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Abstract

Three Essays on State and Federal Regulations

Shree Baba Pokharel

This dissertation consists of three essays on state and federal regulations in the US.
Each paragraph below refers to the three abstracts for the three chapters in this
dissertation, respectively.

Given the growing importance of the wine industry in the US, wine special inter-
ests are on the rise. Data shows that campaign contributions from the wine industry
to officials running for state offices have increased over time. Given this reality, one
can expect wine excise tax to remain low in states that receive higher campaign con-
tributions. In addition, there are theoretical and empirical reasons to believe that
these tax rates are interdependent based on Tiebout competition and yardstick com-
petition. Based on this reasoning, one can hypothesize wine excise tax rates to be
spatially dependent. In this study, I test this hypothesis using state–level campaign
contributions data from the National Institute on Money in State Politics and Dis-
tilled Spirits Council of the US, Inc. and find that there is strong statistical evidence
of spatial dependence between state wine excise tax rates.

Previous studies showed that high stakes state exit exams have both positive
and negative influence on educational outcomes. Its effect on high school graduation
rates in particular was negative. However, these studies do not take into account the
embedded nature of school districts within state education systems to explain these
variations. Additionally, they also ignore possible spatial spillovers across school
districts. In this paper, we account for both– the hierarchical nature of the data and
the possible spatial spillovers, to provide estimates. Using school–district– and state–
level data for high school graduation rates for 46 states and 8,636 school districts in
the US for the year 2013 from The Hechinger Report and the National Center for
Education Statistics, using Bayesian Hierarchical SLX model, we find that state exit
exams have no statistically significant influence on graduation rates.

Significant number of previous studies looked at the macro level impacts or the
more specific narrow impacts of federal regulatory restrictions on economic outcomes.
Using Regdata, a numerical quantification of federal regulatory restrictions across all
North American Industry Classification System industries, this paper quantifies the
number of federal restrictions on the wine value chain. The wine value chain comprises
of “Wineries” (NAICS: 31213), “Wine and Distilled Alcoholic Beverage Merchant
Wholesalers” (NAICS: 42482), and “Beer, Wine and Liquor Sales” (NAICS: 44531).
This paper finds that the wine value chain faced an overwhelming estimated 100,000
federal regulatory restrictions in 2012. This paper also find that these restrictions are
persistent.
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1

Chapter 1

Wine Industry Campaign

Contributions and Wine Excise

Taxes: Evidence from US States

1.1 Introduction

State and local government expenditures have been increasing over time in the

United States. With this growth in expenditures, there has been an increasing need

for tax revenue generation by state governments. States revenues come primarily from

sales, property, and income taxes. The increasing need for further revenue generation

and voter opposition to the prospect of further increasing broad–based taxes has led

state and local governments to search for other sources of revenue collection.

As a popular choice, state and local governments have started to selectively tax

goods that pose negative externalities or are considered “sinful”. For such goods, they

levy “sin taxes”. Sin taxes are one form of an excise tax. The intention of this tax is

to increase revenue and, by increasing the after–tax price of the good, reduce negative

externalities that these goods impose. Hence, excise taxes could be assumed to be

set high if the primary goal is revenue generation and negative externality reduction.

Such goods include tobacco, alcohol, and motor fuels, historically, and more recently,
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goods such as foods that are high in sugar and transfats, to name a few (Hoffer et al.,

2014).

However, when one such good is studied in detail– alcohol, and more specifically,

wine, there has only been a 5–cent increase in excise taxes in a 18–year time period.

This poses a question as to why there is such a small increase in excise tax if the main

goal is to increase revenue and to decrease negative externality. The reason might be

because of wine special interest groups furthering their own interests by keeping the

excise tax of wine low.

I chose the alcohol industry, and specifically the wine industry for two reasons.

First, even though the United States taxed wine as early as 1631 (Sumner, 1892;

Hines, 2007), it a fairly new industry in terms of mass production. Second, it is

growing in terms of exports, imports, and consumption, and has the potential to

increase revenue in future, making it an important industry to study.

The United States was the 7th largest exporter and the 4th largest producer of

wine in 2012. In 2009, the US accounted for approximately 10% of the worlds wine

production (Thornton, 2013). Approximately 14% of the world’s export volume came

from US produced wine (Anderson and Nelgen, 2011). A report published by MKF

Research LLC claims that wineries are now present in all 50 states with $11.4 billion

in winery sales revenue.1 In North Carolina alone, there are 44 new wineries and

1,000 acres of vineyards, corresponding with a as tobacco acreage declined overtime

(MKF Research, LLC, 2007). Figure 1.1 shows an almost doubling of total table wine

consumption in the US from 1991–2015, which increased from a little less than 400

million gallons in 1991 to about 800 million gallons in 2015 (Wine Institute, 2016).

It represents a huge portion of total wine consumption each year, where total wine

consumption increased from 450 million gallons in 1991 to approximately 900 million

gallons in 2015 (Wine Institute, 2016).

Figure 1.2 shows average state wine excise tax in years 1996 and 2012. This is

1This report has been published with support from Wine America, the Wine Institute, Winegrape
Growers of America and the National Grape and Wine Initiative.
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Figure 1.1: Wine Consumption in the US from 1991–2015

indicated by the color black in the figure. Average wine contributions from the wine

industry to officials running for state offices for the same years is shown in grey.

While the average state excise tax increase was only approximately 5–cents or 7.5%

over the course of 18– years, the average dollar amount of campaign contributions

has increased by well over 700% in the same 18– year time period. In this context,

Becker (1983) wrote:

Political influence is not simply fixed by the political process, but can be
expanded by expenditures of time and money on campaign contributions,
political advertising, and in other ways that exert political pressure.

In terms of special interest group influences, previous studies have looked at the

tobacco industry. Holcombe (1997) and Hoffer (2016) found tobacco special interest

to negatively influence tobacco excise taxes, while Besley and Rosen (1998), Devereux

et al. (2007), and Fredriksson and Mamun (2008), found little to no impact of tobacco

special interest on tobacco excise tax rates. Studies have also looked at alcohol taxes
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Figure 1.2: State Wine Excise Taxes and Wine Contributions from the Wine Industry
to Officials Running for State Offices for a 18–year Time Period

(taxes on beer, wine, and spirits) on economic outcomes such as pricing (MacDonald,

1986; Nelson, 1990; Sass and Saurman, 1996), consumption behaviors and health

outcomes (Fell et al., 2009; Miron and Tetelbaum, 2009; Elder et al., 2010). Except

for Hoffer (2016), these studies do not take into account the spatial dependency in

tax rates between states.

In studies of tax rates, there are theoretical and empirical reasons to believe that

these rates are spatially correlated. Theoretically, inferences can be made based on

Tiebout (Tiebout, 1956) and yardstick competition (Brueckner and Saavedra, 2001).

Empirically, recent literature have shown that tax rates are interdependent (Deskins

and Hill, 2010) primarily because of mobility of tax bases (Brueckner, 2003). For

example, wine sellers compete with each other for consumers. Since consumers vote

with their feet, consumers straddling state borders for cheaper wine is not uncommon.

States establishing wine taxes as a function of neighbor’s tax rates is, then, not a

surprising outcome. With respect to this study, the data follow spatial pattern as

well. For instance, Missouri increased its wine excise tax from 36 cents in 2000 to 42

cents in 2004. Arkansas increased its tax from 75 cents in 2008 to 77 cents in 2010.
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At the same time, Mississippi also increased its tax rate from 35 cents to 43 cents.

Tennessee increased its tax rate from $1.215 in 2010 to $1.27 in 2012.

Leaving spatial dependency out of the equation would ignore a possible explana-

tion as to why there is a difference among wine excise taxes between states. While

growing need for government expenditure leads to the need for additional revenue

generation (Hoffer, 2016), tax competition points towards higher taxes in neighbor-

ing states (Deskins and Hill, 2010). Following this logic, one should see higher taxes

everywhere. However, this is not seen in practice. There is a huge variance among

wine excise taxes within US states, with the highest in Florida with $2.25 per gallon

in 2012 to the lowest of 0 cents per gallon in New Hampshire, Pennsylvania, Utah,

and Wyoming. Figure 1.3 depicts the differences in wine excise tax rates among 48

contiguous US states in 2012.

Figure 1.3: Wine Excise Taxes in 48 Contiguous US States in 2012

In this study, I hypothesize that state wine excise taxes are spatially dependent.

I employ the Spatial Durbin Model to test my hypothesis and find strong statistical

evidence that there is spatial dependency in wine excise tax rates between states. I

find that higher campaign contributions from the wine industry in a state leads to a

lower wine excise tax for both the given state and its neighbors.

There are two contributions of this paper. First, it is the first study to account

for the effect of campaign contributions in the alcohol industry, specifically, the wine

industry. Previously, studies used total production as a proxy for special interests



Shree B. Pokharel Chapter 1. Campaign Contributions and Wine Excise Taxes 6

groups in the tobacco industry (Holcombe, 1997; Hoffer, 2016). Second, it is also the

first study that looks at the wine industry using a spatial econometric framework.

Since I account for spatial dependence, I capture the “spillover” effects or neigh-

borhood effects of changes in the explanatory variables, which would have not been

captured had spatial dependence not been accounted for.

The remainder of the paper proceeds as follows. Section 2 describes the data and

empirical approach used in this study. Section 3 describes the results and Section 4

concludes.

1.2 Data and Empirical Approach

In this study, I follow Hoffer (2016), who looks at the tobacco excise taxes. In-

stead, I employ state wine excise tax as the dependent variable. The dependent

variable is state wine excise tax rate per gallon for 48 contiguous US states from

1996–2012.2 Data on wine excise taxes is obtained from the Distilled Spirits Council

of the United States, Inc., the World Tax Database, and Tax Foundation. According

to Tax Foundation, wine excise tax “rates are those applicable to off–premise sales of

11% ABV non–carbonated 750 mL containers” (Jordan, S and Drenkard, S, 2015).

In other words, wine excise tax rate is applicable to retail store sales and not to wine

sales in restaurants. For example, Florida has a wine tax rate of $2.25. This means

that for every gallon of wine bought at an “off-premise” site in Florida, a consumer

pays $2.25 in excise taxes.

There are three categories of explanatory variables used in this study that are likely

to affect wine excise tax rates: Primary Variables, State Controls, and Demographic

Controls. Wine and Beer fall under the Primary Variables category and represent

the major variables of interest. Wine proxies for wine–industry special interest in a

state while Beer proxies for beer–industry special interest in a state. Wine is the

author’s calculation and is defined as the dollar amount of wine–industry campaign

2I exclude Alaska and Hawaii for spatial econometrics issues discussed later.
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contribution to officials running for state offices per 100 state residents. For example,

campaign contribution from the wine industry to officials running for state offices in

California in 2012 was $1.04 per 100 residents. This amounts to approximately $400

thousand in campaign contributions just for the state of California in a year.

Since wine and beer can be thought of as substitutes, Beer is used to control

for any substitution effects and represents dollar amount of beer–industry campaign

contribution to officials running for state offices per 100 residents.3 Beer variable

is also the authors’ calculation. Both Wine and Beer are obtained from the Na-

tional Institute on Money in State Politics and are inflation–adjusted to 2010 dollars.

Contributions from both individuals and non–individuals (business owners, persons

or companies, for instance) are included in the contributions data by the National

Institute on Money in State Politics.

In addition to the primary variables of interest, there are other state–government

specific variables that fall under the State Controls category that are likely to affect

wine excise taxes. There are four variables under this category– Gov Term, Citizen,

Growth Rate, and Health. Gov Term, Citizen, and Health are drawn primarily

from special interest group literature, specifically, the tobacco special interest litera-

ture. I draw from the tobacco special interest literature as, to my knowledge, there

are no studies on wine special interests.

Gov Term represents a dummy variable with a value of 1 if the incumbent gov-

ernor cannot again run for office due to a term limit and 0 otherwise. Hoffer (2016)

finds a positive relationship between governor term limit and cigarette tax rates.

Data for this variable is obtained from The Council of State Governments. Citizen

measures citizen ideology. Its score ranges from 1 to 100, where 1 represents “most

conservative” and 100 represents “most liberal”. It can be hypothesized that states

with more “liberal” citizens would be accepting of higher taxes due to the belief of a

3Wine and Beer can be hypothesized to be positively correlated. If such relationship does
exist, including both variables would provide with incorrect estimates. I find that the collinearity
coefficient between the two variables is 0.38, indicating that including both Beer and Wine in the
analysis is justifiable.
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more involved role of government. Hoffer and Pellillo (2012) find a positive relation-

ship between citizen idealogy and tobacco control funding. Citizen is obtained from

Berry et al. (2010). Growth Rate represents the 2–year growth rate in state spending.

States under fiscal stress could be hypothesized to have a high demand for revenue,

thus having a positive relationship with excise taxes. Data for Growth Rate comes

from The Council of State Governments. Health represents the dollar amount per

capita spent by states on health expenditures. It is found to negatively affect cigeratte

excise taxes (Hoffer, 2016).4 Health is obtained from the US Census Bureau.

Additionally, demographic controls are included in order to control for the de-

mographic characteristics of a state’s population. Under the Demographic Controls

category, there are two variables– Pop65 and Popwhite that might affect state wine

excise taxes in terms of population tastes for wine. Pop65 represents the percentage

of state population over the age of 65 and Popwhite represents the percentage of

Caucasian population in a state. Both Besley and Rosen (1998) and Devereux et al.

(2007) find aged population to negatively affect cigarette tax rates. Data for these

two variables is obtained from the US Census Bureau as well. The data used in this

study is biannual due to the biannual nature of giving to political candidates, and

ranges from 1996 to 2012. Table 1.1 presents summary statistics.

Table 1.1: Summary Statistics

Variable Mean St. Dev. Min Max

Wine Excise Tax per gallon ($) 0.69 0.51 0 2.25
Wine Contribution per 100–residents ($) 0.33 0.79 0 7.43
Beer Contribution per 100–residents ($) 0.70 1.07 0 9.84
Governor Term Limit 0.31 0.46 0 1
Citizen 49.45 15.73 8.45 95.97
2–year State Spending Growth Rate ($) 11.56 6.88 -5.74 40.26
Health ($) 156.33 80.24 36.46 528.00
Population over 65 12.80 1.57 8.42 18.56
Percentage White 84.17 9.40 60.73 98.70

Note: N=432, Time Period: 1996–2012

4In this study, Hoffer (2016) looks at healthcare instead of just health. healthcare consists of
state spending on health and hospitals.
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The mean wine excise tax rate is $.69. There is a lot of variation among states

in terms of wine excise taxes. While states like New Hampshire, Pennsylvania, Utah,

and Wyoming do not have wine excise taxes,5 Florida has the highest excise tax of

$2.25. There is a huge variation between states in terms of wine contribution per

100 state residents. While Oregon has a wine contribution per 100 residents of $7.43,

there are multiple states that do not have wine contributions. Beer contribution per

100 residents also varies significantly between states. While Beer in Mississippi is

$9.84, there are a large number of states without any beer campaign contributions.

There is notable variation among citizen ideologies between states. Kentucky is the

“most conservative” state with the score of 8.45 while Vermont is the “most liberal”

state with a score of 95.97. The Growth Rate variable also varies significantly from

−5.74% in Louisiana to 40.26% in Vermont and so does Health. Louisiana spends

approximately $36 per person on its health expenditures while Wyoming spends a

staggering $528. Utah has the least percentage of population over the age of 65 while

Florida has the most. Mississippi has the least percentage of Caucasian population

in the US while Maine has the most.

Since I hypothesize that the dependent variable and the independent variables

have spatial component to them, I employ the Spatial Durbin Model (SDM) for this

study. For readers not familiar with spatial models, I will first explain a family of

related spatial models and then the model choice, SDM. The family of related spatial

models can be represented as follows:

yit = ρ
N∑
j=1

wijyjt + xitβ + θ
N∑
j=1

wijxit + µi + λt + ui

ui = δ
N∑
j=1

wijuit + εit

(1.1)

where i represents cross–sectional units. For the purposes of this paper, i represents

US states and ranges from i= 1 to N . t represents the time dimension, i.e. year, and

5These four states are what are called “control” states. In control states, all wine sales are con-
trolled by the state government and thus there are no explicit state excise taxes on wine. Therefore,
they do not have wine excise taxes in a comparable sense.
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ranges from t= 1 to T . Therefore, yit represents an observation for the dependent

variable in state i in year t.

xit, the explanatory variable, is a row vector of observations with dimension (1×

K). β in Equation 1.1 is a (K×1) vector of parameters associated with xit variables,

and is fixed and unknown. The terms µi and λt represent space fixed effects and time

fixed effects, respectively.

The spatially–lagged dependent variable and spatially–lagged explanatory vari-

ables are represented by ρ and θ, while the spatially–lagged error term is represented

by δ. The addition of these terms in association with wij make the above model a

spatial econometric model. In the model, wij is an element of a spatial weight matrix,

W. W symbolizes “neighbor–to–neighbor” relationships and has a (N × N) dimen-

sion. For example, if i and j are defined as neighbors, the wij element is assigned

a value of ‘1,’ and ‘0’ otherwise. In creating weight matrices, W is designed to be

row–stochastic, meaning that rows of W sum to one. Hence, the term, Wy represents

the weighted average of the surrounding y’s. Similarly, Wx represents the weighted

average of the surrounding explanatory variables, and Wu represents the surrounding

error terms.

Since Equation 1.1 characterizes a family of spatial models, restricting parameters

in the equation generates various spatial econometric models. By restricting θ and δ

to 0, I get spatial dependence only in the dependent variable. This type of model is

called a Spatial Autoregressive Model (SAR). By setting ρ = 0 and δ = 0, I see spatial

dependence only in the independent variable. Such model is named the Spatial Lag

of X (SLX) model. Similarly, setting ρ = 0 and θ = 0, I see spatial dependence only

in the error term; this model is named Spatial Error Model (SEM). Spatial Durbin

Model (SDM) is obtained by setting δ to 0. Spatial Durbin Error Model (SDEM) is

represented by Equation 1.1. Space fixed effects (µi) and time fixed effects (λt) in

Equation 1.1 may be included in all models described above.

Table 1.2 reports Elhorst test findings for determining the presence of space–

and time–fixed effects (Elhorst, 2009). The Lagrange Multiplier(LM) tests check
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whether there is spatial correlation in the data. The null hypothesis, Ho: No spatial

dependence in the dependent variable, is tested by the LM Lag test, whereas, the

null hypothesis, Ho: No spatial dependence in the error term, is tested by the LM

Error test for each specification. Standard Likelihood Ratio(LR) tests are performed

to determine the joint significance of space–and time–fixed effects (Elhorst, 2014).

The null hypotheses for such tests is that the presence of state fixed effects and year

fixed effects are represented by:

Ho :µ1, µ2, µ3, µ4, ..., µn = 0 (1.2)

Ho :λ1, λ2, λ3, λ4, ..., λn = 0 (1.3)

Table 1.2: Lagrange Multiplier (LM) and Likelihood Ratio (LR) Tests for the Presence
of Spatial–and Time–Fixed Effects

OLS Spatial Time–period Spatial & Spatial Time-period
FE FE Time–period FE (Joint Significance) (Joint Significance)

LM Lag(Robust) 0.0002 0.1338 0.0003 0.6207
LM Error (Robust) 0.0000 0.1171 0.0000 0.7390
LR Test 0.0000 0.1208

FE denotes Fixed Effects.

Looking at the results of Table 1.2, the most appropriate model is one including

just the time fixed effects.

The next step for any spatial econometric analysis is to determine whether to

choose the SAR, SEM, or SDM model. Following Elhorst (2010), I employ the stan-

dard LM tests to determine whether either the SAR or SEM model is appropriate the

most. The LM lag test checks whether there is spatial dependence in the dependent

variable, whereas, the LM error test checks whether there is spatial dependence in the

error term. Estimates of the SDM are used to generate a LR to determine whether

SAR or SEM should be used instead of the SDM. In order to do this, the following

hypotheses are tested:

Ho : θ = 0 (1.4)

Ho : θ + ρβ = 0 (1.5)
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where θ and β are the same as in Equation 1.1. Both tests are one–way tests. Hence,

they only test the specific type spatial dependency one is accounting for. For example,

LM Lag test only accounts for spatial dependency in the dependent variable while the

LM Error test only accounts for spatial dependency in the error term. The robust LM

tests, however, take into account the other type of spatial dependency as well. For

instance, LM Lag Robust test also takes into account spatial dependency in the error

term. Likewise, the LM Error Robust test takes into account spatial dependency in

the dependent variable. Both tests follow a chi–squared distribution with one degree

of freedom.

Equation 1.4 tests the hypothesis whether SDM can be reduced to SAR. Equation

1.5 tests whether SDM can be reduced to SEM. SDM is the most appropriate model to

use if both hypotheses are rejected. However, if Ho : θ = 0 is not rejected, then SAR

is the most appropriate model if the robust LM tests point towards SAR. Likewise,

if Ho : θ + ρβ = 0 is not rejected, SEM is the most appropriate model if the robust

LM tests point towards SEM. SDM is used if one of the conditions are not met.

Table 1.3 reports the test statistics of the LM Lag and LM Error tests. As both

Ho : θ = 0 and Ho : θ+ ρβ = 0 are rejected, the most appropriate model choice is the

SDM. In addition, LeSage and Pace (2009) make the point that if one believes that

there are spatially correlated omitted variables in the model and that these omitted

variables are correlated with an explanatory variable included in the model, SDM is

the most appropriate model to use. Since unseen network effects might exist between

states which could be spatially related (which is captured by the error term) and can

also affect, for instance, wine or beer contributions, I believe that SDM is the most

appropriate model to use.6

To fully understand the effects of the explanatory variables in the SDM, it is

imperative to have an understanding of how the beta coefficient is interpreted. In

SDM, unlike in a regular linear model, β does not only represent the marginal effects,

6I exclude Alaska and Hawaii since they do not have contiguous neighbors. The weight matrix
employed is a k–nearest–neighbor W matrix.
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Table 1.3: Lagrange Multiplier (LM) and Likelihood Ratio(LR) Tests for the Presence
of Spatial–and Time–Fixed Effects

LM Values p–value Model Choice

SDM vs SAR 67.7461*** 0 SDM
SDM vs SEM 60.6369*** 0 SDM

*** denotes statistical significance at the 1%
level.

meaning– an increase in β not only captures the explanatory variable changes and

how it affects the dependent variable, but now captures the average direct, average

indirect, and average total effects (LeSage and Pace, 2009), which they term effects

estimates. Since models with a spatially–lagged dependent variable have estimates

that are hard to interpret, the data generating process in reduced form for such models

(in this case, SDM) can be mathematically written as 7:

y = ρWy +Xβ +WXθ + ε (1.6)

y = (In − ρW )−1(Xβ +WXθ) + (In − ρW )−1ε (1.7)

(In − ρW )−1 = In + ρW + ρ2W 2 + · · ·+ ρqW q (1.8)

Sr(W ) =
∂y

∂xr
= (In − ρW )−1(β +Wθ) (1.9)

The“r” subscript in the Sr(W ) represents individual explanatory variable in the X

matrix.

In SDM, Sr(W ) is intended to capture the average direct, average indirect and,

average total effects of the change in a variable on the dependent variable and can be

mathematically shown as follows:

Average Direct Effect :
∂E(yi)

∂xir
= Sr(W )ii (1.10)

Average Indirect Effect :
∂E(yi)

∂xjr
= Sr(W )ij. (1.11)

7The following equations follow directly from Equation (1.1)
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The meaning of average direct effects can be interpreted as follows. For example,

if Wine of state i is changed, how does it affect the Tax in state i? This is called

i’s own effects. However, average direct effect also captures spillover effects, in which

the change in Wine in state i affects Wine in its neighboring state j, which, again,

“feeds back” to state i. This is called the feedback effect. The average of the diagonal

elements of the Sr(W ) matrix captures both, own effect and the feedback effect, and

is called the average direct effect.

The average indirect effect captures spillovers effects of a change in an explana-

tory variable in state i and how that affects observations in neighboring state j, where

state i and j are not same. This effect is captured by the average of the off–diagonal

elements of the Sr(W ) matrix. Since the indirect effects are cumulated over all neigh-

bors, its magnitude is usually larger than the direct effects. Finally, the average total

effect is the summation of the average direct effect and the average indirect effect.

The advantage of using the SDM panel is twofold. First, it provides effect esti-

mates that account for spatial dependence in the dependent variable, which is a much

richer set of results that non–spatial panel model do not capture because they assume

independence among observations. The ρ parameter captures this in this study. As

data shows neighboring states changing their excise tax rates, not accounting for spa-

tial dependence if it is present results in incorrect estimates (LeSage and Dominguez,

2012). Second, the SDM is not restricted to have the same sign effect estimates,

which the SAR model does (Elhorst, 2010).

1.3 Empirical Results and Robustness Checks

Table 1.4 reports the results of the effect of wine–industry campaign contributions

to officials running for state offices on state wine excise tax rates. It consists of the

average direct, average indirect, and average total effects estimates from the panel

data SDM. The key finding is that the ρ parameter is statistically significant at the

1% level and is positive. The statistical significance of ρ establishes that state wine
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excise taxes are spatially correlated. The table also shows that the major variables

of interest, Wine and Beer, are as expected and that Wine is statistically robust at

the 5% level. In addition, 6 out of the 8 variables used in the study are statistically

significant.

The results show that an increase in Wine in a state decreases Tax and has a

negative average direct, indirect, and total effect. The results show that a dollar per

100 residents increase in Wine leads to a 6–cent decrease in Tax in a said state, a

14–cent tax decrease in surrounding states, and a 21–cent excise tax decrease overall.

The direct and total effects are statistically significant at the 5% level, whereas, the

indirect effect is significant at the 10% level.

However, only the indirect effect and total effect are economically significant when

there is a change in Wine. For example, one standard deviation increase in Wine

(0.79) in a said state decreases wine excise tax by only 5–cents (0.79 ×-0.0675) or

only about ten percent (−0.0533/0.51) of a one standard deviation of the dependent

variable. The average indirect and total effects are economically significant, however.

The indirect effect approximately is 23% (0.79×-0.1462/0.51) and the total effect is

approximately 33% (0.79×-0.2136/0.51) of one standard deviation in the dependent

variable. Additionally, standard deviation of 0.79 for Wine would turn Virginia in

2012 ($0 in campaign contributions per 100 residents) to North Carolina in 2012

($0.20 in campaign contributions per 100 residents).

Since beer and wine can be considered as substitutes for one another, it can be

hypothesized that higher amounts of campaign contributions from the beer industry in

a state would earn political favors for the beer industry and possibly lead to an increase

in wine excise taxes for any given amount of government spending. The signs for the

average direct, indirect, and total effects of Beer on Tax are as expected. The results

show that a dollar increase per 100 residents in Beer results in a 16–cent increase in

wine excise taxes overall. The effect is statistically significant at the 5% level. While

direct effects for Beer does not have much economic significance (1.07∗ 0.0357/0.51),

or about 7% of one standard deviation of Tax, its economic significance for indirect
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and direct effects is high. For example, one standard deviation increase in Beer (1.07)

in surrounding states increases wine excise tax by 14–cents (1.07 × 0.1302) in a said

state or is approximately 27% of one standard deviation in Tax. The total effects is a

18–cents (1.07× 0.1659) increase or is approximately only about 35% of the standard

deviation in Tax overall.

Gov Term, Citizen, Pop65, and Popwhite have total effects signs as expected.

A positive Citizen total effects sign is consistent with the expectation that states

leaning towards a more liberal ideology favor higher taxes on wine. Growth Rate

and Health are expected to have positive total effects estimates but have surprising

negative signs.

As a robustness check, I conducted spatial analysis using only 44 states (excluding

the 4 control states) in the mainland United States, reported in Table 1.5. The main

finding of this robustness check is that ρ parameter possesses the same sign as ρ in

Table 1.4, and is also significant at the 1% level. This finding is especially important

because it establishes an existence of a spatial correlation, even while controlling

for “control” states. The effect estimates are also similar. The signs of the major

variables of interests are the same as in Table 1.4. The statistical significance of

the Wine direct effect stays the same. However, the statistical significance of Wine

indirect effect increases and is now significant at the 5% level. Wine total effects is

statistically robust at the 1% level. Citizen loses significance and so does Health.

The sign for Citizen is not as expected. However, it is so for Health.

Additionally, I also conducted a spatial analysis using 5–nearest–neighbor weight

matrix. I hypothesize rho to lose spatial significance when using a 5–nearest–neighbor

weight matrix. This assumption is reasonable because the further out states are from

a given state, the less impact they would have on that state. This result is reported

in Table 1.6.

The results show that the ρ parameter indeed loses significance. However, Wine

and Beer still hold expected signs but are not statistically robust. The signs for

Health and PopWhite are the same as before. However, Gov Term possesses a
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contradictory negative sign. All variables lose significance in this specification except

for PopWhite.

1.4 Conclusion

Given the growing importance of the wine industry for the US, increases in cam-

paign contributions from the wine industry to officials running for state offices, along

with theoretical and empirical evidence that shows that tax rates are interdependent,

I hypothesized that the wine–industry special interest influences state wine excise

taxes across space. I find that there is robust statistical evidence that wine excise

taxes exhibit spatial dependence, which is the key finding of this study. I find that,

on average, the increases in campaign contributions from the wine industry in a state

results in a decrease in wine excise taxes in the given state and its neighboring states.

There are two contributions of this study. First, it is the first study to look at

the effects of campaign contributions of the alcohol industry, specifically, the wine

industry on state wine excise taxes. Previous special interest group literature have

looked at the tobacco industry, for instance. Second, it is also the first study to look

at the wine industry using a spatial econometric model. One of the distinguishing

and important ability of spatial econometric models is that they can empirically

test for the presence of spatial dependency and quantify spillover effects. In context

of this paper, the use of SDM showed the reader that there is robust statistical

evidence of spatial dependency in wine excise taxes between states. Not accounting

for these indirect effects when they clearly are present could provide biased estimates.

Therefore, one application of spatial models is that given its ability to test for spatial

dependence, policymakers and economists should account for spillover effects while

making informed policy proposals.

Moving forward, future projects could look at establishing a causal relationship

between wine production and wine excise taxes across time once production data

for all fifty states become available. In addition, research could look at the political
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economy of campaign contributions in future. One example could be to look at the

channels through where these effects take place. For instance, looking at which state

offices most likely influence decisions could be a starting point.
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Table 1.4: The Effect of Wine–Industry Campaign Contributions on Wine Excise
Taxes for 48 Contiguous US States Using 4–Nearest–Neighbor Matrix

Variable Direct Effects Variable Indirect Effects Variable Total Effects

Wine -0.0675 ** Wine -0.1462 * Wine -0.2136 **
Beer 0.0357 Beer 0.1302 ** Beer 0.1659 **
Gov Term 0.0731 Gov Term -0.0397 Gov Term 0.0334
Citizen 0.0036 ** Citizen 0.0032 Citizen 0.0068 **
Gr Rate 0.0011 Gr Rate -0.0059 Gr Rate -0.0048
Health -0.0009 *** Health -0.0027 *** Health -0.0035 ***
Pop65 0.118 *** Pop65 -0.1946 *** Pop65 -0.0766 *
PopWhite -0.0114 *** PopWhite -0.0159 ** PopWhite -0.0273 ***

rho 0.173 ***
R– squared 0.339

Note: Dependent variable is the state wine excise tax. *,**, and *** denote statistical
significance at the 10, 5, and 1% levels, respectively.
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Table 1.5: The Effect of Wine–Industry Campaign Contributions on Wine Excise
Taxes for 44 Contiguous US States Using 4–Nearest–Neighbor Matrix

Variable Direct Effects Variable Indirect Effects Variable Total Effects

Wine -0.0667 ** Wine -0.1882 ** Wine -0.2550 ***
Beer 0.0142 Beer 0.1567 *** Beer 0.1709 ***
Gov Term 0.0597 Gov Term -0.1555 Gov Term -0.0959
Citizen -0.0009 Citizen -0.0006 Citizen -0.0016
Gr Rate -0.0008 Gr Rate -0.0039 Gr Rate -0.0047
Health 0.0000 Health 0.0017 Health 0.0017
Pop65 0.1081 *** Pop65 -0.2626 *** Pop65 -0.1545 **
PopWhite -0.0034 PopWhite -0.0194 *** PopWhite -0.0228 ***

rho 0.2270 ***
R– Squared 0.3829

Note: Dependent variable is the state wine excise tax. *,**, and *** denote statistical
significance at the 10, 5, and 1% levels, respectively.
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Table 1.6: The Effect of Wine–Industry Campaign Contributions on Wine Excise
Taxes for 48 Contiguous US States Using 5–Nearest–Neighbor Matrix

Variable Direct Effects Variable Indirect Effects Variable Total Effects

Wine -0.0526 * Wine -0.0204 Wine -0.0729
Beer 0.0332 Beer 0.0562 Beer 0.0893
Gov Term 0.0645 Gov Term -0.1231 Gov Term -0.0586
Citizen 0.0020 Citizen -0.0045 Citizen -0.0025
Gr Rate 0.0005 Gr Rate -0.0005 Gr Rate 0.0001
Health -0.0003 Health -0.0009 Health -0.0012
Pop65 0.1244 *** Pop65 -0.1072 *** Pop65 0.0172
PopWhite -0.0096 ** PopWhite -0.0155 ** PopWhite -0.0250 ***

rho 0.0800
R-Squared 0.2909

Note: Dependent variable is the state wine excise tax. *,**, and *** denote statistical
significance at the 10, 5, and 1% levels, respectively.
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Chapter 2

State Exit Exams and Graduation

Rates: A Hierarchical SLX

Modelling Approach

2.1 Introduction

The widespread consensus that high school diplomas displayed low academic skills

and standards in the latter half of the twentieth century led to policies favoring high-

stakes school exit exams in the US. The deficiency of job skills and college prepared-

ness in high school graduates were mostly attributed to “social promotion”(Reardon

and Galindo, 2002) and to “watered-down” curriculum (Bond and King, 1995). This

view was supported when evidence of students’ lack of proficiency in primary subjects

were compared to those of other countries during the Cold War era and was further

emphasized with the publication of A Nation at Risk: The Imperative for Educational

Reform (Warren et al., 2006).

The Nation at Risk report published in 1983 stated that “the educational foun-

dations of our society are presently being eroded by a rising tide of mediocrity that

threatens our very future as a Nation” and that “more and more young people emerge

from high school ready neither for college nor for work” (Gardner, 1983). As a re-



Hall, Lacombe, Pokharel Chapter 2. A Hierarchical SLX Modelling Approach 23

mediation measure, the report also recommended, among other things, “high-stakes

standardized tests of measuring achievement” and that it “should be administered at

major transition points from one level of schooling to another and particularly from

high school to college or work” (Gardner, 1983). These exams are considered “high

stakes” “if they carry serious consequences for students or for educators” (AERA,

2017). For students, these exams are considered high stakes because failing these ex-

ams might act as an impediment to receiving their diplomas. For educators, it might

bring public scrutiny and less financial rewards.

Widespread implementation of these high-stakes exit exams by US states started

as early as 1980s and has increased over time. Fourteen states enforced these exams

in 1990 and the number grew to 18 in 2000 (Warren et al., 2006). As of 2013, 23 out

of 50 US states have implemented this policy (Ed Counts Research Center, 2017).

Figure 2.1 shows states with and without state exit exams in 2013. The color grey

represents states without the state exit exam requirement, whereas, the color black

represents states with state exit exam requirement.

Figure 2.1: States with and without State Exit Exams

Source: Ed Counts Research Center (2017).

The stated goal of these exams was to encourage students and school districts to
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demonstrate that they had achieved competency in certain areas prior to graduation.

Theoretically, the effect of exit exams on graduation rates is ambiguous. Exit exams

could combat social promotion by some districts, leading to a lower graduation rate.

On the other hand, the stigma and competitive effect of reported statewide exam

scores could lead to an increase in graduation rates.

Much research has been done on the effect of these exit exams on educational

outcomes such as high school completion rates, dropout rates and dropout likelihood,

earnings, and graduation rate. Greene and Winters (2004), Warren and Jenkins

(2005), and Warren et al. (2006) found no effect of state exit exams on high school

completion rates. Warren and Edwards (2005) show no effect of high school exit exams

on dropout rates. Contrastingly, Hemelt and Marcotte (2013) report high school exit

exams to positively increase dropout rates between 12th graders. Beardsley and

Berliner (2002) found an increase in dropout rates, Papay et al. (2010) found to have

a negative influence, whereas Ou (2010) found mixed results. Warren et al. (2008)

report no effect of high school exit exams on earnings.

In terms of graduation rates, studies such as Beardsley and Berliner (2002) and

Marchant and Paulson (2005) found state exit exams to negatively affect graduation

rates. Baker and Lang (2013) found no statistically significant effect of high school

exit exams on graduation rates. While Beardsley and Berliner (2002)’s study was a

qualitative study, Marchant and Paulson (2005)’s and Baker and Lang (2013)’s study

was quantitative. However, these studies only take state factors into account without

accounting for school districts that are embedded within states.

While these studies look at the impact of high–stakes exit exams on graduation

rates, they do not empirically account for the embedded nature of school districts

in state education systems. Additionally, school districts have spatial spillovers in

terms of policies, teacher labor markets, and student flows. For example, one district

in a region raising teacher salaries will likely influence other districts to raise their

salaries or risk losing teachers on the margin. Hanushek (1986) is a seminal paper on

education production functions, and we begin our study with his work. However, no
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studies to date have empirically accounted for spatial spillovers across school districts

and also their embedded nature in the education literature. We intend to fill this gap.

In this paper, we do so by employing a Bayesian Hierarchical SLX model. While we

find that non–spatial papers miss important spatial spillovers across school districts,

we find no statistically significant evidence that states with exit exams have higher

or lower graduation rates than states without such exams.

There are major advantages of using a hierarchical model. First, these models

help to represent data structures that are close to the real world. These models help

to separate individual effects, in the case of this study, school–district level effects

on high school graduation rates, from the state level effects. This makes it a closer

representation of the real world data structure than a normal linear model. Second,

by acknowledging that Ordinary Least Squares (OLS) violates the independence as-

sumption in hierarchical data, it helps correct biased estimates that OLS doesn’t. In

our case, OLS would take the school districts within a same state as independent

from one another, when they clearly are not as they have to take the same state exit

exam. This is one of the main identifying features of this paper compared to previous

studies in that it takes this key violation into account. Third, it allows for the use of

state-level variables to control for state–level variation in policy, in this case whether

or not there is a state exit exam. In the case of this research, we have 8,636 school

districts that are nested within 46 US states.

There are two contributions of this paper. First, by taking into account the

hierarchical structure of data in its natural state, we capture the school–district level

as well as the state–level influences on high school graduation rates. Second, we

contribute to the literature by also capturing spatial spillovers that previous non–

spatial research did not account for.

The remainder of the paper proceeds as follows. Section 2 describes the empirical

specification and statistical methodology used in this paper. Section 3 describes the

data in detail. Section 4 describes the results and Section 5 concludes.
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2.2 Statistical Methodology

2.2.1 Hierarchical Models

In their natural states, some data have a hierarchical structure to them. For ex-

ample, students nested within a classroom, counties nested within states, and school

districts nested within states. Hierarchical structure violates the independence as-

sumption since school districts within the same states are exposed to the same set of

state laws. In case of this study, school districts within a state are affected by a state

exit exam, hence, violating the independence assumption as they are exposed to the

same set of information. If not used in their natural state, data can provide biased

estimates.

In addition to the three advantages mentioned in the previous section, using hier-

archical models have at least two more benefits. Fourth, it accounts for the fact that

multilevel models nest classical regression models and, therefore, accounts that each

upper level unit intercept is different (intercept of each state in our paper) but also

have some similarities. To explain this concept more clearly, we refer to Gelman and

Hill (2006) who state that “classical regression model can be viewed as special cases of

multilevel models.” Here, αj ∼ N (µα, σα). Ignoring any heterogeneity and assuming

a common intercept for all “upper–level” units (i.e., 46 separate states in our paper),

the first model is called a fully–pooled model. It assumes that all states are homoge-

neous and should have a common intercept. On the other hand, a no–pooling model

assumes heterogeneity among the states and allows for including a dummy variable

for each state. Basically, this model allows all 46 states in our paper to be different

from one another.

To explain this further, the matrix form of hierarchical SLX model representation

is given by the following equations:
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Level1 : y = Xβ + ∆α + ε (2.1)

Level2 : α = Zγ + u (2.2)

ε ∼ N
(
0, σ2In

)
(2.3)

u ∼ N
(
0, τ 2Ij

)
(2.4)

where at Level 1, y is the N×1 vector of observations and represents the dependent

variable. X represents the matrix of explanatory variables at Level 1 and has a N×k

dimension. The β is a k × 1 vector of coefficients associated with X. α represents

the J × 1 vector of intercepts from Level 2. ε is the error term associated with Level

1 and is normally distributed with a 0 mean and variance of σ2In and has a N × 1

dimension.

At Level 2, as mentioned above, α represents the J × 1 vector of individual in-

tercepts (state–level intercepts in our study) and is the dependent variable. Z is the

vector of explanatory variables (that also includes a constant term) with dimension

J ×m. γ is a J ×m vector of coefficients associated with the Z term. u is the error

term in Level 2 and is normally distributed with a 0 mean and variance of σ2In and

has a J × 1 dimension. As is standard in hierarchical models, we assume that ε and

u, u and X, and u and Z are not correlated (Raudenbush and Bryk, 2002).

This model is also called an “intercepts–as–outcome” model. It is called so be-

cause the “Level 2 equation has the Level 1 intercept as its dependent variable (as

its outcome)” (Adewale et al., 2007). It is also called a “random intercepts” model.

Understandably, it is also called so as for each state, it sets a baseline of graduation

rates. The individual school districts’ graduation rates then varies around this base-

line for the state it is embedded in due to, for instance, differences in spending per

pupil.

Gelman and Hill (2006) argue that data could estimate the level 2 error variance

and that they “see no reason (except for convenience) to accept estimates that arbi-
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trarily set this parameter to one of these two extreme values.” Here, we can assume

that each state is different but also share similarities (Lacombe and Flores, 2017).

Fifth, it corrects for any potential bias that might arise from choosing either only

the “fully–pooled” model or the “non–pooling” models. Intercepts in a hierarchical

model are a linear combination of the “fully–pooled” model and “no–pooling” model

and can be written as (Subramanian, 2010; Luke, 2004):

α̂EBj = λjα̂
NP
j + (1− λj) α̂FP

λj =
τ 2

(τ 2 + σ2/nj)

where, α̂NPj represents the “no–pooling” intercept estimate, α̂FPj represents the

“fully–pooled” intercept estimate, and α̂EBj represents the “empirical Bayes” or “shrink-

age” estimate of the linear combination of the “no–pooling” and the “fully–pooled”

models. λj represent the weights assigned to each aforementioned models and are a

function of both level error variance (ie., variance of the school–district level and the

state level ) and, nj, the number of level 1 observation in each level 2 unit.

The empirical Bayes works in the following manner. If nj is small, λj is small,

which means that α̂EBj , the empirical Bayes, moves close towards the fully–pooled

estimate, α̂FPj . Similarly, if nj is large (such as the number of school districts in

the state of Texas, ie., 745 in our sample), λj is large, which means that α̂EBj , the

empirical Bayes, moves closer towards the no–pooling estimate, α̂NPj . Here, more

weight is placed on the “no–pooling” intercept estimate. Hence, the advantage in

using the empirical Bayes is that it corrects for any possible bias from choosing either

“no–pooling” or “fully–pooled” model at random.

We now extend this basic intercept hierarchical model by adding a spatial factor

to it. We use the Spatial Lag of X (SLX) model at both levels of the hierarchy. A

SLX model provides a much richer set of results as it allows for local spillovers. As
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it includes spatially–lagged independent variables (which capture local spillovers), it

calculates the direct effects (own effects) as well as the indirect effects. The direct

(own) effects calculate the effects of the explanatory variables on the dependent vari-

ables; the indirect effects (spillover effects) capture the effect of neighbors on the

dependent variable.

2.2.2 The Hierarchical SLX Model

The matrix form of hierarchical Spatial Lag of X model representation is given by

the following equations:

Level1 : y = Xβ +W1Xθ + ∆α + ε (2.5)

Level2 : α = Zγ +W2Zδ + u (2.6)

ε ∼ N
(
0, σ2In

)
(2.7)

u ∼ N
(
0, τ 2Ij

)
(2.8)

where at Level 1, y is the N×1 vector of observations and represents the dependent

variable. X represents the matrix of explanatory variables at Level 1 and has a N×k

dimension. The β is a k × 1 vector of coefficients associated with X. The difference

between the previous model and this model is the addition of the W1X matrix and

is what makes this model a spatial econometric one. W1X is a spatially–weighted

explanatory variable matrix. Here, W1 is a row–stochastic spatial weight matrix with

N ×N dimension. θ is a k×1 vector of coefficients associated with the W1X term. α

represents the J × 1 vector of intercepts from Level 2. ε is the error term associated

with Level 1 and is normally distributed with a 0 mean and variance of σ2In and has

a N × 1 dimension.

At Level 2, as mentioned above, α represents the J × 1 vector of individual in-

tercepts (state–level intercepts in our study) and is the dependent variable. Z is the

vector of explanatory variables (that also includes a constant term) with dimension
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J ×m. γ is a J ×m vector of coefficients associated with the Z term. Again, as be-

fore, the addition of spatially–weighted explanatory variable matrix W2Z with J ×m

dimension makes this model a spatial econometric one at this level. δ is a m×1 vector

of coefficients associated with the W2Z term and δ can be thought of as a matrix of

dummy variables that can be used in a standard fixed effects model. u is the error

term in Level 2 and is normally distributed with a 0 mean and variance of σ2In and

has a J × 1 dimension. As is standard in hierarchical models, we assume that ε and

u, u and X, and u and Z are not correlated (Raudenbush and Bryk, 2002).

We use Bayesian econometrics for our analysis. In this method, we make inferences

based on posterior distribution of the parameters. For readers not familiar with

Bayesian econometrics, the following equation represents the posterior distribution of

parameters:

π (θ, α |y ) ∝ f (y |θ, α) f (α |θ ) π (θ) (2.9)

In normal posterior distributions, the posterior distribution is proportional to the

likelihood times the priors. Since we are estimating a hierarchical model, Equation

2.9 shows that the posterior distribution is proportional to the likelihood times the

priors of the parameters times the hierarchical prior. The priors used in this study

are independent, hence, can be multiplied with one another. They are also proper

priors and also are conjugates. Priors for β and γ are multivariate normal whereas

priors for σ2 (Level 1 error variance) and τ 2 (Level 2 error variance) are inverse–

Gamma. Since we use uninformative values even though we use proper priors, we use

a multivariate normal prior of mean 0K vector and covariance 1000 × IK for β and

γ where K represents the number of explanatory variables used in the study. The

shape and scale parameters for the inverse–Gamma priors for both levels error terms

are set to 0.001.

We rely on a Gibbs sampling method to obtain our estimates since obtaining
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closed form solutions of the parameters analytically can only occur under special cir-

cumstances. Since the Gibbs sampler only requires that the conditional distributions

be available, and in our case it is available since we are using the SLX model, we rely

on this method to get estimates.

The model we are estimating in this study is a local spatial econometric model.

It is one among the two types of spatial econometric models, the other one being a

global model. In a local model, spillovers in the independent variables are allowed.

In case of our study, they are represented by the WX and WZ terms. Unlike a local

model, global model, however, also contains a Wy term in addition to WX and WZ,

allowing the spillover effect to disseminate across the entire sample.

We use a local spatial econometric model because school districts are closely situ-

ated to each other and it is unlikely that any spillovers are going to propagate across

the entirety of the United States. It is most likely to be contained within a specific

geographical range. In addition, we use a local model because the structure of our

data is hierarchical in its natural state. Since each state is different in terms of socioe-

conomic factors, allocating all states as homogeneous would lead to biased estimates

of graduation rates. Moreover, local spillovers are a common occurrences in mod-

elling regional patterns than global spillovers (LeSage, 2014). To put this statement

in perspective in relation to our study, one would assume graduation rates in a given

school district in Maine to be affected by its close neighbors than to be influenced by

school districts in Florida.

In addition, the coefficients of local spillovers models as the SLX used in this study

are easy to interpret as compared to global models such as the Spatial Durbin Model

(SDM). In our model, all the coefficients have a straightforward interpretation. In

Level 1, β represents its own partial derivative (direct effects) and θ represents the

cross–partial derivatives (indirect/spillover effects). The total effect is represented by

β + θ. In Level2, γ represents the direct effect and δ represents the indirect effect.

The total effect is represented by γ + δ.
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2.3 Data

2.3.1 Level 1 Data

At the school district level, i.e., Level 1, we use high school graduation rates as

the dependent variable. The dependent variable is the high school graduation rate

of public school districts of 46 US states and excludes charter schools and private

schools. There are 8,636 individual school districts in our study. Since it is a spatial

econometric exercise, we exclude Alaska and Hawaii in our calculation as they have

no contiguous neighbors. We also do not capture school districts in Oklahoma and

Pennsylvania due to the lack of availability of data from our source. The data for

graduation rates is obtained from The Hechinger Report. The Hechinger Report is

an independent news outlet which focuses on education, particularly inequality and

innovation.

High school graduation rates have been a subject of debate in the education lit-

erature. Heckman and LaFontaine (2010) report that graduation rates differ from

anywhere between 66% to 88% depending on the definition, sources, or methods

used. The definition of high school graduation rates differ from “dividing the number

of public high school diplomas by an estimate of the number of students who would

have received diplomas that year if graduation rates were 100 percent” (Greene, 2001)

to the government mandated Four-year Adjusted Cohort Graduation Rate (ACGR)

implemented by the U.S. Department of Education. The ACGR is calculated “as the

number of students who graduate in four years with a regular high school diploma di-

vided by the number of students who entered high school four years earlier (adjusting

for transfers in and out, migrs and deceased students.” (US Department of Educa-

tion, 2017) Despite the differences in measures of calculating high school graduation

rates, we use the government mandated definition and rates as they provide with a

uniform measure across all school districts.

As mentioned before, in his seminal paper, Hanushek (1986) proposed inputs to

schooling outcomes as education production function. Following Hanushek (1986)
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for categorization of inputs, the school–district level explanatory variables used in

this study that are likely to affect graduation rates are categorized as Family Inputs,

School Inputs, and Peer Input. The choice of explanatory variables are standard vari-

ables used in education literature (Hanushek et al., 2009). In this study, lmeanhhinc

and lwifeyeshusno fall under the Family Inputs category. lmeanhhinc is the mean

household income of children that are enrolled in a specific school district in 2012

inflation–adjusted dollars and is log transformed. Hall and Leeson (2010) find a

negative relationship between mean–median income ratio and school performance.

lwifeyeshusno represent number of children that are enrolled in a specific school dis-

trict coming from a single parent household (where the mother is present but not the

father), and is also log transformed. Palardy (2013) found traditional family struc-

ture (consisting of both parents in the household) to positively affect high school

graduation rates.

In addition to Family Inputs, there are School Inputs that are likely to affect high

school graduation rates. The variables that fall under this category are linstrucsalpp,

stratio, locrevpercent, and lexpperpupil. Instructional salary per pupil is the authors’

calculation and represents expenditures on salaries of instructional staff. It is repre-

sented by linstrucsalpp and is log transformed in our calculations. Teacher–student

ratio is also hypothesized to have an effect on graduation rates. It is represented

by stratio. It is also the authors’ calculation, calculated as the number of enrolled

students in a public school district divided by the total number of teachers in the

school. Reardon and Galindo (2002) find a negative relationship between student–

teacher ratio on dropout rates. locrevpercent is also the authors’ calculation and is

calculated by dividing total local revenues by the total revenue. Another variable in

this category is lexpperpupil which is also the authors’ calculation and represents the

total expenditure on each pupil in a school district. This variable is log transformed

as well for scaling purposes. Jackson et al. (2016) find a positive relationship between

increases in per pupil spending and completed years of education.

Finally, racial fractionalization index within a school district is represented by
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racial frac and serves as a Peer Input. It measures “the probability that two school

district residents drawn randomly will be of different races” (Hall and Leeson, 2010).

This measure intends to capture the differences in provision of education that might

arise due to disagreement over education production that is correlated with race. Hall

and Leeson (2010) find a negative relationship between racial fractionalization index

and school district performance in Ohio.

2.3.2 Level 2 Data

While school–district level explanatory variables can be hypothesized to affect

graduation rates of school districts the most, state level policies are also likely to

affect those rates because of the hierarchical structure of the data. Therefore, we use

state exit exam as our Level 2 variable. It is represented by stexitexam and indexes

whether the state requires an exit exam based on 10th grade or higher. It is a dummy

variable, with 1 indicating that the state requires state exit exam for its high school

students, and 0, otherwise.

Table 2.1 presents the summary statistics, year of reference, and source for all

variables used in this study.

2.4 Empirical Results

Tables 2.2 and 2.3 report the results from Level 1 and Level 2 SLX hierarchical

models. Specifically, Table 2.2 reports results from school–district level (Level 1 ) with

state exit exams as the Level 2 variable. Table 2.3 reports state exit exam (Level 2)

results.

Before interpreting the coefficient estimates, it is of importance to understand how

these estimates are calculated in a Bayesian setting. In order to get the marginal dis-

tributions of each parameter used in this study, we ran the Gibbs sampling algorithm

through the full conditional distribution of each of the parameters in this study. For

each model, we ran 100,000 iterations using the Gibbs sampling algorithm to get our



Hall, Lacombe, Pokharel Chapter 2. A Hierarchical SLX Modelling Approach 35

parameters estimates. However, we discard the first 50,000 iterations as they are in

the “’burn–in” phase. The rest 50,000 iterations estimate the parameter estimates.

In order to find the statistical significance of the parameters, we also calculate the

95% credible intervals for each parameter as this is a standard practice in Bayesian

analyses. We do so to check whether the 95% credible interval contains 0 or not. If it

does not, then the parameter estimate has a marginal density away from zero, hence,

suggesting that the independent variable is statistically significant.

Determining the proper weight of the spatial weight matrix, W , is very important

to our analysis. For global models such as the SAR or SDM, its effect on the estimates

are little as long as LeSage and Pace (2009) recommendation is followed. However,

that is not true in the case of local models. Therefore, it is important to determine

the “correct” W matrix in order to get correct estimates.

We find the correct W matrix for both levels in the following manner: we compare

nine different nearest–neighbor W matrices with neighbors ranging from 2 to 10. Each

level consists of a total of 9 different models. Therefore, there are 81 different models

to choose from. If they are thought of in a matrix form, in terms of our study, the rows

represent school–district level nearest neighbor W ′s and columns represent the state

level nearest–neighbor W matrices. We then use the Deviance Information Criterion

statistic (DIC) to choose from the different models to determine the W matrix that

is the most appropriate (Spiegelhalter et al., 2002). The DIC statistic with the lowest

number is the most appropriate model to use. In our case, W matrix with 10 nearest–

neighbor at the school–district level (Level 1 ) and with 2 nearest–neighbors at the

state level (Level 2 ) are the most appropriate spatial weight matrices to use.

2.4.1 Level 1 Results

Table 2.2 shows the average direct, indirect, and total effects of Level 1 explana-

tory variables on high school graduation rates. The results show that most of the

variables of interest are statistically significant for all (direct, indirect, and total)

effects.
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The direct effects are comparable to previous studies as they represent the raw

beta estimates in normal linear models. The own effects (direct effects) of all ex-

planatory variables are statistically significant except for the Teacher Student Ratio

variable. Log of Mean Household Income is positively related to graduation rates

with a coefficient of 9.1425. Since this variable is log transformed, a 1% increase in

Log of Mean Household Income increases graduation rates by 0.09% (0.01× 9.1425).

Contrastingly, Hall and Leeson (2010) found a negative relationship between mean–

median income ratio and school performance. Log of Children from Single Parent

Household is negatively associated with graduation rates. A 1% increase in Log of

Children from Single Parent Household decreases graduation rates by 0.01%. As

shown in the previous section, high school graduation rates is found to increase in a

traditional family structure where both parents are present (Palardy, 2013). Log of

Instructional Salary per Pupil is associated with an increase in graduation rates as

well. A 1% increase in Log of Instructional Salary per Pupil increases the dependent

variable by 0.11%. Teacher Student Ratio variable is negatively related to graduation

rates. While not directly related to graduation rates, teacher student ratio negatively

affect dropout rates (Reardon and Galindo, 2002). Studies of the effect of this variable

on graduation rates is not found.

Local Revenue as a % of Total Revenue is associated with an increase in gradua-

tion rates. A 1% increase in this variable leads to a 0.06% increase in graduation rates.

Another variable used to explain variation in graduation rates is Log of Expenditure

per Pupil. Surprisingly, this variable bears a negative sign. The effect of per pupil ex-

penditures can be hypothesized to be positive because one can expect students to get

access to better resources which might subsequently lead to an increase in graduation

rates with increases in per pupil spending. A 1% increase in this variable decreases

graduation rates by 0.12%. While the direct effects of this variable on graduation

rates is not found, as mentioned in the previous section, Jackson et al. (2016) find a

positive relationship between increases in per pupil spending and completed years of

education. Finally, Racial Fractionalization Index, is also negatively associated with
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graduation rates. If a racially homogeneous school district, for instance, Arab City

School District in Alabama with a Racial Fractionalization Index of 0.05 were to be-

come heterogeneous, for instance, like Anniston City School District in Alabama with

the index of 0.50, we would expect the graduation rate to drop by 4.91%. Explaining

this result in terms of economic significance, a one standard deviation in the Racial

Fractionalization Index (0.168) in a said school district decreases the graduation rate

by 1.65% (0.168×−9.8361) or only about 15% (0.168×−9.8361/10.52) of the stan-

dard deviation of the dependent variable. Hall and Leeson (2010) also find diversity

to negatively affect educational outcomes.

Since we are using a spatial hierarchical model in our study, we are also able to

test the spillover effects or neighborhood effects, called indirect effects. One of the

distinguishing factors between this study and previous studies is that we account

for indirect effects in our analysis. The average indirect effect captures spillover

effects of a change in an explanatory variable in a school district and how that affects

observations of the dependent variable in neighboring school districts.

The indirect effects of a 1% increase in Mean Household Income in a school district

increases graduation rates in surrounding school districts by 0.01% and is not sta-

tistically robust. Log of Children from Single Parent Household in a school district

exerts a negative effect on the graduation rates of its neighboring school districts.

This variable is not statistically significant as well. An increase in Log of Instruc-

tional Salary per Pupil in a school district does not spillover to the graduation rates of

surrounding school districts in a statistically significant manner. However, it exerts a

positive effect. Unlike the direct effects of Teacher Student Ratio, the indirect effect is

statistically significant and also positive. This means that an increase in Teacher Stu-

dent Ratio in a school district positively affects the graduation rates of surrounding

school districts. Local Revenue as a % of Total Revenue increase in a school district

decreases the graduation rates of surrounding school districts. This may be due to

the fact that surrounding school district resources may be allocated to the referenced

school district. This variable is statistically robust as well. Log of Expenditure per
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Pupil in a school district also decreases graduation rates in surrounding school dis-

tricts and is statistically significant. It may also be the case that as state funds are

distributed among school districts, the channeling of resource to one school district

reduces available funds for another (surrounding) school district, all else equal. As a

school district becomes more heterogeneous, graduation rates of surrounding school

districts increases.

The final effect is called the total effects and is defined as the sum of direct effects

and indirect effects. At this level, all variables of interest are statistically significant

except for the Local Revenue as a % of Total Revenue variable. While Log of Mean

Household Income, Log of Instructional Salary per Pupil, and Teacher Student Ratio

are positively related to high school graduation rates, the remaining other variables

exert a negative effect on the dependent variable.

2.4.2 Level 2 Results

As mentioned in the “Statistical Methodology” section, advantages of using a hi-

erarchical SLX model is its ability to include heterogeneity at the state level unlike

the standard fixed effects models and also its ability to include spatially lagged inde-

pendent variables at Level 2. The inclusion of spatially lagged independent variables

provides us with direct, indirect, and total effects at the state level as well. We

take the DIC statistic into account at the state level analysis also and use 2 nearest–

neighbor spatially–weighed W matrix to get our estimates. Table 2.3 reports the

results for this level.

As can be seen, neither (direct, indirect, or total) effects have a statistically signif-

icant influence on graduation rates at the state level. The Nation at Risk had already

been published and its recommendation implemented in the three decades that fol-

lowed, giving high–stakes exit exams ample time to test itself. This empirical exercise

shows that state exit exams, while having a positive effect, do not have a statistically

significant effect on graduation rates. The stated goal of increasing competency in

core areas among high school students by conducting these high–stakes exams did not
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have any statistically significant relationship with increasing graduation rates after

controlling for the embedded nature of school districts within states.

2.5 Conclusion

Given the longstanding history of high stakes state exit exams on high school

graduation rates in the United States, it comes as no surprise that various empirical

studies have found mixed results. However, these studies do not take into account

the hierarchical nature of school districts and their embedded nature within state

education systems. In addition, they also do not account for spatial spillovers.

Our key contribution to the literature is that, first, we employ a hierarchical

model to correct for biased results from previous studies which mostly used conven-

tional linear methods. In addition, papers with non–spatial estimates also did not

account for spillover effects of the explanatory variables on graduation rates. There-

fore, our second contribution to the literature is that we capture spatial spillovers in

the explanatory variables to explain differences in high school graduation rates which

previous non–spatial papers missed.

The school district level independent variables exhibit expected results except for

the Local Revenue as a % of Total Revenue and Log of Expenditure per Pupil. At

the state level, after controlling for state–level heterogeneity, high–stakes exit exams

lead to an increase in graduation rates indicating that exit exams within a state and

also its neighbors leads to higher graduation rate within its school districts. However,

since the results are not statistically robust, the results indicate that implementing

high–stakes state exit exams does not appear to significantly improve graduation rates

for school districts in states that have implemented high–stakes exams. Therefore,

one important implication of this result could be that it would support the idea of

replacing such policy or repealing it altogether since it has costs, both direct and

indirect, yet does not produce any tangible effects in terms of graduation rates.

Moving forward, future research could look at the effect of state exit exams on
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other dependent variables such as the SAT scores since SAT scores have been used as a

measure for student/school quality in empirical research, also in a spatial hierarchical

setting.
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Table 2.1: Summary Statistics

Year Source Mean SD N

Level 1 variables
High School Graduation Rates 2013 The Hechinger Report 87.01 10.52 8636
Log of Mean Household Income 2013 National Center for Education Statistics(NCES) 11.142 0.332 8636
Log of Children from Single Parent Household 2013 National Center for Education Statistics(NCES) 5.409 1.484 8636
Log of Instructional Salary per Pupil 2013 National Center for Education Statistics(NCES) 8.347 0.299 8636
Teacher Student Ratio 2013 National Center for Education Statistics(NCES) 0.071 0.017 8636
Local Revenue as a % of Total Revenue 2013 National Center for Education Statistics(NCES) 0.436 0.196 8636
Log of Expenditure per Pupil 2013 National Center for Education Statistics(NCES) 9.265 0.295 8636
Racial Fractionalization Index 2013 Own Calculation 0.201 0.168 8636

Level 2 variables
State Exit Exams 2013 Education Counts Reseach Center 0.46 0.50 46
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Table 2.2: Level 1 Results with State Exit Exams as Level 2 Variable with 10 Nearest–
Neighbor W Matrix

Posterior Mean Lower 95% Upper 95%

Direct Effects
Log of Mean Household Income 9.1425* 8.3242 9.9714
Log of Children from Single Parent Household -1.5064* -1.687 -1.3270
Log of Instructional Salary per Pupil 10.5953* 8.3903 12.8064
Teacher Student Ratio -2.1503 -21.2034 16.9158
Local Revenue as a % of Total Revenue 5.7662* 4.3493 7.1720
Log of Expenditure per Pupil -12.1008* -14.3261 -9.8889
Racial Fractionalization Index -9.8361* -11.5274 -8.1611

Indirect Effects
Log of Mean Household Income 1.1813 -0.5611 2.8925
Log of Children from Single Parent Household -0.0898 -0.4787 0.2987
Log of Instructional Salary per Pupil 4.4278 -0.4308 9.3015
Teacher Student Ratio 41.4082* 5.7646 76.7633
Local Revenue as a % of Total Revenue -6.9605* -9.6596 -4.2404
Log of Expenditure per Pupil -5.7156* -10.2933 -1.1245
Racial Fractionalization Index 1.3371 -1.7995 4.4791

Total Effects
Log of Mean Household Income 10.3238* 8.6099 11.9962
Log of Children from Single Parent Household -1.5963* -1.9826 -1.2105
Log of Instructional Salary per Pupil 15.0231* 9.9813 20.0837
Teacher Student Ratio 39.2579* 2.1561 76.5986
Local Revenue as a % of Total Revenue -1.1942 -3.8648 1.4693
Log of Expenditure per Pupil -17.8164* -22.5809 -13.0966
Racial Fractionalization Index -8.499* -11.3734 -5.6083

Variance Posterior Mean
Level 1 Error Variance: σ2 7.9333
Level 2 Error Variance: τ 2 4.4596
DIC 2382850.71

Note: N=8636. * denotes variables with a 95% confidence interval without a 0.
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Table 2.3: State Exit Exam (Level 2) Results with 2 nearest–neighbor W matrix

Posterior Mean Lower 95% Upper 95%

Constant 84.8674 82.5629 87.137
Direct Effect 0.7523 -1.9255 3.4732
Indirect Effect 0.8676 -2.8889 4.6017
Total Effect 1.6199 -2.7314 5.902

Note: N=46. * denotes variables with a 95% confidence interval without a 0.
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Chapter 3

Federal Regulations in the United

States Wine Value Chain Over

Time

3.1 Introduction

Published by the Mercatus Center, RegData is a numerical quantification of fed-

eral regulatory restrictions across all North American Industry Classification System

(NAICS) industries. According to RegData, federal regulatory restrictions in the US

have been steadily increasing over time. It increased from approximately 800,000 in

1997 to approximately over 1 million in 2012 across all NAICS industries (Al-Ubaydli

and McLaughlin, 2017)1.

The negative economic consequences of such restrictions are well documented in

the literature. For instance, Dawson and Seater (2013) and McLaughlin and Williams

(2017) show a negative relationship between increases in federal restrictions and eco-

nomic growth. Davies (2014) show lower production-efficiency measures in more

1One has to take notice while interpreting this regulatory number. It does not represent the
number of laws or regulations in the traditional sense. According to RegData, it represents the sum-
mation of number of restrictive regulatory words such as “shall”, “must”, “may not”, “prohibited”,
and “required” that appeared in the Code of Federal Regulations (CFR) pertaining to each NAICS
industry.
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regulated industries. For instance, the author finds a 64% growth in output per per-

son in the least regulated industries. Bailey and Thomas (2015) find fewer new firm

births and slower employment growth in more regulated industries. Chambers and

Collins (2016) find federal regulations to affect poor households unevenly by regres-

sively increasing consumer prices.

These studies report the effect of federal restrictions at the more macro level or its

more specific narrow impacts, for example, on rate of new firm births. However, not

much research has been done on its impact on specific value chains. Particularly its

effect on wine value chains has not been studied. Malone and Chambers (2017) is the

only other research that quantifies the number of federal regulatory restrictions on

a specific value chain. Malone and Chambers (2017) find that there are over 20,000

federal restrictions on the beer value chain in 2012. While their paper is helpful

in better understanding changes to the beer value chain over time, without another

product to compare it to it is difficult to place their findings in a comparative context.

The purpose of this paper is to calculate the number of federal restrictions imposed

on each wine value chain over time. Therefore, using RegData, this paper reports the

number of total federal regulatory restrictions on wine production and distribution

channels in the United States from 1997 to 2012.

For the purposes of this study, wine value chain is classified as “Wineries” (NAICS:

31213), “Wine and Distilled Alcoholic Beverage Merchant Wholesalers” (NAICS:

42482), and “Beer, Wine and Liquor Stores” (NAICS:44531). Wineries account for

the manufacturing/production aspect of the value chain. As the name suggests, Wine

and Distilled Alcoholic Beverage Merchant Wholesalers account for the wholesale dis-

tribution aspect of the value chain. Finally, Beer, Wine and Liquor Stores account

for the retail side of the value chain. This classification is intended to capture the

three-tier system that US states adopted for alcohol production and distribution after

the 21st amendment.

The study of wine value chains in addition to beer value chains adds to the litera-

ture primarily by distinguishing that inputs in both industries face different number
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of federal regulations and allowing for comparison. Because the primary input that

goes into making wine, i.e. grapes, is different than the primary inputs that goes into

making beer, for instance, barley and hops, the wine industry faces different numbers

of federal regulations than the beer industry.

Additionally, this study also adds to the literature by identifying that the setup

of both industries are distinct from one another. While the US wine industry is

concentrated in California and is dominant in terms of production, the beer industry

is not as concentrated. For example, in June 2017, 4,202 out of 9,091 total US

wineries were situated in California alone and produced 282,000,0002 net cases of wine.

Washington housed 747 out of 9,091 total US wineries and produced 15,000,000 net

cases while Oregon housed 713 wineries and produced 4,200,000 cases of wine (Wine

and Vines, 2017). Contrastingly, the beer industry is not as concentrated. The top

three beer producers while producing approximately similar units of beer are located

in different parts of the country. In 2012, Pennsylvania produced about 3,000,000

barrels of beer. California produced a little over 2,500,000 barrels of beer whereas

Massachusetts produced a little less than 2,500,000 barrels of beer (Elzinga et al.,

2015). Therefore, generalizing beer statistics to the wine industry though might be

argued to be qualitatively similar, is not quantitatively accurate.

The number of small wineries are growing in the US from 7,763 in 2014 to 9,091 in

2017 (Wine and Vines, 2017).3 At the same time, only 5 firms control approximately

65% of the wine market share in the US (Howard et al., 2017). Therefore, one can

expect that larger wineries would lean towards regulatory constraints that act as a

barrier to entry to keep away their competition, i.e., smaller wineries (Gohmann,

2016), at least within a country.

Internationally, US wine exports face restrictive export trade barriers. For ex-

ample, the import tariff in wine exporting countries is comparatively very high as

compared to the US, which has an import tariff of 1.4%. Contrastingly, it is ap-

2One case contains 9L wine.
3According to Wine and Vines (2017), small wineries are wineries that produce less than 49,000

cases containing 9L wine bottles annually.
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proximately 32% within the EU and 22.5% within Japan (The Wine Institute, 2017).

Therefore, one can expect that with not being able to export internationally as much

as wineries would desire, big wineries would seek to protect their market share by

at least restricting the growth of small wineries within the US. Additionally, since

small wineries produced over 97 million cases and large brewers produced over 162

million cases of wine on the upper bound in January 2017 (Wine and Vines, 2017),

it lends credence to the theory of regulatory capture in some level by big wineries.

These might be few reasons for the overwhelming amount of federal restrictions on

wine value chains.

I find that federal restrictions imposed on wineries were approximately 55,000 in

2012. In the same year, federal regulatory restrictions imposed on the wine whole-

salers was approximately 23,000, and an estimated 20,000 on retail wine stores.4

3.2 Data

In order to measure industry–specific regulation over time, I use a recently devel-

oped data source: RegData. Complied by the Mercatus Center, RegData (Al-Ubaydli

and McLaughlin (2017)) measures industry–specific regulation over time. RegData is

created as such: the authors scan the Code of Federal Regulations(CFR) – a federal

publication published annually containing all regulations imposed by the federal gov-

ernment – each year and apply the restrictions in the CFR to each NAICS industry.

They do so by searching for words that indicate binding constraints such as “shall”,

“must”, “may not”, “prohibited”, and “required” in each title, chapter, subchapter,

part, subpart, section, and paragraph of the CFR. Simultaneously, since the divisions

of the CFR do not perfectly match with the NAICS industries, they create a set of

words called “search strings” to represent each NAICS industry. They then apply

those search strings to each division of the CFR to see its industry relevance. The

4As mentioned before, these number measure the number of restrictive regulatory words per-
taining to Wineries (NAICS: 31213), Wine Wholesalers (NAICS: 42482), and Wine Retail Stores
(NAICS: 44531).
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two sets of data are then combined to create an industry-specific regulation index

to indicate what Al-Ubaydli and McLaughlin (2017) label as “industry regulation

index”.

To put this in perspective, Title 27, Chapter 1, Subchapter D of the CFR states

regulations pertaining to wine production establishment. It states that:

“Each person desiring to conduct operations in wine production, as specified in

24.101(b), (other than the production of wine free of tax as provided in 24.75 through

24.77) shall, prior to commencing operations, establish wine premises, make applica-

tion as provided in 24.105, file any required bond, and receive permission to operate

wine premises as provided in this part. After approval, the wine premises will be

designated a bonded winery, bonded wine cellar or taxpaid wine bottling house. As

provided in 24.107, the designated bonded winery will be used if production opera-

tions are to be conducted. In addition, wine premises may be used, in accordance

with the provisions of this part, for the conduct of certain other operations.”

In this example, this text is counted as one regulation as it has a one time occur-

rence of the word “shall.”

I use RegData as opposed to previous measures of regulation mainly because this

measure is a detailed quantification of regulations which previous measures lacked to

capture. Previous measures of regulations looked at state-statutes’ file size (Mulligan

and Shleifer, 2005) or page counts (De Rugy and Davies, 2009; Coffey et al., 2012;

Dawson and Seater, 2013). De Rugy and Davies (2009), for example, use page counts

from the Federal Register as their measure of federal regulations. Federal Register

is daily publication and is a collection of all federal regulations ever written. The

disadvantage of using page counts as a measure of capturing regulations is that not all

pages have equal regulation as some pages might have significant regulatory impact

while others might not. In addition, not all pages contain regulatory text, which

severely overstates the impact of regulations. Additionally, the Federal Register does

not quantify regulations targeting specific industries. RegData, on the other hand,

uses binding constraints and targets specific industries that studies with page count
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or other measures did not.

The advantage of using the CFR instead of the Federal Register is that the CFR

contains text without the repetition of added regulations. While the Federal Register

contains all regulations ever written or added to current regulations, the CFR only

contains text after all regulations that have been repealed are removed.

RegData, however, contains regulatory data only for the 1–to 4–digit NAICS sub-

sector. Since “Wineries” (NAICS: 31213) is a 5–digit NAICS subsector, following

the methodology of Malone and Chambers (2017), direct federal regulations related

to the process of wine manufacturing is estimated by subtracting federal regulations

associated with the 4–digit “Tobacco Manufacturing” (NAICS: 3122) sector from the

3–digit “Beverage and Tobacco Product Manufacturing” (NAICS: 312) sector. The

residual is “Beverage Manufacturing” (NAICS: 3121) which consists of “Soft Drink

and Ice Manufacturing”, “Breweries”, “Wineries”, and “Distilleries.” As mentioned

in the introduction,“Wineries” represents the first component of the wine value chain

in this paper. The second component of the wine value chain is termed “Whole-

sale Distribution” and represents “Wine and Distilled Alcoholic Beverage Merchant

Wholesalers” (NAICS: 42482). Since regulations for the 5–digit NAICS subsector is

not available in RegData, federal regulations for this value chain is captured by the 2–

digit “Wholesale Trade” (NAICS: 42) sector. The third component of the wine value

chain, “Beer, Wine and Liquor Stores” (NAICS:44531) is captured by the broader

“Food and Beverage Stores” (NAICS: 445), again, as data for the this 5–digit sub-

sector is not available. “Beer, Wine and Liquor Stores” (NAICS:44531) is referred as

“Wine Retail Sales” in the subsequent part of this paper.

While direct federal regulations measure a part of federal restrictions imposed on

each value chain, they do not provide a comprehensive measure. Since inputs such as

grapes and agricultural labor are required in each wine value chain, capturing restric-

tions on such inputs is also necessary. Therefore, following Malone and Chambers

(2017), federal restrictions on inputs required at each value chain is estimated. To

estimate the input restrictions on each value chain, RegData is combined with the
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input–output (I–O) tables from the Bureau of Economic Analysis (BEA) following

Chambers and Collins (2016).

The methodology for finding input regulations for each year from 1997 to 2012

for Wineries (NAICS: 31213), Wholesale Distribution (NAICS: 42), and Wine Retail

Sales (NAICS: 445) is mentioned below. The steps are as follows:

1. The commodity–by–industry direct requirements table (after redefinitions) was

downloaded from the BEA website for the year 2007. The website is: http://

www.bea.gov/industry/xls/io-annual/CcI\_DR\_2007\_detail.xlsx. This ta-

ble contains three worksheets.

(i) The first worksheet is a ReadMe file.

(ii) The second worksheet is a concordance table that relates each BEA code

to each related NAICS code.

(iii) The third worksheet contains data on the input requirements (measured in

dollars) of each commodity/industry to produce a dollar’s worth of output

for a particular industry. Therefore, for each column in the table (in our

case, Wineries (NAICS: 312130), Wholesale Distribution (NAICS: 420000),

and Wine Retail Sales (NAICS: 445000)), the values are summed across all

rows related to that column to get a composite measure of input required

to produce a dollar’s worth of output for that particular column. The

numbers sum to 1 as the BEA also adds gross operating surplus, taxes on

production and imports, and compensation to employees, among others,

in addition to inputs.

2. The BEA concordance table (the second worksheet from the downloaded ta-

ble) was then “matched” to related NAICS industry. If there was a one–to–

many mapping while matching BEA code to NAICS code, the results were

summed over the NAICS code. For example, BEA code 1111A0 (Oilseed Farm-

ing) matches to two NAICS code 11111 and 11112 at the same time. However,
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due to the lack of 5–digit NAICS code data in RegData, the 1111A0 BEA in-

dustry was matched to NAICS code {1111, 1111}. This NAICS set is then

translated to NAICS: 1111 as NAICS: 1111 is an aggregation of the 5–digit

NAICS industries. A column with the newly matched “BEA–NAICS” indus-

tries is then created in this process whose rows contain the newly matched

BEA–NAICS industry codes.

3. The next step involved matching federal regulatory restrictions for the newly

matched BEA–NAICS industry with RegData. “Industry Regulation Index”

measure in RegData was used.

4. In the next step, the newly created rows containing the industry regulation index

for each BEA–NAICS industry is then multiplied with its corresponding input

value to create an input–regulation measure for each BEA–NAICS industry.

5. In the final step, values in step 4 were summed across all rows to get an aggregate

input–regulation measure for each of the above mentioned NAICS industries,

namely, Wineries (NAICS: 312130), Wholesale Distribution (NAICS: 420000),

and Wine Retail Sales (NAICS: 445000).

Finally, direct regulations are combined with input regulations to get the complete

measure of total federal regulations for each value chain.

3.3 Empirical Results

Tables 3.1, 3.2, and 3.3 report the direct, input, and total federal regulations

imposed on each wine value chain from 1997–2012. “Direct”,“Input”, and “Total” in

the tables correspond to Direct Federal Regulations, Input Federal Regulations, and

Total Federal Regulations, respectively. For each year and specific value chain, Direct

Federal Regulations represent the number of federal restrictions across all divisions in

the CFR pertaining to that specific value chain. Inputs such as grapes and agricultural

labor are required to produce wine. Therefore, Input Federal Regulations represent
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the input regulations pertaining to that value chain. Total Federal Regulations is the

summation of direct and input regulations.

Table 3.1 shows that Wineries was subjected to approximately 40,000 direct fed-

eral regulations in 1997. This number steadily decreased to approximately 23,000 in

2003 and increased to about 30,000 in 2012. While direct regulation measure is an esti-

mate derived from differencing the 4-digit “Tobacco Manufacturing” (NAICS: 3122)

sector from the 3–digit “Beverage and Tobacco Product Manufacturing” (NAICS:

312) sector, input regulation measure for wineries is specific to the industry. Inputs

used in wineries were subjected to about 23,000 federal restrictions in 1997. It de-

creased to approximately 20,000 in 2000. It then increased to an estimated 24,000 in

2012. Wineries were subjected to approximately 63,000 federal restrictions in 1997.

This number decreased to about 44,400 in 2003 and while not as high as in 1997, it

increased to approximately 55,000 in 2012.

While not as much as Wineries, Wholesale Distribution also faced a substantial

amount of direct, input, and total federal restrictions. Table 3.2 reports that Whole-

sale Distribution faced about 6,800 restrictions in 1997. It decreased in the early

2000s and increased to around 6,400 in 2012. Input regulations were more than dou-

ble of direct regulations for Wholesale Distribution. In 1997, Wholesale Distribution

faced about 18,600 regulations. In 2012, this number decreased to about 17,300. To-

tal regulations also decreased from approximately 25,500 in 1997 to about 24,000 in

2012.

Wine Retail Sales direct, input, and total regulations are reported in Table 3.3.

This value chain faced the least amount of regulations among all value chains. It faced

about 469 direct federal restrictions in 1997, about 1,300 direct federal restrictions

in 2002, and approximately 1,000 direct restrictions in 2012. However, as compared

to direct restrictions, it faced a large number of input restrictions. There were about

19,000 input restrictions on Wine Retail Sales in 1997. This number decreased to

about 17,000 in 2000 and it increased to a high of approximately 19,600 in 2012.

Similarly, total restrictions increased from 19,420 in 1997 to 20,619 in 2012.
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Finally, Table 3.4 reports the Comprehensive measure of total federal restrictions

across all value chains from 1997 to 2012. For each year in the sample, total federal

restrictions for Wineries, Wholesale Distribution, and Wine Retail Sales are summed

to derive the comprehensive measure. The comprehensive measure of regulations show

that for all wine value chains, federal restrictions declined steeply from approximately

107,000 in 1997 to estimated 85,000 in 2001. It then increased steadily to about

100,000 in 2012.

For comparison purposes, Direct, Input, and Total restrictions for each value chain

are visually represented in Figure 3.1, 3.2, and 3.3. Figure 3.1 shows total direct

regulations imposed on Wineries, Wholesale Distribution, and Wine Retail Sales.

The table shows that direct federal restrictions on Wineries is more than five times

than that of Wholesale Distribution and Wine Retail Sales. Whole Distribution and

Wine Retail Sales direct regulations was steady over time. Low numbers of federal

restrictions on wholesale and retail distribution of wine are as expected as historically

states rather than the federal government intervened in these value chains (Malone

and Chambers, 2017).

As mentioned before, inputs such as grapes and agricultural labor are required to

produce wine. Figure 3.2 reports federal restrictions imposed on inputs on Wineries,

Wholesale Distribution, and Wine Retail Sales. Federal input regulations remained

steady for all three value chains. Input regulations on Wineries is still highest among

the value chains. Wine Retail Sales faced more input regulations than Wholesale

Distribution in the sample.

Figure 3.3 reports total federal restrictions for each value chain from 1997 to 2012.

Each line in the graph represents a summation of total direct restrictions and total

input restrictions on each value chain over time. Total restrictions faced by Wineries

is more than two times the total restrictions faced by wholesale wine sellers and retail

wine sellers. Total federal restrictions remained stable throughout the years for both

Wholesale Distribution and Wine Retail Sales.

Finally, it should also be noted that the Comprehensive measure in Table 3.4 is
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different than Malone and Chambers (2017) because of the difference in input regula-

tions for Wineries. However, due to lack of data, regulation values for wholesale and

retail distribution channels are the same in both studies for all years. For instance, in

1997, there were 6,825.41, 18,625.89, and 25,451.29 direct, input, and total restrictions

in Wholesale Distribution in both this study and Malone and Chambers (2017). Wine

Retail Sales direct, input, and total regulations were also same in both the studies.

However, while direct regulations were same for Wineries, there were 22,993.64 input

regulations in 1997 in this study and 16,788.47 in Malone and Chambers (2017).

3.4 Limitations

This study faces a number of limitations. Most limitations are present primarily

due to lack of availability of data. First, this study only estimates federal restrictions

associated with the Code of Federal Regulations and does not account for state and

local regulations imposed on each of the value chains studied. While studies such as

Mulligan and Shleifer (2005), Campbell et al. (2010), and Calcagno and Sobel (2014)

have measured state regulations, they are not comparable to RegData. RegData

quantifies regulatory restrictions pertaining to each NAICS industry while current

measures use regulatory measures that are not classified according to NAICS. For

instance, Campbell et al. (2010), and Calcagno and Sobel (2014) use state direct

expenditures on regulatory practices as a proxy for regulatory restrictions and is,

therefore, not comparable. Since most states have a three tier distribution system

and they are regulated at each of the three tiers (value chains) (Beliveau and Rouse,

2010), addition of those regulations would provide with a much richer set of results.

However, due to the lack of availability of data, this study uses federal restrictions

only.

Second, RegData contains federal regulatory restrictions data for 2, 3 and 4–

digit NAICS industries. Therefore, instead of using a direct regulation measure for

“Wineries” (NAICS: 312130), a 5–digit NAICS industry, this study uses the regula-
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tory measure for “Beverage Manufacturing” (NAICS: 3121) industry. NAICS: 3121

contains “Soft Drink and Ice Manufacturing”, “Breweries”, “Wineries”, and “Dis-

tilleries”. Again, much better set of results can be calculated once data for 5–digit

NAICS industries become available.

Third, this study does not account for federal regulations in on–premise sales. On–

premise sales like wine sales in restaurants might face additional federal restrictions.

Once more, when data for such sales become available, adding it to the three–tier

system would provide with precise number of regulations imposed on these value

chains.

Fourth, due to lack of availability of granulated data for the “Wine and Distilled

Alcoholic Beverage Merchant Wholesalers” (NAICS: 42482) industry in the BEA

input–output table, the 2–digit “Wholesale Trade” (NAICS: 42) industry was used

as a proxy in order to calculate federal restrictions on the “Wholesale Distribution”

chain. Similarly, regulatory data for the broader “Food and Beverage Stores” (NAICS:

445) was used instead of the granulated “Beer, Wine, and Liquor Stores” (NAICS:

44531) industry to proxy for “Wine Retail Sales”.

Finally, at this point, this study is not able to answer the reasons for an increase

or decrease of federal regulations in wine value chains over time. Making accurate

judgments regarding the source of changes should be possible once more granular

data becomes available.

Even though this study has a number of limitations and reports an upper bound

of federal restrictions imposed on wine value chains, it also shows that there is a

number of federal regulations imposed on the wine value chain overall and that these

regulations are persistent. While the comprehensive measure of federal regulations

has decreased from over a 100,000 federal regulations in 1997 to just under 100,000

in 2012, it still seems quite large. Future research could expand upon this study once

comparable data on state and local regulations become available or data on the more

granulated level become available. Future studies could also identify the causes of the

increase or decrease of regulation on each wine value chain and also the consequences
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of such changes.

3.5 Conclusion

This study calculates the number of federal regulatory restrictions on each wine

value chain, namely, restrictions on Wineries, Wholesale Distribution, and Wine Re-

tail Sales. It does so by combining federal regulatory restriction data from Reg-

Data with the direct requirements input–output table from the Bureau of Economic

Analysis and reports that the number of federal regulations on wine value chain is

decreasing. However, the number of federal restrictions is still overwhelming at ap-

proximately 100,000 in 2012. This large number might be in place because the federal

government is trying to increase their oversight on a consumption good, i.e. wine,

and also because the big wineries are trying to impede the growth of smaller wineries

(Malone and Chambers, 2017).

The current literature on agribusiness value chains has calculated the number of

federal regulatory restrictions on the beer value chain. The primary contribution

of this study to this current literature is that it calculates the number of federal

restrictions on the wine value chain. Since both industries are different in terms of

the inputs they use and in terms of geographic concentration which might affect their

production and distribution channels, identification of federal restrictions on each

value chain for these separate industries is informative.
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Table 3.1: Direct, Indirect, and Total Federal Regulation Imposed on Wineries

Wineriesa

Year Direct Inputb Total

1997 39,727.61 22,993.64 62,721.25
1998 38,356.40 20,240.49 58,596.89
1999 29,459.41 19,969.14 49,428.55
2000 26,809.29 19,535.14 46,344.43
2001 24,861.82 20,066.27 44,928.09
2002 24,944.79 20,724.71 45,669.50
2003 23,270.40 21,140.50 44,410.90
2004 27,467.65 22,061.61 49,529.26
2005 26,317.78 21,581.07 47,898.85
2006 27,597.68 21,855.80 49,453.49
2007 28,000.17 22,010.04 50,010.22
2008 27,916.85 22,712.24 50,629.09
2009 28,526.91 22,888.64 51,415.54
2010 31,822.08 23,458.33 55,280.41
2011 31,305.31 23,635.01 54,940.32
2012 30,812.15 24,405.97 55,218.12

Note: “Direct”,“Indirect”, “Total” in the table correspond to Direct Federal Regulations, Indi-
rect Federal Regulations, and Total Federal Regulations.
a Wineries (NAICS: 31213) direct regulations is equal to the difference between “Beverage and
Tobacco Product Manufacturing” (NAICS: 312) and “Tobacco Manufacturing” (NAICS: 3122).
The residual is equal to “Beverage Manufacturing” (NAICS: 3121), which includes “Soft Drink
and Ice Manufacturing” (NAICS: 31211), “Breweries” (NAICS: 31212), “Wineries” (NAICS:
31213), and “Distilleries” (NAICS: 31214).
b Wineries (NAICS: 31213) input regulations are specific to the industry and is derived using
Chambers and Collins (2016)’ methodology.
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Table 3.2: Direct, Indirect, and Total Federal Regulation Imposed on Wholesale
Distribution

Wholesale Distributiona

Year Direct Input Total

1997 6,825.41 18,625.89 25,451.29
1998 5,984.36 16,321.78 22,306.13
1999 7,191.22 15,804.10 22,995.32
2000 6,148.99 15,504.99 21,653.98
2001 5,992.14 15,698.18 21,690.32
2002 6,038.73 15,712.27 21,751.00
2003 5,769.98 15,499.26 21,269.24
2004 5,988.41 15,961.81 21,950.22
2005 6,010.36 15,759.78 21,770.14
2006 6,432.74 15,754.71 22,187.45
2007 6,848.47 15,825.96 22,674.43
2008 6,944.40 16,029.97 22,974.37
2009 6,941.11 16,129.57 23,070.68
2010 6,378.70 16,531.02 22,909.72
2011 6,481.43 16,740.18 23,221.62
2012 6,422.83 17,364.65 23,787.48

Note: “Direct”,“Indirect”, “Total” in the table correspond to Direct Federal Regulations, Indi-
rect Federal Regulations, and Total Federal Regulations.
a 2–digit “Wholesale Trade” sector is a proxy for “Wine and Distilled Alcoholic Beverage Mer-
chant Wholesalers” (NAICS: 42482).
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Table 3.3: Direct, Indirect, and Total Federal Regulation Imposed on Wine Retail
Sales

Wine Retail Salesa

Year Direct Input Total

1997 469.23 18,950.85 19,420.08
1998 921.50 17,216.01 18,137.51
1999 916.69 17,147.10 18,063.80
2000 932.46 17,145.08 18,077.54
2001 960.54 17,509.67 18,470.21
2002 1,351.20 17,742.20 19,093.40
2003 1,259.17 17,185.57 18,444.74
2004 1,277.90 17,614.28 18,892.18
2005 1,269.40 17,569.18 18,838.57
2006 1,073.83 17,718.50 18,792.33
2007 1,188.39 17,716.66 18,905.06
2008 1,166.13 18,033.87 19,200.00
2009 1,149.44 17,568.72 18,718.16
2010 1,145.59 18,455.96 19,601.55
2011 983.89 18,972.43 19,956.32
2012 983.88 19,635.07 20,618.96

Note: “Direct”,“Indirect”, “Total” in the table correspond to Direct Federal Regulations, Indi-
rect Federal Regulations, and Total Federal Regulations.
a 3–digit “Food and Beverage Stores” (NAICS: 445) is a proxy for “Beer, Wine, and Liquor
Stores” (NAICS: 44531).
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Table 3.4: Comprehensive Measure of Federal Restrictions on each Value Chain

Total Total Total
Year Wineries Wholesale Wine Retail Comprehensive

1997 62,721.25 25,451.29 19,420.08 107,592.63
1998 58,596.89 22,306.13 18,137.51 99,040.52
1999 49,428.55 22,995.32 18,063.80 90,487.67
2000 46,344.43 21,653.98 18,077.54 86,075.95
2001 44,928.09 21,690.32 18,470.21 85,088.62
2002 45,669.50 21,751.00 19,093.40 86,513.90
2003 44,410.90 21,269.24 18,444.74 84,124.88
2004 49,529.26 21,950.22 18,892.18 90,371.67
2005 47,898.85 21,770.14 18,838.57 88,507.57
2006 49,453.49 22,187.45 18,792.33 90,433.27
2007 50,010.22 22,674.43 18,905.06 91,589.71
2008 50,629.09 22,974.37 19,200.00 92,803.46
2009 51,415.54 23,070.68 18,718.16 93,204.37
2010 55,280.41 22,909.72 19,601.55 97,791.68
2011 54,940.32 23,221.62 19,956.32 98,118.26
2012 55,218.12 23,787.48 20,618.96 99,624.56

Note: “Total Wineries”,“Total Wholesale”, “Total Wine Retail” in the table correspond to Total
restrictions in Wineries, Total restrictions in Wholesale Distribution, and Total restrictions in Wine
Retail Sales. “Comprehensive” corresponds to the summation of total federal regulations through-
out all value chains in the study for each year.
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Figure 3.1: Total Direct Federal Restrictions on Each Wine Value Chain Over Time
(1997–2012)
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Figure 3.2: Total Input Federal Restrictions on Each Wine Value Chain Over Time
(1997–2012)
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Figure 3.3: Total (Direct + Indirect) Federal Restrictions on Each Wine Value Chain
Over Time (1997–2012)
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