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Behavioral/Cognitive

Parsing the Behavioral and Brain Mechanisms of
Third-Party Punishment

X Matthew R. Ginther,1,2 X Richard J. Bonnie,3 X Morris B. Hoffman,4 X Francis X. Shen,5 X Kenneth W. Simons,6

X Owen D. Jones,2,7,8,9 and X René Marois9,10

1Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37203, 2Vanderbilt Law School, Nashville, Tennessee 37203, 3Institute of
Law, Psychiatry and Public Policy, University of Virginia School of Law, Charlottesville, Virginia 22903, 4District Judge, Second Judicial District (Denver),
State of Colorado, Denver, Colorado 80202, 5Department of Law, University of Minnesota, Minneapolis, Minnesota 55455, 6Department of Law, University
of California, Irvine School of Law, Irvine, California 92697, 7Departments of Law and Biological Sciences, Vanderbilt University, Nashville, Tennessee
37203, 8Director, MacArthur Foundation Research Network on Law and Neuroscience, 9Center for Integrative and Cognitive Neuroscience, and
10Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240

The evolved capacity for third-party punishment is considered crucial to the emergence and maintenance of elaborate human social
organization and is central to the modern provision of fairness and justice within society. Although it is well established that the mental
state of the offender and the severity of the harm he caused are the two primary predictors of punishment decisions, the precise cognitive
and brain mechanisms by which these distinct components are evaluated and integrated into a punishment decision are poorly under-
stood. Using fMRI, here we implement a novel experimental design to functionally dissociate the mechanisms underlying evaluation,
integration, and decision that were conflated in previous studies of third-party punishment. Behaviorally, the punishment decision is
primarily defined by a superadditive interaction between harm and mental state, with subjects weighing the interaction factor more than
the single factors of harm and mental state. On a neural level, evaluation of harms engaged brain areas associated with affective and
somatosensory processing, whereas mental state evaluation primarily recruited circuitry involved in mentalization. Harm and mental
state evaluations are integrated in medial prefrontal and posterior cingulate structures, with the amygdala acting as a pivotal hub of the
interaction between harm and mental state. This integrated information is used by the right dorsolateral prefrontal cortex at the time of
the decision to assign an appropriate punishment through a distributed coding system. Together, these findings provide a blueprint of the
brain mechanisms by which neutral third parties render punishment decisions.

Key words: decision-making; fMRI; harm; law; mental state; punishment

Introduction
Punishment undergirds cooperation. Although forms of cooper-
ation can occur without it, the potential for third-party punish-

ment (i.e., punishment administered by a neutral party) helps
counteract temptations to defect (free riding) (Fehr and Gächter,
2002). This, in turn, enabled our species, with uniquely extensive
cooperation among nonkin, to flourish at massive scales reflect-
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Significance Statement

Punishment undergirds large-scale cooperation and helps dispense criminal justice. Yet it is currently unknown precisely
how people assess the mental states of offenders, evaluate the harms they caused, and integrate those two components into a single
punishment decision. Using a new design, we isolated these three processes, identifying the distinct brain systems and activities
that enable each. Additional findings suggest that the amygdala plays a crucial role in mediating the interaction of mental state and
harm information, whereas the dorsolateral prefrontal cortex plays a crucial, final-stage role, both in integrating mental state and
harm information and in selecting a suitable punishment amount. These findings deepen our understanding of how punishment
decisions are made, which may someday help to improve them.
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ing unparalleled social, technological, and economic achieve-
ment (Fehr and Rockenbach, 2004; Bowles and Gintis, 2011;
Mathew and Boyd, 2011). Nonetheless, punishment decisions are
costly to those punished and to society. Thus, efforts at criminal
justice reform often center on improving and debiasing punish-
ment decisions themselves, which are central to the fates of so
many, and crucial to a just society. Yet despite its importance,
little is known about the precise linkage between brain mecha-
nisms and punishment decisions.

Behavioral studies have identified the primary factors that
influence punishment decisions: (1) the mental state of the of-
fender; and (2) the severity of harm he caused (Carlsmith et al.,
2002; Cushman, 2008). Although this comports with real-world
legal norms and practices (LaFave, 1986; Shen et al., 2011), the
process by which these two distinct components are integrated
into a single punishment decision has not been well character-
ized. Similarly, brain mechanisms underlying this integrative
process remain poorly understood. Prior research of punishment
decision-making has suggested that these two different compo-
nents are neurally dissociable, with mental state evaluation
primarily recruiting temporoparietal junction (TPJ), superior
temporal sulcus (STS), and dorsomedial prefrontal cortex
(DMPFC) (Corradi-Dell’Acqua et al., 2014), and the evaluation
of harmful events predominantly engaging affective circuitry,
such as the amygdala and the insula (Jackson et al., 2005; Buck-
holtz et al., 2008; Shenhav and Greene, 2014). However, these
studies did not elucidate the functional contribution(s) of each
brain region to harm or mental state evaluation, and it remains
unclear how and where these components integrate. Prior studies
have pinpointed activation in the dorsolateral prefrontal cortex
(DLPFC), medial prefrontal cortex (MPFC), and posterior cin-
gulate cortex (PCC) at the time of decision-making, suggesting
that these regions may support the integration of mental state and
harm (Buckholtz and Marois, 2012; Buckholtz et al., 2015), an
argument buttressed by reports that MPFC and PCC may act as
cortical “hubs” of information processing (Sporns et al., 2007;
Buckner et al., 2009), although these studies could not dissociate
integration from other task components. Finally, a debate persists
about the specific role of the DLPFC in human punishment be-
havior. Although some studies have associated DLPFC with im-
plementation of cognitive control (Sanfey et al., 2003; Knoch et
al., 2006; Haushofer and Fehr, 2008; Tassy et al., 2012), we have
claimed that the region acts as a superordinate node that supports
the integration of signals to select the appropriate punishment
decision (Buckholtz et al., 2008, 2015; Treadway et al., 2014).

The present study addresses these open questions by means of
a novel experimental design. Specifically, the present design (1)
independently and objectively parameterizes both the mental
state and harm factors while (2) controlling information pre-

sentation in a manner allowing segregation of the evaluative,
integrative, and response decision components of third-party
punishment decision-making. We achieved the first element of
the design by using harm levels based on independent metrics
and mental state levels based on the Model Penal Code’s hierar-
chy of mental state culpability (spanning blameless, negligent,
reckless, knowing, and purposeful) (Simons, 2003; Shen et al.,
2011). To achieve the second element, trials were divided into
distinct sequential segments (context presentation, followed by
harm and mental state evaluations, followed by response decision),
each separated from the others by an arithmetic task to limit cogni-
tive processes to their respective stimulus presentations. Together,
these manipulations permit the isolation of brain mechanisms in-
volved in the harm and mental state evaluative processes, in the
integration of these evaluative processes, and in the use of this infor-
mation in selecting an appropriate punishment.

Materials and Methods
Subjects. Twenty-eight right-handed individuals (13 females, ages 18 –35
years) with normal or corrected-to-normal vision consented to partici-
pate for financial compensation. The Vanderbilt University Institutional
Review Board approved the experimental protocol, and subjects pro-
vided their informed consent. Five subjects were not included in the
analysis: two did not complete the scan due to discomfort with the MRI
pulse sequences; two had excessive motion (�3 mm translation or 3
degrees of rotation) during the MRI scanning; and one failed to follow
task instructions. That left 23 subjects (11 females, ages 18 –35 years) for
the analysis.

Paradigm. In this fMRI experiment, subjects participated in a simu-
lated third-party legal decision-making task in which they determined
the appropriate level of hypothetical punishment for the actions of a
fictional protagonist (“John”) described in short written scenarios. Par-
ticipants were instructed to treat each scenario independently. The study
improved on prior work in two principal ways: (1) by separating in time
the cognitive processes of evaluating the harm and mental state compo-
nents of the scenarios, the integration of these components, and the
rendering of a punishment decision; and (2) by independently and ob-
jectively manipulating both the mental state of the actor and the resulting
harm of the actor’s conduct in a parametric fashion.

With regard to the first objective of the experimental design, in con-
trast to prior studies (Buckholtz et al., 2008, 2015; Treadway et al., 2014)
in which all components of each scenario were presented at once,
components of each scenario were presented in distinct temporal stages,
with each of the four stages separated from the others by a variable
interstage interval (ISI) drawn from an exponentially decaying distribu-
tion of �3–10 s (Fig. 1). Stage A contained an introductory sentence
describing the context in which the protagonist acted. Stages B and C
each presented a sentence with either the harm or the mental state, re-
spectively. The order in which Stages B and C appeared (harm then
mental state, or mental state then harm) varied by trial within subject.
Finally, Stage D presented the punishment scale on which subjects based
their punishment decision and selected a punishment response by button
press. Participants were instructed to make their response as soon as they
had made a decision but instructed not to rush (they had up to 16 s to
make their response).

Several details of the experiment were designed to optimize the likeli-
hood that a given cognitive process occurred at a specific stage. First, to
constrain the subjects’ cognitive processing of each sentence to its pre-
sentation time and to preclude subjects from using the ISIs to ponder the
appropriate response, the ISIs were filled with a secondary math task that
lasted the duration of each ISI. Each math problem started 200 ms after a
stage’s end and included a series of addition or subtraction operations on
integers between 1 and 9, with a solution between 0 and 9. The number of
operations scaled with the ISI length. All integers and operations were
individually presented at the center of the screen, changing at a rate of 1
item per 750 ms and followed at the end by “�,” indicating that the
subject should provide a response within 2 s. If no response was provided,
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the task continued as if a response had been made. For example, a 3 s ISI
would consist of two integers and one operation (e.g., 3, �, 5) for 2 s plus
an average of a 1-s-long response time. A small white fixation square
(0.25° of visual angle) appeared following the subject’s response.

Second, to help ensure that subjects were only processing the informa-
tion presented during each of Stages A–C (and not using some of that
time cogitating about a previous stage’s information), we presented the
scenarios as a rapid serial visual presentation (RSVP), wherein a given
stage’s words were presented sequentially at the center of the screen at the
rate of 6 words per second (rather than being presented simultaneously
in a full sentence) and followed immediately by the ISI. This rate of word
presentation was selected because it does not reduce subjects’ reading
comprehension (Castelhano and Muter, 2001). We controlled for word
length across harm and mental state sentences, as well as across the dif-
ferent harm levels, with an average scenario length of 77 words (SD of 4).
Because the rate of word presentation was fixed and the duration of each
stage was a function of the word length, stimulus duration was thus
controlled for as well.

Third, to delay the time of the subject’s punishment judgment until
the decision stage, on each trial we randomly presented subjects at the
decision stage with one of several available punishment scales. Overall,
there were 10 different punishment scales: one “master” scale and nine
derivative scales. The master scale, which spanned the entire range of
possible punishments, was anchored such that 0 � no punishment, 3 �
1 day in jail, 6 � 1 year in jail, and 9 � most severe punishment that the
subject personally endorsed. The nine derivative scales essentially
“zoomed in” on a part of the master scale and remapped the 0 –9 response
space accordingly. As an example, a derivative scale may look as follows:
0 � 1 day in jail, 6 � 1 year in jail, and 9 � most severe punishment. For
any given scenario, 6 of the 10 scales were available as possible options,
with 1 of the 6 randomly selected for any given trial. The 6 scales per
scenario were selected so as to ensure, based on pilot data, that the mean
punishment response � 2 SDs fell within the confines of the scale. Thus,
we nearly guaranteed the available scale included the desired punishment
response for each scenario. For analysis purposes, we algebraically con-
verted the responses provided on the derivative scales to the equivalent
response on the master scale (e.g., if a subject responded 0 on the deriv-
ative scale presented above, it was coded as a 3).

The data indicate that our efforts were largely successful in delaying
subjects’ punishment decisions to Stage D. First, pilot data showed a
substantial increase in the amount of time subjects spent at the final stage
(mean � SD, 4.02 � 1.84) compared with when that stage was not
preceded by the ISI math task and RSVP format and did not include
shifting scales, but did segregate the task stages (2.45 � 2.09). Second, at
the time of the decision, the distribution in reaction times (RTs) was not
uniform across levels of harm or mental state, as one would expect if
subjects had made their decisions before Stage D. Instead, there is a
significant effect of both mental state and harm level on subject RT
(Fig. 2 B, C).

Following the subjects’ response, an intertrial interval (ITI) drawn
from a decaying exponential distribution from 3 to 15 s began. The small
white fixation square was presented for the duration of the ITI, except
that it was enlarged (to 0.49° of visual angle) for the last 2 s of the ITI to
signal to the participants the imminent start of the next trial (for trial
design, see Fig. 1).

To achieve the second principal experimental objective (independent
and objective manipulation of the mental state and harm components in
a parametric fashion), our scenarios parametrically manipulated the
mental state of the actor using 4 of the 5 Model Penal Code categories.
These are (in descending order of intentionality) purposeful (P), reckless
(R), negligent (N), and blameless (B) (knowing was not included here
because of subjects’ difficulty in distinguishing this category from reck-
less in behavioral studies) (Shen et al., 2011; Ginther et al., 2014). The
harm resulting from the actor’s actions also varied parametrically in four
categories, ranging from de minimis (no or insubstantial harm), to sub-
stantial (but impermanent), permanently life altering, and, finally, death.
In figures, we categorize these as Harm 1– 4.

Some of the scenarios were based upon scenarios used in previous
research (Shen et al., 2011), whereas others were crafted for this study.
The complete scenario set is available from the authors. Individual sce-
narios were derived from 64 distinct “themes.” Each theme contained a
unique set of contextual facts and the eventual harm. The severity of each
harm fell into one of the four distinct categories described earlier, and
there were 16 themes for each level of harm. In a pilot experiment, we had
23 online subjects rate the severity of the harm sentences alone (on a 0 –9
scale) to fine-tune and verify our categorization of the scenarios along the

Figure 1. Timeline of a single trial. Each round began with the presentation of Stage A as an RSVP of words, which only contained introductory information about the scenario. Following Stage

A, subjects were presented with the first of three intervening math tasks, which spanned the durations of each ISI. Subjects were then presented Stage B and Stage C, which contained the harm and

mental state information, respectively, in randomized order. In the last stage (Stage D), subjects were probed for their punishment response. The variable ITI lasted for a duration of 3–15 s, with the

last 2 s accompanied by a larger fixation square. Var, Variable.
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four harm levels (mean � SD: Harm 1, 1.49 � 0.29; Harm 2, 3.67 � 0.50;
Harm 3, 6.13 � 0.37; Harm 4, 8.64 � 0.24). These subjects were recruited
using Amazon’s Mechanical Turk, which provides a sample of high-
quality participants largely representative of the population (Rand,
2012). Within each theme, the scenarios also varied the mental state of
the protagonist across four possible levels of mental state (Table 1).

The levels of the 2 factors were orthogonal to one another such that, on
any given trial, the harm level did not predict the mental state level, or
vice versa. The 64 different themes, 4 levels of mental state, and 2 possible
orderings (harm first or mental state first) yielded a total of 512 different
possible scenarios (64 � 4 � 2), 64 of which were presented to each
subject in pseudorandomized fashion. Each subject saw a single scenario
from each theme, and all scenario conditions were balanced within each

subject: that is, subjects saw 4 scenarios in each mental state (4 levels) �
harm (4 levels) cell in the factorial design. An example of a single
theme and the 8 derivative scenarios is presented in Table 1. Details of
the text could change for a given cell (e.g., see reckless mental state)
depending on its order of presentation to increase both its believabil-
ity and comprehensibility.

Because of the complexity and novelty of the current paradigm, we
first assessed whether it would yield similar punishment responses to
those acquired when each scenario was presented in its entirety in the
same frame (Buckholtz et al., 2008; Treadway et al., 2014). This possibil-
ity was tested by recruiting 20 subjects to complete the third-party pun-
ishment task online by means of Amazon’s Mechanical Turk. These
subjects were presented with scenarios in their complete paragraph form

Figure 2. A, Mean punishment ratings as a function of mental state and harm level. B, C, Mean centered RT as a function of mental state and harm level. Error bars indicate � SEM. D, Subjects’

punishment ratings are primarily determined by the product of the harm � MS interaction term and the harm term. Subjects’ weightings of these two terms show a strong negative correlation.

E, There is a negative correlation between subjects’ weightings of the MS � harm interaction and the mental state term. P, Purposeful; R, reckless; N, negligent; B, blameless. F, There is a positive

correlation between subjects’ weighting of the mental state and harm terms.
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in a single frame and subjects read at their own pace. There was no
statistical difference in punishment ratings between these subjects and
the participants who completed the present experiment (F(1,41) � 1.41,
p � 0.241).

Scenarios were presented in pseudorandomized fashion, ensuring
that, in each 16 trial fMRI run, subjects rated the punishment for one
scenario in each cell of the 4 mental state � 4 harm-level design. The runs
varied in duration given the variable response times but never lasted
�11.5 min. Each subject completed 4 of these fMRI runs. The experi-
ment was programmed in MATLAB (MATLAB, RRID:SCR_001622)
(The MathWorks) using the Psychophysics Toolbox extension (Brain-
ard, 1997; Pelli, 1997) (Psychophysics Toolbox, RRID:SCR_002881).
Subjects were positioned supine in the scanner to be able to view the
projector display using a mirror mounted on the head coil. Manual re-
sponses were recorded using two 5-button keypads (Rowland Institute of
Science).

Statistical analysis: behavioral data. We analyzed trial-wise punish-
ment responses by testing a family of multiple linear regression models
by means of a mixed-effects model, treating subject as a random factor.
We analyzed 7 models, consisting of all combinations of the mental state
(0 � blameless, 1 � negligent, 2 � reckless, 3 � purposeful), harm (0 �
de minimis, 1 � substantial, 2 � life altering, and 3 � death), and inter-
action components (Table 2). Models were assessed using the Akaike
Information Criterion (AIC), which quantifies both model fit and sim-
plicity. Although AIC scores constitute a unitless measure, a relatively
lower AIC score reflects a more accurate and generalizable model. Sub-

ject parameters used below are estimated using the best model as identi-
fied by AIC score.

fMRI data acquisition. Our imaging pulse sequences and image acqui-
sition followed conventional methods. All fMRI scans were acquired
using a 3T Philips Achieva scanner at the Vanderbilt University Institute
of Imaging Science. Low- and high-resolution structural scans were first
acquired using conventional parameters. Functional BOLD images were
acquired using a gradient-EPI pulse sequence with the following param-
eters: TR 2000 ms, TE 35 ms, flip angle 79°, FOV 192 � 112 � 192 mm,
with 34 axial slices (3.0 mm, 0.3 mm gap) oriented parallel to the AC-PC
line and collected in an ascending interleaved pattern (T2*-weighted).

Statistical analysis: fMRI data. Image analysis was conducted using
Brain Voyager QX 2.8 (BrainVoyager QX, RRID:SCR_013057) (Brain
Innovation) in conjunction with custom MATLAB software (The Math-
Works). All images were preprocessed using slice timing correction, 3D
motion correction, linear trend removal (1/128 Hz), temporal high pass
filtering, and spatial smoothing with a 6 mm Gaussian kernel (FWHM)
as implemented through Brain Voyager software. Spatial smoothing was
omitted for data analyzed using multivariate techniques. Subjects’ func-
tional data were aligned with their T1-weighted anatomical volumes and
transformed into standardized Talairach space.

We created design matrices for each subject by convolving the
task events with a canonical hemodynamic response function (double
gamma, including a positive � function and a smaller, negative � func-
tion to reflect the BOLD undershoot). For the task events, the presenta-
tion of each stage of a scenario was modeled as a boxcar function
spanning the duration of the stage’s RSVP. The punishment decision
phase of the task was modeled from the display of the punishment scale to
the time of response. The interstimulus math task was modeled from the
start of the ISI to the time of subject response. We also inserted 6 esti-
mated motion parameters (X, Y, and Z translation and rotation) as nui-
sance regressors into each design matrix.

For our first-level analysis of the functional imaging data, we created 6
distinct GLMs for each subject’s data, with each GLM created to address
a different question and avoid colinearity issues between regressors. Spe-
cifically, to assess the evaluative process for harm and mental state sepa-
rately, the first GLM (GLM1) modeled each stage of the task as well as the
interstimulus math task, with the identification of Stage B and Stage C
classified as either mental state or harm based on which occurred at that
stage on that trial. To model the cognitive systems recruited by the dif-
ferent task stages, regardless of the information presented at the stage, we
created GLM2, which was the same as GLM1, except that we did not
reclassify Stage B and Stage C into mental state and harm. To identify
regions sensitive to the different harm levels, the third GLM (GLM3)

Table 1. Example of one theme and the multiple derivative scenariosa

Illustrative theme (planks and bikes): four “mental state first” variations

Introductory sentence: John is hauling planks to his cabin because he is in the middle of doing carpentry work on his house, which abuts a public mountain bike trail

Purposeful mental state: Angry with the

mountain bikers for making too much

noise when biking past his house,

John desires to injure some bikers

by dropping planks on their trail

so that they would hit them

Reckless mental state: John drops some planks

onto the trail without retrieving them

because he’s in a rush, even though he

is aware there is a substantial risk bikers

will hit them and be injured

Negligent mental state: While John is carrying

planks to his workshop in order to

begin building new steps for his house, he

drops some of the wood planks onto the

bike trail without even noticing

Blameless mental state: While John is carefully

carrying some planks from his shed to the

backyard, an unexpectedly strong gust of wind

causes John to inadvertently drop several planks,

despite his best efforts not to

Harm sentence: Soon after John drops the planks, two bikers pass by and they hit the planks, which causes them to flip over their handlebars and one of the bikers suffers serious injuries

as a result

Illustrative theme (planks and bikes): four “harm first” variations

Introductory sentence: John is hauling planks to his cabin because he is in the middle of doing carpentry work on his house, which abuts a public mountain bike trail

Purposeful mental state: Angry with the

mountain bikers for making too much

noise when biking past his house,

John had desired to injure some

bikers by dropping planks on the trail

so that they would hit them

Reckless mental state: John had dropped

some planks onto the trail without

retrieving them because he was in a rush,

even though he was aware there was a

substantial risk some bikers would

hit them and be injured

Negligent mental state: While John was

carrying planks to his workshop in

order to begin building new steps for

his house, he had dropped some of the

wood planks onto the bike trail without

even noticing

Blameless mental state: While John was carefully

carrying planks from his shed to the backyard, he

slipped on some mud, which caused him to

unknowingly drop several planks, despite his best

efforts not to

Harm sentence: Soon after John crosses the trail, two bikers pass by and they hit planks that John dropped onto the trail, which causes them to flip over their handlebars and one of the bikers

suffers serious injuries as a result

aSubjects evaluated only 1 of the possible 8 scenarios for each theme.

Table 2. Performance of seven different models of subjects punishment decisions:

behavioral modeling for the fMRI experiment

Model AIC Model components Beta SE p

1 7962 Mental state 0.45 0.02 0.000

2 7842 Harm 0.60 0.02 0.000

3 7659 Mental state � harm 0.75 0.03 0.000

4 7673 Mental state � 0.45 0.02 0.000

Harm 0.60 0.02 0.000

5 7637 Harm � 0.20 0.03 0.000

Mental state � harm 0.63 0.02 0.000

6 7660 Mental state � �0.04 0.03 1.000

Mental state � harm 0.78 0.02 0.000

7a 7631 Mental state � 0.15 0.03 0.005

Harm � 0.30 0.03 0.000

Mental state � harm 0.47 0.04 0.000

aModel 7 selected as the best model by means of AIC. All beta coefficients standardized.
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modeled only the harm component, but with different regressors for
each level of harm in the sentence. The fourth GLM (GLM4) did the same
level-based regressor analysis for mental state. To identify regions that
are sensitive to the integration of harm and mental state, the fifth GLM
(GLM5) modeled Stage C only, categorizing the stage both in terms of
whether the scenario had a culpable (P, R, or N) or blameless (B) mental
state and whether the harm contained was high (life altering/death) or
low (de minimis/substantial). We designed GLM5 to contain 4 cells to
maximize the number of trials per cell so as to assure a more reliable
estimate of the condition parameter for each subject. We divided the
mental state conditions into blameless and culpable (the latter of which
combines the purposeful, reckless, and negligent mental states) because
that reflects the most meaningful legal demarcation in our conditions.
For the harm condition, we performed a median split such that we had
high- and low-harm conditions. We achieved qualitatively similar results
if we demarcated the mental state using a median split of conditions as
well. We modeled only Stage C for GLM5 because this is the first stage at
which the integration of harm and mental state could occur.

All GLMs were created using z-transformed time course data. Second-
order random-effects analyses were conducted on the � weights
calculated for each subject. To control for multiple comparisons when
performing whole-brain analyses, we applied a False Discovery Rate
(FDR) threshold of q 	 0.05 (with c( V) � 1) and a 10 functional voxel
cluster size minimum. In the case a conjunction analysis was used, we
applied a minimum test statistic (Nichols et al., 2005). For visualization
purposes, some analyses display BOLD signal time courses extracted
using a deconvolution analysis. For this analysis, we defined a set of 10
finite impulse response (FIR) regressors for each condition and ran first-
level region of interest (ROI) GLMs using the FIR regressors. Although
we display SEs of the mean for these time courses, these are strictly for the
purpose of visualizing the variance and shape of the hemodynamic re-
sponses. To avoid nonindependent selective analysis of the data (the
“double-dipping” problem), these time course data were not subjected to
inferential statistical analyses. When we perform post hoc analyses on
regions identified in the whole-brain analyses, we control for multiple
comparisons again using a FDR threshold of q 	 0.05.

For the multivoxel pattern analysis (MVPA), z-transformed BOLD
signals at each time point for each condition were extracted and
activity was centered as a function of condition such that there was no
longer a mean univariate difference between event types. Indepen-
dently for each ROI, subject, and time point, we performed a leave-
one-run-out procedure: all but one run of data were used to train a
linear support vector machine (Chang and Lin, 2001) (LIBSVM,
RRID:SCR_010243) that was then tested on the held-out run; this
process was iterated until all runs had served as the test data once
(4-fold cross-validation). Classifier proportion correct was aggre-
gated to determine an ROI-, subject-, and time point-specific MVPA
result. Within an ROI, MVPA results across time points were concat-
enated to form an ROI- and subject-specific event-related MVPA
(er-MVPA) time course (Tamber-Rosenau et al., 2013) with perfect
performance at 1.0. The set of subject er-MVPA time courses was
compared with chance at the mean peak time point across ROIs via a
one-tailed t test (because below-chance classification is not interpre-
table). The peak time point occurred 12 s after the decision prompt or
10 s after the start of the stage RSVP, which corresponds, on average,
to 6 s following the mean decision time and the end of the stage RSVP,
respectively. Whole-brain searchlight analysis was performed only at
the peak time points due to practical computation limitations. For the
searchlight analysis, we defined a spherical 3 mm region extending
from every cortical voxel and performed the same MVPA procedure
described above in each subject and in each of these spherical regions
across the brain. As with the whole-brain univariate inquiries, we
performed an FDR (q 	 0.05) correction for multiple comparisons.
Chance MVPA performance was empirically estimated for each anal-
ysis to rule out artifactual above-chance performance (as a result of,
for instance, imperfect balance of number of correct trials of each type
per run). We achieved this by running 200 iterations of the classifier
on data using randomly shuffled condition labels for the training set.
Because of practical limitations, we used the mean chance perfor-

mance calculated on the ROI-based MVPA as chance for the search-
light analysis.

Results
Behavioral results
Figure 2A shows subjects’ punishment ratings as a function of
both harm and mental state levels. Using a repeated-measures
ANOVA, the results indicate main effects of both the actor’s men-
tal state (F(3,66) � 199.46, p 	 0.001) and the resulting harm
(F(3,66) � 414.90, p 	 0.001) on punishment ratings. There was
also an interaction between the levels of harm and mental state
(F(9,198) � 22.096, p 	 0.001), such that the increase in punish-
ment ratings with higher harm levels is greater under more cul-
pable states of mind. This interaction is present even when the
blameless condition is excluded from the analysis (F(6,144) � 3.84,
p 	 0.005).

Figure 2B, C shows subjects’ mean RTs at the decision phase as
a function of mental state and harm levels, respectively. Both
mental state and harm level display a quadratic relationship with
RT, wherein the intermediate levels of mental state and harm are
more time-consuming for subjects at the decision stage than the
extreme levels of mental state and harm (Fig. 2B,C). We explic-
itly tested this relationship by means of a repeated-measures
ANOVA with within-subjects quadratic contrasts for both men-
tal state (F(1,22) � 19.87, p 	 0.001) and harm (F(1,22) � 26.65,
p 	 0.001).

To understand the contributions of harm and mental state
and the interaction of these two factors in punishment decision-
making, we compared behavioral models that could ostensibly
account for how individuals weigh and integrate these factors in
their decisions. As displayed in Table 2, the model with harm,
mental state, and interaction components was identified as the
best model using AIC. The standardized model parameters indi-
cate that, by a large margin, subjects weight the interaction com-
ponent most heavily in their punishment response, followed by
harm and then mental state. As seen in Figure 2A, the nature of
this interaction is a superadditive effect between mental state and
harm. Mean r 2 across subjects using the selected model was 0.66.
The importance of the interaction of harm and mental state in
punishment decisions is also illustrated by a regression analysis of
individual subjects’ weighing of each of the three components.
Specifically, the most heavily weighted component, the interac-
tion, displayed a strong negative correlation with both harm
(r � �0.90, p 	 0.0001; Fig. 2D) and mental state (r � �0.67, p �
0.0005; Fig. 2E), whereas harm and mental state showed a posi-
tive correlation (r � 0.43, p � 0.041; Fig. 2F). These results
suggest that subjects who tend to weigh heavily the interaction
term in their punishment decisions do not put much weight on
the harm or mental state components alone.

fMRI data
The analysis of the imaging data was directed at addressing three
primary questions. First, to what extent do mental state and harm
evaluation engage separable or common neural processes? Sec-
ond, what regions support the integration of these two compo-
nents? Third, is the punishment decision neurally separable from
harm/mental state evaluations and, to the extent that it is, what
brain regions are associated with it?

fMRI data: evaluation of mental state and harm information
Identified here are those regions that show preferential engage-
ment for the evaluation of the mental state component and, sub-
sequently, those regions that show preferential engagement for
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the harm component. In both cases, the initial region identifica-
tion is followed by analyses that seek to provide supporting evi-
dence for the involvement of the identified brain regions in the
evaluation of that component and to characterize the nature of
that region’s involvement.

To identify regions preferentially involved in mental state
evaluation, we performed a contrast of mental state evaluation �
harm evaluation using GLM1 (which modeled all stages, with
Stage B and Stage C collapsed across either mental state or harm,
although we achieved qualitatively similar results when mental
state or harm activity was solely derived from Stage B). The re-
sulting statistical parametric map (SPM) revealed areas of differ-
ential activation in regions associated with a Theory of Mind
(ToM) network thought to be involved in interpreting others’

minds (Gallagher and Frith, 2003; Carrington and Bailey, 2009),
including bilateral TPJ, bilateral dorsomedial prefrontal cortex
(dmPFC), and bilateral STS (Fig. 3A–C, left; Table 3), as well as
PCC (Fig. 3A–C, left; Table 3). We also observed activations in a
number of other regions not commonly associated with a ToM
network, including bilateral caudate, right middle temporal
gyrus, left medial frontal gyrus, and left inferior frontal gyrus
(IFG) (Table 3).

In each identified ROI, the relationship between the level of
mental state and brain activity was further characterized by con-
sidering three possibilities: (1) activity in the region is linearly
related to the level of mental state, consistent with the commen-
surate increase in punishment amount seen with increases in the
level of mental state; (2) activity in the region is related to the

Figure 3. A–C, Left, SPM results of the contrast mental state � harm, highlighting. TPJ and PCC (A), DMPFC (B), and STS (C). Right, Activity in the respective ROIs (when the ROI is bilateral, we

only show the left) as a function of mental state level. D, E, Left, SPM results of the contrast harm � mental state illustrating PI and left OFC (D) and left IPL (E). Right, Activity in the respective ROIs

as a function of harm level.

Table 3. Regions showing significant activation for mental state evaluation as contrasted with harm evaluationa

Region

Talairach coordinates

t p Size

Linear contrast
Contrast with MS
difficulty MS decoding

X Y Z F p F p t p

R middle temporal gyrus 50 �35 �3 6.60 1.0E-6 81 0.00 1.00 0.21 0.47 �1.83 0.21

R TPJ 50 �53 18 8.10 	1.0E-6 275 0.69 0.34 2.12c 0.08c 1.71 0.21

R STS 53 �32 �1 6.59 	1.0E-6 77 0.01 1.00 0.29 0.64 0.24 0.94

PCC �4 �56 30 7.01 	1.0E-6 221 7.14c 4.8E-3c 1.73 0.10 0.12 0.94

R caudate 8 4 18 4.47 1.9E-4 13 0.09 1.00 0.12 0.53 �0.49 0.93

R DMPFC 11 37 51 5.84 7.0E-6 17 0.44 0.48 3.39c 0.05c 1.82 0.21

L DMPFC �7 41 51 7.03 	1.0E-6 620 0.30 0.62 2.30c 0.08c �3.06 0.08

L medial frontal gyrus �4 �17 54 4.21 3.6E-4 20 1.50 0.15 0.71 0.22 �0.39 0.93

L caudate �16 4 15 5.01 5.2E-5 52 0.35 0.56 0.16 0.51 �2.63 0.10

L IFG �46 28 �3 6.98 1.0E-6 50 7.19b 4.6E-3b 8.34c 7.6E-3c �1.66 0.21

L STS �52 7 �22 11.47 	1.0E-6 266 8.20b 2.7E-3b 13.09c 1.5E-3c �1.61 0.21

L TPJ �43 �59 21 9.13 	1.0E-6 473 2.17b 0.09b 4.16c 0.04c �0.08 0.94

aWhole-brain contrast corrected at q(FDR) � 0.05. Linear contrast column presents results of repeated-measures ANOVA with a linear contrast. Contrast with MS difficulty column presents the results of a repeated-measures ANOVA with

a contrast based on mental state difficulty (Ginther et al., 2014; Shen et al., 2011). MS decoding column presents the results of a t test compared with chance level decoding of mental state level in each region. All sizes are in units of functional

voxels. All ROI analyses corrected for multiple comparisons.
bSignificance at p 	 0.1.
cIf both contrasts account for the data, significantly more consistent with the data than the other contrast (Rosnow and Rosenthal, 1996).
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difficulty subjects have in evaluating the offender’s state of mind,
reflecting demand or time-on-task effects; and (3) each mental
state is coded by a distinct pattern of neural ensembles within a
given brain region rather than by the overall level of activation of
that region.

To examine the extent to which the mental state activations
were consistent with the linear and/or difficulty-based models,
we ran a repeated-measures ANOVA on � parameters extracted
using GLM4 (which modeled the different mental state levels,
collapsed across Stage B and Stage C), using both a simple linear
contrast and a contrast based on mental state evaluation diffi-
culty. The latter was based on subjects’ difficulty in classifying
different mental states as belonging to each P, R, N, and B cate-
gories as assessed in prior studies from our group (Shen et al.,
2011; Ginther et al., 2014). Specifically, we defined difficulty as
1-classification accuracy to arrive at the following difficulty val-
ues: P: 0.22, R: 0.60, N: 0.52, B: 0.12. (The quadratic fit of the
classification accuracy data is similar to the RT data at response
time for mental states; Fig. 2B). We chose to use the former fit for
the fMRI data because it more likely reflects the process that is
taking place at the evaluative than at the decisional stages. How-
ever, the results are similar if RTs are used. This pair of analyses
tested whether either model significantly accounted for the data.
If a region was sensitive to both contrasts, we examined whether
one of the contrasts accounted for significantly more of the vari-
ance in the data (Rosnow and Rosenthal, 1996). In a final analy-
sis, MVPA was used to assess whether distinct neural ensembles
in the identified ROIs encoded the different mental state levels by
training and testing a support vector machine on brain activity
during the period of evaluation. For all MVPA analyses, univar-
iate differences were first subtracted out (see Materials and Meth-
ods) so that the analysis was specific for multivariate patterns.

As displayed in Table 3 and visualized in Figure 3A–C, TPJ,
STS, and DMPFC, the regions comprising the putative ToM net-
work (TPJ, STS, DMPFC), are accounted for by the difficulty
model with the exception of right STS. Other than left IFG, no
other region showed activity consistent with the mentalization
difficulty model. By contrast, the linear model better accounted
for the activation profile in the PCC (Table 3; Fig. 3A). Finally, we
did not find above-chance levels of classification accuracy in any
of the identified ROIs (Table 3). Together, these results suggest
that regions engaged by the evaluation of mental state show pat-
terns of activations consistent with both an effect of mentaliza-
tion difficulty in the case of TPJ, STS, and DMPFC, and with the
amount of culpability in the case of the PCC.

The same set of analyses was performed to identify regions
that may be implicated in the evaluation of harm. We again used

GLM1 to identify regions displaying greater activity for the harm
evaluation compared with the mental state evaluation by means
of the reverse contrast from the prior analysis (harm evalua-
tion � mental state evaluation). This analysis identified bilateral
posterior insula (PI), the left inferior parietal lobule (IPL), the left
orbitofrontal cortex (OFC), left fusiform gyrus, and left lateral
prefrontal cortex (LPFC) as showing preferential engagement for
evaluation of harm statements (Fig. 3D,E, left; Table 3).

In each of these regions, we next characterized the relationship
between the different categories of harm and neural activity. As with
mental state, both a linear and quadratic relationship were consid-
ered, consistent with the commensurate increase in punishment and
evaluation difficulty, respectively, as well as the possibility that
MVPA would reveal distinct patterns of neural ensembles for each
harm level. Because we did not have an independent measure of
evaluation difficulty as a function of harm level, we used a quadratic
([1, �1, 1, �1]) pattern under the premise that intermediate harms
are more difficult to evaluate than harms at the boundary, a pattern
that is consistent with the RT distribution at the time of decision. As
with mental state, we achieve qualitatively similar results if we use a
contrast based on decision RT.

We compared how well these three potential relationships
explained the pattern of activation in each harm ROI. Activity in
the OFC was best accounted for by the quadratic relationship
(“Difficulty effect”) such that there was greater activation for the
intermediate harms than the extreme harms (Fig. 3D; Table 4),
whereas right lateral prefrontal cortex activity was best accounted
for by a negative linear contrast (Table 4). As with mental state,
we used MVPA to examine whether the identified regions dis-
played distinct patterns of activation as a function of the level of
harm and found no evidence that they did (Table 4). Thus, only
two of the harm ROIs exhibited any of the predicted functional
relationships. Most of the other ROIs, namely bilateral PI, left
IPL, and left fusiform gyrus, showed an unexpected activity pat-
tern in which the highest category of harm, death, exhibited less
activity than the three other harm levels (Fig. 3D,E; Table 4). We
speculate that this pattern may reflect vicarious somatosensation
of pain (Rozzi et al., 2008; Singer et al., 2009; Keysers et al., 2010)
in which representations of others’ pain or bodily harm can be
imagined in all harm levels except death.

Directly contrasting harm and mental state does not identify
brain regions that may be commonly activated by the evaluation
of the two components. To identify commonly recruited regions,
we performed a conjunction analysis of contrasts that removed
activity related to reading and comprehending text (by subtract-
ing Stage A) and any potential decision-related activity (by sub-
tracting the decision stage): 1, mental state � Stage A; 2, harm �

Table 4. Regions showing significant activation for harm evaluation as contrasted with mental state evaluationa

Region

Talairach coordinates

t p Size

Linear contrast Difficulty effect
Death condition
significantly lower Harm decoding

X Y Z F p F p F p F p

R LPFC 41 34 18 5.71 1.0E-5 146 20.02c 8.7E-5c 0.95 0.25 18.74b 4.9E-5b 1.29 0.37

R PI 38 �8 �6 5.53 1.5E-5 15 7.55b 5.4E-3b 1.10 0.25 8.68b 3.0E-3b 2.21 0.26

Corpus callosum �1 �32 24 5.10 4.2E-5 99 0.22 0.90 1.51 0.21 0.01 1.00 �0.03 0.98

L OFC �28 34 �4 6.06 4.0E-6 15 0.00 1.00 4.66c 0.04c 1.51 0.18 �1.76 0.26

L PI �40 �11 �3 5.17 3.5E-5 24 11.90b 1.0E-3b 3.46b 0.07b 16.14c 1.1E-4c �0.90 0.53

L fusiform gyrus �52 �53 �6 5.72 9.0E-6 30 10.79b 1.3E-3b 7.69b 0.01b 23.44c 1.1E-5c �0.37 0.83

L IPL �62 �29 33 5.61 1.2E-5 64 18.09b 9.8E-5b 9.41b 0.01b 35.74c 	1.0E-6c 1.67 0.26

aWhole-brain contrast corrected at q(FDR) � 0.05. Linear contrast column presents results of repeated-measures ANOVA with a linear contrast. Difficulty effect column presents the results of a repeated-measures ANOVA with a quadratic

contrast as a proxy of harm evaluation difficulty. Death condition significantly lower column presents the results of a repeated-measures ANOVA with the contrast 
�1, �1, �1, 3�. Harm decoding column presents the results of a t test

compared with chance level decoding of harm level in each region. All ROI analyses corrected for multiple comparisons.
bSignificance at p 	 0.1.
cIf more than one contrast accounts for the data, contrast accounts for significantly more of the variance in the data than the other two contrasts (Rosnow and Rosenthal, 1996).
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Stage A; 3, mental state � decision; 4, harm � decision. This
conjunction of contrasts revealed shared positive activations in
bilateral STS and bilateral TPJ (Table 5; Fig. 4A,B). Both STS and
TPJ regions overlap substantially or entirely with the regions
identified in the mental state � harm analysis (compare Tables 3,
5; Figs. 3A,C, 4A,B). As the time courses in Figure 4A, B reveal, in
each of these regions, mental state evaluation shows greater
activation than harm evaluation, but there is also pronounced
activation associated with harm evaluation. To test whether these
common activations represent recruitment of shared resources or
instead reflect the recruitment of distinct neural ensembles, we per-
formed MVPA in the identified regions to determine whether a pat-
tern classifier could decode whether subjects were evaluating harm
or mental state at the time of the evaluation. We observed marked
decoding in both TPJ and STS (Fig. 4C), providing evidence for the

conclusion that harm and mental state evaluation engage overlap-
ping regions but use largely distinct neural ensembles.

To assess whether the ROI analysis may have missed brain re-
gions involved in processing mental state or harm evaluation, we
also tested for such regions using whole-brain analyses that looked

Figure 4. A, B, Deconvolution time courses of activity in TPJ (A) and STS (B). Insets, Locations of the relevant regions. C, Event-related MVPA time courses illustrating mean classification accuracy

as a function of time and ROI. Colored time courses represent above chance classification. MS, Mental State; Sent A, Sentence A; Dec, decision stage.

Table 5. Regions sensitive to a conjunction contrast of mental state compared with Stage A and Stage D as well as harm compared with Stage A and Stage Da

Region

Talairach coordinates

t p Size

MS versus harm decoding

X Y Z t p

R STS 51 �19 �5 7.50 	1.0E-6 96 4.95b 1.4E-4b

R TPJ 48 �46 19 4.84 7.7E-5 35 5.54b 5.1E-5b

R STS2 45 5 �17 5.75 9.0E-6 29 2.63b 0.02b

R insula 36 5 10 �4.59 1.4E-4 15 0.73 0.47

R motor 12 5 37 �4.04 5.5E-4 17 1.74 0.11

L STS �51 �19 �5 6.63 1.0E-6 52 3.95b 1.2E-3b

L TPJ �48 �52 13 6.21 1.0E-6 110 8.03b 7.0E-7b

aWhole-brain contrast corrected at q(FDR) � 0.05. Right two columns present results of analysis testing whether across-subject classification accuracy between harm and mental state was significantly greater than chance.
bStatistically significant declassification (corrected for multiple comparisons).

Table 6. Regions displaying a linear relationship between level of mental state and

brain activity in a whole-brain contrast: linear whole-brain contrast of mental

statea

Talairach coordinates

Region X Y Z t p Size

PCC �3 �49 25 4.00 1.6E-4 19

L MPFC �6 56 34 5.00 4.0E-6 38

L STG �46 17 �14 5.52 1.0E-6 62

aWhole-brain contrast corrected at q(FDR) � 0.05.
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for patterns of activations consistent with the various processing
patterns described in the above analysis. As such, this whole-brain
analysis removes the antecedent step of requiring a significant differ-
ence in activations for mental state compared with harm, or vice
versa. For mental state, in addition to the same PCC region identified
in the mental state � harm analysis (compare Table 3 and Table 6),
we identified positive linear relationships in left MPFC and left su-
perior temporal gyrus (STG) (Table 6). The whole-brain approach
did not reveal any areas using the quadratic or searchlight MVPA
analyses. In the case of harm, no regions were observed with a whole-
brain linear, quadratic, MVPA, or vicarious somatosensation-based
[1, 1, 1, �3] analysis.

Together, these results not only reveal that the neural sub-
strates processing harm and mental state evaluations are largely
dissociable, they also indicate that brain regions involved in each
of these two factors may code distinct properties of the factor,
such as the difficulty of its evaluation or its amount of culpability
or harm.

fMRI data: integration of the harm and mental
state components
The above results indicate that separable neural systems are re-
cruited to evaluate harm and mental state information. Even re-
gions showing common activations for harm and mental state,
specifically the STS and TPJ, display evidence that distinct neural
ensembles are recruited for the evaluation of the two compo-
nents. This raises the question of what regions may support the
real-time neural integration of these two components. To answer
this question, we isolated regions that were preferentially re-
cruited at Stage C compared with Stage B (Stage C � Stage B)
because Stage C is the first stage at which integration can happen
as subjects have access to both the mental state and the harm.
However, given that Stage C also involves greater working mem-
ory demand than Stage B, it is likely that at least some of the
regions isolated may be related to working memory per se rather
than the integration of harm and mental state. We can address
this issue with the following contrast ((Stage C � Stage B) �
(Stage B � Stage A)), as the Stage B � A component of this
contrast should also compare two stages with similarly different
working memory demands. The resulting SPM of this contrast
revealed activation indicative of integration in bilateral amy-
gdala, MPFC, right DLPFC, PCC, and right middle occipital
gyrus (Table 7; Fig. 5A–C), with most of these regions previously
identified as putative sites of integration of information (Buck-
holtz and Marois, 2012; Buckholtz et al., 2015; Yu et al., 2015).

To more precisely characterize the role these regions play in
integrating harm and mental state, we sought evidence of differ-

ential activation as a function of an interaction between level of
harm and mental state that parallels the behavioral results (i.e., a
superadditive effect of culpable mental state and severe harm).
Specifically, using GLM5 (see Materials and Methods), we mod-
eled conditions based on a 2 � 2 factorial design of mental state
(blameless, culpable) and harm (low, high) at Stage C. As dis-
played in Table 7 and Figure 5D, both left and right amygdala
display a robust interaction mirroring the superadditive behav-
ioral effect of mental state and harm integration (Fig. 2A). No
other regions were observed when performing this interaction
analysis on whole brains.

That the pattern of amygdalae activity mirrors subjects’ pun-
ishment behavior is evidence for a relationship between the
amygdalae and the ultimate punishment decision. To further ex-
plore this potential brain-behavior relationship, we examined
how subjects’ individual differences in amygdalae response cor-
related with their differences in weighting the interaction factor
in their punishment decisions. Specifically, for each subject, we
calculated an index of the strength of the interaction in subjects’
amygdalae activity ((culpable high harm � blameless high
harm)) � (culpable low harm � blameless low harm)) and com-
pared it with the interaction � weights calculated for each subject.
If the interaction effect observed in the amygdalae were associ-
ated with the interaction effect observed in the behavior, we
would expect that the strength of the interaction displayed in
subjects’ amygdalae to predict the strength of the interaction dis-
played in subjects’ behavior. Consistent with this hypothesis, we
found that subjects’ interaction indices in the amygdalae were
positively correlated with the interaction term (r � 0.42, p �
0.044; Fig. 5E).

fMRI data: the punishment decision stage
Brain regions involved in the decisional stage of a punishment
judgment should display at least the two following characteris-
tics: (1) preferential activation during the punishment decision
stage of the task and (2) a functional relationship between brain
activity during the time of the punishment decision and the out-
come of the decision.

To search for such regions, we first identified those meeting
the first criterion and then limited our analysis for the second
criterion to the regions identified in the first step. To test the
first criterion, we extracted subjects’ � values for each task
stage and used GLM2 (which modeled each of the different
task stages) to perform a conjunction analysis of the decision
stage of the task compared with each of the other task condi-
tions, namely, Stage A, mental state and harm evaluation, and
the ISI math task. We included the ISI task in the conjunction

Table 7. Regions showing evidence of supporting mental state and harm integration by means of the contrast (Stage C > Stage B) > (Stage B > Stage A)a

Region

Talairach coordinates

t p Size

Superadditive harm �
MS interaction

Punishment decoding
(C)

X Y Z F p F p

R middle occipital gyrus 39 �70 1 4.46 	1.0E-6 34 0.00 1.00 �0.06 0.96

PCC �3 �22 28 6.41 	1.0E-6 774 0.05 1.00 0.52 0.61

R DLPFC 30 32 40 4.10 	1.0E-6 26 3.09 0.10 0.76 0.45

R amygdala 24 �13 �14 5.53 	1.0E-6 72 12.46 	1.0E-6b �0.49 0.63

MPFC 6 41 7 6.11 	1.0E-6 380 0.05 1.00 0.57 0.57

L amygdala �21 �7 �20 6.53 	1.0E-6 52 7.84 0.01b �0.41 0.69

aWhole-brain contrast corrected at q(FDR) � 0.05. Superadditive harm � MS interaction column shows statistics for an ROI-based analysis in each region identifying patterns consistent with a superadditive interaction similar to that

displayed in the behavioral results and a nonspecific mental state � harm interaction, respectively. Punishment decoding (C) reports the significance of MVPA decoding of punishment amount during Stage C in each of these regions

compared with chance. All ROI analyses corrected for multiple comparisons. The PCC region is rostral to and does not overlap with the region identified in the mental state � harm contrast (compare Figs. 3A, 5A; Tables 3, 5, 7), just as the

present MPFC region does not overlap with the left MPFC region identified in the whole-brain linear effect of mental state analysis (compare Tables 6 and 7).
bStatistically significant interaction effect.
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as it is the only other task condition that involves response
selection. Given the unique demands of Stage D compared
with other task components, this analysis expectedly revealed
preferential activity in a number of regions, including right
DLPFC, left ventrolateral prefrontal cortex, bilateral IFG, and
visual and motor areas (Fig. 6A; Table 8). Each of these regions
displayed activity that was significantly correlated with RT at
the decision screen (Table 8).

To test the second criterion (i.e., to assess whether activity in
any of the brain regions isolated above was linked to the decision
of whether or how much to punish at the time of the decision), we
sought to identify relationships between brain activity and
decisional metrics using both univariate and multivariate ap-
proaches. First, we found no robust correlation between activity
amplitude and level of punishment (Table 8), replicating Buck-
holtz et al. (2008). This may not be surprising given that subjects

may engage in similar decisional reasoning across punishment
ratings. Another possibility, assessed with MVPA, is that different
neural ensembles in the DLPFC encode different punishment
ratings. To address this issue, for each region, we divided subjects’
punishment decisions into quartiles and trained and tested a clas-
sifier on the activity corresponding with punishment decisions
falling into each of the quartiles. Of the regions identified by the
first criterion, we observed significant decoding of the trial-by-
trial punishment amount in only right DLPFC and visual cortex
(Table 8; Fig. 6B). As some have cautioned that differences in
subject-by-subject RT can induce false-positive decoding (Todd
et al., 2013), we also performed the original analysis after regress-
ing out differences in activity associated with differences in trial-
by-trial RT and still observed significant decoding in the DLPFC
ROI (t � 1.74, p � 0.048 one-tailed) and in the visual region (t �
2.831, p � 0.005 one-tailed). We hypothesize that decoding in the

Figure 5. A, MPFC, PCC. B, DLPFC. C, Bilateral amygdala display activity consistent with integration using the following contrast: (Stage C � Stage B) � (Stage B � Stage A). D, The amygdala

(left) displays an interaction activation profile in which there is an effect of harm level when the actor has a culpable mental state. E, There is a positive correlation between the strength of the

interaction in the amygdala and how much subjects weighted the interaction term in their punishment decisions (r � 0.4195, p � 0.046).
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visual ROI is associated with subjects’ visual evaluation of the
punishment scale and response.

Importantly, the involvement of the DLPFC ROI in punish-
ment rating is relatively specific, as this ROI failed to decode
either the different mental state or harm levels (t � 0.69, p � 0.25
and t � 0.90, p � 0.19 one-tailed, respectively; Fig. 6B). This right
DLPFC ROI also overlaps with the right DLPFC ROI previously
hypothesized to be involved in the decision to punish (Buckholtz
et al., 2008; Buckholtz and Marois, 2012). Previous studies inves-
tigating second- and third-party punishment decision-making
have frequently found punishment decision-making to selec-

tively engage the right as opposed to the left DLPFC (Sanfey et al.,
2003; Knoch et al., 2006; Buckholtz et al., 2008; Baumgartner et
al., 2014). Here punishment classification accuracy was similarly
right-lateralized, as we failed to find any decoding (t � 0.94, p �
0.18 one-tailed) in a region with the same y and z coordinates in
the left hemisphere.

In a final analysis, we examined whether this same right
DLPFC ROI encoded punishment levels during Stage C as well.
While the task is designed to interfere with decision-making at
Stage C, subjects most likely make their first approximations of
the punishment decision at Stage C, after they have been pre-

Table 8. Regions showing significant activation for the conjunction contrast between Stage D and all other task stagesa

Region

Talairach coordinates

t p Size

Correlation with
decoding RT

Main effect of
punishment
amount

Punishment
decoding (D)

Punishment
decoding (C)

X Y Z t p F p t p t p

L VLPFC �48 42 1 6.42 2.0E-6 30 273.88 	1.0E-6b 0.73 0.68 0.42 0.34 �0.44 0.67

L IFG �45 14 �7 6.07 4.0E-6 50 118.14 	1.0E-6b 2.16 0.30 �0.66 0.30 0.04 0.97

Medial frontal gyrus 3 18 53 5.46 1.8E-5 148 96.17 	1.0E-6b 1.67 0.39 1.47 0.11 0.16 0.88

Visual 6 �63 1 13.37 	1.0E-6 5510 175.23 	1.0E-6b 1.26 0.39 7.25b 2.8E-06b 1.96 0.06

R DLPFC 36 45 26 4.91 6.6E-5 95 192.78 	1.0E-6b 1.32 0.39 2.92b 0.02b 2.80b 0.01b

R IFG 39 21 �2 5.29 2.6E-5 22 163.83 	1.0E-6b 1.00 0.53 1.79 0.10 �1.58 0.13

R Motor 39 3 52 5.77 8.0E-6 126 89.55 	1.0E-6b 1.44 0.39 1.57 0.11 1.08 0.29

aWhole-brain contrast corrected at q(FDR) � 0.05. Correlation with decoding RT column tests whether there is a significant effect of Stage D RT on activity in the identified regions. Main effect of punishment amount column tests for a main

effect on activity in each ROI as a function of subjects punishment quantities. Punishment decoding (D) column reports the significance of MVPA decoding of punishment amount during the decision stage in each of these regions compared

with chance. Punishment decoding (C) column reports the same for Stage C. All ROI analyses corrected for multiple comparisons. VLPFC, Ventrolateral prefrontal cortex.
bStatistically significant correlation with decision RT, statistically significant main effect of punishment amount, or significant punishment amount classification accuracy.

Figure 6. A, SPM showing regions (arrow points to right DLPFC) with preferential engagement at the time of decision by means of a four-way conjunction between the time of decision and the

other task components (see Results). B, C, Decoding of punishment rating in the right DLPFC region. The er-MVPA time courses plot classification accuracy of the voxels in the identified right DLPFC

region on punishment rating as well on the level of mental state and harm at Stage B, the time of the decision, and Stage C. MS, Mental State.
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sented with both harm and mental state information. Further-
more, analysis of the punishment decision at Stage C has the
added benefit over Stage D of not having any potential motor
response confound. Thus, using the same methodological ap-
proach previously applied to Stage D, we tested each of the re-
gions identified by the integration and decision contrasts (Tables
7 and 8, respectively). Of the regions tested, the only one to de-
code punishment level was the right DLPFC region identified in
the decision contrast (Fig. 6C; Tables 7, 8), thereby further impli-
cating this brain region in assignment of punishment. And once
again, this region does not seem to encode either mental state or
harm level. It is also noteworthy that the visual area that survived
MVPA at Stage D failed to decode at Stage C, a result that sup-
ports our hypothesis that its decoding at the decision stage is due
to subjects’ visual evaluation of the scale.

Discussion
Our behavioral results indicate that punishment decisions are
primarily driven by the interaction between mental state and
harm. This interaction is characterized by a superadditive rela-
tionship between the component factors. This is consistent with
studies showing that intentionality augments the negative va-
lence associated with the same harmful outcome (Gray and
Wegner, 2008) and can even augment a person’s quantification of
the severity of a harmful outcome (Ames and Fiske, 2013, 2015).
Using functional imaging, we sought to parse how these two
components, mental state and harm, converge into a punishment
response that is defined by their interaction.

The data indicate that mental state and harm evaluation are
distinct processes that engage separable neural resources. In re-
gards to mental state, a group of regions consisting of TPJ,
DMPFC, and STS were preferentially engaged by the evaluation
of the offender’s intentions. These activations overlap with a net-
work of regions sometimes described as a ToM network (Gal-
lagher and Frith, 2003), although the regions also colocalize with
elements of the Default Mode Network (DMN) (Decety and
Lamm, 2007; Hacker et al., 2013). By implementing a parametric
manipulation of mental states, we were able to reveal a relation-
ship between the difficulty of the mentalization task and the
amount of activity in ToM regions. The parametric manipulation
also provides insight into the function of the PCC. Although the
PCC is a hallmark feature of the DMN (Hacker et al., 2013), it is
sometimes, but not consistently, linked with ToM processes
(Carrington and Bailey, 2009). The present results indicate that,
while the PCC shows activation for mental state evaluation, it
displays a linear correlation with level of culpability instead of a
relationship with mentalization difficulty. We hypothesize that
PCC activity, perhaps in concert with the mPFC and STG, reflects
the negative valence associated with the evaluation of the offend-
er’s culpable mental state (Maddock et al., 2003; Leech and Sharp,
2014) rather than ToM processing per se. That we do not see a
similar activation profile for harm evaluation is consistent with
prior studies showing that the PCC does not show augmented
activity in trials containing bodily harms (Heekeren et al., 2005).
Finally, it is interesting to note that we failed to decode in the
brain the different mental states with MVPA despite marked uni-
variate amplitude differences. While we acknowledge that a null
result could reflect low power, robust decoding in other analyses
(e.g., at the decision stage) provides some confidence that ab-
sence of decoding here is not an intrinsic lack of power. Based on
these findings, we conclude that the distinct mental states are not
encoded by distinct neural ensembles. Rather, the univariate re-

sults suggest that differences in mental state evaluations result
from differential activations of the same neural ensembles.

In regards to harm evaluation, bilateral PI, left IPL, and left
OFC show heightened activation. The functional profiles of the
PI and IPL are consistent with studies linking them with percep-
tions of others’ bodily pain, perhaps co-opting the same mecha-
nisms used to process the subject’s individual interoceptive
signals (Singer et al., 2004, 2009; Lamm et al., 2011). Consistent
with this interpretation, these regions were far less activated when
the outcome was death, which may be expected if the region is
engaged in evaluation of another party’s pain. Preferential acti-
vation in OFC, on the other hand, may reflect its role in evalua-
tions of relative value or cost (Wallis, 2007; Janowski et al., 2013).
Its quadratic activity pattern is consistent with this hypothesis on
the premise that determining the magnitude (i.e., negative value)
of the offense is most challenging in the intermediate categories.

That harm and mental state evaluation deploy distinct neural
systems raises the question of how these processes are cortically
integrated. Buckholtz and Marois (2012) proposed that activity
in mPFC and PCC in legal decision-making tasks were potentially
related to their role in integrating these component processes,
and this prediction was borne out by the present experiment;
both mPFC and PCC are sites of integration of harm and mental
state evaluation. This is consistent with studies indicating that
these two brain regions act as cortical hubs interconnecting dis-
tinct and functionally specialized systems (Sporns et al., 2007;
Buckner et al., 2009; Bullmore and Sporns, 2012; Liang et al.,
2013), such as those engaged by the evaluation of an offender’s
mental state and the resulting harm. Our results also provide
evidence that the right DLPFC supports integration, a finding
consistent with recent work showing that disruption of activity in
the DLPFC alters how harm and mental state are integrated into
a punishment decision (Buckholtz et al., 2015).

A role of the amygdalae in punishment decision-making has
long been proposed (Buckholtz et al., 2008), although their spe-
cific function in that context has been debated. While Buckholtz
et al. (2008) showed that harmful outcomes but not culpable
mental states engaged the amygdalae, Yu et al. (2015) found the
opposite in a second-party punishment task. Yu et al. (2015)
further observed effective connectivity between the amygdalae
and brain regions associated with integration of intention and
harm, although they did not observe an interaction effect in the
amygdalae. What the present results suggest is that the role of the
amygdalae in punishment decision-making is more complex; it is
less responsive to either of the simple factors of harm or mental
state than it is to the interaction of these factors. Specifically, we
found that activation in the amygdalae are defined by a super-
additive interaction wherein the amygdalae display robust acti-
vation only in the case of a culpable mental state and substantial
harm. Most strikingly, the activation profiles of the amygdalae
mimic the pattern of subjects’ punishment decisions, as evi-
denced by the relationship between the strength of the interaction
activity in individuals’ amygdalae and the weight that they attri-
bute to the interaction between harm and mental state in render-
ing their decisions. These behavioral and neurobiological
findings are remarkably consistent with recent work showing that
the amygdalae’s response to gruesome criminal scenarios is sup-
pressed by means of a temporoparietal-medial-prefrontal circuit
when the harmful outcome was purely accidental (Treadway et
al., 2014). According to this account, the amygdalae are part of a
corticolimbic circuit that, based on the offender’s culpability,
gates the effect of emotional arousal on punishment decisions
(Treadway et al., 2014). Such a pivotal role of the amygdalae in
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third-party punishment is in accord with the broader involve-
ment of this brain region in mediating the influence of aversive
states onto decision-making (Loewenstein and Lerner, 2002;
Damasio, 2005; Phelps and LeDoux, 2005; Phelps, 2006; Miller
and Cushman, 2013).

Finally, our results shed an important light on the role of the
DLPFC in punishment decision-making. DLPFC activity in eco-
nomic decision-making games has often been explained by a cog-
nitive control account, according to which the DLPFC is
promoting altruistic punishment behavior toward unfair players
by inhibiting the prepotent response to act selfishly (Sanfey et al.,
2003; Knoch et al., 2006). Such account of DLPFC function, how-
ever, is not easily reconcilable with third-party punishment stud-
ies showing greater DLPFC activity when subjects decided to
punish (Buckholtz et al., 2008), or with other studies that have
associated activity in this brain region across various cognitive
tasks, such as working memory, analogical reasoning, rule-based
decision-making, and amodal perceptual decision-making
(Bunge et al., 2002; Heekeren et al., 2006; De Pisapia et al., 2007;
Duncan, 2010; Hampshire et al., 2011). Furthermore, functional
disruption of the DLPFC during third-party punishment deci-
sions did not affect the severity of individuals’ punishment deci-
sions when the actor was blameless, but instead disrupted how
they integrated the culpability of the actor and the severity of the
harm in their punishment decisions (Buckholtz et al., 2015). Both
of these observations favor an “integration and selection” hy-
pothesis of DLPFC function in third-party punishment, in which
the DLPFC integrates multiple neural representations from cog-
nitive subtasks, such as the evaluation of the offender harm and
mental state, to select an appropriate behavioral (punishment)
response (Buckholtz and Marois, 2012; Buckholtz et al., 2015).
Our results are highly consistent with this hypothesis. DLPFC
activity was not only observed at the time of the decision re-
sponse, it also selectively coded in a neurally distributed manner
the amount of punishment assigned to the perpetrator. Thus, the
DLPFC is not simply involved in the decision to punish, it is also
implicated in assigning the appropriate punishment based on the
relative weighing of the mental state of the transgressor and of the
harm he caused.

In conclusion, the present study informs and extends pro-
posed neural models of third-party punishment (Buckholtz and
Marois, 2012). Evaluation of harm engages brain areas associated
with affective and somatosensory processing, whereas mental
state evaluation recruits primarily ToM/DMN circuitry. These
representations are integrated in medial prefrontal cortical and
subcortical (amygdala) structures, to be (presumably) routed to
the DLPFC for the appropriate selection of a punishment re-
sponse. Although many details remain to be worked out, this
rigorous experiment paradigm reveals clear dissociations in the
neural processing that underlies these complex, socially relevant,
and legally important decisions.
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