝑑𝑐

), 

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
, 𝑦 =

𝑌

𝑋 + 𝑌 + 𝑍
, 

Threshold Voltage Shift LOCC output I-V Characteristics 

Series Resistance Change LOCC output I-V Characteristics 

LED Junction Temperature Estimation 𝑇𝑗 =
𝑉𝑓 − 𝐴

𝐵
 

Current Density 
𝐽

𝐽𝑜
− 1 =  𝜏𝑜𝐾𝜙 

 

The physical mechanisms for the displacement and penetration of high energy particles found 

in the upper atmosphere are examined. This gives insight into how the particles are projected into the 

materia,l and how stopping power may be tailored by changing materials or material properties. The 

final portion of this chapter looked at the effects of irradiation of photodetectors and how thermal 

noise changes the outcome of results. This leads to a need for radiation tolerent photodiodes as well 

as thermal stability to produce accuarate results with the LOCC system. 
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 Chapter 3: System Design and Experimental Test Plan 

3.1 Introduction 

This chapter will provide details on the design of the LOCC experiments, including the power 

and space requirements of the CubeSat platform, data requirements of the flight computer, and device 

requirements for on-board LED characterization. A general hypothesis is stated regarding the relations 

between fluence, carrier lifetime, and light intensity outputs. This chapter will consider 

characterization parameters that have been established from the literature review. Following this, a 

discussion of the overall system operation and data generation are provided.  

Based on the literature review, optical and electrical properties are of interest and will be 

examined via the LOCC system. Dependent variables such as light intensity, turn-on voltage, 

wavelength shift, and saturation currents will be observed and compared over time while under the 

influences of total ionizing dose (TID) and displacements damages. Based on [144], the measurable 

values that will be used to characterize our devices will be light output and current as a function of 

forward bias. In Equation 2.14, the damage constant K describes the physical mechanisms. At constant 

voltages the variable of interest is the initial lifetime-damage constant product, 𝜏𝑜𝐾. Using the 

following equation from [144]: 

 

         
𝐼𝑜

𝐼
= 1 + 𝜏𝑜𝐾𝜙,          (3.1) 

 

it can be observed that the values of degradation under constant voltage will fall between 1 and 2 as 

𝜏𝑜𝐾𝜙 approaches unity, signifying large damages. It has been previously reported that optical 

degradation will occur, and a decrease in light output over fluence will be observed while an increase 
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in current is also observed; stemming from deep level trap formation and resulting in non-radiative 

recombination.  

 

3.2 System Overview 

The design and layout of the LOCC system is based on the size constraints of the PC104 

specification, and power and data limitations of the CubeSat platform [149]. The figures included in 

this section will illustrate how the LED component and photodiode component boards of the LOCC 

system will fit together. It also illustrates where LOCC will be located within the 3U stack of theSTF-

1 system. Figure 3.1 shows the system overview. The design of LOCC allows for future designs to 

scale based on the number of electronic devices or size of the satellites. A stacked configuration is 

utilized to spatially align the LEDs and photodiodes. LOCC is comprised of two main PCBs. Both 

PCBs are governed by four major hardware modules that include: power management, 

communication isolation, LED I-V characterizer and microcontroller, and the electroluminescence 

characterization unit. This section will give an overview of the LOCC system and how its sub-modules 

will be used to accomplish LED characterization tasks. 

 

3.2.1 Identification 

Table 3.1 gives an overview of abbreviation, title, version, and release of the LOCC system. 

This should be used to alleviate any discrepancies between future models and revisions of the LOCC 

system. For future renditions, such as a desktop version of the LOCC system, abbreviation can be 

changed to suite the experimental environment. An example would be, to recreate this system for 

desktop, LOCC can be renamed to a Low-powered Optoelectronic Characterizer for Desktop 

(LOCD). 
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Table 3. 1: System Identification  

System Title Low-powered Optoelectronic 

Characterizer for CubeSats 

Abbreviation LOCC, LOC-C 

Version 1 

System Address 0x08 

 

3.2.3 Module Overview 

LOCC consists of a modular design for ease of modification and individual operations. This 

allows for LOCC to be modified and scaled to meet data and power constraints based on the desired 

experiment. Figure 3.2 illustrates the block diagram of the LOCC system interconnections and the 

connections from the flight computer. In this case, STF-1’s on-board computer provides LOCC with 

command operations, and can receive telemetry to be sent back to the ground station. 

 

LOCC SystemSTF-1 On-board 

Computer and 

Power Supply
5V

GND

SCL

SDA

Power 

Managment

I2C Isolation

LED Module/ MCU
Photodiode 

Module
SCL

SDA

5V  12V GND 3.3V

3.3V

GND

SCL

SDA

cFE/cFS 

Application

 

Figure 3. 1: Block Diagram Illustrating the LOCC system and embedded modules [155] 
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3.2.3.1 LED Characterization/MCU module 

Figure 3.2 shows the block diagram of the LED Characterization Module. The LOCC master 

controller is based on the Arduino Mega 2560 [156]. The Arduino-based firmware allows for 

configuration of switching, voltage ramping, voltage sensing, data management, and master/slave I2C 

communication.  

Low Power 
Microcontroller

8-bit 
Digital-to-

Analog 
Converter

A

SPST Switch 
IC [0 5]

LED
 [0...23]

Current 
Sensor IC

SDA
SCL

Vout

Voltage Sense 1

GPIO 
Expander

 

Figure 3. 2: Block Diagram of the LED Characterization Module 

 

The MCU and its firmware allows for direct communication with STF-1’s flight computer for data 

collection and transmission. To achieve the 0V to 5V voltage ramp needed for LED I_V 

characterization, an 8-bit digital-to-analog (DAC) converter is used. A Microchip MCP4901 uses a SPI 

communication protocol to provide a continuous voltage level with mV accuracy and thermal stability 

[157]. This device provides the necessary voltage level, but cannot supply high amounts of current. In 

this case, the DAC is connected to a unity gain operational amplifier (opamp) that is designed to 

supply a linear current output. Analog Devices manufactures an opamp with exceptional current 

supply values (150 mA to 375mA). The AD8397 provides up to 310 mA peak linear outputs and can 

drive heavy loads such as the current demand on an LED [158]. It should be noted that a current 

limiting resistor should be incorporated to avoid burning or shorting the opamp. The opamp is 

configured with 12V supply to operate within desired range and allows enough current to be sourced 
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for operation. Because the module is designed with scalability in mind, redundancy is provided with 

the use of multiple LEDs and single-pole-single-throw (SPST) switches. Analog Devices makes an IC 

that is used in data acquisition systems and allows for high current to pass through (~200 mA) [159]. 

The use of SPST switches offers control over which LED is turned on at any given time. This is crucial 

in performing voltage ramping. Activating more than one LED at a time may pull too much current 

and damage or destroy the subsequent components. Because the SPSTs are based on CMOS 

technology the selection of source and drain channels is dependent on logic level controlled by GPIO 

expanders. The Microchip MCP23018 is configured to supply the proper logic levels to ensure the 

correct switching [160]. For current sensing, a Texas Instrument (TI) INA219 current sensor is used 

[161]. The LEDs are attached to the INA219 using a shunt resistor configuration of 0.1Ω, and the 

voltage change over this resistor is measured to determine current. Using this device, a mA-accurate 

reading of the current passing through the LED can be read and stored in the MCU. Separation of 

internal I2C and the onboard computer I2C communications is needed. This allows for interrupts to 

be sent while experiments are running. To achieve this separation of communication, LOCC uses the 

ATMEGA’s ability to modulate digital pins and mimic I2C communication. This technique is referred 

to as ‘bit banging,’ and it can provide a 100 MHz signal to all I2C connected devices. 

 

3.2.3.2 Electroluminescence Characterization Module 

A similar approach is used for characterizing the LEDs and their electroluminescence. For the 

case of the EL side, a combination of components is used to allow the photodiode sensors to be 

activated using I2C interfacing. MAZeT Electronic Engineering & Manufacturing Services produce a 

4-channel analog-to-digital converter (ADC) with I2C control and output, the MCDC04 [162]. 
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Figure 3. 3: Block Diagram of the EL Characterizer 

 

This component measures small current changes that happen in silicon PIN photodiodes. The 

MCDC04 provides 16-bit signal resolution and is configurable to 20 fA/LSB sensitivity. This IC 

supports multiple forms of operation that include:  

 

• CMD Mode – For single measurement and conversion (I2C controlled) 

• CONT Mode – Continuous measurement and conversion until told to stop 

• SYN[x] modes – Synchronized with external source 

o SYNS Mode – Synchronized at Start 

o SYND Mode – Synchronized at Start and Stop measuring cycles 

  

This IC allows the user to set current ranges and integration time for varying applications. Utilizing 

control of the ADC allows for controlled power usage, as the devices can be sent into Power Down and 

Standby modes, making it suitable for mobile solutions. Because the converter is highly flexible, it 

allows for a wide range of usage in lighting applications, such as the measurement of intensity and 

color coordinates (XYZ CIE 1931, DIN 5033, etc). 
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The MTCSiCF True Color Sensor is based on CIE 1931/DIN 5033 (human perception) 

[163]. The JENCOLOR, housed within the MTCSiCF, sensor is comprised of 19x3 photodiodes in 

silicon PIN configuration, allowing for sensitivity and speed, and operates within -20˚C to 100˚C. 

Operation outside of these temperatures may result in filter shifting and erroneous data. 

 

3.2.3.3 Power Management 
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Figure 3. 4: Block Diagram of the Power Management module 

 

The power management module is fundamental to the operation of the LOCC system, as it 

supplies up to 4 W of total isolated power with an efficiency of up to 82%. This is done using the CUI 

INC PDS2-M DC-DC converter [167]. Isolated 5V and 12V voltage levels are generated with a 

common 0V. From the 5V supply, a 3.3V is generated for logic level conversion and other circuit 

components requiring lover supply voltage. This provides LOCC with power supply lines that are 

dedicated to MCU and processing ICs, and leaves a separate 12V supply to provide current to the 

LEDs. Because the bus power supplied to the experiment is susceptible to fluctuations in the line, it 
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is necessary to supply isolated power and provide protection to overcurrent draw to the experiment. 

These DC-DC converters are ideal to provide these safety mechanisms, and give design restriction to 

operate within 5W. The converter connects the inner power and ground planes of the LOCC I-V 

Characterizer PCB. The 12V supply is used to manage voltage ramping to ensure the LEDs can run 

from 0 to 5V. This ensures stable operation during LED ramping and power supply to other 

components, and maintains a lower demand. Power management also need to provide logic level 

transitions and a 3.3V supply to other devices. This is done using the MICREL MIC5225 Regulator 

[168]. This IC provides a stable voltage output while under small loading effects. The calculated 

wattage for the operation of the LOCC system is listed below. 

 

Table 3. 2: Power Budget of LOCC system 

Power Budget 

Total (TYP) (W) 1.397 

Total (MAX) (W) 4.757 

 

 

3.2.3.4 I2C Interfacing Module 

LOCC communicates via I2C communication. This is done for to meet STF-1’s 100kHz I2C 

communication requirements. Keep in mind that LOCC operates with two separate I2C buses. One 

being the ‘bit bang’ bus that communicates with the systems components, and the other being the 

system I2C bus which allows LOCC to talk to the master computer. To meet the STF-1 

communication requirements, an I2C interface module is implemented into the LOCC system. Figure 

3.5 describes the block diagram of the I2C isolation. 
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Figure 3. 5: Block Diagram of I2C isolated Module 

 

Similarly, the communication bus is also susceptible to unstable voltages and other uncertainties in 

the line. For this, the I2C module provides the needed protection for LOCC’s communication from 

the master computer to the MCU. This is done with a Texas Instrument ISO154x capacitive isolator 

[168]. It should be noted that the original schematic design involved three components rather than 

one for level translation and signal integrity. Due to previous schematic design, an optocoupler was 

installed but incorrectly configured. This led to a modification using the ISO1540. For this, the device 

was placed on unpopulated pads and connected via hand-soldering to the necessary pins. For future 

design consideration, the same modification can be implemented in layout, or the modification can be 

performed.  
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3.2.3 Installation of modules 

 

Figure 3. 6: (From Left to Right) Chip Carrier and Chip Carrier Socket, Photodiode and LED PCB modules 
(exploded), STF-1 CubeSat Rendering without Solar Panels   

 

Image 3.2.1 illustrates the three main components of implementing the LOCC system. Starting 

from left and moving right, the LED carrier and socket are shown. Within this module. the LEDs are 

packaged into a chip carrier and seated into the socket. The chip carriers and chip carrier sockets are 

detailed in [150] [151], and correspond to the 3 leadless chip carriers (LCC) models. Following the 

device carrier installation comes the LOCC system, which houses the LEDs and, will be the source of 

control for I-V characterization and electroluminescent characterization. The systems modules are 

internally connected via male and female header pins produced by Harwin, respectively [152] [153]. 
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The cross-sectional in Figure 3.7 shows the dimensions of the system when aligned and assembled for 

interconnection. 
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Figure 3. 7: Cross-section of connected LOCC system 

 

When testing the LEDs and their respective photodiodes in space, it is important to establish 

a control group of devices to accurately interpret the results of the experiments. A layer of transparent 

conformal coating will be added to the boards comprising the LOCC system. This conformal coating 

will give us a degree of shielding to minimize the potential for damage to the control devices. Three 

pairs of LED/PDs will be used, as seen in Figure 3.7. On the left of Figure 3.7, Set A will consist of 

both LEDs and PDs being coated. The middle Set B array will consist of coated PDs and uncoated 

LEDs. For Set C on the right, both LED and PD devices will remain uncoated. A comparison of the 

uncoated and coated devices will allow for the effects of the space environment on the unprotected 

InGaN LED devices to be monitored via device characterization methods. 

The LOCC system sits within a 1U CubeSat configuration and is powered by the CubeSat; 

formed by the connecting header pins that span the length of the CubeSat chassis. Within the pin 

configuration of the header pin, LOCC sends and receives information. Samtec manufacturers a 

variety of PC/104 specific connectors with different widths, lengths, height, and connection type. For 
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the CubeSat specification, the Samtec ESQ-126-39-G-D was chosen from [154]. The connections on 

these header pins should match mission requirements, and caution should be used to make sure that 

there are no shorts or missed connections to ensure proper communication with the flight computer. 

Figure 3.8, 3.9, and 3.10 show the connection type for board-to-board interfacing. 

 

 

Figure 3. 8: (Top Down View) LOCC Header Pin 1 for STF-1 connection 

 

 

Figure 3. 9: (Top Down View) LOCC Header pin 2 for STF-1 connection 

 

The modules can be “sandwiched” together to close the connection and allow communication 

between the microcontroller unit (MCU) and EL side. It should be noted that both can be used 

individually.  
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Figure 3. 10: (Top Down View) LOCC inter-board connection 

 

Figure 3.11 illustrates a side-view of the two boards being pressed together to complete the 

connection. Once the boards are attached, the user can then make the proper connections to the ESQ-

126-39-G-D including power, ground, and I2C data. 

PCB - Electroluminescence Side

PCB - I-V Characterization Side

 

Figure 3. 11: Side profile of connection diagram for assembly of LOCC 
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The LOCC system is controlled by the flight computer via inter-integrated circuit (I2C) 

commands. For STF-1, the control is done by Core Flight Executive (cFE,) a software application 

that sends hexadecimal values to read and write data to and from the LOCC system. For initial 

prototyping, LOCC is controlled by both Arduino MEGA 2560 and Raspberry Pi v.2 using C and 

C++ command programs. Details regarding protocol, and embedded firmware can be found in the 

Design sections. Data is stored as hexadecimal values, and will need to be parsed out based on given 

byte values for data packets in the firmware. 

 

3.3 Circuit Schematics of LOCC Modules 

For this section, the circuit diagrams will be explained regarding the modules of the LOCC 

system. This will provide a look at what components are used, as well as the details regarding resistors, 

capacitors, diodes, etc. This section begins by looking at the MCU/I-V Characterization module of 

LOCC, followed by the EL circuit schematic. This will give an idea of how the components are 

connected for future maintenance and modifications. Looking further at the modules, the I2C circuit 

and power management circuits illustrate how LOCC communicates to the flight computer as well as 

how it is powered. The full circuit diagram can be seen in Figure 3.12. 

 

3.3.1 MCU/I-V Characterizer 

Figure 3.12 illustrates the complete MCU/I-V Characterizer and Figure 3.13 shows the 

ATMEL ATMEGA 2560 microcontroller unit (MCU) [169]. This was originally based on the Arduino 

MEGA 2560 schematic and modified to fit within the PC104 PCB Specification. The ATMEGA 2560 

is the master component of the LOCC experiment. Communication with the CubeSat flight computer 

is handled by this component, as well as communication with the various components of the LOCC 

experiment. From the MCU, the DAC, current sensor, GPIO expanders, and EL’s ADCs are 
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controlled. Note, within Figure 3.13, the I2C buses are separated into their respective parts of ‘bit 

bang’ lines and isolated I2C. The internal components communicate with the ‘bit bang’ I2C, and the 

STF-1 flight computer communicates with the MCU via the isolated I2C. The various components 

and subsystems of the I-V characterizer are shown. 
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Figure 3. 12: Complete LOCC MCU/I-V Characterizer Circuit Diagram 
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Figure 3. 13: LOCC MCU, the ATMEGA 2560-16AU. 
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Figure 3.14 shows the LED driving circuit. A MCP4901 with SPI connection is used to control 

the applied voltage over the LEDs [157]. Note the chip select (CS) pin connected to the MCU. The 

CS pin his held low (0V). When this happens the MCP4901 does not “listen” or “see” the incoming 

data that is being sent via the Master Out Slave In (MOSI) line. This allows for multiple devices to 

communicate over the same bus. When active, the MCP4901 receives command bytes that set the 

output voltage from 0 to VREF. It is important to note that VOUT of the DAC can come within .02 

V of the reference voltage, meaning the maximum output of VOUT to be around 4.98V. The DAC 

used provides for a voltage step size of .02V. The ideal voltage range is given as 0V to 255/256*VREF. 

Equation 3.2 shows the DAC analog output voltage calculation, 

 

𝑉𝑜𝑢𝑡 =
𝑉𝑟𝑒𝑓×𝐷𝑛

2𝑛 𝐺,          (3.2) 

 

where VREF is the voltage reference, Dn is DAC input code, G is gain selection and n is the DAC 

resolution. 

 

 

Figure 3. 14:Digital-to-Analog Converter connected to unity-gain OPAMP to source current to LEDs. 
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The DAC is connected to the non-inverting terminal and configured for unity gain. With a 

unity gain configuration, the output of the opamp (VOUT) is given as: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛,          (3.3) 

 

where Vout is the opamp voltage output and Vin is the voltage output from the DAC. This allows for 

the direct translation of ramped voltage and the necessary supply of current for turning on LEDs. 

The opamp selected is the Analog AD8397 Rail-to-Rail, high output current amplifier [15]. 

To ensure proper voltage swing, the rails of the opamp are connected to ground and the 12V plane. 

This opamps provides a linear response to driving heavier loads, such as a LED, with up to 310 mA 

outputs. Note that in Figure 3.14 there are two opamps shown. The second opamp is grounded so 

that it does not interfere with the one supplying the current to the LEDs. Figure 3.14 describes the 

sourcing method for driving the LEDs and supplying the needed amount of current.  

Figure 3.15 describes the circuits and components used to switch the LEDs, their connections, 

and the current sensing IC. From the sourcing circuit, the VOUT of the opamp is connected to the 

ADG1412 source pins. The ADG1412 is from Analog Devices, and is a quad single-pole/single-throw 

(SPST) switching IC with low ‘on’ resistance [159]. The switch uses metal-oxide semiconductor 

(CMOS) technology to control which LED turns on. The ADG1412 allows for a maximum of 190 

mA for the TSSOP package, which is adequate current for the LEDs. The ADG1412 is also controlled 

via logic levels. These logic levels are controlled by a set of general-purpose input/output (GPIO) 

expander ICs. The expander is provided by Microchip Technology and is the MCP23018 16-bit I/O 

Expander with Open-Drain Outputs [160]. 
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Figure 3. 15: LOCC LED Control Circuit 
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The MCP23018 16-bit GPIO expanders are controlled via 100 KHz I2C interfacing. The devices are 

highly configurable in that they utilize registers for determining input, output and polarity selection. 

The MCU can configure the MCP23018 for the I/O pins to be either input or output. These I/O pins 

also come equipped with built in pull-up resistors, so the addition of discrete resistors is not necessary 

to supply valid logic levels. This makes the MCP23018 usable for control of the ADG1412 for 

automated switching control. 

From the control of the GPIO expanders for the SPST switches, the current can now be 

directed to the LED of choice in the chip carrier socket, listed as components U112 to U114. The 

output of each of these chip carrier sockets is then connected to a common node at resistor R123. 

Figure 3.16 describes the configuration of the current sensor connected to the common LED output 

node. 

 

 

Figure 3. 16: LOCC Current/Power Monitor Circuit. 
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Current and power monitoring are performed using the INA219 Zero-drift, Bi-directional 

Current/Power Monitor [161] from Texas Instruments. The INA219 is configured with a 0.1Ω shunt 

resistor for high-side current monitoring. The device communicates via I2C for monitoring of shunt 

voltage drop. The INA219 is also designed for temperature swings of -40˚C to +125˚C, making it a 

reliable device for operations in space. This device is the final component in the operation of the I-V 

characterizer of the LOCC system. Figure 3.17 describes a sourcing configuration of the characterizer. 

 

A
Vin Vout

R1

R2

Vd i

 

Figure 3. 17: Simplified LED Sourcing Circuit 

 

Here, Vout is governed by the MCP4901, R1 is the resistance of the SPST switch, R2 is the Resistance 

of the shunt resistor, i is the current, and Vd is the turn-on voltage of the LED. From here, the 

maximum amount of current that can flow through the circuit can be determined. The maximum 

current flowing through the LED should be limited to protect the opamp and current sensor. Current 

traveling through the circuit is governed by the Equation XX, 

 

𝑖 =
𝑉𝑜𝑢𝑡−𝑉𝑑

𝑅1+𝑅2
,          (3.4) 
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where 𝑉𝑜𝑢𝑡 is the voltage from op-amp output, 𝑉𝑑 is the voltage drop across the LED, and 𝑅1 and 𝑅2 

are the series resistances of the SPST switch and shunt resistor, respectively. 

 

3.3.2 Electroluminescent Module 

The LOCC system is comprised of both an I-V characterizer and a EL characterizer. This 

subsection will cover the EL characterizer circuit and key components used in the creation of this 

board. Figure 3.18 shows the circuit diagram of the EL characterizer.  
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Figure 3. 18: EL Characterizer Complete Circuit 
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Initial testing was performed using the MAZeT passive OEM sensor board to evaluate the 

CIE1931 color standard [163]. This board allowed the development of the firmware and proper 

selection of the hardware components for use in the LOCC EL characterizer. The EL characterizer is 

comprised of an ADC, the MAZeT MCDC04 and connected to a Si-PIN photodiode array, the 

MTCSiCF XYZ color sensor [163]. The MCDC04 and the MTCSiCF color sensors are repeated three 

times to align with each set of LEDs. Figure 3.19 shows the single system circuit diagram. 

 

 

Figure 3. 19: Single ADC-to-Photodiode Circuit 
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The labels can be seen for the interconnection between the components. The MCDC04 performs 

current to digital conversion by utilizing four parallel connected ADCs. This device sets the sensitivity, 

start and stop conversions for applications of interest. Note the 3.3MΩ resistor. The external resistor 

REXT directly influences the generating of the reference current for the signal conversion. Therefore, 

the temperature coefficient of resistance has an important role. The smaller temperature coefficient 

and the resistor value tolerance (1% better than 5%, etc.) result in more accurate conversion.  

For the detection of color, the MTCSiCF True Color Sensor IC provides a filter function 

based on CIE 1931/DIN 5033 color standards, which is based on the human eye. This component 

provides long-term stability over time and temperature. A single sensor consists of 19x3 photodiodes 

that have been integrated into a single package of a hexagonal matrix with 2mm diameter. The device 

has been used in general purpose applications of color measurement and control, portable color 

measurements, and detection of light sources and regulated color temperatures [163]. The packaging 

of the sensor IC has an aperture angle (beam width) of nearly 90°. Traditional interference filters 

operate depending on angle of incidence. Using a <10° angle of incidence will allow the best results 

with no filter shifts. This can be ensured by using lenses or optical holes that limit the angle of 

incidence to the sensor device <10°. An angle of incidence of more than 10° will result in a filter shift. 

The filter response and accuracy will be distorted the greater the angle deviation is. LOCC operates 

within this constraint by having the photosensors directly above the LED chip carriers. Using the 

dimensions provided in figure 3.7, the angle of incidence is approximately 6º. This falls within the 

constraints to avoid filter shifting. 

It is important to note the 3.3V I2C and voltage supplies. The LOCC system provides a 

stepped-down voltage to the EL characterizer for the operation of the ADCs. The I2C logic level 

must also match the voltage supply. The logic translation is done using NXP’s GTL2002 2-bit 

bidirectional low voltage translator [171]. Figure 3.20 shows the circuit diagram of the translator circuit 
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for the EL characterizer. The Gunning Transceiver Logic (GTL) IC provides high-speed voltage 

translation for a 5V I2C logic to a 3.3V I2C voltage level. This device provides for a bidirectional 

voltage translation between 1V and 5V without directional control. 

 

Figure 3. 20: Logic Translation circuit of EL Characterizer 

 

3.3.3 I2C Isolation Module 

Because the I2C bus of STF-1 experiences loading effects of connected communication 

circuits, LOCC provides an internal I2C isolation module to avoid single ground loops. The ground 

loop can be detrimental due to the grounded loop currents deteriorating the clock and data signals, 

and they can even damage circuit components. The I2C isolation module allows for communication 

between the LOCC MCU and STF-1’s flight computer for telemetry packet delivery and receiving 

commands codes from the flight computer. This is done using Texas Instrument’s ISO1540 Low-

Power Bidirectional I2C Isolator [168]. The ISO1540 comes with two bidirectional channels for clock 

and data, making it perfect for master and slave communications. The circuit diagram for the I2C 

isolation module is given in Figure 3.21. 
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Figure 3. 21: LOCC I2C Isolation Module Circuit Diagram 

 

3.3.5 Power Supply Module 

The last module of the LOCC system is the power management module. The voltage supplied 

from the electronic power supply (EPS) of STF-1 is connected to the components of the LOCC 

system. Isolation is also employed to ensure safety between LOCC and the rest of STF-1’s 5V power 

bus. This is done because the loading effects of the supplied power are unpredictable, and limiting the 

effects of outside nominal operation protects the components. This also provides a common ground 

for all components to operate from. Power management is done using CUI INC’s PDS2-M DC-DC 

converter [167]. This IC comes in multiple packages which include 5V to 24V packages for voltage 

translations. For LOCC, two DC-DC converters are used to supply isolated 5V and isolated 12V. This 

is done using the PDS2-S5-S5-M model and the PDS2-S5-S12-M model. These devices provide 2W 

of isolated power, short circuit protection, 79% and 82% efficiencies, and operate within -40˚C to 

105˚C. To provide 3.3V for components, a low-dropout regulator is used. The MICREL MIC5225 

provides 5V to 3.3V conversion with a guaranteed 150 mA output [168]. The regulator can provide 

excellent load regulations and current protection for devices. This device also operates within a wide 
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temperature range of -40˚C to 125˚C, making it a perfect component for the LOCC system in voltage 

regulation. 

 

Figure 3. 22: LOCC Power Management Circuit Diagram 
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3.4 Printed Circuit Board Layout 

A printed circuit board (PCB) is designed using computer aided design (CAD) software that 

generates fabrication files known as Gerber files. These output files include copper patterns, solder 

masks images, drill files, and electrical test files. The fabricated boards go through multiple processing 

steps depending on the complexity of the board. This includes additive or subtractive processing, 

chemical etching, drilling, lamination, and plating [172].  

PCBs are made to support electrical connections between components using conductive 

traces, and pads that can be etched from copper sheeting. Components such as capacitors, resistors 

and ICs are then soldered onto the PCB. The design of modern PCBs includes the following steps 

[172] [173]:  

 

1. Schematic Capture 

2. Board Dimensions 

3. Components position determination 

4. PCB layer stackup 

5. Line impedance calculations 

6. Vias and lands markings 

7. Trace routing 

8. Gerber File generation  

 

This section will detail the design and layout of the LOCC system and the respective boards that make 

up the system. This includes detailing the board layers, signal routing, and board sizing.  
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3.4.1 I-V Characterizer PCB Layout 

The LOCC I-V characterizer consists of a 4-layer board with a finished thickness of 1.5748 

mm (.062’’) and a 2 oz. copper pour, or 0.203 mm thickness. For future designs, the copper pour 

thickness can be decreased to 1 oz. for a reduction in cost. Both LOCC boards follow PC104 standard 

and the dimensions can be found in Figure 3.23. Table 3.3 describes the board layers and the final 

height/thickness of the entire board. 

 

Table 3. 3: I-V Characterizer Board Stack Report 

Board Stack Report 

Stack Up Layer Stack 
Layer Board Layer Stack Name Material Constant 

1 

 
 

Top Paste     

2 Top Overlay     

3 Top Solder 
Solder 
Resist 3.5 

4 Top Side Copper   

5 Dielectric 1 FR-4 4.2 

6 
Ground 
Plane Copper   

7 Dielectric 3   4.2 

8 Power Plane Copper   

9 Dielectric 4   4.2 

10 Bottom Side Copper   

11 
Bottom 
Solder 

Solder 
Resist 3.5 

12 
Bottom 
Overlay     

13 
Bottom 
Paste     

  
Height: 1.5748mm 

(.062'')       
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Figure 3. 23: Board Outline and dimensions of LOCC I-V Characterizer 

 

Starting from the internal layers, the ground and power planes are located on the internal copper 

layers. The ground plane layout is shown in Figure 3.24. The visible green line denotes the outline of 

the ground plane copper, and the line extending across the top portion denotes the split between the 

system ground and the isolated ground.  
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Figure 3. 24: (Left) Ground Plane layout, (Right) Designation between System Ground and Isolated Ground 

 

Figure 3.24 illustrates a side-by-side comparison of ground plane layout and the separation of system 

ground and isolated ground planes. Both ground sections exist on the same plane, but are separated 

by a 0.533 mm pullback. The ground plane isolations are fundamental to the operation of LOCC and 

are used with the DC-DC converters. This design consideration helps prevent damages that may be 

caused by fluctuations in system power and avoid ground loops, keeping digital signals clean from 

power anomalies. 

Like the ground plane, the power plane is split between the system bus power and the isolated 

plane power. While the ground plane provides an isolated ground for all components, the isolated 

power supply is split into a 5V isolation and a 12V isolation to power the switches and the opamp. 

Figure 3.25 describes the power plane layout for the separation of the system power plane and the 

isolated 5V and 12V planes. 



103 

 

 

Figure 3. 25: (Left) Power Plane Layout, (Right) Designation between System 5V Power, Isolated 5V, and Isolated 
12V 

 

 

Figure 3. 26: (LEFT) Bottom Signal Plane Layout, (Right) Designation of modules and components 
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Figure 3.26 shows the bottom layer layout of the PCB. This includes trace routes and the location of 

key components, as described by the schematics in Section 3.4. This gives an idea of where 

components are located for further diagnosis, and provides a mapping of traces for testing signal and 

power integrity. The top layer of the LOCC I-V system is given in Figure 3.27. There are few 

components placed on this side of the board. The LED chip carrier sockets are placed to face toward 

the photodiodes. 

 

 

Figure 3. 27: (Left) Top Signal Plane Layout, (Right) Designation of chip carrier socket components 

 

The last portion of images illustrate an isometric view of both the top and bottom planes of the LOCC 

system before fabrication. The 3D rendered view gives an idea of the space required by the 

components, and describes the placement of the components. Figure 3.28 shows the isometric 3D 

images of the LOCC I-V characterizer. 
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Figure 3. 28: (Left) 3D View Bottom Side, (Right) 3D View Top Side 
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3.4.2 EL Characterizer PCB Layout 

The LOCC EL characterizer consists of a 2-layer board with a finished thickness of 1.5748 

mm (.062’’) and a 1 oz. copper pour, or 0.203 mm thickness. Table 3.4 describes the board layers and 

the final height/thickness of the entire board. 

 

Table 3. 4: EL Characterizer Board Stack 

Board Stack Report 

Stack Up Layer Stack 
Layer Board Layer Stack Name Material Constant 

1 

 
 

Top Paste     

2 Top Overlay     

3 Top Solder 
Solder 
Resist 3.5 

4 
Component 
Side Copper   

5 Dielectric 1 FR-4 4.2 

6 Bottom Layer Copper   

7 Solder Side 
Solder 
Resist 3.5 

8 
Bottom 
Overlay     

9 Bottom Paste     

  
Height: 1.5748mm 

(.062'')       
 

The design of the LOCC EL characterizer is less complex than the I-V characterizer. The EL 

characterizer is made up of only two layers of copper as opposed to a 4-layer design. This helps reduce 

the overall cost of fabricating this portion of the system. Note that the final thickness of the board is 

still that of a 4-layer board. This is just a standard processing thickness from the PCB fabricators. The 

components are laid out to match the chip carrier sockets that are embedded on the other board. This 
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allows for <10˚viewing angle, ensuring no filter shifting from the photodiodes, as described in section 

3.7. Figure 3.29 shows the board outline and planning for components and drills. 

Because the board is a 2-layer board, the grounding and power supply planes are embedded 

on the surface. Like the ground planes of the I-V side, the bottom portion of the EL board is dedicated 

to components and a ground copper pour that is via-stitched to the opposite side. Figure 3.30 shows 

the placements of key components including the I2C voltage translator, ADCs and PDs. Turning to 

the top side, the 3.3V volt plane is islanded within the isolated ground plane that is included on the 

top side. This allows for the components to be placed within the rectangular area for powering. Figure 

3.33 shows the 3D rendering of the EL board to illustrate dimensions and concept. 

Overall, the largest cost to this design are the components. The photodiodes and ADCs are 

highly sophisticated and are expensive. For future designs, more cost-effective components should be 

considered. It is recommended that newer designs not use the XYZ responsivity for determining peak 

wavelength emission. For reference, the company Pixelteq offers a multispectral sensor in 20 pin LCC 

packaging with 8 photodiodes tuned to specific wavelengths for the observation of peak wavelength 

emission [175]. Due to the required processing for a custom set of these Pixelteq photodiodes, lead 

times did not fall within the development schedule of the LOCC system. Given the necessary budget 

and scheduling these would make a significant addition to the LOCC EL characterizer.  
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Figure 3. 29: Board Outline and Dimensions of LOCC EL Characterizer 
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Figure 3. 30: LOCC EL Characterizer bottom side with outlined Isolated Ground Plane 

 

 

Figure 3. 31: LOCC EL Characterizer top side with outlined 3.3V and ground pours 
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Figure 3. 32: (Left) Bottom Signal with designated components 

 

 

Figure 3. 33: (Left) EL Bottom Side 3D Rendering, (Right) EL Top Side 3D Rendering 
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3.5 Firmware 

This section describes the interfacing along with firmware operation for control. This section 

also describes, software flow, major functions, and key values to be evaluated regarding the coupling 

of hardware and software. Included within this section will be process flow diagrams, to show the 

operations of experiments and communication with the LOCC system. This includes the necessary 

command codes to initiate specific experiments, retrieve data, set LEDs to be turned on, setting 

voltage resolution, and retrieve the stored data after completion of the experiment. 

 

3.5.1 Pin Description 

 

Figure 3. 34: (Top Down View) LOCC Header Pin 1 for STF-1 connection 

 

 

Figure 3. 35:(Top Down View) LOCC Header pin 2 for STF-1 connection 

 

To reiterate the connections from Section 3.2.2, communication and power to the LOCC system is 

done via the header pins. These connections can be made by simply plugging the proper wires into 

the labeled slots.  
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3.5.2 Process Flow Diagram 

Figure 3.36 illustrates the flow diagram of the LOCC firmware. Upon switching on power to 

the LOCC system, the flight computer will confirm with LOCC that the connects are made by 

receiving a confirmation bit. If the bit is not shared between the system, both the flight computer 

application and firmware will attempt to resend the confirmation bit. LOCC is now ready to be sent 

command codes to begin processing of experiments. This is done with command codes found in 

Table 3.8. The LOCC command codes are read in as hexadecimal values and correspond to written 

subroutines regarding running experiments, activating or deactivating LEDs, and transferring data 

between LOCC and the flight computer. Once the command codes are send and experiment runs, 

data can be sent back to the flight computer using the given command codes. Once the transfer is 

complete and all desired experiments have been ran, LOCC can then be shut down. 
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Figure 3. 36: Process flow diagram for experiments of LOCC system 
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3.5.3 Libraries 

Below, a list of libraries used in the operation of the LOCC system is provided. These C++ 

libraries are necessary to include when compiling and installing the LOCC firmware. A description of 

each of the included libraries is given to show functionality, as well as describe how the library interacts 

with the LOCC system and various components. 

 

Standard Arduino Libraries: 

SPI – https://www.arduino.cc/en/Reference/SPI 

• Include Files: SPI.h 

• The SPI standard library allows for MOSI communication between the Arduino Mega and the 

MCP4901 DAC. 

 

Open-Source Libraries: 

EEPROMex - http://playground.arduino.cc/Code/EEPROMex 

• Include Files: EEPROMex.h, EEPROMVar.h 

• The EEPROMex library extends the functionality of the standard EEPROM library for 

storing data on the Arduino Mega’s on-board EEPROM. 

 

SoftI2CMaster - https://github.com/todbot/SoftI2CMaster 

• Include Files: SoftI2CMaster.h 

• The SoftI2CMaster library allows for software-based I2C communications between the 

Arduino Mega and I2C-enabled devices (INA219, MCP23018, TCS34725, TSL2561).  This 

frees the on-board hardware-enabled I2C bus for other communication purposes. 
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MCP23019 BitBang –  

• Include Files: MCP23018_bitbang.h 

• The driver library used for controlling soft the MCP23018 GPIO expanders. This library 

makes it possible to control the expanders via Arduino. 

 

Adafruit INA219 - https://github.com/adafruit/Adafruit_INA219  

• Include Files: Adafriot_INA219_BitBang.h 

• Library used for controlling the calibration of the current sensor for measure current through 

LEDs. 

 

CubeSat LCSEE –  

• Include Files: CubeSat_CSEE.h 

• Used for the overall control of the LOCC system. Creates an instance of the system and 

allows the user to use getters and setters as well as run experiments and enable/disable 

LEDs. 

 

MCDC04 Bitbang –  

• Include Files: MCDC04_Bitbang.h 

• Driver used to control the MCDC04 which is connected to the photosensor. This library 

allows for the setting of registers, controlling integration time, and calibrations. 
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3.5.4 Data Storage: 

Data will initially be stored on the Arduino Mega’s 4096 bytes of on-board EEPROM.  A set of 

memory addresses in the EEPROM will be pre-allocated for storing parameters and program states. 

Listed below are the variable designators for the stored information regarding each LED. These 

variables are preallocated within the LOCC memory. Storage of information begins with the LED 

counter that designates the starting recorded data for that LED. Following this, the voltage resolution 

is set. The voltage resolution parameter is used to set how many voltage steps are taken from 0 – 5V. 

The LED select parameter used 3 bytes to set the active LEDs to be voltage ramped. The LED status 

bytes let the user know which LEDs have drawn current and show the user which LEDs are working. 

These memory addresses require a total of 9 bytes of EEPROM storage.  The other 4087 bytes of 

EEPROM are available for experiment data storage. 

 

• Counter: Current LED (1 Byte) 

o A counter showing the current LED being used in the experiment. 

• Voltage Resolution (1 Byte) 

o A parameter used to determine the input voltage interval of the MCP4901 DAC and 

the number of data points gathered for each LED. 

• LED Select (3 bytes, 1 Byte per LED Array) 

o A parameter used to choose individual LEDs or combinations of LEDs for use in 

either experiment. 

• LED Status (3 bytes, 1 Byte per LED Array) 

o A set of flag bits representing the working status of LEDs 
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3.6.5 Data Packet Description 

Data packets sent from the Arduino will contain complete data from 1-to-many LEDs.  The 

number of LEDs in the data packet and the size of the packet will depend on the voltage resolution 

of the MCP4901 DAC. The data, timing and experiment frequency are in Tables 3.5 through 3.7. 

 

Table 3. 5: Experiment 1 Data Size (Bytes) 

Experiment 1  
Minimum Nominal Maximum 

Single 

LED/PD (B) 

34 129 1026 

24 LED/PD 
(B) 

888 3096 24696 

 

Table 3. 6: Experiment 2 Data Size (Bytes) 

Experiment 2  
Nominal 

Single 

LED/PD (B) 

17 

24 LED/PD 
(B) 

408 

 

Table 3. 7:Experimental Frequency of LOCC 

 
Experiment Frequency 

Week 1 3 times per day 

Week 2 1 time per day 

Week 3 3 times in 7 days 

Week 4. 1 time in 7 days 
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For Experiment 1, the data structure for an individual LED will be as follows: 

• LED (1 Byte) 

• Voltage (2N Bytes, where N is the voltage resolution parameter) 

• Current (2N Bytes, where N is the voltage resolution parameter) 

For Experiment 2, the data structure for an individual LED will be as follows. 

• LED (1 Byte) 

• ADC Reading (3*2 Bytes, X – adc values, Y – adc values, Z – adc values) 

• Voltage (2 Bytes) 

• Current (2 Bytes) 

• ADC Reading (3*2 Bytes, X – adc values, Y – adc values, Z – adc values) 

It is important to note the reasoning for take multiple readings from the ADC. This is done to 

examine the dark current values in the photodetectors. Measuring the dark current gives a 

baseline value to interpret when looking at the expected output. These values will give insight 

into any damages that may have or may be occurring in the photodetectors. Dark current may 

increase due to displacement damages seen from irradiation and produce unreliable results. 

 

3.6 Software Interfacing 

The software section is dedicated to describing the LOCC application and its functionality 

when interfacing with hardware and firmware. This section will describe the various command code, 

message IDs, and functionality of the developed application. The block diagrams provided will 

illustrate the coupling between processes and hardware. Essentially, the firmware handles all internal 

processes, and the software handles only its internal processes.  
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LOCC is interfaced with STF-1’s onboard computer which utilizes Core Flight Executive 

(cFE), which is an application development and run-time environment. The purpose of cFE is to 

provide core services that include messaging on a software bus, time, events, executive, and table 

services. These services are built in, and provide users an interface to each service [176]. For future 

information of availability and usage see [177].  

 

3.6.1 Software Process Diagram 

Figure 3.37 illustrates the process diagram for software interfacing LOCC with STF-1’s flight 

computer. The software application onboard of the flight computer is designed specifically to 

communicate with LOCC. This begins with running the application within cFE and establishing a 

connection with LOCC. Here, power is enabled to the system and confirmation of communication 

between the software and hardware is established. Following the command codes from table 3.8, the 

commands establish a subroutine, or child task, to begin sending commands and/or receiving data. 

These child tasks are the gateway to communicating with the LOCC system. 
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Figure 3. 37: Software Operation Flow Diagram 

 

 

Tables 3.8, 3.9, and 3.10 provide insight into the command ranges, established message IDs and 

ground input command codes for command this portion of the experiment. A list of relative functions 
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used in the child process is also given for relative information regarding the functionality of the 

spawned child processes for handling data transfer between software and hardware. 

 

Table 3. 8: LOCC Command and Telemetry Code Ranges 

 

 

Table 3. 9: LOCC Message IDs 

 

 

Table 3. 10: LOCC Command Codes 

 

 

 

Application Command Range Telemetry Range

CSEE 0x1980-0x198F 0x0980-0x098F

Application App Message IDs

CSEE CSEE_CMD_MID 0x1980

CSEE_SEND_HK_MID 0x1981

CSEE_HK_TLM_MID 0x1982

CC

CSEE_NOOP_CC

CSEE_REQ_DATA_CC

CSEE_RESET_COUNTERS_CC

CSEE_STOP_CC

CSEE_PAUSE_CC

CSEE_RESUME_CC

CSEE_EXP1_CC

CSEE_EXP2_CC

CSEE_RUN_EXP1_CC

CSEE_PUB_EXP1_CC

CSEE_RUN_EXP2_CC

CSEE_PUB_EXP2_CC
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3.7 Summary 

This chapter provides and overview of system development for this effort, that include the 

LOCC system circuit design, PCB layout, and firmware design, and software design. These system 

components function together to perform experiments for the I-V characterization and the EL 

characterization of the LEDs. The I-V experiment ramps the voltages of 24 LEDs and records the 

voltage and current values. This identifies resistivity, turn on voltage, and saturation currents. The 

second experiment focuses on the EL characteristics of the LEDs. This determines the overall light 

output and estimation of peak wavelength emission for determining damage constants. Both 

experiments give information for describing optical and electrical characteristics of the LEDs. 

This chapter also describes the LOCC system design, which includes block diagram, circuit 

design, component description, PCB layout, firmware, and system integration. Each section details 

the different modules that make up the LOCC system that include power management, 

communication management, MCU/I-V characterization, and EL characterization. The aim of this 

chapter is to provide a detailed overview of the LOCC system and its targeted results. Additionally, 

specific components are detailed regarding selection and placement that provides ease of use and 

diagnosis. The overall goal of this chapter is to detail the work done in preparing the LOCC system 

for integration into the CubeSat platform.  
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Chapter 4: LED Fabrication and Packaging 

4.1 Processing and Fabrication of LEDs 

This chapter describes the fabrication processes of making the custom LEDs for the LOCC 

system. The chapter is divided into two sections that focus on the fabrication techniques of LEDs and 

the packaging of the LEDs into chip carriers. Before the LEDs can be processed and fabricated, 

substrates containing the active regions of the device must be grown. The active regions of the LEDs 

are typically created using MOVPE techniques [178] [179]. The LED layers are grown on sapphire 

(Al2O3) substrates that are 430 µm thick and a diameter of 50.8 mm. For this work, commercial LED 

substrates were purchased rather than grown in-house. The characteristics of the LED wafers used in 

this work are detailed in [180]. After the wafers are grown, the individual LED mesas and contacts are 

created using successive lithography, etch, and deposition steps. The optimized LED structure can be 

seen in Figure 4.1. The active region, consisting of periodic InGaN/GaN quantum wells, having a 

thickness of 200 nm. The blocking layer consists of p-type doped AlGaN, with a thickness of 30 nm. 

The overall thickness is described in Figure 4.1 The target peak emission is 445 to 475 nm, depending 

on the concentration of indium dopants and processing.  
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Figure 4. 1: LED Structure  

 

The LED substrates are diced into smaller samples using a diamond scribe to score the rough 

side of the substrate. Following this, a degreasing step is performed by placing the diced substrate 

pieces into successive 5-minute ultrasonicated baths of acetone and methanol. The samples are then 

rinsed using DI water and dried using nitrogen. They are then placed in an oven at 120 ˚C for 20 

minutes for a dehydration bake. The LED samples then go through an annealing process. This process 

takes place in a rapid thermal annealer (RTA) at 800 ˚C for 5 minutes in a nitrogen environment of 

500 sccm. This is done to activate the charge carriers and reduce the defects of the p-type GaN [181]. 

Because the annealing process may form an oxidized layer, the annealing step is followed by an oxide 

etch to remove this layer. This is done by placing the samples in a sequence of acidic solutions. This 

consists of a buffered oxide etch (BOE) for 3 minutes, deionized (DI) water rinse for 2 minutes, dilute 

hydrochloric acid (HCl) with a 1:1 mixture of HCl and DI water for 1.5 minutes, and finished with 

another DI water rinse for 2 minutes. Following the removal of oxide layers, another degreasing step 
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is performed, and the samples are placed back in the dehydration oven for another 20 minutes to 

ensure all residues have been removed.  

The samples are now fully prepared for mesa patterning and etch. For this, the samples are 

spun in the Laurel Technologies 600 vacuum spinner hood with AZ4400 photoresists at 4000 rpm 

with a 1749 rpm acceleration for 30 seconds. This is done to acquire the correct final thickness of 50 

nm of photoresist for exposure and processing. The samples are then placed on a 95 °C hotplate for 

1 minute to evaporate the resist solvents. The samples are now ready for patterning. Using a mask 

aligner, Suss Microtech MA6 Mask Aligner at 320 nm, photolithography is performed to expose the 

pattern on the photoresists at an exposure dosage of 250 𝑚𝐽/𝑐𝑚2. The exposed AZ4400 can then be 

developed. Note, the AZ4400 photoresist is a positive resist, meaning the image that is produced from 

exposer is the same as the photomask. The photomask used was originally designated the bonding 

LED Mesa mask. Figure 4.2 illustrates the patterning process of the LED mesa. 

 

 

Figure 4. 2: Mesa Patterning Step 

 

AZ 400K developer is diluted with DI water in a 1:3 ratio and developed the exposed resist for about 

1.5 minutes. Since AZ 4400 is a positive photoresist, the exposed pattern should be an exact replica 

of the photomask. Following the development of the mesa pattern, the photoresist is then hard baked 
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in the oven at 120 ˚C for 20 minutes, which hardens the remaining photoresist and prepares it for the 

next step of processing, reactive ion etching (RIE). Multiple samples can be placed into the reactive 

ion etching chamber for processing. Samples are placed onto a silicon wafer by photoresist mounting 

and placed into the vacuum chamber. To perform the photoresist mounting, a silicon wafers is 

covered in AZ4400 photoresist and placed in the spinner hood. This is then followed by a hard bake. 

After the hard bake of the samples and wafer together, the samples are now ready to be placed into 

the RIE. The mesa structures are created by etching away layers of the LED substrate, exposing the 

active region of the LED. The Trion Minilock III Inductively coupled plasma (ICP) RIE etching is 

used to etch the materials. The etching chamber is filled with boron trichloride (𝐵𝐶𝑙3) at 10 sccm 

flow, and chlorine (𝐶𝑙2) at 20 sccm flow. The pressure of the chamber is kept at 10 mT. The RIE and 

ICP power are applied to the chamber and the gasses generate a plasma that can begin etching and 

lifting away of materials. This process is performed for 120 seconds to achieve an etch depth of 500 

to 800 nm. The etch depth is governed by other ICP RIE etching parameters such a helium (He) flow, 

chamber pressure, DC bias, etc. This can produce varied results between 600 nm to 900 nm mesa 

heights over time. As long as the MQWs are exposed during the process, these results will yield 

functional LEDs. Once the mesa etch is complete, the photoresist can now be stripped from the 

samples. This is done by placing the samples and silicon wafer in in AZ 300 T stripper for 1 hour at a 

temperature of 100 ˚C. Figure 4.3 illustrates the mesa etching process. 
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Figure 4. 3: Mesa Etch Processing and PR strip 

 

Following the photoresist strip, the samples undergo another degreasing step and dehydration bake 

for 20 minutes. The samples are now ready for the next step of processing, p-contact patterning onto 

the top of the mesa. 

For this patterning step, photoresist AZ 5214 E-IR is used. Using the spinner hood, the 

photoresist is spun at 4000 rpm with an acceleration of 1749 rpm for 30 seconds. This is followed by 

a solvent evaporation at 95 ˚C on a hot plate for 1 minute. The mask aligner is used again with the p-

contact mask with an exposure dosage of 50 𝑚𝐽/𝑐𝑚2. Following the exposure, the samples are baked 

at 120 ˚C for 2 minutes for the polymer to form crosslinking within the photoresist. A second image 

reversal flood exposure is then performed, using the OAI UV Flood exposure system at 365 nm, to 

exposing the samples to a dosage of 2000 𝑚𝐽/𝑐𝑚2. Once this exposure is completed, AZ 300 MIF 

developer is used for 35-45 seconds to reveal the new pattern for the p-contact. Figure 4.4 shows the 

steps for metal p-contact patterning. 
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Figure 4. 4: Metal Patterning Process from photolithography 

 

Once the patterning has been completed, the metal and nickel p-contact is ready to be created 

on top of the LED mesa using the KJL E-Beam for electron beam metal evaporation deposition. The 

first layer of the contact is a 30nm deposition of nickel, followed by a deposition of a second 150nm 

layer of gold. These ohmic contacts were previously developed in [182]. After metal evaporation, a 

liftoff process is performed. This is done with the ultrasonicator, acetone, and methanol for 5 minutes. 

This removes the excess gold and photoresist, and leaves the p-contact attached to the mesa. Figure 

4.5 shows the metal deposition steps for the p-contact. 

 

 

Figure 4. 5: Metal Evaporation and liftoff for p-contact 
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Before n-contact patterning, another degreasing and dehydration phase is performed to 

remove residue that main remain after the previous process. The n-contact process is the same as the 

p-contact patterning process. AZ 5214 E-IR is spun onto the samples at 4000 rpm at an acceleration 

of 1479 rpm for 30 seconds. This is followed by an evaporation bake at 95 ˚C for 1 minute. Using the 

mask aligner, the photoresist is again exposed to a dosage of 50 𝑚𝐽/𝑐𝑚2 , and followed by another 

bake at 120 ̊ C for 2 minutes for promotion of polymer crosslinking. Another round of flood exposure 

is used at 2000 𝑚𝐽/𝑐𝑚2 dosage for image reversal. The n-contact pattern is then developed using AZ 

300 MIF for 30-45 seconds. 

 

 

Figure 4. 6: n-contact Patterning Process from photolithography 

 

After development, the n-contact can be deposited using the same method of electron beam 

evaporation that was used to create the p-contact. The n-contact varies in metals used. The n-contact 

layers consist of an initial 2 nm layer of titanium followed by 100 nm of aluminum, another 30 nm of 

titanium, and finally 150 nm of gold. These materials are layered to promote adhesion between the 

metals as well as the n-doped GaN material and form an ohmic contact. After metal deposition, liftoff 

is performed, and another degreasing and dehydration phase is recommended. Figure 4.7 illustrates 

metal deposition and liftoff for the n-contact. 
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Figure 4. 7: n-contact metal deposition and liftoff 

 

Following the liftoff stage of the samples, the post-process anneal is performed. The RTA is 

used again for this process. Each sample is placed inside the AnnealSys AS-Micro Rapid Thermal 

Annealer chamber and annealed at 600 ˚C for 3 minutes in air. This process will fuse the layers of the 

metal contacts together, as well as fuse the metal onto the LED substrate forming a cohesive bond of 

all the components. The LED is now operational and ready to be powered on. However, because the 

LEDs need to be packaged to fit into the LOCC, system bonding pads must be added to the contacts 

to ensure proper bonding from the chip carrier to the LED using gold wire. 

The bonding pad layer follows the same procedures as the p- and n-contacts, utilizing AZ 

5214, solvent evaporation, photolithography, crosslinking bake, flood exposure image reversal, and 

development (see previous sections on p-contact and n-contact patterning). Bonding pads require the 

use of an alternative deposition technique to improve adhesion to the underlying layers, sputtering. 

For this, a CVC 610 DC Magnetron Sputtering Station is used sputter a layer of gold deposited for 

~6.5 minutes, producing a 600nm-thick layer on top of the p and n contacts. Figures 4.8 and 4.9 

illustrate the patterning and metal deposition of the bonding pads. 
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Figure 4. 8: Bonding Pad Patterning 

 

 

 

 

Figure 4. 9: Bonding pad metal deposition 

 

Following the deposition of the gold bonding pad, the LED is now ready to be packaged. The 

packaging process is detailed in the next section, Section 4.2. Figure 4.10 shows a 3D illustration of a 

processed LED. 
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Figure 4. 10: 3D illustration of fabricated LED  

 

4.2 Integration and Packaging of LEDs 

For the LEDs to be implemented into the LOCC system for characterization, they must first 

be cut into smaller sizes. To do this, a Disco Tech wafer dicing system is utilized to cut the LEDs into 

4-by-4 arrays to be placed into the chip carriers. This is done with a hub-style DISCO diamond blade 

ZH05-SD2000-N1-50 [183]. The blade is aligned to the corner of the sample and the initial cut is 

made. After the initial cut the blade is incrementally moved to make cuts every 3.5mm in the x-

direction for 3 cuts. Following the completion of the x-direction, the wafer dicer will then rotate the 

sample and move in the y-direction. From the initial cut, the sample then incrementally moves in the 

y-direction 3.25mm for 3 cuts. Each cut runs for at least 7 mm to ensure the sample is cut all the way 

through. Figure 4.11 illustrates the cut lines and dicing of the LEDs into 4-by-4 arrays. 
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Figure 4. 11: Cut lines and dimensions for sample dicing 

 

Following the dicing of the samples, packaging of the LEDs into the chip carriers can be 

performed. The diced samples and chip carriers both undergo the degreasing and dehydration phase 

to clean the diced LEDs of substrate particles from the dicing process, and to ensure the chip carrier 

has a clean surface for epoxy attachment to the carrier. Following degreasing, EPO-TEK’s 353ND 

[184] high temperature epoxy can be used to secure the LEDs into the chip carrier. This is done by 

mixing two components together (A and B) with a mixture ratio of 10:1 by weight (10 grams of A 

with 1 gram of B). The mixed epoxy is then deposited onto the chip carrier in small amounts. One to 

two small drops are sufficient; adding more will cause over-expansion of the curing epoxy and 

subsequent creep onto the chip carrier pads and LED bonding pads, leaving them unusable for 

bonding. After the epoxy has been placed onto the chip carriers, they can be desiccated for 30 minutes 
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in a vented desiccator to ensure that all air bubbles have been removed from the epoxy. This step 

ensures that all air bubbles formed in the epoxy are removed, helping promote strong adhesion 

between the LEDs and carrier. Once desiccation is complete, the LEDs can now be placed onto the 

epoxy, pressed in, and placed into an oven to cure for 1 hour at 150 ˚C. Figure 4.12 illustrates the 

process of mounting the LEDs. 

 

 

Figure 4. 12: Illustration of LED bonding to chip carrier 

 

After epoxy curing is completed, the LEDs are ready to be wire-bonded. The West Bond 74776E wire 

bonder uses an ultrasonic bonding technique to create traditional wedge/ball bonds. Beginning with 

the ball bond on the chip carrier pad, the bonding power is set to 200 µW for a duration of 150 ms. 

For the wedge bonding of the LED, the bonding power is decreased to ensure no damage to the 

contacts. This is done with 120 µW of power at a duration of 150 ms. Figure 4.13 shows the bonds 

that are made with the LEDs to operate properly with LOCC. Note the limitations of the number of 
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LEDs that can be bonded. This has left only 8 LEDs to be connected. Here, the red lines represent 

the positive terminal or p-contact wire bond and black is the negative terminal or n-contact bond. 

 

 

Figure 4. 13: Wire bonding diagram for LOCC compliance 

 

For future design and easier bonding Figure 4.14 gives a recommended configuration for bonding the 

LEDs to the carrier. The wire bond configuration would require LOCC to have a new design for the 

assignment of connections. This configuration allows for 12 of LEDs to be connected as well as better 

connections without the risk of short circuits and misconnections. 
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Figure 4. 14: Recommended wire bond configuration. 

 

The final step for completing the packaging process for the LEDs is to apply an epoxy encapsulate to 

ensure the wire bonds and LEDs stay in place within the chip carriers. This is done using EPO-TEK’s 

301-2FL low-stress optical epoxy [185] at a mixture ratio of 100:35 by weight. For conservation of 

epoxy, a mixture ration of 10 grams to 3.5 grams was used. This epoxy is then cured for 3 hours at 

80˚ C. Figure 4.15 shows the final encapsulation step for packaging the LEDs after wire bonding. 
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Figure 4. 15: Final Packaging Steps 

 

After a cooling period, the LEDs are now ready to be placed in the LOCC system for testing or 

characterized with the in-house characterizer.  
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Chapter 5: System Characterization & Testing 

5.1 Introduction 

This chapter will focus on characterizing the outputs of the LOCC system that consist of I-V 

ramping results, tristimulus results mapped to CIE 1931 chromaticity diagram, light outputs results, 

power consumption, and data packet sizes. The results were produced within the assembled CubeSat 

to show functionality of the LOCC system within STF-1. The experimental data was sent from LOC, 

to the flight computer, and, finally, transmitted to the ground station computers. The files produced 

are binary (.bin) files ranging from 900 bytes to 3 kilobytes. Following the download of the binary 

files, they are translated into their respective text files with float values and plotted using Origin and 

MATLAB. 

In this portion of the work, OriginPro 8 was used to graph and statistically analyze the values 

produced from the LOCC experiment. Following this, MATLAB was used to determine the corrected 

tristimulus values for each LED tested, and place them on the chromaticity. From experiment two of 

LOCC, the light intensity output is determined over all the iterations of the experiment and provided 

for a baseline observation to be compared to after thermal and irradiation exposure for determining 

damage coefficients.  

Data that is presented in the following chapter has been produced following NASA’s vibration 

and thermal testing of the fully assembled LOCC system, illustrating the capability of the assembly to 

operate within acceptable ranges after being exposed to extreme conditions. The sub-sections of this 

chapter cover the generation of I-V curves using the LOCC system, associating them with devices in 

their respective chip carriers, as well as across the multiple trial runs. This also covers the mean value 

of current versus voltage of the LEDs in their respective chip carries and their standard deviation as 

well as the mean values of current versus voltage of each LED and their standard deviations across 
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each LED. Next, the correlated LED peak wavelength emissions are estimated and plotted to against 

a CIE 1931 chromaticity diagram. This chapter will also discuss the resulting light output levels from 

each LED. The last portion of this chapter will cover the overall recorded power and data costs of the 

LOCC system.  

 

5.2 Final Assembly 

The overall LOCC system is assembled to analyze in-house fabricated LEDs. Figure 5.1 shows 

the final packaging steps and LEDs that will be loaded into LOCC’s chip carrier sockets. Figure 5.1(a) 

shows the initial activation of the LED prior to being diced and epoxied into the chip carrier (as 

described in the previous chapter). Figure 5.1(b) illustrates a close-up of the wire bonded LEDs to the 

chip carrier. Figure 5.1(c) and (d) show the encapsulated LEDs following the epoxy cure, ready to be 

placed into the LOCC system. 
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(a) (b) 

 

  
(c) (d) 

 

Figure 5. 1: (a)LED – Pre-package test, (b)Close-up of wire bonded LED, (c) Pre-encapsulation LED chip 
carriers, (d)Post-encapsulation chip carrier 

 

Figure 5.2 illustrates the final assembly of the LOCC I-V and EL boards. The firmware is uploaded, 

and the two boards can be connected and integrated into the CubeSat. Figure 5.2(a) shows the bottom 

side of the I-V characterizer, showing the entirety of the I-V characterization, power and data isolation, 

and controlling circuitry. Figure 5.2(b) shows the top side of both the I-V and EL characterization 

module boards. The chip carrier sockets are the only components located on the I-V board side. Figure 

5.2(c) shows the LOCC I-V board in operation, enabling an LED and turning it on. Figure 5.2(d) 

shows a close-up of final assembly of the EL side.  
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(a) 

 

(b) 

  

(c) (d) 

 
Figure 5. 2: (a)I-V Characterizer bottom side, (b)EL and I-V characterizer top side, (c)Functional test with lit 

LED, (d)EL characterizer top side 

 

Figures 5.3 and 5.4 illustrate the connected LOCC system. The boards are pressed together, 

connecting the center header pins and allowing communication between the I-V and EL boards. This 

is also how the EL board receives power. 
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Figure 5. 3: LOCC connected 

 

 
Figure 5. 4: Alternate angle of LOCC connected 

 

Figures 5.5 and 5.6 show the integration testing of LOCC with STF-1 before assembly into the 

CubeSat Chassis. Power was supplied from the STF-1’s battery and monitored for current draw and 

voltage stability. Additionally, command codes were sent to run LOCC’s experiments and retrieve 

data. This ensured that LOCC was tested and would not interfere with the other existing experiments 

on-board STF-1. 
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Figure 5. 5: I-V characterizer integration into CubeSat 

 

 
Figure 5. 6: Full LOCC integration into CubeSat 

 

Figure 5.7 shows the final assembly of STF-1. This shows the complete system, ready for placement 

into the CubeSat launch vehicle payload. The outside casing is made up of four plates of solar cells 

that will recharge the internal battery for running experiments. On the top, a small antenna exists to 

communicate between the CubeSat and ground station for send and receiving the data. 
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Figure 5. 7: Final assembly of the STF-1 CubeSat 

 

5.3 I-V Characterizer Testing 

The purpose of LOCC and its experiments is to provide a test for determining LED quality 

regarding their operation against irradiation. LOCC performs I-V characterization and EL estimations 

to provide information for examining voltage shifts, resistive changes, and peak wavelength shifts. 

The results of testing the LOCC I-V characterization module are examined below and consist of: 

1) The resulting I-V characteristics of each chip carrier set, along with a comparison of each 

LED over the course of 4 trial runs.  

2) The mean and standard deviation of LED current and voltage between each chip carrier, 

as well as a mean and standard deviation of current and voltage for each LED. These 
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results are examined to evaluate constancy between the LEDs over the course of 4 trials 

runs. 

The output characteristics are shown in figures 5.8 & 5.9.  
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Figure 5. 8: I-V Characteristics of Chip Carrier 2. (a)Trial 1, (b)Trial 2, (c)Trial 3, (d) Trial 
4 
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Figure 5. 9: Average and standard deviation I-V results of LEDs in chip carrier 2 

 

Graphs 5.3.1 and 5.3.2 illustrate a successful characterization of chip carrier 2 LEDs. The LEDs that 

were characterized show turn-on voltages ranging from 1.6V to 2.5V. A 36% difference is seen over 

the LED turn-on voltages for chip carrier 2. Early turn-on voltages can be seen in LEDs 1, 4, and 6 

for the second trial. These LEDs show a change in turn-on voltages of 14.29% and 9.09%, and 

11.11%, respectively, between trials 1 and 2, and back to trial 3. The remaining LEDs, showed little 

change, at less than .80% in turn-on voltage values. The I-V characteristics also allow for the 

examination of the LED resistances. These resistance values vary 26% from the least resistive LED, 

LED 1 at 9.3 Ω, to the most resistive, LEDs 2, 3, and 5 of 12.5 Ω. LEDs 2, 3, and 5 show a resistive 

difference of 4%, from 12 Ω to 12.5 Ω. Examining figure 5.10, the averaged results of the LEDs can 

be seen. This shows an average turn-on voltage of 2.46 V, an average resistance of 11.65 Ω, and an 
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average maximum current of 165 mA. Figure 5.11 also shows gives information of the standard 

deviation from the mean value of the 4 trials. The standard deviation at 5V is 20.5 and 8.7 at the mean 

turn-on voltage. While these parameters vary, they can be used during the process of gathering data. 

Temperature effects may have temporary effects that can be seen from experimental data over time, 

mean values of current, voltage, and resistance will have a have greater deviations over time and 

exposure to radiation. The standard deviations from the mean will also determine how each device is 

being affected, by temperature or radiation.  

Following the examination of the LED chip carriers, individual LEDs are graphed and looked 

at for the same properties of current values, voltage shift, and standard deviation. Figures 5.12 shows 

three different LEDs ran over the course of 4 trails. Here, consistency in the LED measurements can 

be seen. This is shows turn-on voltage shifts of less than .2V, with LEDs 5, 6, and 7 having .8%, 1.3%, 

and 4.4% differences in turn-on voltages, respectively. Resistance change was also minimal, with 

changes from 11.2 Ω to 11.5 Ω for LED 5, 11.1 Ω to 11.3 Ω for LED 6, and 11.5 Ω to 11.6 Ω for 

LED 7. Overall, this is less than a 2% difference across the LEDs. This further illustrates the 

consistent results provided by the LOCC I-V characterization system. 

 Figures 5.12 shows three different LEDs ran over the course of 4 trails.  Standard deviations 

at 5V were 20.1, 17.5, and 25.3 for LEDs 5, 6, and 7. 
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(f) 

Figure 5. 10: (a)LED 5 – 4 trials, (b)LED 5 – Mean and standard deviation, (c)LED 6 – 4 trials, (d)LED 
6 – Mean and standard deviation (e)LED 7 – 4 trials, (f)LED 7 – Mean and standard deviation 
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5.4 Electroluminescent Characterizer Results 

For the next portion of this section the electroluminescent characterizer results will be 

examined. As discussed before, the peak wavelength emission and light output of the LEDs are crucial 

measurements for determining the effects of radiation on the LEDs. The data from the trial runs 

aboard STF-1 are below. These results consist of: 

1) The chromaticity diagram estimations of the peak wavelength emissions. Because the 

variance of these results are overlapping from a high-level view, the zoomed regions are 

included to highlight where the results lie in the diagram. 

2) Secondly, the resulting light output values from the corrected xyY values are plotted of 

the functioning LEDs. 

 

5.4.1 Peak wavelength estimations 

Using MATLAB, the correlation matrix, described in section 2.3.2, is used against the recorded values 

from LOCC’s EL characterizer. The results of the corrected values are then transformed into xy-

coordinates for the CIE 1931 color standard and plotted against the CIE 1931 chromaticity diagram. 

Figure 5.11 shows the plotted color corrected values for estimating peak wavelength. 
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(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 5. 11: EL Characteristics of all LEDs. (a)Trial 1 – 24 LEDs, (b)Trial 1 - Zoomed Chromaticity 
values, (c) Trial 2 – 24 LEDs, (d) Trial 2 - Zoomed Chromaticity values (e)Trial 3 – 24 LEDs, (f)Trial 3 - 

Zoomed Chromaticity values, (g) Trial 4 – 24 LEDs 
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The x-values range from .1426 to .1422 and y-values range from .0354 to .0372. The corrected values 

can be seen at the monochrome values between 455 and 460 nm, which is consistent with the original 

EL measurements provided by the original in-house measurement system, seen in Figures 5.12. 

Because the correlated values are overlapping, additional plots zoomed around the values are provided 

below to see the difference in LED outputs.  

 

  

 

(a) 

 

(b) 

Figure 5. 12: Commercial Spectrometer Chromaticity outputs 

 

5.4.2 Light Output Results 

Figures 5.13 – 5.14 describe the plotted light output intensity values as box diagrams to show 

where most of the calculated Y values fall in terms of light output intensity. Here, the Y-values from 

the colorimetric reading hold the light output intensity values. These values are important as they can 

be used with Equation 2.26 to help describe the lifetime-damage coefficient. Here the values seen in 
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the LEDs can range in difference from .12 to .2 in arbitrary units. These values are useful for 

determining lifetime-damage coefficients and determining light output degradation over time. 

Additionally, Figure 5.14 provides of overview of chip carrier 1 LED’s light output intensity. As the 

effects of space takes place on the LEDs, from what research has shown us, these light output 

intensities will decrease overtime. The mean values of the trials are represented by the red bar inside 

the box, values within a standard deviation fall with the upper and lower limits of the box, and those 

connected with dotted lines are outside quartiles for light output values. Light output values range 

from .42 to .19. 

 

 

(a) 

 

(b) 
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(c) (d) 

 
Figure 5. 13:Box plot of light output over 4 trials. (a) LED 4, (b) LED 5, (c) LED 6, (d) LED 7 

 

Figure 5. 14: Light output intensity of LED chip carrier 1 

 

5.5 Power and Data Budgets Results 

This subsection is dedicated to describing the power and data budgets of the LOCC system. 

This is broken down into the system’s subsequent experiments, and results are plotted over the time. 

The plots below illustrate the current fluctuations observed while performing IV characterization, idle 

current consumption, and the max current consumption. Following this, the total required wattage 

and watt-hours are provided. The data requirements are more easily determined, as they take a fixed 

amount of memory per each experiment. 
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5.5.1 Power Results 

Before examining the power results, two considerations must be noted. First, because the STF-

1 flight computer continuously samples the output current and voltage of its batteries, the output 

currents do not directly correlate to the current requirements of each LED. This means that an LED, 

or even multiple LEDs, may have turned on in between the power points sampled by the flight 

computer. Secondly, the duration of each test must be noted. Experiment 1, which gathers data on 

the I-V measurements, takes ~25 seconds to complete. With the flight computer sampling every 10 

seconds, this sampling rate is not fast enough to provide information related to current change over 

time. To overcome this challenge in power characterization, Experiment 1 was conducted multiple 

times for two trials. This was then reconstructed and presented over a 100 second span to match the 

duration of Experiment 2, which gathers the data from the EL measurements. Experiment 1 results 

are shown in Figure 5.15. These detail the current draw of the LOCC system when integrated into the 

CubeSat. Because the LEDs turn on an off one at a time, the overall current draw jumps from idle 

.21A to a maximum of .72A over the course of the experiment. Further, these the values of average 

maximum current, average current, and idle current are seen. The average maximum current draw is 

approximately .6A, average current draw over the duration of the experiment is .432A, and idling is 

.21A. 
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(b) 

Figure 5. 15: Experiment 1 (a) Current consumed over time, (b) Average current 
consumed over time 

  

 
 

The duration of Experiment 2 is much longer than the I-V characterization experiment because more 

steps are involved. Here, the experiment takes approximately 100 seconds to run through the entire 

set of 24 LEDs. The convention is the same as in Experiment 1, meaning the samples take place every 

10 seconds and do not show the current change for every LED. Here, the values remain relatively the 

same with an increase in current draw by .02A due to the duration the LEDs are left on. The maximum 

current draw seen in the experiment is .7A up from the idle of .21A. Experiment 2’s average maximum 

current draw is .62A, average current draw is .43A, and idle is still .21A. 
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 (b)  

Figure 5. 16: Experiment 2 (a) Current consumed over time, (b) Average current 
consumed over time 

  

 
Table 5.1 provides an overview of the current draw and power needed to run the LOCC system both 

idle and under load. The table gives an idea of the average current draw, maximum current draw, 

average wattage, maximum wattage, average watt-hours, and maximum watt-hours needed to deploy 

the LOCC system. This table represents the graphed values in the preceding figures. These values 

describe LOCCs necessary power requirements for integration into a CubeSat. The relatively low watt-

hour demand provides a lower demand as it does not stay on for very long.  

 

Table 5. 1: Power Results 

Experiment Avg 
Current 

(A) 

Max 
Current 

(A) 

Wattage 
Avg (W) 

Wattage 
Max (W) 

Watt-hour 
Avg (Wh) 

Watt-hour 
Max (Wh) 

I-V 0.410 0.600 2.045 3.002 .057 .083 

EL 0.425 0.623 2.125 3.113 .059 .086 
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5.5.2 Data Budget Results 

The budget for data consists of the output files produced by the LOCC system. LOCC stores 

the measured values for LED current, voltage, and tristimulus results, and sends them to the flight 

computer for transmission to the ground station. These are initially stored as binary files, and must 

later be translated into text files. The resulting data budgets shown below are from both the generated 

binary and text files. Table 5.2 describes the data that is generated from the LOCC system. Initially, 

the user will receive a 4kB or 408B binary file and have translated into a .txt which is now a 40kB or 

4kB file. This shows that the data demand of LOCC is relatively low and can be accounted for in small 

storage space requirements. 

 

Table 5. 2: Data Budge Results 

Experiment .bin file size (B) .txt file size (B) 

IV 3096 39,500 

EL 408 3730 

 

5.6 Summary of Results 

Using a combination of MATLAB, OriginPro 8, and custom Raspberry Pi software, I-V and 

EL characteristics for WVU’s in-house fabricated III-V GaN LEDs have been produced. Using 

telemetry provided by STF-1’s flight computer, the resulting power over time and energy needed to 

power the system were analyzed to show functionality and feasibility. Overall, the LOCC system is 

shown to be compatible for CubeSat applications, as well as being effective at measuring the optical 

and electrical characteristics of LEDs in the CubeSat platform. The LED samples were fabricated and 
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packaged as three sets of 4x4 arrays, labeled as sets 1-3.   To resolve reliability issues with the LOCC 

system, it is suggested that both commercial and custom LEDs be used to continually improve both 

fabrication and packaging steps of custom LEDs, and provide corrected and accurate results from the 

LOCC system. 

The first portion of these results illustrate the electrical characteristics of the LEDs from 0-

5Vs with increments of .15V allowing for 32 values of both current and voltage. This will allow the 

post-irradiated LEDs to be compared with the results produced from this testing with a second LOCC 

system (located on the ground) while this unit is in space. This will show if the system can detect 

electrical characteristic changes based on irradiation inside the ionosphere. For the second portion of 

this experiment, the CIE 1931 chromaticity values have been calculated from the results provided by 

LOCC. This requires additional steps to ensure that the correct values are found. This includes 

calculating a correlation matrix from known spectrometer values and applying them to the LOCC 

tristimulus values. From the results above, it is shown that the calculated values fall just below 460 nm 

wavelength emission, close to 455 nm. This is consistent with characterization of the devices from the 

in-house equipment. Using the provided results and calculated correlation matrix, LOCC will be able 

to show if irradiation effects cause a shift in peak emission wavelength. The EL characterization results 

can also be used to determine the light output intensity. Because our most meaningful results will 

come from light intensity, it is important to state that these values are maintained at the corrected 

tristimulus values in the xyY coordinates. Here, LOCC will be able to detect changes in light output 

intensity values for irradiated devices, and allow for comparison against the pre-irradiated values on 

the ground station system for light intensity.  

The last portion of the results consisted of the necessary budgets of the LOCC system. This 

included power and data of the system. The provided graphs are given as part of STF-1’s housekeeping 

data to monitor the output of each pin on the battery system. The provided results have been averaged 
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over the duration of the experiments and fit within a CubeSat’s power budget. The small wattage 

required to run the experiments as well as watt-hours make LOCC ideal for scalability for larger 

experiments or multiple systems. Next, LOCC produced binary files to be translated into text files. 

Ultimately, LOCC’s current configuration produced .bin files that do not exceed 4 KB of data, leaving 

room to produce larger files with greater accuracy and I-V steps.  

Regarding costs, the largest cost of producing this system was from the custom-made LEDs. 

Another cost that can be adjusted for future work is the PCB production company. The initial version 

of the EL characterizer was produced locally and, due to their processing, made the price almost three 

times higher than having the PCB produced from a manufacturer geared towards high-volume 

productions. Potentially, the overall production cost of the LOCC can be reduced from $6500 to 

almost $2000, making this an academically feasible system to produce. In summary, the LOCC system 

shows potential as a system for characterizing LEDs effectively and cheaply while on orbit and 

provides a baseline system for introduction into the CubeSat and “NewSpace” industry. 
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

LEDs have revolutionized the lighting industry. The technologies and progress made in this 

industry have led to contributions in greater energy efficiency, fast methods of communication, and 

reliable devices for signal isolation. Along with this, optoelectronics have seen widespread application 

in the exploration of space and the “new space” industry as components of power generation, 

isolation, and communication systems. However, this does not mean that all optoelectronic materials 

and systems are immune to the effects of space such as proton and electron irradiation. Currently, to 

combat these effects, optoelectronics are heavily shielded, which adds to the overall cost and 

effectiveness of these devices. 

Group III-V nitride materials are among the most popular materials being used in 

optoelectronic applications both, terrestrial and extraterrestrial, due to their material robustness in 

harsh environments. These robust properties are a by-product of the optimization of materials and 

methods used in the fabrication of the core elements of optoelectronic devices. When dealing with 

the effects of space, the overall characteristics of LED devices are the I-V characteristics, peak 

wavelength emission, and light output before and after irradiation for evaluating their performance in 

harsh conditions. Of these, the I-V characteristics and peak wavelength emissions have shown 

considerable reliability, but the optical characteristics (light output) experience more degradation 

before electrical degradation effects are observed. While examining LEDs under radiation 

bombardment, a method for examining the optical and electrical properties of LEDs while in space 

has been created. 

A Low-power Optoelectronic Characterizer for CubeSats (LOCC) has been developed to 

place minimally shielded LEDs into orbit to perform experiments focused on characterizing both 

electrical and optical properties of GaN devices while in space. While many terrestrial experiments 
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have been conducted on LEDs and other lighting devices haven’t had LED characteristics quantified 

while in space. LOCC has been developed using a current-sourcing method to provide the necessary 

amount of current to drive the LEDs. LOCC is a statistical proof of concept to demonstrate the first 

field experiment of III-V Nitride based LEDs. The system is broken down into the current-voltage 

characterization module and electroluminescent characterization module. Furthermore, the system 

design utilizes power and communication isolation to protect itself and the bus from damaging effects 

to and from the CubeSat bus. Using low ‘on’ resistance switching and accurate current and voltage, as 

well as reliable photodetectors, LOCC has been implemented and tested within the CubeSat STF-1 to 

produce I-V characteristic diagrams, peak wavelength emission estimates, and light intensity 

measurements. Along with these results, low watt-hour requirements and data budgets have resulted 

in a scalable system capable of producing results within the CubeSat platform. 

 

6.2 Future Work 

LOCC utilizes an ATMEGA2560 microcontroller unit that is limited in memory capacity, 

therefore limiting the accuracy of the measurements. It is recommended that a MCU with higher 

memory capacity or an additional memory module be added to compensate for this. Another issue 

within the LED driving circuit is the lack of current limitation. This leaves some LEDs drawing far 

more current than the power supply is rated for as well as issues examining light output due to increase 

current draw for some LEDs. A current limiting resistor should be added to the driving circuit to limit 

draw to ~100 mA. While the EL characterizer can give an estimation of peak wavelength emission, it 

is recommended that this portion of the system undergo further development to utilize photosensors, 

such as a CCD array that can scan the visible spectrum and recreate and accurate representation of 

the wavelength emission. Lastly, the cost to produce this prototype system can be reduced by selecting 
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different vendors for PCB fabrication. Acquisition of an in-house soldering and reflow ovens should 

be considered to reduce cost of PCB assembly. 

A major hurdle in the development and integration of this system was the packaging of the 

LEDs. The wire-bonding method employed in the packaging phase was under-developed, and led to 

a large variance in the characteristics of each LED. The caused the chip carrier bonding to suffer from 

short circuiting, fragile bonds, and limitations on the number of characterized LEDs. To save on 

future problems regarding LED connectivity, it is recommended to spend more time optimizing wire-

bonding techniques and pad creation to ensure proper bonding. Another consideration is to build a 

different layout that utilizes commercially available LEDs as they can provide a more reliable output 

and use them in parallel with custom LEDs. For future system development, it is recommended to 

use commercial LEDs to develop a baseline. 

In Summary, a LED characterizer for CubeSats has been developed and integrated into West 

Virginia’s first spacecraft, STF-1. The design and assembly of the LOCC system was performed 

simultaneously with the fabrication and packaging of the LEDs. With the help of members from 

NASA IV&V, Ingeniu Tech, LLC, and the WVU Shared Cleanroom Facility, the LOCC system was 

made functional and successfully integrated. Significant improvements can be made to the system, but 

a working alpha-version system has been developed and can be improved upon to increase the scale 

of operation and reduce costs.  

Future work includes: 

• More in-depth simulations of controlling hardware components to increase accuracy, reduce 

power, and reduce data budgets – Simulation tools such as LABVIEW and Cadence PSpice 

are invaluable to producing simulated results that can more accurately reflect the output and 

data that will be acquired from a system. Continuing to refine the selected ICs and components 

of LOCC can provide for a far superior system for future renditions 
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• Miniaturization of the characterization system to make feasible for desktop usage and control 

from personal computer – LOCC is made to be implemented into a CubeSat system and 

creates a tool for characterizing LEDs while in space These same concepts can be applied to 

making a similar system that is available for desktop usage and can be controlled via USB and 

software. Characterizing a bath of LEDs can takes hours, with a desktop version of the LOCC 

system it could be done in minutes. 

• Testing of the LOCC system while under thermal stress and ionic bombardment to develop a 

more reliable system – To produce commercial grade electronics and systems they need to be 

subjected to rigorous testing that includes thermal cycling, vibration testing, military 

specification requirements for space, and so on. Creating LOCC and sending it through initial 

testing and qualifications to ensure a completely stable system 

• Development and implementation of thermal management for both the I-V characterizer and 

EL characterizer – Because LOCC requires the use of optoelectronics and these components 

are sensitive to temperature flux, developing a thermally stable system will guarantee provided 

results remain as accurate as possible. 

• Redesign of LOCC system to characterize optocouplers for improving design against radiation 

– Optocoupler are widely used in a multitude of electronics for separation of signal and 

avoiding ground loops. Many optocouplers are made to be radiation hardened and developing 

a system to characterize these devices while in space may prove beneficial for testing and 

device reliability. 

• Development of CCD array electroluminescent characterizer for LOCC – LOCC utilizes an 

array of photodetectors that are dependent on CIE 1931 standard and human-eye perception 

of color. Conventional means of electroluminescent characterization utilize CCD arrays and 

wavelength sweeps to provide information of peak wavelength emission as well as the light 
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bandwidth. LOCC and many other would benefit from design and development of CCD array 

EL characterizer for CubeSats to compliment the LOCC system. 

• Further examination and simulation of the effects on LEDs while under radiation 

bombardment – Because we know that ion implantation is an effect of the space environment, 

utilizing simulation software such as SRIM and TRIM would provide insight for developing 

optoelectronic device structures that are radiation hardened. 

• Simulation of passivation layers in the protection of LEDs against degradation in both 

electrical and optical properties – Materials such as Florine doped Tin-Oxide (FTO) and 

Indium doped Tin-Oxide (ITO) provide passivation layers to LEDs to increase their quantum 

efficiencies. Examining passivation layers as ionic stopping layers may be beneficial for 

reducing the effects of ion implantation into the active layers of optoelectronic structures. 
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Appendix 

I-V Characteristics of LOCC output for each LED. 
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I-V characteristics of individual LEDs. Results 1-7 are listed in body of thesis. These results indicate 

the results over four trials alongside the mean and standard deviations of each individual LED. 
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LED 19 – 4 Trials 
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LED 19 – Mean and Standard Deviation 
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LED 20 – 4 Trials 
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LED 20 – Mean and Standard Deviation 
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LED 21 – 4 Trials 
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LED 21 – Mean and Standard Deviation 

 
LED 19 – 21: 4 trials and Mean and Standard Deviation 
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LED 23 – 4 Trials 
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LED 23 – Mean and Standard Deviation 
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LED 24 – 4 Trials 
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LED 24 – Mean and Standard Deviation 

 
LED 23 – 24: 4 trials and Mean and Standard Deviation 

 

  



188 

 

A-3. Normalized Light Output of Individual LEDs 

Figures depicting the normalized light output of all LEDs. 

 
LED Chip 1 Normalized Light Output 

 

 
LED Chip 2 Normalized Light Output 
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LED Chip 3 Normalized Light Output 

 

 
 

All LEDs Normalized Light Output 
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A-4. Individual EL Characteristics 

List of individual CIE 1931 colorimeter characteristics of each LED. Values and graphs used to 

verify LOCC operation. Resulting values have been highlighted to make viewing easier. 

 
LED 1  

 
LED 2 

 
LED 3 

 
LED 4 

 
LED 5 

 
LED 6 

LED 1 – 6: Commercial Evaluation of EL 



191 

 

 

 
LED 9 

 
LED 10 

 
LED 12 

 
LED 14 

 
LED 15 

 
LED 16 

LED 9-16: Commercial Evaluation of EL 
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LED 17 

 
LED 18 

 
LED 19 

 
LED 20 

 
LED 21 

 
LED 22 

LED 17 – 22: Commercial Evaluation of EL 
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LED 23 

 
LED 24 

LED 23 – 24: 4 trials and Mean and Standard Deviation 
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B-1. Costs 

Below a table of costs are provided to produce LOCC and the LEDs. For a detailed cost breakdown 

of each component please see appendix. 
      

Cost: PCB Boards 

  I-V 
Characterizer 

      

  
 

Quantit
y 

 Price    Price Per  Description 

  
 

5  $                                          
960.00  

 $                                          
192.00  

PCB Boards at 5 Day Lead 
Time 

  
 

1  $                                          
275.00  

 $                                          
275.00  

One-time charge Tooling-
Domestic 

  
 

1  $                                          
150.00  

 $                                          
150.00  

Solder Stencil 

  
 

1  $                                                   
-    

 $                                                   
-    

Assembly 

  
  

 $                                      
1,385.00  

 
Total 

  
    

  

  EL 
Characterizer 

      

  
 

Quantit
y 

 Price   Price Per  Description 

  
 

5  $                                          
306.25  

 $                                            
61.25  

PCB Boards at 5 Day Lead 
Time 

  
 

1  $                                          
325.00  

 $                                          
325.00  

One-time charge Tooling-
Domestic 

  
 

1  $                                                   
-    

 $                                                   
-    

Solder Stencil 

  
 

1  $                                                   
-    

 $                                                   
-    

Assembly 

  
  

 $                                          
631.25  

 
Total 

  
    

  

  EL 
Characterizer 

 Rev2      

  
 

Quantit
y 

 Price    Description 

  
 

26.66/sq
. Inch 

 $                                          
161.76  

 $                                              
6.07  

Per Square Inch of Board 

  
 

1  $                                            
30.46  

 $                                            
30.46  

Solder Mask Charge 
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2  $                                            
15.23  

 $                                            
30.46  

Silk Screening 

  
 

1  $                                            
10.51  

 $                                            
10.51  

Routing Charge 

  
 

26.66/sq
. Inch 

 $                                              
0.68  

 $                                            
18.21  

E-Test, Double sided 

  
 

1  $                                                   
-    

 $                                                   
-    

Stencil 

  
  

 $                                          
218.64  

 
Total 

  Components        

  
 

Quantit
y 

 Price   Price Per  Description 

  
 

5 
Batches 

 $                                      
1,037.33  

 $                                          
207.47  

Components Need to 
Produce both boards 

  
  

 $                                      
1,037.33  

 
Total 

  
    

  

Cost: LED 
Fabrication 

      

  Cleanroom 
Access 

      

  
 

Quantit
y 

 Price   Price per  Description 

  
 

5 day  $                                          
550.00  

 $                                          
110.00  

Cleanroom User Fee 

  
  

 $                                          
550.00  

 
Total 

  LE
D 

        

  
 

Quantit
y 

 Price   Price per  Description 

  
 

5  $                                      
1,200.00  

 $                                          
240.00  

LED Substrate 

  
 

1  $                                
42.50  

 $                                
42.50  

Epotek Epoxy 353-ND 8 
oz 

  
 

1  $                                
48.00  

 $                                
48.00  

Epotek Epoxy 301-2FL 8 
oz 

  
 

20  $                                          
321.40  

 $                                            
16.07  

8428-11B1-RK-TP Chip 
carrier socket 

  
 

20  $                                          
660.00  

 $                                            
33.00  

PB-F87049 Chip Carrier 

  
 

20  $                                          
321.40  

 $                                            
16.07  

8428-21B1-RK-TR 

  
  

 $                                      
2,593.30  

 
Total 
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Cost: 
Total 

        

       $                                      
6,415.52  

  Total 

 

 

B-2. 

LOCC Raspberry Pi commander and binary converter. 

 

#include <stdint.h> 
#include <unistd.h> 
 
#include "i2c_device.hpp" 
#include <iostream> 
#include <iomanip> //setw 
#include <fstream> 
#include <ctime> 
#include <cstring> 
#include <cstdio> 
#include <vector> 
#include <string> 
 
#define NUM_OF_LEDS   24 
#define BYTES_PER_LED_EXP_1 4 
#define BYTES_PER_LED_EXP_2 16 
 
 
unsigned char returned_data [3096]; 
 
void print_menu() 
{ 
    std::cout << "Enter command:" << std::endl; 
    std::cout << "w = write" << std::endl; 
    std::cout << "r = read" << std::endl; 
    std::cout << "e = experiment 1" << std::endl; 
    std::cout << "e2 = experiment 2" << std::endl; 
    std::cout << "q = quit" << std::endl; 
} 
 
int main(int argc, char* argv[]) 
{ 
 
    //pass filename to convert binary to readable data 
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    if (argc == 2) 
    { 
        std::ifstream input_stream (argv[1], std::ifstream::in | std::ifstream::binary); 
        if (input_stream) 
        { 
            std::string out_filename (argv[1]); 
            out_filename = out_filename.replace(out_filename.end() - 3, out_filename.end(), "txt"); 
            
            std::ofstream output_stream(out_filename, std::ofstream::out); 
           
            input_stream.seekg(0, input_stream.end); 
            int length = input_stream.tellg(); 
            input_stream.seekg(0, input_stream.beg); 
 
             
            if (out_filename.rfind("_e2") == std::string::npos) 
            { 
                //parse experiment 1 
                //determine voltage resolution 
                time_t raw_time = (time_t)std::stoul(out_filename.substr(out_filename.length() - 26, 10));  
                int voltage_resolution = (length - NUM_OF_LEDS) / NUM_OF_LEDS / 
BYTES_PER_LED_EXP_1;  
                struct tm *timeinfo = localtime(&raw_time); 
             
                if (output_stream) 
                { 
                    output_stream << "Test Date: " << asctime(timeinfo); 
                    output_stream << "Voltage Resolution: " << voltage_resolution << std::endl; 
                    output_stream << "\n\n"; 
 
                    char *packet = NULL; 
                    int packet_length = voltage_resolution * BYTES_PER_LED_EXP_1 + 1; 
                    for (int i = 0; i < NUM_OF_LEDS; i++) 
                    { 
                        packet = new char[packet_length]; 
                        input_stream.read(packet, packet_length); 
                        output_stream.flush(); 
                        output_stream << "LED: " << std::dec << (int)packet[0] << "\n"; 
                        output_stream << "~~~~~~~~~~~~~~~~~~~~~\n"; 
                        for (int v = 1; v < packet_length - BYTES_PER_LED_EXP_1; v += 
BYTES_PER_LED_EXP_1) 
                        { 
                            //voltage 
                            float voltage = (float)((uint8_t)packet[v] | (uint8_t)packet[v + 1] << 8) / 100.0; 
                            float current = (float)((uint8_t)packet[v + 2] | (uint8_t)packet[v + 3] << 8) / 
100.0; 
                            output_stream << "Voltage: " << std::fixed << std::setprecision(2) << voltage 
<< "V\n"; 
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                            output_stream << "Current: " << std::fixed << std::setprecision(2) << current 
<< "mA\n"; 
                            output_stream << "====================\n"; 
                        } 
                        output_stream << "\n\n"; 
                        delete packet; 
                    } 
                    packet = NULL; 
                } 
            } 
            else 
            { 
                //parse experiment 2 
                time_t raw_time = (time_t)std::stoul(out_filename.substr(out_filename.length() - 29, 10));  
                struct tm *timeinfo = localtime(&raw_time); 
 
                if (output_stream) 
                { 
                    output_stream << "Test Date: " << asctime(timeinfo); 
                    output_stream << "\n"; 
 
                    char *packet = NULL; 
                    int packet_length = BYTES_PER_LED_EXP_2 + 1; 
                    for (int i = 0; i < NUM_OF_LEDS; i++) 
                    { 
                        packet = new char[packet_length]; 
                        input_stream.read(packet, packet_length); 
                        output_stream.flush(); 
                        output_stream << "LED: " << std::dec << (int)packet[0] << "\n"; 
                        output_stream << "~~~~~~~~~~~~~~~~~~~~~\n"; 
                        for (int v = 1; v <= packet_length - BYTES_PER_LED_EXP_2; v += 
BYTES_PER_LED_EXP_2) 
                        { 
                            uint16_t x = (uint16_t)((uint8_t)packet[v] | (uint8_t)packet[v + 1] << 8); 
                            uint16_t y = (uint16_t)((uint8_t)packet[v + 2] | (uint8_t)packet[v + 3] << 8); 
                            uint16_t z = (uint16_t)((uint8_t)packet[v + 4] | (uint8_t)packet[v + 5] << 8); 
                            output_stream << "EL.X: " << x << "\n"; 
                            output_stream << "EL.Y: " << y << "\n"; 
                            output_stream << "EL.Z: " << z << "\n\n"; 
 
                            float voltage = (float)((uint8_t)packet[v + 6] | (uint8_t)packet[v + 7] << 8) / 
100.0; 
                            float current = (float)((uint8_t)packet[v + 8] | (uint8_t)packet[v + 9] << 8) / 
100.0; 
                            output_stream << "Voltage: " << std::fixed << std::setprecision(2) << voltage 
<< "V\n"; 
                            output_stream << "Current: " << std::fixed << std::setprecision(2) << current 
<< "mA\n\n"; 
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                            x = (uint16_t)((uint8_t)packet[v + 10] | (uint8_t)packet[v + 11] << 8); 
                            y = (uint16_t)((uint8_t)packet[v + 12] | (uint8_t)packet[v + 13] << 8); 
                            z = (uint16_t)((uint8_t)packet[v + 14] | (uint8_t)packet[v + 15] << 8); 
                            output_stream << "EL.X: " << x << "\n"; 
                            output_stream << "EL.Y: " << y << "\n"; 
                            output_stream << "EL.Z: " << z << "\n"; 
                            output_stream << "====================\n"; 
                        } 
                        output_stream << "\n\n"; 
                        delete packet; 
                    } 
                    packet = NULL; 
                } 
                 
            } 
 
            output_stream.close(); 
            input_stream.close(); 
 
        } 
        else 
        { 
            std::cerr << "Failed to open log file" << std::endl; 
        } 
 
        return 0; 
    } 
    else 
    { 
        I2CDevice csee_board(0x08); 
        char user_input[256]; 
     
        while(true) 
        { 
            print_menu(); 
            std::cin.getline(user_input, 256); 
 
            if (strcmp(user_input,"q") == 0) 
                break; 
 
            if (strcmp(user_input, "w") == 0) 
            { 
                char data[256]; 
                std::vector<unsigned char> string_data; 
                std::cout << "Enter bytes to send separated by spaces: "; 
                std::cin.getline(data, 256); 
                char *pch; 
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                pch = strtok(data, " "); 
                while (pch != NULL) 
                { 
                    std::string s = pch; 
                    string_data.push_back(static_cast<unsigned char>(std::stoul(s, NULL, 0))); 
                    pch = strtok(NULL, " "); 
                } 
 
                unsigned char *converted_data = &string_data[0]; 
                csee_board.i2c_write(converted_data, string_data.size()); 
            } 
            else if (strcmp(user_input, "r") == 0) 
            { 
                char data[256]; 
                std::cout << "Enter number of bytes to receive: "; 
                std::cin.getline(data, 256); 
                unsigned recv_bytes = static_cast<unsigned>(std::stoul(std::string(data))); 
       
                csee_board.i2c_read(returned_data, recv_bytes); 
                for (unsigned i = 0; i < recv_bytes; i++) 
                { 
                    std::cout << std::hex << (int)returned_data[i] << " "; 
                } 
                std::cout << std::endl; 
            } 
  
            else if (strcmp(user_input, "e") == 0) 
            { 
                time_t current_time = time(NULL); 
                std::ofstream logger ("./logs/" + std::to_string(current_time) + "_csee_output.bin", 
std::ofstream::out | std::ofstream::binary); 
      
                uint8_t voltage_resolution [2]; 
                voltage_resolution[0] = 0x3; 
                voltage_resolution[1] = 0x20; 
                std::cout << "Setting voltage resolution to 0x" << std::hex << (int)voltage_resolution[1] 
<< std::endl; 
                csee_board.i2c_write(voltage_resolution, 2); 
                sleep(1); 
      
                uint8_t start_experiment[] = {0x4}; 
                std::cout << "Running experiment #1" << std::endl; 
                csee_board.i2c_write(start_experiment, 1); 
                sleep(24); 
 
 
      
                uint8_t size_to_read[2]; 
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                uint8_t get_size_to_read[] = {0x1}; 
                csee_board.i2c_write(get_size_to_read, 1); 
                sleep(1); 
                csee_board.i2c_read(size_to_read, 2); 
                uint16_t size = (size_to_read[0] << 8) | size_to_read[1];  
                std::cout << "CSEE firmware reports " << std::dec << size << " bytes available" << 
std::endl; 
      
                //uint16_t size = 1560; 
      
                uint8_t retrieve_data[] = {0x5}; 
                std::cout << "Preparing data from EEPROM" << std::endl; 
                csee_board.i2c_write(retrieve_data, 1); 
                sleep(16); 
      
                uint16_t offset = 0; 
                uint16_t num_to_read = 32; 
                int total_data = size; 
                while (total_data > 0) 
                { 
                    csee_board.i2c_read((&returned_data[0] + offset), num_to_read); 
                    total_data = total_data - 32; 
                    if (total_data < 32 && total_data > 0) 
                        num_to_read = total_data; 
                    offset += 32; 
                    usleep(10000); 
                } 
      
                for (int i = 0; i < size; i++) 
                { 
                    std::cout << std::hex << std::setw(2) << std::setfill('0') << (uint16_t)returned_data[i] 
<< " "; 
                    if (i > 0 && ((i + 1) % 32 == 0)) 
                        std::cout << "\n"; 
                } 
                std::cout << "\n"; 
 
                logger.write(reinterpret_cast<const char *>(returned_data), size); 
                logger.close(); 
            } 
 
            else if (strcmp(user_input, "e2") == 0) 
            { 
                time_t current_time = time(NULL); 
                std::ofstream logger ("./logs/" + std::to_string(current_time) + "_csee_output_e2.bin", 
std::ofstream::out | std::ofstream::binary); 
      
                uint8_t voltage_resolution [2]; 
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                voltage_resolution[0] = 0x3; 
                voltage_resolution[1] = 0x20; 
                std::cout << "Setting voltage resolution to 0x" << std::hex << (int)voltage_resolution[1] 
<< std::endl; 
                csee_board.i2c_write(voltage_resolution, 2); 
                sleep(1); 
      
                uint8_t start_experiment[] = {0x6}; 
                std::cout << "Running experiment #2" << std::endl; 
                csee_board.i2c_write(start_experiment, 1); 
                sleep(120); 
 
 
      
                uint8_t size_to_read[2]; 
                uint8_t get_size_to_read[] = {0x1}; 
                csee_board.i2c_write(get_size_to_read, 1); 
                sleep(1); 
                csee_board.i2c_read(size_to_read, 2); 
                uint16_t size = (size_to_read[0] << 8) | size_to_read[1];  
                std::cout << "CSEE firmware reports " << std::dec << size << " bytes available" << 
std::endl; 
      
                //uint16_t size = 1560; 
      
                uint8_t retrieve_data[] = {0x5}; 
                std::cout << "Preparing data from EEPROM" << std::endl; 
                csee_board.i2c_write(retrieve_data, 1); 
                sleep(16); 
      
                uint16_t offset = 0; 
                uint16_t num_to_read = 32; 
                int total_data = size; 
                while (total_data > 0) 
                { 
                    csee_board.i2c_read((&returned_data[0] + offset), num_to_read); 
                    total_data = total_data - 32; 
                    if (total_data < 32 && total_data > 0) 
                        num_to_read = total_data; 
                    offset += 32; 
                    usleep(10000); 
                } 
      
                for (int i = 0; i < size; i++) 
                { 
                    std::cout << std::hex << std::setw(2) << std::setfill('0') << (uint16_t)returned_data[i] 
<< " "; 
                    if (i > 0 && ((i + 1) % 32 == 0)) 
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                        std::cout << "\n"; 
                } 
                std::cout << "\n"; 
 
                logger.write(reinterpret_cast<const char *>(returned_data), size); 
                logger.close(); 
            } 
        } 
 
        return 0;    
    } 
} 
 
 
 
 
 
 
 
 
 
 
B-3. 
 
LOCC EL Evaluation algorithm. 
 
clear all 
clc 
 
 
img = imread('CIExy1931.bmp'); 
 
EL_1 = xlsread('LOCC_EL_1.xlsx'); 
EL_2 = xlsread('LOCC_EL_2.xlsx'); 
EL_3 = xlsread('LOCC_EL_3.xlsx'); 
EL_4 = xlsread('LOCC_EL_4.xlsx'); 
 
XYZ455 = [15327, 4000, 88192]; 
XYZ465 = [487, 64, 2599]; 
XYZ510 = [250, 26, 1196]; 
 
T(:,1) = XYZ455; 
T(:,2) = XYZ465; 
T(:,3) = XYZ510; 
 
ADC1 = [65535, 65535, 65535]; 
ADC2 = [46519, 65535, 65535]; 
ADC3 = [16812, 65535, 34332]; 
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S(:,1) = ADC1; 
S(:,2) = ADC2; 
S(:,3) = ADC3; 
 
%Correlation Matrix 
K = (T*S')/(S*S'); 
 
 
 
XYZAdj1 = K*sample1'; 
 
min_x = 0; 
max_x = .8; 
min_y = 0; 
max_y = .9; 
 
figure(1) 
xlabel('x'); 
ylabel('y'); 
axis([min_x max_x min_y max_y]); 
imagesc([min_x max_x], [min_y max_y], flipud(img)); 
 
 
for i = 1:length(EL_1) 
     
    EL_ADJ_1(i,:) = K*EL_1(i,:)'; 
     
    xx_1(i) = EL_ADJ_1(i,1)/(EL_ADJ_1(i,1)+EL_ADJ_1(i,2)+EL_ADJ_1(i,3)); 
    yy_1(i) = EL_ADJ_1(i,2)/(EL_ADJ_1(i,1)+EL_ADJ_1(i,2)+EL_ADJ_1(i,3)); 
     
    %imagesc([min_x max_x], [min_y max_y], flipud(img)); 
    hold on 
    plot(xx_1(i),yy_1(i),'r-o','linewidth',1.5) 
    %plot(.3,.3,'ro','linewidth',1.5) 
    set(gca,'ydir','normal'); 
 
    hold off 
     
end 
 
figure(2) 
xlabel('x'); 
ylabel('y'); 
axis([min_x max_x min_y max_y]); 
imagesc([min_x max_x], [min_y max_y], flipud(img)); 
 
 



205 

 

for i = 1:length(EL_2) 
     
    EL_ADJ_2(i,:) = K*EL_2(i,:)'; 
     
    xx_2(i) = EL_ADJ_2(i,1)/(EL_ADJ_2(i,1)+EL_ADJ_2(i,2)+EL_ADJ_2(i,3)); 
    yy_2(i) = EL_ADJ_2(i,2)/(EL_ADJ_2(i,1)+EL_ADJ_2(i,2)+EL_ADJ_2(i,3)); 
     
    %imagesc([min_x max_x], [min_y max_y], flipud(img)); 
    hold on 
    plot(xx_2(i),yy_2(i),'r-o','linewidth',1.5) 
    %plot(.3,.3,'ro','linewidth',1.5) 
    set(gca,'ydir','normal'); 
 
    hold off 
     
end 
 
figure(3) 
xlabel('x'); 
ylabel('y'); 
axis([min_x max_x min_y max_y]); 
imagesc([min_x max_x], [min_y max_y], flipud(img)); 
 
 
for i = 1:length(EL_3) 
     
    EL_ADJ_3(i,:) = K*EL_3(i,:)'; 
     
    xx_3(i) = EL_ADJ_3(i,1)/(EL_ADJ_3(i,1)+EL_ADJ_3(i,2)+EL_ADJ_3(i,3)); 
    yy_3(i) = EL_ADJ_3(i,2)/(EL_ADJ_3(i,1)+EL_ADJ_3(i,2)+EL_ADJ_3(i,3)); 
     
    %imagesc([min_x max_x], [min_y max_y], flipud(img)); 
    hold on 
    plot(xx_3(i),yy_3(i),'r-o','linewidth',1.5) 
    %plot(.3,.3,'ro','linewidth',1.5) 
    set(gca,'ydir','normal'); 
 
    hold off 
     
end 
 
figure(4) 
xlabel('x'); 
ylabel('y'); 
axis([min_x max_x min_y max_y]); 
imagesc([min_x max_x], [min_y max_y], flipud(img)); 
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for i = 1:length(EL_4) 
     
    EL_ADJ_4(i,:) = K*EL_4(i,:)'; 
     
    xx_4(i) = EL_ADJ_4(i,1)/(EL_ADJ_4(i,1)+EL_ADJ_4(i,2)+EL_ADJ_4(i,3)); 
    yy_4(i) = EL_ADJ_4(i,2)/(EL_ADJ_4(i,1)+EL_ADJ_4(i,2)+EL_ADJ_4(i,3)); 
     
    %imagesc([min_x max_x], [min_y max_y], flipud(img)); 
    hold on 
    plot(xx_1(i),yy_1(i),'r-o','linewidth',1.5) 
    %plot(.3,.3,'ro','linewidth',1.5) 
    set(gca,'ydir','normal'); 
 
    hold off 
     
end 
 
EL_Y(:,1)=EL_ADJ_1(:,2); 
EL_Y(:,2)=EL_ADJ_2(:,2); 
EL_Y(:,3)=EL_ADJ_3(:,2); 
EL_Y(:,4)=EL_ADJ_4(:,2); 
 
figure(5) 
boxplot(EL_Y); 
% xx = XYZAdj1(1,:)/(XYZAdj1(1,:)+XYZAdj1(2,:)+XYZAdj1(3,:)); 
% yy = XYZAdj1(2,:)/(XYZAdj1(1,:)+XYZAdj1(2,:)+XYZAdj1(3,:)); 
% Y = XYZAdj1(2,:); 
 
EL_Y_NORM = EL_Y/5296; %5296 = max value 
 
hold on 
boxplot(EL_Y_NORM); 
xlabel('Normalized Light Output (a.u.)'); 
ylabel('Trial Number'); 
hold off 
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