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Abstract 
Myosin II Isoforms in Breast Cancer: Role of Contractility in Matrix Organization, Cell 

Migration, and Endothelial Barrier Function 
 

Bridget R. Hindman 
 
Breast cancer is a devastating and complicated disease. A large proportion of breast 

cancer related deaths are due to metastasis. Metastasis is when cancer cells leave the 

primary tumor, travel through the bloodstream, and proliferate in distant sites. Cell 

contractility is involved in a number of cellular processes associated with metastasis 

including matrix organization, tumor cell migration, and endothelial cell barrier function. 

The main regulator of contractility in nonmuscle cells is nonmuscle myosin II. There are 

three isoforms of this protein: myosin IIA, IIB, and IIC. The specific roles of the individual 

isoforms in cancer progression and metastasis have yet to elucidated. This works aims 

to determine if myosin II isoforms play separate roles in three functions associated with 

cancer progression: tumor cell organization of a collagen matrix, tumor cell migration, and 

endothelial cell barrier function. In Study 1, the ability of breast cancer cells lacking myosin 

II isoforms to organize a collagen matrix was assessed. In addition, the migration potential 

of these cells in 3D matrices was measured. Myosin II isoforms were found to play distinct 

roles in cancer cell matrix organization and cell migration. In Study 2, the barrier function 

of endothelial cells lacking myosin II isoforms was tested. This cell function is involved in 

metastasis when cancer cells cross the blood vessel wall to enter and exit the 

bloodstream. Both myosin II isoforms were found to be involved in endothelial cell 

contractility, and the IIA isoform was found to be necessary for barrier function. 

Collectively, these studies indicate that myosin II isoforms play distinct and non-redundant 

roles in cell processes associated with cancer metastasis.  
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Literature Review 

Breast Cancer 

Breast cancer is a potentially devastating disease that affects women worldwide. In 2015, 

there were an estimated 234,190 new cases and 40,730 expected deaths in the United 

States alone, making breast cancer the second leading cause of cancer related death in 

women [1]. The specific characteristics of each patient’s disease must be determined to 

decide on the best treatment regimen. Often, this process starts with determining the type 

of tumor; for breast cancer, the most common type is ductal carcinoma, followed by 

lobular carcinoma [2]. Once the type of cancer is determined, the tumor is further 

classified into a disease subtype. Patient prognosis depends on disease subtype, which 

is a major determinant of treatment options. Patients are initially classified into general 

disease subtypes based on the expression of certain proteins as detected by histology 

staining of biopsy samples. Biopsy samples are investigated for the presence of the 

estrogen and progesterone receptors as well as the HER2 epidermal growth factor 

receptor [3]. For tumors expressing high levels of hormone receptors or HER2, there are 

therapies that directly target the overexpressed receptors. However, there are no such 

targeted therapies for cancers that do not express high levels of these proteins, known 

as triple negative cancers, giving these patients a poor short-term prognosis [4]. The final 

tumor characteristic important for determining patient prognosis and treatment regimen is 

tumor staging. Staging for solid tumors, including breast cancer, is based on factors such 

as the tumor size, if the tumor has invaded local nymph nodes, and if any distant 

metastases have been detected [5]. Patients whose cancers are caught and treated early 

(stage I/II) have a better prognosis than patients whose disease is diagnosed at a later 
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stage (stave IV) in disease progression [5]. However, even patients who are diagnosed 

with stage I disease, a primary tumor ≤20 mm on the longest dimension and no lymph 

node involvement or a lymph node metastasis ≤1 mm [5], are at risk of developing distant 

metastases in the future [6, 7]. These distant metastases often occur in vital organs such 

as the liver, lungs, and brain, and it is these secondary tumors that are often fatal for 

cancer patients [6, 8-11]. Tumor staging and disease subtype greatly influence treatment 

options for the patient. Tumor size, lymph node involvement, and presence of metastases 

determine the suitability of surgery and radiation, while disease subtype determines the 

tumor’s response to chemotherapeutic agents [3, 5]. 

 Patients with stage IV, or metastatic, disease at initial diagnosis have a poor 

prognosis. Metastasis is a multi-step process in which cancer cells from a primary tumor 

invade local tissue, travel through the bloodstream, and proliferate to form a secondary 

tumor in a distant organ (Figure 1) [7, 10]. Tumors that metastasize to vital organs are 

life-threatening and can be difficult to treat [7, 9, 12]. Due to the staging conventions in 

breast cancer, many patients assume that metastasis happens later in the disease 

process. However, patients with successfully treated early stage cancer may present 

years later with metastatic disease and no recurrent primary tumor, implying that the 

metastatic cells had already entered the bloodstream at the time of the initial diagnosis 

[12]. A risk factor for these early metastatic events is infiltration of the primary tumor by 

the vasculature in a process known as angiogenesis [6]. When tumors successfully 

initiate angiogenesis, often the vasculature is abnormal with a low barrier function, and 

hence high permeability. This leaky vasculature makes it easier for individual tumor cells 

to enter the bloodstream and circulate to target organs [13]. These tumor cells can enter 
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a dormant state after arriving in a metastatic niche. Dormancy makes these cells 

refractory to many chemotherapeutic agents that are designed to target highly 

proliferative cells. The dormant cells that survive treatment remain in the metastatic 

organs, eventually proliferating into a secondary tumor [12].  

                 Given the effect of metastasis on the outcome for cancer patients, it is an 

important area to focus research efforts. There are two primary theories as to how an 

individual metastatic cell, or group of cells, arrives at a specific distant organ. The first is 

the ‘seed and soil’ hypothesis, in which cells home to a specific organ through 

characteristics specific to the cell and its metastatic niche [7, 8]. Many cancers have 

specific metastatic patterns, which lends credence to the seed and soil hypothesis. For 

example, in breast cancer metastasis to bone, the metastatic microenvironment produces 

the chemokine CXCL12, which acts as a chemoattractant to cancer cells expressing its 

receptor CXCR4 [14]. This hypothesis is further supported by the establishment of breast 

cancer cell lines that selectively metastasize to specific organs after intracardiac injection 

[15]. The second theory is that cells follow circulatory patterns and become lodged in the 

first capillary bed with vessel diameters small enough to trap cells. These two models of 

metastasis are not mutually exclusive [7, 8, 10, 11, 16]. For instance, breast cancer tends 

to metastasize to the bone, liver, brain and lungs [7]. While some of these sites are 

explained by circulatory patterns, others are better explained by the seed and soil 

hypothesis. There are several possibilities as to how these two models collectively explain 

metastasis. Different cell populations within a single primary tumor may separately follow 

either model. Some metastatic cells follow the seed and soil hypothesis, while other cells 

from the same primary tumor are simply trapped by a small capillary bed and proliferate. 
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It is also possible that circulating tumor cells follow both models simultaneously. In this 

case, individual cells do become physically trapped in capillary beds based on cell 

size/deformability and circulatory patterns, but selectively grow in organs where the 

molecular interactions with the microenvironment are favorable. Cells trapped in 

unfavorable environments die. In this scenario, the two theories are both partially correct.  

Throughout tumor progression and the metastatic process, cells must interact with 

their surroundings.  During the initial stages of tumorigenesis, cells sense and respond to 

change in the extracellular matrix (ECM). The ECM is altered in breast cancer and 

influences cell proliferation, invasion, and metastasis [17-19]. Cancer cells alter the ECM 

directly; both physical alterations such as collagen bundling and alignment and 

biochemical alterations such as cross-linking. These alterations promote tumor 

progression [20, 21]. During metastasis, cells migrate through the ECM to local blood or 

lymph vessels. While migrating, cells form and break adhesions to the matrix. This cycle 

of adhesion formation and disassembly is necessary for migration. New adhesions are 

formed as the cell extends forward, while old adhesions at the cell rear must be 

disassembled in order for the entire cell body to move and the rear of the cell to retract. 

The matrix also directs how the cells migrate by providing contact guidance, a physical 

scaffold for cell movement, as well as a physical barrier the cells must degrade or 

maneuver through as they migrate [22-24]. During the latter steps of metastasis, cancer 

cells attach to and transmigrate across the blood or lymph vessel wall to enter and exit 

the bloodstream. This requires complex interactions with the cells composing the vessel 

wall [7, 10, 11, 25]. Researchers have investigated the molecular events involved in these 

processes, and in many cases it has been found to be dependent on actomyosin 
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contractility [26-36]. Contractility is necessary for adhesion maturation, making it a critical 

component of cell-matrix interactions [37, 38]. During cell migration through the matrix, 

contractile forces propel the cell body forward [27]. While the role of contractility in tumor 

cell transmigration across the vessel wall has not been thoroughly investigated, 

contractility is necessary in leukocyte diapedesis, a process highly similar to tumor cell 

extravasation from the blood vessel [39]. Since nonmuscle myosin II is the main regulator 

of actin contractility in nonmuscle cells [40], defining its role in these cellular processes 

could be of great benefit to understanding and treating this disease.  

Nonmuscle Myosin II 

Nonmuscle myosin II proteins are members of the class II myosin family of actin motor 

proteins. As such, they are capable of turning the chemical energy of ATP hydrolysis into 

mechanical work. Like all myosins, the functional form of nonmuscle myosin II is a 

hexamer, consisting of a homodimer of heavy chains and two pairs of light chains, 

essential and regulatory [30, 41]. The heavy chain homodimer forms when the C-terminal 

region of the heavy chains form a helical coiled coil, leaving the N-terminal motor domains 

free to interact with ATP and actin. Between the head domain and the coiled coil tail 

domain lies the neck domain. This is where both sets of light chains interact with the 

heavy chain dimer [42]. The tail domains of myosin hexamers further interact with other 

hexamers to form bipolar thick filaments. There are three nonmuscle myosin II heavy 

chain (MHC) isoforms: A, B, and C. These isoforms are encoded by three separate genes 

in humans, MYH 9, MYH 10, and MYH 14, respectively [43].  All three isoforms share 

significant sequence similarity, but have variations in the C-terminal tail, allowing for 

specific interactions with regulatory molecules. This variation has been exploited in the 
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development of antibodies and shRNAs targeting specific isoforms for research purposes 

[42, 44, 45]. Myosin II isoforms are differentially expressed in different tissues and have 

non-redundant roles in development [44, 46, 47]. Myosin IIA ablation in mice is lethal at 

embryonic day 6.5. Embryos present severe defects in cell-cell adhesion and fail to 

develop a visceral endoderm [47]. Myosin IIB ablated mice die between E14.5 and birth. 

These animals have brain and heart abnormalities, notably, hydrocephalus and abnormal 

neuronal migration [46, 47]. Replacing the IIB isoform with IIA in knock-in experiments 

results in a fraction of mice surviving into adulthood. However, these mice still have 

abnormalities in neuron migration and develop cardiomyopathy, defects in the heart 

muscle which typically lead to heart failure [46]. Ablation of myosin IIC in mice results in 

no obvious defects and there is still relatively little known about its role in various tissues 

[47]. The absence of embryonic defects in myosin IIC knockout mice is likely because IIC, 

while highly expressed in a number of adult tissues, has substantially lower expression 

levels in fetal tissue [48].    

 The separate functions of the myosin II isoforms in development could be 

explained by multiple factors, including differential expression in different cell types, 

different subcellular localization, differential regulation, and inherent differences in the 

biochemical properties of the isoforms [42, 43, 48-50]. Myosins have a cyclical interaction 

pattern with actin, ATP, and ADP. Binding of ATP causes the myosin to release actin. 

When the ATP molecule is hydrolyzed, myosin again binds to actin and the release of 

phosphate induces the “power stroke”, a conformational change in the neck region of the 

heavy chain that moves the myosin along the actin filament. Myosin-ADP-actin is a 

relatively stable structure, and the myosin molecule is reset when ADP is exchanged for 
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ATP and myosin releases actin [40]. Changes in ATPase activity and the release rate of 

ADP will affect the relative time a myosin molecule spends bound to actin, i.e. the duty 

ratio [43]. Kovács et al [49] have shown that the two main isoforms of nonmuscle myosin 

II, A and B, have different kinetics of ATP hydrolysis and substrate release. Both isoforms 

have relatively high ADP affinities and slow kinetics compared to other myosins, such as 

those found in muscle tissue. However, the IIB isoform exhibits slower kinetics of ATP 

hydrolysis than IIA. In addition, the IIB isoform releases ADP at a slower rate than IIA, 

meaning that it spends more of its ATPase cycle bound to actin [49, 50]. This relatively 

high duty ratio, as well as the fact that the IIB ATPase significantly slows ADP release 

when a resisting load is applied, indicates that the IIB isoform is likely responsible for 

cellular tension maintenance [51]. Myosin II isoforms also have different filament 

assembly characteristics that likely play a role in their different functions in cell processes. 

This is especially true of the IIC isoform, which forms filaments with larger “bare zones”, 

areas of the filament lacking myosin heads and composed solely of the rod domains, 

indicating that the filaments are made up of fewer molecules and likely have a lower actin 

processivity than the other two isoforms [43]. There are several small molecule inhibitors 

that block myosin II activity. The most commonly used is blebbistatin. Blebbistatin binds 

the myosin-ADP-Pi complex, blocking Pi release. This locks myosin into a conformation 

with low affinity for actin. Blebbistatin shows myosin II specificity, however, it is believed 

to act on all three isoforms equally, making it inadequate for studying the different 

isoforms in cell processes [52].  

Nonmuscle myosin II is involved in wide variety of cellular functions, and is 

regulated by a number of signaling molecules. Myosin II function is mainly regulated 
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through phosphorylation of the regulatory light chain (RLC) Phosphorylation of the 

regulatory light chain on Ser19, or on both Thr18 and Ser19, enhances motor complex 

ATPase activity. Phosphorylation of these residues allows the myosin complex to extend 

from an inhibitory folded state, allowing for filament formation which is vital for effective 

myosin function [30, 40, 42, 43, 45, 49, 53-57] (See Figure 2). Myosin light chain kinase 

(MLCK) activates myosin II by phosphorylating RLC downstream of Ca+2-calmodulin 

signaling. Rho-associated-coiled-coil-containing-kinase (ROCK) phosphorylates RLC as 

part of the Rho signaling pathway. Not only does ROCK directly phosphorylate RLC, it 

also inhibits protein phosphatase 1, a protein which dephosphorylates and deactivates 

RLC [40, 41, 43, 49]. In addition to MLCK and ROCK, citron kinase, leucine zipper 

interacting kinase, myotonic dystrophy kinase-related CDC42-binding kinase, and nearly 

a dozen others can phosphorylate RLC and activate myosin II [42, 53]. These activating 

kinases are regulated in different ways through calcium, growth factor, and mechanical 

signaling. They are also differentially located within the cell, for example MLCK is 

peripheral as compared to the more centrally located ROCK. The differential regulation 

and location of these kinases provides temporal and spatial control on myosin II activity 

in response to distinct stimuli [58]. Finally, protein kinase C phosphorylates RLC on Ser1, 

Ser2, and Thr9, which decreases myosin II activity [59]. Phosphorylation of the heavy 

chain in the C-terminal tail domain also regulates myosin II activation. This mechanism of 

regulation is less well defined than phosphorylation of the light chain, however it is thought 

to primarily function to negatively regulate filament assembly and binding to other proteins 

such as S100A4 [41, 42].  
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 Nonmuscle myosin II is vital for a number of cellular processes including cell 

division, cell migration, and cell adhesion [41, 42, 44, 60]. In cell division, myosin II is 

needed for contraction of the cleavage furrow during cytokinesis [60]. Given that mice 

lacking a single isoform are able to survive partially through gestation, the nonmuscle 

myosin II isoforms can likely play redundant roles in this cellular function. In cell migration, 

myosin IIA and IIB are required for migration during development and other normal 

physiological functions such as wound healing [30, 42, 43, 53]. This is especially true of 

the IIB isoform in neuron migration and the formation and stabilization of actin structures 

that are needed for synaptic plasticity and memory formation [61-63]. Myosin II is also 

involved in other types of cell migration, including leukocyte motility during inflammation 

[30, 41]. In cell-cell adhesions, which are important for barrier function in tissues, myosin 

is involved in the proper localization of adhesion complex members and adhesion 

maturation [30]. For example, myosin II contractility is necessary during cadherin-

mediated adhesion maturation [64]. Cadherins are transmembrane proteins that form 

complexes with cadherins on adjacent cells and are associated with catenins and the 

actin cytoskeleton on the intracellular domain. After forming initial cell-cell contacts, the 

actin cytoskeleton undergoes significant reorganization to expand the area of cell 

contacts and cluster cadherin molecules, a process known as compaction. Myosin II 

activity is necessary during this process [64, 65]. In integrin mediated adhesions to the 

matrix, myosin II is needed for adhesion maturation [41]. Integrins are transmembrane 

proteins that form heterodimers in the cell membrane, composed of one α subunit and 

one β subunit. Different combinations of the α and β subunits can have different ligands 

in the ECM as well as different downstream effectors [22]. Nascent focal adhesions form 
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when the transmembrane integrins bind their ligands in the ECM, such as fibronectin. 

This induces the recruitment of other members of the focal adhesion complex, which 

includes scaffolding proteins, cytoskeletal-binding proteins, kinases, and other enzymes. 

It has been shown that myosin II activity in cellular tension generation is involved in the 

phosphorylation of paxillin by focal adhesion kinase, which recruits vinculin to the nascent 

adhesions [37]. In addition, integrin signaling enhances myosin II activity through RhoA 

signaling [41].  

Given the involvement of myosin II in these cell processes, it is no surprise that 

defects in myosin II activity and regulation are involved in a myriad of human diseases 

[41, 42]. Mutations in the MYH9 gene, which encodes the nonmuscle myosin IIA isoform, 

are associated with several diseases which cause deafness, cataracts, nephritis, and 

thrombocytopenia [42]. A MYH9 chimeric transcript is associated with anaplastic large 

cell lymphoma [41, 42]. A de novo mutation, a mutation not inherited from a parent but 

spontaneously formed in a germ cell or the fertilized egg, in MYH10 is found in patients 

with brain malformations such as microcephaly and hydrocephalus. Altered expression 

levels of myosin IIB are also indirectly linked to myocardial infarction and scar tissue 

formation. Mutations in myosin II interacting proteins are also implicated in a number of 

diseases which result in asthma, seizures, dementia, and psychomotor disturbances [42]. 

Alterations in myosin II activity and regulation are also implicated in the progression of a 

variety of cancers. In esophageal cancer, overexpression of myosin IIA is associated with 

poor prognosis in patients [66]. In a retrospective study in lung cancer patients, an 

overabundance of myosin IIA was implicated as a prognostic factor for reduced overall 

survival [67]. A microRNA, Let-7f, was found to inhibit tumor invasion and metastasis in 
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human gastric cancer cell lines and tissues. Let-7f was found to directly bind to, and inhibit 

translation of, myosin IIA mRNA. Tissue samples from patients with metastatic disease 

had lower levels of Let-7f, which would effectively result in an increase of myosin IIA [68]. 

An in depth study in the expression levels of both the myosin IIA and IIB isoforms in a 

carcinogen induced murine hind leg tumor model found that tumor tissue had 25 fold more 

myosin IIA and 19 fold more IIB than adjacent normal tissue [69]. Finally, a network-based 

analysis of microRNAs found that miR-940 inhibits phosphorylation of myosin II. This 

inhibition resulted in reduced cell invasion. In human breast cancer tissues, miR-940 was 

consistently downregulated [70]. These studies suggest that myosin II has a role in caner 

progression and metastasis. However, it is critical that myosin’s role is more rigorously 

tested and that the involvement of the separate isoforms is made clear before we can 

truly understand how these proteins impact disease progression in solid tumors.  

Mechanotransduction in Development and Disease 

The ECM plays a significant role in tissue development and disease [29, 71-74]. This is 

dependent on the ability of cells to sense and respond to changes in the mechanical 

properties of the ECM, a process known as mechanosensing. Adhesions to the matrix 

and surrounding cells are important components in this cell process. Since myosin II is 

needed for integrin mediated adhesion maturation and cell force generation, it is hardly 

surprising that it has been proposed to play a vital role in mechanosensing of the matrix 

by cells [53]. Cells sense the stiffness of the ECM, which plays a role in controlling cellular 

stiffness, which in turn can influence ECM stiffness in a phenomenon known as 

mechanoreciprocity or tensional homeostasis [17, 19, 75].  Both mechanical and 

biochemical cues from the matrix regulate cell proliferation, determine cell fate, control 
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cell shape, and influence cell migration [29]. In development, the stiffness and elasticity 

of the ECM contribute to stem cell differentiation. This effect is dependent on myosin II 

activity in the stem cells [76]. Blocking stem cell mechanosensing by inhibiting myosin II 

activity increases stem cell viability and prevents ECM induced differentiation [77]. During 

mammary gland development, changes in β1 integrin expression levels controlled by 

hormone signaling alter how cells are anchored to the ECM [71]. Integrin signaling is a 

key player in stiffness sensing by cells, and therefore changes in the expression levels of 

these proteins can alter the tensional homeostasis by tissues [78]. Changes in the ECM 

and mechanosensing machinery of cells is associated with various diseases, including 

cancer. The stiffness of the ECM can be altered by increased deposition of matrix proteins 

such as collagen or fibronectin, alterations in cross-linking by enzymes like lysyl oxidase 

(LOX), or changes in the microarchitecture (how ECM proteins are physically organized 

and bundled) [79-81]. A stiffer ECM leads to integrin clustering, increased signaling 

through focal adhesions, and increased cell survival and proliferation; therefore, the 

biophysical properties of the ECM must be tightly controlled, and disruptions in ECM 

properties and tensional homeostasis are associated with a number of diseases, including 

many solid cancers [73].  

 Extracellular matrix changes, especially in stiffness, have a well-established role 

in breast cancer progression. The first sign of disease in many patients is the presence 

of a palpable lump in the breast [33]. This is due to increased cell density in the tumor, 

increased interstitial pressure, and increased ECM stiffness in the immediate tumor 

microenvironment [33]. In human patients, an extremely dense parenchymal pattern on 

a mammographic scan is a risk factor for developing breast cancer and is associated with 
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connective tissue hyperplasia [82]. This hyperplasia is likely due to not only an increased 

number of cells but increased collagen deposition [83]. An increase of collagen in the 

tumor microenvironment has been shown to promote tumor progression in mice. 

Provenzano, et al, used the MMTV-PyMT mouse model of breast cancer to study how 

changes in the local collagen matrix affect tumor formation and metastasis. The MMTV-

PyMT is a transgenic mouse model which spontaneously develop metastatic mammary 

tumors. Researchers inserted a second gene into these mice, making them bi-transgenic, 

to increase stromal collagen deposition in the mammary gland. These bi-transgenic 

animals had increased tumor formation and an increased incidence of lung metastasis 

compared to PyMT controls [84]. Several studies have shown that the matrix surrounding 

tumors exhibits consistent changes, called “tumor associated collagen signatures”, which 

contribute to disease progression [21, 84]. Using second harmonics generation (SHG) 

and scanning electron microscopy, these signatures have been studied and 

characterized. SHG is a form of multiphoton laser scanning microscopy (MPLSM) that 

allows direct imaging of certain cell/tissue elements, including collagen, that have a 

particular kind of symmetry without the need for fluorescent dyes or markers [85]. 

Provenzano, et al, used SHG to define three tumor associated collagen signatures based 

on imaging of intact normal mammary glands, mammary tumors, and tumor explants in 

3D collagen from mice [21]. These three collagen signatures are: 1) increased collagen 

surrounding the tumor; 2) taut collagen fibers stretched across the tumor; 3) and greater 

alignment of collagen fibers, especially oriented perpendicular to the tumor edge [21]. 

Presence of these signatures were strongly associated with poor patient prognosis and 

were a prognostic marker independent of tumor size, hormone receptor expression, and 
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HER2 expression [20]. This indicates that the spatial organization of collagen itself, in 

addition to the increased deposition of ECM proteins, promotes tumor progression.  

 While it is known that many breast tumors have increases in collagen and other 

ECM protein deposition, the exact origin of these proteins has not been definitively 

explained. The cancer cells themselves could be depositing collagen, the cancer cells 

could activate local stromal cells such as fibroblasts to increase collagen production, or it 

could be a combination of both [86]. This increased deposition of matrix proteins is 

referred to as desmoplasia, a fibrotic response to the neoplasia that results in an 

increased in type I and III collagens around the tumor [80]. Changes in the physical 

orientation of collagen fibers can also influence ECM stiffness. Bundled collagen and 

collagen fibers that have been organized in a linear fashion increase ECM stiffness [80]. 

A more rigid ECM increases the contractility of cells embedded in it, which stimulates cell 

proliferation and migration [19]. Cells measure matrix stiffness by exerting force on the 

matrix, much as a person determines the hardness of a surface by pressing on it. Since 

myosin II is a major component of the cell’s force machinery, it is probably required for 

this process. Changes in the ECM surrounding tumors influence cell behavior through 

cell-matrix adhesions containing integrins. Integrin signaling affects cell survival, 

proliferation, and migration, and dysregulation of this process can promote cancer 

progression [22, 87]. When integrins bind their ligand, they relieve the autoinhibition of 

focal adhesion kinase (FAK), leading to its activation. FAK then activates a variety of other 

proteins involved in focal adhesions, which are extremely complex structures composed 

of a large number of proteins [87]. After activation of FAK, myosin II contractility is needed 

to recruit and engage other proteins in the focal adhesion complex such as vinculin and 
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paxillin [37]. Myosin II contractility is also necessary for the axial localization of focal 

adhesion component proteins. This axial localization is important in focal adhesion 

stability and signaling and is dependent on matrix stiffness. Therefore, myosin II has a 

vital role in cell sensing of increased matrix protein deposition through integrin signaling 

[38]. Cell-matrix adhesions are important for cell survival. Cells lacking these adhesions 

undergo a specialized form of apoptosis known as anoikis. Surviving detachment, or 

being “anoikis resistant” is a hallmark of cancer cells [88]. Myosin II’s role in cell-matrix 

adhesions make it a possible regulator of anoikis. In fact, Ma et al. found that treating 

cells with the any of the myosin II inhibitors, blebbistatin, ML-7, or 2,3 butanedione 

monoxime, decreased anoikis [89]. It has been established in the literature that metastatic 

tumor cells are softer than their non-malignant counterparts. These softer cells are likely 

less contractile, unable to form mature adhesions, and therefore do not sense their 

detachment [90, 91].  

 Beyond its role in cell proliferation and migration, the matrix associated with a 

tumor can also influence signaling and the efficacy of chemotherapeutic agents. 

Transforming growth factor β1 (TGF-β1) is a cytokine that controls proliferation and is 

known to play a role in cancer, especially in its effect on stromal cells. TGF-β1 is secreted 

by cells and is sequestered in the ECM, where it remains in its latent form. The latent 

TGF-β1 is bound to the ECM component LTBP-1 through its latency-associated 

propeptide (LAP). Cell contractility through integrins causes a conformational change in 

LAP that releases TGF-β1 from the ECM. It has been shown that even the relatively low 

contractile forces generated by epithelial cells (as compared to the more highly contractile 

fibroblasts) are enough to activate latent TGF-β1 [92]. Recently, it has been discovered 
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that the latent TGF-β1 in the ECM can be “primed” for cell contractility mediated activation 

by ECM remodeling [93]. Klingberg, et al. pre-strained a cell-free ECM using a mechanical 

straining device and then seeded human dermal myofibroblasts onto these matrices. 

Seeding cells onto pre-strained matrices significantly increased the efficiency of TGF-β1 

release from the ECM [93]. Since TGF-β1 is known to be involved in cancer progression, 

this implies that the ECM remodeling that occurs during tumor development may 

encourage this signaling process. Collagen, a major component of the ECM in breast 

tissue, can affect the efficacy of the chemotherapeutic agent, doxorubicin. Doxorubicin is 

a DNA intercalating agent used to treat a variety of cancers. At doses sub-lethal to cells, 

it has an anti-migratory effect on cancer cells in vitro. However, when the cancer cells are 

embedded in a 3D collagen matrix, the same doses of doxorubicin have no effect on cell 

migration [94]. Matrix changes can also affect the efficacy of radiation therapy. In breast 

cancer cells embedded in collagen, radiation treatment induced expression of myosin IIA. 

This increase in myosin expression led to collagen reorganization that decreased the 

apoptosis of the cells exposed to lethal doses of radiation [95]. Finally, it has been shown 

that a stiffer matrix can protect cells from the effects of the microtubule stabilizing agent 

paclitaxel. [96]. It is unclear if the protective effects of the matrix are due to a direct effect 

on the cell or matrix sequestering of the drugs, much as the matrix sequesters TGF-β. If 

the effects of matrix organization on cancer cell resistance to doxorubicin, radiation, and 

paclitaxel effects hold true in human disease, then not only do changes in ECM promote 

cancer progression, they also protect the tumor cells from treatment.  

 The ECM can also act as a niche for cancer stem cells as well as metastatic cancer 

cells. The ECM has been shown to be involved in stem cell fate and differentiation. It is 
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also involved in maintenance of stemness in adult stem cells; that is, it enables cells to 

retain their ability to self-renew. It is thought that the ECM serves as a physical anchor for 

the stem cells that allows them to undergo asymmetric cell division, a trait that is important 

in self-renewal and differentiation. The ECM also provides biochemical and 

biomechanical cues in stem cell maintenance and differentiation [97]. It stands to reason 

that cancer stem cells, which share a variety of characteristics with adult stem cells and 

are capable of establishing a tumor, may also depend on the ECM for regulation of their 

proliferation and potential differentiation. Cancer stem cells are a debated topic. It is 

unknown if they are truly involved in every solid tumor, and if so, if they derive from de-

differentiation of the tumor cell of origin, or if the tumor itself results from abnormal stem 

cell expansion [97]. In either scenario, de-differentiation or population expansion, the 

ECM is likely to play a significant role. There is growing evidence that the ECM is also 

involved in the metastatic niche for cancer cells, as well as at the primary tumors. For 

instance, circulating breast cancer cells that express high levels of CD44, a receptor for 

hyaluronan, form metastatic tumors at a higher rate than cells expressing lower levels. 

Hyaluronan may promote survival of these metastatic cells [98]. Additionally, lysyl oxidase 

(LOX), an enzyme responsible for cross-linking fibrillar matrix proteins, is upregulated in 

metastatic sites. It is being produced either by the metastatic cancer cells themselves or 

activated fibroblasts and increases the stiffness of the ECM in the metastatic niche. The 

increased stiffness likely promotes cell proliferation and growth of the metastatic tumor 

[99]. There is evidence that cancer cells in the primary tumor or in circulation remotely 

signal for modification of the metastatic niche, probably by activating stromal cells local 

to the metastatic site [97].  
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 The ECM changes associated with cancer also contribute to tumor angiogenesis. 

Part of the angiogenic process can be activated through hypoxia signaling. Hypoxia 

induces tumor cells to express vascular endothelial growth factor (VEGF), which 

promotes recruitment of endothelial cells to the tumor [100]. Hypoxia can also regulate 

expression levels of LOX. The LOX induced increase in ECM cross-linking and stiffness 

promotes sprouting angiogenesis [101]. These biomechanical properties likely play a role 

in endothelial cell survival after recruitment to the tumor space by signaling through the 

cell mechanical machinery for increased cell proliferation [97]. In addition, other changes 

to the ECM are made throughout the process of angiogenesis. Typically, the basement 

membrane of existing blood vessels is broken down by matrix metalloproteinases before 

vascular branching can occur, and a new basement membrane laid after the process is 

complete [72, 97]. The ECM also plays a role in branching patterns during angiogenesis 

as well as in proper vessel formation [97].  

 The specific mechanisms by which altered ECM protein composition and 

mechanics affect cell function are still largely unknown, though they are beginning to be 

elucidated. For instance, it has been shown that a stiffer matrix can increase PI3K 

activation and signaling, which is involved in cell survival and migration. This occurs 

through increased vinculin association with talin and actin which causes changes in 

membrane topology. This leads to clustering of PIP3 at focal adhesions, the site of 

vinculin engagement, which enhances Akt activation. The association of vinculin with talin 

is dependent on the axial localization of these proteins, a process which needs myosin II 

activity [38]. As previously discussed, changes in matrix properties are likely sensed by 

cells through integrins [102]. In prostate cells, it has been shown that increased cellular 
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stiffness in response to a stiff 3D matrix is dependent on β1 integrins [19]. More recently, 

it has been postulated that different integrin heterodimers have different functions in 

mechanosensing, and that the α5β1 integrins anchor stress fibers that orient ROCK-

myosin II based traction forces [78]. It has also been suggested that the physical stress 

put on a cell by a stiffer ECM is physically transmitted to the nucleus through stress fibers. 

This process would depend on stress wave propagation through myosin II activity on the 

stress fibers from the periphery of the cell to the nuclear laminins [103]. Changes in ECM 

stiffness also influence filopodia dynamics in lung cancer cells, which are associated with 

cell migration. A stiffer matrix caused shorter filopodia with a faster retraction rate, and 

the alterations were myosin II activity dependent, as treatment with the general myosin II 

inhibitor blebbistatin blocked the matrix stiffness induced changes in dynamics [104].  

The rigidity of the ECM has also been shown to affect invadopodia dynamics. 

Invadopodia are actin structures that include matrix degrading enzymes and are 

associated with cancer cell migration and metastasis. Increased cell rigidity increased the 

activity and number of invadopodia in cells in a MLCK and myosin II dependent manner 

[105]. It is known that increased matrix stiffness induces cell proliferation through Rho-

GTPase signaling and cell contractility [35]. A soft matrix inhibits cell proliferation. 

Blocking cell actomyosin contractility blocks this effect, indicating that mechanosensing 

by cells is dependent on myosin II activity [106]. However, Yu et al, showed that cancer 

cell contraction of a collagen gel is independent of myosin light chain kinase (MLCK). 

Protein expression of MLCK was lower in cancer cells than normal cells, and inhibiting 

MLCK or ROCK had no effect on how these cells performed in a gel contraction assay. 

However, blebbistatin had a partial effect on these cells, indicating that myosin II is 
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needed for gel contraction, perhaps through activation by a kinase other than MLCK [107]. 

A basic theme running throughout the majority of papers discussing mechanotransduction 

is the activity of nonmuscle myosin II. However, few studies have investigated how 

individual myosin isoforms are involved in this process, instead focusing on general 

myosin II activity. It is thought that matrix stiffness regulates myosin kinetics as force 

transmitted through the cell stalls the myosin cycle, causing a longer interaction with actin 

[53]. Since it has been shown that the different myosin isoforms react differently to 

mechanical loads, it is likely that these isoforms have distinct roles in 

mechanotransduction [51]. Understanding how the different isoforms are involved in this 

process could give valuable insight into mechanotransduction and how this link between 

matrix stiffness and cancer progression could be targeted for treatment.   

Cancer Cell Migration and Metastasis 

An important step of the metastatic process occurs when cells leave the primary tumor 

and migrate through the surrounding ECM space until reaching a blood or lymphatic 

vessel. Cell migration is a multi-step process, and the general mechanisms have been 

well defined in two dimensional systems. Cell motility in 2D is a cycle of cytoskeletal 

dynamics and contractility in which cells extend a protrusion from the leading edge of the 

cell, create new adhesions to the substrate in front of the cell, undergo contractility which 

moves the bulk of the cell body forwards into the new cell footprint, and finally the 

adhesions between the cell rear and the substrate are broken down [108]. Myosin II is 

involved in this process, especially during the contractility that drives movement of the 

cell body forward. However, as with mechanotransduction, it is usually general myosin II 

activity, rather than the individual isoform function, that is tested [30, 53]. The two main 
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isoforms, A and B, seem to play different roles in cell spreading and migration [28, 36]. In 

MDA-MB-231 cells on 2D fibronectin substrates, both the IIA and IIB isoforms are 

recruited to areas of lamellar spreading. When the IIA isoform is selectively targeted using 

shRNA mediated knockdown, the cells actually spread more to cover a larger area, and 

their migration is impeded. When the IIB isoform is knocked down, however, cells spread 

at a slower rate than normal counterparts, and the cell migration is impeded [28].  

Furthermore, it has been shown that in 1D fibrillar migration assays, which is thought to 

model how cells in 3D matrices migrate along bundled collagen fibers, IIA is the main 

isoform involved, [36]. While two dimensional models have been quite useful in 

determining some of the general steps and molecular mechanisms involved in cell 

motility, the situation in human disease is more complicated. Within a human body, cells 

move in three dimensions and encounter an ECM composed of various proteins and with 

a complicated microarchitecture and topology. These factors have a large impact on how 

cells move and migrate in three dimensions, and therefore studying cells in 3D matrices 

is a better way to model cancer cell migration and metastasis.  

 While modeling cell migration in 3D is important for understanding human disease, 

it is also more complicated than 2D migration assays. The choice of matrix type, the matrix 

concentration, and a host of other factors impact how cells migrate in 3D [109]. In 3D, 

individual cancer cells move in one of two ways: proteolytic dependent migration or 

amoeboid cell migration.  Cancer cells are also capable of collective cell migration [23]. 

In proteolytic dependent migration, cells degrade the matrix using matrix 

metalloproteinases and then migrate through the tracks they have generated. After the 

ECM is broken down and a track has been at least partially generated, the cell contracts 
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to push the cell body forward and the cell rear loses focal adhesions and retracts. This 

resets the cell for another cycle and further forward motion. The molecular mechanisms 

in this mode of invasion are similar to that in 2D migration. The cells first send out actin 

based protrusive structures and then establish integrin mediated focal adhesions to the 

matrix. When cells undergo this mode of migration, they appear highly elongated within 

the matrix [24]. The other form of single cell migration in 3D matrices is known as 

amoeboid cell movement. This type of cell movement is independent of proteolytic matrix 

degradation, and more dependent on cell actomyosin contractility. Cells undergoing 

amoeboid cell movement have a more rounded cell appearance and squeeze through the 

existing pores in the matrix, rather than creating new tracks through matrix degradation. 

Cells move more quickly and persistently using this form of migration [110]. The final form 

of cancer cell migration seen in 3D matrices is collective migration. Cells using this 

method of migration move in either a sheet or a string of cells. The leading cell, or cells, 

forge a path through the matrix that the cells behind follow. This particular form of 

migration is seen more often in particular types of cancer, such as head and neck cancer 

[23, 111].  Which type of migration a cell undergoes is dependent on cell and matrix 

characteristics [23, 112, 113].  

 There has been significant debate in the literature about which type of 3D matrix 

is the best model for in vitro cancer cell migration [109, 114]. This is especially important 

since the matrix influences the mode of cell migration, and these modes use different 

cellular machinery. Sabeh et al [114] found that the degree of matrix cross-linking was a 

major determinant of the mode of cell migration. Cells in the derived basement membrane 

Matrigel or in pepsin extracted collagen showed the rounded, protease-independent, form 
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of cell migration [114]. The commonality between these two matrices is that neither is 

extensively cross-linked. During the extraction process, pepsin removes the telopeptides 

from the termini of the collagen protein. These non-helical telopeptides contain lysine 

residues that are the substrate for the cross-linking enzyme, lysyl oxidase. Lysyl oxidase 

modifies side chains on these lysine residues to generate aldehyde moieties. These 

moieties will spontaneously react with nearby modified lysine residues to form a Schiff 

base, creating the cross-linked collagen network [115-117]. This lack of cross-linking 

impacts how cells invade the collagen matrix. Specifically, cells migrate farther, in a 

shorter amount of time, in a matrix without cross-linking, and this migration is unaffected 

by treatment with matrix metalloprotease inhibitors [114]. When collagen is extracted in 

acid the lysine containing telopeptides necessary for lysyl oxidase mediated collagen 

cross-linking remain intact. The acidic conditions reverse Schiff base reactions, 

preventing cross-linking until the collagen solution is brought to a more physiological pH 

[114]. Cells embedded in acid extracted, and therefore cross-linked, collagen exhibit 

matrix metalloprotease dependent migration. The influence of matrix architecture, 

specifically pore size, on cell migration is further supported by studies showing that cells 

in a physically constrained environment spontaneously migrate, with high persistence and 

in some cases high speeds [118].  

 Beyond pore size and cross-linking, other matrix characteristics, such as stiffness, 

influence cell migration [109]. In a process known as durotaxis, cells will migrate from a 

pliant matrix to a stiffer matrix [119]. This effect is likely due to a number of influences of 

the matrix on the cells. For example, the matrix supplies a scaffold for the cells to use 

while they migrate [21, 34, 84]. The force the matrix exerts on the cells also promotes 
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invasive behavior through the focal adhesion protein vinculin. The involvement of vinculin 

in cell invasion and migration is supported by previous studies showing that fibroblasts 

lacking vinculin move much slower in 3D matrices than wildtype fibroblasts [32]. Mature 

focal adhesions are needed for cells to generate traction forces as they pull against the 

matrix. These traction forces are needed for cells to propel or pull themselves forward as 

they migrate through the matrix [120, 121]. The influence of matrix characteristics on cell 

motility is also dependent on the cells used. Cell lines that have been transformed or are 

highly motile are more likely to respond to matrix changes, and in a more pronounced 

manner, than non-malignant or non-metastatic cells lines [113, 122]. Given the influence 

of the matrix on how cells migrate and the cellular machinery the cells use, it is important 

to consider this when choosing a migration model to investigate the molecular 

mechanisms of cell migration.  

 Understanding cancer cell migration and metastasis is made complicated by the 

fact that different cancer types use different mechanisms. These mechanisms can even 

differ between cell lines of the same cancer type. The different subtypes of breast cancer 

have different modes and mechanisms of interaction with the microenvironment, invasion, 

and migration [96]. These differences can be partially explained by the fact that myosin II 

isoforms are differentially expressed in breast cancer cell lines of different subtypes. 

Luminal type cell lines express the A and C isoforms of nonmuscle myosin II, but very 

little of the IIB isoform. However, basal subtypes, specifically cell lines of the basal B 

subtype, express IIA and IIB but very little of the IIC isoform. It is thought that this switch 

in isoform expression patterns is a downstream effect of TGF-β1 induced epithelial-

mesenchymal transition. Further, for the basal type cell lines expressing the IIB isoform, 
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loss of myosin IIB inhibited cell invasion and transmigration in a transwell assay [123]. 

These differences illustrate the importance of continued investigation into the 

mechanisms of cancer cell migration.   

 Due to its complexity and multi-step nature, studying the metastatic process in vitro 

can only be done by investigating each step of the process individually. Initial stages of 

tumor cell dissemination can be approximated in 3D migration and invasion models [34, 

111]. Tumor cells crossing the blood vessel wall can be partially studied using 

transmigration assays where tumor cells cross an endothelial cell monolayer [124-126]. 

Travel through the bloodstream is more difficult to study, though some labs have had 

success using microfluidic devices that apply shear stress to the tumor cells using a 

constant flow rate of media through the device [127]. In order to study the full metastatic 

process, however, in vivo models are necessary. In animal models of breast cancer, there 

are two main metastasis xenograft models: orthotopic injection of cells into the mammary 

fat pad and tail vein injection. These two approaches have distinct advantages and 

disadvantages. The orthotopic injection model puts the cancer cells into an environment 

that resembles their physiological one. It also allows for the fuller study of tumorigenesis 

and metastasis, since cancer cells must go through all the steps of initiating a primary 

tumor and metastasis before detection at secondary sites. However, if cells fail to initiate 

a primary tumor, or the primary tumor grows slowly, metastases may never form and it 

can be difficult to elucidate where in the metastatic process the cells fail to progress. 

Finally, this model can take several months before metastasis occurs [128, 129]. The tail 

vein injection model is generally much quicker than the mammary fat pad injection model; 

typically taking just a few weeks before lung metastases are detected and/or animals 
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must be euthanized. However, since the cells are injected directly into the bloodstream, 

this model only measures the ability of the cells to survive in the bloodstream and a 

secondary organ. The site of metastatic growth depends on where in the bloodstream the 

cells are injected. The tail vein is common, however it is possible to inject the cells into 

the heart, spleen, or other organs. The cells will become trapped in the next organ in the 

circulation pathway with a small capillary bed. For injections into the tail vein, this organ 

is the lungs [128]. Intracardiac injection results in bone metastases, while intrasplenic 

injection results in liver metastases. These models are used to study how changes to cells 

affect metastasis to these specific organs [130]. Because of the limitations of both the 

mammary fat pad and tail vein injection models, many investigators use the two methods 

in conjunction in an attempt to generate a more detailed and well-rounded picture of how 

metastasis is affected by their protein or signaling pathway of choice. Peter Friedl and 

others have pioneered the use of an in vivo imaging system that allows for the tracking of 

metastatic cells as they leave the primary tumor. Using two-photon microscopy and 

second harmonics generation imaging, cancer cells are tracked in real time as they 

metastasize and their interactions with the microenvironment can be investigated [23, 

131]. This method allows a more detailed study of the mechanisms of cell metastasis, 

though the method limits the injection site for the primary tumor due to imaging depth 

limits of two-photon microscopy.  

While many animal studies have been performed investigating the role of various 

proteins that affect nonmuscle myosin II activity, no animal studies to date have been 

performed directly investigating how the myosin II status of the cells affects tumor 

formation and metastasis in animal models of breast cancer. In vitro studies indicate that 
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myosin II is likely to be involved at a number of steps in the metastatic process, including 

initial tumorigenesis, matrix organization by the tumor cells, invasion, and migration. In 

these in vitro studies, general myosin II activity is investigated while the potentially 

separate roles of the isoforms are ignored. Investigating how this protein contributes to 

the cellular processes involved in this disease may give insight into the potential of myosin 

II or its regulators as therapeutic targets.  

Endothelial Cells and Barrier Function 

Endothelial cells line blood and lymphatic vessel walls, and play an important role in a 

number of physiological functions. They form the barrier between the bloodstream and 

tissues, and tightly control the passage of molecules and cells into and out of the 

bloodstream. This property of endothelial cells, the barrier function, is vital and is highly 

regulated. Changes in the barrier function of endothelial cells is involved in several 

disease states and can lead to physical problems such as edema, improper nutrient flow, 

and inflammation [132, 133]. A lower barrier function may also play a role in tumor 

metastasis [13, 25, 125, 126, 134]. The blood vessels that form as a result of 

angiogenesis within a tumor often have a decreased barrier function, which may make it 

easier for tumor cells to cross this physical barrier to entering the bloodstream [11, 100, 

135]. In fact, newly developed drugs, especially those using nanoparticles, are designed 

to exploit this leaky vasculature. Solid tumors have an enhanced permeability and 

retention effect; nanoparticle based drugs easily enter the tumor through the abnormal 

vasculature and the high interstitial pressure prevents the drugs from leaving. This causes 

the drugs to accumulate in the tumor, without specific targeting to the tumor [134]. Even 

in normal blood vessels with an intact endothelial layer, signaling between the tumor cell 
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and the endothelial cells may induce a temporary increase in permeability, allowing the 

tumor cells to more easily cross the blood vessel wall [125, 135]. Investigating how tumor 

cells exploit the weakness of the blood vessels, or use signaling machinery to ease their 

passage, may provide future treatment options to block this stage of metastasis.  

Barrier function and monolayer permeability is dependent on interendothelial cell 

junctions. These junctions include adherens junctions and tight junctions [133]. Tight 

junctions (TJ) are composed of transmembrane occludins and claudins, as well as various 

intracellular proteins. TJs provide apical-basolateral polarity in endothelial cells by 

preventing the movement of transmembrane proteins. TJs also tightly control passage of 

ions, solutes, and other molecules between the endothelial cells [136].  Adherens 

junctions (AJ) contain cadherins, transmembrane proteins that form dimers with 

cadherins molecules on adjacent cells. AJs are linked to the actin cytoskeleton through 

catenins, which interact with the cytoplasmic domain of cadherin proteins. VE-cadherin is 

especially important in the barrier function of endothelial cells [132]. VE-cadherin interacts 

with contractile actin stress fibers through catenin proteins. When these stress fibers 

contract and pull the cadherin molecule away from its binding partner on an adjacent cell, 

the VE-cadherin is internalized. The stress fiber contractility is MLCK dependent [133]. 

This process is speculated to be responsible for TGF-β1 induced vascular permeability, 

since blocking MLCK activity during TGF-β1 treatments prevents the loss of barrier 

function. It is thought that TGF-β1 activates MLCK to stimulate contraction, which leads 

to adherens junction disassembly [137]. This same mechanism is involved in thrombin 

induced decreases in barrier function: thrombin activates MLCK, inducing myosin 

contractility, disruptions to adherens junctions, and gaps in the endothelial monolayer 
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[138, 139]. Additionally, Krüppel-Like Factor-2 (KLF-2) regulates endothelial barrier 

function by inhibiting phosphorylation of MLC, preventing cell contraction. The exact 

mechanism of KLF-2 control of MLC phosphorylation is not known, though it may regulate 

expression of MLC-phosphatase [140]. Finally, during leukocyte diapedesis, leukocyte 

interaction with the endothelium stimulates an increase in free intracellular calcium in the 

endothelial cells. Calcium activates MLCK, which phosphorylates MLC and activates 

myosin II. This myosin II contractility weakens the endothelial barrier function, allowing 

the leukocytes to exit the bloodstream into the surrounding infected or damaged tissue 

[141]. These mechanisms all converge on MLC activation and myosin II dependent cell 

contractility. Cancer cells may use a similar mechanism during metastasis, and 

understanding how cancer cells influence endothelial contractility could provide valuable 

insight into potential treatment options. 

The endothelial cells have been assumed to play a passive role in transmigration. 

However, more recent studies have shown that the endothelial cells may contribute to 

tumor cell transmigration [126]. Previous studies show that tumor cells can cause a 

breakdown in barrier function through several mechanisms, including decreasing the 

barrier function of the endothelial monolayer, inducing apoptosis of endothelial cells, and 

decreasing the endothelial cell stiffness [124-126]. There are two possible routes for a 

cell to take across an endothelial monolayer: between the endothelial cells (paracellular) 

or through the endothelial cells themselves (transcellular). Breast cancer cells have been 

shown to utilize both mechanisms. During transcellular transmigration, there is a high 

level of MLC phosphorylation near the point of entry for the tumor cell, referred to as the 

invasion array. This specialized cell architecture may provide the structural support the 
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endothelial cells need to dissipate the radial compressive force exerted by the invading 

tumor cell [142]. There are several possible mechanisms for myosin II involvement in 

paracellular tumor cell transmigration. Tumor cells may decrease myosin II activation in 

endothelial cells. The resulting decreased contractility of the cells makes the monolayer 

more compliant, and an easier barrier for the tumor cells to cross.   Tumor cells may 

increase myosin II activation in endothelial cells, which would have a similar effect to 

thrombin treatment in that it would lead to a disruption of barrier function through the 

breakdown of adherens junctions. Finally, tumor cells may signal for myosin II activation 

in the formation of the transcellular invasion array. Live cell microscopy of the 

transmigration process can distinguish between the latter two mechanisms. The 

transcellular invasion array is a contractile actin ring surrounding the invasion pore as the 

tumor cell invades the endothelial cell and is a significant disruption in endothelial cell 

morphology. Different cancer types may use different mechanisms of endothelial 

transmigration. In fact, different subpopulations of the same tumor may use different 

mechanisms. Given these possibilities, the exact role of cell contractility and myosin II 

activity in tumor cells as well as the endothelial cells has yet to be determined.  

Myosin II in Cancer Cell Processes 

Myosin II isoforms likely play a role in a number of cancer cell processes, from cell 

growth and proliferation to cell-matrix interactions to metastasis. However, the roles of 

the specific isoforms in these process is often undetermined, with studies concentrating 

on global myosin II behavior using general inhibitors such as blebbistatin. The individual 

myosin II isoforms have redundant and non-redundant roles in cell processes and 

development. Investigating how the isoforms are differentially involved in cancer may 
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provide a starting point for understanding the complex signaling pathways involved in cell 

contractility regulation. In addition, these proteins have differential localization, regulation, 

and protein interactions that could be exploited. Understanding how the individual 

isoforms are involved may provide valuable insight in the development of new therapeutic 

agents targeted to myosin itself or its regulatory molecules.  
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Figure Legends 

Figure 1. General Steps of Cancer Metastasis. Cancer cells in a primary tumor invade 

the local stromal environment and migrate through the surrounding matrix towards blood 

or lymphatic vessels. The cells must then cross the vessel wall and enter the bloodstream. 

Once the tumor cells have reached a secondary site, they exit the bloodstream. Cancer 

cells can undergo apoptosis, enter a dormant state, or proliferate to form a secondary 

tumor at the site of metastasis.  

Reymond N, d'Agua BB, Ridley AJ. Crossing the endothelial barrier during metastasis.  

Nat Rev Cancer. 13. England2013. p. 858-70 (modified).  

Figure 2. Domain Structure and Regulation of Myosin II Activity and Filament 

Assembly.  Nonmuscle myosin II is a hexamer formed of a pair of heavy chains that 

interact through coiled coil domains, and two pairs of light chains. Each heavy chain 

contains a globular head domain that interacts with actin and contains ATPase activity. 

Unphosphorylated myosin II head and tail domains interact to form a compact structure 

that cannot interact with other myosin molecules. When the regulatory light chain is 

phosphorylated, the molecule unfolds and associates with other myosin molecules to form 

bipolar thick filaments that interact with actin to generate cell contractility. Phosphorylation 

of the heavy chain prevents filament assembly.  

Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes 

centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10(11):778-90 

(modified).  
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Abstract  

The role of a stiffening extra-cellular matrix (ECM) in cancer progression is documented 

but poorly understood. Here we use a novel conditioning protocol to test the role of 

nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen 

constructs seeded with breast cancer cells expressing a shRNA targeted to either the IIA 

or IIB heavy chain isoform. While there are several methods available to measure 

changes in the biophysical characteristics of the ECM, we wanted to use a method which 

allows for the measurement of global stiffness changes as well as a dynamic response 

from the sample over time. The stretch conditioning protocol used allows the direct 

measurement of ECM stiffness. Using various treatments, it is possible to determine the 

contribution of various construct and cellular components to the overall construct 

stiffness. Using this assay, we show that both the IIA and IIB heavy chain isoforms are 

necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of 

either isoform changes the stiffness of the collagen constructs as measured using our 

conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 

Pascals (Pa), parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while 

IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also 

calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of 

either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the 

stiffness of the cell-altered collagen matrices. Finally, we measured the migration ability 

of these cells in a 3D model. Loss of myosin IIB causes a 50% reduction in migratory 

speed while loss of IIA results in a 25 % reduction compared to parental controls.  Track 

displacement and track total length were also altered in IIA and IIB KD cell lines. These 
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results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in 

matrix remodeling and cell migration.  
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INTRODUCTION 

Breast cancer is a widespread disease that remains a leading cause of death in 

the US, despite public education and research initiatives in recent years. With 232,340 

new cases of invasive disease estimated in 2013, and 39,620 expected deaths, breast 

cancer is the second leading cause of cancer related deaths in women [1]. An initial sign 

of breast cancer is the presence of a palpable lump in the breast [2]. This lump, or 

stiffening of the breast tissue, corresponds to up to a ten-fold increase in the rigidity of the 

extracellular matrix (ECM) of the tissue [3]. The majority of cancer-related deaths result 

from metastatic disease in such vital organs as the lungs, liver or brain [4].  Metastasis is 

a multi-step process that allows tumor cells to break off from the primary tumor and 

colonize distant sites in the body. Briefly, cells leave the primary tumor, invade into and 

migrate through local normal tissues before intravasating into nearby blood vessels or 

lymphatic vessels and traveling to distant sites. The cells then extravasate from the blood 

or lymph vessels and colonize the secondary site [5]. Changes to cell and/or tissue 

mechanics, such as the increased rigidity of the breast during cancer tumorigenesis, may 

have an influence on cell signaling, proliferation, invasion, migration, and metastasis [2, 

6-8], and can therefore have a vast impact on how cancer is diagnosed and treated. 

Tissues maintain a balance of overall stiffness by a phenomenon known as 

mechanoreciprocity. This involves a feedback loop between the cells and their 

surrounding matrix to maintain a particular rigidity [2, 9, 10]. In some diseases, including 

many solid cancers, this homeostasis is lost and promotes disease progression [2, 11]. 

This loss of homeostasis can be the result of changes in ECM content and cross-linking 

[3, 12], as well as the increased cell pressure caused by the high cell density within a 
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growing tumor [6, 13]. In fact, these two facets of tissue stiffness can feed into each other. 

Tumor cells excrete factors that activate stromal cells, including fibroblasts, inducing them 

to deposit ECM components and secrete crosslinking factors such as lysyl oxidase. The 

resultant increased matrix rigidity in turn stimulates cell proliferation, which increases 

tumor cell density and pressure [2, 6, 7, 9, 13]. During the latter stages of disease 

progression, ECM stiffness and reorganization influences cancer invasion and metastasis 

[2, 6, 8, 12, 14-16]. Breaking the link between increasing ECM stiffness and cell 

proliferation and invasion could be a powerful therapeutic target, especially considering 

that the increased matrix stiffness can alter the efficiency of chemotherapeutic agents 

[17]. This interplay between matrix rigidity and cell signaling and growth is dependent on 

mechanosensing in the cells, a process which requires the force generation power of 

nonmuscle myosin II as part of the transmission and response to the force signal from 

focal adhesions and integrins at the cell surface [18-22]. 

Changes in ECM stiffness influence cell migration and metastasis as well as tumor 

growth. Specific alterations in the surrounding matrix, especially physical arrangement of 

collagen fibers, promote cell migration [12]. Cell migration plays a central role in cancer 

metastasis and has been of great interest in the literature. Myosin II is involved in a 

number of forms of cell motility, including leukocyte migration during the inflammatory 

response and growth cone-steering in neurite migration [14, 18, 23-30]. Given myosin II’s 

role in the migration of these other cell types, it likely plays a role in the migration of tumor 

cells as well. The viscoelastic properties of a cell could also have a significant impact on 

a cell’s ability to migrate and metastasize, and are influenced by matrix stiffness changes 

[10, 31]. The deformability of cells influences how cells migrate through the matrix and 
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whether they can squeeze through the pores already existing in the matrix or must resort 

to proteolytic mechanisms [31, 32]. Cell elasticity also impacts later stages in the 

metastatic process: specifically, how cells travel through the bloodstream. As metastatic 

cells flow through the circulatory system, they can become trapped in small capillary beds. 

Cancer cells are larger than red blood cells, and are more likely to become trapped in the 

capillary beds of organs such as the lungs [33]. Red blood cells are able to traverse 

capillary beds due to their elasticity and deformability [34]. A more deformable cell may 

be able to metastasize to different sites in the body, while a less deformable cell may 

become trapped earlier in the circulation, yielding different metastatic profiles for cells 

with varying elastic properties. Once a circulating tumor cell is trapped, it either 

extravasates from the vessel or proliferates within the vessel [35]. Myosin II contractility 

is necessary for cell stiffness, and changes in the myosin II isoform expression of cells 

may affect their viscoelastic properties, migration potential, and metastasis [21, 36-40]. 

There are three isoforms of nonmuscle myosin II: A, B, and C. Nonmuscle myosin 

II functions as a hexamer with a pair of heavy chains and two pairs of light chains, 

regulatory and essential. It is an ATPase capable of converting chemical energy into 

mechanical work, which is integral to its role in mechanosensing [18, 41]. In addition to 

its role in mechanotransduction, it has also been shown to be involved in cytokinesis and 

other cellular processes [42-44]. Force generation is also needed in order for cells to 

reorganize their surrounding matrix, which contributes to mechanical homeostasis [2, 6, 

9]. Finally, myosin contractility is needed for multiple types of cell migration, including 

lymphocyte invasion, neuron migration during development, and tumor cell migration [14, 

23, 26, 45-50]. While we know that myosin II is involved in these processes, limited 
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research has been done looking into the specific involvement of this motor protein in 

cancer progression. It has been shown that upregulation or overactivation of myosin IIA 

is associated with poor prognosis in esophageal [51] and lung cancer [52]. Additionally, 

in gastric cancer, a decrease in expression of Let-7f, a microRNA that directly binds the 

3’UTR of the myosin IIA gene, is associated with an increase in myosin IIA expression 

and the invasive potential of gastric cancer cells [53]. Finally, tumor tissue in a carcinogen 

induced murine hind limb model of cancer has increased levels of both myosin IIA and 

IIB compared to tumor associated normal tissue [54]. Given these changes in myosin II 

regulation in various cancers, and its role in mechanoreciprocity, it could be a strong 

potential target to break the ECM stiffness/cancer progression feedback loop.  

  To investigate the role of nonmuscle myosin II isoforms in tumor cell driven 

remodeling of the ECM, we generated stable myosin IIA and IIB knockdown (KD) MDA-

MB-231 cell lines. The morphology was characterized in both two- and three- dimensional 

culture model systems. We then tested the cell lines for their ability to remodel and 

constrict a 3D collagen matrix. Complementing the gel compression measurements, we 

used mechanical testing protocols to measure the stiffness and elasticity of cell populated 

collagen matrices. This assay allows the direct measurement of biophysical 

characteristics of the matrix and is similar that used by Wakatsuki, et al [40]. Here we 

show that loss of myosin IIA blocks the ability of the cells to compress a matrix and results 

in a matrix with decreased stiffness compared to parental or IIB KD modified matrices. 

The IIB KD cells are able to compress the collagen gels, but the collagen constructs 

containing these cells have a different elastic modulus profile than parental cells, 

indicating that the changes they make to the collagen matrix are not the same as those 
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made by the parental cells. The viscoelastic properties of cells influences their migration 

capabilities, therefore we measured cell stiffness directly using cell poking [2, 16, 55, 56]. 

To investigate the roles of the myosin II isoforms, A and B, in cancer cell migration, we 

developed a 3D model system using a “mini-tumor” approach. Here we show that loss of 

either the IIA or the IIB isoform has a distinct effect on the migration patterns of the cells. 

These results indicate that nonmuscle myosin II is involved in matrix remodeling and 

mechanical homeostasis, making it a potential therapeutic target for blocking the effects 

of matrix stiffness on tumor proliferation and progression. 

Materials and Methods 

Cell culture  

MDA-MB-231 (ATCC, HT-B26) cells were grown and maintained in Minimal Essential 

Media (MEM) supplemented with 10% FCS, 100 U/ml penicillin, and 100 µg/ml 

streptomycin (media components were purchased from Sigma Aldrich) in a 37oC 

humidified 5% CO2 tissue culture incubator.  

Generation of Myosin II Knockdown Cell Lines 

Lentiviruses were produced in 293T/17 cells as outlined by Tiscornia, et al. [57] using 2nd 

generation transfer plasmids. Myosin IIA Heavy Chain shRNAs (Cat # RHS4533) and IIB 

Heavy Chain shRNAs (Cat # RHS4531) were obtained from Openbiosystems (Waltham, 

MA, USA). After screening all clones, myosin IIA shRNA clone #29467 and myosin IIB 

shRNA clone #123076 were determined to be isoform specific and produce the most 

efficient myosin II knockdown. These clones were used in all experiments. For viral 

infections, MDA-MB-231 cells were seeded at a density of 4X105 cells and allowed to 

adhere and spread overnight. Two mL of viral stock was added to each culture and virus 
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incubated with cells for 72 hours. Cultures were washed with MEM+10% FCS and allowed 

to recover for 1 day. For selection and maintenance of MDA-MB-231 cell lines, cultures 

were fed with MEM+10%FCS containing 5 μg/mL puromycin (Sigma Aldrich). Myosin IIA 

and IIB KD was verified using Western Blot analysis.  

Immunofluorescence staining  

For indirect immunofluorescence staining, MDA-MB-231 control (parental) and MDA-MB-

231 myosin II KD cells were fixed and stained for actin and myosin II as described 

previously [58]. Cells were labeled with affinity-purified rabbit anti-myosin heavy chain IIA 

or IIB antibody (final dilution 1:1000) as well as TRITC-phalloidin (Sigma-Aldrich, St. 

Louis, MO, USA Cat # P1951). Alexa 488 goat α-rabbbit secondary antibody (Invitrogen, 

Grand Island, NY, USA Cat # A11070) was used at a final dilution of 1:1000. MDA-MB-

231 cells were mounted in 90% glycerol/10% PBS containing 0.1 M n-propyl gallate 

(Sigma-Aldrich, St. Louis, MO, USA Cat # P3130). Imaging was performed using a Zeiss 

LSM 510 confocal microscope. A Plan-Apochromat 63x/1.40 Oil DIC M27 objective was 

used and composite images were constructed from 0.3-μm optical sections. To quantify 

the fluorescent staining, cells were stained as outlined above, and imaged using a ZEISS 

Axiovert 40 CFL microscope with a LD A-Plan 20X objective. Quantification was 

performed using Image J software on at least 25 cells per experiment, across three 

experiments.  

3D Morphology  

Methods for pouring collagen gels were performed as described in detail previously [58, 

59]. Collagen gels were made by suspending 1x106 cells/ml of MDA-MB-231 controls 

(parental) or MDA-MB-231 myosin IIA or myosin IIB KD in a collagen/MEM solution 
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containing 1.0 mg/ml Type I rat tail collagen. Collagen/cell suspension (1 ml) was poured 

into Teflon casting molds with a central mandrel and transferred to a 37°C incubator for 

1 hour to initiate collagen polymerization. The collagen gel forms (3 mm thick, 3 cm 

diameter) between the inner wall of the Teflon cylinder and the central mandrel giving rise 

to a collagen/cell matrix in the shape of a ring (henceforth referred to as a construct). 

Teflon casting molds were then filled with MEM-10% FCS and incubated for 4 days in a 

humidified incubator at 37°C with 5% CO2. At the appropriate time, collagen gels were 

removed from the molds, fixed, permeabilized and stained as described for 2D 

immunofluorescence. Pieces of the collagen gels were cut and processed for staining 

with TRITC-Phalloidin and affinity purified myosin IIA or IIB antibodies as described 

above. Alexa 488 goat α-rabbbit secondary antibody was used at a final dilution of 1:1000. 

Prior to being mounted, gel pieces were soaked overnight in 9:1 glycerol:PBS containing 

0.1 M n-propyl gallate. Multi-Photon Laser Scanning Microscopy (MPLSM) was used to 

image stained constructs for gel compression studies. For 3D cell morphology, a Zeiss 

LSM 510 was used with an EC Plan-Neofluar 40x/1.30 Oil DIC M27 objective. Composite 

micrographs were constructed from 0.5-μm optical sections. Analysis of cell morphology 

was performed using IMARIS image analysis software (Version 8.0 Bitplane, Zurich, 

CHE). The Filaments function was used to measure the average number of cell 

protrusions. To calculate the sphericity of the cell bodies, the Surfaces function was used. 

Surfaces contours were manually drawn and the sphericity calculated by the software. 

Sphericity compares the surface area of the object, in this case a cell body, to the surface 

area of a sphere of the same volume. If the object is a perfect sphere, the sphericity would 

be 1. Elongation factor was calculated using the measurements function in IMARIS. We 
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defined elongation factor as the longest dimension of the object, the cell body, divided by 

the shortest. The more elongated the cell body, the higher the elongation factor. These 

morphology characteristics were measured on cells across three separate experiments, 

with more than 18 cells for each cell type analyzed per experiment. One-way analysis of 

variance (ANOVA) with a Tukey post-test was performed in GraphPad Prism (GraphPad 

Software, Inc., La Jolla, CA, USA) to determine the statistical significance of the 

differences seen. 

Gel Compression 

Collagen gel constructs were poured as described above. While in culture, cells organize 

and compress the collagen, reducing its volume approximately 2 to 5 fold. For gel 

compression studies (gel thickness), collagen gels were washed with PBS, fixed and 

removed from Teflon molds after 1 or 4 days of incubation. These time points were chosen 

to allow the cells sufficient time to compress the matrix. Allowing the gels to incubate for 

longer periods of time (past one week) does not result in enhanced matrix compression, 

and the cells within the construct begin to die. The collagen/cell matrix, which is in the 

shape of a ring, was cut open and three random non-adjacent pieces of the collagen gel 

cut from each MDA-MB-231 construct, stained with TRITC-Phalloidin and Hoescht 33258 

dye (Sigma-Aldrich, St. Louis, MO, USA Cat # 861405), and mounted as outlined above. 

To determine the thickness of gels cast with only collagen, 40 µl of 1 µm fluorescent 

beads (Polysciences, Warrington, PA, Cat# 24062) were added to the collagen/MEM 

solution prior to pouring constructs. Multi-Photon Laser Scanning Microscopy (MPLSM) 

was used to measure the full thickness of all collagen constructs. For all experimental 

conditions, constructs were poured in duplicate and a minimum of five measurements 
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were taken from each piece, for a total of 30 measurements per cell type per experiment. 

The data shown are averaged from three separate experiments. Construct thickness was 

compared between gels cast from collagen alone, parental and KD MDA-MB-231 cell 

lines. For experiments using blebbistatin to inhibit myosin II, constructs were fed daily 

with MEM+10% FCS containing 50 µM blebbistatin ((S)-(-)-blebbistatin, Toronto 

Research Chemicals) and fixed at 1 and 4 days. Constructs were then processed and 

measured as described above. Statistical significance was calculated in GraphPad Prism 

6 using one-way ANOVA and a Tukey post-test. 

Isometric Tension and Mechanical Measurements 

Constructs were poured as described above. After 4 days of incubation, the central 

mandrel was removed from the Teflon casting mold and the MDA-MB-231 populated 

construct gently removed from the mandrel before being looped over a triangular hook 

connected to an isometric force transducer (Harvard Apparatus model 52-9545, South 

Natick MA) as described previously [58, 59]. The ring is then looped over a horizontal bar 

which is connected to a stepper motor controlled by a micro-stepping driver as initially 

described by Kolodney and Wysolmerski [60]. The apparatus used in this study, is very 

similar to that used by Wakatsuki et al [40], which includes a schematic of the apparatus 

and construct pouring method. The collagen gels were placed in a 50 ml thermo-regulated 

Organ Bath (Harvard Apparatus, Holliston, MA, USA Cat# 760165) containing 20 mM 

Hepes-buffered MEM/0.4% bovine serum albumin (Sigma Aldrich). Organ baths were 

maintained at 37ºC for the duration of experiments. The triangular hook and stationary 

horizontal bar over which the construct was looped were set to hold the collagen ring at 

its original length of 15 mm, which corresponds to half the circumference of the central 
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mandrel. This configuration allows us to apply a defined stretch over a specific time period 

and to relax the constructs to their original length at the same rate. For mechanical 

measurements, constructs were hung and allowed to establish a stable basal force. After 

establishing a basal force, constructs were stretched to 10% strain (1.5 mm) at a rate of 

0.5 mm/min, and immediately relaxed to their original length at the same rate. After this 

initial stretch, constructs were allowed to recover for at least 60 min, or until a stable basal 

line tension developed. 2 μM cytochalasin D was added to the organ bath to depolymerize 

MDA-MB-231 actin filaments and abolish basal tension. After basal line tension was 

eliminated (~ 45 minutes) constructs were then subjected to another 10% strain (1.5 mm) 

at a rate of 0.5 mm/min, and immediately relaxed to their original length at the same rate. 

Constructs were allowed to recover for 1 hour before being removed from the apparatus. 

Recovery was included in the mechanical testing for thoroughness as failure in long-term 

elastic recovery could indicate changes in the properties of the samples not measured by 

the elastic modulus calculations; alterations in long-term recovery of the samples tested 

here were not seen. After being removed from the apparatus, samples were snap frozen 

for determining DNA and myosin II isoform content. This protocol allowed us to determine 

how MDA-MB-231 cells actively changed the mechanical properties of the collagen matrix 

after 4 days in culture. It also allows for determination of how elimination of the active 

actin contractile cytoskeletal contribution alters construct stiffness. To determine the 

stiffness of the cell altered collagen matrix alone, MDA-MB-231 collagen gels were 

treated with deoxycholate and subjected to a stretching protocol. This treatment also 

allows us to determine if other cell components besides the actin contractile cytoskeleton, 

such as microtubule networks or cell-matrix attachments, contribute to the overall 
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construct stiffness. For deoxycholate experiments, a separate set of constructs, cast on 

the same day and with the same collagen solution as the initial and cytochalasin D treated 

constructs, were hung on the apparatus and subjected to the initial stretching protocol 

outlined above. After 45 min recovery, deoxycholate was added to the organ bath at a 

final concentration of 0.5% and constructs incubated in the presence of the detergent for 

an additional 60 min before being subjected to another 10% strain. For all experiments, 

constructs were hung in duplicate for each treatment type. During each stretching 

protocol, isometric tension generated by constructs was recorded every second at 5Hz 

for the duration of an experiment. At the end of each experiment, constructs were 

removed from the apparatus and snap frozen for DNA and myosin II isoform content 

analysis. In optimizing stretch parameters, total strains of 5, 10, 15, and 20%, and strain 

rates of 0.2, 0.5, 0.7, and 0.9 mm/min were tested. 

Estimation of cross-sectional area 

Collagen constructs were laid flat on a glass plate and collagen construct width was 

calculated by taking high resolution digital photographs and measuring the number of 

pixels across the width of the construct. The thickness of the specimens was determine 

by Multi-Photon Laser Scanning Microscopy as outlined above (gel compression).  

Measurement of Cell Concentration and DNA Analysis 

The final cell concentration within collagen constructs was calculated from standard 

curves generated using MDA-MB-231 samples of known cell number in increments from 

100,000 to 5 million cells. Frozen construct samples were resuspended in 750 μL of 0.1% 

SDS in PBS and sonicated until homogenous. Samples were diluted using 0.1% SDS in 

PBS at 1:10, 1:50 and 1:100 dilutions and 100 µL of each dilution loaded into a microwell 
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plate (Nunc Part No. 237017). Hoescht 33258 stain was added to each well at a 

concentration of 0.09 μg/mL per well and the plate was analyzed using the Hoescht 33528 

protocol on a Modulus Microplate plate reader (Turner Biosystems, Model number 9300-

002).  

Calculation of Elastic Modulus 

Tension readings were converted from dynes to millinewtons (mN) and plotted against 

percent strain using Sigmaplot (Version 8.02, Systat Software, San Jose, California, 

USA). Hysteresis curves were generated by plotting the force readings during stretching 

and unloading against strain as a function of time. Because each strain is reached twice, 

once during stretching and once during unloading, the resulting graph starts from zero, 

reaches 10% strain, and then returns to zero. The upward sweep of each curve is the 

tension produced during stretching, and the downward sweep is tension during unloading 

of the sample. To measure the elastic modulus of the constructs, the cross-sectional area 

must be determined. The cross-sectional are is defined as the area of the sample where 

the force is applied; in this case, the thickness and the width of the construct were 

calculated as outlined above. Tension readings, in N, were divided by the cross-sectional 

area, in m2, to determine the stress on the sample in Pascals (Pa; 1Pa=1N/m2). When 

the stress in Pa is plotted against strain, the slope of the line during the stretch portion of 

the curve is the elastic modulus of the sample. This slope was calculated using the Linear 

Regression tool in SigmaPlot, with a confidence interval of 95%. Using the Rule of 

Mixtures (below), we calculated the contribution of individual components of a sample to 

the total elastic modulus. For the collagen constructs, there are two main components: 

the matrix itself and the cells within the matrix.  
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(1 )construct cells matrixE E E= ƒ + − ƒ  

Where Econstruct is the elastic modulus of the entire construct, determined using the initial 

stretch of the untreated construct; Ematrix is the elastic modulus of the matrix component 

of the constructs, determined using the DOC treated stretch; and 𝑓𝑓 is the volume fraction. 

Volume fraction is defined as the volume of the component of interest, in this case the 

volume of the cells, divided by the volume of the complete sample. To calculate the cell 

volume, samples were stained with TRITC-Phalloidin and imaged using MPLSM for the 

full depth of the sample. Using, the Surface function of IMARIS software, the volume of 

the TRITC channel was calculated. The total volume was calculated using the known 

frame size of the z-stacks taken. The volume fractions were determined for two full z-

stacks for each construct and were consistent between constructs for each cell type. After 

the elastic modulus of the cell component was determined, the average elastic modulus 

for individual cells was calculated by dividing Ecells by the total number of cells in the 

construct. In addition to the elastic modulus, we calculated the elastic recovery of 

samples. For the purposes of this study, elastic recovery is defined as the slope of the 

graph during the initial recovery after stretching (the first 30 time points after unloading 

begins). These experiments were performed three separate times, and the statistical 

significance was calculated using a one-way ANOVA with a Tukey post-test.  

Cell Poking 

Cell poking measurements were performed as outlined previously [56]. Briefly, cells are 

seeded onto a glass coverslip and indented using a probe controlled by a motor. The 

indentation depth and elastic recovery, or the amount of time a cell needs to return to the 

original cell shape, are used to calculate cell stiffness. The position of each cell poked 
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was recorded. After cell poking measurements were completed, cells were fixed in 4% 

paraformaldehyde, treated with 10 mM sodium borohydrite for 2 minutes to reduce free 

aldehydes, permeabilized in stabilizing buffer containing 0.5% Triton X-100, 0.6% DOC, 

pH6.5 for two 10min incubations and then stained as described above. The individual 

cells poked were imaged using laser scanning confocal microscopy and myosin content, 

actin content, cell surface area and cell volume were measured using Image J. 

Experiments were performed three separate times, and statistical significance was 

calculated using ANOVA with a  Tukey post-test.  

3D Migration 

Two different migration assays were used, 1) a plug model, where cells migrate outwards 

from a mass of cells into a cell-free collagen matrix and 2) a dispersed model, where cells 

are suspended as single cells in a collagen matrix and migration within the matrix 

observed. For the plug migration model, cells were combined with type I rat tail collagen 

solution (1 mg/mL) at a density of 2x106 cells/mL and poured into silicone templates (see 

Fig. 4A). Constructs were allowed to incubate for 24 hours, by which time they have 

greatly constricted the collagen matrix and formed a collagen plug, or “mini-tumor”. The 

cellularized plug was then removed from the template, and re-embedded into a collagen 

matrix (1 mg/mL). For the dispersed model of migration, cells were suspended in collagen 

at a concentration of 1x106 cells/mL and allowed to spread for 24 hours. For both models, 

the migrating cells were then imaged using live cell, time-lapse microscopy on an inverted 

Zeiss 510 microscope with an environmental chamber. Z-series were taken at 2 μm steps 

every 15 minutes at multiple points (> 4) per sample over a 24 hour period.  IMARIS 

software was used to reconstruct the 3D movies and the Spots function used to calculate 
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cell migration speed, displacement and distance traveled. These experiments were 

performed three separate times, and the statistical significance was calculated using a 

one-way ANOVA with a Tukey post-test. 

Collagen Isolation 

Rat tails from previous euthanized animals were obtained from animal quarters. Animals 

were euthanized under an approved West Virginia University Institutional Animal Care 

and Use Committee protocol and the tails removed by veterinarian staff. Immediately 

upon receiving the tails, they were sterilized with 70% EtOH. In a sterile environment, the 

tails were skinned by snipping off the tip, then making an incision with a scalpel the length 

of the tail before peeling back the skin. Collagen bundles were then severed at each end 

of the tail with a scalpel, then pulled from the tail using hemostats. Collagen fibrils were 

placed in sterile 4oC PBS on ice until collagen from 4-5 large tails had been removed (at 

least 5 g of collagen). Any excess tissue was removed from the collagen fibrils before 

placing the collagen in 70% EtOH for one hour on ice. Fibrils were then washed twice 

more with 70% EtOH before being washed once each with PBS and sterile water. After 

the collagen was washed, the fibrils were placed in 300 mL of sterile 20 mM Acetic Acid. 

The collagen solution was then stirred at a slow rate for 48 hours at 4oC, occasionally 

mixing with a sterile pipet to ensure complete mixing. After the extraction period, the 

collagen was centrifuged at 16,000xg for 90 minutes at 4oC. Collagen concentration was 

determined using SDS-PAGE and stored at 4oC, protected from light.  
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RESULTS 

Knockdown of Myosin II Isoforms in MDA-MB-231 Cells 

It has been established in the literature that MDA-MB-231 cells express the IIA and 

IIB isoforms of nonmuscle myosin II, but express low levels of IIC not detectable by 

Western blot [61-63]. In order to test the contribution of each of the major myosin II 

isoforms in MDA-MD-231 cells, we performed knockdown (KD) of myosin IIA and IIB and 

assessed what effect myosin KD had on cell morphology (2D and 3D), actin organization, 

and the ability of MDA-MB-231 cells to compress and organize 3D collagen matrices. 

Lentiviral shRNA constructs against the two isoforms were screened for specificity and 

efficient myosin II KD. As shown in Figure 1, each shRNA construct achieved greater than 

85% KD of their respective isoforms, while only minimally affecting the non-targeted 

isoform. Efficient knockdown of myosin isoforms was verified using immunofluorescence 

(S1 Figure). 

 We next sought to determine if loss of either myosin IIA or IIB affects general cell 

morphology as well as actin and myosin II distribution. Figure 2 illustrates representative 

immunofluorescent images of parental controls and myosin IIA and IIB KD MDA-MB-231 

cells in 2D culture. F-actin in parental MDA-MB-231 cells was localized to lamellapodia 

and central stress fibers (Fig. 2 A&C). Myosin IIA co-localized to the underlying actin 

filaments in lamellapodia and stress fibers (Fig. 2B) while myosin IIB was localized to 

stress fibers and concentrated in the perinuclear region (Fig. 2D). Knockdown of myosin 

IIA caused a disruption in the actin stress fibers of cells, exhibiting prominent stress fibers 

at the periphery of the cell, and fewer centrally located fibers (Fig. 2E). Residual myosin 

IIA (Fig. 2F) was detected at low levels in KD cells where it localized to the actin stress 



68 
 

fibers. Knockdown of myosin IIA appears to alter the distribution of myosin IIB, which 

seems to assume a microtubule like distribution pattern (Fig. 2 G-H). We speculate this 

might result from IIB binding to a microtubule associated protein. Loss of myosin IIB (Fig. 

2 I-L) resulted in formation of shorter, thicker stress fibers heavily decorated with myosin 

IIA (Fig.2 I-J). These fibers were randomly distributed throughout the cytoplasm. In 

contrast, KD of myosin IIB for the most part abolished myosin IIB staining associated with 

underlying stress fibers (Fig. 2L). Any remaining myosin IIB exhibited a perinuclear 

localization (Fig. 2L). In 2D, MDA-MB-231 cells showed a variety of morphologies and 

shapes.  

In attempt to generate a microenvironment similar to what cells encounter in vivo, 

MDA-MB-231 cells were cast within 3-D collagen matrices. MDA-MB-231 parental, IIA, 

and IIB KD cell lines suspended in type 1 rat tail collagen were poured into Teflon casting 

molds and incubated for 4 days. Over this time period cells spread, organize and 

compress the collagen matrix. Since neither the cells nor collagen are able to adhere to 

Teflon, the influence of the casting mold on matrix organization is minimized. Therefore, 

MDA-MB-231 cell-matrix and cell-cell interactions are primarily responsible for generating 

the 3-D organized matrix within the Teflon casting mold. After 4 days, collagen constructs 

were fixed and stained for actin and myosin IIA or myosin IIB.  

Figure 3 shows representative images illustrating the morphology and the 

actin/myosin II distribution of MDA-MB-231 cells in 3D matrices. Parental (Fig. 3 A-F), 

myosin IIA KD (Fig. 3 G-L) and myosin IIB KD (Fig. 3 M-R) cells exhibit distinct 

morphology in 3D. Parental cells (Fig. 3 A-F) exhibited a rounded or pyramidal like cell 

body with multiple cell processes extending in various directions and focal planes. Actin 
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(Fig. 3 A&D) was localized to the cytoplasm and cell processes. Both myosin IIA and IIB 

(Fig. 3, B&C and E&F, respectively) co-localize to the underlying actin filaments in the 

cell body and processes, and also exhibit diffuse staining throughout the cytoplasm. 

Myosin IIA KD cells (Fig. 3 G-L) have a more rounded cell body with numerous slender 

cell processes extending into several focal planes of the 3D construct. Lack of myosin IIA 

staining (Fig.3 H&I), in conjunction with western blot analysis (Fig. 1B), confirms the 

efficient myosin IIA KD and shows that loss of IIA had little effect on myosin IIB localization 

(Fig. 3 K&H). In contrast, IIB KD cells within the collagen matrix are long slender cells that 

lack cell processes, confining IIB KD cells to a single focal plane. Lack of myosin IIB 

staining (Fig. 3Q), in conjunction with western blot analysis (Fig. 1B), showed IIB KD had 

little effect on IIA distribution. The changes in cell morphology in 3D were quantified using 

IMARIS software (Fig. 4). Figure 4A shows the average number of protrusions per cell. 

Parental cells had 6.7 protrusions per cell, while IIA KD cells had 12.9, and IIB KD cells 

had 2.9 protrusions. IIA KD cells had significantly more protrusions per cell than either 

the parental or IIB KD cells. We also calculated the sphericity (Fig. 4B) and elongation 

(Fig. 4C) of the cell bodies. IIA KD cells had slightly more spherical cell bodies, and IIB 

KD cells had slight more elongated cell bodies, though these differences were not 

statistically significant. These results suggest that myosin II isoform may regulate how 

cells are able to interact and organize their surrounding matrices. 

Myosin II Isoforms and 3D Collagen Gel Compression 

Myosin II has been proposed to be critical for mechanotransduction [41], and for 

generation of cellular forces essential for matrix remodeling. To measure the ability of 

MDA-MB-231 cells to organize and compress 3D collagen gels, we developed a gel 



70 
 

compression assay. MDA-MB-231 cells were mixed in type I collagen and cast into a 

Teflon casting mold and allowed to organize and compress the collagen gel for 1 to 4 

days, before being fixed and removed from the molds. At this point, the cells have 

compressed the collagen matrix into a tight ring around the central mandrel of the casting 

mold. The ring is cut open and the thickness of the collagen constructs measured using 

microscopy. For determining the thickness of gels cast with only collagen, 1 µm 

fluorescent beads were added to the collagen/MEM solution prior to casting constructs. 

Construct thickness was compared between gels cast from collagen alone, parental, and 

myosin KD MDA-MB-231 cell lines. 

Examples of representative z-stacks depicting the thickness of collagen constructs 

generated from collagen alone, parental and myosin IIA and IIB KD MDA-MB-231 cell 

lines are shown in Figure 5A. Comparing the measured thickness of these different 

constructs allowed us to calculate to what extent control and KD cells compress a 

collagen gel. Collagen constructs cast from collagen alone were approximately 1024.7 

μm thick 1 day post casting, and after 4 days were measured to be 1023.7 μm thick (Fig. 

5 A,B). Parental cells were able to compress the matrix by 50% (540.6 μm) 1 day post 

casting, and 57% (442.1 μm) 4 days post casting, compared to constructs containing 

collagen alone. Although the majority of the matrix organization/compression occurs 

within 24 hours, the process continued for the 4 day duration of an experiment. Myosin 

IIA KD cells were unable to effectively constrict the collagen construct (Fig 5B). Myosin 

IIA KD cell were only able to compress the matrix 15.2% (870.2 μm) and 16.1% (858.9 

μm) 1 and 4 days post casting compared to constructs cast from only collagen). Parental 

cells generated 36% and 40% more matrix compression on day 1 and day 4, respectively, 
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compared to the myosin IIA KD cells. These differences were statistically significant (p < 

0.0001). Interestingly, we found that the IIB KD cells behaved similarly to parental cells in 

their ability to organize and compress the collagen constructs. Myosin IIB KD MDA-MB-

231 cells compressed the matrix 53% (483.0 μm) and 64% (369.9 μm) after 1 and 4 days, 

respectively compared to constructs cast from only collagen. This extent of compression 

was similar to the parental control 50% and 57% 1 and 4 days post casting (Fig. 5B). We 

speculate that the loss of matrix remodeling exhibited by the myosin IIA KD cells could 

be due to the loss of the force generating capacity needed to physically modify the matrix 

or the loss of myosin IIA involvement in integrin signaling [64, 65]. Since loss of myosin 

IIB did not cause significant disruption in matrix compression, our data suggests that 

myosin II isoforms do not have redundant roles in this cellular process, but rather have 

separate functions 

In an attempt to inhibit total myosin II function we also measured the ability of 

parental cells treated with the small molecule myosin II inhibitor blebbistatin to compress 

a collagen construct. Parental cells treated with blebbistatin were only able to compress 

the gel 40% (583 μm) after 4 days compared to constructs cast from only collagen (data 

not shown). Blebbistatin treated constructs have a decreased ability to alter the matrix, 

however, it is not completely ablated. This suggests that cells may be using a myosin II 

independent mechanism or we were unable to completely inhibit myosin due to 

blebbistatin absorbing to the collagen matrix or its degradation in aqueous media.  

Myosin II Isoform Involvement in Isometric Tension of Collagen Constructs 

While the gel compression assays are a measure of the amount of matrix 

remodeling cells are capable of, it does not directly measure changes in the matrix itself. 
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Because matrix stiffness can also independently affect tumor progression, we sought to 

develop a way to directly measure matrix rigidity and elasticity. To begin to measure this, 

we first needed a method to measure changes in tension and force production in the 

collagen constructs as a whole. Using our isometric tension recordings apparatus we 

were able to measures the force produced by collagen constructs both at rest and in 

response to physical strain. Collagen constructs were poured into the Teflon casting 

molds, removed after 4 days and hung from isometric force transducers, as described in 

Wakatsuki, et al [40]. After establishing a basal force, constructs were stretched to 10% 

strain (1.5 mm) at a rate of 0.5 mm/min and immediately relaxed to their original length at 

the same rate. The resulting tension was measured and plotted against strain in 

hysteresis curves. In these graphs, the upward sweep of the curve represents the tension 

produced by the construct during stretching, while the downward portion is the recovery 

of the sample during unloading. These hysteresis curves are used to gain insight into the 

stiffness and elasticity of the constructs.  

Figure 6A shows the hysteresis curves, plotted as mN versus percent strain, for 

collagen alone (blue line), parental (black line), myosin IIA KD (red line), and IIB KD 

(green line) MDA-MB-231 collagen constructs during stretching and unloading from a 

single, representative experiment. Parental samples (the black line in Fig. 6A) show a 

marked increase in stress during the period of stretching, a 10-fold increase in tension at 

the maximum stretch. Comparing the parental samples to the collagen alone (the blue 

line in Fig. 6A), it is evident that the cells are significantly altering the collagen matrix. The 

collagen alone constructs are very loose compared to the much tighter network generated 

by parental cells. The loose, unorganized matrix produces a decreased force signature in 
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response to strain. The myosin IIA KD and IIB KD samples (the red and green lines in 

Fig. 6A, respectively), also show a decreased response to physical strain when compared 

to the parental samples, indicating that they do not respond to physical stress in the same 

way as the parental cells. Interestingly, the MDA-MB-231 samples do not return to the 

same baseline tension after unloading, indicating the collagen constructs are not perfectly 

elastic. The changes in collagen construct tension between the various cell lines 

correspond well to the differences seen in the gel compression assay (Fig. 5). Parental 

cells are able to compress the collagen and generate a significant force in response to 

increased strain, while myosin IIA KD cells are unable to properly modify their surrounding 

matrix resulting in a 2.4 fold decrease in peak force generation in response to applied 

strain. Myosin IIB KD cells exhibit a force response to strain similar to that seen in parental 

cells, a 10 fold increase from baseline at the maximum stretch. The distinct tension 

profiles in response to strain for these cell lines suggest differences in the structural 

arrangement of the matrix, resulting in lower force generation for less organized, looser 

constructs (myosin IIA KD cells). This interpretation is in agreement with data obtained 

from gel compression assays (Fig. 5).  

The isometric tension measurements examined thus far measure the collagen 

construct as a whole, i.e. cells and the microenvironment generated by modifying their 

surrounding matrix. By eliminating certain components of the constructs, we can 

determine what role(s) each component plays in matrix organization and tension 

generation. For example, treating the constructs with cytochalasin D, an actin disrupting 

agent, before subjecting the construct to mechanical testing allowed us to compare the 

applied strain response produced in cells with an intact actin cytoskeleton (active 
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contractile cell) with those from which the actin cytoskeletal contributions of the cell have 

been eliminated. This treatment provided information about the active contractile force 

generated by the cells within the construct. Furthermore, treating constructs with the non-

ionic detergent deoxycholate uncoupled cell membrane matrix interactions (by dissolving 

the entire cell) leaving only the collagen construct, devoid of cells, to respond to the 

applied strain. The cell bodies themselves and their attachments to the matrix may 

contribute to force generated simply because their attachments act as an anchor, 

prohibiting the collagen fibers from stretching as far as they could without these 

attachments. The force produced in response to strain after removing cells with detergent 

allowed us to measure only the inherent contribution of the matrix to the construct rigidity 

and elasticity.  

Figure 6B shows representative hysteresis curves of untreated parental control 

constructs, as well as parental constructs treated with cytochalasin D and dexoycholate. 

Cytochalasin D treated constructs (red line in Fig. 6B) have a much lower baseline tension 

compared to untreated controls, 0.19 versus 0.59 mN. Treatment with deoxycholate 

reduces the baseline even lower to 0.12 mN. As shown in Figure 6B, parental cells 

generate a peak force of 5.8 mN in response to applied strain. Disruption of actin filaments 

resulted in a 1.5 fold (to 3.8 mN) reduction in force at max stretch, indicating an intact 

actin/myosin cytoskeleton was needed to generate force in response to applied strain. 

Incubation of constructs in the presence of deoxycholate further reduced the peak force 

response by 1.3 fold (to 2.9 mN). Parental control constructs cast with MDA-MB-231 cells 

containing both myosin IIA and IIB generate a peak strain tension 8 fold higher (5.8 mN) 

than constructs cast with collagen alone (0.75 mN). Both myosin IIA KD (Fig. 6C) and IIB 
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KD (Fig. 6D) showed a similar pattern of changes in tension production after treatment 

with cytochalasin D or deoxycholate as did the parental constructs. The myosin IIA KD 

constructs (Fig.6C) generated a 2.4 fold lower peak force than control constructs 

indicating the IIA KD cells were unable to stiffen the matrix in a manner comparable to 

parental cells. After treatment with cytochalasin D and deoxycholate (Fig. 6C, red and 

green curves, respectively), the hysteresis curves indicate the matrix has been organized 

by the IIA KD cells to impart a structural rigidity to the construct 2.5 fold stiffer than 

constructs cast from collagen alone; though the IIA KD generated matrix is still 2.9 fold 

lower than parental controls. This implies that even though the constructs are looser and 

larger (width and depth) than controls, the IIA KD cell still have the ability to modestly 

compress and organize the matrix. Myosin IIB KD (Fig. 6D) constructs more closely 

approximate parental control responses, however, the hysteresis curves show that 

myosin IIA alone (the remaining isoform in IIB KD cells) is not capable of generating the 

same matrix stiffness as exhibited by parental controls (Fig. 6B).  

These results, in conjunction with the gel compression studies, indicate that both 

myosin IIA and IIB are needed for MDA-MB-231 cells to respond to applied stress and 

organize 3D matrices. Our data points to myosin IIA as the prominent myosin II isoform 

regulating matrix organization/compression, since loss of IIB has only minimal effects on 

3D matrix compression and stiffness. However, myosin IIB is unable to completely 

compensate for the loss of myosin IIA, indicating that both isoforms are necessary for 

these cell processes.   
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Myosin II Involvement in Matrix Rigidity and Elasticity  

In order to calculate the elasticity of a sample, the stress generated by the 

construct, rather than the recorded tension, must be determined. Stress is defined as 

force divided by the cross-sectional area of the sample and is reported as Pascals (1 Pa 

is equal to 1 N/m2). The cross-sectional area of the samples in this study was calculated 

using the width of the collagen construct multiplied by the thickness of the construct which 

corresponds to the area of the construct the strain is acting upon. The cross-sectional 

areas for the various cell lines differ due to differences in their ability to alter and compress 

the matrix. Figure 7A shows representative hysteresis curves corrected for the differences 

in cross-sectional area for parental, myosin IIA and IIB KD MDA-MB-231 cells. The 

differences between cell lines are highlighted when the cross-sectional area is taken into 

account. This is especially evident in the IIA KD constructs (the red line in Fig. 7A), which 

exhibits a 64% reduction in peak force in response to mechanical testing compared to 

parental constructs and a 50% reduction when compared to myosin IIB KD constructs. 

These results show myosin II is an essential player in development of matrix stiffness and 

suggest myosin IIA is more involved in matrix organization than IIB.  

Once the stress (force/cross-sectional area) has been calculated it is used to 

determine the elastic modulus of the construct. Constructs are subjected to mechanical 

testing and hysteresis curves plotted as Pa versus strain. The slopes of these hysteresis 

curves are used to calculate the elastic modulus of the sample. This calculation comes 

from the following equation:  

 Eσ ε=   
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Where ε is the strain on the sample, σ is the stress of the sample, and E is the elastic 

modulus of the sample. Because the elastic modulus is defined as stress (Pa) divided by 

strain (unitless) it has units in Pa. The stress-strain curves for representative experiments 

of all cell types, as well as collagen alone, are presented in Figure 6A. Similar to the 

results obtained from the force versus strain curves (Fig. 6), we found major differences 

in the mechanical properties between constructs cast with collagen alone and constructs 

cast with MDA-MB-231 cells. Table 1 shows the calculated Construct elastic modulus 

(organized/compressed collagen matrix containing cells) and Matrix elastic modulus 

(samples treated with detergent to remove the cells) for parental, myosin IIA and myosin 

IIB KD MDA-MB-231 cells. Parental constructs had an elastic modulus of 9.22 Pa, 208-

fold greater than for constructs cast from collagen alone (0.40 Pa). Myosin IIA KD cell 

constructs had an elastic modulus of 3.42 Pa, a 2.7 fold decrease from parental controls 

and 8 fold increase over collagen alone. Myosin IIB KD constructs had an elastic modulus 

of 7.20 Pa, more closely approximating parental control constructs. These numbers are 

in agreement with the differences in the ability of cells to compress the collagen gel as 

measured by gel compression (Fig. 5B).  

Table 1. Elastic modulus of collagen constructs seeded with MDA-MB-231 cells. 

Cell Type Construct Modulus (Pa) P Value Matrix Modulus (Pa) P Value 

Parentals 9.22 ± 0.61 NA 4.38 ± 0.50 NA 

IIA KD 3.42 ± 0.34 <0.001 2.39 ± 0.37 <0.05 

IIB KD 7.20 ± 0.78 ns 4.73 ± 0.53 ns 

Collagen 0.40 ± 0.03 <0.0001 0.40 ± 0.03 <0.001 

Shown are the averaged elastic moduli (± SEM) for constructs across three separate experiments 
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It is also important to understand construct mechanics during recovery (unloading) 

from the elastic strain. For the purposes of this study, we defined elastic recovery as the 

slope of the hysteresis curve during the initial 30 seconds of sample unloading. As shown 

in Table 2, the differences between cell types are evident and in agreement with our gel 

compression data and the elastic modulus: parental cell constructs had an elastic 

recovery of 38.61 Pa, IIA KD constructs 15.89 Pa, and IIB KD cells 31.86 Pa (Table 2). 

The difference between collagen alone and collagen containing cells is evident here as 

well; IIA KD constructs, which are unable to efficiently alter the matrix, produce a 8.3 fold 

greater elasticity than collagen constructs alone, which exhibited an elastic recovery of 

1.92 Pa.  

Table 2. Elastic recovery of collagen constructs seeded with MDA-MB-231 cells.  

Cell Type Construct (Pa) P Value Matrix (Pa) P Value 

Parentals 38.61 ± 1.05 NA 19.65 ± 1.32 NA 

IIA KD 15.89 ± 2.19 <0.001 10.70 ± 1.56 <0.01 

IIB KD 31.86 ± 4.40 ns 18.77 ± 1.55 ns 

Collagen 1.92 ± 0.11 0.0001 1.92 ± 0.11 <0.00018 

The elastic recovery, here defined as the slope of the initial recovery of the construct after stretching, was 

calculated for each cell type. Shown are the averaged (±SEM) elastic recovery for constructs across three 

experiments.  

 

Myosin II Isoforms Play Different Roles in Matrix Arrangement and Cellular 

Response to Strain 

 The elastic moduli calculated above represent the collagen construct as a whole 

(Construct Modulus), both matrix and cell component, and that of the cell modified matrix 

alone after cells are removed using detergent (Matrix Modulus). While cells may be 
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arranging the matrix in a similar way, the cells’ response to physical stress may be 

different, especially if myosin II isoforms play different roles in matrix interactions and 

cellular force generation. Using the Rule of Mixtures it is possible to separate the 

contribution of the matrix and cells to overall construct elasticity. The Rule of Mixtures 

states that:  

(1 )construct cells matrixE E E= ƒ + − ƒ  

In the above equation constructE  is the elastic modulus of the untreated samples, matrixE  is 

the elastic modulus of the constructs treated with deoxycholate (Fig 7B) and ƒ is the 

volume fraction. The volume fraction is defined as the volume of the component of interest 

(cells), divided by total volume of the construct. For this study, the volume of the cell 

component of the constructs was calculated using microscopy and divided by the total 

volume of the image frame. Myosin IIA KD cells had a smaller volume fraction than IIB 

KD or parental cells (0.014 for the IIA KD cells versus 0.017 and 0.02 for the parental and 

IIB KD cells, respectively) because the total volume of the construct is greater due to the 

fact that the IIA KD cells are unable to constrict the matrix (821 µm for the IIA KD cells 

versus 481 µm for the parental cells). However, the overall cell volume between the cell 

types is not significantly different (about 9 x 106 µm3). For calculations such as this, it is 

important that the cells be evenly distributed throughout the matrix. As can be seen in 

Figure 5A, these cells are well distributed and not clustered in one region of the construct. 

For parental constructs, the cell modulus was determined to be 286.26 Pa. Myosin IIA KD 

cells had a modulus of 52.89 PA, and IIB KD cells had a modulus of 107,43 Pa (Table 3). 

The parental cell elastic modulus was 5.4-fold greater than myosin IIA KD total cell elastic 

modulus and 2.4 fold greater than myosin IIB KD cells. This is consistent with the changes 
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in matrix remodeling ability of the different cell lines, again suggesting that myosin IIA 

assumes a greater role in organizing/compressing the microenvironment than myosin IIB.  

Table 3. Calculated elastic modulus of MDA-MB-231 cells within collagen constructs.  

Cell Type Total Cell Modulus (Pa) P Value Single Cell Modulus (µPa) P Value 

Parentals 286.26 ± 30.99 NA 189.25 ± 20.68 NA 

IIA KD 52.89 ± 17.28 <0.01 36.78 ± 13.38 <0.01 

IIB KD 107.43 ± 23.47 <0.01 79.84 ± 24.48 <0.05 

The Construct and Matrix moduli of constructs from each experiment were used to calculate the Total 

Cell Modulus. This was then divided by the cell number, determined by a DNA assay for each experiment, 

to calculate the Single Cell Modulus. Shown are the calculated total and single cell moduli, averaged 

across three experiments (± SEM).  

Once the elastic modulus of the cell component of the constructs has been 

calculated, dividing the total elastic modulus by the total number of cells in the constructs 

will determine the average elastic modulus of each individual cell (Single Cell Modulus; 

Table 3). The number of cells in each construct was determined to be between 1.3 and 

1.8 million cells for each cell type. The single cell elastic modulus was calculated as 

189.25 µPa for parental cells, 36.78 µPa for IIA KD cells, and 79.843 µPa for the IIB KD 

cells (Table 3). Interestingly, the total cell elastic modulus calculated for the parental cells 

and the IIB KD cells (286.26 and 107.435 µPa, respectively, Table 3) show a divergence 

with what was predicted based on the overall construct elastic modulus (9.22 vs 7.20 Pa 

respectively; Table 1). This can be explained when comparing the matrix elastic modulus 

(deoxycholate treated stretches) for the two cell types. While the overall construct 

modulus is higher for the parentals than IIB KD), the matrix elastic modulus for the 

parental constructs is actually lower than that for the myosin IIB KD (4.38 Pa versus 4.73 

Pa). This suggests the myosin IIB KD cells arrange and compress the collagen matrix in 
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a different way than parental cells, creating a stiffer construct. It is possible that IIB is 

restricting or inhibiting myosin IIA’s ability to transmit force across the membrane and 

maximally organize the matrix. We speculate that upon loss of myosin IIB, myosin IIA is 

able to transmit force across the membrane more efficiently yielding a stiffer, more rigid 

matrix. 

Our data also clearly shows that cells containing only myosin IIA (IIB KD cells) 

produce 2.2 fold greater tension within the construct than cells expressing only myosin 

IIB (IIA KD cells). In addition, these data suggest myosin IIA is the major force producing 

motor protein in the parental cells, since cells lacking IIA had a cell elastic modulus 5.1 

fold less than parental cells, while those lacking IIB had an elastic modulus  only 2.4 fold 

less. Nevertheless, both motor proteins are essential for MDA-MB-231 cells to achieve 

maximum tension production. Thus, calculating the elastic modulus of the total construct, 

the matrix, and the cells allows one to analyze the mechanical properties of the constructs 

in a more quantitative way than the gel compression measurements; these calculations 

are useful in making comparisons to elasticity and rigidity measurements under various 

experimental conditions or even whole tissues. Taken together, these results suggest that 

myosin II isoforms have separate roles in the generation and maintenance of cellular 

stiffness and in their ability to alter and guide matrix organization and stiffness. Myosin 

IIA is especially important for matrix remodeling and elasticity. These cellular 

characteristics, due to altered mechanoreciprocity in tumors, may have a drastic impact 

on tumorigenesis.  

 

 



82 
 

Loss of Myosin Isoforms Affects Cell Viscoelasticity 

Given myosin II’s involvement in cell contractility and stiffness we set out to determine if 

changes in the myosin II status of cells affects their viscoelastic properties. Figure 8 

shows the mean stiffness of individual parental, IIA and IIB KD MDA-MB-231 cells as 

measured by cell poking. Parental cells had a mean stiffness of 5.39 dynes/cm. IIA KD 

cells had a much lower stiffness of 4.26 dynes/cm. IIB KD cells actually had a higher 

cellular stiffness than parental cells at 5.81 dynes/cm. Finally, cells treated with the 

general myosin II inhibitor blebbistatin had a lower stiffness than either individual 

knockdown at 3.1 dynes/cm. The difference between parental cells and IIA KD cells was 

statistically significant, as was the difference between bebbistatin cells and all cell types. 

These alterations in cell stiffness could heavily influence how cells migrate in 3D models 

as well as their metastatic patterns in animal models.  

Loss of a Myosin II Isoform has a Distinct Effect on the Ability of the Cell to Migrate 

in 3D   

To determine if loss of either of the myosin II isoforms changes the ability of cells to 

migrate in 3D, we compared the migration of MDA-MB-231 parental and KD cell lines in 

the plug model and the dispersed models of 3D migration. There are many different 

models to study cell migration, each with their advantages and disadvantages. A popular 

model, called the “sandwich” model or the collagen overlay model, involves seeding cells 

between two different 3D substrates, such as collagen or Matrigel [66, 67]. While this 

model is fairly simple and can yield insight into how cells migrate at the interface between 

two surfaces, it is not the most relevant model. Another model is seeding cells in an 

extracellular matrix (ECM), such as collagen, and tracking the individual cells as they 
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randomly migrate in the 3D matrix [14, 46, 68, 69]. We refer to this model as the dispersed 

model. This model shows how individual cells move in a 3D matrix, however, it does not 

recapitulate the specific situation in the body of individual cells breaking away from a 

tumor and migrating through the interstitial space. The cell-cell interactions at the tumor-

stromal interface influences migration, and dispersed migration does not allow for these 

interactions [47]. Due to the limitations of these migration models, we decided to use a 

plug, or “mini-tumor” approach to study cell migration. Briefly, cells are seeded in a 

collagen plug and allowed to form a “mini-tumor” before being re-implanted into a collagen 

matrix. Individual cells breaking away from the plug and migrating into the surrounding 

matrix can then be tracked (Fig. 9A). In developing the plug model, we sought to develop 

an assay that recapitulates the specific situation of cells migrating through a 3D ECM 

away from a tumor.  

Two different models of 3D migration were performed, the dispersed model and 

the plug model. Parental cells in either model migrated at similar speeds (Fig. 9B and 

Table 4). However, the distances traveled by these cells were different between the two 

models. The average displacement, the distance between a cell’s point of origin and its 

end point, regardless of the path taken, differed by 40%, a statistically significant 

difference (Fig. 9C and Table 5). Also, the average total distance a cell traveled was 

different between the two models, though due to the large variation did not reach 

statistical significance (Fig. 9D and Table 6). There were also differences seen between 

the two models using IIA and IIB KD cell lines. IIA KD cells in the dispersed model 

migrated at a slightly slower rate than cells in the plug model (Fig. 9B and Table 4). IIA 

KD cells had slightly different displacement and total track lengths between the two 
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models (Fig. 9 C-D and Tables 5-6). IIB cells migrated at higher speeds in the dispersed 

model, though it did not reach statistical significance (Fig. 9B and Table 4). Once again, 

a greater difference was seen in the distance traveled by the cells between the two 

models than in the speed of migration. IIB KD cells had a 50% increase in track 

displacement in the dispersed model of migration, a statistically significant difference (Fig. 

9C and Table 5). A similar trend was seen in total track length, with cells moving a greater 

total distance in the dispersed model of migration (Fig. 9D and Table 6). The differences 

seen between the two models indicate that the plug model of 3D migration is an 

interesting model that could prove a useful addition to the currently available methods.   

Table 4. Migration speed of MDA-MB-231 cells in 3D models 

Cell Type Plug Model Dispersed Model Blebbistatin Treated 

Parentals 17.9 ± 1.95 18.88 ± 1.07 6.99 ± 0.54 

IIA KD 13.4 ± 1.33 11.21 ± 0.93 4.30 ± 0.47 

IIB KD 8.29 ± 0.94 14.71 ± 1.36 7.18 ± 0.50 

The speed of migrating cells in three separate experiments was determined using the Spots function in 

Imaris. Data presented as average µm/hr ± SEM.  

 

Table 5. Migration track displacement of MDA-MB-231 cells 

Cell Type Plug Model Dispersed Model Blebbistatin Treated 

Parentals 55.76 ± 4.96 91.45 ± 6.68 54.71 ± 4.50 

IIA KD 32.28 ± 2.38 53.39 ± 2.93 37.18 ± 2.78 

IIB KD 40.14 ± 3.20 81.89 ± 8.03 65.62 ± 5.53 

The track displacement, distance between a cell’s beginning and end points, was calculated using 

Imaris software for three separate experiments. Data presented as average µm ± SEM.  
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Table 6. Migration track length of MDA-MB-231 cells 

Cell Type  Plug Model  Dispersed Model Blebbistatin Treated 

Parentals 346.27 ± 36.14 610.69 ± 44.38 205.37 ± 20.87 

IIA KD 462.16 ± 51.94 365.44 ± 41.23 117.98 ± 14.66 

IIB KD 274.04 ± 37.39 518.94 ± 63.13 223.18 ± 18.96 

The track length, total distance a cell traveled, was calculated using Imaris software for three separate 

experiments. Data presented as average µm ± SEM.  

 

The differences between the two models of migration were interesting. However, 

the comparisons between cell types in a single model, the plug model, provide valuable 

insight into the importance of myosin II isoforms in cell migration. In the plug model, the 

parental cells migrated at a faster rate than the IIA KD cells, though this difference did not 

reach statistical significance. The IIB KD cells migrated at the slowest rate of any of the 

cell types, and significantly more slowly than the parental cells. The IIA KD cells had a 

significantly smaller displacement than the parental cells, and a slightly smaller 

displacement than the IIB KD cells. However, the IIA KD cells migrated a further total 

distance than either the parental cells or the IIB KD cells. This effect can be seen in the 

tracks of the cells’ migration patterns generated using Imaris software (Fig. 10). Parental 

cells moved in a consistent direction, resulting in a large displacement. IIA KD cells, 

however, frequently changed direction, especially in the z-direction. This led to a smaller 

displacement, yet larger total track length. Finally, the IIB KD cells tended to move back 

and forth within a single focal plane, along a single track, going in one direction until they 

met an obstacle (usually another cell) and then moving back along the original track 
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instead of turning to maneuver around the obstacle (Fig. 10). General migration track 

patterns were consistent between cells of the same type across repeated experiments, 

indicating that the loss of myosin II isoforms confers a unique and specific migration 

potential and pattern. The altered migration potential of the knockdown cell lines is in 

accordance with previous data showing that actomyosin contractility is necessary for 

efficient cell migration [46, 62, 70, 71]. These data show that loss of the myosin IIA and 

IIB isoforms have a distinct effect on the migration of the cell, indicating that the two 

isoforms play non-redundant roles in cellular migration. 

Treatment of Cells with the Myosin II Inhibitor Blebbistatin Blocks Their Migration 

Blebbistatin II is a non-specific myosin II inhibitor that binds to the ATP-binding pocket, 

preventing ADP/ATP recycling by the myosin molecule and inhibiting its enzymatic 

function [72]. It has previously been shown that treatment of vascular smooth muscle cells 

with blebbistatin inhibits the cell’s ability to migrate [73]. We used blebbistatin to block the 

function of both myosin II isoforms and tracked their migration in the plug model. At a 

blebbistatin concentration of 50 μM, all myosin II function is inhibited. Indeed, in the 

parental and IIA KD MDA-MB-231 cells, treatment with blebbistatin significantly inhibited 

their ability to migrate. In both cases, their speed was decreased by over 60% (Fig. 9B 

and Table 4). For the parental cells, average displacement was not significantly affected 

(Fig. 9C and Table 5), however average track length was decreased by one third (Fig. 9D 

and Table 6). These cells had an extremely frenetic migration track pattern, with 

extremely frequent direction changes and intertwined migration tracks (Fig. 10). The IIA 

KD cells saw no change in average displacement under blebbistatin treatment (Fig. 9C), 

but the average total track length was decreased by nearly 75% (Fig. 9D). Blebbistatin 
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treatment greatly inhibited the ability of these cells to migrate in 3D. Interestingly, it did 

not have the same effect on the IIB knockdown cells. The average speed of the IIB KDs 

was not changed after blebbistatin treatment (Fig. 8B), and in fact, the average 

displacement increased (Fig. 9C) while the total track length was not significantly altered 

(Fig. 9D). There may be another mechanism of cell migration that is induced when myosin 

II activity is completely inhibited, or the IIB KD cells may be escaping blebbistatin’s effect 

on myosin II activity.  

DISCUSSION 

 Matrix rigidity has been shown to stimulate tumor growth and metastasis [2, 6, 7]. 

It is known that actomyosin contractility is needed for tension induced cell proliferation in 

epithelial monolayers [74] as well as ROCK induced tissue changes and cell 

hyperproliferation in an induced ROCK model of murine cancer [39]. However, the 

importance of cell motor proteins, such as myosin II, in this process has previously not 

been directly investigated. Here we show that the myosin II isoforms, IIA and IIB, are 

involved in cell mediated matrix reorganization, cellular stiffness, cell mediated changes 

to matrix stiffness, and cell migration. Loss of myosin IIA especially has a drastic impact 

on cell mediated matrix reorganization and cell migration. This could be part of the 

explanation as to why myosin IIA upregulation has been shown to be correlated with poor 

prognosis in several types of cancer [51-53] if IIA is needed for matrix alterations that are 

important for tumor development and later invasion and metastasis [12, 75].  

 In this study, we measured the matrix remodeling ability of cells with a collagen gel 

compression assay using Teflon molds. This is similar, on the surface, to the gel 

contraction assay that has been used for a variety of cell types as a measure of cell 
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mediated matrix reorganization [76]. In fact, Yu et al. [77], found that the phosphorylation 

state of myosin light chain did not have an effect on cancer cells’ ability to alter the matrix 

in the gel contraction assay. However, there are several differences between the gel 

contraction assay as used in past studies, and the gel compression assay used here that 

make the two difficult to compare. In a typical gel contraction assay, cells are suspended 

in a 3D matrix, usually collagen, and poured into a multi-well plate. After the collagen has 

solidified, the gel is detached from the well and changes in the diameter of the resulting 

matrix disk are measured over time [76]. In such an assay, there is a strong possibility 

that the plastic of the multi-well plate may impact the behavior of the cells, through 

interaction with the collagen or the cells themselves. In the development of the assay 

used here, Teflon was chosen specifically because it is less likely to interfere with the cell 

mediated alterations to the matrix than a substrate such as plastic, which can interact with 

collagen. In the gel contraction assay, once the gel is detached from the bottom of the 

plate it may roll in on itself or undergo other physical contortions that alter the diameter 

measurements. Also, changes in the thickness of the gel are not measured in the gel 

contraction assay, generally only changes in the diameter, circumference, or area of the 

collagen are measured [78]. While the data presented in this paper focus on the thickness, 

there was a significant difference in total volume of the collagen gels, and this difference 

is taken into account in the cell elastic modulus calculations. While we have shown these 

changes, we can only speculate on how changes in myosin status of the cell are 

translated to the matrix without further study. A likely candidate is the α5β1 integrin, which 

has been shown to be involved in the development of traction forces and myosin II 

activation [18, 64, 65, 79]. In our gel compression assay, we show that loss of the IIA 
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isoform of nonmuscle myosin II has more significant effect on the cells’ ability to modify a 

surrounding matrix compared to loss of the IIB isoform. This effect could be due to the 

differences in myosin II isoform kinetics [80, 81] or the differences seen in isoform 

response to mechanical strain [82]. In addition to the known differences in isoform 

enzyme activity, it has been shown that myosin IIA and IIB have different activation 

patterns in durotaxis, the phenomenon of cells migrating from a soft matrix to a stiffer one. 

Raab et al. [83] showed that the IIA isoform is diffuse in mesenchymal stem cells on soft 

3D polyacrylamide matrices, but localizes to oriented stress fibers in cells in stiff matrices. 

This localization is followed by IIB polarization to the rear of the cell. The loss of IIA may 

prevent the proper localization of the IIB isoform in cells suspended in 3D matrices, 

blocking the cells’ ability to efficiently use the remaining myosin isoform to interact with 

the collagen matrix.  

There are several methods to measure the elasticity of cells alone or engineered 

cell/matrix constructs. A popular method in the literature is Atomic Force Microscopy 

(AFM) [84, 85]. However, AFM was designed for high-resolution imaging of the 

topography of specimens. For this purpose, the cantilevers used in AFM are extremely 

compliant and the tip size is typically in the nanometer range [86]. For many studies using 

AFM to measure stiffness of biological specimens, a glass bead is attached to the end of 

the tip to prevent the small tip from puncturing cells or slipping into the pores of a 3D 

matrix, which would confuse the measurements [84, 85]. However, the weight of the glass 

bead alters the spring constant of the cantilever, and this change must be precisely 

corrected for in calculations. AFM has also been used to measure elasticity of whole 

tumors [85]. In the case of large specimens such as this, AFM must take many 



90 
 

measurements of small sections of the sample and then the average elastic modulus is 

calculated. Using AFM, it is also difficult to measure changes in sample elasticity over 

time or in response to various treatment or condition. In developing the force conditioning 

model used here, we strove to design the stretching protocol in such a way that we could 

measure the global response of collagen constructs to stress over time. Putting the entire 

sample under strain allows us to calculate how the constructs, and the cells within them, 

dynamically respond to physical stretching. Additionally, the protocol is non-destructive, 

allowing for multiple stretches of the same sample under different treatment conditions. 

Combined with the drawbacks to AFM previously discussed, we determined that the 

stretching assay was the better model for what we wanted to measure. Studies of whole 

tumors using AFM calculated an elastic modulus in the kPa range [85], while we 

calculated an elastic modulus in the Pa range. This large difference is possibly due to the 

more complicated matrix composition in a whole excised tumor, as well as to differences 

in the method of measurement.. It is also important to note that AFM measures the 

stiffness of a single point of a specimen in a single point in time; these numbers are often 

averaged, however that still does not allow for a dynamic response from cells. The 

stretching assays do allow for this dynamic response on a global scale. The elastic moduli 

calculated using the stretching assays attach a solid number to the matrix alterations that 

are indirectly measured in the gel compression assay, and both assays agree that myosin 

IIA is necessary for efficient gel compression and development of a stiff, yet elastic, 

matrix. The calculated cell modulus for the IIA KD (52.89 Pa for total cell modulus, 36.78 

µPa for the single cell modulus) was also significantly lower than that for parental cells 
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(286.26 Pa and 189.25 µPa), indicating that IIA is necessary for cellular stiffness as well 

as cell generated matrix changes.  

The stiffness of individual cells seeded on glass or plastic substrates, as is used in 

AFM measurement, would likely be significantly higher than cells seeded in collagen, due 

to the stiffness of the substrate. Also, due to the nature of AFM measurements, the 

placement of the indentation tip can have a significant impact on the ultimate stiffness 

measurements since different cell components have different inherent mechanical 

properties [87]. Additionally, the spring constant of the cantilever and the geometry of the 

tip are important in using AFM to calculate sample stiffness [88]. This study used a 

relatively low starting concentration of collagen (1 mg/mL). Adding additional matrix 

components, such as laminin, or starting with a higher collagen concentration, could 

significantly increase the stiffness of the matrix, which could ultimately affect the cellular 

stiffness as well, due to mechanoreciprocity. Other studies using a stretching method to 

measure stiffness used contractile fibroblasts, which are much stiffer than epithelial cells 

[37, 40, 89, 90]. The assay used here relied on the mammary epithelial cells alone to 

generate the stiffness of their surrounding matrix. The elastic modulus of a matrix 

containing stromal cells such as fibroblasts, which are more contractile than epithelial 

cells, would likely be much stiffer than a matrix containing epithelial cells alone. This 

speculation is supported by the fact that fibroblasts compress the collagen to a greater 

degree than the breast epithelial cells (data not shown). The addition of stromal cells, 

particularly cancer associated fibroblasts, to this assay, while beyond the scope of this 

work, could provide insight into how various types of cells associated with tumors 

contribute to the overall tumor stiffness.  
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The changes in matrix stiffness between parental and myosin II KD cells were as 

expected from the gel compression assays, however, the cell modulus, both total and 

individual, for the IIB KD cells was much lower than predicted based on the gel 

compression or total construct modulus. The elastic modulus of the IIB KD constructs was 

calculated to be 7.20 Pa, while the parental was 9.22. Based on these numbers, it was 

predicted that the IIB KD total cell modulus would be much closer to the parental value of 

286.262 Pa (189.25 µPa for single cell modulus) than the 107.435 Pa (79.84 µPa single 

cell modulus) value that was calculated. Part of this unexpected result is explained in the 

elastic modulus values of the two different matrices (the deoxycholate treated samples). 

For those stretches, the IIB KD modulus was higher than that of the parental, 4.73 Pa 

versus 4.38 Pa, respectively. This indicates that in the IIB KD cell constructs, the matrix 

is responsible for a relatively large proportion of the overall elastic modulus while the cells 

themselves contribute little. In these cells, myosin IIA alone is sufficient to arrange a 

collagen matrix, but not for the cells themselves to respond to a dynamic physical strain. 

This could be due to the different responses of the two isoforms to mechanical loads. 

Myosin IIB has been shown to have different ADP release kinetics under mechanical 

loads, and to be more sensitive to such mechanical changes than IIA [82]. Thus, loss of 

IIB may prevent the cells from being able to respond to mechanical stress because the 

remaining IIA isoforms does not respond to mechanical loading in the same way. Here 

we used the rule of mixtures to calculate the contributions of the different construct 

components, cells and matrix, to the overall elastic modulus. This method has been used 

in other studies and is known to have limitations [37, 89, 90]. The calculated cell modulus 

using the rule of mixtures from an unidirectional strain, as used here, is somewhat cell 
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distribution and orientation dependent [37]. Since the different cell types used in this study 

have similar, random, orientations, this effect would not have a significant bearing on the 

differences seen here, though it could affect the absolute calculated elastic moduli. In 

addition, there is a need to compensate for the voids left when the cells are removed 

using deoxycholate [89]. However, the effects are minimal at lower cell concentrations 

(below 10x106 cells/mL), where the voids do not disrupt the continuity of the matrix. The 

number of cells in the constructs used here is well below that threshold.  

Cell viscoelastic properties are also involved in cancer metastasis, and changes in 

these properties could influence how cells interact with their matrices, migrate, and 

ultimately metastasize within the body. We tested the biophysical properties of cells 

lacking either the IIA or IIB myosin isoforms using cell poking. The IIA KD cells had a 

significantly lower mean stiffness than parental cells, indicating that the remaining 

isoform, IIB, is unable to generate the tension within the cell that leads to cell stiffness. 

IIB KD cells, on the other hand, had a higher mean stiffness than parental cells, though 

this difference is not significant. The differences in the physical properties of these cell 

lines could in part be explained by the different enzyme kinetics of the isoforms. Myosin 

IIB has a slower ADP release rate than IIA, and therefore spends more time bound to 

actin than IIA [81, 91]. Myosin IIB may be unable to quickly relocate within the cell to 

respond to physical strain at a defined location, as during cell poking. Based on the cell 

poking data and previous studies showing that metastatic cells are softer than cancer 

cells in the primary tumor [55, 84], it could be predicted that the IIA KD cells, which are 

significantly softer than the parental or IIB KD cells, may have a higher metastatic 

potential. However, when all of the data presented here is taken into account, we 
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speculate that the opposite is true. IIA KD cells do not interact with the surrounding 

collagen matrix, as measured by gel compression and elastic modulus studies. In 

addition, they are unable to efficiently migrate in 3D migration models. Both of these 

functions are necessary for metastasis [75, 92-94].  

After establishing that both myosin II isoforms are necessary for efficient cell-

mediated matrix reorganization, we used 3D migration assays to test the ability of these 

cells to migrate. We compared the migration patterns of the cells in our plug model and 

the widely used dispersed model of 3D migration. We determined that cells migrate 

differently in our plug model than they do in the dispersed model of cellular migration. 

This is possibly due to the lack of extensive cell-cell contacts seen in the dispersed model 

of migration compared to the plug model, where cells are densely packed in the collagen 

plugs. For the parental and IIB KD cells, track length and displacement were significantly 

increased in the dispersed model. This could be due to the lack of obstacles, in the form 

of other cells, present in the dispersed model.  The different track patterns seen in the IIA 

and IIB KD patterns indicate that the two isoforms play non-redundant roles in MDA-MB-

231 cell migration. 

It has previously been shown that nonmuscle myosin II isoforms are both needed 

for proper spreading of MDA-MB-231 cells in 2D [61]. Here we show that cells missing 

either the myosin IIA or IIB isoform have cytoskeletal disruptions in 2D, in agreement with 

previous studies [61]. We also see a difference in cell morphology in 3D after loss of either 

myosin II isoform. This is consistent with a previous study showing that force generation 

by cells is needed for cell spreading in 3D [71, 95]. These changes in 3D morphology are 

related to the altered ability of the cells to interact with the collagen matrix, as discussed 
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above. IIA KD cells are unable to compress a collagen matrix; their morphology in 3D is 

a rounded cell body with long, thin protrusions in multiple directions. Without myosin IIA, 

these cells are unable to spread properly in the 3D matrix, and are also unable to generate 

the force needed to alter the surrounding ECM and compress the gel. These two 

observations go hand in hand. Not only does the loss of force generation prevent the cells 

from compressing the collagen, it also prevents them from pushing outwards in order to 

spread, leading to the rounded cell body with thin protrusions. While the IIB KD cells also 

had altered morphology compared to the parental MDA-MB-231 cells, they were able to 

generate the force needed to compress the collagen gel.  

Here, we showed that MDA-MB-231 cells migrate differently in our plug model of 

3D migration as compared to the widely used dispersed model. There are many models 

of cell migration and invasion used throughout the literature, such as the dispersed model, 

transwell assays, and asymmetric assays in which cells are seeded between two different 

ECMs. Each model has its advantages and disadvantages, however we excluded 

transwell and asymmetric assays for our purposes and decided to focus on comparing 

our plug model to the dispersed model because both of these models measure the 

migration of cells completely suspended in collagen and allow for direct tracking of 

individual cell movements. The transwell assay is not compatible with such cell tracking, 

and the sandwich model allows the cells to from a monolayer before the top layer of matrix 

is added, meaning the cells will have already spread and formed matrix adhesions before 

they are completely surrounded by the matrix. While we showed differences in the 

migration of cells in the plug and dispersed models of migration, our results in the 

dispersed model are radically different than the average speed of 3 μm/hr obtained in a 
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previous study of MDA-MB-231 cell invasion into Matrigel [46], though these results are 

consistent with previous studies of MDA-MB-231 cell migration in collagen [96]. This is 

most likely due to the differences in the ECM used. Different ECMs, as well as differing 

ECM stiffness, has been shown to alter not only the speed of cell migration, but also the 

mode of migration the cells use as they move through the matrix [14, 16, 31, 66, 69, 97, 

98]. Matrigel is a cell derived basement membrane composed of multiple matrix proteins, 

which affects cell-matrix adhesions. It is also not cross-linked. Matrix cross-linking 

increases cell invasion and migration [8, 99]. Finally, in the study measuring MDA-MB-

231 cell migration in Matrigel, the cells were only allowed to incubate in the Matrigel for 

30 minutes prior to imaging, to allow the Matrigel to polymerize. After such a short time 

frame, the cells are not fully spread and are unlikely to be migrating efficiently [46].  

 We also observed differences in the migration potential of myosin IIA and IIB KD 

cell lines in our plug model of migration. IIA KD cells were unable to move in a sustained 

direction, and instead migrated in a disorganized track in a small area. Previous studies 

have shown that myosin IIA accumulates at the rear of migrating cells and its function is 

required for efficient migration [46]. IIA is also required for adhesion maturation and 

migration of cells on 1D fibrillar structures, micropatterned fribril-like matrix that confines 

the cells to moving in a single axis [71], which is consistent with our results. IIA KD cells 

are unable to form mature adhesions to the matrix [71, 100], and therefore unable to exert 

the force necessary to migrate. IIB KD cells also had a change in migration patterns, 

which is consistent with previous studies showing that loss of IIB function lowers the 

migration potential of melanoma cells [70] and stabilizes adhesions beneath the cell body 

of cells in 1D [71]. While myosin contractility in general is required to propel the cell 
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forward during cell migration [46], we show here that the two main isoforms present in 

MDA-MB-231 cells play distinct roles in migration in a 3D collagen matrix.  

 In general, the results shown here indicate that myosin IIA is critical for matrix 

rearrangement and cell migration while loss of IIB had a less intense effect on the ability 

of cells to organize a matrix, though the cell elasticity is greatly affected. These differences 

in isoform behavior could be due to differences in their kinetics. Myosin IIB has a much 

higher affinity for ADP, and a slower release rate, which means it spends more of its time 

bound to actin than does IIA [80, 81, 91]. The two isoforms also have different means of 

regulation and interactions with other cytosolic proteins that alter myosin actin binding 

and ATPase activity that could explain the differences seen here [101-103]. Additionally, 

the two isoforms respond differently under mechanical loads, with myosin IIB showing 

enhanced mechanosensitivity [82]. Finally, it has been shown in mesenchymal stem cells 

that myosin IIA localizes to stress fibers of cells in stiff 3D matrices prior to IIB polarization 

to the rear of the cell, both of which precede migration [83]. If these observations hold 

true in MDA-MB-231 cells, it could provide a partial explanation for the results seen here. 

Cells lacking myosin IIA are unable to significantly impact their surrounding matrix or 

efficiently migrate in 3D collagen. If IIA localization to stress fibers is needed for proper 

IIB polarization, then IIB alone is unable to generate the force needed on the actin 

cytoskeleton to arrange the collagen. Additionally, without the IIA isoform, the cells are 

unable to polarize, an important step in migration. On the other hand, cells lacking the IIB 

isoform are somewhat able to organize the collagen matrix and migrate in 3D collagen. 

In these cells, the IIA isoform localizing to the stress fibers may be enough for the cells to 

interact with and rearrange the collagen matrix, but not for the cells themselves to 
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generate tension in response to strain. This would indicate that the two main myosin II 

isoforms, IIA and IIB play separate roles in the generation of cellular tension and cell-

matrix interactions, with IIA perhaps playing a primary role in IIB localization/activation. 

There are many possibilities as to why the A and B isoforms of myosin II play different 

roles in cell rigidity and matrix interactions, however, a more in depth study into the 

regulation and activity of the isoforms during matrix rearrangement is needed to fully 

explain the mechanisms behind these actions.  

 These results indicate that myosin II isoforms are significantly involved in cell 

processes closely involved with cancer progression and metastasis, namely, cell 

mediated matrix rearrangement and migration. In addition, we have developed a new 

method of measuring ECM stiffness and elasticity that allows for a global and dynamic 

response from cells and matrices, as well as precise control over matrix components. 

These characteristics are known to have an effect on tumor development, therefore 

having a better understanding of how cancer cells rearrange and interact with the matrix 

and affect its rigidity in vitro may lead to innovations in diagnosis and treatment that could 

benefit public health. While we have described the differences in matrix interaction, further 

research into the mechanics of how myosin II isoforms are differentially involved in this 

interaction is needed.  
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Figure Legends 

Figure 1. Knockdown of myosin II isoforms Greater than 85% knockdown of myosin 

protein content was achieved in stable cell lines expressing shRNA to myosin IIA or IIB. 

Myosin isoform levels were assessed for every experiment to verify the level of myosin 

IIA and IIB knockdown.  

Figure 2. Knockdown of myosin II isoforms induces cytoskeletal changes in MDA-

MB-231 cells in 2D Parental (A-D), IIA KD (E-H) and IIB KD (I-L) cells were fixed, 

permeabilized, and immunostained with affinity purified polyclonal myosin IIA and IIB 

primary antibodies and Phalloidin-TRITC to visualize actin filaments and myosin 

localization. In parental MDA-MB-231 cells, myosin IIA (B) localizes to stress fibers and 

the leading edge of cells, while myosin IIB (D) had cytosolic, stress fiber, and perinuclear 

localization. Myosin IIA KD cells had altered actin cytoskeletal structure and were slightly 

larger than parental controls, while the residual IIA (E) in these cells localized to stress 

fibers and myosin IIB (H) localization was largely unaffected, remaining largely diffuse 

throughout the cytosol with some stress fiber and perinuclear localization. Myosin IIB KD 

cells exhibited a more irregular shape with short, prominent stress fibers, and the residual 

IIB in these cells exhibited a perinuclear localization (L) IIA localization was primarily to 

stress fibers (J), as in the parental cells. 

Figure 3. Loss of myosin II isoforms induces morphological changes in 3D Cells 

were added to a collagen solution, poured into Teflon molds and allowed to incubate for 

1 day. Constructs were washed, fixed, permeabilized, and stained with Phalloidin-TRITC 

and affinity purified myosin II antibodies. Cells were examined using Two Photon 

Microscopy. (A-F) Parental MDA-MB-231 cells in three dimensions had pyramidal cell 
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bodies with multiple projections and significant staining of both IIA (B) and IIB (E) myosin 

isoforms, mainly diffuse throughout the cytosol. (G-L) IIA KD cells had rounded cell bodies 

with highly branched and elongated projections in all directions and very little residual 

myosin IIA (H) staining, mostly localized to the cell bodies. The IIB (K) in these cells 

remained diffuse throughout the cytosol. (M-R) IIB KD cells were elongated with fewer 

projections and tended to be localized to a single focal plan, with residual IIB (O) localized 

at cell edges and near the nucleus. For all cell types, myosin isoform localization in 3D 

was mainly cytosolic.  

Figure 4. Morphological characteristics of cells lacking myosin II isoforms Collagen 

constructs containing cells were prepared and imaged as outlined. IMARIS image 

analysis software was used to quantify the observations made on cell morphology in 3D 

collagen gels across three separate experiments. (A) The average number of protrusions 

per cell were measured using the Filaments function in IMARIS. Statistical significance 

was calculated using one-way ANOVA with a Tukey post-test. The difference between 

parental and IIA KD cell types was significant (p < 0.01), as was the difference between 

IIA and IIB KD cells (p < 0.001). (B) The sphericity of the cell bodies was calculated using 

the Surfaces function in IMARIS. IIA KD cells were slightly more spherical than parental 

or IIB KD cells, though the difference was not statistically significant. (C) The elongation 

factor of the cell bodies was calculated using the measurements function in IMARIS. We 

defined the elongation factor as the measurement of the longest dimension of the cell 

body, divided by the measurement of the shortest dimension. IIB KD cells had a slightly 

higher elongation factor than the parental or IIA KD cells.  
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Figure 5. Loss of myosin II isoforms inhibits the ability of MDA-MB-231 cells to 

compress a collagen gel MDA-MB-231 cells or 1 µm fluorescent beads were mixed with 

a collagen solution and poured into a Teflon mold with a central mandrel. Constructs were 

incubated for 1 to 4 days to allow the cells to compress the collagen gel. MDA-MB-231 

constructs were washed, fixed, permeabilized, and stained with TRITC-Phalloidin and 

Hoescht 33258 dye. Cells were examined using Two Photon Microscopy. (A) Z-stacks 

were taken from the top to the bottom of the constructs and the thickness recorded. 

Representative z-stacks of each cell type, stained with Hoescht 33258 dye to ensure even 

distribution of the cells through the depth of the collagen gel, are shown. Images were 

examined using IMARIS software and maximum intensity projections were generated 

using the Volume function. (B) Data shown are average collagen gel depth 

measurements (error bars are SD) from three separate experiments. Parental MDA-MB-

231 cells were able to constrict the collagen gel by over 40%, as were IIB KD cells, while 

IIA KD cells were only able to constrict the gel by 15-20%. The statistical significance was 

calculated using a one-way analysis of variance with a Tukey post-test on the 1 day 

measurements. The difference between collagen with fluorescent beads alone and 

parental cell and IIB KD cell constructs (p < 0.0001) was significant, as was the difference 

between the beads alone and IIA KD constructs (p < 0.01). These were not indicated on 

the bar graph for clarity. In addition, the difference between parental and IIA KD constructs 

was significant (p < 0.0001).   

Figure 6. Isometric tension development of MDA-MB-231 cells Representative 

isometric tension tracings from a single experiment, plotted as mN stress versus strain, 

are shown for each of the following: (A) readings generated by parental cells (black), IIA 
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KD cells (red), IIB KD cells(green), and collagen alone during an initial 10% stretch of 

untreated constructs. Myosin KD cells exhibited a lower response to strain compared to 

parental constructs, especially IIA KD cells, while collagen alone constructs had a 

negligible response to the strain. (B) Parental cell constructs with no treatment (black), 

treated with cytochalasin D to disrupt the active actin component (red), or treated with 

deoxycholate to wipe out the cell completely (green). These readings are compared 

against collagen alone (blue). (C) IIA KD cell constructs with no treatment (black), treated 

with cytochalasin D (red), or treated with deoxycholate (green) are compared to collagen 

alone (blue). A similar pattern in treatment responses was seen to that of the parentals. 

Inset: The same readings set to a smaller mN scale to highlight the differences between 

the different treatments. Inset IIA KD cell construct force measurements are shown with 

a reduced y-axis scale to highlight the differences between treatment conditions. (D) IIB 

KD cell constructs with no treatment (black), treated with cytochalasin D (red) or treated 

with deoxycholate (green) are compared to collagen alone (blue) For all cell types (B-D) 

treatment with either cytochalasin D or deoxycholate greatly disrupted the response of 

the collagen constructs to stretching, with deoxycholate having a greater effect, indicating 

that cell components other than the actin contractile component contribute to the overall 

construct response to mechanical strain.  

Figure 7. Matrix rigidity of MDA-MB-231 cells Representative collagen construct stress 

calculations from a single experiment for the initial, untreated stretch (A) and the 

deoxycholate treated stretch (B) plotted as Pa versus strain. For both, myosin II KD cell 

constructs had a decreased stiffness in response to strain. Because the stiffness 

calculation takes the cross section area of the constructs into account, and the IIA 
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constructs are much larger, the difference between the parental and IIA KD constructs is 

enhanced when compared to the differences seen when the strain response is plotted as 

mN versus Strain (Fig. 6). Loss of myosin IIA had a more significant effect on force in 

response to strain than did loss of myosin IIB.  

Figure 8. Loss of myosin II isoforms affect cell viscoelasticity as measured by cell 

poking. Cells were seeded on glass coverslips and their viscoelasticity measured by cell 

poking. Parental MDA-MB-231 cells had a mean stiffness of 5.39 dynes/cm, IIA KD a 

mean stiffness of 4.26 dynes/cm, IIB KD 5.81 dynes/cm, and blebbistatin treated cells a 

mean stiffness of 3.1 dynes/cm. The difference between the parental and IIA KD cell lines 

was significant, with a p-value of 0.003. Cells treated with the myosin II inhibitor 

blebbistatin had a lower stiffness than either of the KD lines, and was significantly lower 

than any of the other cell types.   

Figure 9. Loss of a myosin II isoform has a distinct effect on the ability of the cell 

to migrate in 3D (A) MDA-MB-231 cells are mixed with 1mg/mL Type I rat tail collagen 

solution at a concentration of 2x106 cells/mL  (1), and poured into silicon templates (2-3). 

The collagen/cell mix is allowed to incubate for 24 hours at 37oC 5%CO2 (4), by which 

time the cells have organized and constricted the collagen matrix to form a mini-tumor 

(5). Mini-tumors are removed from the template and re-embedded into a 3D collagen 

matrix (6). Cultures are placed in a tissue culture incubator for 12 hours at 37oC, 5%CO2 

(7) before beginning motility measurements performed on a Zeiss 510 Meta equipped 

with a temperature and CO2 controlled environmental chamber (8) . (B-D) Mini-tumors 

were imaged in a 37oC, 5%CO2 humidified chamber using live cell confocal microscopy. 

Z-stacks were taken at 2 μm steps for a total depth of 50 μm. Images were captured every 
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15 min over a 24 hour period. Cells were tracked and speed, track displacement (the 

distance from a cell’s starting point to end point), and track length (the total distance the 

cell moved) were calculated using Imaris Spots function. Migration in the mini-tumor 

approach was contrasted with cells treated with 50uM blebbistatin as well as cells 

dispersed in a collagen matrix. Cells seeded in the mini-tumor model migrated much 

slower than cells dispersed in a collagen matrix. Within the mini-tumor model, parental 

MDA-MB-231 cells migrated 30% faster than IIA KD cells and 50% faster than IIB KD 

cells. Blebbistatin treatment also affected the migration patterns of cells in the mini-tumor 

model. 

Figure 10. Migration track patterns of cells migrating in the plug model. Mini-tumors 

were imaged in a 37oC, 5%CO2 humidified chamber using live cell confocal microscopy. 

Z-stacks were taken at 2 μm steps for a total depth of 50 μm. Images were captured every 

15 min over a 24 hour period. Reconstructions were generated using Imaris Spots tracker 

(Bitplane) software package.  Scale bars are 50um. 
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Abstract 

Endothelial cells are a major component of blood vessels, and as such, they are involved 

in physiological functions related to the circulatory system. A number of these functions 

are dependent on the contractility of the endothelial cells, including the barrier function, 

an important function in maintaining the integrity of blood vessels. The main regulator of 

actin based contractility in nonmuscle cells is nonmuscle myosin II, which has three 

isoforms, A, B, and C. We therefore sought to determine if the different isoforms of 

nonmuscle myosin II are differentially involved in endothelial cell properties that contribute 

to blood vessel integrity. Using shRNA constructs, we generated myosin IIA and IIB 

knockdown SVEC cell populations. Cells lacking either isoform had a disrupted actin 

cytoskeleton and altered morphology. We tested the barrier function of SVEC monolayers 

using Electric Cell-substrate Impedance Sensing (ECIS). Cells lacking myosin IIA had a 

lower barrier function compared to parental or IIB KD cells. The ability of the cells to 

generate a basal isometric tension and respond to thrombin treatment, which stimulates 

endothelial cell contraction, was also tested. Parental cells had a high basal tension and 

robust response to thrombin treatment. IIB KD cells had a lower basal tension, but 

retained the ability to respond to thrombin. IIA KD cells, on the other hand, not only had 

a reduced basal tension, but also did not respond to thrombin treatment. These results 

indicate that nonmuscle myosin IIA is involved in the barrier function of endothelial cells 

and their ability to respond to thrombin.   
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Introduction 

Endothelial cells play a number of important physiological roles in the cardiovascular 

system. These cells line both the vascular and lymphatic vessels in the body and control 

the passage of fluids, signaling molecules such as hormones, and cells such as 

leukocytes between the bloodstream and the surrounding tissue through their barrier 

function. Endothelial cells also control blood pressure, release anti-coagulation factors to 

prevent the formation of blood clots, and regulate the growth of new vessels in response 

to physiological and pathological stimuli [1, 2]. The induction of angiogenesis, i.e. the 

growth of new vessels, is one of the hallmarks of cancer. This allows tumors to receive 

oxygen and nutrients through the blood supply, which allows the tumors to grow larger [3, 

4]. The endothelium also serves as a physical barrier during two steps of metastasis, i) 

during intravasation, where cancer cells leave the primary tumor and enter the 

bloodstream, and ii) during extravasation, where cancer cells exit the bloodstream at a 

distant site [4, 5]. Many studies have addressed the molecular mechanisms of cancer cell 

transmigration across an endothelial cell monolayer, however, the majority of these 

studies have focused on the cancer cell, while assuming the endothelium plays a more 

passive role [5]. Recent studies show that endothelial cells promote tumor cell invasion 

into a collagen matrix. The endothelial cells may be releasing chemotactic factors that 

enhance invasion, which could enhance metastasis by directing cancer cell migration 

towards local vasculature. Further, cancer cells alter the biomechanics of the endothelium 

through direct interactions or chemical signaling to enable transmigration [5-8].  

 Cancer cell extravasation is similar to leukocyte tissue invasion during the 

inflammatory response [9]. During leukocyte diapedesis, the leukocytes cause an 
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increase in intracellular calcium in the endothelium, which results in the activation of 

myosin light chain kinase (MLCK) [10]. MLCK phosphorylates and activates nonmuscle 

myosin II, which stimulates cell contractility [11-14]. This increase in cell contractility puts 

physical strain on the junctions between endothelial cells, disengaging the cell-cell 

adhesions and signaling for the adhesion proteins to be internalized by the cell [15-18]. 

This disruption of cell-cell adhesions increases the permeability of the endothelium, 

allowing the leukocyte to pass between endothelial cells as it extravasates from the blood 

vessel into the infected or damaged tissue [10]. Cancer cells may use a similar 

mechanism during transmigration.  

 Nonmuscle myosin II is the main regulator of contractility in nonmuscle cells, and 

is activated by MLCK [19]. As indicated above, leukocytes induce calcium dependent 

activation of MLCK.  In contrast, thrombin treatment of endothelial cells stimulates Protein 

Kinase C-dependent activation of MLCK, inducing myosin II dependent cell contraction 

and disassembly of adherens junctions. Thus, while the steps leading to myosin II 

activation in response to different stimuli can differ, the outcome is similar, induced cell 

contraction and weakened barrier function [18]. It has been established in the literature 

that tumor cells interact with the endothelium to enable their transmigration [6, 8]. Tumor 

cells may stimulate myosin II dependent endothelial cell contraction, leading to gaps in 

the cell-cell junctions that would enable tumor cell transmigration. In fact, TGF-β1, a 

chemokine associated with many cancers, induces endothelial cell contraction and 

disruption of adherens junctions through MLCK [7]. Whether the tumor cells stimulate 

calcium-dependent myosin II activation, activation through the PKC-MLCK axis, or 

contraction through TGF-β1 is unknown. Understanding the precise role of the contractile 
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machinery in the endothelial cells in barrier function will provide valuable insight into the 

metastatic process and may elucidate potential therapeutic targets.  

There are three isoforms of nonmuscle myosin II heavy chain; A, B, and C. 

Functional myosin II molecules are hexamers composed of two myosin heavy chains and 

two sets of light chains, the essential and regulatory. It is the regulatory light chains that 

are phosphorylated by MLCK and activate myosin II activity [20]. Myosin II is involved in 

many cellular processes, including cell division, migration, and adhesion [21]. It is this last 

function, myosin’s role in cell-cell adhesion, as well as its role in the contractility response 

that leads to increased barrier permeability, that is of particular interest in tumor 

transmigration and is not well understood. In some cell processes, myosin isoforms are 

interchangeable, one isoform can function in place of another [22]. In other cell processes, 

the isoforms play distinct and non-redundant roles [23-25]. Studies on myosin II in cell 

adhesions have previously focused on general myosin II activity, not the role of the 

specific isoforms [26-29]. Understanding how the separate isoforms function in cell 

processes associated with disease may enable the development of targeted therapies. 

Therefore, we sought to characterize how loss of myosin II isoforms affects the cell 

contractility and barrier function of endothelial cells.    

 In this study, we used lentiviral mediated shRNA knockdown of the two main 

isoforms of myosin II expressed in murine small vein endothelial cells (SVEC), myosin IIA 

and IIB, to evaluate the function of each in endothelial cells [11]. Changes in cell 

morphology, actin cytoskeleton organization, contractility, and barrier function were 

measured. Changes in the myosin II status of these endothelial cells affected organization 

of the actin cytoskeleton and cell morphology. Cells exhibited altered actin structures and 
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cell shapes. Monolayers composed of cells lacking the IIA isoform did not present the 

typical cobblestone appearance, and exhibited a number of spindle shaped cells and less 

well defined cell borders. Myosin IIB knockdown cell monolayers exhibited a cobblestone 

appearance, however, the individual cells were larger. We show that loss of either the 

myosin IIA or myosin IIB isoform decreases tension generation in SVEC cell lines. Loss 

of the IIA isoform significantly decreased monolayer barrier function and tension 

generation, while loss of myosin IIB had no significant effect on barrier function and a 

muted decrease in tension generation. These data indicate that the myosin II isoforms 

are differentially involved in tension generation and endothelial barrier function, with the 

IIA isoform appearing to play a more vital role. Tumor cells may induce specific activation 

of the IIA isoform during transmigration, though further studies are needed. This could be 

exploited in the design of therapies targeting metastasis.   

Materials and Methods 

Cell Culture:  

Mouse small vein endothelial cells (SVEC) were obtained from ATCC and maintained in 

MEM supplemented with 10% FCS, 100 U/ml penicillin, and 100 µg/ml streptomycin in a 

37oC humidified 5% CO2   tissue culture incubator. Cells were plated on 0.5% gelatin 

(Sigma-Aldrich) coated flasks to maintain cell viability. Phase contrast images were taken 

on a Zeiss Axiovert 40 CFL microscope. 

Generation of Myosin II Isoform Knockdown Cells:  

SVEC knockdown cells were generated using lentiviral shRNA constructs targeted to 

either the IIA or IIB isoform (obtained from Openbiosystems). Lentiviral constructs were 

produced in 293T/17 as outlined previously [30] using 2nd generation transfer plasmids.  
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Briefly, 293/T17 cells were seeded 24 hrs prior to transfection and transfected with a total 

of 30µg DNA in the ratio of 3 parts transfer vector: 2 parts psPAX2 packaging vector: 1 

part pMD2.G VSV-G packaging vector. Turbofect transfection reagent (ThermoScientific) 

was used. Media containing virus was collected every 12 hours for 3 days.  Viral enriched 

media was centrifuged at 2000 RPM for 5 min and filtered through a 0.45 µm low protein 

binding filter to remove cell debris and stored at -80oC. To generate cell lines, SVEC cells 

were seeded at a density of 4X105 cells/T-25 flask 24 hours before infection with shRNA 

lentivirus. Cells were infected with 2mL of viral stock for 72 hours. Cultures were washed 

with MEM+10% FCS, refed and allowed to recover for 1 day. For selection and 

maintenance of SVEC cell populations, cultures were fed with MEM+10%FCS containing 

5 μg/mL puromycin. Knockdown was verified using Western Blot analysis.  

Immunofluorescence staining:  

Cells were seeded at a density of 3.5x104 in 35mm dishes 48 hours prior to fixation, fixed 

and permeabilized as outlined previously [13]. Affinity purified primary rabbit antibodies 

were prepared at a dilution of 1 µg/mL in blocking buffer and samples incubated for 3 

hours at room temperature. TRITC-phalloidin (Sigma-Aldrich, St. Louis, MO, Cat. No. 

P1951) was also added in the primary antibody incubation for examination of actin 

filaments.  The cells were washed in blocking buffer and incubated for 1.5 hours at room 

temperature in a 1:1000 dilution of Alexa 488 goat α-rabbit secondary antibody (A11070 

Invitrogen, Grand Island, NY, 14072) diluted 1:10 in blocking buffer. Cells were washed 

and coverslipped in 9:1 glycerol:PBS containing 0.1 M n-propyl gallate. Imaging was 

performed using a Zeiss LSM 510 confocal microscope. For 2D morphology, a Plan-
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Apochromat 63x/1.40 Oil DIC M27 objective was used and z-stacks taken at 0.3 µm steps 

through the depth of the cell.  

ECIS Measurements: 

The effect of myosin II isoform depletion on monolayer permeability was measured using 

Applied Biophysics Model 1600R ECIS (Applied BioPhysics, Troy, NY, USA). Electrode 

arrays (8W10E+) were cleaned using 10mM cysteine and coated with 5μg/mL collagen 

in 0.15M NaOH and incubated overnight at room temperature. Array wells were then 

washed with 300 μL culture media, stabilized, and equilibrated at 37oC, 5% CO2 for two 

hours. Arrays were seeded with SVEC parental and knockdown cells with 4x105 cells/well 

in 400 μL media and attached to electrode clamps. Cell lines were seeded in duplicate 

on each array, and duplicate arrays were measured, for a total of 4 replicates of each cell 

type with each experiment. Electrical resistance was measured at one minute intervals 

until a stable resistance was reached and maintained, which took approximately 96 hours. 

A lower resistance corresponds with increased monolayer permeability. Data are plotted 

as resistance (ohms) as a function of time. Parental and knockdown cell line tracings are 

an average of data from 4 individual wells ± SEM. Shown are representative experiments 

of 3 replicate studies.  

Isometric Tension Measurements:  

Isometric tension measurements were performed as described in detail previously [13, 

14, 31-33]. Briefly, parental and myosin II KD endothelial cells were mixed with 1 mg/mL 

Type I rat tail collagen and poured into Teflon casting molds with a central post. After 4 

days of incubation in a 37oC humidified 5% CO2   tissue culture incubator, the cells have 

compressed the collagen in a tight ring around the central posts. The collagen ring is 



134 
 

removed and hung from a force transducer connected to a stepper motor. The collagen 

gels were placed in a 50 ml thermo-regulated Organ Bath (Harvard Apparatus, Holliston, 

MA, USA Cat# 760165) containing 20 mM Hepes-buffered MEM/0.4% bovine serum 

albumin (Sigma Aldrich). Organ baths were maintained at 37ºC for the duration of 

experiments. The isometric tension generated by the collagen constructs is allowed to 

reach a stable baseline before the constructs are treated with 2 units/mL of thrombin to 

stimulate cell contraction and allowed to return to baseline. Constructs were snap frozen 

in liquid nitrogen and stored at -80oF for DNA content analysis. Tension measurements 

were normalized to DNA content to control for the small variations in cell number between 

collagen constructs.  

Rat tail collagen isolation: 

Fresh rat tails were obtained from animal quarters and sterilized with 70% EtOH. In a 

sterile environment, the tails were skinned and collagen bundles were severed at each 

end of the tail with a scalpel, before being pulled from the tail using hemostats. Collagen 

fibrils were placed in sterile 4oC PBS on ice until at least a total of 5g of collagen had been 

collected (~4-5 large tails). Excess muscle tissue was removed from the collagen fibrils 

before placing the collagen in 70% EtOH for one hour on ice. Fibrils were then washed 

twice more with 70% EtOH before final washes of sterile PBS and water. The fibrils were 

then placed in 300 mL of sterile 20 mM acetic acid. The collagen solution was stirred at 

a slow rate for 48 hours at 4oC, occasionally mixing with a sterile pipet to ensure complete 

mixing. After the extraction period, the collagen was centrifuged at 16,000xg for 90 

minutes at 4oC. Collagen concentration was determined using SDS-PAGE and stored at 

4oC, protected from light. 
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DNA Analysis: 

To measure the DNA content of collagen constructs after isometric tension 

measurements, frozen construct samples were re-suspended in 750 μL of 0.1% SDS in 

PBS and sonicated until homogenous. Samples were diluted using 0.1% SDS in PBS at 

1:10, 1:50 and 1:100 dilutions and 100 µL of each dilution loaded into a microwell plate 

(Nunc Part No. 237017). Hoescht 33258 stain was added to each well at a concentration 

of 0.09 μg/mL per well and the plate was analyzed using the Hoescht 33528 protocol on 

a Modulus Microplate plate reader (Turner Biosystems, Model number 9300-002). 

Results 

Generation of Myosin II Isoform Knockdown Cell Lines 

For the purposes of this study, we focused on the role of myosin IIA and IIB in endothelial 

cell function. The IIC isoform is less well studied because it was more recently discovered 

and cloned, but is known to be less prevalent than the other two isoforms [11, 34]. To 

generate myosin II isoform knockdown (KD) cell lines, we infected endothelial cells with 

lentiviral shRNA constructs targeted to either the IIA or the IIB isoform. Lentiviral 

constructs were obtained from Openbiosystems and several shRNA clones were 

screened for efficacy. A clone for each target was chosen based on the knockdown 

efficiency and specificity. Several clones produced efficient knockdown of the targeted 

isoform, but also reduced expression of the other, non-targeted isoform. Figure 1 shows 

the myosin II isoform expression levels in cells after shRNA mediated knockdown. 

Greater than 85% KD was achieved for both IIA and IIB, with minimal effect on the non-

targeted isoform. Since myosin II is involved in cell adhesion and cell shape 

determination, we speculated that changes in the myosin status of cells would alter the 
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appearance of SVEC monolayers. Indeed, loss of either isoform affects morphology of 

cells in the monolayer. SVEC parental monolayers (Fig 1B; left panel), had a uniform, 

cobblestone appearance with rounded cells. IIA KD cells (Fig. 1B; middle panel) did not 

form uniform monolayers. Individual cells appeared larger, with less well defined cell 

borders. In addition, a number of the cells had a spindle like shape and grew on top of 

the more regularly shaped cells, even before cells reached confluence. Finally, IIB KD 

cells (Fig. 1B; right panel) formed a monolayer more uniform in appearance, similar to the 

parental cells. However, there were minor differences in morphology, especially the size 

of individual cells, which were larger in the IIB KD monolayers. These alterations to the 

monolayer, which could indicate a change in cell-cell adhesions, could have a significant 

effect on the barrier function of monolayers lacking myosin IIA, an essential function of 

endothelial cells. 

Myosin II Localization in Individual Endothelial Cells 

While the phase contrast images of the SVEC monolayers presented in Figure 1B are 

informative, we also wanted to investigate if loss of a myosin isoform affects the nuances 

of the cell actin cytoskeleton. Cells were stained with TRITC-Phalloidin to observe the 

actin networks and antibodies against the IIA and IIB myosin isoforms to examine their 

localization within the cell. Individual cells were stained to enable more precise imaging 

of cells structures. This was especially important in the IIA KD cells, where cells in a 

monolayer grew on top of one another, even before reaching confluence. Parental 

endothelial cells (top two rows of Fig. 2) had profuse stress fibers, and myosin IIA had a 

mainly cytosolic localization, though there was some IIA decorating the stress fibers. 

Myosin IIB in these cells also exhibited strong cytosolic localization with some IIB on the 
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stress fibers. In IIA KD endothelial cells (middle two rows of Fig. 2), the actin cytoskeleton 

appeared similar to that of the parental cells. The cells had altered morphology, with an 

increase in protrusions at the cell edge, and they lacked the smooth, rounded polygonal 

shape of their parental counterparts. The remaining myosin IIA in the cells was localized 

in the cytosol, and the IIB was localized to stress fibers and the cytosol. Finally, IIB KD 

endothelial cells (bottom two rows of Fig. 2) showed no significant alterations in either 

actin cytoskeleton or cell shape. Myosin IIA retained the stress fiber and cytosolic 

localization seen in the parental cells, and the remaining IIB had a perinuclear, 

mictrotubule like staining pattern. This microtubule like staining pattern could be due to 

myosin II interaction with microtubule associated proteins [35]. This immunofluroescent 

localization confirmed the isoform knockdown shown by Western blot analysis and 

indicated that loss of one isoform does not significantly affect localization of the other.  

Myosin II Isoforms are Needed for Endothelial Cell Barrier Function 

A vital function of endothelial cells is their barrier function. Endothelial cells line the 

vasculature and therefore must maintain a tight barrier. A “leaky” vasculature is 

associated with a number of diseases and can cause a significant, and dangerous, drop 

in blood pressure [1]. Changes in vascular permeability may also promote cancer 

metastasis since cancer cells could have an easier time crossing the physical barrier of 

the blood vessel wall [5, 6, 36]. Since myosin II isoforms are involved in cell adhesion, 

and myosin IIA knockout mice show deficiencies in vasculature integrity [11, 37], we 

hypothesized that changes in myosin II isoform expression in the cells would have a 

significant impact on their barrier function. To test this hypothesis, we used Electric Cell-

substrate Impedance Sensing (ECIS). Cells are seeded on an electrically conductive 
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array, allowed to form a confluent monolayer over the course of several days, and an 

electrical current is applied. If the monolayer is tight and has a high barrier function, the 

resistance of the cells will be high because the cells act as an insulator against the current. 

If the monolayer is “leaky”, with a low barrier function, the resistance will be lower. For 

these experiments, cells were seeded at a density of 4x105 cells/well and the array was 

immediately clamped into the ECIS machine and measurements begun. In this way, we 

were able to measure changes in resistance over the course of monolayer formation. The 

monolayer is considered complete when a stable resistance is reached. In this study, 

baseline resistance was reached after 96 hours. Figure 3 shows a representative ECIS 

reading from a single experiment. Measurements were performed in quadruplicate for 

each experiment, and experiments were repeated three times. Parental SVEC 

monolayers (orange line) reached a baseline resistance of about 1700 ohms after 65 

hours, which is similar to the resistance of human microvascular endothelial cells [38]. IIA 

KD cells (yellow line) had only reached a resistance of 1400 ohms and did not reach a 

stable plateau, even after 96 hours of incubation. Increasing measurement time longer 

than 96 hours required a change of culture media to prevent cell death, which disturbed 

the resistance readings. On the other hand, IIB KD cells (green line) had an initial 

resistance higher than that of the parental monolayers. This could be due to the larger 

size of the cells. During the initial stages of monolayer formation, before the cells begin 

to form intercellular junctions, resistance is greatly influenced by how much of the surface 

area of the array is covered by cells. Larger cells will therefore have an increased 

resistance than smaller cells. By the 60 hour time point, the difference between the 

parental and IIB KD cells is minimal, and they reach similar peaks at stable resistance. 
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These data indicate that myosin II isoforms, especially IIA, are needed for the formation 

and maintenance of barrier function in SVEC monolayers.  

Myosin II Isoforms are Needed for Isometric Tension Generation and Contractility 

in Response to Thrombin Treatment 

Leukocytes stimulate myosin II dependent endothelial cell contraction during diapedesis 

[10]. Cell contraction disengages cell-cell adhesions and pulls the cells away from each 

other, enabling the leukocyte to move between endothelial cells [15, 18]. It is believed 

that tumor cells adopt some of the behaviors of inflammatory leukocytes during 

metastasis [9]. If tumor cells behave as leukocytes and induce endothelial cell contraction 

to ease their passage during transmigration, then the contractility of the endothelial cells 

could affect this process. To test the contractility of endothelial cells, we measured the 

baseline isometric tension of SVEC cultures with and without myosin II isoforms, as well 

as their response to thrombin, which stimulates cell contractility. Figure 4 shows 

representative force tracings of these experiments. Samples were measured in duplicate 

for each experiment, and experiments were repeated an additional two times. Parental 

cells (black line) had a high baseline isometric tension of 100 dynes. Upon treatment with 

thrombin, the tension increased by almost 75%, indicating a robust contractile response. 

IIA KD cells (red line), had a baseline tension of just over 60 dynes, 40% less than 

parental cells. When these cells were treated with thrombin, they exhibited no increase in 

tension. This complete absence of a contractile response, along with the decrease in 

permeability (Fig. 3) could drastically impact how these cells act as a barrier during cancer 

cell transmigration. The IIB KD cells (green line), on the other hand, exhibited behaviors 

more similar to the parental cells, though slightly muted. Their baseline tension is just 
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above 90 dynes, and upon thrombin treatment, shows a 67% increase in tension. These 

data indicate that both myosin II isoforms are needed for tension maintenance and 

contractile response to thrombin treatment.  

Discussion  

Here we show that loss of either the myosin IIA or myosin IIB isoform in SVEC cells has 

an effect on monolayer barrier function and cell contractility. Loss of IIA had an especially 

pronounced effect on both of these cell functions, resulting in a lower barrier function and 

reduced contractility. Changes in the barrier permeability of endothelial cells could have 

a significant effect on how cancer cells migrate across the endothelial barrier during 

metastasis. The differences between the roles of the two isoforms could be due the 

differences in isoform enzyme kinetics. The IIB isoform has a lower ADP release rate than 

the IIA isoform, and therefore spends a higher proportion of time bound to actin [39, 40]. 

Because of this, the actin may be acting as a myosin IIB sponge, making this isoform less 

able to quickly respond to changes in the environment or signaling that require an 

increase in cell contractility. Therefore, IIA KD cells, which only have the IIB isoform, are 

unable to quickly generate cell contraction in response to thrombin treatment in the 

isometric tension experiments.  

 The role of endothelial cell mechanics during cancer cell transmigration is 

potentially very complicated, and could depend on what type of vasculature is involved, 

which organ it occurs in, and the origin of the cancer cells. It has previously been shown 

that cancer cells cause a decrease in the stiffness of endothelial cells under co-culture 

conditions [8]. However, if some cancer cells follow the model of leukocyte diapedesis, 

then endothelial cell contractility is needed to disengage cell-cell adhesions and create 
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gaps in the endothelial barrier [10]. Additionally, previous studies of in vitro cancer cell 

transmigration have shown that a number of the cancer cells undergo transcellular 

transmigration, a phenomenon that is also seen in leukocytes. Transcellular 

transmigration involves cancer cells, or leukocytes, migrating through the endothelial cells 

themselves, rather than between endothelial cells, which is known as paracellular 

transmigration. This process is dependent on myosin II if the endothelial cells are to 

survive the radial pressure the larger cancer cell exerts as it moves through the 

endothelial cell [41]. Less stiff endothelial cells may make it easier for cancer cells to 

squeeze between adjacent endothelial cells. However, increased contractility in 

endothelial cells would also create gaps in the endothelial monolayer that would enable 

cancer cells to more easily pass between endothelial cells. Determining how these two 

observed effects work together, or against each other, to enhance or prohibit tumor cell 

transmigration across an endothelial cell monolayer may yield valuable insight into cancer 

metastasis and future treatment strategies.  

 The experiments in this study show that loss of individual myosin II isoforms has 

differential effects on endothelial cell contractility and barrier function. While loss of either 

isoform results in a decrease in contractility, loss of the IIA isoform completely blocked 

the thrombin induced contractile response. IIA KD cells also had a low barrier function. 

From these results, we speculate that the IIA isoform of nonmuscle myosin II plays a vital 

role in the barrier function of endothelial cells, perhaps through myosin’s function in cell-

cell adhesions. Tumor cells may induce myosin IIA activation to stimulate endothelial cell 

contraction and decrease barrier function during transmigration. It would be interesting to 

test transmigration of tumor cells across endothelial isoforms lacking myosin II isoforms. 
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Understanding if tumor cells stimulate endothelial cell contraction, and if this activation is 

isoform specific, will provide insight into possible signaling mechanisms. These 

mechanisms could be exploited in targeting metastasis with chemotherapeutic agents. 

Since the majority of cancer related deaths are the result of metastasis to vital organs, 

especially in cancers that originate in non-vital organs such as the breast [42], any 

treatment options that block metastasis, at any stage of metastasis, could be of great 

benefit to society.  
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Figure Legends 

Figure 1. Knockdown of myosin II isoforms (A) Greater than 85% knockdown of 

myosin protein content was achieved in stable cell lines expressing shRNA to myosin IIA 

or IIB. β-actin was used as a loading control. Myosin isoform levels were assessed for 

every experiment to verify the level of myosin IIA and IIB knockdown. (B) The appearance 

of parental, IIA and IIB KD SVEC monolayers was determined using phase contrast 

microscopy. Parental monolayers had a uniform, cobblestone appearance. IIA KD 

monolayers consisted of larger cells, of less uniform shape, with a number of spindle-like 

cells. IIB KD monolayers had a uniform, cobblestone appearance much like the parentals, 

however the individual cells were larger.  

Figure 2. Knockdown of myosin II isoforms induces cytoskeletal changes in SVEC 

cells in 2D Parental (top two rows), IIA KD (middle two rows) and IIB KD (bottom two 

rows) cells were fixed, permeabilized, and immunostained with affinity purified polyclonal 

myosin IIA and IIB primary antibodies and Phalloidin-TRITC to visualize actin filaments 

and myosin localization. In parental cells, myosin IIA had a cytosolic localization, with 

some myosin localizee to stress fibers and the leading edge of cells, while myosin IIB had 

cytosolic, stress fiber, and perinuclear localization. Myosin IIA KD cells had altered actin 

cytoskeletal structure and significant aberrations in cell shape, while the residual IIA in 

these cells localized to stress fibers and myosin IIB localization was largely unaffected. 

Myosin IIB KD cells exhibited a more regular shape, and the residual IIB in these cells 

exhibited a perinuclear localization. Myosin IIA localization was unaffected.  

Figure 3. Myosin II isoforms are needed for efficient barrier permeability. Barrier 

function of SVEC parental and myosin II KD monolayers were measured using ECIS. 
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Cells were seeded at a density of 4x106 cells/well and the total electrical resistance 

measured as the monolayers formed until a stable baseline was reached (approximately 

60 hours for parental and IIB KD monolayers, >96 hours for IIA KD). Shown are average 

resistance readings from a representative experiment (n=4). Parental (orange line) 

monolayers reached a stable baseline of 1700 ohms after 65 hours of incubation. IIA KD 

monolayers (yellow line) did not reach a stable baseline, even after 96 hours, and only 

reached a maximum resistance of 1400 ohms. IIB KD monolayers (green line), had an 

initial resistance higher than that of the parentals (likely due to their increased cell size) 

and reached a baseline of 1650 ohms after 60 hours of incubation.  

Figure 4. Myosin II isoforms are needed for isometric force generation. Parental and 

myosin II KD SVEC cells were suspended in type I rat tail collagen and poured into Teflon 

casting molds. After 4 days of incubation, the cells have compressed the collagen into a 

tight ring that can be removed and hung from force transducers connected to a stepper 

motor. The baseline tension generated by the constructs is measured before contractility 

was stimulated using thrombin treatment. Parental cells (black line) had a baseline 

tension of 100 dynes and showed a 75% increase in tension after thrombin treatment. IIA 

KD cells had baseline tension of 60 dynes, and exhibited no change in tension after 

stimulation. IIB KD cells had a baseline tension of 90 dynes, and increased in tension by 

67% upon thrombin treatment.  
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Figure 2 
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Figure 3 
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Figure 4 
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General Discussion 

 This dissertation presents studies that describe the role of nonmuscle myosin II 

isoforms in breast cancer cell interactions with the matrix, breast cancer cell migration, 

and endothelial cell function (summarized in Figure 1). Each of these processes is 

involved in cancer progression. During the initial stages of tumorigenesis, the matrix 

influences the proliferation and invasive potential of tumor cells [1-7]. Increases in matrix 

stiffness stimulate cell proliferation through integrin mediated adhesions in a myosin II 

contractility dependent manner [8, 9]. Additionally, changes in the matrix architecture and 

organization promote cell migration by providing a physical scaffold for the cells [10-12]. 

Both of these effects are dependent on the cancer cell’s ability to sense and respond to 

changes in the surrounding ECM, as well as to physically modify the surrounding matrix 

to support cell migration, abilities which are dependent on cell contractility [2, 13-19]. The 

data presented here indicate that two isoforms of nonmuscle myosin II, A and B, are both 

needed for efficient matrix modification by breast cancer cells (Study 1). In the first stages 

of the metastatic process, tumor cells break away from the primary tumor mass and 

migrate through the interstitial space until they reach a blood or lymphatic vessel [20-25]. 

In MDA-MB-231 breast cancer cells, loss of either the myosin IIA or IIB isoform results in 

a significant alteration in migration ability in a 3D collagen matrix (Study 1). Finally, after 

cancer cells reach a lymph or blood vessel, they must cross the vessel wall. The 

endothelial cells that line these vessels are a major regulator of vessel permeability, and 

as such, changes in endothelial cell integrity can promote or inhibit cancer cell 

transmigration [26-31]. In murine SVEC monolayers, loss of the IIA isoform of nonmuscle 

myosin II significantly inhibits their ability to form a monolayer with a high barrier function 
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(Study 2). Together, these results indicate that nonmuscle myosin II isoforms play critical 

roles in cellular processes important for cancer progression and the dissemination of 

cancer cells during metastasis. Understanding how these isoforms are differentially 

involved in cancer progression will help elucidate the complex signaling pathways 

involved in mechanosensing, cell migration, and endothelial barrier function, perhaps 

providing new potential drug targets for the treatment of cancer.  

Targeting general myosin II activity in a human patient would likely result in 

detrimental side effects, at least without specific tumor targeting, due to myosin II’s 

essential role in normal cell processes such as cell division, synaptic plasticity, and blood 

vessel barrier function [32-35]. Targeting of specific myosin II isoforms is possible and 

may result in less severe side effects since the isoforms play redundant roles in a number 

of cell processes [36]. Targeting the ATPase activity of a specific isoform would be 

extremely difficult as the ATPase domains of these isoforms are highly homologous [36-

38]. However, the three isoforms differ significantly at the c-terminal tail, allowing for 

specific interactions with regulatory proteins and enzymes [36, 38-41]. Interactions at this 

tail region typically regulate myosin II filament assembly. In fact, S100A4 (Mts1) controls 

myosin II filament assembly through interactions at the tail region, and it is specific for the 

IIA isoform [41-43]. The design of small molecules specifically targeting myosin II isoforms 

to prevent filament assembly is possible. Beyond direct targeting of myosin II, 

understanding the different roles of the isoforms will provide a starting point for future 

studies into isoform specific regulation by other proteins. For instance, it has been shown 

that the collagen receptor DDR1, a tyrosine kinase receptor, specifically associates with 

myosin IIA and regulates filament assembly. Proteins like DDR1 that directly interact with 
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the IIA isoform might be therapeutic targets that can be inhibited to block myosin II 

activation. Targeting proteins that regulate myosin II isoform activity in cancer associated 

cell processes, especially in signaling cascades that are dysregulated in cancer, could be 

an ideal way to block myosin II dependent cell processes with reduced detrimental side 

effects.  

 The microenvironment is known to significantly influence cancer disease 

progression, however the specifics have not been entirely defined. Several components 

of the microenvironment regulate cancer cell survival, proliferation, and invasion. Stromal 

cells such as fibroblasts can promote disease progression. Tumor associated 

macrophage infiltration into solid tumors is associated with pathological features such as 

immunosuppression and neovascularization that are indicative of poor patient prognosis 

[44]. In the case of cancer associated fibroblasts (CAFs), these altered stromal cells 

proliferate at a faster rate than normal fibroblasts, secrete more matrix modulating factors, 

display enhanced collagen production, and can interact directly with the tumor cells to 

facilitate tumor invasion [45]. Of particular interest to the work presented here is the effect 

of CAFs on the ECM. The propensity of CAFs to produce more matrix components and 

matrix modulating enzymes such as LOX changes the biophysical properties of the 

matrix, generally leading to an increase in matrix stiffness that can stimulate cancer 

progression independent of the other effects of CAFs on the tumor [45-49]. The increased 

stiffness of the matrix surrounding the tumor alters the stiffness of the tumor cells, a 

change which stimulates the tumor cells themselves to further alter the matrix [1, 2, 8, 47, 

50-53]. This phenomenon is partially documented in the work presented here, i.e. that 

softer cells may have a reduced capacity to stiffen the surrounding matrix. Cell poking 
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measurements show that parental and IIB KD MDA-MB-231 cells have a similar cell 

stiffness. These cells are able to compress the collagen gel to a similar degree, and the 

elastic modulus of collagen constructs containing these cells are not significantly different. 

In contrast, IIA KD cells are softer than either the parental or IIB KD cells, as measured 

by cell poking, and also produce constructs with a much lower elastic modulus than the 

other cell types (Study 1). It would be interesting to measure the stiffness of parental, IIA, 

and IIB KD MDA-MB-231 cells seeded in matrices of varying compliance. These 

experiments would provide insight into the first step of mechanoreciprocity, the effect of 

matrix stiffness on cell stiffness. We speculate that the trends seen here would hold true. 

Parental and IIB KD cells would have an increased cell stiffness in response to increased 

matrix stiffness, while IIA KD cells would not respond as robustly to changes in matrix 

compliance. If so, then specifically targeting myosin IIA may partially block the influence 

of the matrix on the tumor cells, and attenuate the effect of cells on the matrix, becoming 

an attractive possibility for slowing disease progression.  

 Changes in the matrix stiffness are transmitted to the cell through cell adhesions 

to the matrix, most likely through focal adhesions containing integrins [1, 15, 50, 54-60]. 

Myosin II activity and force production is needed for adhesion maturation [61, 62]. Cells 

also exert forces on the matrix during remodeling, a process which is important during 

cell invasion and migration [56, 63-65]. The involvement of myosin II in mechanosensing 

and matrix remodeling by cancer cells has not been fully elucidated. Myosin II isoforms 

are necessary for matrix directed stem cell differentiation [66, 67], as well as matrix 

influence on cancer cell invasive potential [53, 61, 62]. However, these studies have 

looked at general myosin II activity, and not the individual isoforms. The isoforms of 
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nonmuscle myosin II have been shown to have differential roles in MDA-MB-231 cell 

spreading and migration, as well as in other cell processes [32, 68-71]. Therefore, in 

Study 1, we investigated the role of the two main isoforms of myosin II, IIA and IIB, in 

MDA-MB-231 cell mediated matrix organization.  

 In order to investigate potential changes in MDA-MB-231 cell interactions with a 

collagen matrix, a force conditioning model to measure the stiffness of cell altered 

collagen matrices was used. In addition, using cytoskeletal disrupting agents and 

detergents, we were able to measure the elastic modulus of the overall collagen 

constructs, the matrix modulus, and the cell modulus. Cells lacking either of the two main 

myosin II isoforms, IIA or IIB, generated matrices with altered biophysical characteristics 

as compared to parental cells. IIA KD cells were unable to significantly alter collagen, as 

measured by gel compression assays and isometric force modeling. The cells themselves 

were also significantly softer than their parental counterparts. IIB KD cells, on the other 

hand, generated collagen constructs with an overall elastic modulus similar to the parental 

cells. However, the cell modulus was lower than parental cells, and the matrix modulus 

was slightly higher. These results indicate that both nonmuscle myosin II isoforms present 

in MDA-MB-231 cells are needed for efficient cell interactions with a collagen matrix. 

There are several possibilities for myosin II involvement in matrix stiffening. Myosin II 

contractility is necessary for integrin mediated adhesion maturation, and myosin IIA is 

specifically associated with the collagen receptor DDR1 [18, 54, 61, 62, 72]. Loss of this 

isoform may therefore prevent the formation of strong cell adhesions to the collagen 

matrix. This inability to form mature adhesions may explain why loss of the IIA isoform 

has a greater effect on the cells, since adhesions are necessary for mechanosensing by 
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cells and for physical rearrangement of the collagen fibers [17-19, 50]. Loss of the IIB 

isoform had a less profound effect on cell mediated collagen organization. However, the 

cells are unable to organize the matrix as effectively as parental cells, as indicated by the 

decreased elastic modulus of IIB KD collagen constructs. The IIB isoform may be 

necessary later in the process of collagen organization, perhaps for maintenance of the 

initial tension produced during adhesion maturation. This speculation is supported by the 

fact that myosin IIB has a higher duty ration than IIA, i.e., it spends more time bound to 

actin, making it ideal for maintaining cell tension through the actin cytoskeleton [73, 74]. 

In this model of cell mediated collagen organization, myosin IIA contractility is needed for 

integrin mediated adhesion maturation and collagen binding through the DDR1 receptor, 

which produces an initial cell tension. Myosin IIB is then needed to maintain cell tension. 

Staining the cells within the collagen matrix may begin to elucidate if this model is 

applicable. Parental cells would show fully matured matrix adhesions and IIA association 

with DDR1. Myosin IIA KD cells would not have mature adhesions, and possible 

alterations in DDR1 receptor localization. Myosin IIB KD cells would have mature 

adhesions, since the IIA isoform is present in these cells. Combining these studies with 

further biochemical and mechanics testing would effectively test this model of cell 

adhesion and tension.  

 The ability of cancer cells to interact with and modify the ECM affects the migration 

of cells. Prior to migration, cells rearrange the collagen fibers in the matrix until they are 

oriented perpendicular to the edge of the cell mass in 3D migration models [11, 12]. Using 

magnetic beads to arrange the collagen fibers prior to cell migration significantly 

increased migration [11]. The data in Study 1 shows that myosin IIA is needed for cell 
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organization of the collagen matrix. We postulated that this would correspond with a 

significant defect in the migration ability of these cells. Migration is an important step in 

the metastatic process, and actomyosin contractility plays a vital role in cell migration [18, 

20, 51, 68, 69, 72, 75]. Myosin involvement in migration extends beyond matrix 

interaction. Cells exert contractile forces to pull themselves through their surroundings, 

and myosin contractility is needed in 2D migration, where interaction with and 

rearrangement of the matrix is not a factor [63, 65]. The data presented in Study 1 show 

that the IIA and IIB isoforms of myosin II are both needed for cancer cell-mediated matrix 

rearrangements. Since matrix interactions are also involved in cell migration, we sought 

to investigate the roles of the different isoforms in cell migration.  

 To study the migration ability of MDA-MB-231 cells lacking myosin II isoforms, we 

developed a model of 3D migration we refer to as the “mini-tumor” or “plug” model. Cells 

are suspended at a high density in silicone molds and allowed to rearrange the matrix 

until they have formed a compressed, cell-dense, collagen plug. This plug is then 

embedded into a 3D collagen matrix and the migration of individual cells migrating away 

from the plug is tracked using time lapse microscopy. The model was used because it 

better recapitulates the pathological situation of individual cancer cells leaving the cell-

dense tumor and migrating through the relatively cell free ECM. Using this model of cell 

migration, we tested the ability of cells lacking either myosin IIA or IIB to migrate through 

a collagen matrix. Myosin IIA KD cells were unable to efficiently migrate in this 3D 

environment. These cells moved at a speed between the parental and IIB KD cells, and 

in fact traveled a greater total distance than either of the other cell types, though with a 

lower displacement.  A closer look at the track patterns of the IIA KD cells shows that they 
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continuously move in a circle at the edge of the cellularized plug and occasionally extend 

a process into the surrounding collagen. Essentially, these cells move relatively quickly 

in a small area. Myosin IIB KD cells migrate at a slower speed than the parental cells, 

however, their displacement is closer to that of the parental cells than the IIA KD cells. 

Considering the migration statistics and the migration track patterns presented here, it is 

evident that the three cell types, parental, IIA KD and IIB KD have unique and distinct 

migration patterns. These results indicate that both isoforms are necessary for efficient 

cell migration in a 3D collagen environment and that they play distinct and non-redundant 

roles in this process. The IIA KD cells send protrusions into the surrounding collagen, but 

the cell body never follows as happens with the parental and IIB KD cells. This could be 

due to two reasons. One, the cells do not form mature adhesions to the collagen, as 

discussed above. Or, two, the cells are unable to generate the contractile forces 

necessary to pull the cell body through the collagen matrix. Myosin IIA is necessary for 

one or both of these steps of cell migration. This speculation is supported by previous 

studies showing that myosin IIA localizes to forward protrusions of migrating cells while 

the IIB isoform is needed for contraction of the cell rear [76, 77]. The need for myosin IIB 

contractility for retraction of the cell rear may explain why the IIB KD cells migrate at a 

slower speed than parental cells.  

 During the metastatic process, after cells have migrated through the ECM in the 

interstitial space until they reach a blood or lymphatic vessel, they must undergo a 

process known as intravasation, or crossing the vessel wall from outside the vessel, to 

enter the bloodstream and travel to a distant organ. Once a secondary organ has been 

reached, the cells can extravasate, or exit, from the vessel [20]. During the intravasation 
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or extravasation process, the tumor cells must transmigrate the vessel wall. Endothelial 

cells are a key component of blood vessel walls. These cells are responsible for regulating 

the flow of signaling molecule and cells such as lymphocytes out of the bloodstream [31, 

78, 79]. As such, the endothelial cell layer imposes a significant physical barrier to cancer 

metastasis, and the cancer cells circumvent normal endothelial cell function to enable 

their transmigration. There are a few possibilities as to how cancer cells are able to cross 

the blood vessel wall. Angiogenesis induced by tumor signaling often results in abnormal 

or leaky blood vessels within the tumor, making it easier for cancer cells to enter the 

bloodstream. [26, 27, 31]. In some circumstances, extravasating cancer cells use similar 

machinery to that used by leukocytes during the inflammation response [23]. Cancer cells 

can also alter the biomechanical properties of the endothelial cells, which may result in 

the endothelial layer posing less of a physical barrier to the transmigration of the tumor 

cells [28, 30]. There are also two different mechanisms for how tumor cells actually cross 

the endothelial barrier: paracellular, where cancer cells pass through the junctions 

between endothelial cells: or transcellular, where cancer cells pass through the 

endothelial cells. Paracellular is the more common form of transmigration in in vitro 

models, though a small percentage of cells take the transcellular path [80, 81]. Endothelial 

cell actomyosin contractility is involved in both of these transmigration pathways. In 

paracellular transmigration, the role of contractility remains unclear. Cancer cells 

decrease endothelial cell stiffness in an integrin dependent manner and the endothelial 

cells actually stimulate cancer cell transmigration [29, 30]. A more compliant endothelial 

cell monolayer is easier for the tumor cells to push through. However, increased actin 

contractility in endothelial cells disrupts cell-cell adhesions, providing gaps for the tumor 
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cells to exploit [82-85]. Tumor cells may use either of these, a more pliant endothelium or 

stimulating endothelial contractility to cause gaps, during paracellular transmigration In 

transcellular transmigration, the endothelial cells exert force in order to counteract the 

radial pressure caused by the larger cancer cells pushing through the endothelial cells 

[80]. Understanding how myosin contractility is involved in cancer cell transmigration 

across an endothelial barrier will yield important insights into cancer metastasis, and may 

lead to future treatment options targeting this process.  

 To test the role of myosin II isoforms in endothelial cell barrier function, we knocked 

down expression of the IIA or IIB isoform in murine endothelial cells (Study 2). Myosin IIA 

KD cells had significant changes in monolayer appearance. Parental cell monolayers had 

a uniform, cobblestone monolayer appearance. IIA KD cell monolayers were disrupted, 

with spindle shaped cells, less well defined cell borders, and larger cells overall. IIB KD 

cell monolayers had a similar appearance to parental cells, though the individual cells 

were larger. Loss of either myosin II isoform had an effect on monolayer barrier function, 

as measured by ECIS. Cells lacking myosin IIA were significantly delayed in reaching a 

baseline resistance, which remained lower than that reached by parental or IIB KD cells. 

IIB KD cells, on the other hand, had an initial resistance higher than that of parental cells, 

though the final steady resistance reached was not significantly different. The initial 

increase in resistance could be due to the larger size of the IIB KD cells. During the first 

24 hours, the cells have not reached confluency and measurements taken during this 

time period reflect cell spreading more than true monolayer barrier efficiency. Larger cells 

cover a surface more quickly, explaining the initial increased resistance. This is supported 

by previous data showing that electrical resistance increases as cells adhere and spread 
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after seeding [86]. In addition to ECIS, we measured the ability of these endothelial cell 

embedded in collagen to generate isometric tension and respond to the contractility 

stimulating agent thrombin. Parental and IIB KD cell constructs generated substantial 

basal tension and had a robust response to thrombin treatment, though IIB KD cell 

constructs did exhibit a decreased basal tension. IIA KD cell constructs not only had an 

extremely low basal tension, they also had no response to thrombin treatment. These 

results indicate that while myosin IIA plays the major role in endothelial cell tension 

generation and barrier function, the IIB isoform is also needed for tension generation and 

are consistent with previous studies using blebbistatin to inhibit total myosin II activity 

[87].  

 The studies presented here investigate three separate cell functions involved in 

cancer progression: cancer cell mediate matrix rearrangement, cancer cell migration, and 

endothelial cell barrier function. In each of these processes, we presented data that 

indicate the two main isoforms of nonmuscle myosin II in MDA-MB-231 and murine 

endothelial cells play distinct and non-redundant roles. Additionally, in each of these 

studies, loss of the IIA isoform of nonmuscle myosin II had a more pronounced and drastic 

effect on cell function, though there were defects in IIB KD cells as well. The differences 

in isoform function are not unexpected. Ablation of either isoform in mice has different 

detrimental effects leading to embryonic death [32, 36, 38]. The two isoforms have also 

been shown to play separate roles in cell spreading, migration, and invasion [68, 70]. In 

fact, breast cancer subtypes have different myosin II isoform expression profiles, with the 

less aggressive luminal subtypes expressing IIC, but not IIB, where the more aggressive 

basal subtypes tend to express IIB but not IIC [70]. The differences in IIA and IIB function 
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in the experiments presented here may be due to the different kinetics of the two isoforms. 

Myosin IIB has a higher duty ratio than IIA, meaning it spends more time bound to actin. 

This characteristic of the IIB isoforms makes it better suited for maintaining cell tension, 

rather than quickly responding to changes in the microenvironment or signaling cascades 

[73, 74]. Myosin IIA KD breast cancer cells, which contain the IIB isoform, are unable to 

respond to the physical strain placed on them during the stretching protocol used to 

measure changes in matrix stiffness (Study 1). Additionally, these cells are significantly 

softer than either the parental or IIB KD cells and lack the ability to migrate in 3D collagen. 

The cell poking protocol used to measure cell stiffness uses an apparatus that directly 

indents the cell membrane and measures the elastic response of the cell as it rebounds 

to its original shape [88]. Since the IIA isoform spends a smaller proportion of its time 

bound to actin than does the IIB isoform, it is possibly responsible for responding to rapid 

changes in the environment, such as those presented by cell poking [73, 74, 88, 89]. Cells 

lacking this isoform, while they may be able to maintain some basal tension due to the 

presence of the IIB isoform, are not able to generate the force necessary to quickly 

respond to the indentation of cell poking, and are therefore softer than parental cells. 

There is a further explanation for the drastic changes seen in IIA KD cell matrix 

interactions and migration; in mesenchymal stem cells, myosin IIA assembles in oriented 

stress fibers in response to a stiff matrix before IIB polarizes to the rear of the cell to allow 

for migration [90]. The polarization of IIB in migrating cells is necessary for the contractility 

of the cell rear that allows cells to pull the cell body through the matrix after initially 

extending processes in the direction of migration [65, 68]. If the mechanism seen in 

mesenchymal stem cells holds true in breast cells, it explains the inability of IIA KD cells 
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to migrate in 3D collagen. Without the IIA isoform, the stress fibers may never orient within 

the cell, and the remaining IIB isoform is not stimulated to polarize to the rear of the cell. 

This would prevent cells lacking the IIA isoform cells from migrating in a persistent 

direction. These cells may instead move randomly in place, as seen in Study 1.   

 Myosin II is needed for adhesion maturation. The contractile force myosin 

generates recruits and activates focal adhesion proteins. Contractility also assists in 

regulating the axial distribution of the focal adhesion proteins, a characteristic that is 

tightly controlled during adhesion formation and maturation [8, 61, 62, 91]. While general 

myosin II contractility is important for cell adhesions, it is unknown if this process is 

dependent on a single isoform or is a redundant function since studies investigating this 

phenomenon rely on the general myosin II inhibitor blebbistatin [61, 62]. While there is 

some redundancy in myosin II isoform function, there are some processes in which one 

isoform cannot replace another [35, 36]. Based on the relative duty ratios of the IIA and 

IIB isoforms, and the changes in cell-matrix interactions presented in Study 1, we 

speculate that the IIA isoform is primarily involved in adhesion maturation. Myosin IIA is 

better suited for quickly responding to changes in the cell environment, such as integrin 

signaling. In the studies presented here, cells lacking the IIA isoform are unable to 

organize a surrounding collagen matrix. Myosin IIA KD cells are also unable to from strong 

cell-cell adhesions in endothelial cells. Myosin IIB KD cells, on the other hand, retain a 

partial ability to modify a collagen matrix. Further investigation into how the different 

isoforms of nonmuscle myosin II are involved in adhesion maturation and integrin 

signaling is needed to fully understand the mechanisms involved.  
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 The involvement of myosin II isoforms in adhesions is also a prime suspect in the 

changes in endothelial cell barrier function presented in Study 2. However, the 

mechanisms of the effects seen in these cells may differ from breast cancer cells. 

Endothelial cells and cells of epithelial origin have very different physiological functions, 

and the regulation of myosins in these two disparate cell types may be very different [32, 

35, 71, 79, 92]. However, the changes in cell function in endothelial cells follow a pattern 

similar to the breast cancer cell lines; loss of IIA had a drastic effect on cell function, while 

loss of the IIB isoform had a more muted effect. While the data presented here represent 

a characterization of cells lacking either isoform, the effect of this loss on cancer cell 

transmigration has yet to be determined. Endothelial cells lacking myosin IIA seem unable 

to form the strong cell-cell adhesions needed to maintain a high monolayer barrier 

function. The “leaky” monolayer, and softer cells, may provide a less significant obstacle 

to tumor cell transmigration, similar to previous studies showing that cancer cells alter the 

biophysical properties of endothelial cells to make them more compliant [30]. Tumor cells 

are able to overcome the physical barrier the endothelial cells impose through a variety 

of means, including inducing apoptosis in the endothelial cells, choosing crossing points 

where the junctions between endothelial cells are weakest, and changing the properties 

of the endothelial cells [26-30, 84]. Because of this, it is difficult to predict how changes 

in endothelial contractility will affect transmigration until further studies have been 

performed.  

 Overall, the data presented in this dissertation support the conclusion that two of 

the isoforms of non-muscle myosin II, IIA and IIB, have distinct and non-redundant 

functions in a number of cell processes that are involved in cancer disease progression. 
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Both of these isoforms are needed for breast cancer cells to modify a collagen matrix into 

a stiff environment, as well as for cancer cell migration and endothelial cell barrier 

function. We postulate that at least part of these effects are due to the IIA isoform’s 

involvement in adhesion maturation. Without sufficient interaction with the matrix, cells 

are unable to sense their surroundings, physically modify the matrix, or migrate in 3D 

collagen. Nor are endothelial cells able to form the strong cell-cell attachments needed to 

form a monolayer with a high barrier function. While globally targeting myosin II activity in 

a patient would likely have serious detrimental side effects, a better understanding of how 

the different isoforms are involved in cancer associated cell processes, and how this is 

regulated, may lead to better treatment options in the future.  
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Figure Legends 

Figure 1. Summary of major results. The studies undertaken here are summarized in 

graphic form. Experiments performed on cancer cells are presented in shades of blue 

while experiments performed on endothelial cells are presented in shades of orange. 

Experiments and major results are presented in flow chart form. From left to right, cell 

type (cancer cells or endothelial), cell process investigated, myosin IIA or IIB KD, 

summarization of effect of loss of indicated isoform on the cell process being 

investigated.  
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