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Abstract 

UPSCALING OF SAGD PROCESS USING SPECTRUM-BASED ANALYSIS FOR 

HETEROGENEIUS RESERVOIRS 

Vahid Mohammadnia 

The main objective for this work is to predict the impact of heterogeneity in the rock and fluid 

properties on the governing equations in modeling of SAGD process. To serve this purpose, a 

spectrum-based upscaling approach is applied on the governing equations.  

A probability-based analysis is used to include heterogeneity in the fluid and rock properties by 

assigning random perturbation fields to each property. Furthermore, each property is decomposed 

into the expectation and perturbation values. Heat diffusion and Darcy equations are upscaled by 

applying Fourier-Stieltjes transform. The upscaled equations embrace the heterogeneity in 

permeability and thermal diffusivity and can predict the flow rate and shape of boundary. The 

upscaled model that includes heterogeneity of reservoir properties is compared with the 

deterministic solutions (original Butler’s model) to quantify the impacts of variation in each 

property on the SAGD efficiency. 

The verification and validation of the developed results for the heat equation is done by numerical 

simulations of models with synthetic heterogeneities; then, a harmonic distribution is assigned to 

the perturbations of the thermal diffusivity and permeability to calculate the flow rate. In general, 

there is no standard analytical correlation between permeability and thermal diffusivity of the 

porous media. In order to investigate the impact of these properties on SAGD, two different cases 

of positive and negative log-linear correlation (c) between permeability and thermal diffusivity are 

considered. The results show that in a heterogeneous porous medium with both positive and 

negative correlations between permeability and thermal diffusivity, the perturbation of thermal 

diffusivity impairs the efficiency of the SAGD process and its effect is more significant than 

permeability perturbations. Unlike thermal diffusivity, heterogeneity of permeability, depending 

on the nature of its correlation with thermal diffusivity, may have either negative or positive effect 

on SAGD process. 



 

 

 

This work is one of the first attempts to modify the Butler’s model by upscaling the governing 

equations in SAGD process. The new developed equations pave the way of a theoretical solution 

to a more accurate SAGD modeling. 
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Problem Statement 

There is still a huge amount of heavy oil in the world and some are being produced and some in 

line to be produced after conventional reservoirs are depleted. Steam Assisted Gravity Drainage 

(SAGD) is one of common enhanced recovery methods to produce heavy oil. An accurate model 

of this technique is needed to predict the process behavior and take the right managerial decisions 

that become financially beneficial. But creating an accurate model is not an easy task because 

SAGD deals with a large set of reservoir variables. Heterogeneity in the reservoir is one of the 

troublesome factors when mimicking the SAGD behavior. Due to the large extent of reservoir and 

also accessibility limitations to its deep depth, it is practically impossible to measure all parameters 

required in SAGD modeling. In addition, assuming that a property of a reservoir or fluid has a 

constant value might generate great simulation errors and lead to huge misunderstanding of the 

process behavior. To tackle this problem, a couple of numerical methods have been developed to 

include the reservoir heterogeneity; however, they depend on the availability of large amount of 

data to run and also are very time consuming.  

Aforementioned problems are intrinsic to numerical models but can be addressed if heterogeneity 

of the reservoir is incorporated in the main governing equations of already developed deterministic 

SAGD model. In other words, if we can detect the behavior of heterogeneity statistically and show 

that how this statistical behavior affect the governing equations, there is no need of numerical 

methods anymore. New model is apparently deterministic but indeed embraces the heterogeneity 

at the heart of its equations. 
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Objective 

The objective for this work is to develop an analytical proxy for SAGD process in heterogeneous 

reservoirs that is faster and more accurate than the current simulation/modeling techniques. The 

proposed model is obtained by modifying the current determistic model of SAGD (Butler’s Model) 

so that it gets capable of mimicking the behavior of heterogeneous reservoir. In this project, 

heterogeneity is defined as a random variable of reservoir properties that makes SAGD a 

stochastics process. The final objective is to create a proxy model that helps us to analyze this 

stochastic behavior in a deterministic manner so that the problems of numerical approached are 

evaded. 

To verify the new model, different stochastic processes are considered and results are compared 

with deterministic case. The new model helps us analyze the stochastic behavior of reservoir when 

the SAGD process is applied in a straightforward way. 
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Chapter 1. Introduction  

A huge amount of heavy oil remains still untouched throughout the world, about 30 countries have 

recoverable heavy oil resources led by Canada and Venezuela owning the biggest. Improving the 

recovery methods and trying to make a reasonably accurate model that is an influential factor in 

taking the right managerial and operational decisions when dealing with these unconventional 

resources. Oil fluid can be classified based on API gravity as: 

Light oil: If the oil has the API gravity at least 22, it is classified as light oil. 

Heavy oil: It is defined as any petroleum liquid having the maximum API gravity of 22.  

Extra heavy oil: World Energy Council defines extra heavy oil as crude oil having a gravity of less 

than 10.  

Bitumen: Natural bitumen is also called oil sands or tar sands. It typically has a gravity lower than 

10. According to US geological Survey, it is distinguished as extra-heavy oil with a higher 

viscosity. Extra-heavy oil and natural bitumen and differ in the degree by which they have been 

degraded for the original conventional oils by bacteria.  

In addition to dissimilarity in density, heavy oil has a substantial contents of oxygen, nitrogen, and 

sulfur compounds and heavy metal containments (according to USGS) compared with 

conventional oil. In spite of abundance, heavy oil and bitumen only accounted 3 billion of 25 

billion barrels of crude oil produced in 2000 (USGS). The high cost of production, transportation 

and upgrading is the main inhibiting factor of industry demand of heavy oil. A State Department 

review also released that demand for the oil sands fuel would decrease if oil prices were below 

$65 a barrel, as moving oil by rail is more expensive than using a pipeline1. However, geological 

distribution, abundance, quality and price of these types of crude oil will determine the market 

demand of heavy oil in the future.  

                                                 
1The New York Times, November 6, 2015 



 

2 

 

1.1.  Geological Distribution of Oil Reserves 

In Figure 1-1 and Table 1-1, the distribution of heavy oil (including extra heavy oil) and light oil 

is shown worldwide (According to US geological Survey). Technically recoverable oil in known 

heavy oil and natural bitumen accumulations is almost equal to light oil reserves (API gravity 

greater than 22°) in known conventional accumulations. BBO, billion barrels of oil.  

The Western Hemisphere includes 69 percent of the world's technically recoverable heavy oil 

(including extra-heavy oil) where 61 percent is only on southern America.  

The Western Hemisphere has also 82 percent of the recoverable natural bitumen whereas the 

Eastern Hemisphere has about 85 percent of the world's light oil reserves.  

Each of extra-heavy and bitumen categories are dominated by a large accumulation. Venezuelan 

Orinoco heavy-oil belt is the largest extra-heavy oil accumulation, which contains 90 percent of 

the world's extra-heavy oil. Eighty one percent of the known recoverable bitumen is in the Alberta, 

Canada. Totally, the two reserves represent about 3,600 billion barrels of oil in place equivalent to 

resources around 830 billion barrels. Venezuela and Canada together produces 93% of the global 

heavy oil and oil sands with more than two third produced in Canada. 

The U.S. bitumen accumulations are mostly in Utah but none of them are being produced 

commercially, although, they are estimated to contain 6.1 billion barrels of recoverable bitumen. 

Three of 6 of main fields in California are heavy oil fields including: Midway-Sunset, Kern River 

and South Belridge that each has already produced more than 1 billion barrels. The density if oil 

in these reservoirs are typically between 10 and 15. The Steam Stimulation methods are very 

popular among other ways of production methods in these fields [2]. 

Of the 35 billion barrels of heavy oil estimated to be recoverable in North America, about 7.7 

billion barrels belong to known producing accumulations in the lower 48 States, and 7 billion 

barrels are in the North Slope of Alaska (U.S. Geological Survey). 
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Figure 1-1: Stat of recoverable oil in the world  

Table 1-1: Regional distribution of estimated technically recoverable heavy oil and natural 

bitumen in billions of barrels (BBO). 

 Heavy Oil 

Technically 

recoverable BBO 

Bitumen 

Technically 

recoverable BBO 

North America  35.3 530.9 

South America 265.7 0.1 

Africa 7.2 43 

Middle East 78.2 0.0 

Asia 29.6 42.8 

Russia 13.4 33.7 

Western Hemi 301 531 

Eastern Hemi 128.4 119.5 

Worldwide 429.4 650.5 

 

47%

32%

21%

Stat of oil recoverable reserves 

Conventional (light) oil
reserves = 952 BBO

Natural bitumen resources
=651 BBO

Heavy/extra heavy oil
resources =651 BBO
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1.2. Importance of SAGD in North America and US 

SAGD and Cyclic Steam Stimulation (CSS) are the two main thermal in situ processes used in the 

oil sands(bitumen) in Geological formation sub-units, such as Grand Rapids Formation, 

Clearwater Formation, McMurray Formation, General Petroleum Sand, Lloydminster Sand, of 

the Manville Group, a Stratigraphic range in the Western Canadian Sedimentary Basin [6]. 

The largest oil import in Unites States comes from Canada, about 35% of all nationwide imports 

[7]. Most of the Canada’s recent production comes from Alberta’s huge oil sands reserves. Much 

of the future oil production in Alberta is expected to be from SAGD that accentuates the 

importance of this type of recovery method especially in the near future to United States.  

1.3. SAGD Process and Butler’s Model 

Steam assisted gravity drainage (SAGD) can be considered as the advanced version of steam 

stimulation. It first developed by Roger Butler and his colleagues in Imperial Oil in the late 1970s 

[1]. SAGD is an enhanced recovery method based on steam injection coupled to horizontal well 

technology. Common type of SAGD consists of two horizontal wells, one drilled almost at the 

bottom of reservoir and second is drilled typically 5-10 m above [3]. Initially, the cold heavy crude 

is very immobile and needs to be heated to get off from the sluggish mood. The steam is injected 

into both wells to preheat the highly viscous crude and make the reservoir ready for SAGD. The 

steam injected to the injector creates a steam chamber that moves upward and forward and sweeps 

down the heavy oil toward the producer wells. In the initial rising period, the chamber goes up and 

reaches the overburden and then spreads laterally. This phase is known as the horizontal steam 

chamber growth phase [23]. The heat is transformed from steam to heavy oil, reduces crude’s 

viscosity and the gravity dominates viscous forces acting upon fluid. This makes the fluid and 

condensed water drain along the interface into the production well. A small pressure differential, 

close to gravity head differential is desirable between injection and production wells. Continuous 

shale barriers may impede the process efficiency, but small, discontinuous shale barriers may not 

have a significant effect (Sharma et al.[5]). 

https://en.wikipedia.org/wiki/Formation_(stratigraphy)
https://en.wikipedia.org/wiki/Mannville_Group
https://en.wikipedia.org/wiki/Geochronology
https://en.wikipedia.org/wiki/Western_Canadian_Sedimentary_Basin
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With invention of horizontal wells, sweep efficiency was improved, the recoverable reserves was 

increased and fewer number of wells were required. A 2000-4000-ft long horizontal well can 

replace several vertical wells in SAGD process (Sharma [5]). 

Butler was the first one who modeled the SAGD. The basic assumptions made in his model was 

considering a 1-D quasi-steady distribution of heat ahead of the steam chamber. This, along with 

Darcy’s law consists the SAGD bitumen flow expression as derived by Butler. 

Two dimensional test done by Chung et al. [24] on a scaled model showed that the efficiency of 

SAGD is independent of well spacing, however, Sharma et al. [5] achieved better results with close 

well spacing in the simulation of SAGD on Ugnu reservoir.  

One of the obstacle sin SAGD is the low steam injectivity in tar and heavy oil reservoirs. Electrical 

heating offers a viable solution. It is used as a precursor to steam injection. Another advantage of 

the EP-SAGD is its relatively low sensitivity to the shale presence (Glandt et al.[25]). 

Diversion or steam breakthrough, is a problem that arises in numerous wells due to sand erosion 

or plugging of the slotted liners, which inhibits continuous production. Swellable packers can be 

installed in conjunction with screens or slotted liner to spread steam and establish zonal isolation. 

In the case of steam breakthrough, swellable packers can be operated to separate the affected zones. 

This intervention technique will contribute to efficient continuous production, elimination of sand 

production and steam breakthrough (Books et al. [26]). 

Temperature ahead of boundary for a steady-state distribution is given by Eq. 1-1: 

 
𝑇 − 𝑇𝑅
𝑇𝑠 − 𝑇𝑅

= 𝑒
−
𝑈𝜉
𝛼𝑒𝑞  Eq. 1-1 

Where the variables represent the following properties (Figure 1-4): 

𝑇: Temperature at a location with 𝜉 𝑚 ahead of boundary(C°) 

𝑇𝑅: Temperature at reservoir condition(C°) 

𝑇𝑆: Steam Temperature(C°) 

𝛼: Thermal diffusivity (m2/s) 
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𝑈: Velocity of interface (m/s) 

Since Butler’s model, a couple of other models were developed that if driven analytically, they 

were fundamentally similar to Butler’s original model. Each of these models cover a specific 

aspect of SAGD, but regardless of their respective restrictions, each can be utilized as a proxy 

model. Any mathematical or statistical function that can mimic the behavior of a process or 

reservoir is called proxy model (Azad et al.[27]).  

Draining 
Mobile Oil

Draining 
Condensced 

Water

Steam 
Chamber

Rising 
Steam

Injector

Producer

 

Figure 1-2: Steam Chamber Cross-Sectional Representation   
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Figure 1-3: SAGD Process Schematic Representation2 

Normal

Velocity 
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θ 
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 Heat
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Steam 
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 x

y

 

Figure 1-4: Infinitesimal Vertical Section of Interface 

                                                 
2 Picture curtesy of Japan and Canada Oil Sands Company (Jacos) 
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Based on Butler’s equation, SAGD bitumen flowrate can be expressed as Eq. 1-2: 

 𝑞𝑜 = √2𝜙Δ𝑆𝑜
𝐾𝑔𝛼ℎ

𝑚𝜈𝑠
 Eq. 1-2 

Where  

 𝑚 = [𝜈𝑠∫ (
1

𝜈
−
1

𝜈𝑅
)

𝑑𝑇

𝑇 − 𝑇𝑅

𝑇𝑆

𝑇𝑅

]

−1

 Eq. 1-3 

Other parameters in Eq. 1-2 are represented of: 

q: Produced flow rate per unit length (m2/s) 

𝜙: Porosity 

𝐾: Permeability (m2) 

𝜈𝑠: Viscosity of oil in steam temperature 

Δ𝑆𝑜: Mobile oil saturation, difference of residual and initial oil saturation 

Parameter m is a function of viscosity and temperature characteristic of oil in addition to the 

reservoir and steam temperature. It can be simply assumed to be a property of the oil that is defined 

as the integral of Eq. 1-3 and a function of 𝑇𝑆 and 𝑇𝑅. This parameter does not change rapidly with 

𝑇𝑆 and 𝑇𝑅. Thus, in many applications, it can be assumed constant. Eq. 1-2 suggests a simple 

method to increase the efficiency of SAGD by increasing parameters such as increasing the steam 

temperature or decreasing the residual saturation.  

Butler’s equations were derived for a completely homogenous medium and reservoir 

heterogeneities such as permeability and thermal diffusivity variations were not incorporated in 

the developed equations. Although numerically based modeling of SAGD process in 

heterogeneous reservoirs is capable of incorporating heterogeneities and complicated initial and 

boundary conditions, they fail to give a general insight, as each configuration is treated 

independently and many runs of simulations may be required to discover the independence of key 
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variables to inputs. A large amount of time-consuming effort may be required to treat the situations 

that do not have analytical solutions.  

Moreover, computer codes used in numerical techniques are prone to human error which is usually 

obscured in long and complicated codes. But the analytical solutions are stated in an accurate form 

that can be easily rechecked. 

1.4. Contribution of this Work 

In this project, using spectrum-based analysis, we will try to quantify the impact of medium 

heterogeneities by developing an analytical solution that is capable of incorporating the input 

perturbations into a standard formulation that exclusively states the effects of input covariance on 

the key output.  

A probability-based analysis is used to include heterogeneity in SAGD modeling by assigning a 

random variable field to each of varying properties. The effects of heterogeneity are largely 

distributed over the reservoir. All the basic governing equations that are based on deterministic but 

inaccurate presumption of fluid and media, makes the results deviate from reality. This concern is 

investigated in this research by applying Fourier-Stieltjes transform on the governing equations 

and introducing a new set of equations that embraces the heterogeneity in a straightforward way. 

The new developed equations pave the way of a theoretical solution to a more accurate SAGD 

modeling [2]. 
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Chapter 2. Literature Review 

In this chapter, a review if the different upscaling approaches of SAGD process is presented. In 

general, the published models for SAGD in the literature are divided into two groups of numerical 

and analytical approaches.  

Data-driven models use numerical methods to set up a proxy of the real process or reservoir. They 

require reliable sets of data to run but have the benefit of applicability in a wide range of 

applications and can incorporate broad sets of input variables and complicated geometries; 

however, they usually fail to provide a clear intuition of underlying physics of the process. In 

return, analytical methods use universal formulations to model the underlying physical processes. 

These models are however valid for specific applications. The solutions to the analytical models 

have the advantage of offering a general theoretical development without specifying an explicit 

form for the heterogeneity, in contrast to the numerical solutions in which the explicit from of 

heterogeneity should be specified. Analytical approaches also have the merit of stating the 

assumptions and approximations evidently through a precise mathematical description of the 

problem. In contrary, the nature of approximation in numerical methods, is hidden in the 

elaborately and usually arbitrarily written computer codes.  

Furthermore, analytical approaches provide us with a quick and easy access to solutions through 

their explicit and mathematical nature whereas personalized and intricate codes are run only on 

some specific platforms or software that inhibits the accessibility. One of the distinguished 

advantage of numerical methods is their general application on a great variety of problems. 

Although this is the right statement, in practice a huge and time-consuming modification on codes 

is necessary to extent it to new problems. 

There is no accurate solution to stochastic partial equations. Choosing the appropriate approach, 

highly depends on the type of usage and target of the results and also type of data that is available 

or can be reasonably collected in future. Some applications seek for a general scientific conception 

whereas others might use the results to include them in their specific practical decision. In short, 

there is no unique approach that is capable of answering all the questions and clarify all the vague 
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parts of the problem, but through an interconnected comparison between the results gathered by 

different methods, the intended application and concept can be interpreted.  

Due to the lack of reliable data, during the development of a SAGD project, there is a lot of 

uncertainties depending on which stage of the project the modeling is required. In the initial steps 

of project planning, due to uncertainties of reservoir properties and also lack of time to take the 

appropriate managerial decision, numerical simulators are not efficient to be used.  

Instead, proxy models can be used to serve this purpose. But with moving forward in a simulation 

path, the amount of uncertainties decrease and finer models can be established (Figure 2-1). 
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Figure 2-1: Flow diagram of a simulation path consisting of different models (Azad et al. [27]) 

SAGD process has been modeled both numerically and analytically since 1970’s. But the 

heterogeneity of the reservoirs has not been addressed sufficiently. More specifically, no analytical 

model has been offered for the SAGD process and all previous works have focused on either 

numerical or semi-analytical modeling. In the next section, a summary of previous literatures 

related to this topic on both methods is organized as follows.  
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2.1. Numerical Models  

Based on Butler's theoretical model, Vanegas et al.[3] suggested a method to describe the SAGD 

process developed between two injection wells. To integrate the heterogeneity effect in their 

model, they used Monte Carlo Simulation (MCS) and did an efficient transfer of the uncertainty 

in reservoir and operational parameters through to performance variables such as oil production 

and steam oil ratio. (Their methodology was actually based on the Roses's thesis [4]). Their method 

was designed for a confined well pair with the capability of transferring the uncertainty to the 

model as previously described. An average-based upscaling approach was utilized averaging is to 

model heterogeneous reservoirs in each timely discretized step which is time consuming and 

excludes the Butlers' basic model’s achievements that were simplicity and quick calculation. 

Sharma [5] simulated a SAGD process in Ugnu reservoir, located in the Kuparuki River Unit on 

the North Slope of Alaska, including SAGD with horizontal injectors, SAGD with vertical 

injectors, SAGD with electrical preheating (EP-SAGD) and EP-SAGD with vertical injectors. 

They showed that if the injector chosen to be vertical, heterogeneity slows down the recovery 

factor and it takes more time to reach the homogeneous recovery factor. This highlights the 

importance of heterogeneity on determination of well placement in SAGD. They also showed that 

the placement of production well is more critical than the placement of injection in heterogeneous 

reservoirs. When the production wells were placed in a lower permeability layer, the recovery 

factor decreased drastically. However, the heterogeneity was simply incorporated in their model 

as two different layers having different permeability that is a rough definition of heterogeneity.  

Butler et al. [6] studied the SAGD process on multi-layered reservoirs where layers have different 

permeability. They showed that this heterogeneity in permeability decreases the recovery of heavy 

oil, because steam tends to accumulate under the layers with lower permeability and thus avoids 

the heavy oil in upper layers to flow down until the steam gets a way to penetrate upwards and 

pushes down the heavy oil. They resolved this problem by adding non-condensable gas to the 

steam that produces gas fingers that rise up into the low permeability layers and displace the oil 

contain of the layers. Their method on modeling heterogeneity of permeability in multi-layered 

reservoirs was successful but was valid only for the applications that heterogeneities exist because 

of the multiple layers rather than the general ones. 
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Robinson et al. [7] built a numerical geostatic model of SAGD over a 32-section area of a Fort 

McMurray oil sand reservoir. They Used Roxar’sirap RMS modeling software to perform geostatic 

mapping of horizons and populate the petrophysical properties over 3.46 million cell static 

geological model. They integrated the information gathered form petrophysical logs and core data 

from 33 wells in the study area to a coherent geostatically based model. Although they fitted the 

measured data into their model, their method was purely numerical and was valid only for a 

specific case study and highly dependable on measured data, which might not be always available 

in project.  

Lateral et al.[8] Studied the effect of fluid heterogeneities in terms of variation of heavy oil 

viscosity in the reservoirs. The heterogeneities in viscosity occur in heavy oil and tar sands due to 

the microbial degradation of conventional crude oils over geological timescales. Constraints such 

as oil charge mixing, reservoir-temperature dependent biodegradation rate and supply of water and 

nutrients to the organisms determine the final distribution of API gravity and viscosity of heavy 

oil. Their numerical results showed that the oil recovery decreases in the reservoirs with varying 

viscosities compared with the ones with uniform viscosity. The method they used was numerical 

and only included the fluid heterogeneities but rock properties were considered uniform as Butler’s 

work. 

Chen [9] incorporated the heterogeneities in the reservoirs by including the randomly places shale 

reservoirs throughout the reservoir. He used STAR software to simulate and analysis the SAGD 

process. His studies on SAGD was an observation-based analysis of SAGD behavior rather than 

modeling the SAGD. 

2.2. Analytical Models 

Due to the complexity of reservoirs, only few works have modeled the SAGD analytically. No 

work has been reported on developing an analytical model that can capture has heterogeneities of 

permeability and thermal diffusivity in SAGD process. However, other aspects of real life cases 

were covered by several studies. It has been proved that anisotropy in permeability has a major 

influence over flow rate in SAGD with horizontal wells (Peaceman  ]). Alali et al. [11] developed 
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their semi-analytical model using geometric averaging of the vertical and horizontal permeability; 

nevertheless, they verified the model only over a very small range of cases. 

Azom and Srinivasan [12] concentrated on the role of anisotropy of permeability in the reservoirs 

on the SAGD process. They showed that the effect of vertical permeability on the development of 

SAGD is time dependent and can be described quantitatively. They proposed two different models 

for the permeability and incorporated them on the drainage rate formula that already was developed 

by Butler. They developed their models by resolving the SAGD flow on the direction of resultant 

gravity head (RGH) and resultant oil discharge (ROD) that led to two different equations for the 

effective permeability respectively: 

 𝐾{𝑒𝑓𝑓𝑅𝐺𝐻} = 𝐾𝑣 sin
2 𝜃 + 𝐾ℎ cos

2 𝜃 Eq. 2-1 

 
1

𝐾{𝑒𝑓𝑓𝑅𝐺𝐻}
=
sin2 𝜃

𝐾𝑣
+
cos2 𝜃

𝐾𝑣
 Eq. 2-2 

Where 𝜃 is the angle that the boundary makes with the horizon (Figure 2-2).  

In ROD, the bitumen occurs in the direction tangential to the interface while in ROH, the flow 

occurs in a direction perpendicular to the equipotential surface.   

They included these equations in the Butler’s flow rate equation (Eq. 2-3) and developed their own 

formula in which height of boundary decreases due to the consideration of vertical permeability in 

comparison with isotropic model. 

 𝑞 = √2(𝛼)
𝐾𝐿𝑔

𝑚𝜈𝑠
∗ 𝜙Δ𝑆𝑜 ∗ ℎ  Eq. 2-3 

Their calculation showed that the anisotropy decreases the efficiency of SAGD. But it seems they 

missed one concept, they applied their offered effective permeability directly on Eq. 2-3 while to 

develop this equation itself, isotropy has been assumed for the medium. In other words, all these 

changes should be applied to the prior material balance and Darcy law equations that were initially 

used by Butler to develop Eq. 2-3. Azom and Srinivasan [12] used numerical methods to solve 

their developed equations and thus, their method goes under the category of semi analytical 

models.  
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Figure 2-2: Schematic of an idealized SAGD chamber during horizontal growth (Courtesy of 

[12]) 

Kumar [13] studied the permeability heterogeneities in reservoirs that appear in the form of 

randomly formed shale lens (streaks) thorough the media. These lenses were generated based on a 

specific unique length and frequency using the Geostatistical Modeling Software (SGeMS). In the 

next step, Kumar [13] used s flow-based upscaling method (Durlofsky [14]) to assign each 

realization an equivalent vertical and horizontal permeability. Anisotropic models were created in 

CMG STARS using the realizations. The results were compared with the one calculated by 

analytical model (Azom et al. [12]) with the equivalent values of permeability. In lower shale 

volume percentage and shorter length correlation, the two methods showed close match but as 

either of these parameters increased the flow rate curves versus time tended to diverge in two 

models. That problem was related to the upscaling method they used that could not capture the 

impact of frequency and correlation length of shale barriers independently and the resultant 

permeability values were not accurate. The analytical model that was developed based on the 

Butler’s model, overestimated the real flow rate because it could take into account the impact of 

shale lens into calculation. They improved their method by applying a more accurate upscaling 
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method that used statistical averaging technique to take into account the behavior of multiphase 

fluid, and 3D structural nature of reservoir. This modification improved their results and the 

analytical models could be matched with numerical counterparts in larger range of shale streak 

correlation length and shale volume percentages. 

In addition, the heterogeneities in their approach was treated as shale barriers that exist in the sand 

medium with a specific permeability value. In essence, permeability only can take two values, 

sand stone and shale permeability. 

The spectral approach has been used to deal different types of problems. Gelhar and et al. [15] 

used this approach to treat time-variable problems. Freeze [16] and Bakr et al. [17] used the 

spectral-based technique in subsurface hydrology to solve the spatial variable problems. But no 

similar study was done on SAGD process. 

All the authors improved analytical modeling of SAGD process by introducing the real-life aspects 

not included in the original Butler model. But none incorporated the heterogeneity of permeability 

and thermal diffusivity into the main equations. 
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Chapter 3. Methodology  

Butler’s model [2] is based on the assumption that the medium is homogeneous. In this work, 

heterogeneity of the fluid and rock properties- permeability and thermal diffusivity- are integrated 

in the modeling of the SAGD process using a probability-based analysis. This technique is used to 

include local variations in the fluid and rock properties by assigning random perturbations to each 

property. Therefore, each property is decomposed into the expectation and perturbation 

parameters. The governing equations used to model SAGD process, namely heat diffusion 

equation and Darcy equation, are then modified to include perturbed properties. In the next step, 

Fourier-Stieltjes transform is applied to the developed equations to transform the cross-correlations 

of the perturbed parameters to term consisting of the mean and correlation of the properties. The 

upscaled equations are then developed by inputting the transformed terms into the original 

equations (Figure 3-1).  

 

Figure 3-1: Flow Diagram of steps to obtain the new SAGD model  

3.1. Fourier-Stieltjes integral and spectral representation 

One of the key assumptions in developing the upscaled equations is that the process is second-

order stationary; in other words, 
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𝐸[𝑋(𝑥)] = 𝜇𝑅(𝑥1, 𝑥2) = 𝑅(𝑥 − 𝑥2) = 𝑅(𝜏);       𝜏

= 𝑥1 − 𝑥2                   𝑓𝑜𝑟 𝑎𝑛𝑦    𝑥1, 𝑥2  
Eq. 3-1 

According to Gelhar [19], for a stationary process 𝑋(𝑡) with zero mean, the spectral representation 

of the process is  

 𝑋(𝑥) = ∫ 𝑒𝑖𝜔𝑥𝑑𝑍(𝜔)
∞

−∞ 

 Eq. 3-2 

where 𝜔 is the angular frequency. In this equation, Z is a stochastic process with the following 

properties:  

𝐸[𝑑𝑍(𝜔)] = 0 

[𝑑𝑍(𝜔1)𝑑𝑍
∗(𝜔2)] = 0    ;   𝜔1 ≠ 𝜔2 

If  𝜔1 = 𝜔2 = 𝜔  then: 

𝐸[𝑑𝑍(𝜔1)𝑑𝑍
∗(𝜔)] = 𝑑∅(𝜔) = 𝑆(𝜔) 𝑑𝜔 

where ∅(𝜔) is the integrated spectrum, and 𝑆(𝜔) is the spectral density function, or the spectrum.  

For a zero-mean stationary stochastic process, let’s take it X(t), the covariance function can be 

written as:  

 𝑅(𝜏) = ∫ 𝑒𝑖𝜔𝜏 𝑆(𝜔)𝑑𝜔
∞

−∞ 

 Eq. 3-3 

In this equation, the covariance function is the inverse Fourier-Stieltjes transform of the spectral 

density function. The corresponding spectrum function is: 

 𝑆(𝜔) =
1

2𝜋
∫ 𝑒−𝑖𝜔𝑡𝑅(𝜏)𝑑𝜔
∞

−∞ 

 Eq. 3-4 

3.2. The Correlation of Parameters 

A review on the previous done researches shows that the correlation of permeability with thermal 

conductivity is more of interest than with thermal conductivity (Popov et al. [28], Mielke et al. 

[29]). Conductivity and diffusivity are related to each other as: 

𝛼 =
𝑘

𝜌𝑐𝜌
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where k is conductivity [W/(m.K)], ρ is density [kg/m3] and cp is specific heat capacity [J/(m3K)]. 

Pore fluid type and pore structure of rocks are the main factors that affect conductivity of 

sedimentary rocks (Popov et al. [28]). There is no general relationship between thermal diffusivity 

and permeability. For a specific porous media and fluid types, relationships between thermal 

diffusivity and permeability can be obtained. Mielke et al. [29] used samples taken from Wairakei, 

cores of Huka Falls Formation (soft, lacustrine-deposited sediments), Waiora Formation (variably 

consolidated, medium hard, hydrothermally altered volcanic tuff) and Karapiti Rhyolite (hard, 

altered rhyolite lava and breccias) and measured their permeability and thermal conductivity 

values. Their results showed a very poor correlation between these two properties. However, the 

measurement showed there was a negative correlation between porosity and thermal conductivity. 

The analysis used in this modeling is based on the mathematical representation of the log-

permeability process as a random field. Permeability (𝑘) and thermal diffusivity (𝛼) are assumed 

to have a log-linear relationship indicated by correlation parameter 𝑐 (Eq. 3-5) .The effect of both 

positive and negative  correlation will be studied. We define a new parameter 𝑓 = ln 𝑘 in our 

calculations instead of permeability (k). 

 ln  𝑘(𝑥) = 𝑓(𝑥) = 𝑓(̅𝑥) + 𝑓′(𝑥) = 𝑓(̅𝑥) + 𝑐 ∗ 𝛼′(𝑥) Eq. 3-5 

where 𝑘 is perambility, 𝑓 is natural log permeability and 𝑓′ and 𝑓 ̅are its perturbation and mean 

values. 𝛼 is thermal diffusivity and similarly 𝛼′ and 𝛼̅ are mean and perturbation values. If these 

properties have positive correlation, c is positive and likewise if the correlation between them is 

negative, constant c will be negative. Permeability, viscosity, temperature and thermal diffusivity 

of reservoir are considered to be perturbed properties that can be decomposed into the mean (over-

bar variables) and small perturbations (prime-over variables) as follows: 

𝐿𝑛
1

𝜈
= 𝑚(𝑥)̅̅ ̅̅ ̅̅ ̅ + 𝑚′(𝑥) = 𝐿𝑛 (

1

𝜈0
) + 𝛽(𝑇 − 𝑇0) + 𝛽𝑇′ 

𝛼 = 𝛼̅ + 𝛼′          𝑇 = 𝑇̅ + 𝑇′ 

                                                      ln  𝑘(𝑥) = 𝑓(𝑥) = 𝑓(̅𝑥) + 𝑓′(𝑥)  Eq. 3-6 
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Where 𝑇, 𝑘 𝑎𝑛𝑑 𝜈 are temperature, permeability and viscosity and 𝛽 is correlation coefficient 

between 𝑚 (
1

𝜈
) and temperature (𝑇).  

3.3. Heat diffusion equation  

The one-dimensional thermal conduction can be written as: 

 
𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
  Eq. 3-7 

If  𝑇 and 𝛼 are Substituted from Eq. 3-6 as the sum of their mean and perturbation values in Eq. 3-

7, it can be shown easily that Eq. 3-8 is achieved. If we take the mean value from both sides and 

implement the assumption that mean values of perturbations are zero, mean equation of heat 

transfer (Eq. 3-9) is resulted. Finally, the perturbation equation (Eq. 3-10) is achieved by 

subtracting mean equation (Eq. 3-9) from main equation (Eq. 3-8). 

𝜕𝑇̅

𝜕𝑡
+
𝜕𝑇′

𝜕𝑡
= 𝛼̅

𝜕2𝑇̅

𝜕𝑥2
+ 𝛼̅

𝜕2𝑇′

𝜕𝑥2
+ 𝛼′

𝜕2𝑇′

𝜕𝑥2
+ 𝛼′

𝜕2𝑇̅

𝜕𝑥2
    Eq. 3-8 

 
𝜕𝑇̅

𝜕𝑡
= 𝛼̅

𝜕2𝑇̅

𝜕𝑥2
+ 𝛼′

𝜕2𝑇′

𝜕𝑥2

̅̅ ̅̅ ̅̅ ̅̅ ̅
    Eq. 3-9 

 
𝜕𝑇′

𝜕𝑡
= 𝛼′

𝜕2𝑇̅

𝜕𝑥2
+ 𝛼̅

𝜕2𝑇′

𝜕𝑥2
   Eq. 3-10 

𝛼′
𝜕2𝑇′

𝜕𝑥2

̅̅ ̅̅ ̅̅ ̅̅
   in Eq. 3-9 is the term that should be estimated. In the Butler’s method, the heat diffusion 

is developed in moving coordinates for the simplicity it brings to the solution of equations. Heat 

transfer can be assumed to be steady state in the moving coordinates frame. Before jumping into 

transformation of coordinates to the moving coordinates, we prove a lemma that relates dZ 

transform (Gelhar [18]) of a variable in cartesian coordinates to moving coordinates.  

Lemma: If C is a variable in a one-directional movement of a boundary with x and 𝜉 denoting the 

distance from the boundary in terms of a fixed and moving coordinate so that: 

𝜉 = 𝑥 − 𝑈 ×  𝑡 ;            𝑈 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 Then: 
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𝜕(𝑑𝑍𝑐)

𝜕𝑡
|𝑥 =

𝜕(𝑑𝑍𝑐)

𝜕𝑡
|𝜉     

Proof: 

 

𝑐′(𝑥, 𝑡) = ∫ 𝑒𝑖(𝑘𝑖,𝑥𝑖)
∞

−∞

𝑑𝑍𝑐(𝑘𝑖, 𝑡)

= ∫ 𝑒𝑖(𝑘1(𝜉1+𝑈𝑡)+𝑘2𝜉2+𝑘3𝜉3)
∞

−∞

. 𝑑𝑍𝑐(𝑘𝑖, 𝑡) 

             →  
𝜕𝑐′(𝑥, 𝑡)

𝜕𝑡
|𝜉𝑖

= ∫ [𝑖𝑘1𝑈 ×
∞

−∞

𝑒𝑖(𝑘1(𝜉1+𝑈𝑡)+𝑘2𝜉2+𝑘3𝜉3). 𝑑𝑍𝑐(𝑘𝑖 , 𝑡)

+ 

                          𝑒𝑖(𝑘1(𝜉1+𝑈𝑡)+𝑘2𝜉2+𝑘3𝜉3)
𝜕(𝑑𝑍𝑐)

𝜕𝑡
] =  

∫ 𝑒𝑖(𝑘1(𝜉1+𝑈𝑡)+𝑘2𝜉2+𝑘3𝜉3)(𝑖𝑘1𝑈 × 𝑑𝑍𝑐(𝑘𝑖, 𝑡) +
𝜕(𝑑𝑍𝑐)

𝜕𝑡
)

∞

−∞

   

Eq. 3-11 

According to Eq. 3-11, dZ equivalence of  
𝜕𝑐′(𝑥,𝑡)

𝜕𝑡
|𝜉𝑖 is: 

𝑖𝑘1𝑈 × 𝑑𝑍𝑐(𝑘𝑖, 𝑡) +
𝜕(𝑑𝑍𝑐)

𝜕𝑡
   Eq. 3-12 

 

According to Butler [2], (
∂c

∂t
)
x
 can be written as: 

 (
𝑑𝑐

𝑑𝑡
)
𝜉
− 𝑈(

𝜕𝑐

𝜕𝑥
)
𝑡
= (

𝜕𝑐

𝜕𝑡
)
𝑥

    Eq. 3-13 

Applying Fourier-Stejles transform on Eq. 3-13 gives 

 
𝜕𝑍𝑐
𝜕𝑡

|𝑥 = 𝑖𝑘1𝑈 × 𝑑𝑍𝑐(𝑘𝑖, 𝑡) +
𝜕(𝑑𝑍𝑐)

𝜕𝑡
|𝜉 − 𝑈𝑖𝑘1𝑑𝑍𝑐(𝑘𝑖, 𝑡) =

𝜕(𝑍𝑐)

𝜕𝑡
   Eq. 3-14 

By applying this lemma to the perturbation equation of thermal diffusion, it yields: 

 
𝜕𝑇′

𝜕𝑡
= 𝛼′

𝜕2𝑇̅

𝜕𝑥2
+ 𝛼̅

𝜕2𝑇′

𝜕𝑥2
  Eq. 3-15 



 

22 

 

where 𝐻 =
𝜕2𝑇̅

𝜕𝑥2
. 

Assume a general first order equation: 

𝑑(𝑑𝑍𝑇)

𝑑𝑡
  +  𝐵(𝑡)𝑑𝑍𝑇(𝑡) = 𝐴(𝑡) 𝑑𝑍𝛼 

According to Welty et al. [18], the solution of this equation is:  

 𝑑𝑍𝑇(𝑡) ≅
𝐴(𝑡)

𝐵(𝑡)
(1 − 𝑒−𝐵𝑡)𝑑𝑍𝛼 Eq. 3-17 

Therefore, the solution to Eq. 3-16 will be:  

 𝑑𝑍𝑇(𝑡) ≅
𝐻(𝑡)

𝛼̅𝑘2
(1 − 𝑒−𝛼̅𝑘

2𝑡)𝑑𝑍𝛼   Eq. 3-18 

𝛼′
𝜕2𝑇′

𝜕𝑥2

̅̅ ̅̅ ̅̅ ̅̅
  in Eq. 3-9 can be decomposed to terms mean thermal diffusivity and temperature using the 

following equation, 

𝑑𝑍 𝑜𝑓 (
𝜕2𝑇′

𝜕𝑥2
) = −𝑘2𝑑𝑍𝑇 

→ 
𝜕2𝑇′

𝜕𝑥2
𝛼′

̅̅ ̅̅ ̅̅ ̅̅ ̅
= ∫ 𝑆𝑇𝛼(𝑘)𝑑𝑘 =

∞

−∞

∫ −
𝐻(𝑡)

𝛼̅
(1 − 𝑒−𝛼̅𝑘

2𝑡)  𝑆𝛼𝛼𝑑𝑘   
∞

−∞

 Eq. 3-19 

Replacing 𝛼′
𝜕2𝑇′

𝜕𝑥2

̅̅ ̅̅ ̅̅ ̅̅
  in Eq. 3-9 with Eq. 3-19, the thermal diffusivity equation can be written as: 

𝜕𝑇̅

𝜕𝑡
= 𝛼̅

𝜕2𝑇̅

𝜕𝑥2
+ 𝛼′

𝜕2𝑇′

𝜕𝑥2

̅̅ ̅̅ ̅̅ ̅̅ ̅
   

𝜕𝑇̅

𝜕𝑡
= 𝛼̅

𝜕2𝑇̅

𝜕𝑥2
−∫

𝐻(𝑡)

𝛼̅
(1 − 𝑒−𝛼̅𝑘

2𝑡)  𝑆𝛼𝛼𝑑𝑘 
∞

−∞

   

This equation can be written as: 

→
𝜕(𝑑𝑍𝑇)

𝜕𝑡
|𝜉 = 𝑑𝑍𝛼  𝐻 − 𝛼̅ 𝑘

2𝑑𝑍𝑇   

→  
𝜕(𝑑𝑍𝑇)

𝜕𝑡
|𝜉 + 𝛼̅ 𝑘

2𝑑𝑍𝑇 = 𝐻 𝑑𝑍𝛼     Eq. 3-16 
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𝜕𝑇̅

𝜕𝑡
=
𝜕2𝑇̅

𝜕𝑥2
(𝛼̅ − ∫

1

𝛼̅
(1 − 𝑒−𝛼̅𝑘

2𝑡)  𝑆𝛼𝛼𝑑𝑘 
∞

−∞

)  Eq. 3-20 

Eq. 3-20 is in terms of location x and time t. In order to write it in moving coordinates, following 

equality relationship can be: 

(
𝑑𝑇

𝑑𝑡
)
𝜉
= (

𝜕𝑇

𝜕𝑥
)
𝑡
𝑈 + (

𝜕𝑇

𝜕𝑡
)
𝑥
  Eq. 3-21 

Substituting Eq. 3-20 in Eq. 3-21, the resultant equation will be: 

(
𝑑𝑇̅

𝑑𝑡
)
𝜉

− (
𝜕𝑇̅

𝜕𝑡
)
𝑡

𝑈 =
𝜕2𝑇̅

𝜕𝑥2
(𝛼̅ − ∫

1

𝛼̅
(1 − 𝑒−𝛼̅𝑘

2𝑡)  𝑆𝛼𝛼𝑑𝑘 
∞

−∞

) 

As the SAGD is a very slow process, due to the low velocity of boundary, the exponential term in 

the above equation can be omitted. This assumption has also been verified using the numerical 

simulations. After applying this assumption, the upscaled equation for heat transfer equation in 

Butler [2] (equation 2.36) can be obtained:  

(
𝑑𝑇̅

𝑑𝑡
)
𝜉

− (
𝜕𝑇̅

𝜕𝑡
)
𝑡

𝑈 =
𝜕2𝑇̅

𝜕𝑥2
(𝛼̅ − ∫

1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞

)     

→    
𝜕2𝑇̅

𝜕𝑥2
(𝛼̅ − ∫

1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞

) + (
𝜕𝑇̅

𝜕𝑡
)
𝑡

𝑈 = (
𝑑𝑇̅

𝑑𝑡
)
𝜉

  Eq. 3-22 

→ 𝛼𝑒𝑞 = 𝛼̅ − ∫
1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞

 

If the integral ∫
1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞
 is positive, the resultant thermal diffusivity will be less than the mean 

value. This reduces the temperature in front of the moving boundary. The steady state solution of 

Eq. 3-22 is: 

𝑇 − 𝑇𝑅
𝑇𝑠 − 𝑇𝑅

= 𝑒
−
𝑈𝜉
𝛼𝑒𝑞        

  

Eq. 3-23 

Eq. 3-23 indicates that perturbations on thermal diffusivity have a negative effect on the heat 

transfer in the reservoir. Subsequently less production is expected for the heterogeneous reservoir 

compared with homogeneous case in SAGD process. 
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In the next step, three different types of perturbations are applied to thermal diffusivity and the 

resulting equivalent thermal diffusivity is determined. The perturbation types studied are described 

by harmonic, exponential, and hollow functions: 

Harmonic Function 

𝑆𝑎𝑎 =
1

2
𝑎2[𝛿(𝑘 + 𝑘0) + 𝛿(𝑘 − 𝑘0)] 

∫
1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞

=
𝑎2

𝛼̅
> 0   ⇒    𝛼𝑒𝑞 = 𝛼̅ −

𝑎2

𝛼̅
  <    𝛼̅ 

Exponential Function 

𝑆𝑎𝑎  =
𝜆𝜎2

𝜋(1 + 𝜆2𝑘2)
 

∫
1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞

=
𝜎2

𝛼̅ 
> 0 ⇒    𝛼𝑒𝑞 = 𝛼̅ −

𝜎2

𝛼̅ 
  <    𝛼̅ 

Hollow Function 

𝑆𝑎𝑎 =
2𝑙3𝜎2𝑘2

𝜋2(1 + 𝑙2𝑘2)2
 

∫
1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞

=
𝜎2

𝜋𝛼̅ 
> 0 ⇒    𝛼𝑒𝑞 = 𝛼̅ −

𝜎2

𝜋𝛼̅ 
  <    𝛼̅ 

Applying the mentioned perturbation types showed that the equivalent thermal diffusivity is less 

than the mean thermal diffusivity coefficient. In other words, if the perturbation is one of these 

functions, the temperature of the region ahead of boundary will be less than homogeneous reservoir 

and less drainage rate will be produced. 

3.4. Darcy Equation 

In this section, the fluid flow equation in porous media, which describes the flow of oil and steam 

in porous media in SAGD process and is based on the Darcy equation, is derived for the perturbed 

variables. Figure 3-1 depicts a vertical section view of the SAGD process along with an enlarged 

view of the boundary illustrating the differential directions and variables. The steam and reservoir 
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temperatures are denoted by TS and TR, respectively. At a distance 𝜉 form the interface, Darcy’s 

equation can be written for a section with unity width measured into the paper.  

 𝑑𝑞 =
𝑘

𝜈
𝑔 sin(𝜃)  𝑑𝜉   Eq. 3-24 

Where Θ is the angle that the boundary makes with horizon (Figure 1-4).Using this equation, 

Eq. 3-24 the rate of drainage of oil, dq, within the element 𝑑𝜉 (Figure 3-2) is described. If all the 

variables in this equation are written as the sum of their mean and perturbation values. Eq. 3-24 

can be written as: 

 
𝑑𝑞̅̅̅̅

𝑑𝜉
+
𝑑𝑞′

𝑑𝜉
= 𝑒𝑓̅+𝑓′ 𝑒𝑚̅+𝑚′𝑔 sin(𝜃)   Eq. 3-25 

If 𝑒𝑚′ and 𝑒𝑓′ are written in Fouriers Series, Eq. 3-26 is obtained:  

 

𝑑𝑞̅̅̅̅

𝑑𝜉
+
𝑑𝑞′

𝑑𝜉
=
𝐾𝐿
𝜈𝐿
(1 + 𝑓′ +

𝑓′2

2
+
𝑓′2

2
𝑚′ + 

𝑚′2

2
+
𝑚′2

2
𝑓′ +𝑚′𝑓′

+⋯ . ) sin(𝜃) 

Eq. 3-26 

Where 𝐾𝐿 = 𝑒
𝑓̅ and 

1

𝜈𝐿
= 𝑒𝑚̅. If mean values are taken for both sides of Eq. 3-26 and then small 

perturbation assumption is applied on the terms of the series to ignore the terms that are higher 

than 2nd order, mean equation (Eq. 3-27) will be resulted. Perturbation equation (Eq. 3-28) can be 

obtained by subtracting the mean equation (Eq. 3-27) from main equation (Eq. 3-26) and ignoring 

the 2nd order and higher order terms. 

 
𝑑𝑞̅̅̅̅

𝑑𝜉
=
𝐾𝐿
𝜈𝐿
(1 +

𝑓′2̅̅ ̅̅

2
+
𝑚′2̅̅ ̅̅ ̅

2
+ 𝑚′𝑓′̅̅ ̅̅ ̅̅ ) sin(𝜃) Eq. 3-27 

 
𝑑𝑞′

𝑑𝜉
=
𝐾𝐿
𝜈𝐿
(𝑓′ + 𝛽𝑇′) sin(𝜃) Eq. 3-28 

Eq. 3-27 can be written as: 

𝑑𝑞̅̅̅̅

𝑑𝜉
=
𝐾𝐿
𝜈𝐿
(1 +

𝑓′2̅̅ ̅̅

2
+
𝑚′2̅̅ ̅̅ ̅

2
+ 𝑚′𝑓′̅̅ ̅̅ ̅̅ ) sin(𝜃) =

𝐾𝐿
𝜈𝐿
𝐴 sin(𝜃) 
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Figure 3-2: Cross Sectional View of SAGD along with the expanded view of the edge 

𝐴 = 1 +
1

2
∫ 𝑆𝑓𝑓

+∞

−∞

𝑑𝑘 +
1

2
∫ 𝑆𝑚𝑚

+∞

−∞

𝑑𝑘 + ∫ 𝑆𝑚𝑓

+∞

−∞

𝑑𝑘 

To develop Eq. 3-27, third order approximation in Taylor’s series was used to simplify the 

equations, for a more detailed proof refer to Bakr et al. [17].  

3.5. Final Flow Equation 

1- As previously developed, 𝑑𝑍𝑇 can be calculated in terms of 𝑑𝑍𝛼 through the 

heat equation: 

{
 
 

 
 𝑑𝑍𝑇 =

𝐻

𝛼̅𝑘2
 𝑑𝑍𝛼

𝑤ℎ𝑒𝑟𝑒:

𝐻 =
𝜕2𝑇̅

𝜕𝑥2

𝛼̅ 𝑖𝑠 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 (𝑛𝑜𝑡  𝛼𝑒𝑞𝑞) 

 

2- Reservoir and fluid properties in this study, are correlated as: 

 ln  𝑘(𝑥) = 𝑓(𝑥) = 𝑓(̅𝑥) + 𝑓′(𝑥) = 𝑓(̅𝑥) + 𝑐 ∗ 𝛼′(𝑥) Eq. 3-29 

 
𝐿𝑛
1

𝜈
= 𝑚(𝑥)̅̅ ̅̅ ̅̅ ̅ + 𝑚′(𝑥) = 𝐿𝑛 (

1

𝜈0
) + 𝛽(𝑇 − 𝑇0)  Eq. 3-30 
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Based on Eq. 3-29 and Eq. 3-30: 

𝐴 = 1 +
1

2
∫ 𝑆𝑓𝑓

+∞

−∞

𝑑𝑘 +
1

2
∫ 𝑆𝑚𝑚

+∞

−∞

𝑑𝑘 + ∫ 𝑆𝑚𝑓

+∞

−∞

𝑑𝑘 = 

 1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 +
1

2
∫

𝛽2𝐻2

𝛼
2
𝑘4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘 + ∫
𝛽𝑐 𝐻

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 Eq. 3-31 

3-  

(𝑇 − 𝑇𝑅)

𝑇𝑠 − 𝑇𝑅
= 𝑒−𝐵𝜉   ⟹ 𝑑𝜉 =  

𝑑𝑇

−𝐵(𝑇 − 𝑇𝑅)
 

4-  

𝑑𝑞

𝑑𝜉
=
𝐾𝐿
𝜈𝐿
𝐴𝑔 sin(𝜃)   ⟹    𝑑𝑞 =

𝐾𝐿
𝜈𝐿
𝐴𝑔 sin(𝜃)  𝑑𝜉 

 ⟹ 𝑑𝑞 =
𝐾𝐿
𝜈𝐿
𝐴𝑔 sin(𝜃)

𝑑𝑇

−𝐵(𝑇 − 𝑇𝑅)
  Eq. 3-32 

5- calculation of 
1

𝜈𝐿
: 

𝐿𝑛(
1

𝜈
) = 𝑚(𝑥)̅̅ ̅̅ ̅̅ ̅ + 𝑚′(𝑥) = 𝐿𝑛 (

1

𝜈𝑅
) + 𝛽(𝑇̅ − 𝑇𝑅) + 𝛽𝑇

′  ∶    𝛽 > 0 

 ⟹
1

𝜈𝐿
= 𝑒𝑚(𝑥)

̅̅ ̅̅ ̅̅ ̅
=
1

𝜈𝑅
 × 𝑒𝛽(𝑇̅−𝑇𝑅)  Eq. 3-33 

6- If Eq. 3-49 is replaced in Eq. 3-38, then: 

𝑑𝑞 =  
𝐾𝐿
𝜈𝑅
𝐴𝑔 sin(𝜃) 𝑒𝛽(𝑇̅−𝑇𝑅)

𝑑𝑇

−𝐵(𝑇 − 𝑇𝑅)
 

7- H can be calculated thorough the solution of thermal diffusivity equation as: 

𝐻 =
𝜕2𝑇̅

𝜕𝑥2
   &  

(𝑇 − 𝑇𝑅)

𝑇𝑠 − 𝑇𝑅
= 𝑒−𝐵𝜉   

⟹𝐻 = 𝐵2(𝑇𝑠 − 𝑇𝑅)𝑒
−𝐵𝜉 = 𝐵2(𝑇𝑠 − 𝑇𝑅)

(𝑇 − 𝑇𝑅)

𝑇𝑠 − 𝑇𝑅
= 𝐵2(𝑇 − 𝑇𝑅) 

8- Now, calculated H is replaced in Eq. 3-31 to give A as: 



 

28 

 

𝐴 = 1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 +
1

2
∫

𝛽2𝐻2

𝛼
2
𝐾4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘 + ∫
2𝛽𝑐 𝐻

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 

= 1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 +
1

2
∫

𝛽2𝐵4(𝑇 − 𝑇𝑅)
2

𝛼
2
𝑘4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘

+ ∫
𝛽𝑐 𝐵2(𝑇 − 𝑇𝑅)

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 

9- If the recent values obtained for A is replaced in Darcy Law, it gives: 

𝑑𝑞 =  
𝐾𝐿
𝜈𝑅
𝐴𝑔 sin(𝜃) 𝑒𝛽(𝑇̅−𝑇𝑅)

𝑑𝑇

−𝐵(𝑇 − 𝑇𝑅)
 

⟹  𝑑𝑞 =  
𝐾𝐿𝑔 sin(𝜃)

−𝐵𝜈𝑅
 
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)
× 

(1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 +
1

2
∫

𝛽2𝐵4(𝑇 − 𝑇𝑅)
2

𝛼
2
𝑘4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘 + ∫
𝛽𝑐 𝐵2(𝑇 − 𝑇𝑅)

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘) 

⟹  𝑑𝑞 =  
𝐾𝐿𝑔 sin(𝜃)

−𝐵𝜈𝑅
 

×  [(1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘)  ×   
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)
   + (

1

2
∫

𝛽2𝐵4

𝛼
2
𝑘4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘)   

×  𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇   + (∫
𝛽𝑐 𝐵2

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 )  ×   𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇 ] 

10-  Integrate the flow rate, q, and equation and simplify the solution. For the sake 

of convenience, the terms inside the parenthesis are named as VV, MM, NN 

as: 

𝑉 = (1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘) 

𝑀𝑀 = (
1

2
∫

𝛽2𝐵4

𝛼
2
𝑘4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘)  

𝑁𝑁 = (∫
𝛽𝑐 𝐵2

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 ) 

Eq. 3-34 
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⟹ 𝑑𝑞 =  
𝐾𝐿𝑔 sin(𝜃)

−𝐵𝜈𝑅
 

×  [𝑉𝑉  ×   
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)
   +     𝑀𝑀 ×  𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇   + 𝑁𝑁 

×  𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇 ] 

Integral form both sides, then: 

 

𝑞 =
𝐾𝐿𝑔 sin(𝜃)

−𝐵𝜈𝑅
 

×  [𝑉𝑉  ×   ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆 

   +     𝑀𝑀

× ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

   + 𝑁𝑁 

×  ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

 ] 

  

Eq. 3-35 

Eq. 3-38 offers the flow rate produced along the reservoir with a depth of 1 meter when Steam 

chamber is run through the reservoir. Note that the upper limit of integral on the right side of the 

developed equation cannot be temperature of reservoir in the normal condition, otherwise, flow 

rate will be infinity. In practice, it never reaches the temperature of reservoir along 𝜉 direction. To 

evade this problem, an infinitesimal value, 𝜖, is added to upper limit of integral.  

𝑞 =
𝐾𝐿𝑔 sin(𝜃)

+
cos 𝜃 (

𝜕𝑦
𝜕𝑡
)
𝑥
 

𝛼̅ −
𝑎2

𝛼

𝜈𝑅

 

×  [𝑉𝑉  ×   ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

   +     𝑀𝑀 × ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

   + 𝑁𝑁 

×  ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

 ] 
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⇒ 𝑞 = (𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔 tan(𝜃)

𝜈𝑅
∗

1

(
𝜕𝑦
𝜕𝑡
)
𝑥

 

×  [𝑉𝑉  ×  ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

   +     𝑀𝑀 × ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

   + 𝑁𝑁 

×  ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

 ] 

 

⇒ 𝑞 = (𝛼̅ −
𝑎2

𝛼
)

𝐾𝐿𝑔 (
𝜕𝑦
𝜕𝑥
)
𝑡

𝜈𝑅
∗

1

(
𝜕𝑦
𝜕𝑡
)
𝑥

 

×  [𝑉𝑉  ×  ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

   +     𝑀𝑀

× ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

   + 𝑁𝑁 

×  ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

 ] 

  

Eq. 3-36 

Material balance can be written as: 

 (
𝜕𝑞

𝜕𝑥
)
𝑡

= 𝜙Δ𝑆𝑜 (
𝜕𝑦

𝜕𝑡
)
𝑥
⟹ (

𝜕𝑦

𝜕𝑡
)
𝑥
=

1

𝜙Δ𝑆𝑜
 (
𝜕𝑞

𝜕𝑥
)
𝑡

  Eq. 3-37 

If (
𝜕𝑞

𝜕𝑥
)
𝑡
is substituted in the flow rate equation (Eq. 3-38). 
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⇒ 𝑞 = (𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔

𝜈𝑅
∗ 𝜙Δ𝑆𝑜 ∗ (

𝜕𝑦

𝜕𝑞
)
𝑡

 

×  [𝑉𝑉  ×   ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

   +     𝑀𝑀

× ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

   + 𝑁𝑁 

×  ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

 ] 

Eq. 3-38 

If differential variables are separated and both sides are integrated, then: 

 

𝑞 = √−2(𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔

𝜈𝑅
∗ 𝜙Δ𝑆𝑜 ∗ ℎ ∗ 𝐴𝐴 

Where 𝐴𝐴 = [𝑉𝑉  ×  ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇−𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆
   +     𝑀𝑀 ×

 ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆
   + 𝑁𝑁 ×  ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

𝑇𝑅+𝜖

𝑇𝑆
 ]  

Eq. 3-39 

After solving the integrals in Eq. 3-38, AA is calculated as:  

 

𝐴𝐴 = [𝑉𝑉 × [𝐸𝑖(𝛽𝜖) − 𝐸𝑖(𝛽 ∗ (𝑇𝑆 − 𝑇𝑅))] + 𝑀𝑀 

× [
𝑒𝛽𝜖(𝛽𝜖 − 1)

𝛽2
−
(𝑒𝛽(𝑇𝑆−𝑇𝑅)(𝛽(𝑇𝑆 − 𝑇𝑅) − 1) 

𝛽2
]

+ 𝑁𝑁 ×
1

𝛽
(𝑒𝛽𝜖 − 𝑒𝛽(𝑇𝑆−𝑇𝑅))]     

Eq. 3-40 

Where 𝐸𝑖 is the exponential integral: 

𝐸𝑖(𝑥0) = ∫
𝑒−𝑥0𝑡𝑑𝑡

𝑡

∞

1

= ∫
𝑒−𝑢𝑑𝑢

𝑢

∞

𝑥0

 

VV, MM and NN values are as defined by Eq. 3-21: 
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3.6. Position of Boundary 

The horizontal velocity of the interface is given by  

 (
𝜕𝑥

𝜕𝑡
)
𝑦
= −

(
𝜕𝑦
𝜕𝑡
)
𝑥

(
𝜕𝑦
𝜕𝑥
)
𝑡

 Eq. 3-41 

If right side of Eq. 3-41 is replaced with second raw in Eq. 3-36, then: 

 (
𝜕𝑥

𝜕𝑡
)
𝑦
= −

(𝛼̅ −
𝑎2

𝛼
)

𝑞

𝐾𝐿𝑔

𝜈𝑅
 

Eq. 3-42 

If q from Eq. 3-39 is replaced in Eq. 3-41, then:  

 

 (
𝜕𝑥

𝜕𝑡
)
𝑦
=

(𝛼̅ −
𝑎2

𝛼
)

√−2(𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔
𝜈𝑅

∗ 𝜙Δ𝑆𝑜 ∗ (ℎ − 𝑦) ∗ 𝐴𝐴

𝐾𝐿𝑔

𝜈𝑅
 Eq. 3-43 

 
⟹ 𝑥 = 𝑡  ∗   √−

(𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔
𝜈𝑅
 

2 ∗ 𝜙Δ𝑆𝑜 ∗ (ℎ − 𝑦) ∗ 𝐴𝐴
 

Eq. 3-44 

Eq. 3-49 can be rearranged to give y in terms of x and t: 

 𝑦 = ℎ +
(𝛼̅ −

𝑎2

𝛼
)
𝐾𝐿𝑔
𝜈𝑅
 

2 ∗ 𝜙Δ𝑆𝑜 ∗ 𝐴𝐴
(
𝑡

𝑥
)
2

  Eq. 3-45 

Using the dimensionless form of variables x, y and t, Eq. 3-49 can be written as: 

 𝑌 = 1 − 1/2(
𝑡′

𝑋
)

2

  Eq. 3-46 

 𝑌 =
𝑦

ℎ
  Eq. 3-47 
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 𝑋 =
𝑥

ℎ
  Eq. 3-48 

 𝑡′ =
𝑡

ℎ
√(−

(𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔
𝜈𝑅
 

𝜙Δ𝑆𝑜 ∗ 𝐴𝐴
)     Eq. 3-49 
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Chapter 4. Verification of Upscaled Thermal Equation 

In previous section, an equivalent diffusivity coefficient has been developed based on Fourier- 

Stieltjes transform for three types of thermal diffusivity. In this section; a verification will be 

considered to test the results. This verification generates inputs based on their distributions and 

will used arithmetic averaging to estimate the mean values of temperature that is a key variable in 

SAGD process. The results will be compared with the one obtained theoretically in previous 

sections. 

Numerical verification in this step of research will be a useful tool to resolve the two concerns that 

have risen so far. First, the method that Gelhar [18] suggested in his works was based on Fourier- 

Stieltjes transform but he did not verify his model with any reliable method. There are some 

questions in this method that we could not find a reasonable answer for them. For instance, as 

raised in previous reports, taking the gradient of mean concentration in diffusivity equation as a 

constant value while moving from the space - time frame to spectrum frame lacks a reasonable 

justification. If verification is passed successfully, we can make sure our solution was correct. 

Secondly, a numerical verification helps us have a better understanding of real-life data, the 

concept of correlation and spectrum. Inputs are produced based on their correlation. Harmonic 

correlation function will be used to generate a sufficient number of realizations. This type of 

verification is unique and has not been included in any previous similar studies. 

Stochastic analysis is generally applied on two processes, stochastic or time series processes vs 

spatial variability or random fields. These two categories have been explained and addressed with 

details in Gelhar [2].  

In this research, thermal diffusivity and permeability are assigned with perturbations and are given 

a specific distribution throughout the reservoir, making it act as a random field. However; the 

reservoir is exposed to vary over time as a deterministic variable. This type of stochastic modeling 

that combines the spacious randomness with time varying characteristic, includes the transient 

solution of the model. Gelhar  [19] did not mention this type of analysis but partially mentioned it 

in [18].  
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Three common functions were evaluated in previous section and their equivalent thermal 

diffusivities were calculated based on the spectrum-based analysis: harmonic, exponential and hole 

type function. Let us list the correlation functions and their spectrums here [2]: 

Harmonic Function: 

𝑆𝑎𝑎 =
1

2
𝑎2[𝛿(𝑘 + 𝑘0) + 𝛿(𝑘 − 𝑘0)] 

𝑅(𝜏) =
𝑎2

2
cos(𝜔0𝜏) ,   𝜏 = 𝑡2 − 𝑡1 

Exponential Function: 

𝑆𝑎𝑎  =
𝜎2𝜆

𝜋(1 + 𝜆2𝑘2)
 

𝑅(𝜏) = 𝜎2𝑒
−|𝜏|
𝜆     

Hollow Function 

𝑆𝑎𝑎 =
2𝑙3𝜎2𝑘2

𝜋2(1 + 𝑙2𝑘2)2
 

𝑅(𝜏) = 𝜎2(1 − |𝜏|/𝑙) 𝑒−|𝜏|/𝑙      

All above spectral functions have used notation k as the frequency in one-dimensional space. In 

case of stochastic processes with times series, the notation 𝜔 is used.  We need distribution 

functions to generate realizations for this case. But only the harmonic distribution function was 

available in [19] and we could not find the distribution functions for the other two types of 

correlation functions. 

We apply Monte Carlo method to verify our results, realizations are generated based on the 

harmonic distributions. Because the process is known only for harmonic function, we do the 

verification based on this distribution. According to Gelhar  [19], harmonic process/field can be 

written as: 

𝛼′(𝑥) = 𝛼̅ 𝑎𝛼 cos(𝜔0𝑥 + 𝜙)    0 < 𝑎𝛼 < 1    
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50 and 100 field samples of thermal diffusivity are chosen based on this distribution. The 

parameters of diffusivity perturbations are to be chosen as 𝑎𝛼=0.7 and 𝜔 =
𝜋

4
 . The thermal 

equation (Eq. 4-1) is solved for each of these samples. Temperature curves of 50 realizations are 

shown in Figure 4-1. In averaging technique, the mean value of a large enough number of 

realizations is introduced as the most probable ultimate solution. The averaged-based temperature 

curve is shown in Figure 4-2 in black color. 

 𝑋 (
𝜕𝑇

𝜕𝑡
)
𝑥
  =    (

𝑑𝑇

𝑑𝑡
)
𝜉
− 𝑈 (

𝜕𝑇

𝜕𝑥
)
𝑡
 Eq. 4-1 

To verify our heterogeneous model, the developed equation for heterogeneous reservoir in this 

research that is Eq. 4-2 is solved numerically. The green curve in Figure 4-2 represents the result 

obtained with theoretical analysis in which mean values of properties are used in the new modified 

equation (Eq. 4-2) rather than the perturbed variables themselves. 

 (
𝑑𝑇̅

𝑑𝑡
)
𝜉

− (
𝜕𝑇̅

𝜕𝜉
)
𝑡

𝑈 =
𝜕2𝑇̅

𝜕𝜉2
(𝛼̅ − ∫

1

𝛼̅
(1 − 𝑒−𝛼̅𝑘

2𝑡)  𝑆𝛼𝛼𝑑𝑘 
∞

−∞

) Eq. 4-2 

Moreover, to illustrate the effects of perturbations on temperature distribution, the exact solution 

of thermal equation modeled by Butler, is drawn along with the previous two curves in Figure 4-2. 

As seen, perturbations of diffusivity reduce the temperature in the reservoir and cause a declining 

effect on the oil recovery. The reduced temperature in the reservoir inhibits the main purpose of 

situ processes that is reducing the viscosity of the heavy oil or bitumen. In addition, in Figure 4-2 

the closeness of two curves obtained by upscaled model and average-based models verifies the 

accuracy of our developed model. The verification results in Figure 4-1 and Figure 4-2 are obtained 

by a 50 realizations test. However, to get more accuracy in comparison, more realizations can be 

used by average-based model. The same procedure is repeated for a set of 100 heterogeneous 

realizations all obtained by solving Eq. 4-1. The relevant curves are shown by Figure 4-3 and 

Figure 4-4. The test indicates that with 100 realizations, the oscillating average-based curve is 

getting closer to the upscaled model that is constituent with the basic concept of averaging in 

statistics.  
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Figure 4-1: Temperature curves for 50 realizations at a location 1m ahead of boundary for 

𝑎𝛼=0.7 and 𝜔 =
𝜋

4
.  

 

Figure 4-2: Comparison of developed upscaled model with Butler’s model and average-based 

model of 50 realizations for 𝑎𝛼=0.7 and 𝜔 =
𝜋

4
.  
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Figure 4-3: Temperature curves for 100 realizations at a location 1m ahead of boundary for 

𝑎𝛼=0.7 and 𝜔 =
𝜋

4
.  

  

Figure 4-4: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.7 and 𝜔 =
𝜋

4
. 
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In an additional test, angular frequency of harmonic functions (𝜔)  used in our synthetic 

distributions was subjected to change. The temperature curves values of 𝜔 =

𝜋

2
, 𝜋,

3𝜋

2
 𝑎𝑛𝑑 2𝜋 were obtained by applying the same averaging technique used for 𝜔 =

𝜋

4
. 

Figure 4-5, Figure 4-6, Figure 4-7 and Figure 4-8 depict the relevant temperature curves for 

different angular velocities. As seen all scenarios verify the accuracy of our developed upscaled 

model.  

To do more validation, another test can also be done. So far, parameter 𝑎𝛼 in all models has been 

assigned to be 0.7. To observe its effect on the temperature curves, the test is repeated for 𝑎𝛼 =

0.6, 0.8 𝑎𝑛𝑑 0.9. The results are depicted in Figure 4-9, Figure 4-10 and Figure 4-11 show that the 

curve obtained by upscaled model deviates from average-based curve as the variation of diffusivity 

increases. This observation can be justified by the limitation imposed by the approximation we 

used whole developing our upscaled model. To get the final solution of the differential equation, 

Tylor’s series approximation was used to solve the equation that is valid for reasonably small 

enough values of 𝛼′. In addition, 1st order approximation of perturbation in developing mean 

equations may be the other reason for this error. The results of simulations show that at 𝑎 𝛼 ≤ 60, 

the upscaled model offers acceptable accuracy. Accordingly, we will keep 𝑎 𝛼 within this range 

for the next section tests.  
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Figure 4-5: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.7 and 𝜔 =
𝜋

2
. 

 

Figure 4-6: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.7 and 𝜔 = 𝜋. 
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Figure 4-7: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.7 and 𝜔 =
3𝜋

2
.  

 

Figure 4-8: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.7 and 𝜔 = 2𝜋.  
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Figure 4-9: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.6 and 𝜔 = 𝜋. 

 

Figure 4-10: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.8 and 𝜔 = 𝜋. 
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Figure 4-11: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼=0.9 and 𝜔 = 𝜋 

Finally, in the last run, the effect of velocity of interface is examined. In Figures……., U is changed 

from 0.8 × 4.76 × 10−7  𝑡𝑜  1.4 × 4.76 × 10−7
𝑚

𝑠
 . The results show that as this parameter 

increases, the temperature curve oscillate more rapidly.  These oscillations are caused by the 

harmonic nature of distributions assigned to the diffusivities. This property at a specific point at 

time t can be written as:  

𝛼(𝑥) = α̅ + 𝑎 cos (ω × (𝑈. 𝑡 + 𝜂) + 𝜙) 

As seen, velocity of boundary has a positive correlation with the frequency of this property. This 

observation may be better described if compared with a driving example.  Imagine a driver runs 

the car on a road that is full of bumps. As he/she speeds up he/she will pass the bumps more 

frequently. The spatial location of bumps are fixed and do not change but the drivers with different 

speeds pass them with different frequencies. 
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Figure 4-12: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼 = 0.6 , 𝜔 = 𝜋 𝑎𝑛𝑑 𝑈 = 0.8 × 4.76 × 10−7
𝑚

𝑠
 

 

Figure 4-13: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼 = 0.6 , 𝜔 = 𝜋 𝑎𝑛𝑑 𝑈 = 1.2 × 4.76 × 10−7
𝑚

𝑠
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Figure 4-14: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼 = 0.6 , 𝜔 = 𝜋 𝑎𝑛𝑑 𝑈 = 1.4 × 4.76 × 10−7
𝑚

𝑠
 

  

Figure 4-15: Comparison of developed upscaled model with Butler’s model and average-based 

model of 100 realizations for 𝑎𝛼 = 0.6 , 𝜔 = 𝜋 𝑎𝑛𝑑 𝑈 = 16 × 4.76 × 10−7
𝑚

𝑠
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Chapter 5. Results 

5.1. Comparison with Butler’s method 

To develop the equations obtained in previous section, we made a couple of assumptions and 

simplifications that are different from the ones made by Butler. One of these differences is related 

to parameter m. Butler defined m as a parameter that depends on the fluid properties and reservoir 

and steam temperatures. But in our developed equation, viscosity and temperature are correlated 

based on Eq. 3-7. There are 6 parameters appear in the final equation of drainage rate, VV, MM, 

NN, LL, TT, and BB. To compare our results with Butler’s, parameter m should be calculated. 

Based on the value of m, 𝜖𝑒𝑞𝑞 should be obtained.  

5.1.1. Parameter 𝒎 calculation 

Parameter 𝑚 indicates the relationship between viscosity and temperature for the fluid and appears 

in Butler’s equation. For three types of crudes that are distinguished by viscosity in 100 ℃ and 

200 ℃, Figure 5-1 shows the parameter of m in different steam temperatures and fixed reservoir 

temperature Tr=13 ℃. ℃ 

 

Figure 5-1: Boundary value of m for different fluid oil [2] 
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In our case study, the viscosity at 100 and 200 °C is 129/6.8, and steam temperature is 215 °C. 

Based on this information, according to the chart in Figure 5-1, m will be equal to 3.7.  

5.1.2. Consistency with Butler’s Model 

As previously mentioned, the flow rate is produced along the reservoir ahead of steam interface 

and if there is no limit in integrals used to develop our equations, flowrate will be converge to 

infinity. To avoid this problem, the interval of integral where the fluid flow is produced will be 

limited. This can be done by introducing a small number to reservoir temperature named as 𝜖𝑒𝑞𝑞. 

It indicates that the integral considers only a limited region.  

Butler used another method to avoid this problem in his method [2]. As in this section we are 

looking for a comparison between the methods, we need to find the proper value of 𝜖𝑒𝑞𝑞 that gives 

the same results. Butler’s equation for the flow rate in SAGD is: 

 𝑞 = √2(𝛼)
𝐾𝐿𝑔

𝑚𝜈𝑠
∗ 𝜙Δ𝑆𝑜 ∗ ℎ  Eq. 5-1 

According to Butler [2Where m is defined as: 

 
𝑚 = [𝜈𝑠∫ (

1

𝜈
−
1

𝜈𝑅
)

𝑑𝑇

𝑇 − 𝑇𝑅

𝑇𝑆

𝑇𝑅

]

−1

 

  

Eq. 5-2 

Our general developed equation for flow rate is: 

 𝑞 = √2(𝛼̅)
𝐾𝐿𝑔

𝜈𝑅
∗ 𝜙Δ𝑆𝑜 ∗ ℎ ∗ 𝐴𝐴 Eq. 5-3 

If case study is deterministic, Eq. 5-3 becomes: 

 𝑞 = √2(𝛼̅)
𝐾𝐿𝑔

𝜈𝑅
∗ 𝜙Δ𝑆𝑜 ∗ ℎ ∗ ∫

𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

  Eq. 5-4 
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If the flow rate achieved by two different methods are set to be equal: 

 ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

=
1

𝑚𝜈𝑠
  Eq. 5-5 

Substituting the value of m (Eq. 5-2) in this equation, yields: 

∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

= ∫ (
1

𝜈
−
1

𝜈𝑅
)

𝑑𝑇

𝑇 − 𝑇𝑅

𝑇𝑆

𝑇𝑅

 

The solution of this integral at the left side is: 

[𝐸𝑖(𝛽𝜖) − 𝐸𝑖(𝛽 ∗ (𝑇𝑆 − 𝑇𝑅))]  

Right side can be written as: 

∫ (
1

𝜈
−
1

𝜈𝑅
)

𝑑𝑇

𝑇 − 𝑇𝑅

𝑇𝑆

𝑇𝑅

= ∫ (
1

𝜈𝑅
−
1

𝜈
)

𝑑𝑇

𝑇 − 𝑇𝑅

𝑇𝑅

𝑇𝑆

= ∫ (
1

𝜈𝑅
−
(𝑒𝛽(𝑇𝑅−𝑇)

𝜈𝑅
)

𝑑𝑇

𝑇 − 𝑇𝑅

𝑇𝑅

𝑇𝑆

 

With equating these two equations, an equation is developed for 𝜖: 

 𝐸𝑖(𝛽𝜖) = 𝐸𝑖(𝛽 ∗ (𝑇𝑆 − 𝑇𝑅)) + 𝜈𝑅∫ (
1

𝜈𝑅
−
(𝑒𝛽(𝑇𝑅−𝑇)

𝜈𝑅
)

𝑑𝑇

𝑇 − 𝑇𝑅

𝑇𝑅

𝑇𝑆

  Eq. 5-6 

By solving this equation, the equivalent value of 𝜖 is achieved as 

𝜖𝑒𝑞 = 1.63 ∗ 10
−8 ℃  

This values of 𝜖 corresponds to a distance to:  

𝜉𝑒𝑞 ≅ 40  𝑚 

The flow rates in SAGD process vary from 0.05 to 0.8 
𝑚3

𝑚.  𝑑𝑎𝑦
 per meter for horizontal well (Butler 

[2]). 
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5.2. Evaluating the developed flow equation for typical values 

In this section, the typical values of variables of flow rate equation will be used to evaluate the 

effect of heterogeneity on flow rate. In this evaluation, the thermal diffusivity is set to have 50% 

perturbation. The similar steps should be done for other values of perturbation.  

5.2.1. Viscosity 

A typical crude oil has a viciously of 129.1
mm2

𝑠
  (or cs) at 1000 C and 6.8

mm2

𝑠
  at 2000 C (Butler 

[2]. 

1 𝑐𝑒𝑛𝑡𝑖𝑠𝑟𝑜𝑘𝑒𝑠 = 1 𝑚𝑚2𝑠−1 = 10−6𝑚2𝑠−1 

Therefore, typical values in SI unit, for these values will be 129.1 ∗ 10−6
m2

𝑠
  𝑎𝑛𝑑 6.8 ∗ 10−6

m2

𝑠
 at 

1000 C and 2000 C.  

5.2.2. Permeability 

A typical reservoir of heavy oil can have a 0.4 𝑑 effective permeability for oil flow (Butler [2]) 

1 Darcy unit in SI unit is equal to = 9.869233 × 10−13 𝑚2 ≈ 10−12 𝑚2    

⟹  0.4 𝑑 = 0.4 ∗ 10−12 𝑚2  

𝐾𝐿 = 0.4 ∗ 10−12 𝑚2 

5.2.3. Reservoir and Steam Temperature 

𝑇𝑠 =  215 ℃
  and  𝑇𝑟 = 13 ℃ .  

5.2.4. Saturation 

A typical residual and oil saturation can be as:  

𝑆𝑟 = 0.13  𝑎𝑛𝑑  𝑆𝑜 = 0.75 

5.2.5. Porosity  

The typical value of this property can be as:  
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𝜙 = 0.33  

5.2.6. Thermal Diffusivity 

𝛼 = 8.10 ∗ 10−7
𝑚2

𝑠
 and we take for this specific example 𝑎 = 0.5 ∗ 8.10 ∗ 10−7

𝑚2

𝑠
 . 

Where 𝑎 is indicates the range of heterogeneity. Thermal diffusivity varies within [-a,a]. 

5.2.7. Temperature and Viscosity Correlation 

 𝐿𝑛
1

𝜈
= 𝑚(𝑥)̅̅ ̅̅ ̅̅ ̅ + 𝑚′(𝑥) = 𝐿𝑛 (

1

𝜈𝑅
) + 𝛽(𝑇̅ − 𝑇𝑅) + 𝛽𝑇

′  ∶    𝛽 > 0 Eq. 5-7 

1

𝜈𝐿
= 𝑒𝑚(𝑥)

̅̅ ̅̅ ̅̅ ̅
=
1

𝜈𝑅
 × 𝑒𝛽(𝑇̅−𝑇𝑅) 

⟹ 𝛽 =
1

(𝑇2 − 𝑇1)
 ln (

𝜈1
𝜈2
) =

1

(200 − 100)
 ln(

129.1

6.8
) =0.0294  

5.2.8. Viscosity of Fluid at Reservoir Temperature 

Viscosity of fluid at reservoir temperature can be calculated based on the correlation introduced 

by Eq. 5-7. 

1

𝜈𝑅
=
1

𝜈1
× 𝑒𝛽(𝑇𝑅−𝑇1) =

1

129.1 ∗  10−6
∗ 𝑒0.0294∗(13−200) = 598 

⟹ 𝜈𝑅 =
1

4.7894 ∗ 1014
= 0.0017

𝑚2

𝑠
  

5.2.9. Velocity of Boundary  

In this case study, the velocity of boundary is supposed to be 

𝑈 = 4.76 ∗ 10−7𝑚/𝑠    

Now that all the variables are known, parameter AA can be calculated. 

𝐴𝐴 = [𝑉𝑉  ×   𝐿𝐿   +     𝑀𝑀 ×  𝑇𝑇   + 𝑁𝑁 ×   𝐵𝐵 ] 

Where:  
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𝑉𝑉 = (1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘) 

𝑀𝑀 = (
1

2
∫

𝛽2𝐵4

𝛼
2
𝑘4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘)  

𝑁𝑁 = (∫
𝛽𝑐 𝐵2

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 ) 

𝐿𝐿 = ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

 

𝑇𝑇 = ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

 

𝐵𝐵 = ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

 

C, B and 𝑆𝛼𝛼 should be determined.  

5.2.10. Parameter c Calculation 

 𝐿𝑛 𝑘(𝑥) = 𝑓(𝑥) = 𝑓̅ + 𝑓′(𝑥) = 𝑓̅ +  𝑓 ̅𝑎𝑓cos (𝜔𝑘𝑥 + 𝜃) Eq. 5-8 

 
𝛼 = 𝛼̅ + 𝛼′(𝑥) = 𝛼̅ + 𝛼̅ 𝑎𝛼cos (𝜔𝑘𝑥 + 𝜃) 

 
Eq. 5-9 

For the permeability: 

 𝑓̅ = 𝐿𝑛 𝐾𝐿           Eq. 5-10 

   𝑓′ =  𝑐 ∗ 𝛼′(𝑥)  ⇒   𝑓𝑎̅𝑓 cos(𝜔𝑘𝑥 + 𝜃) =  𝑐 𝛼̅𝑎𝛼 cos(𝜔𝑘𝑥 + 𝜃) 

⟹ 𝑎𝑓 = 𝑐
𝛼̅𝑎𝛼

𝑓̅
  

Eq. 5-13 can be written as: 

 𝐿𝑛 𝑘(𝑥) = 𝐿𝑛 𝐾𝐿 + 𝑓 ̅𝑎𝑓cos (𝜔𝑘𝑥 + 𝜃) Eq. 5-11 

If the critical points of k is written as: 

ln(𝐾𝐿 +𝐾𝐿𝑎𝑘) = 𝐿𝑛 𝐾𝐿 + 𝑓 ̅𝑎𝑓 = 𝐿𝑛 𝐾𝐿 + 𝑐 𝛼̅ 
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 ⟹ 𝐿𝑛 (1 + 𝑎𝑘) = 𝑐 𝛼̅ Eq. 5-12 

For positive correlations, c is positive and for negative correlations, c will be negative.  

5.2.11. Parameter B Calculation 

Value of B is dependent on the spectrum of thermal diffusivity. The general equation for the B is: 

𝐵 =
𝑈

𝛼𝑒𝑞
 

𝑤ℎ𝑒𝑟𝑒 𝛼𝑒𝑞 = 𝛼̅ − ∫
1

𝛼̅
  𝑆𝛼𝛼𝑑𝑘 

∞

−∞

 

For our specific case that harmonic distribution is used for 𝛼, parameter B will be: 

𝐵ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 =
𝑈

𝛼̅ −
𝑎2

𝛼

=
4.76 ∗ 10−7 𝑚/𝑠

8.10 ∗ 10−7
𝑚2

𝑠 −
(
1
2 ∗ 8.10 ∗ 10

−7𝑚
2

𝑠 )
2

8.10 ∗ 10−7
𝑚2

𝑠

= 0.7835 𝑚−1 

5.2.12.  Spectrum of thermal diffusivity  

𝑆𝑎𝑎 =
1

4
𝑎2[𝛿(𝑘 + 𝑘0) + 𝛿(𝑘 − 𝑘0)] =  𝑆𝑎𝑎

=
1

4
(
1

2
∗  8.10 ∗ 10−7

𝑚2

𝑠
)2 [𝛿 (𝑘 +

𝜋

2
) + 𝛿 (𝑘 −

𝜋

2
)]

= 4.1 ∗ 10−14  [𝛿 (𝑘 +
𝜋

2
) + 𝛿 (𝑘 −

𝜋

2
)] 

Now, VV, MM and NN can be calculated: 

𝑉𝑉 = (1 +
1

2
∫ 𝑐2𝑆𝛼𝛼

+∞

−∞

𝑑𝑘) = 1. .0358 

𝑀𝑀 = (
1

2
∫

𝛽2𝐵4

𝛼
2
𝑘4

+∞

−∞

𝑆𝛼𝛼𝑑𝑘) = 3.352 ∗ 10−6  

𝑁𝑁 = (∫
𝛽𝑐 𝐵2

𝛼 𝑘2
𝑆𝛼𝛼

+∞

−∞

𝑑𝑘 ) = 6.9295 ∗ 10−4 
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𝐿𝐿 = ∫
𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑅+𝜖

𝑇𝑆

= [𝐸𝑖(𝛽𝜖) − 𝐸𝑖(𝑇𝑆 − 𝑇𝑅)] = −103.3328 

𝑇𝑇 = ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)(𝑇 − 𝑇𝑅)𝑑𝑇 =
𝑇𝑅+𝜖

𝑇𝑆

[
𝑒𝛽𝜖(𝛽𝜖 − 1)

𝛽2
−
(𝑒𝛽(𝑇𝑆−𝑇𝑅)(𝛽(𝑇𝑆 − 𝑇𝑅) − 1) 

𝛽2
]

= −2.18 ∗ 106 

𝐵𝐵 = ∫ 𝑒𝛽(𝑇̅−𝑇𝑅)𝑑𝑇
𝑇𝑅+𝜖

𝑇𝑆

=
1

𝛽
(𝑒𝛽𝜖 − 𝑒𝛽(𝑇𝑆−𝑇𝑅)) = −4.1488 ∗ 1043 

⇒ 𝐴𝐴 = −1.29 ∗ 104 

Now the integrals should be calculated as: 

𝑞ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = √2(𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔

𝜈𝑅
∗ 𝜙Δ𝑆𝑜 ∗ ℎ ∗ 𝐴𝐴 = 0.1095

𝑚2

𝑠
 

Flow rates from about 0.025 to 0.4 
𝑚3

𝑚.  𝑑𝑎𝑦
 per meter for horizontal well is predicted from one side. 

5.3. Correlated Flow Rate Curves 

In this section, all the information previously discussed in Chapter 3 is fed into the developed 

SAGD model. The results show that heterogeneity of thermal diffusivity has a very large effect on 

the produced flow rate. Variations of this property, has a remarkable negative effect on the 

produced flow rate in the process. This is probably due to its negative impact on the conduction of 

heat in the reservoir that is the underlying basic in In Situ recovery methods.  

As already mentioned, to simulate the heterogeneities of reservoir, a harmonic random field has 

been assigned to permeability and thermal diffusivity perturbations. The total values of these 

properties can be written as: 

 𝐿𝑛 𝑘(𝑥) = 𝑓(𝑥) = 𝑓̅ + 𝑓′(𝑥) = 𝑓̅ +  𝑓 ̅𝑎𝑓 cos (𝜔𝑘𝑥 + 𝜃) Eq. 5-13 

 𝛼 = 𝛼̅ + 𝛼′(𝑥) = 𝛼̅ + 𝛼̅ 𝑎𝛼cos (𝜔𝑘𝑥 + 𝜃) Eq. 5-14 
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According to Eq. 5-13, k(x) will be a periodic function. 𝑎𝑘 is defined such that permeability 

maximum values are at these points: 

𝐾𝐿 + 𝐾𝐿𝑎𝑘 

Parameter c as already calculated in Eq. 5-12 is equal to: 

𝑐 = ±
𝐿𝑛(1 + 𝑎𝑘)

𝛼̅
 

Positive and negative signs indicate positive and negative correlations respectively. ak in  this 

equation is always positive. In Figure 5-2, the discussed properties including the mean and their 

harmonic variables are shown. 

f 
 o

r 
α

 

 

Figure 5-2: Heterogeneous properties are assumed to be the sum of their mean and harmonic 

perturbation. 

The frequency and the phase for both of properties are assumed identical. But the sign of the 

amplitude ratios (𝑎𝑓 and 𝑎𝛼), depending on whether the correlation is positive or negative may be 

identical or opposite.  
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Figure 5-3 shows how the flow is affected with heterogeneity in permeability and thermal 

diffusivity when there is a positive correlation between these properties. The results suggest that, 

the thermal diffusivity has a major negative impact on the efficiency of the SAGD whereas 

permeability diffusivity shows a subtle effect that is initially negative but surprisingly from a 

specific point later, its effect becomes positive. For instance, the positive effect of permeability 

perturbation is clearly observed in the case that diffusivity has a 10% perturbation and permeability 

has a positive effect on flow rate from 13% up to the point that in 32%, it overpasses homogeneous 

solution. This observation shows that perturbation is not always unfavorable. In some cases, 

depending on the governing equations, and how the inputs and outputs of the process or reservoir 

are correlated, the perturbation can yield better results. In SAGD, variation in thermal diffusivity 

decreases the temperature along the reservoir compared to homogeneous SAGD. This reduces the 

produced flow rate. On the other hand, perturbation of permeability can either increase or decrease 

the flowrate depending on size of permeability heterogeneities and thermal diffusivity.  

In Figure 5-3, the correlation of properties is positive whereas Figure 5-4 shows this effect for the 

negative correlation. As seen, in Figure 5-3, permeability perturbations increases the flow rate for 

all the cases and even under some specific conditions it overpasses the unperturbed solution. This 

diagram can be created based on the information available for any reservoir and b used as a 

guideline to predict the flow rate of SAGD. 

AA is one of the important parameters in developed equation for flow rate (Eq. 3-39) that include 

the heterogeneities values. Figure 5-5 shows the value of this parameter against different values of 

heterogeneities. This type of diagram can be made for any reservoir and be used as a reference to 

predict the produced drainage rate. Figure 5-6 depicts the similar curves for the negative 

correlation. 

 Figure 5-7 and Figure 5-8 show the produced flow rate against the both heterogeneities for positive 

and negative correlation. In Figure 5-9 and Figure 5-10, it is shown that how the flow rate in SAGD 

is influenced by the heterogeneities in the reservoir against different values of parameter c. In 

Figure 5-9, where positive correlation is assumed, increasing correlation constant c and 

subsequently increasing of permeability perturbation, increases the flow rate and neutralizes the 

effect of perturbation in thermal diffusivity. Figure 5-8 includes similar flow rate curve but with a 

negative correlation between heterogeneities. Assigning negative values to parameter c, makes 
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permeability and diffusivity correlation to be negative. The results shown in this figure, suggest 

that increasing the permeability, reduces the produced flow rate if the correlation between 

heterogeneities is negative while in previous case with positive correlation, increasing the 

permeability improves the efficiency of SAGD and increases the flow rate. This observation is 

consistent with previous curves shown by Figure 5-3, Figure 5-4, Figure 5-5, Figure 5-6, Figure 5-7 

and Figure 5-8.   
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Figure 5-3: Effect of heterogeneities on the flow rate for positive correlation between k and α 

 

Figure 5-4: Effect of heterogeneities on the flow rate for negative correlation between k and α  
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Figure 5-5: Values of AA against reservoir heterogeneities for positive correlation  

 

Figure 5-6: Values of AA against reservoir heterogeneities for negative correlation   
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Figure 5-7: Flow rate in SAGD for positive correlation 

 

Figure 5-8: Produced flow rate in SAGD for negative correlation 
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Figure 5-9: Effect of heterogeneities on the flow rate against constant values of c for positive 

correlation  

 

Figure 5-10: Effect of heterogeneities on the flow rate against constant values of c for negative 

correlation   
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5.4. Uncorrelated Flow Rate Curves 

In In previous section, two types of correlation between heterogeneities was investigated. But in 

case that the heterogeneity in one of properties is negligibly small, the effect of the other property 

on the SAGD will be different. In Figure 5-11, it is assumed that there is no diffusivity perturbation 

in the reservoir. It is seen that increasing the permeability variations, reduces the upscaled flow 

rate. For the opposite case, where the reservoir bears only perturbations of diffusivity, as seen in 

Figure 5-12, increasing the diffusivity perturbations, decreases the flow rate much more than the 

same size perturbations in permeability does as shown in Figure 5-11.  

 

Figure 5-11: Effect of permeability heterogeneities on flow rate with no thermal diffusivity 

perturbation 



 

62 

 

 

Figure 5-12: Effect of diffusivity heterogeneities on flow rate with no thermal permeability 

perturbation 
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5.5. Position of Interface  

As previously discussed, the interface of the boundary in SAGD satisfies following equations 

during its traveling through the reservoir.  

𝑌 = 1 − 1/2(
𝑡′

𝑋
)

2

  

𝑌 =
𝑦

ℎ
  

𝑋 =
𝑥

ℎ
  

𝑡′ =
𝑡

ℎ
√(−

(𝛼̅ −
𝑎2

𝛼
)
𝐾𝐿𝑔
𝜈𝑅
 

ℎ ∗ 𝜙Δ𝑆𝑜 ∗ 𝐴𝐴
)     

To compare the heterogeneity effects on the velocity of boundary with homogeneous reservoir, 

parameter time ratio is defined:  

 𝑡𝑖𝑚𝑒𝑟𝑎𝑡𝑖𝑜  =
𝑡𝑢𝑝𝑠𝑐𝑎𝑙𝑒𝑑
′

𝑡ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠
′ = √(

(𝛼̅ −
𝑎2

𝛼
) 

𝐴𝐴𝑢𝑝𝑠𝑐𝑎𝑙𝑒𝑑
×
𝐴𝐴ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 

𝛼̅
) Eq. 5-15 

𝑡𝑖𝑚𝑒𝑟𝑎𝑡𝑖𝑜 represents the relative speed of boundary compared to homogeneous reservoir. In 

Figure 5-13, the calculated location curves have been drawn for different values of t’. In 

Figure 5-14, time ratio values (𝑡𝑖𝑚𝑒𝑟𝑎𝑡𝑖𝑜) for different heterogeneities have been shown. If this 

parameter is greater than one, it indicates that the boundary has slowed down in comparison with 

homogenous reservoir.  
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Figure 5-13: Calculated interface curves 

 

Figure 5-14: Effect of heterogeneities on the interface curves 
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Conclusion  

The results of this work reveal the important role of thermal diffusivity in SAGD process. Most of 

previous studies were concentrated on permeability but this study shows that from the prospect of 

heterogeneity, thermal diffusivity is more influential. 

In addition, the developed model in this research showed that heterogeneities in permeability do 

not necessarily have an adverse effect on SAGD but even in some specific cases it may boost the 

efficiency of the recovery of heavy oil. 

Another important conclusion that can be derived from this study indicates that heterogeneities in 

one property cannot be seen separately from heterogeneities in other properties. As seen, 

permeability variations always inhibit the SAGD and reduce the flowrate but when reservoir has 

also thermal diffusivities, in some specific conditions permeability heterogeneities turn out to 

improve the functionality of SAGD by increasing the drainage rate.  
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Recommendation of Future Work 

In this research, the heterogeneities of properties were simulated with harmonic correlation 

functions. Other types of heterogeneities such as shale streaks can be considered in the next step 

for the models developed based on this work.  

In addition, the vertical and horizontal permeability have been assumed identical in development 

of this model. A correctional modification can be considered with assigning different values to this 

parameter so that it includes the directional anisotropy in the modeling as well.  

They are other problems such as diversion or break through that may take place in practice but 

have not been considered in analytical model. The developed model may be the best choice in the 

initial steps of a project but to get the best result in next steps, it is recommended using this model 

along with a numerical-based software so that higher accuracy is guaranteed in the modeling. 
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