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Abstract

Human Interaction Recognition with Audio and Visual Cues

by

Ranya Almohsen
Master of Science in Computer Science

West Virginia University

Gianfranco Doretto, Ph.D., Chair

The automated recognition of human activities from video is a fundamental problem with ap-
plications in several areas, ranging from video surveillance, and robotics, to smart healthcare, and
multimedia indexing and retrieval, just to mention a few. However, the pervasive diffusion of
cameras capable of recording audio also makes available to those applications a complementary
modality. Despite the sizable progress made in the area of modeling and recognizing group ac-
tivities, and actions performed by people in isolation from video, the availability of audio cues
has rarely being leveraged. This is even more so in the area of modeling and recognizing binary
interactions between humans, where also the use of video has been limited.

This thesis introduces a modeling framework for binary human interactions based on audio and
visual cues. The main idea is to describe an interaction with a spatio-temporal trajectory modeling
the visual motion cues, and a temporal trajectory modeling the audio cues. This poses the problem
of how to fuse temporal trajectories from multiple modalities for the purpose of recognition. We
propose a solution whereby trajectories are modeled as the output of kernel state space models.
Then, we developed kernel-based methods for the audio-visual fusion that act at the feature level,
as well as at the kernel level, by exploiting multiple kernel learning techniques. The approaches
have been extensively tested and evaluated with a dataset made of videos obtained from TV shows
and Hollywood movies, containing five different interactions. The results show the promise of
this approach by producing a significant improvement of the recognition rate when audio cues are
exploited, clearly setting the state-of-the-art in this particular application.
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Notation

We use the following notation and symbols throughout this thesis.

Φ(·) : Mapping function
S : Input feature space
H : Hilbert space
{·} : Temporal sequence
E[·] : Expectation operator
H : Histogram space
Rn : Real space with n dimension
vt : System noise
wt : Observation noise
λ : Weight
‖ · ‖ : Matrix norm
δ : Threshold
yi,j : Interaction trajectory of i-th person and j-th person
K : Kernel
h : Histogram of oriented optical flow feature
m : Motion Histogram
(·)> : Transpose
.
= : Approximately equal
b and τ : number of bins
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Chapter 1

Introduction

Human activity recognition from video is one of the most active research areas in computer

vision. During the last decade many papers have been published where a single person performs

an action (e.g., walking, hand waving, eating, etc.). Those approaches were tested on artificially

generated datasets. Other approaches focussed on group activity modeling and recognition.

In this work we develop an approach to recognize binary human interactions, which are a hu-

man activities that involve two persons (e.g., shaking hands, hugging, , etc.). The aim is to interpret

human-to-human interactions that are captured in realistic videos, and only in the last few years,

more realistic interaction datasets [3, 7, 8] have become available. Such recognition technology

has been applied in many industry areas such as: security, surveillance, games, robotics, etc. We

test our approach on a datasets that was obtained from TV shows and Hollywood movies. The data

were divided into five interaction classes: Handshaking, High-Five, Huging, Kissing and Nega-

tive. Current approaches for interpreting such kind of interactions only use video information and

discard the information encoded in the audio or, they use only audio features, and do not con-

sider video data. Our approach is to combine audio and video to improve the recognition accuracy

compared with other approaches.

In human activity recognition, the study of single person activities reveals each persons motion

and activities in the scene, while the study of binary person interactions indicates the relationship

between two humans in the scene. With the interaction information of each pair of humans, more

complicate activities and events could be recognized. In order to quickly and accurately recognize

binary interactions, it is necessary to establish an efficient modeling framework.
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This thesis aims at developing such a framework, leading to an approach that will achieve

significant accuracy when compared with others, and that could become a building block for ana-

lyzing the behavior of a larger crowd in a scene, monitored by a network of cameras. We assume

that people in the scene are been tracked, and the tracking information is known. This allows to

analyze the spatio-temporal volume around each person and to extract relevant proximity cues and

motion features. At the same time, the tracking information of a pair of individuals enables the

extraction of audio cues, which could be coupled together with the video cues to form interaction

trajectories. To make such audio and video interaction trajectories useful, this thesis models them

as the output of kernel state space (KSS) models, and therefore reduces the problem of recognizing

human interactions to the problem of discriminating between KSS models. However, this method

requires to combine temporal trajectories from multiple modalities for the purpose of recognition.

To this end we developed kernel-based methods for the audio-visual fusion that act at the feature

level, as well as at the kernel level, by exploiting multiple kernel learning techniques.

This thesis is organized as follows. Chapter 2 gives an overview of human activity recogni-

tion and binary interaction recognition. Some basic tools for human action recognition and the

importance of audio cues are also discussed in this chapter. Chapter 3, presents a framework and

principles for modeling binary interactions. Chapter 4 focuses on the kernel methods that have been

designed for combining the audio and video domains, whereas Chapter 5 describes the dataset and

experimental results. This chapter shows the classification accuracy of the proposed kernel meth-

ods, validating the framework from the theoretical perspective, as well as practical by achieving

very promising results. A comparison between our method and other state-of-art approaches is

also performed. The thesis concludes in Chapter 6.
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Chapter 2

Human Activity Analysis Review

Human action and activity recognition is of significant interest in applications that range from

computer game development to public security monitoring. With more and more applications in

the computer intelligence area, it has become increasingly important in recent years. This tech-

nology of human action and activity recognition was developed and inspired by object recognition

techniques. In 1973, Johansson attached lights to major joints of a person in his experiment and

analyzed the structure and motion [9]. This probably is the earliest experiment related to human

action recognition. In 1982, inspired by Johansson’s experiment, Jon Webb and J. K. Aggarwal

separate such a motion into a rotation and a translation, where they assume the rotation axis is fixed

for short periods of time. So the structure of jointed objects can be determined under orthographic

projection [10]. Their works may be considered as the beginning of human action and activity

recognition. After the 1980s, this field receives more attention from researchers. Especially in this

decade, numerous publications focus on this area.

From different perspectives, human action recognition can be categorized with different tax-

onomies. If the perspective of video understanding is taken into account, it can be separated into

four levels [1]: Object-level, Tracking-level, Pose-level, and Activity-level. From the complex-

ity perspective, action recognition can be divided into single person action recognition, human

to human interaction (also called as binary interaction) recognition, and group activity recogni-

tion. If considered from the algorithms approach, human action recognition can be categorized

as single-layer approaches and hierarchical approaches. This chapter gives a brief description of

each classification from these different perspectives as well as the general tools used for these
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Reference Background subtraction Human feature
Wren et al. [1997] Color/Ref. image Color,contour
Beleznai et al. [2004] Color/Ref. image Region model
Haga et al. [2004] Color/Ref. image F1-F2-F3
Eng et al. [2004] Color/Ref. image Color
Elzein et al. [2003] Motion/Frame diff. Wavelets
Toth and Aach [2003] Motion/Frame diff. Fourier shape
Lee et al. [2004] Motion/Frame diff. Shape
Zhou and Hoang [2005] Motion/Frame diff. Shape
Yoon and Kim [2004] Motion + Color Geom Pix. Val.
Xu and Fujimura [2003] Depth Motion
Li et al. [2004] Depth Shape
Han and Bhanu [2003] Infrared IR+color
Jiang et al. [2004] Infrared IR+color

Table 2.1: Methods using background subtraction [5]

recognitions.

2.1 Video-undestanding-based taxonomy of human activity recog-

nition

As mentioned before, human action recognition can be explored from four different levels:

Object-level, Tracking-level, Pose-level, and Activity-level. The main issue for the object-level is

to detect whether a human is present at a certain time and place. So, all people in the given video

should be recognized and automatically marked, this is called people detection. The algorithms for

such detection are the same used for the detection of other kinds of objects. These algorithms were

classified as “based on background subtraction” and “based on direct detection” [5]. Background

subtraction techniques usually have a background reference which can be subtracted from video

frames to obtain foreground objects. These objects will be classified as human or other objects

based on shape, color, or motion or other features. Direct techniques classify video patches as

human or non-human based on both 2D and 3D features. 3D features are extracted from the

motion. Table 2.1 and Table 2.2 show the usage of these two methods in recent publications,

respectively.
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Reference Human model Classier
Cutler and Davis [2000] Periodic Motion Motion similarity
Utsumi and Tetsutani [2002] Geom. Pix. Val Distance
Gavrila and Giebel [2002] Shape template Chamfer dist.
Viola et al. [2003] shape+motion Adaboost cascade
Sidenbladh [2004 Optical ow SVM (RBF)
Dalal and Triggs [2005] Hist. of gradients SVM (Linear)

Table 2.2: Methods based on direct detection [5]

Tracking, which usually is combined with detection, is another important part in human action

recognition. Trajectories can be determined through tracking. Therefore, we are able to obtain the

cues of human motion and relationships by analyzing the collection of trajectories in the video.

Besides the trajectories, human pose recognition is also an important aspect for video under-

standing. For certain action categories where trajectory is not sufficient, analysis of human pose

provides a better approach for classification. Traditionally, there are two broad classes of ap-

proaches for such recognition [11]: One is matching templates which are called as exemplar-based

approaches [12, 13, 14, 15]. Another one consists of fitting a human body model[16, 17, 18]. Both

approaches were extensively explored in recent years and are successfully applied.

The last level for video understanding is activity level. There are many types of human ac-

tivities. We can divide these activities into single human actions (include gesture), human human

interactions, and group activities. These activities are represented by a collection of human/human

body part movements with a particular semantic meaning.

2.2 Approach-based taxonomy of human activity recognition

Single layer approaches and hierarchical approaches are two methodologies for human activ-

ity recognition. In the single layer approaches, human activities are directly recognized based on

video data or sequences of images. To do so, low level features are directly extracted from video

data. These features are then processed by machine learning techniques such as linear support

vector machines (SVM) or hidden Markov models (HMM) to determine the classification of these

unknown image sequences. In recent years, various representation types and matching algorithms

have been developed under single layered approaches. Most of them adopt a sliding windows tech-
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nique that classifies all possible sub-sequences. These approaches work well for the recognition

of relatively simple gestures and actions with sequential characteristics such as walking, running,

and jumping. However, for some complex activities with real world background, this kind of ap-

proaches do not work very well. In this case, hierarchical approaches, which we will describe later,

are a better choice.

Based on the model of human activities, single layered approaches can be further divided

into two types of approaches: space-time approaches and sequential approaches. Space time ap-

proaches consider the video as a data in 3D, XYT where space is the X-Y dimension, and time

T is the third dimension. This kind of approaches classify human activities by analyzing space-

time volumes of given videos. The 3D XYT models will be learned and constructed from training

videos. And some other 3D models will be established corresponding to unlabeled videos. Com-

paring the similarity of these two kinds of models, the classification of those unlabeled videos

could be determined. This framework is similar to the template matching framework which we

talked about in the previous section. Another kind of single layer approaches, called sequential

approaches, consider the video as a sequence of images and interpret the human activity as a se-

quence of observations. As we know, a video is composed by a sequence of images. The features

extracted from each image frame describe a human statuses. Therefore, a sequence of images

will provide a sequence of human status. Such sequence will tell us which activity is occurred

by computing the maximum likelihood probability between the sequence and the activity class

representation. Space-time approaches are straight forward approaches and are widely used in the

recognition of periodic actions. The weakness of such kind of approaches is handling the speed

and motion variation.

Besides the pure 3D volume representation for space time approaches, there are two other

space time representations based on trajectories approaches and space time features. In trajectory

approaches, an activity can be represented as trajectories in 3D space. As mentioned in the previous

section, these trajectories, obtained by tracking, represent the movement of the person. Thus, the

activity can be derived by analyzing a set of trajectories. The space time trajectory approaches pro-

vide enough detail analysis and results in many cases, but body parts analysis is always difficult for

this kind of approaches. Instead of pure volume or pure trajectory, a set of features extracted from

the volume or the trajectory is also used to represent human activity. In this kind of approaches,
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Figure 2.1: Single-layered approaches and the lists of selected publications corresponding to each
category [1].

volumes or trajectories are treated as objects where common features can be extracted from them.

This kind of approaches is more reliable even under noise and illumination changes. However, the

computational complexity will dramatically increase when recognizing more complex activity. In

addition, viewpoint invariance has to be considered in this kind of approaches.

Space time approaches can also be categorized in three types: template matching, neighbor-

based (discriminative), and statistical modeling. In template matching approaches, the represen-

tative models for all activities are established through training videos. Comparison between these

models and the models obtained from unlabeled videos will tell the classification of these unlabeled

videos. In the case of neighbor-based matching, the activity was described by a set of sample vol-

umes (or trajectories) which are used to match those obtained by the unknown input. Statistical

modeling algorithms match training and testing videos by explicitly modeling a probability distri-

bution of an activity.

For sequential approaches, we have discussed both types in the previous section. They can

be exemplar based and state model based. A tree structure taxonomy’s figure of single layer ap-

proaches is shown in Fig 2.1[1].

Another kind of approaches are the hierarchical approaches. They aim at recognizing high-
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Figure 2.2: Hierachical approaches and the lists of selected publications corresponding to each
category [1].

level human activities from the recognition results of other simpler activities. Intuitively, any

complex event is composed by multiple simpler sub-events. Therefore, the system will classify

these sub-events first because they are relatively easier to be recognized, and then a higher level

event derived from these known sub-events. The idea of hierarchical approaches greatly improves

the recognition process by reducing redundancy where the recognized sub-events can be used

multiple times. In addition, the layer by layer structure makes the computation tractable and easier

to be understood.

As shown in Fig 2.2, hierarchical approaches can be categorized as statistical approaches,

syntactic approaches, and description-based approaches. In hierarchical statistical approaches,

state-based models such as Hidden Markov Model (HMMs) and Dynamical Bayesian Networks

(DBNs) are used. In these models, the structure of activity recognition has multiple layers. At

the bottom layer, the recognition algorithm for those atomic activities is exactly the same as that

one used in single-layered approaches. Low level features are extracted from video data and are

converted to a sequence of atomic activities. Then, in the second-level layer, this sequence of

atomic activities is used as observations for the recognition of higher level activities. Thus, the

highest level activity would be obtained following such layer by layer derivation. In each layer,

the result is calculated by computing the likelihood between the activity and the input sequence of

features/observation activities with the maximum likelihood estimation (MLE) or the maximum a
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posteriori probability (MAP) classifier. Statistical approaches have been successfully applied for

the recognition of sequential activities in numerous publications. This kind of algorithms is robust

enough for activity recognition even in the case of noisy inputs. However, they are inherently

unable to recognize activities with complex temporal structures. Therefore, their applications are

limited for modeling sequential relationships instead of concurrent relationships.

As for syntactic approaches, human activities are represented as a string of symbols where each

symbol corresponds to an atomic activity [19]. The same, as the case of hierarchical statistical ap-

proaches, where atomic activities are recognized by low level features. These atomic activities

are then parsed to symbols through provided production rules, and the high-level human activi-

ties are recognized by using context-free grammars (CFGs) and stochastic context-free grammars

(SCFGs). The major limitations of syntactic approaches is that they need the recognition of the

concurrent activities which is composed of concurrent sub-events. Besides that, another limitation

comes from the synthetic approaches assumption. All observations are assumed to be parsed by

production rules. This assumption is problematic when an unknown observation interferes with

the recognition. To overcome such limitation, some algorithms are developed for automatically

learning grammar rules from observations [20].

A description-based approach represents human activities as the composition of atomic ac-

tivities where the temporal, spatial and logical relationships between these atomic activities are

considered. The relationship between sub-events as well as the recognition for atomic activities

plays an important role for the recognition of high-level human activity. One of the advantages of

the description-based approaches is that they are able to recognize those activities with concurrent

structures. The limitation of description-based approaches is their inability to compensate for the

failures of low-level components such as human detection failure. The recognition accuracy will

be greatly reduced with out these detection failures.

2.3 Complexity-based taxonomy of human activity recognition

As described in the previous section, human activity recognition can be categorized as single

person action, binary interaction, and group activity based on video complexity. Single person

action recognition means only one person is in such video and we classify his action into a certain
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name of detector type author and publication
Canny edge detector Edge detector Canny, J.,IEEE Trans. 1986
Harris3D detector Corners detector Laptev et al. ICCV03
Hessian detector Corner detector Williems et al. ECCV 2008
Cuboid detector Corner detector Dollr et al. ICCV 2005
Cloud ST features detecor Corner and edge detector Bregonzio et al. CVPR 2009
Volumetric features detector Blob detector Ke et al. ICCV 2005
Principal curvature-based region detector Blob detector Deng, H. et al. CVPR 2007

Table 2.3: Some common detectors

action category. Numerous algorithms were developed for both recognition methodologies and

tools. Many of them are also suitable for the recognition of interactions and group activities. Since

some traditional approaches are mentioned in the previous section, some useful tools for activity

recognition will be introduced in this section.

2.3.1 Detectors and descriptors for action recognition

In computer vision, a feature detector is a tool which is used to detect the features in images or

videos. A feature means a part of interest in images or videos. Human activities can be represented

by features. Thus, correctly and effectively detecting features in the images or videos will greatly

affect the speed and accuracy of recognition. Generally, the resulting features are in the form

of isolated points, continuous curves or connected regions. For human detection, the traditional

types of features are edges, corners, and blobs. Edges are some sets of points with strong gradient

magnitude. Corners, also called as point of interest, are some isolated points with both strong

gradient magnitude and a ”good position”. That means, these points are stable even under local or

global perturbations. Blobs are connected regions. Blob detectors are similar to corner detectors

but can detect those areas in an image or videos which are too smooth to be detected by a corner

detector. Table 2.3 lists some common detectors for human recognition.

A Harris 3D detector detects spatial and temporal ST-corners and provides automatic scale

selection. However, ST-corners can be quite rare in an image/video. That means ST corners are too

sparse for many types of motion. A cuboid detector detects regions with spatially distinguishing

characteristics undergoing a complex motion. It has a rich set of features but doesn’t have scale

selection. A cloud ST features detector solves some problems of cuboid detector. In practice, it
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name author and publication
Scale Invariant Feature Transform (SIFT) Lowe, David G. ICCV 1999
Speeded Up Robust Features (SURF) Bay, H et al. ECCV 2006
HOG3D descriptor Klaser et al BMVC 2008
Optical flow descriptor Barron, L. J. JSCV 1994
Cuboid descriptor Dollr et al. ICCV 2005
Gradient Descriptor Dollr et al. ICCV 2005
HOG/HOF Descriptor Dalal N, CVPR 2005

Table 2.4: Some common descriptors

performs much better than a traditional cuboid detector especially in noisy environments. However,

the initial foreground area segmentation increases the cost of such detector. A volumetric feature

detector is a detector based on Viola and Jones rectanglar features. It defines an integral video

and is calculated on the x and y optical flow channels. This detector has dense features at many

locations and scales resulting in efficient computation of features. But it needs to subsample the

feature spaces because sometimes the features are too dense. In addition, in order to achieve spatial

scale invariance, a video pyramid has to be processed. A Hessian detector is the ST extension of

the Hessian saliency measure. The advantage of such detector is the automatic scale selection. But

examples suggest that high entropy ST-regions are rare.

Once features have been detected, extracting these features to get information from an image

or video will be the next step. However, the input data is often too large to be processed. To handle

redundant data, we need to transform them into a reduced representation. We call a descriptor. For

example, interested points can be represented by a descriptor in an image or video. Table 2.4 lists

some common descriptors.

The overall ranking for some common descriptors are: HOG/HOF > HOG3D > Cuboids >

SURF & HOG, and the combination of gradients plus optical flow also seems to be a good choice.

Besides a detector and a descriptor, one other tool for human recognition is the classifier.

The selection of a proper classifier will also greatly improve the recognition accuracy. k-NN is a

typical instance-based prediction classifier. Based on their Euclidean distance, the classification of

a testing sample will be determined by the majority class vote of its k closest neighbors. Naive

Bayes (NB) is another classifier model. It computes the probability of classification based on

the Bayes’s rule. It is probably one of the most common classifiers for certain types of learning
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problems. Another kind of common classifiers are Support Vector Machines (SVMs). SVMs are a

kind of a blend of linear modeling and instance-based learning [21]. They separate the dataset into

training samples and testing samples. A linear discriminant function which is used to distinguish

each class will be learned from training samples and then applied to test samples. In case there is

no linear separation from training samples, SVM kernels will project the training samples onto a

higher-dimensional space. Then the classifier can be learned in this high-dimensional space. K-

mean is also an important classification tool. This classifier calculates the means of initial classes

which are evenly distributed over the whole data space. By using a minimum distance, K-mean

iteratively clusters features into the nearest classes. In each iteration, pixels/features in data space

are reclassified based on previous means and then the class means are recalculated. This process

continues until the number of pixels/features in each class changes by less than the selected pixel

change threshold or the maximum number of iterations is reached.

Feature detector, descriptor, and classifier are not only used for the recognition of single person

action, but also for the recognition of binary interaction and group activity. There are two kinds of

group activity. In the first kind of group activity, all individuals’ activities are similar or the same.

For example, when soldiers are marching on the street, each individual soldier is walking in the

same direction with same speed. Another example is queuing, people will stand on a line with

similar pose. In such kind of activities, the analysis of individual action is trivial but the detection

of overall motion and the group members formation are vital. Since the motion of group can be

considered simultaneously, single layer approaches are good for such recognition. Through proper

detector and tracker, trajectories of the group can be extracted from the video and can be compared

with templates for activity analysis [22]. Additionally, each person can be treated as a point where

the group can be represented as a set of points. Shape and formation changes of this set will

provide sufficient cues for recognition[23]. In another kind of group activity, individual actions are

different and each member has his/her own role. Early researches focus on the recognition of group

activity by analysis of the members with non-uniform behaviors in a single group [24, 25, 26]. For

example, a teacher is giving a presentation while all other students are listening in a classroom.

In recent years, more challenging group activities have been analyzed. In some activities, each

person has a different role. For such kind of group activities, the activity of each member in the

scene has to be recognized and their structures should be analyzed. Therefore, most approaches
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for the recognition of such group activity are hierarchical because there model at least two-levels

of activities: group activity and each member activity [27, 28, 29]. The most popular approaches

are statistical hierarchical approaches which have been discussed in the previous section. In recent

years, some methodologies have been developed to handle both kinds of group activity and achieve

promising results [30, 31, 32, 33, 34].

2.3.2 Binary human-human interactions

Because of the lack of datasets, the study of binary interaction is even behind the study of

group activities. In 2000, Oliver et al propose a Bayesian model to analyze the binary interaction

[35]. They obtain the trajectories of both persons and compute the MLP to classify an interaction.

Around 2004, J.K. Aggarwal’s research group developed a hierarchical method for binary inter-

action recognition [36, 27]. They divided human motion to body part movements such as torso’s

movement and arm’s movement. According to head pose information and body parts information,

they classified an interaction in different categories. With a new realistic dataset, this research

group developed a video structure comparison method in later years [3]. This well-known new

dataset is called as UT-interaction dataset. So far, it is still the most popular dataset for binary in-

teraction studies. In their work, they extracted histogram based spatio-temporal local features from

videos. After that, they create a match kernel which is a Mercer’s kernel and use this match kernel

to measure the similarity of feature structures from different videos. Then, they localize the de-

tected atomic activity by searching the activity’s spatial coordinates, starting time, and ending time

which is based on voting. Through hierarchical recognition, the detected binary interaction can be

classified. With this system, more complicated binary interactions can be recognized. Compared

to previous works, the approach proposed in their work greatly improve the recognition accuracy

for realistic binary interactions.

With more realistic datasets made available in recent years, diverse methodologies were devel-

oped. One typical volumetric-based approach is proposed by Brendel et al. in 2011 [37]. They

extracted pixel intensity and motion properties at multiple scales and segment them to obtain ho-

mogeneous sub-volumes, called tubes. These tubes are organized based on their relationships:

Hierarchical, Temporal, and Spatial. To simplify, they constructed a spatial-temporal graph by us-
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ing nodes to represent tubes and weighted direct edges to represent these relationships. Based on

these knowledge, they learned weighted least squares graph models from a set of training graphs

of an activity class. Thus, the testing videos can be parsed by matching its graph with the closest

activity model in the weighted least squares sense, under an arbitrary permutation. According to

their results, the performance of this approach on the UT-interaction dataset is better than that of

[3].

In the same year, Guar et al. proposed another model, the string of feature graphs model

[38]. Different with Brendel’s approach, they only divided features into small temporal bins and

represented the video as a temporally ordered collection, where each feature bin is consisting of

a graphical structure representing the spatial arrangement of the low-level features. To match

two videos, they first match these local feature bins in a graph-theoretic manner to preserve the

spatial-temporal relationships between features. Then they used dynamic time wrapping for global

temporal alignment. Besides binary interaction recognition, this approach is also able to recognize

activities which have interactions between multiple objects. The experiments in their publication

indicate that they achieved results comparable with [3].

In 2012, Patron-Perez et al. developed a new approach to recognize binary interactions in

video from their new TVShow dataset [7]. They tracked all upper bodies and heads in a video and

developed a person centered descriptor based on the head orientations and the local spatio-temporal

region around them. From the information of local cues, they obtained the spatial relationship

between people and head orientations, which are called global cues. Then, they use structure

SVM for learning and inference of interaction classes. Besides their new dataset, they also tested

their model on the UT-interaction dataset. The classification accuracy is even better than that of

Brendel’s work.

With a new BIT interaction dataset, another approach was proposed by [8]. They used high-

level descriptors, which are called interactive phrases, to represent binary semantic motion rela-

tionships between those interacting people. These motion relationships between arms, legs, and

torsos could be leg stepping forward, arm stretching, static torso, and etc. And they treated these

interactive phrases as latent variables. Finally, they classify the interaction types by using a latent

SVM. They tested their model on both the BIT dataset and UT dataset and got encouraging results.

Besides the approaches above, one interested approach, propagative Hough voting approach,
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was proposed by Yu et al. in 2012 [39]. In their work, they use propagative Hough voting to analyze

binary interactions. To start, they extracted the STIPs from videos and use random projection

trees (RPT) to model the underlying low-dimension feature distribution. This leverages the low

dimensional manifold structure in the high dimensional feature space. By accumulating the voting

score for matching features, the classification of the videos can be determined. Though this method

increases some computing cost, the superior performance on the UT dataset and TVShow dataset

proves that it is an excellent methodology for binary interaction recognition.

2.4 Exploiting Audio Cues

An important step to get more advanced results in any classification problem, could be made

by developing more powerful features or understanding the feature space, rather than building new

classification scheme. The problem of human activity recognition has been addressed by several

authors, most of them are using only one modality, which is given by the visual features, and

they discard the information that is encoded by the audio. Audio is an important cue that can be

exploited to improve the performance of human activity recognition.

When comparing two scenes, for example one belonging to the hugging class, and the other one

belonging to the kissing class, by using only video features those two cases could be ambiguous for

a computer to decide which class the scene belongs to. However, if we consider the audio signal,

we notice that the hug case has a very different audio pattern than the kiss case [6].

This motivates the use of audio features. This is done by identifying the components of the

audio signal that are good for identifying the linguistic content and discarding all the other stuff

which carries information like background noise, etc. During the last decade, several authors

have proposed algorithms to classify incoming audio data based on different algorithms. Most of

these proposed systems that combine two processing stages. The first stage analyzes the incoming

waveform and extracts certain parameters (features) from it. The feature extraction process usu-

ally involves a large information reduction. The second stage performs a classification based on

the extracted features. A variety of signal features have been proposed for general audio classifi-

cation. The most succesful one is the Mel-frequency cepstral coefficients (MFCCs). Prior to the

introduction of the MFCCs, Linear Prediction Coefficients (LPCs) and Linear Prediction Cepstral
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Coefficients (LPCCs) were the main feature types for speech recognition problems. The features

consist of two sets: the first feature set is the low-level signal features, which include parame-

ters such as: the zero-crossing rate, the signal bandwidth, the spectral centroid, and signal energy.

The second feature set consists of Mel-frequency cepstral coefficients (MFCC). This parametric

description of the spectral envelope has the advantage of being level-independent and of yielding

low mutual correlations between different features. Classification based on a set of features that

are uncorrelated is typically easier than that based on features with correlations. Both low-level

signal properties and MFCCs have been used for general audio classification schemes of varying

complexity. The simplest audio classication tasks involve the discrimination between music and

speech. Typical classication results of up to 95% accuracy have been reported .When comparing

the performance of the low-level signal features and MFCC features, MFCC seems to be more

powerful [40].

In this thesis we will develop a framework for measuring audio and visula cues for the purpose

of detecting interactions captured in video sequences. This particular area of research seams to be

parctically unexplored, and our approach sets the state-of-the-art for the classification accuracy on

the TVShow dataset.
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Chapter 3

Human Interaction Representation

Recognition of binary interaction is one of the important areas for the automatic understanding

of human activities by a computer. However, the research done in this area is much less than in

other areas of human activity recognition because of the lack of realistic datasets. To improve the

recognition accuracy for binary interaction, it is necessary to establish a modeling framework. In

this chapter, we explain how to construct this framework and its principles. Compared with other

approaches, this new framework boosts both recognition performance and efficiency for binary

interaction recognition [41].

In this chapter we will describe the visual and the audio features used to represent human inter-

actions. The temporal evolution of such features will produce interaction trajectories. Those in turn

will be modeled as the output of jernel state space models, which can be compared through the use

of a kernellized version of so-called Binet-Cauchy kernels. The introduction of this representation

and tools is necessary to set the state for developing a kernel-based method for combining audio

and visual features for human interaction recognition, as it will be explained in the next chapter.

3.1 Visual Features

Given a video, we convert it into an image sequences {It}Tt=1, where t represents the frame

number and T is the length of the sequence. For binary interactions, there should be two or more

persons (other people will be considered as perturbation) in the image sequences. We assume the

region of each person at every frame to be given through the use of a people tracker [42] This is a
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Figure 3.1: An example of bounding boxes

typical assumption in video surveillance setting. With this assumption, we can use the bounding

box to delimit the region of each person at each frame. The features selection and extraction will

be executed only inside the bounding box area instead of the whole frame region.

3.1.1 Histogram of Oriented Optical Flow

To effectively represent a binary interaction, we extract two kinds of features from the video.

The first one is the histogram of oriented optical flow (HOOF) [2], hi,t. Here i means the i-th person

in the video. Optical flow, as one of methods to detect human motion, is defined as the apparent

visual motion in the scene. The second row of Figure 3.2 shows an example of an optical flow

image. However, optical flow computations are sensitive to variations of scale, background noise,

and the direction of movement. To overcome these problems, HOOF is based on the distribution of

optical flow, as it was proposed by Chaudhry et al. in 2009. They binned the flow vector though its

angle and magnitude weight and then normalized the histogram. This makes HOOF be independent

of direction of motion and scale variation. The third row of Figure 3.2 shows the histogram bins
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Figure 3.2: An example of HOOF descriptor. a) Binary interaction image cut from video. b)
Optical flow of left person. c) Optical flow of right person. d) histogram bins obtained from b). e)
histogram bins obtained from c).

obtained from the optical flow images, and Figure 3.3 shows how the histogram was formed with

this method. From Figure 3.3, HOOF is symmetric in the orientation of the optical flow, which

indicates that it is independent of the direction of motion. Although HOOF features can not be

used to represent the relative direction of motion between pair persons, it represents each single

person’s motion very well. Thus, in our framework, HOOF features were used to represent the

motion of each person between two consecutive frames. The relative direction of motions between
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Figure 3.3: Histogram formation with 4 bins [2].

two persons will be represented by another feature.

3.1.2 Motion histograms

Another kind of features we used in this framework is called motion histogram (MH), which

summarizes the motion trajectory of the past τ − 1 frames (where τ > 1). To obtain MH, we fist

need to compute the motion image, Mt
.
=
∑τ−1

k=1 η(It− It−k), where η(z) = 1 if |z| < δ, otherwise

η(z) = 0. Here δ is a threshold parameter to be set. Once the motion image is computed, it is

binned inside the bounding box of person to obtain the motion histogram of person i at frame t,

mi,t. Like the HOOF, the MH features are also scale invariant, robust to noise, and independent of

motion direction. Figure 3.4 shows a couple of examples of motion images with the corresponding

MH features. Here, the vertical axis is the normalized histogram and the horizontal axis is the

number of bins.

After extracting the HOOF features and the MH features, we use them to represent the person

in the scene. The i-th person, can be represented by the sequence of HOOF and MH features
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Figure 3.4: Motion images and MH feature trajectories [3]. First row: Binary interaction images
obtained from video; Second row: Motion images; Third row: Motion histogram bins of left
person; Fourth row: Motion histogram bins of right person.

ht
.
= {hi,t}Tt=1, and mi

.
= {mi,t}Tt=1 , respectively, where hi,t and mi,t are normalized histograms

made of b bins, hi,t
.
= [hi,t;1, · · · ,hi,t;b]>, and made of τ bins, mi,t

.
= [mi,t;0,mi,t;1, · · · ,mi,t;τ−1]

>,

where bin 0 has been added to account for the case of absence of motion.

Besides the features extracted from each person, the proxemics interaction between persons

also provides discriminative information (e.g., person i cannot shake hands with person j if they

are far enough), and needs to be considered in this representation. Here, the spatial relationship

between a pair of persons is considered. Generally, the spatial relationship could be obtained by

analyzing of the Euclidean distance between the position pi,t of person i, and the position pj,t of

person j [43].

dij,t
.
= ‖pi,t − pj,t‖2 . (3.1)
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The position and velocity of each person in the scene will be easily obtained if the camera cal-

ibration is known and people tracking is performed on the ground-plane. However, if the camera

is not calibrated or the calibration is not with respect to the ground plane, we have to character-

ize proximity by approximating the distance in each frame with the distance between bounding

boxes, and performing a normalization based on the person bounding box size. Even in such case

where the distance is not view invariant, the experiment results for the tested datasets still show a

significant improvement of the classification accuracy when the distance is considered [41].

Relative orientation between a pair persons is another important cue for classification. For

example, person i cannot be kissing person j if i is not facing j. Such information can be obtained

by the person’s body part orientation or gaze direction [44]. This will also lead to view invariant

features. However, so far there are no available human interaction datasets with camera calibration

and gaze direction information, and extracting body part orientations information from video is

difficult beacuse a reliable 3D articulated body tracker is required. The use of those features is

beyond the scope of this thesis.

3.2 Audio Features

Extracting discriminative features is the first step to improve the results in the classification

problems. State-of-the-art features for audio classification are the Mel-Frequency Cepstral Coeffi-

cients (MFCCs), which are explained in the next section.

3.2.1 Mel-Frequency Cepstral Coefficients (MFCCs)

In audio processing, Mel-frequency cepstral coefficients (MFCCs) are coefficients extracted

from the Mel-frequency cepstrum (MFC), which is a representation of the short-term power spec-

trum of sound, after a cosine domain transform of a log-power transformation.They were intro-

duced by Davis and Mermelstein in the 1980’s, and have been state-of-the-art ever since [45]

MFCCs are derived in several steps. Since the audio signal always varies during a time period,

(the change might be in the pitch or the speed of the signal), we need to divide the audio signal

frame into shorter frames, and assume that during a short frame time the audio signal doesn’t

change much. Therfore, we divide the signal into 20-40 ms frames (25 ms is a typical choice).
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If we divide the signal into shorter frames, then there are not enough samples to get a reliable

spectral estimate, and if we divide the signal into longer frames, then the signal is going to change

throughout the frame. Our approach is to use a temporal ”sliding window” that traverses along the

audio signal and computes the MFCCs. We tested several sliding window sizes start from 20 ms

to 200 ms.

For each window we calculate the Discrete Fourier Transform (DFT) of the frame as follows

Si(k) =
N∑
i=1

Si(n)h(n)e
−j2πkn/N , (3.2)

where Si(n) here is the time domain signal at time i, h(n) is an N sample long analysis window,

and K is the length of the DFT.

The next step is to calculate the periodogram estimate of the power spectrum of each frame,

which is given by

Pi(k) = 1/N |Si(k)|2, (3.3)

Where Pi(k) is the power spectrum of frame i. This is derived from the human cochlea (an

organ in the ear) which vibrates at different spots depending on the frequency of the incoming

sounds. The calculated periodogram estimate performs a similar job by identifying which frequen-

cies are present in the frame.

After that, we need to apply the Mel filterbank to the power spectra, because the periodogram

spectral estimate contains a lot of information not useful for audio classification. Therfore, we

take a group of periodogram bins and sum them up to get an idea of how much energy exists in

various frequency regions. To calculate the filterbank energies we multiply each filterbank with

the power spectrum, then add up the coefficents. This is performed by our Mel filterbank: the

first filter is very narrow and gives an indication of how much energy exists near 0 Hertz. As the

frequencies get higher our filters get wider as we become less concerned about variations. We are

only interested in roughly how much energy occurs at each spot. The Mel scale tells us exactly

how to space our filterbanks and how wide to make them.

When we have the filterbank energies, we take the logarithm of them, because the logarithm

allows us to use cepstral mean subtraction, which is a channel normalisation technique.
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Figure 3.5: The procedure for computing MFCC features

Then, we compute the discrete cosine transform (DCT) of the list of Mel log powers. The

DCT decorrelates the energies. The last step is to keep 2-13 DCT coefficients, and discard the rest.

This is because the higher DCT coefficients represent fast changes in the filterbank energies, and

it turns out that these actually degrade classification performance, so we get a small improvement

by dropping them [46].

3.3 Audio and Video Trajectories

As anticipated in previous sections, a binary human interaction is represented by interaction

trajectories. We are going to have two types of interaction trajectories. One representing visual

cues (visual interaction trajectory), and one representing audio cues (audio interaction trajectory).

The visual interaction trajectory consists of HOOF features (histogram of oriented optical flow),

and MH features (motion histogram), that are going to be computed for each person in the bounding

box over time. Therefore, visual cues are going to be represented by (hi,mi) and (hj,mj), of
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person i and j, and their spatial relationship described by dij . When these quantities evolve over

time we obtain a visual interaction trajectory which is the temporal sequence yij
.
= {yij,t}Tt=1,

where

yij,t
.
= [h>i,t,m

>
i,t,h

>
j,t,m

>
j,t, dij,t]

> . (3.4)

The second type of interaction trajectory is the audio interaction trajectory, which consists of

MFCC features. Given a video, we apply our temporal sliding window technique to the audio

signal extracted from the video, and compute the MFCCs for each window from the beginning to

the end of the signal. During the computation of the MFCCs we use a step size corresponding to

the video frame rate, and the sliding window size is varies between 20ms to 200ms. The audio

interaction trajectory is going to be a temporal sequence made of T samples, given by

aij
.
= {aij,t}Tt=1 (3.5)

In summary in this thesis a human interaction is represented by a pair of interaction trajectories,

indicated by (yij, aij).

3.4 Modeling Temporal Sequences

In general, an interaction trajectory {yt} (where here yt indicates either visual or audio cues)

is a temporal sequence and it can be considered as a section of the realization of a stochastic

process which describes the dynamics of an interaction. Therefore, the recognition of a binary

interaction is converted to the problem of recognizing stochastic processes. Stochastic processes

can be modeled as the output of dynamical systems. A dynamical system is a system that changes

over time according to a set of fixed rules that determine how one state of the system moves to

another state. In this section, we will introduce linear dynamical systems and one particular non-

linear estimation, which we call kernel state space models, and that we use for modeling interaction

trajectories.

3.4.1 Linear Dynamical Systems (LDSs)

A linear dynamical system (LDS) is defined by the following expression:



Ranya Almohsen Chapter 3. Human Interaction Representation 26

xt+1 = Axt +Bvt

yt = Cxt + µ+ wt

(3.6)

Here, xt is the state of the LDS at time t. yt is the observed output at time t. A,B,C are

coefficients, where A describes the dynamics of the state evolution, B models how the state of

evolution is affected by the input noise, and C transforms the state of evolution to an observation.

vt and wt are the system noise and the observation noise. Those are independent and zero-mean,

following a Gaussian distribution. µ is the mean of the past T−1 frames, {yt}T−1t=1 . These quantities

are defined in the following spaces: xt ∈ Rn, vt ∈ Rnv , A ∈ Rn×n, B ∈ Rn×nv , yt ∈ Rm,

µ ∈ Rm, C ∈ Rm×n, wt ∈ Rm. Based on these parameters, the an LDS can be represented as

L(x0, A,B,C, µ,R) where x0 is the initial state andR is the covariance of the observation noise. If

we assume the data to be zero-mean, and if B is absorbed by the system noise distribution, model

(3.6) simplifies to

xt+1 = Axt + vt

yt = Cxt + wt

(3.7)

Now, an LDS can be represented as L(x0, A, C,R). The parameters defining the LDS can

be learned from the feature trajectories of those training videos. There are several approaches

to estimate these parameters. One typical method is to use the subspace identification algorithm

N4SID, which is available in the Matlab toolbox [47]. However, N4SID requires a lot of memory

storage if dimensionality is large. Another typical algorithm to solve this problem is given by

the closed-form sub-optimal solution proposed in [48]. In this algorithm, the observations Y T
1

.
=

[y1, ...yT ] are decomposed to UΣV T , via singular value decomposition (SVD) [49], with Σ =

diag{σ1, ..., σn}. Therefore, the parameters are estimated as Ĉ(T ) = U , and X̂(T ) = ΣV T . Â

can be determined uniquely by solving

Â(T ) = ΣV TD1V (V TD2V )−1Σ−1 (3.8)

where D1 =

 0 0

IT−1 0

 and D2 =

IT−1 0

0 0

. B̂ is determined by input noise covariance Q

by B̂B̂T = Q̂. A more detailed derivation and implementation of this algorithm is given in [48].
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After these parameters are determined, similarity between different LDSs will be defined through

kernels such as Binet-Causchy kernels, RBF kernels, string kernels, etc. Based on a specific kernel,

all similarities of training data will be computed and used for testing data classification through a

support vector machine (SVM) classifier.

3.4.2 Kernel State Space Models

So far, we described the LDSs approach and the algorithm for parameters estimation. However,

if the space S where yt is not euclidean, representing {yt} within LDS is suboptimal. One way

to proceed in this case is suggested in [2, 4]. Instead of using PCA to learn a linear observation

function in LDSs, they use kernel principle components analysis (KPCA) to learn a non-linear

observation function. Therefore, we refer to such dynamical system as kernel state space model,

which we now introduce.

To understand KSSs, it is necessary to introduce KPCA first. Kernel PCA is the kernelized ver-

sion of standard PCA [50, 4]. As we know, the data is projected into a linear principal component

in standard PCA. In KPCA, the data is projected onto a non-linear subspace and those non-linear

principle components are expressed by kernel function. That means KPCA performs a non-linear

feature transformation of the data, and then process these transformed data by standard PCA in the

feature-space. In this method, the c-th component is defined by the map Φ(·) : S → H, and by the

KPCA weight vector αc
.
= vc/

√
λc, where λc and vc are the c-th largest eigenvalue and eigenvec-

tor of the kernel matrix between the zero-mean data in the high-dimensional space, computed as

K̃ = (I − 1
T
ee>)K(I − 1

T
ee>), where e = [1, · · · , 1]> ∈ RT , and [K]st = K(ys, yt) (See [4] for a

detailed description and derivation).

Based on the KPCA introduction, now we consider the extension of LDSs to KSSs. As we

mentioned before, KPCA first transforms the data with the feature transformation Φ(·) which is

induced by the kernel function K(ys, yt) = ΦT (ys)Φ(yt), and then a standard PCA is used as it is

done in LDSs. So an observation sequences yt can be transformed to Φ(yt). Therefore, the LDS

equation is replaced by

 xt+1 = Axt + vt

Φ(yt) = Cxt + wt
(3.9)
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Figure 3.6: Parameter estimation algorithm for KSS models [4]

Compared with equation ( 3.7), Φ(·) because the mapped space H could be an infinite di-

mension space, C is a linear operator instead of a matrix, where C : Rn → H. To estimate the

parameters of model ( 3.9), we need to identify the parameter A, the sequence xt, and some rep-

resentation for C based on the knowledge of kernel K. The parameter estimation algorithm is

summarized in Figure 3.6.

3.4.3 Stability of LDSs and KSSs

As described in this section, an interaction trajectory is modeled as the output of a dynamical

systems. Thus, it is necessary to explore the stability of dynamical systems. For example, in

the case of synthesis, the estimated system should be stable because an unstable system would

synthesize exploding outputs.

For a linear dynamical system with discrete time, the system is proved to be stable if all the

eigenvalues of the A matrix are within the unit circle of the complex plane [51]. Since the typical

data that we examine in human activity analysis does not exhibit an “exploding” trend, we can
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practically assume that the associated dynamical system is stable. There are also approaches to

address the exceptions by replacing A with the estimation of matrix Â that ensures the stability

of the system [51]. Thus, the stability of the LDS model for a binary human-human interaction

problem is ensured.

For the KSS model, we applied the KPCA step but then everything is linear and it doesn’t

change anything for the matrix A. So the stability of KSSs can also be easily ensured.

3.5 Comparing Trajectories with KSS Models

To classify human activity, we need to evaluate the similarity of interaction trajectories for both

audio and visual cues. That means, a method to compute the similarity between KSSs has to be

developed. In this thesis, the kernel we used for interactions comparison is the kernellized version

of the Binet-Cauchy kernel, that was proposed in [2]. In particular, the Binet-Cauchy trace kernel

for KSS is the expected value of an infinite series of weighted inner products between the outputs

after embedding them into the high-dimensional (possibly infinite) space using the map Φ(·). More

precisely

KBC({yt}∞t=1, {y′t}∞t=1)
.
= E

[
∞∑
t=1

λtΦ(yt)
>Φ(y′t)

]
= E

[
∞∑
t=1

λtK(yt, y
′
t)

]
(3.10)

Where, 0 < λ < 1, and the expectation of the infinite sum of the inner products is taken w.r.t. the

joint probability distribution of vt and wt. The kernel (3.10) can be computed in closed form, and

it requires the computation of the infinite sum

P =
∞∑
t=1

λt(AT )>FA′> , (3.11)

where C>C ′ is replaced by F . Now, F = α̃Sα̃′, and the columns of α̃ and α̃′ are the centered

KPCA weight vectors of {yt} and {y′t}, given by α̃c = αc − e>αc
T
e, and α̃′d = α′d −

e>α′d
T ′

e,

respectively. S instead is such that [S]st = K(ys, y
′
t), where s ∈ {1, · · · , T}, and t ∈ {1, · · · , T ′}.

Following the same procedure for LDSs, P can be computed by solving the Sylvester equation

P = λA>PA′ + F .

Given P , kernel (3.10) can be computed in closed-form provided that the covariances of the

system noise, the observation noise, and the initial state are available. On the other hand, like [2]
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points out, for recognition of phenomena that are assumed to be made by one or multiple cycles

of a temporal sequence, we want to use a kernel that is independent from the initial state and the

noise processes. Therefore, the original kernel (3.10) is simplified to Kσ
BC , which is a kernel only

on the dynamics of the KSS, and is given by the maximum singular value of P , i.e.,

Kσ
KSS = maxσ(P ) . (3.12)

For more details about the estimation of the KSS model parameters, and about the derivation of

kernel (3.12) the reader is referred to [48, 4, 2].
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Chapter 4

Human Interaction Recognition

In the previous chapter, we establish a framework for modeling binary interaction based on

interaction trajectories. In this framework, the similarity between two videos can be compared

through kernels. Therefore, the performance of such framework greatly depends on how well the

kernel methods are designed. In this chapter, we will introduce appropriate kernel methods for

comparing visual trajectories, audio trajectories, and for combining the discriminative inforamtion

carried by audio and video cues. In particular we will propose the direct sum combination of audio

and video trajectories, and a method based on multiple kernel learning.

4.1 Modeling Challenges

To model binary interactions, we have to address a few unique issues.

4.1.1 Domain definition of the audio and video trajectory

The measurements of the visual interaction trajectories yij,t do not live in an Euclidean space.

As we mentioned in previous sections, the usual interaction trajectories are construed by HOOF,

MH, and proximity distance. Therefore, yij,t does not assumes values in an Euclidean space but in a

Riemannian manifold with a nontrivial structure, which is Hb×Hτ ×Hb×Hτ ×R+. In particular,

Hb is the space of histograms, which are probability mass functions satisfying the constraints∑b
k=1 ht;k = 1, and ht;k ≥ 0, ∀i ∈ {1, · · · , b}. Thus, the interaction trajectories yij,t do not live
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in an Euclidean space. Similarly, given the non-linear processing pipeline for computing MFCC

features, aij,t does not assume values in an euclidean space.

4.1.2 Interaction symmetry

The decision function of any classifier is expected to be symmetrical and should not be affected

by any person ordering. This is relate to the symmetry of the input feature space, which is peculiar

to modeling interactions. In particular, a recognition schema entails the definition of a decision

function f : Hb×Hτ×Hb×Hτ×R+ → R, which will predict whether person i and j are engaging

in a certain interaction (i.e., f(hi,mi, hj,mj, dij) > 0), or not (i.e., f(hi,mi, hj,mj, dij) < 0).

Therefore, given that no person ordering is imposed a priori, the decision function is expected to

be symmetric with respect to i and j, i.e.,

f(hi,mi,hj,mj, dij) = f(hj,mj,hi,mi, dji) . (4.1)

4.1.3 Audio and Visual Trajectory Combination

The information carried by the audio trajectory {aij,t}, and by the visual trajectory {yij,t}must

be combined in a way that maximizes the human interaction classification accuracy.

4.2 Kernel for the Audio Domain

The audio interaction trajectory is a temporal sequence, and in order to compare two audio

trajectories we need to compare their corresponding kernel state space models. Kernel functions

can be used in many applications as a simple bridge from linearity to non-linearity. In this section,

we are going to propose several kernels that will be used during our experiments.

4.2.1 Binet-Cauchy Kernels

We model audio interaction trajectories as the output of kernel state space models, and reduce

the problem of recognizing human interactions to the problem of discriminating between KSSs.

Once we have represented each audio as an interaction trajectory model, we need a dissimilarity
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metric or distance to assess how close two given trajectories are. Several methods can be found

in the literature, such as algebric and information theoretic distances. Besides distances, recently

Binet-Cauchy kernels for computing similarity have been introcuded for LDSs, and then extended

for KSSs. The Binet-Cauchy kernel for NLDS is given by:

KBC({yt}∞t=1, {y′t}∞t=1)
.
= E

[
∞∑
t=1

λtΦ(yt)
>Φ(y′t)

]
= E

[
∞∑
t=1

λtK(yt, y
′
t)

]
, (4.2)

where 0 < λ < 1, and the expectation of the infinite sum of the inner products is taken w.r.t.

the joint probability distribution of vt and wt. The KBC can be computed in closed form, and it

requires the computation of the infinite sum. In order to compute the infinite sum of the inner

products K(yt, y
′
t) which represent the kernel between audio frames of two trajectories, we tried

the linear kernel, and the radial basis function (RBF) kernel.

• Leaner Kernel

The linear kernel is the simplest kernel that can be used with a classifier such as a SVM. It is

optimal if the data are linearly separable. To compare the frames between two audio frames,

we extract the MFCC features; which will create the audio trajectory. Therfore, if yt is A

vector that contains the extraxted features aij,t, then the linear kernel is given by the inner

product < t, t′ >, plus an optional constant, i.e.

K(yt, y
′
t) = yTt y

′
t (4.3)

• RBF Kernel

The RBF kernel is one of the most popular kernels, it iis often considered as the first choice.

Unlike the linear kernel, the RBF kernel handles the cases when the relationship between

class lables and attribures is nonlinear. Furthermore, the RBF kernel has less tuning parame-

ters if compare it with others, which positively influences the complexity of model selection.

The standard RBF kernel on two samples yt and y′t isdefined as :

K(yt, y
′
t) = e−γ‖yt−y

′
t‖2 , (4.4)

Where ‖.‖ indicates the euclidean norm.
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4.2.2 RBF Kernel with Binet-Cauchy Kernel Distance

Another strategy for using an RBF kernel is to define a distance between two trajectories, and

then use it in place of the typical euclidean norm. In this method we first compute the Binet-

Cauchy kernel for audio trajectories using equation kernel (4.2). Specically, K({yt}, {y′t}) =

E [
∑∞

t=1 λ
tK(yt, yt)]. Then, we compute distance from the Binet-Cauchy kernel, given by

dBC({yt}, {y′t}) = KBC({yt}, {yt}) +KBC({y′t}, {y′t})− 2KBC({yt}, {y′t}), (4.5)

We refer to (4.5) as Binet-cauchy kernel distance.

Finally, we compute the following RBF kernel:

KRBF−BC({yt}, {y′t}) = e−γd
2
BC({yt},{y

′
t}) (4.6)

4.2.3 RBF Kernel with Martin Distance

By treating the audio trajectories, {yt}Tt=1, as the output of LDSs we can compare two LDSs

with algebraic distances, such as the martin’s distance. The output trajectory {yt} of a LDS lives in

the observability subspace associated with the model parameters, M = (A;C). The observability

subspace is the range-space of the extended observability matrixO(M) = [CT , (CA)T , (CA2)T , ..]T ∈

R∞×n. The martin’s distance is based on the computation of the principal angles extened observ-

ability matrices, which are called subspace angles. More specifically, letMi = (Ai, Ci) for i = 1, 2

be the parameters of two LDS models for order n. let θ1, · · · θ2n be the subspace angles between

the range spaces of their extended observability matrices O1 and O2, which are defined as

Oi =
[
CT
i , (CiAi)

T , (CiA2
i )
T , · · ·

]
, i = 1, 2. (4.7)

If the systems are stable, i.e., ‖Ai‖2 < 1, the subspace angles θi can be computed as the roots of

θi = cos −1(
√
λi), where λi is the i-th eigenvalue of P −111 P12P −122 P21 AND Pij is the solution to

the Sylvester’s equation

Pij = AT
i PijAj + CT

i Cj, i, j = 1, 2. (4.8)
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One can show that the subspace angles are invariant with respet to a change of basis in the state

space. Thus, as described in [52], one can define many distances based on the subspace angles.

For example, the (squared) Martin and Forbenius distance between the modles M1 and M2 are,

respectively, given by:

d2M(M1,M2)
2 = − log

∏2n

i=1
cos2 θi (4.9)

d2F (M1,M2)
2 = 2

2n∑
i=1

sin2 θi (4.10)

Finally, we use the martin diatance to derive the following RBF kernel

KRBF−M({yt}, {y′t}) = e−γd
2
M (M1,M2) (4.11)

4.3 Kernels for the Visual Domain

For the visual trajectories we define Binet-cauchy kernels and RBF kernels with Binet-cauchy

distance as explained in the following sections.

4.3.1 Binet-Cauchy Kernels

As it was done for the audio trajectory, we compare the KSS models of visual trajectories with

Binet-cauchy kernels like the one in equation (4.2). However, in order to address the modeling

challenges outlined in section 4.1.1 and 4.1.2 we need to carefully design the kernel K, inside the

KBC kernel. this is explained in the following two sections.

Kernels for Histogrmas

Mercer kernels, proposed in [50], are positive definite kernels that induce an inner product in a

higher dimensional space, called a Reproducing Kernel Hilbert Space(RKHS). For points lying on

the non-linear manifold, the Mercer kernel is given by

k(h1, h2) = Φ(h1)
>Φ(h2) (4.12)
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There are several mercer kernels for histograms. If we represent a histogram as its square

root, we have
√
ht = [

√
ht;1, ...,

√
ht;N ]. Such histogram can be projected to a N dimensional

hypersphere where the Riemannian metric between two points on the hypersphere induces the

following kernel between two histograms.

kS(h1, h2) =
N∑
i=1

√
h1;ih2;i (4.13)

This kernel ( 4.13) is known as the geodesic kernel and can be derived from the RBF kernel

k(h1, h2) = exp(−d(h1, h2)) with the Bhattacharyya distance dB(h1, h2) = −ln(BC(h1, h2)),

where BC(h1, h2) =
∑N

i=1

√
h1;ih2;i.

The Bhattacharyya distance measures the similarity of two discrete or continuous probability

distributions [2]. Another kind of distance to measure the similarity of histograms is the Minimum

Difference of Pairwise Assignment [53], given by

dMDPA(h1, h2) =
N∑
i=1

∣∣∣∣∣
i∑

j=1

(h1;i − h2;i)

∣∣∣∣∣ . (4.14)

Another popular distance between two histograms is the χ2 distance

dχ2(h1, h2) =
1

2

N∑
i=1

|h1;i − h2;i|2

h1;i + h2;i
. (4.15)

All of these distances can be used in combination with aRBF kernel to compute the similarity

of histograms.

Besides RBF kernels, another kind of Mercer kernel for histograms is Histogram Intersection

Kernel (HIST) [54], which is defined as

kHIST (h1, h2) =
N∑
i=1

min(h1;i, h2;i). (4.16)

Pairwise Kernels

In our framework, the visual feature space S .
= Hb ×Hτ ×Hb ×Hτ × R+ is a non-Euclidean

space which is a Riemannian manifold. Therefore, the kernel K in equation (3.10) should be

definedaccordingly. There are several ways to construct a non-linear kernel. One way is to extend

an RBF kernel with Euclidean distance to a non-linear kernel with non-Euclidean distance. In
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order to take advantage of the known Riemannian structure of S, we have to replace the Euclidean

distance with a distance for the manifold S. However, defining a distance on S is an open problem.

An alternative approach is to use kernel construction techniques which are discussed in [50].

Since, S is represented by the Cartesian product of subspaces, this approach allows to concentrate

on each subspace separately, and exploit the known geometry to the full extent.

Now, we design a histogram kernel KH and a distance kernel Kd. Since the input feature

space S is represented by the Cartesian product of subspaces, we design KH for the first subspace

Hb×Hτ ×Hb×Hτ , and Kd for the second subspace R+. Following the method proposed in [50],

KH and Kd can then be combined by computing their tensor product kernel, which is expressed as

K
.
= (KH ⊗Kd)(yij, y

′
ij) = KH((hi,mi,hj,mj), (h′i,m

′
i,h
′
j,m

′
j))Kd(dij, d

′
ij) , (4.17)

To lighten the notation, the time subscript t is not shown in the above equation. With this

kernel, the classification of binary interactions is decided not only by the similarity of motion

features but also by the similarity of proximity cues, as it is explained in the previous chapter.

Now, let’s consider KH and Kd separately. From Equation 4.17, Kd depends on the distance

between person i-th and person j-th, dij ∈ R+, and we simply chose a gaussian RBF kernel, given

by

Kd(dij, d
′
ij)

.
= exp(−γ|dij − d′ij|2) . (4.18)

For kernel KH , we note that it is a so-called pairwise kernel [55], because it is such that

KH : (XH × XH) × (XH × XH) → R, where XH
.
= Hb × Hτ , and it could be used to support

pairwise classification, which aims at deciding whether the examples of a pair (a, b) ∈ XH × XH
belong to the same class or not.The requirement of being positive semidefinite implies that KH

satisfies the following symmetry property

KH((a, b), (a′, b′)) = KH((a′, b′), (a, b)) , (4.19)

for all a, b, a′, b′ ∈ XH . By using kernel construction techniques based on direct sum and tensor

product of kernels, given the kernel kH : XH × XH → R, one can build the following pairwise

versions of KH

KD
H = (kH ⊕ kH)(a, b, a′, b′) = kH(a, a′) + kH(b, b′) , (4.20)

KT
H = (kH ⊗ kH)(a, b, a′, b′) = kH(a, a′)kH(b, b′) , (4.21)
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which obviously satisfy the symmetric property. We now verify whether by using the kernels

defined in ( 4.20) and equation ( 4.21) it is possible to construct a decision function f for interaction

trajectories, which are supposed to satisfy the symmetry property ( 4.1). We plan to learn decision

function f with a SVM that exploit the general kerne equation ( 3.10). Therefore, they will assume

the form

f({ai,t, aj,t, dij,t})
.
=
∑
u,v

αuv`uvKNLDS({ai,t, aj,t, dij,t}, {a′u,t, a′v,t, d′uv,t}) + β , (4.22)

where, αuv, `uv, and β are the usual SVM parameters [50], and ai,t = (hi,t,mi,t) ∈ XH , and

aj,t = (hj,t,mj,t) ∈ XH . More importantly, equation 4.22 indicates that the symmetry property of

4.1 should be expressed as

KNLDS({ai,t, aj,t, dij,t},{a′u,t, a′v,t, d′uv,t}) =

KNLDS({aj,t, ai,t, dji,t}, {a′u,t, a′v,t, d′uv,t}) ,
(4.23)

for all ai,t, aj,t, a′u,t, a
′
v,t ∈ XH , and dij,t, d′uv,t ∈ R+. In turn (4.23) induces a symmetry property

on the kernel ( 4.17) through ( 3.10), which is given by

K((ai,t, aj,t, dij,t), (a
′
u,t, a

′
v,t, d

′
uv,t)) = K((aj,t, ai,t, dji,t), (a

′
u,t, a

′
v,t, d

′
uv,t)) , (4.24)

and finally, since dij,t = dji,t and duv,t = dvu,t (4.24) impose on KH the following relationship

KH((ai,t, aj,t), (a
′
u,t, a

′
v,t)) = KH((aj,t, ai,t), (a

′
u,t, a

′
v,t)) , (4.25)

to be valid for all ai,t, aj,t, a′u,t, a
′
v,t ∈ XH . Note tha the relationship ( 4.25) is different than the

symmetry relationship ( 4.19), and kernels that satisfy ( 4.25) are called balanced [55]. Unfortu-

nately, the pairwise kernelsKD
H , andKT

H , defined in ( 4.20) and ( 4.21) symmetric but not balanced.

Therfore, we propose to test two kernels that have been proved to to have good theoretical proper-

ties [55], in that they guarantee minimal loss of information, and can be thought of as the balanced

versions of KD
H , and KT

H . These two kinds of kernel are defined as follows

KDS
H ((a, b), (a′, b′)) = KSD

H ((a, b), (a′, b′)) +KML
H ((a, b), (a′, b′)) , (4.26)

KTL
H ((a, b), (a′, b′)) =

1

2
(kH(a, a′)kH(b, b′) + kH(a, b′)kH(b, a′)) , (4.27)
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where

KSD
H ((a, b), (a′, b′)) =

1

2
(kH(a, a′) + kH(a, b′) + kH(b, a′) + kH(b, b′)) , (4.28)

KML
H ((a, b), (a′, b′)) =

1

4
(kH(a, a′)− kH(a, b′)− kH(b, a′) + kH(b, b′))2 . (4.29)

In particular, KTL
H is called tensor learning pairwise kernel [56], and KDS

H is called direct sum

pairwise kernel [55].

Finally, wer left with the task of step designing kH , which is defined on the space (Hb ×

Hτ ) × (Hb × Hτ ). Since it is not required to be balanced, and both features, hi,t and mi,t, should

concur at the same time towards establishing similarity, we apply the tensor product rule to further

decompose kH into two kernels, kh : Hb ×Hb → R and km : Hτ ×Hτ → R, producing

kH((hi,t,mi,t), (h′i,t,m
′
i,t)) = kh(hi,t,h′i,t)km(mi,t,m′i,t) . (4.30)

Both kh and km are kernels for comparing histograms. There are several options in this domain, as

it is outlined in section 4.3.1 and for both kh and kmwe picked the geodesic kernel ( 4.13).

4.3.2 RBF Kernel with Binet-Cauchy Kernel Distance

Similarly to what was done for the audio trajectories, we define an RBF kernel for visual

trajectories that is based on the Binet-cauchy kernel distance.

4.4 Kernels for the Audio and Video Domain

In this section we present several kernel-based strategies for combining audio and visual tra-

jectories.

4.4.1 Direct Sum of audio and visual features

The experiments show that the direct sum of audio and visual features spaces display better

results than only using video features or only audio features. Thus, we extract audio features

consisting of vector with length between 7 to 25 elements. However, we obtained the best result

with 9 elements,thus we extract MFCC features made of 9 elements. In addition; we extract the
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Figure 4.1: Combination of audio and video Features

video features HOOF and MH, and the distance d. The video features vector was a dimensionality

between 19 to 35.

To allow the direct sum of audio and visual features, we need to ensure identical feature ex-

traction rates. Therefore the audio features are temporally sampled so as to reach the same frame

rate as the audio features. Finally the audio and visual features are concatenated to obtain a feature

vector of dimensionality 28 to 44, which is used for training and testing. Figure 4.1 presents the

direct sum procedure for combining audio and visual features.

4.4.2 Binet-Cauchy Kernel

As mentioned in the previous sections Binet-Cauchy kernels can be used to assess the similarity

btween pairs of audio interaction trajectories and video interaction trajectories. After the direct

sum of audio and video features, our trajectory will consist of {(yij,t, aij,t)}. We use the BC kernel

( 3.6) to compare the similarity between audio and video trajectories. As internal kerneLK(yt, y
′
t)

we use the tensor learning pairwise kernel ( 4.29) to compare frames of video trajectories, for the

distance d we use the RBF kernel ( 4.20) and for MFCC we use the RBF kernel ( 4.4).
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Figure 4.2: The MKL procedure for combining audio and visual

RBF Kernel with Binet-Cauchy Kernel Distance

Another kernel that we use to compare audio and video trajectory is the RBF with the Binet-

kernel distance. In this method we first compute the Binet-Cauchy kernel for the audio and video

trajectories using ( 4.2), and again we use the tensor learning pairwise kernel ( 4.29) to compare

frames of video trajectories, for distance dwe use the RBF kernel and for MFCC we also use ( 4.4).

Then, we create the corresponding Binet-cauchy kernel distance, and we apply the RBF kernel

as it is done in ( 4.6).

RBF kernel with Martin Distance

As mentioned eralier, by treating the representative feature trajectories, {yt}Tt=1, as the output

of a LDS we can compare two LDS with the martin distance. After the direct sum of the audio and

video features, we estimate the corresponding LDS.

The parameters are used to compute the martin distance dm, and we use the RBF kernel (RBF-

M) inside the SVM classifier.

4.4.3 Audio Visual Multiple Kerenl Learning

Multiple kernel learning (MKL) searches for a structure to better quantify the similarities and

differences between trajectories. This is done by appropriately combining multiple predefined

kernels instead of using a single one. There can be two uses of MKL :
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• First: different kernels correspond to different notions of similarity and instead of trying to find

which one works best, a learning method does the picking for us, or may use a combination

of them. Using a specific kernel may be a source of bias, and allowing a learner to choose

among a set of kernels, should leaded to a better solution.

• Second: different kernels may be using inputs coming from different representations possibly

from different sources or modalities. Since these are different representations, they have

different measures of similarity corresponding to different kernels. In such a case, combin-

ing kernels is one possible way to combine multiple information sources. This method of

combining kernels is called intermediate combination, and is in contrasts with an early com-

bination (where features from different sources are concatenated and fed to a single learner)

and late combination (where different features are fed to different classiers whose decisions

are then combined by a fixed or trained combiner). Figure 4.2 shows the procedure that has

been used to combine two kernels [57].

According to our experiments, the best performance when comparing audio and also visual

trajectories is obtain by using RBF kernel with BC kernel distances. Thus, when combining these

two kernels the final kernel is going to beKtotal = η1Kaudio+η2Kvideo,Ktotal in general is compute

as the following:

Kη(Xi, Yj) = fη({Km(Xi
m, Yj

m)}Pm=1|η) =
P∑

m=1

ηmKm(Xi
m, Yj

m) (4.31)

where η denotes the kernel weights, which are estimated simultaneously with the other SVM clas-

sifier parameters. In general, in ( 4.31) fη indicates a parametric function for the combination of

kernels, but in this thesis we limit our choices to the linear version, as indicates in the right hand

side of ( 4.31).
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Chapter 5

Experimental Results

In this chapter, we present the results of the experiments conducted to compare several methods

that have been used for human interaction recognition, and establish the most effective one. Our

goal is to confirm that audio features can be employed to improve the classification performance.

5.1 Dataset

The dataset that has been used for our experiments is the TVShow dataset. It consists of videos

that belong to five different classes: hand-shakes, high-fives, hugs, kisses, and negative. Each

video clip is labled with a single interaction class from the possible five.There is a large length

variation (from 30 to 600 frames) and a great degree of variation among the videos as they are

compiled from different TV shows. The dataset provides information about the frame intervals

where the interaction happens within each video. As people tracking information we were able

to use the ground-truth annotations made available along with the videos, consisting of bounding

boxes framing the upper bodies of all the actors in the scene. Our analysis was limited to the

bounding boxes corresponding to the people interacting, and the features were extracted from

boxes having a width that was double the original annotations, in order to analyze the motion in

a region surrounding each person. Note that some of the original videos where not considered

due to their very limited length. For the purpose of comparison, we use 120 videos. When we

train samples, every time we train with 119 videos and leave one video out, then we repeat this

procedure with all other videos.
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To process this dataset, we have to detect and track the people in the scene. Low quality detec-

tors and trackers will lead to bad feature extractions which result in degradation of performance.

For example, if the tracks are fragmented, the approach brakes at the moment. However, analyzing

this aspect is beyond the scope of this thesis and will be the subject of future works. Therefore,

as pointed out in Chapter 1, we assume that correct tracking information is available in our exper-

iments. This is a common assumption in human activity analysis. Figure 3.2 and Figure 3.4 give

examples of how we process these datasets. We use bounding boxes to tightly bound each person in

the scene at each frame to compute the MH and the HOOF features, and we use a temporal sliding

window to compute the MFCCs for each corresponding video frame. In general we use bounding

boxes with a width that is three times the width of the original tight bounding box. This process

is shown in the second row of Figure 3.4. Even though for the TVShow dataset we can directly

exploit the included annotation information, the motion images are computed with respect to the L

channel of the Lab color space, and the HOOF features are based on the optical flow computed in

C++ with the OpenCV library in all the expermints. Proximity cues were obtained by computing

the distance between the bounding boxes. In our experiments, we normalized the distance with

respect to the mean height of the two individuals participating in the interaction.

5.2 Experiments

In our experiments, we tested the influence in the recognition accuracy by different kernel

constructions which were proposed in previous sections. Several possible choices of KKSS are

evaluated, and for each kind we compute the recognition accuracy. Also we compare our results

with other methods that have been proposed in literature, such as the bag-of-word model [6].

The experiments include three main parts:

• Results on audio based interaction recognition

• Results on video based interaction recognition

• Results on audio-video based interaction recognition
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Summary of the Bag of Word Approach
Approach/Feature HOG HOF HOG+HOF MFCC
Audio - - - 48.5
Video 39.5 45.0 46.0 -

Table 5.1: Classification accuracy, the BoW approach [6].

5.2.1 Results on Audio Based Interaction Recognition

In this section we present the experiments conducted to classify human interactions based on

audio features. This includes comparison with the Bag-of-Word (BoW) approach, and show the

sensitivity of accuracy with respect to number of MFCC features and temporal window size test.

Summary of the baseline Bag of Word (BoW) Approach

One method that has been used for comparison purpose is the Bag-of-Word (BoW) [6]. The

general idea of the BoW model is tobuild a histogram h with k bins where each bin represents how

many timeas a visual word is present in the target image. For a given video sequence the BoW

model build such an audio descriptor or video descriptor, depending on the kind of dictionary that is

uesd. For video experiments Spatio-Temporal Interst Points have been computed from Histograms

of Oriented Gradients (HOG) and Histograms of Optical Flow (HOF). For audio experiments, the

dictionary is built out if MFCC features. Table 5.1 shows a summary of the classification accuracy

of the BoW aprroach.

Results on Audio Based Interaction Recognition Using our Approach

In this section we present the experiments conducted to validate the effectiveness of the audio

features. Our samples have been taken from the TVShow dataset by extracting the audio wave and

then computing the MFCC as audio features. Our classification scheme is based on a multi-class

SVM classifier, which we have trained using the libSVM package, and for which we have tested

the following kernels and model configurations:

(a)KKSS as Binet-Cauchy kernel to compare two audio interaction trajectories, and forK(yt, y
′
t)

we tested the linear kernel and the RBF kernel option.

(b) RBF kernel with BC kernel distance, while K(yt, y
′
t) has set to be either the linear kernel
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Results on Audio Based Interaction Recognition
KSS / K(yt, y

′
t) Linear RBF

Binet-Cauchy (BC) 45 44.16
RBF with BC Kernel Distace 45.83 48.33

Table 5.2: Audio classification accuracy based on the KSS model

Results on Audio Based Interaction Recognition
KLDS Accuracy
RBF with Martin Distance dm 47.5

Table 5.3: Audio classification accuracy based on the LDS model

Methods Accuracy
Our Method 48.33
BoW 48.5

Table 5.4: Comparison between our method and the BoW model audio based interaction
recognition.

or the RBF kernel. (c) RBF kernel with Martin distance dm.

Table 5.2, Table 5.3 and Table 5.4 show the classification accuracy for the THVShow-

Interaction dataset by using kernel option outlined above. We notice that the best result is obtained

by using the RBF kernel with BC kernel distance.

We also plot the confusion matrices for audio obtained with the best performance kernel, (see

the left of Figure 5.5).

5.2.2 Results on Video Based Interaction Recognition

Similarly to the audio case, we tested the kernel’s impact on the classification accuracy based

on the video cues. Figure 5.3 shows the comparison between the Binet-Cauchy (BC) kernel and

the RBF kernel with BC kernel distace used for classification visual trajectories.

It is abvious that RBF kernel with BC kernel distace and tensor learning (TL) pairwise kernel

gives the best result.
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Figure 5.2: Per-class precision-recall curves for the TVShow dataset.

We also plot the confusion matrices for audio obtained with the best performance kernel con-

figuration, (see the middle of Figure 5.5), as well as the per-class precision-recall curves (see

Figure 5.2), those were obtained rom a retrieval experiment based on the BC kernel distance.

Finally, we present the classification accuracy obtained by using different kernels, and com-

pared with results obtained from the BoW method. Table 5.5 and Table 5.6 show these compar-

isons. Our video trajectory consists of HOOF and MH features. It can be seen that the best results
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Results on Video Based Interaction Recognition
KSS / K(yt, y

′
t) Linear TL with RBF

Binet-Cauchy (BC) 50 60
RBF with BC kernel distace 51.66 64.16

Table 5.5: Video classification accuracy based on the KSS model
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Figure 5.3: Classification accuracy summary based on visual features

Methods Accuracy
Our Method 64.16
BoW 46

Table 5.6: Comparison between our method and the BoW approach for video interaction
recognition.

have been obtained by using the RBF kernel with BC kernel distace and K(yt, y
′
t) given by the

tensor learning (TL) pairwise kernel. From table 5.6 it is apparent that our method performs better

than the BoW method, indicating that the approach is promising.

5.2.3 Results on Audio-Video Based Interaction Recognition

In this section we present the results of the experiments conducted using audio and video

features. We have used two types of video features given by the HOOF and MH. Whereas we

use MFCC as audio features. As for the previous section we test dthe direct sum audio-video
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Figure 5.4: Classification accuracy of our methods (left), classification accuracy comparison be-
tween our approach and the BoW approach (right).

combination approach, and also the multiple kernel learning method. For the direct sum approach

we tested the KSS model with a multi-class SVM classifier using the Binet-cauchy (BC) kernel.

The audio part of the direct sum is using the RBF kernel, whereas the video part is using the tensor

learning pairwise kernel. The same BC kernel is also used in another configuration, where it is

converted into a BC kernel distance, and then used in combination with an RBF kernel. The results

of the two configurations are presented in table 5.7. Also in table 5.7 are reported the results of

audio and video combination based on the multiple kernel learning. In this case both the audio and

video features exploit an RBF kernel with the corresponding BC kernel distance. The BC kernels

for audio and video were computed in the same way they were for the direct sum approach. Figure

5.4 presents the classification accuracy among different approaches.

It can be seen from table 5.7 that the best results have been obtained by using the RBF kernel

with kernel BC distace based, andK(yt, y
′
t) given by a tensor learning (TL) pairwise kernel. Table

5.8 shows how our approach compares favorably against the BoW model. Also figure 5.5 shows

the confusion matrices corresponding to the classification based only on audio cues (left), only

video cues (center), and based on merging those with MKL (right).
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Combined audioand video classification accuracy
KSS / K(yt, y

′
t) TL with RBF TL with RBF

Binet-Cauchy (BC) 63 -
RBF with BC kernel distace 65.20 -
MKL - 72

Table 5.7: Combined audio and video classification accuracy.

Methods Accuracy
Our Method 72
BoW 50.86

Table 5.8: Comparison between our method and the BoW method when audio and video are
combined.
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Chapter 6

Conclusion

In this thesis we propose a framework for modeling and recognizing binary human interactions,

which is based on audio and visual features. We propose to model the visual information by a

temporal sequence of motion features extracted from video, forming visual interaction trajectories.

Similarly, we propose to model the audio information by a temporal sequence of audio features,

synchronized with the motion features, and forming audio interaction trajectories. We develop a

framework where visual and audio trajectories are modeed as the output of kernel state space (KSS)

models. Therefore, recognizing audio and/or visual trajectories entails the ability to recognize

KSS models. Such recognition can be supported by the use of a kernellized version of the recently

proposed Binet-Cauchy kernels, which can be used for training multi-class SVM classifiers.

A crucial challenge addressed by the proposed framework is how to combine the information

carried by the audio trajectory together with the information of the visual trajectory. To this end

we propose two different approaches. The first one performs the direct sum of the audio and visual

feature spaces, and exploits the KSS modeling framework to classify interactions. The second

approach seeks for an optimal combination of the kernels for audio and visual information in a

multiple kernel learning framework.

The proposed approaches were extensively tested on a dataset made of videos of TV shows

and Hollywood movies. A comparison with the only other available approach, based on the Bag-

of-Words model, has revealed that our newly developed framework clearly outperforms previous

methods, and sets a new state-of-the-art in this particular application. Future developments of

this approach will involve the inclusion of other proxemics cues, such as gaze, in order to further
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improve the classification accuracy, and the testing on more human interaction datasets which

inclue also audio information.
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